
M A N N I N G

Sean T. Allen
Matthew Jankowski
Peter Pathirana
FOREWORD BY
Andrew Montalenti

Strategies for real-time event processing

www.allitebooks.com

http://www.allitebooks.org

Storm Applied
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Storm Applied
Strategies for real-time event processing

SEAN T. ALLEN

MATTHEW JANKOWSKI

PETER PATHIRANA

M A N N I N G
SHELTER ISLAND
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2015 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Dan Maharry
20 Baldwin Road Technical development editor Aaron Colcord
PO Box 761 Copyeditor: Elizabeth Welch
Shelter Island, NY 11964 Proofreader: Melody Dolab

Technical proofreader: Michael Rose
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617291890
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 20 19 18 17 16 15
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

www.manning.com
http://www.allitebooks.org

brief contents
1 ■ Introducing Storm 1

2 ■ Core Storm concepts 12

3 ■ Topology design 33

4 ■ Creating robust topologies 76

5 ■ Moving from local to remote topologies 102

6 ■ Tuning in Storm 130

7 ■ Resource contention 161

8 ■ Storm internals 187

9 ■ Trident 207
v

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

contents
foreword xiii
preface xv
acknowledgments xvii
about this book xix
about the cover illustration xxiii

1 Introducing Storm 1
1.1 What is big data? 2

The four Vs of big data 2 ■ Big data tools 3

1.2 How Storm fits into the big data picture 6
Storm vs. the usual suspects 8

1.3 Why you’d want to use Storm 10
1.4 Summary 11

2 Core Storm concepts 12
2.1 Problem definition: GitHub commit count dashboard 12

Data: starting and ending points 13 ■ Breaking down
the problem 14

2.2 Basic Storm concepts 14
Topology 15 ■ Tuple 15 ■ Stream 18 ■ Spout 19
Bolt 20 ■ Stream grouping 22
vii

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii
2.3 Implementing a GitHub commit count dashboard
in Storm 24
Setting up a Storm project 25 ■ Implementing the spout 25
Implementing the bolts 28 ■ Wiring everything together to form
the topology 31

2.4 Summary 32

3 Topology design 33
3.1 Approaching topology design 34
3.2 Problem definition: a social heat map 34

Formation of a conceptual solution 35

3.3 Precepts for mapping the solution to Storm 35
Consider the requirements imposed by the data stream 36
Represent data points as tuples 37 ■ Steps for determining
the topology composition 38

3.4 Initial implementation of the design 40
Spout: read data from a source 41 ■ Bolt: connect to an
external service 42 ■ Bolt: collect data in-memory 44
Bolt: persisting to a data store 48 ■ Defining stream
groupings between the components 51 ■ Building a topology
for running in local cluster mode 51

3.5 Scaling the topology 52
Understanding parallelism in Storm 54 ■ Adjusting the topology
to address bottlenecks inherent within design 58 ■ Adjusting the
topology to address bottlenecks inherent within a data stream 64

3.6 Topology design paradigms 69
Design by breakdown into functional components 70
Design by breakdown into components at points of repartition 71
Simplest functional components vs. lowest number of repartitions 74

3.7 Summary 74

4 Creating robust topologies 76
4.1 Requirements for reliability 76

Pieces of the puzzle for supporting reliability 77

4.2 Problem definition: a credit card authorization system 77
A conceptual solution with retry characteristics 78
Defining the data points 79 ■ Mapping the solution to Storm
with retry characteristics 80
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix
4.3 Basic implementation of the bolts 81
The AuthorizeCreditCard implementation 82
The ProcessedOrderNotification implementation 83

4.4 Guaranteed message processing 84
Tuple states: fully processed vs. failed 84 ■ Anchoring, acking,
and failing tuples in our bolts 86 ■ A spout’s role in guaranteed
message processing 90

4.5 Replay semantics 94
Degrees of reliability in Storm 94 ■ Examining exactly once
processing in a Storm topology 95 ■ Examining the reliability
guarantees in our topology 95

4.6 Summary 101

5 Moving from local to remote topologies 102
5.1 The Storm cluster 103

The anatomy of a worker node 104 ■ Presenting a
worker node within the context of the credit card
authorization topology 106

5.2 Fail-fast philosophy for fault tolerance within
a Storm cluster 108

5.3 Installing a Storm cluster 109
Setting up a Zookeeper cluster 109 ■ Installing the required Storm
dependencies to master and worker nodes 110 ■ Installing Storm
to master and worker nodes 110 ■ Configuring the master and
worker nodes via storm.yaml 110 ■ Launching Nimbus and
Supervisors under supervision 111

5.4 Getting your topology to run on a Storm cluster 112
Revisiting how to put together the topology components 112
Running topologies in local mode 113 ■ Running topologies
on a remote Storm cluster 114 ■ Deploying a topology to
a remote Storm cluster 114

5.5 The Storm UI and its role in the Storm cluster 116
Storm UI: the Storm cluster summary 116 ■ Storm UI:
individual Topology summary 120 ■ Storm UI: individual
spout/bolt summary 124

5.6 Summary 129
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTSx
6 Tuning in Storm 130
6.1 Problem definition: Daily Deals! reborn 131

Formation of a conceptual solution 132 ■ Mapping the solution
to Storm concepts 132

6.2 Initial implementation 133
Spout: read from a data source 134 ■ Bolt: find recommended
sales 135 ■ Bolt: look up details for each sale 136
Bolt: save recommended sales 138

6.3 Tuning: I wanna go fast 139
The Storm UI: your go-to tool for tuning 139
Establishing a baseline set of performance numbers 140
Identifying bottlenecks 142 ■ Spouts: controlling the rate
data flows into a topology 145

6.4 Latency: when external systems take their time 148
Simulating latency in your topology 148 ■ Extrinsic and intrinsic
reasons for latency 150

6.5 Storm’s metrics-collecting API 154
Using Storm’s built-in CountMetric 154 ■ Setting up a metrics
consumer 155 ■ Creating a custom SuccessRateMetric 156
Creating a custom MultiSuccessRateMetric 158

6.6 Summary 160

7 Resource contention 161
7.1 Changing the number of worker processes running

on a worker node 163
Problem 163 ■ Solution 164 ■ Discussion 165

7.2 Changing the amount of memory allocated to worker
processes (JVMs) 165
Problem 165 ■ Solution 165 ■ Discussion 166

7.3 Figuring out which worker nodes/processes a topology is
executing on 166
Problem 166 ■ Solution 166 ■ Discussion 167

7.4 Contention for worker processes in a Storm cluster 168
Problem 169 ■ Solution 170 ■ Discussion 171

7.5 Memory contention within a worker process (JVM) 171
Problem 174 ■ Solution 174 ■ Discussion 175
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTS xi
7.6 Memory contention on a worker node 175
Problem 178 ■ Solution 178 ■ Discussion 178

7.7 Worker node CPU contention 178
Problem 179 ■ Solution 179 ■ Discussion 181

7.8 Worker node I/O contention 181
Network/socket I/O contention 182 ■ Disk I/O contention 184

7.9 Summary 186

8 Storm internals 187
8.1 The commit count topology revisited 188

Reviewing the topology design 188 ■ Thinking of the topology as
running on a remote Storm cluster 189 ■ How data flows between
the spout and bolts in the cluster 189

8.2 Diving into the details of an executor 191
Executor details for the commit feed listener spout 191
Transferring tuples between two executors on the same JVM 192
Executor details for the email extractor bolt 194 ■ Transferring
tuples between two executors on different JVMs 195 ■ Executor
details for the email counter bolt 197

8.3 Routing and tasks 198
8.4 Knowing when Storm’s internal queues overflow 200

The various types of internal queues and how they might
overflow 200 ■ Using Storm’s debug logs to diagnose buffer
overflowing 201

8.5 Addressing internal Storm buffers overflowing 203
Adjust the production-to-consumption ratio 203 ■ Increase the size
of the buffer for all topologies 203 ■ Increase the size of the buffer
for a given topology 204 ■ Max spout pending 205

8.6 Tweaking buffer sizes for performance gain 205
8.7 Summary 206

9 Trident 207
9.1 What is Trident? 208

The different types of Trident operations 210 ■ Trident streams
as a series of batches 211

9.2 Kafka and its role with Trident 212
Breaking down Kafka’s design 212 ■ Kafka’s alignment
with Trident 215
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTSxii
9.3 Problem definition: Internet radio 216
Defining the data points 217 ■ Breaking down the problem
into a series of steps 217

9.4 Implementing the internet radio design
as a Trident topology 217
Implementing the spout with a Trident Kafka spout 219
Deserializing the play log and creating separate streams for each of the
fields 220 ■ Calculating and persisting the counts for artist, title,
and tag 224

9.5 Accessing the persisted counts through DRPC 229
Creating a DRPC stream 230 ■ Applying a DRPC state query to a
stream 231 ■ Making DRPC calls with a DRPC client 232

9.6 Mapping Trident operations to Storm primitives 233
9.7 Scaling a Trident topology 239

Partitions for parallelism 239 ■ Partitions in Trident
streams 240

9.8 Summary 243

afterword 244

index 247
Licensed to Mark Watson <nordickan@gmail.com>

foreword
“Backend rewrites are always hard.”

 That’s how ours began, with a simple statement from my brilliant and trusted col-
league, Keith Bourgoin. We had been working on the original web analytics backend
behind Parse.ly for over a year. We called it “PTrack”.

 Parse.ly uses Python, so we built our systems atop comfortable distributed computing
tools that were handy in that community, such as multiprocessing and celery. Despite our
mastery of these, it seemed like every three months, we’d double the amount of traffic we
had to handle and hit some other limitation of those systems. There had to be a better way.

 So, we started the much-feared backend rewrite. This new scheme to process our
data would use small Python processes that communicated via ZeroMQ. We jokingly
called it “PTrack3000,” referring to the “Python3000” name given to the future version
of Python by the language’s creator, when it was still a far-off pipe dream.

 By using ZeroMQ, we thought we could squeeze more messages per second out of
each process and keep the system operationally simple. But what this setup gained in
operational ease and performance, it lost in data reliability.

 Then, something magical happened. BackType, a startup whose progress we had
tracked in the popular press,1 was acquired by Twitter. One of the first orders of busi-
ness upon being acquired was to publicly release its stream processing framework,
Storm, to the world.

1 This article, “Secrets of BackType’s Data Engineers” (2011), was passed around my team for a while before
Storm was released: http://readwrite.com/2011/01/12/secrets-of-backtypes-data-engineers.
xiii

Licensed to Mark Watson <nordickan@gmail.com>

http://readwrite.com/2011/01/12/secrets-of-backtypes-data-engineers

FOREWORDxiv
 My colleague Keith studied the documentation and code in detail, and realized:
Storm was exactly what we needed!

 It even used ZeroMQ internally (at the time) and layered on other tooling for easy
parallel processing, hassle-free operations, and an extremely clever data reliability
model. Though it was written in Java, it included some documentation and examples
for making other languages, like Python, play nicely with the framework. So, with much
glee, “PTrack9000!” (exclamation point required) was born: a new Parse.ly analytics
backend powered by Storm.

 Nathan Marz, Storm’s original creator, spent some time cultivating the community
via conferences, blog posts, and user forums.2 But in those early days of the project,
you had to scrape tiny morsels of Storm knowledge from the vast web.

 Oh, how I wish Storm Applied, the book you’re currently reading, had already been
written in 2011. Although Storm’s documentation on its design rationale was very
strong, there were no practical guides on making use of Storm (especially in a produc-
tion setting) when we adopted it. Frustratingly, despite a surge of popularity over the
next three years, there were still no good books on the subject through the end of 2014!

 No one had put in the significant effort required to detail how Storm components
worked, how Storm code should be written, how to tune topology performance, and
how to operate these clusters in the real world. That is, until now. Sean, Matthew,
and Peter decided to write Storm Applied by leveraging their hard-earned production
experience at TheLadders, and it shows. This will, no doubt, become the definitive
practitioner’s guide for Storm users everywhere.

 Through their clear prose, illuminating diagrams, and practical code examples,
you’ll gain as much Storm knowledge in a few short days as it took my team several
years to acquire. You will save yourself many stressful firefights, head-scratching
moments, and painful code re-architectures.

 I’m convinced that with the newfound understanding provided by this book, the
next time a colleague turns to you and says, “Backend rewrites are always hard,” you’ll
be able to respond with confidence: “Not this time.”

 Happy hacking!

ANDREW MONTALENTI

COFOUNDER & CTO, PARSE.LY3

CREATOR OF STREAMPARSE, A PYTHON PACKAGE FOR STORM4

2 Nathan Marz wrote this blog post about his early efforts at evangelizing the project in “History of Apache Storm
and lessons learned” (2014): http://nathanmarz.com/blog/history-of-apache-storm-and-lessons-learned.html.

3 Parse.ly’s web analytics system for digital storytellers is powered by Storm: http://parse.ly.
4 To use Storm with Python, you can find the streamparse project on Github: https://github.com/Parsely/

streamparse.
Licensed to Mark Watson <nordickan@gmail.com>

http://parse.ly
https://github.com/Parsely/streamparse
https://github.com/Parsely/streamparse
http://nathanmarz.com/blog/history-of-apache-storm-and-lessons-learned.html

preface
At TheLadders, we’ve been using Storm since it was introduced to the world (version
0.5.x). In those early days, we implemented solutions with Storm that supported non-
critical business processes. Our Storm cluster ran uninterrupted for a long time and
“just worked.” Little attention was paid to this cluster, as it never really had any prob-
lems. It wasn’t until we started identifying more business cases where Storm was a
good fit that we started to experience problems. Contention for resources in produc-
tion, not having a great understanding of how things were working under the covers,
sub-optimal performance, and a lack of visibility into the overall health of the system
were all issues we struggled with.

 This prompted us to focus a lot of time and effort on learning much of what we
present in this book. We started with gaining a solid understanding of the fundamen-
tals of Storm, which included reading (and rereading many times) the existing Storm
documentation, while also digging into the source code. We then identified some
“best practices” for how we liked to design solutions using Storm. We added better
monitoring, which enabled us to troubleshoot and tune our solutions in a much more
efficient manner.

 While the documentation for the fundamentals of Storm was readily available
online, we felt there was a lack of documentation for best practices in terms of dealing
with Storm in a production environment. We wrote a couple of blog posts based on
our experiences with Storm, and when Manning asked us to write a book about
Storm, we jumped at the opportunity. We knew we had a lot of knowledge we wanted
xv

Licensed to Mark Watson <nordickan@gmail.com>

PREFACExvi
to share with the world. We hoped to help others avoid the frustrations and pitfalls we
had gone through.

 While we knew that we wanted to share our hard-won experiences with running a
production Storm cluster—tuning, debugging, and troubleshooting—what we really
wanted was to impart a solid grasp of the fundamentals of Storm. We also wanted to
illustrate how flexible Storm is, and how it can be used across a wide range of use
cases. We knew ours were just a small sampling of the many use cases among the many
companies leveraging Storm.

 The result of this is Storm Applied. We’ve tried to identify as many different types of
use cases as possible to illustrate how Storm can be used in many scenarios. We cover
the core concepts of Storm in hopes of laying a solid foundation before diving into
tuning, debugging, and troubleshooting Storm in production. We hope this format
works for everyone, from the beginner just getting started with Storm, to the experi-
enced developer who has run into some of the same troubles we have.

 This book has been the definition of teamwork, from everyone who helped us at
Manning to our colleagues at TheLadders, who very patiently and politely allowed us
to test our ideas early on.

 We hope you are able to find this book useful, no matter your experience level with
Storm. We have enjoyed writing it and continue to learn more about Storm every day.
Licensed to Mark Watson <nordickan@gmail.com>

acknowledgments
We would like to thank all of our coworkers at TheLadders who provided feedback. In
many ways, this is your book. It’s everything we would want to teach you about Storm
to get you creating awesome stuff on our cluster.

 We’d also like to thank everyone at Manning who was a part of the creation of this
book. The team there is amazing, and we’ve learned so much about writing as a result
of their knowledge and hard work. We’d especially like to thank our editor, Dan
Maharry, who was with us from the first chapter to the last, and who got to experience
all our first-time author growing pains, mistakes, and frustrations for months on end.

 Thank you to all of the technical reviewers who invested a good amount of their
personal time in helping to make this book better: Antonios Tsaltas, Eugene Dvorkin,
Gavin Whyte, Gianluca Righetto, Ioamis Polyzos, John Guthrie, Jon Miller, Kasper
Madsen, Lars Francke, Lokesh Kumar, Lorcon Coyle, Mahmoud Alnahlawi, Massimo
Ilario, Michael Noll, Muthusamy Manigandan, Rodrigo Abreau, Romit Singhai, Satish
Devarapalli, Shay Elkin, Sorbo Bagchi, and Tanguy Leroux. We’d like to single out
Michael Rose who consistently provided amazing feedback that led to him becoming
the primary technical reviewer.

 To everyone who has contributed to the creation of Storm: without you, we
wouldn’t have anything to tune all day and write about all night! We enjoy working
with Storm and look forward to the evolution of Storm in the years to come.

 We would like to thank Andrew Montalenti for writing a review of the early man-
uscript in MEAP (Manning Early Access Program) that gave us a good amount of
xvii

Licensed to Mark Watson <nordickan@gmail.com>

ACKNOWLEDGMENTSxviii
inspiration and helped us push through to the end. And that foreword you wrote: pretty
much perfect. We couldn’t have asked for anything more.

 And lastly, Eleanor Roosevelt, whose famously misquoted inspirational words,
“America is all about speed. Hot, nasty, badass speed,” kept us going through the dark
times when we were learning Storm.

 Oh, and all the little people. If there is one thing we’ve learned from watching
awards shows, it’s that you have to thank the little people.

SEAN ALLEN

Thanks to Chas Emerick, for not making the argument forcefully enough that I proba-
bly didn’t want to write a book. If you had made it better, no one would be reading this
now. Stephanie, for telling me to keep going every time that I contemplated quitting.
Kathy Sierra, for a couple of inspiring Twitter conversations that reshaped my thoughts
on how to write a book. Matt Chesler and Doug Grove, without whom chapter 7 would
look rather different. Everyone who came and asked questions during the multiple talks
I did at TheLadders; you helped me to hone the contents of chapter 8. Tom Santero, for
reviewing the finer points of my distributed systems scribbling. And Matt, for doing so
many of the things required for writing a book that I didn’t like doing.

MATTHEW JANKOWSKI

First and foremost, I would like to thank my wife, Megan. You are a constant source of
motivation, have endless patience, and showed unwavering support no matter how
often writing this book took time away from family. Without you, this book wouldn’t
get completed. To my daughter, Rylan, who was born during the writing of this book: I
would like to thank you for being a source of inspiration, even though you may not
realize it yet. To all my family, friends, and coworkers: thank you for your endless sup-
port and advice. Sean and Peter: thank you for agreeing to join me on this journey
when this book was just a glimmer of an idea. It has indeed been a long journey, but a
rewarding one at that.
Licensed to Mark Watson <nordickan@gmail.com>

about this book
With big data applications becoming more and more popular, tools for handling
streams of data in real time are becoming more important. Apache Storm is a tool
that can be used for processing unbounded streams of data.

 Storm Applied isn’t necessarily a book for beginners only or for experts only.
Although understanding big data technologies and distributed systems certainly
helps, we don’t necessarily see these as requirements for readers of this book. We try
to cater to both the novice and expert. The initial goal was to present some “best prac-
tices” for dealing with Storm in a production environment. But in order to truly
understand how to deal with Storm in production, a solid understanding of the funda-
mentals is necessary. So this book contains material we feel is valuable for engineers
with all levels of experience.

 If you are new to Storm, we suggest starting with chapter 1 and reading through
chapter 4 before you do anything else. These chapters lay the foundation for under-
standing the concepts in the chapters that follow. If you are experienced with Storm,
we hope the content in the later chapters proves useful. After all, developing solutions
with Storm is only the start. Maintaining these solutions in a production environment
is where we spend a good percentage of our time with Storm.

 Another goal of this book is to illustrate how Storm can be used across a wide
range of use cases. We’ve carefully crafted these use cases to illustrate certain points.
We hope the contrived nature of some of the use cases doesn’t get in the way of the
points we are trying to make. We attempted to choose use cases with varying levels of
xix

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

ABOUT THIS BOOKxx
requirements around speed and reliability in the hopes that at least one of these cases
may be relatable to a situation you have with Storm.

 The goal of this book is to focus on Storm and how it works. We realize Storm can
be used with many different technologies: various message queue implementations,
database implementations, and so on. We were careful when choosing what technolo-
gies to introduce in each of our use case implementations. We didn’t want to intro-
duce too many, which would take the focus away from Storm and what we are trying to
teach you with Storm. As a result, you will see that each implementation uses Java. We
could have easily used a different language for each use case, but again, we felt this
would take away from the core lessons we’re trying to teach. (We actually use Scala for
many of the topologies we write.)

Roadmap
Chapter 1 introduces big data and where Storm falls within the big data picture. The
goal of this chapter is to provide you with an idea of when and why you would want to
use Storm. This chapter identifies some key properties of big data applications, the
various types of tools used to process big data, and where Storm falls within the gamut
of these tools.

 Chapter 2 covers the core concepts in Storm within the context of a use case for
counting commits made to a GitHub repository. This chapter lays the foundation for
being able to speak in Storm-specific terminology. In this chapter we introduce you to
your first bit of code for building Storm projects. The concepts introduced in this
chapter will be referenced throughout the book.

 Chapter 3 covers best practices for designing Storm topologies, showing you how
to decompose a problem to fit Storm constructs within the context of a social heat
map application. This chapter also discusses working with unreliable data sources and
external services. In this chapter we introduce the first bits of parallelism that will be
the core topic of later chapters. This chapter concludes with a higher-level discussion
of the different ways to approach topology design.

 Chapter 4 discusses Storm’s ability to guarantee messages are processed within the
context of a credit card authorization system. We identify how Storm is able to provide
these guarantees, while implementing a solution that provides varying degrees of reli-
ability. This chapter concludes with a discussion of replay semantics and how you can
achieve varying degrees of reliability in your Storm topologies.

 Chapter 5 covers the Storm cluster in detail. We discuss the various components
of the Storm cluster, how a Storm cluster provides fault tolerance, and how to install
a Storm cluster. We then discuss how to deploy and run your topologies on a Storm
cluster in production. The remainder of the chapter is devoted to explaining the
various parts of the Storm UI, as the Storm UI is frequently referenced in the chap-
ters that follow.

 Chapter 6 presents a repeatable process for tuning a Storm topology within the
context of a flash sales use case. We also discuss latency in dealing with external systems
Licensed to Mark Watson <nordickan@gmail.com>

ABOUT THIS BOOK xxi
and how this can affect your topologies. We end the chapter with a discussion of Storm’s
metrics-collecting API and how to build your own custom metrics.

 Chapter 7 covers various types of contention that may occur in a Storm cluster where
you have many topologies running at once. We discuss contention for resources within a
single topology, contention for system resources between topologies, and contention for
system resources between Storm and other processes, such as the OS. This chapter is
meant to get you to be mindful of the big picture for your Storm cluster.

 Chapter 8 provides you with a deeper understanding of Storm so you can debug
unique problems you may come across on your own. We dive under the covers of one
of Storm’s central units of parallelization, executors. We also discuss many of the inter-
nal buffers Storm uses, how those buffers may overflow, and tuning those buffers. We
end the chapter with a discussion of Storm’s debug log-out.

 Chapter 9 covers Trident, the high-level abstraction that sits on top of Storm,
within the context of developing an internet radio application. We explain why Tri-
dent is useful and when you might want to use it. We compare a regular Storm topol-
ogy with a Trident topology in order to illustrate the difference between the two.
This chapter also touches on Storm’s distributed remote procedure calls (DRPC)
component and how it can be used to query state in a topology. This chapter ends
with a complete Trident topology implementation and how this implementation
might be scaled.

Code downloads and conventions
The source code for the example application in this book can be found at https://
github.com/Storm-Applied. We have provided source code for the following chapters:

■ Chapter 2, GitHub commit count
■ Chapter 3, social heat map
■ Chapter 4, credit card authorization
■ Chapter 6, flash sale recommender
■ Chapter 9, internet radio play-log statistics

Much of the source code is shown in numbered listings. These listings are meant to
provide complete segments of code. Some listings are annotated to help highlight or
explain certain parts of the code. In other places throughout the text, code fragments
are used when necessary. Courier typeface is used to denote code for Java, XML, and
JSON. In both the listings and fragments, we make use of a bold code font to help
identify key parts of the code that are being explained in the text.

Software requirements
The software requirements include the following:

■ The solutions were developed against Storm 0.9.3.
■ All solutions were written in Java 6.
■ The solutions were compiled and packaged with Maven 3.2.0.
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/Storm-Applied
https://github.com/Storm-Applied

ABOUT THIS BOOKxxii
Author Online
Purchase of Storm Applied includes free access to a private web forum run by Manning
Publications where you can make comments about the book, ask technical questions,
and receive help from the authors and other users. To access the forum and sub-
scribe to it, point your web browser to www.manning.com/StormApplied. This Author
Online (AO) page provides information on how to get on the forum once you’re reg-
istered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog among individual readers and between readers and the authors can take place.
It’s not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the AO remains voluntary (and unpaid). We suggest
you try asking the authors some challenging questions, lest their interest stray!

 The AO forum and the archives of previous discussions will be accessible from the
publisher’s website as long as the book is in print.
Licensed to Mark Watson <nordickan@gmail.com>

www.manning.com/StormApplied

about the cover illustration
The figure on the cover of Storm Applied is captioned “Man from Konavle, Dalmatia,
Croatia.” The illustration is taken from a reproduction of an album of traditional Cro-
atian costumes from the mid-nineteenth century by Nikola Arsenovic, published by
the Ethnographic Museum in Split, Croatia, in 2003. The illustrations were obtained
from a helpful librarian at the Ethnographic Museum in Split, itself situated in the
Roman core of the medieval center of the town: the ruins of Emperor Diocletian’s
retirement palace from around AD 304. The book includes finely colored illustrations
of figures from different regions of Croatia, accompanied by descriptions of the cos-
tumes and of everyday life.

 Konavle is a small region located southeast of Dubrovnik, Croatia. It is a narrow
strip of land picturesquely tucked in between Snijeznica Mountain and the Adriatic
Sea, on the border with Montenegro. The figure on the cover is carrying a musket on
his back and has a pistol, dagger, and scabbard tucked into his wide colorful belt.
From his vigilant posture and the fierce look on his face, it would seem that he is
guarding the border or on the lookout for poachers. The most interesting parts of his
costume are the bright red socks decorated with an intricate black design, which is
typical for this region of Dalmatia.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by
region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants
of different continents, let alone of different hamlets or towns separated by only a few
miles. Perhaps we have traded cultural diversity for a more varied personal life—cer-
tainly for a more varied and fast-paced technological life.
xxiii

Licensed to Mark Watson <nordickan@gmail.com>

ABOUT THE COVER ILLUSTRATIONxxiv
 Manning celebrates the inventiveness and initiative of the computer business with
book covers based on the rich diversity of regional life of two centuries ago, brought
back to life by illustrations from old books and collections like this one.
Licensed to Mark Watson <nordickan@gmail.com>

Introducing Storm
Apache Storm is a distributed, real-time computational framework that makes pro-
cessing unbounded streams of data easy. Storm can be integrated with your existing
queuing and persistence technologies, consuming streams of data and processing/
transforming these streams in many ways.

 Still following us? Some of you are probably feeling smart because you know
what that means. Others are searching for the proper animated GIF to express your
level of frustration. There’s a lot in that description, so if you don’t grasp what all of
it means right now, don’t worry. We’ve devoted the remainder of this chapter to
clarifying exactly what we mean.

 To appreciate what Storm is and when it should be used, you need to under-
stand where Storm falls within the big data landscape. What technologies can it be

This chapter covers
■ What Storm is
■ The definition of big data
■ Big data tools
■ How Storm fits into the big data picture
■ Reasons for using Storm
1

Licensed to Mark Watson <nordickan@gmail.com>

2 CHAPTER 1 Introducing Storm
used with? What technologies can it replace? Being able to answer questions like these
requires some context.

1.1 What is big data?
To talk about big data and where Storm fits within the big data landscape, we need to
have a shared understanding of what “big data” means. There are a lot of definitions
of big data floating around. Each has its own unique take. Here’s ours.

1.1.1 The four Vs of big data

Big data is best understood by considering four different properties: volume, velocity,
variety, and veracity.1

VOLUME

Volume is the most obvious property of big data—and the first that comes to most peo-
ple’s minds when they hear the term. Data is constantly being generated every day from
a multitude of sources: data generated by people via social media, data generated by
software itself (website tracking, application logs, and so on), and user-generated data,
such as Wikipedia, only scratch the surface of sources of data.

 When people think volume, companies such as Google, Facebook, and Twitter come
to mind. Sure, all deal with enormous amounts of data, and we’re certain you can name
others, but what about companies that don’t have that volume of data? There are many
other companies that, by definition of volume alone, don’t have big data, yet these com-
panies use Storm. Why? This is where the second V, velocity, comes into play.

VELOCITY

Velocity deals with the pace at which data flows into a system, both in terms of the
amount of data and the fact that it’s a continuous flow of data. The amount of data
(maybe just a series of links on your website that a visitor is clicking on) might be rela-
tively small, but the rate at which it’s flowing into your system could be rather high.
Velocity matters. It doesn’t matter how much data you have if you aren’t processing it
fast enough to provide value. It could be a couple terabytes; it could be 5 million URLs
making up a much smaller volume of data. All that matters is whether you can extract
meaning from this data before it goes stale.

 So far we have volume and velocity, which deal with the amount of data and the
pace at which it flows into a system. In many cases, data will also come from multiple
sources, which leads us to the next V: variety.

VARIETY

For variety, let’s step back and look at extracting meaning from data. Often, that can
involve taking data from several sources and putting them together into something
that tells a story. When you start, though, you might have some data in Google Ana-
lytics, maybe some in an append-only log, and perhaps some more in a relational
database. You need to bring all of these together and shape them into something

1 http://en.wikipedia.org/wiki/Big_data
Licensed to Mark Watson <nordickan@gmail.com>

http://en.wikipedia.org/wiki/Big_data

3What is big data?
you can work with to drill down and extract meaningful answers from questions such
as the following:

Q: Who are my best customers?
A: Coyotes in New Mexico.
Q: What do they usually purchase?
A: Some paint but mostly large heavy items.
Q: Can I look at each of these customers individually and find items others have liked and

market those items to them?
A: That depends on how quickly you can turn your variety of data into something you can

use and operate on.

As if we didn’t have enough to worry about with large volumes of data entering our
system at a quick pace from a variety of sources, we also have to worry about how accu-
rate that data entering our system is. The final V deals with this: veracity.

VERACITY

Veracity involves the accuracy of incoming and outgoing data. Sometimes, we need
our data to be extremely accurate. Other times, a “close enough” estimate is all we need.
Many algorithms that allow for high fidelity estimates while maintaining low computa-
tional demands (like hyperloglog) are often used with big data. For example, deter-
mining the exact mean page view time for a hugely successful website is probably
not required; a close-enough estimate will do. These trade-offs between accuracy and
resources are common features of big data systems.

 With the properties of volume, velocity, variety, and veracity defined, we’ve estab-
lished some general boundaries around what big data is. Our next step is to explore
the various types of tools available for processing data within these boundaries.

1.1.2 Big data tools

Many tools exist that address the various characteristics of big data (volume, velocity,
variety, and veracity). Within a given big data ecosystem, different tools can be used in
isolation or together for different purposes:

■ Data processing—These tools are used to perform some form of calculation and
extract intelligence out of a data set.

■ Data transfer—These tools are used to gather and ingest data into the data pro-
cessing systems (or transfer data in between different components of the sys-
tem). They come in many forms but most common is a message bus (or a queue).
Examples include Kafka, Flume, Scribe, and Scoop.

■ Data storage—These tools are used to store the data sets during various stages of
processing. They may include distributed filesystems such as Hadoop Distributed
File System (HDFS) or GlusterFS as well as NoSQL data stores such as Cassandra.

We’re going to focus on data processing tools because Storm is a data-processing tool.
To understand Storm, you need to understand a variety of data-processing tools. They
Licensed to Mark Watson <nordickan@gmail.com>

4 CHAPTER 1 Introducing Storm
fall into two primary classes: batch processing and stream processing. More recently, a
hybrid between the two has emerged: micro-batch processing within a stream.

BATCH PROCESSING

Consider for a moment a single datum: a unique click on a website. Now imagine hun-
dreds of thousands of other clicks that are happening over the same time period. All
of those clicks together form a batch—a collection of data points to be processed
together. Figure 1.1 provides an overview of how data flows into a batch-oriented tool.

 Processing a website’s log files to extract information about the behavior of visitors
is an excellent example of a batch-processing problem. We have a fixed pool of data
that we will process to get a result. What’s important to note here is that the tool acts
on a batch of data. That batch could be a small segment of data, or it could be the
entire data set. When working on a batch of data, you have the ability to derive a big
picture overview of that entire batch instead of a single data point. The earlier exam-
ple of learning about visitor behavior can’t be done on a single data point basis; you
need to have some context based on the other data points (that is, other URLs vis-
ited). In other words, batch processing allows you to join, merge, or aggregate differ-
ent data points together. This is why batch processing is quite often used for machine
learning algorithms.

 Another characteristic of a batch process is that its results are usually not available
until the entire batch has completed processing. The results for earlier data points
don’t become available until the entire process is done. The larger your batch, the
more merging, aggregating, and joining you can do, but this comes at a cost. The
larger your batch, the longer you have to wait to get useful information from it. If
immediacy of answers is important, stream processing might be a better solution.

STREAM PROCESSING

A stream processor acts on an unbounded stream of data instead of a batch of data
points. Figure 1.2 illustrates how data flows into a stream-processing system.

 A stream processor is continually ingesting new data (a “stream”). The need for
stream processing usually follows a need for immediacy in the availability of results.
This isn’t always the case and is definitely not a mandate for stream processing. That’s
why we have an unbounded stream of data being fed into the stream processor. This

Data

store

Batches of data

Data coming into

the system in the form

of user-generated events,

system-generated events,

log events, and so on.

Data is stored

for processing at

a later time.

Data is processed on a scheduled

basis in batches. These batches

can be quite large.

Batch

processor

Result of

computations

Figure 1.1 A batch processor and how data flows into it
Licensed to Mark Watson <nordickan@gmail.com>

5What is big data?
stream of data is usually directed from its origin by way of a message bus into the
stream processor so that results can be obtained while the data is still hot, so to speak.
Unlike a batch process, there’s no well-defined beginning or end to the data points
flowing through this stream; it’s continuous.

 These systems achieve that immediacy by working on a single data point at a time.
Numerous data points are flowing through the stream, and when you work on one data
point at a time and you’re doing it in parallel, it’s quite easy to achieve sub-second-level
latency in between the data being created and the results being available. Think of
doing sentiment analysis on a stream of tweets. To achieve that, you don’t need to join
or relate any incoming tweet with other tweets occurring at the same time, so you can
work on a single tweet at a time. Sure, you may need some contextual data by way of a
training set that’s created using historical tweets. But because this training set doesn’t
need to be made up of current tweets as they’re happening, expensive aggregations
with current data can be avoided and you can continue operating on a single tweet at
a time. So in a stream-processing application, unlike a batch system, you’ll have results
available per data point as each completes processing.

 But stream processing isn’t limited to working on one data point at a time. One of
the most well-known examples of this is Twitter’s “trending topics.” Trending topics
are calculated over a sliding window of time by considering the tweets within each win-
dow of time. Trends can be observed by comparing the top subjects of tweets from the
current window to the previous windows. Obviously, this adds a level of latency over
working on a single data point at a time due to working over a batch of tweets within a
time frame (because each tweet can’t be considered as completed processing until the
time window it falls into elapses). Similarly, other forms of buffering, joins, merges, or
aggregations may add latency during stream processing. There’s always a trade-off
between the introduced latency and the achievable accuracy in this kind of aggrega-
tion. A larger time window (or more data in a join, merge, or aggregate operation)
may determine the accuracy of the results in certain algorithms—at the cost of
latency. Usually in streaming systems, we stay within processing latencies of millisec-
onds, seconds, or a matter of minutes at most. Use cases that go beyond that are more
suitable for batch processing.

 We just considered two use cases for tweets with streaming systems. The amount of
data in the form of tweets flowing through Twitter’s system is immense, and Twitter

Data is processed in

real time as it enters

the system. Each

event is processed

individually.

Stream

processor

Result of

computations

Data coming into

the system in the form

of user-generated events,

system-generated events,

log events, and so on.

Figure 1.2 A stream
processor and how data
flows into it
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

6 CHAPTER 1 Introducing Storm
needs to be able to tell users what everyone in their area is talking about right now.
Think about that for a moment. Not only does Twitter have the requirement of oper-
ating at high volume, but it also needs to operate with high velocity (that is, low
latency). Twitter has a massive, never-ending stream of tweets coming in and it must
be able to extract, in real time, what people are talking about. That’s a serious feat
of engineering. In fact, chapter 3 is built around a use case that’s similar to this idea of
trending topics.

MICRO-BATCH PROCESSING WITHIN A STREAM

Tools have emerged in the last couple of years built just for use with examples like
trending topics. These micro-batching tools are similar to stream-processing tools in
that they both work with an unbounded stream of data. But unlike a stream proces-
sor that allows you access to every data point within it, a micro-batch processor
groups the incoming data into batches in some fashion and gives you a batch at a
time. This approach makes micro-batching frameworks unsuitable for working on
single-data-point-at-a-time kinds of problems. You’re also giving up the associated
super-low latency in processing one data point at a time. But they make working
with batches of data within a stream a bit easier.

1.2 How Storm fits into the big data picture
So where does Storm fit within all of this? Going back to our original definition, we
said this:

Storm is a distributed, real-time computational framework that makes
processing unbounded streams of data easy.

Storm is a stream-processing tool, plain and simple. It’ll run indefinitely, listening to a
stream of data and doing “something” any time it receives data from the stream.
Storm is also a distributed system; it allows machines to be easily added in order to
process as much data in real-time as we can. In addition, Storm comes with a frame-
work called Trident that lets you perform micro-batching within a stream.

What is real-time?
When we use the term real-time throughout this book, what exactly do we mean?
Well, technically speaking, near real-time is more accurate. In software systems,
real-time constraints are defined to set operational deadlines for how long it takes
a system to respond to a particular event. Normally, this latency is along the order
of milliseconds (or at least sub-second level), with no perceivable delay to the end
user. Within the context of Storm, both real-time (sub-second level) and near real-
time (a matter of seconds or few minutes depending on the use case) latencies
are possible.
Licensed to Mark Watson <nordickan@gmail.com>

7How Storm fits into the big data picture
And what about the second sentence in our initial definition?

Storm can be integrated with your existing queuing and persistence
technologies, consuming streams of data and processing/transforming
these streams in many ways.

As we’ll show you throughout the book, Storm is extremely flexible in that the source
of a stream can be anything—usually this means a queuing system, but Storm doesn’t
put limits on where your stream comes from (we’ll use Kafka and RabbitMQ for sev-
eral of our use cases). The same thing goes for the result of a stream transformation
produced by Storm. We’ve seen many cases where the result is persisted to a database
somewhere for later access. But the result may also be pushed onto a separate queue
for another system (maybe even another Storm topology) to process.

 The point is that you can plug Storm into your existing architecture, and this book
will provide use cases illustrating how you can do so. Figure 1.3 shows a hypothetical
scenario for analyzing a stream of tweets.

 This high-level hypothetical solution is exactly that: hypothetical. We wanted to
show you where Storm could fall within a system and how the coexistence of batch-
and stream-processing tools is possible.

 What about the different technologies that can be used with Storm? Figure 1.4 sheds
some light on this question. The figure shows a small sampling of some of the technolo-
gies that can be used in this architecture. It illustrates how flexible Storm is in terms of
the technologies it can work with as well as where it can be plugged into a system.

 For our queuing system, we could choose from a number of technologies, includ-
ing Kafka, Kestrel, and RabbitMQ. The same thing goes for our database choice:
Redis, Cassandra, Riak, and MySQL only scratch the surface in terms of options. And
look at that—we’ve even managed to include a Hadoop cluster in our solution for per-
forming the required batch computation for our “Top Daily Topics” report.

Database

Incoming tweets

Live stream of tweets

coming into the system

from an external feed. A Storm

cluster is listening to this feed,

performing two actions on

each tweet.

The contents of each

tweet are persisted to

a database for later

processing.

A nightly batch process reads each day’s

tweets from the database and produces

a daily topics report that doesn’t have the

same strict, time-sensitive requirements

as the trending topics report.

A time-sensitive trending topics

report is kept up-to-date based on the

contents of each processed tweet.

Nightly

batch

process

Real-time

trending

topics

Top daily

topics

Storm

cluster

Figure 1.3 Example of how Storm may be used within a system
Licensed to Mark Watson <nordickan@gmail.com>

8 CHAPTER 1 Introducing Storm
Hopefully you’re starting to gain a clearer understanding of where Storm fits and
what it can be used with. A wide range of technologies, including Hadoop, can work
with Storm within a system. Wait, did we just tell you Storm can work with Hadoop?

1.2.1 Storm vs. the usual suspects
In many conversations between engineers, Storm and Hadoop often come up in the
same sentence. Instead of starting with the tools, we’ll begin with the kind of problems
you’ll likely encounter and show you the tools that fit best by considering each tool’s
characteristics. Most likely you’ll end up picking more than one, because no single
tool is appropriate for all problems. In fact, tools might even be used in conjunction
given the right circumstances.

 The following descriptions of the various big data tools and the comparison with
Storm are intended to draw attention to some of the ways in which they’re uniquely dif-
ferent from Storm. But don’t use this information alone to pick one tool over another.

APACHE HADOOP

Hadoop used to be synonymous with batch-processing systems. But with the release of
Hadoop v2, it’s more than a batch-processing system—it’s a platform for big data
applications. Its batch-processing component is called Hadoop MapReduce. It also
comes with a job scheduler and cluster resource manager called YARN. The other
main component is the Hadoop distributed filesystem, HDFS. Many other big data
tools are being built that take advantage of YARN for managing the cluster and HDFS
as a data storage back end. In the remainder of this book, whenever we refer to
Hadoop we’re talking about its MapReduce component, and we’ll refer to YARN and
HDFS explicitly.

 Figure 1.5 shows how data is fed into Hadoop for batch processing. The data store
is the distributed filesystem, HDFS. Once the batches of data related to the problem
at hand are identified, the MapReduce process runs over each batch. When a Map-
Reduce process runs, it moves the code over to the nodes where the data resides. This
is usually a characteristic needed for batch jobs. Batch jobs are known to work on very

Database

Incoming tweets

There are many options for queuing

technologies the Storm cluster can

integrate with for handling tweets.

Technologies such as Kafka, Kestrel,

and are a few thatRabbitMQ

come to mind.

Any type of Database

can be used. NoSQL stores

such as andRedis, Cassandra,

Riak may fit. A relational store such

as may also be appropriate.MySQL

Hadoop feels like the

perfect choice for handling

batch-processing needs.

Real-time

trending

topics

Top daily

topics

Storm

cluster

Nightly

batch

process

Figure 1.4 How Storm can be used with other technologies
Licensed to Mark Watson <nordickan@gmail.com>

9How Storm fits into the big data picture
large data sets (from terabytes to petabytes isn’t unheard of), and in those cases, it’s
easier to move the code over to the data nodes within the distributed filesystem and
execute the code on those nodes, and thus achieve substantial scale in efficiency
thanks to that data locality.

STORM

Storm, as a general framework for doing real-time computation, allows you to run
incremental functions over data in a fashion that Hadoop can’t. Figure 1.6 shows how
data is fed into Storm.

 Storm falls into the stream-processing tool category that we discussed earlier. It
maintains all the characteristics of that category, including low latency and fast pro-
cessing. In fact, it doesn’t get any speedier than this.

 Whereas Hadoop moves the code to the data, Storm moves the data to the code.
This behavior makes more sense in a stream-processing system, because the data set
isn’t known beforehand, unlike in a batch job. Also, the data set is continuously flow-
ing through the code.

 Additionally, Storm provides invaluable, guaranteed message processing with a
well-defined framework of what to do when failures occur. Storm comes with its own
cluster resource management system, but there has been unofficial work by Yahoo to
get Storm running on Hadoop v2’s YARN resource manager so that resources can be
shared with a Hadoop cluster.

APACHE SPARK

Spark falls into the same line of batch-processing tools as Hadoop MapReduce. It also
runs on Hadoop’s YARN resource manager. What’s interesting about Spark is that it

HadoopData

store

Batches of data

Data coming into

the system in the form

of user-generated events,

system-generated events,

log events, and so on.

Data is stored

for processing at

a later time.

Data is processed on a scheduled

basis in batches. These batches

can be quite large.

Result of

computations

Figure 1.5 Hadoop and how data flows into it

Storm

Data is processed in

real time as it enters

the system. Each

event is processed

individually.

Result of

computations

Data coming into

the system in the form

of user-generated events,

system-generated events,

log events, and so on.

Figure 1.6 Storm and how
data flows into it
Licensed to Mark Watson <nordickan@gmail.com>

10 CHAPTER 1 Introducing Storm
allows caching of intermediate (or final) results in memory (with overflow to disk as
needed). This ability can be highly useful for processes that run repeatedly over the
same data sets and can make use of the previous calculations in an algorithmically
meaningful manner.

SPARK STREAMING

Spark Streaming works an unbounded stream of data like Storm does. But it’s different
from Storm in the sense that Spark Streaming doesn’t belong in the stream-processing
category of tools we discussed earlier; instead, it falls into the micro-batch-processing
tools category. Spark Streaming is built on top of Spark, and it needs to represent the
incoming flow of data within a stream as a batch in order to operate. In this sense, it’s
comparable to Storm’s Trident framework rather than Storm itself. So Spark Streaming
won’t be able to support the low latencies supported by the one-at-a-time semantics of
Storm, but it should be comparable to Trident in terms of performance.

 Spark’s caching mechanism is also available with Spark Streaming. If you need
caching, you’ll have to maintain your own in-memory caches within your Storm com-
ponents (which isn’t hard at all and is quite common), but Storm doesn’t provide any
built-in support for doing so.

APACHE SAMZA

Samza is a young stream-processing system from the team at LinkedIn that can be
directly compared with Storm. Yet you’ll notice some differences. Whereas Storm and
Spark/Spark Streaming can run under their own resource managers as well as under
YARN, Samza is built to run on the YARN system specifically.

 Samza has a parallelism model that’s simple and easy to reason about; Storm has a
parallelism model that lets you fine-tune the parallelism at a much more granular
level. In Samza, each step in the workflow of your job is an independent entity, and
you connect each of those entities using Kafka. In Storm, all the steps are connected
by an internal system (usually Netty or ZeroMQ), resulting in much lower latency.
Samza has the advantage of having a Kafka queue in between that can act as a check-
point as well as allow multiple independent consumers access to that queue.

 As we alluded to earlier, it’s not just about making trade-offs between these vari-
ous tools and choosing one. Most likely, you can use a batch-processing tool along
with a stream-processing tool. In fact, using a batch-oriented system with a stream-
oriented one is the subject of Big Data (Manning, 2015) by Nathan Marz, the origi-
nal author of Storm.

1.3 Why you’d want to use Storm
Now that we’ve explained where Storm fits in the big data landscape, let’s discuss why
you’d want to use Storm. As we’ll demonstrate throughout this book, Storm has fun-
damental properties that make it an attractive option:

■ It can be applied to a wide variety of use cases.
■ It works well with a multitude of technologies.
Licensed to Mark Watson <nordickan@gmail.com>

11Summary
■ It’s scalable. Storm makes it easy to break down work over a series of threads, over
a series of JVMs, or over a series of machines—all this without having to change
your code to scale in that fashion (you only change some configuration).

■ It guarantees that it will process every piece of input you give it at least once.
■ It’s very robust—you might even call it fault-tolerant. There are four major com-

ponents within Storm, and at various times, we’ve had to kill off any of the four
while continuing to process data.

■ It’s programming-language agnostic. If you can run it on the JVM, you can run it
easily on Storm. Even if you can’t run it on the JVM, if you can call it from a *nix
command line, you can probably use it with Storm (although in this book, we’ll
confine ourselves to the JVM and specifically to Java).

We think you’ll agree that sounds impressive. Storm has become our go-to toolkit not
just for scaling, but also for fault tolerance and guaranteed message processing. We
have a variety of Storm topologies (a chunk of Storm code that performs a given task)
that could easily run as a Python script on a single machine. But if that script crashes,
it doesn’t compare to Storm in terms of recoverability; Storm will restart and pick up
work from our point of crash. No 3 a.m. pager-duty alerts, no 9 a.m. explanations to
the VP of engineering why something died. One of the great things about Storm is you
come for the fault tolerance and stay for the easy scaling.

 Armed with this knowledge, you can now move on to the core concepts in Storm.
A good grasp of these concepts will serve as the foundation for everything else we dis-
cuss in this book.

1.4 Summary
In this chapter, you learned that

■ Storm is a stream-processing tool that runs indefinitely, listening to a stream of
data and performing some type of processing on that stream of data. Storm can
be integrated with many existing technologies, making it a viable solution for
many stream-processing needs.

■ Big data is best defined by thinking of it in terms of its four main properties: vol-
ume (amount of data), velocity (speed of data flowing into a system), variety
(different types of data), and veracity (accuracy of the data).

■ There are three main types of tools for processing big data: batch processing,
stream processing, and micro-batch processing within a stream.

■ Some of the benefits of Storm include its scalability, its ability to process each
message at least once, its robustness, and its ability to be developed with any
programming language.
Licensed to Mark Watson <nordickan@gmail.com>

Core Storm concepts
The core concepts in Storm are simple once you understand them, but this under-
standing can be hard to come by. Encountering a description of “executors” and
“tasks” on your first day can be hard to understand. There are just too many concepts
you need to hold in your head at one time. In this book, we’ll introduce concepts in a
progressive fashion and try to minimize the number of concepts you need to think
about at one time. This approach will often mean that an explanation isn’t entirely
“true,” but it’ll be accurate enough at that point in your journey. As you slowly pick
up on different pieces of the puzzle, we’ll point out where our earlier definitions can
be expanded on.

2.1 Problem definition: GitHub commit count dashboard
Let’s begin by doing work in a domain that should be familiar: source control in
GitHub. Most developers are familiar with GitHub, having used it for a personal
project, for work, or for interacting with other open source projects.

 Let’s say we want to implement a dashboard that shows a running count of the most
active developers against any repository. This count has some real-time requirements

This chapter covers
■ Core Storm concepts and terminology
■ Basic code for your first Storm project
12

Licensed to Mark Watson <nordickan@gmail.com>

13Problem definition: GitHub commit count dashboard
in that it must be updated immediately after any change is made to the repository. The
dashboard being requested by GitHub may look something like figure 2.1.

 The dashboard is quite simple. It contains a listing of the email of every developer
who has made a commit to the repository along with a running total of the number of
commits each has made. Before we dive into how we’d design a solution with Storm,
let’s break down the problem a bit further in terms of the data that’ll be used.

2.1.1 Data: starting and ending points

For our scenario, we’ll say GitHub provides a live feed of commits being made to any
repository. Each commit comes into the feed as a single string that contains the commit
ID, followed by a space, followed by the email of the developer who made the commit.
The following listing shows a sampling of 10 individual commits in the feed.

b20ea50 nathan@example.com
064874b andy@example.com
28e4f8e andy@example.com
9a3e07f andy@example.com
cbb9cd1 nathan@example.com
0f663d2 jackson@example.com
0a4b984 nathan@example.com
1915ca4 derek@example.com

This feed gives us a starting point for our data. We’ll need to go from this live feed to a
UI displaying a running count of commits per email address. For the sake of simplicity,
let’s say all we need to do is maintain an in-memory map with email address as the key
and number of commits as the value. The map may look something like this in code:

Map<String, Integer> countsByEmail = new HashMap<String, Integer>();

Listing 2.1 Sample commit data for the GitHub commit feed

Figure 2.1 Mock-up of dashboard for a running count of changes made to a repository
Licensed to Mark Watson <nordickan@gmail.com>

14 CHAPTER 2 Core Storm concepts
Now that we’ve defined the data, the next step is to define the steps we need to take to
make sure our in-memory map correctly reflects the commit data.

2.1.2 Breaking down the problem

We know we want to go from a feed of commit messages to an in-memory map of
emails/commit counts, but we haven’t defined how to get there. At this point,
breaking down the problem into a series of smaller steps helps. We define these
steps in terms of components that accept input, perform a calculation on that input,
and produce some output. The steps should provide a way to get from our starting
point to our desired ending point. We’ve come up with the following components
for this problem:

1 A component that reads from the live feed of commits and produces a single
commit message

2 A component that accepts a single commit message, extracts the developer’s
email from that commit, and produces an email

3 A component that accepts the developer’s email and updates an in-memory
map where the key is the email and the value is the number of commits for
that email

In this chapter we break down the problem into
several components. In the next chapter, we’ll
go over how to think about mapping a problem
onto the Storm domain in much greater detail.
But before we get ahead of ourselves, take a
look at figure 2.2, which illustrates the compo-
nents, the input they accept, and the output
they produce.

 Figure 2.2 shows our basic solution for going
from a live feed of commits to something that
stores the commit counts for each email. We
have three components, each with a singular
purpose. Now that we have a well-formed idea of
how we want to solve this problem, let’s frame
our solution within the context of Storm.

2.2 Basic Storm concepts

To help you understand the core concepts in
Storm, we’ll go over the common terminology
used in Storm. We’ll do this within the context
of our sample design. Let’s begin with the most
basic component in Storm: the topology.

Read

commits

from

feed

Extract

email

from

commit

Update

email

count

"064874b nathan@example.com"

"064874b nathan@example.com"

"nathan@example.com"

Figure 2.2 The commit count problem
broken down into a series of steps with
defined inputs and outputs
Licensed to Mark Watson <nordickan@gmail.com>

15Basic Storm concepts
2.2.1 Topology

Let’s take a step back from our example in order to understand what a topology is.
Think of a simple linear graph with some nodes connected by directed edges. Now
imagine that each one of those nodes represents a single process or computation and
each edge represents the result of one computation being passed as input to the next
computation. Figure 2.3 illustrates this more clearly.

 A Storm topology is a graph of computation where the nodes represent some indi-
vidual computations and the edges represent the data being passed between nodes.
We then feed data into this graph of computation in order to achieve some goal. What
does this mean exactly? Let’s go back to our dashboard example to show you what
we’re talking about.

 Looking at the modular breakdown of our problem, we’re able to identify each of
the components from our definition of a topology. Figure 2.4 illustrates this correla-
tion; there’s a lot to take in here, so take your time.

 Each concept we mentioned in the definition of a topology can be found in our
design. The actual topology consists of the nodes and edges. This topology is then
driven by the continuous live feed of commits. Our design fits quite well within the
framework of Storm. Now that you understand what a topology is, we’ll dive into
the individual components that make up a topology.

2.2.2 Tuple

The nodes in our topology send data between one another in the form of tuples. A
tuple is an ordered list of values, where each value is assigned a name. A node can
create and then (optionally) send tuples to any number of nodes in the graph.
The process of sending a tuple to be handled by any number of nodes is called
emitting a tuple.

 It’s important to note that just because each value in a tuple has a name, doesn’t
mean a tuple is a list of name-value pairs. A list of name-value pairs implies there may
be a map behind the scenes and that the name is actually a part of the tuple. Neither
of these statements is true. A tuple is an ordered list of values and Storm provides
mechanisms for assigning names to the values within this list; we’ll get into how these
names are assigned later in this chapter.

Computation

Result of

computation
Computation

Result of

computation
Computation

Figure 2.3 A topology is a graph with nodes representing computations and
edges representing results of computations.
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

16 CHAPTER 2 Core Storm concepts
Read

commits

from

feed

Extract
email

from

commit

Our original modular design.

How does this break down into

a withgraph of computation

nodes edgesand driven

by a ?data feed

The data feed

is the live feed

of commits.

Update

email

count

"064874b nathan@example.com"

Read

commits

from

feed

Extract

email

from

commit

Update

email

count

"064874b nathan@example.com"

1 2

The edges

represent data in

the graph being

passed between

the nodes.

The performingnodes

computation are the

simple modules.

"064874b nathan@example.com"

"nathan@example.com"

"064874b nathan@example.com"

"nathan@example.com"

Read

commits

from

feed

Extract

email

from

commit

Update

email

count

"064874b nathan@example.com"

Read

commits

from

feed

Extract

email

from

commit

Update

email

count

"064874b nathan@example.com"

3 4

"064874b nathan@example.com"

"nathan@example.com"

"064874b nathan@example.com"

"nathan@example.com"

Figure 2.4 Design mapped to the definition of a Storm topology
Licensed to Mark Watson <nordickan@gmail.com>

17Basic Storm concepts
When we display tuples in figures throughout the rest of the book, the names associ-
ated with the values are important, so we’ve settled on a convention that includes both
the name and value (figure 2.5).

 With the standard format for displaying tuples in hand, let’s identify the two types
of tuples in our topology:

■ The commit message containing the commit ID and developer email
■ The developer email

We need to assign each of these a name, so we’ll go with “commit” and “email” for
now (more details on how this is done in code later). Figure 2.6 provides an illustra-
tion of where the tuples are flowing in our topology.

The square brackets indicate

you have a list of values.

The name assigned

to the value. This name

does not actually get passed

along with each tuple.

If there is more than one

value in the tuple, they are

separated by a comma.

The value.

[name1="value1", name="value2"]

Figure 2.5 Format
for displaying tuples
in figures throughout
the book

Read

commits

from

feed

Extract

email

from

commit

Update

email

count

"064874b nathan@example.com"

The being passedtuples

between the nodes in

the graph

[commit="064874b nathan@example.com"]

[email="nathan@example.com"]

Figure 2.6 Two types of
tuples in the topology: one
for the commit message and
another for the email
Licensed to Mark Watson <nordickan@gmail.com>

18 CHAPTER 2 Core Storm concepts
The types of the values within a tuple are dynamic and don’t need to be declared. But
Storm does need to know how to serialize these values so it can send the tuple
between nodes in the topology. Storm already knows how to serialize primitive types
but will require custom serializers for any custom type you define and can fall back to
standard Java serialization when a custom serializer isn’t present.

 We’ll get to the code for all of this soon, but for now the important thing is to
understand the terminology and relationships between concepts. With an understand-
ing of tuples in hand, we can move on to the core abstraction in Storm: the stream.

2.2.3 Stream

According to the Storm wiki, a stream is an
“unbounded sequence of tuples.” This is a great
explanation of what a stream is, with maybe one
addition. A stream is an unbounded sequence of
tuples between two nodes in the topology. A
topology can contain any number of streams.
Other than the very first node in the topology
that reads from the data feed, nodes can accept
one or more streams as input. Nodes will then
normally perform some computation or trans-
formation on the input tuples and emit new
tuples, thus creating a new output stream. These
output streams then act as input streams for other
nodes, and so on.

 There are two streams in our GitHub commit
count topology. The first stream starts with the
node that continuously reads commits from a
feed. This node emits a tuple with the commit to
another node that extracts the email. The sec-
ond stream starts with the node that extracts the
email from the commit. This node transforms its
input stream (containing commits) by emitting
a new stream containing only emails. The result-
ing output stream serves as input into the node that updates the in-memory map. You
can see these streams in figure 2.7.

 Our Storm GitHub scenario is an example of a simple chained stream (multiple
streams chained together).

COMPLEX STREAMS

Streams may not always be as straightforward as those in our topology. Take the exam-
ple in figure 2.8. This figure shows a topology with four different streams. The first
node emits a tuple that’s consumed by two different nodes; this results in two separate
streams. Each of those nodes then emits tuples to their own new output stream.

Read

commits

from

feed

Extract

email

from

commit

Update

email

count

"064874b nathan@example.com"

Stream 1

Stream 2

Figure 2.7 Identifying the two streams
in our topology
Licensed to Mark Watson <nordickan@gmail.com>

19Basic Storm concepts
The combinations are endless with regard to the number of streams that may be cre-
ated, split, and then joined again. The examples later in this book will delve into the
more complex chains of streams and why it’s beneficial to design a topology in such a
way. For now, we’ll continue with our straightforward example and move on to the
source of a stream for a topology.

2.2.4 Spout

A spout is the source of a stream in the topology. Spouts normally read data from an
external data source and emit tuples into the topology. Spouts can listen to message
queues for incoming messages, listen to a database for changes, or listen to any other
source of a feed of data. In our example, the spout is listening to the real-time feed of
commits being made to the Storm repository (figure 2.9).

3

1

2

4 Figure 2.8 Topology
with four streams

Read

commits

from

feed

Extract

email

from

commit

Update

email

count

"064874b nathan@example.com"

The is thespout

source of a stream

in our topology.

[commit="064874b nathan@example.com"]

[email="nathan@example.com"]

Figure 2.9 A spout reads from
the feed of commit messages.
Licensed to Mark Watson <nordickan@gmail.com>

20 CHAPTER 2 Core Storm concepts
Spouts don’t perform any processing; they simply act as a source of streams, reading
from a data source and emitting tuples to the next type of node in a topology: the bolt.

2.2.5 Bolt

Unlike a spout, whose sole purpose is to listen to a stream of data, a bolt accepts a tuple
from its input stream, performs some computation or transformation—filtering,
aggregation, or a join, perhaps—on that tuple, and then optionally emits a new tuple
(or tuples) to its output stream(s).

 The bolts in our example are as follows:

■ A bolt that extracts the developer’s email from the commit—This bolt accepts a tuple
containing a commit with a commit ID and email from its input stream. It trans-
forms that input stream and emits a new tuple containing only the email
address to its output stream.

■ A bolt that updates the map of emails to commit counts—This bolt accepts a tuple
containing an email address from its input stream. Because this bolt updates
an in-memory map and doesn’t emit a new tuple, it doesn’t produce an out-
put stream.

Both of these bolts are shown in figure 2.10.

"064874b nathan@example.com"

These performbolts

computations. Sometimes they

perform a transformation on

their input stream, producing

a new output stream.

Read

commits

from

feed

Extract

email

from

commit

Update

email

count

[commit="064874b nathan@example.com"]

[email="nathan@example.com"]

Figure 2.10 Bolts perform processing on the commit messages and
associated emails within those messages.
Licensed to Mark Watson <nordickan@gmail.com>

21Basic Storm concepts
The bolts in our example are extremely simple. As you move along in the book, you’ll
create bolts that do much more complex transformations, sometimes even reading
from multiple input streams and producing multiple output streams. We’re getting
ahead of ourselves here, though. First you need to understand how bolts and spouts
work in practice.

HOW BOLTS AND SPOUTS WORK UNDER THE COVERS

In figures 2.9 and 2.10, both the spout and bolts were shown as single components.
This is true from a logical standpoint. But when it comes to how spouts and bolts work
in reality, there’s a little more to it. In a running topology, there are normally numer-
ous instances of each type of spout/bolt performing computations in parallel. See fig-
ure 2.11, where the bolt for extracting the email from the commit and the bolt for
updating the email count are each running across three different instances. Notice how
a single instance of one bolt is emitting a tuple to a single instance of another bolt.

 Figure 2.11 shows just one possible scenario of how the tuples would be sent between
instances of the two bolts. In reality, the picture is more like figure 2.12, where each bolt
instance on the left is emitting tuples to several different bolt instances on the right.

Update the

email count.

Extract email

from commit.

[email="nathan@example.com"]

[email="andy@example.com"]

[email="jackson@example.com"]

Figure 2.11 There are normally multiple instances of a particular bolt emitting
tuples to multiple instances of another bolt.

Update the

email count.

Extract email

from commit.

Figure 2.12 Individual instances of a bolt can emit to any number of instances of
another bolt.
Licensed to Mark Watson <nordickan@gmail.com>

22 CHAPTER 2 Core Storm concepts
Understanding the breakdown of spout and bolt instances is extremely important, so
let’s pause for a moment and summarize what you know before diving into our final
concept:

■ A topology consists of nodes and edges.
■ Nodes represent either spouts or bolts.
■ Edges represent streams of tuples between these spouts and bolts.
■ A tuple is an ordered list of values, where each value is assigned a name.
■ A stream is an unbounded sequence of tuples between a spout and a bolt or

between two bolts.
■ A spout is the source of a stream in a topology, usually listening to some sort of

live feed of data.
■ A bolt accepts a stream of tuples from a spout or another bolt, typically perform-

ing some sort of computation or transformation on these input tuples. The bolt
can then optionally emit new tuples that serve as the input stream to another
bolt in the topology.

■ Each spout and bolt will have one or many individual instances that perform all
of this processing in parallel.

That’s quite a bit of material, so be sure to let this sink in before you move on. Ready?
Good. Before we get into actual code, let’s tackle one more important concept:
stream grouping.

2.2.6 Stream grouping

You know by now that a stream is an unbounded sequence of tuples between a spout and
bolt or two bolts. A stream grouping defines how the tuples are sent between instances of
those spouts and bolts. What do we mean by this? Let’s take a step back and look at our
commit count topology. We have two streams in our GitHub commit count topology.
Each of these streams will have their own stream grouping defined, telling Storm how to
send individual tuples between instances of the spout and bolts (figure 2.13).

 Storm comes with several stream groupings out of the box. We’ll cover most of
these throughout this book, starting with the two most common groupings in this
chapter: the shuffle grouping and fields grouping.

SHUFFLE GROUPING

The stream between our spout and first bolt uses a shuffle grouping. A shuffle grouping
is a type of stream grouping where tuples are emitted to instances of bolts at random,
as shown in figure 2.14.

 In this example, we don’t care how tuples are passed to the instances of our bolts,
so we choose the shuffle grouping to distribute tuples at random. Using a shuffle
grouping will guarantee that each bolt instance should receive a relatively equal num-
ber of tuples, thus spreading the load across all bolt instances. Shuffle grouping
assignment is done randomly rather than round robin so exact equality of distribution
isn’t guaranteed.
Licensed to Mark Watson <nordickan@gmail.com>

23Basic Storm concepts
This grouping is useful in many basic cases where you don’t have special requirements
about how your data is passed to bolts. But sometimes you have scenarios where sending
tuples to random bolt instances won’t work based on your requirements—as in the case
of our scenario for sending tuples between the bolt that extracts the email and the bolt
that updates the email. We’ll need a different type of stream grouping for this.

FIELDS GROUPING

The stream between the bolt that extracts the email and the bolt that updates the email
will need to use a fields grouping. A fields grouping ensures that tuples with the same
value for a particular field name are always emitted to the same instance of a bolt. To
understand why a fields grouping is necessary for our second stream, let’s look at the
consequences of using an in-memory map to track the number of commits per email.

Read

commits

from

feed

Extract

email

from

commit

Each stream has its

own stream grouping that

defines how tuples are sent

between instances of the

spout and bolts.

Update

email

count

"064874b nathan@example.com"

Stream 1

Stream 2

Figure 2.13 Each stream in
the topology will have its
own stream grouping.

Extract email

from commit

Read commits

from feed

[commit="b20ea50 nathan@example.com"]

[commit="064874b andy@example.com"]

[commit="0f663d2 nathan@example.com"]

In this particular

example, you can see

that two tuples with a

commit message for

nathan@example.com

can go to any instance

of the bolt.

Figure 2.14 Using a shuffle grouping between our spout and first bolt
Licensed to Mark Watson <nordickan@gmail.com>

24 CHAPTER 2 Core Storm concepts
Each bolt instance will have its own map for the email/commit count pairs, so it’s nec-
essary that the same email go to the same bolt instance in order for the count for each
email to be accurate across all bolt instances. A fields grouping provides exactly this
(figure 2.15).

 In this example, the decision to use an in-memory map for the email count imple-
mentation resulted in the need for a fields grouping. We could’ve used a resource that
was shared across bolt instances and eliminated that need. We’ll explore design and
implementation considerations like this one in chapter 3 and beyond, but for now
let’s shift our focus to the code that we’ll need to get our topology up and running.

2.3 Implementing a GitHub commit count dashboard in Storm
Now that we’ve covered all the important concepts in Storm, it’s time to get into writ-
ing the code for our topology. This section will start with the code for the individual
spout and bolts and introduce the relevant Storm interfaces and classes. Some of
these interfaces and classes you’ll use directly and some you won’t; regardless, under-
standing the overall Storm API hierarchy will give you a fuller understanding of your
topology and associated code.

 After we’ve introduced the code for the spout and bolts, we’ll go over the code
required for putting it all together. If you remember from our earlier discussion, our
topology contains streams and stream groupings. The code for the spout and bolts is
only part of the picture—you still need to define where and how tuples are emitted
between components in the topology. In our discussion of the code needed for build-
ing the topology, you’ll encounter some of Storm’s configuration options, most of
which will be covered in greater detail later in the book.

 Finally, after we’ve wired everything up by defining the streams and stream group-
ings in the topology, we’ll show you how to run your topology locally, allowing you to
test whether everything works as expected. But before we dive into all this code, let’s
set you up with a basic Storm project.

Update the

email count.

Extract email

from commit.

[email="nathan@example.com"]

[email="andy@example.com"]

[email="jackson@example.com"]

In this particular

example, a tuple with

a value of

nathan@example.com

will always go to the

same bolt instance. This

means only one in-memory

map will have an entry with

nathan@example.com

as the key, resulting in an

accurate commit count.

The fields grouping is

defined for the email field.

Figure 2.15 Use a fields grouping for the bolt that will have a separate in-memory map for each
bolt instance.
Licensed to Mark Watson <nordickan@gmail.com>

25Implementing a GitHub commit count dashboard in Storm
2.3.1 Setting up a Storm project
The easiest way to get the Storm JARs on your classpath for development is to use
Apache Maven.

NOTE You can find other ways to set up Storm at http://storm.apache.org/
documentation/Creating-a-new-Storm-project.html, but Maven is by far the
simplest. Check out http://maven.apache.org/ for information on Maven.

Add the code shown in the next listing to your project’s pom.xml file.

<project>
..
 <dependencies>
 ..
 <dependency>
 <groupId>org.apache.storm</groupId>
 <artifactId>storm-core</artifactId>
 <version>0.9.3/version>
 <!-- <scope>provided</scope> -->
 </dependency>
 ..
 </dependencies>
</project>

Once you’ve made these additions to your pom.xml file, you should have all the neces-
sary dependencies for writing code and running Storm topologies locally on your
development machine.

2.3.2 Implementing the spout
Because the spout is where data enters a topology, this is where we’ll begin our cod-
ing. Before diving into the details, let’s examine the general interface and class struc-
ture within Storm for the spout. Figure 2.16 explains this class hierarchy.

Listing 2.2 pom.xml

This is the most recent version
of Storm as of this writing.

For topologies that will be deployed
to a real cluster, scope should be set to
provided. But we’re leaving it commented
out as we’re still in learning mode.

<<interface>>
ISpout

<<interface>>
IComponent

<<interface>>
IRichSpout

BaseRichSpout

Common interface for all topology

components (both spouts and bolts).

This interface defines a component’s

configuration and output.

A complete spout interface

that combines ISpout

and IComponent.

Defines the

responsibilities

for a spout.

Partial implementation of

IRichSpout; this is the base

class that we’ll extend

for our spout.

Figure 2.16 Storm’s class hierarchy for the spout
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://storm.apache.org/documentation/Creating-a-new-Storm-project.html
http://storm.apache.org/documentation/Creating-a-new-Storm-project.html
http://maven.apache.org/
http://www.allitebooks.org

26 CHAPTER 2 Core Storm concepts
In this design, the spout listens to a live
feed of commits being made to a particu-
lar GitHub project using the GitHub API
and emits tuples, each containing an
entire commit message, as shown in fig-
ure 2.17.

 Setting up a spout to listen to a live
feed requires a bit of work that we feel is
a distraction from understanding the
basic code. Because of this, we’re going
to cheat and simulate a live feed by hav-
ing our spout continuously read from a
file of commit messages, emitting a tuple
for each line in the file. Don’t worry; in
later chapters we’ll wire up spouts to live
feeds, but for now our focus is on the
basics. The file changelog.txt will live
next to the class for our spout and con-
tain a list of commit messages in the
expected format (shown in the following
listing).

b20ea50 nathan@example.com
064874b andy@example.com
28e4f8e andy@example.com
9a3e07f andy@example.com
cbb9cd1 nathan@example.com
0f663d2 jackson@example.com
0a4b984 nathan@example.com
1915ca4 derek@example.com

Once we’ve defined the source of our data, we can move to the spout implementation,
as shown in the next listing.

public class CommitFeedListener extends BaseRichSpout {
 private SpoutOutputCollector outputCollector;
 private List<String> commits;

Listing 2.3 An excerpt from our simple data source: changelog.txt

Listing 2.4 CommitFeedListener.java

Read

commits

from

feed

Extract

email

from

commit

Update

email

count

"064874b nathan@example.com"

[commit="064874b nathan@example.com"]

[email="nathan@example.com"]

Figure 2.17 The spout listens to the feed of
commit messages and emits a tuple for each
commit message.

Base class providing
basic functionality,
requiring us to
override three
methods

Emits
tuplesList of strings for the

commit messages read
from changelog.txt
Licensed to Mark Watson <nordickan@gmail.com>

27Implementing a GitHub commit count dashboard in Storm

s
es

t
Get

when
p
th
to
 @Override
 public void declareOutputFields(OutputFieldsDeclarer declarer) {
 declarer.declare(new Fields("commit"));
 }

 @Override
 public void open(Map configMap,
 TopologyContext context,
 SpoutOutputCollector outputCollector) {
 this.outputCollector = outputCollector;

 try {
 commits = IOUtils.readLines(
 ClassLoader.getSystemResourceAsStream("changelog.txt"),
 Charset.defaultCharset().name()
);
 } catch (IOException e) {
 throw new RuntimeException(e);
 }
 }

 @Override
 public void nextTuple() {
 for (String commit : commits) {
 outputCollector.emit(new Values(commit));
 }
 }
}

Quite a bit is going on with our spout. We start by extending BaseRichSpout, which
gives us three methods that need to be overridden. The first of these methods is
declareOutputFields. Remember earlier in the chapter when we said we’d discuss
how Storm assigns names to tuples? Well, here we are. The declareOutputFields
method is where we define the names for the values in tuples being emitted by this
spout. Defining names for emitted tuple values is done with the Fields class, whose
constructor accepts multiple strings; each string is the name of a value in an emitted
tuple. The order of the names in the Fields constructor must match the order of the
values emitted in the tuple via the Values class. Because the tuple emitted by our
spout contains a single value, we have a single argument, commit, passed into Fields.

 The next method we need to override is open; this is where we read the contents of
changelog.txt into our list of strings. If we’re writing code for a spout that deals with a
live data source, such as a message queue, this is where we’d put the code for connect-
ing to that data source. You’ll see more on this beginning in chapter 3.

 The final method we need to override is nextTuple. This is the method Storm calls
when it’s ready for the spout to read and emit a new tuple and is usually invoked peri-
odically as determined by Storm. In our example we’re emitting a new tuple for each
value in our list every time nextTuple is called, but for something that reads from a
live data source, such as a message queue, a new tuple will only be emitted if a new
piece of data is available.

Where we
define the
field name
for all tupl
emitted by
the spout

Indicates that the spou
emits a tuple with a
field named commit

s called
 Storm

repares
e spout
 be run

Reads the
contents of
changelog.txt
into our list
of strings

Called by Storm when
it’s ready to read the
next tuple for the spout

Emits a tuple for each
commit message
Licensed to Mark Watson <nordickan@gmail.com>

28 CHAPTER 2 Core Storm concepts
You’ll also notice a class called SpoutOutputCollector. Output collectors are some-
thing you’ll see quite a bit for both spouts and bolts. They’re responsible for emitting
and failing tuples.

 Now that we know how our spout obtains
commit messages from our data source and
emits new tuples for each commit message,
we need to implement the code that trans-
forms these commit messages into a map of
emails to commit counts.

2.3.3 Implementing the bolts

We’ve implemented the spout that serves
as the source of a stream, so now it’s time
to move on to the bolts. Figure 2.18 explains
the general interface and class structure
within Storm for bolts.

 You’ll notice in figure 2.18 that the
class hierarchy for a bolt is a little more
complex than that of a spout. The reason
is that Storm has additional classes for
bolts that have incredibly simple imple-
mentations (IBasicBolt/BaseBasicBolt).
These take over the responsibilities usually
accessible to a developer with IRichBolt,
so it makes simpler bolt implementations
more concise. The simplicity of IBasic-
Bolt does come at the cost of taking away
some of the fluency of the rich feature set

<<interface>>
IBolt

<<interface>>
IComponent

<<interface>>
IRichBolt

BaseRichBolt

Common interface for all topology

components (both spouts and bolts).

This interface defines a component’s

configuration and output.Defines the

responsibilities

for a bolt.

<<interface>>
IBasicBolt

BaseBasicBolt

A complete bolt interface

that extends IComponent

but only supports a subset

of the features of IRichBolt.

Partial implementation of

IBasicBolt; this is a base

class that you can extend

for your bolt.

A complete bolt

interface that combines

IBolt and IComponent.

Partial implementation of

IRichBolt; this is a base

class that you can extend

for your bolt.

Figure 2.18 Storm’s class hierarchy for the bolt

Read

commits

from

feed

Extract

email

from

commit

Update

email

count

"064874b nathan@example.com"

[commit="064874b nathan@example.com"]

[email="nathan@example.com"]

Figure 2.19 The two bolts in our topology: the
first bolt extracts the email from the commit
message and the second bolt maintains an in-
memory map of emails to commit counts.
Licensed to Mark Watson <nordickan@gmail.com>

29Implementing a GitHub commit count dashboard in Storm

on.
we
th

nam
all

e

 a
made accessible through IRichBolt. We’ll cover the differences between BaseRich-
Bolt and BaseBasicBolt and explain when to use either in more detail in chapter 4.
In this chapter, we’ll use BaseBasicBolt because the bolt implementations are quite
straightforward.

 To revisit our design, remember that we have two bolts in our topology (see fig-
ure 2.19). One bolt accepts a tuple containing the full commit message, extracts the
email from the commit message, and emits a tuple containing the email. The second
bolt maintains an in-memory map of emails to commit counts.

 Let’s take a look at the code for these bolts, starting with EmailExtractor.java in the
next listing.

public class EmailExtractor extends BaseBasicBolt {
 @Override
 public void declareOutputFields(OutputFieldsDeclarer declarer) {
 declarer.declare(new Fields("email"));
 }

 @Override
 public void execute(Tuple tuple,
 BasicOutputCollector outputCollector) {
 String commit = tuple.getStringByField("commit");
 String[] parts = commit.split(" ");
 outputCollector.emit(new Values(parts[1]));
 }
}

The implementation for EmailExtractor.java is quite small, which is the main reason we
decided to extend BaseBasicBolt. If you look a little deeper into the code, you’ll
notice some similarities to our spout code, namely the manner in which we declare the
names for the values in tuples emitted by this bolt. Here we’ve defined a single field
with a name of email.

 As far as the bolt’s execute method is concerned, all we’re doing is splitting the
string on the whitespace in order to obtain the email and emitting a new tuple with
that email. Remember the output collector we mentioned in the previous spout
implementation? We have something similar here with BasicOutputCollector, which
emits this tuple, sending it to the next bolt in the topology, the email counter.

 The code in the email counter is similar in structure to EmailExtractor.java but
with a little more setup and implementation, as shown in the next listing.

Listing 2.5 EmailExtractor.java

Extending
BaseBasicBolt
since we have
a simple
implementatiWhere

 define
e field
es for

 tuples
mitted
by the

bolt

Indicates the bolt
emits a tuple with
field named email

Gets called when
a tuple has been
emitted to this bolt

Extracts the value
for the field named
commit

Emits a new
tuple containing

the email
Licensed to Mark Watson <nordickan@gmail.com>

30 CHAPTER 2 Core Storm concepts

In-m
m

m
em

c

public class EmailCounter extends BaseBasicBolt {
 private Map<String, Integer> counts;

 @Override
 public void declareOutputFields(OutputFieldsDeclarer declarer) {
 // This bolt does not emit anything and therefore does
 // not declare any output fields.
 }

 @Override
 public void prepare(Map config,
 TopologyContext context) {
 counts = new HashMap<String, Integer>();
 }

 @Override
 public void execute(Tuple tuple,
 BasicOutputCollector outputCollector) {
 String email = tuple.getStringByField("email");
 counts.put(email, countFor(email) + 1);
 printCounts();
 }

 private Integer countFor(String email) {
 Integer count = counts.get(email);
 return count == null ? 0 : count;
 }

 private void printCounts() {
 for (String email : counts.keySet()) {
 System.out.println(
 String.format("%s has count of %s", email, counts.get(email)));
 }
 }
}

Again, we’ve decided to extend BaseBasicBolt. Even though EmailCounter.java is more
complex than EmailExtractor.java, we can still get away with the functionality accessible
by BaseBasicBolt. One difference you’ll notice is that we’ve overridden the prepare
method. This method gets called as Storm prepares the bolt before execution and is
the method where we’d perform any setup for our bolt. In our case, this means instan-
tiating the in-memory map.

 Speaking of the in-memory map, you’ll notice this is a private member variable
that’s specific to a single instance of this bolt. This should ring a bell, as it’s something
we mentioned in section 2.2.6, and it’s why we were forced to use a fields grouping for
the stream between our two bolts.

 So here we are; we have code for our spout and two bolts. What’s next? We need to
somehow tell Storm where the streams are and identify the stream groupings for each
of those streams. And we imagine you’re eager to run this topology and see it in
action. Here’s where wiring everything together comes into play.

Listing 2.6 EmailCounter.java

Extending BaseBasicBolt
since we have a simple
implementation.

emory
ap for

apping
ails to
ommit
counts

Gets called when
Storm prepares
this bolt to be run

Extracts the
value for the field
named email
Licensed to Mark Watson <nordickan@gmail.com>

31Implementing a GitHub commit count dashboard in Storm

U

t
th
an

co

th

o
fe

e email
r to
logy

 ID of
xtractor

ween
er

A

t
wit

o

m
ail

top
con
we’
it s
deb

he
and
tion
al
2.3.4 Wiring everything together to form the topology

Our spout and bolt implementations aren’t useful on their own. We need to build up
the topology, defining the streams and stream groupings between the spout and bolts.
After that, we’d like to be able to run a test to make sure it all works as expected.
Storm provides all the classes you need to do this. These classes include the following:

■ TopologyBuilder—This class is used to piece together spouts and bolts, defin-
ing the streams and stream groupings between them.

■ Config—This class is used for defining topology-level configuration.
■ StormTopology—This class is what TopologyBuilder builds and is what’s sub-

mitted to the cluster to be run.
■ LocalCluster—This class simulates a Storm cluster in-process on our local

machine, allowing us to easily run our topologies for testing purposes.

With a basic understanding of these classes, we’ll build our topology and submit it to a
local cluster, as seen in the next listing.

public class LocalTopologyRunner {
 private static final int TEN_MINUTES = 600000;

 public static void main(String[] args) {
 TopologyBuilder builder = new TopologyBuilder();

 builder.setSpout("commit-feed-listener", new CommitFeedListener());

 builder
 .setBolt("email-extractor", new EmailExtractor())
 .shuffleGrouping("commit-feed-listener");

 builder
 .setBolt("email-counter", new EmailCounter())
 .fieldsGrouping("email-extractor", new Fields("email"));

 Config config = new Config();
 config.setDebug(true);

 StormTopology topology = builder.createTopology();

 LocalCluster cluster = new LocalCluster();
 cluster.submitTopology("github-commit-count-topology",
 config,
 topology);

 Utils.sleep(TEN_MINUTES);
 cluster.killTopology(“github-commit-count-topology”);
 cluster.shutdown();
 }
}

Listing 2.7 LocalTopologyRunner.java

Main method that will get
called to run our topology
locally in-process

sed for
wiring

ogether
e spout
d bolts

Adds the
mmit feed
listener to
e topology
with an ID
f commit-

ed-listener

Adds th
extracto
the topo
with an
email-e

Defines the stream bet
the commit feed listen
and email extractor

dds the
email

counter
to the

opology
h an ID
f email-
counter

Defines the strea
between the em
extractor and
email counter

Class for
defining

ology-level
figuration;
re keeping
imple with
ug output

turned on.

Creates the
topology

Defines a local
cluster that can
be run in-memory

Submits t
topology
configura
to the loc
cluster

Kills the
topologyShuts down the

local cluster
Licensed to Mark Watson <nordickan@gmail.com>

32 CHAPTER 2 Core Storm concepts
You can think of the main method as being split into three sections. The first is where
we build the topology and tell Storm where the streams are and identify the stream
groupings for each of these streams. The next part is creating the configuration. In
our example, we’ve turned on debug logging. Many more configuration options are
available that we’ll cover later in this book. The final part is where we submit both the
configuration and built topology to the local cluster to be run. Here we run the local
cluster for 10 minutes, continuously emitting tuples for each commit message in our
changelog.txt file. This should provide plenty of activity within our topology.

 If we were to run the main method of LocalTopologyRunner.java via java -jar, we
would see debug log messages flying by in the console showing tuples being emitted
by our spout and processed by our bolts. And there you have it; you’ve built your first
topology! With the basics covered, we still need to address some of the topics we
alluded to in this chapter. We’ll start with addressing some good topology design prac-
tices to follow in chapter 3.

2.4 Summary
In this chapter, you learned that

■ A topology is a graph where the nodes represent a single process or computa-
tion and the edges represent the result of one computation being passed as the
input to another computation.

■ A tuple is an ordered list of values where each value in the list is assigned a
name. A tuple represents the data passed between two components.

■ The flow of tuples between two components is called a stream.
■ Spouts act as the source of a stream; their sole purpose is to read data from a

source and emit tuples to its output stream.
■ Bolts are where the core logic in a topology exists, performing operations such

as filters, aggregations, joins, and talking to databases.
■ Both spouts and bolts (called components) execute as one or more individual

instances, emitting tuples to other instances of bolts.
■ The manner in which tuples flow between individual instances of components

is defined with a stream grouping.
■ Implementing the code for your spouts and bolts is only part of the picture; you

still need to wire them together and define the streams and stream groupings.
■ Running a topology in local mode is the quickest way to test that your topology

is working.
Licensed to Mark Watson <nordickan@gmail.com>

Topology design
In the previous chapter, we got our feet wet by building a simple topology that
counts commits made to a GitHub project. We broke it down into Storm’s two pri-
mary components—spouts and bolts—but we didn’t concern ourselves with details
as to why. This chapter expands on those basic Storm concepts by showing you how
to think about modeling and designing solutions with Storm. You’ll learn strategies
for problem analysis that can help you end up with a good design: a model for rep-
resenting the workflow of the problem at hand.

 In addition, it’s important that you learn how scalability (or parallelization of
units of work) is built into Storm because that affects the approach that you’ll take

This chapter covers
■ Decomposing a problem to fit Storm constructs
■ Working with unreliable data sources
■ Integrating with external services and data

stores
■ Understanding parallelism within a Storm

topology
■ Following best practices for topology design
33

Licensed to Mark Watson <nordickan@gmail.com>

34 CHAPTER 3 Topology design
with topology design. We’ll also explore strategies for gaining the most out of your
topology in terms of speed.

 After reading this chapter, not only will you be able to easily take apart a prob-
lem and see how it fits within Storm, but you’ll also be able to determine whether
Storm is the right solution for tackling that problem. This chapter will give you a
solid understanding of topology design so that you can envision solutions to big
data problems.

 Let’s get started by exploring how you can approach topology design and then get
into breaking down a real-world scenario using the steps we’ve outlined.

3.1 Approaching topology design
The approach to topology design can be broken down into the following five steps:

1 Defining the problem/forming a conceptual solution—This step serves to provide a
clear understanding of the problem being tackled. It also serves as a place to
document the requirements to be placed on any potential solution (including
requirements with regard to speed, which is a common criterion in big data
problems). This step involves modeling a solution (not an implementation)
that addresses the core need(s) of the problem.

2 Mapping the solution to Storm—In this step, you follow a set of tenets for breaking
down the proposed solution in a manner that allows you to envision how it will
map to Storm primitives (aka Storm concepts). At this stage, you’ll come up
with a design for your topology. This design will be tuned and adjusted as
needed in the following steps.

3 Implementing the initial solution—Each of the components will be implemented
at this point.

4 Scaling the topology—In this step, you’ll turn the knobs that Storm provides for
you to run this topology at scale.

5 Tuning based on observations—Finally, you’ll adjust the topology based on observed
behavior once it’s running. This step may involve additional tuning for achieving
scale as well as design changes that may be warranted for efficiency.

Let’s apply these steps to a real-world problem to show how you’d go about complet-
ing each of the steps. We’ll do this with a social heat map, which encapsulates several
challenging topics related to topology design.

3.2 Problem definition: a social heat map
Imagine this scenario: it’s Saturday night and you’re out drinking at a bar, enjoying
the good life with your friends. You’re finishing your third drink and you’re starting to
feel like you need a change of scene. Maybe switch it up and go to a different bar? So
many choices—how do you even choose? Being a socialite, of course you’d want to
end up in the bar that’s most popular. You don’t want to go somewhere that was voted
best in your neighborhood glossy magazine. That was so last week. You want to be
Licensed to Mark Watson <nordickan@gmail.com>

35Precepts for mapping the solution to Storm
where the action is right now, not last week, not even last hour. You are the trendset-
ter. You have a responsibility to show your friends a good time.

 Okay, maybe that’s not you. But does that represent the average social network
user? Now what can we do to help this person? If we can represent the answer this per-
son is looking for in a graphical form factor, it’d be ideal—a map that identifies the
neighborhoods with highest density of activity in bars as hot zones can convey every-
thing quickly. A heat map can identify the general neighborhood in a big city like New
York or San Francisco, and generally when a picking a popular bar, it’s better to have a
few choices within close proximity to one another, just in case.

We’ve provided a general problem definition. Before moving any further, let’s form a
conceptual solution.

3.2.1 Formation of a conceptual solution

Where should we begin? Multiple social networks incorporate the concept of check-
ins. Let’s say we have access to a data fire hose that collects check-ins for bars from all
of these networks. This fire hose will emit a bar’s address for every check-in. This gives
us a starting point, but it’s also good to have an end goal in mind. Let’s say that our
end goal is a geographical map with a heat map overlay identifying neighborhoods
with the most popular bars. Figure 3.1 illustrates our proposed solution where we’ll
transform multiple check-ins from different venues to be shown in a heat map.

 The solution that we need to model within Storm becomes the method of trans-
forming (or aggregating) check-ins into a data set that can be depicted on a heat map.

3.3 Precepts for mapping the solution to Storm
The best way to start is to contemplate the nature of data flowing through this system.
When we better understand the peculiarities contained within the data stream, we can
become more attuned to requirements that can be placed on this system realistically.

Other case studies for heat maps
What kind of problems benefit from visualization using a heat map? A good candidate
would allow you to use the heat map’s intensity to model the relative importance of
a set of data points as compared to others within an area (geographical or otherwise):

■ The spread of a wildfire in California, an approaching hurricane on the East
Coast, or the outbreak of a disease can be modeled and represented as a heat
map to warn residents.

■ On an election day, you might want to know
– Which political districts had the most voters turn out? You can depict this on

a heat map by modeling the turnout numbers to reflect the intensity.
– You can depict which political party/candidate/issue received the most votes

by modeling the party, candidate, or issue as a different color, with the inten-
sity of the color reflecting the number of votes.
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

36 CHAPTER 3 Topology design
3.3.1 Consider the requirements imposed by the data stream

We have a fire hose emitting addresses of bars for each check-in. But this stream of
check-ins doesn’t reliably represent every single user who went to a bar. A check-in
isn’t equivalent to a physical presence at a location. It’s better to think of it as a sam-
pling of real life because not every single user checks in. But that leads us to question
whether check-in data is even useful for solving this problem. For this example, we can
safely assume that check-ins at bars are proportional to people at those locations.

 So we know the following:

■ Check-ins are a sampling of real-life scenarios, but they’re not complete.
■ They’re proportionately representative.

NOTE Let’s make the assumption here that the data volume is large enough
to compensate for data loss and that any data loss is intermittent and not sus-
tained long enough to cause a noticeable disruption in service. These assump-
tions help us portray a case of working with an unreliable data source.

We have our first insight about our data stream: a proportionately representative but
possibly incomplete stream of check-ins. What’s next? We know our users want to be
notified about the latest trends in activity as soon as possible. In other words, we have
a strict speed requirement: get the results to the user as quickly as possible because
the value of data diminishes with time.

 What emerges from consideration of the data stream is that we don’t need to worry
too much about data loss. We can come to this conclusion because we know that our
incoming data set is incomplete, so accuracy down to some arbitrary, minute degree
of precision isn’t necessary. But it’s proportionately representative and that’s good
enough for determining popularity. Combine this with the requirement of speed and

?

Figure 3.1 Using check-ins to build a heat map of bars
Licensed to Mark Watson <nordickan@gmail.com>

37Precepts for mapping the solution to Storm
we know that as long as we get recent data quickly to our users, they’ll be happy. Even
if data loss occurs, the past results will be replaced soon.

 This scenario maps directly to the idea of working with an unreliable data source
in Storm. With an unreliable data source, you don’t have the ability to retry a failed
operation; the data source may not have the ability to replay a data point. In our case,
we’re sampling real life by way of check-ins and that mimics the availability of an
incomplete data set.

 In contrast, there may be cases where you work with a reliable data source—one
that has the ability to replay data points that fail. But perhaps accuracy is less impor-
tant than speed and you may not want to take advantage of the replayability of a reli-
able data source. Then approximations can be just as acceptable, and you’re treating
the reliable data source as if it was unreliable by choosing to ignore any reliability
measures it provides.

NOTE We’ll cover reliable data sources along with fault tolerance in chapter 4.

Having defined the source of the data, the next step is to identify how the individual
data points will flow through our proposed solution. We’ll explore this topic next.

3.3.2 Represent data points as tuples

Our next step is to identify the individual data points that flow through this stream.
It’s easy to accomplish this by considering the beginning and end. We begin with a
series of data points composed of street addresses of bars with activity. We’ll also need
to know the time the check-in occurred. So our input data point can be represented
as follows:

[time="9:00:07 PM", address="287 Hudson St New York NY 10013"]

That’s the time and an address where the check-in happened. This would be our input
tuple that’s emitted by the spout. As you’ll recall from chapter 2, a tuple is a Storm prim-
itive for representing a data point and a spout is a source of a stream of tuples.

 We have the end goal of building a heat map with the latest activity at bars. So we
need to end up with data points representing timely coordinates on a map. We can
attach a time interval (say 9:00:00 PM to 9:00:15 PM, if we want 15-second increments)
to a set of coordinates that occurred within that interval. Then at the point of display
within the heat map, we can pick the latest available time interval. Coordinates on a
map can be expressed by way of latitude and longitude (say, 40.7142° N, 74.0064° W
for New York, NY). It’s standard form to represent 40.7142° N, 74.0064° W as (40.7142,
-74.0064). But there might be multiple coordinates representing multiple check-ins
within a time window. So we need a list of coordinates for a time interval. Then our
end data point starts to look like this:

[time-interval="9:00:00 PM to 9:00:15 PM",
 hotzones=List((40.719908,-73.987277),(40.72612,-74.001396))]
Licensed to Mark Watson <nordickan@gmail.com>

38 CHAPTER 3 Topology design
That’s an end data point containing a time interval and two corresponding check-ins
at two different bars.

 What if there’s two or more check-ins at the same bar within that time interval?
Then that coordinate will be duplicated. How would we handle that? One option is to
keep counts of occurrences within that time window for that coordinate. This involves
determining sameness of coordinates based on some arbitrary but useful degree of
precision. To avoid all that, let’s keep duplicates of any coordinate within a time inter-
val with multiple check-ins. By adding multiples of the same coordinates to a heat
map, we can let the map generator make use of multiple occurrences as a level of hot-
ness (rather than using occurrence count for that purpose).

 Our end data point will look like this:

 [time-interval="9:00:00 PM to 9:00:15 PM",
 hotzones=List((40.719908,-73.987277),
 (40.72612,-74.001396),
 (40.719908,-73.987277))]

Note that the first coordinate is duplicated. This is our end tuple that will be served up
in the form of a heat map. Having a list of coordinates grouped by a time interval has
these advantages:

■ Allows us to easily build a heat map by using the Google Maps API. We can do
this by adding a heat map overlay on top of a regular Google Map.

■ Let us go back in time to any particular time interval and see the heat map for
that point in time.

Having the input data points and final data points is only part of the picture; we still
need to identify how we get from point A to point B.

3.3.3 Steps for determining the topology composition

Our approach for designing a Storm topology can be broken down into three steps:

1 Determine the input data points and how they can be represented as tuples.
2 Determine the final data points needed to solve the problem and how they can

be represented as tuples.
3 Bridge the gap between the input tuples and the final tuples by creating a series

of operations that transform them.

We already know our input and desired output:

Input tuples:

[time="9:00:07 PM", address="287 Hudson St New York NY 10013"]

End tuples:

[time-interval="9:00:00 PM to 9:00:15 PM",
 hotzones=List((40.719908,-73.987277),
 (40.72612,-74.001396),
 (40.719908,-73.987277))]
Licensed to Mark Watson <nordickan@gmail.com>

39Precepts for mapping the solution to Storm
Somewhere along the way, we need to transform the addresses of bars into these
end tuples. Figure 3.2 shows how we can break down the problem into these series
of operations.

 Let’s take these steps and see how they map onto Storm primitives (we’re using the
terms Storm primitives and Storm concepts interchangeably).

OPERATIONS AS SPOUTS AND BOLTS

We’ve created a series of operations to transform input tuples to end tuples. Let’s see
how these four operations map to Storm primitives:

■ Checkins—This will be the source of input tuples into the topology, so in terms
of Storm concepts this will be our spout. In this case, because we’re using an
unreliable data source, we’ll build a spout that has no capability of retrying fail-
ures. We’ll get into retrying failures in chapter 4.

■ GeocodeLookup—This will take our input tuple and convert the street address
to a geocoordinate by querying the Google Maps Geocoding API. This is the
first bolt in the topology.

■ HeatMapBuilder—This is the second bolt in the topology, and it’ll keep a data
structure in memory to map each incoming tuple to a time interval, thereby

Checkins

Collects all the

check-ins coming

from mobile devices

and emits them

in a stream

Geocode
Lookup

Converts street

addresses to geo-

coordinates

HeatMap
Builder

Groups geo-

coordinates into

time intervals

Persistor Database

Saves to database

Figure 3.2 Transforming input tuples to end tuples via a series of operations
Licensed to Mark Watson <nordickan@gmail.com>

40 CHAPTER 3 Topology design
grouping check-ins by time interval. When each time interval is completely
passed, it’ll emit the list of coordinates associated with that time interval.

■ Persistor—We’ll use this third and final bolt in our topology to save our end
tuples to a database.

Figure 3.3 provides an illustration of the design mapped to Storm concepts.
 So far we’ve discussed the tuples, spout, and bolts. One thing in figure 3.3 that we

haven’t talked about is the stream grouping for each stream. We’ll get into each
grouping in more detail when we cover the code for the topology in the next section.

3.4 Initial implementation of the design
With the design complete, we’re ready to tackle the implementation for each of the
components. Much as we did in chapter 2, we’ll start with the code for the spout and

"9:00PM 287 Hudson St"

Shuffle

grouping

Spout that pulls

incoming check-ins

off the fire hose.

Each containstuple

more than a single

named value.

Bolts performing

processing on

the times and

location data.

Global

grouping

Shuffle

grouping

[time="9:00 PM",address="287 Hudson St"]

[time="9:00 PM",geocode="40.72612,-74.001396"]

[time-interval="9:00:00 PM to 9:00:15 PM",
hotzones=List((40.719908,-73.987277),

(40.72612,-74.001396),
(40.719908,-73.987277))]

Checkins

Geocode
Lookup

HeatMap
Builder

Persistor

Figure 3.3 Heat map design mapped to Storm concepts
Licensed to Mark Watson <nordickan@gmail.com>

41Initial implementation of the design

the
che

from
i

r

bolts, and finish with the code that wires it all together. Later we’ll adjust each of these
implementations for efficiency or to address some of their shortcomings.

3.4.1 Spout: read data from a source

In our design, the spout listens to a fire hose of social check-ins and emits a tuple for
each individual check-in. Figure 3.4 provides a reminder of where we are in our topol-
ogy design.

For the purpose of this chapter, we’ll use a text file as our source of data for check-ins.
To feed this data set into our Storm topology, we need to write a spout that reads
from this file and emits a tuple for each line. The file, checkins.txt, will live next to
the class for our spout and contain a list of check-ins in the expected format (see the
following listing).

1382904793783, 287 Hudson St New York NY 10013
1382904793784, 155 Varick St New York NY 10013
1382904793785, 222 W Houston St New York NY 10013
1382904793786, 5 Spring St New York NY 10013
1382904793787, 148 West 4th St New York NY 10013

The next listing shows the spout implementation that reads from this file of check-ins.
Because our input tuple is a time and address, we’ll represent the time as a Long
(millisecond-level Unix timestamp) and the address as a String, with the two sepa-
rated by a comma in our text file.

public class Checkins extends BaseRichSpout {
 private List<String> checkins;
 private int nextEmitIndex;
 private SpoutOutputCollector outputCollector;

 @Override
 public void declareOutputFields(OutputFieldsDeclarer declarer) {

Listing 3.1 An excerpt from our simple data source, checkins.txt

Listing 3.2 Checkins.java

"9:00PM 287 Hudson St"

[time="9:00 PM",address="287 Hudson St"]

Checkins

Figure 3.4 The spout listens to the
fire hose of social check-ins and emits
a tuple for each check-in.

Checkins spout extends
BaseRichSpout.

Store
 static
ck-ins
 a file

n List.

nextEmitIndex will keep track of ou
current position in the list as we’ll
recycle the static list of check-ins.
Licensed to Mark Watson <nordickan@gmail.com>

42 CHAPTER 3 Topology design

U

Com
API

t

che

in-

the

ite

(r
if at
of
 declarer.declare(new Fields("time", "address"));
 }

 @Override
 public void open(Map config,
 TopologyContext topologyContext,
 SpoutOutputCollector spoutOutputCollector) {
 this.outputCollector = spoutOutputCollector;
 this.nextEmitIndex = 0;

 try {
 checkins =

IOUtils.readLines(ClassLoader.getSystemResourceAsStream("checkins.txt"),
 Charset.defaultCharset().name());
 } catch (IOException e) {
 throw new RuntimeException(e);
 }
 }

 @Override
 public void nextTuple() {
 String checkin = checkins.get(nextEmitIndex);
 String[] parts = checkin.split(",");
 Long time = Long.valueOf(parts[0]);
 String address = parts[1];
 outputCollector.emit(new Values(time, address));

 nextEmitIndex = (nextEmitIndex + 1) % checkins.size();
 }
}

Because we’re treating this as an unreliable data source, the spout remains simple; it
doesn’t need to keep track of which tuples failed and which ones succeeded in order
to provide fault tolerance. Not only does that simplify the spout implementation, it
also removes quite a bit of bookkeeping that Storm needs to do internally and speeds
things up. When fault tolerance isn’t necessary and we can define a service-level agree-
ment (SLA) that allows us to discard data at will, an unreliable data source can be ben-
eficial. It’s easier to maintain and provides fewer points of failure.

3.4.2 Bolt: connect to an external service

The first bolt in the topology will take the address data point from the tuple emit-
ted by the Checkins spout and translate that address into a coordinate by querying
the Google Maps Geocoding Service. Figure 3.5 highlights the bolt we’re currently
implementing.

 The code for this bolt can be seen in listing 3.3. We’re using the Google Geocoder
Java API from https://code.google.com/p/geocoder-java/ to retrieve the coordinates.

Let Storm know that this
spout will emit a tuple
containing two fields
named time and address.sing the

Apache
mons IO
 to read
he lines

from
ckins.txt

into an
memory

List

When Storm requests the
next tuple from the spout,
look up the next check-in
from our in-memory List
and parse it into time and
address components.

Use the SpoutOutput-
Collector provided
in the spout open
method to emit the
relevant fields.

Advance
index of
the next
m to be
emitted
ecycling
 the end
the list).
Licensed to Mark Watson <nordickan@gmail.com>

https://code.google.com/p/geocoder-java/

43Initial implementation of the design

lt

r
e

public class GeocodeLookup extends BaseBasicBolt {
 private Geocoder geocoder;

 @Override
 public void declareOutputFields(OutputFieldsDeclarer fieldsDeclarer) {
 fieldsDeclarer.declare(new Fields("time", "geocode"));
 }

 @Override
 public void prepare(Map config,
 TopologyContext context) {
 geocoder = new Geocoder();
 }

 @Override
 public void execute(Tuple tuple,
 BasicOutputCollector outputCollector) {
 String address = tuple.getStringByField("address");
 Long time = tuple.getLongByField("time");

 GeocoderRequest request = new GeocoderRequestBuilder()
 .setAddress(address)
 .setLanguage("en")
 .getGeocoderRequest();
 GeocodeResponse response = geocoder.geocode(request);
 GeocoderStatus status = response.getStatus();
 if (GeocoderStatus.OK.equals(status)) {
 GeocoderResult firstResult = response.getResults().get(0);
 LatLng latLng = firstResult.getGeometry().getLocation();
 outputCollector.emit(new Values(time, latLng));
 }
 }
}

We’ve intentionally kept our interaction with Google Geocoding API simple. In a real
implementation we should be handling for error cases when addresses may not be
valid. Additionally, the Google Geocoding API imposes a quota when used in this way
that’s quite small and not practical for big data applications. For a big data application
like this, you’d need to obtain an access level with a higher quota from Google if you

Listing 3.3 GeocodeLookup.java

[time="9:00 PM",geocode="40.72612,-74.001396"]

[time="9:00 PM",address="287 Hudson St"]

Geocode
Lookup

Figure 3.5 The geocode lookup
bolt accepts a social check-in
and retrieves the coordinates
associated with that check-in.

GeocodeLookup bolt
extends BaseBasicBolt.

Inform Storm that
this bolt will emit
two fields, time
and geocode.

Initialize the
Google Geocoder.

Extract the time
and address
fields from the
tuple sent by the
Checkins spout.

Query Google Maps
Geocoding API with
the address value
from the tuple.

Use the first resu
from the Google
Geocoding API fo
the geocoordinat
and emit it along
with the time.
Licensed to Mark Watson <nordickan@gmail.com>

44 CHAPTER 3 Topology design
wanted to use them as a provider for Geocoding. Other approaches to consider
include locally caching geocoding results within your data center to avoid making
unnecessary invocations to Google’s API.

 We now have the time and geocoordinate of every check-in. We took our input tuple

[time="9:00:07 PM", address="287 Hudson St New York NY 10013"]

and transformed it into this:

[time="9:00 PM", geocode="40.72612,-74.001396"]

This new tuple will then be sent to the bolt that maintains groups of check-ins by time
interval, which we’ll look at now.

3.4.3 Bolt: collect data in-memory

Next, we’ll build the data structure that represents the heat map. Figure 3.6 illustrates
our location in the design.

What kind of data structure is suitable here? We have tuples coming into this bolt
from the previous GeocodeLookup bolt in the form of [time="9:00 PM", geocode=
"40.72612,-74.001396"]. We need to group these by time intervals—let’s say 15-second
intervals because we want to display a new heat map every 15 seconds. Our end tuples
need to be in the form of [time-interval="9:00:00 PM to 9:00:15 PM", hotzones=
List((40.719908,-73.987277),(40.72612,-74.001396),(40.719908,-73.987277))].

 To group geocoordinates by time interval, let’s maintain a data structure in mem-
ory and collect incoming tuples into that data structure isolated by time interval. We
can model this as a map:

Map<Long, List<LatLng>> heatmaps;

This map is keyed by the time that starts our interval. We can omit the end of the time
interval because each interval is of the same length. The value will be the list of coor-
dinates that fall into that time interval (including duplicates—duplicates or coordi-
nates in closer proximity would indicate a hot zone or intensity on the heat map).

[time="9:00 PM",geocode="40.72612,-74.001396"]

[time-interval="9:00:00 PM to 9:00:15 PM",
hotzones=List((40.719908,-73.987277),

(40.72612,-74.001396),
(40.719908,-73.987277))]

HeatMap
Builder

Figure 3.6 The heat map
builder bolt accepts a tuple with
time and geocode and emits a
tuple containing a time interval
and a list of geocodes.
Licensed to Mark Watson <nordickan@gmail.com>

45Initial implementation of the design

e
he
o.

e
s
Let’s start building the heat map in three steps:

1 Collect incoming tuples into an in-memory map.
2 Configure this bolt to receive a signal at a given frequency.
3 Emit the aggregated heat map for elapsed time intervals to the Persistor bolt

for saving to a database.

Let’s look at each step individually, and then we can put everything together, starting
with the next listing.

 private Map<Long, List<LatLng>> heatmaps;

 @Override
 public void prepare(Map config,
 TopologyContext context) {
 heatmaps = new HashMap<Long, List<LatLng>>();
 }

 @Override
 public void execute(Tuple tuple,
 BasicOutputCollector outputCollector) {
 Long time = tuple.getLongByField("time");
 LatLng geocode = (LatLng) tuple.getValueByField("geocode");

 Long timeInterval = selectTimeInterval(time);
 List<LatLng> checkins = getCheckinsForInterval(timeInterval);
 checkins.add(geocode);
 }

 private Long selectTimeInterval(Long time) {
 return time / (15 * 1000);
 }

 private List<LatLng> getCheckinsForInterval(Long timeInterval) {
 List<LatLng> hotzones = heatmaps.get(timeInterval);
 if (hotzones == null) {
 hotzones = new ArrayList<LatLng>();
 heatmaps.put(timeInterval, hotzones);
 }
 return hotzones;
 }

The absolute time interval the incoming tuple falls into is selected by taking the
check-in time and dividing it by the length of the interval—in this case, 15 seconds.
For example, if check-in time is 9:00:07.535 PM, then it should fall into the time inter-
val 9:00:00.000–9:00:15.000 PM. What we’re extracting here is the beginning of that
time interval, which is 9:00:00.000 PM.

 Now that we’re collecting all the tuples into a heat map, we need to periodically
inspect it and emit the coordinates from completed time intervals so that they can be
persisted into a data store by the next bolt.

Listing 3.4 HeatMapBuilder.java: step 1, collecting incoming tuples into an
in-memory map

Initialize the
in-memory map.

Select the tim
interval that t
tuple falls int

Add the geocoordinat
to the list of check-in
associated with that
time interval.
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

46 CHAPTER 3 Topology design

s

in
e
.

t

g
r a
e,

TICK TUPLES

Sometimes you need to trigger an action periodically, such as aggregating a batch of
data or flushing some writes to a database. Storm has a feature called tick tuples to
handle this eventuality. Tick tuples can be configured to be received at a user-
defined frequency and when configured, the execute method on the bolt will
receive the tick tuple at the given frequency. You need to inspect the tuple to deter-
mine whether it’s one of these system-emitted tick tuples or whether it’s a normal
tuple. Normal tuples within a topology will flow through the default stream, whereas
tick tuples are flowing through a system tick stream, making them easily identifiable.
The following listing shows the code for configuring and handling tick tuples in the
HeatMapBuilder bolt.

 @Override
 public Map<String, Object> getComponentConfiguration() {
 Config conf = new Config();
 conf.put(Config.TOPOLOGY_TICK_TUPLE_FREQ_SECS, 60);
 return conf;
 }

 @Override
 public void execute(Tuple tuple,
 BasicOutputCollector outputCollector) {
 if (isTickTuple(tuple)) {
 // . . . take periodic action
 } else {
 Long time = tuple.getLongByField("time");
 LatLng geocode = (LatLng) tuple.getValueByField("geocode");

 Long timeInterval = selectTimeInterval(time);
 List<LatLng> checkins = getCheckinsForInterval(timeInterval);
 checkins.add(geocode);
 }
 }

 private boolean isTickTuple(Tuple tuple) {
 String sourceComponent = tuple.getSourceComponent();
 String sourceStreamId = tuple.getSourceStreamId();
 return sourceComponent.equals(Constants.SYSTEM_COMPONENT_ID)
 && sourceStreamId.equals(Constants.SYSTEM_TICK_STREAM_ID);
 }

Looking at the code in listing 3.5, you’ll notice that tick tuples are configured at the
bolt level, as demonstrated by the getComponentConfiguration implementation. The
tick tuple in question will only be sent to instances of this bolt.

Listing 3.5 HeatMapBuilder.java: step 2, configuring to receive a signal at
a given frequency

Overriding this
method allows us
to configure variou
aspects of how our
component runs—
this case, setting th
tick tuple frequency

When we ge
a tick tuple,
do somethin
different. Fo
regular tupl
we take the
same action
as before.

Tick tuples are easily identifiable because they’re emitted
on the system tick stream by system components rather

than being emitted by one of our own components on the
default stream for our topology.
Licensed to Mark Watson <nordickan@gmail.com>

47Initial implementation of the design

Fo

in
Now let’s use that tick tuple as a signal to select time periods that have passed for
which we no longer expect any incoming coordinates, and emit them from this bolt so
that the next bolt down the line can take them on (see the next listing).

 @Override
 public void execute(Tuple tuple,
 BasicOutputCollector outputCollector) {
 if (isTickTuple(tuple)) {
 emitHeatmap(outputCollector);
 } else {
 Long time = tuple.getLongByField("time");
 LatLng geocode = (LatLng) tuple.getValueByField("geocode");

 Long timeInterval = selectTimeInterval(time);
 List<LatLng> checkins = getCheckinsForInterval(timeInterval);
 checkins.add(geocode);
 }
 }

 private void emitHeatmap(BasicOutputCollector outputCollector) {
 Long now = System.currentTimeMillis();
 Long emitUpToTimeInterval = selectTimeInterval(now);
 Set<Long> timeIntervalsAvailable = heatmaps.keySet();
 for (Long timeInterval : timeIntervalsAvailable) {
 if (timeInterval <= emitUpToTimeInterval) {
 List<LatLng> hotzones = heatmaps.remove(timeInterval);
 outputCollector.emit(new Values(timeInterval, hotzones));
 }
 }
 }

 private Long selectTimeInterval(Long time) {
 return time / (15 * 1000);
 }

Steps 1, 2, and 3 provide a complete HeatMapBuilder implementation, showing how
you can maintain state with an in-memory map and also how you can use Storm’s

Emit frequencies of tick tuples
We configured our tick tuples to be emitted at a frequency of every 60 seconds. This
doesn’t mean they’ll be emitted exactly every 60 seconds; it’s done on a best-effort
basis. Tick tuples that are sent to a bolt are queued behind the other tuples currently
waiting to be consumed by the execute() method on that bolt. A bolt may not nec-
essarily process the tick tuples at the frequency that they’re emitted if the bolt is lag-
ging behind due to high latency in processing its regular stream of tuples.

Listing 3.6 HeatMapBuilder.java: step 3, emitting the aggregated HeatMap for
elapsed time intervals

If we got a
tick tuple,
interpret that
as a signal to
see whether
there are any
heat maps
that can be
emitted.

Heat maps that can be emitted are
considered to have check-ins that
occurred before the beginning of
the current time-interval. That’s

why we’re passing the current
time into selectTimeInterval(),

which will give us the beginning
of the current time interval.

r all time
intervals

we’re
currently

keeping
track of:

if they’ve
elapsed,
remove

them
from the
-memory

data
structure
and emit

them.
Licensed to Mark Watson <nordickan@gmail.com>

48 CHAPTER 3 Topology design
built-in tick tuple to emit a tuple at particular time intervals. With this implementa-
tion complete, let’s move on to persisting the results of the tuples emitted by Heat-
MapBuilder.

3.4.4 Bolt: persisting to a data store

We have the end tuples that represent
a heat map. At this point, we’re ready
to persist that data to some data store.
Our JavaScript-based web application
can read the heat map values from
this data store and interact with the
Google Maps API to build a geograph-
ical visualization from these calcu-
lated values. Figure 3.7 illustrates the
final bolt in our design.

 Because we’re storing and access-
ing heat maps based on time interval,

Thread safety
We’re collecting coordinates into an in-memory map, but we created it as an instance
of a regular HashMap. Storm is highly scalable, and there are multiple tuples coming
in that are added to this map, and we’re also periodically removing entries from that
map. Is modifying an in-memory data structure like this thread-safe?

Yes, it’s thread-safe because execute() is processing only one tuple at a time.
Whether it’s our regular stream of tuples or a tick tuple, only one JVM thread of exe-
cution will be going through and processing code within an instance of this bolt. So
within a given bolt instance, there will never be multiple threads running through it.

Does that mean you never need to worry about thread safety within the confines of
your bolt? No, in certain cases you might.

One such case has to do with how values within a tuple are serialized on a different
thread when being sent between bolts. For example, when you emit your in-memory
data structure without copying it and it’s serialized on a different thread, if that
data structure is changed during the serialization process, you’ll get a Concurrent-
ModificationException. Theoretically, everything emitted to an OutputCollector
should guard against such scenarios. One way to do this is make any emitted values
immutable.

Another case is where you may create threads of your own with the bolt’s execute()
method. For example, if instead of using tick tuples, you spawned a background thread
that periodically emits heat maps, then you’ll need to concern yourself with thread
safety, because you’ll have your own thread and Storm’s thread of execution both
running through your bolt.

[time-interval="9:00:00 PM to 9:00:15 PM",
hotzones=List((40.719908,-73.987277),

(40.72612,-74.001396),
(40.719908,-73.987277))]

Persistor

Figure 3.7 The Persistor bolt accepts a tuple with
a time interval and a list of geocodes and persists that
data to a data store.
Licensed to Mark Watson <nordickan@gmail.com>

49Initial implementation of the design
it makes sense to use a key-value data model for storage. For this case study, we’ll use
Redis, but any data store that supports the key-value model will suffice (such as
Membase, Memcached, or Riak). We’ll store the heat maps keyed by time interval
with the heat map itself as a JSON representation of the list of coordinates. We’ll use
Jedis as a Java client for Redis and the Jackson JSON library for converting the heat
map to JSON.

So let’s take a look at the code for writing to this NoSQL data store (see the follow-
ing listing).

public class Persistor extends BaseBasicBolt {
 private final Logger logger = LoggerFactory.getLogger(Persistor.class);

 private Jedis jedis;
 private ObjectMapper objectMapper;

NoSQL and other data stores with Storm
Examining the various NoSQL and data storage solutions available for working with
large data sets is outside the scope of this book, but make sure you start off on the
right foot when making your selections with regard to data storage solutions.

It’s common for people to consider the various options available to them and ask
themselves, “Which one of these NoSQL solutions should I pick?” This is the wrong
approach. Instead, ask yourself questions about the functionality you’re implement-
ing and the requirements they impose on any data storage solution.

You should be asking whether your use case requires a data store that supports
the following:

■ Random reads or random writes
■ Sequential reads or sequential writes
■ High read throughput or high write throughput
■ Whether the data changes or remains immutable once written
■ Storage model suitable for your data access patterns

– Column/column-family oriented
– Key-value
– Document oriented
– Schema/schemaless

■ Whether consistency or availability is most desirable

Once you’ve determined your mix of requirements, it’s easy to figure out which of the
available NoSQL, NewSQL, or other solutions are suitable for you. There’s no right
NoSQL solution for all problems. There’s also no perfect data store for use with
Storm—it depends on the use case.

Listing 3.7 Persistor.java
Licensed to Mark Watson <nordickan@gmail.com>

50 CHAPTER 3 Topology design

t

o
wh
St

lo

ist
ates

Re
by
 @Override
 public void prepare(Map stormConf,
 TopologyContext context) {
 jedis = new Jedis("localhost");
 objectMapper = new ObjectMapper();
 }

 @Override
 public void execute(Tuple tuple,
 BasicOutputCollector outputCollector) {
 Long timeInterval = tuple.getLongByField("time-interval");
 List<LatLng> hz = (List<LatLng>) tuple.getValueByField("hotzones");
 List<String> hotzones = asListOfStrings(hz);

 try {
 String key = "checkins-" + timeInterval;
 String value = objectMapper.writeValueAsString(hotzones);
 jedis.set(key, value);
 } catch (Exception e) {
 logger.error("Error persisting for time: " + timeInterval, e);
 }
 }

 private List<String> asListOfStrings(List<LatLng> hotzones) {
 List<String> hotzonesStandard = new ArrayList<String>(hotzones.size());
 for (LatLng geoCoordinate : hotzones) {
 hotzonesStandard.add(geoCoordinate.toUrlValue());
 }
 return hotzonesStandard;
 }

 @Override
 public void cleanup() {
 if (jedis.isConnected()) {
 jedis.quit();
 }
 }

 @Override
 public void declareOutputFields(OutputFieldsDeclarer declarer) {
 // No output fields to be declared
 }
}

Working with Redis is simple, and it serves as a good store for our use case. But for
larger-scale applications and data sets, a different data store may be necessary. One
thing to note is that because we’re working with an unreliable data stream, we’re sim-
ply logging any errors that may occur while saving to the database. Some errors may
be able to be retried (say, a timeout), and when working with a reliable data stream,
we’d consider how to retry them, as you’ll see in chapter 4.

Instantiate Jedis and have it
connect to a Redis instance
running on localhost.

Instantiate the Jackson
JSON ObjectMapper for
serializing our heat map.

Convert
he list of

LatLng
to a list

f Strings
ere each
ring is of
the form
(latitude,
ngitude).

Serialize the l
of geocoordin
(currently in
String form)
to JSON.Write the

heat map
JSON to

dis keyed
 the time
interval.

We aren’t retrying
any database failures

because this is an
unreliable stream.

Close the connection to
Redis when the Storm
topology is stopped.

This is the last bolt, so no tuples
are emitted from it. This means
no fields need to be declared.
Licensed to Mark Watson <nordickan@gmail.com>

51Initial implementation of the design
3.4.5 Defining stream groupings between the components

In chapter 2, you learned two ways of connecting components within a topology to
one another—shuffle grouping and fields grouping. To recap:

■ You use shuffle grouping to distribute outgoing tuples from one component to
the next in a manner that’s random but evenly spread out.

■ You use fields grouping when you want to ensure tuples with the same values for
a selected set of fields always go to the same instance of the next bolt.

A shuffle grouping should suffice for the streams between Checkins/GeocodeLookup
and HeatMapBuilder/Persistor.

 But we need to send the entire stream of outgoing tuples from the GeocodeLookup
bolt to the HeatMapBuilder bolt. If different tuples from GeocodeLookup end up going
to different instances of HeatMapBuilder, then we won’t be able to group them into
time intervals because they’ll be spread out among different instances of HeatMap-
Builder. This is where global grouping comes in. Global grouping will ensure that the
entire stream of tuples will go to one specific instance of HeatMapBuilder. Specifically,
the entire stream will go to the instance of HeatMapBuilder with the lowest task ID (an
ID assigned internally by Storm). Now we have every tuple in one place and we can
easily determine which time interval any tuple falls into and group them into their
corresponding time intervals.

NOTE Instead of using a global grouping you could have a single instance
of the HeatMapBuilder bolt with a shuffle grouping. This will also guarantee
that everything goes to the same HeatMapBuilder instance, as there is only
one. But we favor being explicit in our code, and using a global grouping
clearly conveys the desired behavior here. A global grouping is also slightly
cheaper, as it doesn’t have to pick a random instance to emit to as in a shuf-
fle grouping.

Let’s take a look at how we’d define these stream groupings in the code for building
and running our topology.

3.4.6 Building a topology for running in local cluster mode

We’re almost done. We just need to wire everything together and run the topology
in local cluster mode, just like we did in chapter 2. But in this chapter, we’re going
to deviate from having all the code in a single LocalTopologyRunner class and split
the code into two classes: one class for building the topology and another for run-
ning it. This is a common practice and while you might not see the benefits immedi-
ately in this chapter, hopefully in chapters 4 and 5 you’ll see why we’ve decided to
do this.

 The following listing shows you the code for building the topology.

Licensed to Mark Watson <nordickan@gmail.com>

52 CHAPTER 3 Topology design

t all
rder.

e
.

s
g,
e
s
ly

to
H
B
C

A bas
con
no

to the
confi
public class HeatmapTopologyBuilder {
 public StormTopology build() {
 TopologyBuilder builder = new TopologyBuilder();

 builder.setSpout("checkins", new Checkins());
 builder.setBolt("geocode-lookup", new GeocodeLookup())
 .shuffleGrouping("checkins");
 builder.setBolt("heatmap-builder", new HeatMapBuilder())
 .globalGrouping("geocode-lookup");
 builder.setBolt("persistor", new Persistor())
 .shuffleGrouping("heatmap-builder");

 return builder.createTopology();
 }
}

With the code for building the topology defined, the next listing shows how to imple-
ment LocalTopologyRunner.

public class LocalTopologyRunner {
 public static void main(String[] args) {
 Config config = new Config();

 StormTopology topology = HeatmapTopologyBuilder.build();

 LocalCluster localCluster = new LocalCluster();
 localCluster.submitTopology("local-heatmap", config, topology);
 }
}

Now we have a working topology. We read check-in data from our spout, and in the
end, we persist the coordinates grouped by time intervals into Redis and complete
the heat map topology implementation. All we have left to do is read the data from
Redis using a JavaScript application and use the heat map overlay feature of the
Google Maps API to build the visualization.

 This simple implementation will run, but will it scale? Will it be fast enough? Let’s
do some digging and find out.

3.5 Scaling the topology
Let’s review where we are so far. We have a working topology for our service that looks
similar to the one shown in figure 3.8.

Listing 3.8 HeatmapTopologyBuilder.java

Listing 3.9 LocalTopologyRunner.java

Wire in the topology and connec
the bolts and spout together in o
In this particular topology, these
components are connected to on
another in order, in serial fashion

These two bolts are
connected to their
corresponding
previous component
using shuffle groupin
so these bolts receiv
their incoming tuple
in a random but even
distributed manner.

We use
global

grouping
 connect
eatMap-
uilder to
heckins.

A simple Java class with a
main() method is usually
used to start the topology.ic Storm

fig with
 changes
 default

guration

Create a local
cluster.

Submit the topology and start
running it in local cluster mode.
Licensed to Mark Watson <nordickan@gmail.com>

53Scaling the topology
There are problems with it. As it stands right now, this topology operates in a serial
fashion, processing one check-in at a time. That isn’t web-scale—that’s Apple IIe scale.
If we were to put this live, everything would back up and we would end up with unhappy
customers, an unhappy ops team, and probably unhappy investors.

What is web-scale?
A system is web-scale when it can grow simply without downtime to cater to the
demand brought about by the network effect that is the web. When each happy user
tells 10 of their friends about your heat map, service and demand increase exponen-
tially. This increase in demand is known as web-scale.

"9:00PM 287 Hudson St"

[time="9:00 PM",address="287 Hudson St"]

[time="9:00 PM",geocode="40.72612,-74.001396"]

[time-interval="9:00:00 PM to 9:00:15 PM",
hotzones=List((40.719908,-73.987277),

(40.72612,-74.001396),
(40.719908,-73.987277))]

Checkins

Geocode
Lookup

HeatMap
Builder

Persistor

Figure 3.8 Heat
map topology
Licensed to Mark Watson <nordickan@gmail.com>

54 CHAPTER 3 Topology design
We need to process multiple check-ins at a time, so we’ll introduce parallelism into
our topology. One property that makes Storm so alluring is how easy it is to parallelize
workflows such as our heat map. Let’s take a look at the parts of the topology again
and discuss how they can be parallelized. We’ll begin with check-ins.

3.5.1 Understanding parallelism in Storm

Storm has additional primitives that
serve as knobs for tuning how it can
scale. If you don’t touch them, the
topology can still work, but all compo-
nents will run in a more or less linear
fashion. This may be fine for topolo-
gies that only have a small stream of
data flowing through them. For some-
thing like the heat map topology that’ll
receive data from a large fire hose, we
would want to address the bottlenecks
in it. In this section, we’ll look at two of
the primitives that deal with scaling.
There are additional primitives for
scaling that we’ll consider later in the
next chapter.

PARALLELISM HINTS

We know we’re going to need to process many check-ins rapidly, so we want to paral-
lelize the spout that handles check-ins. Figure 3.9 gives you an idea of what part of the
topology we’re working on here.

 Storm allows you to provide a parallelism hint when you define any spouts or bolts.
In code, this would involve transforming

builder.setSpout("checkins", new Checkins());

to

builder.setSpout("checkins", new Checkins(), 4);

The additional parameter we provide to setSpout is the parallelism hint. That’s a bit
of a mouthful: parallelism hint. So what is a parallelism hint? For right now, let’s say that
the parallelism hint tells Storm how many check-in spouts to create. In our example,
this results in four spout instances being created. There’s more to it than that, but
we’ll get to that in a bit.

 Now when we run our topology, we should be able to process check-ins four times as
fast—except simply introducing more spouts and bolts into our topology isn’t enough.
Parallelism in a topology is about both input and output. The Checkins spout can now

"9:00PM 287 Hudson St"

[time="9:00 PM",address="287 Hudson St"]

Checkins

Geocode
Lookup

Figure 3.9 Focusing our parallelization changes on
the Checkins spout
Licensed to Mark Watson <nordickan@gmail.com>

55Scaling the topology
process more check-ins at a time, but the GeocodeLookup bolt is still being handled seri-
ally. Simultaneously passing four check-ins to a single GeocodeLookup instance isn’t
going to work out well. Figure 3.10 illustrates the problem we’ve created.

 Right now, what we have is akin to a circus clown car routine where many clowns all
try to simultaneously pile into a car through the same door. This bottleneck needs to
be resolved; let’s try parallelizing the geocode lookup bolt as well. We could just paral-
lelize the geocode bolt in the same way we did check-ins. Going from this

builder.setBolt("geocode-lookup", new GeocodeLookup());

to this

builder.setBolt("geocode-lookup", new GeocodeLookup(), 4);

will certainly help. Now we have one GeocodeLookup instance for each Checkins
instance. But GeocodeLookup is going to take a lot longer than receiving a check-in and
handing it off to our bolt. So perhaps we can do something more like this:

builder.setBolt("geocode-lookup", new GeocodeLookup(), 8);

Now if GeocodeLookup takes two times as long as check-in handling, tuples should con-
tinue to flow through our system smoothly, resulting in figure 3.11.

 We’re making progress here, but there’s something else to think about: what hap-
pens as our service becomes more popular? We’re going to need to be able to continue
to scale to keep pace with our ever expanding traffic without taking our application
offline, or at least not taking it offline very often. Luckily Storm provides a way to do

GeocodeLookup

The single instance of the GeocodeLookup has

become a bottleneck, as it cannot keep up with the

increased number of tuples being sent its way.

Checkins

"9:00PM 287 Hudson St"

Figure 3.10 Four Checkins instances emitting tuples to one GeocodeLookup instance results
in the GeocodeLookup instance being a bottleneck.
Licensed to Mark Watson <nordickan@gmail.com>

56 CHAPTER 3 Topology design
that. We loosely defined the parallelism hint earlier but said there was a little more to
it. Well, here we are. That parallelism hint maps into two Storm concepts we haven’t
covered yet: executors and tasks.

EXECUTORS AND TASKS

So what are executors and tasks? Truly understanding the answer to this question
requires deeper knowledge of a Storm cluster and its various parts. Although we won’t
learn any details about a Storm cluster until chapter 5, we can provide you with a
sneak peek into certain parts of a Storm cluster that’ll help you understand what exec-
utors and tasks are for the purpose of scaling our topology.

 So far, we know that our spouts and bolts are each running as one or more
instances. Each of these instances is running somewhere, right? There has to be some
machine (physical or virtual) that’s actually executing our components. We’ll call this
machine a worker node, and though a worker node isn’t the only type of node run-
ning on a Storm cluster, it is the node that executes the logic in our spouts and bolts.
And because Storm runs on the JVM, each of these worker nodes is executing our
spouts and bolts on a JVM. Figure 3.12 shows what we have so far.

 There’s a little more to a worker node, but what’s important for now is that you
understand that it runs the JVM that executes our spout and bolt instances. So we pose
the question again: what are executors and tasks? Executors are a thread of execution

GeocodeLookupCheckins

"9:00PM 287 Hudson St"

Figure 3.11 Four Checkins instances emitting tuples to eight GeocodeLookup instances
Licensed to Mark Watson <nordickan@gmail.com>

57Scaling the topology
on the JVM, and tasks are the instances of our spouts and bolts running within a thread
of execution. Figure 3.13 illustrates this relationship.

 It’s really that simple. An executor is a thread of execution within a JVM. A task is
an instance of a spout or bolt running within that thread of execution. When discuss-
ing scalability in this chapter, we’re referring to changing the number of executors
and tasks. Storm provides additional ways to scale by changing the number of worker
nodes and JVMs, but we’re saving those for chapters 6 and 7.

 Let’s go back to our code and revisit what this means in terms of parallelism hints.
Setting the parallelism hint to 8, as we did with GeocodeLookup, is telling Storm to cre-
ate eight executors (threads) and run eight tasks (instances) of GeocodeLookup. This
is seen with the following code:

builder.setBolt("geocode-lookup", new GeocodeLookup(), 8)

By default, the parallelism hint is setting both the number of executors and tasks to
the same value. We can override the number of tasks with the setNumTasks() method
as follows:

builder.setBolt("geocode-lookup", new GeocodeLookup(), 8).setNumTasks(8)

A worker node has a JVM that

executes the logic in the spouts

and bolts for a topology.

A worker node is a physical

or virtual machine running

whatever flavor of operating

system you have installed.

Worker node

JVM

Figure 3.12 A worker node is a physical or virtual machine that’s running a JVM,
which executes the logic in the spouts and bolts.

Worker node

JVM

A worker node

running a JVM.

Thread

Spout

or bolt

Thread

Spout

or bolt

Spout

or bolt

JVM

Each JVM can be

running one or more

executors (threads)

of execution.

Each (thread)executor

is executing one or more

tasks (instances of

a spout/bolt).

Figure 3.13 Executors (threads) and tasks (instances of spouts/bolts) run on a JVM.
Licensed to Mark Watson <nordickan@gmail.com>

58 CHAPTER 3 Topology design
Why provide the ability to set the number of tasks to something different than the
number of executors? Before we answer this question, let’s take a step back and revisit
how we got here. We were talking about how we’ll want to scale our heat map in the
future without taking it offline. What’s the easiest way to do this? The answer: increase
the parallelism. Fortunately, Storm provides a useful feature that allows us to increase
the parallelism of a running topology by dynamically increasing the number of execu-
tors (threads). You’ll learn more on how this is done in chapter 6.

 What does this mean for our GeocodeLookup bolt with eight instances being run
across eight threads? Well, each of those instances will spend most of its time waiting
on network I/O. We suspect that this means GeocodeLookup is going to be a source
of contention in the future and will need to be scaled up. We can allow for this pos-
sibility with

 builder.setBolt("geocode-lookup", new GeocodeLookup(), 8).setNumTasks(64)

Now we have 64 tasks (instances) of GeocodeLookup running across eight executors
(threads). As we need to increase the parallelism of GeocodeLookup, we can keep
increasing the number of executors up to a maximum of 64 without stopping our topol-
ogy. We repeat: without stopping the topology. As we mentioned earlier, we’ll get into the
details of how to do this in a later chapter, but the key point to understand here is that
the number of executors (threads) can be dynamically changed in a running topology.

 Storm breaks parallelism down into two distinct concepts of executors and tasks to
deal with situations like we have with our GeocodeLookup bolt. To illustrate why, let’s
go back to the definition of a fields grouping:

A fields grouping is a type of stream grouping where tuples with the same
value for a particular field name are always emitted to the same instance
of a bolt.

Within that definition lurks our answer. Fields groupings work by consistently hashing
tuples across a set number of bolts. To keep keys with the same value going to the
same bolt, the number of bolts can’t change. If it did, tuples would start going to dif-
ferent bolts. That would defeat the purpose of what we were trying to accomplish with
a fields grouping.

 It was easy to configure the executors and tasks on the Checkins spout and Geo-
codeLookup bolt in order to scale them at a later point in time. Sometimes, though,
parts of our design won’t work well for scaling. Let’s look at that next.

3.5.2 Adjusting the topology to address bottlenecks inherent
within design

HeatMapBuilder is up next. Earlier we hit a bottleneck on GeocodeLookup when we
increased the parallelism hint on the Checkins spout. But we were able to address this
easily by increasing the parallelism on the GeocodeLookup bolt accordingly. We can’t
do that here. It doesn’t make sense to increase the parallelism on HeatMapBuilder as
it’s connected to the previous bolt using global grouping. Because global grouping
Licensed to Mark Watson <nordickan@gmail.com>

59Scaling the topology
dictates that every tuple goes to one specific instance of HeatMapBuilder, increasing
parallelism on it doesn’t have any effect; only one instance will be actively working on
the stream. There’s a bottleneck that’s inherent in the design of our topology.

 This is the downside of using global grouping. With global grouping, we’re trading
our ability to scale and introducing an intentional bottleneck with being able to see
the entire stream of tuples in one specific bolt instance.

 So what can we do? Is there no way we can parallelize this step in our topology? If
we can’t parallelize this bolt, it makes little sense to parallelize the bolts that follow.
This is the choke point. It can’t be parallelized with the current design. When we
come across a problem like this, the best approach is to take a step back and see what
we can change about the topology design to achieve our goal.

 The reason why we can’t parallelize HeatMapBuilder is because all tuples need to
go in to the same instance. All tuples have to go to the same instance because we need
to ensure that every tuple that falls into any given time interval can be grouped
together. So if we can ensure that every tuple that falls into given time interval goes
into the same instance, we can have multiple instances of HeatMapBuilder.

 Right now, we use the HeatMapBuilder bolt to do two things:

■ Determine which time interval a given tuple falls into
■ Group tuples by time interval

If we can move these two actions into separate bolts, we can get closer to our goal.
Let’s look at the part of the HeatMapBuilder bolt that determines which time interval
a tuple falls into in the next listing.

 public void execute(Tuple tuple,
 BasicOutputCollector outputCollector) {
 if (isTickTuple(tuple)) {
 emitHeatmap(outputCollector);
 } else {
 Long time = tuple.getLongByField("time");
 LatLng geocode = (LatLng) tuple.getValueByField("geocode");

 Long timeInterval = selectTimeInterval(time);
 List<LatLng> checkins = getCheckinsForInterval(timeInterval);
 checkins.add(geocode);
 }
 }

 private Long selectTimeInterval(Long time) {
 return time / (15 * 1000);
 }

HeatMapBuilder receives a check-in time and a geocoordinate from GeocodeLookup.
Let’s move this simple task of extracting the time interval out of tuple emitted by
GeocodeLookup into another bolt. This bolt—let’s call it TimeIntervalExtractor—
can emit a time interval and a coordinate that can be picked up by HeatMapBuilder
instead, as shown in the following listing.

Listing 3.10 Determining time interval for a tuple in HeatMapBuilder.java
Licensed to Mark Watson <nordickan@gmail.com>

60 CHAPTER 3 Topology design

e
s
l
e
nd

public class TimeIntervalExtractor extends BaseBasicBolt {
 @Override
 public void declareOutputFields(OutputFieldsDeclarer declarer) {
 declarer.declare(new Fields("time-interval", "geocode"));
 }

 @Override
 public void execute(Tuple tuple,
 BasicOutputCollector outputCollector) {
 Long time = tuple.getLongByField("time");
 LatLng geocode = (LatLng) tuple.getValueByField("geocode");

 Long timeInterval = time / (15 * 1000);
 outputCollector.emit(new Values(timeInterval, geocode));
 }
}

Introducing TimeIntervalExtractor requires a change in HeatMapBuilder. Instead
of retrieving the time from the input tuple, we need to update that bolt’s execute()
method to accept a time interval, as you can see in the next listing.

 @Override
 public void execute(Tuple tuple,
 BasicOutputCollector outputCollector) {
 if (isTickTuple(tuple)) {
 emitHeatmap(outputCollector);
 } else {
 Long timeInterval = tuple.getLongByField("time-interval");
 LatLng geocode = (LatLng) tuple.getValueByField("geocode");

 List<LatLng> checkins = getCheckinsForInterval(timeInterval);
 checkins.add(geocode);
 }
 }

The components in our topology now include the following:

■ Checkins spout, which emits the time and address
■ GeocodeLookup bolt, which emits the time and geocoordinate
■ TimeIntervalExtractor bolt, which emits the time interval and geocoordinate
■ HeatMapBuilder bolt, which emits the time interval as well as a list of grouped

geocoordinates
■ Persistor bolt, which emits nothing because it’s the last bolt in our topology

Figure 3.14 shows an updated topology design that reflects these changes.
 Now when we wire HeatMapBuilder to TimeIntervalExtractor we don’t need to

use global grouping.

Listing 3.11 TimeIntervalExtractor.java

Listing 3.12 Updating execute() in HeatMapBuilder.java to use the
precalculated time interval

Calculates the tim
interval and emit
that time interva
and geocoordinat
(instead of time a
geocoordinate) to
be picked up by
HeatMapBuilder
Licensed to Mark Watson <nordickan@gmail.com>

61Scaling the topology
We have the time interval precalculated, so now we need to ensure the same HeatMap-
Builder bolt instance receives all values for the given time interval. It doesn’t matter
whether different time intervals go to different instances. We can use fields grouping for
this. Fields grouping lets us group values by a specified field and send all tuples that
arrive with that given value to a specific bolt instance. What we’ve done is segment the
tuples into time intervals and send each segment into different HeatMapBuilder

[time-interval="9:00:00 PM to 9:00:15 PM",
geocode="40.72612,-74.001396"]

This has been parallelized

to run with 4 executors

and 4 tasks.

This has been parallelized

to run with 8 executors

and 64 tasks.

"9:00PM 287 Hudson St"

[time="9:00 PM",address="287 Hudson St"]

[time-interval="9:00:00 PM to 9:00:15 PM",
hotzones=List((40.719908,-73.987277),

(40.72612,-74.001396),
(40.719908,-73.987277))]

Checkins

Geocode
Lookup

Time
Interval
Extractor

HeatMap
Builder

Persistor

[time="9:00 PM",geocode="40.72612,-74.001396"]

Figure 3.14 Updated topology with
the TimeIntervalExtractor bolt
Licensed to Mark Watson <nordickan@gmail.com>

62 CHAPTER 3 Topology design
instances, thereby allowing us to achieve parallelism by running the segments in paral-
lel. Figure 3.15 shows the updated stream groupings between our spout and bolts.

 Let’s take a look at the code we would need to add to HeatmapTopologyBuilder in
order to incorporate our new TimeIntervalExtractor bolt along with changing to
the appropriate stream groupings, as listing 3.13 shows.

Shuffle

grouping

Fields

grouping

Shuffle

grouping

Shuffle

grouping

[time-interval="9:00:00 PM to 9:00:15 PM",
geocode="40.72612,-74.001396"]

This has been parallelized

to run with 4 executors

and 4 tasks.

This has been parallelized

to run with 8 executors

and 64 tasks.

"9:00PM 287 Hudson St"

[time="9:00 PM",address="287 Hudson St"]

[time-interval="9:00:00 PM to 9:00:15 PM",
hotzones=List((40.719908,-73.987277),

(40.72612,-74.001396),
(40.719908,-73.987277))]

Checkins

Geocode
Lookup

Time
Interval
Extractor

HeatMap
Builder

Persistor

[time="9:00 PM",geocode="40.72612,-74.001396"]

Figure 3.15 Updated topology stream groupings
Licensed to Mark Watson <nordickan@gmail.com>

63Scaling the topology

The n
is

b
G

Loo
H
Bu

will
G

Look

g

ass
o

public class HeatmapTopologyBuilder {
 public StormTopology build() {
 TopologyBuilder builder = new TopologyBuilder();

 builder.setSpout("checkins", new Checkins(), 4);
 builder.setBolt("geocode-lookup", new GeocodeLookup(), 8)
 .setNumTasks(64)
 .shuffleGrouping("checkins");
 builder.setBolt("time-interval-extractor", new TimeIntervalExtractor())
 .shuffleGrouping("geocode-lookup");
 builder.setBolt("heatmap-builder", new HeatMapBuilder())
 .fieldsGrouping("time-interval-extractor",
 new Fields("time-interval"));
 builder.setBolt("persistor", new Persistor())
 .shuffleGrouping("heatmap-builder");

 return builder.createTopology();
 }
}

As the listing shows, we’ve completely removed the global grouping and we’re now using
a series of shuffle groupings with a single fields grouping for the time intervals.

Listing 3.13 New bolt added to HeatmapTopologyBuilder.java

Global grouping
We scaled this bolt by replacing global grouping with fields grouping after some minor
design changes. So does global grouping fit well with any real-world scenarios where
we actually need scale? Don’t discount global grouping; it does serve a useful pur-
pose when deployed at the right junction.

In this case study, we used global grouping at the point of aggregation (grouping coor-
dinates by time interval). When used at the point of aggregation, it doesn’t indeed
scale because we’re forcing it to crunch a larger data set. But if we were to use global
grouping postaggregation, it’d be dealing with a smaller stream of tuples and we
wouldn’t have as great a need for scale as we would preaggregation.

If you need to see the entire stream of tuples, global grouping is highly useful. What
you’d need to do first is aggregate them in some manner (shuffle grouping for ran-
domly aggregating sets of tuples or fields grouping for aggregating selected sets of
tuples) and then use global grouping on the aggregation to get the complete picture:

builder.setBolt("aggregation-bolt", new AggregationBolt(), 10)
 .shuffleGrouping("previous-bolt");
builder.setBolt("world-view-bolt", new WorldViewBolt())
 .globalGrouping("aggregation-bolt");

AggregationBolt in this case can be scaled, and it’ll trim down the stream into a
smaller set. Then WorldViewBolt can look at the complete stream by using global
grouping on already aggregated tuples coming from AggregationBolt. We don’t
have to scale WorldViewBolt because it’s looking at a smaller data set.

ew bolt
inserted
etween

eocode-
kup and
eatMap-
ilder. It

 bind to
eocode-
up with
shuffle

rouping
because
random
ignment
f tuples
is okay.

HeatMapBuilder can
now receive tuples
from the new bolt.
We can change it to
use fields grouping
so that it can be
parallelized.
Licensed to Mark Watson <nordickan@gmail.com>

64 CHAPTER 3 Topology design
Parallelizing TimeIntervalExtractor is simple. To start, we can give it the same level
of parallelism as the Checkins spout—there’s no waiting on an external service as with
the GeocodeLookup bolt:

builder.setBolt("time-interval-extractor", new TimeIntervalExtractor(), 4)
 .shuffleGrouping("geocode-lookup");

Next up, we can clear our troublesome choke point in the topology:

builder.setBolt("heatmap-builder", new HeatMapBuilder(), 4)
 .fieldsGrouping("time-interval-extractor", new Fields("time-interval"));

Finally we address the Persistor. This is similar to GeocodeLookup in the sense that
we expect we’ll need to scale it later on. So we’ll need more tasks than executors for
the reasons we covered under our GeocodeLookup discussion earlier:

builder.setBolt("persistor", new Persistor(), 1)
 .setNumTasks(4)
 .shuffleGrouping("heatmap-builder");

Figure 3.16 illustrates the parallelism changes that were just applied.
 It looks like we’re done with scaling this topology…or are we? We’ve configured

every component (that is, every spout and bolt) for parallelism within the topology.
Each bolt or spout may be configured for parallelism, but that doesn’t necessarily
mean it will run at scale. Let’s see why.

3.5.3 Adjusting the topology to address bottlenecks inherent within a
data stream

We’ve parallelized every component within the topology, and this is in line with the
technical definition of how every grouping (shuffle grouping, fields grouping, and
global grouping) we use affects the flow of tuples within our topology. Unfortunately,
it’s still not effectively parallel.

 Although we were able to parallelize HeatMapBuilder with the changes from the
previous section, what we forgot to consider is how the nature of our data stream
affects parallelism. We’re grouping the tuples that flow through the stream into seg-
ments of 15 seconds, and that’s the source of our problem. For a given 15-second
window, all tuples that fall into that window will go through one instance of the Heat-
MapBuilder bolt. It’s true that with the design changes we made HeatMapBuilder
became technically parallelizable, but it’s effectively not parallel yet. The shape of
the data stream that flows through your topology can hide problems with scaling
that may be hard to spot. It’s wise to always question the impact of how data flows
through your topology.

 How can we parallelize this? We were right to group by time interval because that’s
the basis for our heat map generation. What we need is an additional level of group-
ing under the time interval; we can refine our higher-level solution so that we’re
Licensed to Mark Watson <nordickan@gmail.com>

65Scaling the topology
delivering heat maps by time interval by city. When we add an additional level of
grouping by city, we’ll have multiple data flows for a given time interval and they may
flow through different instances of the HeatmapBuilder. In order to add this addi-
tional level of grouping, we first need to add city as a field in the output tuple of Geo-
codeLookup, as shown in the next listing.

Running with

4 executors and

4 tasks.

Running with

8 executors and

64 tasks.

Running with

4 executors and

4 tasks.

Running with

4 executors and

4 tasks.

Running with

1 executor and

4 tasks.

[time-interval="9:00:00 PM to 9:00:15 PM",
geocode="40.72612,-74.001396"]

"9:00PM 287 Hudson St"

[time="9:00 PM",address="287 Hudson St"]

[time-interval="9:00:00 PM to 9:00:15 PM",
hotzones=List((40.719908,-73.987277),

(40.72612,-74.001396),
(40.719908,-73.987277))]

Checkins

Geocode
Lookup

Time
Interval
Extractor

HeatMap
Builder

Persistor

[time="9:00 PM",geocode="40.72612,-74.001396"]

Figure 3.16 Parallelizing all
the components in our topology
Licensed to Mark Watson <nordickan@gmail.com>

66 CHAPTER 3 Topology design
public class GeocodeLookup extends BaseBasicBolt {
 private Geocoder geocoder;

 @Override
 public void declareOutputFields(OutputFieldsDeclarer fieldsDeclarer) {
 fieldsDeclarer.declare(new Fields("time", "geocode", "city"));
 }

 @Override
 public void prepare(Map config,
 TopologyContext context) {
 geocoder = new Geocoder();
 }

 @Override
 public void execute(Tuple tuple,
 BasicOutputCollector outputCollector) {
 String address = tuple.getStringByField("address");
 Long time = tuple.getLongByField("time");

 GeocoderRequest request = new GeocoderRequestBuilder()
 .setAddress(address)
 .setLanguage("en")
 .getGeocoderRequest();
 GeocodeResponse response = geocoder.geocode(request);
 GeocoderStatus status = response.getStatus();
 if (GeocoderStatus.OK.equals(status)) {
 GeocoderResult firstResult = response.getResults().get(0);
 LatLng latLng = firstResult.getGeometry().getLocation();
 String city = extractCity(firstResult);
 outputCollector.emit(new Values(time, latLng, city));
 }
 }

 private String extractCity(GeocoderResult result) {
 for (GeocoderAddressComponent component : result.getAddressComponents())
 {
 if (component.getTypes().contains("locality"))
 return component.getLongName();
 }
 return "";
 }
}

GeocodeLookup now includes city as a field in its output tuple. We’ll need to update
TimeIntervalExtractor to read and emit this value, as shown in the following listing.

public class TimeIntervalExtractor extends BaseBasicBolt {
 @Override
 public void declareOutputFields(OutputFieldsDeclarer declarer) {
 declarer.declare(new Fields("time-interval", "geocode", "city"));
 }

Listing 3.14 Adding city as a field in the output tuple of GeocodeLookup.java

Listing 3.15 Pass city field along in TimeIntervalExtractor.java

Add city as an
additional field

that will be
emitted from

this bolt

Extract city
name from
the already
available
geocoded
result
Licensed to Mark Watson <nordickan@gmail.com>

67Scaling the topology

e
n
 @Override
 public void execute(Tuple tuple,
 BasicOutputCollector outputCollector) {
 Long time = tuple.getLongByField("time");
 LatLng geocode = (LatLng) tuple.getValueByField("geocode");
 String city = tuple.getStringByField("city");

 Long timeInterval = time / (15 * 1000);
 outputCollector.emit(new Values(timeInterval, geocode, city));
 }
}

Finally, we need to update our HeatmapTopologyBuilder so the fields grouping between
TimeIntervalExtractor and HeatMapBuilder is based on both the time-interval and
city fields, as shown in the next listing.

public class HeatmapTopologyBuilder {
 public StormTopology build() {
 TopologyBuilder builder = new TopologyBuilder();

 builder.setSpout("checkins", new Checkins(), 4);
 builder.setBolt("geocode-lookup", new GeocodeLookup(), 8)
 .setNumTasks(64)
 .shuffleGrouping("checkins");
 builder.setBolt("time-interval-extractor", new TimeIntervalExtractor(), 4)
 .shuffleGrouping("geocode-lookup");
 builder.setBolt("heatmap-builder", new HeatMapBuilder(), 4)
 .fieldsGrouping("time-interval-extractor",
 new Fields("time-interval", "city"));
 builder.setBolt("persistor", new Persistor(), 1)
 .setNumTasks(4)
 .shuffleGrouping("heatmap-builder");

 return builder.createTopology();
 }
}

Now we have a topology that isn’t only technically parallelized but is also effectively
running in parallel fashion. We’ve made a few changes here, so let’s take an updated
look at our topology and the transformation of the tuples in figure 3.17.

 We’ve covered the basics of parallelizing a Storm topology. The approach we fol-
lowed here is based on making educated guesses driven by our understanding of
how each topology component works. There’s more work that can be done on paral-
lelizing this topology, including additional parallelism primitives and approaches to
achieving optimal tuning based on observed metrics. We’ll visit them at appropriate
points throughout the book. In this chapter, we built up the understanding of paral-
lelism needed to properly design a Storm topology. The ability to scale a topology
depends heavily on the makeup of a topology’s underlying component breakdown
and design.

Listing 3.16 Added second-level grouping to HeatmapTopologyBuilder.java

Secondary
grouping
allows effectiv
parallelizatio
of HeatMap-
Builder
Licensed to Mark Watson <nordickan@gmail.com>

68 CHAPTER 3 Topology design
The nowfields grouping

includes both “time-interval”

and “city.”

[time-interval="9:00:00 PM to 9:00:15 PM",
geocode="40.72612,-74.001396",

]city="New York"

"9:00PM 287 Hudson St"

[time="9:00 PM",address="287 Hudson St"]

[time-interval="9:00:00 PM to 9:00:15 PM",
hotzones=List((40.719908,-73.987277),

(40.72612,-74.001396),
(40.719908,-73.987277))]

Checkins

Geocode
Lookup

Time
Interval
Extractor

HeatMap
Builder

Persistor

[time="9:00 PM",geocode="40.72612,-74.001396",]city="New York"

Figure 3.17 Adding city to the tuple being emitted by GeocodeLookup and having
TimeIntervalExtractor pass the city along in its emitted tuple
Licensed to Mark Watson <nordickan@gmail.com>

69Topology design paradigms
3.6 Topology design paradigms
Let’s recap how we designed the heat map topology:

1 We examined our data stream, and determined that our input tuples are based
on what we start with. Then we determined the resulting tuples we need to end
up with in order to achieve our goal (the end tuples).

2 We created a series of operations (as bolts) that transform the input tuples into
end tuples.

3 We carefully examined each operation to understand its behavior and scaled it
by making educated guesses based on our understanding of its behavior (by
adjusting its executors/tasks).

4 At points of contention where we could no longer scale, we rethought our
design and refactored the topology into scalable components.

This is a good approach to topology design. It’s quite common for most people to
fall into the trap of not having scalability in mind when creating their topologies. If
we don’t do this early on and leave scalability concerns for later on, the amount of
work you have to do to refactor or redesign your topology will increase by an order
of magnitude.

Premature optimization is the root of all evil.

 —Donald Knuth

As engineers we’re fond of using this quote from Donald Knuth whenever we talk
about performance considerations early on. This is indeed true in most cases, but let’s
look at the complete quote to give us more context to what Dr. Knuth was trying to say
(rather than the sound bite we engineers normally use to make our point):

You should forget about small efficiencies, say about 97% of the time;
premature optimization is the root of all evil.

You’re not trying to achieve small efficiencies—you’re working with big data. Every effi-
ciency enhancement you make counts. One minor performance block can be the differ-
ence in not achieving the performance SLA you need when working with large data sets.
If you’re building a racecar, you need to keep performance in mind starting on day one.
You can’t refactor your engine to improve it later if it wasn’t built for performance from
the ground up. So steps 3 and 4 are critical pieces in designing a topology.

 The only caveat here is a lack of knowledge about the problem domain. If your
knowledge about the problem domain is limited, that might work against you if you
try to scale it too early. When we say knowledge about the problem domain, what we’re
referring to is both the nature of the data that’s flowing through your system as well as
the inherent choke points within your operations. It’s always okay to defer scaling con-
cerns until you have a good understanding of it. Similar to building an expert system,
when you have a true understanding of the problem domain, you might have to scrap
your initial solution and start over.
Licensed to Mark Watson <nordickan@gmail.com>

70 CHAPTER 3 Topology design
3.6.1 Design by breakdown into functional components

Let’s observe how we broke down the series of operations within our topology (fig-
ure 3.18).

Looking at our topology

design as a series of

functional components

[time-interval="9:00:00 PM to 9:00:15 PM",
geocode="40.72612,-74.001396",
city="New York"]

"9:00PM 287 Hudson St"

[time="9:00 PM",address="287 Hudson St"]

[time-interval="9:00:00 PM to 9:00:15 PM",
hotzones=List((40.719908,-73.987277),

(40.72612,-74.001396),
(40.719908,-73.987277))]

Checkins

Geocode
Lookup

Time
Interval
Extractor

HeatMap
Builder

Persistor

[time="9:00 PM",geocode="40.72612,-74.001396", city="New York"]

Figure 3.18 The heat map topology design as a series of functional components
Licensed to Mark Watson <nordickan@gmail.com>

71Topology design paradigms
We decomposed the topology makeup into separate bolts by giving each bolt a specific
responsibility. This is in line with the principle of single responsibility. We encapsulated a
specific responsibility within each bolt and everything within each bolt is narrowly
aligned with its responsibility and nothing else. In other words, each bolt represents a
functional whole.

 There’s a lot of value in this approach to design. Giving each bolt a single responsi-
bility makes it easy to work with a given bolt in isolation. It also makes it easy to scale a
single bolt without interference from the rest of the topology because parallelism is
tuned at the bolt level. Whether it’s scaling or troubleshooting a problem, when you
can zoom in and focus your attention on a single component, the productivity gains to
be had from that will allow you to reap the benefits of the effort spent on designing
your components in this manner.

3.6.2 Design by breakdown into components at points of repartition

There’s a slightly different approach to breaking down a problem into its constitu-
ent parts. It provides a marked improvement in terms of performance over the
approach of breaking down into functional components discussed earlier. With this
pattern, instead of decomposing the problem into its simplest possible functional
components, we think in terms of separation points (or join points) between the dif-
ferent components. In other words, we think of the points of connection between
the different bolts. In Storm, the different stream groupings are markers between
different bolts (as the groupings define how the outgoing tuples from one bolt are
distributed to the next).

 At these points, the stream of tuples flowing through the topology gets reparti-
tioned. During a stream repartition, the way tuples are distributed changes. That is in
fact the functionality of a stream grouping. Figure 3.19 illustrates our design by points
of repartition.

 With this pattern of topology design, we strive to minimize the number of reparti-
tions within a topology. Every time there’s a repartitioning, tuples will be sent from
one bolt to another across the network. This is an expensive operation due to a num-
ber of reasons:

■ The topology operates within a distributed cluster. When tuples are emitted,
they may travel across the cluster and this may incur network overhead.

■ With every emit, a tuple will need to be serialized and deserialized at the receiv-
ing point.

■ The higher the number of partitions, the higher the number of resources
needed. Each bolt will require a number of executors and tasks and a queue in
front for all the incoming tuples.

NOTE We’ll discuss the makeup of a Storm cluster and the internals that sup-
port a bolt in later chapters.
Licensed to Mark Watson <nordickan@gmail.com>

72 CHAPTER 3 Topology design
For our topology, what can we do to minimize the number of partitions? We’ll have to
collapse a few bolts together. To do so, we must figure out what’s different about each
functional component that makes it need its own bolt (and the resources that come
with a bolt):

■ Checkins (spout)—4 executors (reads a file)
■ GeocodeLookup—8 executors, 64 tasks (hits an external service)
■ TimeIntervalExtractor—4 executors (internal computation; transforms data)
■ HeatMapBuilder—4 executors (internal computation; aggregates tuples)
■ Persistor—1 executor, 4 tasks (writes to a data store)

Looking at our

topology design as a

series of separation points

between the different

components

Shuffle

grouping

Fields

grouping

Shuffle

grouping

Shuffle

grouping

[time-interval="9:00:00 PM to 9:00:15 PM",
geocode="40.72612,-74.001396",
city="New York"]

"9:00PM 287 Hudson St"

[time="9:00 PM",address="287 Hudson St"]

[time-interval="9:00:00 PM to 9:00:15 PM",
hotzones=List((40.719908,-73.987277),

(40.72612,-74.001396),
(40.719908,-73.987277))]

Checkins

Geocode
Lookup

Time
Interval
Extractor

HeatMap
Builder

Persistor

[time="9:00 PM",geocode="40.72612,-74.001396", city="New York"]

Figure 3.19 The HeatMap topology design as points of repartition
Licensed to Mark Watson <nordickan@gmail.com>

73Topology design paradigms
And now for the analysis:

■ GeocodeLookup and Persistor interact with an external entity and the time
spent waiting on interactions with that external entity will dictate the way execu-
tors and tasks are allocated to these two bolts. It’s unlikely that we’ll be able to
coerce the behavior of these bolts to fit within another. Maybe something else
might be able to fit within the resources necessary for one of these two.

■ HeatMapBuilder does the aggregation of geocoordinates by time interval and
city. It’s somewhat unique compared to others because it buffers data in
memory and you can’t proceed to the next step until the time interval has
elapsed. It’s peculiar enough that collapsing it with another will require care-
ful consideration.

■ Checkins is a spout and normally you wouldn’t modify a spout to contain
operations that involve computation. Also, because the spout is responsible
for keeping track of the data that has been emitted, rarely would we perform
any computation within one. But certain things related to adapting the initial
tuples (such as parsing, extracting, and converting) do fit within the responsi-
bilities of a spout.

■ That leaves TimeIntervalExtractor. This is simple—all it does is transform a
“time” entry into a “time interval.” We extracted it out of HeatMapBuilder
because we needed to know the time interval prior to HeatMapBuilder so that
we could group by the time interval. This allowed us to scale the HeatMap-
Builder bolt. Work done by TimeIntervalExtractor can technically happen at
any point before the HeatMapBuilder:
– If we merge TimeIntervalExtractor with GeocodeLookup, it’ll need to fit

within resources allocated to GeocodeLookup. Although they have different
resource configurations, the simplicity of TimeIntervalExtractor will
allow it to fit within resources allocated to GeocodeLookup. On a purely ide-
alistic sense, they also fit—both operations are data transformations (going
from time to time interval and address to geocoordinate). One of them is
incredibly simple and the other requires the network overhead of using an
external service.

– Can we merge TimeIntervalExtractor with the Checkins spout? They
have the exact same resource configurations. Also, transforming a “time”
to a “time interval” is one of the few types of operations from a bolt that
can make sense within a spout. The answer is a resounding yes. This begs
the question of whether GeocodeLookup can also be merged with the
Checkins spout. Although GeocodeLookup is also a data transformer, it’s a
much more heavyweight computation because it depends on an external
service, meaning it doesn’t fit within the type of actions that should happen
in a spout.
Licensed to Mark Watson <nordickan@gmail.com>

74 CHAPTER 3 Topology design
Should we merge TimeIntervalExtractor with GeocodeLookup or the Checkins
spout? From an efficiency perspective, either will do, and that’s the right answer. We
would merge it with the spout because we have a preference for keeping external ser-
vice interactions untangled with much simpler tasks like TimeIntervalExtractor.
We’ll let you make the needed changes in your topology to make this happen.

 You might wonder why in this example we chose not to merge HeatMapBuilder
with Persistor. HeatMapBuilder emits the aggregated geocoordinates periodically
(whenever it receives a tick tuple) and at the point of emitting, it can be modified to
write the value to the data store instead (the responsibility of Persistor). Although
this makes sense conceptually, it changes the observable behavior of the combined
bolt. The combined HeatMapBuilder/Persistor behaves very differently on the
two types of tuples it receives. The regular tuple from the stream will perform with
low latency whereas the tick tuple for writing to the data store will have comparably
higher latency. If we were to monitor and gather data about the performance of
this combined bolt, it’d be difficult to isolate the observed metrics and make intelli-
gent decisions on how to tune it further. This unbalanced nature of latency makes it
very inelegant.

 Designing a topology by considering the points of repartitioning of the stream and
trying to minimize them will give you the most efficient use of resources with a topol-
ogy makeup that has a higher likelihood of performing with low latency.

3.6.3 Simplest functional components vs. lowest number
of repartitions

We’ve discussed two approaches to topology design. Which one is better? Having the
lowest number of repartitions will provide the best performance as long as careful
consideration is given to what kind of operations can be grouped into one bolt.

 Usually it isn’t one or the other. As a Storm beginner, you should always start by
designing the simplest functional components; doing so allows you to reason about
different operations easily. Also, if you start with more complex components tasked
with multiple responsibilities, it’s much harder to break down into simpler compo-
nents if your design is wrong.

 You can always start with the simplest functional components and then advance
toward combining different operations together to reduce the number of partitions.
It’s much harder to go the other way around. As you gain more experience with work-
ing with Storm and develop intuition for topology design, you’ll be able start with the
lowest number of repartitions from the beginning.

3.7 Summary
In this chapter, you learned

■ How to take a problem and break it down into constructs that fit within a Storm
topology

■ How to take a topology that runs in a serial fashion and introduce parallelism
Licensed to Mark Watson <nordickan@gmail.com>

75Summary
■ How to spot problems in your design and refine and refactor
■ The importance of paying attention to the effects of the data stream on the lim-

itations it imposes on the topology
■ Two different approaches to topology design and the delicate balance between

the two

These design guidelines serve as best practices for building Storm topologies. Later
on in the book, you’ll see why these design decisions aid greatly in tuning Storm for
optimal performance.
Licensed to Mark Watson <nordickan@gmail.com>

Creating robust topologies
So far, we’ve defined many of Storm’s core concepts. Along the way, we’ve imple-
mented two separate topologies, each of which runs in a local cluster. This chapter
is no different in that we’ll be designing and implementing another topology for a
new scenario. But the problem we’re solving has stricter requirements for guaran-
teeing tuples are processed and fault tolerance is maintained. To help us meet
these requirements, we’ll introduce some new concepts related to reliability and
failure. You’ll learn about the tools Storm gives us to handle failure, and we’ll also
dive into the various types of guarantees we can make about processing data.
Armed with this knowledge, we’ll be ready to venture out into the world and create
production-quality topologies.

4.1 Requirements for reliability
In the previous chapter, our heat map application needed to quickly process a large
amount of time-sensitive data. Further, merely sampling a portion of that data

This chapter covers
■ Guaranteed message processing
■ Fault tolerance
■ Replay semantics
76

Licensed to Mark Watson <nordickan@gmail.com>

77Problem definition: a credit card authorization system
could provide us with what we needed: an approximation of the popularity of estab-
lishments within a given geographic area right now. If we failed to process a given tuple
within a short time window, it lost its value. The heat map was all about right now. We
didn’t need to guarantee that each message was processed—most was good enough.

 But there are domains where this is strictly unacceptable; each tuple is sacred.
In these scenarios, we need to guarantee that each and every one is processed. Reli-
ability is more important than timeliness here. If we have to keep retrying a tuple
for 30 seconds or 10 minutes or an hour (or up to some threshold that makes sense),
it has just as much value in our system as it did when we first tried. There’s a need
for reliability.

 Storm provides the ability to guarantee that each tuple is processed. This serves as
a reliability measure we can count on to ensure accurate implementation of function-
ality. On a high level, Storm provides reliability by keeping track of which tuples are
successfully processed and which ones aren’t and then replaying the ones that have
failed until they succeed.

4.1.1 Pieces of the puzzle for supporting reliability

Storm has many moving parts that need to come together in order to deliver reliability:

■ A reliable data source with a correspondingly reliable spout
■ An anchored tuple stream
■ A topology that acknowledges each tuple as it’s processed or notifies you of

the failure
■ A fault-tolerant Storm cluster infrastructure

In this chapter, we’ll look at how the first three of these components fall into place to
enable reliability. Then chapter 5 introduces you to the Storm cluster and talks about
how it provides fault tolerance.

4.2 Problem definition: a credit card authorization system
When you think about using Storm to solve a problem within your domain, take time
to think about what guarantees you need to have around processing; it’s an important
part of “thinking in Storm.” Let’s dive into a problem that has a reliability requirement.

 Imagine that we run a large e-commerce site that deals with shipping physical
goods to people. We know that the vast majority of orders placed on our site are
authorized for payment successfully and only a small percentage are declined. Tradi-
tionally in e-commerce, the more steps our user needs to take to place an order, the
higher the risk of losing the sale. When we’re billing at the time an order is placed,
we’re losing business. Handling billing as a separate, “offline” operation improves
conversions and directly affects our bottom line. We also need this offline billing pro-
cess to scale well to support peak seasons such as the holidays (think Amazon) or even
flash sales (think Gilt).
Licensed to Mark Watson <nordickan@gmail.com>

78 CHAPTER 4 Creating robust topologies
 This is a scenario that requires reliability. Each order has to be authorized before it’s
shipped. If we encounter a problem during our attempts to authorize, we should retry.
In short, we need guaranteed message processing. Let’s take a look at what such a sys-
tem may look like, keeping in mind how we can incorporate retry characteristics.

4.2.1 A conceptual solution with retry characteristics

This system deals solely with authorizing credit cards related to orders that have
already been placed. Our system doesn’t deal with customers placing orders; that hap-
pens earlier in the pipeline.

ASSUMPTIONS ON UPSTREAM AND DOWNSTREAM SYSTEMS

Distributed systems are defined by the interactions amongst different systems. For our
use case we can assume the following:

■ The same order will never be sent to our system more than once. This is guaran-
teed by an upstream system that handles the placing of customer orders.

■ The upstream system that places orders will put the order on a queue and our
system will pull the order off the queue so it can be authorized.

■ A separate downstream system will handle a processed order, either fulfilling
the order if the credit card was authorized or notifying the customer of a
denied credit card.

With these assumptions in hand, we can move forward with a design that’s limited in
scope but maps well to the Storm concepts we want to cover.

FORMATION OF A CONCEPTUAL SOLUTION

Let’s begin with how orders flow through our system. The following steps are taken
when the credit card for an order must be authorized:

1 Pull the order off the message queue.
2 Attempt to authorize the credit card by calling an external credit card authori-

zation service.
3 If the service call succeeds, update the order status in the database.
4 If it fails, we can try again later.
5 Notify a separate downstream system that the order has been processed.

These steps are illustrated in figure 4.1.
 We have our basic flow. The next step in defining our problem is to look at the

data points being worked with in our topology; with this knowledge, we can determine
what’s being passed along in our tuples.

Licensed to Mark Watson <nordickan@gmail.com>

79Problem definition: a credit card authorization system
4.2.2 Defining the data points

With the flow of transactions defined, we can take a look at the data involved. The
flow of data starts with incoming orders being pulled off a queue as JSON (see the fol-
lowing listing).

{
 "id":1234,
 "customerId":5678,
 "creditCardNumber":1111222233334444,
 "creditCardExpiration":"012014",
 "creditCardCode":123,
 "chargeAmount":42.23
}

This JSON will be converted into Java objects and our system will deal internally with
these serialized Java objects. The next listing defines the class for this.

public class Order implements Serializable {
 private long id;
 private long customerId;
 private long creditCardNumber;
 private String creditCardExpiration;
 private int creditCardCode;
 private double chargeAmount;

Listing 4.1 Order JSON

Listing 4.2 Order.java

Authorization attempt

succeeded and order

status updated

Attempt

to authorize

credit card and

update order

status

Pull

incoming

order off

queue

Notify

separate

downstream

system of

processed

order

Credit card

authorization

service

Database

containing current

order status

Figure 4.1 Conceptual solution of the e-commerce credit card authorization flow
Licensed to Mark Watson <nordickan@gmail.com>

80 CHAPTER 4 Creating robust topologies
 public Order(long id,
 long customerId,
 long creditCardNumber,
 String creditCardExpiration,
 int creditCardCode,
 double chargeAmount) {
 this.id = id;
 this.customerId = customerId;
 this.creditCardNumber = creditCardNumber;
 this.creditCardExpiration = creditCardExpiration;
 this.creditCardCode = creditCardCode;
 this.chargeAmount = chargeAmount;
 }
 ...
}

This approach of defining a problem in terms of data points and components that act
on them should be familiar to you; it’s exactly how we broke down the problems in
chapters 2 and 3 when creating our topologies. We now need to map this solution to
components Storm can use to build our topology.

4.2.3 Mapping the solution to Storm with retry characteristics

Now that we have a basic design and have identified the data that will flow through
our system, we can map both our data and our components to Storm concepts. Our
topology will have three main components, one spout, and two bolts:

■ RabbitMQSpout—Our spout will consume messages from the queue, where
each message is JSON representing an order, and emit a tuple containing a seri-
alized Order object. We’ll use RabbitMQ for our queue implementation—hence
the name. We’ll delve into the details of this spout when we discuss guaranteed
message processing later in this chapter.

■ AuthorizeCreditCard—If the credit card was authorized, this bolt will update
the status of the order to “ready-to-ship.” If the credit card was denied, this bolt
will update the status of the order to “denied.” Regardless of the status, this
bolt will emit a tuple containing the Order to the next bolt in the stream.

■ ProcessedOrderNotification—A bolt that notifies a separate system that an
order has been processed.

In addition to the spout, bolts, and tuples, we must define stream groupings for how
tuples are emitted between each of the components. The following stream groupings
will be used:

■ Shuffle grouping between the RabbitMQSpout and AuthorizeCreditCard bolt
■ Shuffle grouping between AuthorizeCreditCard bolt and the ProcessedOrder-

Notification bolt

In chapter 2 we used a fields grouping to ensure the same GitHub committer email
was routed to the same bolt instance. In chapter 3 we used a fields grouping to ensure
the same grouping of geocoordinates by time interval was routed to the same bolt
Licensed to Mark Watson <nordickan@gmail.com>

81Basic implementation of the bolts
instance. We don’t need the same assurances; any given bolt instance can process any
given tuple, so a shuffle grouping will suffice.

 All of the Storm concepts we just discussed are shown in figure 4.2.
 With an idea of what our topology looks like, we’ll next cover the code for our two

bolts before getting into guaranteed message processing and what’s required to achieve
it. We’ll discuss the code for the spout a bit later.

4.3 Basic implementation of the bolts
This section will cover the code for our two bolts: AuthorizeCreditCard and
ProcessedOrderNotification. Understanding what’s happening within each of the
bolts will provide some context when we discuss guaranteed message processing in
section 4.4.

[order=Order@7442df79]

[order=Order@7442df79]

Authorize
CreditCard

RabbitMQ
Spout

Processed
Order

Notification

The stream

groupings between

all of our components will

be shuffle groupings.

Order JSON being

placed on the queue.

Spout that pulls incoming

orders off a queue and

converts the JSON into

an Order object.

Each is beingtuple

passed between components

as a serialized Java object.

Bolts performing

processing on the

Order objects.

{
"id":1234,
"customerld":5678,
"creditCardNumber":1111222233334444,
"creditCardExpiration":"012014",
"creditCardCode":123,
"chargeAmount":42.23
}

Figure 4.2 E-commerce credit card authorization mapped to Storm concepts
Licensed to Mark Watson <nordickan@gmail.com>

82 CHAPTER 4 Creating robust topologies

Servic
author

the c

At
auth

cr
b
o

auth
We’re leaving the implementation of the RabbitMQSpout for the end of the guaran-
teed message processing section because much of the code in the spout is geared
toward retrying failed tuples. A complete understanding of guaranteed message pro-
cessing will help you focus on the relevant parts of the spout code.

 Let’s begin with a look at the first bolt in our topology: AuthorizeCreditCard.

4.3.1 The AuthorizeCreditCard implementation

The AuthorizeCreditCard bolt accepts an Order object from the RabbitMQSpout.
This bolt then attempts to authorize the credit card by talking to an external service.
The status of the order will be updated in our database based on the results of the
authorization attempt. After that, this bolt will emit a tuple containing the Order
object it received. Figure 4.3 illustrates where we are in the topology.

 The code for this bolt is presented in the next listing.

public class AuthorizeCreditCard extends BaseBasicBolt {
 private AuthorizationService authorizationService;
 private OrderDao orderDao;

 @Override
 public void declareOutputFields(OutputFieldsDeclarer declarer) {
 declarer.declare(new Fields("order"));
 }

 @Override
 public void prepare(Map config,
 TopologyContext context) {
 orderDao = new OrderDao();
 authorizationService = new AuthorizationService();
 }

 @Override
 public void execute(Tuple tuple,
 BasicOutputCollector outputCollector) {
 Order order = (Order) tuple.getValueByField(“order”);
 boolean isAuthorized = authorizationService.authorize(order);

Listing 4.3 AuthorizeCreditCard.java

Credit card

authorization

service

Database

containing current

order status

[order=Order@7442df79]

[order=Order@7442df79]

Authorize
CreditCard

Figure 4.3 The AuthorizeCreditCard
bolt accepts an incoming tuple from the
RabbitMQSpout and emits a tuple
regardless of whether or not the credit card
was authorized.

e for
izing
redit
card

DAO for updating the
status of the order in
the database

Indicates the bolt
emits a tuple with a
field named order

Obtain the
order from the
input tuple.

tempt to
orize the
edit card
y calling
ut to the
orization

service.
Licensed to Mark Watson <nordickan@gmail.com>

83Basic implementation of the bolts

The
th
u

“read
in the

t

 if (isAuthorized) {
 orderDao.updateStatusToReadyToShip(order);
 } else {
 orderDao.updateStatusToDenied(order);
 }
 outputCollector.emit(new Values(order));
 }
}

Once the billing has been approved or denied, we’re ready to notify the downstream
system of the processed order; the code for this is seen next in ProcessedOrder-
Notification.

4.3.2 The ProcessedOrderNotification implementation
The second and final bolt in our stream, ProcessedOrderNotification, accepts an
Order from the AuthorizeCreditCard bolt and notifies an external system the order
has been processed. This bolt doesn’t emit any tuples. Figure 4.4 shows this final bolt
in the topology.

 The following listing shows the code for this bolt.

public class ProcessedOrderNotification extends BaseBasicBolt {
 private NotificationService notificationService;

 @Override
 public void declareOutputFields(OutputFieldsDeclarer declarer) {
 // This bolt does not emit anything. No output fields will be declared.
 }

 @Override
 public void prepare(Map config,
 TopologyContext context) {
 notificationService = new NotificationService();
 }

 @Override
 public void execute(Tuple tuple,
 BasicOutputCollector outputCollector) {
 Order order = (Order) tuple.getValueByField(“order”);
 notificationService.notifyOrderHasBeenProcessed(order);
 }
}

Listing 4.4 ProcessedOrderNotification.java

 status of
e order is
pdated to
y-to-ship”
 database.

The status of the order
is updated to “denied”
in the database.

Emit a tuple containing the
order down the stream.

[order=Order@7442df79]

Processed
Order

Notification
Figure 4.4 The ProcessedOrderNotification bolt
accepts an incoming tuple from the AuthorizeCreditCard
bolt and notifies an external system without emitting a tuple.

Notification service
that notifies some

downstream system
the order has been

processed
Extract

he order
from the

input
tuple.

The notification
service notifies
the downstream
system the
order has been
processed.
Licensed to Mark Watson <nordickan@gmail.com>

84 CHAPTER 4 Creating robust topologies
After the downstream system has been notified of the processed order, there’s noth-
ing left for our topology to do, so this is where the implementation of our bolts comes
to an end. We have a well-defined solution at this point (minus the spout, which we’ll
discuss next). The steps we took to come up with a design/implementation in this
chapter match the same steps we took in chapters 2 and 3.

 Where this implementation will differ from those chapters is the requirement to
ensure all tuples are processed by all the bolts in the topology. Dealing with financial
transactions is much different than GitHub commit counts or heat maps for social
media check-ins. Remember the pieces of the puzzle needed for supporting reliability
mentioned earlier in section 4.1.1?

■ A reliable data source with a corresponding reliable spout
■ An anchored tuple stream
■ A topology that acknowledges each tuple as it’s processed or notifies us of

the failure
■ A fault-tolerant Storm cluster infrastructure

We are at a point where we can start addressing the first three pieces. So how will our
implementation change in order to provide these pieces? Surprisingly, it won’t! The
code for our bolts is already set up to support guaranteed message processing in
Storm. Let’s examine in detail how Storm is doing this as well as take a look at our reli-
able RabbitMQSpout next.

4.4 Guaranteed message processing
What’s a message and how does Storm guarantee it gets processed? A message is syn-
onymous with a tuple, and Storm has the ability to ensure a tuple being emitted from
a spout gets fully processed by the topology. So if a tuple fails at some point in the
stream, Storm knows a failure occurred and can replay the tuple, thus making sure it
gets processed. The Storm documentation commonly uses the phrase guaranteed mes-
sage processing, as will we throughout the book.

 Understanding guaranteed message processing is essential if you want to develop
reliable topologies. The first step in gaining this understanding is to know what it
means for a tuple to be either fully processed or failed.

4.4.1 Tuple states: fully processed vs. failed

A tuple that’s emitted from a spout can result in many additional tuples being emit-
ted by the downstream bolts. This creates a tuple tree, with the tuple emitted by the
spout acting as the root. Storm creates and tracks a tuple tree for every tuple emit-
ted by the spout. Storm will consider a tuple emitted by a spout to be fully processed
when all the leaves in the tree for that tuple have been marked as processed. Here
are two things you need to do with the Storm API to make sure Storm can create and
track the tuple tree:
Licensed to Mark Watson <nordickan@gmail.com>

85Guaranteed message processing
■ Make sure you anchor to input tuples when emitting new tuples from a bolt. It’s
a bolt’s way of saying, “Okay, I’m emitting a new tuple and here’s the initial
input tuple as well so you can make a connection between the two.”

■ Make sure your bolts tell Storm when they’ve finished processing an input
tuple. This is called acking and it’s a bolt’s way of saying, “Hey Storm, I’m done
processing this tuple so feel free to mark it as processed in the tuple tree.”

Storm will then have all it needs to create and track a tuple tree.

In an ideal world, you could stop here and tuples emitted by the spout would always
be fully processed without any problems. Unfortunately, the world of software isn’t
always ideal; you should expect failures. Our tuples are no different and will be con-
sidered failed in one of two scenarios:

■ All of the leaves in a tuple tree aren’t marked as processed (acked) within a cer-
tain time frame. This time frame is configurable at the topology level via the
TOPOLOGY_MESSAGE_TIMEOUT_SECS setting, which defaults to 30 seconds. Here’s
how you’d override this default when building your topology:

Config config = new Config();
config.setMessageTimeoutSecs(60);.

■ A tuple is manually failed in a bolt, which triggers an immediate failure of the
tuple tree.

We keep mentioning the phrase tuple tree, so let’s walk through the life of a tuple tree
in our topology to show you how this works.

GOING DOWN THE RABBIT HOLE WITH ALICE…OR A TUPLE

Figure 4.5 starts things off by showing the initial state of the tuple tree after our spout
emits a tuple. We have a tree with a single root node.

 The first bolt in the stream is the Authorize-
CreditCard bolt. This bolt will perform the authori-
zation and then emit a new tuple. Figure 4.6 shows
the tuple tree after emitting.

 We’ll need to ack the input tuple in the
AuthorizeCreditCard bolt so Storm can mark that
tuple as processed. Figure 4.7 shows the tuple tree
after this ack has been performed.

Directed acyclic graph and tuple trees
Though we call it a tuple tree, it’s actually a directed acyclic graph (DAG). A directed
graph is a set of nodes connected by edges, where the edges have a direction to them.
A DAG is a directed graph such that you can’t start at one node and follow a sequence
of edges to eventually get back to that same node. Early versions of Storm only worked
with trees; even though Storm now supports DAGs, the term “tuple tree” has stuck.

Tuple emitted by the

RabbitMQSpout

Figure 4.5 Initial state of
the tuple tree
Licensed to Mark Watson <nordickan@gmail.com>

86 CHAPTER 4 Creating robust topologies
 Once a tuple has been emitted by the Authorize-
CreditCard bolt, it makes its way to the Processed-
OrderNotification bolt. This bolt doesn’t emit a
tuple, so no tuples will be added to the tuple tree. But
we do need to ack the input tuple and thus tell Storm
this bolt has completed processing. Figure 4.8 shows
the tuple tree after this ack has been performed. At
this point the tuple is considered fully processed.

 With a clear definition of a tuple tree in mind,
let’s move on to the code that’s needed in our bolts
for anchoring and acking. We’ll also discuss failing
tuples and the various types of errors we need to
watch out for.

4.4.2 Anchoring, acking, and failing tuples in our bolts

There are two ways to implement anchoring, acking, and failing of tuples in our bolts:
implicit and explicit. We mentioned earlier that our bolt implementations are already
set up for guaranteed message processing. This is done via implicit anchoring, acking,
and failing, which we’ll discuss next.

IMPLICIT ANCHORING, ACKING, AND FAILING

In our implementation, all of our bolts extended the BaseBasicBolt abstract class.
The beauty of using BaseBasicBolt as our base class is that it automatically provides
anchoring and acking for us. The following list examines how Storm does this:

■ Anchoring—Within the execute() method of the BaseBasicBolt implementa-
tion, we’ll be emitting a tuple to be passed on to the next bolt. At this point of
emitting, the provided BasicOutputCollector will take on the responsibility
of anchoring the output tuple to the input tuple. In the AuthorizeCreditCard

Tuple emitted by the

RabbitMQSpout

Tuple emitted by the

AuthorizeCreditCard

bolt

Figure 4.6 Tuple tree after the
AuthorizeCreditCard bolt
emits a tuple

Tuple emitted by the

RabbitMQSpout marked

as processed

Tuple emitted by the

AuthorizeCreditCard

bolt

Tuple emitted by the

RabbitMQSpout marked

as processed

Tuple emitted by the

AuthorizeCreditCard

bolt marked as

processed

Figure 4.7 Tuple tree after the
AuthorizeCreditCard bolt acks
its input tuple

Figure 4.8 Tuple tree after the
ProcessedOrderNotification
bolt acks its input tuple
Licensed to Mark Watson <nordickan@gmail.com>

87Guaranteed message processing
bolt, we emit the order. This outgoing order tuple will be automatically anchored
to the incoming order tuple:

outputCollector.emit(new Values(order));

■ Acking—When the execute() method of the BaseBasicBolt implementation
completes, the tuple that was sent to it will be automatically acked.

■ Failing—If there’s a failure within the execute() method, the way to handle that
is to notify BaseBasicBolt by throwing a FailedException or ReportedFailed-
Exception. Then BaseBasicBolt will take care of marking that tuple as failed.

Using BaseBasicBolt to keep track of tuple states through implicit anchoring, acking,
and failing is easy. But BaseBasicBolt isn’t suitable for every use case. It’s generally
helpful only in use cases where a single tuple enters the bolt and a single correspond-
ing tuple is emitted from that bolt immediately. That is the case with our credit card
authorization topology, so it works here. But for more complex examples, it’s not suf-
ficient. This is where explicit anchoring, acking, and failing come into play.

EXPLICIT ANCHORING, ACKING, AND FAILING

When we have bolts that perform more complex tasks such as these

■ Aggregating on multiple input tuples (collapsing)
■ Joining multiple incoming streams (we won’t cover multiple streams in this chap-

ter, but we did have two streams going through a bolt in the heat map chapter,
chapter 3, when we had a tick tuple stream in addition to the default stream)

then we’ll have to move beyond the functionality provided by BaseBasicBolt. Base-
BasicBolt is suitable when behavior is predictable. When you need to programmati-
cally decide when a tuple batch is complete (when aggregating, for example) or at
runtime decide when two or more streams should be joined, then you need to pro-
grammatically decide when to anchor, ack, or fail. In these cases, you need to use
BaseRichBolt as a base class instead of BaseBasicBolt. The following list shows what
needs to be done inside an implementation of a bolt extending BaseRichBolt:

■ Anchoring—To explicitly anchor, we need to pass the input tuple into the emit()
method on the outputCollector within the bolt’s execute method: output-
Collector.emit(new Values(order)) becomes outputCollector.emit(tuple,
new Values(order)).

■ Acking—To explicitly ack, we need to call the ack method on the output-
Collector within the bolt’s execute method: outputCollector.ack(tuple).

■ Failing—This is achieved by calling the fail method on the outputCollector
within the bolt’s execute method: throw new FailedException() becomes
outputCollector.fail(tuple);

Although we can’t use BaseBasicBolt for all use cases, we can use BaseRichBolt for
everything that the former can do and more because it provides more fine-grained
control over when and how you anchor, ack, or fail. Our credit card authorization
Licensed to Mark Watson <nordickan@gmail.com>

88 CHAPTER 4 Creating robust topologies
topology can be expressed in terms of BaseBasicBolt with desired reliability, but it
can be written with BaseRichBolt just as easily. The following listing rewrites one of
the bolts from our credit card authorization topology using BaseRichBolt.

public class AuthorizeCreditCard extends BaseRichBolt {
 private AuthorizationService authorizationService;
 private OrderDao orderDao;
 private OutputCollector outputCollector;

 @Override
 public void declareOutputFields(OutputFieldsDeclarer declarer) {
 declarer.declare(new Fields("order"));
 }

 @Override
 public void prepare(Map config,
 TopologyContext context,
 OutputCollector collector) {
 orderDao = new OrderDao();
 authorizationService = new AuthorizationService();
 outputCollector = collector;
 }

 @Override
 public void execute(Tuple tuple,
 BasicOutputCollector outputCollector) {
 Order order = (Order) tuple.getValueByField(“order”);
 boolean isAuthorized = authorizationService.authorize(order);
 if (isAuthorized) {
 orderDao.updateStatusToReadyToShip(order);
 } else {
 orderDao.updateStatusToDenied(order);
 }
 outputCollector.emit(tuple, new Values(order));
 outputCollector.ack(tuple);
 }
}

One thing to note is that with BaseBasicBolt, we were given a BasicOutputCollector
with each call of the execute() method. But with BaseRichBolt, we are responsible
for maintaining tuple state by using an OutputCollector that will be provided via
the prepare() method at the time of bolt initialization. BasicOutputCollector is a
stripped-down version of OutputCollector; it encapsulates an OutputCollector but
hides the more fine-grained functionality with a simpler interface.

 Another thing to be mindful of is that when using BaseRichBolt, if we don’t anchor
our outgoing tuple(s) to the incoming tuple, we’ll no longer have any reliability down-
stream from that point on. BaseBasicBolt did the anchoring on your behalf:

■ Anchored—outputCollector.emit(tuple, new Values(order));
■ Unanchored—outputCollector.emit(new Values(order));

Listing 4.5 Explicit anchoring and acking in AuthorizeCreditCard.java

Switch to extending
BaseRichBolt from
BaseBasicBolt.

Store the
OutputCollector in
an instance variable.

Anchor to the
input tuple.

Ack the
input tuple.
Licensed to Mark Watson <nordickan@gmail.com>

89Guaranteed message processing
Having covered anchoring and acking, let’s move on to something that isn’t as straight-
forward: handling errors. The act of failing a tuple itself is easy; it’s knowing when an
error can be retried that requires some thought.

HANDLING FAILURES AND KNOWING WHEN TO RETRY

We’ve covered a lot of concepts related to guaranteed message processing. We have
anchoring and acking down pat. But we have yet to address how we want to handle
failures. We know that we can fail a tuple by either throwing a FailedException/
ReportedFailedException (when using BaseBasicBolt) or calling fail on the Output-
Collector (when using BaseRichBolt). Let’s look at this in the context of our
AuthorizeCreditCard bolt, shown in the next listing. We’re showing only the changes
to the execute() method that incorporate explicit failing.

public void execute(Tuple tuple) {
 Order order = (Order) tuple.getValueByField("order");
 try {
 boolean isAuthorized = authorizationService.authorize(order);
 if (isAuthorized) {
 orderDao.updateStatusToReadyToShip(order);
 } else {
 orderDao.updateStatusToDenied(order);
 }
 outputCollector.emit(tuple, new Values(order));
 outputCollector.ack(tuple);
 } catch (ServiceException e) {
 outputCollector.fail(tuple);
 }
}

Failing a tuple in this way will cause the entire tuple tree to be replayed starting at the
spout. This is the key to guaranteed message processing, because this is the main trig-
ger for the retry mechanism. It’s important to know when a tuple should be failed.
This seems obvious, but tuples should be failed when they’re retriable (can be retried).
The question then becomes what can/should be retried. The following list discusses
the various types of errors:

■ Known errors—These can be broken down into two groups:
– Retriable—For known specific, retriable errors (say, a socket timeout excep-

tion while connecting to a service), we’ll want to fail the tuple so it gets
replayed and retried.

– Nonretriable—For known errors that can’t be safely retried (like a POST to
REST API) or when it doesn’t make sense for something to be retried (like a
ParseException while handling JSON or XML), you shouldn’t fail the tuple.
When you have one of these nonretriable errors, instead of failing the tuple
you’ll need to ack the tuple (without emitting a new one), because you don’t
want to engage the replay mechanism for it. We recommend some sort of
logging or reporting here so you’ll know there was an error in your topology.

Listing 4.6 Anchoring, acking, and failing in AuthorizeCreditCard.execute()

Anchor to the
input tuple.

Ack the
input tuple.

Fail the input tuple
in the case of a
service exception.
Licensed to Mark Watson <nordickan@gmail.com>

90 CHAPTER 4 Creating robust topologies
■ Unknown errors—Generally, unknown or unexpected errors will be a small per-
centage of errors observed, so it’s customary to fail them and retry them. After
you’ve seen them once, they become a known error (assuming logging is in
place), and you can take action on them as either a retriable or nonretriable
known error.

NOTE Having data on errors within a Storm topology can be useful, as you’ll
see in chapter 6 when we discuss metrics.

This brings our discussion of anchoring, acking, and failing in our bolts to a close.
Now it’s time to shift gears and move to the spout. We mentioned that when the replay
mechanism gets engaged, the replaying starts at the spout and works its way down.
Let’s see how that works.

4.4.3 A spout’s role in guaranteed message processing

So far our focus has been centered on what we need to do in our bolts to achieve guar-
anteed message processing. This section will complete the sequence and discuss the
role a spout plays in guaranteeing a tuple it emits gets fully processed or replayed on
failure. The next listing shows the spout interface from chapter 2.

public interface ISpout extends Serializable {
 void open(Map config,
 TopologyContext context,
 SpoutOutputCollector outputCollector);

 void close();

 void nextTuple();

 void ack(Object messageId);

 void fail(Object messageId);
}

How does a spout tie into guaranteeing messages are processed? Here’s a hint: The
ack c and fail d methods have something to do with it. The following steps give a
more complete picture in terms of what happens before a spout emits a tuple and
after that tuple is either fully processed or failed:

1 Storm requests a tuple by calling nextTuple B on the spout.
2 The spout uses the SpoutOutputCollector to emit a tuple to one of its streams.
3 When emitting the tuple, the spout provides a messageId that’s used to identify

that particular tuple. This may look something like this:

spoutOutputCollector.emit(tuple, messageId);.

4 The tuple gets sent to the bolts downstream and Storm tracks the tuple tree of
messages that are created. Remember, this is done via anchoring and acking
within the bolts so Storm can build up the tree and mark leaves as processed.

Listing 4.7 ISpout.java interface

 b

 c

 d
Licensed to Mark Watson <nordickan@gmail.com>

91Guaranteed message processing
5 If Storm detects that a tuple is fully processed, it will call the ack c method on
the originating spout task with the message ID the spout provided to Storm.

6 If the tuple timed out or one of the consuming bolts explicitly failed the tuple
(such as in our AuthorizeCreditCard bolt), Storm will call the fail d method
on the originating spout task with the message ID the spout provided to Storm.

Steps 3, 5, and 6 are the keys to guaranteed message processing from a spout’s per-
spective. Everything starts with providing a messageId when emitting a tuple. Not
doing this means Storm can’t track the tuple tree. You should add code to the ack
method to perform any required cleanup for a fully processed tuple, if necessary. You
should also add code to the fail method to replay the tuple.

It looks like we need to write an implementation of a spout that supports all these cri-
teria. In the previous chapter, we introduced the concept of an unreliable data source.
An unreliable data source won’t be able to support acking or failing. Once that data
source hands your spout a message, it assumes you’ve taken responsibility for that
message. A reliable data source, on the other hand, will pass messages to the spout but
won’t assume you’ve taken responsibility for them until you’ve provided an acknowl-
edgment of some sort. In addition, a reliable data source will allow you to fail any
given tuple with the guarantee that it will later be able to replay it. In short, a reliable
data source will support steps 3, 5, and 6.

 The best way to demonstrate how a reliable data source’s capabilities tie into a spout
API is to implement a solution with a commonly used data source. Kafka, RabbitMQ, and
Kestrel are all commonly used with Storm. Kafka is a valuable tool in your arsenal of
infrastructure that works great with Storm, which we’ll cover in detail in chapter 9. For
now we’re going with RabbitMQ, which is an excellent match for our use case.

A RELIABLE SPOUT IMPLEMENTATION

Let’s go over a RabbitMQ-based spout implementation that’ll provide all the reliability
we need for this use case.1 Keep in mind our main point of interest isn’t RabbitMQ,
but rather how a well-implemented spout together with a reliable data source provide
guaranteed message processing. If you don’t follow the underpinnings of the RabbitMQ
client API, don’t worry; we’ve emphasized the important parts that you need to follow
in the next listing.

Storm acker tasks
Storm uses special “acker” tasks to keep track of tuple trees in order to determine
whether a spout tuple has been fully processed. If an acker task sees a tuple tree is
complete, it’ll send a message to the spout that originally emitted the tuple, resulting
in that spout’s ack method being called.

1 You can find a more robust, configurable, and performant implementation of the spout implementation for
RabbitMQ on GitHub at https://github.com/ppat/storm-rabbitmq.
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/ppat/storm-rabbitmq

92 CHAPTER 4 Creating robust topologies

e

d

an

m

R

take
off a

’ll

de
mer.

f
is
o
.

public class RabbitMQSpout extends BaseRichSpout {
 private Connection connection;
 private Channel channel;
 private QueueingConsumer consumer;
 private SpoutOutputCollector outputCollector;

 @Override
 public void declareOutputFields(OutputFieldsDeclarer declarer) {
 declarer.declare(new Fields("order"));
 }

 @Override
 public void open(Map config,
 TopologyContext topologyContext,
 SpoutOutputCollector spoutOutputCollector) {
 outputCollector = spoutOutputCollector;
 connection = new ConnectionFactory().newConnection();
 channel = connection.createChannel();
 channel.basicQos(25);
 consumer = new QueueingConsumer(channel);
 channel.basicConsume("orders", false /*auto-ack=false*/, consumer);
 }

 @Override
 public void nextTuple() {
 QueueingConsumer.Delivery delivery = consumer.nextDelivery(1L);
 if (delivery == null) return; /* no messages yet */
 Long msgId = delivery.getEnvelope().getDeliveryTag();
 byte[] msgAsbytes = delivery.getBody();
 String msgAsString = new String(msgAsbytes, Charset.forName("UTF-8"));
 Order order = new Gson().fromJson(msgAsString, Order.class);
 outputCollector.emit(new Values(order), msgId);
 }

Listing 4.8 RabbitMQSpout.java

Extend the BaseRichSpout
abstract class, which
implements ISpout.

Connect to a
RabbitMQ nod
running on
localhost with
default
credentials an
settings.

Consume
d locally

buffer 25
essages

at a time
from

abbitMQ.

When we
messages
RabbitMQ
queue, we
buffer them
locally insi
this consu

Set up subscription that consumes off
a RabbitMQ queue. The messages
consumed will be kept in a local
buffer in a consumer object and we
won’t ack them until downstream
bolts send their acks back.

Storm will call next tuple when it’s
ready to send the next message to
downstream bolt.

Pick the next message off the local buffer o
the RabbitMQ queue. A timeout of 1 ms

imposed as nextTuple shouldn’t be allowed t
block for thread safety issues within Storm

Identify this message by the message ID assigned
to it by RabbitMQ (common vernacular between
RabbitMQ and Storm to refer to this message).

Deserialize the message into the
Order object by using Google

GSON JSON parsing library.

Emit the order tuple
but anchor it with

message-id provided
by RabbitMQ.
Licensed to Mark Watson <nordickan@gmail.com>

93Guaranteed message processing

Sto
call fa

a
down

f
m

 @Override
 public void ack(Object msgId) {
 channel.basicAck((Long) msgId, false /* only acking this msgId */);
 }

 @Override
 public void fail(Object msgId) {
 channel.basicReject((Long) msgId, true /* requeue enabled */);
 }

 @Override
 public void close() {
 channel.close();
 connection.close();
 }
}

Storm gives you the tools to guarantee the tuples being emitted by your spout are fully
processed while they’re in transit within the Storm infrastructure. But for guaranteed
message processing to take effect, you must use a reliable data source that has the capa-
bility of replaying a tuple. Additionally, the spout implementation has to make use of
the replay mechanism provided by its data source. Understanding this is essential if you
want to be successful with guaranteed message processing in your topologies.

We’re now ready to write a robust topology and introduce it to the world. We’ve cov-
ered three pieces of the puzzle needed for supporting reliability:

■ A data source with a corresponding reliable spout
■ An anchored tuple stream
■ A topology that acknowledges each tuple as it gets processed or notifies of failure

But before moving on to chapter 5 to discuss the last piece of the puzzle—the Storm
cluster—let’s talk about replay semantics and whether our current topology imple-
mentation is good enough for what we want.

Emitting anchored vs. unanchored tuples from a spout
The topologies we created in earlier chapters didn’t take advantage of guaranteed mes-
sage processing or fault tolerance. We may have used BaseBasicBolt in those chap-
ters and that may have bought us implicit anchoring and acking, but our tuples in those
chapters didn’t originate from a reliable spout. Because of the unreliable nature of
those data sources, when we emitted tuples at the spout, they were sent “unanchored”
via outputCollector.emit(new Values(order)). When you don’t anchor to the
input tuple starting from the spout, it can’t guarantee that they’ll be fully processed.
This is because replaying always starts at the spout. So the decision to emit tuples
unanchored should always be a conscious one, as we made in the heat map example.

Storm will call ack on the spout when all downstream bolts have
fully processed this message. This will be called with same message
ID that the spout anchored to when it emitted that message.

All downstream bolts have fully
processed this message, so we
can tell RabbitMQ we’re done

with it and have it removed
from the queue.

rm will
il when
nything
stream

ails this
essage.

We tell RabbitMQ
to re-queue this

message to
be retried.
Licensed to Mark Watson <nordickan@gmail.com>

94 CHAPTER 4 Creating robust topologies
4.5 Replay semantics
Each of the four pieces of the puzzle to reliability plays a key role and is necessary if we
want to build a robust topology. But when you consider the replay characteristics of
streams as they flow through your topology, you’ll begin to recognize that Storm pro-
vides varying guarantees of reliability when it comes to event processing. We can assign
different semantics to reliability when we become aware of different requirements
being met by our streams. Let’s take a look at these varying degrees of reliability.

4.5.1 Degrees of reliability in Storm

Much like we saw different kinds of scaling problems when we carefully examined
data streams in chapter 3, we see varying degrees of reliability when we carefully exam-
ine our topology design. We identify three degrees of reliability here:

■ At-most-once processing
■ At-least-once processing
■ Exactly-once processing

Let’s elaborate a little further what we mean by each of these.

AT-MOST-ONCE PROCESSING

You’d use at-most-once processing when you want to guarantee that no single tuple ever
gets processed more than once. In this case, no replaying will ever happen. If it suc-
ceeds, great, but if it fails the tuple will be discarded. Regardless, this semantic pro-
vides no reliability that all operations will be processed, and it’s the simplest semantic
you can choose. We used at-most-once processing in the preceding chapters, because
those use cases didn’t dictate a need for reliability. We may have used BaseBasicBolt
(with its automated anchoring and acking) in previous chapters, but we didn’t anchor
the tuples when we first emitted them from the spout.

 You don’t need to do anything special to achieve this type of reliability in Storm,
which isn’t true for our next degree of reliability.

AT-LEAST-ONCE PROCESSING

At-least-once processing can be used when you want to guarantee that every single
tuple must be processed successfully at least once. If a single tuple is replayed several
times, and for some reason it succeeds more than once, that’s okay under this replay
semantic. Your primary concern is that it must succeed, even if that means doing
redundant work.

 To achieve at-least-once processing in Storm, you need a reliable spout with a reli-
able data source and an anchored stream with acked or failed tuples. This leads us to
the strictest degree of reliability.

EXACTLY-ONCE PROCESSING

Exactly-once processing is similar to at-least-once processing in that it can guarantee
that every tuple is processed successfully. But exactly-once processing takes care to
ensure that once a tuple is processed, it can’t be processed ever again.
Licensed to Mark Watson <nordickan@gmail.com>

95Replay semantics
 As with at-least-once processing, you need a reliable spout with a reliable data
source and an anchored stream with acked or failed tuples. But what sets this degree
apart from at-least-once processing is that you also need logic in your bolt(s) to guar-
antee tuples are processed only once.

 To understand what each type of processing requires of your system, it’s important
to understand the subtleties and problems that arise from our most stringent of
options: exactly once.

4.5.2 Examining exactly once processing in a Storm topology

There’s a lot of complexity hiding behind that simple phrase exactly once. This means
that you have to be able to know whether you’ve already done a unit of work, which in
turn means that you have to do the following:

1 Do the unit of work.
2 Record that you’ve done the unit of work.

Further, these two steps must be performed as an atomic operation—you can’t do the
work and then fail to record the result. You need to be able to do the work and record
that it was done in one step. If you can do the work but have a failure before recording
that the work was done, then you don’t actually have exactly once—you have usually
once. The vast majority of the time, the work will be done one time, but from time to
time, it’ll be done more often. That’s an exceedingly rigorous qualification to meet.

 At-least-once processing shares the same two steps, except that these operations
aren’t required to occur atomically. If for some reason a failure occurs during or
immediately after performing your unit of work, it is okay to redo the work and reat-
tempt to record the result. If it isn’t okay to redo the work, then you need to add an
important requirement: the end result of your unit of work must be idempotent. An
action is idempotent when performed more than once, it has no additional effect on its
subject after the first time it’s performed. For example:

■ “Set x to 2” is an idempotent operation.
■ “Add 2 to variable x” isn’t an idempotent operation.

Operations with external side effects such as sending an email are decidedly non-
idempotent. Repeating that unit of work would send more than one email and is
assuredly not what you want to do.

 If your unit of work is non-idempotent, then you must fall back to at-most-once
processing. You want to do the unit of work, but it’s more important that the result of
this work not be duplicated than doing the actual work.

4.5.3 Examining the reliability guarantees in our topology

How can we provide a stricter degree of reliability in our topology? Do we even need
to, or are we already in a good enough state? To answer these questions, it makes
sense to identify what level of reliability our topology is currently at.
Licensed to Mark Watson <nordickan@gmail.com>

96 CHAPTER 4 Creating robust topologies
IDENTIFYING THE CURRENT LEVEL OF RELIABILITY

Which type of processing do we have with our topology? We have guaranteed message
processing so that if we have a failure, we’ll retry the tuple. This rules out at-most-once
as our semantics. That’s good. We certainly want to charge people for the goods we’re
shipping them.

 Do we have exactly-once semantics or at-least-once semantics? Let’s break this
down. Our “unit of work” is charging a customer’s credit card along with updating the
status of the order. This is seen in the following listing.

public void execute(Tuple tuple) {
 Order order = (Order) tuple.getValueByField("order");
 try {
 boolean isAuthorized = authorizationService.authorize(order);
 if (isAuthorized) {
 orderDao.updateStatusToReadyToShip(order);
 } else {
 orderDao.updateStatusToDenied(order);
 }
 outputCollector.emit(tuple, new Values(order));
 outputCollector.ack(tuple);
 } catch (ServiceException e) {
 outputCollector.fail(tuple);
 }
}

The question is this: are the two steps a single atomic operation? The answer is no. It’s
possible for us to charge a user’s credit card and then not update the order status.
Between charging the credit card B and changing the order status (c, d), a couple
of things could happen:

■ Our process could crash.
■ The database might be unavailable to record the result.

This means we don’t have exactly-once semantics; we have at-least-once. Looking at our
topology as it currently stands, that’s problematic. Retrying a tuple can result in multiple
charges to a customer’s card. What can we do to lessen this danger? We know that
exactly-once is impossible for us, but we should be able to make at-least-once safer.

PROVIDING BETTER AT-LEAST-ONCE PROCESSING WHEN AUTHORIZING AN ORDER

The first question we want to ask ourselves in making our at-least-once processing
safer is whether our operation can be made idempotent. The answer is probably not.
We’d need the external credit card service’s assistance with that. If we could provide
the order ID as a unique transaction identifier and the service would throw an error
such as DuplicateTransactionException, then we could update our records to indi-
cate the order is ready to ship and continue processing. Handling such an error is
seen in the following listing.

Listing 4.9 Examining the execute() method of AuthorizeCreditCard.java

 b

 c

 d
Licensed to Mark Watson <nordickan@gmail.com>

97Replay semantics
public void execute(Tuple tuple) {
 Order order = (Order) tuple.getValueByField("order");
 try {
 boolean isAuthorized = authorizationService.authorize(order);
 if (isAuthorized) {
 orderDao.updateStatusToReadyToShip(order);
 } else {
 orderDao.updateStatusToDenied(order);
 }
 outputCollector.emit(tuple, new Values(order));
 outputCollector.ack(tuple);

 }
 catch (DuplicateTransactionException e) {
 orderDao.updateStatusToReadyToShip(order);
 outputCollector.ack(tuple);
 }
 catch (ServiceException e) {
 outputCollector.fail(tuple);
 }
}

Without that external cooperation, what’s the best we can do? If our process crashes
between charging a customer and recording that we charged, there isn’t anything we
can do but accept that it’ll happen from time to time and be prepared to address it in
a nontechnical fashion (such as customer service responding to a refund request).
Realistically, if our system is stable, this should be a relatively rare occurrence.

 For the “system of record being unavailable” scenario, we can add a partially pre-
ventive measure. We can verify the database for storing the updated order status is
available before attempting to charge the credit card. This approach reduces the
chance of a situation arising where we charge the credit card and then fail to update
the order status because the database is down.

 In general, this is good practice. If you’re computing a non-idempotent result
within a topology and will then store “doneness,” verify at the time you begin your unit
of work that you’ll be able record it. This check can be seen in the next listing.

public void execute(Tuple tuple) {
 Order order = (Order) tuple.getValueByField(“order”);
 try {
 if (orderDao.systemIsAvailable()) {
 boolean isAuthorized = authorizationService.authorize(order);
 if (isAuthorized) {
 orderDao.updateStatusToReadyToShip(order);
 } else {
 orderDao.updateStatusToDenied(order);
 }

Listing 4.10 Updating AuthorizeCreditCard.java to handle a
DuplicateTransactionException

Listing 4.11 Updating AuthorizeCreditCard.java to check for database
availability before processing

If the order has already
been processed and is a
duplicate, ensure that
the status is updated
and ack the tuple.

Check to see if
the database
is available.
Licensed to Mark Watson <nordickan@gmail.com>

98 CHAPTER 4 Creating robust topologies
 outputCollector.emit(tuple, new Values(order));
 outputCollector.ack(tuple);
 } else {
 outputCollector.fail(tuple);
 }
 } catch (ServiceException e) {
 outputCollector.fail(tuple);
 }
}

So we’ve improved our reliability, but we have a feeling we can do better. Looking
back at our steps, we have the following:

1 Authorize the credit card.
2 Update the order status.
3 Notify an external system of the change.

Looks like there’s more work to do to address step 3.

PROVIDING BETTER AT-LEAST-ONCE PROCESSING ACROSS ALL STEPS

What happens if we manage to do the first two steps but we experience a failure while
doing the third? Perhaps our process crashes; perhaps our tuple times out before noti-
fying the external system. However it happens, it has happened, and Storm is going to
replay the tuple. So what can we do to address this scenario?

 Before processing the credit card, we should assure that the system of record is
available (as we did previously) and verify that the order status isn’t already “ready to
ship.” If the order isn’t ready to ship, then we proceed as normal. It’s probably the first
time we’re trying this order and the database is up and running. If the order is ready
to ship, then we probably had a failure between our “update order status” and “notify
external system” steps. In that case, we would want to skip charging the card again and
move directly to notifying the external system of the change.

 If we control this external system, then we can make a request to ship the same
order more than once an idempotent operation where subsequent attempts are
dropped. If not, the caveats we encountered earlier around lack of idempotence of
credit card processing applies as well.

 The steps in our conceptual framework have changed somewhat; step 2 is new:

1 Pull the order off the message queue.
2 Determine whether the order has been marked as “ready to ship” and do one of

two things:
a. If the order has been marked as “ready to ship,” skip to step 6.
b. If the order hasn’t been marked as “ready to ship,” continue to step 3.

3 Attempt to authorize the credit card by calling an external credit card authori-
zation service.

4 If the service call succeeded, update the order status.
5 If it fails, we can try again later.
6 Notify a separate downstream system that the order has been processed.

Fail the tuple if
the database
isn’t available.
Licensed to Mark Watson <nordickan@gmail.com>

99Replay semantics

le
.

These updated steps are illustrated in figure 4.9, with the new steps highlighted.
 We could map this conceptual solution onto our topology in a couple ways:

■ Add a new bolt that performs the status verification step. We could call this
something like VerifyOrderStatus.

■ Perform the status verification step in the AuthorizeCreditCard bolt.

We’ll choose option number two and update the AuthorizeCreditCard bolt to
perform the verification step. We’ll leave adding a new VerifyOrderStatus bolt as
an exercise for you. The following listing shows the updated code for Authorize-
CreditCard.

public void execute(Tuple tuple) {
 Order order = (Order) tuple.getValueByField("order");
 try {
 if(orderDao.systemIsAvailable()) {
 if (!orderDao.orderIsReadyToShip(order)) {

Listing 4.12 Updating AuthorizeCreditCard.java to check the order status
before processing

Authorization attempt

succeeded and order

status updated

Order not marked as

“ready-to-ship”

Order

marked as

“ready-to-ship”

Attempt

to authorize

credit card and

update order

status

Pull

incoming

order off

queue

“re

Verify

order status

is not

“ready-to-ship”

Notify

separate

downstream

system of

processed

order

Notify

separate

downstream

system of

processed

order

Credit card

authorization

service

Database

containing current

order status

Figure 4.9 Conceptual solution of the e-commerce credit card authorization
flow with an extra step for providing better at-least-once processing

Not only are we checking
the order status, but we’re
also verifying that our
system of record is availab
as we previously discussed
Licensed to Mark Watson <nordickan@gmail.com>

100 CHAPTER 4 Creating robust topologies
 boolean isAuthorized = authorizationService.authorize(order);
 if (isAuthorized) {
 orderDao.updateStatusToReadyToShip(order);
 } else {
 orderDao.updateStatusToDenied(order);
 }
 outputCollector.emit(tuple, new Values(order));
 }
 outputCollector.ack(tuple);
 } else {
 outputCollector.fail(tuple);
 }
 } catch (ServiceException e) {
 outputCollector.fail(tuple);
 }
}

And just like that, we’re done. Or are we? We missed something here. We still need to
always notify the external system when we are done processing the order even if
“done” just means that we checked that the order was ready to ship and did nothing.
The updated code for this can be seen in the next code listing; we just need to emit a
tuple with the order whenever we “process” it.

public void execute(Tuple tuple) {
 Order order = (Order) tuple.getValueByField(“order”);
 try {
 if (orderDao.systemIsAvailable()) {
 if (!orderDao.orderIsReadyToShip(order)) {
 boolean isAuthorized = authorizationService.authorize(order);
 if (isAuthorized) {
 orderDao.updateStatusToReadyToShip(order);
 } else {
 orderDao.updateStatusToDenied(order);
 }
 }
 outputCollector.emit(tuple, new Values(order));
 outputCollector.ack(tuple);
 } else {
 outputCollector.fail(tuple);
 }
 } catch (ServiceException e) {
 outputCollector.fail(tuple);
 }
}

This brings us to a solution we feel comfortable with. And although we haven’t been
able to achieve exactly-once processing, we have been able to achieve a better at-least-
once processing by including some additional logic in our AuthorizeCreditCard bolt.
Follow this process whenever you’re designing a topology with reliability requirements.

Listing 4.13 Updating AuthorizeCreditCard.java to emit a tuple whenever an
order is “processed”

Always ack the
input tuple if there
wasn’t an error.

Always emit a tuple
with the order,
making sure our
external system
knows to do
something.
Licensed to Mark Watson <nordickan@gmail.com>

101Summary
You need to map out your basic conceptual problem and then figure out what your
semantics are, at least once or at most once. If it’s at least once, start looking at all the
ways it can fail and make sure you address them.

4.6 Summary
In this chapter, you learned that

■ The varying degrees of reliability you can achieve in Storm are
– At-most-once processing
– At-least-once processing
– Exactly-once processing

■ Different problems require varying levels of reliability, and it’s your job as a
developer to understand the reliability requirements of your problem domain.

■ Storm supports reliability with four main parts:
– A reliable data source with a corresponding reliable spout
– An anchored tuple stream
– A topology that acknowledges each tuple as it gets processed or notifies

of failure
– A fault-tolerant Storm cluster infrastructure (to be addressed next)

■ Storm is able to tell if a tuple emitted by a spout is fully processed by tracking a
tuple tree for that tuple.

■ In order for Storm to be able to track a tuple tree, you must anchor input tuples
to output tuples and ack any input tuples.

■ Failing a tuple either via a timeout or manually will trigger the retry mechanism
in Storm.

■ Tuples should be failed for known/retriable errors and unknown errors. Tuples
should not be failed for known/non-retriable errors.

■ A spout must be implemented to explicitly handle and retry failures while being
hooked up to a reliable data source in order to truly achieve guaranteed mes-
sage processing.
Licensed to Mark Watson <nordickan@gmail.com>

Moving from local to
remote topologies
Imagine the following scenario. You’re tasked with implementing a Storm topology
for performing real-time analysis on events logged within your company’s system.
As a conscientious developer, you’ve decided to use this book as a guideline for
developing the topology. You’ve built it using the core Storm components covered
in chapter 2. You’ve applied the topology design patterns you learned about in
chapter 3 while determining what logic should go into each bolt, and you’ve fol-
lowed the steps in chapter 4 to provide at-least-once processing for all tuples com-
ing into your topology. You’re ready to hook the topology up to a queue receiving
logging events and have it hum along. What do you do next?

 You can run your topology locally as in chapters 2, 3, and 4, but doing so won’t
scale to the data volume and velocity that you’re expecting. You need to be able to

This chapter covers
■ The Storm cluster
■ Fault tolerance within a Storm cluster
■ Storm cluster installation
■ Deploying and running topologies on

a Storm cluster
■ The Storm UI and the role it plays
102

Licensed to Mark Watson <nordickan@gmail.com>

103The Storm cluster
deploy your topology to an environment that’s built for handling production-level
data. This is where the “remote” (also known as “production”) Storm cluster comes
into play—an environment built to handle the demands of production-level data.

NOTE As you learned in chapter 1, volume refers to the amount of data enter-
ing your system and velocity refers to the pace at which that data flows through
your system.

Running our topologies locally and simulating a Storm cluster within a single process
has served our needs so far and is useful for development and testing purposes. But
local mode doesn’t support the scaling discussed in chapter 3 nor the first-class guar-
anteed processing we learned about in chapter 4. An actual Storm cluster is needed
for both of these.

 This chapter will begin by explaining the parts of a Storm cluster and the roles
they play, followed by a Q&A session on how Storm provides fault tolerance. We’ll
then move on to installing a Storm cluster and deploying and running your topologies
against the installed cluster. We’ll also cover an important tool you can use to make
sure your topology is healthy: the Storm UI. Along the way, we’ll provide a preview
into the tuning and troubleshooting topics that will be covered in chapters 6 and 7.

 It all starts with the Storm cluster, so let’s expand on our worker nodes discussion
from chapter 3.

5.1 The Storm cluster
Chapter 3 scratched the surface of a worker node and how it runs a JVM, which in turn
runs executors and tasks. In this section, we’re going to go much deeper, starting with
the Storm cluster as a whole. A Storm cluster consists of two types of nodes: the master
node and the worker nodes. A master node runs a daemon called Nimbus, and the
worker nodes each run a daemon called a Supervisor. Figure 5.1 shows a Storm cluster
with one master node and four worker nodes. Storm supports only a single master
node, whereas it’s likely your cluster will have a different number of worker nodes
based on your needs (we’ll cover how to determine this number in chapters 6 and 7).

 The master node can be thought of as the control center. In addition to the
responsibilities listed in figure 5.1, this is where you’d run any of the commands—
such as activate, deactivate, rebalance, or kill—available in a Storm cluster
(more on these commands later in the chapter). The worker nodes are where the
logic in the spouts and bolts is executed.

 Another big part of a Storm cluster is Zookeeper. Storm relies on Apache Zoo-
keeper1 for coordinating communication between Nimbus and the Supervisors. Any
state needed to coordinate between Nimbus and the Supervisors is kept in Zookeeper.
As a result, if Nimbus or a Supervisor goes down, once it comes back up it can recover
state from Zookeeper, keeping the Storm cluster running as if nothing happened.

1 http://zookeeper.apache.org/
Licensed to Mark Watson <nordickan@gmail.com>

http://zookeeper.apache.org/

104 CHAPTER 5 Moving from local to remote topologies
Figure 5.2 shows a cluster of Zookeeper nodes integrated into the Storm cluster.
We’ve removed the worker processes from this figure so you can focus on where Zoo-
keeper fits as it coordinates communication between Nimbus and Supervisors.

 Throughout the remainder of the book, any time we mention “Storm cluster,”
we’re referring to the master, worker, and Zookeeper nodes.

 Although the master node and Zookeeper are important parts of a Storm cluster,
we’re going to shift our focus to worker nodes for now. Worker nodes are where the
spout and bolt processing occurs, making them the central place for much of our tun-
ing and troubleshooting efforts in chapters 6 and 7.

NOTE Chapters 6 and 7 will explain when you might want to increase the
number of worker processes running on a worker node and when and how
you might reach a point of diminishing returns. These chapters will also dis-
cuss tuning within a worker process, so it makes sense to explain the various
parts of a worker process.

5.1.1 The anatomy of a worker node

As mentioned earlier, each worker node has a Supervisor daemon that’s tasked with
administering the worker processes and keeping them in a running state. If a Supervi-
sor notices that one of the worker processes is down, it will immediately restart it.
What’s a worker process exactly? We mentioned that it was a JVM, but as you know
from chapter 3, there’s more to it.

Storm cluster

Master node

Nimbus

A cluster can consist of multiple . Eachnodes node

represents a physical or virtual machine running whatever

flavor of operating system you have installed for each.

The cluster has a single

master node that runs a

daemon called Nimbus.

Nimbus distributes code around

the cluster, assigns tasks to worker

nodes, monitors for failures, and

runs the Storm Ul.

Each Supervisor

listens for work

assigned to its worker

node by Nimbus and

starts/stops worker

processes.

The cluster has

multiple worker nodes

that each run a daemon

called a .Supervisor

Worker node

Supervisor

Worker

process

Worker

process

Worker node

Supervisor

Worker

process

Worker

process

Worker node

Supervisor

Worker

process

Worker

process

Worker node

Supervisor

Worker

process

Worker

process

Each is aworker process

JVM that executes the logic in the

spouts and bolts for a topology.

Figure 5.1 Nimbus and Supervisors and their responsibilities inside a Storm cluster
Licensed to Mark Watson <nordickan@gmail.com>

105The Storm cluster
Each worker process executes a subset of a topology. This means that each worker pro-
cess belongs to a specific topology and that each topology will be run across one or
more worker processes. Normally, these worker processes are run across many machines
within the Storm cluster.

 In chapter 3, you learned about executors (threads) and tasks (instances of
spouts/bolts). We discussed how a worker process (JVM) runs one or more executors
(threads), with each thread executing one or more instances of spouts/bolts (tasks).
Figure 5.3 illustrates this concept.

 Here are the key takeaways:

■ A worker process is a JVM.
■ An executor is a thread of execution within a JVM.
■ A task is an instance of a spout or bolt being run within a thread of execution

on the JVM.

Understanding these mappings is extremely important for the purposes of tuning and
troubleshooting. For example, chapter 6 answers questions such as why you might
want many tasks per executor, so understanding the relationship between an executor
and its tasks is essential.

 To bring the discussion of a worker node, worker processes, executors, and tasks
full circle, let’s present them within the context of the credit card authorization topol-
ogy from chapter 4.

Storm cluster

Master node

Nimbus

Cluster of

Zookeeper nodes

Zookeeper node

Zookeeper node

Worker node

Supervisor

Worker node

Supervisor

Worker node

Supervisor

Worker node

Supervisor
Coordinates communication

between Nimbus and

the Supervisors.

Figure 5.2 The Zookeeper Cluster and its role within a Storm cluster
Licensed to Mark Watson <nordickan@gmail.com>

106 CHAPTER 5 Moving from local to remote topologies

Se
nu

of w
proc

(JVMs)

ets
ors

lt

 1Se
numb
exec

(threads)

Se
numb
exec

(threads) 2.
5.1.2 Presenting a worker node within the context of the credit card
authorization topology

In this section we’ll present a hypothetical configuration for the credit card authoriza-
tion topology in order to help you make the connection between the number of
worker processes, executors, and tasks in the figures and the code for doing so. This
hypothetical configuration can be seen in figure 5.4.

 The setup in figure 5.4 would be achieved via the code in the following listing.

Config config = new Config();
config.setNumWorkers(2);
config.setMessageTimeoutSecs(60);

TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("rabbitmq-spout", new RabbitMQSpout(), 1);

builder.setBolt("check-status", new VerifyOrderStatus(), 1)
 .shuffleGrouping("rabbitmq-spout")
 .setNumTasks(2);

builder.setBolt("authorize-card", new AuthorizeCreditCard(), 1)
 .shuffleGrouping("check-status")
 .setNumTasks(2);

Listing 5.1 Configuration for our hypothetical Storm cluster

Each worker process

is a that can have one orJVM

more , each runningexecutors

one or more .tasks

A is antask instance

of a spout or bolt.

Worker node

Supervisor

Worker

process

Worker

process

Worker process

Executor

Task

Executor

Task Task

An isexecutor

a runningthread

on a JVM.

Figure 5.3 A worker process consists of one or more executors, with each executor
consisting of one or more tasks.

t the
mber
orker
esses
 to 2.

Configure how long
each tuple tree has to
complete before it gets
failed automatically.

Parallelism hint that s
the number of execut
(threads) to 1 for this
spout, with the defau
number of tasks
(instances) also set tot the

er of
utors
 to 1.

Set the number of
tasks (instances) to 2.

t the
er of

utors
to 1.

Set the number of
tasks (instances) to
Licensed to Mark Watson <nordickan@gmail.com>

107The Storm cluster
builder.setBolt("notification", new ProcessedOrderNotification(), 1)
 .shuffleGrouping("authorize-card")
 .setNumTasks(1);

When we set the numWorkers in the Config, we’re configuring the worker processes
desired for running this topology. We don’t actually force both worker processes to
end up on the same worker node as depicted in figure 5.4. Storm will pick where they
end up based on which worker nodes in the cluster have vacant slots for running
worker processes.

Having revisited the breakdown of a worker node, let’s see how Storm provides fault
tolerance across the cluster’s various parts.

Parallelism vs. concurrency: what’s the difference?
Parallelism is when two threads are executing simultaneously. Concurrency is when
at least two threads are making progress on some sort of computation. Concurrency
doesn’t necessarily mean the two threads are executing simultaneously—something
like time slicing may be used to simulate parallelism.

Set the number
of executors

(threads) to 1.Set the number
of tasks to 1.

Worker node

Supervisor

Worker process

Executor

Rabbit
MQSpout

Executor

Verify
Order
Status

Verify
Order
Status

Worker process

Executor

Authorize
Credit
Card

Authorize
Credit
Card

Executor

Processed
Order

Notification Figure 5.4 A hypothetical
breakdown of a worker node
with multiple worker processes,
executors, and tasks for the
credit card authorization topology
Licensed to Mark Watson <nordickan@gmail.com>

108 CHAPTER 5 Moving from local to remote topologies
5.2 Fail-fast philosophy for fault tolerance within
a Storm cluster
Remember the four pieces to the reliability puzzle discussed in chapter 4?

■ A reliable data source with a corresponding reliable spout
■ An anchored tuple stream
■ A topology that acknowledges each tuple as it gets processed or notifies you

of failure
■ A fault-tolerant Storm cluster infrastructure

We’re finally at a point to discuss the last piece, a fault-tolerant Storm cluster infra-
structure. The components of a Storm cluster have been designed with fault tolerance
in mind. The easiest way to explain how Storm handles fault tolerance is to answer
questions in the form of “What does Storm do when x happens?” The most important
questions on fault tolerance are addressed in table 5.1.

You can see that Storm maintains a fail-fast philosophy in the sense that every piece
within this infrastructure can be restarted and will recalibrate itself and move on. If
tuples were in mid-process during a failure, they’ll be failed automatically.

 It doesn’t matter whether the unit of infrastructure that failed is an instance (task)
or a thread (executor) or a JVM (worker process) or a VM (worker node). At each

Table 5.1 Fault tolerance questions and answers

Question Answer

What if a worker node dies? Supervisor will restart it and new tasks will be assigned
to it. All tuples that weren’t fully acked at time of death
will be fully replayed by the spout. This is why the spout
needs to support replaying (reliable spout) and the data
source behind the spout also needs to be reliable
(supporting replay).

What if a worker node continuously fails
to start up?

Nimbus will reassign tasks to another worker.

What if an actual machine that runs
worker nodes dies?

Nimbus will reassign the tasks on that machine to healthy
machines.

What if Nimbus dies? Because Nimbus is being run under supervision (using a tool
like daemontools or monit), it should get restarted and con-
tinue processing like nothing happened.

What if a Supervisor dies? Because Supervisors are being run under supervision (using
a tool like daemontools or monit), they should get restarted
like nothing happened.

Is Nimbus a single point of failure? Not necessarily. Supervisors and worker nodes will continue
to process, but you lose the ability to reassign workers to
other machines or deploy new topologies.
Licensed to Mark Watson <nordickan@gmail.com>

109Installing a Storm cluster
level, safeguards are in place to ensure that everything gets restarted automatically
(because everything runs under supervision).

 We’ve talked about the benefits a Storm cluster provides in terms of parallelism
and fault tolerance. How do you go about getting such a cluster up and running?

5.3 Installing a Storm cluster
The Storm wiki does an excellent job describing how to set up a Storm cluster. The
steps found on the wiki include these:

1 Find information on setting up Zookeeper along with some helpful tips on
maintaining the Zookeeper cluster.

2 Install the required Storm dependencies on the master and worker machines.
3 Download and extract a Storm release to the master and worker machines.
4 Configure the master and worker nodes via the storm.yaml file.
5 Launch the Nimbus and Supervisor daemons under supervision using the

Storm script.

We’ll cover each of these steps in more detail next.

NOTE What does it mean to run a process under supervision? It means that
some supervisory process manages the actual process being run. Therefore,
if the process being “supervised” fails, the supervisory process can automati-
cally restart the failed process. This is a key element in providing fault toler-
ance in Storm.

5.3.1 Setting up a Zookeeper cluster

The steps for setting up a Zookeeper cluster are outside the scope of this book. You
can find a thorough explanation of how to install Zookeeper on the Apache Zoo-
keeper project page at http://zookeeper.apache.org. Follow those steps to get your
cluster up and running.

 Keep the following in mind when running Zookeeper:

■ Zookeeper is designed to “fail fast,” meaning it will shut down if an error occurs
that it can’t recover from. This isn’t desirable within a Storm cluster because
Zookeeper coordinates communication between Nimbus and the Supervisors.
Because of this, we must have a supervisory process manage the Zookeeper
instances so that if a Zookeeper instance does go down, the cluster as a whole
can continue handling requests. The supervisory process will handle restarting
any failed individual Zookeeper server, allowing the Zookeeper cluster to be
self-healing.

■ Because Zookeeper is a long-running process, its transaction logs can get quite
large. This will eventually result in Zookeeper running out of disk space. There-
fore, it’s critical to set up some sort of process to compact (and even archive)
the data produced in these logs.
Licensed to Mark Watson <nordickan@gmail.com>

http://zookeeper.apache.org

110 CHAPTER 5 Moving from local to remote topologies
5.3.2 Installing the required Storm dependencies to master
and worker nodes

The next step is to install the required Storm dependencies to the machines you’ve ded-
icated to running Nimbus and the Supervisors. Table 5.2 lists these dependencies.

Once the required external dependencies
have been installed to each of the machines
hosting Nimbus and the Supervisors, you can
install Storm to those machines.

5.3.3 Installing Storm to master and
worker nodes

The Storm installations can currently be found
at http://storm.apache.org/downloads.html.
For this book, we used apache-storm-0.9.3.
You should download the Storm release zip
file to each node and extract the contents
of the zip file somewhere on each of the
machines. The location is up to you; some-
thing like /opt/storm is one example. Fig-
ure 5.5 shows the extracted contents in an
/opt/storm directory.

 There are two files in this figure that
we’re particularly interested in for this chap-
ter: /opt/storm/bin/storm and /opt/storm/
conf/storm.yaml. Let’s discuss storm.yaml
and its purpose next.

5.3.4 Configuring the master and worker
nodes via storm.yaml

The Storm release contains a conf/storm.yaml file that configures the Storm dae-
mons. This file overrides configuration settings found in defaults.yaml.2 It’s likely that

Table 5.2 External dependencies for Storm master and worker nodes

Dependency Why it’s needed Link to download

Java 6+ Storm runs on the JVM and the latest ver-
sion of Storm runs on Java 6.

www.oracle.com/us/technologies/
java/overview/index.html

Python 2.6.6 The standard command-line tool for Storm
is Python wrapped around Java.

https://www.python.org/downloads/

2 You can find defaults.yaml at https://github.com/apache/storm/blob/master/conf/defaults.yaml.

/opt/storm

bin

storm

storm-config.cmd

storm-local

storm.cmd

conf

storm.yaml

lib

logback

logs

public

CHANGELOG.md

DISCLAIMER

LICENSE

NOTICE

README.markdown

RELEASE

Figure 5.5 Extracted contents of a Storm
release zip
Licensed to Mark Watson <nordickan@gmail.com>

http://storm.apache.org/downloads.html
https://www.python.org/downloads/
http://www.oracle.com/us/technologies/ java/overview/index.html
http://www.oracle.com/us/technologies/ java/overview/index.html
https://github.com/nathanmarz/storm/blob/master/conf/defaults.yaml

111Installing a Storm cluster
you’ll want to override at least some of the values; many of the defaults point to “local-
host” for a machine name. Table 5.3 lists some of the initial configuration options you
may want to override in order to get your Storm cluster up and running.

You’ll need to update the configuration on each node in the cluster. Doing so can
become tedious if you have a cluster containing several worker nodes. For this reason,
we recommend using an external tool such as Puppet3 for automating the deploy-
ment and configuration of each node.

5.3.5 Launching Nimbus and Supervisors under supervision

As mentioned earlier, running daemons under supervision is a critical step in setting
up a Storm cluster. The supervisory processes allow our system to be fault-tolerant.
What does this mean exactly? Why is it needed?

 Storm is a fail-fast system, meaning that any Storm process encountering an unex-
pected error will stop. Storm is designed so that any process can safely stop at any
point and recover when the process is restarted. Running these processes under

Table 5.3 storm.yaml properties you may want to override for your Storm installations

Properties Description Default value

storm.zookeeper.
servers

The lists of hosts in the Zookeeper
cluster for your Storm cluster.

storm.zookeeper.servers:
 - "localhost"

storm.zookeeper.
port

Needed if the port your Zookeeper
cluster uses is different from the
default.

storm.zookeeper.port:
2181

storm.local.dir The directory that the Nimbus and
Supervisor daemons will use for
storing small amounts of state. You
must create these directories and
give them proper permissions on
each machine that’ll be running Nim-
bus and workers.

storm.local.dir: "storm-
local"

java.library.path The location of the Java installation. java.library.path: "/usr/
local/lib:/opt/local/
lib:/usr/lib"

nimbus.host The hostname of the Nimbus
machine.

nimbus.host: "localhost"

supervisor.slots.
ports

For each worker machine, the ports
that are used for receiving mes-
sages. The number of available
ports will determine the number of
worker processes Storm runs on
each worker machine.

supervisor.slots.ports:
 – 6700
 – 6701
 – 6702
 – 6703

3 http://puppetlabs.com/
Licensed to Mark Watson <nordickan@gmail.com>

http://puppetlabs.com/

112 CHAPTER 5 Moving from local to remote topologies
supervision allows them to be restarted whenever a failure occurs. Thus, your topolo-
gies are unaffected by failures in the Storm daemons. To run the Storm daemons
under supervision, execute the following commands:

■ Starting Nimbus—Run bin/storm nimbus under supervision on the master machine.
■ Starting Supervisors—Run bin/storm supervisor under supervision on each

worker machine.
■ Storm UI—Run bin/storm ui under supervision on the master machine.

Running the Storm daemons is the last step in setting up a Storm cluster. With every-
thing up and running, your cluster is ready to start accepting topologies. Let’s see how
you go about getting your topology to run on a Storm cluster.

5.4 Getting your topology to run on a Storm cluster
In previous chapters we’ve run our topologies locally. This approach is fine for learn-
ing the fundamentals of Storm. But if one wants to reap the benefits Storm provides
(especially along the lines of guaranteed message processing and parallelism), a
remote Storm cluster is required. In this section we’ll show you how to do this by tak-
ing some of the code from the credit card authorization topology in chapter 4 and
doing the following:

■ Revisit the code for wiring together the topology components
■ Show the code for running that topology in local mode
■ Show the code for running that topology on a remote Storm cluster
■ Show how to package and deploy that code to the remote Storm cluster

5.4.1 Revisiting how to put together the topology components

Before we get into the code for running a topology in both local mode and on a
remote cluster, let’s quickly rehash the code for wiring together the components for
the topology from chapter 4, the credit card authorization topology, to provide some
context. We’ve already presented some of this code in section 5.1.2, but the next list-
ing shows it in a more structured format.

public class CreditCardTopologyBuilder {
 public static StormTopology build() {
 TopologyBuilder builder = new TopologyBuilder();

 builder.setSpout("rabbitmq-spout", new RabbitMQSpout(), 1);

 builder.setBolt("check-status", new VerifyOrderStatus(), 1)
 .shuffleGrouping("rabbitmq-spout")
 .setNumTasks(2);

 builder.setBolt("authorize-card", new AuthorizeCreditCard(), 1)
 .shuffleGrouping("check-status")
 .setNumTasks(2);

Listing 5.2 CreditCardTopologyBuilder.java for building the credit card
authorization topology
Licensed to Mark Watson <nordickan@gmail.com>

113Getting your topology to run on a Storm cluster

U
Cre

T
B

 builder.setBolt("notification", new ProcessedOrderNotification(), 1)
 .shuffleGrouping("authorize-card")
 .setNumTasks(1);

 return builder.createTopology();
 }
}

We’ve encapsulated the code for building the topology in CreditCardTopology-
Builder.java because this code doesn’t change, regardless of whether we’re running in
local mode or on a Storm cluster. This is something we started doing in chapter 3 and
the advantage of this approach is it allows us to call the code for building the topology
from multiple places without having to duplicate code.

 Now that we have the code for building the topology, we’ll show you how to take
this built topology and run it locally.

5.4.2 Running topologies in local mode

Local mode is useful when developing topologies. It allows you to simulate a Storm
cluster in process on your local machine so you can quickly develop and test your
topologies. This provides the benefit of a quick turnaround between making a change
in code and functionally testing that change in a running topology. There are some
drawbacks to local mode, though:

■ You can’t achieve the parallelism you would with a remote Storm cluster. This
makes testing parallelism changes difficult, if not impossible in local mode.

■ Local mode won’t reveal potential serialization issues when Nimbus attempts to
serialize instances of spouts and bolts to the individual worker nodes.

The following listing shows the class, LocalTopologyRunner, with a main() method
that takes the topology we built in listing 5.2 and runs it locally.

public class LocalTopologyRunner {
 public static void main(String[] args) {
 StormTopology topology = CreditCardTopologyBuilder.build();

 Config config = new Config();
 config.setDebug(true);

 LocalCluster cluster = new LocalCluster();
 cluster.submitTopology("local-credit-card-topology",
 config,
 topology);
 }
}

Listing 5.3 LocalTopologyRunner.java, which runs the topology on a local cluster

sing the
ditCard-
opology-
uilder to
build the
topology

Normally we run
in debug mode
when running
locally to gain
insights into the
inner workings
of the topology.

Simulates a Storm
cluster locally in
memorySubmit the topology to the local

cluster, passing in the topology
name, configuration, and topology.
Licensed to Mark Watson <nordickan@gmail.com>

114 CHAPTER 5 Moving from local to remote topologies

U
Cre

T
B

The code in this listing should be familiar to you. What we have yet to address is the
code for submitting the topology to a remote Storm cluster. Fortunately, this code
isn’t that much different. Let’s take a look.

5.4.3 Running topologies on a remote Storm cluster

The code for running your topology remotely is similar to running it locally. The only
difference is the code for submitting the topology to a cluster. You may also want a
slightly different configuration as well, because local mode doesn’t support some of the
things (parallelism and guaranteed message processing) that a remote cluster supports.
The next listing shows this code in a class we call RemoteTopologyRunner.

public class RemoteTopologyRunner {
 public static void main(String[] args) {
 StormTopology topology = CreditCardTopologyBuilder.build();

 Config config = new Config();
 config.setNumWorkers(2);
 config.setMessageTimeoutSecs(60);

 StormSubmitter.submitTopology("credit-card-topology",
 config,
 topology);
 }
}

You’ll notice that the only differences are a slightly different configuration and using
StormSubmitter.submitTopology instead of LocalCluster.submitTopology.

NOTE We’ve wrapped the building, running locally, and running remotely
of our topology within three different classes (CreditCardTopologyBuilder,
LocalTopologyRunner, and RemoteTopologyRunner). Although you can set
up your code however you please, we’ve found this split works well and we use
it across all our topologies.

Now that we’ve written the code for running our topologies on a remote cluster, let’s
shift our attention to physically getting that code onto the Storm cluster so it can be run.

5.4.4 Deploying a topology to a remote Storm cluster

What does it mean to “deploy” your topology to a Storm cluster? By “deploy,” we mean
physically copying a JAR containing your topology’s compiled code to the cluster so it

Listing 5.4 RemoteTopologyRunner, which submits the topology to a remote cluster

sing the
ditCard-
opology-
uilder to
build the
topology

Set the number of
worker processes
(JVMs) to 2. This
is a config item
that we usually
tweak only
when running
a topology on a
remote cluster.

Configure how long
each tuple tree has to
complete before it gets
failed automatically.

Using StormSubmitter to submit the topology to
the remote cluster, passing in topology name,

configuration, and the topology
Licensed to Mark Watson <nordickan@gmail.com>

115Getting your topology to run on a Storm cluster
can be run. You will need to deploy your
topology from a machine with a properly-
configured Storm installation. Figure 5.6 pro-
vides a refresher on the extracted contents of
a Storm release zip.

 You’ll want to make sure you update
the /opt/storm/conf/storm.yaml file so the
nimbus.host property is set to the proper
location. We’re also interested in the /opt/
storm/bin/storm file for this step: this is the
executable you’ll run in order to deploy your
topology JAR to the remote cluster. Figure 5.7
shows the command you’d run to deploy
your topology. You’ll notice in the figure that
we reference the full location for the storm
executable via /opt/storm/bin/storm. If you
don’t want to do this, put /opt/storm/bin
on your PATH and you can directly refer-
ence the storm command from anywhere on
your machine.

 After you execute the command in fig-
ure 5.7, your topology will be up and running
on the Storm cluster. Once your topology is
running, how do you know it’s actually work-
ing and processing data as expected? This
is where you’d look to the Storm UI, which is
discussed next.

/opt/storm/bin/storm jar <path-to-topology-jar> <topology-main-class>

The command that

takes care of connecting

to Nimbus and uploading

the topology JAR file.

The physical location

of the topology JAR file.

Fully quallified name of

the main class where the

topology is being submitted to

the cluster. In our example this

would be the fully quallified name

of RemoteTopologyRunner.java.

Figure 5.7 The command for deploying your topology to a Storm cluster

/opt/storm

bin

storm

storm-config.cmd

storm-local

storm.cmd

conf

storm.yaml

lib

logback

logs

public

CHANGELOG.md

DISCLAIMER

LICENSE

NOTICE

README.markdown

RELEASE

Figure 5.6 Extracted contents of a
Storm release zip
Licensed to Mark Watson <nordickan@gmail.com>

116 CHAPTER 5 Moving from local to remote topologies
5.5 The Storm UI and its role in the Storm cluster
The Storm UI is the central place to find diagnostics on the Storm cluster and individ-
ual topologies. As mentioned in section 5.3.5, running the command /bin/storm ui
on Nimbus will start the Storm UI. Two properties in defaults.yaml affect where to find
the Storm UI:

1 nimbus.host—The hostname of the Nimbus machine
2 ui.port—The port number to serve up the Storm UI (defaults to 8080)

Once it’s running, enter http://{nimbus.host}:{ui.port} in a web browser to get
to the Storm UI.

 The Storm UI has several sections:

■ The Cluster Summary screen
■ The individual topology summary screen
■ Screens for each of the spouts and bolts

Each screen shows information related to different parts of the Storm cluster at vary-
ing levels of granularity. The Cluster Summary screen is related to the Storm cluster as
a whole, as seen in figure 5.8.

 Clicking on a particular topology link (such as github-commit-count in figure 5.8)
takes you to a topology summary screen. This screen shows information related to the
specific topology, as you can see in figure 5.9.

 Let’s delve into each screen in more detail next.

5.5.1 Storm UI: the Storm cluster summary
The Storm Cluster Summary consists of four parts, as shown in figure 5.10.

 Each section of this screen is explained in more detail in the following sections.

Storm cluster

Master node

Nimbus

Worker node

Supervisor

Worker

process

Worker

process

Figure 5.8 The Cluster Summary screen shows details for the entire Storm cluster.
Licensed to Mark Watson <nordickan@gmail.com>

117The Storm UI and its role in the Storm cluster
Read

commits

from

feed

Commit count topology

Extract

email

from

commit

Update

email

count

"064874b nathan@example.com"

Figure 5.9 The Topology summary screen shows details for a specific topology.

Provides an

overview of the

Storm cluster

Lists all of the

topologies deployed

to the cluster

Lists all of the

Supervisors in

the cluster

Lists all of the

configuration values

for the cluster

Figure 5.10 The Cluster Summary screen of the Storm UI
Licensed to Mark Watson <nordickan@gmail.com>

118 CHAPTER 5 Moving from local to remote topologies
CLUSTER SUMMARY

The Cluster Summary section provides a small but useful overview of your Storm
cluster. You’ll notice the term slots in figure 5.11. A slot corresponds to a worker
process, so a cluster with two used slots means there are two worker processes run-
ning on that cluster. Figure 5.11 provides more detail on each of the columns in
this section.

TOPOLOGY SUMMARY

The Topology summary lists all of the topologies deployed to the cluster. Figure 5.12
provides more detail on what information you see in this section.

The version of

Storm the cluster

is running.

The number of

Supervisor nodes

in the cluster.

Number of free

slots. This means

that two more worker

processes can be run

in the cluster.

The number of

executors (threads)

being used across

the cluster.

The length of time

Nimbus has been

running.

Number of used slots.

This means two worker

processes are currently

running in the cluster.

Number of total slots.

This means the cluster

can run a total of four

worker processes.

Number of tasks

(spout/bolt instances)

being used across

the cluster.

Figure 5.11 The Cluster Summary section on the Cluster Summary screen of the Storm UI

The names of the

topologies, defined in the

StormSubmitter.submitTopology method.

The current

status of the

topologies.

The number of worker

processes (JVMs)

for the topologies.

The number of tasks

(spout/bolt instances)

for the topologies.

The IDs assigned

to the topologies

by Storm.

The length of time

the topologies have

been running.

The number

of executors (threads)

for the topologies.

Figure 5.12 The Topology summary section on the Cluster Summary screen of the Storm UI
Licensed to Mark Watson <nordickan@gmail.com>

119The Storm UI and its role in the Storm cluster
SUPERVISOR SUMMARY

The Supervisor summary lists all the Supervisors in the cluster. Again, you’ll notice the
term slots in figure 5.13. This corresponds to a worker process on a particular Supervi-
sor node. Figure 5.13 provides more detail on what information you see in this section.

NIMBUS CONFIGURATION

The Nimbus Configuration lists the configuration defined in defaults.yaml and any
overridden values in storm.yaml. Figure 5.14 provides more detail on what informa-
tion you see in this section.

The length of time

the Supervisor node

has been running.

Number of used

slots for the Supervisor.

Here two worker

processes are running

on the Supervisor.

The ID assigned to the

Supervisor by Storm.

The IP

address of the

Supervisor node.

Number of slots

for the Supervisor.

This Supervisor can

run a total of four

worker processes.

Figure 5.13 The Supervisor summary section on the Cluster Summary screen of
the Storm UI

The Nimbus

Configuration item.

The value of the

Nimbus Configuration item

defined in defaults.yaml or

overridden in storm.yaml.

Figure 5.14 The Nimbus Configuration section on the Cluster
Summary screen of the Storm UI
Licensed to Mark Watson <nordickan@gmail.com>

120 CHAPTER 5 Moving from local to remote topologies
Having covered the Cluster Summary screen, let’s dive into what the screen for an
individual topology looks like. You can access this screen by clicking on a given topol-
ogy name in the list of topologies.

5.5.2 Storm UI: individual Topology summary

The sections of the individual Topology summary screen can be seen in figure 5.15.
 Each section of this screen is explained in more detail in the following sections.

Shows an overview

of the topology

Provides a Ul for performing

several Storm commands

Shows general statistics

at the topology level

Shows statistics for all

spouts in the topology

Shows statistics for all

bolts in the topology

Lists all of the configuration

values for the topology

Figure 5.15 The Topology summary screen of the Storm UI
Licensed to Mark Watson <nordickan@gmail.com>

121The Storm UI and its role in the Storm cluster
TOPOLOGY SUMMARY

The Topology summary provides a small but useful overview of the topology being
observed. Figure 5.16 provides more detail on each of the individual columns in
this section.

TOPOLOGY ACTIONS

The Topology actions section provides a UI for activating, deactivating, rebalancing,
and killing your topology. Figure 5.17 describes these actions in more detail.

TOPOLOGY STATS

The Topology stats section provides some general statistics at the topology level. These
statistics can be shown for all time, the past 10 minutes, the past 3 hours, or the past
day. The time interval that’s selected is also applied to the spout and bolt stats sec-
tions, which are described next. Figure 5.18 provides more detail on the information
you see in this section.

The name of the

topology, defined in the

StormSubmitter.submitTopology

method

The current

status of the

topology

The number of

worker processes

(JVMs) for the

topology

The number of tasks

(spout/bolt instances)

for the topology

The ID assigned

to the topology

by Storm

The length of time

the topology has

been running

The number

of executors (threads)

for the topology

Figure 5.16 The Topology summary section on the Topology summary screen of the Storm UI

Activates the

topology’s spout(s),

starting the flow

of messages into

the topology.

Deactivates the

topology’s spout(s),

stopping the flow

of all messages

coming into the

topology.

First deactivates

the topology and then

redistributes the workers

evenly around the cluster.

The topology will then

return back to its

previous state

of activation.

First deactivates

the topology, then

shuts down the

workers and cleans

up their state.

Figure 5.17 The Topology actions section on the Topology summary screen of
the Storm UI
Licensed to Mark Watson <nordickan@gmail.com>

122 CHAPTER 5 Moving from local to remote topologies
SPOUT STATS

The Spouts section shows the statistics for all spouts in the topology. The statistics are
for the window of time that’s selected in the Topology Stats section (all time, the past
10 minutes, the past 3 hours, or the past day). Figure 5.19 provides more detail on the
information you see in this section.

Various windows of

time for displaying stats

(last 10 minutes, last 3 hours,

last 1 day, and all time).

The total number of tuples actually

sent to other tasks for the particular window

of time. This can be different than emitted for

several reasons. One reason is a tuple is emitted

to a stream that no other component subscribes to

(emitted = 1, transferred = 0 in this case).

The total number

of tuples acked for the

particular window of time.

The total number of tuples

emitted for the particular window

of time. This is the number of times

the “emit” method is called on

the output collector.

The total time between

a spout emitting a tuple

and the associated tuple

tree being completed.

The total number

of tuples failed

for the particular

window of time.

Figure 5.18 The Topology stats section on the Topology summary screen of the Storm UI

The ID of the spout

defined in the setSpout

method when building

the topology.

The number of

tasks (instances)

of the spout.

The number of

tuples actually sent

to other tasks.

The number

of tuples acked

by the spout.

The host

where the

last error

occurred.

The last error

(if any) produced

by the spout.

The window

of time for the

spout stats.

The number of

executors (threads)

for the spout.

The number of

tuples emitted

by the spout.

The total time between the

spout emitting a tuple and

the associated tuple tree

being completed.

The number

of tuples failed

by the spout.

The host port

where the last

error occurred.

Figure 5.19 The Spouts section on the Topology summary screen of the Storm UI
Licensed to Mark Watson <nordickan@gmail.com>

123The Storm UI and its role in the Storm cluster
BOLT STATS

The Bolts section shows the statistics for all bolts in the topology. The statistics are for
the window of time that’s selected in the Topology Stats section (all time, the past 10
minutes, the past 3 hours, or the past day). Figure 5.20 provides more detail up to the
Capacity column. Figure 5.21 offers more detail on the remaining columns.

The ID of the bolt

defined in the setBolt

method when building

the topology.

The number of

tasks (instances)

of the bolt.

The number of

tuples actually sent

to other tasks.

The window of time

for the bolt stats.

The number of

executors (threads)

for the bolt.

The number of

tuples emitted

by the bolt.

Capacity tells you what

percentage of the time in the

time window the bolt has spent

executing tuples. If this value

is close to 1, then the

bolt is “at capacity.”

Figure 5.20 The Bolts section on the Topology summary screen of the Storm UI,
up to Capacity column

The length of time

a bolt’s execute method takes

to run (time when execute()

ends – time when execute()

is passed an input tuple).

The length of time

it takes a bolt to ack the

input tuple (time when ack is

called – time when execute()

is passed an input tuple).

The number

of tuples failed

by the bolt.

The host

port where the last

error occurred.

The last error

(if any) produced

by the bolt.

The number

of tuples acked

by the bolt.

The host where

the last error

occurred.

The number of

tuples processed

by the bolt.

Figure 5.21 The Bolts section on the Topology summary screen of the Storm UI, remaining columns
Licensed to Mark Watson <nordickan@gmail.com>

124 CHAPTER 5 Moving from local to remote topologies
TOPOLOGY CONFIGURATION

The Topology Configuration lists the configuration defined for the particular topol-
ogy being viewed. Figure 5.22 provides more detail on what information you see in
this section.

 From the Topology summary screen, you can dive into one of the individual spouts
or bolts. You access an individual spout or bolt by clicking on a spout or bolt name
while on the Topology summary screen.

5.5.3 Storm UI: individual spout/bolt summary

In the UI, an individual bolt contains six sections, as you can see in figure 5.23.

COMPONENT SUMMARY

The Component summary section shows some high-level information about the bolt
or spout being observed. Figure 5.24 provides more details.

The Topology

Configuration item.

The value of the Topology

Configuration item defined in

defaults.yaml, storm.yaml,

or in code when building

the topology

Figure 5.22 The Topology Configuration section on the Topology
summary screen of the Storm UI
Licensed to Mark Watson <nordickan@gmail.com>

125The Storm UI and its role in the Storm cluster
BOLT STATS

The Bolt stats section provides much of the same information that you saw in the Bolts
section for the Topology summary, but the information is limited to an individual bolt
(see figure 5.25).

Provides an overview of

the component in question,

in this case, the email

extractor bolt.

Shows general

statistics for

the bolt.

Shows statistics

related to input tuples

being processed by

the bolt.

Shows statistics

related to output tuples
being emitted by

the bolt.

Shows statistics

for the executors

(threads) executing

the bolt.

Displays errors

that have occurred

in the bolt.

Figure 5.23 The bolt summary screen in the Storm UI

The name of the

component, in this

case our bolt

The name of

the topology

The number of

executors (threads)

running this bolt

The number of

tasks (instances)

of this bolt

Figure 5.24 The Component Summary section for a bolt in the Storm UI
Licensed to Mark Watson <nordickan@gmail.com>

126 CHAPTER 5 Moving from local to remote topologies
INPUT STATS

The Input stats section shows statistics related to tuples being consumed by the bolt.
The statistics are relative to a particular stream; in this case it’s the “default” stream.
Figure 5.26 goes into more detail about this section.

Various windows of

time for displaying stats

(last 10 minutes, last

3 hours, last 1 day

and all time)

The number of

tuples actually

sent to other

tasks

The number of

tuples processed

by the bolt

The number

of tuples acked

by the bolt

The number of

tuples emitted

by the bolt

The length of time it

takes a bolt to ack the

input tuple (time when

ack is called – time when

execute() is passed an

input tuple)

The number

of tuples failed

by the bolt

The length of time the

bolt's execute method takes

to run (time when execute()

ends – time when execute()

is passed an input tuple)

Figure 5.25 The Bolt stats section in the Storm UI

The name of

the component emitting

the tuple to this bolt.

The name of the

stream. Set to default

unless you explicitly

named the stream.

The number of

tuples processed

by the bolt as a part

of this stream.

The number of

tuples acked by

the bolt as a part

of this stream.

The length of time the bolt’s

execute method takes to run

(time when execute() ends – time

when execute() is passed an

input tuple) for tuples in

this stream.

The length of time it takes

a bolt to ack the input tuple

(time when ack is called – time

when execute() is passed an

input tuple) for tuples in

this stream.

The number of

tuples failed by

the bolt as a part

of this stream.

Figure 5.26 The Input stats section for a bolt in the Storm UI
Licensed to Mark Watson <nordickan@gmail.com>

127The Storm UI and its role in the Storm cluster
OUTPUT STATS

The Output stats section shows statistics related to tuples being emitted by the bolt
(see figure 5.27).

EXECUTORS

The Executors section shows the statistics for all executors running instances of the
particular bolt. We’ve split this section into two figures. Figure 5.28 shows the first part
and figure 5.29 shows the second.

The name of the

stream. Set to default

unless you explicitly

named the stream.

The number of

tuples emitted

by the bolt.

The number of

tuples actually sent

to other tasks.

Figure 5.27 The Output stats section for a bolt in the Storm UI

The length of time

the executor has

been running.

The port

the executor

is listening to

for work.

Capacity tells you what percentage

of the time in the time window that bolts

on this executor have spent executing

tuples. If this value is close to 1, then

the bolts running on this executor

are “at capacity.’’

The host the

executor is

running on.

The number

of tuples emitted

by bolt instances

running on this

executor.

The number of

tuples actually sent

to other tasks from

bolt instances running

on this executor.

Figure 5.28 The Executors section for a bolt in the Storm UI, through
Capacity column
Licensed to Mark Watson <nordickan@gmail.com>

128 CHAPTER 5 Moving from local to remote topologies
ERRORS

The Errors section shows you a history of errors experienced by this bolt, as you can
see in figure 5.30.
The Storm UI provides a wealth of information, giving you a clear picture of how
your topology is operating in production. With the Storm UI, you can quickly tell
if your topology is healthy or if something is amiss. You should easily be able to spot
errors your topology is encountering while also being able to quickly identify other
issues, such as bottlenecks.

 As you can probably imagine, once you deploy your topology to a production
Storm cluster, your job as a developer doesn’t end. Once it’s deployed, you enter a
whole new world of making sure your topology is running as efficiently as possible.
This is the world of tuning and troubleshooting. We’ve devoted the next two chapters
to those tasks.

The length of time the bolt’s

execute method takes to run

(time when execute() ends – time

when execute() is passed an input

tuple) for tuples being executed by

bolt instances on this executor

The length of time it takes

a bolt to ack the input tuple

(time when ack is called – time

when execute() is passed an

input tuple) for tuples being

processed by bolt instances

on this executor

The number of

tuples failed by

instances of the

bolt running on

this executor

The number of

tuples processed by

instances of the bolt

on this executor

The number of tuples

acked by instances of

the bolt running on

this executor

Figure 5.29 The Executors section for a bolt in the Storm UI, remaining columns

The time the

error occurred

The host

where the

error occurred

The host

port where the

error occurred

Stack-trace

associated with

the error

Figure 5.30 The Errors
section for a bolt in the
Storm UI
Licensed to Mark Watson <nordickan@gmail.com>

129Summary
This chapter laid the foundation for tuning by explaining the parts of a Storm cluster
and what each part of the Storm cluster does. We also provided a thorough explana-
tion of the primary tool you’ll use while tuning and troubleshooting: the Storm UI.

5.6 Summary
In this chapter you learned the following:

■ A Storm cluster consists of Nimbus, which acts as the control center, and Super-
visors, which execute the logic in the instances of spouts and bolts.

■ A Zookeeper cluster is necessary to run alongside a Storm cluster as it coordinates
communication between Nimbus/Supervisors while also maintaining state.

■ Supervisors run worker processes (JVMs), which in turn run executors (threads)
and tasks (instances of spouts/bolts).

■ How to install a Storm cluster, including the key configuration options that
must be set in order to get the cluster running.

■ How to deploy your topologies to a Storm cluster and how running them on the
cluster is really no different than running them locally.

■ What the Storm UI is and how the different parts of the Storm ecosystem map
to the different screens of the Storm UI.

■ What information each section of the Storm UI provides and how these pieces
of information may be useful for tuning and troubleshooting your topologies.
Licensed to Mark Watson <nordickan@gmail.com>

Tuning in Storm
So far, we’ve given you as gentle an introduction to Storm concepts as we can. It’s
time to kick things up a notch. In this chapter, we’ll discuss life as a developer after
you’ve deployed your topology to a Storm cluster. You thought your job was over
once the topology was deployed, didn’t you? Think again! Once you deploy your
topology, you need to make sure it’s running as efficiently as possible. That’s why
we’ve devoted two chapters to tuning and troubleshooting.

 We’ll briefly revisit the Storm UI, because this will be the most important tool
you’ll use to determine whether your topology is running efficiently. Then we’ll
outline a repeatable process you can use in order to identify bottlenecks and
resolve those bottlenecks. Our lesson on tuning doesn’t end there—we still need to
discuss one of the greatest enemies of fast code: latency. We’ll conclude by covering
Storm’s metrics-collecting API as well as introduce a few custom metrics of our own.
After all, knowing exactly what your topology is doing is an important part of
understanding how to make it faster.

This chapter covers
■ Tuning a Storm topology
■ Handling latency in a Storm topology
■ Using Storm’s built-in metrics-collecting API
130

Licensed to Mark Watson <nordickan@gmail.com>

131Problem definition: Daily Deals! reborn
NOTE In this chapter, we have you check out source code from GitHub when
running through the tuning examples. To check out this code, run the fol-
lowing command: git checkout [tag], replacing [tag] with a version of the
code we specify. The GitHub repository is located at https://github.com/
Storm-Applied/C6-Flash-sale-recommender.

Before we get into each of these topics, let’s set the stage with a use case that will serve
as our example throughout the chapter: Daily Deals! reborn.

6.1 Problem definition: Daily Deals! reborn
Here’s the story. We work for an up-and-coming flash sale site. Every day, we put a
number of items on sale for a short period of time and watch the traffic roll in. Over
time, the number of sales per day has been growing and it’s become difficult for cus-
tomers to find sales they’re interested in. Another team at our company has built an
online “Find My Sale!” recommendation system. Find My Sale! narrows down the
number of products customers might be interested in. It starts with some basic infor-
mation the customer has given but also incorporates purchase history, browsing his-
tory, and so forth to try to get sales in which customers will most likely be interested
in front of them. Our website interacts with this system via an HTTP API where we
pass a customer identifier and get back a list of recommendation identifiers. We can
then turn around and look up the details of those sales and display them to the cus-
tomer on site.

 It has been a great boon to the company and has helped fuel excellent growth.
At the same time, we have an aging "Daily Deals!" email that has survived from the
early days of the company about upcoming sales. In the beginning, its one sale per
email was quite effective. Eventually it was changed to use a basic heuristic of getting
a decent upcoming sale in our customers’ inboxes every day. Over time, the effec-
tiveness of the email has declined. Early testing indicates that the problem is that
the contents of the email simply aren’t relevant anymore. With many sales every
day, the simple heuristic isn’t picking highly relevant sales to send; it picks only
moderately relevant ones.

 We’ve been tasked with a new initiative: crafting an email to replace Daily Deals!
that will be sent to customers once a day with any sales coming the next day that Find
My Sales! targets as being of interest to the customer. We want to use the Find My Sale!
system to improve relevancy and hopefully the click-through rate and eventual sales
on site. There’s a caveat or two, though. Find My Sale! is purely an online system
where currently the recommending of sales is somewhat tangled up with its external
HTTP interface. Before we consider rewriting it, we want to validate our idea that
more relevant Daily Deals! emails are going to have a significant impact on business
(some members of the team think the current emails are good enough and increased
relevancy isn’t going to result in more than a small uptick in traffic).
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/Storm-Applied/C6-Flash-sale-recommender
https://github.com/Storm-Applied/C6-Flash-sale-recommender

132 CHAPTER 6 Tuning in Storm
6.1.1 Formation of a conceptual solution

We set about designing a solution that will handle the email creation. It consumes an
incoming stream of customer information and makes a real-time call to Find My Sale!
to find any upcoming flash sales that would be of interest. (We’ve had to modify Find
My Sale! slightly—normally it only considers active sales, but we’ve changed it to take a
date range of active times to consider.) We then look up information about those sales
and finally store it for another process that performs the email sending. Figure 6.1
gives a general overview of this design.

 The design is fairly straightforward; it has four components that talk to two exter-
nal services and one database. With this design in hand, let’s turn our focus to how it
maps to Storm concepts.

6.1.2 Mapping the solution to Storm concepts

This design maps in Storm terms to a fairly simple topology to start. We have a spout
that emits customer information, which in turn hands it off to the Find My Sale bolt,
which interacts with the external service. Any found sales are emitted along with the
customer information to a bolt that looks up information about the sale, which emits
that information with the customer information to a persistence bolt that stores the
information so another process can pick it up later for sending the email. Figure 6.2
illustrates the design mapped to these Storm concepts.

 The mapping of our design to Storm concepts follows a pattern similar to the one
found in chapters 2–4. We have a spout acting as the source of tuples, with three bolts

Find

recommended

sales for

customer

Pull

incoming

customer off

queue

Look

up sales

details

Save

recommended

sales to

data store

Sales IDs

Sales details

Flash sale

recommendation

service

Flash sale

details service

Customer flash

sale database

Figure 6.1 The Find
My Sale! topology:
its components and
data points
Licensed to Mark Watson <nordickan@gmail.com>

133Initial implementation
performing transformations on these tuples. We’ll now show you a first-pass imple-
mentation of this design in code.

6.2 Initial implementation
Before we get into the implementation of the design, it’s important to keep in mind a
couple of interfaces that will be referenced frequently in the following code:

■ TopologyBuilder—Exposes the API for specifying a topology for Storm to execute
■ OutputCollector—The core API for emitting and failing tuples

"13473827"

Spout that pulls

iincoming customer

IDs off a queue.

Customer IDs being

placed on a queue.

Tuples containing

the customer and

sales data, along with

bolts performing

processing

on customer and

sales data.

The stream

groupings between

all of our components

will be shuffle

groupings.

[customer="13473827"]

[customer="13473827",
sales=List("2324","7366")]

[customer="13473827",
sales=List(Sale@7442df79,Sale@1662bc63)]

Customer
Retrieval

Spout

Find
Recommended

Sales

Lookup
Sales

Details

Save
Recommended

Sales

Figure 6.2 The Find My Sale! design mapped to Storm concepts
Licensed to Mark Watson <nordickan@gmail.com>

134 CHAPTER 6 Tuning in Storm
We’ll start with FlashSaleTopologyBuilder, which is responsible for connecting our
spout and bolts (see the following listing). All work for building the topology is han-
dled in this class, regardless of how we are going to run it: in local mode or deploying
to a remote cluster.

public class FlashSaleTopologyBuilder {
 public static final String CUSTOMER_RETRIEVAL_SPOUT = "customer-retrieval";
 public static final String FIND_RECOMMENDED_SALES = "find-recommended-sales";
 public static final String LOOKUP_SALES_DETAILS = "lookup-sales-details";
 public static final String SAVE_RECOMMENDED_SALES = "save-recommended-sales";

 public static StormTopology build() {
 TopologyBuilder builder = new TopologyBuilder();

 builder.setSpout(CUSTOMER_RETRIEVAL_SPOUT, new CustomerRetrievalSpout())
 .setMaxSpoutPending(250);

 builder.setBolt(FIND_RECOMMENDED_SALES, new FindRecommendedSales(), 1)
 .setNumTasks(1)
 .shuffleGrouping(CUSTOMER_RETRIEVAL_SPOUT);

 builder.setBolt(LOOKUP_SALES_DETAILS, new LookupSalesDetails(), 1)
 .setNumTasks(1)
 .shuffleGrouping(FIND_RECOMMENDED_SALES);

 builder.setBolt(SAVE_RECOMMENDED_SALES, new SaveRecommendedSales(), 1)
 .setNumTasks(1)
 .shuffleGrouping(LOOKUP_SALES_DETAILS);

 return builder.createTopology();
 }
}

Now that we’ve seen how to put all the components in
our topology together via the FlashSaleTopologyBuilder,
we’ll go into more detail for each individual component,
starting with the spout.

6.2.1 Spout: read from a data source

Data will flow into our topology through the spout. This
data comes in the form of a single customer ID, as shown
in figure 6.3.

 But as in other topologies, we’re going to cheat in
order to get up and running quickly. For now, we’ll have
the spout generate data whenever its nextTuple() method
is called rather than being hooked up to a real message
queue, as shown in the following listing.

Listing 6.1 FlashSaleTopologyBuilder.java

"13473827"

[customer="13473827"]

Customer
Retrieval

Spout

Figure 6.3 The spout emits
a tuple for each customer ID
that it receives.
Licensed to Mark Watson <nordickan@gmail.com>

135Initial implementation
...

@Override
public void nextTuple() {
 new LatencySimulator(1, 25, 10, 40, 5).simulate(1000);

 int numberPart = idGenerator.nextInt(9999999) + 1;
 String customerId = "customer-" + Integer.toString(numberPart);

 outputCollector.emit(new Values(customerId));
}
...

If we released our topology into a real production environment, the customer retrieval
spout would be hooked up to a messaging bus like Kafka or RabbitMQ. We’d keep the
list of customers we needed to process on a queue, and should our topology com-
pletely crash or otherwise come to a halt, we could restart and continue on from
where we left off. Our stream of data has a durable home that’s separate from the sys-
tem that’ll process it.

 In addition, if we decided we didn’t want to do this in a batch fashion, we’d have to
convert it to a real-time system. With Storm and our design, we’re processing our data
as a stream but kicking off the run as a batch. We’ve separated the “how” of stream
processing as a stream from the “when” of our batch orientation. Any time we want to,
we could take this system from its current form as a batch system to a real-time system
without changing anything about our topology.

 Before we get to the meat of this chapter, let’s step through each of our bolts and
identify the important bits of logic.

6.2.2 Bolt: find recommended sales
The bolt that finds recommended sales accepts a customer ID in its input tuple and
emits a tuple containing two values: the customer ID and a list of sales IDs. To retrieve
the sales IDs, it makes a call to an external service. Figure 6.4 illustrates where we are
in the topology.

 The implementation of this bolt is seen in the next listing.

Listing 6.2 CustomerRetrievalSpout.nextTuple generating customer IDs

Flash sale

recommendation

service

[customer="13473827"]

[customer="13473827",
sales=List("2324","7366")]

Find
Recommended

Sales

Figure 6.4 The FindRecommendedSales
bolt accepts a customer ID in its input tuple
and emits a tuple containing a customer ID
and a list of sales IDs.
Licensed to Mark Watson <nordickan@gmail.com>

136 CHAPTER 6 Tuning in Storm

rec
s

cus
th
in
public class FindRecommendedSales extends BaseBasicBolt {
 private final static int TIMEOUT = 200;
 private FlashSaleRecommendationClient client;

 @Override
 public void prepare(Map config,
 TopologyContext context) {
 client = new FlashSaleRecommendationClient(TIMEOUT);
 }

 @Override
 public void execute(Tuple tuple,
 BasicOutputCollector outputCollector) {
 String customerId = tuple.getStringByField("customer");

 try {
 List<String> sales = client.findSalesFor(customerId);
 if (!sales.isEmpty()) {
 outputCollector.emit(new Values(customerId, sales));
 }
 } catch (Timeout e) {
 throw new ReportedFailedException(e);
 }
 }

 ...
}

All we’re getting back from our client.findSalesFor call is a list of sales identifiers.
To send our email, we’ll need some additional information about the product and
sale. This is where our next bolt comes into play.

6.2.3 Bolt: look up details for each sale
To send a meaningful email with details about each sale, we need to look up the
details for each of the recommended sales. The bolt that does this accepts a tuple con-
taining the customer ID and list of sales IDs, looks up the details for each sale by mak-
ing a call to an external service, and emits a tuple containing the customer ID and a
list of Sale objects containing the details for each sale (see figure 6.5).

Listing 6.3 FindRecommendedSales.java

Instantiate a client
for communicating
with the flash sales
recommendation
service, timing out if a
request to this service
takes over 200 ms.

Retrieve
recommended
sales for the
customer.

If we find
ommended
ales for the
tomer, emit
e entire list
 one tuple.

This exception is thrown if
the call to the flash sales
recommendation service
takes over 200 ms.Throwing this type of exception

will allow us to see the latest
error in the Storm UI.

[customer="13473827",
sales=List("2324","7366")]

[customer="13473827",
sales=List(Sale@7442df79,Sale@1662bc63)]

Lookup
Sales

Details

Flash sale

details service

Figure 6.5 The bolt for
looking up sales details
accepts a customer ID and list
of sales IDs in its input tuple
and emits a tuple containing a
customer ID and list of Sale
objects containing the details
of each sale.
Licensed to Mark Watson <nordickan@gmail.com>

137Initial implementation

Ins

comm
with
sale

that
if a r

th
t

L

a
rec

cou
up
det

w
inp
The following listing shows the implementation for the LookupSalesDetails bolt.

public class LookupSalesDetails extends BaseRichBolt {
 private final static int TIMEOUT = 100;
 private FlashSaleClient client;
 private OutputCollector outputCollector;

 @Override
 public void prepare(Map config,
 TopologyContext context,
 OutputCollector outputCollector) {
 this.outputCollector = outputCollector;
 client = new FlashSaleClient(TIMEOUT);
 }

 @Override
 public void execute(Tuple tuple) {
 String customerId = tuple.getStringByField("customer");
 List<String> saleIds = (List<String>) tuple.getValueByField("sales");

 List<Sale> sales = new ArrayList<Sale>();
 for (String saleId: saleIds) {
 try {
 Sale sale = client.lookupSale(saleId);
 sales.add(sale);
 } catch (Timeout e) {
 outputCollector.reportError(e);
 }
 }

 if (sales.isEmpty()) {
 outputCollector.fail(tuple);
 } else {
 outputCollector.emit(new Values(customerId, sales));
 outputCollector.ack(tuple);
 }
 }

 ...
}

The one big difference between this bolt and the previous one is that this one can
both succeed and fail at the same time. We could attempt to look up ten sales, get nine,
and not get one. To handle this more complicated definition of success, we extend
BaseRichBolt and manually ack tuples ourselves. As long as we can look up at least
one of the sales from the sale IDs obtained from our input tuple, we’ll call it a success
and move on. Our main priority is to get as many emails out on time as possible.

 This leads us to our last bolt, where we’ll save the results to a database for sending
via another process.

Listing 6.4 LookupSalesDetails.java

Assign an instance of the output
collector so we have more
control over reporting individual
failures, failing the input tuple
and acking the input tuple.

tantiate a
client for
unicating
 the flash
s service

times out
equest to
is service
akes over

100ms.
Iterate over each of the
recommended sales for
the particular customer.

ook up the
details for

n individual
ommended

sale.

This exception is thrown if
the call to the flash sales
service takes over 100ms.

If a timeout occurs for a single sale
lookup, report the error but continue
processing the other recommended sales.

If we
ldn’t look
 any sales
ails, then
e fail the
ut tuple.

Otherwise we
emit a new tuple
containing the
customer ID and
sales details …… and ack

the input tuple.
Licensed to Mark Watson <nordickan@gmail.com>

138 CHAPTER 6 Tuning in Storm

to

a
sal
6.2.4 Bolt: save recommended sales

The bolt that saves the recommended sales accepts an input tuple containing a cus-
tomer ID and a list of Sale objects with the details for each sale. It then persists that
data to a database for later processing, emitting no tuples because this is the last bolt
in our topology (see figure 6.6).

 The next listing shows the implementation for SaveRecommendedSales.

public class SaveRecommendedSales extends BaseBasicBolt {
 private final static int TIMEOUT = 50;
 private DatabaseClient dbClient;

 @Override
 public void prepare(Map config,
 TopologyContext context) {
 dbClient = new DatabaseClient(TIMEOUT);
 }

 @Override
 public void execute(Tuple tuple,
 BasicOutputCollector outputCollector) {
 String customerId = tuple.getStringByField("customer");
 List<Sale> sales = (List<Sale>) tuple.getValueByField("sales");

 try {
 dbClient.save(customerId, sales);
 } catch (Timeout e) {
 throw new ReportedFailedException(e);
 }
 }

 ...
}

The same patterns we used in the previous two bolts are used here as well. There’s our
logic. It all looks sound. Imagine we’ve done some testing of our topology and its
working but it’s far from ready to be released into production. Is it going to be fast
enough? It’s hard to tell. Let’s see how we would go about finding out.

Listing 6.5 SaveRecommendedSales.java

[customer="13473827",
sales=List(Sale@7442df79,Sale@1662bc63)]

Save
Recommended

Sales
Customer flash

sale database

Figure 6.6 The save
recommended sales bolt accepts
an input tuple containing the
customer ID and a list of Sale
objects and persists that
information to a database.

Instantiate a client for
communicating with the
database, timing out if a
request to the database
takes over 50 ms.

Attempt
 save the
customer
and their
ssociated
es details

to the
database. This exception is thrown

if the call to the database
takes over 50 ms.

Throwing this type of exception
will allow us to see the latest
error in the Storm UI.
Licensed to Mark Watson <nordickan@gmail.com>

139Tuning: I wanna go fast
6.3 Tuning: I wanna go fast
How does one go about tuning their topologies? It may seem like a daunting task at
first, but Storm provides us with tools that can be used to quickly identify bottlenecks,
allowing us to take steps to alleviate those bottlenecks. Using the Storm UI and metrics-
collecting API, you have tools at your disposal to establish a repeatable process you can
use for tuning your topologies.

6.3.1 The Storm UI: your go-to tool for tuning
An understanding of the Storm UI is essential because it’s the primary tool that will
give us feedback on whether your tuning efforts are having any effect. Figure 6.7 gives
a quick refresher on the Topology summary screen of the Storm UI.

 As you’ll recall, there are seven sections in the UI for a single topology:

■ Topology summary—Shows the status, uptime, and the number of workers, execu-
tors and tasks assigned to the entire topology.

■ Topology actions—Allows you to deactivate, rebalance, or kill your topology straight
from the UI.

■ Topology stats—Shows high-level statistics for the entire topology across four
time windows; one of those windows is All Time.

■ Spouts (All time)—Shows the statistics for your spout(s) across all time. This
includes the number of executors and tasks; the number of tuples that have
been emitted, acked, and failed by the spout(s); and the last error (if there has
been one) associated with the spout(s).

Figure 6.7 Topology summary screen of the Storm UI
Licensed to Mark Watson <nordickan@gmail.com>

140 CHAPTER 6 Tuning in Storm
■ Bolts (All time)—Shows your statistics for your bolt(s) across all time. This includes
the number of executors and tasks; the number of tuples that have been emitted,
acked, and failed by the bolt(s); some metrics related to latency and how busy the
bolt(s) are; and the last error (if there has been one) associated with the bolt(s).

■ Visualization—Shows a visualization of the spouts, bolts, how they are connected,
and the flow of tuples between all of the streams.

■ Topology Configuration—Shows all the configuration options that have been set
for your topology.

We’ll focus on the Bolts section of the UI for our tuning lesson. Before we get into fig-
uring out what needs to be tuned and how, we need to define a set of baseline num-
bers for our topology.

6.3.2 Establishing a baseline set of performance numbers

Time to dive into developing basic Storm tuning skills that can be used to take a topol-
ogy and make it progressively faster. In our source code, you’ll find version 0.0.1 of the
Find My Sale! topology. To check out that specific version, use this command:

git checkout 0.0.1

Defining your service level agreement (SLA)
Before you start analyzing whether your topology is a finely tuned machine, ask your-
self what fast enough means to you. What velocity do you need to hit? Think of Twit-
ter’s trending topics for a moment. If it took eight hours to process every tweet, those
topics wouldn’t be anywhere near as trending as they are on the site. A SLA could be
fairly flexible in regard to time “within an hour” but rigid according to data flow. Events
can’t back up beyond a certain point; there’s a queue out there somewhere, holding
onto all the data that’s going to be processed. After a certain high watermark is set,
we need to be consuming data as fast as it’s going on, lest we hit a queue limit or,
worse, cause an out-of-memory error.

For our use case, where we’re processing a stream in a batch-like fashion, our SLA
is different. We need to have fully processed all our data in time for our email to go
out. Fast enough has a couple of simple metrics: 1) Did it finish on time? 2) As we
process more data each day, will it continue to finish on time?

Let’s make our SLA a little more real. It takes a while to process all these emails (say
60 minutes) before sending. And we want to start sending at 8 a.m. every morning.
Deals for the coming day can be entered until 11 p.m. and we can’t start processing
until after that. This gives us eight hours from the time we start to when we have to
finish. Currently we have 20 million customers—which means that to barely hit our
mark we need to process some 695 customers per second. That’s cutting it pretty
close; we decide for our first pass we need to feel confident in finishing in seven
hours. That’s 794 customers a second, and, given our growth, we want to rapidly
ramp up to being done within three hours so we don’t have to worry about tuning for
a while. To do that, we need to process 1,852 customers a second.
Licensed to Mark Watson <nordickan@gmail.com>

141Tuning: I wanna go fast
While we’re tuning, we need to pay attention to one primary class: FlashSaleTopology-
Builder. This is where we build our topology and set the parallelism of each compo-
nent. Let’s take a look at its build method again to refresh your memory:

public static StormTopology build() {
 TopologyBuilder builder = new TopologyBuilder();

 builder.setSpout(CUSTOMER_RETRIEVAL_SPOUT, new CustomerRetrievalSpout())
 .setMaxSpoutPending(250);

 builder.setBolt(FIND_RECOMMENDED_SALES, new FindRecommendedSales(), 1)
 .setNumTasks(1)
 .shuffleGrouping(CUSTOMER_RETRIEVAL_SPOUT);

 builder.setBolt(LOOKUP_SALES_DETAILS, new LookupSalesDetails(), 1)
 .setNumTasks(1)
 .shuffleGrouping(FIND_RECOMMENDED_SALES);

 builder.setBolt(SAVE_RECOMMENDED_SALES, new SaveRecommendedSales(), 1)
 .setNumTasks(1)
 .shuffleGrouping(LOOKUP_SALES_DETAILS);

 return builder.createTopology();
}

Note that we’re creating one executor (in the call to setBolt) and one task for each
bolt (in setNumTasks). This will give us a basic baseline of how our topology is per-
forming. Next we’ll take it, deploy it to a remote cluster, and then run it with some
customer data for 10–15 minutes, collecting basic data from the Storm UI. Figure 6.8
shows what we have at this point, with the important parts highlighted and annotated.

Listing of each

bolt by its unique

identifier. These are

defined in the setBolt

methods when building

the topology.

The number

of executors

and tasks for

each bolt.

Capacity tells you what percentage

of the time in the time window the bolt

has spent executing tuples. If this value

is close to 1, then the bolt is “at capacity”

and is a bottleneck in your topology.

Address such bottlenecks by increasing

the parallelism of the “at-capacity” bolts.

The number of

tuples the bolt

has acked and

failed.

Shows the time window

for the collected metrics.

In this scenario, it’s the

last 10 minutes.

The exact difference between these two latency

values is not important right now, and for the sake of

this tuning lesson, as long as they are close in value,

we can ignore the difference. We will focus on

execute latency for our tunning lesson.

Figure 6.8 Identifying the important parts of the Storm UI for our tuning lesson
Licensed to Mark Watson <nordickan@gmail.com>

142 CHAPTER 6 Tuning in Storm
We now have a useful interface for displaying the metrics related to our topology
along with a baseline set of performance numbers. The next step in the tuning pro-
cess is to identify the bottlenecks in our topology and do something about them.

6.3.3 Identifying bottlenecks

What can we see from these metrics after our first run? Let’s zero in on capacity. For
two of our bolts, it’s fairly high. The find-recommended-sales bolt is at 1.001 and
the lookup-sales-details bolt is hovering around .7. The value of 1.001 indicates
a bottleneck for find-recommended-sales. We’re going to need to increase its par-
allelism. Given that lookup-sales-details is at .7, it’s highly likely that opening up
find-recommended-sales without also opening up lookup-sales-details will just
turn it into a new bottleneck. Our intuition says they should be tuned in tandem.
save-recommended-sales, on the other hand, is really low at 0.07 and probably won’t
be a bottleneck for quite some time.

 Next, we’ll guess how high we might want to take our parallelism, set our number
of tasks to that, and release again. We’ll show you the stats from that run as well so you
can see that changing the number of tasks without changing the number of executors
makes no difference.

 You can check out version 0.0.2 of the code by executing this command:

git checkout 0.0.2

The only important change is in FlashSaleTopologyBuilder:

public static StormTopology build() {
 TopologyBuilder builder = new TopologyBuilder();

 builder.setSpout(CUSTOMER_RETRIEVAL_SPOUT, new CustomerRetrievalSpout())
 .setMaxSpoutPending(250);

 builder.setBolt(FIND_RECOMMENDED_SALES, new FindRecommendedSales(), 1)
 .setNumTasks(32)
 .shuffleGrouping(CUSTOMER_RETRIEVAL_SPOUT);

 builder.setBolt(LOOKUP_SALES_DETAILS, new LookupSalesDetails(), 1)
 .setNumTasks(32)
 .shuffleGrouping(FIND_RECOMMENDED_SALES);

 builder.setBolt(SAVE_RECOMMENDED_SALES, new SaveRecommendedSales(), 1)
 .setNumTasks(8)
 .shuffleGrouping(LOOKUP_SALES_DETAILS);

 return builder.createTopology();
}

Why 32, 32, and 8 for bolt tasks? We probably won’t need more than 16, 16, and 4
when we’re done, but it’s smart to go with double that as a first pass. With this change
in place, we don’t need to release the topology multiple times. We can release just ver-
sion 0.0.2 and use the rebalance command on our Nimbus node to adjust the paral-
lelism of our running topology.
Licensed to Mark Watson <nordickan@gmail.com>

143Tuning: I wanna go fast
 After release, we let it run for about 10–15 minutes. As you can see, the only mean-
ingful change in the UI is the number of tasks per bolt.

 What do we do next? Let’s start by quadrupling the parallelism for both the
find-recommended-sales and lookup-sales-details bolts by running the rebalance
command.

NOTE The rebalance command used throughout this chapter takes the form
storm rebalance topology-name –e [bolt-name]=[number-of-executors].
This command will redistribute executors for the given bolt, allowing us to
increase the parallelism for the given bolt on the fly. All rebalance commands
assume we’re running on our Nimbus node and that we have the Storm com-
mand in our PATH.

We’ll run one rebalance, wait for the change to appear in the UI, and then run the
second rebalance command:

storm rebalance flash-sale -e find-recommended-sales=4
storm rebalance flash-sale -e lookup-sales-details=4

Okay, our rebalance is done. It’s 10 minutes later—let’s see what we got (figure 6.9).
 Here’s something that might surprise you. We increased the parallelism of our

find-recommended-sales bolt but there’s no change in capacity. It’s just as busy as
it was before. How can that be possible? The flow of tuples coming in from the

The capacity for our first

two bolts remains about the

same after increasing the tasks

and executors for each.

Figure 6.9 Storm UI shows a minimal change in capacity after a first attempt at
increasing parallelism for our first two bolts.
Licensed to Mark Watson <nordickan@gmail.com>

144 CHAPTER 6 Tuning in Storm
spout was unaffected; our bolt was/is a bottleneck. If we were using a real queue,
messages would’ve backed up on that queue as a result. Note the capacity metrics of
the save-recommended-sales bolt has gone up to about 0.3 as well. That’s still fairly
low, so we don’t have to worry about that becoming a bottleneck yet.

 Let’s try that again, this time doubling the parallelism of both bolts. That has to
make a dent in that queue:

storm rebalance flash-sale -e find-recommended-sales=8
storm rebalance flash-sale -e lookup-sales-details=8

Let’s pretend the rebalances are done and we’ve waited 10 minutes (figure 6.10).
 The capacity is unchanged for both find-recommended-sales and lookup-sales-

details. That queue behind our spout must be really backed up. save-recommended-
sales capacity has just about doubled, though. If we ratchet up the parallelism on our
first two bolts, that might become a bottleneck for us, so let’s bring it up some as well.
Again, double the parallelism for our first two bolts and then quadruple the parallel-
ism used for the save-recommended-sales bolt:

storm rebalance flash-sale -e find-recommended-sales=16
storm rebalance flash-sale -e lookup-sales-details=16
storm rebalance flash-sale -e save-recommended-sales=4

Three rebalancing commands and 10 minutes later we have figure 6.11.

The capacity for our first

two bolts remains about the

same after doubling the

number of executors.

Figure 6.10 Storm UI showing minimal change in capacity after doubling the number
of executors for our first two bolts
Licensed to Mark Watson <nordickan@gmail.com>

145Tuning: I wanna go fast
Excellent! We’ve finally made a dent, and a decent one in terms of capacity. The number
of spouts (one) might now be our limiting factor. In a topology where we’re hooked up
to a real message queue, we’d check to make sure the flow of messages met whatever our
SLA was. In our use case, we don’t care about messages backing up but we’re concerned
with time to get through all messages. If our job from start to finish would take too long,
we could increase the parallelism of our spout and go through the tuning steps we just
showed you. Faking out spout parallelism is beyond the realm of our little test topology,
but feel free to go about trying to emulate it. It might be a rewarding exercise.

6.3.4 Spouts: controlling the rate data flows into a topology

If we still aren’t meeting our SLAs at this point in tuning, it’s time to start looking at
how we can control the rate that data flows into our topology: controls on spout paral-
lelism. Two factors come into play:

■ The number of spouts
■ The maximum number of tuples each spout will allow to be live in our topology

Increasing parallelism at executor vs. worker level
So far, we haven’t touched the parallelism of workers at all. Everything is running on
a single worker and with a single spout, and we don’t need more than one worker.
Our advice is to scale on a single worker with executors until you find increasing exec-
utors doesn't work anymore. The basic principle we just used for scaling our bolts
can be applied to spouts and workers.

Capacity for all bolts has

improved after doubling

the executors for the first

two bolts and quadrupling

the executors for our

last bolt.

Figure 6.11 Storm UI showing improved capacity for all three bolts in our
topology
Licensed to Mark Watson <nordickan@gmail.com>

146 CHAPTER 6 Tuning in Storm
NOTE Before we get started, remember in chapter 4 when we discussed guar-
anteed message processing and how Storm uses tuple trees for tracking
whether or not a tuple emitted from a spout is fully processed? Here when we
mention a tuple being unacked/live, we’re referring to a tuple tree that hasn’t
been marked as fully processed.

These two factors, the number of spouts and maximum number of live tuples, are inter-
twined. We’ll start with the discussion of the second point because it’s more nuanced.
Storm spouts have a concept called max spout pending. Max spout pending allows you
to set a maximum number of tuples that can be unacked at any given time. In the
FlashSaleTopologyBuilder code, we’re setting a max spout pending value of 250:

builder
 .setSpout(CUSTOMER_RETRIEVAL_SPOUT, new CustomerRetrievalSpout())
 .setMaxSpoutPending(250);

By setting that value to 250, we ensure that, per spout task, 250 tuples can be unacked
at a given time. If we had two instances of the spout, each with two tasks, that
would be:

2 spouts x 2 tasks x 250 max spout pending = 1000 unacked tuples possible

When setting parallelism in your topology, it’s important to make sure that max spout
pending isn’t a bottleneck. If the number of possible unacked tuples is lower than the
total parallelism you’ve set for your topology, then it could be a bottleneck. In this
case, we have the following

■ 16 find-recommended-sales bolts
■ 16 lookup-sales-details bolts
■ 4 saved-recommended-sales bolts

which yields 36 tuples at a time we can process.
 In this example, with a single spout, our maximum possible unacked tuples, 250, is

greater than the maximum number of tuples we can process based on our paralleliza-
tion, 36, so we can feel safe saying that max spout pending isn’t causing a bottleneck
(figure 6.12).

 If max spout pending can cause bottlenecks, why would you set it at all? Without it,
tuples will continue to flow into your topology whether or not you can keep up with
processing them. Max spout pending allows us to control our ingest rate. Without
controlling our ingest rate, it’s possible to swamp our topology so that it collapses
under the weight of incoming data. Max spout pending lets us erect a dam in front of
our topology, apply back pressure, and avoid being overwhelmed. We recommend
that, despite the optional nature of max spout pending, you always set it.

 When attempting to increase performance to meet an SLA, we’d increase the rate
of data ingest by either increasing spout parallelism or increasing the max spout
pending. If we made a fourfold increase in the maximum number of active tuples
allowed, we’d expect to see the speed of messages leaving our queue increase (maybe
Licensed to Mark Watson <nordickan@gmail.com>

147Tuning: I wanna go fast
not by a factor of four, but it’d certainly increase). If that caused the capacity metric
for any of our bolts to return to one or near it, we’d tune the bolts again and repeat
with the spout and bolt until we hit our SLA. If adjusting spout and bolt parallelism
failed to provide additional benefits, we’d play with the number of workers to see if we
were now bound by the JVM we were running on and needed to parallelize across
JVMs. This basic method can be applied over and over, and in many cases, we can meet
our SLAs based on this.

"13473827"

With a max spout pending

of per spout instance, and250

with one spout instance, we can

have up to unacked tuples250

being processed at a time.

We have a total of tasks36

(instances of bolts), meaning

we can have tuples being36

processed at one time.

Since the number of potential

unacked tuples at one time is

greater than the number of tuples

we can actually process at one

time, max spout pending is

not causing a bottleneck.
Running with tasks.16

Running with tasks.16

Running with tasks.4

[customer="13473827"]

[customer="13473827",
sales=List("2324","7366")]

[customer="13473827",
sales=List(Sale@7442df79,Sale@1662bc63)]

Customer
Retrieval

Spout

Find
Recommended

Sales

Lookup
Sales

Details

Save
Recommended

Sales

Figure 6.12 Because max spout pending is greater than the total number of tuples we can
process at one time, it’s not a bottleneck.
Licensed to Mark Watson <nordickan@gmail.com>

148 CHAPTER 6 Tuning in Storm
 Keep the following points in mind if you’re working with external services from a
topology you’re tuning:

1 It’s easy when interacting with external services (such as a SOA service, data-
base, or filesystem) to ratchet up the parallelism to a high enough level in a
topology that limits in that external service keep your capacity from going
higher. Before you start tuning parallelism in a topology that interacts with the
outside world, be positive you have good metrics on that service. We could keep
turning up the parallelism on our find-recommended-sales bolt to the point
that it brings the Find My Sales! service to its knees, crippling it under a mass of
traffic that it’s not designed to handle.

2 The second point is about latency. This is a bit more nuanced and requires a
longer explanation and some background information, so before we get to that,
let’s take our parallelism changes and check them in.

You can check out the version of the code we have at this point in our tuning example
by executing this command:

git checkout 0.0.3

6.4 Latency: when external systems take their time
Let’s talk about one of the greatest enemies of fast code: latency. Latency is generally
defined as the period of time one part of your system spends waiting on a response
from another part of your system. There’s latency accessing memory on your com-
puter, accessing the hard drive, and accessing another system over the network. Differ-
ent interactions have different levels of latency, and understanding the latency in your
system is one of the keys to tuning your topology.

6.4.1 Simulating latency in your topology

If you look at the code for this topology, you’ll find something that looks like this
inside code from Database.java:

private final LatencySimulator latency = new LatencySimulator(
 20, 10, 30, 1500, 1);

public void save(String customerId, List<Sale> sale, int timeoutInMillis) {
 latency.simulate(timeoutInMillis);
}

Don’t worry if you haven’t gone through the code. We’ll cover all the important parts
here. The LatencySimulator is our way of making this topology behave something
like a real one would when interacting with external services. Anything you interact
with exhibits latency, from main memory on your computer to that networked filesys-
tem you have to read from. Different systems will display different latency characteris-
tics that our LatencySimulator attempts to emulate in a simple fashion.

 Let’s break down its five constructor arguments (see figure 6.13).
Licensed to Mark Watson <nordickan@gmail.com>

149Latency: when external systems take their time
Note that we’re not expressing latency in terms of a basic average that we vary from.
That’s rarely how latency works. You’ll usually get fairly consistent response times and all
of the sudden those response times will vary wildly because of any number of factors:

■ The external service is having a garbage collection event.
■ A network switch somewhere is momentarily overloaded.
■ Your coworker wrote a runaway query that’s currently hogging most of the data-

base’s CPU.

NOTE At our day job, almost all our systems run on the JVM and we use Coda
Hale’s excellent Metrics library1 as well as Netflix’s great Hystrix library2 to
measure the latency of our systems and adjust accordingly.

Table 6.1 shows the latency of the various systems our topology is interacting with. Look-
ing at the table, we can see there’s a lot of variance from the best request to the worst in
each of these services. But what really stands out is how often we get hit by latency. On
occasion, the database takes longer than any other service, but it rarely happens when
compared to the FlashSaleRecommendationService, which hits a high latency period
an order of magnitude more. Perhaps there’s something we can address there.

1 https://github.com/dropwizard/metrics
2 https://github.com/Netflix/Hystrix

Table 6.1 Latency of external services

System
Low
floor

Low
variance

High
floor

High
variance

High %

FlashSaleRecommendationService 100 50 150 1000 10

FlashSaleService 50 50 100 200 5

Database 20 10 30 1500 1

new LatencySimulator(20, 10, 30, 1500, 1)

Low Latency Floor:

The minimum amount

of time (ms) it will take

normal requests

to complete.

High Latency Floor:

Like the low latency

floor but the minimum

time (ms) for the lesser

percentage of requests

that experience high latency.

The percentage of the

time we hit high latency;

99 out of 100 requests

will have response times

between 20–29 ms, with the

last request being really slow.

Low Latency Variance:

How much variance there

is (ms) between normal

requests. Here we vary

between 20–29 ms

per request.

High Latency Variance:

Operates the same as our low

latency variance. Our made-up

database response times

can vary wildly when it hits

abnormal latency: anywhere

from 30–1529 ms.

Figure 6.13 LatencySimulator constructor arguments explained
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/dropwizard/metrics
https://github.com/Netflix/Hystrix

150 CHAPTER 6 Tuning in Storm
When you look in the FindRecommendedSales bolt, you’ll see this:

private final static int TIMEOUT = 200;

...

@Override
public void prepare(Map config, TopologyContext context) {
 client = new FlashSaleRecommendationClient(TIMEOUT);
}

We’ve set a timeout of 200 ms for looking up recommendations per client. It’s a nice
number, 200, but how did we settle on that? It probably seemed right when we were
trying to get the topology working. In figure 6.14, look at the Last Error column.
You’ll see that all our bolts are experiencing timeouts. That makes sense. We wait only
200 ms to get recommendations, yet according to table 6.1, one out of ten requests
hits a higher-than-normal latency that could take anywhere from 150 to 1049 ms to
return a result and nine out of ten requests will return less than 150 ms. There are two
primary types of reasons this could happen: extrinsic and intrinsic.

6.4.2 Extrinsic and intrinsic reasons for latency

An extrinsic reason is one that has little to nothing to do with the data. We hit high latency
because of network issues or a garbage collection event or something that should pass
with time. The next time we retry that request, our situation might be different.

 An intrinsic reason is related to something about the data that’s likely to cause the
delay. In our example, it may take longer to come up with recommended sales for cer-
tain customers. No matter how many times we fail the tuple in this bolt and try again,
we won’t get recommended sales for those customers. It’s just going to take too long.
Intrinsic reasons can combine with extrinsic ones; they aren’t mutually exclusive.

 That’s all well and good, but what does it have to do with our topology? Well, as
we are interacting with external services, we can account for latency and attempt to
increase our throughput without increasing our parallelism. Let’s be smarter about
our latency.

Figure 6.14 Storm UI showing the last error for each of our bolts
Licensed to Mark Watson <nordickan@gmail.com>

151Latency: when external systems take their time

t
 All right, we’re making recommendations here, so we’re declaring that after investi-
gation, we’ve discovered that our variance with the FlashSaleRecommendationService
is based on the customer. Certain customers are going to be slower to look up:

■ We can generate recommendations for 75% of them in less than 125 ms.
■ For another 15%, it takes about 125–150 ms.
■ The last 10% usually take at least 200 ms, sometimes as long as 1500 ms.

Those are intrinsic variances in latency. Sometimes one of those “fast” lookups might
end up taking longer due to an extrinsic event. One strategy that has worked well for
us with services that exhibit this problem is to perform initial lookup attempts with a
hard ceiling on timeouts. In this example, we could use 150 ms, and, if that fails, send
it to a less parallelized instance of the same bolt that will take longer with its timeout.
The end result is that our time to process a large number of messages goes down—
we’re effectively declaring war on extrinsic latency. If 90% of requests take longer than
150 ms, it’s probably either because

1 It’s a customer with intrinsic issues.
2 Extrinsic issues such as stop-the-world garbage collection are having an effect.

Your mileage will vary with this strategy, so test before you use it. Caveats aside, let’s
look at one way you can pull this off. Check out version 0.0.4 of our code

git checkout 0.0.4

and see the following listing for the changes in FindRecommendedSales and Flash-
SaleTopologyBuilder.

public class FindRecommendedSales extends BaseBasicBolt {
 public static final String RETRY_STREAM = "retry";
 public static final String SUCCESS_STREAM = "success";

 private FlashSaleRecommendationClient client;

 @Override
 public void prepare(Map config,
 TopologyContext context) {
 long timeout = (Long)config.get("timeout");
 client = new FlashSaleRecommendationClient((int)timeout);
 }

 @Override
 public void execute(Tuple tuple,
 BasicOutputCollector outputCollector) {
 String customerId = tuple.getStringByField("customer");

 try {
 List<String> sales = client.findSalesFor(customerId);
 if (!sales.isEmpty()) {
 outputCollector.emit(SUCCESS_STREAM,
 new Values(customerId, sales));

Listing 6.6 FindRecommendedSales.java with retry logic

The timeout is no
longer a hardcoded
value; we’re getting
it from the topology
configuration.

If we successfully
get results withou
timing out, we’re
emitting new
values as before
but to a new
SUCCESS_STREAM.
Licensed to Mark Watson <nordickan@gmail.com>

152 CHAPTER 6 Tuning in Storm
 }
 } catch (Timeout e) {
 outputCollector.emit(RETRY_STREAM, new Values(customerId));
 }
 }

 ...
}

Check out what’s going on in FlashSaleTopologyBuilder:

builder
 .setSpout(CUSTOMER_RETRIEVAL_SPOUT, new CustomerRetrievalSpout())
 .setMaxSpoutPending(250);

builder
 .setBolt(FIND_RECOMMENDED_SALES_FAST, new FindRecommendedSales(), 16)
 .addConfiguration("timeout", 150)
 .setNumTasks(16)
 .shuffleGrouping(CUSTOMER_RETRIEVAL_SPOUT);

builder
 .setBolt(FIND_RECOMMENDED_SALES_SLOW, new FindRecommendedSales(), 16)
 .addConfiguration("timeout", 1500)
 .setNumTasks(16)
 .shuffleGrouping(FIND_RECOMMENDED_SALES_FAST,
 FindRecommendedSales.RETRY_STREAM)
 .shuffleGrouping(FIND_RECOMMENDED_SALES_SLOW,
 FindRecommendedSales.RETRY_STREAM);

builder
 .setBolt(LOOKUP_SALES_DETAILS, new LookupSalesDetails(), 16)
 .setNumTasks(16)
 .shuffleGrouping(FIND_RECOMMENDED_SALES_FAST,
 FindRecommendedSales.SUCCESS_STREAM)
 .shuffleGrouping(FIND_RECOMMENDED_SALES_SLOW,
 FindRecommendedSales.SUCCESS_STREAM);

builder
 .setBolt(SAVE_RECOMMENDED_SALES, new SaveRecommendedSales(), 4)
 .setNumTasks(4)
 .shuffleGrouping(LOOKUP_SALES_DETAILS);

Where we previously had a single FindRecommendedSales bolt, we now have two: one
for “fast” lookups and the other for “slow.” Let’s take a closer look at the fast one:

builder
 .setBolt(FIND_RECOMMENDED_SALES_FAST, new FindRecommendedSales(), 16)
 .addConfiguration("timeout", 150)
 .setNumTasks(16)
 .shuffleGrouping(CUSTOMER_RETRIEVAL_SPOUT);

It’s identical to our previous FindRecommendedSales bolt except that it has one addition:

.addConfiguration("timeout", 150)

We’re no longer throwing a
ReportedFailedException if we encounter a
timeout; we’re now taking the customerId

and emitting it to a separate RETRY_STREAM.
Licensed to Mark Watson <nordickan@gmail.com>

153Latency: when external systems take their time
This is the timeout value (in ms) that we’re using in the bolt’s prepare() method to
initialize the FindRecommendationSalesClient’s timeout value. Every tuple through
the fast bolt will time out after 150 ms and be emitted on the retry stream. Here’s the
“slow” version of the FindRecommendedSales bolt:

builder
 .setBolt(FIND_RECOMMENDED_SALES_SLOW, new FindRecommendedSales(), 16)
 .addConfiguration("timeout", 1500)
 .setNumTasks(16)
 .shuffleGrouping(FIND_RECOMMENDED_SALES_FAST,
 FindRecommendedSales.RETRY_STREAM)
 .shuffleGrouping(FIND_RECOMMENDED_SALES_SLOW,
 FindRecommendedSales.RETRY_STREAM);

Note that it has a timeout of 1500 ms:

.addConfiguration("timeout", 1500)

That’s the maximum we decided we should ever need to wait based on reasons that
are intrinsic to that customer.

 What’s going on with those two shuffle groupings?

.shuffleGrouping(FIND_RECOMMENDED_SALES_FAST,
 FindRecommendedSales.RETRY_STREAM)
.shuffleGrouping(FIND_RECOMMENDED_SALES_SLOW,
 FindRecommendedSales.RETRY_STREAM);

We’ve hooked up the slow FindRecommendedSales bolt to two different streams: the
retry streams from both the fast and slow versions of the FindRecommendedSales bolts.
Whenever a timeout occurs in any version of the bolt, it’ll be emitted on the retry
stream and retried at a slower speed.

 We have to make one more big change to our topology to incorporate this. Our
next bolt, the LookupSalesDetails, has to get tuples from the success stream of both
FindRecommendedSales bolts, slow and fast:

builder.setBolt(LOOKUP_SALES_DETAILS, new LookupSalesDetails(), 16)
 .setNumTasks(16)
 .shuffleGrouping(FIND_RECOMMENDED_SALES_FAST,
 FindRecommendedSales.SUCCESS_STREAM)
 .shuffleGrouping(FIND_RECOMMENDED_SALES_SLOW,
 FindRecommendedSales.SUCCESS_STREAM);

We could also consider applying this pattern to other bolts further downstream. It’s
important to weigh the additional complexity this creates against possible perfor-
mance increases. As always, it’s all about trade-offs.

 Let’s go back to a previous decision. Remember the code in LookupSalesDetails
that can result in some sales details not being looked up?

@Override
public void execute(Tuple tuple) {
 String customerId = tuple.getStringByField("customer");
 List<String> saleIds = (List<String>) tuple.getValueByField("sales");
Licensed to Mark Watson <nordickan@gmail.com>

154 CHAPTER 6 Tuning in Storm
 List<Sale> sales = new ArrayList<Sale>();
 for (String saleId: saleIds) {
 try {
 Sale sale = client.lookupSale(saleId);
 sales.add(sale);
 } catch (Timeout e) {
 outputCollector.reportError(e);
 }
 }

 if (sales.isEmpty()) {
 outputCollector.fail(tuple);
 } else {
 outputCollector.emit(new Values(customerId, sales));
 outputCollector.ack(tuple);
 }
}

We made a trade-off to get speed. We’re willing to accept the occasional loss of fidelity
in the number of recommended sales to each customer versus emailing them to make
sure we hit our SLA. But what kind of impact is this decision having? How many sales
aren’t being sent to customers? Currently, we have no insight. Thankfully, Storm ships
with some built-in metrics capabilities we can leverage.

6.5 Storm’s metrics-collecting API
Prior to the Storm 0.9.x series of releases, metrics were the Wild West. You had topology-
level metrics available in the UI, but if you wanted business-level or JVM-level metrics,
you needed to roll your own. The Metrics API that now ships with Storm is an excel-
lent way to get access to metrics that can be used to solve our current quandary:
understanding how much fidelity we’re losing in our LookupSalesDetails bolt.

6.5.1 Using Storm’s built-in CountMetric

To follow along in the source code, run the following command:

git checkout 0.0.5

The next listing shows the changes we’ve made to our LookupSalesDetail bolt.

public class LookupSalesDetails extends BaseRichBolt {
 ...

 private final int METRICS_WINDOW = 60;
 private transient CountMetric salesLookedUp;
 private transient CountMetric salesLookupFailures;

 @Override
 public void prepare(Map config,
 TopologyContext context,
 OutputCollector outputCollector) {
 ...

Listing 6.7 LookupSalesDetails.java with metrics

Variable for keeping
a running count of
sales lookups

Variable for keeping
a running count of
sales lookup
failures
Licensed to Mark Watson <nordickan@gmail.com>

155Storm’s metrics-collecting API
 salesLookedUp = new CountMetric();
 context.registerMetric("sales-looked-up",
 salesLookedUp,
 METRICS_WINDOW);
 salesLookupFailures = new CountMetric();
 context.registerMetric("sales-lookup-failures",
 salesLookupFailures,
 METRICS_WINDOW);
 }

 @Override
 public void execute(Tuple tuple) {
 String customerId = tuple.getStringByField("customer");
 List<String> saleIds = (List<String>) tuple.getValueByField("sales");

 List<Sale> sales = new ArrayList<Sale>();
 for (String saleId: saleIds) {
 try {
 Sale sale = client.lookupSale(saleId);
 sales.add(sale);
 } catch (Timeout e) {
 outputCollector.reportError(e);
 salesLookupFailures.incr();
 }
 }

 if (sales.isEmpty()) {
 outputCollector.fail(tuple);
 } else {
 salesLookedUp.incrBy(sales.size());
 outputCollector.emit(new Values(customerId, sales));
 outputCollector.ack(tuple);
 }
 }

We’ve created and registered two CountMetric instances in our prepare() method:
one to keep a running count of the number of sales for which we’ve successfully
looked up details and the other for tracking the number of failures.

6.5.2 Setting up a metrics consumer

Now we have some basic raw data that we’re going to record, but to get at it, we must
set up a consumer. A metrics consumer implements the interface IMetricsConsumer,
which acts as a bridge between Storm and an external system such as Statsd or Rie-
mann. In this example, we’ll use the provided LoggingMetricsConsumer. When a
topology is run in local mode, LoggingMetricsConsumer ends up being directed to
standard output (stdout) along with other log output. We can set this up by adding
the following to our LocalTopologyRunner:

Config config = new Config();
config.setDebug(true);
config.registerMetricsConsumer(LoggingMetricsConsumer.class, 1);

Register the sales lookup
metric, reporting the count
for the past 60 seconds.

Register the sales lookup
failures metric, reporting
the count for the past
60 seconds.

Increment the number
of sales lookup failures
by one if a Timeout
exception occurs.

Increase the number of
sales lookups by the
size of the sales list.
Licensed to Mark Watson <nordickan@gmail.com>

156 CHAPTER 6 Tuning in Storm

C
the
per

v
the
Let’s say we succeeded in looking up 350 sales over the time window:

244565 [Thread-16-__metricsbacktype.storm.metric.LoggingMetricsConsumer]
INFO backtype.storm.metric.LoggingMetricsConsumer - 1393581398
localhost:1 22:lookup-sales-details sales-looked-up 350

On a remote cluster, the LoggingMetricsConsumer writes info-level messages to a file
called metrics.log in the Storm logs directory. We’ve also enabled metrics logging for
when we deploy to a cluster with the following addition:

public class RemoteTopologyRunner {
 ...
 private static Config createConfig(Boolean debug) {
 ...

 Config config = new Config();
 ...
 config.registerMetricsConsumer(LoggingMetricsConsumer.class, 1);
 ...
 }
}

Storm’s built-in metrics are useful. But what if you need more than what’s built-in?
Fortunately, Storm provides the ability to implement custom metrics so you can create
metrics tailored to a specific need.

6.5.3 Creating a custom SuccessRateMetric

We have the raw metrics, but we want to aggregate them and then do the math our-
selves to determine the success rate. We care less about the raw successes and failures
and more about just the success rate. Storm has no built-in metric that we can use to
get that, but it’s easy to create a class that will record that for us. The following listing
introduces the SuccessRateMetric.

public class SuccessRateMetric implements IMetric {
 double success;
 double fail;

 public void incrSuccess(long incrementBy) {
 success += Double.valueOf(incrementBy);
 }

 public void incrFail(long incrementBy) {
 fail += Double.valueOf(incrementBy);
 }

 @Override
 public Object getValueAndReset() {
 double rate = (success / (success + fail)) * 100.0;

Listing 6.8 SuccessRateMetric.java

Custom method for
incrementing the
number of successes

Custom method for
incrementing the
number of failures

Only method that must
be implemented by
anything implementing
the IMetric interface

alculate
 success
centage
for the
return

alue for
 metric.
Licensed to Mark Watson <nordickan@gmail.com>

157Storm’s metrics-collecting API
 success = 0;
 fail = 0;

 return rate;
 }
}

Changing the code to use this new custom metric is simple (see the next listing).

public class LookupSalesDetails extends BaseRichBolt {
 ...

 private final int METRICS_WINDOW = 15;
 private transient SuccessRateMetric successRates;

 @Override
 public void prepare(Map config,
 TopologyContext context,
 OutputCollector outputCollector) {
 ...

 successRates = new SuccessRateMetric();
 context.registerMetric("sales-lookup-success-rate",
 successRates,
 METRICS_WINDOW);
 }

 @Override
 public void execute(Tuple tuple) {
 ...

 List<Sale> sales = new ArrayList<Sale>();
 for (String saleId: saleIds) {
 try {
 Sale sale = client.lookupSale(saleId);
 sales.add(sale);
 } catch (Timeout e) {
 successRates.incrFail(1);
 outputCollector.reportError(e);
 }
 }

 if (sales.isEmpty()) {
 outputCollector.fail(tuple);
 } else {
 successRates.incrSuccess(sales.size());
 outputCollector.emit(new Values(customerId, sales));
 outputCollector.ack(tuple);
 }
 }

 ...
}

Listing 6.9 LookupSalesDetails.java using our new custom metric

Reset the
metric values.

The new
success rate
metric

Register the success
rate metric, reporting
the success rate for the
past 15 seconds.

Increment the
failure count by 1 if
a timeout occurs.

Increase the success
count by the number
of sales retrieved.
Licensed to Mark Watson <nordickan@gmail.com>

158 CHAPTER 6 Tuning in Storm

e

Re

r
cu

r
b

in

r

c
and

o

Everything is pretty much as it was. We register a metric (just of a different type) and
report our successes and failures to it. The logged output is much closer to what we
want to know:

124117 [Thread-16-__metricsbacktype.storm.metric.LoggingMetricsConsumer]
INFO backtype.storm.metric.LoggingMetricsConsumer - 1393581964
localhost:1 32:lookup-sales-details sales-lookup-success-rate
98.13084112149532

You can try it out yourself:

git checkout 0.0.5
mvn clean compile -P local-cluster

Beware! It’s a lot of output.

6.5.4 Creating a custom MultiSuccessRateMetric

At this point, we’ve moved to production and the business folks are happy for a couple
days—until they want to know the distribution of fidelity across customers. In other
words, we need to record success and failure on a per-customer basis.

 Luckily, there’s a Storm metric called MultiCountMetric that does exactly that—
except it uses CountMetrics, not SuccessRateMetrics. But that’s easy enough to deal
with—we’ll just create a new metric of our own from it:

git checkout 0.0.6

The following listing shows the new metric: MultiSuccessRateMetric.

public class MultiSuccessRateMetric implements IMetric {
 Map<String, SuccessRateMetric> rates = new HashMap();

 public SuccessRateMetric scope(String key) {
 SuccessRateMetric rate = rates.get(key);

 if (rate == null) {
 rate = new SuccessRateMetric();
 rates.put(key, rate);
 }

 return rate;
 }

 @Override
 public Object getValueAndReset() {
 Map ret = new HashMap();

 for(Map.Entry<String, SuccessRateMetric> e : rates.entrySet()) {
 ret.put(e.getKey(), e.getValue().getValueAndReset());
 }

Listing 6.10 MultiSuccessRateMetric.java

Store individual
SuccessRateMetric
instances in a hash
with customer ID as
the key so we can
keep track of success
rates per customer.

Return the SuccessRateMetric for th
given “key” (customer ID), creating
a new SuccessRateMetric if one
doesn’t exist for that customer.

turn the
map of
success

ates per
stomer,

while
esetting
oth the
dividual
success
ates for

each
ustomer
clearing
ur map.
Licensed to Mark Watson <nordickan@gmail.com>

159Storm’s metrics-collecting API

by

 rates.clear();

 return ret;
 }
}

The class is straightforward; we store individual SuccessRateMetrics in a hash.
We’ll use customer IDs as a key and be able to keep track of successes and failures
per customer. As you can see in the next listing, the changes we need to do this
are minor.

public class LookupSalesDetails extends BaseRichBolt {
 ...

 private transient MultiSuccessRateMetric successRates;

 @Override
 public void prepare(Map config,
 TopologyContext context,
 OutputCollector outputCollector) {
 ...

 successRates = new MultiSuccessRateMetric();
 context.registerMetric("sales-lookup-success-rate",
 successRates,
 METRICS_WINDOW);
 }

 @Override
 public void execute(Tuple tuple) {
 String customerId = tuple.getStringByField("customer");
 List<String> saleIds = (List<String>) tuple.getValueByField("sales");

 List<Sale> sales = new ArrayList<Sale>();
 for (String saleId: saleIds) {
 try {
 Sale sale = client.lookupSale(saleId);
 sales.add(sale);
 } catch (Timeout e) {
 successRates.scope(customerId).incrFail(1);
 outputCollector.reportError(e);
 }
 }

 if (sales.isEmpty()) {
 outputCollector.fail(tuple);
 } else {
 successRates.scope(customerId).incrSuccess(sales.size());
 outputCollector.emit(new Values(customerId, sales));
 outputCollector.ack(tuple);
 }
 }

Listing 6.11 LookupSalesDetails.java with the new MultiSuccessRateMetric

New
MultiSuccessRateMetric

Register
MultiSuccessRateMetric,
reporting the success
rate for the past 15
seconds.

Increment the number
of failures by one for the
given customer ID.

Increase the
success count
the number of
sales retrieved
for the given
customer ID.
Licensed to Mark Watson <nordickan@gmail.com>

160 CHAPTER 6 Tuning in Storm
 Now we’re recording metrics in a fashion useful to the business folks:

79482 [Thread-16-__metricsbacktype.storm.metric.LoggingMetricsConsumer]
INFO backtype.storm.metric.LoggingMetricsConsumer - 1393582952
localhost:4 24:lookup-sales-details sales-lookup-success-rate
{customer-7083607=100.0, customer-7461335=80.0, customer-2744429=100.0,
customer-3681336=66.66666666666666, customer-8012734=100.0,
customer-7060775=100.0, customer-2247874=100.0, customer-3659041=100.0,
customer-1092131=100.0, customer-6121500=100.0, customer-1886068=100.0,
customer-3629821=100.0, customer-8620951=100.0, customer-8381332=100.0,
customer-8189083=80.0, customer-3720160=100.0, customer-845974=100.0,
customer-4922670=100.0, customer-8395305=100.0,
customer-2611914=66.66666666666666, customer-7983628=100.0,
customer-2312606=100.0, customer-8967727=100.0,
customer-552426=100.0, customer-9784547=100.0, customer-2002923=100.0,
customer-6724584=100.0, customer-7444284=80.0, customer-5385092=100.0,
customer-1654684=100.0, customer-5855112=50.0, customer-1299479=100.0}

The log message provides a sample of what we may see with the new metric: a list of
customer IDs, each with an associated success rate. Here’s a lucky customer in that list
with a 100% success rate:

customer-2247874=100.0

With this data, we have a much deeper insight into how many customers are receiving
their full set of potential flash sales.

6.6 Summary
In this chapter, you learned that

■ All basic timing information for a topology can be found in the Storm UI.
■ Establishing a baseline set of performance numbers for your topology is the

essential first step in the tuning process.
■ Bottlenecks are indicated by a high capacity for a spout/bolt and can be

addressed by increasing parallelism.
■ Increasing parallelism is best done in small increments so that you can gain a

better understanding of the effects of each increase.
■ Latency that is both related to the data (intrinsic) and not related to the data

(extrinsic) can reduce your topology’s throughput and may need to be addressed.
■ Metrics (both built-in and custom) are essential if you want to have a true

understanding of how your topology is operating.
Licensed to Mark Watson <nordickan@gmail.com>

Resource contention
In chapter 6, we discussed tuning at the individual topology level. Tuning is an
important skill to master and will serve you well when you’re deploying topologies
to production. But it’s only a small part of a bigger picture. Your topology is going
to have to coexist on a Storm cluster with a variety of other topologies. Some of
those topologies will burn CPU doing heavy mathematical calculations, some will
consume large amounts of network bandwidth, and so on and so forth with a vari-
ety of resources.

This chapter covers
■ Contention for worker processes in

a Storm cluster
■ Memory contention within a worker

process (JVM)
■ Memory contention on a worker node
■ Worker node CPU contention
■ Worker node network/socket input/output (I/O)

contention
■ Worker node disk I/O contention
161

Licensed to Mark Watson <nordickan@gmail.com>

162 CHAPTER 7 Resource contention
 In this chapter, we’ll present the various types of resources that can come under
contention in a Storm cluster and explain how to address each of them. We hope
that no single Storm cluster would have so many contention issues, so we’ve eschewed
our usual case study format for a more appropriate cookbook approach. Take a quick
skim through this chapter to gain a general understanding of the types of conten-
tion and then refer back to whatever section is relevant to you when you start encoun-
tering problems.

 The first three recipes in this chapter focus on common solutions for addressing
several types of contention presented later. We recommend reading through these
three recipes first because they will give you a better understanding of what we’re talk-
ing about when we discuss a solution to a particular type of contention.

 Throughout the chapter we use certain terminology when addressing the resources
that can come under contention. It’s important to understand what part of a Storm
deployment we’re referencing when you see certain terms. Figure 7.1 highlights these
resources, with the key terms in bold. Most of this should already be familiar to you,

Storm cluster

Master node

Nimbus

A cluster can consist of multiple . Eachnodes node

represents a physical or virtual machine running whatever

flavor of operating system you have installed for each.

The cluster has a single

master node that runs a

daemon called Nimbus.

Each worker

process is a JVM

that executes the logic

in the spouts and bolts

for a topology.

The cluster has

multiple worker nodes

that each run a daemon

called a .Supervisor

Worker node

Supervisor

Worker

process

Worker node

Supervisor

Worker

process

Worker

process

Worker node

Supervisor

Worker

process

Worker

process

Worker node

Supervisor

Worker

process

Worker

process

Worker

process

Thread

Spout

or

bolt

Thread

Spout

or

bolt

Spout

or

bolt

JVM

Each JVM can be

running one or more

executors (threads)

of execution.

Each (thread)executor

is executing one or more

tasks (instances of

a spout/bolt).

Figure 7.1 The various types of nodes in a Storm cluster and worker nodes broken down as worker
processes and their parts
Licensed to Mark Watson <nordickan@gmail.com>

163Changing the number of worker processes running on a worker node
but if not, make sure you take the time to study the terms and relationships between
the various components before moving forward.

 With the terminology defined, let’s get started with the first of our “common solu-
tion” recipes in our cookbook approach, changing the number of worker processes
(JVMs) running on a worker node. Addressing these “common solution” recipes now
will provide a nice reference for later and allow us to focus on why each is a good solu-
tion for a particular scenario.

7.1 Changing the number of worker processes running
on a worker node
In several of the recipes throughout this chapter, one of the solutions for addressing
the contention in question is changing the number of worker processes running on a
worker node (figure 7.2).

 In some cases, this means increasing worker processes and in others it means
decreasing worker processes. It’s such a common solution that we’ve decided to break
it into its own recipe so you can refer back to this section whenever we come across it
as a solution.

7.1.1 Problem

You’re experiencing a contention where you need to either increase or decrease the
number of worker processes running on a worker node.

Choosing an operating system when discussing OS-level contentions
Everyone’s experience administering, maintaining, and diagnosing issues in a Storm
cluster will vary. We’ve tried to cover the major issues and some of the tools you’ll
need. But your situation may vary from any we’ve encountered. The configuration of
your cluster may vary in the number of machines, number of JVMs per machine, and
so forth. No one can give you the answers for how to set up your cluster. The best we
can do is present you with guidelines for adjusting to problems that arise. Because
we’re addressing so many issues that exist at the operating system level and because
there are so many operating systems that you could be running Storm on, we’ve
decided to focus on one specific family of operating systems: Linux-based.

The OS-level tools discussed in this chapter should be available in every variation of
Linux. Further, these tools should either exist or have an equivalent in any Unix-type
OS such as Solaris or FreeBSD. For those of you considering using Windows, you’re
going to have to do more work to translate the ideas over to your OS, but the general
principles apply. It’s important to note that our discussion of tool usage is far from
exhaustive—it’s intended to provide a basis for you to build on. To administer and
diagnose problems in a production cluster, you’ll be required to learn more about the
tools and the OS you’re running on. Man pages, search engines, the Storm mailing
list, IRC channels, and your friendly neighborhood operations person are all excellent
resources that you should lean on to learn more.
Licensed to Mark Watson <nordickan@gmail.com>

164 CHAPTER 7 Resource contention
7.1.2 Solution

The number of worker processes running on a worker node is defined by the super-
visor.slots.ports property in each worker node’s storm.yaml configuration file.
This property defines the ports that each worker process will use to listen for mes-
sages. The next listing shows the default settings for this property.

supervisor.slots.ports
 - 6701
 - 6702
 - 6703
 - 6704

To increase the number of worker processes that can be run on a worker node, add a
port to this list for each worker process to be added. The opposite holds true for
decreasing the number of worker processes: remove a port for each worker process to
be removed.

 After updating this property, you’ll need to restart the Supervisor process on the
worker node to effect the change. If you installed Storm to /opt/storm, as we did in
our installation run-through in chapter 5, this would require killing the Supervisor
process and starting again with the following command:

/opt/storm/bin storm supervisor

Upon restarting, Nimbus will be aware of the updated configuration and send mes-
sages to only the ports defined in this list.

Listing 7.1 Default settings for supervisor.slots.ports

Worker node Worker node

Worker node Worker node

Each worker node is a

physical or virtual machine

that runs worker processes,

which execute the logic in

the spouts and bolts. In this

example, each worker

node is running four

worker processes.

You can configure the number of worker processes

being run on a worker node. This is a common solution

for several types of contention for various reasons that

will be explained as we cover the contentions.

Figure 7.2 Many worker processes running on a worker node
Licensed to Mark Watson <nordickan@gmail.com>

165Changing the amount of memory allocated to worker processes (JVMs)
7.1.3 Discussion

Storm defaults to four worker processes per worker node, with each worker process
listening on ports 6701, 6702, 6703, and 6704, respectively. This is usually good
enough when you’re first starting to build a cluster, so don’t worry about trying to fig-
ure out the best configuration right away. But if you do need to add ports, be sure to
check whether the ports you want to add are already in use by using a tool such as
netstat on Linux.

 Another thing to consider is the number of worker nodes you have in your cluster.
If widespread changes are needed, updating the configuration and restarting the Super-
visor process across hundreds or even tens of nodes is a tedious and time-consuming
task. So we recommend a tool such as Puppet (http://puppetlabs.com) for automat-
ing the deployment and configuration of each node.

7.2 Changing the amount of memory allocated to worker
processes (JVMs)
In a few of the recipes throughout this chapter, one of the solutions for addressing the
contention in question is changing the amount of memory allocated to worker pro-
cesses (JVMs) on a worker node.

 In some cases this means increasing the amount of memory allocated and in oth-
ers it means decreasing memory. Whatever the reason for the solution, the steps for
changing this setting are the same, which is why we’ve dedicated a separate recipe
to it.

7.2.1 Problem

You’re experiencing a contention where you need to either increase or decrease the
amount of memory being used by the worker processes on a worker node.

7.2.2 Solution

The amount of memory allocated to all worker processes (JVMs) on a worker node
can be changed in the worker.childopts property in each worker node’s storm.yaml
configuration file. This property accepts any valid JVM startup option, providing
the ability to set the startup options for the initial memory allocation pool (-Xms)
and maximum memory allocation pool (-Xmx) for the JVMs on the worker node.
The following listing shows what this would look like, focusing only on the memory-
related arguments.

worker.childopts: "...
-Xms512m
-Xmx1024m
..."

Listing 7.2 Setting worker.childopts in storm.yaml
Licensed to Mark Watson <nordickan@gmail.com>

http://puppetlabs.com

166 CHAPTER 7 Resource contention
It’s important to be aware that changing this property will update all the worker pro-
cesses on a particular worker node. After updating this property, you’ll need to restart
the Supervisor process on the worker node to effect the change. If you installed Storm
to /opt/storm, as we did in our installation run-through in chapter 5, this would require
killing the Supervisor process and starting again with the following command:

/opt/storm/bin storm supervisor

Upon restarting, all of the worker processes (JVMs) on the worker node should be
running with the updated memory settings.

7.2.3 Discussion

One thing to keep in mind when increasing JVM sizes is to make sure the worker node
(machine/VM) itself has the resources for such size increases. If the worker node
doesn’t have enough memory to support whatever you set the –Xmx value to, you’ll
need to change the sizing of the actual machines/VMs before changing the amount of
memory allocated to the JVM.

 Another tip we highly recommend following is setting –Xms and –Xmx to the same
value. If these values are different, the JVM will manage the heap, sometimes increas-
ing and sometimes decreasing the heap size, depending on heap usage. We find the
overhead of this heap management to be unnecessary and therefore recommend
setting both to the same value to eliminate any heap management overhead. Along
with being more efficient, this strategy has the added benefit of making it easier to
reason about JVM memory usage, because the heap size is a fixed constant for the
life of the JVM.

7.3 Figuring out which worker nodes/processes a topology
is executing on
Many of the recipes in this chapter involve contentions at both the worker node
and worker process level. Often these contentions will manifest themselves in the
form of a topology throwing errors in the Storm UI, experiencing reduced through-
put, or having no throughput at all. In all these scenarios, you’ll most likely need to
identify which worker nodes and worker processes that particular topology is exe-
cuting on.

7.3.1 Problem

You have a problematic topology and need to identify the worker nodes and worker
processes that topology is executing on.

7.3.2 Solution

The way to do this is by looking at the Storm UI. You want to start out by looking at the
UI for the specific topology in question. We suggest checking out the Bolts section to
see if anything looks amiss. As figure 7.3 shows, one of the bolts is having issues.
Licensed to Mark Watson <nordickan@gmail.com>

167Figuring out which worker nodes/processes a topology is executing on
Having identified the problematic bolt, you now want to see more details about what’s
happening with that bolt. To do so, click on that bolt’s name in the UI to get a more
detailed view for that bolt. From here, turn your attention to the Executors and Errors
section for the individual bolt (figure 7.4).

 The Executors section for an individual bolt is of particular interest; this tells you
which worker nodes and worker processes the bolt is executing on. From here, given
the type of contention being experienced, you can take the necessary steps to identify
and solve the problem at hand.

7.3.3 Discussion

The Storm UI is your friend. Become familiar with its various screens. It’s normally the
first place we look when diagnosing any type of contention. Being able to quickly iden-
tify a problematic topology, bolt, worker node, and worker process has been extremely
valuable in our experience.

 Though a great tool, the Storm UI may not always show you what you need. This is
where additional monitoring can help. This can come in the form of monitoring the

When diagnosing issues with a particular topology, we’ll normally start with

the UI for a specific topology and immediately look to the section.Bolts

In this particular scenario, it looks like our email-extractor bolt

is experiencing out-of-memory errors.

Figure 7.3 Diagnosing issues for a particular topology in the Storm UI
Licensed to Mark Watson <nordickan@gmail.com>

168 CHAPTER 7 Resource contention
health of individual worker nodes or custom metrics in your bolt’s code to give you a
deeper insight into how well the bolt is performing. The bottom line here is you
shouldn’t rely solely on the Storm UI. Put other measures in place to make sure
you have coverage everywhere. After all, it’s not a matter of if something will break;
it’s a matter of when.

7.4 Contention for worker processes in a Storm cluster
When you install a Storm cluster, you install it with a fixed number of available worker
processes across all your worker nodes. Each time you deploy a new topology to the
cluster, you specify how many worker processes that topology should consume. It’s
easy to get yourself into a situation where you deploy a topology that requires a certain
number of worker processes but you can’t obtain those worker processes because
they’ve all been assigned to existing topologies. This renders the topology in question
useless, because it can’t process data without worker processes. Figure 7.5 illustrates
this point.

If the issue looks to be

contention at the worker node

level, the Host column will tell

us which worker node(s) the

particular bolt is running on.

If the issue is at the worker process

level, the Port identifies the port the worker

process is listening to for work. There will be

a log file for the specific worker process on the

worker node; this log file will correspond to the

port number (worker-6702.log in this case).

In this particular scenario, it looks like we are experiencing memory issues

at the worker process (JVM) level, so we would log into the host machine

and look at the log file for the particular worker process. Given our

installation location of /opt/storm, this log file would be located

at /opt/storm/logs/worker-6702.log.

Figure 7.4 Looking at the Executors and Errors portion of the Storm UI for a particular bolt to determine
the type of issue the bolt is having while also determining the worker nodes and worker processes that
bolt is executing on
Licensed to Mark Watson <nordickan@gmail.com>

169Contention for worker processes in a Storm cluster
Figure 7.5 illustrates a problem we’ve experienced firsthand several times. Fortu-
nately, this problem is easy to detect; it can be found by looking at the cluster sum-
mary page of the Storm UI (figure 7.6).

7.4.1 Problem

You notice a topology isn’t processing any data or has a sudden drop in throughput
and zero free slots are available, according to the Storm UI.

Worker node Worker node

Worker node

Worker processes in use by topology A

Worker processes in use by topology B

Worker processes in use by topology C

Worker node

Attempting to deploy a

new topology to this cluster will

result in the new topology having

zero worker processes. This is

because all of the worker

processes are already in use

by existing topologies.

Figure 7.5 Example Storm cluster where all of the worker processes have been
assigned to topologies.

In the Storm Ul, the “slots”

correspond to worker processes.

A cluster with two available slots.

A cluster with no available slots. It’s likely the

topologies in this cluster are suffering

from worker process contention.

Figure 7.6 Storm UI: Zero free slots could mean your topologies are suffering from slot
contention.
Licensed to Mark Watson <nordickan@gmail.com>

170 CHAPTER 7 Resource contention
7.4.2 Solution

The bottom line is you have a fixed number of worker processes that can be allocated to
the topologies requesting them. You can address this problem with these strategies:

■ Decreasing the number of worker processes in use by existing topologies
■ Increasing the total number of worker processes in the cluster

DECREASING THE NUMBER OF WORKER PROCESSES IN USE BY EXISTING TOPOLOGIES

This is the quickest and easiest way to free up slots for other topologies in your cluster.
But this may or may not be possible depending on the SLAs for your existing topolo-
gies. If you can reduce the number of worker processes being used by a topology with-
out violating the SLA, we recommend this approach.

 The number of worker processes a topology requests is specified in the code for
building and submitting your topology to the Storm cluster. The next listing shows
this code.

import backtype.storm.Config;
import backtype.storm.StormSubmitter;
import backtype.storm.topology.TopologyBuilder;

...

TopologyBuilder builder = new TopologyBuilder();
// build the various pieces of your topology here

Config config = new Config();
config.setNumWorkers(2);

...

StormSubmitter.submitTopology("topology-name",
 config,
 builder.createTopology());

If your SLAs don’t allow you to reduce the number of slots being used by any of the
topologies in your cluster, you’ll have to add new worker processes to the cluster.

INCREASING THE TOTAL NUMBER OF WORKER PROCESSES IN THE CLUSTER

There are two ways to increase the total number of worker processes in the cluster.
One is by adding more worker processes to your worker nodes via the steps listed in
section 7.1. But this won’t work if your worker nodes don’t have the resources to sup-
port additional JVMs. If this is the case, you’ll need to add more worker nodes to your
cluster, thus adding to the pool of worker processes.

 We recommend adding new worker nodes if you can. This approach has the least
impact on existing topologies, because adding worker processes to existing nodes has
the potential to cause other types of contention that must then be addressed.

Listing 7.3 Configuring the number of worker processes for a topology

Set the number of
worker processes
for the topology.
Licensed to Mark Watson <nordickan@gmail.com>

171Memory contention within a worker process (JVM)
7.4.3 Discussion

Worker process contention can have a variety of causes, some of which are self-
inflicted and some of which aren’t. Scenarios include the following:

■ You deploy a topology that’s configured to consume more worker processes
than there are slots available in the cluster.

■ You deploy a topology to your cluster that has no available slots.
■ A worker node goes down, thus decreasing the number of available slots, possi-

bly causing contention among existing topologies.

It’s important to always be aware of the resources available in your cluster when
deploying new topologies. If you ignore what’s available within your cluster, you can
easily affect every topology in your cluster by deploying something that consumes too
many resources.

7.5 Memory contention within a worker process (JVM)
Just as you install a Storm cluster with a fixed number of worker processes, you also set
up each worker process (JVM) with a fixed amount of memory it can grow to use. The
amount of memory limits the number of threads (executors) that can be launched on
that JVM— each thread takes a certain amount of memory (the default is 1 MB on a
64-bit Linux JVM).

 JVM contention can be a problem on a per-topology basis. The combination of
memory used by your bolts, spouts, threads, and so forth might exceed that allocated
to the JVMs they’re running on (figure 7.7).

 JVM contention usually manifests itself as out-of-memory (OOM) errors and/or
excessively long garbage collection (GC) pauses. OOM errors will appear in the Storm
logs and Storm UI, usually as a stack trace starting with java.lang.OutOfMemory-
Error: Java heap space.

 Gaining visibility into GC issues requires a little more setup, but it’s something
that’s easily supported by both the JVM and Storm configuration. The JVM offers
startup options for tracking and logging GC usage, and Storm provides a way to specify
JVM startup options for your worker processes. The worker.childopts property in
storm.yaml is where you’d specify these JVM options. The following listing shows a
sample storm.yaml configuration in a worker node.

Thread

Spout/

bolt

Thread

Spout/

bolt

Spout/

bolt

JVM

Multiple threads and

instances of spouts/bolts

will all be using memory

within the same JVM. Figure 7.7 Worker processes,
executors and tasks mapping to
the JVM, threads and instances
of spouts/bolts, and the
threads/instances contending
for memory in the same JVM
Licensed to Mark Watson <nordickan@gmail.com>

172 CHAPTER 7 Resource contention

Print
timest
at gar
colle

Set
size o
log f

which
it w
ro
worker.childopts: "-XX:+PrintGCTimeStamps
-XX:+PrintGCDetails
-Xloggc:/opt/storm/logs/worker-%ID%-jvm-gc.log
-XX:+UseGCLogFileRotation
-XX:NumberOfGCLogFiles=5
-XX:GCLogFileSize=1M
-XX:+PrintGCDateStamps
-XX:+PrintGCApplicationStoppedTime
-XX:+PrintGCApplicationConcurrentTime"

One interesting item to note is the value for the –Xloggc setting. Remember you can
have multiple worker processes per worker node. The worker.childopts property
applies to all worker processes on a node, so specifying a regular log filename would
produce one log file for all the worker processes combined. A separate log file per
worker process would make tracking GC usage per JVM easier. Storm provides a mech-
anism for logging a specific worker process; the ID variable is unique for each worker
process on a worker node. Therefore, you can add a "%ID%" string to the GC log file-
name and you’ll get a separate GC log file for each worker process.

 Reading GC logs can be a little daunting at first, so we’re going to run through a
quick tutorial outlining what the options in listing 7.4 will produce in the associated
logs. This listing shows example output for a GC cycle that included both a minor
(young generation) and major collection (tenured generation). It’s entirely possible
that not every single GC log statement will include major collection statistics, because
major collections don’t occur during every GC cycle. But for the sake of completeness,
we wanted to include both.

Listing 7.4 Setting up GC logging for worker processes

Java generational garbage collection
Java uses what’s called generational garbage collection. This means memory is
divided into different “generations,” and as objects survive enough GC events, they
get promoted to older generations. Objects will start out in what’s called the young
generation and eventually get promoted to the tenured generation if they survive
enough GC events while in young generation. A collection of young generation object
references is called a minor collection; a collection of tenured generation objects is
called a major collection.

s the
amps
bage
ction Prints additional

GC details

Specifies the name of the GC log file. In this case, we installed Storm to /opt/
storm, so we want our log files to go to /opt/storm/logs. The %ID% means a
separate log file will be produced for each worker process. Without this, a
single log file will contain the GC usage for all worker processes combined.

Uses log file
rotation for
the GC log files

Sets the number of files to be
used in the log file rotation

s the
f the
ile at
point
ill be
tated Prints the date and time

at garbage collection

Prints the amount of time
the application is stopped
(time spent in safe points)
while GC is occurring

Prints the amount of time the
application is running (time
not spent in safe points) in

between GC executions
Licensed to Mark Watson <nordickan@gmail.com>

173Memory contention within a worker process (JVM)
2014-07-27T16:29:29.027+0500: 1.342: Application time: 0.6247300 seconds

2014-07-27T16:29:29.027+0500: 1.342: [GC 1.342: [DefNew: 8128K->8128K(8128K),
0.0000505 secs] 1.342: [Tenured: 18154K->2311K(24576K), 0.1290354 secs]
26282K->2311K(32704K), 0.1293306 secs]

2014-07-27T16:29:29.037+0500: 1.353: Total time for which application threads
were stopped: 0.0107480 seconds

Let’s break down each of the parts in this output. Figure 7.8 shows the first line, contain-
ing the length of time the application has been running since the last GC.

The next line is the result of the –XX:+PrintGCDetails option and is broken down
into several figures in order to better explain what’s being represented. We’ve excluded
the date/timestamps for the sake of keeping the figures simpler. Figure 7.9 shows the
GC details for the minor collection of the young generation.

The GC details for the major collection of the tenured generation are shown in Fig-
ure 7.10. Figure 7.11 shows the final part of the –XX:+PrintGCDetails output, which
shows the overall heap values along with how long the entire GC cycle took.

Listing 7.5 Sample GC log output

2014-07-27T16:29:29.027+0500: 1.342: Application time: 0.6247300 seconds

Date/time set by

-XX:+PrintGCDateStamps

Length of time the

application has been running

since the last GC, set by

-XX:+PrintGCApplicationConcurrentTime

Length of time the

application has been

running (in seconds), set by

-XX:+PrintGCTimeStamps

Figure 7.8 GC log output showing the output for –XX:+PrintGCDateStamps,
–XX:+PrintGCTimeStamps, and –XX:+PrintGCApplicationConcurrentTime

[GC 1.342: [DefNew: 8128K->8128K(8128K), 0.0000505 secs]

Time the minor

collection started

Young

generation

8128K was

allocated

before GC

8128K was

allocated

after GC Young

generation has a

total of 8128K

Time it took to

complete the

minor collection

No young generation

memory was freed up during

the minor collection

Figure 7.9 GC log output showing details of a minor garbage collection of young generation
memory
Licensed to Mark Watson <nordickan@gmail.com>

174 CHAPTER 7 Resource contention
With the first and second lines of the GC output covered, the last line of the output is
simple; the –XX:+PrintGCApplicationStoppedTime option results in a line like the
following: 2014-07-27T16:29:29.037+0500: 1.353: Total time for which applica-
tion threads were stopped: 0.0107480 seconds. This provides a more summary-level
description of how long the application was paused due to GC.

 And that’s it. What looks daunting at first is easily explained when you break it
down into smaller pieces. Being able to read these logs will help you tremendously
when debugging JVM contention issues not only in Storm, but in any application run-
ning on a JVM. With an understanding of how to set up and read GC logs along with
knowing how to find OOM errors, you’ll be able to identify whether your topologies
are experiencing JVM contention.

7.5.1 Problem

Your spouts and/or bolts are attempting to consume more memory than what has
been allocated to the JVM, resulting in OOM errors and/or long GC pauses.

7.5.2 Solution

You can address the problem in a couple of ways:

■ By increasing the number of worker processes being used by the topology in
question

■ By increasing the size of your JVMs

1.342: [Tenured: 18154K->2311K(24576K), 0.1290354 secs]

Time the major

collection started

Tenured

generation

18154K was

allocated

before GC

2311K was

allocated

after GC Tenured

generation

has a total

of 24576K

Time it took to

complete the

major collection

18154K, or 87%, of memory

was freed during the major collection

Figure 7.10 GC log output showing details of a major garbage collection of tenured generation
memory

26282K)->2311K(32704K), 0.1293306 secs]

26282K in total

heap space

was allocated

before GC

2311K in total

heap space

was allocated

after GC

Total heap

space is

32704K

Time it took

to complete the

entire GC cycle

Figure 7.11 GC log output showing entire heap values and complete GC
time
Licensed to Mark Watson <nordickan@gmail.com>

175Memory contention on a worker node
INCREASING THE NUMBER OF WORKER PROCESSES BEING USED BY THE TOPOLOGY IN QUESTION

See section 7.1 for steps on doing this. By adding a worker process to a topology, you’ll
decrease the average load across all worker processes for that topology. This should
result in a smaller memory footprint for each worker process (JVM), hopefully elimi-
nating the JVM memory contention.

INCREASING JVM (WORKER PROCESS) SIZE

See section 7.2 for steps on how to do this. Because increasing the size of your JVMs
could require you to change the size of the machines/VMs they’re running on, we rec-
ommend the “increase worker processes” solution if you can.

7.5.3 Discussion

Swapping and balancing memory across JVMs has been one of our biggest challenges
with Storm. Different topologies will have different memory usage patterns. Over time,
we’ve gone from having four worker processes per worker node, each using 500 MB of
memory, to two worker processes per worker node, each using 1 GB of memory.

 Our topologies had high enough parallelism that the cost of memory per thread
was making tuning at 500 MB problematic. At 1 GB per worker process, we have plenty
of headroom for most topologies. Some get close to that limit, so we start spreading
out the load more across multiple worker nodes.

 Don’t worry if you don’t get it right initially. We’ve been running Storm in produc-
tion for a couple of years now and are still tweaking the amount of memory per
worker process and worker processes per machine as our topologies change, grow,
and expand. Just remember, this is a never-ending process as the shape of your cluster
and topologies changes.

 Beware when increasing the memory allocated to a JVM; as a rule of thumb, when
you cross certain key points you’ll notice a change in how long garbage collection
takes—500 MB, 1 GB, 2 GB, and 4 GB are all around the points when our GC time has
taken a jump. It’s more art than science, so bring your patience with you. There’s
nothing more frustrating than addressing OOM issues by increasing JVM memory size
only to have it noticeably impact GC times.

7.6 Memory contention on a worker node
Much like how an individual JVM has a limited amount of available memory, so does a
worker node as a whole. In addition to the memory needed to run your Storm worker
processes (JVMs), you need memory to run the Supervisor process and any other pro-
cesses on your worker node without swapping (figure 7.12).

 If a worker node is experiencing memory contention, that worker node will be
swapping. Swapping is the little death and needs to be avoided if you care about
latency and throughput. This is a problem when using Storm; each worker node
needs to have enough memory so that the worker processes and OS don’t swap. If you
want to maintain consistent performance, you must avoid swapping with Storm’s JVMs.
Licensed to Mark Watson <nordickan@gmail.com>

176 CHAPTER 7 Resource contention
One way to keep an eye on this in Linux is with the sar (System Activity Reporter)
command. This is a Linux-based system statistics command that collects and displays
all system activities and statistics. We run this command in the format of sar [option]
[interval [count]] (figure 7.13).

 Various options can be passed in to display specific types of statistics. For diagnos-
ing worker node memory contention, we use the –S option for reporting swap space
utilization statistics. Figure 7.14 illustrates the output for swap space utilization.

Worker node

Worker node memory

Supervisor

process

Operating

system

Process

“X”

Worker

process

(JVM)

Worker

process

(JVM)

Worker

process

(JVM)

Worker

process

(JVM)

Here, the worker node has a fixed

amount of memory that is being used by

its four worker processes, the Supervisor

process, the operating system, and any other

processes that may be running on the

worker node at any given time.

If not enough memory is available

for all processes requesting it, then

memory contention at the worker

node level may occur.

Figure 7.12 A worker node has a fixed amount of memory that’s being used by its worker processes
along with any other processes running on that worker node.

sar [option] [interval] [count]

Command-line

option for displaying

different types of

system activity.

Tells the command

to write information

at a specified interval

in seconds. A value

of 3 would write

information every

3 seconds.

Tells the command

how many times to

write information at

the specified interval.

A value of 5 would

write information every

n seconds a total

of 5 times.

Figure 7.13 sar command breakdown
Licensed to Mark Watson <nordickan@gmail.com>

177Memory contention on a worker node
A note on operating system contentions
The only way to avoid contention at the OS level is to sidestep it entirely! What do we
mean by that? Well, let’s explain.

If you run a single worker process per worker node, it’s impossible to run into conten-
tion between workers on that node. This can make maintaining consistent perfor-
mance within a cluster much easier. We know of more than one development team
that has opted for this approach. If possible, we advise you to seriously consider
going this route.

This is a nonstarter if you aren’t running in a virtualized environment. The cost is sim-
ply too high to do this if you’re running on “bare metal” with a single OS instance per
physical machine. Within a virtualized environment, you’ll use more resources by
doing this. Assume for a moment that your OS install requires n GB of disk space and
uses 2 GB of memory to run effectively. If you have eight workers running on your clus-
ter and you assign four workers per node, you’d use n * 2 GB of disk and 4 GB of
memory to run the OS on your cluster nodes. If you were to run a single worker per
node, that would skyrocket to n * 8 GB of disk and 16 GB of memory. That’s a four-
fold increase in a rather small cluster. Imagine the additional usage that would result
if you had a cluster that was 16, 32, 128, or more nodes in size. If you’re running in
an environment such as Amazon Web Services (AWS) where you pay per node, the
costs can add up quickly. Therefore, we suggest this approach only if you’re running
in a private virtualized environment where the cost of hardware is relatively fixed and
you have disk and memory resources to spare.

Reports the swap statistics

tor every 1 second,

a total of 3 times.

07:31:06 AM
07:31:07 AM
07:31:08 AM
07:31:09 AM
Average:

$ sar -S 1 3
Linux 2.6.18-194.el5PAE (dev-db) 03/26/201 _i686_ (8 CPU)

kbswpused
0
0
0
0

%swpused
0.00
0.00
0.00
0.00

kbswpcad
0
0
0
0

%swpcad
0.00
0.00
0.00
0.00

kbswpfree
8385920
8385920
8385920
8385920

Amount of

free swap

space in KB.

If both of these values are near zero,

then your system is not swapping. However,

if they are greater than zero, then your system

is swapping and you may have contention.

Amount of

used swap

space in KB.

Percentage

of used swap

space.

Figure 7.14 Output of sar –S 1 3 for reporting swap space utilization
Licensed to Mark Watson <nordickan@gmail.com>

178 CHAPTER 7 Resource contention
7.6.1 Problem

Your worker node is swapping due to contention for that node’s memory.

7.6.2 Solution

Here’s how you can address this problem:

■ Increase the memory available to each worker node. This would mean giving
more memory to the physical machine or VM, depending on how you config-
ured your cluster.

■ Lower the collective memory used by worker processes.

LOWERING THE COLLECTIVE MEMORY USED BY WORKER PROCESSES

Lowering the collective memory used by worker processes can be done in one of two
ways. The first is by reducing the number of worker processes per worker node. See
section 7.1 for the appropriate steps. Reducing the total number of worker processes
will lower the overall memory footprint of the combined remaining processes.

 The second way is by reducing the size of your JVMs. See section 7.2 for those steps.
Be careful when lowering memory allocated to existing JVMs, though, to avoid intro-
ducing memory contention within the JVM.

7.6.3 Discussion

Our solution is to always go the route of increasing the memory available to each
machine. It’s the simplest solution and its resulting ramifications are the easiest to
understand. If you are tight on memory, lowering memory usage can work, but you
open yourself up to all the problems we discussed concerning GC and OOM on a per-
JVM basis. Long story short, if you have the memory to spare, go with increasing mem-
ory on each machine.

7.7 Worker node CPU contention
Worker node CPU contention occurs when the demand for CPU cycles outstrips the
amount available. This is a problem when using Storm and is one of the primary
sources of contention in a Storm cluster. If your Storm topology’s throughput is lower
than what you expect it to be, you may want to check the worker node(s) running
your topology to see if CPU contention exists.

 One way to keep an eye on this in Linux is with the sar command, passing in the
option –u for displaying real-time CPU usage of all CPUs. Figure 7.15 illustrates the
output for CPU usage along with the columns you’ll want to keep an eye on.

(continued)

If that limited scenario doesn’t describe you, don’t worry; we have plenty of tips in
the following pages to help you out as well. And even if it does describe you, you’re
going to want to familiarize yourself with the following material anyway because a sin-
gle topology can still run up against these problems.
Licensed to Mark Watson <nordickan@gmail.com>

179Worker node CPU contention
7.7.1 Problem

The throughput of your topologies is low, and based on running the sar command,
you see that CPU contention exists.

7.7.2 Solution

To address the problem, you have the following options:

■ Increasing the number of CPUs available to the machine. This is only possible in
a virtualized environment.

■ Upgrading to a more powerful CPU (Amazon Web Services (AWS) type of
environment).

■ Spreading the JVM load across more worker nodes by lowering the number of
worker processes per worker node.

SPREADING JVM LOAD ACROSS MORE WORKER NODES

To spread worker process (JVM) load across more worker nodes, you need to reduce
the number of worker processes running on each worker node (see section 7.1 for
those steps). Reducing the number of worker processes per worker node results in less
processing (CPU requests) being done on each worker node. There are two scenarios
you may find yourself in when attempting this solution. The first is you have unused

Reports the CPU

utilization tor every

1 second, a total

of 3 times.

01:27:32 PM
01:27:33 PM
01:27:34 PM
01:27:35 PM
Average:

$ sar -u 1 3
Linux 2.6.18-194.el5PAE (dev-db) 03/26/2011 _i686_ (8 CPU)

%system
0.00
0.25
0.25
0.17

%steal
0.00
0.00
0.00
0.00

%idle
100.00
99.50
99.50
99.50

%iowait
0.00
0.00
0.00
0.00

%user
0.00
0.25
0.75
0.33

%nice
0.00
0.00
0.00
0.00

CPU
all
all
all
all

If %idle is a low value, then look at these

columns to gain a fuller understanding of what

is consuming large portions of CPU cycles.

This is the first place

you want to look. If this

value is low, then look at

%user, %nice, %system,

and %steal.

Percentage of

CPU utilization

that occurred while

executing at the

application level with

a nice priority.

Percentage of

CPU utilization

that occurred while

executing at the

kernel level.

Percentage of time

CPUs were waiting

while the hypervisor

was servicing another

virtual processor.

Percentage of time

CPUs were idle and

the system did not

have an outstanding

disk I/O request.

Percentage of

CPU utilization

that occurred while

executing at the

application level.

Figure 7.15 Output of sar –u 1 3 for reporting CPU utilization
Licensed to Mark Watson <nordickan@gmail.com>

180 CHAPTER 7 Resource contention
worker processes in your cluster and can therefore reduce the number of worker pro-
cesses on your existing nodes, thus spreading the load (figure 7.16).

 The second scenario is where you don’t have any unused worker processes and
therefore need to add worker nodes in order to reduce the number of worker pro-
cesses per worker node (figure 7.17).

Worker node Worker node

Worker node

Worker processes in use by topology A

Worker processes in use by topology B

Unused worker process

Worker node

Worker node

Worker node

Worker node

Worker node

Here each worker node has four JVMs requesting

CPU cycles. We are noticing CPU contention on two

of our worker nodes. Fortunately we have nodes with

unused worker processes, so we can spread the

load by utilizing these unused worker nodes.

By reducing the number of worker

processes per worker node, we have taken

advantage of those unused worker nodes,

resulting in fewer JVMs requesting CPU

cycles per worker node.

Figure 7.16 Reducing the number of worker processes per worker node in a cluster where there are
unused worker processes

Worker node Worker node

Worker node

Worker processes in use by topology A

Worker processes in use by topology B

Worker node

Worker node

Worker node Worker node

Worker node Worker node

Worker node Worker node

Worker node

Here each worker node has four JVMs requesting CPU

cycles. We are noticing CPU contention across all worker

nodes. We cannot reduce the number of worker processes

per worker node without affecting overall throughput, but we

still need to spread the load across more worker nodes.

By adding more worker nodes to the

cluster, we are able to reduce the number of

worker processes per worker node, resulting in

fewer JVMs requesting CPU cycles on each node.

Figure 7.17 Reducing the number of worker processes per worker node in a cluster where there are
no unused worker processes, resulting in more worker nodes being added
Licensed to Mark Watson <nordickan@gmail.com>

181Worker node I/O contention
Reducing the number of worker processes per worker node is a good way to reduce
the number of CPU cycles being requested on each node. You just need to be aware of
what resources are available and in use and act appropriately in your given scenario.

7.7.3 Discussion

If you’re like us and run your own private cloud, the first option is a great one. Your
Storm nodes are running across different host machines with x number of CPUs avail-
able (in our case, 16). When we first started using Storm, our computational needs
were much lower, and we assigned a max of two cores to each node. Eventually that
became problematic and we moved to four and then eight. Most of the time, each
node isn’t using all the CPU, but it’s there when needed.

 You can follow the same pattern in AWS and other hosted solutions by upgrading
to a more powerful CPU and/or number of available cores. But you’re going to hit a
limit. There’s only so much CPU time to go around among all those guest machines
running on a single physical box. If you hit that point or can’t scale up CPUs, distribut-
ing the load across more machines is your only option.

 So far, we’ve never had to solve CPU usage issues in this way (but we’ve solved oth-
ers’ issues in such a fashion). And sometimes, we’ve solved the problem entirely differ-
ently. It turned out that one time our issue was a bug that caused a topology to burn
CPU needlessly over and over in a tight loop. That’s always what you should check for
first, but leading with “Are you sure you didn’t mess up?” seemed like a less than
friendly way to start the discussion.

7.8 Worker node I/O contention
I/O contention on a worker node can fall under one of two categories:

■ Disk I/O contention, reading from and writing to the file system
■ Network/socket I/O contention, reading from and writing to a network via

a socket

Both types of contention are regularly an issue for certain classes of Storm topologies.
The first step in determining if you’re experiencing either of these contentions is to
establish whether a worker node is experiencing I/O contention in general. Once you
do, you can dive down into the exact type of I/O contention your worker node is suf-
fering from.

 One way to determine if a worker node in your cluster is experiencing I/O conten-
tion is by running the sar command with the –u option for displaying real-time CPU
usage. This is the same command we ran for CPU contention in section 7.7, but this
time we’ll focus on a different column in the output (figure 7.18).

Licensed to Mark Watson <nordickan@gmail.com>

182 CHAPTER 7 Resource contention
A healthy topology that uses a lot of I/O shouldn’t spend a lot of time waiting for the
resources to become available. That’s why we use 10.00% as the threshold at which
you start experiencing performance degradation.

 You might think distinguishing between socket/network and disk I/O contention
is a difficult task, but you’d be surprised at how often your own intuition will lead you
to the correct choice. Let’s explain.

 If you know what topologies are running on a given worker node (section 7.3 dis-
cusses determining this), you know that they use a lot of network resources or disk
I/O, and you see iowait problems, you can probably safely assume which of the two is
your issue. Here’s a simple test to help you with that: if you’re seeing troubling I/O
contention signs, first attempt to determine if you’re suffering from socket/network
I/O contention. If you aren’t, assume that you’re suffering from disk I/O contention.
Although this might not always be the case, it can take you a long way as you learn the
tools of the trade.

 Let’s dive a little deeper into each of the I/O contentions to give you a fuller
understanding of what we’re talking about.

7.8.1 Network/socket I/O contention

If your topologies interact over a network with external services, network/socket I/O
contention is bound to be a problem for your cluster. In our experience, the main
cause for this type of contention is that all of the ports allocated for opening sockets
are being used.

 Most Linux installs will default to 1024 maximum open files/sockets per process.
In an I/O-intensive topology, it’s easy to hit that limit quickly. We’ve written topologies
that open several thousand sockets per worker node. To determine the limits of your

Reports the CPU

utilization for every

1 second, a total

of 3 times.

01:27:32 PM
01:27:33 PM
01:27:34 PM
01:27:35 PM
Average:

$ sar -u 1 3
Linux 2.6.18-194.el5PAE (dev-db) 03/26/2011 _i686_ (8 CPU)

%system
0.00
0.25
0.25
0.17

%steal
0.00
0.00
0.00
0.00

%idle
90.00
88.49
89.83
99.50

%iowait
10.00
11.01
9.17
0.00

%user
0.00
0.25
0.75
0.33

%nice
0.00
0.00
0.00
0.00

CPU
all
all
all
all

Percentage of time the CPUs were idle, during which the

system had an outstanding disk I/O request. If this value is

above 10.00, you are most likely experiencing performance

degradation due to I/O contention. With a value above

25.00, you’re most definitely in a world of pain.

Figure 7.18 Output of sar –u 1 3
for reporting CPU utilization and, in
particular, I/O wait times
Licensed to Mark Watson <nordickan@gmail.com>

183Worker node I/O contention
OS, you can examine the /proc filesystem to check your processes limits. In order to
do this, you’ll first need to know your process ID. Once you do that, you can get a list-
ing of all limits for that process. The following listing shows you how to use the ps and
grep commands to find your process ID (aka PID) and then how to get your process
limits from the /proc filesystem.

-bash-3.2$ ps aux | grep MY-TOPOLOGY-NAME
stormuser 12345 18.2 …

-bash-3.2$ cat /proc/12345/limits
Limit Soft Limit Hard Limit Units
Max cpu time unlimited unlimited seconds
Max file size unlimited unlimited bytes
Max data size unlimited unlimited bytes
Max stack size 10485760 unlimited bytes
Max core file size 0 0 bytes
Max resident set unlimited unlimited bytes
Max processes 47671 47671 processes
Max open files 1024 1024 files
Max locked memory unlimited unlimited bytes
Max address space unlimited unlimited bytes
Max file locks unlimited unlimited locks
Max pending signals 47671 47671 signals
Max msgqueue size 819200 819200 bytes
Max nice priority 0 0
Max realtime priority 0 0

If you’re hitting this limit, the Storm UI for your topology should display an excep-
tion in the “Last Error” column that the max open files limit has been reached. This
will most likely be a stack trace starting with java.net.SocketException: Too many
open files.

Listing 7.6 Determining your resource limits

Dealing with a saturated network link and network/socket I/O-intensive
topologies
We’ve never seen a saturated network link, but we know it’s theoretically possible,
so we mention it here instead of devoting an entire recipe to it. Depending on your
operating system, you can use various tools to determine whether your network link
is saturated. For Linux, we recommend iftop.

There are two things you can do for a saturated network link: 1) get a faster network
or 2) lower the number of worker processes per worker node in order to spread the
load across more machines; this will work as long as you’re overloading your local
network and not the entire network in general.

Find process for topology with
name MY-TOPOLOGY-NAME

Our process ID is in the 2nd
column position – ‘12345’.

Get process limits
from /proc filesystem

The maximum number
of open file descriptors
Licensed to Mark Watson <nordickan@gmail.com>

184 CHAPTER 7 Resource contention
PROBLEM

Your topology is experiencing reduced throughput or no throughput at all, and
you’re seeing errors for hitting the limit of open sockets.

SOLUTION

A couple of ways to address this problem are as follows:

■ Increasing the number of available ports on the worker node
■ Adding more worker nodes to the cluster

For increasing the number of available ports, you’ll need to edit the /etc/security/
limits.conf file on most Linux distributions. You can add lines such as the following:

* soft nofile 128000
* hard nofile 25600

These settings will set the hard and soft limit on open files per user. The value we’re
concerned with as a Storm user is the soft limit. We don’t advise going higher than
128k. If you do, then as a rule of thumb (until you learn more about soft/hard limits
for number of files open on Linux), we suggest setting the hard limit to two times the
value of the soft limit. Note that you need super-user access to change limits.conf
and you’re going to need to reboot the system to make sure they take effect.

 Increasing the number of worker nodes in the cluster will give you access to more
ports. If you don’t have the resources to add more physical machines or VMs, you’ll
have to try the first solution.

DISCUSSION

The first real contention issue we hit was the number of sockets available per machine.
We use a lot of them because a number of our topologies make lots of calls to external
services to look up additional information that isn’t available from our initial incom-
ing data. Having a high number of sockets available is a must. Don’t add more workers
on other machines until you’ve increased available sockets on each node as much as
you can. Once you’ve done that, you should also look at your code.

 Are you opening and closing sockets all the time? If you can keep connections
open, do that. There’s this wonderful thing called TCP_WAIT. It’s where a TCP connec-
tion will stay open after you close it waiting for any stray data. If you’re on a slow net-
work link (like many were when TCP was first designed), this is a wonderful idea that
helps prevent data corruption. If you’re on a fast modern LAN, it’ll drive you insane.
You can tune your TCP stack via various OS-specific means to lower how long you lin-
ger in TCP_WAIT, but when you’re making tons of network calls, even that won’t be
enough. Be smart: open and close connections as little as possible.

7.8.2 Disk I/O contention

Disk I/O contention affects how quickly you can write to disk. This could be a problem
with Storm but should be exceedingly rare. If you’re writing large volumes of data to
your logs or storing the output of calculations to files on the local filesystem, it might
be an issue, but that should be unlikely.
Licensed to Mark Watson <nordickan@gmail.com>

185Worker node I/O contention
If you have a topology that’s writing data to disk and notice its throughput is lower
than what you’re expecting, you should check to see if the worker nodes it’s running on
are experiencing disk I/O contention. For Linux installations, you can run a command
called iotop to get a view of the disk I/O usage for the worker nodes in question.
This command displays a table of current I/O usage by processes/threads in the sys-
tem, with the most I/O-intensive processes/threads listed first. Figure 7.19 shows the
command and its associated output, along with the parts of the output we’re inter-
ested in.

PROBLEM

You have a topology that reads/writes to/from disk, and it looks like the worker nodes
it’s running on are experiencing disk I/O contention.

SOLUTION

To address this problem

■ Write less data to disk. This can mean cutting back within your topology. It can
also mean putting fewer worker processes on each worker node if multiple
worker processes are demanding disk on the same worker node.

■ Get faster disks. This could include using a RAM disk.

If any of these values are high for Storm-related

processes, then you are likely experiencing disk

I/O contention. Storm-related processes here

are indicated by the USER of “storm.”

Process-specific

bytes per second

being read in.

Process-specific

bytes per second

being written out.

Percentage of

I/O usage per

process.

Total bytes per second

being read in.

Total bytes per second

being written out.

Figure 7.19 The output for the iotop command and what to look for when determining if a worker
node is experiencing disk I/O contention
Licensed to Mark Watson <nordickan@gmail.com>

186 CHAPTER 7 Resource contention
■ If you’re writing to NFS or some other network filesystem, stop immediately.
Writing to NFS is slow and you’re setting yourself up for disk I/O contention if
you do.

DISCUSSION

Slow disk I/O sucks. It drives us insane. The worst part is fast disks aren’t cheap. The
disks that we run our Storm workers on are fairly slow. We save our fast disks for stuff
where we really need speed: Elasticsearch, Solr, Riak, RabbitMQ, and similar write-
heavy parts of our infrastructure. If you’re writing large amounts of data to disk and
you don’t have fast disks, you’re going to have to accept it as a bottleneck. There’s not
much you can do without throwing money at the problem.

7.9 Summary
In this chapter, you learned the following:

■ Several types of contention exist above the topology level, so it’s helpful to be
able to monitor things like CPU, I/O, and memory usage for the operating sys-
tem your worker nodes are running on.

■ It is important to have some level of familiarity with monitoring tools for the
operating system of the machines/VMs in your cluster. In Linux, these include
sar, netstat, and iotop.

■ There’s value in knowing common JVM startup options, such as –Xms, -Xmx, and
those related to GC logging.

■ Although the Storm UI is a great tool for the initial diagnosis of many types of
contention, it’s smart to have other types of monitoring at the machine/VM
level to let you know if something is awry.

■ Including custom metrics/monitoring in your individual topologies will give
you valuable insights that the Storm UI may not be able to.

■ Be careful when increasing the number of worker processes running on a worker
node because you can introduce memory and/or CPU contention at the
worker node level.

■ Be careful when decreasing the number of worker processes running on a worker
node because you can affect your topologies’ throughput while also introduc-
ing contention for worker processes across your cluster.
Licensed to Mark Watson <nordickan@gmail.com>

Storm internals
Here we are, four chapters into covering Storm in production. We’ve explained
how you can use the Storm UI to understand what’s going on in your topologies,
how to use that information to tune your topologies, and how to diagnose and treat
cross-topology contention issues. We’ve explored a number of tools you can put to
good use. In this chapter, we’ll introduce you to one more: a deeper understanding
of Storm’s internals.

 Why do we think this is important? Well, in the previous three chapters we’ve
given you the tools and strategies for handling issues you’re likely to encounter, but
we can’t know every possible problem you will encounter. Each Storm cluster is
unique; your combination of hardware and code is bound to encounter issues
we’ve never seen and, perhaps, that other people haven’t seen either. The deeper

This chapter covers
■ How an executor works under the covers
■ How tuples are passed between executors
■ Storm’s internal buffers
■ Overflow and tuning of Storm’s internal buffers
■ Routing and tasks
■ Storm’s debug log output
187

Licensed to Mark Watson <nordickan@gmail.com>

188 CHAPTER 8 Storm internals
the understanding you have of how Storm works, the better equipped you’ll be to han-
dle such issues. The intent of this chapter, unlike the previous chapter, isn’t to provide
solutions to specific problems.

 To become a master of tuning Storm, debugging Storm issues, designing your
topologies for maximum efficiency, and all the other myriad tasks that are part of run-
ning a production system, you need to have a deep understanding of the tool you’re
using. We aim in this chapter to take you deep into the abstractions that make up
Storm. We aren’t going to take you all the way down to the bottom, because Storm is a
living project that’s actively being developed and a lot of that development is going on
at the core. But there’s a level of abstraction deeper than any we’ve covered so far,
and it’s this level of abstraction that we’ll endeavor to familiarize you with. How
you’ll deploy the knowledge you get from this chapter we can’t say, but we know you
won’t master Storm until you have a firm grasp of the internals that are the subject of
this chapter.

NOTE Some of the terminology we use throughout this chapter doesn’t map
directly to the verbiage in the Storm source code but is true to the spirit. This
is intentional, because the focus should be on how the internals work, not
necessarily how they’re named.

To focus on Storm’s internals rather than the details of a new use case, we’re going to
bring back an old friend, the commit count topology from chapter 2. Let’s go through
a quick rundown of this topology just in case you’ve forgotten.

8.1 The commit count topology revisited
The commit count topology provides a simple topology (one spout and two bolts) we
can use to explain Storm’s internals within the context of a particular use case but
without getting bogged down with the details of the use case. Having said that, there
are a few additional qualifiers we’ll add to this topology for teaching purposes. But
before we get to those qualifiers, let’s quickly rehash the topology itself.

8.1.1 Reviewing the topology design

As you’ll recall from chapter 2, the commit count topology is broken down into (1)
one spout that’ll read commits from a feed, and (2) two bolts that’ll extract the email
from the commit message and store counts for each email, respectively. This can all be
seen in figure 8.1.

 This design is straightforward and easy to understand. As such, it provides us with a
nice scenario to delve into the internals of Storm. One thing we’ll do differently in
this chapter is present the topology deployed to a remote Storm cluster, as opposed to
having it run in local mode. Let’s discuss why this is needed and how our topology
may look when deployed to a remote cluster with multiple worker nodes.
Licensed to Mark Watson <nordickan@gmail.com>

189The commit count topology revisited
8.1.2 Thinking of the topology as running on a remote Storm cluster

Presenting the topology as running on a remote Storm cluster is essential for this
chapter, because the Storm internals we want to cover exist only in a remote cluster
setup. For this, we’ll say our topology is running across two worker nodes. Doing this
allows us to explain what happens when tuples are passed between components within
the same worker process (JVM) as well as across worker processes (from one JVM to
another). Figure 8.2 illustrates the two worker nodes along with specifics on where
each spout and bolt is executing. This diagram should look familiar, as we presented
something similar in chapter 5 when providing a hypothetical configuration of the
credit card authorization topology.

8.1.3 How data flows between the spout and bolts in the cluster

Let’s trace the flow of a tuple through the topology, much as we did in chapter 2. But
rather than showing the data flow from the viewpoint of figure 8.1, we’ll show it from
the viewpoint of data being passed between instances of our spout and bolts across
executors and worker processes (figure 8.3).

"064874b nathan@example.com"

Spout that reads from

the live feed, emitting a

tuple containing a single

commit message

Live feed of commit

messages, where each

individual message has an

ID and an email, separated

by a space

Bolt that extracts the

email from the commit

message, emitting a

tuple containing

the email

Bolt that updates

an in-memory map

of emails to commit

counts

[commit="064874b nathan@example.com"]

[email="nathan@example.com"]

Read

commits

from

feed

Extract

email

from

commit

Update

email

count

Figure 8.1 Commit count topology design and flow of data between the spout and bolts
Licensed to Mark Watson <nordickan@gmail.com>

190 CHAPTER 8 Storm internals
Worker node

Supervisor

Worker

process

Worker node

Supervisor

Worker

process

The first worker process (JVM)

is executing instances of the spout

and our first bolt on two separate

executors (threads).

The second worker process

(JVM) is executing an instance of

the last bolt on a separate

executor (thread).

Our topology is executing across two worker nodes

(physical or virtual machines), where each worker node

is running a single worker process (JVM).

Worker process

Executor

Commit

feed

listener

spout

Executor

Email

extractor

bolt

Worker process

Executor

Email

counter

bolt

Figure 8.2 Commit count topology running across two worker nodes, with one worker
process executing a spout and bolt and another worker process executing a bolt

Worker process

Executor

Commit

feed

listener

spout

Executor

Email

extractor

bolt

Worker process

Executor

Email

counter

bolt

"064874b nathan@example.com"

Reading data

from a data

source

The executor

(thread) running

the instance

of our spout

Sending tuples

locally on the

same worker

process

(JVM)

The executor

(thread) running

the instance

of our bolt

Sending tuples

remotely across

different worker

processes

The executor

(thread) running

the instance of

our bolt

(JVM)

Figure 8.3 Breaking down the flow of data through the topology into six sections, each of which
highlights something different within an executor or how data is passed between executors
Licensed to Mark Watson <nordickan@gmail.com>

191Diving into the details of an executor
Figure 8.3 illustrates nicely how the tuples will flow between instances of our spout
and bolts across threads (executors) within a single JVM (worker process) along with
data flowing between worker nodes to a completely separate JVM (worker process).
Think of figure 8.3 as the 10,000-foot view of how tuples are being passed between
components. The goal of this chapter is to dive down much deeper into what’s hap-
pening in figure 8.3, so let’s do exactly that, following the flow of data within and
between executors in our scenario.

8.2 Diving into the details of an executor
In previous chapters, we’ve described executors as a single thread running on a JVM.
That has served us well until now. In our day-to-day reasoning about our own topolo-
gies, we usually think of an executor at that level of abstraction as well. But an execu-
tor is more than a single thread. Let’s discuss what we mean by this, starting with the
executor running our spout instance that reads data from a data source.

8.2.1 Executor details for the commit feed listener spout

Data enters the commit count topology via the commit feed listener spout that listens
to a feed of data containing individual commit messages. Figure 8.4 illustrates where
we are in our data flow for the topology.

 There’s a bit more to this executor than a single thread. It’s actually two threads and
one queue. The first thread is what we call the main thread and is primarily responsible
for running user-supplied code; in this instance, it’s the code we wrote in nextTuple.
The second thread is what we’ll call the send thread, which we’ll talk about shortly in the
next section, and it handles transferring tuples to the next bolt in the topology.

 In addition to the two threads, we have a single queue for transferring emitted
tuples out of the executor. Think of this queue as a post-execute-spout function.

Executor

Commit

feed

listener

spout

"064874b nathan@example.com"

Our focus is on the spout reading data

from the data source and what happens

internally within the executor as the

spout processes that data.

Figure 8.4 Focusing on
data flowing into the spout
Licensed to Mark Watson <nordickan@gmail.com>

192 CHAPTER 8 Storm internals
This queue is designed for high-performance messaging between executors. It’s
achieved by having the queue implementation rely on a library known as the LMAX
Disruptor.1 All you need to know about a disruptor queue for now is that Storm
uses it for the internal executor queue implementations. Figure 8.5 illustrates this
more detailed understanding of the executor for our spout, with two threads and
one queue.

 The illustration in figure 8.5 covers data being read in by the spout instance
and the main thread taking the tuple emitted by the spout and placing it on the
outgoing queue. What hasn’t been covered is what happens once the emitted tuple
has been placed on the outgoing queue. This is where the send thread comes
into play.

8.2.2 Transferring tuples between two executors on the same JVM

Our tuple has been placed on the spout’s outgoing disruptor queue. Now what?
Before we get into what happens here, let’s take a look at figure 8.6, which shows
where we are in our topology’s data flow.

1 The LMAX Disruptor is a high-performance inter-thread messaging library. It’s an open source project avail-
able at http://lmax-exchange.github.io/disruptor.

Commit

feed

listener

spout

Executor1

Main thread

The spout reads a message

off of the queue containing

the commit messages.

2 The main thread

handles emitted

tuple(s).

3 The main thread places

any emitted tuple(s) on the

outgoing disruptor queue.

Send thread

"064874b nathan@example.com"

Figure 8.5 The spout reads messages off the queue containing commit messages and converts
those messages into tuples. The main thread on the executor handles emitted tuples, passing
them to the executor’s outgoing queue.
Licensed to Mark Watson <nordickan@gmail.com>

http://lmax-exchange.github.io/disruptor

193Diving into the details of an executor
Once the data has been placed on the spout’s outgoing disruptor queue, the send
thread will read that tuple off the outgoing disruptor queue and send it to the appro-
priate executor(s) via a transfer function.

 Because the commit feed listener spout and email extractor bolt are both on the
same JVM, this transfer function will execute a local transfer between executors. When a
local transfer occurs, the executor’s send thread publishes outgoing tuples to the next
executor directly. Both executors here are on the same JVM, so there’s little to no over-
head during the send, making this an extremely fast type of transfer function. This is
illustrated in more detail in figure 8.7.

 How exactly does the executor for our first bolt receive tuples directly? This is
covered in the next section, where we break down the executor for the email extrac-
tor bolt.

Executor

Commit

feed

listener

spout

Executor

Email

extractor

bolt

Focusing on what happens when tuples are

sent between executors (threads) running

on the same worker process (JVM)

Figure 8.6 Focusing on passing
tuples within the same JVM

Executor Executor

1 The send thread takes the tuple off of the

outgoing disruptor queue for the executor...

2 ...and places it directly on to the incoming disruptor

queue for another executor on the same JVM.

Send thread

Figure 8.7 A more detailed look at a local transfer of tuples between the commit
feed listener spout and the email extractor bolt
Licensed to Mark Watson <nordickan@gmail.com>

194 CHAPTER 8 Storm internals
8.2.3 Executor details for the email extractor bolt

So far we’ve covered our spout reading a commit
message from a feed of data and emitting a new
tuple for each individual commit message. We’re at
the point where our first bolt, the email extractor,
is ready to process an incoming tuple. Figure 8.8
highlights where we are in our data flow.

 You probably have some idea of what the execu-
tors for our bolts look like given that we’ve already
covered the executor for a spout. The only real
difference between executors for spouts and for
bolts is that an executor for a bolt has an addi-
tional queue: the queue for handling incoming
tuples. This means our bolt’s executor has an
incoming disruptor queue and a main thread that
reads a tuple off the incoming disruptor queue and
processes that tuple, resulting in zero or more tuples
to be emitted. These emitted tuples are placed on
the outgoing disruptor queue. Figure 8.9 breaks
down the details.

Executor

Email

extractor

bolt

Our focus is on what happens within an

executor that is running an instance of a bolt

that accepts an input tuple from some other

component and emits an output tuple.

Figure 8.8 Focusing on a bolt that
emits a tuple

Bolt

instance

Executor

1
Main thread

A tuple is placed

on the incoming

disruptor queue.

2 The main thread takes the tuple

off the incoming disruptor queue.

5 The main thread places any emitted

tuple(s) on the outgoing disruptor queue.

43 The main thread sends the tuple to the

bolt instance to be processed and

handles emitted tuple(s).

Send thread

Figure 8.9 The executor for our bolt, with two threads and two queues
Licensed to Mark Watson <nordickan@gmail.com>

195Diving into the details of an executor
Once the email extractor bolt has processed the tuple, it’s ready to be sent to the
next bolt down the line, the commit counter bolt. We’ve already discussed what hap-
pens when a tuple is sent between the commit feed listener spout and the email
extractor bolt. This happens with a local transfer. But we’re in a different situation
when sending data between the email extractor bolt and the commit counter bolt.
The bolt instances are running on different JVMs. Let’s discuss what happens in this
scenario next.

8.2.4 Transferring tuples between two executors on different JVMs

As we mentioned previously, the email extractor
and commit counter bolts are running on sepa-
rate JVMs. Figure 8.10 shows you exactly where we
are in the data flow for our topology.

 When a tuple is emitted to an executor run-
ning on a separate JVM, the sending executor’s
send thread will execute a transfer function that
performs what we call a remote transfer. A remote
transfer is more involved than a local transfer.
What happens when Storm needs to send tuples
from one JVM to another? The first step in the
process is to serialize our tuple for transport.
Depending on your tuple, this could be a rather
expensive operation. When serializing tuples,
Storm attempts to look up a Kryo serializer for
that object and ready it for transport. Lacking a
Kryo serializer, Storm will fall back on standard Java object serialization. Kryo serializa-
tion is far more efficient than Java serialization, so if you care about pulling every last
bit of performance out of your topologies, you’ll want to register custom serializers for
your tuples.

 Once a tuple has been serialized for inter-JVM transport, our executor’s send/
transfer thread publishes it to yet another disruptor queue. This queue is the
transfer queue for our entire JVM. Any time an executor on this JVM needs to trans-
fer tuples to executors on other JVMs, those serialized tuples will be published to
this queue.

 Once a tuple is on this queue, another thread, the worker process’s send/transfer
thread, picks it up and, via TCP, sends it over the network to its destination JVM.

 At the destination JVM, another thread, the worker process’s receive thread, is wait-
ing to receive tuples that it in turn passes off to yet another function, the receive func-
tion. The worker receive function, much like an executor’s transfer function, is
responsible for routing the tuple to the correct executor. The receive thread publishes
our tuple to the incoming disruptor queue where it’s available to be picked up by the
executor’s primary thread for processing. This entire process can be seen in figure 8.11.

utor

il

ctor

lt

Exec

Em

coun

b

Focusing on what happens when tuples

are sent between executors (threads) running

on different worker processes (JVMs)

Figure 8.10 Focusing on sending
tuples between JVMs
Licensed to Mark Watson <nordickan@gmail.com>

196 CHAPTER 8 Storm internals
In our commit counter example, an email address such as sean@example.com was
extracted from a commit by our email extractor bolt and placed on the executor’s trans-
fer queue, where the executor’s send thread picked it up and passed it to the transfer
function. There it was serialized for transport and placed on the worker’s transfer queue.
Another thread then picked up the transfer and sent it via TCP to our second worker,
where the receive thread accepted it and, via the receive function, routed it to the correct
executor by placing it on that executor’s incoming disruptor queue.

A word about Netty
In this section, we’ve used the term TCP to discuss connections between JVMs that
make up a Storm cluster. As of the current version of Storm, network transport is
provided by Netty, a powerful framework designed to make it easy to build high-
performance asynchronous network applications. It has a wealth of settings that
allow you to tune its performance.

For a standard Storm installation, you shouldn’t need to tweak any Netty settings
exposed by Storm. If you find yourself running into Netty performance issues, as with
any other settings, be prepared to measure before and after changes.

Providing enough information to allow you to confidently wade into tuning Netty is
beyond the scope of this book. If you’re interested in learning more about Netty, we
urge you to get Netty in Action (Manning, 2015) by Netty committer Norman Maurer.

Executor

1 The send thread

takes the tuple off of

the outgoing disruptor

queue for the executor...

2 ...and places it directly

on the JVM's outgoing

disruptor queue.

3 The send/transfer

thread for the JVM

reads the tuple off

of the outgoing

disruptor queue...

4 ...and sends it directly to the

receive thread of another JVM.

5 The receive thread for the other

JVM takes the tuple and places

it on the incoming disruptor queue

of the appropriate executor.

Send thread

Send/transfer thread

Worker process

Executor

Worker process

Receive thread

Figure 8.11 The steps that occur during a remote transfer of a tuple between executors on
different JVMs
Licensed to Mark Watson <nordickan@gmail.com>

197Diving into the details of an executor
8.2.5 Executor details for the email counter bolt

The executor for this bolt is similar to the execu-
tor for our previous bolt, but because this bolt
doesn’t emit a tuple, no work needs to be done
by the executor’s send thread. Figure 8.12
highlights where we are in our flow of a tuple
between executors.

 The details of what happens within this exec-
utor can be seen in figure 8.13. Notice that the
number of steps is reduced, because we aren’t
emitting tuples in this bolt.

 Our data has now managed to flow from the
spout where it started through the email coun-
ter bolt. Its life cycle is almost done. It’ll be dese-
rialized and processed, and the count for that
email address will be updated. Our email counter
bolt doesn’t emit a new tuple—it acks its incom-
ing tuple.

Executor

Email

counter

bolt

Focusing on what happens within

an executor that is running an instance of a

bolt that accepts an input tuple from some other

component but does not emit an output tuple.

Figure 8.12 Focusing on a bolt that
does not emit a tuple

Bolt

instance

Executor

1
Main thread

A tuple is placed

on the incoming

disruptor queue.

2 The main thread takes

the tuple off the incoming

disruptor queue.

3 The main thread sends the tuple to the

bolt instance to be processed. Because

the bolt does not emit a tuple, there’s nothing

to be placed on the outgoing disruptor queue

by the main thread.

Send thread

Figure 8.13 The executor for the email counter bolt with a main thread that pulls a tuple off
the incoming disruptor queue and sends that tuple to the bolt to be processed
Licensed to Mark Watson <nordickan@gmail.com>

198 CHAPTER 8 Storm internals
8.3 Routing and tasks
A few times in the book, we’ve explained something only to later admit we lied via omis-
sion in order to explain the basics of a concept. And so it is again with our explanation
that we’ve given so far in this chapter. We’ve omitted a very important part of the con-
versation. But don’t worry; now that you have a handle on the core parts of Storm, we
can discuss tasks and routing.

 Way back in chapter 3, we introduced executors and tasks. Figure 8.14 should look
familiar—it’s the figure breaking down a worker node as a JVM running an executor
with a task (spout/bolt instance), but updated with your current understanding of
how an executor works.

 Let’s dig a little bit more into tasks. As we stated in chapter 3, an executor can
have one or more tasks, where the executor is responsible for “executing” the user
logic that’s in the task. How does this work when an executor has multiple tasks (fig-
ure 8.15)?

 This is where routing comes into the picture. Routing in this context means how
a worker process’s receive thread (remote transfer) or an executor’s send thread
(local transfer) sends a tuple to its correct next location (task). It’s a multistep process

Worker node

JVM

Executor

JVM

The executor consists of two

disruptor queues (incoming/outgoing),

a main thread, a send thread, and a task.

Worker process

outgoing disruptor queue
Task

Worker process

send/transfer thread

Worker process

receive thread

Figure 8.14 A worker process broken down with its internal threads and queue along with an executor
and its internal threads, queues, and a task
Licensed to Mark Watson <nordickan@gmail.com>

199Routing and tasks
that’ll be easier with a concrete example. We’ll use the email extractor as an exam-
ple. Figure 8.16 illustrates what happens after the email extractor’s main thread has
run its execute method and a tuple has been emitted.

 Figure 8.16 should look somewhat familiar. It includes some of the internal queues
and threads we’ve been discussing along with annotations for the steps that are taken
when determining which task is supposed to execute an emitted tuple. The figure ref-
erences a task ID and tuple pair, which comes in the form of an object of type
TaskMessage:

public class TaskMessage {
 private int _task;
 private byte[] _message;
 ...
}

This brings our explanation of Storm’s internal queues to a close. We’ll now move on
to how these queues may overflow and some ways to address such overflow.

Worker node

JVM

Executor

JVM

When an executor has multiple

tasks, how does it determine which

task will execute on a tuple?

Task

Task

Task

?

Figure 8.15 An executor
with multiple tasks
Licensed to Mark Watson <nordickan@gmail.com>

200 CHAPTER 8 Storm internals
8.4 Knowing when Storm’s internal queues overflow
We’ve covered an awful lot in a relatively short period of time. By now, you should
have a decent grasp of what constitutes an executor. But before we get into the details
of debug logs, we want to bring you back to the three queues internal to Storm we’ve
discussed so far.

8.4.1 The various types of internal queues and how they might overflow

In our discussion of executors, we identified three queues that are internal to Storm:

■ An executor’s incoming queue
■ An executor’s outgoing queue
■ The outgoing queue that exists on a worker node

We love to talk about troubleshooting and what can go wrong, so we pose the ques-
tion: What would it take to overflow each of those queues?

 Go ahead. Take a minute. We’ll wait. For a queue to overflow, anything producing
data that goes on to the queue has to be generating that data faster than it can be con-
sumed. It’s the relationship between producers and consumers that we want to focus
on. We’ll start by looking at the executor’s incoming queue.

Send/transfer thread

Worker process

Executor

Main thread Send thread

1 The executor’s transfer method, based on the

stream grouping for the bolt (fields grouping),

looks up which task (notice we said task, not

executor) handles the emitted email address.

5 For a task that’s remote to the JVM, the

node and port are looked up for the task

and placed as a pair with the task message

on the worker’s outgoing transfer queue.

2 The task ID and the tuple

are published as a pair

(task, tuple) to the executor’s

outgoing disruptor queue.

3 From the outgoing disruptor queue, the executor’s

send thread picks up the task/tuple pair and determines

whether the task (a) is handled by an executor on the

local JVM, or (b) resides on a remote JVM.

4 For a task that’s on the

local JVM, the pair is

published to the incoming

disruptor queue for the

executor that handles

the task.

Figure 8.16 Mapping out the steps taken when determining the destination task for an emitted tuple
Licensed to Mark Watson <nordickan@gmail.com>

201Knowing when Storm’s internal queues overflow
EXECUTOR’S INCOMING QUEUE

This queue receives tuples from the spout/bolt preceding it in the topology. If the
preceding spout/bolt is producing tuples at a faster rate than the consuming bolt can
process them, you’re going to have an overflow problem.

 The next queue a tuple will encounter is the executor’s outgoing transfer queue.

EXECUTOR’S OUTGOING TRANSFER QUEUE

This one is a bit trickier. This queue sits between an executor’s main thread, execut-
ing user logic, and the transfer thread that handles routing the tuple to its next task.
In order for this queue to get backed up, you’d need to be processing incoming
tuples faster than they can be routed, serialized, and so forth. That’s a pretty tall
order—one we’ve never actually experienced ourselves—but we’re sure someone
has had it happen.

 If we’re dealing with a tuple that’s being transferred to another JVM, we’ll run into
the third queue, the worker process’s outgoing transfer queue.

WORKER PROCESS’S OUTGOING TRANSFER QUEUE

This queue receives tuples from all executors on the worker that are bound for
another, different worker process. Given enough executors within the worker process
producing tuples that need to be sent over the network to other worker processes, it’s
quite possible that you could overflow this buffer. But you’re probably going to have
to work hard to do it.

 What happens if you start to overflow one of these buffers? Storm places the over-
flowing tuples in a (hopefully) temporary overflow buffer until there’s space on a
given queue. This will cause a drop in throughput and can cause a topology to grind
to a halt. If you’re using a shuffle grouping where tuples are distributed evenly among
tasks, this should present a problem that you’d solve using the tuning techniques from
chapter 6 or the troubleshooting tips from chapter 7.

 If you aren’t distributing tuples evenly across your tasks, issues will be harder to
spot at a macro level and the techniques from chapters 6 and 7 are unlikely to help
you. What do you do then? You first need to know how to tell whether a buffer is
overflowing and what can be done about it. This is where Storm’s debug logs
can help.

8.4.2 Using Storm’s debug logs to diagnose buffer overflowing

The best place to see whether any of Storm’s internal buffers are overflowing is the
debug log output in Storm’s logs. Figure 8.17 shows a sample debug entry from a
Storm log file.

Licensed to Mark Watson <nordickan@gmail.com>

202 CHAPTER 8 Storm internals
In figure 8.17 we’ve highlighted the lines related to the send/receive queues, which
present metrics about each of those queues respectively. Let’s take a more detailed
look at each of those lines.

 The example in figure 8.18 shows two queues that are nowhere near overflowing,
but it should be easy to tell if they are. Assuming you’re using a shuffle grouping to
distribute tuples evenly among bolts and tasks, checking the value for any task of a
given bolt should be enough to determine how close you are to capacity. If you’re
using a grouping that doesn’t evenly distribute tuples among bolts and tasks, you
may have a harder time quickly spotting the problem. A little automated log analysis
should get you where you need to be, though. The pattern of the log entries is well
established, and pulling out each entry and looking for population values that are at
or near capacity would be a matter of constructing and using an appropriate tool.

 Now that you know how to determine whether one of Storm’s internal queues is
overflowing, we’re going to show you some ways to stop the overflow.

2014-09-28 07:03:05 b.s.d.task [INFO] Emitting: my-bolt __metrics
[#<TaskInfo backtype.storm.metric.api.IMetricsConsumer$TaskInfo@8394a98>
[#<DataPoint [__ack-count = {}]>
#<DataPo1nt [__sendqueue = {write_pos=1, read_pos=–1, capacity=1024, population=0}]>
#<DataPoint [__receive = {write_pos=54, read_pos=53, capacity=1024, population=l}]>
#<DataPoint [__process-latency = {}]>
#<DataPoint [__transfer-count = {__metrics=0}]>
#<DataPoint [__execute-latency = {}]>
#<DataPoint [__fail-count = {}]>
#<DataPoint [__emit-count = {__metrics=0}]>
#<DataPoint [__execute-count = {}]>]]

2014-09-28 07:03:05 b.s.d.task [INFO] Emitting: my-bolt __metrics2014-09-28 07:03:05 b.s.d.task [INFO] Emitting: my-bolt __metrics

#<DataPo1nt [__sendqueue = {write_pos=1, read_pos=–1, capacity=1024, population=0}]>
#<DataPoint [__receive = {write_pos=54, read_pos=53, capacity=1024, population=l}]>

The ID of the particular bolt instance that is specified

in the method.TopologyBuilder.setBolt

Metrics around the send/receive queues

for the particular bolt. These are the metrics

we are interested in for this chapter.

Figure 8.17 Snapshot of a debug log output for a bolt instance

#<DataPoint [__sendqueue = {write_pos=-1, read_pos=-1, capacity=1024, population=0}]>
#<DataPoint [__receive = {write_pos=54, read_pos=53, capacity=1024, population=1}]>

#<DataPoint [__sendqueue = {write_pos=-1, read_pos=-1, capacity=1024, population=0}]>
#<DataPoint [__receive = {write_pos=54, read_pos=53, capacity=1024, population=1}]>

#<DataPoint [__sendqueue = {write_pos=-1, read_pos=-1, capacity=1024, population=0}]>
#<DataPoint [__receive = {write_pos=54, read_pos=53, capacity=1024, population=1}]>

#<DataPoint [__sendqueue = {write_pos=-1, read_pos=-1, capacity=1024, population=0}]>
#<DataPoint [__receive = {write_pos=54, read_pos=53, capacity=1024, population=1}]>

#<DataPoint [__sendqueue = {write_pos=-1, read_pos=-1, capacity=1024, population=0}]>
#<DataPoint [__receive = {write_pos=54, read_pos=53, capacity=1024, population=1}]>

#<DataPoint [__sendqueue = {write_pos=-1, read_pos=-1, capacity=1024, population=0}]>
#<DataPoint [__receive = {write_pos=54, read_pos=53, capacity=1024, population=1}]>

#<DataPoint [__sendqueue = {write_pos=-1, read_pos=-1, capacity=1024, population=0}]>
#<DataPoint [__receive = {write_pos=54, read_pos=53, capacity=1024, population=1}]>

Maximum size

of the queue.

Current number of

entries in the queue.

The send/receive queues for this bolt instance are

far from being at capacity. But if the value of population

was close to, or at, capacity, then we would consider

these queues to be “overflowing.”

Figure 8.18 Breaking down the debug log output lines for the send/receive queue metrics
Licensed to Mark Watson <nordickan@gmail.com>

203Addressing internal Storm buffers overflowing
8.5 Addressing internal Storm buffers overflowing
You can address internal Storm buffers overflowing in one of four primary ways. These
aren’t all-or-nothing options—you can mix and match as needed in order to address
the problem:

■ Adjust the production-to-consumption ratio
■ Increase the size of the buffer for all topologies
■ Increase the size of the buffer for a given topology
■ Set max spout pending

Let’s cover them one at a time, starting with adjusting the production-to-consumption
ratio.

8.5.1 Adjust the production-to-consumption ratio

Producing tuples slower or consuming them faster is your best option to handle buf-
fer overflows. You can decrease the parallelism of the producer or increase the par-
allelism of the consumer until the problem goes away (or becomes a different
problem!). Another option beyond tweaking parallelism is to examine your user
code in the consuming bolt (inside the execute method) and find a way to make it
go faster.

 For executor buffer-related problems, there are many reasons why tweaking paral-
lelism isn’t going to solve the problem. Stream groupings other than shuffle grouping
are liable to result in some tasks handling far more data than others, resulting in their
buffers seeing more activity than others. If the distribution is especially off, you could
end up with memory issues from adding tons of consumers to handle what is in the
end a data distribution problem.

 When dealing with an overflowing worker transfer queue, “increasing parallelism”
means adding more worker processes, thereby (hopefully) lowering the executor-to-
worker ratio and relieving pressure on the worker transfer queue. Again, however, data
distribution can rear its head. If most of the tuples are bound for tasks on the same
worker process after you add another worker process, you haven’t gained anything.

 Adjusting the production-to-consumption ratio can be difficult when you aren’t
evenly distributing tuples, and any gains you get could be lost by a change in the shape
of the incoming data. Although you might get some mileage out of adjusting the ratio,
if you aren’t relying heavily on shuffle groupings, one of our other three options is
more likely to help.

8.5.2 Increase the size of the buffer for all topologies

We’ll be honest with you: this is the cannon-to-kill-a-fly approach. The odds of every
topology needing an increased buffer size are low, and you probably don’t want to
change buffer sizes across your entire cluster. That said, maybe you have a really good
Licensed to Mark Watson <nordickan@gmail.com>

204 CHAPTER 8 Storm internals
reason. You can change the default buffer size for topologies by adjusting the follow-
ing values in your storm.yaml:

■ The default size of all executors’ incoming queue can be changed using the
value topology.executor.receive.buffer.size

■ The default size of all executors’ outgoing queue can be changed using the
value topology.executor.send.buffer.size

■ The default size of a worker process’s outgoing transfer queue can be changed
using the value topology.transfer.buffer.size

It’s important to note that any value you set the size of a disruptor queue buffer to has
to be set to a power of 2—for example, 2, 4, 8, 16, 32, and so on. This is a requirement
imposed by the LMAX disruptor.

 If changing the buffer size for all topologies isn’t the route you want to go, and you
need finer-grained control, increasing the buffer sizes for an individual topology may
be the option you want.

8.5.3 Increase the size of the buffer for a given topology

Individual topologies can override the default values of the cluster and set their own
size for any of the disruptor queues. This is done via the Config class that gets passed
into the StormSubmitter when you submit a topology. As with previous chapters,
we’ve been placing this code in a RemoteTopologyRunner class, which can be seen in
the following listing.

publc class RemoteTopologyRunner {
 public static void main(String[] args) {
 ...

 Config config = new Config();
 ...
 config.put(Config.TOPOLOGY_EXECUTOR_RECEIVE_BUFFER_SIZE,
 new Integer(16384));
 config.put(Config.TOPOLOGY_EXECUTOR_SEND_BUFFER_SIZE,
 new Integer(16384));
 config.put(Config.TOPOLOGY_TRANSFER_BUFFER_SIZE,
 new Integer(32));

 StormSubmitter.submitTopology("topology-name",
 config,
 topology);
 }
}

This brings us to our final option (one that should also be familiar): setting max
spout pending.

Listing 8.1 RemoteTopologyRunner.java with configuration for increased buffer sizes
Licensed to Mark Watson <nordickan@gmail.com>

205Tweaking buffer sizes for performance gain
8.5.4 Max spout pending

We discussed max spout pending in chapter 6. As you may recall, max spout pending
caps the number of tuples that any given spout will allow to be live in the topology at
one time. How can this help prevent buffer overflows? Let’s try some math:

■ A single spout has a max spout pending of 512.
■ The smallest disruptor has a buffer size of 1024.

512 < 1024

Assuming all your bolts don’t create more tuples than they ingest, it’s impossible to
have enough tuples in play within the topology to overflow any given buffer. The math
for this can get complicated if you have bolts that ingest a single tuple but emit a vari-
able number of tuples. Here’s a more complicated example:

■ A single spout has a max spout pending of 512.
■ The smallest disruptor has a buffer size of 1024.

One of our bolts takes in a single tuple and emits 1 to 4 tuples. That means the 512
tuples that our spout will emit at a given point in time could result in anywhere from
512 to 2048 tuples in play within our topology. Or put another way, we could have a
buffer overflow issue. Buffer overflows aside, setting a spout’s max spout pending
value is a good idea and should always be done.

 Having addressed four solutions for handling buffers overflowing, we’re going to
turn our attention to tweaking the sizes of these buffers in order to get the best perfor-
mance possible in your Storm topologies.

8.6 Tweaking buffer sizes for performance gain
Many blog posts are floating around that detail performance metrics with Storm that
are based in part on changing the sizes of internal Storm disruptor buffers. We’d be
remiss not to address this performance-tuning aspect in this chapter. But first, a caveat:
Storm has many internal components whose configuration is exposed via storm.yaml
and programmatic means. We touched on some of these in section 8.5. If you find a
setting and don’t know what it does, don’t change it. Do research first. Understand in
general what you’re changing and think through how it might impact throughput,
memory usage, and so forth. Don’t change anything until you’re able to monitor the
results of your change and can verify you got your desired result.

 Lastly, remember that Storm is a complicated system and each additional change
builds on previous ones. You might have two different configuration changes—let’s
call them A and B—that independently result in desirable performance changes but
when combined result in a degenerate change. If you applied them in the order of A
and then B, you might assume that B is a poor change. But that might not be the case.
Let’s present a hypothetical scenario to show you what we mean:

■ Change A results in 5% throughput improvement.
■ Change B results in 10% throughput improvement.
■ Change A and B result in a 2% drop in throughput.
Licensed to Mark Watson <nordickan@gmail.com>

206 CHAPTER 8 Storm internals
Ideally, you should use change B, not change A, for your best performance. Be sure to
test changes independently. Be prepared to test in both an additive fashion, applying
change B to an existing configuration that already involves A, as well as applying B to a
“stock” Storm configuration.

 All of this assumes that you need to wring every last bit of performance out of
your topology. We’ll let you in on a secret: we rarely do that. We spend enough time
to get acceptable performance in a given topology and then call it a day and move
on to other work. We suspect most of you will as well. It’s a reasonable approach,
but we still feel it’s important, if you’re ramping up your Storm usage, to learn
about the various internals and start tweaking, setting, and understanding how they
impact performance. Reading about it is one thing—experiencing it firsthand is
entirely different.

 That concludes our chapter on Storm’s internals. We hope you’ve found some
value in knowing a bit more about what happens “under the covers” with Storm’s
internal buffers, how those buffers might overflow, how to handle the overflow, and
some thoughts on how to approach performance tuning. Next we’ll switch gears and
cover a high-level abstraction for Storm: Trident.

8.7 Summary
In this chapter, you learned that

■ Executors are more than just a single thread and consist of two threads (main/
sender) along with two disruptor queues (incoming/outgoing).

■ Sending tuples between executors on the same JVM is simple and fast.
■ Worker processes have their send/transfer thread, outgoing queue, and receive

thread for handling sending tuples between JVMs.
■ Each of the internal queues (buffers) can overflow, causing performance issues

within your Storm topologies.
■ Each of the internal queues (buffers) can be configured to address any poten-

tial overflow issues.
Licensed to Mark Watson <nordickan@gmail.com>

Trident
We’ve come a long way in Storm Applied. Way back in chapter 2 we introduced
Storm’s primitive abstractions: bolts, spouts, tuples, and streams. Over the course
of the first six chapters, we dug into those primitives, covering higher-level topics
such as guaranteed message processing, stream groupings, parallelism, and so
much more. Chapter 7 provided a cookbook approach to identifying various types

This chapter covers
■ Trident and why it's useful
■ Trident operations and streams as a series

of batched tuples
■ Kafka, its design, and how it aligns

with Trident
■ Implementing a Trident topology
■ Using Storm’s distributed remote procedure

call (DRPC) functionality
■ Mapping native Storm components to Trident

operations via the Storm UI
■ Scaling a Trident topology
207

Licensed to Mark Watson <nordickan@gmail.com>

208 CHAPTER 9 Trident
of resource contention, whereas chapter 8 took you to a level of abstraction below
Storm’s primitive abstractions. Understanding all of these concepts is essential to mas-
tering Storm.

 In this chapter we’ll introduce Trident, the high-level abstraction that sits on top of
Storm’s primitives, and discuss how it allows you to express a topology in terms of the
“what” instead of the “how.” We’ll explain Trident within the context of a final use
case: an internet radio application. But rather than start with the use case as we have
in previous chapters, we’ll start by explaining Trident. Because Trident is a higher-level
abstraction, we feel understanding that abstraction before designing a solution for the
use case makes sense, as that understanding may influence the design for our internet
radio topology.

 This chapter will start with an explanation of Trident and its core operations. We’ll
then talk about how Trident handles streams as a series of batches, which is different
than native Storm topologies, and why Kafka is a perfect match for Trident topologies.
At that point we’ll break out a design for our internet radio application followed by its
associated implementation, which will include Storm’s DRPC functionality. Once we
have the implementation, we’ll discuss scaling a Trident topology. After all, Trident is
simply an abstraction that still results in a topology that must be tweaked and tuned
for maximum performance.

 Without further ado, we’ll introduce you to Trident, the abstraction that sits on top
of Storm’s primitives.

9.1 What is Trident?
Trident is an abstraction on top of Storm primitives. It allows you to express a topol-
ogy in terms of the “what” (declarative) as opposed to the “how” (imperative). To
achieve this, Trident provides operations such as joins, aggregations, groupings,
functions, and filters, along with providing primitives for doing stateful, incremental
processing on top of any database or persistence store. If you’re familiar with high-
level batch-processing tools like Pig or Cascading, the concepts of Trident will be
familiar to you.

 What does it mean to express computations using Storm in terms of what you
want to accomplish rather than how? We’ll answer this question by taking a look at
how we built the GitHub commit count topology in chapter 2 and comparing it to a
Trident version of this same topology. As you may remember from chapter 2, the
goal of the GitHub commit count topology was to read in a stream of commit mes-
sages, where each message contained an email, and keep track of the count of com-
mits for each email.

 Chapter 2 described the GitHub commit count topology in terms of how to count
commit messages per email. It was a mechanical, imperative process. The following
listing shows the code for building this topology.

Licensed to Mark Watson <nordickan@gmail.com>

209What is Trident?
TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("commit-feed-listener", new CommitFeedListener());

builder.setBolt("email-extractor", new EmailExtractor())
 .shuffleGrouping("commit-feed-listener");

builder.setBolt("email-counter", new EmailCounter())
 .fieldsGrouping("email-extractor", new Fields("email"));

Looking at how this topology is built, you can see that we B assign a spout to the
topology to listen for commit messages, c define our first bolt to extract emails from
each commit message, d tell Storm how tuples are sent between our spout and first
bolt, e define our second bolt that keeps a running count of the number of emails,
and end with f, where we tell Storm how tuples are sent between our two bolts.

 Again, this is a mechanical process, one that’s specific to “how” we’re solving the
commit count problem. The code in the listing is easy to follow because the topology
itself isn’t complicated. But that may not be the case when looking at more compli-
cated Storm topologies; understanding what’s being done at a higher level can
become difficult.

 This is where Trident helps. With its various concepts of “join,” “group,” “aggre-
gate,” and so forth, we express computations at a higher level than bolts or spouts,
making it easier to understand what’s being done. Let’s show what we mean by taking
a look at a Trident version of the GitHub commit count topology. Notice how the code
is expressed more in terms of the “what” we’re doing rather than “how” it’s being
done in the following listing.

TridentTopology topology = new TridentTopology();
TridentState commits =
 topology.newStream("spout1", spout)
 .each(new Fields("commit"), new Split(), new Fields("email"))
 .groupBy(new Fields("email"))
 .persistentAggregate(new MemoryMapState.Factory(),
 new Count(),
 new Fields("count"))
 .parallelismHint(6);

Once you understand Trident’s concepts, it’s much easier to understand our compu-
tation than if we expressed it in terms of spouts and bolts. Even without a great deal of
understanding of Trident, we can see that we B create a stream coming from a spout,
and for each entry in the stream c, we split the field commit into a number of email
field entries, group like emails together d, and persist a count of the emails e.

 If we were to come across the code in this listing, we’d have a much easier time
understanding what was going on compared to the equivalent code using the Storm

Listing 9.1 Building a GitHub commit count Storm topology

Listing 9.2 Building a GitHub commit count Trident topology

 b

 c

 d

 e

 f

 b
 c

 d

 e
Licensed to Mark Watson <nordickan@gmail.com>

210 CHAPTER 9 Trident
primitives we have so far. We’re expressing our computation at much closer to a pure
“what” level with far less “how” mixed in.

 The code in this listing touches on a few of Trident’s abstractions that help you
write code that expresses the “what” instead of the “how.” Let’s take a look at the full
range of the operations Trident provides.

9.1.1 The different types of Trident operations

We have a vague idea of what it means to use Trident to express our code in terms of
the “what” instead of the “how.” In the code in the previous section, we had a Trident
spout emit a stream to be transformed by a series of Trident operations. The combina-
tion of these operations adds up to form a Trident topology.

 This sounds similar to a Storm topology built on top of Storm’s primitives
(spouts and bolts), except that we’ve replaced a Storm spout with a Trident spout
and Storm bolts with Trident operations. This intuition isn’t true. It’s important to
understand that Trident operations don’t directly map to Storm primitives. In a
native Storm topology, you write your code within a bolt that performs your opera-
tion(s). You’re given a unit of execution that’s a bolt and you’re afforded the free-
dom to do whatever you see fit within that. But with Trident, you don’t have that
flexibility. You’re provided with a series of stock operations and need to figure out
how to map your problem onto one or more of these stock operations, most likely
chaining them together.

 Many different Trident operations are available that you can use to implement
your functionality. From a high level, they can be listed as follows:

■ Functions—Operate on an incoming tuple and emit one or more correspond-
ing tuples.

■ Filters—Decide to keep or filter out an incoming tuple from the stream.
■ Splits—Splitting a stream will result in multiple streams with the same data

and fields.
■ Merges—Streams can be merged only if they have the same fields (same field

names and same number of fields).
■ Joins—Joining is for different streams with mostly different fields, except for

one or more common field(s) to join on (similar to a SQL join).
■ Grouping—Group by specific field(s) within a partition (more on partitions later).
■ Aggregation—Perform calculations for aggregating sets of tuples.
■ State updater—Persist tuples or calculated values to a datastore.
■ State querying—Query a datastore.
■ Repartitioning—Repartition the stream by hashing on specific field(s) (similar

to a fields grouping) or in a random manner (similar to a shuffle grouping).
Repartitioning by hashing on some specific field(s) is different from grouping
in that repartitioning happens across all partitions whereas grouping happens
within a single partition.
Licensed to Mark Watson <nordickan@gmail.com>

211What is Trident?
Representing your problem as a series of these operations allows you to think and rea-
son at a much higher level than what the native Storm primitives allow. It also makes
the Trident API for wiring in these different operations together feel much like a
domain-specific language (DSL). For example, let’s say you have a step where you
need to save your calculated results to a datastore. At that step, you’d wire in a state
updater operation. Whether that state updater operation is writing to Cassandra, Elas-
ticsearch, or Redis is completely irrelevant. In fact, you can have a state updater oper-
ation that writes to Redis and share that among different Trident topologies.

 Hopefully you’re starting to gain an understanding of the types of abstractions Tri-
dent provides. Don’t worry about how these various operations are implemented right
now. We’ll cover that soon when we dig into the design and implementation of our
internet radio topology. But before we get into designing that topology, we need to
cover one more topic: how Trident handles streams. This is fundamentally different
from how a native Storm topology handles streams and will influence the design of
our internet radio topology.

9.1.2 Trident streams as a series of batches

One fundamental difference between a Trident topology and a native Storm topol-
ogy is that within a Trident topology, streams are handled as batches of tuples,
whereas in a native Storm topology, streams are handled as a series of individual
tuples. This means that each Trident operation processes a batch of tuples whereas
each native Storm bolt executes on a single tuple. Figure 9.1 provides an illustration
of this.

Tuples are emitted and

handled one at a time.

Stream in a native Storm topology

Spout Bolt

Tuples are emitted and

handled in batches.

Stream in a Trident topology

Spout Operation

[name="value"]

[name="value"]
[name="value"]
[name="value"]

[name="value"]
[name="value"]

Figure 9.1 Trident topologies
operate on streams of batches
of tuples whereas native Storm
topologies operate on streams
of individual tuples.
Licensed to Mark Watson <nordickan@gmail.com>

212 CHAPTER 9 Trident
Because Trident handles streams as batches of tuples, it falls under the category of
micro-batching tools discussed in chapter 1. As you’ll recall from that chapter, micro-
batching is a hybrid between batch processing and stream processing.

 This fundamental difference in how Trident treats streams as a series of batches is
why there are operations and not bolts in Trident. We think in terms of the stream and
the series of operations we can apply to that stream. The operations discussed in sec-
tion 9.1.1 will modify either the tuples that flow within the stream or the stream itself.
In order to understand Trident, you must understand both streams and operations
within Trident.

 Next we’ll discuss a message queue implementation that’s well suited for use with
Trident. It matches Trident’s needs so closely that it’s bundled with Storm to be used
with Trident topologies.

9.2 Kafka and its role with Trident
Storm maintains a unique relationship with Apache Kafka when it comes to message
queues that serve as a source of input. That’s not to say that other message queue
technologies can’t be used. We’ve been careful throughout the book to point out how
Storm can be used with a number of different technologies, such as RabbitMQ and
Kestrel. What sets Kafka apart from other message broker implementations? It boils
down to the core architectural decisions made during the creation of Kafka. To help
you understand what makes Kafka such a good fit with Trident, we’re going to briefly
discuss Kafka’s design and then talk about what characteristics of this design align well
with Trident.

9.2.1 Breaking down Kafka’s design
This section will briefly dive into Kafka’s design, but only as far as is necessary for you
to understand why it’s relevant to Storm and Trident.

NOTE We use some standard Kafka terminology throughout this chapter.
Two of the terms more commonly used are 1) topic, which is a feed of mes-
sages for a particular category and 2) broker, which is a server/node that’s usu-
ally one of many running in a Kafka cluster.

The Kafka website describes itself in two ways, both of which serve as clues to why the
design fits well with Trident:

■ It’s a publish-subscribe message broker, rethought as a distributed commit log.
■ It’s a distributed, partitioned, replicated commit log service that provides the

functionality of a messaging system, but with a unique design.

Let’s talk about each of these, because understanding these basic design decisions will
help you see how Kafka aligns with Trident.

PARTITIONING FOR DISTRIBUTING A KAFKA TOPIC

When a message producer writes to a Kafka topic, it writes a given message to a partic-
ular partition of that topic. A partition is an ordered, immutable sequence of messages
Licensed to Mark Watson <nordickan@gmail.com>

213Kafka and its role with Trident
that’s continually being appended to. A topic can have multiple partitions, and these
partitions can be distributed across multiple Kafka brokers. A message consumer will
read from each partition in order to see the entire topic. Figure 9.2 illustrates a single
topic distributed across multiple partitions.

 By partitioning a topic, Kafka gains the ability to scale a single topic beyond a sin-
gle broker (node) for both reads and writes. Each of the partitions can additionally be
replicated to provide resiliency. This means that if you have n replicas for a partition,
you can lose up to n – 1 replicas without suffering any data loss.

 Having multiple partitions and being able to scale those partitions are important
concepts to grasp when it comes to Trident. As you’ll see later in this chapter, this
maps well with how a Trident topology reads data from a stream. But before we get
ahead of ourselves, we should elaborate a bit more on how Kafka stores messages.

MODELING STORAGE AS A COMMIT LOG

The storage model Kafka uses for messages within a topic yields many advantages—
in both terms of performance and functional characteristics. We know from the pre-
vious section that a partition is an ordered, immutable sequence of messages on the
filesystem. This represents a commit log. Each message within the partition is assigned
a sequential identifier, called an offset, which marks where in the commit log each
message is stored.

 Kafka also maintains an ordering of messages within a partition, so strong ordering
is guaranteed when a single consumer is reading from the partition. A message con-
sumer reading from a particular partition will then maintain its own reference to its

Broker node 1

Partition 1

Each ispartition

an ordered, immutable

sequence of messages

that is continually

appended to.

The entire consiststopic

of multiple partitions, each

of which is running on a

separate broker.

Broker node 2

Partition 2

Broker node 3

Partition 3

Figure 9.2 Distribution of a Kafka topic as group of partitions on many Kafka brokers
Licensed to Mark Watson <nordickan@gmail.com>

214 CHAPTER 9 Trident
current position, known as that consumer’s offset into the commit log. Figure 9.3 illus-
trates offsets for multiple partitions.

 Kafka doesn’t discard messages after a consumer advances its offset; they’re kept in
the log for a configured time period (such as 24 hours or 7 days). Once that time
interval elapses, Kafka will compact the log and purge any older entries.

 You should now have a general idea of how Kafka’s design works. A topic serves
as a feed of messages for a particular category. This topic can then be broken into
multiple partitions, which are immutable, ordered sequences of messages. These
partitions can each be distributed across different brokers in the Kafka cluster. We’ll
now elaborate on some of the advantages of this design in terms of both functional-
ity and performance.

THE FUNCTIONAL AND PERFORMANCE ADVANTAGES OF KAFKA’S DESIGN

The functional advantages of this design include the following:

■ Because messages aren’t discarded immediately and the consumer decides
when or when not to advance its offset into the commit log, it’s easy to replay
any messages from Kafka.

■ Similarly, if your consumers fall behind for a long time and it no longer makes
sense to consume those queued messages due to some consume-by-deadline
requirements, it makes it easy to advance the offset by a large number into a
new read position to skip all the expired messages.

Broker node 1

0 1 2 3 4 5 6 7 8 9 Partition 1

Entire topic

Offset for partition 1

Broker node 2

Partition 2

Broker node 3

Partition 3

0 1 2 3 4 5 6 7 8 9

Offset for partition 2

0 1 2 3 4 5 6 7 8 9

Offset for partition 3

Figure 9.3 A partition contains an immutable, ordered sequence of
messages, where the consumers reading these messages maintain offsets
for their read positions.
Licensed to Mark Watson <nordickan@gmail.com>

215Kafka and its role with Trident
■ If your consumer acts on messages in batches and needs to complete the batch
all at once or not at all, this can be accomplished by advancing the offset for a
batch of sequential messages from a partition in one go.

■ If you have different applications that need to subscribe to the same messages
from a topic, consumers can easily read these different applications from that
topic’s same set of partitions. This is facilitated because a message isn’t dis-
carded after one consumer is done with it but rather the consumer controls its
own offset into the commit log.

■ On the other hand, if you want to ensure that only a single consumer consumes
each message, you can do so by pinning a single consumer instance to a partic-
ular partition of a topic.

The performance advantages include the following:

■ Whether your message bus ends up being bottlenecked by the message producer
or the message consumer, that bottleneck can be easily addressed by increasing
the number of partitions.

■ The sequential and immutable nature of the commit log along with the sequen-
tial nature of the consumer’s offset advancement pattern (in most cases) buys
us many performance advancements:
– Disk access is often expensive but in most cases this is due to the random

access nature that’s common among most applications. Because Kafka is
designed from the ground up to make use of sequential access to data in the
filesystem, modern operating systems will make efficient use of that by way of
read-ahead caches and write-behind caching to give you large strides in per-
formance improvements.

– Kafka makes excellent use of the OS disk cache. This allows Kafka to sidestep
maintaining expensive caches in-process and not subject itself to garbage col-
lection pressure.

We have a decent picture of Kafka’s general design along with the advantages, both
functional and performance-related, that this design provides. It’s time to identify
how Kafka aligns with Trident, making it such a great choice for Trident that it now
comes bundled with Storm.

9.2.2 Kafka’s alignment with Trident

You’re probably able to imagine how wonderfully Storm would benefit from both the
functional and performance advantages of Kafka. Kafka provides a performance
advantage that’s an order of magnitude over its competition. For that reason alone,
Kafka is the message bus of choice for native Storm. But when used with Trident, it’s
clear why it’s such a good choice as the messaging implementation:

■ Because Trident performs micro-batching within a stream, it relies on being
able to manage a batch of tuples atomically. By allowing Trident to advance its
consumer offset, Kafka supports this functionality.
Licensed to Mark Watson <nordickan@gmail.com>

216 CHAPTER 9 Trident
■ Messages aren’t discarded, so by rewinding the offset, you can replay messages
from any point in time (up to Kafka’s log expiry time interval). This allows
Kafka to behave as a reliable data source on which you can build a reliable
spout, both for Trident and native Storm.

■ As we’ll see later, Trident can use Kafka partitions to serve as a primary means of
parallelism within a Trident topology.

■ A Storm spout implemented for Kafka can maintain its consumer offsets for the
different partitions in Zookeeper, so when your Storm or Trident topology is
restarted or redeployed, you can continue processing from the place where you
left off.

Let’s pause for a moment and see what we’ve covered so far. By now, you should
understand the following:

■ Trident provides an abstraction on top of Storm’s primitives, allowing you to
write code that expresses “what” is being done rather than “how” to do it.

■ Trident streams are handled as a series of batches of tuples rather than individ-
ual tuples, one at a time.

■ Trident has operations, instead of bolts, that you apply to streams. These opera-
tions include functions, filters, splits, merges, joins, grouping, aggregation, state
updater, state querying, and repartitioning.

■ Kafka is the ideal queuing implementation for Trident topologies.

We’re finally ready to dive into our use case and apply all of these Trident principles
to our design and implementation. As we go through the use case, try to keep in
mind Trident’s operations and how it handles streams, because this will help steer
our design.

9.3 Problem definition: Internet radio
Let’s say we want to start an internet radio company. We want to be conscientious
about paying fair royalties to artists for their music that gets streamed through our
internet radio platform. To do this, we decide to keep track of play counts for individ-
ual songs by artist. These counts can later be queried for use within reporting and for
assigning royalties. In addition to paying royalties, we’re fairly ambitious and want to
be able to query/report on the types of music our users prefer in order to provide
them with the best possible experience when using our application.

 Our users will be listening to our internet radio on various devices and on the web.
These applications will collect “play logs” and send that information to us to be streamed
into our topology from our Trident spout.

 With this problem definition in hand, let’s take a look at the starting and ending
data points, much like we’ve done in previous chapters.
Licensed to Mark Watson <nordickan@gmail.com>

217Implementing the internet radio design as a Trident topology
9.3.1 Defining the data points
For our scenario, each play log will be streamed into our topology as JSON containing
the artist, the title of the song, and a list of tags relevant to the song. The next listing
provides an example of a single play log.

{
 "artist": "The Clash",
 "title": "Clampdown",
 "tags": ["Punk","1979"]
}

The play log JSON gives us a starting point for our data. We want to persist three differ-
ent types of counts: counts by artist, by title, and by tag. Trident provides a Trident-
State class that we’ll use for this. We’ll get more into TridentState later—what’s
important now is that you understand the data we start with and where we want to
end up.

 With the data defined, the next step is to define the series of steps we need to go
from a feed of play logs to the counts stored in TridentState instances.

9.3.2 Breaking down the problem into a series of steps

We’ve established that we’ll start with a play log and end with counts for artist, title,
and tag. In forming a conceptual solution, we need to identify all the steps between
our start and end.

 Remember earlier when we said to keep in mind the various Trident operations
when discussing the design for our use case? This is where we’ll look at those opera-
tions and see which make sense in our scenario. We end up with the following:

1 A spout that emits a Trident stream. Remember that a Trident stream consists of
batches of tuples as opposed to individual tuples.

2 A function that deserializes (splits) incoming play logs into tuple batches for
artist, title, and tag.

3 Separate functions to count each of the artists, titles, and tags respectively.
4 Trident state to persist the counts by artist, title, and tag, respectively.

These steps are illustrated in figure 9.4, which illustrates our design goal. Next we
need to implement the code for the Trident operations that we’ll apply to the stream
of tuple batches containing play logs.

9.4 Implementing the internet radio design
as a Trident topology
At this point, we’re ready to implement a Trident topology that meets our design goal
established in figure 9.4. You’ll notice as we start to go through the implementation
that much of the code for our topology is handled within the topology builder class

Listing 9.3 Sample play log entry for the stream of play logs
Licensed to Mark Watson <nordickan@gmail.com>

218 CHAPTER 9 Trident
(TopologyBuilder). Although we do implement some functions for the operations
used, the TopologyBuilder is where you’ll see the code expressed in terms of the
“what” rather than the “how.”

 Let’s start with the spout for our topology. Fortunately for us, Storm comes with a
built-in spout implementation that we can use, saving ourselves some time.

[play-log={"artist":"The Clash",
"title":"Clampdown",
"tags":["Punk","1979"]}]

{
"artist":"The Clash",
"title":"Clampdown",
"tags":["Punk","1979"]

}

Deserialize

play log

Read

play

log from

stream

Update

count by

title

[title="Clampdown"]

Update

count by

tag

[tag="Punk"]

Update

count by

artist

[artist="The Clash"]

[title-count=34] [tag-count=2313]

Persist

updated

count by

artist

Persist

updated

count by

title

Persist

updated

count by

tag

[artist-count=103]

Figure 9.4 Trident topology for internet radio application
Licensed to Mark Watson <nordickan@gmail.com>

219Implementing the internet radio design as a Trident topology
9.4.1 Implementing the spout with a Trident Kafka spout

We’ll use the Trident Kafka spout that comes with the official Storm distribution. Fig-
ure 9.5 shows where this Trident Kafka spout will be used in the topology.

 Although the implementation details of this spout are outside the scope of this
chapter, we’ll show you the code for wiring up this spout in the TopologyBuilder class
in the next listing.

public TopologyBuilder {
 public StormTopology build() {
 TridentTopology topology = new TridentTopology();
 topology.newStream("play-spout", buildSpout());
 return topology.build();
 }

 private TransactionalTridentKafkaSpout buildSpout() {
 BrokerHosts zk = new ZkHosts("localhost");
 TridentKafkaConfig spoutConf = new TridentKafkaConfig(zk, "play-log");
 spoutConf.scheme = new SchemeAsMultiScheme(new StringScheme());
 return new TransactionalTridentKafkaSpout(spoutConf);
 }
}

Listing 9.4 Wiring up a TransactionalTridentKafkaSpout in the
TopologyBuilder

[play-log={"artist":"The Clash",
"title":"Clampdown",
"tags":["Punk","1979"]}]

{
"artist":"The Clash",
"title":"Clampdown",
"tags":["Punk","1979"]

}

Read

play

log from

stream

Figure 9.5 The Trident Kafka spout will be used for handling incoming play logs.

Instantiate the
TridentTopology.

Create a new stream
named play-spout and
attach the Kafka spout
instance.

Turn the
Trident-

Topology
into a

Storm-
Topology.

ZkHosts is used to configure the Zookeeper that Kafka is
connected to. This spout will query that to dynamically

determine the partition information for this Kafka topic.

Specify the ZkHosts
and Kafka topic
name.

Define StringScheme to deserialize a
Kafka message into a String.

Use the transactional Trident
spout, which provides reliability.
Licensed to Mark Watson <nordickan@gmail.com>

220 CHAPTER 9 Trident
We now have a spout implementation that will emit batches of play logs. The next step
is to implement our first operation that will take the JSON for each tuple in the batch
and transform that JSON into separate tuple batches for artist, title, and tags.

9.4.2 Deserializing the play log and creating separate streams
for each of the fields

The next step to implement in the design is to take the batches of incoming play-log
tuples and emit batches of tuples for each of the fields we’re interested in counting:
artist, title, and tag. Figure 9.6 illustrates the batches of input tuples, our operation,
and batches of output tuples, with each batch being emitted on a separate stream.

 Looking at the figure, you can see we need to do two things: 1) convert the JSON into
separate tuples for the artist, title, and tags fields, and 2) create a separate stream for
each of those fields. For the first task, we’re going to take a look at the each operation.

 Trident provides an each operation that can be applied to each tuple, one at a
time. The each operation can be used with a function or a filter. In our scenario, an
each function seems like the appropriate choice, because we’re transforming the
JSON into Trident tuples for artist, title, and tag. If we needed to filter out any data for
some reason, then a filter would be a more appropriate choice.

IMPLEMENTING AN EACH FUNCTION

A function takes in a set of input fields and emits zero or more tuples. If it doesn’t
emit anything, the original tuple is filtered out. When using an each function, the

[play-log={"artist":"The Clash",
"title":"Clampdown",
"tags":["Punk","1979"]}]

Deserialize

play log

[title="Clampdown"] [tag="Punk"][artist="The Clash"]

Batches of input tuples,

each with a play-log
field containing JSON

Batches of output tuples for each field we

are interested in counting, with the batches for

each field being emitted to a separate stream

Figure 9.6 Operation for deserializing JSON into Trident tuples for each of the artist, title, and
tags fields
Licensed to Mark Watson <nordickan@gmail.com>

221Implementing the internet radio design as a Trident topology

T
o

ap
the

ll

s

ple
olt
ple
ple

t

t
t

n

m

Bu
a

ring
ing

e

t

e.
fields of the output tuple are appended to the input tuple. The following listing pro-
vides the code for implementing an each function for our topology.

public TopologyBuilder {
 public StormTopology build() {
 TridentTopology topology = new TridentTopology();

 Stream playStream = topology.newStream("play-spout", buildSpout())
 .each(
 new Fields("play-log"),
 new LogDeserializer(),
 new Fields("artist", "title", "tags")
);

 return topology.build();
 }

 ...
}

The new stream will contain the fields play-log, artist, title, and tags. The each
function LogDeserializer is built by providing an implementation for the Base-
Function abstract class, and will deserialize the input tuple with a JSON string into the
required output. Implementing a BaseFunction is similar to implementing a Base-
BasicBolt in native Storm. The following listing shows the implementation.

public class LogDeserializer extends BaseFunction {
 private transient Gson gson;

 @Override
 public void execute(TridentTuple tuple,
 TridentCollector collector) {
 String logLine = tuple.getString(0);
 LogEntry logEntry = gson.fromJson(logLine, LogEntry.class);
 collector.emit(new Values(logEntry.getArtist(),
 logEntry.getTitle(),
 logEntry.getTags()));
 }

 @Override
 public void prepare(Map config,
 TridentOperationContext context) {
 gson = new Gson();
 }

Listing 9.5 TopologyBuilder.java with an each function for deserializing
the play logs

Listing 9.6 LogDeserializer.java

he each
peration
is being
plied to
 stream
emitted

from the
spout.

Select the fields from the tuple that will
be sent to the each function. In this

case, we’re sending all fields within the
stream (play-log is the only field).

LogDeserializer is the
each function that wi
run on all tuples from
the stream.

The fields on output tuple
from the LogDeserializer
are named.

After the each operation, you have a
newly transformed stream with this
operation applied that you can tack

on another operation to.

The execute method takes in a tu
and collector just like BaseBasicB
but in this case they are TridentTu
and TridentCollector instead of Tu
and BasicOutputCollector.

Look up
he input

fields
into this
function.
Observe
hat only
he input

fields
amed in
the each
ethod in
Topology
ilder are
ccessible

here.

Deserialize a st
into a POJO us
Google GSON.

Emit the fields that wer
deserialized using
TridentCollector. Within
a function, you can emi
zero or more tuples for
the input tuple. In this
case, we’re emitting on
Licensed to Mark Watson <nordickan@gmail.com>

222 CHAPTER 9 Trident
 @Override
 public void cleanup() { }

 public static class LogEntry {
 private String artist;
 private String title;
 private List<String> tags = new ArrayList<>();

 public String getArtist() { return artist; }
 public void setArtist(String artist) { this.artist = artist; }

 public String getTitle() { return title; }
 public void setTitle(String title) { this.title = title; }

 public List<String> getTags() { return tags; }
 public void setTags(List<String> tags) { this.tags = tags; }
 }
}

As we mentioned earlier, we must do two things: 1) convert the JSON into separate
tuples, which we’ve now done, and 2) create a separate stream for each of those fields.
Let’s take a look at that second task next.

SPLITTING A STREAM AND GROUPING THE FIELDS

If we were to end our implementation right now, we’d have a single stream containing
batches of tuples with four values. This is because of the following in LogDeserializer:

collector.emit(new Values(logEntry.getArtist(),
 logEntry.getTitle(),
 logEntry.getTags()));

Figure 9.7 illustrates where we currently are versus where we want to be.

Projections
When you define an each function as stream.each(inputFields, function, output-
Fields), only a subset of fields (represented by inputFields) from the original stream
is sent into the function (the rest become inaccessible within the function). This is
called projection. Projections make it extremely easy to avoid issues that people com-
monly encounter with having sent unnecessary fields into a function.

You can also use the project(..) method on the stream to remove any unnecessary
fields that are hanging around after an operation. In our case we have the play-log field
as part of the stream after the LogDeserializer operation and we don’t need the
original JSON anymore. It’s better to get rid of it; keeping unnecessary data in mem-
ory will affect efficiency (particularly in Trident because we’re treating a stream as a
series of batches and that involves keeping more data in memory within a JVM than
a regular Storm topology):

playStream = playStream.project(new Fields("artist", "title", "tags"));
Licensed to Mark Watson <nordickan@gmail.com>

223Implementing the internet radio design as a Trident topology

er
r,

le
e
Fortunately for us, splitting a stream is easy. We hold multiple references for the
stream from the split origination point and then continue to apply different Trident
operations to those references, as shown in the next listing.

public StormTopology buildTopology() {
 TridentTopology topology = new TridentTopology();

 Stream playStream =
 topology.newStream("play-spout", buildSpout())
 .each(new Fields("play-log"),
 new LogDeserializer(),
 new Fields("artist", "title", "tags"))
 .each(new Fields("artist", "title"),
 new Sanitizer(new Fields("artist", "title")));

 Stream countByTitleStream = playStream;

 Stream countByArtistStream = playStream;

 Stream countByTagStream = playStream;

 return topology.build();
 }

Listing 9.7 Splitting the stream originating from LogDeserializer into three
separate streams

Deserialize

play log

Deserialize

play log

[title="Clampdown"] [tag="Punk"][artist="The Clash"]

We currently have a single

stream where each tuple in the

batch has multiple fields.

We want multiple streams,

where each tuple in the respective

batch has a single field.

[artist="The Clash",
title="Clampdown",
tags=["Punk","1979"]]

Figure 9.7 We want to move from a stream with tuples containing multiple values to multiple
streams with tuples containing single values.

We have added a filt
here, called Sanitize
that filters out any
garbage artist or tit
values. See the sourc
code for this filter’s
implementation.

By holding references to the same split
point, playStream, in different stream
variables, you can continue to apply
different operations to each of them
starting at the same point going forward.
Licensed to Mark Watson <nordickan@gmail.com>

224 CHAPTER 9 Trident

ex

ex
We have code for creating separate streams, but there isn’t anything to those streams.
They’re just references to the originating playStream. We need to associate each of
those streams with the fields we’re interested in splitting on. This is where grouping
the tuples by field name comes into play.

GROUPING TUPLES BY FIELD NAME

Trident provides a groupBy operation we can use for grouping together tuples with
the same field name. A groupBy operation first repartitions the stream so that tuples
with the same selected field values fall within the same partition. Within each parti-
tion, it then groups the tuples together whose group fields are equal. The code for
performing these groupBy operations is in the next listing.

public StormTopology buildTopology() {
 TridentTopology topology = new TridentTopology();

 Stream playStream =
 topology.newStream("play-spout", buildSpout())
 .each(new Fields("play-log"),
 new LogDeserializer(),
 new Fields("artist", "title", "tags"))
 .each(new Fields("artist", "title"),
 new Sanitizer(new Fields("artist", "title")));

 GroupedStream countByTitleStream = playStream
 .project(new Fields("artist"))
 .groupBy(new Fields("artist"));

 GroupedStream countByArtistStream = playStream
 .project(new Fields("title"))
 .groupBy(new Fields("title"));

 GroupedStream countByTagStream = playStream
 .each(new Fields("tags"),
 new ListSplitter(),
 new Fields("tag"))
 .project(new Fields("tag"))
 .groupBy(new Fields("tag"));

 return topology.build();
}

ListSplitter is an each function implemented in a similar manner to LogDeserializer.
The difference is that ListSplitter splits the tags list into individual tag tuples.

 Now that we’ve split the streams and performed a grouping on each of the artist,
title, and tag fields, we’re ready to calculate the counts for each of these fields.

9.4.3 Calculating and persisting the counts for artist, title, and tag

The next step is to aggregate the artist, title, and tag tuples in order to calcu-
late the counts for each. Figure 9.8 provides a reminder of where we are in the
topology design.

Listing 9.8 Grouping by artist, title, and tag in the three split streams

Drop all fields
except artist.

Group by the
artist field.Drop all

fields
cept title.

Group by the
title field.

Because tags is a
List<String>, use an
each function to split
that list into multiple
tuples and name it tag.

Drop all
fields

cept tag. Group by
the tag field.
Licensed to Mark Watson <nordickan@gmail.com>

225Implementing the internet radio design as a Trident topology
According to figure 9.8, there are basically two steps here: 1) aggregate the tuples by
value for each stream to perform the counts, and 2) persist the counts. Let’s start
by looking at three different ways to aggregate tuples and identify the one that’s best
for our scenario.

CHOOSING AN AGGREGATOR IMPLEMENTATION FOR PERFORMING THE COUNTS

There are three ways to aggregate tuples, each with its own interface for defining how
it should be implemented:

1 CombinerAggregator
public interface CombinerAggregator<T> extends Serializable {
 T init(TridentTuple tuple);
 T combine(T val1, T val2);
 T zero();
}

A CombinerAggregator calls the init B method for each tuple, and then uses
the combine c method to combine each tuple’s init value and returns a result.
If there are no tuples to aggregate, it returns the zero d value.

2 ReducerAggregator
public interface ReducerAggregator<T> extends Serializable {
 T init();
 T reduce(T curr, TridentTuple tuple);
}

A ReducerAggregator calls the init method B just once for the aggregation,
and then calls reduce c with each tuple and current value.

Update

count by

title

[title="Clampdown"]

Update

count by

tag

[tag="Punk"]

Update

count by

artist

[artist="The Clash"]

[title-count=34] [tag-count=2313]

Persist

updated

count by

artist

Persist

updated

count by

title

Persist

updated

count by

tag

[artist-count=103]

Figure 9.8 Counting each of the artist, title, and tag values and persisting those
values to a store

 b
 c

 d

 b
 c
Licensed to Mark Watson <nordickan@gmail.com>

226 CHAPTER 9 Trident
3 Aggregator
public interface Aggregator<T> extends Operation {
 T init(Object batchId, TridentCollector collector);
 void aggregate(T state, TridentTuple tuple, TridentCollector collector);
 void complete(T state, TridentCollector collector);
}

An Aggregator is a more low-level abstraction interface for implementing
more complex aggregations. Please refer to the Storm documentation for
more information.

The majority of the time, you’ll use CombinerAggregator or ReducerAggregator. If
the initial value for the entire aggregation isn’t dependent on any single tuple, then
you’ll have to use ReducerAggregator. Otherwise, we suggest CombinerAggregator
because it’s more performant.

For our scenario, let’s use a built-in aggregator called Count that implements Combiner-
Aggregator. This is a simple implementation that will allow us to count artists, titles,
and tags within our groupings. The next listing shows the implementation for Count.

public class Count implements CombinerAggregator<Long> {
 @Override
 public Long init(TridentTuple tuple) { return 1L; }

 @Override
 public Long combine(Long val1, Long val2) { return val1 + val2; }

 @Override
 public Long zero() { return 0L; }
}

Benefits of CombinerAggregator over ReducerAggregator
When you’re running an aggregate operation with a ReducerAggregator- or an
Aggregator-based implementation, a repartitioning of the stream takes place so
that all partitions are collapsed into one and the aggregation takes place on that one
partition. But if you use a CombinerAggregator-based implementation (as we do
with Count), Trident will perform partial aggregations on the current partitions and
then repartition the stream into one stream and complete aggregation by further
aggregating the partially aggregated tuples. This is far more efficient because fewer
tuples have to cross the wire during the repartition. CombinerAggregator should
always be preferred because of this reason; the only time you’ll have to resort to
ReducerAggregator is when you need to seed an aggregation with an initial value
independent of the tuples.

Listing 9.9 Built-in Count.java that implements CombinerAggregator.java

Aggregated
result data
type is a Long

For each tuple, pick the value from the tuple to be used in the
aggregation. We’re just counting tuples, so it’s always one.
Storm also comes with a built-in SumCombinerAggregator that
gets the value within the tuple ((Number) tuple.getValue(0)).

Aggregates two
values together.

This will be called
for each respective
tuple and current

count value.

If there are
zero tuples to
aggregate, use
this value.
Licensed to Mark Watson <nordickan@gmail.com>

227Implementing the internet radio design as a Trident topology
We know that we’ll be using the Count class to perform the actual counts, but we still
need to wire up Count instances somewhere in our TopologyBuilder. Let’s look at var-
ious ways to do this next.

CHOOSING AN AGGREGATE OPERATION TO WORK WITH OUR AGGREGATOR IMPLEMENTATION

Trident provides three ways to use an aggregator with a stream:

■ partitionAggregate—This operation takes on the single responsibility of aggre-
gating tuples and works only within a single partition. This operation results
in a Stream containing the aggregate result tuple(s). The code for setting up
partitionAggregate is as follows:

Stream aggregated = stream.partitionAggregate(new Count(),
 new Fields("output"));

■ aggregate—This operation takes on the single responsibility of aggregating
tuples and works across all partitions within a single batch of tuples. The opera-
tion results in a Stream containing the aggregate result tuple(s). The code for
setting up aggregate is as follows:

Stream aggregated = stream.aggregate(new Count(),
 new Fields("output"));

■ persistentAggregate—This operation applies across multiple batches and takes
on the dual responsibility of aggregating the tuples and persisting the results. It
will persist the aggregated results to a datastore managed by a <state-factory>.
A state factory is Trident’s abstraction for working with a datastore. Because it
works with state, persistentAggregate can work across batches. It does this by
aggregating the current batch from the stream and then aggregating that value
with the current value in the datastore. This operation results in a Trident-
State that can be queried against. The code for setting up persistentAggregate
is as follows:

TridentState aggregated = stream.persistentAggregate(<state-factory>,
 new Count(),
 new Fields("output"));

In this list, the Count aggregator could be replaced with any CombinerAggregator,
ReducerAggregator, or Aggregator implementation.

 Which of these aggregation operations best suits our needs? Let’s start with
partitionAggregate. We know that partitionAggregate works within a single parti-
tion, so we must figure out if we need to aggregate within a single partition. We’ve
already applied a groupBy operation to group tuples by a field (artist, title, and tag) and
then count the number of tuples within that group across the entire batch. This means
we’re going across partitions, making partitionAggregate not the choice for us.

 Next up is aggregate. The aggregate operation works across all partitions within a
batch of tuples, which is what we need. But if we decide to use aggregate, we’ll need
to apply another operation to persist the aggregated results. So aggregate can work if
Licensed to Mark Watson <nordickan@gmail.com>

228 CHAPTER 9 Trident
we decide to take on additional work and build more that allows us to aggregate
across batches and persist the results.

 We have a feeling there’s a better choice for our scenario, which brings us to
persistentAggregate. The name alone gives us the feeling that it might be the oper-
ation we need. We need to both aggregate counts and then persist those aggregated
results. Because persistentAggregate works with state and thus works across batches,
it feels like the perfect choice for our scenario. In addition, persistentAggregate
leaves us with a TridentState object that can be queried against, making it easy for us
to build the various reports we discussed earlier in the problem definition.

 We’ve settled on persistentAggregate for our solution, but there’s one last
piece we need to define before we’re done. Let’s look at the code for persistent-
Aggregate again:

TridentState aggregated = stream.persistentAggregate(<state-factory>,
 new Count(),
 new Fields("output"));

We still need a <state-factory>, which we’ll discuss next.

WORKING WITH STATE

We need an implementation of StateFactory when dealing with state in Trident. This
StateFactory serves as an abstraction that knows both how to query and update a
datastore. For our scenario, we’re going to choose MemoryMapState.Factory, which is
bundled with Trident. MemoryMapState.Factory works with an in-memory Map and
will serve our needs fine for now. The code for wiring up this factory can be seen in
the following listing.

public class TopologyBuilder {
 public StormTopology buildTopology() {
 TridentTopology topology = new TridentTopology();

 Stream playStream =
 topology.newStream("play-spout", buildSpout())
 .each(new Fields("play-log"),
 new LogDeserializer(),
 new Fields("artist", "title", "tags"))
 .each(new Fields("artist", "title"),
 new Sanitizer(new Fields("artist", "title")));

 TridentState countsByTitle =
 playStream
 .project(new Fields("artist"))
 .groupBy(new Fields("artist"))
 .persistentAggregate(new MemoryMapState.Factory(),
 new Count(),
 new Fields("artist-count"));

Listing 9.10 Using a persistentAggregate operation to update/persist counts
in TopologyBuilder.java

Applying
persistentAggregate
operation to the
GroupedStream with
a Count Combiner-
Aggregator using a
MemoryMapState.Factory
gives us a TridentState.
Licensed to Mark Watson <nordickan@gmail.com>

229Accessing the persisted counts through DRPC
 TridentState countsByArtist =
 playStream
 .project(new Fields("title"))
 .groupBy(new Fields("title"))
 .persistentAggregate(new MemoryMapState.Factory(),
 new Count(),
 new Fields("title-count"));

 TridentState countsByTag =
 playStream
 .each(new Fields("tags"),
 new ListSplitter(),
 new Fields("tag"))
 .project(new Fields("tag"))
 .groupBy(new Fields("tag"))
 .persistentAggregate(new MemoryMapState.Factory(),
 new Count(),
 new Fields("tag-count"));

 return topology.build();
 }
}

That brings the basic implementation of our Trident topology to a close. We’re now at
a place where we have in-memory counts for all of the fields we’re interested in:
artist, title, and tag. We’re done now; ready to move on, right? Well, not quite.
We’d hate to leave you hanging with these in-memory counts that you have no way of
accessing. Let’s look at a way to implement access to these counts. It will come in the
form of Storm’s DRPC functionality.

9.5 Accessing the persisted counts through DRPC
Now that we have TridentState objects with counts by artist, title, and tag, we can
query these state objects to build the reports we need. We want our reporting applica-
tion to be external to Storm, so this reporting application needs to be able to query
this topology to get the data it needs. We’ll make use of distributed remote procedure
calls (DRPC) for this purpose.

 In Storm DRPC, the client will invoke a DRPC request with a Storm DRPC server,
which will coordinate the request by sending it to the corresponding Storm topology
and wait for the response from that topology. Once it receives the response, it will
communicate that back to the calling client. This in effect acts as a distributed query
by querying for multiple artists or tags in parallel and summing up the results.

 This section covers the three parts of Storm DRPC required to implement our solu-
tion for querying the counts:

■ Creating a DRPC stream
■ Applying a DRPC state query to the stream
■ Using the DRPC client to make DRPC calls via Storm

We’ll start our explanation with the DRPC stream.

Applying
persistentAggregate
operation to the
GroupedStream with
a Count Combiner-
Aggregator using a
MemoryMapState.Factory
gives us a TridentState.
Licensed to Mark Watson <nordickan@gmail.com>

230 CHAPTER 9 Trident

on

9.5.1 Creating a DRPC stream

When the Storm DRPC server receives a request, it needs to route it to our topology.
For our topology to be able handle this incoming request, it needs a DRPC stream.
The Storm DRPC server will route any incoming requests to this stream. The DRPC
stream is given a name that’s intended to be the name of this distributed query we
want to execute. The DRPC server will identify which topology (and which stream
within that topology) to route incoming requests based on this name. The next listing
shows how to create a DRPC stream.

topology.newDRPCStream("count-request-by-tag")

The DRPC server accepts arguments for a DRPC function as text and forwards it along
with the request to this DRPC stream. We need to parse the textual arguments into a
form that we can make use of within the DRPC stream. The following listing defines
the contract for the arguments for our count-request-by-tag DRPC stream to be a
comma-delimited list of tags we want to query by.

topology.newDRPCStream("count-request-by-tag")
 .each(new Fields("args"),
 new SplitOnDelimiter(","),
 new Fields("tag"));

Listing 9.12 references an each function called SplitOnDelimiter, so let’s take a look
at that class’s implementation, as shown in the following listing.

public class SplitOnDelimiter extends BaseFunction {
 private final String delimiter;

 public SplitOnDelimiter(String delimiter) {
 this.delimiter = delimiter;
 }

 @Override
 public void execute(TridentTuple tuple,
 TridentCollector collector) {
 for (String part : tuple.getString(0).split(delimiter)) {
 if (part.length() > 0) collector.emit(new Values(part));
 }
 }
}

This gives us a basic DRPC stream to work with. The next step is to apply a state query
to this stream.

Listing 9.11 Creating a DRPC stream

Listing 9.12 Defining the contract for the arguments for the DRPC stream

Listing 9.13 SplitOnDelimiter.java

The implementati
is just like the
LogDeserializer
we built earlier to
parse a play log.
Licensed to Mark Watson <nordickan@gmail.com>

231Accessing the persisted counts through DRPC
9.5.2 Applying a DRPC state query to a stream

The state query we want to execute in response to this DRPC request is to count the
number of play logs by given tag arguments. Let’s refresh our memory of how we calcu-
lated TridentState for the tags before we continue, as shown in the next listing.

TridentState countsByTag = playStream
 .each(new Fields("tags"),
 new ListSplitter(),
 new Fields("tag"))
 .project(new Fields("tag"))
 .groupBy(new Fields("tag"))
 .persistentAggregate(new MemoryMapState.Factory(),
 new Count(),
 new Fields("tag-count"));

We stored the counts by a given tag in an in-memory map with the tag as the key and
count as the value. Now all we need to do is look up the counts for the tags we
received as arguments for the DRPC query. This is achieved through the stateQuery
operation on the DRPC stream. An explanation of the stateQuery operation can be
seen in figure 9.9.

 As the figure illustrates, the QueryFunction we choose needs to know how to access
the data through the TridentState object. Fortunately for us, Storm comes with a built-
in MapGet query function that can work with our MemoryMapState implementation.

 But implementing this state query isn’t as simple as adding the stateQuery opera-
tion to the end of our DRPC stream. The reason for that is in our original play
stream, we repartitioned the stream using a groupBy operation on the tag field. In
order to send count-request-by-tag requests from the DRPC stream into the same
partition that contains the needed tag in the TridentState, we need to apply a

Listing 9.14 Creating the counts-by-tag stream resulting in TridentState

Stream stateQuery(TridentState state, Fields inputFields,
QueryFunction function, Fields outputFields)

An instance of the

TridentState we created

in our earlier streams.

The names of the

Fields to query against.

A implementationQueryFunction
that knows how to access the data

through the object.TridentState
Because we used as theMemoryMapState
backing state store, our QueryFunction
needs to be able to look up values from

the implementation.MapState

The names of the

Fields to assign to the

result of the query.

Figure 9.9 Breaking down the stateQuery operation
Licensed to Mark Watson <nordickan@gmail.com>

232 CHAPTER 9 Trident

t

PC
e
d
orm

t

d

Prov
fu

argu
as a c

delimit
groupBy operation on the DRPC stream as well, on the same tag field. The next listing
provides the code for this.

topology.newDRPCStream("count-request-by-tag")
 .each(new Fields("args"),
 new SplitOnDelimiter(","),
 new Fields("tag"))
 .groupBy(new Fields("tag"))
 .stateQuery(countsByTag,
 new Fields("tag"),
 new MapGet(),
 new Fields("count"));

Now we have the results of the count for each tag that we wanted. We can stop here
in the DRPC stream and be done. Optionally, we can append an additional each
operation to filter out null counts (that is, tags that haven’t yet been encountered
on the play stream), but we’ll leave the nulls as something to be handled by the
DRPC caller.

 This brings us to our final step: being able to communicate with Storm via a
DRPC client.

9.5.3 Making DRPC calls with a DRPC client

Making a DRPC request to this topology can be done by including Storm as a depen-
dency in your client application and using the DRPC client built into Storm. Once
you’ve done this, you can use something similar to the code in the next listing for
making the actual DRPC request.

DRPCClient client = new DRPCClient("drpc.server.location", 3772);

try {
 String result = client.execute("count-request-by-tag",
 "Punk,Post Punk,Hardcore Punk");
 System.out.println(result);
} catch (TException e) {
 // thrift error
} catch (DRPCExecutionException e) {
 // drpc execution error
}

DRPC requests are made over the Thrift protocol, so you’ll need to handle the Thrift-
related errors (usually connectivity-related) as well as DRPCExecutionException errors
(usually feature-related). And that’s it. We haven’t left you hanging. You now have a

Listing 9.15 Looking up counts-by-tag by querying a source of state

Listing 9.16 Performing a DRPC request

Group the incoming
DRPC query request
arguments by tag.Initiate a state

query against
he countsByTag

state object.

Use the tag
field value from

the grouping.

Use a built-in MapGet
operation that will look up
a value from a Map by key.

Emit the resulting value from
the map as a count field.

Initiate a DR
Client with th
hostname an
port of the St
DRPC server.

Invoke a DRPC reques
with the same DRPC
function name as use
in the topology.

ide the
nction
ments

omma-
ed list.

Print the result
containing the
JSON-encoded
tuple
Licensed to Mark Watson <nordickan@gmail.com>

233Mapping Trident operations to Storm primitives
topology that maintains state with the counts for various fields of artist, title, and
tag, and you’re able to query that state. We’ve built a fully functional topology using
Trident and Storm DRPC.

 Or is that it? If you’ve learned anything from earlier chapters, it’s that once you’ve
deployed your topology, your job as a developer hasn’t ended. The same holds true
here. Section 9.6 discusses how Trident operations map to Storm primitives using the
Storm UI to identify the spouts and bolts that are created under the covers. Section 9.7
will then touch upon scaling a Trident topology.

9.6 Mapping Trident operations to Storm primitives
Recall that in the beginning of the chapter we discussed how Trident topologies are
built on top of the Storm primitives that we’ve become comfortable with over the
course of this book. With our use case complete, let’s take a look at how Storm turns
our Trident topology into bolts and spouts. We'll start by looking at how our topology,
sans our DRPC spout, is mapped down to Storm primitives. Why not just look at every-
thing at once? We feel it will be easier to understand what exactly is going on by
addressing the core Trident streams first and then tacking on the DRPC stream.

 Without our DRPC spout, our TopologyBuilder code can be seen in the follow-
ing listing.

public TopologyBuilder {
 public StormTopology build() {
 TridentTopology topology = new TridentTopology();

 Stream playStream = topology
 .newStream("play-spout", buildSpout())
 .each(new Fields("play-log"),
 new LogDeserializer(),
 new Fields("artist", "title", "tags"))
 .each(new Fields("artist", "title"),
 new Sanitizer(new Fields("artist", "title")));

 TridentState countByArtist = playStream
 .project(new Fields("artist"))
 .groupBy(new Fields("artist"))
 .persistentAggregate(new MemoryMapState.Factory(),
 new Count(),
 new Fields("artist-count"));

 TridentState countsByTitle = playStream
 .project(new Fields("title"))
 .groupBy(new Fields("title"))
 .persistentAggregate(new MemoryMapState.Factory(),
 new Count(),
 new Fields("title-count"));

Listing 9.17 TopologyBuilder.java without the DRPC stream
Licensed to Mark Watson <nordickan@gmail.com>

234 CHAPTER 9 Trident
 TridentState countsByTag = playStream
 .each(new Fields("tags"),
 new ListSplitter(),
 new Fields("tag"))
 .project(new Fields("tag"))
 .groupBy(new Fields("tag"))
 .persistentAggregate(new MemoryMapState.Factory(),
 new Count(),
 new Fields("tag-count"));

 return topology.build();
 }

 ...
}

When our Trident topology is being turned into a Storm topology, Storm takes our
Trident operations and packages them into bolts in a way that’s efficient. Some opera-
tions will be grouped together into the same bolts whereas others will be separate.
The Storm UI provides a view into how that mapping is being done (figure 9.10).

 As you can see, we have one spout and six bolts. Two of the bolts have the name
“spout” in them and four others are labeled b-0 to b-3. We can see some components
there but we have no idea how they’re related to our Trident operations.

 Rather than try to figure out the mystery behind the names, we’ll show you a way to
make it easier to identify the components. Trident has a name operation that assigns a

Figure 9.10 Our Trident topology broken down into spouts and bolts in the
Storm UI
Licensed to Mark Watson <nordickan@gmail.com>

235Mapping Trident operations to Storm primitives
name we specify to an operation. If we name each collection of operations in our
topology, our code ends up like that in the next listing.

public TopologyBuilder {
 public StormTopology build() {
 TridentTopology topology = new TridentTopology();

 Stream playStream = topology
 .newStream("play-spout", buildSpout())
 .each(new Fields("play-log"),
 new LogDeserializer(),
 new Fields("artist", "title", "tags"))
 .each(new Fields("artist", "title"),
 new Sanitizer(new Fields("artist", "title")))
 .name("LogDeserializerSanitizer");

 TridentState countByArtist = playStream
 .project(new Fields("artist"))
 .groupBy(new Fields("artist"))
 .name("ArtistCounts")
 .persistentAggregate(new MemoryMapState.Factory(),
 new Count(),
 new Fields("artist-count"));

 TridentState countsByTitle = playStream
 .project(new Fields("title"))
 .groupBy(new Fields("title"))
 .name("TitleCounts")
 .persistentAggregate(new MemoryMapState.Factory(),
 new Count(),
 new Fields("title-count"));

 TridentState countsByTag = playStream
 .each(new Fields("tags"),
 new ListSplitter(),
 new Fields("tag"))
 .project(new Fields("tag"))
 .groupBy(new Fields("tag"))
 .name("TagCounts")
 .persistentAggregate(new MemoryMapState.Factory(),
 new Count(),
 new Fields("tag-count"));

 return topology.build();
 }

 ...
}

Listing 9.18 TopologyBuilder.java with named operations
Licensed to Mark Watson <nordickan@gmail.com>

236 CHAPTER 9 Trident
If we take a look at our Storm UI, what’s going on becomes much more apparent (fig-
ure 9.11).

 We can see that our b-3 bolt was log deserialization and sanitation. And our b-0,
b-1, and b-2 bolt our title, tag, and artist counting, respectively. Given the amount of
clarity that using names provides, we recommend you always name your partitions.

 What’s up with the name of the log deserialization bolt? LogDeserializerSanitizer-
ArtistCounts-LogDeserializerSanitizer-TitleCounts-LogDeserializerSanitizer-

TagCounts—what a mouthful! But it does provide us with a great deal of information.
The name indicates that we’re getting our data from the log deserializer and sanitizer
and feeding into artist counts, title counts, and tag counts. It’s not the most elegant of
discovery mechanisms but it beats just b-0 and so on.

 With this additional clarity, take a look at figure 9.12, which illustrates how our Tri-
dent operations are mapped down into bolts. Now let’s add back the DRPC stream
with relevant names as well. The code for this appears in the next listing.

topology.newDRPCStream("count-request-by-tag")
 .name("RequestForTagCounts")
 .each(new Fields("args"),
 new SplitOnDelimiter(","),
 new Fields("tag"))
 .groupBy(new Fields("tag"))
 .name("QueryForRequest")
 .stateQuery(countsByTag,
 new Fields("tag"),
 new MapGet(),
 new Fields("count"));

Listing 9.19 The DRPC stream with named operations

Figure 9.11 Our Trident
topology displayed on the
Storm UI after naming each
of the operations
Licensed to Mark Watson <nordickan@gmail.com>

237Mapping Trident operations to Storm primitives
Adding the DRPC stream with named operations results in the Storm UI seen in fig-
ure 9.13.

 What has changed? Well…
 Our log sanitizer bolt is now b-2 rather than b-3. This is very important. You can’t

rely on the autogenerated bolt names remaining the same when you make changes to
the number of bolts in the topology.

 The number of named bolts has increased from 4 to 5 and the names of those
bolts have changed.

 We have some unnamed bolts. What’s going on with the bolt name changes? The
addition of our DRPC spout has changed the mapping onto Storm primitives and
names have changed accordingly. Figure 9.14 shows the final mapping of Trident/
DRPC operations into bolts.

b-3

b-2 b-0 b-1

Trident spout

Log
Deserializer

project
artist

project
title

split-list
tags

project
tag

Sanitizer

groupBy
artist

groupBy
tag

groupBy
title

persistent
Aggregate

persistent
Aggregate

persistent
Aggregate

TridentState
ArtistCounts

TridentState
TitleCounts

TridentState
TagCounts

Figure 9.12 How our
Trident operations are
mapped down into bolts
Licensed to Mark Watson <nordickan@gmail.com>

238 CHAPTER 9 Trident
Figure 9.13 The Storm UI with named operations for both the Trident topology and DRPC stream

b-1

b-6 b-0 b-3

b-5

Trident spout

project
artist

project
title

split-list
tags

project
tag

SplitOnDelimiter
RequestForTagCounts

DRPC spout

groupBy
artist

groupBy
tag

groupBy
title

persistent
Aggregate

persistent
Aggregate

persistent
Aggregate

TridentState
ArtistCounts

TridentState
TitleCounts

TridentState
TagCounts

stateQuery
QueryForRequest

Log
Deserializer Sanitizer

Figure 9.14 How the Trident and DRPC streams and operations are being mapped down into bolts
Licensed to Mark Watson <nordickan@gmail.com>

239Scaling a Trident topology
Note how “Tag Counts” and “Query for Request” are mapped to the same bolt and the
name has been adjusted accordingly. Okay, but what about those unnamed bolts? The
reason why we saw some components named as spouts in the bolts section of the UI is
because Storm runs Trident spouts wrapped in a bolt. Remember that Trident spouts
aren’t the same as native Storm spouts. Additionally, Trident topologies have other
coordinators that allow us to treat an incoming stream as a series of batches. Storm
introduced them when we added the DRPC spout to our topology and changed how it
was mapped to Storm.

 Identifying how Storm maps Trident operations to native Storm components is
easy with a few extra lines of code. Adding names is the key and will save you head-
aches. Now that you have an idea of how to map native Storm components to Trident
operations via names and the Storm UI, let’s turn our attention to the final topic of
this chapter: scaling a Trident topology.

9.7 Scaling a Trident topology
Let’s talk units of parallelism. When working with bolts and spouts, we trade in execu-
tors and tasks. They form our primary means of parallelism between components.
When working with Trident, we still work with them but only tangentially as Trident
operations are mapped down to those primitives. When working with Trident, our pri-
mary method to achieve parallelism is the partition.

9.7.1 Partitions for parallelism

With Trident, we take a stream of data and work with it across one or more worker
processes by partitioning the stream and applying our operations in parallel across
each of the partitions. If we had five partitions within our topology and three worker
processes, our work would be distributed in a fashion similar to what’s shown in fig-
ure 9.15.

 Unlike Storm, where we imagine our parallelism as spreading executors across a
series of worker processes, here we’re imagining our parallelism as a series of parti-
tions being spread across a series of worker processes. The way we scale our Trident
topology is by adjusting the number of partitions.

Worker node

JVM

Partition 1

Partition 2

Worker node

JVM

Partition 3

Worker node

JVM

Partition 4

Partition 5

Figure 9.15 Partitions are distributed across storm worker process (JVMs)
and operated on in parallel
Licensed to Mark Watson <nordickan@gmail.com>

240 CHAPTER 9 Trident
9.7.2 Partitions in Trident streams

Partitions start at the Trident spout. A Trident spout (a much different beast from a
Storm spout) will emit a stream, which then has a set of Trident operations applied to
it. This stream is partitioned to provide parallelism for the topology. Trident will break
down this partitioned stream into a series of small batches containing thousands of
tuples to perhaps millions of tuples, depending on your incoming throughput. Fig-
ure 9.16 shows the zoomed-in view of what a Trident stream looks like between two
Trident operations or between the Trident spout and the first Trident operation.

 If parallelism starts at the spout, and we adjust the number of partitions to control
parallelism, how do we adjust the number of partitions at the spout? We adjust the
number of partitions for the Kafka topic we’re subscribed to. If we had one partition
for our Kafka topic, then we’d start with one partition in our topology. If we increased
our Kafka topic to having three partitions, the number of partitions in our Trident
topology would change accordingly (figure 9.17).

 From here, our stream with three partitions can be partitioned further by various
operations. Let’s step back from talking about having three partitions from the spout
and go back to having just one; it will make everything else easier to reason about
when learning more about parallelism within our Trident topology.

Trident stream

We have three batches of tuples, with each batch

spread across three separate partitions.

Batch 2

Partition 1

Partition 2

Partition 3

Trident stream

Spout Operation

Each batch

can contain tens

to millions of

tuples, depending

on throughput.

[name="value"]

Batch 1

[name="value"]

Batch 3

[name="value"]

[name="value"][name="value"] [name="value"]

[name="value"][name="value"] [name="value"]

Figure 9.16 Partitioned stream with a series of batches in between two operations
Licensed to Mark Watson <nordickan@gmail.com>

241Scaling a Trident topology
Within a Trident topology, natural points of partition will exist. Points where partition-
ing has to change are based on the operations being applied. At these points, you can
adjust the parallelism of each of the resulting partitions. The groupBy operations that
we use in our topology result in repartitioning. Each of our groupBy operations
resulted in a repartitioning that we could supply a parallelism hint to, as shown in the
following listing.

 public static StormTopology build() {
 TridentTopology topology = new TridentTopology();

 Stream playStream =
 topology.newStream("play-spout", buildSpout())
 .each(new Fields("play-log"),
 new LogDeserializer(),
 new Fields("artist", "title", "tags"))
 .each(new Fields("artist", "title"),
 new Sanitizer(new Fields("artist", "title")))
 .name("LogDeserializerSanitizer");

 TridentState countByArtist = playStream
 .project(new Fields("artist"))
 .groupBy(new Fields("artist"))
 .name("ArtistCounts")
 .persistentAggregate(new MemoryMapState.Factory(),
 new Count(),
 new Fields("artist-count"))
 .parallelismHint(4);

 TridentState countsByTitle = playStream
 .project(new Fields("title"))
 .groupBy(new Fields("title"))
 .name("TitleCounts")

Listing 9.20 Specifying parallelism at the points of repartition

Batch 2

Partition 1

Partition 2

Partition 3

Trident stream

[name="value"]

Batch 1

[name="value"]

Batch 3

[name="value"]

[name="value"][name="value"] [name="value"]

[name="value"][name="value"] [name="value"]

Broker node 1

Kafka topic

Partition 1

Broker node 2

Partition 2

Broker node 3

Partition 3

Trident
Kafka
spout

Figure 9.17 Kafka topic partitions and how they relate to the partitions within a Trident stream
Licensed to Mark Watson <nordickan@gmail.com>

242 CHAPTER 9 Trident
 .persistentAggregate(new MemoryMapState.Factory(),
 new Count(),
 new Fields("title-count"))
 .parallelismHint(4);

 TridentState countsByTag = playStream
 .each(new Fields("tags"),
 new ListSplitter(),
 new Fields("tag"))
 .project(new Fields("tag"))
 .groupBy(new Fields("tag"))
 .name("TagCounts")
 .persistentAggregate(new MemoryMapState.Factory(),
 new Count(),
 new Fields("tag-count"))
 .parallelismHint(4);

 topology.newDRPCStream("count-request-by-tag")
 .name("RequestForTagCounts")
 .each(new Fields("args"),
 new SplitOnDelimiter(","),
 new Fields("tag"))
 .groupBy(new Fields("tag"))
 .name("QueryForRequest")
 .stateQuery(countsByTag,
 new Fields("tag"),
 new MapGet(),
 new Fields("count"));

 return topology.build();
 }

Here we’ve given each of our final three bolts a parallelism of four. That means they
each operate with four partitions. We were able to specify a level of parallelism for
those because there’s natural repartitioning happening between them and bolts that
came before them due to groupBy and persistentAggregate operations. We didn’t
specify any parallelism hint to our first two bolts because they don’t have any inherent
repartitioning going on between them and the spouts that came before them. There-
fore, they operate at the same number of partitions as the spouts. Figure 9.18 shows
what this configuration looks like in the Storm UI.

Forcing a repartition
In addition to natural changes in partitions that happen as a result of groupBy oper-
ations, we have the ability to force Trident to repartition operations. Such operations
will cause tuples to be transferred across the network as the partitions are changed.
This will have a negative impact on performance. You should avoid repartitioning
solely for the sake of changing parallelism unless you can verify that your parallelism
hints post repartitioning have caused an overall throughput increase.
Licensed to Mark Watson <nordickan@gmail.com>

243Summary
This brings us to the close of Trident. You’ve learned quite a bit in this chapter, all of
which was built on a foundation that was laid in the first eight chapters of this book.
Hopefully this foundation is only the beginning of your adventure with Storm, and
our goal is for you to continue to refine and tune these skills as you use Storm for any
problem you may encounter.

9.8 Summary
In this chapter, you learned that

■ Trident allows you to focus on the “what” of solving a problem rather than
the “how.”

■ Trident makes use of operations that operate on batches of tuples, which are
different from native Storm bolts that operate on individual tuples.

■ Kafka is a distributed message queue implementation that aligns perfectly with
how Trident operates on batches of tuples across partitions.

■ Trident operations don’t map one-to-one to spouts and bolts, so it’s important
to always name your operations.

■ Storm DRPC is a useful way to execute a distributed query against persistent
state calculated by a Storm topology.

■ Scaling a Trident topology is much different than scaling a native Storm topol-
ogy and is done across partitions as opposed to setting exact instances of spouts
and bolts.

Figure 9.18 Result of applying a parallelism hint of four to the groupBy operations in our Trident
topology
Licensed to Mark Watson <nordickan@gmail.com>

afterword
Congratulations, you’ve made it to the end of the book. Where do you go from
here? The answer depends on how you got here. If you read the book from start to
end, we suggest implementing your own topologies while referring back to various
chapters until you feel like you’re “getting the hang of Storm.” We hesitate to say
“mastering Storm” as we’re not sure you’ll ever feel like you’re mastering Storm.
It’s a powerful and complicated beast, and mastery is a tricky thing.

 If you took a more iterative approach to the book, working through it slowly and
gaining expertise as you went along, then everything else that follows in this after-
word is for you. Don’t worry if you took the start-to-end approach; this afterword
will be waiting for you once you feel like you’re getting the hang of Storm. Here are
all the things we want you to know as you set off on the rest of your Storm journey
without us.

YOU’RE RIGHT, YOU DON’T KNOW THAT

We’ve been using Storm in production for quite a while now, and we’re still learn-
ing new things all the time. Don’t worry if you feel like you don’t know everything.
Use what you know to get what you need done. You’ll learn more as you go. Analy-
sis paralysis can be a real thing with Storm.

THERE’S SO MUCH TO KNOW

We haven’t covered every last nook and cranny of Storm. Dig into the official docu-
mentation, join the IRC channel, and join the mailing list. Storm is an evolving
project. At the time this book is going to press, it hasn’t even reached version 1.0. If
you’re using Storm for business-critical processes, make sure you know how to stay
up to date. Here are a couple of things we think you should keep an eye on:

■ Storm on Yarn
■ Storm on Mesos

What’s Yarn? What’s Mesos? That’s really a book unto itself. For now, let’s just
say they’re cluster resource managers that can allow you to share Storm cluster
resources with other technologies such as Hadoop. That’s a gross simplifica-
tion. We strongly advise you to check out Yarn and Mesos if you are planning on
244

Licensed to Mark Watson <nordickan@gmail.com>

245afterword
running a large Storm cluster in production. There’s a lot of exciting stuff going
on in those projects.

METRICS AND REPORTING

The metrics support in Storm is pretty young. We suspect it will grow a lot more
robust over time. Additionally, the most recent version of Storm introduced a REST
API that allows you to access the information from the Storm UI in a programmatic
fashion. That’s not particularly exciting outside of a couple of automation or monitor-
ing scenarios. But it creates a path for exposing more information about what’s going
on inside Storm to the outside world in an easily accessible fashion. We wouldn’t be
surprised at all if some really cool things were built by exposing still more info via
that API.

TRIDENT IS QUITE A BEAST

We spent one chapter on Trident. A lot of debate went into how much we should
cover Trident. This ranged from nothing to several chapters. We settled on a single
chapter to get you going with Trident. Why? Well, we considered not covering Trident
at all. You can happily use Storm without ever needing to touch Trident. We don’t con-
sider it a core part of Storm, but one of many abstractions you can build on top of
Storm (more on that later). Even if that’s true, we were disabused of the notion that
we couldn’t cover it at all based on feedback where every early reviewer brought up
Trident as a must-cover topic.

 We considered spending three chapters on Trident much like we had three chap-
ters on core Storm (chapters 2 to 4) and introducing it in the same fashion. If we were
writing a book on Trident, we would have taken that approach, but large portions of
those chapters would have mirrored the content in chapters 2 to 4. Trident is, after all,
an abstraction on top of Storm. We settled on a single chapter intro to Trident
because we felt that as long as you understood the basics of Trident, everything else
would flow from there. There are many more Trident operations we didn’t cover, but
they all operate in the same fashion as the ones we did cover. If Trident seems like a
better approach than core Storm for your problems, we feel we’ve given you what you
need to dig in and start solving with Trident.

WHEN SHOULD I USE TRIDENT?
Use Trident only when you need to. Trident adds a lot of complexity compared to
core Storm. It’s easier to debug problems with core Storm because there are fewer
layers of abstraction to get through. Core Storm is also considerably faster than Tri-
dent. If you are really concerned about speed, favor core Storm. Why might you
need to use Trident?

■ “What” not “how” is very important to you.
– The important algorithmic details of your computation are hard to follow

using core Storm but are very clear using Trident. If your process is all about
the algorithm, and it’s hard to see what’s going on with core Storm, mainte-
nance is going to be difficult.
Licensed to Mark Watson <nordickan@gmail.com>

246 afterword
■ You need exactly once processing.
– As we discussed in chapter 4, exactly once processing is very hard to achieve;

some would say it’s impossible. We won’t go that far. We will say that there
are scenarios where it’s impossible. Even when it is possible, getting it right
can be hard. Trident can help you build an exactly once processing system.
You can do that with core Storm as well but there’s more work involved on
your part.

■ You need to maintain state.
– Again, you can do this with core Storm, but Trident is good at maintaining

state, and DRPC provides a nice way to get at that state. If your workload is
less about data pipelines (transforming input to output and feeding that out-
put into another data pipeline) and more about creating queryable pools of
data, then Trident state with DRPC can help you get there.

ABSTRACTIONS! ABSTRACTIONS EVERYWHERE!
Trident isn’t the only abstraction that runs on Storm. We’ve seen numerous projects
come and go in GitHub that try to build on top of Storm. Honestly, most of them
weren’t that interesting. If you do the same type of work in topology after topology,
perhaps you too will create your own abstraction over Storm to make that particular
workflow easier. The most interesting abstraction over Storm that currently exists is
Algebird (https://github.com/twitter/algebird) from Twitter.

 Algebird is a Scala library that allows you to write abstract algebra code that can be
“compiled” to run on either Storm or Hadoop. Why is that interesting? You can code
up various algorithms and then reuse them in both batch and streaming contexts.
That’s pretty damn cool if you ask us. Even if you don’t need to write reusable alge-
bras, we suggest you check out the project if you’re interested in building abstractions
on top of Storm; you can learn a lot from it.

And that really is it from us. Good luck; we’re rooting for you! Sean, Matt, and Peter out.
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/twitter/algebird

index
A

acker tasks 91
acking tuples

defined 85
explicit 87–89
implicit 86–87

aggregation, Trident 210
Amazon Web Services. See AWS
anchoring tuples

explicit 87–89
implicit 86–87

Apache Hadoop 8–9
Apache Samza 10
Apache Spark 9–10
at-least-once processing 94, 96–101
at-most-once processing 94
AWS (Amazon Web Services) 177,

179

B

BaseBasicBolt class 28, 86
baseline, performance 140–142
BaseRichBolt class 29, 87
BaseRichSpout class 27
BasicOutputCollector class 29
big data

Apache Hadoop 8–9
Apache Samza 10
Apache Spark 9–10
Spark Streaming 10
Storm and 6–10
tools 5–6
variety 2–3
velocity 2

veracity 3
volume 2

bolts
collecting data in-memory 44–48
connecting to external service 42–44
credit card authorization system example

AuthorizeCreditCard implementation
82–83

ProcessedOrderNotification
implementation 83–84

daily deals example
finding recommended sales 135–136
looking up details for sales 136–137
saving recommended sales 138

data flow in remote cluster 190–191
in GitHub commit count dashboard

example 28–30
identifying bottlenecks 142–145
nodes and 22
overview 20–22
persisting to data store 48–50
in Storm UI

Bolt Stats section 125
Component Summary section

124–125
Errors section 128–129
Executors section 127–128
Input Stats section 126
Output Stats section 127

tick tuples 46–48
in topology 22

bottlenecks
identifying 142–145
inherent within data stream 64–67
inherent within design 58–64

brokers, defined 212
247

Licensed to Mark Watson <nordickan@gmail.com>

INDEX248
buffer overflow
adjusting production-to-consumption ratio 203
buffer sizes and performance 205–206
diagnosing 201–202
increasing size of buffer for all topologies

203–204
increasing size of buffer for given topology 204
max spout pending 205

C

chained streams 18
Cluster Summary section, Storm UI 118
CombinatorAggregator 226
commit count topology

data flow in remote cluster 190–191
overview 188
running on remote Storm cluster 189–190

commit feed listener spout 191–192
complex streams 18–19
Component Summary section, Storm UI 124–125
concepts

bolts 20–22
complex streams 18–19
fields grouping 23–24
shuffle grouping 22–23
spouts 19–22
stream grouping 22–24
streams 18–19
topology 15
tuples 15–18

concurrency 107
ConcurrentModificationException 48
Config class 31, 204
CountMetric 154–155
CPU contention 178–181
credit card authorization system example

assumptions on upstream and downstream
systems 78

AuthorizeCreditCard implementation 82–83
conceptual solution 78
defining data points 79–80
mapping solution to Storm 80–81
overview 77
ProcessedOrderNotification

implementation 83–84
in Storm cluster 106–107

D

DAG (directed acyclic graph) 85
daily deals example

conceptual solution 132
finding recommended sales 135–136
looking up details for sales 136–137

mapping solution to Storm 132–133
overview 131–132
reading from data source 134–135
saving recommended sales 138

data loss 36
data points 37–38
data streams

analyzing requirements of 36–37
bottlenecks inherent within 64–67

declareOutputFields method 27
defaults.yaml file 119
dependencies 110
deserialization 220–224
directed acyclic graph. See DAG
disk I/O contention 184–186
distributed commit log 212
DRPC (distributed remote procedure calls)

applying state query to stream 231–232
creating stream 230
overview 229–230
using DRPC client 232–233

DRPCExecutionException 232

E

edges, topology 22
email counter bolt 197
email extractor bolt 194–195
emit frequencies of tick tuples 47
emit method 87
Errors section, Storm UI 128–129
exactly-once processing 94–95
execute method 46–48, 87, 199
executors 56–58

for commit feed listener spout 191–192
for email counter bolt 197
for email extractor bolt 194–195
incoming queue 201
increasing parallelism 145
outgoing transfer queue 201
transferring tuples between 192–193, 195–196

Executors section, Storm UI 127–128
explicit anchoring, acking, and failing 87–89
external services 42–44

F

FailedException 87, 89
fail-fast design 108–109
failure

handling 89–90
tuple

explicit 87–89
implicit 86–87

fault tolerance 108–109
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 249
fields grouping 23–24, 58
filters, Trident 210
functions, Trident 210

G

GC (garbage collection) 171–172
GitHub commit count dashboard example

bolts in 28–30
creating topology 31–32
overview 12–14
setting up project 25
spout in 25

global grouping 51, 63
Google Geocoder Java API 42
grouping, Trident 210
guaranteed message processing

explicit anchoring, acking, and failing 87–89
handling failures 89–90
implicit anchoring, acking, and failing 86–87
overview 84
spouts and 90–93
tuple states 84–86

H

HeatMap example
designing topology 38–40
overview 34–35

I

IBasicBolt interface 28
iftop command 183
implicit anchoring, acking, and failing 86–87
Input Stats section, Storm UI 126
internal queue overflow 201–202
internal Storm buffer overflow

adjusting production-to-consumption ratio 203
buffer sizes and performance 205–206
increasing size of buffer for all topologies

203–204
increasing size of buffer for given topology 204
max spout pending 205

internet radio example
accessing persisted counts through DRPC

applying state query to stream 231–232
creating stream 230
overview 229–230
using DRPC client 232–233

calculating and persisting counts 224
data points 217
deserializing play log

each function 220–222
grouping tuples by field name 224

overview 220
splitting stream 222–224

mapping Trident operations to Storm
primitives 233–239

overview 216–217
Trident Kafka spout 219–220

IRichBolt interface 28

J

java.library.path property 111
joins, Trident 210
JVM (Java Virtual Machine) 175

K

Kafka 135
overview 212
partitions in 212–213
performance 214–215
storage model 213–214
Trident and 215–216

Kryo serialization 195

L

latency
extrinsic and intrinsic reasons for 150–154
simulating in topology 148–150

LMAX Disruptor 192
local cluster mode 51–52
local transfer 193
LocalCluster class 31
LocalTopologyRunner class 51

M

main thread 191
master nodes

configuring using storm.yaml 110–111
defined 103
installing Storm 110

max spout pending 146, 205
memory contention

on worker nodes 175–178
within worker processes 171–175

MemoryMapState.Factory 228
merges, Trident 210
metrics, performance

CountMetric 154–155
creating custom MultiSuccessRateMetric 158
creating custom SuccessRateMetric 156–158
setting up metrics consumer 155–156

micro-batch processing within stream 6
MultiSuccessRateMetric 158
Licensed to Mark Watson <nordickan@gmail.com>

INDEX250
N

netstat command 165
Netty 196
network I/O contention 182–184
nextTuple method 27
Nimbus

fault tolerance for 108
launching under supervision 111–112

Nimbus Configuration section, Storm UI
119–120

nimbus.host property 111, 116
nodes 22

O

offsets, defined 213
OOM (out-of-memory) errors 171
optimization 69
OS (operating system) 163, 177
Output Stats section, Storm UI 127
OutputCollector class 89

P

parallelism
avoiding bottlenecks 142–145
concurrency vs. 107
in Trident 239
worker transfer queue overflow 203

parallelism hints 54–56
ParseException 89
partitions

breaking into components at points of
repartition 71–74

in Kafka 212–213
simplest functional components vs. lowest

number of repartitions 74
Trident

for parallelism 239
in streams 240–243

performance
buffer sizes and 205–206
controlling rate of data flow 145–148
daily deals example

conceptual solution 132
finding recommended sales 135–136
looking up details for sales 136–137
mapping solution to Storm 132–133
overview 131–132
reading from data source 134–135
saving recommended sales 138

establishing baseline 140–142
identifying bottlenecks 142–145
Kafka and 214–215

latency
extrinsic and intrinsic reasons for 150–154
simulating in topology 148–150

metrics
CountMetric 154–155
creating custom MultiSuccessRateMetric 158
creating custom SuccessRateMetric 156–158
setting up metrics consumer 155–156

repartitioning 242
Storm UI and 139–140

prepare method 30
principle of single responsibility 71
production-to-consumption ratio 203
projections 222

R

RabbitMQ 91, 135, 186
rebalance command 142
ReducerAggregator 226
reliability

credit card authorization system example
assumptions on upstream and downstream

systems 78
AuthorizeCreditCard implementation 82–83
conceptual solution 78
defining data points 79–80
mapping solution to Storm 80–81
overview 77
ProcessedOrderNotification

implementation 83–84
degrees of

at-least-once processing 94, 96–101
at-most-once processing 94
exactly-once processing 94–95
identifying current level of reliability 96

guaranteed message processing
explicit anchoring, acking, and failing 87–89
handling failures 89–90
implicit anchoring, acking, and failing 86–87
overview 84
spouts and 90–93
tuple states 84–86

overview 76–77
remote Storm cluster 189–190
remote topologies

combining topology components 112–113
deploying to remote Storm cluster 114–115
running in local mode 113–114
running on remote Storm cluster 114
Storm cluster

configuring master and worker nodes
110–111

credit card authorization topology 106–107
fault tolerance within 108–109
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 251
remote topologies (continued)
installing dependencies 110
installing Storm 110
launching Nimbus and Supervisors under

supervision 111–112
overview 103–104
setting up Zookeeper cluster 109
worker node 104–107

Storm UI
Bolt Stats section 125
Bolts section 123
Cluster Summary section 118
Component Summary section 124–125
Errors section 128–129
Executors section 127–128
Input Stats section 126
Nimbus Configuration section 119–120
Output Stats section 127
overview 116–118
Spouts section 122
Supervisor Summary section 119
Topology Actions section 121
Topology Configuration section 124
Topology Stats section 121–122
Topology Summary (individual) section 121
Topology Summary section 118

RemoteTopologyRunner class 204
repartitioning 71–74, 210, 242
resource contention

worker nodes
changing memory allocation 165–166
changing number of worker processes

163–165
CPU contention on 178–181
disk I/O contention 184–186
finding topology execution 166–168
memory contention on 175–178
network/socket I/O contention 182–184

worker processes
contention for 168–170
decreasing number of 170
increasing JVM size 175
increasing number of 170, 175
memory contention within 171–175

retriable errors 89
routing 198–199

S

sar command 176, 178, 181
scaling

topology
bottlenecks inherent within data stream

64–67
bottlenecks inherent within design 58–64

executors and tasks 56–58
overview 52–54
parallelism hints 54–56

Trident
partitions for parallelism 239
partitions in Trident streams 240–243

send thread 191
serialization 195, 220–224
service-level agreement. See SLA
shuffle grouping 22–23, 80
single point of failure 108
single responsibility principle 71
SLA (service-level agreement) 42, 140
slots 118
socket I/O contention 182–184
Spark Streaming 10
splits, Trident 210
SpoutOutputCollector class 28
spouts

anchored vs. unanchored tuples from 93
controlling rate of data flow 145–148
daily deals example 134–135
data flow in remote cluster 190–191
in GitHub commit count dashboard

example 25
guaranteed message processing and 90–93
internet radio example 219–220
nodes and 22
overview 19–22
reading data from source 41–42
in Storm UI 124–125
in topology 22

state updater operation 211
Storm

advantages of 10
big data and 6–9
concepts

bolts 20–22
complex streams 18–19
fields grouping 23–24
shuffle grouping 22–23
spouts 19–22
stream grouping 22–24
streams 18–19
topology 15
tuples 15–18

mapping Trident operations to primitives
233–239

Storm cluster
configuring master and worker nodes

110–111
credit card authorization topology 106–107
fault tolerance within 108–109
installing dependencies 110
installing Storm 110
Licensed to Mark Watson <nordickan@gmail.com>

INDEX252
Storm cluster (continued)
launching Nimbus and Supervisors under

supervision 111–112
overview 103–104
resource contention

changing memory allocation 165–166
changing number of worker processes

163–165
CPU contention on worker nodes 178–181
decreasing number of worker processes

170
disk I/O contention worker nodes

184–186
finding topology execution 166–168
increasing JVM size 175
increasing number of worker processes 170,

175
memory contention on worker nodes

175–178
memory contention within worker

processes 171–175
network/socket I/O contention on worker

nodes 182–184
worker process contention 168–170

setting up Zookeeper cluster 109
worker node 104–107

storm command 115
Storm UI

Bolt Stats section 125
Bolts section 123
Cluster Summary section 118
Component Summary section 124–125
Errors section 128–129
Executors section 127–128
Input Stats section 126
Nimbus Configuration section 119–120
Output Stats section 127
overview 116–118
performance and 139–140
Spouts section 122
Supervisor Summary section 119
Topology Actions section 121
Topology Configuration section 124
Topology Stats section 121–122
Topology Summary (individual) section 121
Topology Summary section 118

storm.local.dir property 111
storm.yaml 110–111
storm.zookeeper.port property 111
storm.zookeeper.servers property 111
StormTopology class 31
stream grouping

defining between components 51
overview 22–24

stream processing 5–6

streams
analyzing requirements of 36–37
bottlenecks inherent within 64–67
defined 18
overview 18–19
splitting 222–224
in Trident 211–212, 240–243

submitTopology method 114
SuccessRateMetric 156–158
supervision, running process under 109,

111–112
Supervisor Summary section, Storm UI 119
supervisor.slots.ports property 111, 164

T

tasks 56–58, 198–199
TCP_WAIT 184
thread safety 48
tick tuples 46–48
topics, defined 212
topologies

designing
best practices 69–70
breaking into components at points of

repartition 71–74
breaking into functional components

70–71
HeatMap example 38–40
overview 34
simplest functional components vs. lowest

number of repartitions 74
GitHub commit count dashboard example

31–32
HeatMap example 34–35
implementing design

collecting data in-memory 44–48
connecting to external service 42–44
defining stream groupings between

components 51
persisting to data store 48–50
reading data from source 41–42
running in local cluster mode 51–52
tick tuples 46–48

increasing size of buffer for all 203–204
increasing size of buffer for given 204
mapping solutions

data stream requirements 36–37
representing data points as tuples 37–38

overview 15
remote

combining topology components 112–113
deploying to remote Storm cluster 114–115
running in local mode 113–114
running on remote Storm cluster 114
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 253
topologies (continued)
scaling

bottlenecks inherent within data stream
64–67

bottlenecks inherent within design 58–64
executors and tasks 56–58
overview 52–54
parallelism hints 54–56

simulating latency 148–150
Storm cluster

configuring master and worker nodes
110–111

credit card authorization topology 106–107
fault tolerance within 108–109
installing Storm 110
launching Nimbus and Supervisors under

supervision 111–112
overview 103–104
setting up Zookeeper cluster 109
worker node 104–107

Storm UI
Bolt Stats section 125
Bolts section 123
Cluster Summary section 118
Component Summary section 124–125
Errors section 128–129
Executors section 127–128
Input Stats section 126
Nimbus Configuration section 119–120
Output Stats section 127
overview 116–118
Spouts section 122
Supervisor Summary section 119
Topology Actions section 121
Topology Configuration section 124
Topology Stats section 121–122
Topology Summary (individual) section 121
Topology Summary section 118

Trident
Kafka and 215–216
operation types 210–211
overview 208–210
scaling 239–243
streams in 211–212

TOPOLOGY_MESSAGE_TIMEOUT_SECS
setting 85

TopologyBuilder class 31
transfer functions 195
Trident

internet radio example
accessing persisted counts through

DRPC 229–233
calculating and persisting counts 224
data points 217
deserializing play log 220–224

mapping Trident operations to Storm
primitives 233–239

overview 216–217
Trident Kafka spout 219–220

Kafka and 215–216
operation types 210–211
overview 208–210
scaling

partitions for parallelism 239
partitions in Trident streams 240–243

streams in 211–212
troubleshooting

commit count topology
data flow in remote cluster 190–191
overview 188
running on remote Storm cluster 189–190

executors
for commit feed listener spout 191–192
for email counter bolt 197
for email extractor bolt 194–195
transferring tuples between 192–193,

195–196
internal queue overflow 201–202
internal Storm buffer overflow

adjusting production-to-consumption
ratio 203

buffer sizes and performance 205–206
increasing size of buffer for all

topologies 203–204
increasing size of buffer for given

topology 204
max spout pending 205

tuning. See performance
tuple trees 84
tuples

anchored vs. unanchored 93
edges and 22
grouping 224
overview 15–18
representing data points as 37–38
states for 84–86
tick tuples 46–48
transferring between executors 192–193,

195–196

U

ui.port property 116

V

variety 2–3
velocity 2
veracity 3
volume 2
Licensed to Mark Watson <nordickan@gmail.com>

INDEX254
W

worker nodes
configuring using storm.yaml 110–111
defined 103
fault tolerance for 108
installing Storm 110
overview 104–107
resource contention

changing memory allocation 165–166
changing number of worker processes

163–165
CPU contention on 178–181
disk I/O contention 184–186
finding topology execution 166–168

memory contention on 175–178
network/socket I/O contention 182–184

worker processes
contention for 168–170
decreasing number of 170
increasing JVM size 175
increasing number of 170, 175
increasing parallelism 145
memory contention within 171–175
outgoing transfer queue 201

worker.childopts property 165, 171

Z

Zookeeper 103, 109
Licensed to Mark Watson <nordickan@gmail.com>

Allen ● Jankowski ● Pathirana

I
t’s hard to make sense out of data when it’s coming at you
fast. Like Hadoop, Storm processes large amounts of data
but it does it reliably and in real time, guaranteeing that

every message will be processed. Storm allows you to scale
with your data as it grows, making it an excellent platform
to solve your big data problems.

Storm Applied is an example-driven guide to processing and
analyzing real-time data streams. This immediately useful
book starts by teaching you how to design Storm solutions
the right way. Then, it quickly dives into real-world case
studies that show you how to scale a high-throughput stream
processor, ensure smooth operation within a production
cluster, and more. Along the way, you’ll learn to use Trident
for stateful stream processing, along with other tools from
the Storm ecosystem.

What’s Inside
● Mapping real problems to Storm components
● Performance tuning and scaling
● Practical troubleshooting and debugging
● Exactly-once processing with Trident

This book moves through the basics quickly. While prior
experience with Storm is not assumed, some experience with
big data and real-time systems is helpful.

Sean T. Allen, Matthew Jankowski, and Peter Pathirana lead the
development team for a high-volume, search-intensive
commercial web application at TheLadders.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/StormApplied

$49.99 / Can $57.99 [INCLUDING eBOOK]

Storm Applied

DATA SCIENCE

M A N N I N G

“Will no doubt become
the defi nitive practitioner’s
 guide for Storm users.”—From the Foreword by

 Andrew Montalenti

“The book’s practical
 approach to Storm will
 save you a lot of hassle

 and a lot of time.”
—Tanguy Leroux, Elasticsearch

“Great introduction to
distributed computing with

 lots of real-world examples.”—Shay Elkin, Tangent Logic

“Go beyond the MapReduce
way of thinking to solve
 big data problems.”

—Muthusamy Manigandan
OzoneMedia

SEE INSERT

	Front cover
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Roadmap
	Code downloads and conventions
	Software requirements
	Author Online

	about the cover illustration
	1 Introducing Storm
	1.1 What is big data?
	1.1.1 The four Vs of big data
	1.1.2 Big data tools

	1.2 How Storm fits into the big data picture
	1.2.1 Storm vs. the usual suspects

	1.3 Why you’d want to use Storm
	1.4 Summary

	2 Core Storm concepts
	2.1 Problem definition: GitHub commit count dashboard
	2.1.1 Data: starting and ending points
	2.1.2 Breaking down the problem

	2.2 Basic Storm concepts
	2.2.1 Topology
	2.2.2 Tuple
	2.2.3 Stream
	2.2.4 Spout
	2.2.5 Bolt
	2.2.6 Stream grouping

	2.3 Implementing a GitHub commit count dashboard in Storm
	2.3.1 Setting up a Storm project
	2.3.2 Implementing the spout
	2.3.3 Implementing the bolts
	2.3.4 Wiring everything together to form the topology

	2.4 Summary

	3 Topology design
	3.1 Approaching topology design
	3.2 Problem definition: a social heat map
	3.2.1 Formation of a conceptual solution

	3.3 Precepts for mapping the solution to Storm
	3.3.1 Consider the requirements imposed by the data stream
	3.3.2 Represent data points as tuples
	3.3.3 Steps for determining the topology composition

	3.4 Initial implementation of the design
	3.4.1 Spout: read data from a source
	3.4.2 Bolt: connect to an external service
	3.4.3 Bolt: collect data in-memory
	3.4.4 Bolt: persisting to a data store
	3.4.5 Defining stream groupings between the components
	3.4.6 Building a topology for running in local cluster mode

	3.5 Scaling the topology
	3.5.1 Understanding parallelism in Storm
	3.5.2 Adjusting the topology to address bottlenecks inherent within design
	3.5.3 Adjusting the topology to address bottlenecks inherent within a data stream

	3.6 Topology design paradigms
	3.6.1 Design by breakdown into functional components
	3.6.2 Design by breakdown into components at points of repartition
	3.6.3 Simplest functional components vs. lowest number of repartitions

	3.7 Summary

	4 Creating robust topologies
	4.1 Requirements for reliability
	4.1.1 Pieces of the puzzle for supporting reliability

	4.2 Problem definition: a credit card authorization system
	4.2.1 A conceptual solution with retry characteristics
	4.2.2 Defining the data points
	4.2.3 Mapping the solution to Storm with retry characteristics

	4.3 Basic implementation of the bolts
	4.3.1 The AuthorizeCreditCard implementation
	4.3.2 The ProcessedOrderNotification implementation

	4.4 Guaranteed message processing
	4.4.1 Tuple states: fully processed vs. failed
	4.4.2 Anchoring, acking, and failing tuples in our bolts
	4.4.3 A spout’s role in guaranteed message processing

	4.5 Replay semantics
	4.5.1 Degrees of reliability in Storm
	4.5.2 Examining exactly once processing in a Storm topology
	4.5.3 Examining the reliability guarantees in our topology

	4.6 Summary

	5 Moving from local to remote topologies
	5.1 The Storm cluster
	5.1.1 The anatomy of a worker node
	5.1.2 Presenting a worker node within the context of the credit card authorization topology

	5.2 Fail-fast philosophy for fault tolerance within a Storm cluster
	5.3 Installing a Storm cluster
	5.3.1 Setting up a Zookeeper cluster
	5.3.2 Installing the required Storm dependencies to master and worker nodes
	5.3.3 Installing Storm to master and worker nodes
	5.3.4 Configuring the master and worker nodes via storm.yaml
	5.3.5 Launching Nimbus and Supervisors under supervision

	5.4 Getting your topology to run on a Storm cluster
	5.4.1 Revisiting how to put together the topology components
	5.4.2 Running topologies in local mode
	5.4.3 Running topologies on a remote Storm cluster
	5.4.4 Deploying a topology to a remote Storm cluster

	5.5 The Storm UI and its role in the Storm cluster
	5.5.1 Storm UI: the Storm cluster summary
	5.5.2 Storm UI: individual Topology summary
	5.5.3 Storm UI: individual spout/bolt summary

	5.6 Summary

	6 Tuning in Storm
	6.1 Problem definition: Daily Deals! reborn
	6.1.1 Formation of a conceptual solution
	6.1.2 Mapping the solution to Storm concepts

	6.2 Initial implementation
	6.2.1 Spout: read from a data source
	6.2.2 Bolt: find recommended sales
	6.2.3 Bolt: look up details for each sale
	6.2.4 Bolt: save recommended sales

	6.3 Tuning: I wanna go fast
	6.3.1 The Storm UI: your go-to tool for tuning
	6.3.2 Establishing a baseline set of performance numbers
	6.3.3 Identifying bottlenecks
	6.3.4 Spouts: controlling the rate data flows into a topology

	6.4 Latency: when external systems take their time
	6.4.1 Simulating latency in your topology
	6.4.2 Extrinsic and intrinsic reasons for latency

	6.5 Storm’s metrics-collecting API
	6.5.1 Using Storm’s built-in CountMetric
	6.5.2 Setting up a metrics consumer
	6.5.3 Creating a custom SuccessRateMetric
	6.5.4 Creating a custom MultiSuccessRateMetric

	6.6 Summary

	7 Resource contention
	7.1 Changing the number of worker processes running on a worker node
	7.1.1 Problem
	7.1.2 Solution
	7.1.3 Discussion

	7.2 Changing the amount of memory allocated to worker processes (JVMs)
	7.2.1 Problem
	7.2.2 Solution
	7.2.3 Discussion

	7.3 Figuring out which worker nodes/processes a topology is executing on
	7.3.1 Problem
	7.3.2 Solution
	7.3.3 Discussion

	7.4 Contention for worker processes in a Storm cluster
	7.4.1 Problem
	7.4.2 Solution
	7.4.3 Discussion

	7.5 Memory contention within a worker process (JVM)
	7.5.1 Problem
	7.5.2 Solution
	7.5.3 Discussion

	7.6 Memory contention on a worker node
	7.6.1 Problem
	7.6.2 Solution
	7.6.3 Discussion

	7.7 Worker node CPU contention
	7.7.1 Problem
	7.7.2 Solution
	7.7.3 Discussion

	7.8 Worker node I/O contention
	7.8.1 Network/socket I/O contention
	7.8.2 Disk I/O contention

	7.9 Summary

	8 Storm internals
	8.1 The commit count topology revisited
	8.1.1 Reviewing the topology design
	8.1.2 Thinking of the topology as running on a remote Storm cluster
	8.1.3 How data flows between the spout and bolts in the cluster

	8.2 Diving into the details of an executor
	8.2.1 Executor details for the commit feed listener spout
	8.2.2 Transferring tuples between two executors on the same JVM
	8.2.3 Executor details for the email extractor bolt
	8.2.4 Transferring tuples between two executors on different JVMs
	8.2.5 Executor details for the email counter bolt

	8.3 Routing and tasks
	8.4 Knowing when Storm’s internal queues overflow
	8.4.1 The various types of internal queues and how they might overflow
	8.4.2 Using Storm’s debug logs to diagnose buffer overflowing

	8.5 Addressing internal Storm buffers overflowing
	8.5.1 Adjust the production-to-consumption ratio
	8.5.2 Increase the size of the buffer for all topologies
	8.5.3 Increase the size of the buffer for a given topology
	8.5.4 Max spout pending

	8.6 Tweaking buffer sizes for performance gain
	8.7 Summary

	Trident
	9.1 What is Trident?
	9.1.1 The different types of Trident operations
	9.1.2 Trident streams as a series of batches

	9.2 Kafka and its role with Trident
	9.2.1 Breaking down Kafka’s design
	9.2.2 Kafka’s alignment with Trident

	9.3 Problem definition: Internet radio
	9.3.1 Defining the data points
	9.3.2 Breaking down the problem into a series of steps

	9.4 Implementing the internet radio design as a Trident topology
	9.4.1 Implementing the spout with a Trident Kafka spout
	9.4.2 Deserializing the play log and creating separate streams for each of the fields
	9.4.3 Calculating and persisting the counts for artist, title, and tag

	9.5 Accessing the persisted counts through DRPC
	9.5.1 Creating a DRPC stream
	9.5.2 Applying a DRPC state query to a stream
	9.5.3 Making DRPC calls with a DRPC client

	9.6 Mapping Trident operations to Storm primitives
	9.7 Scaling a Trident topology
	9.7.1 Partitions for parallelism
	9.7.2 Partitions in Trident streams

	9.8 Summary

	afterword
	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

	Back cover

