
www.allitebooks.com

http://www.allitebooks.org

Sparrow iOS Game Framework
Beginner's Guide

Create mobile games for iOS devices with the Sparrow iOS
game framework

Johannes Stein

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Sparrow iOS Game Framework Beginner's Guide

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2014

Production reference: 1180614

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-150-9

www.packtpub.com

Cover image by Sujay Gawand (sujaygawand@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Johannes Stein

Reviewers
James Borden

Alex Harrison

Karuna Krishnasamy

Daniel Sperl

Sladjan Trajkovic

Commissioning Editor
Usha Iyer

Acquisition Editor
Nikhil Karkal

Content Development Editor
Sharvari Tawde

Technical Editors
Pratik More

Ritika Singh

Copy Editors
Sayanee Mukherjee

Deepa Nambiar

Project Coordinator
Binny K. Babu

Proofreaders
Simran Bhogal

Maria Gould

Paul Hindle

Indexers
Rekha Nair

Priya Subramani

Graphics
Abhinash Sahu

Production Coordinator
Nilesh Bambardekar

Cover Work
Nilesh Bambardekar

www.allitebooks.com

http://www.allitebooks.org

About the Author

Johannes Stein has been interested in software and game development for most part
of his life. He has used a variety of technologies, programming languages, and platforms.
In the last few years, he has worked as a freelancer using web and mobile technologies for
a number of different companies and start-ups, working on several iOS apps and games.
Among the technologies he used were Sparrow, cocos2D, and UIKit. He has co-authored
the book Irrlicht 1.7 Realtime 3D Engine Beginner's Guide that was published in 2011 by
Packt Publishing. He can be followed on Twitter: @Stoney_FD.

I would like to thank everyone who helped me in making this book a
reality, specifically everyone involved at Packt for being patient with me
and giving me constant and helpful feedback. My thanks go out to all the
technical reviewers as well who gave me great pointers and improved the
book on multiple levels. Last but not least, I would like to thank my family
and friends who tried to motivate me, offering help whenever possible and
getting me through a few small rough patches.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

James Borden is an expat mobile application developer at Sotsu, Inc. in Tokyo, Japan.
He has been programming professionally in a variety of languages for over 5 years now, and
programming has been his hobby since he was 10 years old. He specializes in multiplatform
mobile deployment, but he has experience in developing games for single platforms as
well. His first mobile game was developed using the Sparrow engine. He was also featured
in the book Mobile Game Engines: Interviews with Mobile Game Engine Developers, Jason
Brownlee, LuLu Press, where he talks more about his experience with Sparrow. His talent is
not limited to mobile development though. In his final year of college, he helped develop
a 3D prototype game, utilizing a brain-computer interface as one of the game's inputs.
He hopes to excel in and enjoy his profession, no matter how it changes.

Alex Harrison is a mobile game programmer, originally from the UK. He first learned to
code with Flash and ActionScript before migrating to mobile with Sparrow and eventually
Starling. He is currently working on a multiplatform project in C++ and JavaScript using
cocos2DX, and he develops casual mobile browser games in his spare time. Alex lives in
Cape Town, South Africa, with his wife, two kids, two dogs, two rabbits, three cats, several
chickens, a horse, and a pony.

www.allitebooks.com

http://www.allitebooks.org

Karuna Krishnasamy is an avid gamer and a recent graduate in Computer Gaming and
Animation Technology from Anglia Ruskin University. With 5 years of experience in designing
and building games for the PC and iOS devices, he enjoys the process of putting a game
together as much as he enjoys playing the finished product. When he isn't scoring kills in
Battlefield 4 or trying to think of the next big game idea, you can find him on the paintball
field, which in his words, is the best form of exercise. You can check out some of his work
at http://karunaskj.com/.

I would like to thank Johannes Stein for writing an awesome, well-written,
and comprehensive beginner's guide for Sparrow. It's definitely one of
my favorite frameworks, and if I had this book when I started getting into
Sparrow, it definitely would have speeded up my development. I would
also like to thank my family for supporting my desire to study game design
and for being there to support me through many sleepless nights getting
my first iOS games out in the market. Finally, I want to thank my first boss,
Deepak Setty, for being an awesome mentor and role model, showing me
the ins and outs of the corporate world; he is someone whom I have the
utmost respect for.

Daniel Sperl is a long-time game developer and has created numerous casual games in
ActionScript, C#, and Objective-C. Unsatisfied with the existing 2D frameworks of the time,
he created the Sparrow Framework for iOS, mimicking the tried and tested Flash API in
Objective-C. Ironically, Adobe was looking for exactly such a framework for Flash when
they introduced Stage3D in 2011, and so the Starling Framework was born. In 2012, he
co-founded the company Gamua to be able to work full-time on his frameworks.

When he is not developing Sparrow or giving support in the forum, Daniel loves to play
the latest Zelda or Super Mario game with his wife or ride his bike along the countryside
of Austria. He loves birds, just like his cat.

www.allitebooks.com

http://www.allitebooks.org

Sladjan Trajkovic is a software engineer with a passion for game development. He has a
Master's degree in Computer Science and has been working in the software industry since
2007, where he began his career as a .NET consultant.

Nowadays, he works exclusively with the iOS platform and has been involved in several
big-name applications. He has also released two games, Alien Defense Zone and Super
Kicks, on the App Store as an independent developer. Currently, he is working on several
new projects, both games and regular applications.

Follow him on twitter at https://twitter.com/SladanTrajkovic.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
 � Fully searchable across every book published by Packt

 � Copy and paste, print and bookmark content

 � On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Getting Started with Sparrow 7

Understanding the basics of Sparrow 7
System requirements 8
Setting up the Apple developer account 8
Downloading Xcode 9
Downloading Sparrow 10

Cloning the Git repository 10
Contents of the Sparrow package 11

The samples folder 12
The sparrow folder 12
Markdown files in the root folder 12
License 12

Setting up Sparrow 13
Option 1 – source tree reference 13

Time for action – adding Sparrow as a source tree reference 13
Time for action – using the barebone project as a template 14

Option 2 – CocoaPods 15
Time for action – installing command-line tools 16
Time for action – installing CocoaPods 16
Time for action – using the barebone project as a template 17
Running the template on the actual device 20
Time for action – running the template on the actual device 20
Getting Sparrow documentation files 21
Time for action – adding the Sparrow API documentation to Xcode 21
The idea for the game 22

Setting goals and expectations 22
Examining our gameplay elements 23

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Code conventions 23
Summary 24

Chapter 2: Displaying Our First Objects 25
Understanding display objects 25

Explaining display object containers 26
Setting the background color 26
Time for action – changing the background color 27

What is a stage? 29
Creating our cardboard puppet doll 29
Time for action – creating a cardboard puppet doll 29
Explaining macros 33

The Angles macro 33
The Colors macro 34
The utility functions 34
Constants in Sparrow 34

Math 35
Color 35

Manipulating display objects 35
Time for action – manipulating display objects 36
Summary 40

Chapter 3: Managing Assets and Scenes 41
Working with assets 41
Managing our assets 42
Time for action – creating a base class 43
Creating a texture manager 47
Time for action – managing our textures 47
Creating a sound manager 49
Time for action – implementing a sound manager 49
Creating a file manager 50
Time for action – managing remaining file types 50

Basic error handling 55
Time for action – getting started with basic error handling 55
Putting it all together 56
Time for action – creating an asset container class 56
Time for action – displaying an image 60
What are scenes? 63
Time for action – implementing a scene class 63
Creating a scene director 64
Time for action – managing our scenes with a scene director 64
Summary 67

Table of Contents

[iii]

Chapter 4: The Basics of Our Game 69
Taking care of cross-device compatibility 69

Understanding the texture size limit 70
How to deal with different screen sizes 70

Scaling the viewport 71
Black borders 72
Showing non-interactive screen space 72
Rearranging screen elements 73
Choosing the best option 74

Differences between various devices 74
Utilizing the iOS SDK 74
Retina and iPad support in Sparrow 76
App icons and splash images 76
The bottom line 77

Starting with the development of our game 77
Creating our scene manager setup 79
Time for action – creating our scene manager setup 79
Adding images to the battlefield scene 83
Time for action – adding images to the battlefield scene 83
Arranging images in the pirate cove scene 85
Time for action – arranging images in the pirate cove scene 86
Summary 88

Chapter 5: Beautifying Our Game 89
Working with tweens 89
Time for action – moving the pirate ship 90

Understanding transitions 94
Explaining jugglers 95
Updating the movement and canceling tweens 95

Time for action – updating the movement 96
Working with sprite sheets 101
Learning about texture formats 102

Using TexturePacker to create sprite sheets 103
Loading our first texture atlas 105

Time for action – loading our first texture atlas 105
Summary 107

Chapter 6: Adding Game Logic 109
Extending the asset manager 109
Time for action – adding texture atlases to the asset manager 110
Structuring our ships 112
Time for action – creating a ship class 112
Extending the ship class 121

Table of Contents

[iv]

Time for action – adding more functionality to the ship class 122
Shooting cannonballs 129
Time for action – allowing the ship to shoot cannonballs 129
Collision detection 132
Time for action – letting cannonballs collide with ships 133
Loading gameplay-relevant data 136
Time for action – avoiding hardcoded values 136
Summary 139

Chapter 7: User Interface 141
Displaying the hit points of each ship 141
Time for action – placing a health bar on top of each ship 141
Adding buttons to the screen 146

Pausing and resuming the game 146
Displaying the pause and resume buttons on the screen 146

Time for action – putting buttons on the screen 146
Implementing the logic to pause and resume the game 150

Time for action – allowing the player to pause and resume 150
Aborting the current game 155

Time for action – conceding the game 155
Adding dialogs to the screen 157
Time for action – creating a dialog class 157
Adding custom events to the dialogs 159
Time for action – adding our own buttons to our dialog 160
Drawing text on the screen 162

Displaying our first text field 162
Time for action – adding a text field to the dialog 162

Explaining system fonts 164
Explaining bitmap fonts 164
Creating our very own bitmap font 165

Time for action – using bmGlyph to create a bitmap font 166
Displaying a text field with bitmap fonts 167

Time for action – using our bitmap font for a text field 167
Summary 169

Chapter 8: Artificial Intelligence and Game Progression 171
Artificial intelligence in theory 171

Explaining fuzzy logic 172
Explaining state machines 172

Letting the enemy ship move and attack 174
Moving the ship 174

Table of Contents

[v]

Time for action – getting the enemy ship to move around 174
Attacking other ships 179

Time for action – the enemy should attack the player 179
Adding fuzzy values to the AI 182

Time for action – spicing up the AI with fuzzy values 182
Adding progression to our game 184

Adding a World class 184
Time for action – adding a World class 184

Updating the scene and dialog classes 186
Time for action – updating the scene and dialog classes 186

Adding game mechanics to the pirate cove 188
Time for action – making the pirate cove playable 188

Adding progression to the game 191
Adding win and lose conditions 192
Time for action – being able to win or lose 193
Summary 195

Chapter 9: Adding Audio to Our Game 197
Finding music and sound 197

Generating sound effects 198
Learning about audio formats 198
Music and sound effects for our game 199

Adding audio playback 200
Starting the audio engine 200

Time for action – getting audio files to play 200
Playing music in our scenes 201

Time for action – playing music in our scenes 201
Adding a sound effect 204

Time for action – sound effects in the pirate cove 204
Summary 206

Chapter 10: Polishing Our Game 207
Adding additional scenes 207

The game over scene 207
Creating the game over scene 208

Time for action – showing the game over scene 208
Connecting the game over scene 211

Time for action – having the game over scene show up 211
Adding a main menu 214

Time for action – integrating the main menu into our game 215
Adding an intro scene 217

Table of Contents

[vi]

Time for action – creating an intro for our game 217
Implementing tutorial mechanics 222
Time for action – adding a tutorial to our intro scene 222
Loading and saving the current state 224
Time for action – loading and saving the last played game 224
Summary 227

Chapter 11: Integrating Third-party Services 229
Getting word out to potential testers 229

Registering at Ubertesters 230
Integrating Ubertesters 231

Time for action – integrating Ubertesters 231
Creating a build for beta testers 234

Time for action – creating a build for beta testers 234
Deploying an application 236

Time for action – deploying an application 236
Explaining Game Center 237

Integrating Game Center authentication 237
Time for action – integrating Game Center authentication 238
An overview of analytics services 241

Flurry analytics 242
Flox 242

Summary 244
Appendix : Pop Quiz Answers 245

Chapter 1, Getting Started with Sparrow 245
Chapter 2, Displaying Our First Objects 245
Chapter 3, Managing Assets and Scenes 245
Chapter 4, The Basics of Our Game 246
Chapter 5, Beautifying Our Game 246
Chapter 6, Adding Game Logic 246
Chapter 7, User Interface 246
Chapter 8, Artificial Intelligence and Game Progression 247
Chapter 9, Adding Audio to Our Game 247
Chapter 10, Polishing Our Game 247
Chapter 11, Integrating Third-party Services 247

Afterword 249
Index 251

Preface
Game development is probably one of the hardest and most rewarding challenges in software
development. If we are to start completely from scratch, it will take a very long time to see
any results.

With the introduction of the iPhone in 2007 and subsequent devices in the following years,
developing applications for mobile devices took off, and more than 1,000,000 apps can now
be downloaded from the App Store.

Luckily, Sparrow, an open source game framework for iOS, provides us with a number of
predefined classes and methods that will help in our game development process.

Instead of showing how to develop a part of a game example-by-example during the course
of the book, we will learn each stage of game development. With each chapter, our game
will mature from being just an idea to a complete entity, while extending our knowledge
of Sparrow.

What this book covers
Chapter 1, Getting Started with Sparrow, shows us how to set up Xcode, Sparrow, and our
game template that we will use throughout the book. This chapter also sets up our goals
and expectations for the kind of game we will develop.

Chapter 2, Displaying Our First Objects, explains the concept of display objects, which we
need to achieve in order to get anything to show up on the screen, and how to manipulate
these objects.

Chapter 3, Managing Assets and Scenes, introduces us to the concepts of scene and asset
management and how to implement them for our purposes.

Chapter 4, The Basics of Our Game, deals with setting up our game to work on iPhone, iPod
Touch, and iPad in the same manner. We will also create the game skeleton in this chapter.

Preface

[2]

Chapter 5, Beautifying Our Game, covers moving and animating our entities on the screen.
We will also learn how to generate sprite sheets, what to consider when using sprite sheets,
and how to integrate them into our game.

Chapter 6, Adding Game Logic, focuses on getting actual gameplay into our game as well as
managing our game-relevant data in separate files.

Chapter 7, User Interface, shows us how to implement the user interface in our game, for
example, displaying text on the screen, structuring our user interface, and updating the
user interface to what is currently happening in the game.

Chapter 8, Artificial Intelligence and Game Progression, explains what we need to know
in order to implement basic artificial intelligence and how we need to apply this for our
enemies in the game.

Chapter 9, Adding Audio to Our Game, covers loading audio and how to integrate them in
our game.

Chapter 10, Polishing Our Game, deals with adding the last 10 percent to our game. We are
going to add a main menu, an intro, and tutorial mechanics for a smoother game experience.

Chapter 11, Integrating Third-party Services, takes a look at how we could integrate
third-party services such as Apple Game Center in the hope of improving our players'
experience.

What you need for this book
In order to develop applications for iOS, you need to have a Mac and, preferably, the latest
version of Mac OS X. Although an Apple developer account and iOS Developer Program are
not necessary, it is recommended as it allows you to run the examples on actual devices such
as the iPod Touch, iPhone, and iPad and distribute your applications to the Apple App Store.
Keep in mind that the iOS Developer Program comes with additional costs.

There is no need to have Sparrow and Xcode installed on your system; we will cover the
installation process in the first chapter.

Who this book is for
This book is intended for those who are interested in game development, those who have
already dabbled in game development but haven't made any games for mobiles yet, and
those who wish to publish a game on the Apple App Store in the future.

Preface

[3]

You need a solid understanding of Objective-C to follow the examples in the book, and some
experience in game development is definitely helpful, although is not necessarily required.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1. Action 1

2. Action 2

3. Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short, multiple-choice questions intended to help you test your own understanding.

Have a go hero – heading
These practical challenges give you ideas for experimenting with what you have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"This class needs to be inherited from the SPSprite class."

Preface

[4]

A block of code is set as follows:

// Setting the background
SPSprite *background = [[SPSprite alloc] init];
[self addChild:background];

// Loading the logo image and bind it on the background sprite
SPSprite *logo = [SPImage imageWithContentsOfFile:@"logo.png"];
[background addChild:logo];

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

// Setting the background
SPSprite *background = [[SPSprite alloc] init];
[self addChild:background];

// Loading the logo image and bind it on the background sprite
SPSprite *logo = [SPImage imageWithContentsOfFile:@"logo.png"];
[background addChild:logo];

Any command-line input or output is written as follows:

sudo gem install cocoapods

pod setup

touch Podfile

pod install

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "On the Select Destination
Location screen, click on Next to accept the default destination."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we
would be grateful if you would report this to us. By doing so, you can save other readers from
frustration and help us improve subsequent versions of this book. If you find any errata, please
report them by visiting http://www.packtpub.com/submit-errata, selecting your book,
clicking on the errata submission form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded to our
website, or added to any list of existing errata, under the Errata section of that title.

www.allitebooks.com

http://www.allitebooks.org

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Getting Started with Sparrow

Before we dive right into the concept of development, we first need to set
up our development environment and set up Sparrow on our system. In this
chapter, we will take a short look at what Sparrow actually is, set up Xcode
and Sparrow for our needs, create a game template, and set up goals and
expectations for the game we are going to develop.

Understanding the basics of Sparrow
Sparrow is a game framework that might feel familiar to those who already have some
experience with ActionScript, the Flash API, and/or Starling. The familiarity to Starling is
not a coincidence; the core development team of both Starling and Sparrow are the same.
Starling could be considered the ActionScript version of Sparrow. We will delve into these
aspects once we use the different features of Sparrow in detail.

Open Graphics Library for Embedded Systems (OpenGL ES) is a graphics renderer for mobile
devices which is available on all kinds of devices ranging from iOS devices to Android devices
and even consoles such as OUYA. OpenGL can be seen as the older and bigger brother of
OpenGL ES. OpenGL itself is available for all desktop platforms such as Windows, Linux, Mac
OS X, and next-generation consoles such as the PlayStation 4.

OpenGL and OpenGL ES are the kind of libraries that let us perform magic on the screen, be it
drawing textures, or having some kind of geometrical shapes or particle effects on the screen.

Getting Started with Sparrow

[8]

Sparrow abstracts all the OpenGL components away from the developer. We don't have to
worry about the inner workings of OpenGL at all. Sparrow fully concentrates on 2D rendering
and puts it into a bunch of logically structured classes and methods. While the choice for
performance-heavy graphics applications is usually C or C++ as far as programming language
is concerned, Sparrow uses Objective-C to keep it familiar for Mac and iOS developers.

Sparrow is not only a 2D graphics engine, but it also provides the functionality to create
animations on the screen—ranging from simple effects such as fading objects in and out to
more sophisticated actions such as moving a ball from the left to the right of the screen with
a bouncing animation. This mechanism is also referred to as tweening.

Apart from graphic-related features, Sparrow also gives us the means to load audio files and
play music and sounds in our games.

When directly compared with other game frameworks, Sparrow does not impose a specific
workflow on us. As a result, a few things need to be set up by hand, such as structuring all
the needed assets for our game and managing our scenes.

System requirements
From a hardware perspective, any Mac that can run the latest Mac OS X works just fine.

On the software side, we will need the latest version of Mac OS X and all the latest updates
need to be installed. The minimum at the time of writing this book is OS X 10.8 Mountain Lion.

For the platforms we are going to target, we need at least a device with iOS 5.0 and Xcode
4.0 or higher. The latest version of Sparrow uses OpenGL ES 2.0 internally, which is only
supported by iPhone 3GS or newer devices.

Setting up the Apple developer account
Setting up the Apple developer account and joining the iOS developer program is entirely
optional for the purpose of this book, but it will become necessary if you would like to test
the game on a physical device or publish it to the Apple App Store.

The iOS Simulator bundled with Apple Developer Tools is a great platform to test different
functionalities. However, performance can be misleading in the simulator itself. Performance
is a crucial factor in game development, so testing on a real device should be a priority.

Depending on the performance of your Mac, apps on the iOS simulator can run from terribly
slow to quite fast. All in all, don't take the performance in the simulator as a reference to
how well the game is going to perform on real devices.

Chapter 1

[9]

For more information on the iOS developer program and Apple developer accounts, go to
https://developer.apple.com/.

Downloading Xcode
Xcode is the default integrated-development environment for developing everything related
to Mac and iOS. Xcode is available for free and the latest version—at the time of writing this
book—is 5.0.2.

The first step is to download Xcode from the Mac App Store. Click on the Mac App Store icon
from the dock to open the Mac App Store.

Search Xcode using the search box and select the appropriate result.

The store page might look something like the following screenshot:

Getting Started with Sparrow

[10]

Click on the Install button right under the logo. (If Xcode is already installed, the caption
of the button changes to Installed.) The download is around 2.6 GB, so it may take a while
depending on the speed of your Internet connection.

It's always a good idea to keep the Xcode installation up to date as updates are frequent.

Downloading Sparrow
Now that Xcode is installed and ready to go, the next step is to get the latest stable version
of Sparrow. Go to the official Sparrow homepage at http://sparrow-framework.org
or http://gamua.com/sparrow/.

The latest Sparrow version—at the time of writing this book—is 2.0.1. The download page
will look like the following screenshot:

Click on the big blue Download button and the download should start.

Cloning the Git repository
If you are familiar with the version control system Git, you can also get the latest version by
cloning the Git repository. This section is meant for advanced users who have already worked
with Git.

The Sparrow GitHub repository is located at https://github.com/Gamua/Sparrow-
Framework/, where more information on the procedure can be found. Typically, Git
commands are entered in the terminal:

git clone https://github.com/Gamua/Sparrow-Framework

Chapter 1

[11]

This will take a while to download; the current progress is being shown in the terminal.
After the download is complete, you will have the latest development version. Only use
this version if you want to test a specific feature of Sparrow before its release or if you are
feeling adventurous.

Never use this version for production code in games about to be released on Apple's
App Store.

To get the latest stable version of Sparrow, check out the stable tag:

git checkout tags/v2.0.1

Now we can update to the latest version if we want to.

Contents of the Sparrow package
After the download has finished, extract the file to a location of your choice. We can use the
unpacker that is included in Mac OS X by default, but any third-party unpacker should work
as well. Let's take a look at the following screenshot to see what the Sparrow package has
to offer:

Getting Started with Sparrow

[12]

The samples folder
The samples folder consists of three subfolders, and they are as follows:

 � barebone: This is a bare minimum project and a good start for creating your
own games and will serve as the template for our game as well

 � demo: This is a sample application showcasing many of the features found
within Sparrow

 � scaffold: The scaffold template provides some base classes and more
boilerplate code than the barebone example

The sparrow folder
The sparrow folder has three subfolders, and they are as follows:

 � doc: This has a script to generate the documentation

 � src: This is the entire source of the Sparrow framework itself

 � util: This has different command-line tools which will help our workflow when
dealing with graphic assets

Markdown files in the root folder
Markdown files are, in essence, text files that can be rendered into HTML files. They are
as follows:

 � BUILDING.md: This gives a quick start on how to use the library

 � CHANGELOG.md: This gives a detailed list of items on what exactly changed
between the versions

 � LICENSE.md: This is the license Sparrow uses

 � README.md: This is a short introduction into what Sparrow is

License
Sparrow is a free and open source software, which means its source can be viewed and
modified by anyone.

Like many other pieces of software in the Mac/iOS universe, Sparrow is licensed under an
unmodified two-clause Simplified BSD license, which allows us to use Sparrow as long as the
copyright notice, the list of conditions, and the disclaimer is distributed with the source or
the application.

Chapter 1

[13]

What does this mean if we were to modify the source code?

The modified source code must have the same LICENSE.md file and the
contents of this file are not allowed to change.

What does this mean if we were to develop a game with Sparrow and
distribute the game on the Apple App Store?

The game needs to have the contents of LICENSE.md present in the
game itself. Having the contents of the file in the options or credits screen
is a valid solution.

Setting up Sparrow
There are two different ways to set up Sparrow on your machine. The first is probably the
easiest way to set up Sparrow.

The second option is to use CocoaPods, a dependency management system for Objective-C.
CocoaPods is probably the better way to go in the long run, especially when working with
large-scale projects and more than one dependency. Setting up CocoaPods takes a bit longer
than the first option and requires some knowledge on how to use the terminal.

While these options are not mutually exclusive, it's best to try out both and stick with the
one that appeals the most.

Option 1 – source tree reference
First, copy the sparrow folder inside the downloaded folder to a location of your choice.
Refrain from using spaces in your folder names, as Xcode can't really handle them in
source trees.

Time for action – adding Sparrow as a source tree reference
To add Sparrow as a source tree reference, follow these steps:

1. Open Xcode.

2. Open the Xcode settings through Xcode at the top menu bar and then
click on Preferences….

3. Navigate to Locations.

4. Click on the Source Trees tab.

5. Click on the plus (+) button to add a source tree item.

6. Enter SPARROW_SRC in the Name tab.

Getting Started with Sparrow

[14]

7. Enter Sparrow in the Display Name tab. (Alternatively, using SPARROW_SRC as
the display name works as well.)

8. Add the absolute path to where we put the sparrow folder. Let's not forget the
src suffix.

What just happened?
We added the Sparrow source location as a source tree item in Xcode. This only has to be
done once, as all Sparrow projects use this source tree item.

As the next step, we will set up our template which we are going to use throughout the book.

Time for action – using the barebone project as a template
Follow these steps to use the barebone project as a template:

1. Copy the barebone application from samples | barebone to a location of your choice.

2. Open up the project in Xcode by double-clicking on Barebone.xcodeproj.

3. Click on the project name in the project navigator to make it editable.

4. Rename it to PirateGame.

5. Open the Product menu from the top menu bar.

6. Select Scheme and Manage Schemes.

7. Rename the Scheme name from Barebone to PirateGame.

8. Run the project in the iOS Simulator by hitting the play button. Make sure
PirateGame is selected and not Sparrow.

Chapter 1

[15]

What just happened?
We copied the barebone Sparrow template and used it as a template for our game.
We renamed all project and scheme references and ran the template in order to see if
everything went ok.

The indication for everything working as expected is when there are no errors while
compiling the template and a red rectangle shows up on the screen.

Option 2 – CocoaPods
CocoaPods is a dependency manager for Objective-C projects. It can handle Mac OS X
and iOS dependencies alike and is similar to package managers of other systems. It can be
compared to what Ruby's package manager RubyGems is to the Ruby platform or what NPM
is to Node.js.

CocoaPods needs Ruby and RubyGems to run, which is nothing to worry about, as both
come preinstalled on every Mac OS X machine.

Before we begin installing CocoaPods, we need to make sure that the command-line tools
are installed.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Sparrow

[16]

Time for action – installing command-line tools
To install command-line tools, follow these steps:

1. Open a terminal.

2. Enter xcode-select and press Enter to confirm.

3. A dialog will pop up if the command-line tools are not installed yet. If a dialog does
not pop up, the command-line tools are already installed and there is nothing to
do here.

4. Click on the Install button to continue as shown in the following screenshot:

What just happened?
Before we can install CocoaPods, we need to have the latest version of the command-line tools.

If you want to trigger a reinstallation of the command-line tools regardless of whether they
are already installed, this can be achieved by entering xcode-select --install.

Now that the command-line tools are installed, we can begin with the CocoaPods installation.

Time for action – installing CocoaPods
To install CocoaPods, follow these steps:

1. Open a terminal.

2. Enter sudo gem update –system and press Enter to confirm.

3. Enter sudo gem install cocoapods.

Chapter 1

[17]

4. Enter pod setup. This may take a long time, so be patient.

What just happened?
As CocoaPods needs to be installed using the command line, our requirement is to have
a terminal window opened.

In the second step, we are going to update RubyGems to the latest available version.

After that, we trigger the installation of CocoaPods. This also installs all dependencies.
If there is a conflict, we get a prompt to deal with this conflict. If you are unsure about
what to do, just press Enter in this case and the safest option will be chosen.

The last step is necessary in order to set up CocoaPods. It's recommended to run
this command from time to time as it updates the local repository with all the latest
specifications of libraries that can be used.

Now that CocoaPods is installed, we can go ahead and set up our Sparrow template.

Time for action – using the barebone project as a template
Follow these steps to use the barebone project as a template:

1. Copy the barebone application from samples | barebone to a location of your choice.

2. Open the Xcode project.

3. Click on the project name in the project navigator to make it editable.

4. Rename it to PirateGame.

5. Open the Product menu from the top menu bar.

6. Select Scheme and Manage Schemes.

7. Rename the Scheme name from Barebone to PirateGame.

8. Close Xcode.

Getting Started with Sparrow

[18]

9. Open any text editor.

10. Type in the following code:
platform :ios, '5.0'

pod 'Sparrow-Framework', '2.0.1'

11. Save the file as Podfile in the recently copied barebone folder on the same
level as the Xcode project file. If you are using TextEdit (OS X default text editor),
make sure to save the file in the plain format which can be done by changing
Format to Make Plain Text in the menu. Also disable Smart Quotes by navigating
to TextEdit | Preferences….

12. Open a terminal.

13. Navigate to the copied barebone folder.

14. Execute the pod install command in the terminal.

15. Open PirateGame.xcworkspace with Xcode.

16. Remove Sparrow.xcodeproj from the project by right-clicking on it and
selecting Delete.

17. Run the project in the iOS Simulator by hitting the play button. If there are any
errors, try to change the Build Settings in the configuration by changing recursive
to non-recursive in User Header Search Paths.

Chapter 1

[19]

What just happened?
We copied the barebone Sparrow template and used it as a template for our game.
We renamed all project and scheme references.

We then needed to close Xcode, as CocoaPods will generate some files and we didn't want
Xcode to interfere with the process.

In the next step, we had to define Podfile, which is the specification file for CocoaPods.
This file tells CocoaPods which dependencies to fetch.

The specifications are written in Ruby, but they are easily understandable even to those who
don't know the Ruby programming language.

The first statement sets the dependencies for the iOS platform. As mentioned earlier,
CocoaPods can handle Mac OS and iOS dependencies even in the same project, so it makes
sense for it to have a statement separating one from the other. As we are only targeting iOS,
we don't need to worry about Mac OS dependencies and we leave that one out.

The second part of the Podfile in our example has all the dependencies we need in our
project. As we only have one dependency—which is Sparrow—we only need to define
that one.

A dependency is written in the following format:

pod 'name' 'version'

The repository with all dependencies and versions currently available can be found on
GitHub at https://github.com/CocoaPods/Specs.

After our Podfile is written and saved, we need to get back to the terminal and let CocoaPods
fetch our dependencies which is what pod install does. CocoaPods also generates a Pod
folder which is where all dependencies are stored as well as an Xcode workspace.

From now on, instead of opening the project file, we need to open the workspace file as this
is what CocoaPods updates and maintains.

If we were to open the project file and try to run the application, the application would fail
to compile.

As the last step, we run our example. The indication that everything worked fine is when there
are no errors while compiling the template and a red rectangle shows up on the screen.

Getting Started with Sparrow

[20]

Running the template on the actual device
Even though our template is still a bit basic, we can run it on an actual device. For this
section, we'll need an Apple developer account and we will need to be a member of the iOS
Developer Program.

Time for action – running the template on the actual device
To run the template on the actual device, follow these steps:

1. Open the Xcode settings through Xcode at the top menu bar and then click
on Preferences….

2. Navigate to Accounts.

3. Click on the plus icon to add a new account.

4. Select Add Apple ID… from the menu.

5. Enter the required credentials and confirm by clicking on Add.

6. Connect your device to your Mac.

7. Open the Xcode organizer by going to Window | Organizer to check whether the
device has been successfully detected.

8. Select the device from the menu by clicking on the application name and selecting
the correct device.

9. Run the project by hitting the play button.

Chapter 1

[21]

What just happened?
We connected a device to our Mac, and set the build configuration to the device so that the
application would run on the device instead of the simulator.

As expected, the red rectangle should be successfully displayed on the device as it did on
the simulator.

Getting Sparrow documentation files
The Sparrow framework features documentation, also known as a docset, which can be
integrated in order to get additional information on Sparrow classes and methods.

To add a docset for Xcode 5, a free application called Docs for Xcode is necessary and can be
downloaded from the Mac App Store. More information on Docs for Xcode can be found at
http://documancer.com/xcode/.

Time for action – adding the Sparrow API documentation to
Xcode

To add the Sparrow API documentation, just follow these easy steps:

1. Open Docs for Xcode (if you launch Docs for Xcode for the first time, grant it the
access to the documentation folder).

2. Click on Add Feed.

3. Enter http://doc.sparrow-framework.org/core/feed/docset.atom in
the text field and confirm by clicking on Add.

4. Restart Xcode (or open Xcode if Xcode was already closed).

5. Open a Sparrow project and open the inline documentation by pressing the Alt
button and clicking on any class name or method.

Getting Started with Sparrow

[22]

What just happened?
We added a docset feed in Docs for Xcode so that we get more precise and always up-to-date
documentation when developing with Sparrow.

The idea for the game
Finding the right idea for a game can be quite tricky. As a rule of thumb, find something to
be excited about and something you might want to play yourself. A good motivation is
playing games and finding bits and pieces that you really like or that can be improved. One
thing is for certain: do not clone. Don't make clones, make something original instead.

Finding game ideas

Probably the best way to find game ideas is during game jams, where you get
to develop a game in a very short time frame. One of the more popular ones
is Ludum Dare (http://www.ludumdare.com/compo/) and Global
Game Jam (http://globalgamejam.org/). The first one is an online
solo competition whereas at Global Game Jam you have to work in teams.
What both game jams have in common is a theme that is provided and
should be used by all entrants.

For a less competitive approach, you might also want to check the Twitter
@PeterMolydeux, which is a parody account of Peter Molyneux, the
creative mind behind Fable, Black & White, and Populous. There are tweets
about completely crazy and/or funny game ideas, most of which would be
very fun to play.

The kind of game we are developing is something a bit like an action game with role-playing
game elements. The player is going to control a ship full of pirates who are waiting for ships
to attack, seize, and scavenge.

After each mission, we'll get back to the pirate cove and buy better items such as
cannonballs or hire a more experienced crew. Our game will be called "A Practical Survival
Guide for Pirates". However, as the name is long, we'll just leave the game template name
as "PirateGame".

Setting goals and expectations
It's always a good idea to have some kind of plan. While most of game development is
iterative, it doesn't hurt to communicate the vision of the game.

Chapter 1

[23]

The most important thing when developing is to remember the scope. It's very important
to keep the scope as small as possible; in most situations, you still have to cut gameplay
elements out in latter stages of the development cycle.

So saying we are going to create the next Angry Birds with more levels is probably as
unrealistic as saying we're going to develop the next World of WarCraft just with more
weapons and quests.

Let's put our goals and expectations into a list. The following is the list of goals we have for
this book:

 � Finished game by the end of the book

 � Gained an understanding of development with Sparrow

 � Examples are relevant for game development and working with Sparrow

The following is the list of expectations we have out of this book:

 � The game is polished enough so that it can be published to the Apple App Store

 � The game is fun to play

Examining our gameplay elements
Most independent games generally focus on a single mechanic and polish it to the maximum.
Tiny Wings and Snapshot are good examples.

As with all software, there is always the danger of becoming a feature creep, which means
adding all kinds of features during development without planning for it or balancing. In the
end, the game might have all the features we want, but these features might be mutually
exclusive and the game might not be fun.

So keeping in mind the scope and limitations, let's make a list with our features and
gameplay elements for our game:

 � Attacking enemy ships

 � Collecting loot from enemy ships

 � Upgrading ship equipments

 � Hiring new crew members

Code conventions
Before we head into our first lines of code, we should take a moment and settle on code
conventions for all code examples. The most used code guideline in the Objective-C world is
the one made by Apple, which we are going to follow as closely as possible.

Getting Started with Sparrow

[24]

The most important conventions to remember are as follows:

 � Keep all method names in camel case (as in myMethodName)

 � The method names should be descriptive

 � Don't abbreviate method names

 � Instance variables should be prefixed with an underscore

The complete guideline for these conventions is available at https://developer.apple.
com/library/mac/documentation/Cocoa/Conceptual/CodingGuidelines/
CodingGuidelines.html.

Pop quiz
Q1. What is the Sparrow Framework?

1. A game framework for 2D games

2. A 3D graphics engine

3. A scene graph library

Q2. What is CocoaPods?

1. Source control for Objective-C

2. An add-on library for Cocoa

3. A dependency manager for Objective-C packages

Q3. In order to develop games with Sparrow 2.x, we need at least iOS 5.0 SDK and preferably
an iPhone 3GS or a more recent device.

1. True

2. False

Summary
We learned a lot in this chapter about setting up our development environment for Sparrow.
Specifically, we covered how to set up Xcode, the Sparrow game framework, and creating
our own game template.

We also touched on some general game development topics and learned about dependency
management with CocoaPods.

Now that we have a game template set up, we're ready to learn about display objects and
how to use them—which is the topic of the next chapter.

2
Displaying Our First Objects

In the previous chapter, we installed and configured Xcode developer tools and
also as downloaded the Sparrow framework and linked it to a sample project.
We proceeded to test it in both the iOS Simulator and a real device. We also set
the scope for the game we are going to develop throughout the book. However,
before we get into the game development process, let's touch on some core
concepts of Sparrow and get accustomed with the way things work in Sparrow.
We will draw some objects on the screen and manipulate these objects by
applying rotation and scaling transforms.

Understanding display objects
As the name suggests, a display object is something that will be displayed on the screen.
We can think of display objects as separate graphical entities that contain different kinds of
graphical data. While this may sound a bit abstract at first, every image (SPImage), quads
(SPQuad), or other geometrical shapes are derived from the SPDisplayObject class,
which is the representation of a display object in Sparrow.

www.allitebooks.com

http://www.allitebooks.org

Displaying Our First Objects

[26]

Explaining display object containers
A display object container (SPDisplayObjectContainer) inherits from SPDisplayObject,
adding the facility to own a set of child display objects. When you add a child display object to
a parent display object container, you can think of it as attaching one display object to another.
If you move, scale, or rotate the parent display object, all the changes are inherited by any
children it might have. This concept is more or less identical to how objects on the screen
are managed in the Adobe Flash API. The full set of parent and child nodes is referred to as
the display list, or sometimes as a display tree. This is because, like a tree, it contains many
branches that all ultimately converge into one single trunk, often referred to as the root.
Yet another name for a display tree is a scene graph.

The display list draws the display objects in the order they are added to their parent display
object container. If we were to add a second child display object to the same parent as that
of the previously added display object, the second display object will be drawn in front of
the first.

Let's go ahead and imagine ourselves as a cardboard puppet doll. We need a head, a torso
and a leg, arm, and hand on the left side and the same goes for the right side. Refer to the
following diagram that displays this concept:

The root object for this arrangement would be the body object. The head, torso, legs, and
arms would be directly bound to the body and the hands would be bound to each arm.

Setting the background color
Before we draw a couple of objects on the screen, let's change the background color of our
application that will eventually become our game.

Chapter 2

[27]

Time for action – changing the background color
Let's take a look at the required steps to change the background color:

1. Open our Xcode game template if it's not already open.

2. Open the Game.m source file.

3. After the initialization method and before the existing SPQuad object, add the
following lines:
SPQuad *background = [SPQuad quadWithWidth:Sparrow.stage.width
 height:Sparrow.stage.height color:0xffffff];
[self addChild:background];

4. Run the example.

When the example is running, we see our red rectangle on a white background as shown
in the following screenshot:

What just happened?
In step 1, we opened our Xcode template that we created in the previous chapter, and in
step 2, we navigated to the Game.m file, which is where our game code currently lies. The
game is the red rectangle that keeps showing up.

In step 3, right before we drew our red rectangle, we defined the background variable that
is a pointer to an instance of SPQuad. The SPQuad class is derived from SPDisplayObject.
The function of SPQuad is to draw a rectangular shape with a background color.

Displaying Our First Objects

[28]

The SPQuad class provides a few factory methods for operations such as creating a quad
with a width and height and also adds a color value to it. In this example, we are creating a
quad with a predefined width and height and a color value of 0xffffff. A color is defined
as 0xRRGGBB in a hexadecimal notation, that is, REDRED GREENGREEN BLUEBLUE.

While at the surface, the call to [SPQuad quadWithWidth:Sparrow.stage.width
height:Sparrow.stage.height] seems to be the same as the one to [[SPQuad
alloc] initWithWidth:Sparrow.stage.width height:Sparrow.stage.height],
but there is one major difference under the hood. When the factory method is called, it
returns an auto-released object, which means we don't have an ownership over the instance
and it's being destroyed at some point. On the other hand, if we use the alloc-and-init
combination, we do have the ownership and the need to release the instance ourselves.

As our application uses Automatic Reference Counting (ARC), we don't need to worry about
releasing instances ourselves. On the other hand, Sparrow itself uses Manual Reference
Counting (MRC).

To cover the whole screen, we need to get the width and height of the screen itself. Those
values are available as properties in the Sparrow.stage object.

We need to add the background to the Game class, which is exactly what [self
addChild:background] does. The self keyword is a reference to the Game class,
which is derived from the SPSprite class.

Now, we have a white background with a red rectangle that appears on top of it.

Our Game.m source file should contain the following code:

#import "Game.h"

@implementation Game

- (id)init
{
 if ((self = [super init]))
 {
 SPQuad *background = [SPQuad
 quadWithWidth:Sparrow.stage.width
 height:Sparrow.stage.height color:0xffffff];
 [self addChild:background];

 SPQuad *quad = [SPQuad quadWithWidth:100 height:100];
 quad.color = 0xff0000;
 quad.x = 50;
 quad.y = 50;
 [self addChild:quad];

Chapter 2

[29]

 }
 return self;
}

@end

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

There is also an easier way to set the background color. While the performance penalty in
this specific case is not that high to worry about, we could directly set the color through
Sparrow.stage by using its color property: Sparrow.stage.color = 0xffffff. It
consists of fewer lines, is more readable, and shows its intention better.

What is a stage?
We briefly touched on the topic of Sparrow.stage, which so far proved to have some
useful properties for getting the width and height of the screen and setting the background
color directly.

A stage is the top-level element of any Sparrow game and logically the root element of the
display tree, which Sparrow automatically creates for us.

Creating our cardboard puppet doll
Let's implement the cardboard puppet doll that we talked about in the beginning of the
chapter. Remove the red rectangle that has been drawn on the screen.

Time for action – creating a cardboard puppet doll
To create the cardboard puppet doll, we need to perform the following steps:

1. Open the Game.m file if it's not already open.

2. Add a body container with the following lines:
SPSprite *body = [[SPSprite alloc] init];
body.x = 85;
body.y = 120;

[self addChild:body];

http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.PacktPub.com/support

Displaying Our First Objects

[30]

3. Add torso as shown in the following code:
SPQuad *torso = [SPQuad quadWithWidth:150 height:150];
torso.color = 0xff0000;

[body addChild:torso];

4. Now add a local variable head as shown in the following code:
SPQuad *head = [SPQuad quadWithWidth:80 height:80
 color:SP_YELLOW];
head.x = 35;
head.y = -70;

[body addChild: head];

5. Add a container for the arms local variable as shown in the following code:
SPSprite *arms = [[SPSprite alloc] init];

[body addChild:arms];

6. Add a container for the legs local variable as shown in the following code:
SPSprite *legs = [[SPSprite alloc] init];
legs.y = 140;

[body addChild:legs];

7. Add the left arm as shown in the following code:
SPQuad *leftArm = [SPQuad quadWithWidth:100 height:50
 color:0x00ff00];
leftArm.x = -80;

[arms addChild:leftArm];

8. Add the right arm as shown in the following code:
SPQuad *rightArm = [SPQuad quadWithWidth:100 height:50
 color:0x00ff00];
rightArm.x = 130;

[arms addChild:rightArm];

9. Every arm needs a hand. Let's add the left one first as shown in the following code:
SPQuad *leftHand = [SPQuad quadWithWidth:40 height:50
 color:SP_YELLOW];
leftHand.x = -80;

[arms addChild:leftHand];

Chapter 2

[31]

10. Now use the following code for the right hand:
SPQuad *rightHand = [SPQuad quadWithWidth:40 height:50
 color:SP_YELLOW];
rightHand.x = 190;

[arms addChild:rightHand];

11. Let's move on to the legs. We'll create the left one first with the following code:
SPQuad *leftLeg = [SPQuad quadWithWidth:50 height:150
 color:0x0000ff];

[legs addChild:leftLeg];

12. We'll create the right leg with the following code:
SPQuad *rightLeg = [SPQuad quadWithWidth:50 height:150
 color:0x0000ff];
rightLeg.x = 100;

[legs addChild:rightLeg];

13. Run the example.

When we run the example, a simple cardboard puppet doll made of rectangles is looking
right at us, as shown in the following screenshot:

Displaying Our First Objects

[32]

What just happened?
In step 1, we used the Game.m source file we are already familiar with.

At first, we needed a container object, which we called body for this example. A quad would not
suffice in this case because SPQuad does not inherit from SPDisplayObjectContainer and
so cannot have children added to it. We set the x and y properties, so the contents of the body
element appeared somewhere in the middle of our screen. The coordinate system in Sparrow
started at the top-left corner of the screen, just like how the coordinate system works in Flash or
in traditional application development when adding control elements to a window. Developers
from a traditional graphics development may take some time to get used to this. In OpenGL,
for example, the y axis is flipped. We then add the body element to our Game instance.

In step 3, we took the torso, which is a quad and added it to the body element. If we don't
specify an x or y property, their default value is 0.

After that, we added the head. The x and y properties are measured relative to the parent
display object. So, if we use a negative value, it doesn't necessarily mean that the element is
drawn outside the screen. It depends on the position of the parent display object container.

While we know that we can use colors with the hexadecimal notation, we are using
SP_YELLOW in this step. This has the same effect as typing 0xffff00.

For the arms and legs, we added a container for each in step 5 and step 6, respectively.
SPSprite is the most basic and lightweight container class that should be used when
grouping objects. The leg container is already being positioned a bit to the bottom, so its
children elements only need to be positioned horizontally.

In the remaining steps, we added each limb and when we finally ran the application,
we had a cardboard puppet doll made of rectangles looking at us.

Have a go hero – improving the cardboard puppet doll
Our code can be improved quite a bit; the legs, arms, and hands code are practically the
same, but we define each element separately. We could try to group and simplify the code
a bit.

Also, in the current arrangement, the hands are not directly connected to the arms of the
doll. Instead, they are bound to the arms container object. So if we were to move a single
arm, the hand would not move with the arm.

Chapter 2

[33]

The following are some ideas on how to solve these problems:

 � In order to connect the hands to the arms, we would need at least two new
container objects

 � Make a cardboard puppet doll class in which its elements are classes inheriting
from the display object containers

Explaining macros
While we know that we can use colors with the hexadecimal notation, Sparrow provides
some shorthand constants for the most commonly used colors. In the previous example,
instead of using 0xffff00 for the color yellow, we used SP_YELLOW.

To generalize, macros are handy little functions that allow us to simplify the workflow when
working with repetitious tasks.

Macros in Objective-C are preprocessor directives and work the same way that macros work
in C and C++. Before the code is compiled, the preprocessor goes through the entire code
and replaces all occurrences of the macro with the result of the macro.

While we could write each color in the hexadecimal color value notation, sometimes it does
make more sense to use an RGB value. The SP_COLOR macro does exactly that, converting a
RGB color into a hexadecimal color value.

In this section, we will look at what the different kinds of macros are and how to use them.

The Angles macro
Sparrow uses radians to describe the rotation of its display objects. If we want to use degrees
for our calculations, we would need the following macros:

Name Description Example
SP_R2D Converts radians to degrees SP_R2D(PI);

// 180

SP_D2R Converts degrees to radians SP_D2R(180);

// PI

Displaying Our First Objects

[34]

The Colors macro
If we need to create a custom color or take an existing color apart, the following macros
would fit our purpose:

Name Description Example
SP_COLOR_PART_ALPHA

SP_COLOR_PART_RED

SP_COLOR_PART_GREEN

SP_COLOR_PART_BLUE

Getting the
partial value of
a color

SP_COLOR_PART_RED(0xff0000);

// 0xff

SP_COLOR Sets an RGB
color

SP_COLOR(255, 255, 0);

// 0xffff00

SP_COLOR_ARGB Sets an ARGB
color

SP_COLOR_ARGB(128, 255, 255,
0);

// 0x80ffff00

The utility functions
Let's take a look at the last group of macros that aren't angle- or color-related:

Name Description Example
SP_IS_FLOAT_EQUAL Does a float comparison

between two values.
Returns 0 if it's false, 1 if
it's true.

SP_IS_FLOAT_EQUAL(0.11,
0.12);

// 0

SP_CLAMP Clamps between
two values. The first
parameter is the initial
value. The other two
parameters are the
minimum and maximum
values respectively.

SP_CLAMP(0.6, 1.0, 2.0);

// 1.0

SP_SWAP Swaps two values with
each other.

NSUInteger x = 0;

NSUInteger y = 1;

SP_SWAP(x, y, NSUInteger);

// x = 1; y = 0

Constants in Sparrow
We already know about SP_YELLOW, so let's take a look at what constants are defined
in Sparrow.

Chapter 2

[35]

Math
The PI constant, for example, is used in the macro to convert radians to degrees and vice
versa. The following are the examples of PI constant:

Name Description
PI The value of Pi
PI_HALF The value of Pi divided by two
TWO_PI The value of Pi multiplied by two

Color
Sparrow predefines 16 colors for easier usage, so we don't have to use a macro each time.
These are the most basic colors and are also defined in a number of different libraries
and frameworks, for example, HTML 4.01. The following table shows 16 colors that are
predefined in Sparrow:

Name RGB value Hex value
SP_WHITE 255, 255, 255 0xffffff

SP_SILVER 208, 208, 208 0xc0c0c0

SP_GRAY 128, 128, 128 0x808080

SP_BLACK 0, 0, 0 0x000000

SP_RED 255, 0, 0 0xff0000

SP_MAROON 128, 0, 0 0x800000

SP_YELLOW 255, 255, 0 0xffff00

SP_OLIVE 128, 128, 0 0x808000

SP_LIME 0, 255, 0 0x00ff00

SP_GREEN 0, 128, 0 0x008000

SP_AQUA 0, 255, 255 0x00ffff

SP_TEAL 0, 128, 128 0x008080

SP_BLUE 0, 0, 255 0x0000ff

SP_NAVY 0, 0, 128 0x000080

SP_FUCHSIA 255, 0, 255 0xff00ff

SP_PURPLE 128, 0, 128 0x800080

Manipulating display objects
Now that we have our cardboard puppet doll on the screen, let's start manipulating the
objects on the screen.

In this example, we will take a look at how to rotate, scale, and skew objects, and then set
the origin of these objects.

www.allitebooks.com

http://www.allitebooks.org

Displaying Our First Objects

[36]

Time for action – manipulating display objects
Perform the following steps to manipulate the display objects we created earlier:

1. Add a new method to Game.m below the init method we used to create the
body parts:
- (void)onLegTouch:(SPTouchEvent *)event
{
 SPTouch *touch = [[event touchesWithTarget:self
 andPhase:SPTouchPhaseBegan] anyObject];
 if (touch) {
 SPQuad* target = (SPQuad *) event.target;

 float currentRotation = SP_R2D(target.rotation);
 currentRoration = currentRotation + 10;

 if (currentRotation >= 360.0)
 {
 currentRotation = currentRotation - 360.0;
 }
 target.rotation = SP_D2R(currentRotation);
 }
}

2. Next, we'll need to set the anchor (pivot) of our legs in the initializer, as shown in
the following code:
leftLeg.pivotX = 25;
leftLeg.pivotY = 10;

rightLeg.pivotX = 25;
rightLeg.pivotY = 10;

3. Update the leg positions using the following code:
SPQuad *leftLeg = [SPQuad quadWithWidth:50 height:150
 color:0x0000ff];
[legs addChild:leftLeg];
leftLeg.x = 25;

SPQuad *rightLeg = [SPQuad quadWithWidth:50 height:150
 color:0x0000ff];
rightLeg.x = 125;
[legs addChild:rightLeg];

Chapter 2

[37]

4. We'll set an event listener for the legs using the following code:
[rightLeg addEventListener:@selector(onLegTouch:) atObject:self
 forType:SP_EVENT_TYPE_TOUCH];
[leftLeg addEventListener:@selector(onLegTouch:) atObject:self
 forType:SP_EVENT_TYPE_TOUCH];

5. Let's add another method that should be called when we touch the head of
our cardboard puppet doll. This method should be below the initializer and the
onLegTouch method:
- (void)onHeadTouch:(SPTouchEvent *)event
{
 SPTouch *touch = [[event touchesWithTarget:self
 andPhase:SPTouchPhaseBegan] anyObject];
 if (touch) {
 SPQuad* target = (SPQuad *) event.target;
 target.scaleX = (target.scaleX == 1.0) ? 1.5 : 1.0;
 target.scaleY = (target.scaleY == 1.0) ? 1.5 : 1.0;
 }
}

6. We'll need to set the pivot for the head as well:
head.pivotX = head.width / 2;
head.pivotY = head.height / 2;

7. Let's update the position of the head as shown in the following code:
SPQuad *head = [SPQuad quadWithWidth:80 height:80
 color:SP_YELLOW];
head.x = 75;
head.y = -30;
[body addChild: head];

8. Let's add an event listener for the head as shown in the following code:
[head addEventListener:@selector(onHeadTouch:) atObject:self
 forType:SP_EVENT_TYPE_TOUCH];

9. Add another method that should be called if we touch the arms. This is shown in the
following code:
- (void)onArmsTouch:(SPTouchEvent *)event
{
 SPTouch *touch = [[event touchesWithTarget:self
 andPhase:SPTouchPhaseBegan] anyObject];
 if (touch) {
 SPQuad* target = (SPQuad *) event.target;

Displaying Our First Objects

[38]

 target.skewX = (target.skewX == SP_D2R(20)) ? SP_D2R(0)
 : SP_D2R(20);
 target.skewY = (target.skewY == SP_D2R(20)) ? SP_D2R(0)
 : SP_D2R(20);
 }
}

10. Bind the event listener to this newly added method:
[arms addEventListener:@selector(onArmsTouch:) atObject:self
 forType:SP_EVENT_TYPE_TOUCH];

11. Run the example and touch some limbs of our cardboard puppet doll. We should
now see our cardboard puppet doll on the screen and if we touch an arm, leg, or
the head, we see these objects rotated, skewed, or scaled.

What just happened?
In step 1, we defined a method that should be called when we touch one of the legs.
We need to get a reference to the touch event, which in Sparrow is described as
SPTouchEvent. To get the touch instance (SPTouch), we looked for touches on
any object in the touch began phase. Each touch moves through three phases: first
SPTouchPhaseBegan, then SPTouchPhaseMoved, and finally SPTouchPhaseEnded.
We need to check whether the touch is valid as objects have been touched by using it as a
condition in the if-statement. The current target of the event is available in event.target
although it needs to be casted to the appropriate display object type, in this case, SPQuad.

Chapter 2

[39]

We then got the current rotation of the touched object and add 10 degrees to the rotation.
The new rotation will be set to the quad. If the rotation is bigger than 360 degrees, we'll
subtract 360 degrees.

The origin for display objects is, by default, the top-left corner of the display object itself.
If we want a different origin, we'll need to modify it using the pivotX and pivotY
properties of a display object.

Modifying the origin also has an effect on the positioning of the element; so, if we want to
keep the same position, we need to add the pivot value to the position values, which is
what happened in step 3.

In step 4, we added an event listener for each of the legs, so when we actually touch the
legs, something happens. When using addEventListener, we are binding a selector
that will be called once the event is triggered, in our case, SP_EVENT_TYPE_TOUCH.
This event will be called if any touch occurs on the specified object, which was self
(the Game instance) in this step. Multiple selectors can be bound to one event when
using addEventListener each time.

For the next step, we added a method for touching the head of our cardboard puppet doll.
We also needed to do the same touch check and target casting we did last time. This time
when we touch the head, it should scale up to 150 percent of its original size, and if we
touch the head again, it'll shrink back to its original size.

In step 6, we set the origin to the center of the element. In step 7, we needed to update the
position accordingly, and in step 8, we bound the method to the head element.

The last method that we defined is what would happen when we touch any arms element.
If we are binding a touch event to a SPSprite instance, it will fire for all its children as well.
The same touch check applies to this method. We'll skew an element by 20 degrees with the
first touch and reset it to its original state when the element is touched again.

We use a ternary statement here to check whether the target is already skewed. We check for
the condition within the parenthesis. If the condition evaluates against true, the statement
after the question mark will be executed; otherwise, the statement after the colon will be
executed. The advantage is that the ternary statement is an expression and can be assigned
to a value in a single step. It would translate to the following code if we were to use if
statements instead:

if (target.skewX == SP_D2R(20)) {
 target.skewX = SP_D2R(0);
} else {
 target.skewX = SP_D2R(20);
}

if (target.skewY == SP_D2R(20)) {

Displaying Our First Objects

[40]

 target.skewY = SP_D2R(0);
} else {
 target.skewY = SP_D2R(20);
}

The onArmsTouch method was then bound to the arms object in step 10.

When we run the example and touch various elements, we'll see all the skewing, scaling,
and rotating in action.

Pop quiz
Q1. What is an alternate term for display list/tree?

1. Display block
2. Display object
3. Scene graph

Q2. What is a Sparrow stage?

1. A game level
2. Root element of the display tree
3. A display object on the Game class

Q3. What are macros?

1. Functions that are evaluated at runtime
2. Preprocessor directives that are evaluated before compiling
3. Dynamic constants

Summary
We learned a lot in this chapter about how to display objects on the screen and how to
manipulate them.

Specifically, we covered how to display objects on the screen and use macros and constants
Sparrow provides. Another important aspect is that we manipulated the objects we drew on
the screen.

We also touched on some topics such as the Sparrow stage and got an overview of how the
Sparrow API works.

Now that we know how to draw objects on the screen, we're ready to learn about asset and
scene management—which is the topic of the next chapter.

3
Managing Assets and Scenes

In the previous chapter, we drew our first display objects on the screen, which
in our case were quads. We made a cardboard puppet doll out of quads and
learned how to use macros. There is one last thing we need to know before
developing our pirate game. In this chapter, we will learn about managing our
assets, such as images, sound, and other kinds of files. We will also learn how
to group elements into scenes and display these scenes.

Working with assets
When we develop a game, we load files. We probably load a lot of images too.
These images are displayed on the screen and are the graphics of any 2D game.

We will also need to load sound files for playing music and sound effects. Other general
purpose files include text files that are either localization or game information files, such as
hit points for enemies, attack strength, or similar data that affects the gameplay of the game.

Managing Assets and Scenes

[42]

Game-relevant data may include saved games and level data. This gameplay-relevant data
may not always be plain text; in some cases, they are binary files or they use a markup
language such as XML or JSON. In the iOS and Mac world, the PLIST file format is very
common and contains a specialized kind of XML format.

Formats: PNG, PVR, and JPEG

(binary)
Image

Sound

Data

Asset

Formats: CAFF and AIFF

(binary)

Formats: TXT, XML,

JSON, PLIST, and so on.

(Plain text or binary)

In some games, game engines and game frameworks go a step further when dealing with
gameplay-relevant data in order to be more dynamic. They allow scripting through languages
such as Lua and JavaScript. These scripts are loaded and executed at runtime.

Managing our assets
Now that we know what assets are, how can we manage them for our game? Before we get
to that, let's take a look at what we know so far and what the prerequisites to effectively
load assets are.

Firstly, we know that there are different kinds of assets that can either be plain text files
or binary.

One thing to keep in mind is the memory in mobile devices nowadays. While it is the same
as the memory in desktop devices from a few years back, not all of this is reserved for our
application. We should also keep in mind that the size of an asset on the disk may not be the
same in memory as it is for compressed files, especially if the file content is compressed on
the disk but has to be uncompressed in memory.

Chapter 3

[43]

Consequently, there are a few things we can do, which are as follows:

 � Limit the number of assets we are loading; this can prove difficult as a game can
require a high amount of assets

 � Limit the number of assets that are currently loaded in memory

 � Cache assets that are already loaded so that we don't have the same content in
memory two or more times

Let's create a base class that manages a group of assets.

Time for action – creating a base class
To create a base class to manage our assets, we need to use the following steps:

1. Open the Xcode game template if it's not already open, right-click on the Classes
folder, select New Group, and rename the group to Assets.

2. Right-click on the Assets group and select New File....

3. Select Objective-C class and click on Next.

4. Enter AssetsDictionary in the name field, select NSObject from the Subclass of
entry, and click on Next.

5. On the next dialog, click on Create.

6. Open the AssetsDictionary.h file.

7. Add an instance variable called _dict, which is a pointer to
NSMutableDictionary, as shown in the following code:
@interface AssetsDictionary : NSObject {
 NSMutableDictionary *_dict;
}

8. Add a property called verbose, which is of type BOOL, as shown in the
following code:
@property BOOL verbose;

9. Add an instance method called registerAsset, as shown in the following code:
-(id) registerAsset:(NSString *)name withContent:(id)content;

10. Add another instance method called unregisterAsset, as shown in the
following code:
-(void) unregisterAsset:(NSString *)name;

Managing Assets and Scenes

[44]

11. Add a third instance method called clear, as shown in the following code:
-(void) clear;

12. Now switch to AssetsDictionary.m.

13. Add an initializer with the following content:
- (id)init
{
 if ((self = [super init])) {
 _dict = [[NSMutableDictionary alloc] init];
 _verbose = NO;
 }

 return self;
}

14. Implement the registerAsset method with the following piece of code:
-(id) registerAsset:(NSString *)name withContent:(id)content
{
 id result;

 if ([_dict objectForKey:name] == nil) {
 [_dict setObject:content forKey:name];

 result = content;

 if (self.verbose) {
 NSLog(@"Asset %@ does not exist. Registering.", name);
 }
 } else {
 result = [_dict objectForKey:name];

 if (self.verbose) {
 NSLog(@"Asset %@ already exists. Using cached value.",
 name);
 }
 }

 return result;
}

Chapter 3

[45]

15. Implement the unregisterAsset method:
-(void) unregisterAsset:(NSString *)name
{
 if ([_dict objectForKey:name] != nil) {
 [_dict removeObjectForKey:name];
 }
}

16. Implement the clear method that should reset the cache:
-(void) clear
{
 [_dict removeAllObjects];
}

17. Switch to the Game.m file.

18. Import the AssetsDictionary.h file in the import section:
#import "AssetsDictionary.h"

19. In the init method, add the following lines:
AssetsDictionary* assets = [[AssetsDictionary alloc] init];
assets.verbose = YES;
[assets registerAsset:@"myAsset" withContent:@"test"];
[assets registerAsset:@"myAsset" withContent:@"test"];

20. Run the example, and you will get the following output:

What just happened?
In step 1, we opened our Xcode template from where we left off in the previous chapter.
Then, we created a new group where we put everything that relates to the management of
our assets. Finally, we renamed the newly created group.

In step 2, we created a new file. In step 3, we selected Objective-C class from the dialog
that popped up. We wanted the class name to be AssetsDictionary, which is what we
entered in step 4; we also confirmed the location where it is going to be saved on the hard
drive in step 5.

www.allitebooks.com

http://www.allitebooks.org

Managing Assets and Scenes

[46]

Next, we opened the header file and an instance variable to store the name and content of
an asset. For this, we needed it to be an instance of NSMutableDictionary. Objective-C
Cocoa classes such as NSDictionary can be mutable or immutable; the contents of
mutable classes can change, and the values of immutable classes are fixed to the values
used when declaring the object.

Though we put the interface section in the header, it is also possible to put it right before
the implementation section.

In step 8, we added a property called verbose, which is of type BOOL. If this property is set
to YES, once an asset is registered, it should write a message telling us whether the asset is
already in cache. It is sufficient to say that its default value should be NO so that our console
message box is not cluttered with messages.

We needed to define our method that handles the registering and serving of our assets.
It takes two parameters: the name of an asset and the content of an asset. It returns the
content of the asset. Since the content of the asset can be anything—but is in most cases
an instance of some sort—the type id seems like the best option here. The type id can
stand for any class instance; if put to a technical term, it's called dynamic typing.

Then, we defined two methods; the first explains how to delete a single asset from the
cache (step 10), and the second method explains how to clear all assets (step 11).

Our header file is done; now, let's get to the actual implementation. First off, switch to the
AssetsDictionary.m file. In step 13, we added an initializer, which does the following
two things for us:

 � Set up the _dict dictionary.

 � Set the verbose property to NO by using its instance variable _verbose. This is
generally not needed as NO is the default value for BOOL.

In the next step, we implemented the registerAsset method. If the key—our first
parameter—does not exist in the dictionary, we add it to the dictionary and return the
content of the asset. If it exists, we look up the value from the dictionary and return it. In
both cases, if the verbose property is set to YES, we will print a fitting message to reflect
the current state of the asset.

In step 15, we defined a method that allows us to delete a single asset from the cache.
In step 16 on the other hand, we defined a method to clear the complete cache.

Now that the AssetsDictionary class is ready for action, let's put it up for a test. In step
17, we switched to our Game.m file and subsequently imported the AssetsDictionary
header in step 18.

Chapter 3

[47]

Next, within the initializer of our Game class, we defined an instance of our
AssetsDictionary class, set the verbose property to YES, and registered the same
asset twice to see whether it will be cached correctly. In the last step, we ran the example
and looked at the output in the console.

Have a go hero
While this class works for our purposes, we could improve the AssetsDictionary class
further. Here are some suggestions:

 � When getting the cached value of an asset, we look for the value from the dictionary
twice: the first time when checking whether the key is in the dictionary, and the
second time when getting the actual value. This may result in a performance penalty
when loading the assets into the game if there is a huge amount of assets.

 � Try to use NSCache instead of NSMutableDictionary.

 � If we want to display progress bars to see how far the loading process currently is,
we will need a way to get the number of currently registered assets.

 � We can also have an exists method that checks whether an asset has already been
registered and returns the result of this check.

 � We can add more initializers that take NSDictionary, for example.

Creating a texture manager
When we load an image in Sparrow, we typically want it to be a texture. A texture is pixel
information that makes up an image. It's conceptually similar to how the BitmapData class
works in ActionScript 3. If we want it to be displayed on the screen, it needs to be put on a
geometrical representation, which is typically a quad.

The way we want our texture manager to work is to pass in a filename, which will be
converted to a texture and is then available to us.

Let's use AssetsDictionary for our texture manager.

Time for action – managing our textures
To create our texture manager, take a look at the following steps:

1. Add a new Objective-C class called TextureManager derived from
AssetsDictionary within the Assets group.

Managing Assets and Scenes

[48]

2. Add an instance method that will register a texture using its filename and return
the correct value, which is the following:
-(SPTexture *) registerTexture:(NSString *)filename;

3. Switch to TextureManager.m and implement the method with the
following content:
-(SPTexture *) registerTexture:(NSString *)filename
{
 if ([_dict objectForKey:filename] == nil) {
 return (SPTexture *) [self registerAsset:filename
 withContent:[SPTexture
 textureWithContentsOfFile:filename]];
 } else {
 return (SPTexture *) [self registerAsset:filename
 withContent:nil];
 }
}

4. Switch to the Game.m file, and replace the AssetsDictionary.h import with
the TextureManager.h file in the import section.

5. In the init method, replace the AssetsDictionary test we did earlier in the
chapter with the following lines:
TextureManager* textureAssets = [[TextureManager alloc] init];
textureAssets.verbose = YES;
[textureAssets registerTexture:@"Default.png"];
[textureAssets registerTexture:@"Default.png"];

6. Run the example, and you will get the following output:

What just happened?
In the first step, we created a TextureManager class, which is a subclass of
AssetsDictionary. In step 2, we defined the registerTexture instance method,
which we implemented in the next step. A lot happened in this one line, explained
as follows:

1. We created an instance of SPTexture with the contents of the filename.
2. We registered this instance to utilize registerAsset we implemented earlier.
3. We returned the result of the called method.
4. Since the result is of the type id, we cast it to SPTexture— the type we want.

Chapter 3

[49]

Now, we go ahead and switch to the Game.m file. We replace the line #import
"AssetsDictionary.h" with #import "TextureManager.h".

Then, we delete the example where we tested out the registerAsset method from
AssetsDictionary. After this, we set up the same test; however, this time we use the
TextureManager class and the registerTexture method. We load the Default.png
file, which is in the Resources folder and is currently just a black image. The Default.png
file is part of the original Sparrow barebone template.

When we run the example, it loads the image from file the first time, and then it uses the
cached result.

Creating a sound manager
Now that we have the texture manager, let's create the sound manager that is going to be
very similar to the previous piece of code.

Time for action – implementing a sound manager
To implement the sound manager, just follow these simple steps:

1. Add a new Objective-C class called SoundManager derived from
AssetsDictionary within the Assets group.

2. Add an instance method that will register a sound using its filename and return the
correct value, as shown in the following code:
-(SPSound *) registerSound:(NSString *)filename;

3. Implement the method from the previous step with the following content:
-(SPSound *) registerSound:(NSString *)filename
{
 if ([_dict objectForKey:filename] == nil) {
 return (SPSound *) [self registerAsset:filename
 withContent:[SPSound soundWithContentsOfFile:filename]];
 } else {
 return (SPSound *) [self registerAsset:filename
 withContent:nil];
 }
}

Managing Assets and Scenes

[50]

What just happened?
In the first step, we created a SoundManager class, which is a subclass of
AssetsDictionary. In step 2, we defined the registerSound method, which we
implemented in the next step; this method loads a sound from file and returns the result
of the registered asset.

It is very similar to TextureManager, but instead of a texture and SPTexture, we loaded
a sound using SPSound.

For now, this is all we will do for sounds and sound management since we don't have any
sound assets to load.

Creating a file manager
Now, we almost have a manager for all kinds of assets we want to use. The last thing we
need is a manager for our data. We know that data assets can be pretty much anything,
so we need to descope the use case for managing data assets. Let's take a look at what
we'll need right now:

 � Loading a plain text file is always a useful piece of functionality. It could contain
game texts or a basic level layout.

 � NSDictionary and NSMutableDictionary are classes we already used and will
be using to store data. How about we load a file and its content is converted to a
structure similar to that of NSDictionary? The JSON format is very similar to a
structure we find in NSDictionary, and luckily, since iOS 5, we have the means of
converting a JSON file into NSDictionary without needing any third-party libraries.

Time for action – managing remaining file types
To create an asset manager for our files, use the following steps:

1. Add a new Objective-C class called FileManager, which is derived from
AssetsDictionary within the Assets group.

2. Define an instance method called registerPlainText, as shown in the
following code:
-(NSString *) registerPlainText:(NSString *)filename;

3. Define another instance method called registerDictionaryFromJSON,
as shown in the following code:
-(NSDictionary *) registerDictionaryFromJSON:(NSString
 *)filename;

Chapter 3

[51]

4. Implement the registerPlainText method with the following content:
if ([_dict valueForKey:filename] == nil) {
 NSString *path = [[NSBundle mainBundle]
 pathForResource:filename];
 NSString *content = [NSString stringWithContentsOfFile:path
 encoding:NSUTF8StringEncoding error:nil];

 return (NSString *) [self registerAsset:filename
 withContent:content];
} else {
 return (NSString *) [self registerAsset:filename
 withContent:nil];
}

5. Implement the registerDictionaryFromJSON method with the following content:
if ([_dict valueForKey:filename] == nil) {
 NSString *path = [[NSBundle mainBundle]
 pathForResource:filename];

 NSData *data = [NSData dataWithContentsOfFile:path];
 NSDictionary *dict = [NSJSONSerialization
 JSONObjectWithData:data options:kNilOptions error:nil];

 return (NSDictionary *) [self registerAsset:filename
 withContent:dict];
} else {
 return (NSDictionary *) [self registerAsset:filename
 withContent:nil];
}

6. Add the example.json file to the Resource folder by right-clicking on the
Resources folder and selecting New File.... Select Other from the tab and create
an empty file. Fill it with the following content:
{
 "name": "example",
 "a": 5,
 "b": 6
}

7. Now, add example.txt to the Resource folder, which has the following content:
Hello from text file.

8. Now that all of our data and the FileManager class is set up, let's give it a spin.
Switch to Game.m, remove the pieces of code that tested our previous asset
managers, and import the FileManager header file.

Managing Assets and Scenes

[52]

9. Add the following piece of code to the initializer method:
FileManager* fileAssets = [[FileManager alloc] init];
fileAssets.verbose = YES;
NSDictionary *data = [fileAssets
 registerDictionaryFromJSON:@"example.json"];

NSLog(@"Printing values from dictionary:");
NSLog(@"%@", data[@"name"]);
NSLog(@"%@", data[@"a"]);
NSLog(@"%@", data[@"b"]);

NSLog(@"Loading from text file and displaying as a string:");
NSLog(@"%@", [fileAssets registerPlainText:@"example.txt"]);
NSLog(@"%@", [fileAssets registerPlainText:@"example.txt"]);

10. Run the example, and see the following output:

What just happened?
In the first step, we created a FileManager class, which is a subclass of AssetsDictionary.

In the next two steps, we defined two instance methods: one for loading plain text files and
another for loading JSON files.

In step 4, we implemented the registerPlainText method. We could have put it all in
a one liner, but that would make it a bit cramped and harder to read. So, if the asset was
registered, we returned it using the registerAsset method. We don't need to pass in
content this time as the content is already in the dictionary. If it is not registered, we need
the path to the filename first. Like every resource we want to load from the Resource
folder, without the help of third-party libraries, we need to get the exact file location. The
[[NSBundle mainBundle] pathForResource] method gives us the exact file location
if we pass a filename. The main bundle represents the application bundle of the current app.
In the next line, we loaded the file into an NSString, and the encoding is UTF-8. We then
returned the result that had been passed through the registerAsset method.

Chapter 3

[53]

In the next step, we implemented the registerDictionaryFromJSON method that works
pretty much in the same way as the registerPlainText method. However, instead of
loading the file into an NSString, we used an NSData object. We then converted the file
contents through the NSJSONSerialization class, which offers the JSONObjectWithData
method. We don't really need to pass in any kind of special options right now.

We added an example.json file, which has one key that is a string value and two keys that
have number values. In a JSON structure, a key has to be written in double quotes and is
a string. A value can either be an array, a string, a number, a Boolean, a null, or an object.
If a value is an object, it can have keys and values by itself. So, it can map the structure of
NSDictionary pretty well.

For more information on the JSON format, take a look at
http://json.org/.

In the next step, we added an example.txt file and added some content.

In step 8, we removed all pieces of code from the previous example and imported
the FileManager header file. We set up the file manager like how we did in the
previous example. We then called the registerDictionaryFromJSON method with
example.json as its parameter. We already know that we can access values from an
NSDictionary instance through the objectForKey method, but we can also use the
square bracket notation, which is more terse and easier to read. Just keep in mind that
the square bracket notation for keys requires an NSString instance. Values, on the other
hand, can be any object or @ literal such as @YES, @1, or @"MyValue". Then, we loaded the
example.txt file and displayed it using NSLog.

When we ran the example, we saw when and how the assets were being loaded and the
results of the loaded assets.

Our FileManager.h file will look like the following:

#import "AssetsDictionary.h"

@interface FileManager : AssetsDictionary

-(NSString *) registerPlainText:(NSString *)filename;
-(NSDictionary *) registerDictionaryFromJSON:(NSString *)filename;

@end

Managing Assets and Scenes

[54]

Our FileManager.m file will look like the following:

#import "FileManager.h"

@implementation FileManager

-(NSString *) registerPlainText:(NSString *)filename
{
 if ([_dict valueForKey:filename] == nil) {

 NSString *path = [[NSBundle mainBundle]
 pathForResource:filename];
 NSString *content = [NSString stringWithContentsOfFile:path
 encoding:NSUTF8StringEncoding error:nil];

 return (NSString *) [self registerAsset:filename
 withContent:content];
 } else {
 return (NSString *) [self registerAsset:filename
 withContent:nil];
 }
}

-(NSDictionary *) registerDictionaryFromJSON:(NSString *)filename
{
 if ([_dict valueForKey:filename] == nil) {
 NSString *path = [[NSBundle mainBundle]
 pathForResource:filename];

 NSData *data = [NSData dataWithContentsOfFile:path];
 NSDictionary *dict = [NSJSONSerialization
 JSONObjectWithData:data options:kNilOptions error:nil];
 return (NSDictionary *) [self registerAsset:filename
 withContent:dict];
 } else {
 return (NSDictionary *) [self registerAsset:filename
 withContent:nil];
 }
}

@end

Chapter 3

[55]

Have a go hero
Our file manager works exactly like we want it to work. There is one little problem if we
want to load the same asset as plain text and convert it to NSDictionary from a JSON
file. Since we only use a single dictionary for all the file elements, if we load an asset with
the registerDictionaryFromJSON method first and later load the same asset with the
registerPlainText method, we will get NSDictionary converted into an NSString
instead of the text file directly being loaded and added to the dictionary as an NSString.

Basic error handling
For the file manager, we haven't set up any error handling. So, if a file does not exist, the
application will probably crash and we will be left guessing why nothing is happening,
without any clue how to proceed. For now, we will add some error handling to the
registerPlainText method.

Time for action – getting started with basic error handling
To add some basic error handling, take a look at the following steps:

1. Open the FileManager.m file.

2. Update the registerPlainText method to match the following piece of code:
-(NSString *) registerPlainText:(NSString *)filename
{
 if ([_dict valueForKey:filename] == nil) {
 NSError *error;

 NSString *path = [[NSBundle mainBundle]
 pathForResource:filename];
 NSString *content = [NSString
 stringWithContentsOfFile:path
 encoding:NSUTF8StringEncoding error:&error];

 if (error != nil) {
 NSLog(@"Error while loading plain text file: %@", error);
 }

 return (NSString *) [self registerAsset:filename
 withContent:content];
 } else {
 return (NSString *) [self registerAsset:filename
 withContent:nil];
 }
}

www.allitebooks.com

http://www.allitebooks.org

Managing Assets and Scenes

[56]

What just happened?
While try-catch blocks are available in Objective-C, it's generally not a good idea to use them
as they are quite slow and they can become quite difficult to handle if they are too nested.

The first thing we need is an error object that is a pointer to NSError. When loading the
text file, we apply the error handling. If there are any errors when loading the file, the error
object is not nil anymore. If this is the case, we log the error.

Have a go hero
This is the most basic error handling at the moment. Here are some suggestions on how to
improve it:

 � Catch the case if a JSON file cannot be loaded

 � Catch the case if an invalid JSON file is being processed

 � Add an NSError parameter to register the assets in the file manager

Putting it all together
We now have a couple of different asset managers. It's time to put it all together so that
we don't have to instantiate the different managers when we want to use an asset.

Time for action – creating an asset container class
To put all of our asset managers into one single class, use the following steps:

1. Add a new Objective-C class called Assets derived from NSObject within the
Assets group.

2. Define a static method for each kind of asset, as shown in the following code:
+(SPTexture *) texture:(NSString *)filename;
+(SPSound *) sound:(NSString *)filename;
+(NSString *) plainText:(NSString *)filename;
+(NSDictionary *) dictionaryFromJSON:(NSString *)filename;

3. In the Asset.m file, import all asset managers, as shown in the following code:
#import "TextureManager.h"
#import "SoundManager.h"
#import "FileManager.h"

Chapter 3

[57]

4. For each manager, add a static variable with the appropriate type and set its values
to nil:
static TextureManager *textureAssets = nil;
static SoundManager *soundAssets = nil;
static FileManager *fileAssets = nil;

5. We need to overwrite the internal static initialize method. Use the following
piece of code:
+(void) initialize
{
 if (!textureAssets) {
 textureAssets = [[TextureManager alloc] init];
 }

 if (!soundAssets) {
 soundAssets = [[SoundManager alloc] init];
 }

 if (!fileAssets) {
 fileAssets = [[FileManager alloc] init];
 }
}

6. Implement each of the static methods by using the correct instance method from
each of the asset managers, as shown in the following code:
+(SPTexture *) texture:(NSString *)filename
{
 return [textureAssets registerTexture:filename];
}

+(SPSound *) sound:(NSString *)filename
{
 return [soundAssets registerSound:filename];
}

+(NSString *) plainText:(NSString *)filename
{
 return [fileAssets registerPlainText:filename];
}

+(NSDictionary *) dictionaryFromJSON:(NSString *)filename
{
 return [fileAssets registerDictionaryFromJSON:filename];
}

Managing Assets and Scenes

[58]

7. Switch to the Game.m file and update the previous example to use the static
Assets class:
NSDictionary *data = [Assets
 dictionaryFromJSON:@"example.json"];

NSLog(@"Printing values from dictionary:");
NSLog(@"%@", data[@"name"]);
NSLog(@"%@", data[@"a"]);
NSLog(@"%@", data[@"b"]);

NSLog(@"Loading from text file and displaying as a string:");
NSLog(@"%@", [Assets plainText:@"example.txt"]);
NSLog(@"%@", [Assets plainText:@"example.txt"]);

8. Run the example. When we check the console, we should see something like what's
shown in the following screenshot:

What just happened?
In the first step, we created an Assets class, which is a subclass of NSObject.

We defined a static method for each of the asset manager instance methods, such as
texture for registerTexture and sound for registerSound. Then, we proceeded
to the implementation part.

For each asset manager, we defined a static variable: textureAssets for our
TextureManager class, textureSounds for our SoundManager class, and so on.
We set these instances to nil.

We had overridden the internal NSObject initialize method, which is called once internally
and does not need to be called by us.

More information about how the initialize method of NSObject works can be
found in the Apple documentation at https://developer.apple.com/
library/mac/documentation/cocoa/reference/foundation/
classes/NSObject_Class/Reference/Reference.html#//
apple_ref/occ/clm/NSObject/initialize.

Chapter 3

[59]

In the initialize method, we allocated and initialized each of the instances if its value
was nil.

When implementing each of the static methods in the next step, we needed to call the
corresponding instance method, such as [textureAssets registerTexture:filename]
for the texture method, and we should not forget that we had to return the value of the
instance method.

To use the static Assets class in our game file, we needed to update the reference to the
header file and use the dictionaryFromJSON and plainText methods from the static class.

When we ran the example, we saw an output similar to the previous example, where we
loaded files through the FileManager, but in this case we didn't have any message about
the assets' statuses as the verbose flag was not set to YES.

Our Assets.h file will look like the following:

#import <Foundation/Foundation.h>

@interface Assets : NSObject

+(SPTexture *) texture:(NSString *)filename;
+(SPSound *) sound:(NSString *)filename;
+(NSString *) plainText:(NSString *)filename;
+(NSDictionary *) dictionaryFromJSON:(NSString *)filename;

@end

Our Assets.m file will look like the following:

#import "Assets.h"
#import "TextureManager.h"
#import "SoundManager.h"
#import "FileManager.h"

static TextureManager *textureAssets = nil;
static SoundManager *soundAssets = nil;
static FileManager *fileAssets = nil;

@implementation Assets

+(void) initialize
{
 if (!textureAssets) {
 textureAssets = [[TextureManager alloc] init];
 }

Managing Assets and Scenes

[60]

 if (!soundAssets) {
 soundAssets = [[SoundManager alloc] init];
 }

 if (!fileAssets) {
 fileAssets = [[FileManager alloc] init];
 }
}

+(SPTexture *) texture:(NSString *)filename
{
 return [textureAssets registerTexture:filename];
}

+(SPSound *) sound:(NSString *)filename
{
 return [soundAssets registerSound:filename];
}

+(NSString *) plainText:(NSString *)filename
{
 return [fileAssets registerPlainText:filename];
}

+(NSDictionary *) dictionaryFromJSON:(NSString *)filename
{
 return [fileAssets registerDictionaryFromJSON:filename];
}

@end

Before we continue with scene management, let's take a look at how we can use the static
Assets class when displaying an image.

Time for action – displaying an image
To display an image, we just need to follow these steps:

1. Inside the Game initializer method, add the following piece of code:
SPImage* image = [SPImage imageWithTexture:[Assets
 texture:@"Default.png"]];

2. At the bottom of the initializer method, add the image to the display tree of the
Game class.

Chapter 3

[61]

3. Run the example, and you will see the following:

What just happened?
As we already know, we need the SPImage class to display a texture. It can be compared to
SPQuad, but instead of just displaying a color, it displays the texture on itself. We used the
Assets class to get our Default.png image from the Resources folder.

In the next step, we added the image to the display tree of our game class using the
addChild method. Running the example we should see that our cardboard puppet doll
is not visible anymore because the black image we just loaded is displayed on top of the
cardboard puppet doll.

Our Game.m file should have the following content:

#import "Game.h"
#import "Assets.h"

@implementation Game

- (id)init
{
 if ((self = [super init]))
 {

Managing Assets and Scenes

[62]

 Sparrow.stage.color = 0xffffff;

 SPImage* image = [SPImage imageWithTexture:[Assets
 texture:@"Default.png"]];

 NSDictionary *data = [Assets dictionaryFromJSON:@"example.json"];

 NSLog(@"Printing values from dictionary:");
 NSLog(@"%@", data[@"name"]);
 NSLog(@"%@", data[@"a"]);
 NSLog(@"%@", data[@"b"]);

 NSLog(@"Loading from text file and displaying as a string:");
 NSLog(@"%@", [Assets plainText:@"example.txt"]);
 NSLog(@"%@", [Assets plainText:@"example.txt"]);

 // Our whole cardboard puppet doll code here

 [self addChild:image];
 }
 return self;
}

@end

Have a go hero
Now that our asset management system is done, let's discuss a few ways in which we can
improve the setup, which are:

 � Right now, if we pass text files into the texture manager, it may load, but it may
lead to unexpected results once we try to display the texture on the screen. We can
check for the file extension and only load the asset if it has the correct file extension.

 � If we go one step further, we can try to automatically detect which asset we want
to load by its mime type or, if that's not enough, we can try to detect the file format
through the magic byte.

 � We tested for the functionality of our asset manager, but if we want more thorough
tests, we may want to resort to unit tests.

Chapter 3

[63]

What are scenes?
In a typical game, we have a main menu, an options menu, possibly a credits screen, and
of course the game itself. We can have all this in a single file, but that will become difficult
to maintain after a while. So, it will be a good idea to group these elements into separate
entities, which in our case are scenes.

In games that depend on having a lot of levels, such as point'n'click games, it's also a good
idea to have scenes for each level.

Time for action – implementing a scene class
To create a scene class, use the following steps:

1. Create a new group called Scene.

2. Create a new Objective-C class called Scene, which is derived from the SPSprite
class, and save it in the Scene group.

3. Add a property called guiLayer, which is a SPSPrite type, as shown in the
following code:
@property SPSprite* guiLayer;

4. Add another property called name, which is an NSString, as shown in the
following code:
@property NSString* name;

5. Add a third property called director, which is an id, as shown in the following code:
@property id director;

6. Add an initializer that initializes the properties of the class:
-(id) init
{
 if ((self = [super init])) {
 self.guiLayer = [[SPSprite alloc] init];
 self.director = nil;
 self.name = @"scene";
 }

 return self;
}

Managing Assets and Scenes

[64]

7. Add a second initializer that sets the name of the scene; this should be called
initWithName:

-(id) initWithName:(NSString *) name
{
 self = [self init];
 self.name = name;

 return self;
}

What just happened?
Right now, we don't have any scenes, so we can't run the example just yet.

Firstly, we set up the Scene class, which needs to be a subclass of SPSprite because it
needs to be added somewhere and we want to allow all kinds of display objects to be
added to the scene instance.

We defined three properties; guiLayer should be the sprite where all our user
interface-relevant display objects will be added, name should be the name of the scene
itself, and director should be the reference to its parent object. In the init method,
we set default values for these properties. We also added a second initializer, which takes
a parameter that sets the name of the scene.

Creating a scene director
Now that we have a basic scene class, we need something that can actually manage all the
scenes we want to add.

Time for action – managing our scenes with a scene director
To create the scene director, take a look at the following steps:

1. Create a new Objective-C class called SceneDirector, which is derived from the
SPSprite class, and save it in the Scene group.

2. Add an instance variable called _dict, which is an NSMutableDictionary type.

3. Add an instance method that will add a scene to the scene director, as shown in the
following code:
-(void) addScene:(Scene *)scene;

Chapter 3

[65]

4. Add a second instance method that will add a scene, but this time you are also able
to define/overwrite the name of the scene:
-(void) addScene:(Scene *)scene withName:(NSString *)name;

5. Add an instance method that will show a scene and take NSString as its parameter,
as shown in the following code:
-(void) showScene:(NSString *)name;

6. Let's switch to the implementation. The initializer should initialize the _dict variable.

7. Implement the addScene:(Scene *)scene withName:(NSString *)name
method with the following piece of code:
-(void) addScene:(Scene *)scene withName:(NSString *)name
{
 scene.name = name;
 _dict[name] = scene;

 scene.director = self;
 [self addChild:scene];
}

8. The addScene:(Scene *)scene method should be implemented as shown in the
following code:
-(void) addScene:(Scene *)scene
{
 [self addScene:scene withName:scene.name];
}

9. The showScene method should have the following content:

-(void) showScene:(NSString *)name
{
 for (NSString* sceneName in _dict) {
 ((Scene *) _dict[sceneName]).visible = NO;
 }

 if (_dict[name] != nil) {
 ((Scene *) _dict[name]).visible = YES;
 }
}

Managing Assets and Scenes

[66]

What just happened?
In the first step, we created the class needed for the scene director. This needs to be a
SPSprite because we want an instance of it to be added to the Game class, and the scenes
that the scene director should mange can be added very easily to the scene director.

We defined two instance methods that add a scene: the first method takes the scene, and
the second method takes the scene and a name.

We also needed an instance that actually shows the scene; it takes a name as its parameter.

In the next step, we implemented the initializer of the scene director. We needed to
initialize our NSMutableDictionary. We can do this using the typical alloc-and-init
combination or, alternatively, with the more terse @{} notation.

We implemented the longer addScene method first; we set the scene name to the name
parameter. This overwrites the scene name, even if one has already been given. We then
added the scene to the dictionary, using the square bracket notation which does the same
work as [_dict setObject:scene forKey:name]. In the next line, we set the reference
of the director property within a scene to the current scene director instance. This is
needed; in any other case, we wouldn't have an option to switch from one scene to another
within a scene. We also add the scene to the display tree of the current SceneDirector
instance.

When implementing the shorter addScene, we can just call the longer addScene method
and pass it in the name from the current scene as its second parameter.

The last step is all about showing the scene that has been specified as the parameter. First,
we iterated through all elements in the dictionary, and set its visibility to NO so it won't show
up on the screen; yes, even the scene we want to show. Then, we specifically looked for our
scene in the dictionary and set its visibility to YES.

Have a go hero
Currently, we are loading all our scenes at once. This works for now, but as soon as we have a
lot of scenes, we may be short on memory. To counteract this behavior, we can just have one
scene in the memory at the same time. We may need to have a reference from our
asset to our scene so that we know which asset belongs to which scene.

Chapter 3

[67]

Pop quiz
Q1. Can a binary data file be considered as an asset?

1. Yes

2. No

Q2. Why should we primarily cache our assets in order to reuse already loaded assets?

1. To reduce CPU cycles

2. To save memory

3. To save disk space

Q3. Can a texture (as in SPTexture) be drawn to the screen directly?

1. Yes

2. No

Summary
We learned a lot about asset and scene management in this chapter.

Specifically, we covered how to handle different kinds of assets, cache already loaded files,
and implement scenes and mechanisms to manage these scenes.

We also touched on some topics such as textures and displaying an image on the screen.

Now that we know how to handle assets and scenes, we're ready to add the basics of our
game—which is the topic of the next chapter.

4
The Basics of Our Game

In the previous chapter, we learned about assets and how to implement our
own asset management system which loads the assets from the application
bundle and caches them. We used the asset management setup to load our first
image. We covered how to group display objects into scenes and wrote a scene
director that manages our scenes. In this chapter, we will begin setting up our
game. We will learn about what to consider when targeting different devices,
and we will take the first step in setting up our game. This includes creating the
scenes we need and displaying static images on the screen.

Taking care of cross-device compatibility
When developing an iOS game, we need to know which device to target. Besides the obvious
technical differences between all of the iOS devices, there are two factors we need to
actively take care of: screen size and texture size limit.

For a quick reference on the differences between iOS devices, take a look at
the comparison table at http://www.iosres.com/.

Let's take a closer look at how to deal with the texture size limit and screen sizes.

The Basics of Our Game

[70]

Understanding the texture size limit
Every graphics card has a limit for the maximum size texture it can display. If a texture is
bigger than the texture size limit, it can't be loaded and will appear black on the screen.
A texture size limit has power-of-two dimensions and is a square such as 1024 pixels in
width and in height or 2048 x 2048 pixels.

When loading a texture, they don't need to have power-of-two dimensions. In fact, the
texture does not have to be a square. However, it is a best practice for a texture to have
power-of-two dimensions.

This limit holds for big images as well as a bunch of small images packed into a big image.
The latter is commonly referred to as a sprite sheet. Take a look at the following sample
sprite sheet to see how it's structured:

How to deal with different screen sizes
While the screen size is always measured in pixels, the iOS coordinate system is measured
in points.

The screen size of an iPhone 3GS is 320 x 480 pixels and also 320 x 480 points. On an iPhone
4, the screen size is 640 x 960 pixels, but is still 320 by 480 points. So, in this case, each point
represents four pixels: two in width and two in height. A 100-point wide rectangle will be
200 pixels wide on an iPhone 4 and 100 pixels on an iPhone 3GS.

Chapter 4

[71]

It works similarly for the devices with large display screens, such as the iPhone 5. Instead of
480 points, it's 568 points.

Scaling the viewport
Let's explain the term viewport first: the viewport is the visible portion of the complete
screen area.

We need to be clear about which devices we want our game to run on. We take the biggest
resolution that we want to support and scale it down to a smaller resolution. This is the
easiest option, but it might not lead to the best results; touch areas and the user interface
scale down as well. Apple recommends for touch areas to be at least a 40-point square;
so, depending on the user interface, some elements might get scaled down so much that
they get harder to touch.

Take a look at the following screenshot, where we choose the iPad Retina resolution
(2048 x 1536 pixels) as our biggest resolution and scale down all display objects on
the screen for the iPad resolution (1024 x 768 pixels):

The Basics of Our Game

[72]

Scaling is a popular option for non-iOS environments, especially for PC and Mac games
that support resolutions from 1024 x 600 pixels to full HD.

As we will learn later in this chapter, Sparrow and the iOS SDK provide some mechanisms
that will facilitate handling Retina and non-Retina iPad devices without the need to scale
the whole viewport.

Black borders
Some games in the past have been designed for a 4:3 resolution display but then made
to run on a widescreen device that had more screen space.

So, the option was to either scale a 4:3 resolution to widescreen, which will distort the
whole screen, or put some black borders on either side of the screen to maintain the
original scale factor.

Showing black borders is something that is now considered as bad practice, especially
when there are so many games out there which scale quite well across different screen
sizes and platforms.

Showing non-interactive screen space
If our pirate game is a multiplayer, we may have a player on an iPad and another on an iPhone
5. So, the player with the iPad has a bigger screen and more screen space to maneuver their
ship. The worst case will be if the player with the iPad is able to move their ship outside the
visual range for the iPhone player to see, which will result in a serious advantage for the
iPad player.

Chapter 4

[73]

Luckily for us, we don't require competitive multiplayer functionality. Still, we need to keep
a consistent screen space for players to move their ship in for game balance purposes. We
wouldn't want to tie the difficulty level to the device someone is playing on.

Let's compare the previous screenshot to the black border example. Instead of the ugly
black borders, we just show more of the background.

In some cases, it's also possible to move some user interface elements to the areas which
are not visible on other devices. However, we will need to consider whether we want to keep
the same user experience across devices and whether moving these elements will result in a
disadvantage for users who don't have this extra screen space on their devices.

Rearranging screen elements
Rearranging screen elements is probably the most time-intensive and sophisticated way of
solving this issue. In this example, we have a big user interface at the top of the screen in
the portrait mode. Now, if we were to leave it like this in the landscape mode, the top of the
screen will be just the user interface, leaving very little room for the game itself.

The Basics of Our Game

[74]

In this case, we have to be deliberate about what kind of elements we need to see on the
screen and which elements are using up too much screen estate. Screen real estate (or screen
estate) is the amount of space available on a display for an application or a game to provide
output. We will then have to reposition them, cut them up in to smaller pieces, or both.

The most prominent example of this technique is Candy Crush (a popular trending game)
by King. While this concept applies particularly to device rotation, this does not mean that
it can't be used for universal applications.

Choosing the best option
None of these options are mutually exclusive. For our purposes, we are going to show
non-interactive screen space, and if things get complicated, we might also resort to
rearranging screen elements depending on our needs.

Differences between various devices
Let's take a look at the differences in the screen size and the texture size limit between the
different iOS devices:

Device Screen size (in pixels) Texture size limit (in pixels)

iPhone 3GS 480 x 360 2048 x 2048

iPhone 4 (including iPhone 4S) and iPod
Touch 4th generation

960 x 640 2048 x 2048

iPhone 5 (including iPhone 5C and iPhone
5S) and iPod Touch 5th generation

1136 x 640 2048 x 2048

iPad 2 1024 x 768 2048 x 2048

iPad (3rd and 4th generations) and iPad Air 2048 x 1536 4096 x 4096

iPad Mini 1024 x 768 4096 x 4096

Utilizing the iOS SDK
Both the iOS SDK and Sparrow can aid us in creating a universal application. Universal
application is the term for apps that target more than one device, especially for an app
that targets the iPhone and iPad device family.

The iOS SDK provides a handy mechanism for loading files for specific devices. Let's say
we are developing an iPhone application and we have an image that's called my_amazing_
image.png. If we load this image on our devices, it will get loaded—no questions asked.
However, if it's not a universal application, we can only scale the application using
the regular scale button on iPad and iPhone Retina devices. This button appears on the
bottom-right of the screen.

Chapter 4

[75]

If we want to target iPad, we have two options:

 � The first option is to load the image as is. The device will scale the image. Depending
on the image quality, the scaled image may look bad. In this case, we also need to
consider that the device's CPU will do all the scaling work, which might result in
some slowdown depending on the app's complexity.

 � The second option is to add an extra image for iPad devices. This one will use the
~ipad suffix, for example, my_amazing_image~ipad.png. When loading the
required image, we will still use the filename my_amazing_image.png. The iOS
SDK will automatically detect the different sizes of the image supplied and use the
correct size for the device.

Beginning with Xcode 5 and iOS 7, it is possible to use asset catalogs. Asset catalogs can
contain a variety of images grouped into image sets. Image sets contain all the images for the
targeted devices. These asset catalogs don't require files with suffixes any more. These can
only be used for splash images and application icons. We can't use asset catalogs for textures
we load with Sparrow though.

The following table shows which suffix is needed for which device:

Device Retina File suffix

iPhone 3GS No None

iPhone 4 (including iPhone 4S) and iPod Touch (4th generation) Yes @2x

@2x~iphone

iPhone 5 (including iPhone 5C and iPhone 5S) and iPod Touch
(5th generation)

Yes -568h@2x

iPad 2 No ~ipad

iPad (3rd and 4th generations) and iPad Air Yes @2x~ipad

iPad Mini No ~ipad

How does this affect the graphics we wish to display? The non-Retina image will be 128
pixels in width and 128 pixels in height. The Retina image, the one with the @2x suffix, will
be exactly double the size of the non-Retina image, that is, 256 pixels in width and 256 pixels
in height.

The Basics of Our Game

[76]

Retina and iPad support in Sparrow
Sparrow supports all the filename suffixes shown in the previous table, and there is a special
case for iPad devices, which we will take a closer look at now.

When we take a look at AppDelegate.m in our game's source, note the following line:

[_viewController startWithRoot:[Game class]
 supportHighResolutions:YES doubleOnPad:YES];

The first parameter, supportHighResolutions, tells the application to load Retina images
(with the @2x suffix) if they are available.

The doubleOnPad parameter is the interesting one. If this is set to true, Sparrow will use
the @2x images for iPad devices. So, we don't need to create a separate set of images for
iPad, but we can use the Retina iPhone images for the iPad application.

In this case, the width and height are 512 and 384 points respectively. If we are targeting
iPad Retina devices, Sparrow introduces the @4x suffix, which requires larger images and
leaves the coordinate system at 512 x 384 points.

App icons and splash images
If we are talking about images of different sizes for the actual game content, app icons and
splash images are also required to be in different sizes.

Splash images (also referred to as launch images) are the images that show up while the
application loads. The iOS naming scheme applies for these images as well, so for Retina
iPhone devices such as iPhone 4, we will name an image as Default@2x.png, and for
iPhone 5 devices, we will name an image as Default-568h@2x.png.

For the correct size of app icons, take a look at the following table:

Device Retina App icon size

iPhone 3GS No 57 x 57 pixels

iPhone 4 (including iPhone 4S) and iPod Touch 4th generation Yes 120 x 120 pixels

iPhone 5 (including iPhone 5C and iPhone 5S) and iPod Touch 5th
generation

Yes 120 x 120 pixels

iPad 2 No 76 x 76 pixels

iPad (3rd and 4th generation) and iPad Air Yes 152 x 152 pixels

iPad Mini No 76 x 76 pixels

Chapter 4

[77]

The bottom line
The more devices we want to support, the more graphics we need, which directly increases
the application file size, of course. Adding iPad support to our application is not a simple
task, but Sparrow does some groundwork.

One thing we should keep in mind though: if we are only targeting iOS 7.0 and higher, we don't
need to include non-Retina iPhone images any more. Using @2x and @4x will be enough in this
case, as support for non-Retina devices will soon end.

Starting with the development of our game
Now that we have enough theory and experience with the Sparrow framework, let's put all
that knowledge to use and turn theory into practice by creating our pirate game.

If you miss any of the development of our game, the source code of the game
is also available on GitHub at https://github.com/freezedev/
pirategame.

Our game consists of two main gameplay parts:

 � Battlefield/arena: This is the scene where our pirate ship battles against other ships

 � Pirate cove: The pirate cove is the hub for activities after battling other ships such
as hiring new crew members and upgrading the ship

In this chapter, we will set up the required scenes and load the textures, display them as
images, and arrange the entities on the screen.

The graphics for the game are on GitHub as well: https://github.com/
freezedev/pirategame-assets. The graphics are made with the
open-source 3D modeling software, Blender (http://www.blender.
org); Version 2.69 is required to open and edit these files. Don't worry, we
don't need to update these files for the purposes of this book, but if you want
to in order to look for inspiration, you are definitely encouraged to do so.

The Basics of Our Game

[78]

Let's download the required images for this chapter by navigating to https://github.
com/freezedev/pirategame-assets/releases. This will show all the available
releases for this particular repository, as shown in the following screenshot:

Go ahead and download the Graphics.zip package and unzip the contents somewhere on
your computer. This package contains the following images:

Filename Description
water.png This is the background for the battlefield scene.
island.png This is the background for the pirate base. Technically, it's more of

an island than a cove, which is why this image is called island, but it's
referred to as the pirate cove everywhere else.

house.png This is a shelter for our pirates.
tavern.png This is the building where we get to hire new pirates.
weaponsmith.png This will be the place where we upgrade our ship with additional

cannons or ammunition.
ship.png This is our basic enemy.
ship_pirate.png This is the ship we are going to control.

All of the assets are in a non-Retina resolution, Retina for iPad 2, iPad Mini, and iPhone/iPod
Touch using the @2x filename suffix and @4x for iPad Retina devices.

Drag and drop the files into the Resources folder of our Xcode project. When a dialog pops
up, we need to check Copy items into destination group's folder (if needed), so we don't
have to worry about references to the original files. Click on Finish to start the process.

Chapter 4

[79]

So far, the images have been optimized for the landscape mode, so we need to deactivate
the portrait mode for now. We need to select the PirateGame project and uncheck Portrait
and Upside Down in the Deployment Info section, as shown in the following screenshot.
Make sure to uncheck them for both iPhone and iPad.

We can also safely delete the cardboard puppet doll code that is still in our Game.m file.

Creating our scene manager setup
In the previous chapter, we created a scene manager which we will now use for our scenes. In
our first step, we will need two dummy scenes that we will later fill with gameplay mechanics.
We will also need to add these scenes to our scene director and display one of the two scenes.

Time for action – creating our scene manager setup
To create our scene manager setup, we need to follow these steps:

1. Open your Xcode game template if it's not already open.

2. Right-click on the Classes folder and select New Group.

3. Rename the group to GameScenes.

4. Create a new Objective-C class called PirateCove which is sub-classed from Scene.

The Basics of Our Game

[80]

5. Add an initializer with the following content:
if ((self = [super init])) {
 NSLog(@"Pirate cove scene created");
}

6. Create another Objective-C class which is sub-classed from Scene.
Call this Battlefield.

7. Add an initializer with the following content:
-(id) init
{
 if ((self = [super init])) {
 NSLog(@"Battlefield scene created");
 }

 return self;
}

8. Switch to the Game.m file.

9. Add the PirateCove.h, Battlefield.h, and SceneDirector.h files to the
import section, as shown in the following code:
#import "SceneDirector.h"
#import "PirateCove.h"
#import "Battlefield.h"

10. In the init method, create an instance of the PirateCove and Battlefield
classes and call the initWithName method using @"piratecove" and
@"battlefield" respectively for its parameter:
PirateCove *pirateCove = [[PirateCove alloc]
 initWithName:@"piratecove"];
Battlefield *battlefield = [[Battlefield alloc]
 initWithName:@"battlefield"];

11. Create an instance of the scene director and add it to the Game class, as shown in
the following code:
SceneDirector *director = [[SceneDirector alloc] init];
[self addChild:director];

Chapter 4

[81]

12. Add both scenes to the scene director and show the pirate cove scene:
[director addScene:pirateCove];
[director addScene:battlefield];

[director showScene:@"battlefield"];

13. Run the example and you will get the following output:

What just happened?
In step 1, we opened our Xcode template from where we left off in the previous chapter.
In step 2, we created a new group where everything that is related to our game scenes
will be put. In step 3, we renamed the newly created group.

In step 4, we created a new Objective-C class, which is derived from the Scene class. In the
next step, we added the initializer method where we added a log message to see whether
the scene has been created.

In steps 6 and 7, we did the same for the battlefield scene.

After we switched to the Game.m file in step 8, we imported all the source files we need,
which is the header from the scene director and both scenes we just created.

We created instances of our scenes and our scene director in step 11. The scene director is a
sprite itself, so we need to add it to the Game class, which also derives from SPSprite.

In step 12, we added our scene instances to the scene director, which means that the scenes
are now in the display tree. We then called the method in the SceneDirector instance to
show the battlefield scene.

When we ran the example, we didn't see anything worthwhile on the screen as the scenes
didn't have anything in them, but if we take a look at the console, we see that our two
scenes have been successfully created.

The Basics of Our Game

[82]

Here is the full source code from this example:

Pirate cove scene Battlefield scene
PirateCove.h

#import "Scene.h"

@interface PirateCove : Scene

@end

Battlefield.h

#import "Scene.h"

@interface Battlefield : Scene

@end

PirateCove.m

#import "PirateCove.h"

@implementation PirateCove

-(id) init
{
 if ((self = [super init])) {
 NSLog(@"Pirate cove scene
 created");
 }

 return self;
}

@end

Battlefield.m

#import "Battlefield.h"

@implementation Battlefield

-(id) init
{
 if ((self = [super init]))
{
 NSLog(@"Battlefield
 scene created");
 }

 return self;
}

@end

The Game.m file contains the following code:

#import "Game.h"
#import "SceneDirector.h"
#import "PirateCove.h"
#import "Battlefield.h"

@implementation Game

- (id)init
{
 if ((self = [super init]))
 {
 Sparrow.stage.color = 0xffffff;

Chapter 4

[83]

 PirateCove *pirateCove = [[PirateCove alloc]
 initWithName:@"piratecove"];
 Battlefield *battlefield = [[Battlefield alloc]
 initWithName:@"battlefield"];

 SceneDirector *director = [[SceneDirector alloc] init];
 [self addChild:director];

 [director addScene:pirateCove];
 [director addScene:battlefield];

 [director showScene:@"battlefield"];
 }
 return self;
}

@end

Adding images to the battlefield scene
Now that the scenes are ready to use, let's add some ships to the battlefield scene.

Time for action – adding images to the battlefield scene
Let's take a look at the following steps in order to add images to the battlefield scene:

1. Open the Battlefield.m file and import the Assets header file:
#import "Assets.h"

2. Remove the log message and add the background image, as shown in the
following code:
SPImage *background = [SPImage imageWithTexture:[Assets
 texture:@"water.png"]];
background.x = (Sparrow.stage.width - background.width) / 2;
background.y = (Sparrow.stage.height - background.height) / 2;

3. Add the pirate ship, as shown in the following code:
SPImage *pirateShip = [SPImage imageWithTexture:[Assets
 texture:@"ship_pirate.png"]];
pirateShip.x = (Sparrow.stage.width - pirateShip.width) / 2;
pirateShip.y = (Sparrow.stage.height - pirateShip.height) / 2;

The Basics of Our Game

[84]

4. Add an enemy ship using the following code:
SPImage *ship = [SPImage imageWithTexture:[Assets
 texture:@"ship.png"]];
ship.x = 100;
ship.y = 100;

5. Add all children to the display tree, as shown in the following code:
[self addChild:background];
[self addChild:pirateShip];
[self addChild:ship];

6. Run the example and you will get the following output:

What just happened?
In step 1, we opened the Battlefield.m file as this is the file we need if we want to
change anything in the battlefield scene and we imported the Assets.h file in order to
use our asset management system.

In step 2, we prepared the background, which should be in the center of the screen.
We used our asset management system to get a texture from a specified file which
returns either the cached or newly loaded texture, and the texture will then be used to
draw SPImage on the screen.

In step 3, we added the pirate ship, which should be in the center of the screen as well.
In the next step, we added an enemy ship, which should not be too far away from our ship.

In step 5, we added all our display objects to the display tree, and when we ran the
example, we saw two ships on the screen.

Chapter 4

[85]

The Battlefield.m file will contain the following code:

#import "Battlefield.h"
#import "Assets.h"

@implementation Battlefield

-(id) init
{
 if ((self = [super init])) {
 SPImage *background = [SPImage imageWithTexture:[Assets
 texture:@"water.png"]];
 background.x = (Sparrow.stage.width - background.width) / 2;
 background.y = (Sparrow.stage.height - background.height) / 2;

 SPImage *pirateShip = [SPImage imageWithTexture:[Assets
 texture:@"ship_pirate.png"]];
 pirateShip.x = (Sparrow.stage.width - pirateShip.width) / 2;
 pirateShip.y = (Sparrow.stage.height - pirateShip.height) / 2;

 SPImage *ship = [SPImage imageWithTexture:[Assets
 texture:@"ship.png"]];
 ship.x = 100;
 ship.y = 100;

 [self addChild:background];
 [self addChild:pirateShip];
 [self addChild:ship];
 }

 return self;
}

@end

Arranging images in the pirate cove scene
Let's move on to the pirate cove scene to give our pirates a nice little home. What we will be
doing in this example is adding a house, a tavern, and a weaponsmith to the scene. These
will serve as places where we can update our ship later on.

The Basics of Our Game

[86]

Time for action – arranging images in the pirate cove scene
To add images to the pirate cove scene, follow these steps:

1. Open PirateCove.m.

2. Import the Assets header file using the following line of code:
#import "Assets.h"

3. Remove the log message and add the background image, as shown in the
following code:
SPImage *background = [SPImage imageWithTexture:
[Assets texture:@"cove.png"]];
background.x = (Sparrow.stage.width - background.width) / 2;
background.y = (Sparrow.stage.height - background.height) / 2;

4. Add our pirate ship, as shown in the following code:
SPImage *pirateShip = [SPImage imageWithTexture:
[Assets texture:@"ship_pirate.png"]];
pirateShip.x = Sparrow.stage.width - pirateShip.width - 120;
pirateShip.y = Sparrow.stage.height - pirateShip.height - 10;

5. Add a house, as shown in the following code:
SPImage *house = [SPImage imageWithTexture:
[Assets texture:@"house.png"]];
house.x = 100;
house.y = 100;

6. Add a tavern, as shown in the following code:
SPImage *tavern = [SPImage imageWithTexture:
[Assets texture:@"tavern.png"]];
tavern.x = 220;
tavern.y = 40;

7. Add a weaponsmith, as shown in the following code:
SPImage *weaponsmith = [SPImage imageWithTexture:
[Assets texture:@"weaponsmith.png"]];
weaponsmith.x = 350;
weaponsmith.y = 130;

8. Register all images to the display tree:
[self addChild:background];
[self addChild:pirateShip];
[self addChild:house];
[self addChild:tavern];
[self addChild:weaponsmith];

Chapter 4

[87]

9. Go to the Game.m file and change the default scene to the pirate cove, as shown in
the following code:
[director showScene:@"piratecove"];

10. Run the example and you will get the following output:

What just happened?
Most of the steps are quite similar to the battlefield scene, so we don't need to explain
every step in detail.

In step 1, we opened the PirateCove.m file where everything with regard to the pirate
cove should be. We needed the asset management system here as well, so we imported it
in step 2.

In step 3, we loaded the fitting image, which should be in the center of the screen. In steps 4
to 7, we loaded different entities we wanted to display on the screen, such as the pirate ship
and the house. We positioned them more or less randomly on the screen, but left enough
space between them so that it won't leave a cluttered impression.

In step 8, we added all of our display objects to the screen. Remember that the order
matters. If we were to add the background image last, we will only see the background
and nothing else.

We set the scene director to load the pirate cove scene instead of the battlefield scene,
and when we ran the example, we saw the pirate cove on the screen.

The Basics of Our Game

[88]

Pop quiz
Q1. What do we need to actively take care of when developing a universal application?

1. Battery power

2. Screen size and texture size limit

3. GPU memory

Q2. If we want to display an image with the suffix ~ipad, on which device(s) will it load?

1. Non-Retina iPad

2. Retina iPhone

3. Retina iPad

Q3. What will the dimensions be of an image of 256 x 256 pixels on, Retina iPhone in the
iOS point coordinate system?

1. 128 x 128 pt

2. 256 x 256 pt

3. 512 x 512 pt

Q4. Which suffix is required to load images on, Retina iPad if the doubleOnPad parameter
is set to YES?

1. @2x

2. @3x

3. @4x

Summary
In this chapter, we learned about cross-platform device compatibility between iPad and
iPhone devices.

Specifically, we covered which filename suffix we need to identify, which file to load for
which device, how the coordinate system in points works, and texture size limits when
loading images.

We also set up the bare bone, of our game where we loaded the images for different
kinds of devices utilizing our asset and scene managers.

Now that the scenes of our game are available and we have put some images on the screen,
we're ready to beautify our game—which is the topic of the next chapter.

5
Beautifying Our Game

In the previous chapter, we learned about cross-device compatibility and what
we need to do if we want to target iPhones and iPads simultaneously. We then
set up the base for our game. In this chapter, we will begin to add animations
to our game.

Working with tweens
Let's say we want to move our ship to an edge of the screen. How would we go about
achieving this? The following are two options to achieve this:

 � Move the ship each frame in the direction we want it to move

 � Define two states for our ship and let the processor calculate all the required
steps for animation

At first glance, the second option seems to be more attractive. We first need to know the
initial position of the ship and the position where the ship should be after the animation is
complete. Sparrow provides the SPTween class, which does exactly this.

We take two values, also called key frames, and interpolate all values in between. The name
"tween" comes from its in-between states.

While in this example, we are talking about moving a position explicitly, in general, a tween
is not confined to animating the position of an entity, but could be used to animate its color
or any of its other properties.

Beautifying Our Game

[90]

In Sparrow, specifically, any numeric property of an object can be animated. So every
property that is available on an SPDisplayObject is available for the SPTween class
and its animation abilities.

If we want to implement a fade-out or fade-in effect, all we need to do is to animate the
alpha property of a display object from its maximum to its minimum value or vice versa.

Let's try this by actually moving the pirate ship.

Time for action – moving the pirate ship
Let's follow these steps to move the ship:

1. Open our game project file if it's not already open.

2. Add an instance variable called _pirateShip of the type SPImage, as shown in
following line of code:
SPImage* _pirateShip;

3. Update the references from pirateShip to _pirateShip in Battlefield.m:
_pirateShip = [SPImage imageWithTexture:[Assets
 texture:@"ship_pirate.png"]];
_pirateShip.x = (Sparrow.stage.width - _pirateShip.width) / 2;
_pirateShip.y = (Sparrow.stage.height - _pirateShip.height) /
 2;

4. Add a method called onBackgroundTouch in the Battlefield.m file, as shown
in the following line of code:
-(void) onBackgroundTouch: (SPTouchEvent*) event

5. Within this method, get the touch itself:
SPTouch* touch = [[event touchesWithTarget:self
 andPhase:SPTouchPhaseBegan] anyObject];

6. Complete the onBackgroundTouch method with the following piece of code:
if (touch) {
 SPTween* tweenX = [SPTween tweenWithTarget:_pirateShip
 time:2.0f];
 SPTween* tweenY = [SPTween tweenWithTarget:_pirateShip
 time:2.0f];

 [tweenX animateProperty:@"x" targetValue:touch.globalX -
 (_pirateShip.width / 2)];

Chapter 5

[91]

 [tweenY animateProperty:@"y" targetValue:touch.globalY -
 (_pirateShip.height / 2)];

 [Sparrow.juggler addObject:tweenX];
 [Sparrow.juggler addObject:tweenY];
}

7. Register the event listener to the background image as shown in the following line
of code:
[background addEventListener:@selector(onBackgroundTouch:)
 atObject:self forType:SP_EVENT_TYPE_TOUCH];

8. Switch to the Game.m file.

9. Update the scene director to show the battlefield scene.

10. Run the example and you will get the following output:

What just happened?
In step 1, we opened our Xcode template from where we left off in the previous chapter. In
order to use a pirate ship in the entirety of our battlefield source file, we should move it into
an instance variable for the Battlefield class, which is what we did in step 2.

Now, we need to update the references to the pirate ship which was the task for step 3.

After this, we defined the method where we declared what happens if we were to touch
the background (in our case, the water on the screen). In step 5, we got the current touch.

In step 6, we implemented the actual tween. As soon as we were sure that we have the
current touch object (as in not a false value such as nil), we began to animate the pirate ship.

Beautifying Our Game

[92]

We created two tweens: the first for the x position of the pirate ship and the second one
for its y position. As long as the target and the duration of tween are the same, we could
actually use a single tween, as shown in the following code:

if (touch) {
 SPTween* tween = [SPTween tweenWithTarget:_pirateShip
 time:2.0f];

 [tween animateProperty:@"x" targetValue:touch.globalX -
 (_pirateShip.width / 2)];
 [tween animateProperty:@"y" targetValue:touch.globalY -
 (_pirateShip.height / 2)];

 [Sparrow.juggler addObject:tween];
}

Since we are going to change these properties in a bit, we better leave it at being two
separate tweens.

A tween always needs a target which we are setting to the _pirateShip instance variable.
Another value we must specify is how long the tween will animate, which is set by the time
parameter. The amount of time the tween takes is available as a property on an instance of
SPTween. The time parameter is of the type double and is measured in seconds.

The tweenX instance is being bound to the x property. We need to access the property
through its NSString identifier. So, if we want to animate the alpha property, we would
need to access it through @"alpha". Internally, Sparrow uses the runtime type information
(also referred to as reflection) to change properties at runtime.

We set the target value to the current touch position, the x coordinate of that touch to be
precise. Now, if we touch the background, the ship's top-left corner would be at the touch
position. To feel more natural, we should change it so that the ship is at the center of the
touch. This is why we subtracted half of the ship's width from the touch position.

Implicitly, the initial value is automatically set to the current value of the property, which is
to be animated.

Then, we did the same for tweenY and the y positions, respectively.

To actually animate the properties, we added the tweens to an object called the juggler,
which is available through Sparrow.juggler. We will take a look at how jugglers work
later in the chapter.

For the touch event to fire, we registered the onBackgroundTouch method with the
background image.

Chapter 5

[93]

In step 8, we opened the Game.m file and updated the show call to use the battlefield scene
instead of the pirate cove scene that happens in step 9.

Then, we ran the example. If we touch anywhere on the screen, the ship will move to the
position we just touched.

Let's take a look at our source files.

The following is the code for the Battlefield.h file:

#import "Scene.h"

@interface Battlefield : Scene {
 SPImage *_pirateShip;
}

@end

Here's the corresponding Battlefield.m file:

#import "Battlefield.h"
#import "Assets.h"

@implementation Battlefield

-(void) onBackgroundTouch: (SPTouchEvent*) event
{
 SPTouch *touch = [[event touchesWithTarget:self
 andPhase:SPTouchPhaseBegan] anyObject];

 if (touch) {
 SPTween *tweenX = [SPTween tweenWithTarget:_pirateShip
 time:2.0f];
 SPTween *tweenY = [SPTween tweenWithTarget:_pirateShip
 time:2.0f];

 [tweenX animateProperty:@"x" targetValue:touch.globalX -
 (_pirateShip.width / 2)];
 [tweenY animateProperty:@"y" targetValue:touch.globalY -
 (_pirateShip.height / 2)];

 [Sparrow.juggler addObject:tweenX];
 [Sparrow.juggler addObject:tweenY];
 }
}

Beautifying Our Game

[94]

-(id) init
{
 if ((self = [super init])) {
 SPImage *background = [SPImage imageWithTexture:[Assets
 texture:@"water.png"]];
 background.x = (Sparrow.stage.width - background.width) / 2;
 background.y = (Sparrow.stage.height - background.height) /
 2;

 _pirateShip = [SPImage imageWithTexture:[Assets
 texture:@"ship_pirate.png"]];
 _pirateShip.x = (Sparrow.stage.width - _pirateShip.width) / 2;
 _pirateShip.y = (Sparrow.stage.height - _pirateShip.height) /
 2;

 SPImage *ship = [SPImage imageWithTexture:[Assets
 texture:@"ship.png"]];
 ship.x = 100;
 ship.y = 100;

 [background addEventListener:@selector(onBackgroundTouch:)
 atObject:self forType:SP_EVENT_TYPE_TOUCH];

 [self addChild:background];
 [self addChild:_pirateShip];
 [self addChild:ship];
 }

 return self;
}

@end

Understanding transitions
Let's take a closer look at the animation we just implemented. When we moved our pirate
ship, it moves at a constant speed. This is a linear transition, which is the default behavior
for each newly created SPTween instance if the transition value is not explicitly set when
creating the instance.

The standard way to create a tween with the default transition is as follows:

SPTween *myTween = [SPTween tweenWithTarget:_pirateShip time:2.0f];

Chapter 5

[95]

To use a tween with a nonlinear transition, just specify it as a parameter:

SPTween *myTween = [SPTween tweenWithTarget:_pirateShip time:2.0f
 transition:SP_TRANSITION_EASE_IN_OUT];

In this piece of code, we are using a transition behavior called "ease-in-out", in which case
the ship wouldn't move right away but would take its time to start, and shortly before the
animation is over, it slows down a bit.

For a complete list of all available transitions and their graphical
representations, take a look at the Sparrow manual at http://wiki.
sparrow-framework.org/_detail/manual/transitions.
png?id=manual%3Aanimation.

Explaining jugglers
The purpose of a juggler is to animate other objects. It does this by holding them in a list,
and calling an update method every frame. The update method (advanceTime) passes
through the number of milliseconds that have been passed since the last frame. Every object
we want to animate needs to be added to an instance of SPJuggler.

The default juggler can be accessed through Sparrow.juggler and is the easiest way to
animate objects on the screen.

As Sparrow.juggler is just an instance of SPJuggler, it is also possible to separate
jugglers for each of the main components of our game. For now, using the default juggler
is enough for our needs.

Updating the movement and canceling tweens
It's time for our first gameplay decisions. Right now, the pirate ship's animation is always
2 seconds long which would provide a serious advantage if the player touched one of the
edges of the screen instead of just moving a few points on the screen.

What we need to introduce is some kind of penalty if we move to an edge of the screen,
like taking more time for the ship to advance.

It's also a good idea to add the possibility of canceling the animation when the ship is
currently moving. So when things get heated, we have a option to retreat from the
current battle.

Beautifying Our Game

[96]

Now, how would we go about implementing the cancelation of the current animation?
Let's see the following options for doing so:

 � By adding a button on the screen

 � By touching the ship itself

We should try to avoid onscreen controls as long as we can, so let's add this functionality to
the touch event (when we touch the pirate ship).

Time for action – updating the movement
To update the movement of our ship, follow these steps:

1. Inside the initializer, add a tween for the enemy ship. We want the enemy ship to
move on its own. We should also rename the ship instance to enemyShip:
SPImage *enemyShip = [SPImage imageWithTexture:[Assets
 texture:@"ship.png"]];
enemyShip.x = 100;
enemyShip.y = 100;

SPTween *shipTween = [SPTween tweenWithTarget:enemyShip
 time:4.0f transition:SP_TRANSITION_EASE_IN_OUT];
[shipTween animateProperty:@"y" targetValue:250];
shipTween.repeatCount = 5;
shipTween.reverse = YES;
shipTween.delay = 2.0f;

[Sparrow.juggler addObject:shipTween];

2. Update the onBackgroundTouch method to resemble the following piece of code:
SPTouch *touch = [[event touchesWithTarget:self] anyObject];

if (touch) {
 [Sparrow.juggler removeObjectsWithTarget:_pirateShip];

 float targetX = touch.globalX - (_pirateShip.width / 2);
 float targetY = touch.globalY - (_pirateShip.height / 2);

 float distanceX = fabsf(_pirateShip.x - targetX);
 float distanceY = fabsf(_pirateShip.y - targetY);

Chapter 5

[97]

 float penalty = (distanceX + distanceY) / 80.0f;

 float shipInitial = 0.25f + penalty;

 float speedX = shipInitial + (distanceX /
 Sparrow.stage.width) * penalty * penalty;
 float speedY = shipInitial + (distanceY /
 Sparrow.stage.height) * penalty * penalty;

 SPTween *tweenX = [SPTween tweenWithTarget:_pirateShip
 time:speedX];
 SPTween *tweenY = [SPTween tweenWithTarget:_pirateShip
 time:speedY];

 [tweenX animateProperty:@"x" targetValue:targetX];
 [tweenY animateProperty:@"y" targetValue:targetY];

 [Sparrow.juggler addObject:tweenX];
 [Sparrow.juggler addObject:tweenY];
}

3. Add a new method called onShipStop as shown in the following line of code:
-(void) onShipStop:(SPTouchEvent*) event

4. Implement this method with all of the touch boilerplate code and stop all animations:
SPTouch *touch = [[event touchesWithTarget:self
 andPhase:SPTouchPhaseBegan] anyObject];

if (touch) {
 [Sparrow.juggler removeObjectsWithTarget:_pirateShip];
}

5. Register the onShipStop selector to the pirate ship:
[_pirateShip addEventListener:@selector(onShipStop:)
 atObject:self forType:SP_EVENT_TYPE_TOUCH];

6. When we add the ships to the battlefield scene, switch the enemy ship with the
pirate ship.

Beautifying Our Game

[98]

7. Run the example and you'll see the following result:

What just happened?
In step 1, we added a tween for the enemy ship right below the code where we load its image.

When creating the instance, we set the time the animation should take to 4 seconds and we
used the ease-in-out transition to see the difference when we directly compare it with the
default linear transition.

This tween will move the enemy ship by its y property/position. We set the target value to
250, which is more or less the bottom of the screen.

When setting the repeatCount property—which takes an int as its value—we want to
repeat the animation for exactly as many times as we set the property to.

Tweens can be reversed by setting the reverse property to YES or NO, as it takes a BOOL
value. If we had not set the reverse property in this example, the tween would start at
its initial value when repeating the animation. When set to YES, the animation alternates
between its initial and target values. We should keep in mind that a reverse animation
counts as an animation cycle.

Tweens can be delayed by using their delay property. This property needs a double type as
well and is measured in seconds just like the time property.

Now, we need to add the animation to the default juggler.

In step 2, we updated the touch event and the animation. First of all, we removed the
andPhase parameter. Previously, we could only move the ship by tapping on the screen.
Now, we can either tap the screen or touch-and-drag on the screen to move the ship around.

Chapter 5

[99]

After we know that a touch was made, we removed all the previously bound tweens from
the juggler. Here, we are just making sure that we always have a fresh tween and the pirate
ship animation might produce any random side effects such as multiple tweens setting
different target values at the same time.

In the next line, we declared and assigned variables for the new position our ship should
move to. Then, we got the absolute values between the ship's position and the position of
our touch.

The penalty is calculated by the sum of the distances divided by 80, which is conveniently the
size of our ship in points. So, the closer the touch is to the ship, the lower this value is, and
the further away the touch is from the ship, the higher this value will be.

The speed of the ship, that is, the duration of the animation, is calculated by the relative
distance with regard to the screen size multiplied by the square penalty. We also have an
initial value of 250 milliseconds, which is the shortest amount the animation could be.

Instead of the animateProperty method, we can also use the shorthand method
moveToX:y: which does the same as calling animateProperty on the x and y properties.

In step 3, we added the onShipStop method to the source file, which we implemented in
the next step. We also removed all tweens with the _pirateShip target. So, if currently a
tween is being executed, it will be removed.

In step 5, we registered the onShipStop event to the pirate ship.

Currently, if we were to move over the enemy ship, the enemy ship would be displayed on
the top of our ship. For our ship to be displayed on top of the enemy ship, we need to switch
the two around when we add them to the display tree.

After this example, our Battlefield.m file should look like the following code:

#import "Battlefield.h"
#import "Assets.h"

@implementation Battlefield

-(id) init
{
 if ((self = [super init])) {
 SPImage *background = [SPImage imageWithTexture:[Assets
 texture:@"water.png"]];
 background.x = (Sparrow.stage.width - background.width) / 2;
 background.y = (Sparrow.stage.height - background.height) /
 2;

Beautifying Our Game

[100]

 _pirateShip = [SPImage imageWithTexture:[Assets
 texture:@"ship_pirate.png"]];
 _pirateShip.x = (Sparrow.stage.width - _pirateShip.width) /
 2;
 _pirateShip.y = (Sparrow.stage.height - _pirateShip.height) /
 2;

 SPImage *enemyShip = [SPImage imageWithTexture:[Assets
 texture:@"ship.png"]];
 enemyShip.x = 100;
 enemyShip.y = 100;

 SPTween *shipTween = [SPTween tweenWithTarget:enemyShip
 time:4.0f transition:SP_TRANSITION_EASE_IN_OUT];
 [shipTween animateProperty:@"y" targetValue:250];
 shipTween.repeatCount = 5;
 shipTween.reverse = YES;
 shipTween.delay = 2.0f;

 [Sparrow.juggler addObject:shipTween];

 [background addEventListener:@selector(onBackgroundTouch:)
 atObject:self forType:SP_EVENT_TYPE_TOUCH];
 [_pirateShip addEventListener:@selector(onShipStop:)
 atObject:self forType:SP_EVENT_TYPE_TOUCH];

 [self addChild:background];
 [self addChild:enemyShip];
 [self addChild:_pirateShip];
 }

 return self;
}

-(void) onBackgroundTouch:(SPTouchEvent*) event
{
 SPTouch *touch = [[event touchesWithTarget:self] anyObject];

 if (touch) {
 [Sparrow.juggler removeObjectsWithTarget:_pirateShip];

 float targetX = touch.globalX - (_pirateShip.width / 2);
 float targetY = touch.globalY - (_pirateShip.height / 2);

 float distanceX = fabsf(_pirateShip.x - targetX);

Chapter 5

[101]

 float distanceY = fabsf(_pirateShip.y - targetY);

 float penalty = (distanceX + distanceY) / 80.0f;

 float shipInitial = 0.25f + penalty;

 float speedX = shipInitial + (distanceX /
 Sparrow.stage.width) * penalty * penalty;
 float speedY = shipInitial + (distanceY /
 Sparrow.stage.height) * penalty * penalty;

 SPTween *tweenX = [SPTween tweenWithTarget:_pirateShip
 time:speedX];
 SPTween *tweenY = [SPTween tweenWithTarget:_pirateShip
 time:speedY];

 [tweenX animateProperty:@"x" targetValue:targetX];
 [tweenY animateProperty:@"y" targetValue:targetY];

 [Sparrow.juggler addObject:tweenX];
 [Sparrow.juggler addObject:tweenY];
 }
}

-(void) onShipStop:(SPTouchEvent*) event
{
 SPTouch *touch = [[event touchesWithTarget:self
 andPhase:SPTouchPhaseBegan] anyObject];

 if (touch) {
 [Sparrow.juggler removeObjectsWithTarget:_pirateShip];
 }
}

@end

Working with sprite sheets
So far, we loaded every image on its own and displayed them on the screen. Sprite sheets
are a way to combine all of these smaller images into one big image. When we load the
image, we are able to use the textures in the same way that we are used to.

Beautifying Our Game

[102]

When using multiple images, something called a "texture switch" happens every time the
current active texture is being swapped out by a different one. This operation is quite heavy
on performance, so it should be avoided where possible. Sprite sheets allow us to achieve
this by using the same image asset for numerous different images, thus avoiding the texture
switch and keeping the number of draw calls to a minimum.

Sprite sheets can also be used for sprite animation, in which a series of images is displayed
sequentially one frame after another, which creates the illusion of animation to the human
eye—just like a flip book.

A texture atlas is a specialization of sprite sheets with regard to containing smaller images,
but it also provides a file of metadata which contains the information of where exactly its
subimages are. In practice though, "texture atlas" and "sprite sheet" are used as synonyms.

Before we get started, let's download all the necessary graphics for this
chapter at https://github.com/freezedev/pirategame-
assets/releases/download/0.5/Graphics_05.zip.

Learning about texture formats
So far, we only used PNG images. However, let's see if there are any other texture formats in
iOS that would better fit our purpose. Spoiler: there are. Leaving the brash remark aside, we
are going to analyze which texture formats fits our purpose best.

The following table shows the pirate ship image in different file formats. Let's compare its
file sizes:

Compression File format File size

None BMP 257 KB

Lossless PNG 36.6 KB

Depends PVR

(In this case RGBA8888)

257 KB

When we load a PNG file, what happens internally? The image gets decompressed when
it's being loaded—at the expense of the CPU. The same goes for other conventional image
formats such as JPEG. Once the image is decompressed, it becomes a texture.

PVR is a texture format specifically optimized for iOS devices or for PowerVR GPUs used on
all iOS devices, to be more precise. When loading a PVR image, for example, it will decode
the image directly on the GPU instead of the CPU.

Chapter 5

[103]

PVR includes a lot of different image formats. If we are going for lossless quality including
alpha channels, we should opt for the RGBA8888 format. If we don't need the alpha channel,
we should use an image format without one. The RGBA8888 image format is not compressed.
So, in order to keep the application size at a minimum, we should use the pvr.gz format,
which is a PVR file compressed using GZIP.

Using TexturePacker to create sprite sheets
TexturePacker is a commercial application to create sprite sheets and texture atlases and is
available at http://www.codeandweb.com/texturepacker for around 30 dollars.
To be able to create our very own sprite sheets, we either need the pro or the trial version
of TexturePacker. The TexturePacker download window looks as follows:

While the workflow is pretty self-explanatory, let's go through a few steps to create our own
texture atlas:

1. Drag-and-drop the images 0001.png to 0032.png into the Sprites section of
the application.

2. Select Sparrow/Starling as the Data Format.

Beautifying Our Game

[104]

3. Select GZIP compr. PVR as the Texture Format.

4. Select RGBA8888 as the Image Format.

5. Hit the AutoSD button and select corona @4x/@2x from the presets.

6. Set the filenames to ship_pirate_small_cannon{v}.xml for the data file
and ship_pirate_small_cannon{v}.pvr.gz for the texture file.

7. Click on the Publish button.

Now our texture atlas is generated for each of our resolution we are supporting. Let's
take a look at the result. The output of one of the generated images would look like the
following screenshot:

Here's a snippet from the corresponding XML file:

<?xml version="1.0" encoding="UTF-8"?>
<!-- Created with TexturePacker http://www.codeandweb.com/
texturepacker-->
<!-- $TexturePacker:SmartUpdate:c58f88c054e0e917cc6c06d11cc04c15:0af47
aa74ca5e538fac63da189c2b7ac:9e0a4549107632fbd952ab702bfc21e4$ -->
<TextureAtlas imagePath="ship_pirate_small_cannon.pvr.gz">
 <SubTexture name="e_0001" x="0" y="0" width="80" height="80"/>

Chapter 5

[105]

 <SubTexture name="e_0003" x="80" y="0" width="80" height="80"/>
 <SubTexture name="e_0005" x="160" y="0" width="80" height="80"/>
 <SubTexture name="e_0007" x="240" y="0" width="80" height="80"/>

From this snippet, we can see the reference to the original image and its subtextures.
Each subtexture has a name, its location inside the bigger image, and its dimensions.

Loading our first texture atlas
Now that we have our texture atlas, let's load and display it with Sparrow.

Time for action – loading our first texture atlas
To load our first texture atlas, we need to follow these steps:

1. Copy the necessary files (ship_pirate_small_cannon*) into the project.

2. Load the texture atlas with the following line of code:
SPTextureAtlas* atlas = [SPTextureAtlas
 atlasWithContentsOfFile:@"ship_pirate_small_cannon.xml"];

3. Create an array out of all textures starting with 00:
NSArray* textures = [atlas texturesStartingWith:@"00"];

4. Create a movie clip object and position it just above the original pirate ship,
as shown in the following code:
SPMovieClip *cannonShip = [SPMovieClip movieWithFrames:textures
 fps:20.0f];
cannonShip.x = 200;
cannonShip.y = 50;

5. Play the animation with the following piece of code:
[cannonShip play];
[Sparrow.juggler addObject:cannonShip];

6. Add the animated pirate ship to the display tree as follows:
[self addChild:background];
[self addChild:enemyShip];
[self addChild:_pirateShip];
[self addChild:cannonShip];

Beautifying Our Game

[106]

7. Run the example to see the following result:

What just happened?
To use the texture atlas, we first copied all related files into the project. Using the
SPTextureAtlas class, we then loaded the XML file.

In step 3, we needed to get an array (or an NSArray to be exact) out of the texture atlas
with all of the images starting with 00, which in our case means that every image in this
sprite sheet will be used for the animation.

An SPMovieClip class is derived from SPDisplayObject and can be added to the display
tree as well. It can play the animation from the array we made in step 3. The fps parameter
is necessary as it sets the speed of the animation.

To play the animation itself, two things need to be done: first, we need to call the play
method from the movie clip and second, we need to add the movie clip to the juggler.
This is exactly what we did in step 5.

In the next step, we added the movie clip to the display tree and when we ran the example,
we had our pirate ship, the enemy ship which moves up and down and now the second
pirate ship which has the cannon firing animation.

If you want to take a look at the complete source file for this example, it is available at
https://github.com/freezedev/pirategame/blob/71f42ded614c4917802dcba4
6a190476ff7b88c4/Classes/Battlefield.m.

Chapter 5

[107]

Pop quiz
Q1. What are tweens?

1. A way to define animation by setting two key frames

2. Animations consisting of multiple sprites

3. A way to optimize multiple display objects on the screen

Q2. What are sprite sheets?

1. Sketches on a sheet of paper

2. An image containing several smaller ones

3. A Sparrow extension to use sprites

Q3. Transitions are used to modify the rate of animation over time.

1. True

2. False

Summary
In this chapter, we learned about tweens and sprite sheets.

Specifically, we covered how to animate display objects with tweens, create our own
sprite sheets, and how to animate these sprite sheets.

We also touched upon texture formats, jugglers, and transitions.

Now that we have animations and our ship is moving around, let's add some game
logic—which is the topic of the next chapter.

6
Adding Game Logic

In the previous chapter, we learned about animating our objects on the screen
using tweens; we also learned about sprite sheets, generated our very own
sprite sheet with texture information, and animated it.

Let's take a quick look at what kind of topics we will tackle in this chapter:

 � Shooting cannonballs, which is pretty much a core mechanic of our game

 � Once a cannonball is displayed on the battlefield, it should be able to collide with
the enemy ship

 � Destroying the enemy ship, if enough cannonballs hit the ship

Extending the asset manager
In the previous chapter, we loaded our very first texture atlas and displayed each subtexture as
frames in a movie clip. We did not use our asset manager for this as we hadn't implemented
this functionality yet.

So, let's go ahead and allow our asset manager to deal with texture atlases.

Adding Game Logic

[110]

Time for action – adding texture atlases to the asset manager
We can extend our asset manager with the following steps:

1. Open our game's project file, if it's not already open.

2. Switch to the TextureManager.h file and declare the method
registerTextureAtlas, as shown in the following code:
-(SPTextureAtlas *) registerTextureAtlas:(NSString *) filename;

3. Switch to the TextureManager.m file and implement the
registerTextureAtlas method, as shown in the following code:
-(SPTextureAtlas *) registerTextureAtlas:(NSString *) filename
{
 if ([_dict objectForKey:filename] == nil) {
 return (SPTextureAtlas *) [self registerAsset:filename
 withContent:[SPTextureAtlas
 atlasWithContentsOfFile:filename]];
 } else {
 return (SPTextureAtlas *) [self registerAsset:filename
 withContent:nil];
 }
}

4. Head over to the Assets.h file and add the static method textureAtlas:
+(SPTextureAtlas *) textureAtlas:(NSString*)filename;

5. In the Assets.m file, implement the following method by referring to its
TextureManager instance:
+(SPTextureAtlas *) textureAtlas:(NSString*)filename
{
 return [textureAssets registerTextureAtlas:filename];
}

6. In the battlefield scene (Battlefield.m), navigate to where we are loading the
texture atlas and getting the textures:
SPTextureAtlas *atlas = [SPTextureAtlas
atlasWithContentsOfFile:@"ship_pirate_small_cannon.xml"];

NSArray *textures = [atlas texturesStartingWith:@"00"];

Replace the preceding code with the following line of code:

NSArray *textures = [[Assets
 textureAtlas:@"ship_pirate_small_cannon.xml"]
 texturesStartingWith:@"00"];

Chapter 6

[111]

7. Run the example. We will see the following constellation of ships on the screen:

What just happened?
In step 1, we opened our Xcode template from where we left off in the previous chapter.
In order to load texture atlases, we needed to switch to the texture manager, which we
designated to load everything that is remotely connected to textures. In step 2, we declared
the method we used in order to use texture atlases through the asset management system.
To keep the method names consistent, we will name this method registerTextureAtlas
to make it similar to registerTexture. The signature resembles that of
registerTexture, but it returns an instance of SPTextureAtlas instead of SPTexture.

In the next step, we implemented the registerTextureAtlas method that loads the
texture through the filename parameter, and we used the SPTextureAtlas factory
method just like we did when we learned about texture atlases.

Once we finished extending the texture manager part, we needed to extend the Assets
class, which we did in step 4 by adding the function head which we implemented in step
5. To keep the naming scheme consistent, we named this method textureAtlas. In this
method, we just called the registerTextureAtlas method of our texture manager and
returned the result.

We updated the lines in the battlefield to load the texture atlas for the movie clip through
the asset management system. Instead of two lines—one for setting up the texture atlas
instance and another for getting the needed textures out of the atlas—we now have only
a single line that gets our texture atlas with the textureAtlas method from the last two
steps and then gets the necessary textures for the movie clip.

When we ran the example in the last step, we had the exact result as we did at the end of the
previous chapter, which is a good sign and an indication that the changes work as they should.

Adding Game Logic

[112]

Structuring our ships
So far, our ships are just instances of SPImage with tweens attached to them right inside our
battlefield scene. In order to keep code duplication to a minimum, let's refactor the ship logic
into its own class.

Time for action – creating a ship class
To structure the code of our ship, follow these steps:

1. Add a new group called Entities.

2. Inside this group, add a new Objective-C class called Ship, which is derived
from SPSprite.

3. Open the Ship.h file. Add one instance variable for the ship image and another for
the movie clip of the ship shooting cannonballs, as shown in the following code:
SPMovieClip *_shootingClip;
SPImage *_idleImage;

4. Declare an alternative initializer called initWithContentsOfFile, which takes
an NSString as its parameter:
-(id)initWithContentsOfFile:(NSString *)filename;

5. Declare a method called shoot, as shown in the following code:
-(void) shoot;

6. Declare another method called moveTo that takes the x value as its first parameter
and the y value as its second parameter, as shown in the following code:
-(void) moveToX:(float) x andY:(float) y;

7. Declare a method called stop, as shown in the following code:
-(void) stop;

8. Define the default initializer for the Ship class with the following lines of code:
-(id) init
{
 if ((self = [super init])) {
 NSArray *textures = [[Assets
 textureAtlas:@"ship_pirate_small_cannon.xml"]
 texturesStartingWith:@"00"];

 _shootingClip = [SPMovieClip movieWithFrames:textures
 fps:20.0f];

Chapter 6

[113]

 if (_idleImage == nil) {
 _idleImage = [[SPImage alloc] init];
 }

 [self addChild:_shootingClip];
 [self addChild:_idleImage];
 }

 return self;
}

9. Now, define the alternate initializer that takes filename as its parameter, as shown
in the following code:
-(id) initWithContentsOfFile:(NSString *)filename
{
 _idleImage = [[SPImage alloc] initWithTexture:[Assets
 texture:filename]];

 return [self init];
}

10. Implement the shoot method with the following lines:
-(void) shoot
{
 [_shootingClip play];
 [Sparrow.juggler addObject:_shootingClip];
}

11. The content of the moveTo method should look like the following code:
-(void) moveToX:(float)x andY:(float)y
{
 [self stop];

 float targetX = x - (self.width / 2);
 float targetY = y - (self.height / 2);

 float distanceX = fabsf(self.x - targetX);
 float distanceY = fabsf(self.y - targetY);

 float penalty = (distanceX + distanceY) / 80.0f;

 float shipInitial = 0.25f + penalty;

 float speedX = shipInitial + (distanceX /

Adding Game Logic

[114]

 Sparrow.stage.width) * penalty * penalty;
 float speedY = shipInitial + (distanceY /
 Sparrow.stage.height) * penalty * penalty;

 SPTween *tweenX = [SPTween tweenWithTarget:self time:speedX];
 SPTween *tweenY = [SPTween tweenWithTarget:self time:speedY];

 [tweenX animateProperty:@"x" targetValue:targetX];
 [tweenY animateProperty:@"y" targetValue:targetY];

 [Sparrow.juggler addObject:tweenX];
 [Sparrow.juggler addObject:tweenY];
}

12. Implement the stop method, as shown in the following code:
-(void) stop
{
 [Sparrow.juggler removeObjectsWithTarget:self];
}

13. Switch to the Battlefield.h file and update the class so that the instance
variable _pirateShip is from the type Ship, as shown in the following code:
#import "Scene.h"
#import "Ship.h"

@interface Battlefield : Scene {
 Ship *_pirateShip;
}

14. Now, switch to the Battlefield.m file.

15. Update the onBackgroundTouch method in the scene, as shown in the
following code:
SPTouch *touch = [[event touchesWithTarget:self] anyObject];

if (touch) {
 [_pirateShip moveToX:touch.globalX andY:touch.globalY];
}

16. Next, update the onShipStop method, as shown in the following code:
SPTouch *touch = [[event touchesWithTarget:self
 andPhase:SPTouchPhaseBegan] anyObject];

if (touch) {
 [_pirateShip stop];
}

Chapter 6

[115]

17. Update the remaining references from SPImage to the Ship class and remove all
occurrences of the cannon ship, as shown in the following code:
_pirateShip = [[Ship alloc]
 initWithContentsOfFile:@"ship_pirate.png"];
_pirateShip.x = (Sparrow.stage.width - _pirateShip.width) / 2;
_pirateShip.y = (Sparrow.stage.height - _pirateShip.height) /
 2;

Ship *ship = [[Ship alloc] initWithContentsOfFile:@"ship.png"];
ship.x = 100;
ship.y = 100;

18. Run the example. We now see the pirate and enemy ships on the screen:

What just happened?
In game development, the term entity usually refers to an object on the screen which
interacts with other objects. Let's take a 2D action side-scroller as an example: the enemy
ships as well as the ship controlled by the player were entities. The bullets were entities too.
A bullet, for example, interacted with the player ship as it spawned from it. The enemy ships
interacted with the bullets; if a bullet hit an enemy ship, it needed to react by losing hit
points or by being destroyed. The same applied to the player ship.

Entities also feature in more advanced game development techniques such as the
entity-component pattern, where the interaction is described as components. These
components are then attached to entities.

What we need to take away from our game is a clear separation between the different
elements of the game. In step 1, we added a new group called Entities. In the next step,
we defined our very first entity called Ship, which is a subclass of SPSprite. It was also
possible to add a prefix before the class name, just like all Sparrow classes have the prefix
SP. For our game, the prefix PG would make sense as it stands for PirateGame.

Adding Game Logic

[116]

The ship had two instance variables, which we declared in step 3: one was the cannonball-
shooting animation we previously saw in the battlefield scene and the second was the image
of the ship itself.

In addition to the default initializer, we declared a second initializer in step 4. This method
takes filename as a parameter. We didn't want to create a separate class for the pirate ship.
We can use the same class for both types. We just needed a different filename parameter
for either the enemy or the pirate ship.

Our ship class needed to have the following behaviors:

 � Shooting (step 5)

 � Moving the ship to a certain position (step 6)

 � Stopping the movement (step 7)

Our Ship.h file now looks like the following code:

#import "SPSprite.h"

@interface Ship : SPSprite {
 SPMovieClip *_shootingClip;
 SPImage *_idleImage;
}

-(id)initWithContentsOfFile:(NSString *)filename;

-(void) shoot;

-(void) moveToX:(float) x andY:(float) y;
-(void) stop;

@end

Once all methods and instance variables for the Ship class were declared, we went on
to implement the methods. Before we did that, we defined the initializer in step 8: we
initialized the movie clip—with the texture atlas from the shooting pirate ship—and the ship
image itself. The only difference to what we know so far is that we are initializing the image
if it hasn't been initialized yet.

In the second initializer that we implemented in step 9, we initialized the image with the
filename we passed in and we called the default initializer. So, if the alternate initializer
was called, we didn't overwrite the _idleImage instance variable with a fresh instance
of SPImage.

Chapter 6

[117]

The full piece of code of Ship.m up to this point is as follows:

#import "Ship.h"

#import "Assets.h"

@implementation Ship

-(id) init
{
 if ((self = [super init])) {
 NSArray *textures = [[Assets
 textureAtlas:@"ship_pirate_small_cannon.xml"]
 texturesStartingWith:@"00"];

 _shootingClip = [SPMovieClip movieWithFrames:textures
 fps:20.0f];

 if (_idleImage == nil) {
 _idleImage = [[SPImage alloc] init];
 }

 [self addChild:_shootingClip];
 [self addChild:_idleImage];
 }

 return self;
}

-(id) initWithContentsOfFile:(NSString *)filename
{
 _idleImage = [[SPImage alloc] initWithTexture:[Assets
 texture:filename]];

 return [self init];
}

In the next steps, we implemented methods for the ship's actions:

 � Shooting: Plays the _shooting movie clip (step 10).

 � Moving: This is the moving logic of the ship we previously had in the
backgroundTouch method in the battlefield scene. Instead of removing all tweens
from the ship instance, we called the stop method from the ship instance (step 11).

 � Stopping: Removes all tweens from the current instance (step 12).

Adding Game Logic

[118]

In its completeness, these methods look like the following piece of code:

-(void) shoot
{
 [_shootingClip play];
 [Sparrow.juggler addObject:_shootingClip];
}

-(void) moveToX:(float)x andY:(float)y
{
 [self stop];

 float targetX = x - (self.width / 2);
 float targetY = y - (self.height / 2);

 float distanceX = fabsf(self.x - targetX);
 float distanceY = fabsf(self.y - targetY);

 float penalty = (distanceX + distanceY) / 80.0f;

 float shipInitial = 0.25f + penalty;

 float speedX = shipInitial + (distanceX / Sparrow.stage.width) *
 penalty * penalty;
 float speedY = shipInitial + (distanceY / Sparrow.stage.height) *
 penalty * penalty;

 SPTween *tweenX = [SPTween tweenWithTarget:self time:speedX];
 SPTween *tweenY = [SPTween tweenWithTarget:self time:speedY];

 [tweenX animateProperty:@"x" targetValue:targetX];
 [tweenY animateProperty:@"y" targetValue:targetY];

 [Sparrow.juggler addObject:tweenX];
 [Sparrow.juggler addObject:tweenY];
}

-(void) stop
{
 [Sparrow.juggler removeObjectsWithTarget:self];
}

@end

Chapter 6

[119]

In the last steps, we updated the battlefield scene. First, we updated the header file.
We needed to import the Ship.h file, and instead of being a pointer to SPImage,
the _pirateShip instance variable was a pointer to the Ship class.

After this step, our Battlefield.h file had the following content:

#import "Scene.h"
#import "Ship.h"

@interface Battlefield : Scene {
 Ship* _pirateShip;
}

@end

We updated the touch interactions in the battlefield scene:

 � onBackgroundTouch: Since we moved the movement logic to the Ship class, we
just needed to call the correct method, which was moveTo, and pass in the x and y
coordinate of touch (step 15)

 � onShipStop: Similar to the moveTo method, we just needed to call the stop
method of the ship itself (step 16)

The touch events inside the Battlefield.m file should resemble the following piece
of code:

#import "Battlefield.h"
#import "Assets.h"

@implementation Battlefield

-(void) onBackgroundTouch:(SPTouchEvent*) event
{
 SPTouch *touch = [[event touchesWithTarget:self] anyObject];

 if (touch) {
 [_pirateShip moveToX:touch.globalX andY:touch.globalY];
 }
}

-(void) onShipStop:(SPTouchEvent*) event
{
 SPTouch *touch = [[event touchesWithTarget:self
 andPhase:SPTouchPhaseBegan] anyObject];

Adding Game Logic

[120]

 if (touch) {
 [_pirateShip stop];
 }
}

In the next step, we updated the initializer for the ships. We didn't need the cannonShip
movie clip anymore as this was an instance variable inside the Ship class.

Let's take a look at the initializer in the following code that binds these touch selectors and
sets up the ship itself:

-(id) init
{
 if ((self = [super init])) {
 SPImage *background = [SPImage imageWithTexture:[Assets
 texture:@"water.png"]];
 background.x = (Sparrow.stage.width - background.width) / 2;
 background.y = (Sparrow.stage.height - background.height) /
 2;

 _pirateShip = [[Ship alloc]
 initWithContentsOfFile:@"ship_pirate.png"];
 _pirateShip.x = (Sparrow.stage.width - _pirateShip.width) /
 2;
 _pirateShip.y = (Sparrow.stage.height - _pirateShip.height) /
 2;

 Ship *ship = [[Ship alloc]
 initWithContentsOfFile:@"ship.png"];
 ship.x = 100;
 ship.y = 100;

 SPTween *shipTween = [SPTween tweenWithTarget:ship time:4.0f
 transition:SP_TRANSITION_EASE_IN_OUT];
 [shipTween animateProperty:@"y" targetValue:250];
 shipTween.repeatCount = 5;
 shipTween.reverse = YES;
 shipTween.delay = 2.0f;

 [Sparrow.juggler addObject:shipTween];

Chapter 6

[121]

 [background addEventListener:@selector(onBackgroundTouch:)
 atObject:self forType:SP_EVENT_TYPE_TOUCH];
 [_pirateShip addEventListener:@selector(onShipStop:)
 atObject:self forType:SP_EVENT_TYPE_TOUCH];
 [self addChild:background];
 [self addChild:ship];
 [self addChild:_pirateShip];
 }

 return self;
}

@end

When we ran the example, we saw two ships on the screen; if we tapped anywhere, our
pirate ship moved to that point, just like we expected it to. If we touched the ship during
movement, it stopped.

Extending the ship class
Now that the base of our ship class is done, let's think of what we need for the ship class:

 � Hit points: If a ship is hit, the hit points should reflect this state. The ship will start
out with a given number of hit points, say 20 for example, and it will lose some each
time it is hit. When it finally reaches zero hit points, it will be completely destroyed.

 � Direction: This is the direction the ship is facing. Depending on the direction, the
cannonballs will be fired from each side of the ship.

We should abstain from using filenames where we don't necessarily need to, for example
now, when initializing our ship instances.

Before we go ahead and get to the coding part of things, let's download the latest
images from https://github.com/freezedev/pirategame-assets/releases/
download/0.6/Graphics_06.zip. These images include updated sprite sheets for both
the pirate ship and a cannonball that we will use later.

Delete the ship_small_cannon files and copy the newer files to the project. This can be
done easily, but Xcode doesn't always like replacing existing files.

Adding Game Logic

[122]

Time for action – adding more functionality to the ship class
Let's extend the ship class using the following steps:

1. Open the Ship.h file.

2. Add enum for the eight directions of the ship, as shown in the following code:
typedef NS_ENUM(NSInteger, ShipDirection) {
 DirectionNorth,
 DirectionSouth,
 DirectionWest,
 DirectionEast,
 DirectionNorthWest,
 DirectionNorthEast,
 DirectionSouthWest,
 DirectionSouthEast
};

3. Add another enum for the type of the ship, as shown in the following code:
typedef NS_ENUM(NSInteger, ShipType) {
 ShipPirate,
 ShipNormal
};

4. Change the _shootingClip instance variable to be a pointer to the NSArray class
and remove the _idleImage instance variable, as shown in the following code:
NSArray *_shootingClip;

5. Add a property for the ship's hitpoints, as shown in the following line of code:
@property int hitpoints;

6. Add another property for type, as shown in the following line of code:
@property ShipType type;

7. The third property is the direction of the ship:
@property (nonatomic) ShipDirection direction;

Because we will need to write custom getters and setters for this property as well,
we will need an instance variable of the same name, prefixed with an underscore:

@interface Ship : SPSprite {
 NSArray *_shootingClip;
 ShipDirection _direction;
}

Chapter 6

[123]

8. Replace the initWithContentsOfFile method declaration with initWithType.
This method takes ShipType as its parameter, as shown in the following line of code:
-(id)initWithType:(ShipType)type;

9. Switch to the Ship.m file.

10. Let's implement the initWithType method with the following lines of code:
-(id) initWithType:(ShipType)type
{
 if ((self = [super init])) {
 self.hitpoints = 100;
 self.type = type;

 SPTextureAtlas *atlas = (type == ShipPirate) ? [Assets
 textureAtlas:@"ship_pirate_small_cannon.xml"] :
 [Assets textureAtlas:@"ship_small_cannon.xml"] ;

 NSArray *texturesNorth = [atlas
 texturesStartingWith:@"n_00"];
 // ...

 float animationFPS = 12.0f;

 SPMovieClip *clipNorth = [SPMovieClip
 movieWithFrames:texturesNorth fps:animationFPS];
 // ...

 _shootingClip = [NSArray arrayWithObjects:clipNorth,
 clipSouth, clipWest, clipEast, clipNorthWest,
 clipNorthEast, clipSouthWest, clipSouthEast, nil];

 for (SPMovieClip* clip in _shootingClip) {
 clip.loop = NO;
 [self addChild:clip];
 }

 self.direction = DirectionSouthWest;
 }

 return self;
}

Adding Game Logic

[124]

11. Remove the initWithContentsOfFile method and update the default initializer
to use the initWithType method, as shown in the following code:
-(id) init
{
 return [self initWithType:ShipNormal];
}

12. Implement the custom getter for the direction property by simply returning the
_direction instance variable.

13. The setter for the direction property needs to have the following code:
_direction = direction;

for (SPMovieClip* clip in _shootingClip) {
 clip.visible = NO;
}

((SPMovieClip *) _shootingClip[_direction]).visible = YES;

14. Replace the content of the shoot method with the following lines:
for (SPMovieClip* clip in _shootingClip) {
 [Sparrow.juggler removeObjectsWithTarget:clip];
}

[_shootingClip[self.direction] play];
[Sparrow.juggler addObject:_shootingClip[self.direction]];

[_shootingClip[self.direction]
 addEventListenerForType:SP_EVENT_TYPE_COMPLETED
 block:^(SPEvent *event)
{
 [_shootingClip[self.direction] stop];
}];

15. Within the moveTo method, after the creation of the tweenX and tweenY objects,
declare and define two variables that should detect which direction the ship will be
rotated to, as shown in the following code:
int signX = 0;
int signY = 0;

Chapter 6

[125]

16. Only update the values if a certain threshold has been broken, as shown in the
following code:
if (distanceX > 40) {
 signX = (self.x - targetX) / distanceX;
}

if (distanceY > 40) {
 signY = (self.y - targetY) / distanceY;
}

17. Change direction to DirectionEast if signX has the value 1 and signY still
has the value 0, as shown in the following code:
if ((signX == 1) && (signY == 0)) {
 self.direction = DirectionEast;
}

18. Repeat this for all the remaining directions.

19. Switch to the Battlefield.m file.

20. Update the initializers to the pirate and enemy ships. Only the pirate ship needs to
have the PirateShip value from the ShipType type.

21. Inside the onShipStop method, add the functionality to shoot when the pirate ship
is tapped twice and stop if the ship is tapped once, as shown in the following code:
if (touch) {
 if (touch.tapCount == 1) {
 [_pirateShip stop];
 } else if (touch.tapCount == 2) {
 [_pirateShip shoot];
 }
}

22. Rename onShipStop and all its references to onShipTap.

23. Run the example.

Adding Game Logic

[126]

We now see that the ship is moving in the direction where we touched the screen.

What just happened?
First, we opened the ship header file, and then we defined an enum for all the direction
states. Objective-C provides a handy NS_ENUM macro which lets us do exactly that. As the
first parameter, we need the type the enum will be represented as. The second parameter is
the name of the enum type. This enum type has eight states: north, south, west, east, and
a combination of these.

In step 3, we defined a second enum for the type of ship. It can either be a pirate ship or a
normal enemy ship without black flags.

In step 4, we redefined the type of the _shootingClip instance. The reasoning behind this
change is that we hold all movie clips in an array and can access a specific movie clip through
the index.

In the next few steps, we added a few properties to the class, as listed:

 � hitpoints: This indicates how many hit points the ship currently has (step 5)

 � type: This indicates the type of the ship (step 6)

 � direction: This indicates the direction the ship is facing (step 7)

While it would have been fine to just add the filename to each initializer call when we
created an instance of the ship class, it would get messy once we either changed all of these
filenames or if we had more than just a few ships on the screen. This is why we replaced the
initWithContentsOfFile method with the initWithType method.

Next, we implemented all of the methods we just declared. We started with the one we
declared last. As this was our go-to initializer, we got through what was happening here:

 � We set the hitpoints property to 100. While 100 is more or less a random
number, it is a good starting point to balance from as it's very easy to calculate
with. For example, let's say we require four hits to destroy any ships; the damage
potential of a cannonball is 25.

Chapter 6

[127]

 � We set the type property to the value of the type parameter.

 � We set the texture atlas to either the pirate ship atlas or the other option,
depending on the type. A ternary operation was just a fancy way of writing an if
statement, as shown in the following line of code:
if (type == ShipPirate) { ... } else { ... }

The advantage of the ternary operation was that we could assign its result directly
to a variable.

 � We got the textures for each direction. Within the texture atlas, every direction of
the shooting animation was prefixed with the abbreviation of the direction: n for
north, nw for northwest, and so on.

 � We then defined the speed for the animations. We set it to 12 frames per second
as we didn't want the animation to be slower than usual. After all, operating the
cannons is tough.

 � Just like we made an instance of NSArray for every direction, we needed to do the
same for all the movie clips. We could also write this line as follows:
_shootingClip = @[clipNorth, clipSouth, clipWest, clipEast,
 clipNorthWest, clipNorthEast, clipSouthWest, clipSouthEast];

 � We added all movie clips to the _shootingClip instance variable.

 � All the movie clips were added to the display tree by iterating over the
_shootingClip instance variable. We also wanted the movie clips to play only
once, which is why we set the loop property to NO.

 � The default direction of a ship was south-west.

In step 11, we significantly simplified the default initializer by just calling the initWithType
initializer with the ShipNormal type.

We started with creating the custom getters and setters for the direction property.
We added the nonatomic keyword to the property definition. This was a performance
optimization method to make the generated accessor faster, but non-thread safe. Since
Sparrow should only be used single-threaded, it was safe to use nonatomic in our game.
Internally, Objective-C had already defined the getters and setters as propertyName and
setPropertyName, or in our case, direction and setDirection.

To use our own code, we just needed to overwrite these methods. The getter for the
direction property was pretty simple as it just needed to return the _direction
instance variable.

In our custom setter for the direction property, we needed to set the instance variable
_direction to the value of the parameter first. Then, we iterated through all the movie
clips and set its visible property to NO. We then showed the movie clip of the current
direction. This was very similar to how we show scenes through the scene director.

Adding Game Logic

[128]

In step 14, we updated the shoot method using the following steps:

 � We removed all animatable objects from the juggler which originate from any of
the movie clips.

 � We played the movie clip from the current direction and added it to the juggler.

 � We added an event listener to the movie clip that fired when the movie clip animation
was complete. Instead of a selector, we used a block. A block (also called a closure in
non-Objective-C environments) is a function which has access to non-local variables.
So, while we could define variables inside the block, we accessed the variables as if we
were declaring a statement inside the shoot method. A block had a certain appeal
to it as we didn't need to define a separate selector for just a few lines of code. There
were few things we needed to be careful about when using blocks, but Xcode usually
warned us about potential side effects.

 � Inside our block, we stopped the movie clip as it didn't reset itself. It was like
rewinding a VHS tape.

At this time, we updated the ship's direction when it moved. To achieve this, we defined
two variables inside the moveTo method: signX and signY. Their default values were 0.

The idea behind that was to map the direction from the values we got in our moveTo
method to a value from the ShipDirection values. If signY was 1, it would map to
DirectionNorth; if signX was -1, it would map to DirectionWest; and if both had the
values at the same time, they would map to DirectionNorthWest.

We had set the signX variables to the x coordinate of the object minus the target x
coordinate and dividing that by distanceX. So, our values for signX were either 1 or -1.
The same happened for the signY variable.

Now, if we moved the ship, we only got directions such as DirectionNorthWest,
DirectionNorthEast, DirectionSouthEast, and DirectionSouthWest. It is pretty
much impossible to tap the same pixel on a line twice. This was why we needed a threshold.
We only set signX and signY to 1 or -1, respectively, if distance was more than 40 points.
In this case, 40 was not a random number; a rectangle with 40 x 40 points is the average size
of a tap, according to Apple.

In steps 17 and 18, we mapped the signX and signY variables to the ShipDirection
values, and we set the direction property accordingly.

Within the battlefield scene, we needed to create our ship instances. For the enemy ship,
we used the default initializer.

In step 21, we updated the onShipStop method. We utilized the tapCount property of
the touch object to see how many times the object had been tapped. If the ship had been
tapped once, it would stop its movement, and if it had been tapped twice, it would shoot.

Chapter 6

[129]

Since the onShipStop method did not only stop the ship but also shot if tapped twice, it
was a good call to rename this method to onShipTap.

When we ran the example, the ship changed its direction depending on where we tapped
on the screen, and when we double-tapped the ship, we saw the cannon animation.

Shooting cannonballs
When we double-tap our ship, the animation plays. However, there is one obvious thing
missing, the cannonballs! Let's go ahead and add some cannonballs.

Time for action – allowing the ship to shoot cannonballs
Let's allow the pirate ship to shoot cannonballs by following these steps:

1. Open the Ship.h file.

2. Add a read-only property called isShooting, which has an instance variable
counterpart called _isShooting, as shown in the following code:
@property (readonly) BOOL isShooting;

3. Add a cannonball for the left-hand side and the right-hand side of the ship. Both of
them are pointers to SPImage, as shown in the following code:
@property SPImage *cannonBallLeft;
@property SPImage *cannonBallRight;

4. Switch to the Ship.m file.

5. Inside the initWithType method, set the _isShooting instance variable to NO at
the top of the method.

6. Inside the initWithType method, create both cannonballs with the cannonball.
png image, set their visible property to NO, and add them to the display tree.

7. Inside the shoot method, abort if _isShooting is set to YES, else set
_isShooting to YES, as shown:
if (_isShooting) {
 return;
}

_isShooting = YES;

Adding Game Logic

[130]

8. Set some default values for the animation speed and target position, as shown in
the following code:
float shootingTime = 1.25f;
float innerBox = 25.0f;
float targetPos = 30.0f;

9. Add a reference to the movie clip with the current direction, as shown in the
following line of code:
SPMovieClip *currentClip = _shootingClip[self.direction];

10. Create a tween object for each cannonball and their respective x and y properties:
SPTween *tweenCbLeftX = [SPTween
 tweenWithTarget:self.cannonBallLeft time:shootingTime];
SPTween *tweenCbLeftY = [SPTween
 tweenWithTarget:self.cannonBallLeft time:shootingTime];
SPTween *tweenCbRightX = [SPTween
 tweenWithTarget:self.cannonBallRight time:shootingTime];
SPTween *tweenCbRightY = [SPTween
 tweenWithTarget:self.cannonBallRight time:shootingTime];

11. Set up the cannonballs and their tween properties for a direction pair, as shown in
the following code:
switch (self.direction) {
 case DirectionNorth:
 case DirectionSouth:
 self.cannonBallLeft.x = (-self.cannonBallLeft.width / 2) +
 innerBox;
 self.cannonBallLeft.y = (currentClip.height -
 self.cannonBallLeft.height) / 2;

 self.cannonBallRight.x = (-self.cannonBallRight.width / 2)
 + currentClip.width - innerBox;
 self.cannonBallRight.y = (currentClip.height -
 self.cannonBallRight.height) / 2;

 [tweenCbLeftX animateProperty:@"x"
 targetValue:self.cannonBallLeft.x - targetPos];
 [tweenCbRightX animateProperty:@"x"
 targetValue:self.cannonBallRight.x + targetPos];

 break;

 default:
 break;
}

Chapter 6

[131]

12. Set up the cannonballs for the DirectionEast/DirectionWest pair.

13. Set both cannonballs to be visible on the screen and add all cannonball-related
tweens to the main juggler.

14. Remove all tweens that originate from the cannonballs just after the line where we
removed all tweens originating from the movie clips.

15. Once the movie clip is finished, set the _isShooting instance variable to NO and
hide both cannonballs.

16. Run the example. Our pirate ship can now shoot cannonballs, as shown in the
following screenshot:

What just happened?
We started this example in the header file of the Ship class, where we added a few new
properties, such as:

 � isShooting: This indicates if the ship is currently shooting (step 2)

 � cannonBallLeft: This indicates the cannonball shooting from the left-hand side of
the ship (step 3)

 � cannonBallRight: This indicates the cannonball shooting from the right-hand side
of the ship (step 3)

In the next steps, we modified the initWithType method using the following steps:

 � We set _isShooting to a default value, which is NO (step 5)

 � We created the cannonball objects (step 6)

 � We hid both cannonballs (step 6)

 � We added the cannonballs to the display tree (step 6)

Adding Game Logic

[132]

Let's head into the shoot method and see what changed here:

 � We only executed the method if the ship was not shooting to minimize potential
side effects and prevent someone from tapping on the ship all the time (step 7).

 � We defined the variable shootingTime at the time the shooting took place.
It is set to 1.2 seconds because this is the approximate length of the movie clip
animation (step 8).

 � The variable innerBox was the distance from the edge of the ship image to the
actual image itself (step 8).

 � The variable targetPos stored how far the cannonballs would fly (step 8).

 � For convenience, we defined the currentClip variable, so we didn't have to type
_shootingClip[self.direction] each time we wanted to access the movie
clip of the current direction (step 9).

 � We defined a tween for each coordinate and cannonball, so in total, we had four
tweens at this point (step 10).

 � In steps 11 and 12, we set up the positions and the tweens for the cannonballs.

 � We needed to see the cannonballs on the screen, which is why we set them to be
visible. To see the corresponding animation, we needed to add the tweens to the
juggler (step 13).

 � We also removed all tweens originating from the cannonballs before we actually
played the animation (step 14).

 � The last thing we needed to update in the shoot method was setting the
_isShooting instance variable to NO once the animation was complete, and
we hid both cannonballs in the same block (step 15).

When we ran the example and double-tapped our pirate ship, the movie clip played and
two huge cannonballs emerged from both sides of the ship.

Have a go hero
So far, the ship cannot shoot diagonally. Go ahead and implement this functionality on
your own.

Collision detection
Before we implement collision detection, let's take a look at different types of
collision detections:

 � Bounding box collision: We check the bounds of the entities (which is a rectangle).
If these rectangles intersect, we have a collision.

Chapter 6

[133]

 � Bounding sphere collision: We calculate the distance between two entities.
If the distance is smaller than the radius of both entities combined, these entities
are colliding.

 � Pixel collision: We check if all the pixels of one entity intersect with the pixels of
another entity. While this is definitely the most detailed and comprehensive collision
check, it is also the most CPU-intensive one.

Now that our pirate ship is actually shooting cannonballs, let's implement the functionality
that can hit and sink the enemy ship. We use the bounding box collision because this is one
of the easiest collision detection types to implement.

Time for action – letting cannonballs collide with ships
To check if cannonballs collide against the enemy ship, follow these steps:

1. Open the Ship.h file.

2. We need to add custom getters and setters to the hitpoints property, so let's
make this property nonatomic and add an instance variable called _hitpoints.

3. Declare the methods abortShooting and hit.

4. Switch to the Ship.m file.

5. The custom hitpoints getter just returns the instance variable _hitpoints.

6. The custom setter for hitpoints contains the following code:
-(void) setHitpoints:(int)hitpoints
{
 _hitpoints = hitpoints;
 if (_hitpoints <= 0) {
 self.visible = NO;
 }
}

7. The abortShooting method consists of the following lines:
-(void) abortShooting
{
 _isShooting = NO;

 [Sparrow.juggler
 removeObjectsWithTarget:self.cannonBallLeft];
 [Sparrow.juggler
 removeObjectsWithTarget:self.cannonBallRight];

 self.cannonBallLeft.visible = NO;
 self.cannonBallRight.visible = NO;
}

Adding Game Logic

[134]

8. The hit method has the following content:
-(void) hit
{
 self.hitpoints = self.hitpoints - 25;

 for (SPMovieClip* clip in _shootingClip) {
 SPTween *tween = [SPTween tweenWithTarget:clip
 time:0.3f];
 tween.reverse = YES;
 tween.repeatCount = 2;

 [tween animateProperty:@"color" targetValue:SP_RED];
 [Sparrow.juggler addObject:tween];
 }
}

9. In the battlefield header file, we need to add an instance variable
called _enemyShip, which is a pointer to the class Ship.

10. Update the references from ship to _enemyShip.

11. Add an event listener to the SP_EVENT_TYPE_ENTER_FRAME event, as shown in
the following code:
[self addEventListener:@selector(onEnterFrame:) atObject:self
 forType:SP_EVENT_TYPE_ENTER_FRAME];

12. Implement the onEnterFrame method with the following lines of code:
-(void) onEnterFrame:(SPEvent *)event
{
 if (_pirateShip.isShooting) {
 SPRectangle *enemyShipBounds = [_enemyShip
 boundsInSpace:self];
 SPRectangle *ball1 = [_pirateShip.cannonBallLeft
 boundsInSpace:self];
 SPRectangle *ball2 = [_pirateShip.cannonBallRight
 boundsInSpace:self];

 if ([enemyShipBounds intersectsRectangle:ball1] ||
 [enemyShipBounds intersectsRectangle:ball2]) {
 if (_pirateShip.cannonBallLeft.visible ||
 _pirateShip.cannonBallRight.visible) {
 [_pirateShip abortShooting];
 [_enemyShip hit];
 }
 }
 }
}

Chapter 6

[135]

13. Run the example. When the enemy ship is hit, it flashes red for a moment, as shown
in the following screenshot:

What just happened?
In step 2, we updated our hitpoints property so that we can add custom getters and
setters. In the next step, we declared the methods abortShooting and hit. We needed
the first method to cancel the current shooting animations and the second method to do
something when a ship has been hit.

We defined the custom getter and setter in steps 5 and 6, respectively. For the getter, we just
returned the instance variable _hitpoints that we declared in step 2. For the setter, we set
this instance variable; but when _hitpoints equals or was below zero, we hid the ship.

The abortShooting method in step 7 set the _isShooting instance variable, removed all
tweens from the cannonballs, and hid the cannonballs as well.

The hit method subtracted 25 points from hitpoints and added an animation that let
the ship flash red for a very short amount of time to get some visual feedback if a ship had
been hit.

In the next two steps, we refactored the enemy ship instance to be an instance variable,
instead of being a local variable inside the initializer. We also updated all references to the
enemy ship.

In step 11, we added an event listener. This event listener was called on each frame. In the
next step, we implemented the collision between the enemy ship and the cannonballs from
the pirate ship.

Adding Game Logic

[136]

First, we needed to get the bounds from each of these objects relative to the current scene.
We needed to see if any of the cannonballs intersected with the enemy ship. In order to make
sure that the cannons were actually firing, we checked for the visibility of the cannonballs,
and then we called the hit method from the enemy ship and the abortShooting method
from the pirate ship. The latter was necessary, otherwise the check would happen again with a
positive result, so much so that the enemy ship would be destroyed instantly and we wouldn't
even get to see the red flashing ship.

When we ran the example, we needed to hit the enemy ship exactly four times for it to
disappear. Each time the enemy ship was hit, it flashed red for a moment.

Loading gameplay-relevant data
Let's reflect on what kind of gameplay-relevant data we have at this moment. They are:

 � Hit points for each ship

 � The damage a cannonball inflicts

 � Positions for each ship in the battlefield

We should put this data in a file and load it in the game.

Time for action – avoiding hardcoded values
To separate and load our gameplay-relevant data, we need to follow these steps:

1. Add a new file called gameplay.json in the Resources folder with the
following content:
{
 "hitpoints": 100,
 "damage": 25,
 "battlefield": {
 "enemy": {
 "x": 100,
 "y": 100
 },
 "pirate": {
 "x": 300,
 "y": 100
 }
 }
}

Chapter 6

[137]

2. Open the Ship.h file.

3. Add a property called maxHitpoints, as shown in the following line of code:
@property int maxHitpoints;

4. Inside the Ship initializer, replace the piece of code where we set hitpoints with
the following lines of code:
self.maxHitpoints = [(NSNumber *) [Assets
 dictionaryFromJSON:@"gameplay.json"][@"hitpoints"] intValue];

self.hitpoints = self.maxHitpoints;

5. Inside the hit method, replace the hardcoded damage value to load from the
gameplay.json file, as shown in the following code:
self.hitpoints = self.hitpoints - [(NSNumber *) [Assets
 dictionaryFromJSON:@"gameplay.json"][@"damage"] intValue];

6. Inside the Battlefield.m file, replace the hardcoded ship positions with those
from the gameplay.json file, as shown in the following code:
NSDictionary *gameplayFile = [Assets
 dictionaryFromJSON:@"gameplay.json"];

_pirateShip = [[Ship alloc] initWithType:ShipPirate];
_pirateShip.x = [(NSNumber *)
 gameplayFile[@"battlefield"][@"pirate"][@"x"] floatValue];
_pirateShip.y = [(NSNumber *)
 gameplayFile[@"battlefield"][@"pirate"][@"y"] floatValue];

_enemyShip = [[Ship alloc] init];
_enemyShip.x = [(NSNumber *)
 gameplayFile[@"battlefield"][@"enemy"][@"x"] floatValue];
_enemyShip.y = [(NSNumber *)
 gameplayFile[@"battlefield"][@"enemy"][@"y"] floatValue];

7. Run the example.

Adding Game Logic

[138]

Instead of having hardcoded values in our code, we are now loading the values from a file. As
a result, the ships are at different starting positions, as shown in the following screenshot:

What just happened?
In step 1, we created the JSON file with values that we will load later on. The values we have
so far are the hit points, damage, and of course, positions of the ships.

Inside the Ship.h file, we added a new property called maxHitpoints, which indicates the
maximum health of any ship.

In step 4, we first set the maxHitpoints property with the hitpoints property from the
gameplay.json file. Since a property is loaded from the gameplay.json file and it is from
the type id, we need to cast it into a more familiar data type. We casted it into a pointer to
NSNumber and then used its integer value through the intValue method.

In the next step, we did the same for the damage property.

In step 6, we switched to the battlefield scene and updated the positions for the ships to
reflect the same from the gameplay.json file.

When we ran the example, our ships were at the position we defined in the gameplay.
json file. Shooting and destroying an enemy worked as expected.

Chapter 6

[139]

Pop quiz
Q1. How can event listeners be described?

1. Using blocks

2. Using selectors

3. Using selectors or blocks

Q2. When is an event registered to SP_TYPE_EVENT_ENTER_FRAME called?

1. Once in the first frame after it's added to the display tree

2. Once every frame

3. Never

Q3. Detecting double taps is not possible with Sparrow.

1. True

2. False

Summary
In this chapter, we learned about adding the basic game logic elements to our game.

Specifically, we covered how to structure our code. We got a deeper knowledge of touches,
event listeners, and collision detections.

Now that our pirate ship can actually shoot and hit things, let's add user-interface
elements—which is the topic of the next chapter.

7
User Interface

In the previous chapter, we learned about adding the first gameplay elements
into our game. Our pirate ship can now shoot cannonballs, and if the cannonballs
hit the enemy enough number of times, the enemy ship will be destroyed.

In this chapter, we are going to add user interface elements. Specifically, we will improve our
game in the following aspects:

 � Display and update the health of each ship

 � Add buttons on the screen

 � Display text on the screen

So, let's start by adding a visual representation for hit points on the screen.

Displaying the hit points of each ship
By default, each ship has 100 hit points, and each cannonball does 25 points of damage to
those hit points. We do have some visual feedback when a cannonball hits a ship, but we
don't know how many hit points a ship has once hit a few times.

Time for action – placing a health bar on top of each ship
To display the hit points for each ship, we just need to follow these steps:

1. Open our game's project file if it's not already open.

2. Switch to the Ship.h file.

User Interface

[142]

3. Add an instance variable called _quadHitpoints, which is a pointer to SPQuad,
as shown in the following line of code:
SPQuad *_quadHitpoints;

4. Switch to the Ship.m file. Just after where we create the cannonball images
in the initializer, we add a quad which should be the border for our hit point
representation, as shown in the following code:
float hitpointsHeight = 5.0f;
SPQuad *hitpointsBorder = [SPQuad quadWithWidth:clipNorth.width
 height:hitpointsHeight color:SP_BLACK];

5. We add the background for the hit points box, as shown in the following code:
uint redColor = SP_COLOR(200, 0, 0);
SPQuad *quadMaxHitpoints = [SPQuad
 quadWithWidth:hitpointsBorder.width - 2.0f
 height:hitpointsHeight - 2.0f color:redColor];

6. We set the background for the hit points box to have a one point margin, which
means its position needs to be one point to the left and one point up from the
local coordinate system:
quadMaxHitpoints.x = 1.0f;
quadMaxHitpoints.y = 1.0f;

7. We then create SPQuad from the _quadHitpoints instance variable, as shown in
the following code:
uint greenColor = SP_COLOR(0, 180, 0);
_quadHitpoints = [SPQuad quadWithWidth:hitpointsBorder.width -
 2.0f height:hitpointsHeight - 2.0f color:greenColor];

8. As shown in the following code, we set the hit points to the same coordinates as
the background:
_quadHitpoints.x = quadMaxHitpoints.x;
_quadHitpoints.y = quadMaxHitpoints.y;

9. We then add all of the hit point quads to the display tree, as shown in the
following code:
[self addChild:hitpointsBorder];
[self addChild:quadMaxHitpoints];
[self addChild:_quadHitpoints];

10. Inside the setHitpoints method, add the following line of code just after the
statement where we set the instance variable to the value of the parameter:
_quadHitpoints.scaleX = (float) _hitpoints / self.maxHitpoints;

11. Run the example.

Chapter 7

[143]

As seen in the following screenshot, both ships now have the amount of their hit points
represented as red and green bars:

What just happened?
In step 1, we opened our Xcode template from where we had left off in the previous chapter.
First of all, we need an instance variable that should represent our hit points. If we think
about how other games display the current hit points, in strategy games mostly, the hit
points are represented as little green and red bars above each unit. In fighting games, the
hit points are displayed at the top left- and right-hand sides for each player. As we might have
more than one enemy on the screen, the best representation will be to have red and green
bars above each of the ship. The green portion of the bar would be the amount of hit points
the ship currently has and the red portion is the amount that is currently missing.

In step 2, we switched to the Ship.h file as we wanted to define an instance variable. To
represent the hit points, we chose SPQuad and called our variable _quadHitpoints. To
actually implement the hit point mechanics, we switched to the Ship.m file. Our hit points
bar actually consists of three different boxes:

 � A border around the hit points

 � The background for the hit points (a red bar)

 � The actual hit point bar (a green bar which is represented by our _quadHitpoints
instance variable)

In step 5, we defined a black rectangle that will act as the border for our hit point bar. The width
of the rectangle should be the width of the ship. We got the width from the clipNorth movie
clip. Actually, we can also get the ship's width from any other movie clips. We set the height of
the black rectangle to five points. We don't want the hit points bar to be too thick, but it has to
be easily visible and recognizable.

In the next step, we set the background of the hit points. We defined a SPQuad instance,
which we call quadMaxHitpoints. It should be one point smaller than the black rectangle
on each side. We used the width from the hitpointsBorder instance and had set the
height to three points.

User Interface

[144]

We set the left and the top of the quadMaxHitpoints instance to one point each so that it
will actually look as if the hit point bar has a border.

We then initialized the quadHitpoints instance variable in step 8. It's a SPQuad class as
well and has the same dimensions as our background hit point bar.

With the quadMaxHitpoints instance, we want _quadHitpoints to be displayed inside the
border. So, we set the position of_quadHitpoints one point to the left and top relative to the
ship itself. In this case, we can adjust the position from the quadMaxHitpoints quad.

For the red and green rectangles, we refrained from using bright colors, as this might strain
the eyes and distract us from the action. Also, as we are going for a darker tone in general,
having bright colors would not fit in this context. Keep in mind when coloring and designing
the user interface that the elements should be tested on the actual device. The brightness
is usually not at its maximum, especially if the device is running on battery. In some cases,
graphics are even given additional contrast or are brightened so that they don't look too
dark on mobile devices.

In step 10, we added all of the quads to the display tree; all of the quads are children of the
Ship class.

After this point, our code snippet will look like the following:

SPMovieClip *clipSouthWest = [SPMovieClip
 movieWithFrames:texturesSouthWest fps:animationFPS];
SPMovieClip *clipSouthEast = [SPMovieClip
 movieWithFrames:texturesSouthEast fps:animationFPS];

_shootingClip = [NSArray arrayWithObjects:clipNorth, clipSouth,
 clipWest, clipEast, clipNorthWest, clipNorthEast, clipSouthWest,
 clipSouthEast, nil];

self.cannonBallLeft = [SPImage imageWithTexture:[Assets
 texture:@"cannonball.png"]];
self.cannonBallRight = [SPImage imageWithTexture:[Assets
 texture:@"cannonball.png"]];

float hitpointsHeight = 5.0f;
 SPQuad *hitpointsBorder = [SPQuad quadWithWidth:clipNorth.
 width height:hitpointsHeight color:SP_BLACK];

 uint redColor = SP_COLOR(200, 0, 0);
 SPQuad *quadMaxHitpoints = [SPQuad
 quadWithWidth:hitpointsBorder.width - 2.0f
 height:hitpointsHeight - 2.0f color:redColor];

Chapter 7

[145]

 quadMaxHitpoints.x = 1.0f;
 quadMaxHitpoints.y = 1.0f;

 uint greenColor = SP_COLOR(0, 180, 0);
 _quadHitpoints = [SPQuad quadWithWidth:hitpointsBorder.width -
 2.0f height:hitpointsHeight - 2.0f color:greenColor];
 _quadHitpoints.x = quadMaxHitpoints.x;
 _quadHitpoints.y = quadMaxHitpoints.y;

for (SPMovieClip* clip in _shootingClip) {
 clip.loop = NO;
 [self addChild:clip];
}

self.cannonBallLeft.visible = NO;
self.cannonBallRight.visible = NO;

[self addChild:self.cannonBallLeft];
[self addChild:self.cannonBallRight];

[self addChild:hitpointsBorder];
[self addChild:quadMaxHitpoints];
[self addChild:_quadHitpoints];

self.direction = DirectionSouthWest;

If we were to use the hit points' creation code more than once, it is considered a best
practice to put this piece of code into a separate method.

In the next step, we updated the hit points setter. The _quadHitpoints instance will be
scaled horizontally. As both _hitpoints and self.maxHitpoints are integer values, we
needed to cast it to a float value. If we don't do this, the hit points bar would either be red
or green with nothing in between.

The setHitpoints method will look like the following piece of code after step 10:

-(void) setHitpoints:(int)hitpoints
{
 _hitpoints = hitpoints;

 _quadHitpoints.scaleX = (float) _hitpoints / self.maxHitpoints;

 if (_hitpoints <= 0) {
 self.visible = FALSE;
 }
}

User Interface

[146]

We ran the example in the last step and saw that the enemy ship as well as our ship have hit
point bars on top of them. When the ships moved, the hit point bars also moved with them,
and when we hit the enemy ship, the hit points bar updated itself accordingly.

Adding buttons to the screen
Now that we have hit point bars on the screen, let's add some things that the user can
actually interact with.

Pausing and resuming the game
The first thing we are going to add is the ability to pause and resume the game at will. This
is actually quite important, especially for mobile action games. If a call comes on the mobile
device (iPhone) and we don't have a pause functionality, the player might get frustrated by
not being able to pause the game and lose their progress or winning streak.

Before we get into implementing these buttons, let's download the necessary graphics for
this chapter which are available at https://github.com/freezedev/pirategame-
assets/releases/download/0.7/Graphics_07.zip. Copy the contents of the
extracted file into the project.

Let's think of what we need to do when pausing the game:

 � Display a button to pause the game

 � Display a button to resume the game

 � Stop all current tweens when the player clicks on the pause button

 � Resume all current tweens when the player clicks on the resume button

As this is a bigger task, we are splitting it into two parts; first, we are going to display the
buttons, and then we will implement the functionality.

Displaying the pause and resume buttons on the screen
In this example, we are going to add all of the buttons we need and will display them at the
correct position on the screen.

Time for action – putting buttons on the screen
To add our first buttons, follow these steps:

1. Open the Battlefield.h file.

Chapter 7

[147]

2. Add one instance variable for each button. We will use the SPButton type, as
shown in the following code:
SPButton *_buttonPause;
SPButton *_buttonResume;

3. Switch to the Battlefield.m file.

4. Construct the instances for our two instance variables, as shown in the
following code:
_buttonPause = [SPButton buttonWithUpState:[[Assets
 textureAtlas:@"ui.xml"] textureByName:@"button_pause"]];
_buttonResume = [SPButton buttonWithUpState:[[Assets
 textureAtlas:@"ui.xml"] textureByName:@"button_play"]];

5. Set the position of both the pause and resume buttons to the top-right corner of
the screen using the following code:
_buttonPause.x = Sparrow.stage.width - _buttonPause.width -
 4.0f;
_buttonPause.y = 4.0f;

_buttonResume.x = _buttonPause.x;
_buttonResume.y = _buttonPause.y;

6. Hide the resume button using the following line of code:
_buttonResume.visible = NO;

7. For later usage, create methods to tap the pause and resume buttons, as shown in
the following code:
-(void) onButtonPause:(SPTouchEvent *)event
{

}

-(void) onButtonResume:(SPTouchEvent *)event
{

}

8. Bind the newly created methods to the pause and resume buttons, as shown in the
following code:
[_buttonPause addEventListener:@selector(onButtonPause:)
 atObject:self forType:SP_EVENT_TYPE_TRIGGERED];
[_buttonResume addEventListener:@selector(onButtonResume:)
 atObject:self forType:SP_EVENT_TYPE_TRIGGERED];

User Interface

[148]

9. Add both buttons to the display tree as follows:
[self addChild:_buttonPause];
[self addChild:_buttonResume];

10. Run the example to see the result. We now have a pause button on the screen,
as shown in the following screenshot:

What just happened?
In step 1, we opened the Battlefield.h file. We added two instance variables to this
class, one for the pause button and one for the resume button. We used the SPButton
class, which is pretty much an image, and optionally displayed some text on top of it.

Next, we switched to the Battlefield.m file. In step 4, we initialized both buttons.
We need to take a closer look at the following two points:

 � We already know that we can get an array of textures if we use the
texturesStartingWith method. If we want only a single texture, we
need to use textureByName, and we also have to specify the correct name.

 � SPButton provides several factory methods. The one we are using is the
buttonWithUpState method in which we have to pass an SPTexture instance.
The up state is the texture that is visible all the time. If we were to specify a down
state, the down state would be visible once the button is tapped. Another factory
method lets us specify either the down state or even some text.

In the next step, we positioned the buttons at the top-right of the screen. We left a bit of
space (four points) so that the button is not too close to the edge of the screen.

In step 6, we hid the resume button so that we only see the pause button the first time the
scene is being shown.

Chapter 7

[149]

In the next step, we added some dummy methods to pause and resume the game. We left
these empty for now, but we'll fill them in a little bit.

Next, we linked these methods to the buttons so that they will be called when we touch
these buttons.

To actually show the buttons on the screen, we need to add them to the display tree, which
we did in step 9.

Let's take a look at what exactly changed in the initializer:

SPTween *shipTween = [SPTween tweenWithTarget:_enemyShip time:4.0f
 transition:SP_TRANSITION_EASE_IN_OUT];
[shipTween animateProperty:@"y" targetValue:250];
shipTween.repeatCount = 5;
shipTween.reverse = YES;
shipTween.delay = 2.0f;

_buttonPause = [SPButton buttonWithUpState:[[Assets
 textureAtlas:@"ui.xml"] textureByName:@"button_pause"]];
_buttonResume = [SPButton buttonWithUpState:[[Assets
 textureAtlas:@"ui.xml"] textureByName:@"button_play"]];

_buttonPause.x = Sparrow.stage.width - _buttonPause.width - 4.0f;
_buttonPause.y = 4.0f;

_buttonResume.x = _buttonPause.x;
_buttonResume.y = _buttonPause.y;

_buttonResume.visible = NO;

[_buttonPause addEventListener:@selector(onButtonPause:)
 atObject:self forType:SP_EVENT_TYPE_TOUCH];
[_buttonResume addEventListener:@selector(onButtonResume:)
 atObject:self forType:SP_EVENT_TYPE_TOUCH];

[Sparrow.juggler addObject:shipTween];

[_background addEventListener:@selector(onBackgroundTouch:)
 atObject:self forType:SP_EVENT_TYPE_TOUCH];
[_pirateShip addEventListener:@selector(onShipTap:) atObject:self
 forType:SP_EVENT_TYPE_TOUCH];

[self addEventListener:@selector(onEnterFrame:) atObject:self
 forType:SP_EVENT_TYPE_ENTER_FRAME];

User Interface

[150]

[self addChild:_background];
[self addChild:_enemyShip];
[self addChild:_pirateShip];

[self addChild:_buttonPause];
[self addChild:_buttonResume];

Now, when we ran the example, we saw the pause button in the top-right corner of the
screen. When we tap the button, nothing happens except for the button scaling down a bit.

Implementing the logic to pause and resume the game
Now that we have displayed the buttons on the screen, let's allow the player to pause and
resume the game. We are going to utilize our own juggler and, save if the game is paused
into a variable and if the game is not paused, we advance our juggler as well as the child
elements.

Time for action – allowing the player to pause and resume
To allow the player to pause and resume the game, we need to follow these steps:

1. Open the Ship.h file.

2. Add an instance variable called _juggler that is a pointer to SPJuggler, as shown
in the following line of code:
SPJuggler *_juggler;

3. Declare a property called paused, which is of the type BOOL, as shown in the
following line of code:
@property (nonatomic) BOOL paused;

4. Declare a method called advanceTime, as shown in the following line of code:
-(void) advanceTime:(double)seconds;

5. Switch to the Ship.m file.

6. Inside the initializer, set the paused property to NO using its instance variable, as
shown in the following code:
_isShooting = NO;
_paused = NO;

SPTextureAtlas *atlas = (type == ShipPirate) ? [Assets
 textureAtlas:@"ship_pirate_small_cannon.xml"] : [Assets
 textureAtlas:@"ship_small_cannon.xml"];

Chapter 7

[151]

7. Initialize the _juggler instance variable inside the initializer with the following line
of code:
_juggler = [SPJuggler juggler];

8. Update all references from Sparrow.juggler to _juggler.

9. Implement the advanceTime method with the following lines of code:
-(void) advanceTime:(double)seconds
{
 if (!self.paused) {
 [_juggler advanceTime:seconds];
 }
}

10. Switch to the Battlefield.h file.

11. Add an instance variable for juggler here as well:
SPJuggler *_juggler;

12. Add an instance variable for the background using the following line of code:
SPImage *_background;

13. Add a property called paused which is a BOOL type. As we are going to add custom
getters and setters for this property, we also need an instance variable called
_paused as shown in the following code:
@interface Battlefield : Scene {
 Ship *_pirateShip;
 Ship *_enemyShip;

 SPImage *_background;

 SPButton *_buttonPause;
 SPButton *_buttonResume;

 SPJuggler *_juggler;

 BOOL _paused;
}

@property (nonatomic) BOOL paused;

14. Switch to the Battlefield.m file.

15. Inside the initializer, update the reference from the local background variable to the
_background instance variable.

User Interface

[152]

16. Inside the Battlefield initializer, initialize the _juggler instance. This has to be
done before we add shipTween to juggler:
[_buttonPause addEventListener:@selector(onButtonPause:)
 atObject:self forType:SP_EVENT_TYPE_TOUCH];
[_buttonResume addEventListener:@selector(onButtonResume:)
 atObject:self forType:SP_EVENT_TYPE_TOUCH];

_juggler = [SPJuggler juggler];

[Sparrow.juggler addObject:shipTween];

17. Update all references from Sparrow.juggler to _juggler.

18. Add a custom setter for the paused property with the following content:
-(void) setPaused:(BOOL)paused
{
 _paused = paused;

 _buttonResume.visible = _paused;
 _buttonPause.visible = !_paused;

 _background.touchable = !_paused;

 _pirateShip.paused = _paused;
 _enemyShip.paused = _paused;
}

19. Add a custom getter for the paused property that returns the _paused
instance variable:
-(BOOL) paused
{
 return _paused;
}

20. Implement the onButtonPause and onButtonResume methods by setting the
paused property to its correct values (YES in the onButtonPause method, NO in
the onButtonResume method).

21. Update the parameter type in onEnterFrame from being a pointer to SPEvent to
being a pointer to SPEnterFrameEvent.

22. Add the following lines of code to the onEnterFrame method:
double passedTime = event.passedTime;

[_enemyShip advanceTime:passedTime];
[_pirateShip advanceTime:passedTime];

Chapter 7

[153]

if (!self.paused) {
 [_juggler advanceTime:passedTime];
}

23. Run the example.

We can now tap the pause and resume buttons. In the following screenshot, you
can see that when the game is paused, all animations stop until we press the
resume button:

What just happened?
In the Ship.h file, we updated the interface by performing the following tasks:

 � Added a new juggler instance variable, which is a pointer to SPJuggler (step 2)

 � Added a paused property with the type BOOL (step 3)

 � Declared a method called advanceTime (step 4)

Sparrow does not provide the pause and resume methods for its jugglers. We dealt with
this by introducing our own jugglers and setting a flag if the game is paused, and we
advanced all of our jugglers only if the game was not paused.

In step 5, we switched to the Ship.m file and we defined the paused property inside
the initializer to NO, because by default, the ships should not be paused. This step is not
necessary as Objective-C initializes this instance as NO; it's just a reminder to see which
instance variables we have if we were to decide to change a value later on, and we know
where to look.

In the next step, we initialized the _juggler instance variable. It does not matter where
exactly we defined the juggler instance variable inside the initializer as we don't add any
tweens to jugglers in the initializer method. Next, we searched and replaced all references
from Sparrow.juggler to _juggler. The easiest way is to use command + F, select
Replace from the drop-down list, put Sparrow.juggler in the first input box, _juggler
in the second input, and select All to replace all the references.

User Interface

[154]

In step 9, we implemented the advanceTime method, where we call the advanceTime
method from _juggler and pass in double as the seconds parameter. This is only
called if the paused property is set to NO.

Next, we switched to the Battlefield.h file. Here, we needed to perform the
following steps:

 � Add an instance variable for a juggler, similar to how we did for the Ship class (step 11).

 � We now need an instance variable that references the background image instance
(step 12).

 � We need a paused property. As we are going to implement custom getters and
setters, we also need an instance variable corresponding to that property (step 13).

Then, we switched to the Battlefield.m file. In the next step, we updated all references
from the local background variable to the instance variable _background.

In step 16, we initialized our _juggler instance variable. Here, it does matter where
we initialize this instance; it should be right before the line [Sparrow.juggler
addObject:shipTween];.

Next, we updated the references to use _juggler instead of Sparrow.juggler inside
the battlefield scene.

Then, we defined the setter for the paused property. Let's take a closer look at what
exactly happened:

 � We set the _paused instance variable to the value of the parameter.
 � If _paused is set to YES, _buttonPause is not visible and _buttonResume is

visible. If _paused is set to NO, it's the other way round.
 � Each sprite has a touchable property. If this is set to NO, touch handlers won't fire.

We set this to NO so the game can be paused.
 � We paused all ships on the screen.

In step 19, we defined the getter for the paused property. It just returned the _paused
instance variable.

We then implemented the onButtonPause and onButtonResume methods, where we set
the paused property to YES and NO, respectively.

In step 21, we needed to update the parameter type in our onEnterFrame method.
It needs to be a pointer to SPEnterFrame.

Chapter 7

[155]

Then, we added some lines of code to the onEnterFrame method. Now that the event is a
pointer to SPEnterFrame, we can actually get the time that has been passed by getting the
passedTime property from the event parameter. We then called the advanceTime method
from all the ships on the screen, and if the scene is paused, we call the advanceTime
method from _juggler.

When we ran the example, we can now pause and resume the game at will.

Have a go hero
Here are some suggestions of what we could improve:

 � As there isn't much happening in the onButtonPause and onButtonResume
methods, we could either try to use blocks or merge both methods into one.

 � We could extend the Scene class to use a juggler instance variable, so we don't
need to redefine a custom juggler wherever we need it.

 � Right now, we have custom user interface elements for each scene. However, if this
were to change, we should think about abstracting the user interface logic into a
separate class and maybe bind it to the Scene class.

Aborting the current game
So far, we don't have the ability to switch to the pirate cove scene. However, we should
introduce the option to abort the current fight.

Time for action – conceding the game
To abort the current game, we need to follow these steps:

1. Open the Battlefield.m file.

2. Inside the initializer, we should add the abort button right after the resume button:
SPButton *buttonAbort = [SPButton buttonWithUpState:[[Assets
 textureAtlas:@"ui.xml"] textureByName:@"button_abort"]];

3. Position the abort button in the bottom-right corner:
buttonAbort.x = Sparrow.stage.width - buttonAbort.width - 4.0f;
buttonAbort.y = Sparrow.stage.height - buttonAbort.height -
 4.0f;

4. Import the SceneDirector class, as shown in the following line of code:
#import "SceneDirector.h"

User Interface

[156]

5. Add a listener to the abort button using a block, as shown in the following code:
[buttonAbort addEventListenerForType:SP_EVENT_TYPE_TRIGGERED
 block:^(SPEvent *event)
{
 [((SceneDirector *) self.director) showScene:@"piratecove"];
}];

6. Add the button to the display tree, as shown in the following code:
[self addChild:buttonAbort];

7. Run the example to see the result.

We now see the abort button as shown in the following screenshot:

What just happened?
In step 1, we opened the Battlefield.m file. For this example, we only need to take a look
at the initializer method. We initialized the abort button similar to how we did for the pause
and resume buttons before, the only difference is that we are using a different texture.

In the next step, we positioned the abort button at the bottom-right corner. Just like how
we left a bit of space with the pause and resume buttons, we did the same here.

We then imported the SceneDirector.h file in the next step.

In step 5, we added an event listener to the abort button. Inside the event listener, we
switched to the pirate cove scene. Although we do have a reference to the scene director
using the director property, it is of the type id. So, we needed to recast it to a pointer
to the SceneDirector class.

Then, we added the abort button to the display tree.

When we ran the example, we saw the abort button, and when we tapped it, we jumped to
the pirate cove scene.

Chapter 7

[157]

Adding dialogs to the screen
Now that we have added the abort button on the screen, we might run into a few problems,
which are as follows:

 � We might tap on the abort button by accident

 � We don't have any way to get from the pirate cove scene back to the battlefield scene

So, to counteract this, at least on the surface, let's add a dialog which should be shown when
we tap the abort button.

Time for action – creating a dialog class
To add dialogs, we need to follow these steps:

1. Add a new group inside the Classes folder called UI.

2. Inside the UI group, add a new Objective-C class called Dialog, which derives
from SPSprite.

3. Implement the dialog initializer with the following lines of code:
-(id) init
{
 if ((self = [super init])) {
 SPImage *background = [SPImage
 imageWithTexture:[[Assets textureAtlas:@"ui.xml"]
 textureByName:@"dialog"]];

 SPButton *buttonYes = [SPButton
 buttonWithUpState:[[Assets textureAtlas:@"ui.xml"]
 textureByName:@"dialog_yes"] text:@"Yes"];

 SPButton *buttonNo = [SPButton
 buttonWithUpState:[[Assets textureAtlas:@"ui.xml"]
 textureByName:@"dialog_no"] text:@"No"];

 buttonYes.x = 24.0f;
 buttonYes.y = background.height - buttonYes.height -
 40.0f;

 buttonNo.x = buttonYes.x + buttonYes.width - 20.0f;
 buttonNo.y = buttonYes.y;

 [self addChild:background];
 [self addChild:buttonYes];

User Interface

[158]

 [self addChild:buttonNo];
 }

 return self;
}

4. Switch to the Battlefield.m file.

5. Import the Dialog.h file.

6. Right before the abort button event, initialize the dialog, as shown in the
following code:
Dialog *dialog = [[Dialog alloc] init];

dialog.x = (Sparrow.stage.width - dialog.width) / 2;
dialog.y = (Sparrow.stage.height - dialog.height) / 2;

7. The dialog should be hidden by default, as shown in the following line of code:
dialog.visible = NO;

8. Update the abort button event to show the dialog:
[buttonAbort addEventListenerForType: SP_EVENT_TYPE_TRIGGERED
 block:^(SPEvent *event)
{
 dialog.visible = YES;
}];

9. Run the example to see the result.

When we tap the abort button, we now see a dialog popping up:

What just happened?
First, we structured the Dialog class. To keep it separate from the game logic code, we
created it within a new group. The Dialog class itself should inherit from SPSprite.

Chapter 7

[159]

In step 3, we defined the initializer for the Dialog class, where we performed the
following actions:

 � We added a background image for the dialog.

 � We added the Yes and No buttons. We called the factory methods for SPButton,
where we put some text on the buttons, which in our case is Yes and No, respectively.

 � We positioned these elements at the bottom of the dialog.

Inside the Battlefield.m file, we imported the Dialog.h file to be able to use the
Dialog class.

Inside the initializer of the battlefield scene, we needed to initialize the dialog, which we
did right before the abort button event.

We set the dialog to be invisible by default and updated the abort button event to show
the dialog.

When we ran the example, we saw the dialog when we tapped the abort button.

Have a go hero
Having the abort button on the bottom-right of the screen is not ideal from a usability
point of view. If we accidently tapped the button, a dialog is now being shown instead of
just aborting the current battle. Still, it doesn't seem to be ideal. The following are some
suggestions on how to improve the situation:

 � Placing the abort button (buttonAbort) next to the pause button. All user interface
elements would be in the same area.

 � Combine the pause button and the abort button into a game menu button. Clicking
on the button will pause the game and will open a menu. An abort button can be
found there.

Adding custom events to the dialogs
Now that a dialog is on the screen, we would like to attach listeners to the dialog buttons
themselves. While we can go for simply attaching touch events, Sparrow provides a way to
define custom events.

User Interface

[160]

Time for action – adding our own buttons to our dialog
To add custom events for our dialogs, we just need to follow these steps:

1. Inside the Dialog.h file, we need to define the event names before the
interface declaration:
#define EVENT_TYPE_YES_TRIGGERED @"yesTriggered"
#define EVENT_TYPE_NO_TRIGGERED @"noTriggered"

2. Switch to Dialog.m.

3. Register the following listeners to our buttons:
[buttonYes addEventListener:@selector(onButtonYes:)
 atObject:self forType:SP_EVENT_TYPE_TRIGGERED];

[buttonNo addEventListener:@selector(onButtonNo:) atObject:self
 forType:SP_EVENT_TYPE_TRIGGERED];

4. Implement the onButtonYes and onButtonNo methods, as shown in the
following code:
- (void)onButtonYes:(SPEvent *)event
{
 SPEvent *localEvent = [SPEvent
 eventWithType:EVENT_TYPE_YES_TRIGGERED];
 [self dispatchEvent:localEvent];
}

- (void)onButtonNo:(SPEvent *)event
{
 SPEvent *localEvent = [SPEvent
 eventWithType:EVENT_TYPE_NO_TRIGGERED];
 [self dispatchEvent:localEvent];
}

5. Switch to Battlefield.m.

6. The local dialog variable inside the initializer needs to be refactored into an instance
variable called _dialogAbort.

7. Move the #import "Dialog.h" statement from Battlefield.m to
Battlefield.h.

8. Add event listeners for both dialog buttons in Battlefield.m, as shown in the
following code:
[_dialogAbort addEventListener:@selector(onDialogAbortYes:)
 atObject:self forType:EVENT_TYPE_YES_TRIGGERED];
[_dialogAbort addEventListener:@selector(onDialogAbortNo:)
 atObject:self forType:EVENT_TYPE_NO_TRIGGERED];

Chapter 7

[161]

9. Implement the corresponding methods, as shown in the following code:
-(void) onDialogAbortYes:(SPEvent *)event
{
 [((SceneDirector *) self.director)
 showScene:@"piratecove"];
}

-(void) onDialogAbortNo:(SPEvent *)event
{
 self.paused = NO;
 _dialogAbort.visible = NO;
}

10. Update the abort button event to also pause the game when the dialog is
being shown:
[buttonAbort addEventListenerForType:SP_EVENT_TYPE_TOUCH
 block:^(SPEvent *event)
{
 self.paused = YES;
 _dialogAbort.visible = YES;
}];

11. Run the example to see the result. When we tap the abort button, we can now tap
the buttons of the dialog:

What just happened?
In the first step, we defined the event names for our buttons. In the Dialog.m file, we
needed to add listeners for our dialog. We used SP_EVENT_TYPE_TRIGGERED, so if any
kind of event is triggered on either of the buttons, the selector will be called.

In step 4, we implemented the necessary methods. We created an event with our custom
event type and dispatched this event afterwards.

User Interface

[162]

In the next step, we refactored the local dialog variable in the battlefield initializer. It now
needs to be an instance variable called _dialogAbort and it is still a pointer to Dialog.
We updated all references and the initialization part of the instance variable. Consequently,
we imported a statement to the header file.

We then called the addEventListener method on our dialog using our custom events.

In step 9, we implemented the methods that should be fired when the button is tapped.
If we select Yes, we need to show the pirate cove scene, and if we select No, we need the
dialog to disappear. We also resume the game in this case.

As we resume the game if we tap Yes, we also need to update the abort button event to
actually pause the game once the dialog is being shown.

When we ran the example and tapped the abort button, our dialog pops up and the game
pauses. If we tap No, the dialog closes and the game resumes. If we tap Yes, we shift to the
pirate cove scene.

Drawing text on the screen
There are two ways to display text on the screen. We can either use one of the iOS fonts
(so-called system fonts) or we could try to create a more customized font that fits our
needs better.

Displaying our first text field
We already drew some text on the screen utilizing the capabilities of SPButton when we
added the dialog buttons. However, we are now going to draw some text on the screen for
the dialog message.

Time for action – adding a text field to the dialog
To draw text on the screen, we need to follow these steps:

1. As shown in the following line of code, add a property called content, which is a
pointer to SPTextField, inside the Dialog.h file:
@property SPTextField *content;

Chapter 7

[163]

2. In the Dialog initializer, create the following content instance and position it
between the title box and the buttons:
_content = [SPTextField textFieldWithWidth:background.width -
 48.0f height:background.height - 150.0f text:@"Dialog default
 text"];
_content.x = 24.0f;
_content.y = 50.0f;

3. Add the content property to the display tree, as shown in the following code:
[self addChild:background];
[self addChild:buttonYes];
[self addChild:buttonNo];
[self addChild:_content];

4. Switch to the Battlefield.m file.

5. Add a custom message for the abort dialog, as shown in the following code:
_dialogAbort = [[Dialog alloc] init];

_dialogAbort.content.text = @"Would you like to abort the
 current fight?";

_dialogAbort.x = (Sparrow.stage.width - _dialogAbort.width) /
 2;
_dialogAbort.y = (Sparrow.stage.height - _dialogAbort.height) /
 2;

6. Run the example.

Now, we see the text message inside the dialog.

User Interface

[164]

What just happened?
First of all, we needed a property for the message we are going to display. A SPTextField
class works like this: we define a rectangle and some text, and the text will automatically be
aligned inside the bounds of the rectangle. By default, the text is centered horizontally and
vertically. If we want to change this, we need to change the hAlign and vAlign properties
to our desired values. In addition to all of the properties it inherits from being a display
object (such as color or scale), a text field also has the fontName property to use different
fonts and the fontSize property for the size of the text.

In step 2, we created the _content instance, where the text field should be a bit smaller
than the dialog itself. We gave the text field a default text and then updated its position to
be more or less in the center of the dialog.

After we added the text field to the display tree in step 3, we updated the default message,
a custom one, inside the Battlefield initializer.

When we ran the example, we saw our custom message in the dialog.

Explaining system fonts
System fonts are the fonts iOS has built-in, out of the box. The selection ranges from Arial
and Helvetica to Verdana, including the light, bold, and italic variants. For a complete list of
all available system fonts, visit http://iosfonts.com/.

Explaining bitmap fonts
A bitmap font is very similar to a texture atlas; every character is an image. All of these
smaller images are put into a big one. Although system fonts can display Unicode characters
with ease, if we need umlauts or similar characters, we would need to add them ourselves.
As a result, this would directly increase the size of the image.

A sample bitmap font would look like the following screenshot:

Chapter 7

[165]

A portion of the data might look something like the following portion of code:

 <info face="Arial" size="72" bold="0" italic="0" charset=""
 unicode="" stretchH="100" smooth="1" aa="1" padding="2,2,2,2"
 spacing="0,0" outline="0"/>
 <common lineHeight="83" base="65" scaleW="1024" scaleH="512"
 pages="1" packed="0"/>
 <pages>
 <page id="0" file="font.png"/>
 </pages>
 <chars count="80">
 <char id="97" x="2" y="2" width="45" height="50" xoffset="-1"
 yoffset="18" xadvance="40" page="0" chnl="15"/>
 <char id="98" x="2" y="54" width="44" height="64" xoffset="1"
 yoffset="5" xadvance="40" page="0" chnl="15"/>
 <char id="99" x="2" y="120" width="43" height="50" xoffset="-1"
 yoffset="18" xadvance="36" page="0" chnl="15"/>
 <char id="100" x="2" y="172" width="44" height="64" xoffset="-2"
 yoffset="5" xadvance="40" page="0" chnl="15"/>
 <char id="101" x="47" y="120" width="46" height="50" xoffset="-1"
 yoffset="18" xadvance="40" page="0" chnl="15"/>
 <char id="102" x="48" y="54" width="33" height="64" xoffset="-3"
 yoffset="4" xadvance="20" page="0" chnl="15"/>
 <char id="103" x="83" y="2" width="44" height="65" xoffset="-2"
 yoffset="18" xadvance="40" page="0" chnl="15"/>
 <char id="104" x="2" y="238" width="42" height="63" xoffset="1"
 yoffset="5" xadvance="40" page="0" chnl="15"/>

Similar to a texture atlas, the actual data is represented in XML.

There are multiple tools to create bitmap fonts, with each of them having their own
advantages and disadvantages. Littera is a free online tool available at http://kvazars.
com/littera/ (requires Adobe Flash Player); other popular commercial solutions are
Glyph Designer by 71squared and bmGlyph by Stéphane Queraud.

Creating our very own bitmap font
For this example, we will use bmGlyph, as it allows us to create multiple scaled bitmap
fonts similar to the mechanic TexturePacker provides. The bmGlyph solution is
available on the Mac App Store at https://itunes.apple.com/us/app/bmglyph/
id490499048?mt=12 for $9.99 or your regional equivalent.

If you don't want to use bmGlyph, the complete bitmap font is also included in the
graphics package.

User Interface

[166]

Time for action – using bmGlyph to create a bitmap font
To create our first bitmap font, we just need to follow these steps:

1. Open bmGlyph.

2. Select Arial Rounded MT Bold as the font.

3. Set Font size to 72 points.

4. Scroll down to the Color Tools section and check Shadow.

5. In the Shadow pane, set the x property to 2, the y property to -2, and the radius to 8.

6. In the Fill Mode section, select a brown-yellowish color and select the Glossy checkbox.

7. Hit the Publish button.

8. In the Default target, enter PirateFont as the File Name and font name
(Force Font Name). In the Suffix input box, add @4x.

9. Click on the 50 button inside the Duplicate with scale box and add the suffix @2x.

10. Click on the 25 button.

11. Select Sparrow in the Format drop-down list.

12. Make sure that PirateFont is displayed in all of the targets as the File Name and in
Force Font Name.

13. Hit Publish and then the Close button.

After these steps, we should see the following screen:

Chapter 7

[167]

What just happened?
After we opened bmGlyph, we set the base font, size, color, and the shadow of the bitmap
font. To export the bitmap font, we clicked on the Publish button, which we did in step 7. For
each separate image, we need to define a new target with a scale. In our case, this is 100%,
50%, and 25% with the suffixes @4x and @2x, respectively. For the 25% target, we don't need
a suffix.

To export a Sparrow-compatible bitmap font, we needed to select the Sparrow format. We
needed to make sure that PirateFont is written in both File Name and Force Font Name.
If we don't do the latter, the font won't become available as PirateFont, but will replace
Arial Rounded MT Bold.

When we hit the Publish button, our font files became available in the location where we
wanted to save them.

Displaying a text field with bitmap fonts
Now that we have displayed a system in our dialog, let's display text using our fresh bitmap
font as the dialog's title.

Time for action – using our bitmap font for a text field
Follow these steps to display bitmap fonts in SPTextField:

1. We need to add another property called title inside the Dialog.h file, which is
also a pointer to SPTextField:
@property SPTextField *title;

2. We register our bitmap font, as shown in the following code:
[SPTextField registerBitmapFontFromFile:@"PirateFont.fnt"];

3. We create and position the _title instance with the following lines of code:
_title = [SPTextField textFieldWithWidth:background.width * 0.6
 height:30.0f text:@"Dialog"];
_title.fontName = @"PirateFont";
_title.color = SP_WHITE;

_title.x = 24.0f;
_title.y = 26.0f;

User Interface

[168]

4. We need to add the _title instance to the display tree, as shown in the
following code:
[self addChild:background];
[self addChild:buttonYes];
[self addChild:buttonNo];
[self addChild:_content];
[self addChild:_title];

5. Inside the Battlefield.m file, we replace the default title with a custom one:
_dialogAbort = [[Dialog alloc] init];

_dialogAbort.title.text = @"Abort this fight?";
_dialogAbort.content.text = @"Would you like to abort the
 current fight?";

_dialogAbort.x = (Sparrow.stage.width - _dialogAbort.width) /
 2;
_dialogAbort.y = (Sparrow.stage.height - _dialogAbort.height) /
 2;

6. Run the example to see the result.

Our dialog now has a message and a title:

What just happened?
Displaying bitmap fonts is very similar to displaying system fonts on the screen. Before we can
use any bitmap font, we need to register it first. When we want to display a text field with this
font, we need to update the fontName property to reflect the name of the bitmap font.

Chapter 7

[169]

Another thing to consider is that Sparrow displays all text in black by default. We need to
change this in order to see the color effect of our bitmap font.

Remember that the complete source code for this chapter can also be found
on GitHub: https://github.com/freezedev/pirategame/tree/
f742f6026e9ad129546d17e5d9e9728c27ff0733.

Pop quiz
Q1. In order for custom jugglers to show their tweens, which method needs to be called?

1. advanceTime

2. update

3. addJuggler

Q2. Are bitmap fonts similar to texture atlases?

1. Yes

2. No

Q3. What kind of fonts can be used with SPTextField?

1. System fonts

2. Bitmap fonts

3. Both

Summary
In this chapter, we learned about adding user interface elements to the screen.

Specifically, we covered health bars, buttons, and drawing text on the screen, and we got a
deeper knowledge of jugglers and how to update elements through custom getters and setters.

Now that we have a basic user interface, let's add some artificial intelligence—which is the
topic of the next chapter.

8
Artificial Intelligence and Game

Progression

In the previous chapter, we learned about adding user interface elements to our
game. We added a hit points representation above our ships, added buttons,
and even created our own dialog.

In this chapter, we will add artificial intelligence to our game. The following are the topics
we will cover:

 � The concepts of fuzzy logic and state machines

 � Enemy ships should move and attack

 � Adding some kind of progression to the game

 � Winning and losing the game

However, before we get to the actual coding, let's see the concepts of artificial intelligence
that we will implement.

Artificial intelligence in theory
The goal for the enemy ships is to move around and attack our ships if they get close enough.
There are two concepts we need to look into in detail to help us implement this logic; we will
discuss these in the following sections.

Artificial Intelligence and Game Progression

[172]

Explaining fuzzy logic
Let's take a moving train as an example. We could use a Boolean value to describe its state.
If it is set to true, it's moving fast; if it's set to false, it's not moving fast.

However, that will not be enough. Let's say the train is moving at 80 miles per hour and then
at 100 miles per hour. At both speeds, our Boolean value will be true, but we have no way of
differentiating it further. Also, we don't have a state if the train is not moving.

Fuzzy logic describes an interval of values put into a colloquial term. Let's take a step back
and compare it to mathematical logic. Binary (two-valued) logic has two values: true and
false. An expression such as 1 + 1 = 2 evaluates to "true". The expression "Adding one to
one is most likely going to be two" will not make much sense in binary logic, but it will be
possible in fuzzy logic.

Fuzzy logic doesn't have the two values true and false, but it has in-between values such
as a bit, quite, or about. This is similar to human thinking.

To illustrate this point further, let's take a look at what our moving train example looks like
if put in table form:

Term Speed

Not moving 0 miles per hour

Really slow 1 to 9 miles per hour

Almost fast 10 to 49 miles per hour

Quite fast 50 to 89 miles per hour

Really fast 90 to 119 miles per hour

For our game, we can apply this to a similar value: the distance between the enemy ship
and our own ship.

Explaining state machines
State machines are a number of states put into a sequential logic circuit. This sounds
abstract, so let's explain it in detail: a state, first of all, is a value that changes if a different
state becomes active. A door has two states: locked and unlocked. If the door is locked, it
stays locked until it's unlocked.

Here is an example that is closer to our game: we need a number of states, for example,
Move to player, Wait 3 seconds, and Attack player.

Now, we need to put these states in some kind of order. Let's say the enemy first moves to
the player, and then it attacks and waits for 3 seconds. Then, the process starts again, as
demonstrated in the following diagram:

Chapter 8

[173]

Move to player

Attack playerWait 3 seconds

So far, we know about states and state machines. Finite state machines are state machines
with a finite number of states. The preceding figure is of course a simplified example of
how finite state machines can work. Some of the models also have transitions to describe
the action taken to move from one state to another. In illustrations, transitions are often
accompanied by conditions such as "Is the player in sight?"

Most simple AIs employ this strategy. One of the most prominent examples is Quake. To be
fair, different AI mechanics are used in more complex and modern games. One example is
the AI adapting to the player's actions: if in a strategy game, the player chooses to attack a
specific point, the AI would adapt to defend this position more and more depending on how
often the player attacked.

For our purposes, a finite state machine is more than enough. So, let's see what states we
need for the enemy ship:

 � We want the enemy ship to wander around

 � We want the enemy ship to move to the vicinity of the player

 � We want the enemy ship to attack

 � We want the enemy ship to wait a bit after an attack (for the player to recuperate)

Let's put these states into a diagram as follows:

Artificial Intelligence and Game Progression

[174]

Letting the enemy ship move and attack
Now that we know about fuzzy logic and state machines, we can implement these as
mechanics for our artificial intelligence.

Moving the ship
First of all, we want the ship to move around—both wander around and move to the
player ship.

Time for action – getting the enemy ship to move around
In order for the enemy ship to move around, we need to use the following steps:

1. Open our Xcode project if it's not already open.

2. Open the Battlefield.h file.

3. Define all AI states as enum, as shown in the following code:
typedef NS_ENUM(NSInteger, AIState) {
 StateWanderAround,
 StateMoveToPlayer,
 StateAttack,
 StateRecuperate
};

4. Inside the Battlefield scene, add a new instance variable called _aiState,
which is of the AIState type.

5. Open the Ship.h file.

6. Add a callback block type, as shown in the following line of code:
typedef void(^ShipCallback)(void);

7. Declare three new methods for the Ship class, as shown in the following code:
-(void) moveToX:(float)x andY:(float)y withBlock:(ShipCallback)
 block;
-(float) checkDistanceToShip:(Ship *)ship;
-(void) moveToShip:(Ship *)ship withBlock:(ShipCallback) block;

8. Open the Ship.m file.

9. Move the contents of the -(void) moveToX:(float) x andY:(float)
y method into the -(void) moveToX:(float)x andY:(float)y
withBlock:(ShipCallback) block method.

Chapter 8

[175]

10. Inside the new moveTo method, add the following code just after the
[tweenY animateProperty:@"y" targetValue:targetY]; line:
__block BOOL isTweenXCompleted = NO;
__block BOOL isTweenYCompleted = NO;

tweenX.onComplete = ^{
 isTweenXCompleted = YES;

 if (isTweenXCompleted && isTweenYCompleted) {
 if (block != nil) {
 [block invoke];
 }
 }
};

tweenY.onComplete = ^{
 isTweenYCompleted = YES;

 if (isTweenXCompleted && isTweenYCompleted) {
 if (block != nil) {
 [block invoke];
 }
 }
};

11. Implement the checkDistanceToShip method with the following code:
-(float) checkDistanceToShip:(Ship *)ship
{
SPPoint* p1 = [SPPoint pointWithX:self.x + (self.width / 2)
 y:self.y + (self.height / 2)];
SPPoint* p2 = [SPPoint pointWithX:ship.x + (ship.width / 2)
 y:ship.y + (ship.height / 2)];

float distance = [SPPoint distanceFromPoint:p1 toPoint:p2];

return distance;
}

Artificial Intelligence and Game Progression

[176]

12. The moveToShip method should have the following body:
-(void) moveToShip:(Ship *)ship withBlock:(ShipCallback)block
{
 floatrandomX = arc4random_uniform(80) - 40.0f;
 floatrandomY = arc4random_uniform(80) - 40.0f;

 [self moveToX:ship.x + randomX andY:ship.y + randomY
 withBlock:block];
}

13. Reimplement the moveToX:(float)x andY:(float)y method, as shown in
the following code:
-(void) moveToX:(float)x andY:(float)y
{
 [self moveToX:x andY:y withBlock: nil];
}

14. Move on to the Battlefield.m file.

15. Inside the initializer, set the _aiState instance variable to StateWanderAround,
as shown in the following line of code:
_aiState = StateWanderAround;

16. Remove the tween and the juggler.

17. Let's declare a helper method for getting a random position on the screen, as shown
in the following code:
-(SPPoint *) randomPos
{
 return [SPPoint pointWithX:((arc4random() % (int)
 (Sparrow.stage.width - 80.0f)) + 40.0f) y:((arc4random() %
 (int) (Sparrow.stage.height - 80.0f)) + 40.0f)];
}

18. Define a method called updateAI, as shown in the following code:
-(void) updateAI: (Ship *)ship withState: (AIState) aiState
{
switch (aiState) {
caseStateWanderAround: {
SPPoint *point = [self randomPos];
 [ship moveToX:point.x andY:point.y withBlock:^{
if ([ship checkDistanceToShip:_pirateShip] < 200.0f) {
 //In sight
 [self updateAI:ship
withState:StateMoveToPlayer];

Chapter 8

[177]

 } else {
 //Not in sight
 [self updateAI:ship withState:aiState]
 }
 }];
 }
break;
caseStateMoveToPlayer: {
 [ship moveToShip:_pirateShip WithBlock:^{
if ([ship checkDistanceToShip:_pirateShip] < 100.0f) {
 // Attack
 [self updateAI:ship withState:StateAttack];
 } else {
 //Not in sight
 [self updateAI:ship
 withState:StateWanderAround];
 }
 }];
 }
break;
default:
break;
 }
}

19. Call the updateAI method at the point where we initialized the juggler previously,
as shown in the following code:
[self updateAI:_enemyShip withState:_aiState];

20. Run the example.

We now see that our own ship and the enemy ship are moving around on their own.

Artificial Intelligence and Game Progression

[178]

What just happened?
In step 1, we opened our game project; in the next step, we looked into the Battlefield.h
file. All of the AI states we previously mentioned were put into enum. In step 4, we defined
an instance variable that holds the default AI state.

We already had a moveTo method in our Ship class which lets us move any ship around on
the screen. Unfortunately, we currently don't have a way of knowing when the movement
is over. We can employ an Objective-C language feature which we used in the previous
chapters, that is, blocks. We defined a block as a parameter; when the movement was over,
the block was called. In step 6, we defined our block type.

In the next step, we declared the general methods for our Ship class:

 � Moving to a position and using a callback once the movement is done

 � Checking the distance between the current ship and any other ship

 � Moving to another ship and using a callback once the operation is over

We then got ready to implement these methods in step 8. We first moved the contents of
the old moveTo method to the new one with the callback.

Then, we just needed to call the callback block once the animation was over. Since the
tweens could potentially have two different speeds depending on the distance between
the touch point and the ship, we needed to record whether each tween was completed for
both of the tweens. To check if the tween was actually complete, we added a block to the
onComplete property of the tween. Once the tween was done, the block got called. Inside
this block, we set a Boolean value to flag that the current tween was complete, and if both
tweens are complete, we invoked the callback. To be able to use our local variables in the
onComplete blocks, we needed to prefix them with __blocks.

In step 11, we implemented a method that calculates the distance between two ships:
we took the center of both ships, converted them into SPPoint, and utilized the static
distanceFromPoint method that SPPoint provides. We only needed to return the result.

The moveToShip method called the moveTo method with the coordinates of the ship
passed in and some randomness attached to it. We used the arc4random function to get
a random value. The arc4random function returned a floating point number between zero
and one. The arc4random_uniform function took a parameter and created a random
number between zero and the passed-in parameter minus one. In step 13, the moveTo
method without the callback just called the moveTo version, with the callback passing
through nil as the callback parameter.

When we moved to the Battlefield.m file, we set the _aiState instance variable to
the WanderState AI state. We then safely removed the tween and the juggler, which were
previously responsible for the enemy ships' move animation.

Chapter 8

[179]

In step 17, we implemented a method that gets us a random position on the screen. We also
set a margin so that the position was definitely within the borders of the screen. We used
the SPPoint class factory method to store both the x and y positions.

In the next step, we implemented the method that updates the AI:

 � If the ship is wandering around, we get a random position and move there.

 � If the ship has moved, it checks if the distance between the player and the ship
parameter is less than 200 points. The ship then moves to the player. If that's not
the case, we call the updateAI method again with the WanderState AI state.

 � If the ship moved to the player, it checks again for the distance. If it's lower than 100
points, it begins attacking, else it's back to wandering around.

Inside the initializer, we called the updateAI method with the enemy ship and our default
AI state. This should be right where we previously initialized our instance variable _juggler.

When we ran the example, the enemy ship moved around if it was in the correct state. It
moved to the player ship if it was in sight. If the enemy ship was getting too close to the
player, it just stopped.

Attacking other ships
Now that the enemy ship is moving around, let's get it to attack our own ship.

Time for action – the enemy should attack the player
For the enemy to attack the players' ship, use the following steps:

1. Open the Ship.h file.

2. Refactor our _juggler instance variable to be a property, as shown in the following
line of code:
@property SPJuggler *juggler;

3. Using the following line of code, add a method called shootWithBlock that should
shoot and have a callback as its parameter:
-(void) shootWithBlock:(ShipCallback) block;

4. Open the Ship.m file and move the contents of the shoot method into the
shootWithBlock method.

5. In the shootWithBlock method, invoke the callback as its last statement inside
the complete listener of the currentClip variable.

6. Update the shoot method to call the shootWithBlock method with nil.

Artificial Intelligence and Game Progression

[180]

7. Open the Battlefield.m file and add a method for collision detection, as shown
in the following code:
-(void) checkShipCollision: (Ship *) ship1 againstShip: (Ship *)
ship2
{
 SPRectangle *enemyShipBounds = [ship1 boundsInSpace:self];
 SPRectangle *ball1 = [ship2.cannonBallLeft
 boundsInSpace:self];
 SPRectangle *ball2 = [ship2.cannonBallRight
 boundsInSpace:self];

 if ([enemyShipBounds intersectsRectangle:ball1] ||
 [enemyShipBounds intersectsRectangle:ball2]) {
 if (ship2.cannonBallLeft.visible ||
 ship2.cannonBallRight.visible) {
 [ship2 abortShooting];
 [ship1 hit];
 }
 }
}

8. Inside the onEnterFrame method, replace the current collision detection with the
checkShipCollision method, as shown in the following code:
[self checkShipCollision:_pirateShipagainstShip:_enemyShip];
[self checkShipCollision:_enemyShipagainstShip:_pirateShip];

9. Update the WanderAround AI state with an additional attack opportunity, as shown
in the following code:
if ([ship checkDistanceToShip:_pirateShip] < 200.0f) {
 if ([ship checkDistanceToShip:_pirateShip] < 100.0f) {
 // Attack directly
 [self updateAI:ship withState:StateAttack];
 } else {
 //In sight
 [self updateAI:ship withState:StateMoveToPlayer];
 }
} else {
 //Not in sight
 [self updateAI:ship withState:aiState];
}

Chapter 8

[181]

10. As shown in the following code, add these states to our switch-case statements in
our updateAI method:
case StateAttack: {
 [ship shootWithBlock:^{
 [self updateAI:ship withState:StateRecuperate];
 }];
}
case StateRecuperate: {
 [ship.juggler delayInvocationByTime:0.3f block:^{
 [self updateAI:ship withState:StateWanderAround];
 }];
}

11. Run the example to see the result.

If the enemy ship gets close enough to our ship and is in the attacking state, it begins
to attack our ship. Refer to the following screenshot:

What just happened?
In the Ship.h file, we refactored the _juggler instance variable into a property since we
needed to access it from the battlefield scene and its access should not be limited to a Ship
instance. We added the shootWithBlock method, which we implemented in step 4, where
we moved the contents of the shoot method to the new shootWithBlock method.

We then invoked the callback that should now be the last statement in the event listener
where the currentClip tween is completed. In step 6, we updated the shoot method to call
the shootWithBlock method with an empty block, just like we did in the previous example.

Artificial Intelligence and Game Progression

[182]

Since we used collision detection more than once, we put it into a separate method in the
next step. Now, we can replace our old collision detection logic by calling the new collision
detection. We need to call it twice, once with _pirateShip as the first parameters and
_enemyShip as the second parameter. The order of the parameter needs to be the other
way around when we call checkShipCollision for the second time.

In step 9, we added an additional state transition. If the distance between the pirate ship and
the enemy ship was less than 100 points, it attacked directly instead of moving to the player
first. In the following steps, we added the following two missing states:

 � In the attack state, we called the shootWithBlock method, and when the shooting
was complete, we moved to the recuperating state

 � In the StateRecuperate AI state, we waited for 0.3 seconds and then moved on to
wandering around

When we ran the example, our state machine was completely finished and all states were
being used.

Adding fuzzy values to the AI
Our AI works so far, but we don't have any fuzzy logic yet.

Time for action – spicing up the AI with fuzzy values
To replace our hardcoded values, we need to use the following steps:

1. Open the Battlefield.m file.

2. Add a new method called fuzzyValue, as shown in the following code:
-(float) fuzzyValue: (NSString *) value
{
 if ([value isEqualToString:@"Very near"]) {
 return (float) (arg4random() % 40) + 40.0f;
 } else if ([value isEqualToString:@"Quite near"]) {
 result = (float) (arc4random() % 30) + 70.0f;
 } else {
 result = (float) (arc4random() % 50) + 150.0f;
 }
}

Chapter 8

[183]

3. Using the following code, update the hardcoded values with the values from the
fuzzyValue method:
if ([ship checkDistanceToShip:_pirateShip] < [self
 fuzzyValue:@"Near"]) {
if ([ship checkDistanceToShip:_pirateShip] < [self
 fuzzyValue:@"Very near"]) {
if ([ship checkDistanceToShip:_pirateShip] < [self
 fuzzyValue:@"Quite near"]) {

4. Run the example. If we were to insert logging to see what the values actually are,
we would see the following output:

What just happened?
The goal for this example is to replace our hardcoded values with something that resembles
fuzzy logic. In step 2, we added a method that checks against the value and returns a new
random value each time. The randomness is not a necessary factor of fuzzy logic, but it is
used in this case so that the values are inside a specific range.

If we were to have more fuzzy values, it would be a good idea to hold those values inside
NSDictionary. This dictionary would have a colloquial term as its key and a block for its
value. Inside the block would be logic to return a random number. If the fuzzy value gets
passed in, we call the block and get a random number.

Next up, we updated the hardcoded values with the fuzzyValue method and put it in
a colloquial term each time.

When we ran the example, the AI worked like it did before, but it had additional
randomness now.

Have a go hero
We can improve the AI quite a bit by moving the AI logic away from the battlefield scene into
a separate class. Since we used the strings for our fuzzy values quite a lot, it may be a good
idea to move them into constants or even create our own macros.

Artificial Intelligence and Game Progression

[184]

Adding progression to our game
Now that our AI is implemented, let's add some progression to our game. We will need to
add levels. Each level should have one more enemy ship, and we can upgrade the damage
and hit points of our ship in between the levels.

Adding a World class
We need to keep some values, such as the current level, in a separate entity, which we will
describe as a World class.

Time for action – adding a World class
To implement our World class, we need to use the following steps:

1. Add a new Objective-C class called World, which is derived from NSObject.

2. To add a level property from the int type, do the following:

 � Add a static variable called level in World.h, as shown in the following
line of code:
static int level;

 � Add a static getter with the same name that returns the static variable,
as shown in the following line of code:
+(int) level;

 � Add a static setter (setLevel) that sets the static variable, as shown in the
following line of code:
+(void) setLevel:(int)value;

3. Repeat step 2 for the properties gold, hitpoints, and damage.

4. We also need a levelMax property, but this one does not have a setter.

5. We need to import the Assets.h file inside the World.m file.

6. Add a static reset method that needs to be declared in World.h. It should look
like the following piece of code:
+(void) reset
{
 level = 1;
 levelMax = 3;
 gold = 200;
 damage = [(NSNumber *) [Assets
 dictionaryFromJSON:@"gameplay.json"][@"damage"] intValue];

Chapter 8

[185]

 hitpoints = [(NSNumber *) [Assets
 dictionaryFromJSON:@"gameplay.json"][@"hitpoints"]
 intValue];
}

7. We also need a log method. It needs to be declared in World.h and needs to look
like the following code:
+(void) log
{
 NSLog(@"Level %d of %d", level, levelMax);
 NSLog(@"Gold: %d", gold);
 NSLog(@"Players' hit points: %d", hitpoints);
 NSLog(@"Players' damage: %d", damage);
}

8. In Game.m, we need to call the World methods inside its initializer, as shown in the
following code:
[director addScene:battlefield];

[World reset];
[World log];

[director showScene:@"battlefield"];

9. Run the example to see the result. We should now see the following output in
the console:

What just happened?
First of all, we created the World class. Objective-C does not support static properties.
We can imitate that behavior of having a static property if we add static methods that have
methodName as their name where we return a value. We also need to define a method
called setMethodName that has a parameter. Now we can access methodName just like
a property. However, inside the pseudo-getter, we can only access static variables.

After we were done with the setup, we needed to import the Assets class in step 5.
After that, we added a reset method, which loaded the damage and hit points from our
gameplay.json file. We set the gold, level, and levelMax variables to default values.
In our case, the current level was the first one; we had a maximum of three levels, and 200
was the amount we had at our disposal at the start for the gold variable.

Artificial Intelligence and Game Progression

[186]

The log method that we implemented later logged all values except for the levelMax
value. In step 8, we called the reset method, and we called log directly after that. When
we ran the example, we saw the log output in the console.

Have a go hero
Right now, the gold, level, and levelMax variables are being set directly in the code.
It's a better idea to load them from the gameplay.json file.

Updating the scene and dialog classes
Before we move on to implementing the progression system, there are a few small things
we need to refactor. Let's tackle these issues:

 � We have no way of resetting a scene if it's being shown again

 � Multiline strings in dialogs are not displayed correctly

 � We cannot access the dialog's buttons outside the Dialog class

 � The dialog doesn't close after clicking on the buttons

Time for action – updating the scene and dialog classes
To add our first buttons, use the following steps:

1. Open the Dialog.h file.

2. Add properties for both Yes and No buttons using the following code:
@propertySPButton *buttonYes;
@propertySPButton *buttonNo;

3. Switch to Dialog.m.

4. Refactor all references from the local variables to use the properties.

5. Update the positions of _title and _content using the following code:
content = [SPTextField textFieldWithWidth:background.width -
 96.0f height:background.height - 150.0f text:@"Dialog default
 text"];
_content.x = 52.0f;
_content.y = 66.0f;

[SPTextField registerBitmapFontFromFile:@"PirateFont.fnt"];

_title = [SPTextField textFieldWithWidth:background.width * 0.6
 height:30.0f text:@"Dialog"];

Chapter 8

[187]

_title.fontName = @"PirateFont";
_title.color = SP_WHITE;

_title.x = 36.0f;
_title.y = 26.0f;

6. In both onButtonYes and onButtonNo, add self.visible = NO; as the
first statement.

7. In Scene.h, declare a method called reset using the following line of code:
-(void) reset;

8. In Scene.m, implement the reset method with an empty body.

9. In SceneDirector.m, update this portion of code in the showScene method:
if (_dict[name] != nil) {
 ((Scene *) _dict[name]).visible = YES;
 [((Scene *) _dict[name]) reset];

}

10. Run the example.

If we were to implement the reset method to the battlefield scene and add a
logger message to the reset method of the battlefield scene, our output would
change to this:

What just happened?
We tackled the dialog issues first. In steps 2 to 4, we moved the buttons to be properties
and updated all references inside the Dialog implementation. We then updated the
position of the title and the message content. Long strings were not wider than the
bounds of the dialog. In step 6, we hid the dialog once we tapped on any button.

For a scene to be able to reset itself, we first needed to add the reset method and just
implement it as an empty method in Scene.m. We then needed to update the scene
director to call the reset method from the current scene just after the scene turned visible.

If we ran the example now, and if we implemented the reset method in the battlefield
scene and added a logger message, we would see that the reset method from the
battlefield scene would actually be called.

Artificial Intelligence and Game Progression

[188]

Adding game mechanics to the pirate cove
Now that we have a World class and we have updated the Dialog and Scene classes to fit
our needs, we can add some game mechanics to the pirate cove. The pirate cove is the place
where we can upgrade our ship.

Time for action – making the pirate cove playable
To add game mechanics to the pirate cove, use the following steps:

1. Move the line of code [SPTextField registerBitmapFontFromFile:@"Pira
teFont.fnt"]; from Dialog.m to the beginning of the Game.m file.

2. Add a button in PirateCove.m, as shown in the following code:
SPButton *buttonBattle = [SPButton buttonWithUpState:[[Assets
 textureAtlas:@"ui.xml"] textureByName:@"dialog_yes"];
text:@"Begin battle"];

buttonBattle.y = Sparrow.stage.height - buttonBattle.height -
 8.0f;
buttonBattle.x = (Sparrow.stage.width - buttonBattle.width) /
 2;

[buttonBattle addEventListenerForType:SP_EVENT_TYPE_TRIGGERED
 block:^(SPEvent *event){
 [((SceneDirector *) self.director) showScene:@"battlefield"];
}];

3. Add the button to the display tree using the following line of code:
[self addChild:buttonBattle];

4. In the following code, we add a text field to display the current amount of gold,
which needs to be declared as an instance variable first:
_goldTextField =
 [SPTextField textFieldWithWidth:Sparrow.stage.width - 16.0f
 height:30.0f text:@"Gold"];
_goldTextField.fontName = @"PirateFont";
_goldTextField.color = SP_WHITE;

_goldTextField.x = 8.0f;
_goldTextField.y = 8.0f;

5. Add the text field to the display tree using the following line of code:
[self addChild:_goldTextField];

Chapter 8

[189]

6. Add a method that updates the amount of gold on the screen using the
following code:
-(void) updateGoldTextField
{
 _goldTextField.text = [NSString stringWithFormat:@"Gold:
 %d", World.gold];
}

7. Inside the PirateCove.h file, add an instance variable called
 _dialogUpdateDamage using the following line of code:
Dialog *_dialogUpdateDamage;

8. Add an instance variable called _goldDamage as shown in the following line of code:
int _goldDamage;

9. Inside the initializer, add the following piece of code for the first dialog:
_dialogUpdateDamage = [[Dialog alloc] init];

_dialogUpdateDamage.title.text = @"Update damage?";

_dialogUpdateDamage.x = (Sparrow.stage.width -
 _dialogUpdateDamage.width) / 2;
_dialogUpdateDamage.y = (Sparrow.stage.height -
 _dialogUpdateDamage.height) / 2;

_dialogUpdateDamage.visible = NO;

[weaponsmith addEventListenerForType:SP_EVENT_TYPE_TOUCH
 block:^(SPEvent *event){
 if (World.gold < _goldDamage) {
 _dialogUpdateDamage.buttonYes.enabled = NO;
 }

 _dialogUpdateDamage.visible = YES;
}];

[_dialogUpdateDamage addEventListener:@selector(onUpdateDamage:)
 atObject:self forType:EVENT_TYPE_YES_TRIGGERED];

10. Add the dialog to the display tree using the following line of code:
[self addChild:_dialogUpdateDamage];

Artificial Intelligence and Game Progression

[190]

11. Add the method onUpdateDamage as follows:
-(void) onUpdateDamage: (SPEvent *) event
{
World.damage = World.damage + (int) (World.damage / 10);
World.gold = World.gold - _goldDamage;
 [self updateGoldTextField];
}

12. Repeat steps 7 to 11 for the dialog that upgrades the hit points.

13. Add a reset method to the pirate cove scene as follows:
-(void) reset
{
 _goldDamage = (150 + (50 * (World.level - 1)));
 _dialogUpdateDamage.content.text =
 [NSString stringWithFormat:@"Increasing damage costs %d
 gold. Do you wish to proceed?", _goldDamage];

 _goldHitpoints = (200 + (75 * (World.level - 1)));
 _dialogUpdateHitpoints.content.text =
 [NSString stringWithFormat:@"Increasing hitpoints costs %d
 gold. Do you wish to proceed?", _goldHitpoints];

 [self updateGoldTextField];
}

14. Update the statement in the Game.m file to show the pirate cove when starting
the game.

15. Run the example to see the result. We can now upgrade our ship in the pirate cove,
as shown in the following screenshot:

Chapter 8

[191]

What just happened?
In step 1, we moved the registration of the bitmap font to the Game class. We only needed it
once. Since we only had one dialog previously, it didn't really matter where we registered the
font. However, as we now have multiple dialogs, the initializer of the dialog would register
the font multiple times.

In step 2, we added a button that will be able to switch to the battlefield scene when we tap
it. After we added the button to the display tree, we also added a text field to display the
current amount of gold. We subsequently added the text field to the display tree. We also
added a method that updates the text field.

In steps 6 to 11, we added a dialog to the screen that pops up when we tap the
weaponsmith. It checks if we have enough gold at our disposal and lets us upgrade our
damage if we do.

In step 13, we implemented the reset method. The intention is to make upgrading the ship
more and more expensive depending on the current level.

Adding progression to the game
Everything is set in place for adding progression to the game.

Have a go hero –turning our game into a real game
Let's go ahead and implement game progression. The following are a few things you should
keep in mind:

 � The World values need to be reset before the battlefield instance is created

 � Update the amount of gold once the player gets to a higher level

 � Use the reset method of the battlefield scene to reset position and hit points

 � There needs to be a way to keep track of all the sunken ships

 � The enemies should probably be array-like objects

 � The game itself should not start when the battlefield is initialized

Artificial Intelligence and Game Progression

[192]

After considering the preceding points, the game should look like what is shown in the
following screenshot:

Take a look at how the preceding points can be implemented, and take these
source files as the base for the following exercises:

 � Battlefield.h: https://raw.github.com/freezedev/
pirategame/9d5f53b5cb5e2e9bad822f0abd944e539e9b
bf58/Classes/Battlefield.h

 � Battlefield.m: https://raw.github.com/freezedev/
pirategame/9d5f53b5cb5e2e9bad822f0abd944e539e9b
bf58/Classes/Battlefield.m

 � Game.m: https://raw.github.com/freezedev/pirate
game/9d5f53b5cb5e2e9bad822f0abd944e539e9bbf58/
Classes/Game.m

 � Ship.h: https://raw.github.com/freezedev/pirate
game/9d5f53b5cb5e2e9bad822f0abd944e539e9bbf58/
Classes/Ship.h

 � Ship.m: https://raw.github.com/freezedev/pirate
game/9d5f53b5cb5e2e9bad822f0abd944e539e9bbf58/
Classes/Ship.m

 � gameplay.json: https://raw.github.com/freezedev/
pirategame/9d5f53b5cb5e2e9bad822f0abd944e539e9b
bf58/gameplay.json

Adding win and lose conditions
The last thing we will do in this chapter is add win and lose conditions for our game.
Right now, we will just show a text field that displays whether we have won or lost.

Chapter 8

[193]

Time for action – being able to win or lose
To be able to win or lose the game, use the following steps:

1. In Ship.h, add a callback property using the following line of code:
@property (nonatomic, copy) ShipCallbackonDead;

2. This callback property gets invoked if the ship is equal to or less than zero hit points,
as shown in the following code:
if (_hitpoints<= 0) {
 self.visible = FALSE;

 if (self.onDead) {
 [_onDead invoke];
 }
}

3. In the Battlefield.h file, add two properties for our new text fields as shown:
@property SPTextField *textGameWon;
@property SPTextField *textGameLost;

4. In the initializer, add the following piece of code:
_textGameLost =
 [SPTextField textFieldWithWidth:Sparrow.stage.width height:
 Sparrow.stage.height text:@"Game Over"];
_textGameLost.fontName = @"PirateFont";
_textGameLost.color = SP_WHITE;
_textGameLost.visible = NO;

_textGameWon =
 [SPTextField textFieldWithWidth:Sparrow.stage.width height:
 Sparrow.stage.height text:@"You won the game. Well done"];
_textGameWon.fontName = @"PirateFont";
_textGameWon.color = SP_WHITE;
_textGameWon.visible = NO;

__weak typeof(self) weakSelf = self;
_pirateShip.onDead = ^{
 weakSelf.textGameLost.visible = YES;
};
//...
[self addChild:_textGameLost];
[self addChild:_textGameWon];

Artificial Intelligence and Game Progression

[194]

5. Inside the onEnterFrame method, update the progression system by adding the
winning condition as shown:
if (deadCount == World.level) {
 if (World.level == World.levelMax) {
 self.textGameWon.visible = YES;
 } else {
 World.gold = World.gold + (250 * World.level);
 World.level++;
 self.paused = YES;
 [((SceneDirector *) self.director)
 showScene:@"piratecove"];
 }
}

6. Run the example to see the result.

If we now win or lose the game, a text field will be displayed on the screen, as
shown in the following screenshot:

What just happened?
We needed to know the exact point when a ship gets destroyed, so we added a callback in
steps 1 and 2. Precisely at the moment when the player ship gets destroyed, we wanted to
display something to inform that the player has lost the game.

Chapter 8

[195]

We then added the text fields in steps 3 and 4. The only thing we needed to consider here is
that we need to access self (the instance itself) inside the block. Typically, we can't access
any property from self in the block, but we do need this because the text field is a property
on the instance itself. So, we needed to use an unsafe reference by using the __weak
keyword. This is something that should be used with caution and, in general, only as a last
resort. We also needed to make sure that the text fields were added as the last elements to
the display tree so that they were always on top of all other elements. After we added the
lose condition, we added the win condition in step 5. When we ran the example, we saw a
text popping up if we either lost or won the game.

Technically, we could also have created the text field dynamically once we won. It is best
practice, however, to create everything at the beginning, especially with complex projects.

Pop quiz
Q1. SPPoint provides a method to get the distance between two points.

1. True

2. False

Q2. A finite state machine always needs transitions.

1. True

2. False

Q3. If we want to modify a local variable inside a block, what do we need to do?

1. Make it a weak reference

2. Prefix the variable with __block

3. Refactor it to a property

Summary
In this chapter, we learned about artificial intelligence. Specifically, we covered fuzzy logic
and finite state machines, and we also added more gameplay elements.

Now that our game is feature-complete but rough around the edges, let's add some audio
to our game—which is the topic of the next chapter.

9
Adding Audio to Our Game

In the previous chapter, we learned about artificial intelligence. We learned
theory about finite state machines and fuzzy logic. We applied these elements
to our game. We also implemented the remaining gameplay elements into
our game. In this chapter, we are going to add music and sound to our game.
Audio in itself is an important aspect to any game as it is part of the player's
experience. Try to play your favorite game without music and you'll find
yourself having a different experience when playing the game.

We will cover the following topics in this chapter:

 � Loading sound and music files

 � Generating our own sound effects

 � Playing audio

Let's add music and sound to our game, shall we?

Finding music and sound
When developing a game, the developer is usually not a jack of all trades and may have a
hard time when looking for sound and music. Apple's own GarageBand provides an easy way
to create music using predefined loops or even one's own instruments. Another possibility is
to find talented people who can help to create audio files. One of the places to look out for
are the TIGSource forums—a place for independent game developers—which has a portfolio
section at http://forums.tigsource.com/index.php?board=43.0 and a section that
offers paid work at http://forums.tigsource.com/index.php?board=40.0.

Adding Audio to Our Game

[198]

Generating sound effects
Bxfr is a procedural sound generator which is often used in game jams. It is available online
at http://www.bfxr.net/; the standalone versions for Windows and Mac OS X can be
downloaded from this link as well. Its purpose is to generate 8-bit sound effects in just a
few clicks:

First of all, we need to select a type, which we can then modify with several sliders such
as the frequency or the length of the sound.

Once we are done, we can export the sound effect using the Export Wav button.

Learning about audio formats
Sparrow allows all audio files supported by iOS to be loaded. Some audio codecs support
hardware-assisted decoding, while others don't.

Chapter 9

[199]

The iOS devices contain specialized hardware that can handle the encoding and decoding
of certain audio formats (for example, AIFC), thereby freeing up the CPU that would
otherwise be required to handle these expensive operations. The drawback of the hardware-
assisted approach is that only one file can be handled at a time. For example, you can't play
background music and sound effects with it simultaneously.

For more information about how iOS handles audio playback, take a look at Apple's
documentation at https://developer.apple.com/library/ios/documentation/
audiovideo/conceptual/multimediapg/UsingAudio/UsingAudio.html.

The best formats for audio formats in Sparrow are AIFC and CAFF.

Let's see what they are:

 � AIFC is a compressed Audio Interchange Format (AIFF) file. This is usually the best
option for background music. There is one other thing to consider: if the audio
playback is hardware-assisted (as it is in the case of AIFC), only one file can be
played at a time.

 � The Core Audio File Format (CAFF) is an uncompressed audio format. This format is
best used for short sound effects.

Both these formats have the lowest footprint on the CPU. If application size is an issue,
there is an unconventional way to solve this: some devices still only have mono speakers,
so converting audio files to mono could be a valid option if there are a lot of sound files.

To convert audio files, the iOS SDK provides a command-line tool called afconvert. Assuming
our audio file is called myAudioFile.wav, we can use the following examples:

 � Convert to CAFF: The command to convert to CAFF is afconvert –f caff –d
LE16 myAudioFile.wav

 � Convert to AIFC: The command to convert to AIFC is afconvert –f AIFC –d
ima4 myAudioFile.wav

Music and sound effects for our game
The necessary audio files are once again uploaded to our GitHub repository. In order to use
them, download them from https://github.com/freezedev/pirategame-assets/
releases/download/0.9/Audio_09.zip, extract the file, and copy the contents in our
template. When copying the files to the project, we need to make sure that we add them to
the target.

Adding Audio to Our Game

[200]

Adding audio playback
Now that we know about audio formats, we can generate sounds for ourselves if needed,
and if we have the necessary files, we can play some audio.

Starting the audio engine
Before we can play any sounds, we need to start the audio engine.

Time for action – getting audio files to play
Perform the following steps to start the audio engine:

1. Open our Xcode project if it's not already open.

2. Switch to the Game.m file.

3. Inside the initializer, start the audio engine as shown; it should be one of the first
few statements:
[SPAudioEngine start];

4. Add a dealloc method that stops the audio engine:
-(void) dealloc
{
 [SPAudioEngine stop];
}

5. Run the example.

When we run this example in the simulator, we might see the following lines in the console:

What just happened?
To play any audio file, we need to start the audio engine at the start of our application, which
in our case, is the initializer from the Game class.

There are different operational modes for the audio engine, which influence how the iPod
music app will behave when we run our game.

Chapter 9

[201]

If the audio is muted, the game audio will be muted as well. This is the default operational
mode; other modes include the game audio continue even when the device is muted or the
iPod music mixes with the game audio. Take a look at what the latter will look like in code:

[SPAudioEngine start: SPAudioSessionCategory_AmbientSound];

For more through information, take a look at the Sparrow SPAudioEngine documentation at
http://doc.sparrow-framework.org/v2/Classes/SPAudioEngine.html.

When we run this example, we get some information about the audio engine in the console.

Have a go hero
Currently, the audio engine starts and stops when the game starts or stops, respectively. It's
also a good idea to start and stop the engine if the background and foreground events (such
as applicationWillResignActive and applicationDidBecomeActive) are triggered.

Playing music in our scenes
Now that the audio engine is up and running, let's play the background music.

Time for action – playing music in our scenes
Perform the following steps to play background music in our scenes:

1. Open the Scene.h file.

2. Add an instance variable named backgroundMusic, which is a pointer to
SPSoundChannel using the following line of code:
SPSoundChannel *backgroundMusic;

3. Declare a method called stop as follows:
-(void) stop;

4. Inside the Scene.m file, define the stop method with an empty body.

5. Update the showScene method in the SceneDirector.m file to fit the following
block of code:
-(void) showScene:(NSString *)name
{
 for (NSString* sceneName in _dict) {
 ((Scene *) _dict[sceneName]).visible = NO;
 [((Scene *) _dict[sceneName]) stop];
 }

Adding Audio to Our Game

[202]

 if (_dict[name] != nil) {
 ((Scene *) _dict[name]).visible = YES;
 [((Scene *) _dict[name]) reset];

 }
}

6. Switch to PirateCove.m.

7. Inside the initializer, add the following lines at the top:
SPSound *sound = [Assets sound:@"music_cove.aifc"];
backgroundMusic = [sound createChannel];
backgroundMusic.loop = YES;

8. Update the reset method to look like the following:
-(void) reset
{
 [backgroundMusic play];

 _goldDamage = (150 + (50 * (World.level - 1)));
 _dialogUpdateDamage.content.text = [NSString
 stringWithFormat:@"Increasing damage costs %d gold. Do
 you wish to proceed?", _goldDamage];

 _goldHitpoints = (200 + (75 * (World.level - 1)));
 _dialogUpdateHitpoints.content.text = [NSString
 stringWithFormat:@"Increasing hitpoints costs %d gold. Do
 you wish to proceed?", _goldHitpoints];

 [self updateGoldTextField];
}

9. Implement the scene's stop method as follows:
-(void) stop
{
 [backgroundMusic stop];
}

10. Run the example and you will see the following output. We can now hear the music
in the background.

Chapter 9

[203]

What just happened?
First of all, we added an instance variable (backgroundMusic) to hold the background
music. The SPSound variable holds the data of a sound file while SPSoundChannel
plays the sound itself, similar to the relationship between SPTexture and SPImage. It is
recommended that you keep a reference to SPSoundChannel. This is required if we want
to stop the playback sound for any reason whatsoever.

To allow us to have background music in multiple scenes, we need to stop the background
music from the current scene and start the music from the next scene because we don't
want to run into any nasty side effects. These side effects are that the first music file will
use the hardware codec and the second one will use software decoding, thereby heavily
impacting the performance of our game. Both music files will play, though.

If we want to stop the background music when we are in the scene, we can utilize the
scene's reset method. Now, we wanted to do the same only when the scene is deactivated.
We first declared the stop method for exactly this purpose in step 3 and implemented it as
an empty method in the step afterwards. In the SceneManager class, we need to call the
stop method of each scene when we are hiding the scene.

Inside the initializer of the PirateCove scene, we created a local SPSound variable
that loads the music file through our asset management system. We then used the
createChannel method and saved the result in the instance variable. We want to
loop the music endlessly, so we set the loop property to YES.

In step 8, we updated the reset method to play the background music and in step 9,
we overwrote the stop method and stopped the background music.

When we run this example now, we can hear the music playing in a loop.

Adding Audio to Our Game

[204]

Have a go hero
Now that the pirate cove scene has some background music, go ahead and give the
battlefield some music.

Adding a sound effect
Our audio engine is up and running; we already know that it works because we have played
some music, and now it's time to add the sound effects.

Time for action – sound effects in the pirate cove
To add sound effects to the pirate cove scene, perform the following steps:

1. Open the PirateCove.m file.

2. Update both the onUpdateDamage and onUpdateHitpoints methods to play
a sound effect, as shown in the following code:
-(void) onUpdateDamage: (SPEvent *) event
{
 World.damage = World.damage + (int) (World.damage / 10);
 World.gold = World.gold - _goldDamage;
 [self updateGoldTextField];

 [[Assets sound:@"powerup.caf"] play];
}

-(void) onUpdateHitpoints: (SPEvent *) event
{
 World.hitpoints = World.hitpoints + (int) (World.hitpoints
 / 5);
 World.gold = World.gold - _goldHitpoints;
 [self updateGoldTextField];

 [[Assets sound:@"powerup.caf"] play];
}

Chapter 9

[205]

3. Run the example and you will see the following output. We can now hear a sound if
we successfully upgrade our pirate ship.

What just happened?
Inside the pirate cove scene, we added a sound effect to both the onUpdateDamage and the
onUpdateHitpoints methods. We got the powerup file through the asset management
system and then played the sound directly. This method is useful for short sounds and at
places where we don't need to keep a reference to manipulate the playback of the audio
channel afterwards.

Now, when we run this example, we can hear a sound effect once we successfully upgrade
our ship.

Have a go hero
Go ahead and add the following sound effects in the battlefield:

 � When a ship is hit (the hit method in the Ship class)

 � When a ship shoots (the shoot method in the Ship class)

 � When a ship gets destroyed (hit points getter in the Ship class)

Adding Audio to Our Game

[206]

Pop quiz
Q1. AAC audio files offer hardware-assisted encoding.

1. True

2. False

Q2. If SPSound only contains the sound data, which class should be used to play an audio file?

1. AVAudioSession

2. SPSoundChannel

3. SPAudio

Q3. To play any sounds at all, we need to initialize the audio engine.

1. True

2. False

Summary
In this chapter, we learned how to load and play audio files. Specifically, we covered
data formats and the basic usage of audio in Sparrow.

Now that our game has some audio, let's polish our game—which is the topic of the
next chapter.

10
Polishing Our Game

In the previous chapter, we added sound and music to our game. We also learned
about audio file formats and even how to generate our own sound effects.

In this chapter, we are going to polish our game. We will be covering the following topics in
this chapter:

 � Improving the game over mechanism

 � Adding a minimalistic tutorial

 � Loading and saving the current state of the game

Polishing is the process of giving the last finishing touches to the game. There is a saying in
software development that the last 20 percent of the development feels as hard as the first
80 percent. With such motivation, let's polish our game, shall we?

Adding additional scenes
Our game still feels rough around the edges. Our first order of business is to add more scenes,
which should make the game feel more rounded, especially when starting the game and when
the game is over.

The game over scene
Currently, the game over mechanism is a bit too minimalistic. While the player can lose and
win the game, they can't restart the game once it is over. The player needs to shut down the
application and open it again.

Polishing Our Game

[208]

This is counterintuitive as the default behavior of iOS apps is to freeze the app instead of
shutting it down. So in the worst case, our game with the Game Over message stays in the
memory until the device is rebooted or the user kills the application from the app switcher.

Creating the game over scene
As our first task, we are going to decouple the game over logic and move it into a separate
scene. Our game over scene should show whether the game was won or lost.

Time for action – showing the game over scene
Use the following steps to create the game over scene:

1. Open our Xcode project if it's not already open.

2. Create a new Objective-C class inside the GameScenes group.

3. Call this class GameOver it should be a subclass of Scene.

4. Switch to the GameOver.h file.

5. Using the following line of code, add a property called message:
@property SPTextField *message;

6. Using the following line of code, add another property to indicate whether the
game was won:
@property (nonatomic) BOOL gameWon;

7. Switch to GameOver.m.

8. Import the SceneDirector.h, Assets.h, and the World.h files, as shown in the
following code:
#import "SceneDirector.h"
#import "Assets.h"
#import "World.h"

9. Add an initializer for this new scene, as shown in the following code:
-(id) init
{
 if ((self = [super init])) {

 SPImage *background = [SPImage imageWithTexture:[Assets
 texture:@"water.png"]];

 _message = [SPTextField
 textFieldWithWidth:Sparrow.stage.width
 height:Sparrow.stage.height text:@"Game Over"

Chapter 10

[209]

 fontName:@"PirateFont" fontSize:24.0f
 color:SP_WHITE];

 SPTexture *yesButton = [[Assets textureAtlas:@"ui.xml"]
 textureByName:@"dialog_yes"];
SPButton *resetButton = [SPButton buttonWithUpState:yesButton
 text:@"Start over"];

 resetButton.x = (Sparrow.stage.width -
 resetButton.width) / 2;
 resetButton.y = Sparrow.stage.height -
 resetButton.height - 8.0f;

 [resetButton
 addEventListenerForType:SP_EVENT_TYPE_TRIGGERED
 block:^(id event) {
 [World reset];
 [(SceneDirector *) self.director
 showScene:@"piratecove"];
 }];

 [self addChild:background];
 [self addChild:_message];
 [self addChild:resetButton];
 }

 return self;
}

10. Add a getter for the gameWon property, as shown in the following code:
-(BOOL) getGameWon
{
 return _gameWon;
}

11. Now, add the setter for the gameWon property, as shown in the following code:
-(void) setGameWon:(BOOL)gameWon
{
 _gameWon = gameWon;

 if (_gameWon) {
 _message.text = @"You won the game. Congratulations.";
 } else {
 _message.text = @"Your ship sank. Try again.";
 }
}

Polishing Our Game

[210]

12. Switch to Game.m.

13. Import the GameOver.h file using the following line of code:
#import "GameOver.h"

14. Then, create an instance of the GameOver scene using the following code:
GameOver *gameOver = [[GameOver alloc]
 initWithName:@"gameover"];

15. Add the game over instance to the scene director using the following code:
[director addScene:gameOver];

16. Show the game over scene by default using the following line of code:
[director showScene:@"gameover"];

17. Run the example and we will see the game over scene, as shown in the
following screenshot:

What just happened?
As we have done before, we opened our Xcode project. Then, we created a class, which is
going to be our game over scene. It's called GameOver and is a subclass of Scene.

In the GameOver header file, we added two properties in step 5 and 6, respectively. The
first property is the message that will be displayed on the screen. The second is to indicate
whether the game was won. We added a custom getter and setter for this property later on.
We marked this property as non-atomic, as we don't really need thread safety and we used
only one thread anyway.

In the GameOver.m file, we imported all the necessary headers, which are as follows:

 � The asset manager from Assets.h, as it is most likely that we load an asset

 � The scene director from SceneDirector.h, because we need to switch to
another scene

 � The World class from World.h, as we need to reset our in-game values

Chapter 10

[211]

Then, we added the initializer. Our game over scene consists of the following:

 � Water as the background

 � The text field which is the message property

 � The reset button

In this example, we used the SPTextField factory method (also known as a convenience
constructor) that lets us define the width, height, text, font name, font size, and color in
a single step. One thing we need to consider is to keep the font size similar to the original
bitmap font size. If it's much bigger than the original size, the font gets all pixelated and
washed out.

There is a way to get around this though: if we set SP_NATIVE_FONT_SIZE as the font size
for the font instance, it will automatically calculate its actual size so that it is displayed as
sharp as possible.

We defined the touch event for the reset button as a block and reset all of our in-game
values and switched to the pirate cove scene. After this, we added all of our display objects
to the display tree.

Then, we defined our custom getter and setter for our gameWon property:

 � Getter: This simply returns the internal _gameWon value

 � Setter: After we set the property value, we updated the message depending on
its value

In the Game class, we need to create an instance of the GameOver scene, which we then
added to the scene director. In step 16, we updated the default scene to be the game
over scene.

When we ran the example in the last step, we saw the game over scene.

Connecting the game over scene
Now that we have our game over scene, let's integrate it into the game.

Time for action – having the game over scene show up
To incorporate the game over scene into the game, use the following steps:

1. Switch to the Battlefield.h file.

2. Remove both the textGameWon and textGameLost properties.

3. Switch to the Battlefield.m file.

4. Remove all references to the textGameWon and textGameLost properties.

Polishing Our Game

[212]

5. In the GameOver.m file, add a reset method using the following code:
-(void) reset
{
 self.gameWon = NO;
}

6. In the SceneDirector.h file, add a property called currentScene using the
following code:
@property (readonly) Scene *currentScene;

7. In the SceneDirector.m file, update the showScene method to set the
currentScene property, as shown in the following code:
-(void) showScene:(NSString *)name
{
 for (NSString* sceneName in _dict) {
 ((Scene *) _dict[sceneName]).visible = false;
 [((Scene *) _dict[sceneName]) stop];
 }

 if (_dict[name] != nil) {
 ((Scene *) _dict[name]).visible = YES;
 [((Scene *) _dict[name]) reset];
 _currentScene = (Scene *) _dict[name];
 }
}

8. Switch to the Battlefield.m file.

9. Update the reset method to set the visibility of the ships, as shown in the
following code:
-(void) reset
{
 self.paused = NO;

 _pirateShip.x = [(NSNumber *) [Assets
 dictionaryFromJSON:@"gameplay.json"][@"battlefield"]
 [@"pirate"][@"x"] floatValue];
 _pirateShip.y = [(NSNumber *) [Assets
 dictionaryFromJSON:@"gameplay.json"][@"battlefield"]
 [@"pirate"][@"y"] floatValue];

 [_pirateShip reset];
 _pirateShip.visible = YES;

 for (int i = 0; i < [_enemyShip count]; i++) {

Chapter 10

[213]

 ((Ship *) _enemyShip[i]).x = [(NSNumber *) [Assets
 dictionaryFromJSON:@"gameplay.json"][@"battlefield"]
 [@"enemy"][i][@"x"] floatValue];
 ((Ship *) _enemyShip[i]).y = [(NSNumber *) [Assets
 dictionaryFromJSON:@"gameplay.json"][@"battlefield"]
 [@"enemy"][i][@"y"] floatValue];
 [((Ship *) _enemyShip[i]) reset];
 ((Ship *) _enemyShip[i]).visible = NO;
 }

 for (int i = 0; i < World.level; i++) {
 ((Ship *) _enemyShip[i]).visible = YES;
 [self updateAI:_enemyShip[i] withState:_aiState];
 }
}

10. Update the condition to win the game, as shown in the following code:
if (deadCount == World.level) {
 if (World.level == World.levelMax) {
 [(SceneDirector *) self.director showScene:@"gameover"];
 ((GameOver *) ((SceneDirector *)
 self.director).currentScene).gameWon = YES;
 } else {
 World.gold = World.gold + (250 * World.level);
 World.level++;
 self.paused = YES;
 [((SceneDirector *) self.director)
 showScene:@"piratecove"];
 }
}

11. Next, update the condition to lose the game, as shown in the following code:
__weak typeof(self) weakSelf = self;
_pirateShip.onDead = ^{
 [(SceneDirector *) weakSelf.director showScene:@"gameover"];
 ((GameOver *) ((SceneDirector *)
 weakSelf.director).currentScene).gameWon = NO;
};

12. In Game.m, change the default scene back to the pirate cove.

Polishing Our Game

[214]

13. Run the example. When we run the example and once we actually lose the game,
we see the following screen:

What just happened?
In the Battlefield header file, we removed the text field properties that show up
when the game was won or lost. Then, we removed all code portions that reference
these properties in Battlefield.m.

In step 5, we added a reset method for our GameOver scene, where we set the gameWon
property to NO. The difference between this scene switch is that we need to set the gameWon
property after the scene has been switched. In order to facilitate this, we updated the
scene director.

In the next step, we added a read-only property called currentScene that gives us a
reference to the current scene. After this, we updated the showScene method to set the
current scene. This happened right after we set the current scene to be visible and called the
reset method.

In the battlefield scene, we first updated the visibilities of our ships. If we hadn't done this,
the enemy ships would stay visible even after we reset the game.

In steps 10 and 11, we updated the win and lose conditions. We imported the GameOver.h
file here as well, in order to cast the currentScene property to a pointer to the GameOver
class.

The last thing we did was change back to the pirate cove scene. When we ran the example
and when we lost or won the game, the game over scene was shown and we were able to
restart the game.

Adding a main menu
Next, we are going to add a simple main menu.

Chapter 10

[215]

Time for action – integrating the main menu into our game
Use the following steps to add a main menu:

1. Add a new class called MainMenu which should be a subclass of Scene.

2. Switch to MainMenu.m.

3. Import Assets.h and SceneDirector.h.

4. Add the initializer for the main menu, as shown in the following code:
-(id) init
{
 if ((self = [super init])) {

 SPImage *background = [SPImage imageWithTexture:[Assets
 texture:@"water.png"]];

 SPTexture *shipTexture = [[Assets
 textureAtlas:@"ship_pirate_small_cannon.xml"]
 textureByName:@"ne_0001"];
 SPImage *ship = [SPImage imageWithTexture:shipTexture];
 ship.x = 16.0f;
 ship.y = (Sparrow.stage.height - ship.height) / 2;

 SPTexture *dialogTexture = [[Assets textureAtlas:@"ui.xml"]
 textureByName:@"dialog_yes"];
 SPButton *buttonNewGame = [SPButton
 buttonWithUpState:dialogTexture text:@"New game"];

 buttonNewGame.x = (Sparrow.stage.width -
 buttonNewGame.width) / 2;
 buttonNewGame.y = 50.0f;

 [buttonNewGame
 addEventListenerForType:SP_EVENT_TYPE_TRIGGERED
 block:^(id event) {
 [(SceneDirector *) self.director
 showScene:@"piratecove"];
 }];

 SPButton *buttonContinue = [SPButton
 buttonWithUpState:dialogTexture text:@"Continue"];

 buttonContinue.x = (Sparrow.stage.width -
 buttonContinue.width) / 2;
 buttonContinue.y = 150.0f;

Polishing Our Game

[216]

 buttonContinue.enabled = NO;

 [self addChild:background];
 [self addChild:ship];
 [self addChild:buttonNewGame];
 [self addChild:buttonContinue];
 }

 return self;
}

5. Switch to Game.m.

6. Import MainMenu.h using the following line of code:
#import "MainMenu.h"

7. Using the following code, create a local variable for the main menu that will hold
an instance of the MainMenu class.
MainMenu *mainMenu = [[MainMenu alloc]
 initWithName:@"mainmenu"];

8. Add the mainMenu instance to the director, as shown in the following code:
[director addScene:mainMenu];

9. Update the showScene call to the main menu scene, as shown in the following code:
[director showScene:@"mainmenu"];

10. Run the example and we will see the main menu, as shown in the
following screenshot:

Chapter 10

[217]

What just happened?
To add a main menu, we needed a class subclassed from Scene. Once the class was created,
we imported the asset management system and the scene director.

In step 3, we added the initializer. Our main menu consists of the following:

 � The same background that we used in the battlefield and other scenes

 � A pirate ship

 � A button to start a new game

 � A button to continue the game

For the new game, we used a block for its touch event, which switches to the pirate cove
scene. The Continue button does not have an event yet and is disabled. After this, we need
to take all our elements to the display tree.

In steps 5 to 9, we added the main menu to our game class in a manner similar to how we
added the game over scene.

When we ran the example, we saw the main menu.

Have a go hero
The main menu now only has two buttons. Typically, a main menu offers a bit more than this
such as buttons to switch to the options menu or the credits screen. In some instances, the
main menu even has buttons to navigate to social sites. Go ahead and add the options and
credits screens, which can be opened from the main menu.

Adding an intro scene
An intro scene is a perfect way to introduce the player to the characters, the story or the art
style of a game. An intro is not necessary for all games; in fact, it's best used if it fits into the
overall game and style of the game.

As we don't have a story or characters, we are going to show two ships moving near each
other, shooting each other, and eventually one of the ships sinks.

Time for action – creating an intro for our game
Use the following steps to add the intro scene:

1. This is as good a time as any to move the collision detection code into a separate
file. Create a new group called Logic and add a class inside this group called
Collision which is a subclass of NSObject.

Polishing Our Game

[218]

2. Declare this static method in the Collision class, as shown in the following code:
+(void) checkShipCollision: (Ship *) ship1 againstShip: (Ship
 *) ship2 withReferenceToSprite: (SPSprite *) sprite;

3. Inside Collision.m, implement the checkShipCollision method with the
following lines of code:
SPRectangle *enemyShipBounds = [ship1 boundsInSpace:sprite];
SPRectangle *ball1 = [ship2.cannonBallLeft
 boundsInSpace:sprite];
SPRectangle *ball2 = [ship2.cannonBallRight
 boundsInSpace:sprite];

if ([enemyShipBounds intersectsRectangle:ball1] ||
 [enemyShipBounds intersectsRectangle:ball2]) {
 if (ship2.cannonBallLeft.visible ||
 ship2.cannonBallRight.visible) {
 [ship2 abortShooting];
 if (ship1.type == ShipPirate) {
 [ship1 hit: World.damage];
 } else {
 [ship1 hit:[(NSNumber *) [Assets
 dictionaryFromJSON:@"gameplay.json"][@"damage"]
 intValue]];
 }
 }
}

4. In order for this code to work, we need to import Assets.h and World.h in the
Collision.m file.

5. In Battlefield.m, delete the collision code, import Collision.h, and use the
new method from the Collision class now:
for (int i = 0; i < World.level; i++) {
 [Collision checkShipCollision:_pirateShip
 againstShip:_enemyShip[i] withReferenceToSprite:self];
 [Collision checkShipCollision:_enemyShip[i]
 againstShip:_pirateShip withReferenceToSprite:self];

 [_enemyShip[i] advanceTime:passedTime];
 if (((Ship *) _enemyShip[i]).isDead) {
 deadCount++;
 }
}

6. Add the intro scene by subclassing Scene and call it Intro. This should be done
inside the GameScenes group.

Chapter 10

[219]

7. In Intro.h, import Ship.h and add two instance variables, one for the pirate ship
and one for the enemy ship, as shown in the following code:
@interface Intro : Scene {
 Ship *_pirateShip;
 Ship *_enemyShip;
}

8. Switch to Intro.m.

9. Add an initializer for the Intro class with the help of the following code:
-(id) init
{
 if ((self = [super init])) {

 SPImage *background = [SPImage imageWithTexture:[Assets
 texture:@"water.png"]];

 _pirateShip = [[Ship alloc] initWithType:ShipPirate];
 _pirateShip.x = 16.0f;
 _pirateShip.y = ((Sparrow.stage.height -
 _pirateShip.height) / 2) - 20.0f;

 _enemyShip = [[Ship alloc] initWithType:ShipNormal];
 _enemyShip.x = Sparrow.stage.width - _enemyShip.width -
 16.0f;
 _enemyShip.y = ((Sparrow.stage.height -
 _enemyShip.height) / 2) + 20.0f;

 [self addEventListener:@selector(onEnterFrame:)
 atObject:self forType:SP_EVENT_TYPE_ENTER_FRAME];

 SPButton *buttonNext = [SPButton
 buttonWithUpState:[[Assets textureAtlas:@"ui.xml"]
 textureByName:@"dialog_yes"] text:@"Next"];

 buttonNext.x = (Sparrow.stage.width - buttonNext.width)
 / 2;
 buttonNext.y = Sparrow.stage.height - buttonNext.height
 - 8.0f;

 [buttonNext
 addEventListenerForType:SP_EVENT_TYPE_TRIGGERED
 block:^(id event) {
 [(SceneDirector *) self.director
 showScene:@"piratecove"];
 }];

Polishing Our Game

[220]

 [self addChild:background];
 [self addChild:_pirateShip];
 [self addChild:_enemyShip];
 [self addChild:buttonNext];
 }

 return self;
}

10. Add the event listener for onEnterFrame, as shown in the following code:
-(void) onEnterFrame: (SPEnterFrameEvent *) event
{
 double passedTime = event.passedTime;

 [Collision checkShipCollision:_pirateShip
 againstShip:_enemyShip withReferenceToSprite:self];
 [Collision checkShipCollision:_enemyShip
 againstShip:_pirateShip withReferenceToSprite:self];

 [_pirateShip advanceTime:passedTime];
 [_enemyShip advanceTime:passedTime];
}

11. Add a reset method, as shown in the following code:
-(void) reset
{
 [_pirateShip reset];
 [_enemyShip reset];

 [_pirateShip moveToX:Sparrow.stage.width / 2
 andY:(Sparrow.stage.height / 2) - 20.0f withBlock:^{
 [_pirateShip.juggler delayInvocationByTime:1.5f
 block:^{
 [_pirateShip shootWithBlock:^{
 [_pirateShip shootWithBlock:^{
 [_pirateShip shootWithBlock:^{
 [_pirateShip.juggler
 delayInvocationByTime:1.0f block:^{
 [_pirateShip shoot];
 }];
 }];
 }];
 }];
 }];

Chapter 10

[221]

 }];

 [_enemyShip moveToX:Sparrow.stage.width / 2
 andY:(Sparrow.stage.height / 2) + 20.0f withBlock:^{
 [_enemyShip shoot];
 }];
}

12. In MainMenu.m, show the intro scene if the new game button has been touched.

13. In Game.m, import Intro.h, create an instance of the Intro class, and add it
the director.

14. Run the example.

When we start a new game, we see the intro in action, as shown in the
following code:

What just happened?
As we needed the collision detection in both the intro and the game itself, we moved it
into its own class. When we moved the checkShipCollision method, we added an additional
parameter. This parameter was then passed as a reference to the boundsInSpace method.
We imported the asset management and the World class for this code snippet to work.

In the next step, we updated the collision in the battlefield scene.

We then added a new scene called Intro, where we first added two instance variables,
one for our own ship and one for the pirate ship. In step 9, we added the initializer, which
perform the following:

 � Add the water background

 � Initialize both ship instances

 � Add a button to skip the intro

Polishing Our Game

[222]

We then added an event listener to skip the event listener and switch to the pirate cove
scene. We also added an event listener for the enter frame event. We then added all
elements to the display tree

In step 10, we implemented the onEnterFrame event listener, which calls the collision
method and advances the time of both ships.

The reset method calls the reset method of these ships and moves the ships to the center
of the screen. The enemy ship can shoot only once, while the pirate ships can shoot multiple
times to kill the enemy ship.

We showed the intro scene in the main menu. After this, we added the Intro class to
the game class, and when we ran the example, we saw the intro scene when we started
a new game.

Implementing tutorial mechanics
There are many different ways for tutorials to be implemented. It may range from just showing
an image with controls, to having an interactive experience, to displaying a control scheme
each time the player is about to perform an action. In general, the last two options could be
achieved with a finite state machine, similar to the one we used for our artificial intelligence.

For our purposes, we will update the intro scene to display hints while the animation is playing.

Time for action – adding a tutorial to our intro scene
Follow these steps to display hints during the intro:

1. In Intro.h, add an instance variable called message:
SPTextField *_message;

2. Switch to Intro.m.

3. Update the initializer with the help of the following code:
[buttonNext addEventListenerForType:SP_EVENT_TYPE_TRIGGERED
 block:^(id event) {
 [(SceneDirector *) self.director showScene:@"piratecove"];
}];

SPQuad *quad = [SPQuad quadWithWidth:400.0f height:60.0f
 color:SP_BLACK];

Chapter 10

[223]

quad.alpha = 0.8f;
quad.x = 16.0f;
quad.y = 16.0f;

_message = [SPTextField textFieldWithWidth:400.0f height:60.0f
 text:@"Welcome to the battlefield."];
_message.color = SP_WHITE;
_message.x = 16.0f;
_message.y = 16.0f;

[self addChild:background];
[self addChild:_pirateShip];
[self addChild:_enemyShip];
[self addChild:buttonNext];
[self addChild:quad];
[self addChild:_message];

4. Update the reset method, as shown in the following code:
[_pirateShip moveToX:Sparrow.stage.width / 2
 andY:(Sparrow.stage.height / 2) - 20.0f withBlock:^{
 _message.text = @"There is your ship (the pirate ship) and at
 least one enemy";
 [_pirateShip.juggler delayInvocationByTime:2.5f block:^{
 [_pirateShip shootWithBlock:^{
 _message.text = @"Tap anywhere to move your ship.";
 [_pirateShip shootWithBlock:^{
 [_pirateShip shootWithBlock:^{
 _message.text = @"Double-tap on your ship to shoot.";
 [_pirateShip.juggler delayInvocationByTime:2.5f
 block:^{
 _message.text = @"In-between missions you can
 upgrade your ship.";
 [_pirateShip shoot];
 }];
 }];
 }];
 }];
 }];
}];

Polishing Our Game

[224]

5. Run the example and when we see the intro, we now have hints displayed on
the screen:

What just happened?
We first added an instance variable to display our hints. We then updated the initializer to
initialize this instance variable and have a black but slightly opaque background. We added
these two elements to the display tree.

In step 4, we updated the reset method to change the text of the message to show how
the core gameplay elements work.

When we ran the example, the hints were displayed during the intro.

Loading and saving the current state
So far we can play the game, but as soon as we end the game, we have to start the game
from the beginning.

Time for action – loading and saving the last played game
Follow these steps to load and save the current state:

1. In World.h, declare methods to serialize and deserialize data:
+(NSDictionary *) serialize;
+(void) deserialize: (NSDictionary *) dict;

Chapter 10

[225]

2. Implement these serializers with the following lines of code:
+(NSDictionary *) serialize
{
 return @{
 @"level": [NSNumber numberWithInt:level],
 @"gold": [NSNumber numberWithInt:gold],
 @"damage": [NSNumber numberWithInt:damage],
 @"hitpoints": [NSNumber numberWithInt:hitpoints]
 };
}

+(void) deserialize: (NSDictionary *) dict
{
 level = [(NSNumber *) dict[@"level"] intValue];
 gold = [(NSNumber *) dict[@"gold"] intValue];
 damage = [(NSNumber *) dict[@"damage"] intValue];
 hitpoints = [(NSNumber *) dict[@"hitpoints"] intValue];
}

3. In MainMenu.m, add World.h to the import section and update the initializer:
buttonContinue.x = (Sparrow.stage.width - buttonContinue.width)
 / 2;
buttonContinue.y = 150.0f;
buttonContinue.enabled = NO;

NSUserDefaults *userDefaults = [NSUserDefaults
 standardUserDefaults];
id savedGame = [userDefaults objectForKey:@"game"];
if (savedGame != nil) {
 [World deserialize:(NSDictionary *) [userDefaults
 objectForKey:@"game"]];
 buttonContinue.enabled = YES;
}

[buttonContinue addEventListenerForType:SP_EVENT_TYPE_TRIGGERED
 block:^(id event) {
 [(SceneDirector *) self.director showScene:@"piratecove"];
}];

[self addChild:background];

Polishing Our Game

[226]

4. In AppDelegate.m, we import World.h and add a new method, as shown in the
following code:
- (void)applicationWillResignActiveNotification:(NSNotification*)
notification
{
 NSUserDefaults *userDefaults = [NSUserDefaults
standardUserDefaults];
 [userDefaults setObject:[World serialize] forKey:@"game"];
 [userDefaults synchronize];
}

5. Run the example to see the result. When we start the game, we can now continue
the game:

What just happened?
First, we added the serializer and deserializer methods to our World class. The serializer
takes values from the World class and places them in NSDictionary. The deserializer
works the other way around. It takes values from NSDictionary and updates the values
in the World class.

In the main menu scene, we checked whether there is already something saved and we
deserialize the data in case there is any data. We added an event listener for our Continue
button, which directly switches to the pirate cove scene.

In step 4, we saved the game data once the application was not active any more.

When we ran the example, we were able to resume the game.

Chapter 10

[227]

Pop quiz
Q1. When we override the font size for a bitmap font in SPTextField, it scales to that size.

1. True

2. False

Q2. When is it a good idea to encapsulate code snippets into their own class or methods?

1. Always, even if it's just used a single time

2. If the code snippet is being used multiple times

3. Never

Q3. NSUserDefaults provides a way to store data.

1. True

2. False

Summary
In this chapter, we learned about polishing our game. Specifically, we covered adding more
scenes such as a main menu and an intro, and we touched upon tutorial mechanics.

Now that our game almost feels like an actual game, let's see how we can integrate
third-party services—which is the topic of the next chapter.

11
Integrating Third-party Services

In the previous chapter, we polished our game by adding additional scenes and
ironing out some of the quirks. After a game is over, it can now be restarted.
Now that our game is pretty much finished, we need to apply some finishing
touches, which will not influence the game directly, but its distribution and
the experience the player has. If the user wants to play with their friends,
we wouldn't need to implement a server and the networking mechanics by
ourselves. There are services that take care of these problems; one of them is
Apple Game Center.

In this chapter, we will integrate third-party services into our game. The following are the
topics we will cover in this chapter:

 � Getting the word out to potential testers
 � The basic Game Center integration
 � Showing different platforms for analytics

Getting word out to potential testers
Distributing to potential testers can be a daunting task. First, we would need to get the
Unique Device Identifier (UDID) of each and every test device. We would then need to
compile a special build that is restricted to only run on the devices whose UDID we provide
in the provisioning profile used in the build. We would then need to send this special build
to these testers, which they need to install using iTunes. After the beta testers have installed
the application, we don't have any insight on how long they actually used the application and
if the application crashes, they need to sync their device with iTunes and search for the crash
report on the hard drive and send it to the developer. It's much better for the application to
crash in the hand of beta testers than in the hands of actual customers.

Integrating Third-party Services

[230]

For a long time, TestFlight has provided an easy solution for both collecting UDIDs and
installing apps on your tester's devices. TestFlight provides an application for mobile devices
that directly installs the application on the device instead of the user manually having to
do so. TestFlight also has a web application that manages all of the devices, collects crash
reports, and tracks the session.

The company behind TestFlight was acquired by Apple in February 2014, the result of which
is that their SDK isn't allowed to be integrated into applications any more. The distribution
component of TestFlight is still available for the time being.

Ubertesters is a very similar service that helps us to collect UDIDs of devices and helps
testers to use our application. At the time of writing this book, Ubertesters is still in
beta. While Ubertesters is a paid service, they do provide a free plan which only requires
registering an account with them. The following is a screenshot of the Ubertesters website:

Registering at Ubertesters
In order to distribute our game with Ubertesters, we first need to register an account at
http://beta.ubertesters.com/sign_up. Enter all the necessary data in the input fields.

We then need to create our own organization, where we can add our first application.
Ubertesters guides us through this process when we register for the first time.

Chapter 11

[231]

Let's call our application "Pirate Game" and choose iOS as its platform. Now, we are going to
add our own devices; this is as simple as opening the URL http://beta.ubertesters.
com in our mobile Safari browser following the instructions on the screen. This installs the
Ubertesters app on our device and collects the UDID of the device.

After this, we see the device we just registered on the Ubertesters web interface where we
get relevant data of the device such as the device name, its model, operating system, screen
resolution, its locale, and the UDID.

It is also possible to set up over-the-air distribution, which means allowing testers to
download the build from your site. Instructions for this setup can be found at this link:
http://aaronparecki.com/articles/2011/01/21/1/how-to-distribute-your-
ios-apps-over-the-air.

Integrating Ubertesters
Before we can get some beta testers, we need to integrate the Ubertesters SDK into our
game. Only packages with the SDK integrated can be made available for testers.

Time for action – integrating Ubertesters
Use the following steps to integrate Ubertesters:

1. Open our Xcode project if it's not already open.

2. Download the Ubertesters SDK from http://ubertesters.com/sdk/
ubertesters.sdk.ios.zip.

3. Extract the contents from the downloaded file somewhere on the hard drive.

4. Drag the extracted contents into the project file. They should be at the root level
right at the same level as Products, Frameworks, and Resources.

5. Switch to the project configuration by clicking on the project's name in the project
navigator. Inside the General tab, scroll down to Linked Frameworks and Libraries.

6. Add the following libraries by clicking on the plus button, selecting the correct
library, and clicking on Add:

 � AdSupport.framework

 � CoreImage.framework

 � SystemConfiguration.framework

 � CoreTelephony.framework

 � CoreLocation.framework

 � CoreMotion.framework

Integrating Third-party Services

[232]

7. Switch to the Info tab inside the project configuration.

8. Add a new key inside Custom iOS Target Properties by selecting any item and
clicking on the plus button.

9. Call this key ubertesters_project_id.

10. As its value, use the ID from the Ubertesters website from the application from
the SDK Integration tab.

11. Switch to AppDelegate.m.

12. Import the Ubertesters header file, using the following line of code:
#import <UbertestersSDK/Ubertesters.h>

13. Initialize the Ubertesters SDK by updating the didFinishLaunchingWithOptions
method, as shown in the following code:
- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 CGRect screenBounds = [UIScreen mainScreen].bounds;
 _window = [[UIWindow alloc] initWithFrame:screenBounds];

 _viewController = [[SPViewController alloc] init];

 // Enable some common settings here:
 //
 // _viewController.showStats = YES;
 // _viewController.multitouchEnabled = YES;
 // _viewController.preferredFramesPerSecond = 60;

 [Ubertesters initialize];

 [_viewController startWithRoot:[Game class]
 supportHighResolutions:YES doubleOnPad:YES];

 [_window setRootViewController:_viewController];
 [_window makeKeyAndVisible];

 return YES;
}

Chapter 11

[233]

14. Run the example.

When we start the example, we don't see any visible changes (refer to the following
screenshot), which is an indicator that everything worked as we expected it to:

What just happened?
To get started, we opened our Xcode project, which is what we did in step 1.

Then, we downloaded the Ubertesters SDK and extracted the contents of the downloaded
file. In step 4, we dragged the contents of the extracted file into the project itself. It should
be on the root level directly below the project file itself on the same level as Sparrow,
Classes, Other Sources, Resources, Frameworks, and Products.

In order to make the Ubertesters SDK work, we need to link against a variety of frameworks.
In step 5, we switched to the general configuration by clicking on the General tab, where we
can find the linked frameworks and libraries right at the bottom of the page. We added all
the frameworks described in step 6.

Then, we added an entry to the PLIST file of the application itself. This can be done in
the Info tab. We selected any entry under Custom iOS Target Properties and clicked on
the plus button next to it. We then set the key name for this property, which we named
ubertesters_project_id. We already have the project ID; we got it when we registered
our application on Ubertesters. In the web interface of Ubertesters, this ID can be retrieved
by clicking on Projects, then on our project (Pirate Game), and after this, on the SDK
Integration tab on the left-hand side. These steps are necessary so that Ubertesters knows
the application we registered in the web interface belongs to our game.

Integrating Third-party Services

[234]

To use the SDK, we imported the Ubertesters SDK header file and initialized the SDK itself.
This all happened inside the AppDelegate file in steps 11 to 13. We added the initialization
of the SDK to where the application launches inside didFinishLaunchingWithOptions.

When we ran the example, there wasn't any visible change and the game ran as expected.
When running the game on the actual device, it may take a bit longer to load, as the
Ubertesters SDK checks against an Internet connection at startup. For production builds
(for example, an App Store release), it is not recommended for the SDK to be included; the
SDK should be included for the builds that are specifically going to beta testers.

Creating a build for beta testers
Now that we have integrated the Ubertesters SDK in our game, we can create a special build
for our beta testers, which at the moment is just us, or more specifically, our own device.

Time for action – creating a build for beta testers
Us the following steps to create a special build for beta testers:

1. Log in to the provisioning portal at https://developer.apple.com/account/
ios/certificate/certificateList.action.

2. In Identifiers, click on App IDs. Add a new one by clicking the plus button.

3. From App ID Description, choose PirateGame.

4. Set an App ID Prefix of your choice. All of the available prefixes will be shown as a
drop-down list, where the default is Team ID. If you are unsure which one to use,
use the default one.

5. In the Bundle ID input box, put in the bundle ID of our game. If you haven't chosen
one, it's time to do so now. Make sure that the bundle ID is the same as Bundle
identifier in the App-Info.plist file of our application. It is recommended that you
use a reverse-domain name. Click on Continue and then Done to finish the process.

6. Show all devices by clicking on All in the Devices tab.

7. Add a new device by clicking on the plus button.

8. In UDID, enter the UDID of our device. This can be retrieved from the Ubertesters
web application.

9. In Provisioning Profiles, select Distribution and add a new one by clicking the
button with the plus icon.

10. Select Ad Hoc as the distribution type and click on Continue.

11. Select App ID we had created in step 5 and click on Continue.

Chapter 11

[235]

12. If there isn't a certificate available, you will be asked to create a new certificate in
the next step and select App Store and Ad hoc. Follow the instructions to generate
the certificate. If there are already certificates available, you will be asked to choose
one of them.

13. Open the newly created certificate and select the device we just added.

14. Generate the updated certificate.

15. In the Xcode project, select iOS Device as the target. This can be done through the
build menu, where the product and the target are being displayed.

16. In the menu, select Product and click on Archive.

17. Open the Xcode organizer by clicking on Window and selecting Organizer.

18. Select the latest build and click on Distribute.

19. On the window that pops up, select Save for Enterprise or Ad Hoc Deployment.
Confirm by clicking on Next.

20. Select the provisioning profile we created earlier.

21. Click on Export and save the package somewhere on the hard drive.

After we created the build, we return to the Xcode organizer, where we can either distribute
the build again or validate it, as shown in the following screenshot:

What just happened?
To create a special build for testers, we created an ad-hoc distribution profile just for our
game. This is something we have to do just once per application, but not per build.

Integrating Third-party Services

[236]

To create certificates, we needed the provisioning portal from the Apple developer member
center. It consists of the following three tasks:

 � Creating an App ID: This identifies our game (steps 2 to 5)

 � Adding a new device: A distribution certificate can hold a number of target devices,
which need to be added before the distribution certificate is created (steps 6 to 9)

 � Creating a distribution certificate: This is used to sign the special build (steps 10 to 14)

Now that the certificate is generated, we created the build with the help of this certificate.
We needed to select the iOS Device (or the name of the connected iOS device—if there is
one). We selected a product to create an archive which we did in step 16. After the archive
is created, we can select it from the Xcode organizer. We wanted to distribute this build, so
that's why we clicked on the button with the Distribute label in step 18.

As we wanted an ad hoc deployment, we selected this option. Ad hoc deployment means
that we are distributing our applications to a known number of devices, while a distribution
build—such as for the Apple App Store—means the application can be installed on any
number of devices that got the application from the Apple App Store. When we had the
option to select a provisioning profile, we chose the one we created earlier. By clicking on
Export, we got an IPA file that we had put in a safe place for the moment.

Deploying an application
Our special build is now finished, so we can go ahead and deploy our game using the
Ubertesters web interface.

Time for action – deploying an application
To deploy the application, perform the following steps:

1. Log in to Ubertesters at http://beta.ubertesters.com/sign_in.

2. Click on Projects from the top menu.

3. Click on Upload revision and choose the special build we created earlier.

4. We can now enter a revision title and a description.

5. Select the revision we just uploaded.

6. Click on Start to allow this revision to be installed on the target devices.

7. On our registered device, we can now install our game.

On the web interface, we can track the installations of our application, as shown in
the following screenshot:

Chapter 11

[237]

What just happened?
To deploy the application using Ubertesters, we logged in to Ubertesters first. When we
see all the available projects, we can upload a new revision for each of the projects. At the
moment, we only have one project.

After the revision is uploaded, we can optionally set a title and a description for the build.
The following two things need to be considered when uploading a build:

 � The Ubertesters SDK needs to be integrated in the application.

 � The bundle version must be different for each uploaded revision. This setting can be
found in the Info.plist file.

Before the application can be installed on the target devices, we need to start the process,
which we did using the Start button. The testing phase can be stopped and restarted
for every revision.

When we open the Ubertesters app in our registered device, we can now download our
game. When our game is installed, we can run the game just as we expect it to.

Explaining Game Center
Game Center is a social media feature by Apple that allows leaderboards, achievements,
and matchmaking. In a way, it's very similar to Steam for desktop platforms. Naturally, Game
Center only works on iOS devices.

Integrating Game Center authentication
The first thing we need to do is authenticate Game Center to be able to use its features.

Integrating Third-party Services

[238]

Time for action – integrating Game Center authentication
Use the following steps to integrate Game Center authentication:

1. Open our Xcode project if it's not already open.

2. Add GameKit.framework to the list of frameworks to be linked.

3. Switch to AppDelegate.m.

4. Import the GameKit header file using the following line of code:
#import <GameKit/GameKit.h>

5. Update the didFinishLaunchingWithOptions method to look like the following
piece of code:
- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 CGRect screenBounds = [UIScreen mainScreen].bounds;
 _window = [[UIWindow alloc] initWithFrame:screenBounds];

 _viewController = [[SPViewController alloc] init];

 [Ubertesters initialize];

 [_viewController startWithRoot:[Game class]
 supportHighResolutions:YES doubleOnPad:YES];

 [GKLocalPlayer localPlayer].authenticateHandler =
 ^(UIViewController *viewController, NSError *error) {
 if ([GKLocalPlayer localPlayer].authenticated) {
 NSLog(@"Already authenticated");
 } else if(viewController) {
 [[Sparrow currentController]
 presentViewController:viewController animated:YES
 completion:nil];//present the login form
 } else {
 NSLog(@"Problem while authenticating");
 }
 };

 [_window setRootViewController:_viewController];
 [_window makeKeyAndVisible];

 return YES;
}

Chapter 11

[239]

6. Run the example. If we are not authenticated yet, we should get a dialog to log in to
Game Center:

What just happened?
To integrate Game Center, we linked the GameKit framework.

The next thing we did is update the AppDelegate class, and once more, it's the method
that handles everything once the application has finished launching. In step 4, we needed to
import the GameKit header.

In the next step, we authenticated Game Center right after we started the view controller with
the Game class. The localPlayer returns the active player who interacts with the device.

We added an authentication handler that is called once Game Center is authenticated. If the
player is already authenticated, we are just going to log in. The same happens if there is an
error when the authentication fails.

If the player is not authenticated, we show the Game Center view controller through the
current view controller from Sparrow.

Game Center is handled through iTunes Connect. The workflow is described at https://
developer.apple.com/library/ios/documentation/LanguagesUtilities/
Conceptual/iTunesConnectGameCenter_Guide/Introduction/Introduction.
html.

Integrating Third-party Services

[240]

If we want to use achievements in our game, we need to add all of our achievements in the
iTunes Connect window shown in the following screenshot:

We would need a piece of code similar to the following code to set an achievement:

GKAchievement *achievement = [[GKAchievement alloc]
 initWithIdentifier: @"sankALotOfShips"];
if (achievement) {
 achievement.percentComplete = 100;
 [achievement reportAchievementWithCompletionHandler:^(NSError
 *error) {
 if (error != nil) {
 NSLog(@"Error in reporting achievements: %@", error);
 }
 }];
}

Let's assume we have an achievement called sankALotOfShips, which—as the name
suggests—should be shown if our ship sank a whole lot of ships.

We retrieved the achievements and if the achievement exists, we set the achievement to be
complete by simply adjusting the percentComplete property to 100. We then reported
the updated achievement. If there was an error, we logged it to the console.

Chapter 11

[241]

To learn more about achievements in Game Center, take a look at https://developer.
apple.com/library/ios/documentation/NetworkingInternet/Conceptual/
GameKit_Guide/Achievements/Achievements.html.

Have a go hero
Game Center has quite a big arsenal of things to do. The following are some suggestions
of what could be done:

 � Currently, we only log if the player is already authenticated or the authentication
failed because the player canceled the authentication. This can be improved with
some basic error handling.

 � Game Center also provides leaderboards. As our game is very much
highscore-based or gold-based to be more accurate, you could try to utilize this
functionality to add leaderboards to our game. If you are not too afraid about
performing some refactoring, you might even want to introduce a highscore-
based system that doesn't rely on gold. This is definitely a harder, but a more
balanced way to go, as the player shouldn't be punished for using in-game
currency to upgrade their gear. Take a look at the official Apple documentation
at https://developer.apple.com/library/ios/documentation/
NetworkingInternet/Conceptual/GameKit_Guide/LeaderBoards/
LeaderBoards.html to learn more about leaderboards.

 � Since the preceding task is definitely much more difficult and a bit far fetched,
you can try to use matchmaking abilities to let two players battle against each
other. This will lead to a major refactoring of the existing code though.
A good starting point will be to take a look at the matchmaking
documentation at https://developer.apple.com/library/ios/
documentation/NetworkingInternet/Conceptual/GameKit_Guide/
MatchmakingwithGameCenter/MatchmakingwithGameCenter.html.

An overview of analytics services
Some basic analytics are most likely provided by a beta distribution service (as Ubertesters
in our case). When you have a paid app in the Apple App Store, it is often necessary to have
detailed information, such as how many in-app purchases there were and accurate details
about play sessions.

Analytics are usually a paid service; in most cases, there is either a free or a trial version.
Let's take a look at two analytics services.

Integrating Third-party Services

[242]

Flurry analytics
Flurry is a service that has been around for a few years and provides support for multiple
platforms. It provides the following features:

 � Geographical data of users

 � Crash analytics

 � Play session statistics

Flox
Flox is a service made by Gamua, the guys behind the Sparrow framework. Flox is a relatively
new service which is available at http://gamua.com/flox/.

Flox provides the following features:

 � Remote logging

 � Leaderboards

 � Save games

 � Session and user statistics

The Objective-C headers are available at https://github.com/Gamua/Flox-ObjC. It
even offers Game Center integration.

Let's take a look at what Flox integration would look like. The next step after registering on
the Flox service is to create a game. We get its game ID and its game key.

Chapter 11

[243]

After integrating the Flox SDK into our game, we will need to initialize Flox inside our
application delegate (AppDelegate.m), using the following code:

[Flox startWithGameID:@"gameID" key:@"gameKey" version:@"1.0"];

After this, we can dispatch events that will show up in the Flox web interface:

[Flox logEvent:@"GameStarted"];

If we wanted to use leaderboards through Flox, we will need to create the leaderboard itself
using the web interface. If we want to load all scores from the leaderboards, the following
piece of code will set us up:

[Flox loadScoresFromLeaderboard:@"default"
 timeScope:FXTimeScopeAllTime onComplete:^(NSArray *scores, NSError
 *error)
{
 NSLog(@"So much scores. Got %d", (int)scores.count);
}];

To save to the leaderboards, we can use the following piece of code:

[Flox postScore:World.gold ofPlayer:@"playerName"
 toLeaderboard:@"default"];

Pop quiz
Q1. What is Ubertesters?

1. It allows private applications for beta testers to be distributed

2. It is a platform to search for beta testers

3. It is an online magazine that tests mobile applications

Q2. What is Game Center?

1. Apple's solution for a game's social features such as achievements and high
score lists

2. A publisher for mobile games

3. Games that work on multiple platforms

Q3. What does an analytics platform usually provide?

1. Private data of users

2. Anonymous play sessions

3. Statistical data

Integrating Third-party Services

[244]

Summary
In this chapter, we learned about integrating third-party services into our game, especially to
distribute our game and integrate it with Apple's Game Center.

Our game is now finished. Of course, there are a lot of things that we could still add or
update, but all in all, we mastered the process of creating a playable game during the
course of this book while learning about the Sparrow framework as well as distributing our
application and creating game assets.

Pop Quiz Answers

Chapter 1, Getting Started with Sparrow
Pop quiz
Q1 1

Q2 3

Q3 1

Chapter 2, Displaying Our First Objects
Pop quiz
Q1 3

Q2 2

Q3 2

Chapter 3, Managing Assets and Scenes
Pop quiz
Q1 1

Q2 2

Q3 2

Pop Quiz Answers

[246]

Chapter 4, The Basics of Our Game
Pop quiz
Q1 2
Q2 1 and 3
Q3 1
Q4 3

Chapter 5, Beautifying Our Game
Pop quiz
Q1 1

Q2 2

Q3 1

Chapter 6, Adding Game Logic
Pop quiz
Q1 3

Q2 2

Q3 2

Chapter 7, User Interface
Pop quiz
Q1 1

Q2 1

Q3 3

Appendix

[247]

Chapter 8, Artificial Intelligence and Game Progression
Pop quiz
Q1 1

Q2 2

Q3 2

Chapter 9, Adding Audio to Our Game
Pop quiz
Q1 1

Q2 2

Q3 1

Chapter 10, Polishing Our Game
Pop quiz
Q1 1

Q2 2

Q3 1

Chapter 11, Integrating Third-party Services
Pop quiz
Q1 1

Q2 1

Q3 2

Afterword
If you intend to publish a game on the Apple App Store, you should invest an extra amount
of polish to get all the details right. This includes creating an icon and splash screens for all
devices, getting the bundle identifiers, bundle version, and bundle names right. If your game
allows switching its orientation from landscape to portrait or vice versa, you should make
sure that it does so without any side effects. You should also double-check if all the graphics
are being displayed correctly on all the target devices.

Index
A
abort button

adding 155, 156
actual device

template, running on 20
afconvert tool 199
AI

fuzzy values, adding to 182, 183
updating, methods 179

AIFC 199
alpha property 90
analytics services

about 241
Flox 242, 243
Flurry analytics 242

Angles macro 33
animateProperty method 99
app icons 76
Apple developer account

setting up 8, 9
Apple documentation

URL 199, 241
application

deploying 236, 237
asset container class

creating 56-60
asset manager

creating, for files 50-55
extending 110, 111

assets
managing 42
working with 41, 42

audio engine
starting 200, 201

audio files
using 199

audio formats, Sparrow
about 198
AIFC 199
CAFF 199

Audio Interchange Format (AIFF). See AIFC
audio playback

adding 200
audio engine, starting 200
background music, playing in scene 201, 203
sound effects, adding to pirate cove

scene 204, 205
Automatic Reference Counting (ARC) 28

B
background color

changing 27-29
background music

playing, in scene 201-203
barebone project

used, as template 14-19
barebone, samples folder 12
base class

creating 43-46
Battlefield/arena 77
battlefield scene

images, adding to 83, 84

[252]

beta testers
build, creating for 234-236
using 229

bitmap font
about 164, 165
creating, bmGlyph used 166, 167
Sparrow-compatible bitmap font, exporting 167
used, for text field display 167, 168

black borders
displaying 72

Blender
URL 77

bmGlyph
about 165
URL 165
used, for creating bitmap font 166, 167

bounding box collision 132
bounding sphere collision 133
buttons

adding, to screen 146-150
Bxfr

about 198
URL 198

C
CAFF 199
cannonBallLeft property 131
cannonBallRight property 131
cardboard puppet doll

creating 29-32
improving 32

certificates
creating 236

CocoaPods
about 15
installing 16

code conventions
about 23, 24
URL 24

code, ship
structuring 112-117

collision detection
bounding box collision 132
bounding sphere collision 133
implementing 132-136
pixel collision 133

Colors macro 34
Color, Sparrow constants 35
command-line tools

installing 16
current game

aborting 155, 156
currentScene property 214
current state

loading 224-226
saving 224-226

custom events
adding, to dialog 160, 161

D
demo, samples folder 12
dialogs

adding, to screen 157-159
custom events, adding to 160, 161

different screen sizes
dealing with 70

display object container 26
display objects

manipulating 36-40
doc, sparrow folder 12
doubleOnPad parameter 76

E
enemy ship

moving 174-178
enum type 126
error handling

adding 55, 56
expectations

setting 23

F
files

asset manager, creating for 50-55
first texture atlas

loading 105, 106
Flox

about 242, 243
features 242
URL 242

[253]

Flurry analytics 242
fuzzy logic

about 172
example 172

fuzzy values
adding, to AI 182, 183

G
game

developing 77, 78
improving, suggestions 155
pausing 146-155
pausing, actions 146
resuming 150-155

Game Center 237
Game Center authentication

integrating 238-240
game mechanics

adding, to pirate cove 188-191
game over scene

about 207
connecting, into game 212-214
creating 208-211

gameplay elements
examining 23

gameplay parts
Battlefield/arena 77
pirate cove 77

gameplay-relevant data
loading 136-138

Git repository
cloning 10, 11

Global Game Jam
URL 22

Glyph Designer 165
goals

setting 22, 23
graphics, game

URL 77

H
hit points, ship

displaying 141-146

I
image

displaying 60-62
images

adding, to battlefield scene 83, 84
arranging, in pirate cove scene 86, 87

initialize method, NSObject
URL 58

initWithType method
modifying 131

intro scene
adding 217-222
tutorial, adding 222-224

iOS devices
difference between 74

iOS devices, comparison table
URL 69

iOS SDK
utilizing 74, 75

iPad
used, in Sparrow 76

isShooting property 131

J
JSON format

URL 53
jugglers 95

L
Littera

URL 165
lose condition

adding 193-195
Ludum Dare

URL 22

M
macros

about 33
Angles macro 33
Colors macro 34
Sparrow constants 34
utility functions 34

[254]

main menu
adding 214-217

Manual Reference Counting (MRC) 28
Markdown files 12
match making documentation

URL 241
Math, Sparrow constants 35
maxHitpoints property 138
methods

implementing, for ship's actions 117-121
movement

updating 95-99

N
non-interactive screen space

displaying 72, 73

O
onBackgroundTouch method 90, 92, 119
onShipStop method 99, 119
Open Graphics Library for Embedded

Systems (OpenGL ES) 7
own ship

attacking 179-182

P
pirate cove

about 77
game mechanics, adding 188-191

pirate cove scene
images, arranging 86, 87

pirate ship
allowing, to shoot cannonballs 129-132
moving 90-93

pixel collision 133
pod install command 18
polishing 207
provisioning portal

URL 234

Q
Quake 173

R
registerTextureAtlas method 111
repeatCount property 98
reset method 212
resume button

hiding 147
Retina

used, in Sparrow 76
reverse property 98

S
samples folder

barebone 12
demo 12
scaffold 12

scaffold, samples folder 12
scene class

implementing 63, 64
scene director

creating 64-66
scene manager setup

creating 79-82
screen

abort button, adding 155, 156
buttons, adding 146-148
buttons, displaying 149
dialogs, adding 157-159
text, displaying on 162-164

screen elements
rearranging 73, 74

screen sizes
black borders 72
non-interactive screen space, displaying 72, 73
screen elements, rearranging 73, 74
viewport, scaling 71, 72

ship class
extending 121-128

ship game
enemy ship, moving 174
lose condition, adding 193
progression, adding 184
win condition, adding 193

ship game progression
dialog classes, updating 186
implementing 191, 192
pirate cove 188

[255]

scene, updating 186
world class, adding 184

showScene method 214
sound effects

adding 204
adding, to pirate cove scene 204, 205
generating 198

sound manager
implementing 49, 50

source tree reference
Sparrow, adding 13, 14

Sparrow
about 7, 8
adding, as source tree reference 13, 14
downloading 10
Git repository, cloning 10, 11
iPad, using 76
Retina, using 76
setting up 13
URL 10, 95

Sparrow API documentation
adding, to Xcode 21

Sparrow constants
Color 35
Math 35

sparrow folder
doc 12
src 12
util 12

Sparrow GitHub repository
URL 10

Sparrow package
contents 11
license 12, 13
Markdown files 12
samples folder 12
sparrow folder 12

Sparrow SPAudioEngine documentation
URL 201

SPButton 148
SP_CLAMP 34
SP_IS_FLOAT_EQUAL 34
sprite sheets

creating, TexturePacker used 103-105
working with 102

SP_SWAP 34

SPTextField factory method 211
src, sparrow folder 12
stage 29
state machines

about 172
enemy ship, states 173
example 172
finite state machines 173

system fonts 164
system requirements, Sparrow 8

T
template

barebone project, using 14-19
running, on actual device 20

TestFlight 230
text

bitmap font 164
displaying, with bitmap font 167, 168
drawing, on screen 162-164
system fonts 164

texture formats 102, 103
texture manager

creating 47-49
TexturePacker

URL 103
used, to create sprite sheets 103-105

texture size limit 70
TIGSource forums

URL 197
time parameter 92
transitions 94
tutorial

adding, to intro scene 222-224
tweens

canceling 95
working with 89

U
Ubertesters

about 230
account registeration, URL 230
account, registering 230, 231
integrating 231-233
URL 236

[256]

Ubertesters SDK
URL 231

Unique Device Identifier (UDID) 229
utility functions 34
util, sparrow folder 12

V
viewport

scaling 71, 72

W
win condition

adding 193-195
World class

implementing 184, 185

X
Xcode

downloading 9, 10
Sparrow API documentation, adding to 21
URL 21

Thank you for buying

Sparrow iOS Game Framework Beginner's Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're
using to get the job done. Packt books are more specific and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and
you would like to discuss it first before writing a formal book proposal, contact us; one of
our commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.

Sencha Touch Cookbook
ISBN: 978-1-84951-544-3 Paperback: 350 pages

Over 100 recipes for creating HTML5-based
cross-platform apps for touch devices

1. Master cross-platform application development.

2. Incorporate geo location into your apps.

3. Develop native looking web apps.

PhoneGap Beginner's Guide
ISBN: 978-1-84951-536-8 Paperback: 328 pages

Build cross-platform mobile applications with the
PhoneGap open source development framework

1. Learn how to use the PhoneGap mobile
application framework.

2. Develop cross-platform code for iOS, Android,
BlackBerry, and more.

3. Write robust and extensible JavaScript code.

4. Master new HTML5 and CSS3 APIs.

Please check www.PacktPub.com for information on our titles

Rhomobile Beginner's Guide
ISBN: 978-1-84951-516-0 Paperback: 264 pages

Step-by-step instructions to build an enterprise
mobile web application from scratch

1. Explore all of Rhomobile's features and products
through the creation of a mobile web application.

2. Step-by-step instructions help you to build an
enterprise mobile web application from scratch,
through deployment.

3. Clear guides for developing applications on iPhone,
Blackberry, and other smartphones.

Creating Games with cocos2d for iPhone 2
ISBN: 978-1-84951-900-7 Paperback: 388 pages

Master cocos2d through building nine complete
games for the iPhone

1. Games are explained in detail, from the design
decisions to the code itself.

2. Learn to build a wide variety of game types, from
a memory tile game to an endless runner.

3. Use different design approaches to help you explore
the cocos2d framework.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Sparrow
	Understanding the basics of Sparrow
	System requirements
	Setting up the Apple developer account
	Downloading Xcode
	Downloading Sparrow
	Cloning the Git repository

	Contents of the Sparrow package
	The samples folder
	The sparrow folder
	Markdown files in the root folder
	License

	Setting up Sparrow
	Option 1 – source tree reference

	Time for action – adding Sparrow as a source tree reference
	Time for action – using the barebone project as a template
	Option 2 – CocoaPods

	Time for action – installing command-line tools
	Time for action – installing CocoaPods
	Time for action – using the barebone project as a template
	Running the template on the actual device
	Time for action – running the template on the actual device
	Getting Sparrow documentation files
	Time for action – adding the Sparrow API documentation to Xcode
	The idea for the game
	Setting goals and expectations
	Examining our gameplay elements

	Code conventions
	Summary

	Chapter 2: Displaying Our First Objects
	Understanding display objects
	Explaining display object containers

	Setting the background color
	Time for action – changing the background color
	What is a stage?

	Creating our cardboard puppet doll
	Time for action – creating a cardboard puppet doll
	Explaining macros
	The Angles macro
	The Colors macro
	The utility functions
	Constants in Sparrow
	Math
	Color

	Manipulating display objects
	Time for action – manipulating display objects
	Summary

	Chapter 3: Managing Assets and Scenes
	Working with assets
	Managing our assets
	Time for action – creating a base class
	Creating a texture manager
	Time for action – managing our textures
	Creating a sound manager
	Time for action – implementing a sound manager
	Creating a file manager
	Time for action – managing remaining file types
	Basic error handling

	Time for action – getting started with basic error handling
	Putting it all together
	Time for action – creating an asset container class
	Time for action – displaying an image
	What are scenes?
	Time for action – implementing a scene class
	Creating a scene director
	Time for action – managing our scenes with a scene director
	Summary

	Chapter 4: The Basics of Our Game
	Taking care of cross-device compatibility
	Understanding the texture size limit
	How to deal with different screen sizes
	Scaling the viewport
	Black borders
	Showing non-interactive screen space
	Rearranging screen elements
	Choosing the best option

	Differences between various devices
	Utilizing the iOS SDK
	Retina and iPad support in Sparrow
	App icons and splash images
	The bottom line

	Starting with the development of our game
	Creating our scene manager setup
	Time for action – creating our scene manager setup
	Adding images to the battlefield scene
	Time for action – adding images to the battlefield scene
	Arranging images in the pirate cove scene
	Time for action – arranging images in the pirate cove scene
	Summary

	Chapter 5: Beautifying Our Game
	Working with tweens
	Time for action – moving the pirate ship
	Understanding transitions
	Explaining jugglers
	Updating the movement and canceling tweens

	Time for action – updating the movement
	Working with sprite sheets
	Learning about texture formats
	Using TexturePacker to create sprite sheets
	Loading our first texture atlas

	Time for action – loading our first texture atlas
	Summary

	Chapter 6: Adding Game Logic
	Extending the asset manager
	Time for action – adding texture atlases to the asset manager
	Structuring our ships
	Time for action – creating a ship class
	Extending the ship class
	Time for action – adding more functionality to the ship class
	Shooting cannonballs
	Time for action – allowing the ship to shoot cannonballs
	Collision detection
	Time for action – letting cannonballs collide with ships
	Loading gameplay-relevant data
	Time for action – avoiding hardcoded values
	Summary

	Chapter 7: User Interface
	Displaying the hit points of each ship
	Time for action – placing a health bar on top of each ship
	Adding buttons to the screen
	Pausing and resuming the game
	Displaying the pause and resume buttons on the screen

	Time for action – putting buttons on the screen
	Implementing the logic to pause and resume the game

	Time for action – allowing the player to pause and resume
	Aborting the current game

	Time for action – conceding the game
	Adding dialogs to the screen
	Time for action – creating a dialog class
	Adding custom events to the dialogs
	Time for action – adding our own buttons to our dialog
	Drawing text on the screen
	Displaying our first text field

	Time for action – adding a text field to the dialog
	Explaining system fonts
	Explaining bitmap fonts
	Creating our very own bitmap font

	Time for action – using bmGlyph to create a bitmap font
	Displaying a text field with bitmap fonts

	Time for action – using our bitmap font for a text field
	Summary

	Chapter 8: Artificial Intelligence and Game Progression
	Artificial intelligence in theory
	Explaining fuzzy logic
	Explaining state machines

	Letting the enemy ship move and attack
	Moving the ship

	Time for action – getting the enemy ship to move around
	Attacking other ships

	Time for action – the enemy should attack the player
	Adding fuzzy values to the AI

	Time for action – spicing up the AI with fuzzy values
	Adding progression to our game
	Adding a World class

	Time for action – adding a world class
	Updating the scene and dialog classes

	Time for action – updating the scene and dialog classes
	Adding game mechanics to the pirate cove

	Time for action – making the pirate cove playable
	Adding progression to the game

	Adding win and lose conditions
	Time for action – being able to win or lose
	Summary

	Chapter 9: Adding Audio to Our Game
	Finding music and sound
	Generating sound effects
	Learning about audio formats
	Music and sound effects for our game

	Adding audio playback
	Starting the audio engine

	Time for action – getting audio files to play
	Playing music in our scenes

	Time for action – playing music in our scenes
	Adding a sound effect

	Time for action – sound effects in the pirate cove
	Summary

	Chapter 10: Polishing Our Game
	Adding additional scenes
	The game over scene
	Creating the game over scene

	Time for action – showing the game over scene
	Connecting the game over scene

	Time for action – having the game over scene show up
	Adding a main menu

	Time for action – integrating the main menu into our game
	Adding an intro scene

	Time for action – creating an intro for our game
	Implementing tutorial mechanics
	Time for action – adding a tutorial to our intro scene
	Loading and saving the current state
	Time for action – load and save the last played game
	Summary

	Chapter 11: Integrating Third-party Services
	Getting word out to potential testers
	Registering at Ubertesters
	Integrating Ubertesters

	Time for action – integrating Ubertesters
	Creating a build for beta testers

	Time for action – creating a build for beta testers
	Deploying an application

	Time for action – deploying an application
	Explaining Game Center
	Integrating Game Center authentication

	Time for action – integrating Game Center authentication
	An overview of analytics services
	Flurry analytics
	Flox

	Summary

	Pop Quiz Answers
	Chapter 1, Getting Started with Sparrow
	Chapter 2, Displaying Our First Objects
	Chapter 3, Managing Assets and Scenes
	Chapter 4, The Basics of Our Game
	Chapter 5, Beautifying Up Our Game
	Chapter 6, Adding Game Logic
	Chapter 7, User Interface
	Chapter 8, Artificial Intelligence and Game Progression
	Chapter 9, Adding Audio to Our Game
	Chapter 10, Polishing Our Game
	Chapter 11, Integrating Third-party Services

	Afterword
	Index

