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Preface

Design may refer to both the process of creating a plan, a scheme, or generally
an organization of elements, for accomplishing a goal, and the result of that pro-
cess. Wikipedia states that design is usually considered in the context of applied
arts, engineering, architecture, and other creative endeavors, and normally requires
considering aesthetic, functional, and many other aspects of an object or a pro-
cess [319]. In the context of this book in the computing world, design refers to the
creation of computer programs, including algorithmic steps and data representa-
tions, that satisfy given requirements.

Design can be exciting because it is linked to problem solving, creation, accom-
plishments, and so on. It may also be frustrating because it is also linked to details,
restrictions, retries, and the like. In the computing world, the creation of a com-
puter program to accomplish a computation task clearly requires problem solving;
the sense of excitement in it is easy to perceive by anyone who ever did it. At the
same time, one needs to mind computation details and obey given restrictions in
often repeated trials; the sense of frustration in the process is also hard to miss.

Systematic design refers to step-by-step processes to go from problem descrip-
tions to desired results, in contrast to ad hoc techniques. For program design, it
refers to step-wise procedures to go from specifications prescribing what to com-
pute to implementations realizing how to compute. The systematic nature is im-
portant for reproducing, automating, and enhancing the creation or development
processes. Clarity of the specifications is important for understanding, deploying,
and evolving the programs. Efficiency of the implementations is important for
their acceptance, usage, and survival.

Overall, a systematic program design method that takes clear specifications into
efficient implementations helps ensure the correctness and performance of the pro-
grams developed and at the same time minimize the development cost. In terms of
human adventure and discovery, it allows us to be free of tedious and error-prone
aspects of design, avoid repeatedly reinventing the wheel, and devote ourselves to
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x Preface

truly creative endeavors. It is with these motivations in mind that this book was
written, to give a unified account of a systematic method that was developed based
on significant prior work by many researchers.

The systematic program design method described in this book applies to large
classes of problems of many different kinds; it does not yet do the magic of gener-
ating efficient implementations from clear specifications for all computation prob-
lems, if such a magic method will ever exist. For example, the method can derive
dynamic programming algorithms from recursive functions, produce appropriate
indexing for efficient evaluation of relational database queries, and generate effi-
cient algorithms and implementations from Datalog rules; however, it cannot yet
derive a linear-time algorithm for computing strongly connected components of
graphs. It is, of course, not the only method for program design.

The method described in this book consists of step-wise analysis and transfor-
mations based on the languages and cost models for specifying the problems. The
key steps are to (1) make computation proceed iteratively on small input incre-
ments to arrive at the desired output, (2) compute values incrementally in each it-
eration, and (3) represent the values for efficient access on the underlying machine.
These steps are called Step Iterate, Step Incrementalize, and Step Implement, re-
spectively. The central step, Step Incrementalize, is the core of the method. You
might find it interesting that making computations iterative and incremental is the
analogue of integration and differentiation in calculus. Steps Iterate and Incre-
mentalize are essentially algorithm design, and Step Implement is essentially data
representation design.

Overview

This book has seven chapters, including an introduction and a conclusion. The five
middle chapters cover the design method for problems specified using loop com-
mands, set expressions, recursive functions, logic rules, and objects, respectively.
Loops are essential in giving commands to computers, sets provide data abstrac-
tion, recursion provides control abstraction, rules provide both data and control
abstractions, and objects provide module abstraction.

Chapter 1 motivates the need for a general and systematic design method in
computer programming, algorithm design, and problem solving in general; in-
troduces an incrementalization-based method that consists of three steps: Iterate,
Incrementalize, and Implement; explains languages, cost models, as well as ter-
minology and notations used throughout the book; and provides historical and
bibliographical notes about the method.

Chapter 2 explains the core step of the method, Step Incrementalize, as it is
applied to optimizing expensive primitive and array computations in loops. The
basic ideas are about maintaining invariants incrementally with respect to loop in-
crement. Because loops are already iterative, and primitives and arrays are easily
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implemented on machines, there is little to do for Step Iterate and Step Imple-
ment. The method is further illustrated on two examples, in hardware design and
image processing. Finally, the need for higher-level data and control abstractions
is discussed.

Chapter 3 presents Step Incrementalize followed by Step Implement, as they
are used to obtain efficient implementations of set expressions. If a set expression
involves a fixed-point operation, Step Iterate easily transforms the operation into a
loop. We focus on composing incremental maintenance code in Step Incremental-
ize and designing linked data structures for sets in Step Implement. The method is
applied to two additional examples, in access control and query optimization. The
chapter ends by discussing the need for control abstraction in the form of recursive
functions, which are optimized in Chapter 4.

Chapter 4 studies Step Incrementalize preceded by Step Iterate, as they are
applied in optimization of recursive functions. We concentrate on determining
minimum increments and transforming recursion to iteration in Step Iterate, and
deriving incremental functions and achieving dynamic programming in Step In-
crementalize. Step Implement easily selects the use of recursive versus indexed
data structures when necessary. Additional examples are described, in combinato-
rial optimization and in math and puzzles. We end by discussing the need for data
abstraction in the form of sets, which are handled in Chapter 3.

Chapter 5 describes Step Incrementalize preceded by Step Iterate and followed
by Step Implement, as they are used together to generate efficient implementa-
tions from logic rules. Step Iterate transforms fixed-point semantics of rules into
loops. Step Incrementalize maintains auxiliary maps extensively for incremen-
tal computation over sets and relations. Step Implement designs a combination
of linked and indexed data structures for implementing sets and relations. The
method gives time and space complexity guarantees for the generated implemen-
tation. We present two example applications, in program analysis and trust man-
agement. Finally, we discuss the need for module abstraction in building large
applications.

Chapter 6 studies incrementalization across module abstraction, as the method
is applied to programs that use objects and classes. Object abstraction allows spec-
ification and implementation of scaled-up applications. We discuss how it also
makes obvious the conflict between clarity and efficiency. We describe a language
for specifying incrementalization declaratively, as incrementalization rules, and
a framework for applying these rules automatically. We also describe two exam-
ple applications, in electronic health records and in game programming. At the
end, we show how to use incrementalization rules for invariant-driven transforma-
tions in general, and we present a powerful language for querying complex object
graphs that is easier to use than set expressions, recursive functions, and logic
rules for a large class of common queries.
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Chapter 7 takes a deeper look at incrementalization, illustrates the ideas on
three sorting examples, describes how program design requires both building up
and breaking through abstractions, discusses issues with implementations and ex-
periments for the method, and points out limitations of the method and directions
for future studies.

How to use this book

This book can be used for both self-study and course study. It is a dense book, but
it is intended for both readers with a minimal computer science background and
experienced computer science researchers and practitioners. For course study, the
book is intended to suit upper-level undergraduate students and beginning gradu-
ate students, but selected parts with simpler examples can be taught to lower-level
undergraduate students, and full coverage with all examples can be taught to ad-
vanced graduate students.

Each of the five middle chapters is relatively independent of the others, except
for some of the language constructs introduced in earlier chapters. Nevertheless,
studying the materials in order will help one better understand the design method
through preview and review of each chapter.

Each of the middle chapters is organized as follows. First, it introduces the
problem and a running example and describes the language constructs handled
in that chapter. Then, it presents the ideas and steps of the method as applied
to the language constructs handled and illustrates them on the running example
and other smaller examples. Next, it gives two or more examples to show either
additional aspects or certain interesting consequences of the method. Finally, it
puts the chapter in the context of the book to motivate the subsequent chapter.
Each chapter ends with bibliographic notes.

Exercises are given at the end of each section, to help readers learn the method
discussed. Each exercise is given one of two levels of difficulty: purely for prac-
ticing or partly for discovery. Exercises of level one are simple examples for pro-
gramming or for following the method presented in that section. Exercises of level
two can lead to discovery of aspects of programming or of the method not dis-
cussed in that section. Exercises of level two are indicated with an asterisk (*).

An index at the end of the book lists the terminology and names used in the
book. A boldface number following a term denotes the page where the term is
defined, and other numbers indicate the pages where the term is used.

Acknowledgments

It is impossible to thank everyone, in an appropriate order, who helped me work
on things that contributed to this book, but I will try.



Preface xiii

First of all, I would like to thank Anil Nerode. His enlightening comments and
encouragement, ever since my years at Cornell University, with his deep insight
from mathematics and logic, open mind on hard practical problems, as well as rich
experience working with people, are invaluable for the work that led to this book
and beyond. All of these, poured on me during the long hours at each of my visits
to him, and unfailingly shown through his instant response to each of my email
inquiries and visit requests, makes him to me like a master to a disciple seeking
some ultimate truth, not to mention that it was while taking his logic class that I
met a classmate to be my love in life.

It was with extreme luck that I went to Cornell University for my PhD, took
stimulating classes not only from Anil, but also Dexter Kozen, Bard Bloom, Ke-
shav Pingali, Keith Marzullo, and others, and did my dissertation work with Tim
Teitelbaum. Tim challenged me to find general principles underlying incremental
computation. He provided me with generous advice and knowledge, especially on
how to value the importance of research in terms of both principles and practices.
Bob Constable showed great enthusiasm for my work and gave excellent sugges-
tions. David Gries gracefully helped polish my dissertation and offered marvelous
humor as an outstanding educator.

Since my dissertation work, I have received many helpful comments and great
encouragement at the meetings of IFIP WG 2.1—International Federation for In-
formation Processing, Working Group on Algorithmic Languages and Calculi.
Bob Paige and Doug Smith, whose papers I had read with great interest before
then, were instrumental in discussing their work in detail with me. How I wish
that Bob lived to continue his marvelous work. Michel Sintzoff, Cordell Green,
Lambert Meertens, Robert Dewar, Richard Bird, Alberto Pettorossi, Peter Pepper,
Dave Wile, Martin Feather, Charles Simonyi, Jeremy Gibbons, Rick Hehner, Oege
de Moor, Ernie Cohen, Roland Backhouse, and many others showed me a diverse
range of other exciting work. Michel’s work on designing optimal control systems
and games provides, I believe, a direction for studying extensions to our method
to handle concurrent systems.

Many colleagues at Stony Brook University and before that at Indiana Uni-
versity were a precious source of support and encouragement. At Stony Brook,
Michael Kifer taught me tremendously, not only about deductive and object-
oriented database and semantic web, but also other things to strive for excellence
in research; David Warren enthusiastically gave stimulating answers to my many
questions on tabled logic programming; Leo Bachmair, Tzi-cker Chiueh, Rance
Cleaveland, Radu Grosu, Ari Kaufman, Ker-I Ko, C.R. Ramakrishnan, I.V. Ra-
makrishnan, R. Sekar, Steve Skiena, Scott Smolka, Yuanyuan Yang, Erez Zadok,
and others helped and collaborated in many ways. At Indiana, Jon Barwise exem-
plified an amazing advisor and person as my mentor; Steve Johnson enthusiasti-
cally applied incrementalization to hardware design; Randy Bramley, Mike Dunn,



xiv Preface

Kent Dybvig, Dan Friedmen, Dennis Gannon, Daniel Leivant, Larry Moss, Paul
Purdom, David Wise, and others helped in many ways.

I also benefited greatly from interactions with many other colleagues, includ-
ing many who visited me or hosted my visits and acquainted me with fascinat-
ing works and results: Bob Balzer, Allen Brown, Gord Cormack, Patrick Cousot,
Olivier Danvy, John Field, Deepak Goyal, Rick Hehner, Nevin Heintze, Connie
Heitmeyer, Fritz Henglein, Daniel Jackson, Neil Jones, Ming Li, Huimin Lin,
Zuoquan Lin, David McAllester, Torben Mogensen, Chet Murthy, Bill Pugh,
Zongyan Qiu, G. Ramalingam, John Reppy, Tom Reps, Jack Schwartz, Mary Lou
Soffa, Sreedhar Vugranam, Thomas Weigert, Reinhard Wilhelm, Andy Yao, Bo
Zhang, and others. Neil’s work on partial evaluation initially motivated me to
do derivation of incremental programs via program transformation. Many other
friends in Stony Brook and old friends in Beijing, Ithaca, and Bloomington have
helped make life more colorful.

I especially thank colleagues who have given me helpful comments on drafts
of the book: Deepak Goyal, David Gries, Rick Hehner, Neil Jones, Ming Li,
Alberto Pettorossi, Zongyan Qiu, Jack Schwartz, Michel Sintzoff, Steve Skiena,
Scott Stoller, Reinhard Wilhelm, and others who I might have forgotten. Jack
Schwartz’s comments and encouragement left me with overwhelming shock and
sadness upon learning that he passed away soon after we last spoke on the phone.
Anil Nerode wrote an enlightening note from which I took the quote for the most
important future research direction at the end of the book.

Many graduate and undergraduate students who took my classes helped im-
prove the presentation and the materials: Ning Li, Gustavo Gomez, Leena Unikr-
ishnann, Todd Veldhuizen, Yu Ma, Joshua Goldberg, Tom Rothamel, Gayathri
Priyalakshmi, Katia Hristova, Michael Gorbovitski, Chen Wang, Jing Zhang, Tun-
cay Tekle, Andrew Gaun, Jon Brandvein, Bo Lin, and others. I especially thank
Tom for picking the name III for the method out of a combination of choices I
had, accepting nothing without being thoroughly convinced, and making excel-
lent contributions to incrementalization of queries in object-oriented programs.
Students in my Spring 2008 Advanced Programming Languages class marked up
the first draft of this book: Simona Boboila, Ahmad Esmaili, Andrew Gaun, Navid
Azimi, Sangwoo Im, George Iordache, Yury Puzis, Anu Singh, Tuncay Tekle, and
Kristov Widak.

Scott Stoller deserves special thanks, as a colleague, before that a classmate
and then an officemate, and as my husband. He has usually been the first person
to hear what I have been working on. He has given me immense help in making
my ideas more precise and my writing more succinct, and he has answered count-
less questions I had while writing this book. He has been a wonderful collaborator
and a fabulous consultant. Finally, I thank my parents for designing me, prepar-
ing me for both high points and low points in my endeavors, and, perhaps, for



Preface xv

unyieldingly persuading me to go to Peking University to study computer science.
I thank my two daughters for being so lovely, helping me better understand the
need for clear specifications and efficient implementations, and, perhaps, for fight-
ing with my designs from time to time. I especially thank my daughter Sylvi for
reading the last draft of this book and giving me excellent suggestions. I thank my
daughter Serene for her infinite creativity in keeping herself busy while waiting
for me.

Much research that led to this book was supported by the Office of Naval Re-
search under grants N00014-92-J-1973, N00014-99-1-0132, N00014-01-1-0109,
N00014-04-1-0722, and N00014-09-1-0651; the National Science Foundation un-
der grants CCR-9711253, CCR-0204280, CCR-0306399, CCR-0311512, CNS-
0509230, CCF-0613913, and CCF-0964196; industry grants and gifts; and other
sources. Many thanks to my editor at Cambridge University Press, Lauren Cowles,
for her wonderful support and advice during the publication process of this first
book of mine.





1
Introduction

1.1 From clarity to efficiency: systematic program design

At the center of computer science, there are two major concerns of study: what
to compute, and how to compute efficiently. Problem solving involves going from
clear specifications for “what” to efficient implementations for “how”. Unfortu-
nately, there is generally a conflict between clarity and efficiency, because clear
specifications usually correspond to straightforward implementations, not at all
efficient, whereas efficient implementations are usually sophisticated, not at all
clear. What is needed is a general and systematic method to go from clear specifi-
cations to efficient implementations.

We give example problems from various application domains and discuss the
challenges that lead to the need for a general and systematic method. The exam-
ple problems are for database queries, hardware design, image processing, string
processing, graph analysis, security policy frameworks, program analysis and ver-
ification, and mining semi-structured data. The challenges are to ensure correct-
ness and efficiency of developed programs and to reduce costs of development
and maintenance.

Example problems and application domains

Database queries. Database queries matter to our everyday life, because databases
are used in many important day-to-day applications. Consider an example where
data about professors, courses, books, and students are stored, and we want to find
all professor-course pairs where the professor uses any of his own books as the
textbook for the course and any of his own students as the teaching assistant for
the course. It is not hard to see that similar queries can be used to detect fraud
in financial databases, find matches between providers and suppliers, and identify
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2 1 Introduction

rare correlations in data in general. If you care to know, the example query can
be expressed in the dominant database query language, SQL, as follows, where *
denotes everything about the matched data:

select * from professor, course
where professor.id = course.instructor

and exists (select * from book
where book.author = professor.name and

book.name = course.textbook)
and exists (select * from student

where student.advisor = professor.name and
student.teaching = course.id)

A straightforward computation would iterate through all professors and, for each
of them, check each course for whether the professor is the course instructor;
further, for each pair of professor and course found, it would check each book
for whether the author is the professor and the book is the course textbook, and
similarly check each student. This can take time proportional to the number of
professors times the number of courses times the sum of the numbers of books
and students. An efficient computation can use sophisticated techniques and take
only time proportional to the size of the data plus the number of answers. For
example, if there are 1,000 each of professors, courses, books, and students, then a
straightforward computation can take time on the order of 1, 000×1, 000×(1, 000+

1, 000), which is 2,000,000,000, whereas an efficient computation takes time on
the order of 4,000 plus the number of answers. How to design such an efficient
computation?

Hardware design. Hardware design requires efficiently implementing complex
operations in computer hardware using operations that already have efficient sup-
port in hardware. A good example is the square-root operation. A brute-force way
to compute the square root of a given number is to iterate through a range of pos-
sible numbers and find the one whose square equals the given number, where the
square operation uses multiplication, which has standard support in hardware. An
efficient implementation will not use squares or multiplications, but rather a so-
phisticated combination of additions and shifts, that is, doublings and halvings,
because the latter have much more efficient support in hardware. How to design
such efficient implementations?

Image processing. Image processing has a central problem, which is to process
the local neighborhood of every pixel in an image. A simple example is image
blurring. It computes the average of the m-by-m neighborhood of every pixel in
an n-by-n image. A straightforward way to compute the blurred image is to iterate
over each of the n2 pixels, sum the values of the m2 pixels in the neighborhood of
the pixel, and divide the sum by m2. This takes time proportional to n2 ×m2. A
well-known efficient algorithm computes the blurred image in time proportional
to n2, by smartly doing only four additions or subtractions in place of summing
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1.1 From clarity to efficiency: systematic program design 3

over m2 pixels in the neighborhood of each pixel, regardless of the size m2 of the
neighborhood. How to derive such an efficient algorithm?

String processing. String processing is needed in many applications, from text
comparison to biological sequence analysis. A well-known problem is to compute
a longest common subsequence of two strings, where a subsequence of a string is
just the given string possibly with some elements left out. A straightforward way
to compute the solution can be written as a simple recursive function, but takes
time proportional to an exponential of the lengths of the two strings in the worst
case. An efficient algorithm for this problem tabulates solutions to subproblems
appropriately and takes time proportional to the product of the lengths of the two
strings in the worst case. How to design such efficient algorithms given recursive
functions for straightforward computations?

Graph analysis. Graph analysis underlies analyses of complex interrelated ob-
jects. A ubiquitous problem is graph reachability: given a set of edges, each going
from one vertex to another, and a set of vertices as sources, compute all vertices
reachable from the sources following the edges. Straightforwardly and declara-
tively, one can state two rules: if a vertex is a source, then it is reachable; if a
vertex is reachable, and there is an edge from it to another vertex, then this other
vertex is reachable also. An efficient algorithm requires programming a strategy
for traversing the graph and a mechanism for recording the visits, so that each
edge is visited only once, even if many edges can lead to a same edge and edges
can form cycles. How to arrive at such an efficient program from the rules?

Querying complex relationships. Querying about complex relationships, for-
mulated as database queries or graph queries, is essential not only for database
and Web applications but also for security policy analysis and enforcement, pro-
gram analysis and verification, data mining of semi-structured data, and many
other applications. In security policy frameworks, complex relationships need to
be captured for access control, trust management, and information flow analysis.
In program analysis and verification, flow and dependency relations among pro-
gram segments and values, and transitions among system states, are formulated
using many kinds of trees and graphs. For mining semi-structured data, which
form trees, segments of trees need to be related along the paths connecting them.

Challenges

The challenges are that, for real-world applications, computer programs need to
run correctly and efficiently, be developed quickly, and be easy to maintain, all at
low costs. Correctness requires that the developed programs satisfy the problem
specifications. Efficiency requires guarantees on fast running times and acceptable
space usages for the developed programs. Costs of development and maintenance
need to be minimized while achieving desired correctness and efficiency.
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Unfortunately, there are trade-offs and thus conflicts among correctness, effi-
ciency, and costs of development and maintenance. The central conflict, as in-
dicated through the example problems just described, is between the clarity and
efficiency of computer programs. A straightforward specification of a computa-
tion is clear, and thus is not only easier to be sure of correctness but also easier to
develop and maintain, but it tends to be extremely inefficient to execute. In con-
trast, an efficient implementation tends to be sophisticated and not at all clear, and
thus is much more difficult to verify for correctness and to develop and maintain.

Of course, there are other challenges besides the trade-offs. In particular, clear
specifications, capturing complete requirements of the problems, must be devel-
oped, either informally or formally, and efficient implementations, with full details
needed for program execution, must be produced at the end, either programmed
manually based on informal specifications or generated automatically from for-
mal specifications. We argue here that the ideal way to address all the challenges
is through development of clear high-level specifications and automatic generation
of efficient low-level implementations from the specifications.

Developing clear specifications. Formal specifications are much harder to de-
velop than informal specifications, but are substantially easier to develop,
maintain, and verify than efficient implementations. It would be a signif-
icant gain if efficient implementations can be generated automatically by
correctness-preserving transformations from formal specifications. How to
develop precise and formal specifications? Ideally, we would like to eas-
ily and clearly capture informal specifications stated in a natural language
in some suitable formal specification language. Practically, we will allow
straightforward ways of computations to be specified easily and clearly in
high-level programming languages.

Generating efficient implementations. Efficient implementations are much
harder to develop than specifications of straightforward computations, but
efficient implementations for individual problems are drastically easier to de-
velop than general methods for systematically deriving efficient implementa-
tions from specifications. One could perceive many commonalities in solving
very different individual problems. What could be a general and systematic
method? Such a method should use correctness-preserving transformations
starting from specifications. Despite that it must be general, that is, apply to
large classes of problems, and be systematic, that is, allow automated sup-
port, it must be able to introduce low-level processing strategies and storage
mechanisms that are specialized for individual problems.

Overall, we can see that a systematic design method for transforming clear specifi-
cations into efficient implementations is central for addressing all the challenges.
Clear specifications of straightforward computations, together with correctness-
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preserving transformations, make correctness verification substantially easier com-
pared with ad hoc implementations written by hand. Exact understanding of the
resulting algorithms and implementations derived using a systematic method is
key to providing time and space guarantees. Clear specifications of straightfor-
ward computations, plus automatic generation of efficient implementations based
on a systematic method, minimize development and maintenance costs.

The question is, then: does such a method exist? If yes, how general and system-
atic is it? In particular, can it solve all the example problems we have discussed,
and what other problems can it solve? If it is not yet general and systematic in the
absolute sense, that is, solving all problems, how will it grow? It is not hard to
see that, for such a method to exist and to grow, to solve increasingly more prob-
lems from different application domains, it must be rooted in rigorous scientific
principles.

Exercise 1.1 (Problem description) Describe a computation problem that is
interesting to you in any way. Can you describe what it is that should be computed
without stating how to compute it? That is, describe what is given as input and
what is asked as output, including any restrictions on the input and how the output
is related to the input, but not how to go from the input to the output.

1.2 Iterate, incrementalize, and implement

This book describes a general and systematic design and optimization method for
transforming clear specifications of straightforward computations into efficient
implementations of sophisticated algorithms. The method has three steps: Iterate,
Incrementalize, and Implement, called III for short.

1. Step Iterate determines a minimum input increment operation to take repeat-
edly, iteratively, to arrive at the desired program output.

2. Step Incrementalize makes expensive computations incremental in each itera-
tion by using and maintaining appropriate values from the previous iteration.

3. Step Implement designs appropriate data structures for efficiently storing and
accessing the values maintained for incremental computation.

We describe the essence of each step separately in what follows, especially how
they matter in the wide range of different programming paradigms with different
programming abstractions. We first introduce these paradigms and abstractions.
We then show that the III method applies uniformly, regardless of the program-
ming paradigms used; this starts with Step Incrementalize, the core of the method.
We finally discuss why the three steps together form a general and systematic
method for design and optimization.
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Programming paradigms and abstractions

We consider five main paradigms of programming: imperative programming,
database programming, functional programming, logic programming, and object-
oriented programming.

1. Imperative programming describes computation as commands that update
data storage; at the core are loops and arrays—commands for linearly re-
peated operations and consecutive slots for storing data.

2. Database programming expresses computation as queries on collections of
records in a database; at the core are set expressions—expressions for query-
ing sets of data.

3. Functional programming treats computation as evaluation of mathematical
functions; at the core are recursive functions—functions defined recursively
using themselves.

4. Logic programming specifies computation as inference of new facts from
given rules and facts using deductive reasoning; at the core are logic rules—
rules for logical inference.

5. Object-oriented programming describes computation as objects interacting
with each other; at the core are objects and classes—instances and their cat-
egories for encapsulating combinations of data and operations.

Languages for logic programming, database programming, and functional pro-
gramming are sometimes called declarative languages, which are languages that
specify more declaratively what to compute, in contrast to how to compute it.

Regardless of the paradigm, programming requires specifying data and control,
that is, what computations manipulate and how computations proceed, and orga-
nizing the specifications. This is done at different abstraction levels in different
paradigms.

1. Loops and arrays explicitly specify how data is represented and how control
flows during computations; they are not high-level abstractions for data or
control.

2. Set expressions support computations over sets of records used as high-level
data abstraction. This eliminates the need to explicitly specify data represen-
tations.

3. Recursive functions allow computations to follow recursive function defi-
nitions used as high-level control abstraction. This eliminates the need to
explicitly specify control flows.

4. Logic rules let sets of records be represented as predicates, and let predicates
be defined using recursive rules; they provide high-level abstractions for both
data and control.
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5. Objects and classes provide high-level module abstraction, which allows mod-
ules or components that encapsulate data and control to be composed to form
larger modules.

Uses of these language features are not exclusive of each other and could in fact
be supported in a single language; in current practice, however, there is not a
well-accepted language that supports them all, but many good languages support
subsets of them.

Incrementalize

We discuss Step Incrementalize first because it is the core of the III method. Ef-
ficient computations on nontrivial input must proceed repeatedly on input incre-
ment. Step Incrementalize makes the computation on each incremented input ef-
ficient by storing and reusing values computed on the previous input. Whether
problems are specified using loops and arrays, set expressions, recursive func-
tions, logic rules, or objects and classes, it is essential to make repeated expensive
computations incremental after the values that they depend on are updated.

More precisely, expensive computations include expensive array computations,
set query evaluations, recursive function calls, and logical fact deductions. Vari-
ables whose values are defined outside a computation and used in the computation
are called parameters of the computation, and any operation that sets the value of
a parameter is called an update to the value of the parameter. The values of param-
eters of expensive computations may be updated slightly in each iteration of the
enclosing computation. The goal of incrementalization is to incrementally main-
tain the results of expensive computations as the values of their parameters are
updated in each iteration, by storing and using the results from the previous it-
eration. This often incurs the need to store and use appropriate additional values
and maintain them incrementally as well in each iteration; this reflects a trade-off
between running time and space usage.

When objects and classes are used to provide module abstraction for large appli-
cations, expensive computations and updates to parameter values may be scattered
across classes, and thus we must also incrementalize across objects and classes.
This allows incrementalization to be used for scaled-up applications.

Iterate

Step Iterate is the first step of the III method, and determines how computations
should proceed. Even though it must be decided before incrementalization, it is
actually driven by incrementalization: the goal of incrementalization is to maxi-
mize reuse, and therefore a critical decision we make is to minimize the increment
in each iteration.

When straightforward computations are specified using loops over array com-
putations or over set expressions, the ways of iterating are already specified by
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the loops, and thus Step Iterate is not necessary. The ways of iterating specified
by the given loops often lead to desired efficient computations. However, they do
not always do so, and determining appropriate ways of iterating that are different
from the specified ways can be very difficult because it requires understanding at
a higher level what the given loops compute.

When straightforward computations are specified using general recursive func-
tions or logic rules, which provide high-level control abstraction, the ways of it-
erating are not specified, and thus Step Iterate is essential. In general, there can
be many ways of iterating given a recursive specification. Even with the goal of
minimizing the increment, there can be multiple ways that are incomparable with
each other. Different ways of iterating may impact both the running time of the
resulting computation and the space needed for storing values over the iterations.

Implement

Step Implement is the last step of the III method. It designs appropriate data struc-
tures. It first analyzes all data accesses needed by incremental computations and
then designs appropriate combinations of indexed and linked structures to make
the accesses efficient.

When straightforward computations are specified to process data in arrays and
recursive data types, it is easy to map these data representations directly on the un-
derlying machine, as indexed consecutive slots and tree-shaped linked structures,
respectively, and thus Step Implement is straightforward. These data represen-
tations are sufficient for efficient computations for many applications. However,
they are not always sufficient, and determining appropriate data representations
that are different from the specified ones can be very difficult because it requires
understanding at a higher level what the data representations represent.

When straightforward computations are specified using set expressions or logic
rules, which use sets and relations as high-level data abstractions, it is essential
to determine how sets and relations can be stored in the underlying hardware ma-
chines for efficient access. In general, this can be a sophisticated combination of
indexed and linked structures. There are also trade-offs between the times needed
for different accesses.

A general and systematic method

The III method is general and systematic for at least three reasons: (1) it is based
on languages, (2) it applies to a wide range of programming paradigms, and (3) it
is the discrete counterpart of differentiation and integration in calculus for contin-
uous domains.

The method is based on languages, meaning that the method consists of anal-
ysis and transformations for problems that are specified using the constructs of
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languages. This allows the method to apply to large classes of problems spec-
ified using the languages, not just some individual problems. It also allows the
method to be systematic by formulating the analysis and transformation proce-
dure precisely and completely. We will see that the III method can solve all the
example problems discussed earlier and many more that can be specified using
the languages we discuss. The higher-level the abstractions used in specifying the
problems are, the better the method works. For example, for problems specified
using rules in Datalog, the method can generate optimal implementations with
time and space guarantees.

The method applies to the wide range of programming paradigms discussed ear-
lier in this section, as summarized in Figure 1.1. The boxes indicate programming
paradigms by their essential language features in boldface; the steps in boldface
below the line indicate the essential steps for each paradigm. Arrows indicate es-
sential abstractions added to go from one box to another; they do not exclude,
for example, loops with sets in the “sets” box and recursion with arrays in the
“recursion” box. The gist of this diagram is the following:

• The core step, Step Incrementalize, is essential for all programming paradigms.

• Step Iterate is essential when high-level control abstraction is used.

• Step Implement is essential when high-level data abstraction is used.

• Doing Step Incrementalize across modules is essential when high-level mod-
ule abstraction is used.

We will see that the driving principles underlying the III method are captured
in step-by-step analysis and transformations for problems specified in all of the
paradigms. Indeed, the method can be fully automated given simple heuristics for
using algebraic laws to help determine minimum increments and reason about
equalities involving primitive operations; the method can also be used semiauto-
matically or manually.

The method is the discrete counterpart of differential and integral calculus for
design and optimization in continuous domains for engineering system design,
rooted rigorously in mathematics and used critically for sciences like physics. In
particular, incrementalization corresponds to differentiation of functions, iteration
corresponds to integration, and iterative incremental maintenance corresponds to
integration by differentiation. Minimizing iteration increments and maintaining
auxiliary values for incrementalization yields the kind of continuity that is needed
for differentiation in calculus. The extra concept of implementation is needed be-
cause we have to map the resulting computations in the discrete domains onto
computer hardware. Indeed, Step Iterate and Step Incrementalize are essentially
algorithm design, whereas Step Implement is essentially data structure design.

Overall, the III method unifies many ad hoc optimizations used in the imple-
mentations of languages and supports systematic design of algorithms and data
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Figure 1.1 III method for different language abstractions.
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structures. Compared with mathematics and other sciences, the study of such a
systematic method in computer science is still very young and leaves tremendous
room for continued extension and growth.

Exercise 1.2 (Solution design) For the problem you described for Exercise 1.1,
describe how to compute the solution. Can you describe multiple ways to compute
it? In particular, can you think of a straightforward way to compute the solution,
and think of expensive computations that you have to do repeatedly in this way?
In contrast, can you think of an efficient way to compute the solution, without
repeated expensive computations?

1.3 Languages and cost models

We explain the need for languages that support clear specifications of straightfor-
ward computations for given problems. We also discuss the cost models we use.
We then introduce terminology and notations used throughout the book.

Languages

We need to precisely define the languages used for specifications and implementa-
tions, because the method will be presented as analysis and transformations based
on the languages. Problem specifications in languages that support more abstrac-
tions are generally higher-level and clearer. These specifications are also easier to
analyze and potentially easier to transform into efficient designs and implementa-
tions.

It is not hard to see that different kinds of problems may best be specified us-
ing different kinds of abstractions. For any given problem, we advocate the use
of languages that support clear specifications of straightforward computations for
that problem. This is in contrast to using a single, high-level, completely declar-
ative language for specifying all problems. While being completely declarative
might help reason about the specifications, it is not always the most natural way
to express the computations needed and sometimes also poses unnecessary chal-
lenges for generating efficient implementations. Clear specifications of straight-
forward computations are typically the easiest to write and read, and they are also
immediately executable, albeit possibly in a completely naive way, and thus trans-
formations to generate efficient implementations may be regarded as powerful
optimizations.

Each chapter describes the language constructs, that is, the building blocks of
languages, used in that chapter. To simplify the descriptions of the language con-
structs, we only describe their behavior for cases where no error occurs; in case
an error occurs, such as division by zero, the program simply terminates with the
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error. We discuss at the end, in extensions for future work, that all of the language
constructs could be supported in a single high-level programming language.

Cost models

To discuss efficiency, the cost model must be made explicit, which generally
means giving the cost of executing each language construct. Note that the cost
here is for executing the programs, not developing the programs; reducing the
cost of development is a meta-goal achieved through the systematic nature of the
design method.

Our primary goal is to reduce significant factors in the running times of the
derived programs. In general, this may require the cost model to give the running
time of each kind of operation. For efficiency improvement, we focus on signif-
icant factors that distinguish between expensive and inexpensive operations. The
distinction is to separate operations whose costs differ so significantly that expen-
sive operations are not supported at all on the underlying machine, or are con-
sidered much more costly than inexpensive ones, either asymptotically or by an
order of magnitude. An asymptotic improvement is an improvement by more than
any constant factor. An order-of-magnitude improvement is an improvement by a
notable constant factor, typically a factor of ten. We focus on such distinctions in
the cost model, because such significant cost differences must be addressed before
finer-grained performance tuning matters.

Our secondary goals are to optimize for smaller constant factors in the running
time and to optimize space usage and program size. Our method can consider
small constant factors in a similar way as order-of-magnitude constant factors, ex-
cept that more precise calculations are needed. Our method maintains appropriate
auxiliary values, and thus may incur extra space usage, which reflects the well-
known trade-off between time and space. The method saves space by maintaining
only values useful for achieving the primary goal. Our method does not explicitly
calculate code size in the cost model, but rather reduces code size when doing it
does not affect the primary goal. These secondary goals are important for many
applications; for example, if space usage is too large, it might also increase run-
ning time. Clearly, there can be trade-offs among all the goals. We will discuss
trade-offs as they come up.

The cost model is not a fixed one for all problems. What is considered expensive
depends on the underlying machine, as well as the application. For example, for
a machine that implements addition and subtraction but not multiplication and di-
vision, the latter two operations may be considered expensive; on most machines,
all four are implemented, but square root is not, so it may be that among these only
square root is considered expensive; for interactive applications, all five operations
may be considered inexpensive, but a query over a set of elements is considered
expensive.
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Each chapter describes the cost model for the operations used in the language
and applications in that chapter. We give costs of primitive operations in the lan-
guage and use them to analyze the costs of computations; in general, relative costs
of two computations may be analyzed more easily and be sufficient for many ap-
plications. Our method uses the cost model to identify expensive computations in
straightforward implementations, calculate the costs of incremental computations
in efficient implementations, and evaluate trade-offs when there are alternative
implementations. These tasks are easier for problems specified using higher-level
abstractions. For example, we will see that for problems specified using rules in
Datalog, we can give precise time and space guarantees for the generated imple-
mentations; this is impossible in general for programs that use arbitrary loops.

Terminology and notations

The following terminology is used in the book. It is standard knowledge for upper-
level undergraduate students and can be safely skipped by readers with a similar
or higher level of knowledge. Individual chapters and sections define additional
terminology used in that chapter or section, or afterward. The index at the end of
the book includes all the terminology used in the book.

A few basic concepts in discrete mathematics are used extensively in computer
science: sets, tuples, relations, functions, and predicates.

• A set is a collection of distinct elements. A tuple is an ordered collection of
components. A relation is a set of tuples of the same number of components.

• A function maps each input value to a unique output value, where the input
value is called an argument and the output value is called a result or return
value. A function is equivalent to a binary relation (i.e., a set of tuples of two
components each) in which each value can occur in the first component of at
most one tuple.

• A predicate asserts true or false for a relationship among the components of a
tuple. A predicate is equivalent to a relation when it asserts true for and only
for tuples in the relation.

We describe some basic terminology used for computer programming languages:
program syntax and semantics, identifiers, bindings, data types, and references.

• A computer program consists of instructions for a computer to execute; the
executions perform operations on data based on the instructions. A program
construct corresponds to a kind of instruction. The syntax of programs and
program constructs refers to the characters and their combinations used to
form programs; the semantics of programs and program constructs refers to
their meanings. A program segment, or a piece of code, is a contiguous seg-
ment of a program, formed from one or more program constructs.
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• An identifier, or a name, is a sequence of characters that represents an entity,
such as a variable or a function, in a program. A variable is an entity that
can hold values of some kind, such as the weight of a person or the size
of a computer window. A state is a snapshot of the values of variables and
other configuration information during the execution of a program. When
describing transformations, we assume that the identifiers introduced by our
method are not already used in the given program; fresh identifiers can always
be generated and used for them.

• A binding is an association between a variable and a value, where we say
that the variable is bound to the value. The scope of a binding is an enclos-
ing program segment in which the binding holds. Scopes can be nested. A
variable that is introduced in an inner scope is a local variable in the scope.
A variable that is introduced in the outermost scope is a global variable. A
variable that is used in a program segment but not introduced in the segment
is a free variable of the segment.

• A data type is a kind of data manipulated by a program, such as integers,
sets of integers, and so on. A primitive type is a data type that is defined in
a language as a basic building block, such as the integer type. A compound
type is a type that is constructed out of primitive types or compound types,
such as the type of sets of integers. Operations on data of primitive types are
called primitive operations. Operations on data of compound types and of
non-fixed sizes are called compound operations.

• References are a primitive type of data that refer to other data. Generally,
a reference is a piece of data that allows retrieval of another piece of data.
Concretely, it can be thought of as the address information, called a pointer,
for data stored somewhere in the computer’s memory. It is important for ef-
ficiently accessing data, because data are stored at addresses in computer
memory. Note that we use the term “pointer” for convenience; we do only
data access through pointers, not arbitrary operations on pointers. A special
value, null, is a reference to no data. References are used to construct many
data structures, such as linked lists, described later in this section.

We use a few special notations in programs. We use an increased indentation to
indicate an inner scope, instead of using a pair of braces or special keywords.
We use double dash (--) to denote the start of a comment that ends at the end
of the line. We use aligned double bars (||) in consecutive lines to denote the
left boundary of a comment that crosses all the lines involved and whose right
boundary is the end of all these lines.

A compiler is a computer program that translates programs written in a com-
puter language into another, often lower-level, computer language. Compile time,
also called static, is a property of happenings during program compilation by a
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compiler or before program execution in general. Runtime, also called dynamic, is
a property of happenings during program execution.

A few fundamental data structures, that is, ways to represent data of compound
types in computer memory, are used in efficient implementations. Records, linked
lists, and arrays are the most basic; stacks and queues can be implemented easily
using linked lists; hash tables are implemented using arrays, linked lists, and hash
functions.

• A record is an aggregate of a constant number of items of possibly different
types. Each item is stored in a named field for efficiently accessing the value
of the item by name.

• A linked list is a data structure for a sequence of nodes, each one represented
as a record containing arbitrary data fields and one or two reference fields
pointing to the next and/or previous nodes in the list.

A singly linked list has one link per node, pointing to the next node in the list,
or to null if it is the last node. It supports efficient access to the data fields
given a pointer to any node, efficient access to the pointer to the next node,
efficient insertion of a node after the node pointed to by the given pointer, and
efficient deletion of the node after the node pointed to by the given pointer.

A doubly linked list has two links per node, one pointing to the next node in
the list, or to null if it is the last node, and the other pointing to the previous
node in the list, or to null if it is the first node. It supports efficient access
to the data fields given a pointer to any node, efficient access to the pointers
to the previous and next nodes, efficient insertion of a node before or after
the node pointed to by the given pointer, and efficient deletion of the node
pointed to by the given pointer.

• A stack is a data structure that supports the principle of “Last In, First Out”
(LIFO) through two efficient operations: a push operation adds an element at
the top of the stack, and a pop operation removes the element at the top of the
stack.

• A queue is a data structure that supports the principle of “First In, First Out”
(FIFO) through two efficient operations: an enqueue operation adds an ele-
ment at the tail end of the queue, and a dequeue operation removes the ele-
ment at the head of the queue.

• An array is a data structure for a group of elements of the same type to be
accessed efficiently by indexing. It occupies a contiguous area of computer
memory, where each array element takes the same amount of space, so the
addresses of the elements can be calculated efficiently based on the starting
address of the array and the indices of the elements.

• A hash table is a data structure that associates values called keys with val-
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ues. It supports efficient lookup: given a key (e.g., a person’s name), lookup
finds the corresponding value (e.g., that person’s telephone number). It also
supports efficient insertion and deletion of entries. Lookup is implemented
by hashing, that is, transforming the key using a hash function into a number
that is used as an index in an array to locate the desired value; when multiple
keys are hashed to the same index, a pointer to a linked list of key-value pairs
is stored at the index.

Each operation described for these data structures is efficient in the sense that it
takes constant time, defined in the next paragraph. Each operation except hash
table operations takes constant time in the worst case. Each hash table operation
takes constant time on average, with well-chosen hash functions and hash table
loads.

We use the following terminology and notations to analyze running time and
space usage of algorithms and programs.

• The complexity of an algorithm, or program, is a quantitative measure of the
resource usage (such as running time and space usage) of the algorithm, as
a function of quantitative measures (such as size) of the input to the algo-
rithm. The notion of asymptotic complexity describes the limiting behavior
of a complexity function when its argument goes up, ignoring constant fac-
tors and smaller-magnitude summands in the function.

• The big O notation is used to denote an asymptotic upper bound of a com-
plexity function. For example, the complexity function 2n2 +3n+7, where n

is the problem input size, is O(n2) in the big O notation; the function 4n + 9

is also O(n2), as well as O(n).

• The asymptotic upper bounds O(n), O(n2), and so on are said to be linear,
quadratic, and so on, respectively, in n. For example, if the running time of
an algorithm has an asymptotic upper bound O(n) for input size n, we say
that the algorithm takes linear time. O(1) is said to be constant. O(nk), for
some constant k greater than or equal to 0, is said to be polynomial. O(cn),
for some constant c greater than 1, is said to be exponential.

• Asymptotic complexity can be used to characterize the worst-case or average-
case running time or space usage of algorithms.

• Symmetric to O, Ω is used to denote an asymptotic lower bound.

For complexity analysis, we use #p to denote the size of the value of input param-
eter p, and we use time(x) to denote the time complexity of executing a program
segment x. We use S ∪ T and S ∩ T to denote the union and intersection, respec-
tively, of two sets S and T .

A decision problem is a problem with a yes-or-no answer depending on the
values of input parameters. A decision problem is in complexity class P, which
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stands for polynomial time, if it can be solved by a polynomial-time algorithm.
A decision problem is in NP, which stands for nondeterministic polynomial time,
if values of parameters that lead to yes-answers have proofs of the yes-answers
that can be checked by a polynomial-time algorithm. A decision problem is NP-
complete if it is in NP and any problem in NP can be translated to this problem in
polynomial time. NP-complete problems are so far not known to be computable
in polynomial time. A decidable problem is a decision problem for which there
exists an algorithm that gives a yes-or-no answer for all values of input parameters.
An undecidable problem is a decision problem for which no algorithm can give a
yes-or-no answer for all values of input parameters.

Exercise 1.3 (Programming solutions) For the way or ways to compute the so-
lution that you described for Exercise 1.2, write a program or programs. If you
already know one or more programming languages, write in your favorite lan-
guage. If you know one or more languages that support different programming
paradigms, can you write in different paradigms? If you do not yet know a pro-
gramming language, write the computation steps in the most precise manner you
can.

Exercise 1.4 (Cost analysis) For the way or ways to compute the solution that
you described for Exercise 1.2, analyze the computation costs. Analyze in terms
of the number of different operations required and the amount of space required.
Can you describe the costs using the asymptotic complexity notations?

1.4 History of this work

This book is the result of a long sequence of research endeavors and events. The
book is about a general and systematic method for designing and developing com-
puter algorithms and programs by transforming clear specifications into efficient
implementations. However, I believe that, if I had felt an ambition or mission to
create such a method at the beginning, I would have failed miserably.

The work started with my PhD dissertation research at Cornell University. My
advisor was Tim Teitelbaum. I started working with him in the summer of 1991.
Tim’s main research interest had been programming environments [298, 268], to
support programming activities based on the syntax and semantics of the pro-
gramming language, such as by indicating undefined variables or inferring types.
Analysis of program syntax and semantics can be expensive. At the same time,
the program is being edited repeatedly. For an environment to be responsive, the
analysis must be done incrementally with respect to changes to the program.

Almost all of Tim’s previous PhD students worked on incremental something.
Tom Reps studied incremental attribute evaluation in language-based environ-
ments [266], and his dissertation [269] received the 1983 ACM Doctoral Dis-
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sertation Award. Susan Horwitz studied incremental computation of relational op-
erations [140], because information about programs can be stored in relational
databases [139]. Roger Hoover worked on incremental graph evaluation [136],
because program dependencies and flows form graphs. Bill Pugh worked on in-
cremental evaluation of functions by caching [261], which also led him to the in-
vention of skip lists [258]. John Field studied incremental lambda reduction [84],
which is a basis of programming language theory.

When it was my turn, I spent a lot of time reading their work and all related
work I could find. While it was clear that all these works are different—for ex-
ample, attribute evaluation and lambda reduction are certainly different—I was
most curious about what is fundamentally common among them all. Finally in the
spring of 1992, I was able to formulate a simple problem underlying incremental
computation: given a program f that takes an input and returns an output, and an
operation ⊕ that takes an old input and a change to the input and returns a new
input, obtain a program f ′, called an incremental version of f under ⊕, that takes
the old input, the input change, and the old output and returns the new output effi-
ciently. With this, one could see that previous works handled different programs,
different input change operations, or different languages for writing programs and
input change operations.

Subsequently, my dissertation focused on the development of incrementaliza-
tion—a general, systematic, transformational method for deriving incremental
programs, that is, deriving f ′ given f and ⊕ [216]. Influenced by much new re-
search then, the method was developed for recursive functions and presented fol-
lowing the style of analyses and transformations for partial evaluation [156]. The
method uses not only the return value of the previous computation [213], but also
intermediate results in the previous computation [212, 210] and auxiliary values
not in the previous computation [209, 211]. Additionally, given f and an appro-
priate ⊕, the derived incremental version f ′ may be used to form a drastically
optimized version of f by starting at the base case and repeatedly calling f ′ after
input change ⊕. Note that an optimized version computes the result of the original
program given an input, whereas an incremental version computes the result after
an input change using the result before the change.

Being able to derive drastically optimized programs using incrementalization
opened up a close connection with transformational programming and a wide
range of new applications. It also quickly became obvious that incrementaliza-
tion can be used to optimize loops: let f be an expensive computation in the loop
body, possibly the entire loop body, let ⊕ be the loop increment, derive an incre-
mental version f ′ of f under ⊕, and use f ′ appropriately in the loop body while
removing f . Whereas we developed new optimizations for primitives and arrays
in loops [186, 206], Bob Paige developed finite differencing of set expressions in
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loops twenty years earlier [236]. Paige traced the idea back to Babbage’s Differ-
ence Engine in the nineteenth century, more than 100 years earlier [243].

These findings also started the longest puzzle I have encountered: now that an
incremental version f ′ can be used to form an optimized version of a program f

if an appropriate ⊕ is also given, how to find the appropriate ⊕ if only f is given?
It was not until after my postdoctoral work at Cornell, when I taught algorithm
design and analysis to undergraduate and graduate students at Indiana University,
that I realized the power of finding ⊕: we would be able to derive all dynamic
programming algorithms from recursive equations like those in the MIT algorithm
textbook [65]. One day, a simple answer to this hard question dawned on me in
a blink: incrementalization aims to reuse, so if I have a choice for ⊕, a minimum
increment would allow maximum reuse!

While this led to a series of advancements in optimizing recursive functions—
deriving dynamic programming algorithms [194, 197], transforming recursion to
iteration [195, 204], and using indexed and recursive data structures [196, 204]—it
also led to another puzzle: the contrast between our method for recursive functions
and Paige’s method for sets. Having developed the method for recursive functions,
I could see that Paige’s method exploits the same ideas, but sets are so high-level
that he only had to give high-level transformation rules for sets [243], not low-level
derivations, and to implement sets using appropriate data structures [239, 42]. Not
only do the methods look drastically different, but there are also no common ex-
amples. In fact, it is hard to even write recursive functions for the problems that
Paige’s method handles, such as graph problems, and it is hard to write set expres-
sions for the problems that our method handles, such as dynamic programming
problems.

Luckily, in 2000, I moved to Stony Brook University and had the opportunity
to learn from several of the best logic programming experts in the world. It turns
out that logic rules can be used to easily express problems that can be expressed
using either recursive functions or set expressions. Many techniques have been
developed for implementing logic programs efficiently, but teaching them led me
and my students to a hard problem: the efficiency of the resulting programs can be
extremely difficult to predict and can vary dramatically based on the order of rules
and hypotheses. So I started developing an incrementalization-based method for
implementing logic rules. This led to a method for generating efficient algorithms
and implementations from Datalog rules, an important class of logic rules for
expressing how new facts can be inferred from existing facts [199, 203]. Building
on this result, my PhD student Tuncay Tekle advanced the state of the art for
answering Datalog queries on demand [300, 301, 302].

Finally, while relatively small problems can be specified using loops and arrays,
set expressions, recursive functions, or logic rules, large applications require the
use of language features for building larger programs from components. I started
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to see that objects and classes provide natural, well-accepted features for building
programs from components when I first taught Java in 1997, but it was not until
much later that I was able to formulate a method for incrementalization across
object abstraction [205]. That work also led to a framework for specifying incre-
mentalization rules declaratively and applying them automatically, leading to a
general framework and language for invariant-driven transformations [190]. Ad-
ditionally, my PhD student Tom Rothamel developed a transformational method
for automatically deriving and invoking incremental maintenance code for queries
over objects and sets [273, 271]. We have also started developing a powerful lan-
guage for querying complex object graphs [201, 299].
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Loops: incrementalize

We first look at computational problems programmed using loops over numbers
and arrays. A loop is a command for repeating a sequence of operations. A num-
ber is an integer or a real number with an internal representation in a computer.
An array is an arrangement of computer memory elements in one or more dimen-
sions. Problems involving arithmetic on numbers were the first problems for which
computing devices were built. Problems involving operations on arrays were at the
center of many subsequent larger computer applications. Because nontrivial com-
putations involve performing operations iteratively, loops are a most commonly
used, most important construct in programming solutions to problems.

Clear and straightforward problem solutions tend to have expensive computa-
tions in loops, where the values that these computations depend on are updated
slightly in each iteration. To improve efficiency, the results of these computations
can be stored and incrementally maintained with respect to updates to the val-
ues that they depend on. The transformation of programs to achieve this is called
incrementalization.

We will use a small example and several variations to explain the basic ideas
of incrementalization. We then describe two larger examples: one in hardware
design, to show additional loop optimizations enabled by incrementalization, and
the other in image processing, to show handling of nested loops and arrays in
incrementalization. We discuss the need for higher-level languages at the end.

Example: repeated multiplication

Suppose while doing other things, we need to compute a × i repeatedly, where
a holds some constant value, and i is initialized to 1 and is incremented by 1

as long as it is smaller than or equal to some constant value held in b. Suppose
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multiplication is much more expensive compared with addition. Can we make the
computations of a× i more efficient?

Why might we need to do this? We might have a grid with b rows and a columns,
but whose elements must be stored in a linear fashion in the computer memory in
row-major order, that is, by concatenating the rows in order. We might need to
do something with the last element of each row. So we must access the (a × i)-th
element for each i from 1 to b.

Exercise 2.1 (Index calculation) Suppose you are given a grid with b rows and
a columns whose elements are stored in a row-major order. Calculate the position
of the element that is at the i-th row and j-th column of the grid.

Exercise 2.2 (Expensive operation) In the operations used in the calculation in
the previous exercise, which operation is the most expensive to compute?

2.1 Loops with primitives and arrays

We need to program solutions to problems precisely. For computations involving
iteration over numbers and arrays, we use a language that has data types for num-
bers, Booleans, and arrays, has expressions for operations on data of these types,
and has commands for loops, conditionals, sequencing, and assignments.

Language

Numbers include integers and floating-point numbers, two primitive types of data
of the language. An integer is a positive or negative whole number or zero (0). A
floating-point number is a string of digits representing a real number in a com-
puter, similar to mathematical notations for representing exact values. Operations
on numbers include arithmetic operations addition (+), subtraction (-), multiplica-
tion (*), division (/), and exponentiation (^).

Booleans are another primitive type of data. A Boolean value is true or false.
Operations on Boolean values include conjunction (and), disjunction (or), and
negation (not). When there is no confusion, we sometimes write comma (,) in
place of and for ease of reading.

Arrays are one of the simplest data types for compound data values. An array
is a one-dimensional or multidimensional structure whose elements can hold any
data of the same type and can be accessed by integer indices in any range in
all dimensions. For example, if a is a one-dimensional array, we can access the
element at index i using a[i]; if a is a two-dimensional array, we can access the
element at row index i and column index j using a[i,j].

An expression is a tree of nested operations on data, for evaluation of the opera-
tions to produce a value to return. Expressions of the language consist of constants
(also called literals) of primitive types, variables that can hold data of any type,
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access of array elements by indices, and recursively arithmetic, Boolean, and com-
parison operations on subexpressions. Besides using standard notations <, >, and =
for comparison, we use >=, <=, and != to denote ≥, ≤, and �=, respectively. The fol-
lowing examples are all expressions: integer constant 1; variable i; addition i+1;
comparison i!=b; conjunction i<=b and b<=j; and array element access a[i+k,j+l].

A command is an instruction to perform tasks to have effects of changing the
values of variables, and thus changing the state. A command is also called a state-
ment. A variable assignment command, also called an assignment command, is
of the form below. It assigns the value of expression exp to variable v , that is, it
makes v hold the value of exp; v can also be an array element, in which case the
value of exp is assigned to the corresponding element of the array.

v := exp

For simplicity, we sometimes abbreviate an assignment command of the form v

:= v op exp, where op is any binary operation, as

v op:= exp

A sequencing command is of the form below, except that if cmd1 and cmd2 are
written on the same line, a semicolon (;) is used in between. It simply executes
commands cmd1 and cmd2 in order.

cmd1

cmd2

A conditional command is of the form below. It executes commands cmd1 if
Boolean-valued expression bexp evaluates to true, and executes cmd2 if bexp eval-
uates to false. The else branch can be omitted, in which case nothing is done if
bexp evaluates to false.

if bexp:
cmd1

else:
cmd2

There are two kinds of loop commands, while loops and for loops. A while loop is
of the form below; it executes command cmd as long as Boolean-valued expres-
sion bexp evaluates to true.

while bexp:
cmd

A for loop over integers is of the form below, where i is an integer-valued variable,
called the loop variable, and iexp1 and iexp2 are integer-valued expressions; it
executes command cmd for each value of i ranging from the value of iexp1 up to
the value of iexp2 . It may use downto instead of to, in which case i ranges from the
value of iexp1 down to the value of iexp2 .
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for i := iexp1 to iexp2 :
cmd

We use the following two commands for assigning to variable v a value read from
the input and writing to the output the value of expression exp, respectively; we
use them only when needed for clarity.

v := input()
output(exp)

Recall that we use indentation to indicate grouping of commands in the same
scope, as opposed to enclosing the group of commands using a pair of braces or
special keywords.

For example, the computations described in the repeated multiplication problem
on page 22 can be expressed precisely as follows, where i := i+1 can also be
written as i +:= 1:

i := 1 -- initialize i
while i<=b: -- iterate as long as i<=b
...
...a*i... -- compute multiplication
...
i := i+1 -- increment i by 1

For another example, consider the image blurring problem. It computes the av-
erage of the m-by-m neighborhood of each pixel in an n-by-n image stored in an
array a and stores the result in an array b. The array b is of size n-m+1, to avoid com-
puting averages for boundary pixels that do not have an m-by-m neighborhood.
This computation can be expressed precisely as follows, assuming that array in-
dices start at 0:

for i := 0 to n-m: -- iterate through each row
for j := 0 to n-m: -- iterate through each column

b[i,j] := 0 -- initialize sum of neighborhood
for k := 0 to m-1: ||
for l := 0 to m-1: || sum the m-by-m neighborhood
b[i,j] +:= a[i+k,j+l] ||

b[i,j] /:= m*m -- compute average

Cost model

For programs that involve only operations on primitive values like fixed-length
numbers, an operation is considered expensive if it is not directly supported on
the underlying machine. For operations supported on the underlying machine, the
costs can be given based on the underlying machine implementation, and what is
considered expensive can be specified based on the application. For example, in
the repeated multiplication problem, we specified that * is considered expensive,
whereas + is considered inexpensive.
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For programs that involve operations on arrays, computations of values aggre-
gated using loops over array elements are considered expensive. The cost of such a
computation has a factor that is the number of iterations through the loops. For ex-
ample, in the image blurring problem, computations of sums over image regions
using loops are expensive. For programs that involve operations on compound
data types such as arrays, operations on primitive values are usually considered
inexpensive and, when asymptotic running time is used, have a constant cost of
O(1). For example, integer arithmetic operations for computing array indices are
usually considered inexpensive. When constant cost factors are also considered,
multiplications are more expensive than additions, and color value operations on
pixels are more expensive than gray-scale operations.

Exercise 2.3 (Start index) Write a program for the image blurring problem as
discussed except that array indices should start at 1 instead of 0. You may see that,
even for straightforward programs, programming with boundary values of indices
may be tedious and error-prone.

Exercise 2.4 (Stock averages) Write a straightforward program that computes
50-day stock averages. Assume that the price of a stock is given in an array a with
index from 1 to n, where the price of the i-th day is stored in the element at index
i. Put the averages of prices of every 50 consecutive days in an array b with index
from 50 to n, where the element at index i holds the average of prices of the 50
days ending at the i-th day.

Exercise 2.5 (Integer division) Write a straightforward program that computes
the quotient and remainder of the division of two given integers, by using only
addition, subtraction, and multiplication in loops.

Exercise 2.6 (Integer square root) Write a straightforward program that com-
putes the integer square root of a given nonnegative integer, by using only addition
and multiplication in loops. Because the given integer might not be a square num-
ber, the program should compute the smallest integer that is equal or greater than
the square root of the given integer.

2.2 Incrementalize: maintain invariants

When an expensive computation is repeatedly performed while the data it depends
on are updated a little bit at a time, we want to transform the expensive compu-
tation into an inexpensive incremental computation. For example, in the repeated
multiplication problem, each next iteration computes a*(i+1), which equals a*i+a;
if we store the value of a*i, then each next iteration only needs to add a to it.

While the idea is simple and interesting, the details can be tedious and error-
prone. Where in the program to update the stored result of a*i? How to initialize
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it? Note that if we update before the result is used, then we need to initialize it to 0
before the loop, but if we update after the result is used, then we need to initialize
it to a. How to coordinate the updates? What if there are other occurrences of a*i?
What additional issues must be addressed?

Maintaining invariants incrementally

The key idea is to store the result of the expensive computation in a variable and
maintain an invariant—the value of the result variable equals the result of the
expensive computation. For example, in the repeated multiplication problem, we
store the result of a*i in variable c and maintain an invariant—c=a*i, that is, the
value of variable c equals the result of a*i.

To maintain the invariant, whenever the value of a parameter of the computa-
tion is updated, the value of the result variable needs to be updated to reestablish
the invariant. Instead of performing the expensive computation from scratch, we
want to compute the new result incrementally using the old result. For example,
to maintain the invariant c=a*i, whenever a or i is updated, the value of c is
maintained incrementally:

• at i := 1, we have c=a*i=a*1=a, so we do c := a.

• at i := i+1, we have a new value of i, i’=i+1, and thus also a new value of
c, c’=a*i’=a*(i+1)=a*i+a=c+a, so we do c := c+a;

Note that initialization is taken care of naturally just like for other updates.
Because the invariant holds, whenever the value of the expensive computation

is needed, the value of the result variable is used instead, that is, we replace all
occurrences of the expensive computation with a retrieval from the result variable.
Note that we can do this replacement everywhere the invariant holds. For example,
based on the invariant c=a*i, we replace the occurrence of a*i with c.

This transformation improves performance if the cost of maintenance at all up-
dates is smaller than the cost of the repeated expensive computations. For the
repeated multiplication problem, the cost of an initial assignment and repeated
additions is much smaller than the cost of the same number of repeated multipli-
cations. We obtain the following optimized program:

i := 1
c := a -- new line, for c = a*i = a*1 = a
while i<=b:
...
...c... -- a*i is replaced with c
...
i := i+1
c := c+a -- new line, for c’ = a*i’ = a*(i+1) = a*i+a = c+a
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The replacement of repeated multiplications in loops with additions, as shown
in this example, is known as strength reduction, one of the oldest and best-known
compiler optimizations. It was especially critical for early compilers, when com-
puters were much slower and where array was the main or only data structure
in high-level languages such as FORTRAN. For any two-dimensional array, to
access any array element, before doing any computation with the element, an ex-
pensive multiplication, like above, is needed to calculate the element address. Pre-
cisely, for an array x of b rows and a columns stored in row-major order and with
indices starting from 0 in both dimensions, calculating the address of an element
x[i,j] is performed by adding a*i+j to the address of x[0,0]. Then, most often,
this is inside a loop that increments i by 1 in each iteration.

While the basic idea is to maintain invariants incrementally, several important
issues need explicit consideration. In the following, we first describe exploiting
algebraic properties while taking the cost model into account, maintaining ad-
ditional values for incremental computation, and applying incrementalization re-
peatedly. We then show that incrementalization corresponds to differentiation in
calculus and describe an additional example, tabulating polynomials. Finally, we
discuss additional issues including doing maintenance before or after the update,
doing maintenance in an on-demand fashion, and handling nested loops and arrays
in general.

Exploiting algebraic properties

Incremental computation exploits algebraic properties of the language constructs.
For our language used here, this includes properties of primitives and arrays. For
example, in the repeated multiplication problem, with operations multiplication *
and addition +, we used distributivity, a*(i+1)=a*i+a*1, and idempotence, a*1=a.

Algebraic properties may be used in different combinations to produce different
ways of incremental computation; one can consider all combinations and choose
a best program based on the cost model. While generally there may be many pos-
sible combinations, typically only a small number of them—those that yield only
inexpensive operations—need to be considered to produce an optimized program.

For example, consider computing x*x as an expensive computation, and in-
crementing x by 1 as an update. Suppose variable r stores the result of x*x. Be-
cause (x+1)*(x+1)=x*x+x+x+1=x*x+2*x+1, at x := x+1 we could maintain r by do-
ing r := r+x+x+1 or r := r+2*x+1 instead of computing r from scratch. If addition
is inexpensive, but doubling is implemented as a multiplication, then only the for-
mer reduces cost. If doubling is also inexpensive, because it can be implemented
as a shift in hardware, then either way reduces cost; if a more precise cost model
is used, then one may determine that the latter is better and compare it more pre-
cisely with computing from scratch.
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Maintaining additional values

Efficient incremental computation may need additional values beyond just the re-
sult of the previous computation. This may include intermediate results, that is,
values computed in the middle of the original expensive computation, and auxil-
iary values, that is, values not computed in the original computation but useful in
computing the new result incrementally.

For an example of intermediate results, consider computing a*x*x as an expen-
sive computation, and incrementing x by 1 as an update. Suppose variable r stores
the result of a*x*x. At x := x+1, because a*(x+1)*(x+1)=a*x*x+2*a*x+a, we could
maintain r by r := r+2*a*x+a. However, in the maintenance for r, even if both
addition and doubling are inexpensive, a*x is still expensive. Note that a*x is an
intermediate result of a*x*x, and it can be computed incrementally by adding the
value of a exactly as in the repeated multiplication problem. Therefore, to maintain
r=a*x*x efficiently, we could store also the value of a*x, say in s, and at x := x+1
do r := r+2*s+a followed by s := s+a.

For an example of auxiliary values, consider computing x*x as an expensive
computation, and incrementing x by a constant c as an update. Suppose variable
r stores the result of x*x. At x := x+c, because (x+c)*(x+c)=x*x+2*c*x+c*c, we
could maintain r by r := r+2*c*x+c*c. Here, even if addition and doubling are
inexpensive, both c*x and c*c are expensive. Their values are auxiliary values not
computed in the original x*x but useful in computing (x+c)*(x+c). Note that c*x
can be maintained incrementally based on c*(x+c)=c*x+c*c, and c*c can be stored
and reused without update. Therefore, to maintain r=x*x efficiently, we could
store also the values of c*x and c*c, say in s and t, respectively, and at x := x+c do
r := r+2*s+t followed by s := s+t.

How to find useful additional values systematically? Useful intermediate re-
sults, such as a*x above, can be identified by first maintaining all of them and
then eliminating those that are not useful. Useful auxiliary values, such as 2*x*c
and c*c above, can be identified among expensive computations that remain in in-
cremental maintenance. Some of the additional values, such as a*x above, can be
identified using either of these two methods. When there are alternative ways of
using and maintaining additional values, these ways may all be explored and the
best result may be selected based on the cost model and the trade-offs considered.

Applying incrementalization repeatedly

Incrementalization may be applied repeatedly to arrive at more efficient incre-
mental computation. This is because, after applying incrementalization, which re-
places an expensive computation with incremental maintenance, there may still
be expensive computations in the incremental maintenance; incrementalization
can be applied again to replace these expensive computations with incremental
maintenance, and this process may repeat.
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Suppose that doubling is implemented as an efficient shift. In the preceding ex-
ample for using intermediate results, where we maintain r=a*x*x under x := x+1,
the incremental maintenance r := r+2*a*x+a after applying incrementalization
once still contains one multiplication, compared with two multiplications in com-
puting r := a*(x+1)*(x+1) from scratch; then, incrementalizing a*x again leads
to no use of multiplication at all. In the preceding example for using auxiliary
values, where we maintain r=x*x under x := x+c, the incremental maintenance
r := r+2*c*x+c*c after applying incrementalization once even contains two multi-
plications, compared with only one multiplication in computing r := (x+c)*(x+c)
from scratch; but then, incrementalizing c*x and c*c again leads to no use of mul-
tiplications at all.

In fact, even for computing x*x under x := x+1, which yields incremental main-
tenance r := r+2*x+1, we could apply incrementalization again to compute 2*x+1
incrementally: let variable r1 store the result of 2*x+1, so the incremental mainte-
nance of r becomes r := r+r1; to maintain r1=2*x+1 at x := x+1, because 2*(x+1)+1
=2*x+2+1=2*x+1+2, we can do r1 := r1+2. The table below shows how this com-
putes x*x efficiently for x starting at 0 and going up by 1 each time: initially when
x is 0, we have r=x*x=0 and r1=2*x+1=1; for each next value of x, r is incre-
mented by r1 from the previous value, and r1 is incremented by 2.

input x x:=0 x:=x+1 1 2 3 4 5 6 . . .
result r=x*x r:=0 r:=r+r1 1 4 9 16 25 36 . . .
auxiliary r1=2*x+1 r1:=1 r1:=r1+2 3 5 7 9 11 13 . . .

Whether using an extra variable r1 and incrementing by 2 is worthwhile, compared
with computing 2*x+1, depends on the cost model of the application.

Similarly, in the preceding examples for using intermediate results and auxiliary
values, we could also try to maintain 2*a*x+a and 2*c*x+c*c, respectively.

Relationship with differentiation

If we know a little bit about differential calculus, we can see that incremental-
ization corresponds to differentiation in calculus, except that incrementalization
takes place in discrete domains as opposed to continuous domains.

Specifically, a given specification of a computation, such as a*x or x*x, cor-
responds to a mathematical function. The derivative of a mathematical function
describes how the result of the function changes when its input changes. So the
incremental maintenance code under a minimum input change corresponds to the
derivative of the corresponding mathematical function. For example, we saw that
incremental maintenance for a*x under x := x+1 is to increment the result by a;
note that a is exactly the derivative of function a × x. For another example, we
saw that incremental maintenance for x*x under x := x+1 is to increment the result
by 2*x+1; note that 2× x is exactly the derivative of function x2, and the extra 1 is
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because we consider change by 1 in a discrete domain as opposed to infinitesimal
change in a continuous domain.

Therefore, just like differentiation is the process of finding the derivative, incre-
mentalization is the process of finding the incremental maintenance code. Clearly,
both need to exploit algebraic properties of the operators used in the computa-
tion. Fundamentally, for a function to be differentiable, it must be continuous; to
make a program incrementalizable, maintaining additional values removes discon-
tinuity. Additionally, in applying incrementalization repeatedly, what we obtain
corresponds to higher-order derivatives. We will see even further correspondence
between incrementalization and differentiation in Chapter 4, when we see that iter-
ative computation with incrementalized computation in each iteration corresponds
to integration by differentiation.

Example: tabulating polynomials

The examples discussed so far in this section actually show the essence of how to
tabulate polynomials efficiently in differential calculus, which better shows that
incrementalization corresponds to differentiation. Given a polynomial function

f(x) = an × xn + an−1 × xn−1 + . . . + a1 × x + a0

an initial value of x, x0, and a constant increment, c, the problem is to efficiently
compute f(x) for x being x0, x0 + c, x0 + 2c, and so on. This is important for
computing artillery range tables, which was what ENIAC (short for Electronic
Numerical Integrator And Computer) was designed and built for during World
War II. ENIAC was the first large-scale electronic digital computer capable of
being reprogrammed to solve a whole range of computing problems, and it could
perform 5,000 additions or subtractions or 385 multiplications per second.

Straightforward computation of the polynomial function requires n additions
and (n2 +n)/2 multiplications for each value of x, where (n2 +n)/2 is the sum of
n, n− 1, . . . , 1. Even using Horner’s rule

f(x) = (. . . (an × x + an−1) × x . . . + a1) × x + a0

n additions and n multiplications are required for each x. Using the basic ideas
of incrementalization, we can maintain n + 1 values, one each for a polynomial
of degree n, n − 1, . . . , 1, and 0, respectively, and then use each in computing
the polynomial of one degree higher after an increment of c by doing an addition.
For x = x0, this requires (n2 + n)/2 additions and (n2 + n)/2 multiplications for
the n polynomials of different degrees together using Horner’s rule, but for each
next x, this requires only n additions and no multiplications using incremental
computation.

Precisely, we let r store the value of f(x), a polynomial of degree n, and we
compute the value r of f(x + c) incrementally based on f(x + c) = f(x) + r1,



32 2 Loops

where we let r1 store the value of f(x + c) − f(x), a polynomial of degree n − 1,
which we call f1(x); we in turn compute the value r1 of f1(x+ c) incrementally in
a similar fashion, and do so repeatedly till rn for a polynomial of degree 0. This is
shown on the left of the following table.

input x x:=x0 x:=x + c

result r = f(x) r:=f(x0) r:= r + r1
auxiliary r1 = f1(x) = f(x + c)−f(x) r1:=f1(x0) r1:= r1 + r2

auxiliary r2 = f2(x) = f1(x + c)−f1(x)
...

...
...

... rn−1:=fn−1(x0) rn−1:= rn−1 + rn
auxiliary rn = fn(x) = fn−1(x + c)−fn−1(x) rn:=fn(x0)

Then, after initializing each of f(x), f1(x), . . . , fn(x) for x = x0, we compute f(x)

for each next x by adding into r the value of r1, into r1 the value of r2, and so on,
ending with adding into rn−1 the value of rn. This is shown on the right of the
table above.

For example, the table for computing x*x on page 30 is for a polynomial of
degree 2, where the last row for r2=2 is omitted.

This method of incremental calculation was originally invented by Henry Briggs,
a sixteenth-century English mathematician. It was what the first computing device,
the Difference Engine, was designed for, by Charles Babbage, in the nineteenth
century. Babbage then worked on the programmable Analytical Engine, although
it was never completed. Ada Byron, the daughter of the English poet Lord Byron,
and later known as Ada Lovelace, created a program for the Analytical Engine.
She is credited with being the first computer programmer, and the programming
language Ada was named in her honor.

Maintaining invariants at updates

To maintain an invariant so that it holds everywhere, incremental maintenance
must be done simultaneously with an update. For languages where commands
must be executed sequentially, this means that incremental maintenance needs to
be done immediately before or after the update.

If incremental maintenance at an update does not use the value of the variable
updated, then it can be done either before or after the update. For example, we
saw that incremental maintenance for c=a*i at i := 1 and i := i+1 are c := a and
c := c+a, respectively, which do not use the value of i, and thus can be done either
before or after the respective updates; in our resulting program on page 27, we put
them after the respective updates.

If incremental maintenance uses the value of the variable before update, it must
be done before the update, and symmetrically for after. For example, for r=x*x
at update x := x+1, the incremental maintenance r := r+2*x+1 uses the value of x
before the update, and thus must be done before the update. Alternatively for this
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example, incremental maintenance could use the value of x after the update, and
be done after the update, as r := r+2*x-1.

Maintaining invariants on demand

The method described above maintains invariants eagerly at all updates, so the
maintained value may be used at any point outside the updates and the corre-
sponding maintenance. However, sometimes, multiple updates happen before a
maintained result is used, and it may be a worthwhile saving to do incremental
maintenance on demand, that is, when the result is needed, as opposed to when-
ever an update occurs. This could be a significant saving when updates are fre-
quent, and when different updates may even cancel each other out.

While it is obvious that generally one can do maintenance just before the result
is needed, this requires a mechanism to record and accumulate changes at each
update and then do batched incremental maintenance. Such bookkeeping could
have a substantial overhead, and when many changes are accumulated, it could
be slower than simply computing from scratch when the result is needed and not
recording changes at all.

More generally, incremental maintenance can be done at any point after an up-
date and before the result is next needed. A general method for deriving an effi-
cient solution requires a careful trade-off analysis based on not only the cost model
but also the pattern of updating the data and using the results. Usually, this issue
shows up only when updates can be freely and frequently invoked externally.

Handling loops and arrays in general

Incrementalization enables powerful additional loop optimizations that are diffi-
cult or impossible to do otherwise. This will be explained using an example in
hardware design in Section 2.4.

Incrementalization also allows nested loops and arrays to be handled systemati-
cally. When there are nested loops, we consider them from the inside out, because
computations in inner loops are generally more continuous from one iteration to
the next. That is, for each loop from innermost to outermost, we identify expen-
sive computations in the loop and transform them into incremental computations
under updates to the values of their parameters, including updates to the values of
loop variables. When additional values that depend on the values of loop variables
need to be stored for efficient incremental computation, we store them in arrays
that are indexed by the values of the loop variables. This allows additional values
used in different iterations of loops to be accessed easily using the values of the
loop variables. This will be illustrated using an example in image processing in
Section 2.5.

Exercise 2.7 (Incrementalizing cube) Suppose we want to compute x^3 for x
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starting at 0 and incrementing by 1 repeatedly. Suppose further that multiplication
and exponentiation are considered expensive, and addition is considered inexpen-
sive. How to compute each next value of x^3 efficiently? How many additions need
to be performed to compute each next value of x^3? Follow the method discussed:

1. set up the problem of maintaining invariants with respect to changes;

2. use algebraic properties to transform the new computation to use the old re-
sult;

3. determine additional values to maintain and maintain them, if needed;

4. apply the incrementalization steps repeatedly, if needed.

Exercise 2.8 (Before or after updates) In the previous exercise, if you did in-
cremental maintenance after each update, how to do it before the update? If you
did incremental maintenance before each update, how to do it after the update?

2.3 Iterate and implement: little to do

For loops with arithmetics and Booleans as primitives and with arrays as data
structures, there is generally too little to do, or otherwise too much to do, for Step
Iterate and Step Implement. This is because loops have basically specified how to
iterate, and primitives and arrays have mostly determined how to map the data and
operations on the underlying machine.

Iterate

Step Iterate is to determine how to iteratively compute the desired results, but
loops already encode ways to iterate. We can basically use the way of iterating
specified by the given loops, and therefore there is little to do for Step Iterate.
On the other hand, when the given way of iterating does not lead to an efficient
program, it can be too difficult in general to determine a different way to iterate.

In general, given a problem, there can be many ways of iteratively computing
the solution: we can iterate according to different dimensions of the problem and
in different directions in each dimension, and we can also vary the size of the
increment in a dimension and a direction. For example, we could process an image
in row-major order or column-major order, iterating from left to right or vice versa
in each row, and from top to bottom or vice versa in each column, and we could
process one pixel, two pixels, or more in each iteration by using an increment of
1, 2, or more, respectively.

Given a particular way of iterating, it is generally very difficult to determine
that a different way of iterating could lead to a more efficient program for com-
puting the same result; in fact, it is generally very difficult even to prove that two
given ways of iterating compute the same result. The degree of difficulty depends
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on the computations in the loop and on the different ways of iterating. The diffi-
culty is less for computations that are iteration-independent because of algebraic
properties such as commutativity. We will see, in the image blurring example in
Section 2.5, that different ways of iterating lead to different efficient programs.

In easier cases where alternative ways of iterating can be determined for ef-
ficient computation, the ease is generally because a higher-level specification or
certain higher-level properties about what the loops are computing can be obtained
by analyzing the loops. Higher-level specifications and properties allow the best
ways of iterating to be determined much more easily. Therefore, we advocate the
use of higher-level problem specifications that do not specify a way of iterating
when it is not necessary, as discussed at the end of this chapter.

Implement

Step Implement is to determine how data and operations in the program are im-
plemented at a lower level on the underlying machine, but primitive and array
operations already have direct mappings in hardware.

Arithmetic and Boolean operations are supported directly in machine hardware,
leaving little room for choices. An example of a choice is to implement doubling
as left shift instead of multiplication, and to implement halving as right shift in-
stead of division, because numbers are represented in binary in hardware, and left
and right shifts are much faster. Arrays can be mapped directly onto memory in
hardware. Array elements are simply in adjacent memory locations and can be
accessed efficiently in hardware once the element addresses have been calculated
from the indices.

If we use these straightforward mappings, then there is little to do for Step Im-
plement. If we do not use these mappings, then it can be very difficult in general
to design other, better mappings. This is for similar reasons as we discussed for
Step Iterate. We will not discuss how to find these other alternatives in general,
but instead advocate the use of higher-level data representations in problem spec-
ifications when lower-level details are unnecessary.

Exercise 2.9 (Increasing change size*) While minimizing input changes helps
incrementalization succeed, increasing the size of changes, when the results after
smaller sizes of changes are not needed, helps the incrementalized program com-
pute more efficiently if incrementalization succeeds. How to compute x*x for x
starting at 0 and incrementing by 2 repeatedly? How does it compare with incre-
menting by 1 twice in terms of cost?
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2.4 Example: hardware design

We consider the derivation of an efficient binary integer square root algorithm for
VLSI (short for Very-Large-Scale Integration) circuit design. It illustrates addi-
tional optimizations for initialization, return variable, termination condition, and
loop body. These optimizations are readily enabled by incrementalization; even
though they do not improve asymptotic running time, they reduce constant time
factors, space usage, and program size. Hardware design is an area where these
additional optimizations are particularly important.

Non-restoring integer square root

Given a binary integer n of b bits, where n > 0, and b is usually 8, 16, 32, and
so on, the binary integer square root m of n can be computed using the following
non-restoring method, which is exact for perfect squares and off by at most 1 for
other integers. The method starts with an initial guess for m to be 2b−1, by setting
bit b− 1 bit to 1 and the rest to 0, and then iteratively adjusts m by considering bit
b− 2 to bit 0 in order:

n := input()
m := 2^(b-1) -- initialize m, setting only bit b-1 to 1
for i := b-2 downto 0: -- for each bit b-2 down to 0
p := n - m^2 -- subtract given n by square of computed m
if p > 0: -- if m is too small
m := m + 2^i -- increase m, setting bit i to 1

else if p < 0: -- if m is too big
m := m - 2^i -- decrease m, setting bit i-1 to 0, bit i to 1

output(m)

In hardware, multiplications and exponentiations are much more expensive than
additions, subtractions, and shifts, that is, doublings and halvings, so the goal is to
replace the former by the latter in repeated computations. Additionally, we show
how to reduce the number of inexpensive operations, the number of variables used,
and the size of the optimized program.

This example was taken from a case study in formal hardware design. It was
conducted by a group of researchers in the Electrical Engineering Department
at Cornell University in 1994. They transformed the given specification into a
strength-reduced version and further into a hardware implementation. The strength-
reduced program was manually discovered and then proved correct using the
Nuprl theorem prover at Cornell. The case study was of particular interest in light
of the Pentium chip flaw discovered later that year. We will see how incremental-
ization can systematically derive a strength-reduced program, which helps auto-
mate and simplify the VLSI circuit design process. Compared with the strength-
reduced version obtained in the case study, our derived program also avoids an
unnecessary shift. Many similar programs, such as for various real and integer
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division and square-root algorithms, can be derived in a similar way using our
method.

Iterate

Step Iterate can just use what is already given in the specification, but one addi-
tional optimization can often be performed to reduce the size of the optimized pro-
gram by about half. When incremental computation uses auxiliary values, these
values are established at initialization; the code for this establishment is gener-
ally similar and thus comparable in size to that for incremental maintenance in
the body. Often, this code can be folded into the body, by decrementing the given
initial values to zero-like values, so that initialization of the auxiliary values is
significantly simplified.

For example, consider the given program, which iterates using i. The initial
value of i is b-2, and the increment to i is -1. If we decrement i by increasing its
initial value to b-1, we can see that the corresponding m is 0, because using m=0
and i=b-1 in a new first iteration yields m=2^(b-1) and i=b-2 as in the original
initialization: in the new first iteration, p=n-m^2=n-0^2=n, and we are given n>0,
thus p>0 and the new value of m=m+2^i=0+2^(b-1)=2^(b-1), and the new value
of i=i-1=(b-1)-1=b-2. Clearly, m being 0 is much simpler than m being 2^(b-1).
We obtain

n := input()
m := 0 -- 2^(b-1) is replaced with 0
for i := b-1 downto 0: -- b-2 is replaced with b-1
p := n - m^2
if p > 0:
m := m + 2^i

else if p < 0:
m := m - 2^i

output(m)

For any given for loop, we also separate assignments to i in the initialization
and the loop body, because they will be associated with different maintenance
code. One could do this by peeling the first iteration of the for loop, but for this
example that would undo the transformation just performed, so instead, we trans-
form the for loop into an equivalent while loop:

n := input()
m := 0
i := b-1 -- initialization in for-loop
while i >= 0: -- condition in for-loop
p := n - m^2
if p > 0:
m := m + 2^i

else if p < 0:
m := m - 2^i

i := i-1 -- increment in for-loop
output(m)
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Incrementalize

The loop updates m in each iteration and returns it at the end; to update m, n-m^2 is
tested, and 2^i is added to or subtracted from m. The expensive computations are m
^2 and 2^i. Using the incrementalization method described, we can incrementally
compute them with respect to updates to m and i in the loop body.

We can also optimize constant time factors and space usage with a slight gen-
eralization of the incrementalization method described; such optimizations matter
more significantly in hardware design than in software. The generalization is sim-
ply to save and incrementally maintain the results of all needed computations, not
just the expensive ones. For example, for the program above, we maintain the val-
ues of n-m^2 and 2^i, not m^2 and 2^i. The value of n-m^2 is already in p, so we do
not need to maintain an additional value for m^2 and perform a subtraction in each
iteration.

Consider maintaining the invariant p=n-m^2. At m := m+2^i and m := m-2^i, we
have a new value m’=m+2^i and m’=m-2^i, respectively, denoted together as
m’=m±2^i. Note that if the respective operations are first subtraction and then
addition, we use ∓ in place of ±. So, we have a new value

p’ = n - m’^2
= n - (m±2^i)^2
= n - m^2 ∓ 2*m*2^i - (2^i)^2
= p ∓ 2*m*2^i - 2^(2*i)

This has expensive computations m*2^i and 2^(2*i). We could maintain the two
values -2*m*2^i-2^(2*i) and 2*m*2^i-2^(2*i) as auxiliary values, but it would again
require maintaining the value of 2^(2*i). So, we maintain the values of 2*m*2^i
and 2^(2*i), which are the least number of values to maintain that include both
expensive and non-expensive computations.

So, overall, we maintain the following four invariants

p = n-m^2
u = 2^i
v = 2*m*2^i
w = 2^(2*i)

as follows:

• At initialization, i=b-1 and m=0, so we have p=n, u=2^(b-1), v=0, and
w=2^(2*(b-1)).

• At updates m := m+2^i and m := m-2^i, we have new values p’=p ∓ v - w
based on the equations about p’ in the previous paragraph and

v’ = 2*m’*2^i
= 2*(m±2^i)*2^i
= 2*m*2^i ± 2*2^(2*i)
= v ± 2*w

• At update i := i-1, we have new values u’=u/2, v’=v/2, and w’=w/4.
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Finally, removing p := n-m^2, because p already holds the value of n-m^2, and re-
placing 2^i with u, we obtain

n := input()
m := 0
i := b-1
p := n -- p = n-m^2 = n-0^2 = n
u := 2^(b-1) -- u = 2^i = 2^(b-1)
v := 0 -- v = 2*m*2^i = 2*0*2^(b-1) = 0
w := 2^(2*(b-1)) -- w = 2^(2*i) = 2^(2*(b-1))
while i >= 0:

-- p := n-m^2 is removed, no longer needed here
if p > 0:
m := m + u -- 2^i is replaced with u
p := p - v - w -- p’ = p - 2*m*2^i - 2^(2*i) = p - v - w
v := v + 2*w -- v’ = 2*m’*2^i = 2*(m+2^i)*2^i = v + 2*w

else if p < 0:
m := m - u -- 2^i is replaced with u
p := p + v - w -- p’ = p + 2*m*2^i - 2^(2*i) = p + v - w
v := v - 2*w -- v’ = 2*m’*2^i = 2*(m-2^i)*2^i = v - 2*w

i := i-1
u := u/2 -- u’ = 2^i’ = 2^(i-1) = 2^i/2 = u/2
v := v/2 -- v’ = 2*m*2*i’ = 2*m*2^(i-1) = 2*m*2^i/2 = v/2
w := w/4 -- w’ = 2^(2*i’) = 2^(2*(i-1)) = 2^(2*i)/4 = w/4

output(m)

The loop body now contains only additions, subtractions, doublings, and halvings;
division by 4 is two halvings.

Additional optimizations enabled by incrementalization

Additional optimizations can help reduce constant factors, space usage, and code
size, by using the maintained auxiliary values in place of values computed by the
original program. In particular, optimizations can be done regarding the values
needed at the end of the loop, used in the termination condition, and computed in
the loop body.

Eliminate return variable. If the value of the return variable can be retrieved
efficiently from the auxiliary values maintained, and if maintaining the aux-
iliary values does not need the value of the return variable, then the return
variable is not needed at all and can be eliminated. In the above program,
from the invariant v=2*m*2^i, and i=-1 at the end of the loop, we have v=m
at the end of the loop, so we can output v instead of m; m is not used to com-
pute anything besides m itself, and thus can be eliminated. Then, u can also be
eliminated because it is only used in computing m and itself.

Replace termination condition. If the termination condition using an origi-
nal variable is equivalent to a condition using only auxiliary values, and if
the original variable is not used in computing other values, then the auxiliary
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values can be used, and the original variable can be eliminated. In the pro-
gram above, from the invariant w=2^(2*i), we have that i≥0 is true if and
only if w≥1 is true, so we can replace i>=0 with w>=1 as the condition of the
while loop and then eliminate i.

Optimize loop body. If there are consecutive incremental updates to a variable
without a use of the variable in between, then the updates can be merged. In
the above program, v is updated twice if the condition p>0 or p<0 holds, once
under the condition, and once afterward, but there is no use of v between the
two updates, so we can merge v := v+2*w and v := v/2 into v := v/2+w under
p>0, and merge v := v-2*w and v := v/2 into v := v/2-w under p<0.

Note that these optimizations are all enabled by incrementalization, including
the explicit use of invariants in incrementalization. They are beyond traditional
program optimizations done by compilers. Compiler optimizations can be applied
to the resulting program, however. For example, n can be eliminated because it is
only used in passing the input to p. We obtain the final optimized program below:

p := input() -- n is replaced with p
-- assignments to m, i, p, and u are removed

v := 0
w := 2^(2*(b-1))
while w >= 1: -- i >= 0 is replaced with w >= 1
if p > 0:
p := p - v - w -- assignment to m is removed
v := v/2 + w -- v := v + 2*w and v := v/2 are merged into this

else if p < 0:
p := p + v - w -- assignment to m is removed
v := v/2 - w -- v := v - 2*w and v := v/2 are merged into this

else:
v := v/2 -- v := v/2 is moved into this branch

w := w/4 -- assignments to i and u are removed
output(v)

Compared with the program before these additional optimizations, the program
size is reduced significantly. We also reduced space usage by eliminating four
variables (n, m, i, and u) and now using only four variables (p, v, w, and b); this is
even fewer than the five variables (n, m, i, b, and p) in the original program, despite
the fact that incrementalization needs to maintain auxiliary values. All operations
on the eliminated variables are also avoided, improving the running time by a
constant factor.

Implement

Clearly, one can implement division by 2 as right shift, division by 4 as two right
shifts, and 2^(2*(b-1)) as setting bit 2 × (b − 1) to 1 and the rest to 0. These and
addition and subtraction operations can easily be implemented on a hardware chip.
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Exercise 2.10 (Incrementalizing integer division) Incrementalize your program
for computing integer division for Exercise 2.5. Compare the costs of the programs
before and after your incrementalization. Afterward, you will be congratulated for
having reinvented the algorithm for the first example in Gries’s The Science of
Programming book.

Exercise 2.11 (Incrementalizing integer square root) Incrementalize your pro-
gram for computing integer square root for Exercise 2.6. Compare the costs of the
programs before and after your incrementalization. Afterward, you will be con-
gratulated for having reinvented the basis of the square root algorithm used in
ENIAC.

2.5 Example: image processing

We consider image blurring, a representative problem in image processing. It illus-
trates the use of arrays, and how to incrementalize expensive array computations
in loops.

Image blurring

A digital image is a grid of pixels, each with a value indicating its gray scale
or its color. To blur the image, we want each pixel in the blurred image to take
the average of the neighborhood pixels in the given image. For example, if the
given image is white with a black disk in the middle, then the pixels near the disk
boundary will become gray, with those closer to the center being darker and those
farther from the center being lighter.

To do the blurring straightforwardly, for each pixel in the blurred image, we
sum the values of pixels in its square neighborhood and divide the sum by the
number of pixels in that neighborhood. For an n-by-n image, if one uses m-by-m
neighborhoods, then blurring straightforwardly considers each of the n2 pixels in
the image, and for each pixel, sums the values of the m2 pixels in the neighborhood
and does a division. The total number of operations is therefore proportional to
n2 ×m2.
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It is well known in the image-processing field that there is a faster way of blur-
ring images such that, for each of the n2 pixels, one needs to do only four oper-
ations to obtain the sum, as opposed to summing over m2 pixels, no matter how
large m is. The algorithm is nontrivial, and similar algorithms need to be invented
for other image processing operations. How to come up with such an algorithm?

A straightforward program

Suppose the n-by-n image is given in an array a, whose indices range from 0

to n-1 in both dimensions, and the resulting image is put in an array b, whose
indices range from 0 to n-m in both dimensions, to avoid computing averages
for boundary pixels that do not have an m-by-m neighborhood. A straightfor-
ward program can simply assign each b[i,j] the sum of the square neighborhood
a[i,j],. . . ,a[i,j+m-1], . . . , a[i+m-1,j],. . . ,a[i+m-1,j+m-1] and then divide the sum
by m*m. We consider the expensive summations, omitting the division at the end:

for i := 0 to n-m:
for j := 0 to n-m:

b[i,j] := 0
for k := 0 to m-1:
for l := 0 to m-1:
b[i,j] := b[i,j] + a[i+k,j+l]

Clearly, this takes O(m2) additions for each of the O(n2) pixels, and thus the total
time complexity is O(n2 ×m2).

Iterate

A particular way of iterating is already specified by the two outer loops given:
iterate from row 0 to row n-m and, within each row, iterate from column 0 to column
n-m. This also realizes the intuition that one should iteratively consider one pixel
at a time and, to minimize the changes and maximize reuse, one should consider
adjacent pixels in order.

Incrementalize

Summing the square neighborhood for each pixel in the two inner loops is an
expensive computation. We want to compute the sum incrementally with respect
to updates by the two outer loops. We do it in two steps, considering first the inner
loop over j and then the outer loop over i.

1. Suppose we computed the sum of the square neighborhood for one pixel, then
in the inner loop over j, after moving right by one pixel, we can compute the
sum of new neighborhood by subtracting a little column on the left and adding
a little column on the right, as shown in the following figure. So we could do
m additions and m subtractions instead of summing over m2 pixels.
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2. We can store the sums of the little columns from Step 1 as auxiliary values,
and compute them incrementally. Suppose we computed the sum of a little
column, then in the outer loop over i, after moving down by one pixel, we
can compute the sum of the new little column by subtracting a pixel on the
top and adding a pixel on the bottom, as shown in the following figure. So we
can do one addition and one subtraction instead of summing over m pixels.

Overall, for each pixel, we do one addition and one subtraction of two pixels to
compute the sum of a new little column, and one addition and one subtraction
of two little columns to compute the sum of a new square. That is, we only do
four operations, no matter how large m is. Of course, this improvement used as-
sociativity and commutativity of addition as well as subtraction as the inverse of
addition.

The core of the resulting algorithm is as follows. First, for each row i from 0 to
n-m and each column j from 0 to n-1, maintain the invariant

c[i,j] = sum of the column a[i,j],. . . ,a[i+m-1,j]

and compute c[i,j] incrementally using c[i-1,j]:

c[i,j] := c[i-1,j] - a[i-1,j] + a[i+m-1,j]

Second, for each row i and each column j from 0 to n-m, maintain the invariant

b[i,j] = sum of the square c[i,j],. . . ,c[i,j+m-1]
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and compute b[i,j] incrementally using b[i,j-1]:

b[i,j] := b[i,j-1] - c[i,j-1] + c[i,j+m-1]

While this may sound neat, it is not hard to see that developing a complete, correct
program can nevertheless be tedious and error-prone, especially taking care of all
the initializations at the boundary. We show how to do it by applying transforma-
tions to the straightforward program.

To prepare for incrementalization, we first transform the two inner loops to sum
the little columns into c[i,j],. . . ,c[i,j+m-1] before summing them into b[i,j],
yielding

for i := 0 to n-m:
for j := 0 to n-m:

b[i,j] := 0
for l := 0 to m-1: -- for each little column in the neighborhood
c[i,j+l] := 0 ||
for k := 0 to m-1: || sum the little column
c[i,j+l] := c[i,j+l] + a[i+k,j+l] ||

b[i,j] := b[i,j] + c[i,j+l] -- add sum to b

Now, we are ready to incrementalize as shown in the figures earlier, but do it
precisely:

1. Consider incrementalizing the loop over j. When j starts with being 0, which
is the initialization, the two inner loops are computed from scratch by setting
j to be 0. When j is incremented by 1 from 1 to n-m, the two inner loops
are incrementalized by computing only the last little column, where l=m-1,
and maintaining b incrementally as shown in the core algorithm earlier. This
yields

for i := 0 to n-m:

b[i,0] := 0 ||
for l := 0 to m-1: || two inner loops
c[i,l] := 0 || in code above
for k := 0 to m-1: || with j=0
c[i,l] := c[i,l] + a[i+k,l] ||

b[i,0] := b[i,0] + c[i,l] ||

for j := 1 to n-m: -- j starts with 1 instead of 0

c[i,j+m-1] := 0 || two inner loops
for k := 0 to m-1: || in code above
c[i,j+m-1] := c[i,j+m-1] + a[i+k,j+m-1] || with l=m-1 and

b[i,j] := b[i,j-1] - c[i,j-1] + c[i,j+m-1] || b[i,j] incremental
|| under j := j+1

2. Consider incrementalizing the loop over i. When i starts with 0, the trans-
formed body above is computed from scratch by setting i to be 0. When i is
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incremented by 1 from 1 to n-m, the transformed body above is transformed
to compute the little columns c incrementally. This yields the following opti-
mized program:

b[0,0] := 0 ||
for l := 0 to m-1: ||
c[0,l] := 0 ||
for k := 0 to m-1: ||
c[0,l] := c[0,l] + a[k,l] || loop body

b[0,0] := b[0,0] + c[0,l] || in code above
for j := 1 to n-m: || with i=0
c[0,j+m-1] := 0 ||
for k := 0 to m-1: ||
c[0,j+m-1] := c[0,j+m-1] + a[k,j+m-1] ||

b[0,j] := b[0,j-1] - c[0,j-1] + c[0,j+m-1] ||

for i := 1 to n-m: -- i starts with 1 instead of 0

b[i,0] := 0 ||
for l := 0 to m-1: || loop body
c[i,l] := c[i-1,l] - a[i-1,l] + a[i+m-1,l] || in code above
b[i,0] := b[i,0] + c[i,l] || with c[i,l]

for j := 1 to n-m: || and c[i,j+m-1]
c[i,j+m-1] := c[i-1,j+m-1] - a[i-1,j+m-1] || incremental

+ a[i+m-1,j+m-1] || under i := i+1
b[i,j] := b[i,j-1] - c[i,j-1] + c[i,j+m-1] ||

The optimized program does four addition and subtraction operations for each
pixel and takes O(n2) time. It requires maintaining O(n2) sums of little columns
in c, but note that only O(n) of them are needed at any time, because only the
n sums for the preceding row are needed to compute the n sums for the next
row. To achieve this space optimization, we simply remove the first dimension of
c, that is, replace each instance of c[x,y] with c[y], because program analysis
can determine that the only use of a value of a previous row, c[i-1,j+m-1], in
computing c[i,j+m-1], can be safely done by using c[j+m-1] in computing its new
value directly.

Following a systematic method, we have arrived at a nontrivial algorithm that is
complete and precise and that has a high level of correctness assurance. Not only
do we not have to reinvent the wheel, we also do not have the headache of writing
a lot of tedious and error-prone code for initializations, some of which also require
incrementalization by themselves, and together many times longer than the code
for the core algorithm.

Implement

This needs no work, because additions, subtractions, and array operations have
direct implementations on the underlying machine.
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A different way to iterate and to maintain additional values

If the optimized program we have obtained is not difficult enough for you, there
is an even less obvious optimized program. It can be obtained by following the
same optimization method, except to incrementalize with respect to the outer loop
first, yielding a more drastic space reduction to only two auxiliary sums. In fact,
we could be given a program as before but with the two outer loops interchanged
to start with. How does our method do on it?

So consider the same program except with the two outer loops interchanged,
prepared for incrementalization by storing sums of little columns as before:

for j := 0 to n-m: -- iterate over j instead of i
for i := 0 to n-m: -- iterate over i instead of j

b[i,j] := 0
for l := 0 to m-1:
c[i,j+l] := 0
for k := 0 to m-1:
c[i,j+l] := c[i,j+l] + a[i+k,j+l]

b[i,j] := b[i,j] + c[i,j+l]

1. Incrementalizing the inner loop over i yields

for j := 0 to n-m:

b[0,j] := 0 ||
for l := 0 to m-1: || two inner loops
c[0,j+l] := 0 || in code above
for k := 0 to m-1: || with i=0
c[0,j+l] := c[0,j+1] + a[k,j+l] ||

b[0,j] := b[0,j] + c[0,j+l] ||

for i := 1 to n-m: -- i starts with 1 instead of 0

b[i,j] := 0 || two inner loops
for l := 0 to m-1: || in code above
c[i,j+l] := c[i-1,j+l] - a[i-1,j+l] || with c[i,j+l]

+ a[i+m-1,j+l] || incremental
b[i,j] := b[i,j] + c[i,j+l] || under i := i+1

2. Incrementalizing the outer loop over j yields

b[0,0] := 0 ||
for l := 0 to m-1: ||
c[0,l] := 0 ||
for k := 0 to m-1: ||
c[0,l] := c[0,l] + a[k,l] || loop body

b[0,0] := b[0,0] + c[0,l] || in code above
for i := 1 to n-m: || with j=0
b[i,0] := 0 ||
for l := 0 to m-1: ||
c[i,l] := c[i-1,l] - a[i-1,l] + a[i+m-1,l] ||
b[i,0] := b[i,0] + c[i,l] ||
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for j := 1 to n-m: -- j starts with 1 instead of 0

c[0,j+m-1] := 0 ||
for k := 0 to m-1: || loop body
c[0,j+m-1] := c[0,j+m-1] + a[k,j+m-1] || in code above

b[0,j] := b[0,j-1] - c[0,j-1] + c[0,j+m-1] || with l=m-1 and
for i := 1 to n-m: || b[i,j]
c[i,j+m-1] := c[i-1,j+m-1] - a[i-1,j+m-1] || incremental

+ a[i+m-1,j+m-1] || under j := j+1
b[i,j] := b[i,j-1] - c[i,j-1] + c[i,j+m-1] ||

As can be expected, this program is exactly the same as the one above, except for
different order of iterating, which simply interchanged the initialization of b[i,0]
for i from 1 to n-m and c[0,j+m-1] for j from 1 to n-m. However, this interchange
allows something different to be done, as follows.

We see that, in the body of the main loop over j, c[0,j+m-1] is initialized by
the loop over k, and each next c[i,j+m-1] is incrementally computed in the body
of the inner loop over i and used in computing b[i,j] on the last line. We can
see that the other value, c[i,j-1], used in computing b[i,j] can be initialized and
incrementally computed similarly. That is, we can use just two auxiliary variables,
say c1 and c2, in place of c[i,j-1] and c[i,j+m-1], respectively, and two additional
operations for incrementally computing c1 in the body of the inner loop over i.
Thus, the main loop over j does not need the array c at all. Then, in the initial-
ization for j=0, we can also eliminate array c, compute b[0,0] by directly adding
a[k,l] to it, and compute each next b[i,0] incrementally by starting with b[i-1,0]
and directly subtracting a[i-1,l] and adding a[i+m-1,l] for l from 0 to m-1. This
yields

b[0,0] := 0 ||
for l := 0 to m-1: || as code above but
for k := 0 to m-1: || directly add to b[0,0]
b[0,0] := b[0,0] + a[k,l] ||

for i := 1 to n-m:
b[i,0] := b[i-1,0] || as code above but
for l := 0 to m-1: || directly update b[i,0]
b[i,0] := b[i,0] - a[i-1,l] + a[i+m-1,l] || starting with b[i-1,0]

for j := 1 to n-m:
|| as code above but

c1 := 0 || compute c[0,j-1] in c1,
c2 := 0 || replace c[0,j+m-1] by c2,
for k := 0 to m-1: ||
c1 := c1 + a[k,j-1] ||
c2 := c2 + a[k,j+m-1] ||

b[0,j] := b[0,j-1] - c1 + c2 || use c1 and c2 instead
for i := 1 to n-m:
c1 := c1 - a[i-1,j-1] + a[i+m-1,j-1] || compute c[i,j-1] in c1,
c2 := c2 - a[i-1,j+m-1] + a[i+m-1,j+m-1] || repl c[0,j+m-1] by c2,
b[i,j] := b[i,j-1] - c1 + c2 || use c1 and c2 instead
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The result is, for each new pixel in a new column, we incrementally compute the
little column to the left of the current square, and the rightmost little column of the
current square, and use them to incrementally compute the sum of the square. This
is a total of six operations for each pixel, but it only uses two additional variables
instead of an array of size O(n2) or O(n).

A different way to exploit algebraic properties

There is yet another nontrivial alternative for incremental maintenance, if one ex-
ploits algebraic properties further. It does six operations for each pixel without
using any additional variables, but uses the sums of the squares one pixel to the
left, one pixel above, and one pixel to the left and above diagonally, and the values
of the four corner pixels:

b[i,j] = b[i,j-1] − left lower column
+ right lower column

= b[i,j-1] − (left upper column − left upper corner
+ left lower corner)

+ (right upper column − right upper corner
+ right lower corner)

= b[i,j-1] − left upper column + right upper column
+ left upper corner − left lower corner
− right upper corner + right lower corner

= b[i,j-1] + b[i-1,j] − b[i-1,j-1]
+ a[i-1,j-1] − a[i+m-1,j-1]
− a[i-1,j+m-1] + a[i+m-1,j+m-1]

The first two equalities are as we had used previously, exploiting commutativity,
associativity, and inverse, but the third equality exploits these properties more
exhaustively. The fourth equality uses a variation of what we used previously:

− left upper column + right upper column = b[i-1,j] − b[i-1,j-1]
A trade-off for this more sophisticated use of available values, derived less sys-

tematically, is that it is less obvious how to initialize at the left and top boundaries
of the image.
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In general, algebraic properties might not be exploited exhaustively when in-
creasingly larger amount of effort is required. However, when such exploitation
yields improvements, the results can be put in a library and reused for later appli-
cations without having to be rediscovered repeatedly.

Exercise 2.12 (Incrementalizing stock averages) Incrementalize your program
for computing 50-day stock averages for Exercise 2.4. Compare the costs of the
programs before and after incrementalization.

Exercise 2.13 (Three-dimensional blurring*) How to do blurring for a three-
dimensional image? You may see that all the ideas we discussed apply, but it is
extremely tedious to program and analyze by hand.

Exercise 2.14 (Image blurring with no additional space*) For the image blur-
ring problem, can we do four operations per pixel, but use no additional space for
the array c and keep the same algorithms otherwise?

2.6 Need for higher-level abstraction

Use of loops and arrays inevitably encodes decisions about how to iterate and how
to represent data, which are generally lower-level than specifications that focus
on what data is given and what result is to be computed. As a result, higher-level
properties useful for deriving efficient computations could be lost or difficult to re-
cover in lower-level specifications. Even in cases where loops with primitives and
arrays give closer to high-level problem descriptions, such as for problems in im-
age processing, whether a fixed iteration order or array representation is necessary
cannot in general be determined from the uses of loops and arrays.

For example, to process every pixel in an image, a nested loop encodes either
a row-major or a column-major order of traversing the pixels, and to sum the val-
ues of a set of pixels in an image, a loop encodes a fixed order of considering the
pixels, but these orders may or may not be desired for a particular application.
These orderings also make it harder to see what is computed, even if arrays and
loops capture image processing relatively straightforwardly. In higher-level speci-
fications, aggregate expressions may be used to indicate the property that an order
does not matter.

Using aggregate expressions

We may use the following array construction expression for the construction of an
array. It first evaluates integer-valued expressions iexp1 and iexp2 to, say, i1 and
i2, respectively, and then constructs and returns an array with elements indexed
by integers from i1 to i2 and where the elements have the values of exp, evaluated
with variable i bound to each integer from i1 to i2.
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array(exp: i in iexp1 ..iexp2 )

Similarly, we can use the following aggregate expression for high-level aggregate
computations, such as count, sum, min, and average, over a set of values. It first
evaluates iexp1 and iexp2 to, say, i1 and i2, and then computes the aggregate value,
as specified by operator op, of the values of exp for integer variable i ranging over
integers from i1 to i2.

op{exp: i in iexp1..iexp2 }

We allow the forms of these expressions to be extended to multiple dimensions by
adding more index variables and their ranges, separated by commas.

For the image blurring example, we may use the following higher-level specifi-
cation for computing the blurred image of a into b:

b := array(sum{a[i+k,j+l]: k in 0..m-1, l in 0..m-1}
: i in 0..n-m, j in 0..n-m)

In fact, the analysis and transformations for implementing the incrementalization
method we have discussed build such a specification in the first place. Writing this
specification explicitly makes it completely clear that the order of iterating through
the pixels in the images and the order of summing the square neighborhood do not
matter. Besides being clear and saving the analysis needed, this specification is
also more succinct.

Higher-level data abstraction and control abstraction

Representing data using sets is higher-level than using arrays, because sets abstract
away predetermined orders of representing the elements and fixed indices for ac-
cessing the elements. This makes it easy to specify what to compute on the ele-
ments in general. Arrays are simply binary relations, that is, sets of index-element
pairs. Of course, while arrays map easily to computer memory, more sophisticated
methods are needed to implement sets.

Expressing control using recursion is higher-level than using loops, because
recursion abstracts away linearly repeated execution of straight-line code. This
makes it easy to specify what to compute, by expressing solutions to a problem
as combinations of solutions to recursively occurring subproblems. Linear execu-
tion of loops can be viewed as a trivial case of recursion. Of course, while loops
may be easily executed on a computer efficiently, recursion requires more sophis-
ticated implementation methods for efficient execution, especially when subprob-
lems overlap.

Exercise 2.15 (Stock averages using aggregate expressions) Write a program
for computing the 50-day stock averages in Exercise 2.4 using aggregate expres-
sions.
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Gries’s The Science of Programming says that it was used as early as the late
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DEC Cambridge Research Lab during his visit to Cornell University in 1995.
Ramin Zabih at Cornell had developed a similar algorithm as an important part of
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3
Sets: incrementalize and implement

Most computer applications must handle collections of data. A set is a collection
of distinct elements. Operations on sets, such as union and difference of the ele-
ments of two sets, are higher-level than operations on arrays, which are assignment
and access of elements at indexed positions. The largest class of computer appli-
cations that involve collections is database applications, which typically handle
large collections of data and provide many kinds of queries and other function-
alities. Because of their higher-level nature, sets and set operations can be used
to express problem solutions more clearly and easily, and have been used increas-
ingly in programming languages, though typically only in applications that are not
performance critical.

Problem solutions programmed using high-level set operations typically have
performance problems, because high-level set operations typically involve many
elements and are often repeatedly performed as sets are updated. To improve per-
formance of applications programmed using sets, expensive high-level operations
on sets must be transformed into efficient incremental operations, and sets must
be implemented using data structures that support efficient incremental operations.
These correspond to Steps Incrementalize and Implement, respectively. Step Iter-
ate just determines a simple way of iteration that adds one element at a time to a
set.

Because graph problems are typically specified using sets, we first describe the
method using the graph reachability problem as an example, showing how effi-
cient graph algorithms can be derived systematically. We then discuss two addi-
tional examples: access control, to show how to derive rules used for incremental-
izing set expressions using appropriate result maps and auxiliary maps, and query
optimization, to show how to derive optimal implementations of join queries using
straightforward iterations and appropriate auxiliary maps. At the end, we discuss

53
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the need for higher-level control abstraction, which complements high-level data
abstraction provided by sets.

Example: graph reachability

Given a graph with a set e of edges and a set s of source vertices, we want to find
the set r of vertices reachable from the vertices in s following the edges in e.

A straightforward way to do this is to start at the source vertices and follow
the edges to new vertices until no more new vertices can be reached. This can be
specified as

r := s -- start with letting r be s
while exists x in e[r] - r: -- while there is a new reachable vertex x
r add x -- add x to r

where e[r] here is the set of vertices reachable from vertices in r following any
one edge in e, and e[r]-r is the set of vertices in e[r] but not in r, and thus is
the set of vertices newly reachable following any one edge. Note that there is no
confusion between e[r] and array element access because r is a set whereas the
index of an array element is an integer. The precise definitions of set operations
are given in the first section of this chapter. We can write a clear and succinct
specification as above because sets and set operations allow us to ignore how the
graph is represented and how to visit a node and follow an edge in the graph.

While this specification is easy to write, there are three problems with it. First,
how does one have any confidence that this is a good specification, at least in the
sense that its execution terminates instead of looping infinitely? Second, even if
this is a good specification, computing e[r] and computing e[r]-r are both expen-
sive, meaning non-constant time, because they require iterations over sets, if they
are computed from scratch every time r is updated. Third, even if only incremen-
tal set operations are performed, these operations cannot be implemented directly
and efficiently on existing computer architectures, which support only operations
with given memory addresses.

Solutions to these problems correspond exactly to Steps Iterate, Incrementalize,
and Implement, respectively, as explained in detail in this chapter. The basic idea
is to start with a fixed-point specification; then Step Iterate transforms the fixed-
point specification into a while loop; Step Incrementalize transforms expensive
set operations in the while loop into incremental operations; and Step Implement
transforms incremental set operations into operations on appropriate linked and
indexed data structures.

Exercise 3.1 (Graph reachability in other ways*) For the graph reachability
problem, think of different ways to compute the set of reachable vertices. The pro-
gram discussed computes them by considering a new reachable vertex at a time.
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Are there other ways to compute in each iteration? What are some advantages and
disadvantages of different ways to compute?

3.1 Set expressions—data abstraction

We use a language that has sets, tuples, and maps as data types for describing
collections of data, and operations on these data types. All operations described
here are expressions involving sets, except the commands for element addition
and removal and the for loop over sets. Use of these high-level data types and
operations not only helps represent data at a high level but also helps significantly
reduce the use of loops, so the specifications are more declarative: showing more
clearly what is computed, rather than how it is computed.

Language

A set is a collection of distinct elements. Elements in a set are not ordered, and
they can be sets themselves. We use { } to enclose elements in a set. For example,
a set containing numbers 1, 3, and 5 is denoted {1,3,5}, and it is the same set as
{3,5,1}. Operations involving sets include expressions for empty set, range set,
size, union, difference, intersection, cross product, subset test, and membership
test, commands for element addition and removal, and element retrieval, as listed
below. Some of these are shorthands of others for convenience.

• {}, empty set, denotes the set that contains no element.

• i..j, range set, returns the set that contains integers ranging from i to j.

• #S, size of set S, returns the number of elements in S.

• S + T, union of sets S and T, returns the set of all elements that are in either S
or T.

• S - T, difference of sets S and T, returns the set of all elements that are in S
but not in T.

• S & T, intersection of sets S and T, returns the set of all elements that are in
both S and T.

• S * T, cross product of sets S and T, returns the set of all pairs whose first
component is from S and second component is from T.

• S subset T, subset test, returns true if all elements in set S are also in set T,
and false otherwise.

• x in S, membership test, returns true if x is an element of set S, and false
otherwise.

• x not in S, also membership test, is equivalent to not(x in S).
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• S add x, element addition, is a command that adds x to set S, that is, S := S +
{x}.

• S del x, element deletion, is a command that deletes x from set S, that is, S :=
S - {x}.

• exists x in S, existential element retrieval, returns true if S is not empty, and
false otherwise, and binds x to any element in S if S is not empty.

Elements of a set are often tuples. A tuple is an ordered collection of elements
also called components. Elements in a tuple are ordered by their index positions.
We use [ ] to enclose elements in a tuple. For example, a tuple with elements 1, 4,
and 2 in order is denoted [1,4,2], and it is a different tuple from [2,1,4].

Tuples in a set often have two elements. A map is a set of 2-tuples, that is, pairs.
If [x,y] is a pair in a map M, we say that Mmaps x to y. Operations on maps include
domain, range, and image:

• dom(M), domain of map M, is the set of elements that are in the first component
of the pairs in M.

• ran(M), range of map M, is the set of elements that are in the second component
of the pairs in M.

• M{x}, image of x under map M, is the set of elements in ran(M) that Mmaps x to.

The maps we refer to are also called multi-maps, because there may be multiple
pairs with the same first component, that is, each element in the domain may be
mapped to multiple elements in the range. For example, map {[4,1],[3,7],[4,9]}
maps 4 to 1 and 9; the image of 4 under the map is {1,9}; the domain of the map is
{3,4}; and the range of the map is {1,7,9}.

The most powerful kind of set expression is set comprehension, which can ex-
press all operations above that return a set, except for the range set operation i..j.
A set comprehension is a set-valued expression of the form below. Each variable
v1 through vk enumerates elements in the value of set-valued expression sexp1

through sexpk , respectively, and for each combination of values of v1 through vk ,
if Boolean-valued expression bexp evaluates to true, then the value of expression
exp is an element of the resulting set.

{exp: v1 in sexp1 , ..., vk in sexpk | bexp}

We read the expression as “the set of exp where v1 is from sexp1 , . . . , and vk is
from sexpk such that bexp”. We abbreviate {v: v in sexp | bexp} as {v in sexp

| bexp}, and we omit | bexp when bexp is true. For example, the following set
comprehension returns the set of pairs of elements from two respective sets where
the element from the first set plus 1 is greater than or equal to the element from
the second set; the return value is {[5,6],[2,3],[5,3]}.

{[x,y]: x in {1,5,2}, y in {9,3,6} | x+1>=y}
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An aggregate expression, generalizing the definition in Section 2.6, is of the
form below or, in general, op followed by any set-valued expression sexp. It eval-
uates the set-valued expression to a set, say s, and then computes the aggregate
value, as specified by operator op, such as sum, average, min, and max, of values
in s. In general, op can also be any binary operation that has an identity and is
commutative and associative over the elements in s. We overload min and max to
be binary operations too.

op{exp: v1 in sexp1 , ..., vk in sexpk | bexp}

An existentially quantified expression is of the form below, generalizing exis-
tential element retrieval described above. It returns true if and only if there exists
a combination of values of variables v1 through vk , taken from the set values of
expressions sexp1 through sexpk , respectively, such that Boolean-valued expres-
sion bexp evaluates to true; when it returns true, the variables v1 through vk are
bound to such a combination of values.

exists v1 in sexp1 , ..., vk in sexpk | bexp

A universally quantified expression is the same except that exists is replaced with
all. It returns true if and only if for all combinations of values of v1 through vk ,
taken from elements in the set values of expressions sexp1 through sexpk , respec-
tively, Boolean-valued expression bexp evaluates to true. We omit | bexp when
bexp is true.

A for loop over sets is of the form below. Each variable v1 through vk enu-
merates elements in the value of set-valued expression sexp1 through sexpk , re-
spectively, and for each combination of values of v1 through vk , if the value of
Boolean-valued expression bexp is true, then execute command cmd .

for v1 in sexp1 , ..., vk in sexpk | bexp:
cmd

We read the entire command as “for each v1 in sexp1 , . . . , and vk in sexpk such
that bexp, do cmd”. Again, we omit | bexp when bexp is true.

In the clause “v1 in sexp1 , ..., vk in sexpk | bexp” in all of set comprehen-
sions, aggregate expressions, quantified expressions, and for loops, a tuple pattern
tpati may occur in place of variable vi . A tuple pattern is a tuple expression where
each component is one of three kinds: an expression whose variables are all bound
in the enclosing scope; a fresh variable that is not yet bound, called a pattern vari-
able; or recursively a tuple pattern. A tuple value t matches a tuple pattern tpat

if they have the same number of components and, recursively, the same number
of components for components or subcomponents of tpat that are recursively tu-
ple patterns; the value of each component or subcomponent expression in tpat

equals the corresponding component or subcomponent value in t; and variable
components and subcomponents of tpat that are the same variable correspond to
the component and subcomponent values of t that are the same.
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When tuple patterns are used, each tuple value [v1, . . . , vk], formed by a combi-
nation of elements v1 through vk from the set values of expressions sexp1 through
sexpk , respectively, is matched against the tuple pattern [x1 ,...,xk]. If the match
succeeds, then pattern variables in [x1 ,...,xk] are instantiated with the corre-
sponding values in [v1, . . . , vk], and subsequently used in checking Boolean-valued
expression bexp and the remaining computations in the set comprehension, aggre-
gate expression, quantified expression, or for loop.

For example, the following set comprehension returns a set of elements xwhere
x is the second component of a pair in the given set whose first component equals
3 and where x is greater than 4; the return value is {6}.

{x: [3,x] in {[3,6],[1,5],[3,2] | x>4}

Cost model

Operations on sets that require iterating through one or more sets are considered
expensive. Set size, union, difference, intersection, cross product, subset test, com-
prehension, quantified expressions, and for loops are such operations. Operations
that involve a single element and a single set, if implemented naively, are also ex-
pensive, but they can be implemented with efficient data structures, as discussed in
Step Implement in Section 3.4, in worst-case or average-case O(1) time. Member-
ship test, element addition and deletion, and element retrieval are such operations.
Domain, range, and image operations of maps are also expensive if implemented
naively, but with efficient data structures, a reference to the resulting sets can be
returned in O(1) time.

The time complexity of a set comprehension can be analyzed precisely as the
following, where s1 through sk are the set values of expressions sexp1 through
sexpk , respectively:

O(time(sexp1 )+. . .+time(sexpk)+#s1×. . .×#sk×(time(bexp)+time(exp)))

The time complexity of a quantified expression is the same except without the
summand time(exp). The time complexity of a for loop over sets is the same except
that time(exp) is replaced with time(cmd).

Exercise 3.2 (Set operations*) Write definitions of the following set operations
using set comprehensions: union, difference, intersection, and cross product. The
definition of the union operation needs more creativity.

Exercise 3.3 (Map operations*) Write definitions of the following map opera-
tions using set comprehensions: domain, range, and image. The definition of the
image operation needs more care.

Exercise 3.4 (Image union*) Given a map M and a subset S of the domain of M,
write a definition of M[S], the union of the image sets M{x} for all x in S, called
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image union, using set comprehension or other set operations already defined.
Can you write multiple definitions? Note that this is different from array element
access a[i], despite that a corresponds to a single-valued map (i.e., a map where
each element in the domain is mapped to only one element in the range), because i
is an element, not a subset, of the domain of this map; in particular, i is an integer,
not a set.

Exercise 3.5 (Inverse map) Write a set comprehension that returns the inverse of
a given map. That is, if y is in the image of x under the given map, then x is in the
image of y under the inverse of the given map, and vice versa. You may see that
this is extremely easy because our maps are multi-maps. If our maps were single
valued, that is, each element in the domain may be mapped to only one element
in the range, then an image set must be kept explicitly as a set, making it much
messier to compute the inverse.

3.2 Iterate: compute fixed points

We can specify the solution to a problem as a fixed point of a function, that is, a
value such that applying the function to the value returns the same value. Starting
with fixed-point specifications has at least two advantages. First, fixed-point theo-
rems may ensure that a fixed point exists and can be computed in a finite number
of iterations, in contrast to using an ad hoc loop that might not terminate. Second,
fixed-point theorems may allow a simplified initialization before iterations, which
can reduce the size of the optimized program by about half.

For the graph reachability problem, we regard a set of vertices as a value, and
consider functions that take a set of vertices and return a set of vertices. The set
of reachable vertices can be specified as the least fixed point of a function, where
the fixed point includes the set of source vertices, and the function takes a set r of
vertices and returns the union of r and the set of all successors of vertices in r. We
write this precisely as follows, where e[r] is the image union of map e over set r,
{y: x in r, y in e{x}}, and min r: is read as “the minimum r such that”:

min r: s subset r, r + e[r] = r

Writing fixed-point specifications can be difficult in general, because they al-
ready imply iterative computations but do not express those directly. We will see
in Chapter 5 that it is much easier and more natural to write specifications using
logic rules, which can then be automatically translated into a fixed-point specifi-
cation.

Transforming into a loop

Step Iterate transforms a fixed-point specification into a while loop. This is based
on fixed-point theorems in set theory, which state when a fixed point exists and
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how to compute it iteratively in a finite number of iterations. The latter means that
execution of the loop always terminates, as desired. More refined theorems could
even state how many iterations are needed.

A well-known theorem states that the fixed point above can be computed by
starting with r being the set s of source vertices and repeatedly updating r with
the result of computing f(r)=r+e[r], that is, adding vertices in r+e[r] into r, until
r does not grow any more—a fixed point of function f is reached. This would lead
to the following loop:

r := s
while r + e[r] != r:
r +:= e[r]

However, this loop requires that each iteration considers all vertices in e[r] that
are not in r, and thus it is difficult to ensure that no computations are repeated.

Adding one element at a time

Another, less well-known but important theorem states that each iteration only
needs to consider any one element in e[r] that is not in r. This realizes our general
method of taking a minimum increment for iteration. It yields exactly the while
loop in our original straightforward specification, copied below:

r := s
while exists x in e[r] - r:
r add x

Now, we can transform this loop to compute each iteration efficiently, by incre-
mentally maintaining values that are affected by adding only one vertex, as will be
discussed in Step Incrementalize. The transformed program will be asymptotically
faster than computing the loop straightforwardly.

Simplifying initialization

Besides termination, theorems about equivalence of fixed-point specifications can
be used to give an additional benefit—a significant decrease in the size of the final
code. Specifically, the least fixed point above is equivalent to the least fixed point
of the function that takes a set r of vertices and returns the union of the set s of
source vertices, the set r, and the set e[r] of all successors of vertices in r:

min r: s + r + e[r] = r

This is then transformed into the following loop, where r is initialized to the
empty set, and the while clause contains a union with s:

r := {}
while exists x in s + e[r] - r:
r add x
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We will see in Step Incrementalize that this does not affect the size of the incre-
mentalized loop body much, but reduces the initialization code from being the
same size as the loop body to almost nothing.

Exercise 3.6 (Least of fixed points*) In the fixed-point specification of the graph
reachability problem, why must the least fixed point be taken?

Exercise 3.7 (Number of iterations*) In the program for the graph reachability
problem, what is a good upper bound for the total number of iterations executed
by the while loop?

Exercise 3.8 (Using power set operation*) Write a specification of the graph
reachability problem using pow(S), the set of all subsets of S, called power set, but
not using fixed points or loops.

3.3 Incrementalize: compose incremental maintenance

Step Incrementalize transforms expensive set operations into incremental set oper-
ations, drastically reducing the running time. It considers all expensive operations
from the inside out, and transforms the program to store and incrementally com-
pute the result of each expensive operation with respect to all updates to the values
of the parameters of the operation. The transformation replaces an expensive op-
eration with a retrieval from its stored result, and inserts code that incrementally
maintains the result at each update to the value of a parameter.

Setting up invariants

First, we identify all expensive operations in an inside-out order. We consider our
original straightforward specification, copied below:

r := s
while exists x in e[r] - r:
r add x

The expensive operations are the image union and set difference operations in
e[r]-r, in an inside-out order. We store the results of these two operations in t and
w, respectively, that is, we maintain two invariants

t = e[r]
w = t - r

where t, for “to-set”—the set of vertices reached to following single edges, is the
union of the successors of vertices in r; and w, for “work-set”—the set of elements
to be worked on, is the set of vertices in e[r] but not r.
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Maintaining invariants by composition

Then, we transform the program to incrementally maintain the invariants, in an
inside-out order, at all updates to their parameter values. We use this ordering be-
cause it follows dependencies among the variables used in the invariants: when
the result of an expensive operation is used in computing the result of another ex-
pensive operation, the result of the first operation is maintained first, which then
triggers maintenance of the result of the second operation. While maintenance
code corresponds to derivatives in differential calculus, applying the transforma-
tions following the chain of dependencies in an inside-out order corresponds to
the chain rule in calculus. Because w depends on t, we incrementally maintain t
and w, in that order.

Recall from Chapter 2 that, to maintain an invariant v =exp, we replace all
occurrences of expression exp with variable v , and insert code to incrementally
maintain the value of exp in v at each update to a variable used in computing exp.

We first maintain t=e[r] incrementally with respect to update r add x. This
replaces e[r] with t, and inserts the code that incrementally computes the new
value of t, that is, the value of e[r+{x}], using the old value of t, that is, the value
of e[r]. The maintenance code retrieves each successor y of x, from e{x}, and, if y
is not already in t, adds y to t. We obtain

while exists x in t - r: -- e[r] is replaced with t
for y in e{x}: || incrementally
if y not in t: || maintain t
t add y || under r add x

r add x

We then maintain w=t-r incrementally with respect to updates t add y and r
add x. This replaces t-r with w, and inserts code for incrementally maintaining w,
that is, the value of t-r, at each of the two updates: at t add y, if y is not in r, add
y to w; at r add x, if x is in t, delete x from w. This yields

while exists x in w: -- t - r is replaced with w
for y in e{x}:
if y not in t:
if y not in r: || incrementally maintain w
w add y || under t add y

t add y
if x in t: || incrementally maintain w
w del x || under r add x

r add x

In the maintenance code, we have consistently used explicit membership tests
before element additions and deletions to make the additions and deletions strict
operations, that is, operations with real effect. This makes real changes explicit. It
avoids unnecessary propagation of updates, and allows each addition and deletion
to be done in constant time. Furthermore, it makes membership test basically the
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only kind of operation that requires data structure support for efficient implemen-
tation, as will be discussed in Step Implement.

In the transformations above, we have used code that incrementally maintain
the value of an expensive computation with respect to an update, but we have not
said how to obtain such code. With the access control example in Section 3.5, we
will describe a systematic method for deriving such maintenance code for many
expensive set expressions. We do not yet know how to derive such maintenance
code for all expensive computations, but a library of rules, called incrementaliza-
tion rules, including rules developed in ad hoc fashions, can be built and reused.
In general, multiple rules might apply to an expensive computation, with trade-
offs. The cost and frequencies of all the expensive and incremental computations
should be considered explicitly and used to choose the rules that give the best
trade-offs.

Adding initialization

Next, consider initialization of t and w at r := s. This can be done by first replacing
r := s with a for loop that adds elements of s to r one at a time:

r := {}
for x in s:
r add x

and then setting t and w to {} at r := {}, based on t=e[r] and w=t-r, and incre-
mentally maintaining t and w under r add x as in the body of the while loop.

The final incrementalized code is simply the initialization code followed by the
incrementalized body:

w := {} -- w = t - r = {} - {} = {}
t := {} -- t = e[r] = e[{}] = {}
r := {}
for x in s:
for y in e{x}: ||
if y not in t: ||
if y not in r: ||
w add y || same as the body

t add y || of the while loop
if x in t: ||
w del x ||

r add x ||
while exists x in w:
for y in e{x}:
if y not in t:
if y not in r:
w add y

t add y
if x in t:
w del x

r add x
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Using simplified initialization

Note that the initialization code above repeats the loop body and makes the code
twice as long, but if we apply Step Incrementalize to the version of the loop at the
end of Section 3.2 that initializes r to {} and does a union with s in the while clause,
we can eliminate the repetition in the initialization, reducing the code size by about
half. The only difference in the loop body is that we incrementally compute w=
s+t-r instead of w=t-r, which just adds a test of membership in s for each of the
two updates in the loop body. The new initialization simply sets t to {} and w to s
at r := {}, based on t=e[r] and w=s+t-r, respectively. This yields

w := s -- w = s + t - r = s + {} - {} = s
t := {} -- t = e[r] = e[{}] = {}
r := {}
while exists x in w:
for y in e{x}:
if y not in t:
if y not in r and y not in s: -- added: and y not in s
w add y

t add y
if x in t or x in s: -- added: or x in s
w del x

r add x

In both this version and the one before, the outer loop iterates O(V ) times,
where V is the number of vertices, because the algorithm starts with vertices in
s and every vertex is added to work-set w at most once; the inner loop iterates
through each outgoing edge of the vertex considered by the outer loop, and thus
the body of the inner loop is executed O(#e) times. We will see in Step Implement
in Section 3.4 that every other operation in the algorithms takes O(1) time, and
thus the total time complexity is O(#e).

Discussion: pros and cons of composition

The derivation above achieves incremental maintenance of invariant w=e[r]-r
under update r add x by decomposing the invariant into two simpler invariants
and composing incremental maintenance of simpler invariants t=e[r] and w=
t-r under update r add x. For the version with simplified initialization, the deriva-
tion achieves incremental maintenance of w=s+e[r]-r by composing incremental
maintenance of t=e[r] and w=s+t-r. Even though we did not do so, the last in-
variant, w=s+t-r could indeed be decomposed further into a union u=s+t and a
difference w=u-r.

The advantage of composition is that only incremental maintenance of a set
of basic invariants is needed to incrementalize any invariant built from the basic
ones, as shown in this section. The disadvantage is that the composed incremental
maintenance might not be the best possible, as shown next; while additional opti-
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mizations could make it better, this may be difficult for some problems while easy
for others.

For example, we may incrementally maintain the invariant w=s+e[r]-r under
update r add x directly as follows:

for y in e{x}:
if y not in r and y not in w:
w add y

w del x

and obtain the following incrementalized program from the initial while loop with
simplified initialization:

w := s
r := {}
while exists x in w: -- s + e[r] - r is replaced with w
for y in e{x}: ||
if y not in r and y not in w: || incrementally maintain w
w add y || under r add x directly

w del x ||
r add x

How to derive the incremental maintenance used here is a separate issue for study.
The resulting program is clearly simpler and more efficient than the program de-
rived before this that uses simplified initialization.

In the program derived before this that uses simplified initialization, conditions
involving t can be removed or replaced, based on the invariant w=s+t-r; afterward
the intermediate variable t and the code t add y become dead, that is, no longer
needed, and thus can be eliminated:

• The condition for w del x, x in t or x in s, is true, and thus can be elimi-
nated. This is because: x is from w and w=s+t-r, so if x is in w, then x must be
in t or s.

• The conditions for w add y, y not in t and y not in r and y not in s, equal y
not in w and y not in r. The is because: w=s+t-r, so y not in t and y not in
s equal y not in w.

Eliminating dead intermediate results: an example. As an example where un-
necessary intermediate results can be easily removed, consider maintaining

n = #{x in s + t | x>95}

under update s add x. We can maintain the following three simpler invariants, in
order, under update s add x:

u = s + t
g = {x in u | x>95}
n = #g

First, inserting incremental maintenance of u under s add x yields
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if x not in t: || incrementally maintain u
u add x || under s add x

s add x

Then, inserting incremental maintenance of g under u add x yields

if x not in t:
if x>95: || incrementally maintain g
g add x || under u add x

u add x
s add x

Finally, inserting incremental maintenance of n under g add x yields

if x not in t:
if x>95:
n +:= 1 -- incrementally maintain n under g add x
g add x

u add x
s add x

Because g and u are not used anywhere else, they are dead and can be eliminated,
yielding

if x not in t:
if x>95:
n +:= 1

s add x

Although the examples on sets so far exploit only intermediate results, we will
see in the examples on access control in Section 3.5 and on query optimization in
Section 3.6 that auxiliary values, in the form of maps, are essential for efficient
incremental computations.

Exercise 3.9 (Incrementalizing set union and difference) Write incremental
maintenance code for S+T and S-T under element addition and deletion to S and T,
assuming that the addition and deletion are strict operations.

Exercise 3.10 (Composition) For each of the two invariants U=R-S-T and V=
R-(S+T), derive incremental maintenance code under update S add x, by compos-
ing the incremental maintenance code from the previous exercise. What is the
difference between the two resulting codes, and what are the consequences?

Exercise 3.11 (Composition under a different update) Do the same as in the
previous exercise, except to consider update R add x instead of S add x.

3.4 Implement: design linked data structures

Step Implement transforms operations on sets into operations on appropriate linked
lists, records, and arrays or hash tables based on how sets and set elements are ac-
cessed, so that each operation can be performed in constant time. The idea is to
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design sophisticated linked structures, whenever possible, so that each operation
can be performed in worst-case constant time and with at most a small constant
factor of space overhead. When linked structures alone are not sufficient, arrays
may be used, but with a larger space overhead, or hash tables may be used, but
with average-case instead of worst-case time complexities.

Associative access and other low-level set operations

We use a special concept, associative access, to refer to membership test (x in s
and x not in s) and image operation (e{x}); such an operation requires the ability
to locate an element (x) in a set (the set s or the domain of e). Consider the incre-
mentalized program that is transformed from the original straightforward specifi-
cation. We copy it here and comment it with the kinds of operations on each line,
where access means associative access:

w := {} -- initialize w
t := {} -- initialize t
r := {} -- initialize r
for x in s: -- retrieve x from s
... -- same as the body of the while loop below

while exists x in w: -- retrieve x from w
for y in e{x}: -- access x in domain of e

-- retrieve y from range of e
if y not in t: -- access y in t
if y not in r: -- access y in r
w add y -- add y to w

t add y -- add y to t
if x in t: -- access x in t
w del x -- delete x from w

r add x -- add x to r

Recall that all additions and deletions are strict operations. Additionally, the dele-
tion of x from w happens after x is located in w; this is easy to see here because x is
retrieved from w, but otherwise a test of x in w can be inserted before the deletion
to locate x in w.

Using simple data structures

Now, consider using a linked list for each set, including the domain set and image
sets of each map, and let each element in a domain set linked list contain a pointer
to the element’s image set linked list. In other words, represent a set as a linked
list, and represent a map as a linked list of linked lists. Then, if associative access
can be done in worst-case constant time, so can all other low-level operations:

• set initialization (S := {}) and emptiness test (S={}),

• element addition (S add x) and deletion (S del x),

• element retrieval (in while exists x in S and for x in S), and
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• domain operation (dom(M)).

To see this, note that adding or deleting an element to or from a set can be done in
constant time after doing an associative access of the element in the set, retrieving
an element from a set only needs to locate any element or any next element in the
set, and a domain operation simply returns a pointer to the set.

An associative access would take linear time if a linked list is naively traversed
to locate an element, but there are several solutions to this problem. A classical
solution is to use hash tables instead of linked lists, but this gives average-case, not
worst-case, constant time for each operation, and it has the overhead of hashing-
related computations for each operation. Another solution is to use arrays, but
this gives worst-case constant-time operations only when the sets do not change
dynamically, and it may use asymptotically more space than necessary and may
have bad memory performance when the arrays are large.

Designing sophisticated linked data structures

We describe a better solution, called based representation, for a general class of
set-based programs. It is a powerful method for designing linked structures that
support associative access in worst-case constant time and with little space over-
head. The basic observation is that an access, x in S, in a program, is not isolated—
the element x must be retrieved from some set W before the access, as in

...

... -- retrieve x from W

...

... -- access x in S

...

That is, we want to locate x in S after it has been located in W. The idea is to use a
set B, called a base, to store values for both W and S, so that a retrieval of a value
from W also locates this value in S.

• Base B is a set of records (this set is only conceptual), with a K field storing
the key (i.e., value).

• Set S is represented using an S field of B: records of B whose keys are in S are
connected by a linked list whose links are stored in the S field; records of B
whose keys are not in S store a special value, null, indicating undefinedness
in the S field. If set S is never retrieved from, then the S field can be a bit
indicating whether the key is in S.

• Set W is represented as a separate linked list of pointers to records of B whose
keys are in W.

Thus, an element of S is represented as a field in the record, and S is said to be
strongly based on B; an element of W is represented as a pointer to the record, and
W is said to be weakly based on B.
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This representation allows an arbitrary number of weakly based sets, but only
a constant number of strongly based sets, because there can be any number of
pointers to a record, but only a constant number of fields in a record. So this
representation applies if and only if there is a constant number of strongly based
sets. Essentially, base B provides a kind of indexing to elements of S starting from
elements of W.

For the graph reachability program, consider the kinds of operations on each
line. We need to design data structures for sets s, w, t, r, and map e. First, consider
the body of the while loop:

• after x is retrieved from w, it is accessed in the domain of e, and in t, so all
elements of w, the domain of e, and t are in a base;

• after y is retrieved from the range of e, it is accessed in t, and in r, so the
range of e, t, and r are in a base.

Because t is common to both groups of sets, elements of all of these sets are in
one base, yielding the data structure in Figure 3.1:

• the key of the records is the id of the elements, that is, vertices;

• there is a field in the record for each set with element access: the domain of e
(a pointer to the image set), t (a bit), and r (a bit); and

• there is a linked list of pointers to the records for each set with element re-
trieval: w and the image sets of e.

Then, consider the for loop before the while loop. Everything is the same as for
the while loop except that x is retrieved from s instead of w, so we simply need to
represent s as another linked list of pointers to the records.

For the incrementalized program with simplified initialization, that is, with r
initialized to {} and a union with s done in the while clause, the linked list for s is
replaced with an additional field, a bit, for testing membership in s.

The space complexity is O(V ), where V is the number of vertices, because of
the additional space used for the fields and linked lists for dom(e), r, t, s, and w,
which are all for vertices. This is, in general, much smaller than the space for
input, which is O(#e).

Discussion: adjacency-list versus adjacency-matrix representations and
depth-first versus breadth-first search

The data structures we have derived are in fact exactly the adjacency-list represen-
tation for graphs, which uses a linked list of linked lists for edges. It is preferred
over the adjacency-matrix representation for graphs, which uses an array of arrays
for edges, and can take asymptotically more space than the adjacency-list repre-
sentation when the graphs are sparse, that is, when there are few edges going in
or out of most vertices.



70 3 Sets

w

...

null

key dom e in r? in t?

· · · null

key dom e in r? in t?

· · · null

· · · · · ·

key dom e in r? in t?

· · · null

Figure 3.1 Resulting data structure for the graph reachability example.

While element additions and deletions can now be implemented efficiently,
there is in fact a choice for whether to add and delete elements at the head or
tail of a linked list. For example, for work-set w in the graph reachability problem,
if additions and deletions are at the same end, then the linked list is a stack, and the
resulting algorithm is exactly doing a depth-first search (DFS), which traverses a
graph by going deep first; if additions are at one end, and deletions are at the other
end, then the linked list is a queue, and the resulting algorithm is exactly doing a
breadth-first search (BFS), which traverses a graph by going wide first.

Compare the method described here with the materials taught in the algorithms
and data structures literature. There, before any graph algorithm is discussed, there
are separate descriptions and comparisons of the adjacency-list and adjacency-
matrix representations and of the DFS and BFS strategies. Then, for each algo-
rithm, a graph representation and a search strategy are picked before the algorithm
is presented. Here, the method described automatically derives the preferred data
structures. Also, the freedom, or nondeterminism, created at a high level by pick-
ing any element in e[r]-r in each iteration allows the search strategy used to be a
low-level choice that can be determined at the end.
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These choices for search strategies and for data structures also help show that,
for implementing set expressions, Step Incrementalize and Step Implement are
essential and more sophisticated, while Step Iterate is straightforward.

Exercise 3.12 (Data structure design) Suppose that the resulting code for main-
taining the invariant for U in Exercise 3.10 is in a loop for x in U. Design data
structure for sets R, S, T, and U in the resulting code. You may assume that all other
operations in the loop do not involve these sets.

Exercise 3.13 (Using doubly linked lists*) When are doubly linked lists needed
in based representations?

Exercise 3.14 (Number of strongly based sets*) When is there an unbounded
number of strongly based sets? What data structures should we use in that case?

3.5 Example: access control

We consider the core component in role-based access control (RBAC), as defined
in an American National Standards Institute (ANSI) standard, and show how to
systematically derive rules for incrementally maintaining the results of many ex-
pensive set expressions, including all expensive set expressions in RBAC, with
respect to updates to their parameter values. RBAC is a framework for controlling
user access to resources based on roles. Efficient implementations require making
many complex queries incremental with respect to many possible updates, and
therefore a systematic method for deriving the needed rules is extremely benefi-
cial.

Core RBAC queries and updates

The ANSI standard for core RBAC defines core functionalities on permissions,
users, sessions, roles, and a number of relations among these sets, while the rest
of the standard adds a hierarchical relation over roles, in hierarchical RBAC, and
restricts the number of roles of a user and of a session, in constrained RBAC.
Precisely, core RBAC has essentially five sets: OBJS for objects, OPS for operations,
USERS for users, ROLES for roles, and SESSIONS for sessions, and the following four
relations, specified with associated constraints. An operation-object pair is called
a permission.

PR subset (OPS * OBJS) * ROLES -- assignment of permissions to roles
UR subset USERS * ROLES -- assignment of users to roles
SU subset SESSIONS * USERS -- sessions with session users
SR subset SESSIONS * ROLES -- sessions with active roles

Core RBAC functionalities involve 16 kinds of queries of 9 different forms and
19 kinds of updates in 12 functions.



72 3 Sets

We use the expensive query in function CheckAccess, called the CheckAccess
query, as an example, because it is the most important and most frequently used
query; the method applies to all other queries as well. The CheckAccess query takes
a session, an operation, and an object, and returns the set of roles that are active
in the session and are assigned the operation-object pair as a permission:

{r: r in ROLES | [session,r] in SR, [[operation,object],r] in PR}

The CheckAccess function grants access if this set is not empty.
We need to determine updates to the values of the parameters of the query. A

parameter of a query is a variable defined outside the query and used in the query.
For the CheckAccess query, the parameters are ROLES, SR, PR, session, operation, and
object. An update to the value of a parameter is any operation that sets the value
of the parameter. For the CheckAccess query, parameters ROLES, SR, and PR are set
by addition and deletion of an element, and initialization to {}, while parameters
session, operation, and object are set by calls to the CheckAccess function.

Deriving incrementalization rules

For each kind of expensive query, we need to determine how to incrementally
maintain the query result with respect to each kind of update to the value of a
parameter of the query; this is captured by an incrementalization rule. Deriving
such rules boils down to systematically addressing three main issues.

First, to handle parameters that can be set to any value, we maintain a result
map that maps the values of those parameters to the results of the query. For the
CheckAccess query, we maintain a map, called MapSP2R, that maps any given session
and permission, that is, operation-object pair, to the desired set of roles. Then, the
CheckAccess query can be replaced with a fast retrieval

MapSP2R{[session,operation,object]}

which locates the result set in constant time. The CheckAccess function can then
test the emptiness of the result set in constant time, and thus is overall constant
time and optimal.

Second, to handle other parameter value updates, we derive code for incremen-
tally maintaining the result of the query at each kind of update. For the CheckAccess
query, MapSP2R must be incrementally maintained when ROLES, SR, and PR are up-
dated by element addition and deletion in 9 other functions.

The derivation starts with generic code for maintaining the result set, obtained
from the query by iterating over both the sets enumerated and the sets tested for
membership. For example, the generic code for the CheckAccess query is the fol-
lowing; the additional membership test on the second line ensures that addition to
the result map is a strict operation:

for r in ROLES: for [s,r] in SR: for [[op,o],r] in PR:
if r not in MapSP2R{[s,op,o]}: MapSP2R{[s,op,o]} add r
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A variable that becomes bound in an outer loop is used as a filter for the values
enumerated in an inner loop. For example, in the nested for loops in the generic
code above, the variable r becomes bound in the outermost loop, so for each value
of r, among tuples enumerated in the two inner loops, only those whose second
component equals the value of r are considered.

To quickly retrieve values of unbound components of tuples given values of
bound components, auxiliary maps are maintained to map values of bound com-
ponents to values of unbound components. These maps serve essentially as in-
dices. For the CheckAccess query, the generic form above shows the need to find all
s’s and all [op,o]’s that match each r in SR and PR, respectively. So, we maintain
two auxiliary maps:

• SRMapR2S maps each role in ran(SR) to its corresponding set of sessions in SR.

• PRMapR2P maps each role in ran(PR) to its corresponding set of permissions in
PR.

That is, SRMapR2S and PRMapR2P are the inverse maps of SR and PR, respectively.
Together, the result map and two auxiliary maps yield the following three in-

variants to be maintained at updates to ROLES, SR, and PR:

MapSP2R{[s,op,o]} = {r: r in ROLES | [s,r] in SR, [[op,o],r] in PR}
SRMapR2S = {[r,s]: [s,r] in SR}
PRMapR2P = {[r,[op,o]]: [[op,o],r] in PR}

Now, to obtain the specific maintenance code at each addition and deletion of
an element, we start with the generic code, and do four things:

1. eliminate the loop over the set being modified, because in incremental main-
tenance, only the element being added or deleted needs to be considered for
this loop;

2. replace each loop whose loop variables are all bound with a test on the loop
variables, because bound variables are filters of the values;

3. use auxiliary maps in loops that have both bound and unbound loop variables
to iterate over only the values of the unbound variables; and

4. update an auxiliary map when its corresponding set of tuples is updated.

For the CheckAccess query at element additions to ROLES, SR, and PR, we obtain
the maintenance code below, shown as a set of at-update-do-maintenance clauses,
where each update and maintenance is followed by its time complexity. The main-
tenance code can be inserted either before or after the corresponding update.
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at ROLES add r O(1)
do for s in SRMapR2S{r}: for [op,o] in PRMapR2P{r}:

if r not in MapSP2R{[s,op,o]}: MapSP2R{[s,op,o]} add r
O(s/r × p/r)

at SR add [s,r] O(1)
do if r in ROLES: for [op,o] in PRMapR2P{r}:

if r not in MapSP2R{[s,op,o]}: MapSP2R{[s,op,o]} add r
SRMapR2S{r} add s

O(p/r)

at PR add [[op,o],r] O(1)
do if r in ROLES: for s in SRMapR2S{r}:

if r not in MapSP2R{[s,op,o]}: MapSP2R{[s,op,o]} add r
PRMapR2P{r} add [op,o]

O(s/r)

For example, at addition of an element [s,r] to SR, the loop over ROLES becomes
a test because r is bound, the loop over SR is eliminated because [s,r] is being
added to SR, the auxiliary map for PR is used to iterate over only unbound variables
[op,o] for the bound r, and the auxiliary map for SR is maintained. At addition of
an element to PR, the maintenance code is similar. At addition of an element to
ROLES, the maintenance code is simpler.

The complexity analysis assumes that Step Implement realizes each operation
that involves a single element in O(1) time. We use s/r to denote the maximum
number of sessions per role, and p/r to denote the maximum number of permis-
sions per role; note that in the maintenance code, r is looked up in dom(SRMapR2S)
and dom(PRMapR2P), which both equal ROLES, s is from ran(SRMapR2S), which equals
SESSIONS, and [op,o] is from ran(PRMapR2P), which equals OPS * OBJS, that is, the
set of permissions.

Deletion is symmetric and has the same cost, that is, is exactly the same except
that if r not in is replaced with if r in and add is replaced with del.

Third and finally, the result map and auxiliary maps are initialized: the map for
the query result is set to empty when any of the sets being iterated over is set to
empty, and an auxiliary map is set to empty when the corresponding set of tuples
is set to empty. The cost is always O(1).

at ROLES := {} O(1)
do MapSP2R := {} O(1)

at SR := {} O(1)
do MapSP2R := {}
SRMapR2S := {}

O(1)

at PR := {} O(1)
do MapSP2R := {}
PRMapR2P := {}

O(1)

Putting all these clauses together with the query and query result retrieval, we
obtain a complete incrementalization rule, of the following form, where each of
the query, result , update’s, and maintenance’s is followed by its time complexity.
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inv result = query
(at update
do maintenance)+

The clause inv result =query indicates that result =query is an invariant. The plus
sign (+) after the right parenthesis indicates that there may be one or more at-
update-do-maintenance clauses.

For the CheckAccess query, the derived incrementalization rule is the following
invariant followed by at-update-do-maintenance clauses derived above for element
addition and deletion and initialization.

inv MapSP2R{[s,op,o]} O(1)

= {r: r in ROLES | [s,r] in SR, [[op,o],r] in PR} O(#ROLES)

The space complexity is for storing the result map MapSP2R and auxiliary maps
SRMapR2S and PRMapR2P. The result map MapSP2R supports constant-time lookup of
the resulting roles given a session, an operation, and an object, and its space
complexity is bounded by O(#SESSIONS×#OPS×#OBJS×#ROLES). The auxiliary
maps SRMapR2S and PRMapR2P are inverses of SR and PR, respectively, and take space
O(#SR) and O(#PR), respectively.

Additional issues

We consider three additional issues: simplification of maintenance code, join or-
der, and copying of query results.

Two kinds of simplifications can be made to the maintenance code in core
RBAC to improve the analyzed running time asymptotically, although they do
not improve the actual running times asymptotically. First, the maintenance code
under updates ROLES add r and ROLES del r can be eliminated, and its time com-
plexity can be tightened to O(1), because in RBAC the range of SRmust be a subset
of ROLES, and thus SRMapR2Smust map the role being added or removed to the empty
image set; this optimization cannot be done without the subset constraint. Second,
in the maintenance code under updates SR add [s,r] and SR del [s,r], the condi-
tion if r in ROLES can be removed, again because the range of SR must be a subset
of ROLES, and thus the r in a pair being added to or removed from SR must be in
ROLES.

Other queries in core RBAC are of four simpler kinds and four other kinds sim-
ilar to the CheckAccess query. The simpler kinds of queries each needs to store,
use, and maintain just one auxiliary map. For some of the other kinds of queries,
different order of sets and relations being iterated may lead to different time com-
plexities, because of differences in the order of binding the variables. This is es-
sentially the well-known join order problem. The number of possible orders is, in
the worst case, exponential in the number of sets being iterated, but it is typically
a small constant, so we can simply consider all of them, and choose the one with
the best complexity based on the sizes of the sets.
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All queries in core RBAC are independent of each other, so rules for incre-
mentalizing them can be applied in any order. There is an additional detail when
applying individual rules: although a query result can be located in constant time,
if it is iterated over, then a copy of it needs to be made for the iteration if the
query result may be incrementally updated at updates to the values of the query
parameters during the iteration. Note that this copying does not increase the over-
all asymptotic running time, because the cost of copying is amortized over the
subsequent iteration.

Exercise 3.15 (RBAC review functions) In core RBAC, review functions
AssignedRoles and SessionRoles are both queries of the following form:

{r: r in R | [t,r] in TR}

Derive incremental maintenance code under element addition to R and TR.

Exercise 3.16 (RBAC advanced review functions) In core RBAC, advanced
review functions UserPermissions and SessionPermissions are both queries of the
following form:

{[op,obj]: r in R, op in OPS, obj in OBJS
| [t,r] in TR, [[op,obj],r] in PR}

Derive incremental maintenance code under element addition to R, TR, and PR.

3.6 Example: query optimization

We show how to derive optimal algorithms for computing general join queries. A
join query computes results by relating elements of two sets of tuples. Join queries
are at the core of relational calculus queries as used in SQL, the dominant database
query language. The derivation illustrates how to iterate in a straightforward man-
ner and how to discover auxiliary maps for efficient incremental computation.

Join queries

Join queries are of the following canonical form, where f and g are functions, for
example, for selecting particular components of x and y, respectively.

r = {[x,y]: x in s, y in t | f(x) = g(y)}

An example of this query in SQL is the following, which selects all professor and
course pairs where the professor is the instructor of the course:

select *
from professor, course
where professor.name = course.instructor
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Clearly, if computed straightforwardly, such join queries have a running time
of O(#s×#t). In the worst case, all pairs of elements in s and t could satisfy the
equality condition and be returned, which indeed takes Ω(#s × #t) time. How-
ever, it is easy to see that in practice, there may be much fewer pairs that satisfy
the condition. For the professor-course example, each professor is likely the in-
structor of a few courses, not all the courses. Can we compute the result more
efficiently? In particular, can we compute the query result in optimal time, that is,
O(#s+ #t+ #r) time, where r is the query result? This is considered optimal
because the query must at least read the input s and t and write the result r.

Join queries are the most extensively used expensive queries in relational
databases, and optimizations for them have been extensively studied. An algo-
rithm that achieves the optimal time complexity has indeed been given previously,
as shown below. It maintains inverse maps of f and g and computes the cross
product of all combinations of results from the two inverses.

finverse = {[f(x),x]: x in s}
ginverse = {[g(y),y]: y in t | g(y) in dom(finverse)}
r = {[x,y]: z in dom(ginverse), x in finverse{z}, y in ginverse{z}}

Expanded into loops, the algorithm is

finverse := {} || expanded
for x in s: || computation
finverse add [f(x),x] || of finverse

ginverse := {} ||
for y in t: || expanded
if g(y) in dom(finverse): || computation
ginverse add [g(y),y] || of ginverse

r := {} ||
for z in dom(ginverse): || expanded
for x in finverse{z}: || computation
for y in ginverse{z}: || of r
r add [x,y] ||

The first two loops iterate through s and t, respectively. The nested loops at the end
add a new pair to r every time, because f and g being functions determines that, for
different values of z, values of xmust be different and values of ymust be different.
Assume that each operation that involves a single element takes constant time, as
discussed earlier for Step Implement. The time complexity of the algorithm is thus
O(#s+ #t+ #r), that is, input size plus output size, which is optimal.

Can our systematic method derive this algorithm? No. Instead, our method can
derive a better algorithm—an algorithm that not only has the same optimal asymp-
totic time complexity, but also has a smaller constant factor, uses half or less of
the space, is simpler and shorter, and, above all, is systematically derived so we
have higher confidence that it is correct.
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Iterate

It is clear that a minimum increment for iteration is to consider either one element
at a time for s or one element at a time for t. We simply choose the former, and
use a loop to iterate over s, that is, we are to compute

r = {[x,y]: x in s1, y in t | f(x) = g(y)}

incrementally as each element of s is added to s1 starting from s1={}:

s1 := {}
for x in s:
s1 add x

We obtain the following, after eliminating dead code for computing s1:

r := {} -- maintain r under s1 = {}
for x in s:
r +:= {[x,y]: y in t | f(x) = g(y)} -- maintain r under s1 add x

Incrementalize

We compute the expensive expression {[x,y]: y in t | f(x) = g(y)} in the loop
incrementally with respect to a given x in each iteration. Given x, the value of f(x)
becomes given. So we need to find y’s in t such that g(y) equals some given value.
This leads us to maintain an auxiliary map that maps such a value of g(y) to y for y
in t. In general, an auxiliary map is used to map from known values to the desired
values. We call the map here ginverse, because it corresponds to the inverse of g:

ginverse = {[g(y),y]: y in t}

Now, the set of y’s in t such that g(y) equals a given value f(x) is just the set of
y’s in ginverse{f(x)}. We obtain the following algorithm:

ginverse := {[g(y),y]: y in t} -- compute ginverse
r := {}
for x in s:
r +:= {[x,y]: y in ginverse{f(x)}} -- use ginverse

Expanded into loops, the resulting algorithm is

ginverse := {} || expanded
for y in t: || computation
ginverse add [g(y),y] || of ginverse

r := {}
for x in s:
for y in ginverse{f(x)}: || expanded
r add [x,y] || additions to r

The first two loops iterate through t and s, respectively. The loop nested in the
second loop adds a new pair to r every time, because each x considered by the
outer loop is different, and for each x, each y considered by the inner loop is
different.
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Implement

To compare our derived algorithm with the previous optimal algorithm, it is suffi-
cient to assume that sets are implemented using hash tables for both algorithms.

Analysis and comparison

Compared with the previous optimal algorithm, our derived algorithm has the
same optimal asymptotic time complexity and is significantly better in at least
four other aspects.

• Our algorithm has an asymptotic running time of O(#s+ #t+ #r), that is,
input size plus output size, because the three loops in the algorithm iterate
O(#t), O(#s), and O(#r) times, respectively. Therefore, it achieves the same
optimal asymptotic running time as the previous algorithm, and its complex-
ity analysis is easier.

• Our algorithm has a smaller constant factor, because it has fewer operations
on each element in the sets, in a total of 3 loops instead of 5, and has no other
conditional tests. Thus, it has better absolute running time.

• The auxiliary space used by our algorithm is O(#t), for storing ginverse, but
can be made O(#s) if s is smaller than t, by simply iterating over t instead of
s in Step Iterate. Thus, the auxiliary space is O(min(#s,#t)), and is no more
than half of the O(#s+ #t) auxiliary space used by the previous algorithm
for storing both finverse and ginverse.

• Our algorithm is much shorter and simpler, being about half of the size of
the given optimal algorithm. Thus it takes less code space, and is also much
easier to understand.

• Above all, our algorithm is obtained by following a systematic method, not
using ad hoc techniques. This gives higher assurance of the correctness of the
algorithm.

Exercise 3.17 (Existential selection query*) Derive an efficient algorithm for
selection queries with existential quantification, that is, queries of the form

{x: x in s | (exists y in t | g(y) = f(x))}

Exercise 3.18 (Existential join query*) Derive an efficient algorithm for join
queries with existential quantification, that is, queries of the form

{[x,y]: x in s, y in t | f(x) = g(y) and
exists z in u | h1(z)=f1(x) and h2(z)=g1(y)}

You may notice that this is essentially the first example problem near the beginning
of Chapter 1.
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3.7 Need for control abstraction

While sets provide high-level data abstraction, and set expressions allow clearer,
more declarative specifications, programs written using loops and set expressions
are still straight-line code, lacking functions and procedures that provide con-
trol abstraction, especially recursive functions that allow certain more powerful
queries.

For example, the Fibonacci function, defined below, for n ≥ 0, cannot be written
straightforwardly using loops and set expressions:

fib(n) =

⎧⎨
⎩

0 if n = 0

1 if n = 1

fib(n− 1) + fib(n− 2) otherwise

but it can be specified directly using a simple recursive function definition:

def fib(n) where n>=0:
if n=0 then 0
else if n=1 then 1
else fib(n-1) + fib(n-2)

Problem specifications using recursive functions, as well as methods for deriv-
ing efficient implementation for them, will be discussed in the next chapter.

Exercise 3.19 (Fibonacci using loops*) Write a definition of the Fibonacci func-
tion using loops.

Exercise 3.20 (Fibonacci using set operations*) Write a definition of the Fi-
bonacci function using set operations without loops.
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and in very high-level programming languages at least as early as the 1970s [78,
88, 86, 87]. In database research, there has been special effort on database view
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The ANSI standard for RBAC [13] uses the specification language Z [293, 150].
It was simplified by removing unnecessarily maintained invariants and other un-
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operations directly using set queries and updates in Python, before efficient im-
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transformations first by Cai and Paige [43] and further by Goyal and Paige ten
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in Goyal and Paige [112]. The systematic derivation and improved algorithm for
join queries in this chapter are briefly discussed in Liu et al. [205].
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textbooks [65, 171]. Hopcroft and Tarjan [137] advocated the use of adjacency-list
representation over adjacency-matrix representation for sparse graphs. Optimizing
join orders is a well-known problem in database systems, for which many different
methods have been studied, e.g., [295].



4
Recursion: iterate and incrementalize

Many combinatorics and optimization problems can be solved straightforwardly
by combining solutions to subproblems, where the subproblems may overlap in
complicated manners. Such ways of solving the problems can be easily speci-
fied using recursive functions—functions whose definitions involve calls to the
functions themselves, called recursive calls. The recursive calls are used for solv-
ing subproblems. Applications include many kinds of data analysis and decision-
making problems, such as the great many kinds of analysis and manipulations
needed on sequences, be they sequences in biological computing, document pro-
cessing, financial analysis, or sensor data analysis.

Straightforward evaluation of recursive functions may be inefficient, and may in
fact be extremely inefficient when they are used to solve overlapping subproblems,
because subproblems may share subsubproblems, and common subsubproblems
may be solved repeatedly. An efficient algorithm solves every subsubproblem just
once, saves the result appropriately, and reuses the result when the subsubprob-
lem is encountered again. Such algorithms are called dynamic programming algo-
rithms. To arrive at such efficient algorithms, we must determine how efficient
computations should proceed, and how computed results should be saved and
reused. These correspond to Steps Iterate and Incrementalize. Step Implement just
determines a straightforward way of storing the saved results in appropriate data
structures.

We first describe the method with illustrations on the longest common subse-
quence problem, a well-known problem in sequence processing. We then discuss
additional examples in combinatorial optimization and in math and puzzles: the
0-1 knapsack problem illustrates the use of maps and indexed data structures, as
opposed to nested tuples and linked data structures for the longest common subse-
quence problem; the factorial, Ackermann function, Fibonacci number, and Tower

83
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of Hanoi examples demonstrate that our systematic method for iteration leads to
successful optimizations where ad hoc methods may fail or lead to worse solu-
tions. We discuss, at the end, the need for higher-level data abstraction, which
complements high-level control abstraction provided by recursive functions.

Example: longest common subsequence

A subsequence of a given sequence is just the given sequence possibly with some
elements left out. Given two sequences x1, x2, . . . , xn and y1, y2, . . . , ym, we want
to compute the length of a longest common subsequence (LCS) of the two se-
quences. This can be computed as lcs(n,m), where lcs(i, j) computes the length
of an LCS of x1, . . . , xi and y1, . . . , yj and is defined recursively as, for i, j ≥ 0,

lcs(i, j) =

⎧⎨
⎩

0 if i = 0 or j = 0

lcs(i− 1, j − 1) + 1 if i �= 0 and j �= 0 and xi = yj

max(lcs(i, j − 1), lcs(i− 1, j)) otherwise

If i = 0 or j = 0, that is, if either sequence is empty, then the resulting length is
0. If both sequences are not empty and xi = yj , then every LCS must end with
this common element, and the resulting length is 1 plus the length of an LCS of
x1, . . . , xi−1 and y1, . . . , yj−1. Otherwise, that is, if both sequences are not empty
and xi �= yj , then an LCS either does not end with yj or does not end with xi,
so the resulting length is the maximum of the length of an LCS for x1, . . . , xi and
y1, . . . , yj−1 and the length of an LCS for x1, . . . , xi−1 and y1, . . . , yj .

If executed directly, such straightforward programs may solve common sub-
problems repeatedly and take exponential time. For example, lcs(i, j) may call
lcs(i, j − 1) and lcs(i − 1, j), where the former may call lcs(i, j − 2) and lcs(i −
1, j− 1), and the latter may call lcs(i− 1, j− 1) and lcs(i− 2, j), so lcs(i− 1, j− 1)

is called repeatedly; the overall computation may blow up exponentially and take
O(2i+j) time. We transform such programs into efficient dynamic programming
algorithms that cache and reuse appropriate values and avoid repeatedly solving
common subproblems. For example, we will derive an optimized program for
lcs(i, j) that takes O(i× j) time and O(min(i, j)) space.

Exercise 4.1 (Longest common subsequence in other ways*) For the longest
common subsequence problem, think of different ways to compute the answer.
The recursive function defined has actually limited the answer search space sig-
nificantly. Are there other, brute-force ways to compute the answer? What are the
costs of them?
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4.1 Recursive functions—control abstraction

Recursive functions such as the one described for the LCS problem can be ex-
pressed straightforwardly in a language that supports function definitions that may
use primitive functions, data constructions and accesses, conditions, variable bind-
ings, and recursive function calls.

Language

A function definition is of the following form, where f is the name of a function, v1

through vk are names of variables, called parameters, Boolean-valued expression
bexp constrains the values of v1 through vk , and expression exp defines the value
of f using the values of v1 through vk and possibly using f and other functions.

def f (v1 ,...,vk) where bexp: exp

To reduce clutter, we omit where bexp when it is irrelevant to the point under dis-
cussion. Expression exp may be of the kinds described in the following.

First, as before, an expression can be a constant, a variable, or recursively an
arithmetic, Boolean, or comparison operation on subexpressions. It can also be
any primitive function, that is, function on primitive types that is built in the lan-
guage, applied to subexpressions.

An expression may also be a construction or access of a data structure using a
constructor, tester, or selector; data structures constructed in recursive functions
may be recursive, yielding recursive data structures. Specifically, a constructor
application is of the form below, where c is the name of a constructor. It evaluates
argument expressions exp1 through expk and then returns a structured data that is
indicated with constructor c and whose components are values of exp1 through
expk . For example, pair(1+2,4) is a constructor application, and it evaluates to
pair(3,4). When there is no argument, c() is abbreviated as c. That is, a constructor
with no argument is equivalent to a constant.

c(exp1 ,...,expk)

A tester application is of the form below, where c is a constructor. It evaluates the
argument expression exp and then, if the value of exp is a structured data that is
indicated with constructor c, returns true, and otherwise, returns false.

c?(exp)

A selector application is of the form below, where c is the name of a constructor,
and i is an integer. It evaluates the argument expression exp and then, if the value
of exp is a structured data that is indicated with constructor c and has at least i
components, returns the i-th component.

c.i(exp)
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For convenience, we use [] to denote a tuple constructed by our method, and use
1st, 2nd, 3rd, and so on to select the corresponding component of the tuple.

An expression may also be an array construction or array element access. An
array construction expression is as introduced in Section 2.6 and is of the form
below. It first evaluates integer-valued expressions iexp1 and iexp2 to, say, i1 and
i2, respectively, and then constructs and returns an array with elements indexed
by integers from i1 to i2 and where the elements have the values of exp, evaluated
with variable i bound to each integer from i1 to i2.

array(exp: i in iexp1 ..iexp2 )

An array element access expression is of the form below, where aexp is an array-
valued expression, not just an array variable as in Section 2.1. It evaluates the
array-valued expression aexp and integer-valued expression iexp to, say, a and i,
respectively, and then returns the element of array a at index i.

aexp[iexp]

An expression may be a conditional expression of the form below. It first eval-
uates bexp and then, if the value of bexp is true, evaluates exp1 and returns the
value, and otherwise, evaluates exp2 and returns the value.

if bexp then exp1 else exp2

An expression may also be a binding expression of the form below. It first eval-
uates exp and then returns the value of exp1 evaluated with variable v bound to the
value of exp.

let v := exp in exp1

In general, we allow any command to be between let and in, and any binding
introduced in the command to be used in exp1 .

Finally, an expression may be a function application, also called a function
call, of the form below, where f is defined by def f (v1 ,...,vk) where bexp: exp.
It first evaluates argument expressions exp1 through expk to, say, v1 through vk,
respectively, and then returns the value of exp evaluated with v1 through vk bound
to v1 through vk, respectively, if the value of bexp with these bindings is true.

f (exp1 ,...,expk)

Note that the definition of a function may contain a call to the function itself, or
to another function whose definition contains a call back to the first function; this
cyclic call relation may also involve more than two functions. A recursive function
is a function whose definition involves a call to itself, directly or indirectly through
a chain of calls to other functions. Implementation of function calls and returns
uses a stack, to push argument values when a function is called, and pop with a
return value when the function returns.
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In general, to easily express iterative versions of the optimized programs, we
also allow function definitions of the form

def f (v1 ,...,vn) where bexp: cmd

where cmd is a command in which every flow of control ends with a return com-
mand of the form

return exp

Note that iteration can be expressed using tail recursion, which is a recursion
that performs no computation after the recursive call returns and thus may be
implemented by copying the argument values and then jumping to the body of the
called function without pushing on the stack, eliminating the need for stack space.
While specifications of some programming languages require this implementation
for tail calls, other languages consider this a compiler optimization. We use loops
for iteration because they are more straightforward and more common.

For convenience, we allow global variables to be implicit parameters to func-
tions; these variables are always bound to the same values from the input because
functions do not update global variables.

For the longest common subsequence problem, the recursive function can be
written in our language as follows, where the arrays x and y, for the two given
sequences, are implicit parameters to the function:

def lcs(i,j) where i>=0, j>=0:
if i=0 or j=0 then 0
else if x[i]=y[j] then lcs(i-1,j-1)+1
else max(lcs(i,j-1), lcs(i-1,j))

Cost model

We use an asymptotic model for measuring time complexity. We assume that prim-
itive functions take constant time. Thus, only function applications that involve
recursive functions could be asymptotically expensive. So we consider only val-
ues of function applications as candidates for caching and reuse in incremental
computation. The cost of a recursive function in terms of running time is bounded
by the number of times it recurses multiplied by the maximum time of a single
call to the function excluding recursive calls to the function. The cost in terms of
space is bounded by the sum of the stack space and the space for constructed data,
where the former is proportional to the maximum depth of recursive calls, and the
latter is proportional to the maximum size of construct data that is reachable from
the stack.

Exercise 4.2 (Edit distance*) The edit distance between two strings is the min-
imum number of edits needed to transform one string into another, where the
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allowed edit operations are insertion, deletion, or substitution of a single charac-
ter. Write a straightforward recursive function definition that computes the edit
distance. Give an upper bound for its time complexity if computed straightfor-
wardly.

Exercise 4.3 (Binomial coefficient) The binomial coefficient bin(n, k), for 0 ≤
k ≤ n, is the number of k-element subsets of an n-element set and can be com-
puted by the following straightforward recursive function definition:

def bin(n,k) where k>=0, k<=n:
if k=0 or k=n then 1
else bin(n-1,k-1) + bin(n-1,k)

Give an upper bound for its time complexity if computed straightforwardly.

4.2 Iterate: determine minimum increments,
transform recursion into iteration

The core of Step Iterate for recursive functions is to determine an appropriate
increment to perform repeated incremental computation. We will see here that it
is extremely easy to determine such an increment, but it is deceiving to think that
it is indeed that simple. The method was actually the most difficult to discover.
Indeed, if one took any recursive function and so easily knew how to compute it
iteratively, one would have solved the well-known hard problem of transforming
recursion to iteration, but too easily to believe. So we must motivate and justify
the deceivingly simple and easy solution.

Determining appropriate increment

The problem is to determine how computations should proceed. We know that
efficient computation proceeds by processing data in an incremental fashion. The
critical question is: what is the appropriate input increment for a recursively de-
fined function?

For example, the famous Fibonacci function is defined as follows, as seen in
Section 3.7:

def fib(n) where n>=0:
if n=0 then 0
else if n=1 then 1
else fib(n-1) + fib(n-2)

An efficient way to compute fib(n) is to compute fib(i) for i=0, 1, 2, . . . , n, that
is, at the increment of 1. Why is the increment of 1 used? Why not 2, or 3, or some
parameter k, or -1?

For another example, the well-known binomial coefficient function is defined
as follows, as seen in Exercise 4.3:
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def bin(n,k) where k>=0, k<=n:
if k=0 or k=n then 1
else bin(n-1,k-1) + bin(n-1,k)

An efficient way to compute bin(n,k) is to compute bin(i,k) for i=k, k+1, . . . ,
n, that is, at the increment of 1 for the first argument, and for each i, compute
bin(i,k) by computing bin(i,j) for j=0, 1, . . . , k, that is, at the increment of 1 for
the second argument. Why is it appropriate to consider the increment of 1 to the
first argument first? Why not the second argument first, or both arguments at the
same time, or an increment of 2 or more?

In general, a computation may proceed incrementally in multiple ways, de-
pending on the operations involved. There is no general method for identifying all
possible increments or the best ones. However, we have found an extremely easy
method that can systematically determine a general class of them: simply let the
increment be a minimum change from arguments of recursive calls to parameters
of the defining function. The rationale is that minimizing change allows maximiz-
ing reuse in incremental computation, the essence of our overall approach.

Precisely, to determine how a recursive function f can be computed incremen-
tally, we proceed in three steps:

1. We identify all possible recursive calls to f . For example, in the definition of
fib(n), recursive calls to fib are fib(n-1) and fib(n-2); in the definition of
bin(n,k), recursive calls to bin are bin(n-1,k-1) and bin(n-1,k); in the def-
inition of lcs(i,j), recursive calls to lcs are lcs(i-1,j-1), lcs(i,j-1), and
lcs(i-1,j).

2. Among arguments of recursive calls to f , we identify one that corresponds to
a minimum change from the parameters of f . The amount of change is mea-
sured using a partial order: a change involving fewer parameters is smaller; a
difference in one parameter with smaller magnitude is smaller; other differ-
ences are incomparable. For example, for fib(n), the minimum one is n-1; for
bin(n,k), it is [n-1,k]; for lcs(i,j), it can be either [i,j-1] or [i-1,j]. This
gives a decrement operation.

3. We take the opposite of a decrement to yield a corresponding increment op-
eration. We use next(x) to denote the resulting increment operation on x .
For example, for fib(n), the opposite of the minimum decrement is n+1, that
is, next(n)=n+1; for bin(n,k), it is [n+1,k], that is, next(n,k)=[n+1,k]; for
lcs(i,j), it is [i,j+1] or [i+1,j], that is, next(i,j)=[i,j+1] or next(i,j)=

[i+1,j].

When multiple minimum increments exist for a function, such as for lcs, any of
them may be used. We call such an increment a minimum increment. For example,
for lcs, we will use next(i,j)=[i+1,j]; everything will be symmetric if we use
the other one.
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This method for determining increment operations provides an answer to the
questions about fib and bin posed earlier in this section. Determining input in-
crements in general is theoretically hard, because these increments correspond to
well-founded orderings in domain theory and steps for induction in proof theory.
Yet, the above method is simple and powerful, albeit a heuristic. It has been used
easily and successfully on all the problems we encountered in standard algorithm
textbooks and in the program optimization literature.

Forming optimized program

After determining a minimum increment operation next for a function f , we can
form an optimized program that performs repeated incremental computation at
the increment of next . Incremental computation may require caching, using, and
incrementally maintaining additional values, as will be discussed in Step Incre-
mentalize in Section 4.3, but regardless of how those are done, we can form an
optimize program as follows.

• Let f Ext be a function that extends f to compute and return appropriate ad-
ditional values for incremental computation, and let orig be a function that
projects out the value of f (x) from the value of f Ext(x). We have

f (x)=orig(f Ext(x)).

• Let f Ext’ be a function that incrementally maintains the appropriate values
after an increment by next , that is, f Ext’ computes f Ext(next(x)) efficiently
using x and the result rExt of f Ext(x). We have

if rExt= f Ext(x), then f Ext’(x,rExt)= f Ext(next(x)).

• Let f Ext0 be a function that is f Ext specialized for the base-case condition
base_cond and initial argument init_arg . We have

if base_cond(x) or x = init_arg , then f Ext0(x)= f Ext(x).

The base-case condition is the condition on the argument under which the
function is not called recursively. The initial argument is the first argument
always encountered that satisfies a condition in the function when applying
the decrement operation one or more times to any input not satisfying the
base-case condition.

With these three functions, whose definitions will be derived in Step Incremen-
talize in Section 4.3, we form an optimized program f ExtOpt, of f Ext, that calls
f Ext0 under the base-case condition and calls f Ext’ repeatedly at each increment
by next . The definition of f ExtOpt can be either recursive or iterative, as described
below. The construction of f ExtOpt succeeds if the needed functions f Ext0 and
f Ext’ can be constructed and, for the iterative version, the needed initial argument
can also be constructed.
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• The recursive definition of f ExtOpt is as follows, where prev(x) is the decre-
ment operation that reverses the increment operation next(x ); f ExtOpt com-
putes the base-case result using f Ext0 and computes other results by recur-
sively calling itself and then computing incrementally using the incremental
version f Ext’:

def f ExtOpt(x):
if base_cond(x) then f Ext0(x) -- base case
else let rExt := f ExtOpt(prev(x)) in -- recursion

f Ext’(prev(x),rExt) -- incremental computation

• The iterative definition of f ExtOpt is as follows, where x1 is a local variable;
f ExtOpt returns the base-case result using f Ext0 if the base-case condition
holds, and otherwise starts at init_arg and its result using f Ext0 and iteratively
takes an increment next and calls f Ext’ until the input x is reached:

def f ExtOpt(x):
if base_cond(x): return f Ext0(x) -- base case
x1 := init_arg; rExt := f Ext0(x1 ) -- initialization
while x1 != x: -- iteration

x1 := next(x1 ); rExt := f Ext’(prev(x1 ),rExt) -- incremental comp
return rExt

Note that when x is a tuple of parameters, assignments to x1 need to update
only the values of the parameters that are incremented.

In the base case, to simplify code, any part of the base-case condition that is
satisfied by the initial argument can be removed, because an input satisfying
that part of the base-case condition will cause the while loop to be skipped
and the corresponding base-case result to be returned anyway.

In the while loop, the loop body can instead be the following; the displayed
form above has the same form of call to f Ext’ as in the recursive definition,
for familiarity.

rExt := f Ext’(x1 ,rExt); x1 := next(x1 )

Finally, we define an optimized program f Opt, of f , that retrieves the value of f (x)

from the value of f ExtOpt(x):

def f Opt(x): orig(f ExtOpt(x))

In general, f Ext’ might still contain repeated recursive calls to common subprob-
lems; it can then be optimized by applying the III method again.

The time and space complexities of an optimized program that uses an incre-
mental program are usually easy to analyze. For time complexity, computations
that proceed in an incremental fashion usually contribute linear factors indepen-
dently. For space complexity, the size of the cached values contributes directly to
the space consumption.

• The time complexity of f ExtOpt is the number of repetitions multiplied by
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the time complexity of the incremental version f Ext’. The time complexity
of f Ext0 is smaller. Retrieval using orig takes constant time.

• The space complexity of f ExtOpt is the size of the data structures used and
built by f Ext’, plus, for the recursive version, the depth of the recursion to
account for the size of the stack.

The iterative version eliminates not only the stack space but also the overhead of
allocating and deallocating the stack.

For the LCS example, Step Incrementalize in Section 4.3 will construct lcsExt
and its incremental version lcsExt’ to return a tuple where the value of lcs is in
the first component, and construct a function lcsExt0(i,j) for the base-case con-
dition i=0 or j=0. We will have orig(lcsExtOpt(i,j))=1st(lcsExtOpt(i,j)) and
lcsExt0(i,j)=[0], which can be simply expanded. So we form the following re-
cursive optimized program:

def lcsOpt(i,j): 1st(lcsExtOpt(i,j))

def lcsExtOpt(i,j):
if i=0 or j=0 then [0] -- base case
else let rExt := lcsExtOpt(i-1,j) in -- recursion

lcsExt’(i-1,j,rExt) -- incremental computation

and the following iterative optimized program:

def lcsOpt(i,j): 1st(lcsExtOpt(i,j))

def lcsExtOpt(i,j):
if j=0: return [0] -- base case, i=0 is removed
i1 := 0; rExt := [0] -- initialization
while i1 != i: -- iteration
i1 := i1+1; rExt := lcsExt’(i1-1,j,rExt) -- incremental computation

return rExt

In the base case of the iterative optimized program, condition i=0 is removed be-
cause an input satisfying i=0 will cause the while loop to be skipped and the
corresponding base-case result to be returned anyway.

Both versions of lcsExtOpt call lcsExt’ a total of i times. Both use an auxiliary
array rExt of size j, as used and built by lcsExt’; the recursive version also uses
a stack space of size O(i). We will see in Step Incrementalize in Section 4.3 that
lcsExt’(i,j,rExt) takes O(j) time and uses and builds a structure of size O(j).
So the total time complexity of the optimized program is O(i× j), and the space
complexity is O(i + j) for the recursive version and O(j) for the iterative version.

If we use next(i,j)=[i,j+1] instead of next(i,j)=[i+1,j], then the result is
exactly symmetric. In particular, the total time complexity of the optimized pro-
gram is still O(i× j), and the space complexity is still O(i + j) for the recursive
version but is O(i) instead of O(j) for the iterative version. So depending on which
one of i and j is smaller, we may choose to increment over the other one in an it-
erative optimized program to lead to the smaller space usage of O(min(i, j)).
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Note that both the iterative and recursive versions need only linear space by
reusing space after computation on each increment. This significantly improves
over the O(i× j) space that is often used but not needed.

Relationship with integration by differentiation

We have seen in Chapter 2 that incrementalization corresponds to differentiation
in calculus, and in Chapter 3 that incrementalizing subcomputations following the
chain of dependencies corresponds to using the chain rule in differentiation. Fur-
ther correspondence between incrementalization and differentiation becomes clear
when we consider minimizing input increment by Step Iterate in order to succeed
in incrementalization by Step Incrementalize. Minimizing input increment helps
increase continuity. More importantly, the overall optimized program computes
iteratively after each input increment and uses the incrementalized computation
in each iteration. This iterative computation with incrementalized computation in
each iteration corresponds exactly to integration by differentiation in calculus.

Exercise 4.4 (Minimum increment for edit distance) Determine a minimum
increment for your recursive function definition for computing edit distance for
Exercise 4.2.

Exercise 4.5 (Another minimum increment for binomial coefficient*) For
the binomial coefficient problem, what is another possible increment even if our
simple method for finding a minimum increment does not find it?

4.3 Incrementalize: derive incremental functions,
achieve dynamic programming

Given a function f and an input increment function next , Step Incrementalize con-
structs two functions, f Ext and f Ext’, where f Ext extends f to compute appropriate
additional values, if needed, for efficient incremental computation on incremented
input, and f Ext’ incrementally maintains the values computed by f Ext under the
input increment. This step also constructs f Ext0 to compute the results of f Ext for
the base-case condition and initial argument.

Determining appropriate values to maintain

First, we determine additional values that need to be computed and cached for f

for efficient computation on repeatedly incremented input:

We identify, in the computation of f on the incremented input next(x), all
possible subcomputations, that is, function calls, whose values are needed
but are not already in the return value of f on the un-incremented input x .
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These are the additional values that should be computed together with f , if not
already computed as intermediate results in f , and be stored together with the
return value of f . This allows their values to be used in the computation on the
incremented input, and in the maintenance of these values on the incremented
input.

For the LCS example, the computation of lcs on the incremented input
[i+1,j], after expanding the definition of lcs, on page 87, and simplifying i+1-1
to i, is

lcs(i+1,j) = if i+1=0 or j=0 then 0
else if x[i+1]=y[j] then lcs(i,j-1)+1
else max(lcs(i+1,j-1), lcs(i,j))

This computation needs the values of three function calls: lcs(i,j-1) in the second
branch, and lcs(i+1,j-1) and lcs(i,j) in the third branch.

• The value of lcs(i,j) is just the return value of lcs on un-incremented input.

• The value of lcs(i,j-1) is computed as an intermediate value in the third
branch of lcs(i,j), but it may be needed in incremental computation regard-
less of whether x[i]=y[j] holds in lcs(i,j).

• The value of lcs(i+1,j-1) can be, recursively, computed incrementally using
the value of lcs(i,j-1), just as we compute the value of lcs(i+1,j) incremen-
tally using the value of lcs(i,j).

Therefore, we need to extend lcs(i,j) to compute and return also the value of
lcs(i,j-1) regardless of whether x[i]=y[j] holds, as required by the second item
above, and extend recursively for lcs(i,j-1), as required by the third item above.

Next, we extend f to f Ext that computes and returns the determined additional
values together with the original return value of f . There are two cases:

1. Often, the number of possible additional values is a constant for each call
to f . This is often the case because there is a constant number of function
call expressions in the expanded computation of f (next(x)), such as three in
lcs(i+1,j), and in each such expression, the arguments of the function call
are often uniquely determined by the value of x .

In this case, we create a tuple for the return value of f Ext, where the original
value of f is put in the first component of the tuple, and each additional value
to be cached is put in an additional component. When additional values are
cached recursively for recursive calls, such as for lcs(i,j-1) in lcs(i,j), the
tuples constructed during executions are nested recursively, forming tree-like
structures. Every use of an original value retrieves the value from the first
component.

2. Other times, the number of possible additional values is not a constant for
each call to f . This happens when an argument of a function call in the ex-
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panded f (next(x)) may have a range of possible values because it depends
on global variables whose values are independent of the value of x . For ex-
ample, if x[i] was in an argument of a call in the expanded lcs(i+1,j), then
the argument may have a range of possible values because it would depend
on the global variable x whose value is independent of the value of i.

In this case, we first determine the range of possible values of the argument,
by simplifying the expression for the argument under the constraints obtained
from the function definition. We then extend f to f Ext, which computes and
caches all possibly needed values, including the original value of f , in a map,
mapping each possible value to the result of the function. The value of f is
easily retrieved from the map.

For the LCS example, the additional values to cache are for lcs(i,j-1) in
lcs(i,j) recursively, so we return a pair where the original return value is in the
first component, and the recursively cached additional values is in the second com-
ponent:

def lcsExt(i,j) where i>=0, j>=0:
if i=0 or j=0 then [0] -- return [0] instead of 0
else let v := lcsExt(i,j-1) in -- bind additional value

if x[i]=y[j] then [lcs(i-1,j-1)+1, v] || return pair of orig value
else [max(1st(v),lcs(i-1,j)), v] || and additional value

The original return value of lcs(i,j) can be retrieved from the value of lcsExt(i,j),
as 1st(lcsExt(i,j)).

Note that, among the additional values identified for caching, those that are not
computed as intermediate results in f are auxiliary values. Computing auxiliary
values together with f incurs extra computations not in the computation of f . Thus,
in general, explicit time and space analysis is needed to determine whether it is
worthwhile. However, because these values are needed in the computation on the
incremented input, the rationale is that the cost could be amortized, and saving and
using them to make computations incremental could yield overall large speedup.

Using and maintaining cached values

Let f Ext be the program that extends f to compute and return appropriate addi-
tional values for caching. Let orig be the function that projects out the value of
f (x) from the value of f Ext(x).

We now transform the extended program f Ext on the incremented input next(x),
to use and maintain the cached result rExt of f Ext on the un-incremented input x .
This has three steps and yields an incremental extended program f Ext’(x,rExt).

1. Introduce function f Ext’(x,rExt) to compute f Ext(next(x)), by setting up

f Ext’(x,rExt)= f Ext(next(x)), where rExt= f Ext(x)
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2. Expand f Ext(next(x)) by definition of f Ext, and simplify operations in the
expanded expression that use next(x).

3. Replace function calls in the simplified expression with retrievals of their val-
ues from the result rExt of f Ext(x), or with recursive calls to the incremental
function f Ext’.

The retrievals are based on equalities and exploit both data structures and control
structures: the result of a function call may equal a part of a cached result in a data
structure, and an equality may hold under a condition for a branch.

For the LCS example, we use and maintain the cached values in three steps as
follows. In step 1, we introduce lcsExt’(i,j,rExt) to compute lcsExt(i+1,j), by
setting up

lcsExt’(i,j,rExt)=lcsExt(i+1,j), where rExt=lcsExt(i,j)

In step 2, we expand lcsExt(i+1,j) based on the definition of lcsExt, simplify
i+1-1 to i in the expanded expression, and remove the condition i+1=0 using the
given constraint i>=0 from the definition of lcsExt:

lcsExt(i+1,j)
= if i+1=0 or j=0 then [0] || expanded by
else let v := lcsExt(i+1,j-1) in || definition,

if x[i+1]=y[j] then [lcs(i,j-1)+1, v] || simplified
else [max(1st(v),lcs(i,j)), v] || i+1-1 to i

= if j=0 then [0] -- removed i+1=0 using i>=0
else let v := lcsExt(i+1,j-1) in

if x[i+1]=y[j] then [lcs(i,j-1)+1, v]
else [max(1st(v),lcs(i,j)), v]

In step 3, we replace the three function calls lcsExt(i+1,j-1), lcs(i,j-1), and
lcs(i,j) based on the following three equalities:

• by definition of lcsExt, we have lcs(i,j)=1st(lcsExt(i,j)),

• by definition of lcsExt again, we have lcs(i,j-1)=1st(lcsExt(i,j-1)), and

• by matching lcsExt(i+1,j-1) against lcsExt(i+1,j), and using the equation
lcsExt(i+1,j)=lcsExt’(i,j,rExt), where rExt=lcsExt(i,j), from step 1,
we have lcsExt(i+1,j-1)=lcsExt’(i,j-1,lcsExt(i,j-1)).

Obviously the value of lcsExt(i,j) used in the first equality can be retrieved from
rExt, because lcsExt(i,j)=rExt. Now consider lcsExt(i,j-1) used in the second
and third equalities; note that the uses are for a branch where j �=0. By definition
of lcsExt, we know that lcsExt(i,j-1)=[0] if i=0, and lcsExt(i,j-1)=2nd(rExt)
if i�=0 and j �=0. Thus we have

lcsExt(i,j-1) = (if i=0 then [0] else 2nd(rExt))

Because this value is used in two places, we hold it in a variable, rExt1. We obtain
the following incremental function, where the underlines indicate replacements:
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def lcsExt’(i,j,rExt):
if j=0 then [0]
else let rExt1 := (if i=0 then [0] else 2nd(rExt)) in

let v := lcsExt′(i,j-1,rExt1) in -- recursive call
if x[i+1]=y[j] then [1st(rExt1)+1, v]
else [max(1st(v),1st(rExt)), v]

It is easy to see that lcsExt’(i,j,rExt) takes O(j) time and uses and builds a linear
recursive structure of size O(j), because the second argument is decremented by
1 in the recursive call until it is 0, and each call is performed by constant-time
operations and uses and constructs one or two elements in a tuple structure.

Constructing results for base-case condition and initial argument

To construct the results of the extended function f Ext for the base-case condition
and initial argument, we expand f Ext(x) by definition and simplify the expanded
expression using the base-case condition and initial argument, yielding f Ext0 spe-
cialized for the base-case condition and initial argument, respectively.

For the LCS example, expanding lcsExt(i,j) by definition, and simplifying
under the base-case condition i=0 or j=0 and initial argument satisfying i=0, re-
spectively, we have lcsExt(i,j)=[0] in both cases. Thus we obtain

def lcsExt0(i,j): [0]

The initial argument satisfies i=0 because the condition i=0 is always encoun-
tered when applying the decrement operation prev(i,j)=[i-1,j] repeatedly to
the input; so we can construct the initial argument by setting i to 0.

The definition of f Ext0 is almost always extremely simple and can be simply
expanded to replace calls to f Ext0.

Exercise 4.6 (Incrementalizing edit distance) Derive an incremental version
of the edit distance function you defined for Exercise 4.2 under the minimum
increment you determined for Exercise 4.4.

Exercise 4.7 (Incrementalizing binomial coefficient*) Derive an incremental
version of the binomial coefficient function under the minimum increment dis-
cussed in Section 4.2.

4.4 Implement: use linked and indexed data structures

Step Implement uses linked and indexed data structures for storing all the values
cached and used for incremental computation. It is easy to see the following two
simple ideas.

1. We can implement recursively constructed tree-like structures using linked
data structures, and implement maps using indexed data structures, ensuring
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that each data construction and retrieval operation takes worst-case constant
time.

2. In the trivial case where there are only a constant number of primitive val-
ues to be cashed, each value can be held in a separate variable, avoiding the
constant cost factor of manipulating any data structures.

This simplicity helps show that, for efficient implementations of recursive func-
tions, Step Iterate and Step Incrementalize are essential and more sophisticated,
while Step Implement is straightforward.

Using linked data structures

Recursively constructed tree structures are simply constructed data or tuples nested
recursively. Each constructed data or tuple corresponds to a record. If a con-
structed data or tuple t1 has another constructed data or tuple t2 nested inside,
then the record for t1 has a field that points to the record for t2. These records,
with pointers for nested records, form a linked data structure.

For the LCS example, only recursively constructed tuples are used for incre-
mental computation. They correspond to linked data structures straightforwardly
as just described, so we do not display them. The final optimized program is the
definition of lcsOpt and recursive or iterative definition of lcsExtOpt obtained in
Section 4.2 plus the definition of lcsExt’ obtained in Section 4.3. The time and
space complexity is as analyzed near the end of Section 4.2.

Using indexed data structures

A map that maps possible values of the arguments of a function to the correspond-
ing results of the function is a flat structure. It is implemented using an array by
representing possible values of arguments using integers that pack as the smallest
integer indices. This forms an indexed data structure. The 0-1 knapsack problem
in Section 4.5 will show the use of indexed data structures.

Exercise 4.8 (Optimized edit distance) For the edit distance problem in Ex-
ercise 4.2, form the final optimized program using the minimum increment you
determined for Exercise 4.4 and the incremental version you derived for Exer-
cise 4.6.

Exercise 4.9 (Optimized binomial coefficient) For the binomial coefficient
problem, form the final optimized program using the minimum increment dis-
cussed in Section 4.2 and the incremental version you derived for Exercise 4.7.
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4.5 Example: combinatorial optimization

We consider a well-known combinatorial optimization problem, the 0-1 knapsack
problem, expressed using recursive functions. The derivation illustrates the use
of maps and indexed data structures, as opposed to nested tuples and linked data
structures we have seen for the longest common subsequence problem.

0-1 knapsack

Given n items, where the i-th item has value vi and positive integer weight wi, and
given a weight limit weight, the 0-1 knapsack problem is to find the maximum
total value for a subset of these items whose total weight does not exceed the given
limit. This can be computed as knap(n,weight), where knap(i, u), the maximum
value for a subset of the items 1 through i with a total weight not exceeding u, is
defined recursively as, for i ≥ 0, u ≥ 0, and wi > 0,

knap(i, u) =

⎧⎪⎪⎨
⎪⎪⎩

0 if i = 0 or u = 0

knap(i− 1, u) if i > 0, u > 0, and wi > u

max(vi + knap(i− 1, u− wi),
knap(i− 1, u))

otherwise

If i = 0 or u = 0, that is, either no item is left or no weight allowance is left,
then no item can be taken, and the resulting value is 0. Otherwise, if wi > u, that
is, the i-th item is heavier than u, then it cannot be taken, and items 1 through
i− 1 are considered with the same weight limit u. Otherwise, the i-th item may be
taken or not, so the maximum value from the two cases is returned; in the former
case, items 1 through i − 1 are considered with weight limit reduced by wi, and
the resulting value is increased by vi; in the latter case, items 1 through i − 1 are
considered with the same weight limit u.

The function knap can be written straightforwardly in our language as follows,
where the arrays v and w, of values and weights, respectively, are implicit parame-
ters:

def knap(i,u) where i>=0, u>=0, all i in 1..n | w[i]>0:
if i=0 or u=0 then 0
else if w[i]>u then knap(i-1,u)
else max(v[i]+knap(i-1,u-w[i]), knap(i-1,u))

To understand the efficiency of this function, suppose each item is of weight
1. Then knap(i,u) calls knap(i-1,u-1) and knap(i-1,u), where the former calls
knap(i-2,u-2) and knap(i-2,u-1), the latter calls knap(i-2,u-1) and knap(i-2,u),
and everything repeats until i or u becomes 0. This grows exponentially and may
take O(2i) time. We transform this program into an efficient dynamic program-
ming algorithm that performs appropriate caching and takes O(i× u) time.
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Iterate

For function knap(i,u), recursive calls to knap are knap(i-1,u), with two occur-
rences, and knap(i-1,u-w[i]). Among them, the tuple of arguments that changes
minimally from the parameters [i,u] is [i-1,u]. Taking the opposite of this decre-
ment, we obtain [i+1,u], that is, next(i,u)=[i+1,u].

Step Incrementalize will construct knapExt and its incremental version knapExt’
to return an array where the value of knap is the first element, and construct
knapExt0(i,u) for the base-case condition i=0 or u=0 and initial argument sat-
isfying i=0. We will then have orig(knapExtOpt(i,u))=knapExtOpt(i,u)[u] and
knapExt0(i,u)=array(0: u1 in 0..u), which can be simply expanded. So we form
the following recursive optimized program:

def knapOpt(i,u): knapExtOpt(i,u)[u]

def knapExtOpt(i,u):
if i=0 or u=0 then array(0: u1 in 0..u) -- base case
else let rExt := knapExtOpt(i-1,u) in -- recursion

knapExt’(i-1,u,rExt) -- incremental computation

and the following iterative optimized program:

def knapOpt(i,u): knapExtOpt(i,u)[u]

def knapExtOpt(i,u):
if u=0: return array(0: u1 in 0..u) -- base case, i=0 is removed
i1 := 0; rExt := array(0: u1 in 0..u) -- initialization
while i1 != i: -- iteration
i1 := i1+1; rExt:= knapExt’(i1-1,u,rExt) -- incremental computation

return rExt

In the base case of the iterative optimized program, condition i=0 is removed be-
cause an input satisfying i=0 will cause the while loop to be skipped and the
corresponding base-case result to be returned anyway.

Both versions of knapExtOpt call knapExt’ a total of i times. Both use an auxiliary
array of size rExt, as used and built by knapExt’; the recursive version uses also
O(i) stack space. We will see in Step Incrementalize that knapExt’(i,u,rExt) takes
O(u) time and uses and builds a structure of size O(u). So the total time complex-
ity of the optimized program is O(i× u), and the space complexity is O(i + u) for
the recursive version and O(u) for the iterative version.

Note that the time complexity factor u is linear in the numeric value of u, but
exponential in the size of u, because the size of u is log u. The resulting algorithm
is said to run in pseudo-polynomial time, meaning that the running time is polyno-
mial in the numeric value of the input. The 0-1 knapsack problem is well known
to be NP-complete, so it is so far not known to be computable in polynomial time
in the size of the input.
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Incrementalize

To derive an incremental version of knap under the increment next(i,u)=[i+1,u],
we first consider the computation of knap on the incremented input [i+1,u]. We
expand knap(i+1,u) by definition, simplify i+1-1 to i, and remove condition i+1=0
using the given constraint i>=0, yielding

knap(i+1,u) = if u=0 then 0
else if w[i+1]>u then knap(i,u)
else max(v[i+1]+knap(i,u-w[i+1]), knap(i,u))

This needs knap(i,u) in the second branch and needs knap(i,u-w[i+1]) and
knap(i,u) in the third branch. The value of knap(i,u) is just the return value of
knap on the un-incremented input. The value of knap(i,u-w[i+1]), however, is not
computed by knap on the un-incremented input, and thus should be computed and
cached together with knap(i,u).

Consider knap(i,u-w[i+1]). Its second argument, u-w[i+1], may have a range
of possible values, because it depends on the global variable w whose value is
independent of i and u. We consider constraints on u-w[i+1] based on the definition
of the function.

1. w[i+1]>0 holds by given constraints on the arguments of knap.

2. knap(i,u-w[i+1]) is computed in knap(i+1,u) in the third branch, where
w[i+1]>u is false.

From these two constraints, we know that w[i+1]>0 and w[i+1]<=u, that is, w[i+1]
may range from 1 to u, and thus u-w[i+1] may range from 0 to u-1. Therefore,
we may only need the value of knap(i,u-w[i+1]) for any integer value of u-w[i+1]
from 0 to u-1. That is, we may only need knap(i,u1) for u1=0, . . . , u-1. We also
need the original return value knap(i,u). So we cache knap(i,u1) for u1=0, . . . , u
in an auxiliary map, represented straightforwardly using an array, yielding

def knapExt(i,u): array(knap(i,u1): u1 in 0..u)

The original return value of knap(i,u) can be retrieved from the value of knapExt(i,u)
as knapExt(i,u)[u].

We use and maintain the cached values in three steps as follows. In step 1, we
introduce knapExt’(i,u,rExt) to compute knapExt(i+1,u), by setting up

knapExt’(i,u,rExt)=knapExt(i+1,u), where rExt=knapExt(i,u)

In step 2, we expand knapExt(i+1,j) based on the definition of knapExt, further
expand the resulting expression based on the definition of knap, simplify i+1-1 to i
in the expanded expression, and remove condition i+1=0 using the given constraint
i>=0, yielding
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knapExt(i+1,u) = array(knap(i+1,u1): u1 in 0..u)

= array(if u1=0 then 0
else if w[i+1]>u1 then knap(i,u1)
else max(v[i+1]+knap(i,u1-w[i+1]), knap(i,u1))
: u1 in 0..u)

In step 3, we replace function calls knap(i,u1) and knap(i,u1-w[i+1]) with re-
trievals rExt[u1] and rExt[u1-w[i+1]], respectively, from the result rExt of
knapExt(i,u), yielding the following, where the underlines indicate replacements:

def knapExt’(i,u,rExt):
array(if u1=0 then 0

else if w[i+1]>u1 then rExt[u1]
else max(v[i+1]+rExt[u1-w[i+1]], rExt[u1])
: u1 in 0..u)

It is easy to see that knapExt’(i,u,rExt) takes O(u) time, and that it uses an array
of size O(u) to build a new array of size O(u), because it computes each of the
u + 1 elements of the new array, and each other operation takes constant time.

To construct the result for the base-case condition i=0 or u=0, we expand
knapExt(i,u) by definition of knapExt under i=0 or u=0:

knapExt(i,u) = array(knap(i,u1): u1 in 0..u)

and then expand knap(i,u1) in it by definition of knap under i=0 or u1=0, where
u1=0 is obtained from u=0. This simplifies knap(i,u1) to 0, so we have

knapExt(i,u) = array(0: u1 in 0..u)

To construct the result for the initial argument satisfying i=0, we expand
knapExt(i,u) as for the base case above, and then expand knap(i,u1) and simplify
it to 0 using i=0, yielding the same equation as above. Thus, we obtain

def knapExt0(i,u): array(0: u1 in 0..u)

Implement

The index of the auxiliary map ranges from 0 to u, and thus nothing needs to be
done in languages where array indices start at 0. The final optimized program is
the definition of knapOpt and recursive or iterative definition of knapExtOpt from
Step Iterate plus the definition of knapExt’ from Step Incrementalize. The time
and space complexity is as analyzed at the end of Step Iterate.

Exercise 4.10 (Single-source shortest path) Given a graph where each edge has
an associated weight, and given a vertex s in the graph, the single-source shortest
path problem is to compute, for each vertex t in the graph, the minimum weight
from s to t, summing the weights of edges following any path from s to t. Let n
be the number of vertices in the graph. Let wij be the weight of the edge from
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vertex i to vertex j, and be ∞ if there is no edge from i to j. Assume that there
are no negative-weight cycles. Then there is a simple recursion that computes the
minimum weight from s to t as d(s, t, n−1), where d(i, j,m), the minimum weight
of any path from i to j that contains at most m edges, is defined as, for m ≥ 0,

d(i, j, 0) =
{

0 if i = j

∞ otherwise

d(i, j,m) = min1≤k≤n{d(i, k,m− 1) + wkj} for m ≥ 1

Write a straightforward program based on the given recursion. Note that the re-
sults computed from the above recursion can be used to check whether there are
negative-weight cycles, as discussed in Exercise 4.15.

Exercise 4.11 (Minimum increment for shortest path) For the shortest path
problem in the previous exercise, what is the minimum increment?

Exercise 4.12 (Additional values for shortest path) Continuing the shortest
path problem in the previous exercise, what are additional values to maintain for
incremental computation? Note that by definition, in the computation of d(i, j,m+

1), values d(i, k,m) for k = 1, . . . , n are needed.

Exercise 4.13 (Incrementalizing shortest path) Continuing the shortest path
problem in the previous exercise, derive an incremental version under the mini-
mum increment you determined.

Exercise 4.14 (Optimized shortest path) Continuing the shortest path problem
in the previous exercise, form the final optimized program using the minimum
increment you determined and the incremental version you derived.

Exercise 4.15 (Cost analysis for shortest path) Continuing the shortest path
problem in the previous exercise, what is the time complexity of the optimized
program? If we strengthen the original recursive definitions to consider only k’s
such that wkj �=∞, then in the resulting optimized program, for each j from 1 to n,
only its predecessor nodes, not all n nodes, are considered. Suppose the number of
edges in the graph is e, then the optimized program takes O(ne) time. It is exactly
the well-known Bellman-Ford algorithm except without the triangle inequality test
for each edge at the end for checking whether there are negative-weight cycles.

4.6 Example: math and puzzles

We discuss four examples.

• The factorial example shows that our systematic method naturally transforms
recursion to iteration without potential pitfalls of ad hoc methods.

• The Ackermann function example demonstrates that our method for iden-
tifying a minimum increment, even when the result is unexpected, leads to
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successful optimization, whereas ad hoc methods, even when the result ap-
pears best in some sense, fails. This example also shows repeated calls to an
incremental function in the definition of the incremental function, which we
have not seen in any other example.

• The Fibonacci numbers example shows the handling of two base cases, and
more importantly, iterating at bigger increments than the minimum incre-
ment.

• The Tower of Hanoi example illustrates that our method can derive a linear-
time algorithm that constructs a minimum linked structure from which an
exponential-size solution can be read off.

Factorial

The factorial of a nonnegative integer n is the product of all positive integers
less than or equal to n, except that the factorial of 0 is 1. Factorial is important for
counting permutations in combinatorics and is also used extensively in probability
theory. The standard recursive definition for factorial is as follows:

def fac(n) where n>=0:
if n=0 then 1
else n * fac(n-1)

The best-known iterative program for factorial uses an additional variable, named
r below, to accumulate the result of the multiplications. Note that this iterative pro-
gram changes the order in which numbers are multiplied, which requires knowing
that multiplication is associative, that is, a*(b*c)=(a*b)*c.

def fac(n):
r = 1
while n > 0:
r = n*r
n = n-1

return r

Does the method we described derive this program? No, it derives one that uses
yet another additional variable, i, to iterate from 0 to n, and keeps the same order
of multiplying the numbers without using associativity. The derivation is almost
trivial, so we show the result directly:

def fac(n):
n1 = 0; r = 1 -- initialization covering the base case
while n1 != n: -- iteration
n1 = n1+1 -- next(n1)=n1+1
r = n1*r -- incremental version fac’(n1,r)=(n1+1)*r

return r

One might expect our derived program to be slightly slower than the best-known
version, because of the extra variable i and because the number of operations are



4.6 Example: math and puzzles 105

basically the same. Also, one might expect that both versions are significantly
faster than the original recursive program, because of the elimination of the allo-
cation and deallocation of a linear stack.

You might be a bit surprised to learn that our derived program is actually faster
than the best-known version, and much more surprised to learn that the best-
known version is not only slower than our program, but also slower than the
original recursive program. The reason? Factorials are big numbers. Changing
the order of multiplying the numbers resulted in bigger numbers being multiplied
first, and multiplying bigger numbers is more expensive than multiplying smaller
numbers! It is no surprise that our derived program is indeed faster than the re-
cursive program, because it does exactly the same multiplications as the recursion
program but without using a stack.

Ackermann function

The Ackermann function is defined below. It is the best-known example of a func-
tion that is not primitive recursive, which implies that it grows more rapidly than
any exponential, double exponential, and even any-fold iterated exponential func-
tion. It is sometimes used for benchmarking because of its extremely deep recur-
sion.

def ack(i,n) where i>=0, n>=0:
if i=0 then n+1
else if n=0 then ack(i-1,1)
else ack(i-1,ack(i,n-1))

Note that the running time of this recursive function grows even much more than
the value of the function because of vastly many repeated recursive calls. Can our
method derive an optimized version of Ackermann function? Yes, we can derive
an optimal implementation in the sense that the running time is O(ack(i, n)), that
is, linear in the value of the function; it is optimal because the only given operation
in the function is increment by 1, and our method eliminates all repeated recursive
calls.

Step Iterate considers all recursive calls to ack in the definition of ack(i,n).
Even though two of them have i-1 as one of the arguments and might prompt us
to iterate with the increment of next(i,n)=[i+1,n], we can see that the minimum
increment determined using our method should be next(i,n)=[i,n+1], because it
corresponds to the minimum decrement among arguments of all recursive calls.
As it turns out, the former would quickly lead to failure in incrementalization,
whereas the latter would lead to success. Step Iterate then forms the following
iterative optimized program, where ackExt0 and ackExt’ will be derived in Step
Incrementalize:

def ackOpt(i,n): 1st(ackExtOpt(i,n))
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def ackExtOpt(i,n):
if i=0: return [n+1] -- base case
n1 := 0; rExt := ackExt0(i,n1) -- initialization
while n1!=n: -- iteration
n1 := n1+1; rExt := ackExt’(i,n1-1,rExt) -- incremental computation

return rExt

Step Incrementalize derives ackExt, ackExt’, and ackExt0. First, we determine
appropriate values to maintain. The main goal would be an incremental version
of ack under the input increment operation next(i,n)=[i,n+1], that is, a function
ack’(i,n,r) that computes ack(i,n+1) incrementally using the previous result r of
ack(i,n). We have, by definition,

ack(i,n+1) = if i=0 then n+2 || expanded by definition,
else if n+1=0 then ack(i-1,1) || simplified n+1+1 to n+2,
else ack(i-1,ack(i,n)) || and simplified n+1-1 to n

= if i=0 then n+2 -- removed n+1=0 branch using n>=0
else ack(i-1,ack(i,n))

It has two calls to ackwhen i �=0. The call ack(i,n) is just ack on the un-incremented
input, so can be replaced with the previous result. The call ack(i-1,ack(i,n)) can
be computed incrementally starting from some ack(i-1,x) that is computed in
ack(i,n) when i �=0, with x being 1 if n=0 and being ack(i,n-1) otherwise based
on the definition of ack(i,n); the incremental computation is by calling the incre-
mental version ack’ repeatedly with the second argument ranging from (x+1)-1 to
ack(i,n)-1, that is,

ack(i-1,ack(i,n)) = let v := ack(i-1,x)
for k := x+1 to ack(i,n):
v := ack’(i-1,k-1,v)

in v

where x is

if n=0 then 1 else ack(i,n-1)

The starting value of v, being ack(i-1,1) if n=0 or ack(i-1,ack(i,n-1)) otherwise,
is the return value of ack(i,n); this leaves ack(i,n-1) under n �=0 as an additional
value to be cached for incremental computation. The recursive call ack’(i-1,k-1,v)
when k=x+1, being ack’(i-1,x,v), needs the corresponding additional value
ack(i-1,x) recursively for argument v, for both n=0 and otherwise. Therefore,
ack(i,n) is extended to return also the intermediate result ack(i,n-1) under n�=0,
and return ack(i-1,x) recursively for both n=0 and otherwise, yielding

def ackExt(i,n) where i>=0, n>=0:
if i=0 then [n+1] -- return [n+1] instead of n+1
else if n=0 then ackExt(i-1,1) -- do recursively for n=0
else let v1 := ack(i,n-1) in -- bind intermediate result

let v2 := ackExt(i-1,v1) in -- do recursively for n!=0
[1st(v2), v1, v2] -- return orig and additional values
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Then, we derive ackExt’(i,n,rExt) that computes ackExt(i,n+1) using the cached
result rExt of ackExt(i,n):

ackExt(i,n+1)
= if i=0 then [n+2] ||
else if n+1=0 then ackExt(i-1,1) || expanded by definition,
else let v1 := ack(i,n) in || simplified n+1+1 to n+2,

let v2 := ackExt(i-1,v1) in || and simplified n+1-1 to n
[1st(v2), v1, v2] ||

= if i=0 then [n+2] -- removed 2nd branch using n>=0
else -- expanded v1, compute v2 incrementally

let v2 := ackExt(i-1, if n=0 then 1 else ack(i,n-1))
for k := (if n=0 then 1 else ack(i,n-1))+1 to ack(i,n):
v2 := ackExt’(i-1,k-1,v2) -- call ackExt’ repeatedly

in [1st(v2), ack(i,n), v2]

= if i=0 then [n+2]
else -- lift test out of 2nd argument of ackExt

let v2 := if n=0 then ackExt(i-1,1) else ack(i-1,ack(i,n-1)))
for k := (if n=0 then 1 else ack(i,n-1))+1 to ack(i,n):
v2 := ackExt’(i-1,k-1,v2)

in [1st(v2), ack(i,n), v2]

and after replacing calls to ackExt and ack with retrievals from rExt, we obtain the
following, where the underlines indicate replacements:

def ackExt’(i,n,rExt) where n>1, rExt=ackExt(i,n):
if i=0 then [n+2]
else let v2 := if n=0 then rExt else 3rd(rExt)

for k := (if n=0 then 1 else 2nd(rExt))+1 to 1st(rExt):
v2 := ackExt’(i-1,k-1,v2)

in [1st(v2), 1st(rExt), v2]

Finally, we construct the result of ackExt(i,n) for the base-case condition i=0:

def ackExt0(i,n) where i=0: [n+1]

which is always expanded when used, and we construct the result of ackExt(i,n)
for the initial argument satisfying n=0:

ackExt(i,0) = if i=0 then [1] || expanded by definition
else ackExt(i-1,1) || and simplified for n=0

= if i=0 then [1]
else ackExt’(i-1,0,ackExt(i-1,0)) -- incremental comp

which, by an easy incrementalization, yields the following iterative optimized pro-
gram:

def ackExt0(i,n) where n=0:
i1 := 0; rExt := [1]
while i1!=i:
i1 := i1+1; rExt = ackExt’(i1-1,0,rExt)

return rExt
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Step Implement needs to do nothing. The final optimized program is the defi-
nitions of ackOpt and ackExtOpt from Step Iterate where ackExt’ and ackExt0 are as
defined near the end of Step Incrementalize. The time complexity is O(ack(i, n))

because there are no repeated calls. The space complexity is O(i) for the depth
of the recursive calls. Repeated recursive calls to an incremental function in the
definition of the incremental function, seen as calls to ackExt’ in the for loop in
the definition of ackExt’, is what we have not seen in any other example.

Fibonacci number

Fibonacci numbers are the sequence of numbers where each number is the sum of
the preceding two numbers with the first two numbers defined to be 1, and with
the 0-indexed number defined conventionally to be 0. The sequence is found in
many biological settings, in nature, and is used in many analysis problems, such
as financial market analysis. The standard recursive definition of the Fibonacci
function is as seen in Section 4.2, copied here:

def fib(n) where n>=0:
if n=0 then 0
else if n=1 then 1
else fib(n-1) + fib(n-2)

Step Iterate determines easily that the minimum increment is next(n)=n+1, as
discussed in Section 4.2. It then forms the following iterative optimized program,
where fibExt’(n,rExt) for n>=1 and fibExt0(n) for n=0 and n=1, both expanded here,
will be defined in Step Incrementalize:

def fibOpt(n): 1st(fibExtOpt(n))

def fibExtOpt(n):
if n=0: return [0] -- expanded fibExt0(n) for n=0 to [0]
n1 := 1; rExt := [1,0] -- expanded fibExt0(n) for n=1 to [1,0]
while n1!=n:
n1 := n1+1; rExt := let v := 1st(rExt) in || expanded

[v+2nd(rExt), v] || fibExt’(n1-1,rExt)
return rExt

Step Incrementalize derives fibExt, fibExt’, and fibExt0. It is easy to see by ex-
panding fib(n+1), below, that fib(n-1) is needed for computing fib(n+1) when n=0
is false:

fib(n+1) = if n+1=0 then 0 || expanded by definition,
else if n+1=1 then 1 || simplified n+1-1 to n, and
else fib(n)+fib(n-1) || simplified n+1-2 to n-1

= if n=0 then 1 || simplified tests and
else fib(n)+fib(n-1) || removed 1st branch using n>=0

So Step Incrementalize obtains fibExt below:
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def fibExt(n):
if n=0 then [0] -- return a singleton tuple
else if n=1 then [1,0] || return also fib(n-1)
else let v := fib(n-1) in || when n=0 is false

[v+fib(n-2), v] ||

and derives an incremental version fibExt’(n,rExt), where n>=1 and rExt=fibExt(n),
to compute fibExt(n+1), as follows:

fibExt(n+1) = if n+1=0 then [0] || expanded by definition,
else if n+1=1 then [1,0] || simplified n+1-1 to n, and
else let v := fib(n) in || simplified n+1-2 to n-1

[v+fib(n-1), v] ||

= let v := fib(n) in || removed two branches using n>=1
[v+fib(n-1), v] ||

yielding, after replacing calls to fib with retrievals, indicated with underlines,

def fibExt’(n,rExt) where n>=1, rExt=fibExt(n):
let v := 1st(rExt) in
[v+2nd(rExt)), v]

Step Incrementalize also constructs fibExt0(n) for n=1 and n=2, by definition of
fibExt, to return [0] and [0,1], respectively. Finally, because fibExt0 and fibExt’
are non-recursive, they are expanded in fibExtOpt, as shown under Step Iterate;
fibExtOpt can in turn be expanded in fibOpt, yielding

def fibOpt(n):
if n=0: return 0 -- return only the first component
n1 := 1; rExt := [1,0]
while n1!=n:
n1 := n1+1; rExt := let v := 1st(rExt) in

[v+2nd(rExt), v]
return 1st(rExt) -- return only the first component

Step Implement replaces the pair-valued variable rExt with two variables a and b,
yielding the final optimized program

def fibOpt(n):
if n=0: return 0
n1 := 1; a := 1; b :=0
while n1!=n:
n1 := n1+1; v := a; a := v+b; b := v

return a

Note that the use of variable v cannot be avoided, because the new value of a needs
the old value of b, and the new value of b needs the old value of a.

When optimization using incrementalization under a smaller increment suc-
ceeds, a bigger increment may yield better optimization. Consider the increment
next(n)=n+2 for this example. Step Iterate forms the following iterative optimized
program, where fibExp0, fibExp’, and fibExp2’ will be derived in Step Incremen-
talize:
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def fibOpt2(n): 1st(fibExtOpt2(n))

def fibExtOpt2(n):
if n=0: return [0] -- expanded fibExt0(n) for n=0 to [0]
n1 := 1; rExt := [1,0] -- expanded fibExt0(n) for n=1 to [1,0]
while n1!=n and n1!=n-1: -- extra test for one step before too
n1 := n1+2; rExt := let v := 1st(rExt)+2nd(rExt) || expanded

in [v+1st(rExt)), v] || fibExt2’
if n1=n-1: rExt := let v := 1st(rExt) in || if one more step needed:

[v+2nd(rExt), v] || expanded fibExt’
return rExt

Step Incrementalize derives fibExt, fibExt’, and fibExt0 that are the same as be-
fore, and derives fibExt2’ below that computes fibExt(n+2):

def fibExt2’(n,rExt) where n>=1, rExt=fibExt(n):
let v := 1st(rExt)+2nd(rExt) in
[v+1st(rExt)), v]

Expanding fibExt0, fibExt’, and fibExt2’ in fibExtOpt2, defined in Step Iterate,
and expanding fibExtOpt2 in turn in fibOpt2, also defined in Step Iterate, yields

def fibOpt2(n):
if n=0: return 0 -- return only the first component
n1 := 1; rExt := [1,0]
while n1!=n and n1!=n-1:
n1 := n1+2; rExt := let v := 1st(rExt)+2nd(rExt) in

[v+1st(rExt)), v]
if n1=n-1: rExt := let v := 1st(rExt) in

[v+2nd(rExt), v]
return 1st(rExt) -- return only the first component

Step Implement replaces the pair-valued variable rExt with two variables a and b,
yielding

def fibOpt2(n):
if n=0: return 0
n1 := 1; a := 1; b :=0
while n1!=n and n1!=n-1:
n1 := n1+2; b:=a+b; a:=b+a -- simplified from v:=a+b; a:=v+a; b:=v

if n1=n-1: a:=a+b -- need only a; simplified from v:=a; a:=v+b; b:=v
return a

Note that variable v was removed, saving two copy operations in each of the O(n)

iterations, and that the number of iterations is reduced by half.

Tower of Hanoi

The Tower of Hanoi problem computes the sequence of moves needed to move a
stack of n differently sized disks, one at a time, from one peg a, initially with no
larger disks on top of smaller ones, to a second peg b via a third peg c, without ever
putting a larger disk on top of a smaller one. This can be solved using a simple
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recursion that has one move operation, two recursive calls, and two concatena-
tion operations, as follows, where move(a,b) is a constructor application denoting
moving the top disk on peg a to peg b, and :: is a primitive function denoting
concatenation:

def hanoi(n,a,b,c) where n>=1:
if n=1 then move(a,b)
else hanoi(n-1,a,c,b) :: move(a,b) :: hanoi(n-1,c,b,a)

Computing this recursive function for n disks takes O(2n) time, because of re-
peated recursive calls on the same arguments. One might notice that there are at
most 6 ways of calling hanoi on n disks given 3 pegs—3 ways to choose the peg
that holds the disks initially combined with 2 ways to choose the peg that holds
the disks at the end—and decide to compute the result of all 6 of them for each n,
yielding an algorithm that takes linear time. Our method yields an algorithm that
computes the result of only 3 ways of calling hanoi for each n.

Step Iterate examines recursive calls in hanoi(n,a,b,c), which have [n-1,a,c,b]
and [n-1,c,b,a] as arguments. Either one can be the minimum decrement because
both change the same in the first argument, and switches two of the three remain-
ing arguments. Say the first one is taken. So next(n,a,b,c)=[n+1,a,c,b], with an
increment to n by 1 and a swap of the last two arguments. Step Iterate then forms
the following recursive optimized program, where hanoiExt0 and hanoiExt’ will be
derived in Step Incrementalize:

def hanoiOpt(n,a,b,c): 1st(hanoiExtOpt(n,a,b,c))

def hanoiExtOpt(n,a,b,c):
if n=1 then hanoiExt0(n,a,b,c) -- base case
else let rExt := hanoiExtOpt(n-1,a,c,b) in -- recursion

hanoiExt’(n,a,c,b,rExt) -- incremental computation

An iterative optimized program is also possible but not as straightforward to form
because the increment operation swaps the last two arguments, and the correct
initial argument depends on whether n is odd or even.

Step Incrementalize derives functions hanoiExt, hanoiExt’, and hanoiExt0. The
main goal is to compute hanoi(n+1,a,c,b) incrementally using the previous result
of hanoi(n,a,b,c). We have, by definition,

hanoi(n+1,a,c,b)
= if n+1=1 then move(a,b) || expanded by
else hanoi(n,a,b,c)::move(a,c) :: hanoi(n,b,c,a) || definition

= hanoi(n,a,b,c) :: move(a,c) :: hanoi(n,b,c,a)
-- removed 1st branch using n>=1

It has two calls to hanoi. The first call, hanoi(n,a,b,c), can simply be replaced with
the previous result. The second call, hanoi(n,b,c,a), however, is not computed
previously, so we extend hanoi(n,a,b,c) to also compute and return this auxiliary
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value. In a similar fashion, one can see that computing the extended function will
also need hanoi(n,c,a,b), so the final extended function is

def hanoiExt(n,a,b,c):
[hanoi(n,a,b,c), hanoi(n,b,c,a), hanoi(n,c,a,b)]

Incrementalizing this extended function yields the following incremental function
that computes hanoiExt(n+1,a,c,b) using the result rExt of hanoiExt(n,a,b,c):

def hanoiExt’(n,a,c,b,rExt):
[1st(rExt) :: move(a,b) :: 2nd(rExt),
3rd(rExt) :: move(b,c) :: 1st(rExt),
2nd(rExt) :: move(c,a) :: 3rd(rExt)]

Constructing the base-case result for n=1 expands hanoiExt(n,a,b,c) by definition
and then expands the three calls to hanoi in it by definition, yielding the following
hanoiExt0(n,a,b,c) for n=1:

def hanoiExt0(n,a,b,c) where n=1:
[move(a,b), move(b,c), move(c,a)]

Both hanoiExt0(n,a,b,c) and hanoiExt’(n,a,c,b,rExt) contain no function calls,
whereas computing hanoiExt(n+1,a,c,b) from scratch requires an exponential num-
ber of recursive calls. We can expand both in the definition of hanoiExtOpt, yielding

def hanoiExtOpt(n,a,b,c):
if n=1 then [move(a,b),move(b,c),move(c,a)]
else let rExt := hanoiExtOpt(n-1,a,c,b) in

[1st(rExt) :: move(a,b) :: 2nd(rExt),
3rd(rExt) :: move(b,c) :: 1st(rExt),
2nd(rExt) :: move(c,a) :: 3rd(rExt)]

Step Implement maps concatenation to pointer operations over a doubly linked
list structure, so each concatenation operation takes O(1) time. The final opti-
mized program is the definition of hanoiOpt from Step Iterate and the definition of
hanoiExtOpt at the end of Step Incrementalize. The time complexity is O(n) be-
cause hanoiExtOpt is called recursively only O(n) times. The space complexity is
O(n) for the depth of the recursive calls. That is, the resulting linear data structure
can be constructed in linear time and space. Reading off the resulting sequence of
moves takes exponential time following the pointers.

Exercise 4.16 (Fibonacci under bigger increment) For the Fibonacci number
problem, derive the incremental version fibExt2’ of fibExt under the input change
of increment by 2.

Exercise 4.17 (Iterative Tower of Hanoi*) For the Tower of Hanoi problem,
form an iterative optimized program.
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4.7 Need for data abstraction

Recursive functions provide high-level control abstraction for recursive compu-
tations over primitive values, such as numbers, or recursively constructed values,
primarily lists and trees. However, many problems are more easily described as
high-level queries over sets and maps, rather than as recursive functions over lists
and trees; if written as the latter, they can be unnecessarily hard to understand and
optimize.

For example, the graph reachability example, described in Chapter 3, cannot be
straightforwardly written using recursive functions, whereas it can be specified as
a simple while loop or fixed-point expression over sets. In fact, it is not even clear
how to represent the set of edges using lists and trees and still be efficient, or still
be clear and allow powerful optimizations.

Exercise 4.18 (Graph reachability using recursive functions*) For the graph
reachability problem, write a definition of it using recursive functions and recur-
sive data structures but not loops and sets.

Exercise 4.19 (Shortest path using aggregate operation) For the single-source
shortest path problem in Exercise 4.10, did your program use aggregate opera-
tions? If not, rewrite it using aggregate operations. If yes, rewrite it without using
aggregate operations.

Bibliographical notes

Recursive functions are the core of functional programming languages, and are
also supported in most other common programming languages. These languages
include the earliest list processing language Lisp and its dialects Common Lisp
and Scheme, typed functional languages ML and its dialects SML, CAML, and
OCaml, lazy functional languages Haskell and Miranda, and all the other lan-
guages mentioned in Chapters 2 and 3 except for earlier versions of FORTRAN,
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Transformation of recursive functions has been studied extensively since at
least the 1970s. Burstall and Darlington [39] used a set of transformation rules
and certain strategies. Many others studied more focused strategies or princi-
ples, including goal-directed transformations by Wegbreit [315], continuation-
based transformations by Wand [311], internal specialization by Scherlis [276],
redundant call elimination by Cohen [63], tupling by Pettorossi [252], promo-
tion and accumulation by Bird [30, 31], deforestation by Wadler [309], fusion
by Chin [54], partial evaluation by Jones et al. [156], grammar thinning by Web-
ber [314], and morphisms by Hu et al. [145]. Many of these are summarized in
books and surveys [83, 249, 253] and used in powerful transformation systems,
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such as CIP [38, 21, 249] and KIDS [287, 288]. The more systematic methods
among these tend to apply to more limited classes of problems.

Transforming recursion to iteration, also called recursion removal, is a well-
known subject studied extensively. Previous work includes program schematology
and other ways to relate recursion with iteration [250, 97, 310, 117, 92, 85, 162],
theorems formulated for Backus’s FP or otherwise about linear forms [15, 165,
16, 20, 127, 128], and transformations based on various rules and strategies men-
tioned in the previous paragraph, among others [14, 129, 34]. For example, it
is shown that general recursive scheme is more powerful than while loop scheme,
and a linear recursive scheme is equivalent to a while loop scheme [250]; an exten-
sive set of linear functions can be turned into iterative forms [20]; a certain class
of nonlinear functions can be transformed into linear forms [127] and then into
loops [128]. None of these are as simple and effective as iterating at a minimum
increment as discussed in this chapter. Shao et al. [283] describe transformations
for unrolling lists to recurse fewer times at larger steps.

Two well-known ways to achieve dynamic programming are memoization and
tabulation [65, 197]. Memoization uses a table that is separate from the origi-
nal program to save and reuse the results of function calls as the program exe-
cutes [223, 93, 147, 226, 161, 257, 260, 249, 163, 1, 5]. The original program
needs little or no change, and only values needed in the original execution are
computed. However, the separate table has an interpretive overhead, and no gen-
eral strategy for table management is space-efficient for all problems. Tabulation
statically determines the shapes of tables needed to store the results of possibly
needed function calls, introduces appropriate data structures for the tables, and
computes table entries in an appropriate order so that the result of a function call
is computed using available results of needed function calls [29, 63, 252, 249,
55, 57, 146, 56, 254, 58]. This overcomes shortcomings of memoization, even
though it may compute values not computed by the original program. However,
this requires a thorough understanding of the problem and a manual rewrite of the
program. Incrementalization-based optimization provides a systematic method for
this; it not only saves time asymptotically by avoiding repeated computations, but
also saves space asymptotically by allowing space to be reused after computation
on each increment.

There are various works on data structure selection in program refinement and
program synthesis for problems specified using recursive functions [249, 287, 32].
Related transformations are discussed together with general transformations. For
example, Darlington and Burstall [69] briefly discuss reusing discarded data cells,
and Liu and Stoller [195] show that a powerful method for transforming recursion
to iteration can achieve pointer reversal on low-level data structures.

Optimizing recursive functions using incrementalization was introduced by Liu
and Stoller: determining minimum increments [194, 197], transforming recursion
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to iteration [195, 204], and using both indexed and recursive data structures [196,
204] are all built on incrementalization that exploits previous results [213], inter-
mediate results [210], and auxiliary values [211]. These works also study certain
more general and powerful aspects of the method than those described in this
chapter. The method has also been extended to support the use of high-level ag-
gregate operations in recursive functions [204], which helps make the programs
clearer and the optimizations simpler.

Many problems in combinatorics and optimization can be solved straightfor-
wardly using simple recursions [262, 65]. The idea of deriving dynamic pro-
gramming algorithms using incrementalization was motivated by the examples
in Cormen, Leiserson, and Rivest [65], where they give straightforward solu-
tions expressed using recursive functions, before discussing memoization and tab-
ulation. Additional issues in solving these problems include computing closed
forms [219, 303] of recursive functions, as studied often for complexity anal-
ysis [333], discovering stronger invariants as those used by greedy or thinning
strategies in greedy algorithms [28], and obtaining the original recursive function
for a given optimization problem [27, 289].

The original recursive function for the longest common subsequence problem
is copied from the textbook by Cormen, Leiserson, and Rivest [65, p. 316]. The
one for the 0-1 knapsack problem is written in a similar way. For the 0-1 knapsack
problem, additional invariants may be employed so that linked lists may be used
instead of arrays, by keeping items in order of increasing value and decreasing
weight [7]. This does not improve the worst-case time and space complexities but
may take less actual time and space, depending on the particular input, because
of sparsity of elements in the linked lists. The recursive function for the single-
source shortest path problem in Exercise 4.10 is copied from [65, p. 553]; the
Bellman-Ford algorithm is described before that [65, p. 532–533].

The factorial and Fibonacci numbers are widely used as examples, but the issues
discussed about them in this chapter have been studied rarely [195] or not at all.
The Ackermann function is used much less, but its optimization using incremen-
talization was studied before [200], albeit yielding a slightly more complicated
program than the one in this chapter. Tower of Hanoi problem was from [6, p.
306–307] and [253]. Pettorossi and Proietti use tupling [252] to give a linear-time
program for it [253]. The resulting program consists of 9 moves and 18 concate-
nations in a recursive equation and 3 moves and 6 concatenations together in five
other non-recursive equations; it is 4 times the size of our derived programs and
has worse constant factors in both time and space.

Anil Nerode asserted that optimization using incrementalization corresponds to
integration by differentiation several years before I could understand it. He also
asserted that incrementalization could optimize the Ackermann function several
years before I was able to do it. Eventually, Alan Mycroft and Zhe Yang asked
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about the Ackermann function, which prompted me to look at it seriously to solve
it. Joshua Goldberg discovered that incrementalization of the Fibonacci function
can spare the temporary variable, after I tossed the idea of iterating at bigger incre-
ment and trying the increment of 2 for Fibonacci in a class. Olivier Danvy asked a
question about transforming recursion to iteration, which led me to find an error in
our paper [195], in the paragraph about associativity: r = b(x0); while ... return
r should be r = identity of a1; while ... return a1(r,b(x0)). The old version
happens to be correct for all the examples there because b(x0) happens to be the
identity of a1 in all of them.

What are all problems in NP, what are all problems in P, whether NP equals P,
and many other related questions have been studied extensively for decades [138].
The theory of computation studies these problems as well as primitive recursive
functions and general computable functions.



5
Rules: iterate, incrementalize, and implement

Many complex computational problems are most clearly and easily specified using
logic rules. Logic rules state that if certain hypotheses hold then certain conclu-
sions hold. These rules can be used to infer new facts from given facts. Exam-
ple applications include queries in databases, analysis of computer programs, and
reasoning about security policies. Datalog, which stands for Database logic, is an
important rule-based language for specifying how new facts can be inferred from
existing facts. Its fixed-point semantics allows the computation of the set of all
facts that can be inferred from a given set of facts. It is sufficiently powerful for
expressing many practical analysis problems.

While a Datalog program can be easily implemented using a logic programming
system, such as a Prolog system, evaluated using various evaluation methods, such
as well-established tabling methods, or rewritten using transformation methods for
more efficient evaluation, such as using the well-known magic-sets method, these
implementations are typically for fast prototyping. The running times of Datalog
programs implemented using these methods can vary dramatically depending on
the order of rules and the order of hypotheses in a rule. Even less is known about
the space usage. Developing and implementing efficient algorithms specialized for
any given set of rules and with time and space guarantees is a nontrivial, recurring
task.

This chapter describes a method for generating efficient specialized algorithms
and implementations from Datalog rules. Given any set of Datalog rules, the
method

1. transforms, or compiles, the set of rules into an efficient specialized imple-
mentation that, given any set of facts, computes exactly the set of facts that
can be inferred and does so with guaranteed worst-case time and space com-
plexities, and

117
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2. computes the guaranteed worst-case time and space complexities of the im-
plementation from the set of rules and allows easy simplification of the com-
plexity formulas based on characterizations of the set of facts.

The running time is optimal in the sense that only useful combinations of facts that
lead to all hypotheses of a rule being simultaneously true are considered, and each
such combination is considered exactly once in constant time. For space com-
plexity, the method separately analyzes the output space and the auxiliary space.
The auxiliary space may sometimes be reduced using scheduling optimizations to
eliminate some summands in the space complexity formula.

These results are formally derived using our systematic design method. Step It-
erate forms a fixed-point specification of the meaning of the rules and transforms
it into a loop that handles a single new fact in each iteration. Step Incrementalize
replaces expensive computations on sets of tuples in the loop with efficient incre-
mental operations. Step Implement designs a combination of linked and indexed
data structures for efficiently storing and accessing the values used by incremental
computation. The analysis of the complexities is based on a thorough understand-
ing of the transformation process, reflecting the time and space complexities of
the generated implementation through the rules. The complexity analysis based
on rules is easy and precise, greatly facilitating the understanding and comparison
of implementations at the rule level.

These steps extend those described for transforming set expressions in Chap-
ter 3. Step Iterate forms a fixed-point expression from rules, rather than requiring
that it be given. Step Incrementalize maintains appropriate auxiliary maps as sets
of tuples at first, to use for higher-level algorithm derivation, and as nested maps
at the end, to prepare for data structure design. Step Implement adds extensive use
of sophisticated indexed structures, because linked structures alone do not suffice.

We first describe the method together with illustration on the problem of com-
puting the transitive closure of graphs. We then discuss two additional examples:
program analysis and trust management. The first one shows decomposition of
rules with more than two hypotheses into rules with at most two hypotheses, in
order to achieve the best time complexity; the second one shows handling of exten-
sions to Datalog. Finally, we describe the need for module abstraction regardless
of whether data abstraction and control abstraction are used.

Example: transitive closure

Given a graph with a set of edges, each from a vertex to another, the transitive
closure of the graph is the set of all pairs of vertices such that there is a path
from the first vertex to the second vertex following a sequence of edges. Stated
logically, we can have two rules that capture any pair of vertices u and v such that
there is a path from u to v:

1. If there is an edge from vertex u to vertex v, then there is path from u to v.
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2. If there is an edge from u to w, and there is a path from w to v, then there is
path from u to v.

All pairs of vertices u and v such that there is a path from u to v form the transitive
closure of the graph.

With such rules, for any given set of data as input, we want to efficiently com-
pute the set of all data that can be inferred from the rules. These rules do not spec-
ify anything about how the computation should proceed, or how the data should
be represented, let alone anything about efficient incremental computation. Thus,
efficient computation requires all of Steps Iterate, Incrementalize, and Implement.
We will generate a specialized efficient program from any given set of rules. A
significant advantage of starting with rules, which are declarative in both data rep-
resentation and computation process, is that we can provide precise time and space
complexity guarantees on the generated implementations.

For the transitive closure example, our method will compile the two given rules
into an efficient implementation whose worst-case time complexity is bounded by
the number of edges times the number of vertices, whose output space is quadratic
in the number of vertices, and whose auxiliary space is linear in the number of
edges.

Exercise 5.1 (Transitive closure in other ways*) For the transitive closure prob-
lem, think of different ways to state the rules. The second rule discussed uses edge
as the first hypothesis. Can we write one that uses edge differently? How about one
that does not use edge at all? What are the advantages and disadvantages of these
different ways compared with each other?

5.1 Logic rules—data abstraction and control abstraction

We describe logic rules that are in the form of Datalog rules, which are built
using constants, variables, predicates, conjunctions, and logical implications. A
predicate over a set of arguments is equivalent to a relation over these arguments.
For example, a predicate west over two arguments Norway and Sweden, denoting that
Norway is to the west of Sweden, is equivalent to a relation west relating Norway and
Sweden.

Language

A Datalog rule is of the following form, where h is a finite natural number, each
Pi or Q is a predicate of finite natural number ai or a , respectively, of arguments,
each argument Xij or Xk is either a constant or a variable, and each variable in the
arguments of Q must also be in the arguments of some Pi .

P1 (X11 ,...,X1a1 ), ..., Ph(Xh1 ,...,Xhah ) -> Q(X1 ,...,Xa)
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If h = 0, then there is no Pi or Xij , and each Xk must be a constant, in which case
Q(X1 ,. . . ,Xa) is called a fact. From now on, we use “rule” to refer only to the case
where h ≥ 1, in which case each Pi (Xi1 ,. . . ,Xiai ) is called a hypothesis of the rule,
and Q(X1 ,. . . ,Xa) is called the conclusion of the rule.

The intuitive meaning of a rule is that, if each hypothesis Pi(Xi1, . . . , Xiai)

holds, then the conclusion Q(X1, . . . , Xa) holds. Precisely, a comma (,) separating
two hypotheses denotes conjunction, an arrow (->) denotes logical implication,
and the meaning of a rule is that, for all possible values of the variables in the rule,
the conjunction of the hypotheses implies the conclusion. In other words, each
rule is a logical implication, and all variables are universally quantified, that is,
the implication is true for all substitutions of its variables with constants, where
all occurrences of the same variable in a rule must be substituted with the same
constant.

For the transitive closure example, we use edge(u,v) to denote that there is an
edge from a vertex u to a vertex v, and we use path(u,v) to denote that there is a
path from a vertex u to a vertex v following a sequence of edges. Then, the two
rules that define path can be specified as the following Datalog rules:

edge(u,v) -> path(u,v)
edge(u,w), path(w,v) -> path(u,v)

The intuitive meaning of a set of rules and a set of facts is the least set of facts
that contains all the given facts and all the facts that can be inferred using the rules.
Precisely, given a set of rules and a set of facts, we call a rule with all its variables
substituted with constants an instance of the rule, and we say that a fact can be
inferred if it is a given fact or it is the conclusion of an instance of a rule whose
hypotheses can all be inferred. With this precise definition, the meaning of a set
of rules and a set of facts is simply the least set of all facts that can be inferred.

For the transitive closure example, given any set of facts of the edge relation,
the meaning of the two rules and the given facts is the least set containing all facts
of the edge relation and all facts of the path relation that can be inferred. The set
of all pairs in the resulting path relation is the transitive closure of the given edge
relation.

Note that Datalog rules operate over relations, that is, sets of tuples, and may
involve recursion, that is, infer facts of a relation using facts of the same relation.
For the transitive closure example, the two rules are over sets of pairs, and the
second rule uses recursion. Such logic rules provide both data abstraction and
control abstraction, because sets provide data abstraction, and recursion provides
control abstraction.

Reduction to rules in simplified form

Even though a Datalog rule looks extremely simple, it is nontrivial for efficient
computations to take care of the restrictions imposed by multiple occurrences of
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the same variable, both in the same hypothesis and among different hypotheses
and the conclusion. We will give a formal derivation of the algorithms and com-
plexities for a slightly simplified form of rules. Other rules can be reduced easily
to the simplified form, as discussed in the following, or be handled with a slight
extension to the derivation, as discussed at the end of Section 5.5; we will see that
there are trade-offs between these two alternatives.

The simplified form consists of only rules with one or two hypotheses and where
equal cards and wild cards, defined next, may occur only in rules with one hypoth-
esis.

• A variable that occurs multiple times in a hypothesis is called an equal card;
it forces a fact that matches the hypothesis to have the same value in those
argument positions.

• A variable that occurs only once in a rule, in a hypothesis, is called a wild
card; it can take on any value, and its name does not affect the meaning of
the rule.

For ease of exposition, we write simplified rules, and the given facts, in the forms
below, where arguments of relations appear to be grouped and possibly reordered.
We will see through the derivation that grouping and reordering of arguments do
not affect the results.

form 2: P1(X1s,Ys,C1s), P2(X2s,Ys,C2s) -> Q2(X1s,X2s,Y’s,C3s)

form 1: P(Zs,As) -> Q1(Z’s,Bs)

form 0: Q(Cs)

Each of X1s, X2s, Ys, Y’s, Zs, and Z’s abbreviates a group of variables. Each of C1s,
C2s, C3s, As, Bs, and Cs abbreviates a group of constants. Variables in Y’s and Z’s are
subsets of variables in Ys and Zs, respectively. In form 2, variables in Ys are exactly
those shared between the two hypotheses. Each variable or constant may occur
multiple times in a group, except for X1s, X2s, and Ys in the hypotheses in form 2;
the exception ensures that there is no equal card in rules with two hypotheses.
There is no wild card in rules with two hypotheses, because each variable occurs
in both hypotheses or in a hypothesis and the conclusion.

Note that different relation names in these forms may refer to the same rela-
tion. We use different names for different occurrences of relations so that, in the
description that follows, we can tell which occurrence is from where. For similar
reasons, we use different names for different groups of constants and variables.

For the transitive closure example, the edge facts are of form 0, and there is one
rule of form 1 and one rule of form 2, both with no constants. It is easy to see how
the predicates and variables in the rules are represented using the two forms. For
example, P and P1 represent predicate edge, and Ys represents variable w.

For any rule with more than two hypotheses, we can transform it into rules
with two hypotheses. The transformation simply introduces auxiliary relations
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with necessary arguments to hold the results of combining two hypotheses at a
time. Precisely, for each rule with more than two hypotheses, we apply the fol-
lowing transformations repeatedly until only two hypotheses are left:

1. Replace any two hypotheses, say Hi and Hj , with a new hypothesis, H , where
H is a fresh relation applied to the set of variables in Hi and Hj that are also
in other hypotheses or the conclusion of this rule, that is, variables that are
only in Hi and Hj are not in H.

2. Add a new rule Hi, Hj -> H .

For equal cards and wild cards that occur in any rule with more than one hy-
pothesis, we can eliminate them by simple transformations. If a hypothesis con-
tains equal cards, we introduce an auxiliary relation that has only the variable
arguments of the hypothesis and contains only one occurrence of each equal card.
Precisely, for each hypothesis of a rule that contains equal cards, we do the fol-
lowing:

1. Replace the hypothesis, say Hi, with a new hypothesis, H , where H is a
fresh relation applied to the set of variables in Hi, that is, H does not contain
multiple occurrences of any variable.

2. Add a new rule Hi -> H. So equal cards occur only in rules with one hypoth-
esis.

Similarly, if a hypothesis contains wild cards, we introduce an auxiliary relation
that has only the variable arguments of the hypothesis that are not wild cards.
Precisely, we do the same two transformations as for equal cards, except that vari-
ables in H are now variables in Hi that are not wild cards. Note that we must
remove equal cards first and wild cards second, because removing equal cards
may introduce wild cards.

We do not give examples here, because these transformations are quite straight-
forward, especially for handling equal cards and wild cards. The pointer analysis
problem in Section 5.6 shows the transformation of rules with more than two hy-
potheses into rules with two hypotheses.

Cost model

For time complexity, we count the number of rule firings and consider the time
needed for each firing, where a firing of a rule refers to a use of the rule where a
combination of facts makes all the hypotheses of an instance of the rule true and
the corresponding conclusion is inferred. For space complexity, we count the sizes
of all linked lists and arrays used for storing the facts of predicates and the entries
of auxiliary maps. We consider the total size of the rules as a constant, which
includes the number of rules, the maximum number of hypotheses in a rule, and
the maximum number of arguments of a predicate; these numbers are generally
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very small compared with the number of facts, but could be taken into account
easily if needed.

Exercise 5.2 (Transitive closure using different rules) For the transitive clo-
sure problem, write Datalog rules for your different ways of stating the rules for
Exercise 5.1.

Exercise 5.3 (Graph reachability using rules) Consider the graph reachability
problem discussed in Chapter 3: Given a graph with a set e of edges and a set s of
source vertices, we want to find the set r of vertices reachable from the vertices in
s following the edges in e. Represent the sets e and s using predicates, and write
Datalog rules for computing r.

Exercise 5.4 (Meaning of graph reachability rules) For the rules for the graph
reachability problem in the previous exercise, describe the meaning of the rules,
and describe what the set of reachable vertices is.

5.2 Iterate: transform to fixed points

All rules of the same form are processed in the same way, so we describe the
compilation method for only one rule of form 1 and one rule of form 2.

We represent relations as sets of tuples. For relation arguments that are grouped
in a simplified form of rules, we use the same grouping in the tuples and indicate
this by omitting the commas between normal tuple components. Specifically, we
represent a fact of the form Q(Cs) as [Q Cs], which abbreviates a tuple whose first
component is a constant Q and whose other components are the constants in Cs.
We represent a hypothesis of the form P(Zs,As) as [P Zs As], where P and the
components in As are constants and those in Zs are variables. We represent other
forms of hypotheses and conclusions in a similar fashion.

We capture rules and facts as set expressions. Let expression e0 capture the set
of all given facts from givenFacts.

e0 = {[Q Cs] : Q(Cs) in givenFacts}

For the rule of form 1, let expression e1(R) capture, for any given set of facts R,
the set of facts Q1(Z’s,Bs) such that P(Zs,As) is in R, that is, e1(R) is the set of facts
that can be inferred from R using the rule of form 1 once.

e1(R) = {[Q1 Z’s Bs] : [P Zs As] in R}

For the rule of form 2, let expression e2(R) capture, for any given set of facts R,
the set of facts Q2(X1s,X2s,Y’s,C3s) such that P1(X1s,Ys,C1s) and P2(X2s,Ys,C2s)
are in R, that is, e2(R) is the set of facts that can be inferred from R using the rule
of form 2 once.
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e2(R) = {[Q2 X1s X2s Y’s C3s] : [P1 X1s Ys C1s] in R and
[P2 X2s Ys C2s] in R}

The meaning of the given set of rules and facts naturally forms a least fixed
point, specified by the fixed-point expression

min R: e0 subset R, R + e1(R) + e2(R) = R

The fixed-point expression above is equivalent to the fixed-point expression be-
low:

min R: e0 + R + e1(R) + e2(R) = R

Note that we allow sets to contain elements of different types, that is, facts of
different relations. This allows simpler and clearer algorithm derivation at a high
level in Step Incrementalize before data structure design in Step Implement.

The least fixed-point expression is then transformed into the following while
loop such that, when the loop terminates, R is the desired result.

R := {}
while exists x in e0 + e1(R) + e2(R) - R:
R add x

Note that the first fixed-point expression can be transformed into a similar loop
except that R is initialized to e0, and e0 is removed from the condition of the loop;
we do not use that loop, because it would yield much more complicated initializa-
tion and a very slightly simplified loop body, similar to what we have seen in the
graph reachability example in Chapter 3.

For the transitive closure example, we obtain the fixed-point specification and
while loop as given above where

e0 = {[edge,u,v] : edge(u,v) in givenFacts}
e1(R) = {[path,u,v] : [edge,u,v] in R}
e2(R) = {[path,u,v] : [edge,u,w] in R and [path,w,v] in R}

where edge and path are constants.

Exercise 5.5 (Least fixed point for different transitive closure rules) For the
different transitive closure rules you wrote for Exercise 5.2, give a least fixed-point
specification and a while loop transformed from it.

Exercise 5.6 (Least fixed point for graph reachability rules) For the graph
reachability problem you specified using rules for Exercise 5.3, give a least fixed-
point specification and a while loop transformed from it.

5.3 Incrementalize: exploit high-level auxiliary maps

We transform the while loop obtained from Step Iterate to compute expensive
set expressions incrementally in each iteration. That is, we hold the values of
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expensive expressions in variables, initialize the values of these variables for the
initial value of R before entering the loop, use the values of these variables where
the values of the corresponding expressions are needed, and update the values of
these variables incrementally as the value of R is updated. This eliminates repeated
recomputations of expensive expressions in the loop body.

Determining expensive expressions and auxiliary maps

Set comprehension and set union and difference are expensive because they re-
quire iterating through one or more sets. Thus, the expensive expressions in the
while loop from Step Iterate are e0, e1(R), e2(R), and e0 + e1(R) + e2(R) - R. We use
fresh variables E0, E1, E2, and W to hold their respective values and maintain the
following invariants:

E0 = e0 = {[Q Cs] : Q(Cs) in givenFacts}
E1 = e1(R) = {[Q1 Z’s Bs] : [P Zs As] in R}
E2 = e2(R) = {[Q2 X1s X2s Y’s C3s] : [P1 X1s Ys C1s] in R and

[P2 X2s Ys C2s] in R}
W = e0 + e1(R) + e2(R) - R = E0 + E1 + E2 - R

Expression e0 does not depend on R. So E0 can simply be initialized to e0, and
it does not need to be updated when R is updated in the loop body.

Expression e1(R) depends on R but is simple. It is {} when R is {}, so E1 can
be initialized to {} with the initialization R := {}. E1 can also be updated easily to-
gether with the update R add x: if x is of the form [P Zs As], then the corresponding
[Q1 Z’s Bs] is added to E1 if it is not already in E1, otherwise nothing needs to be
done.

Expression e2(R) is formed by joining elements from two sets, so efficient in-
cremental computation requires maintaining auxiliary maps. To update E2 incre-
mentally with the update R add x, if x is of the form [P1 X1s Ys C1s], then we
consider all matching tuples [P2 X2s Ys C2s] in R and add the corresponding tuple
[Q2 X1s X2s Y’s C3s] to E2. To form the tuples to add, we need to efficiently find
the appropriate values of X2s, so we maintain an auxiliary map that maps values
of the variables in Ys to values of the variables in X2s for all [P2 X2s Ys C2s] in R.
We store this map in variable P2YsX2s, indicating that it is built from P2 and maps
variables in Ys to variables in X2s:

P2YsX2s = {[Ys X2s] : [P2 X2s Ys C2s] in R}

P2YsX2s may be omitted if arguments of the hypothesis P2(X2s,Ys,C2s) start with
variables in Ys, followed by variables in X2s, and possibly followed by constants,
because in this case, facts of P2 that are in R can be used in place of P2YsX2s to find
the matching X2s. Having no shared variables, that is, Ys being empty, and having
all constant arguments at the end is a trivial case of this.
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Symmetrically, if x is a tuple of P2, we need to consider each matching tuple
of P1 and add the corresponding tuple of Q2 to E2. To efficiently form the tuples to
add, we maintain

P1YsX1s = {[Ys X1s] : [P1 X1s Ys C1s] in R}

We call the first set of arguments in an auxiliary map the anchor, and the second
set of arguments the non-anchor. Being able to directly find only the matching
tuples allows us to consider only combinations of facts that make both hypotheses
simultaneously true and to consider each combination only once.

For the transitive closure example, E0, E1, E2, and W are defined straightforwardly.
We also maintain the auxiliary map

edgewu = {[w,u] : [edge,u,w] in R}

which is an inverse map of edge. Auxiliary map pathwv is not needed, because facts
of path that are in R can be used instead.

Maintaining invariants incrementally

Variables holding the values of expensive subexpressions and auxiliary maps are
initialized together with the assignment R := {} and updated incrementally to-
gether with the assignment R add x in each iteration.

By definitions of E0, E1, E2, W, and auxiliary maps P2YsX2s and P1YsX1s, when R
is initialized to {}, we can initialize these variables as follows:

E0 := {[Q Cs]: Q(Cs) in givenFacts} -- given facts
E1 := {} -- inferred from R using rule 1
E2 := {} -- inferred from R using rule 2
W := {[Q Cs]: Q(Cs) in givenFacts} -- work-set
P2YsX2s := {} -- aux map for rule 2 hypothesis 2
P1YsX1s := {} -- aux map for rule 2 hypothesis 1

and when x is added to R in the loop body, we can update these variables as follows:

if x of [P Zs As]: -- match rule 1 hypo
E1 add [Q1 Z’s Bs] || update E1,
if [Q1 Z’s Bs] not in R: W add [Q1 Z’s Bs] || update W

if x of [P1 X1s Ys C1s]: -- match rule 2 hypo 1
E2 +:= {[Q2 X1s X2s Y’s C3s]: X2s in P2YsX2s{Ys}} || update E2,
W +:= {[Q2 X1s X2s Y’s C3s]: X2s in P2YsX2s{Ys} || update W,

| [Q2 X1s X2s Y’s C3s] not in R} ||
P1YsX1s add [Ys X1s] || update aux map

if x of [P2 X2s Ys C2s]: -- match rule 2 hypo 2
E2 +:= {[Q2 X1s X2s Y’s C3s]: X1s in P1YsX1s{Ys}} || update E2,
W +:= {[Q2 X1s X2s Y’s C3s]: X1s in P1YsX1s{Ys} || update W,

| [Q2 X1s X2s Y’s C3s] not in R} ||
P2YsX2s add [Ys X2s] || update aux map

W del x -- update W

Note that P2YsX2s{Ys} denotes the set of X2s such that [Ys X2s] is in P2YsX2s, and
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P2YsX1s{Ys} is similar; they are examples of the image operation defined in Sec-
tion 3.1. A command of the form if v of tpat: cmd matches the value of variable
v against tuple pattern tpat and, if the match succeeds, binds the free variables in
tpat using the match and executes command cmd .

Adding these initializations and incremental updates and using W in place of
e0 + e1(R) + e2(R) - R in the while loop from Step Iterate, we obtain the following
incrementalized loop. It is easy to see that W serves as the work-set, that is, the set
of facts to be worked on.

... -- initialize as shown above
R := {}
while exists x in W:
... -- update as shown above
R add x

Eliminating dead code

To compute the value of R, only the values of W, P2YsX2s, and P1YsX1s are needed. So
computations for variables E0, E1, and E2 are dead and can be eliminated. Eliminat-
ing them from the incrementalized loop above, we obtain the following algorithm:

W := {[Q Cs] : Q(Cs) in givenFacts}
P2YsX2s := {}
P1YsX1s := {}
R := {}
while exists x in W:
if x of [P Zs As]:
if [Q1 Z’s Bs] not in R: W add [Q1 Z’s Bs]

if x of [P1 X1s Ys C1s]:
W +:= {[Q2 X1s X2s Y’s C3s]: X2s in P2YsX2s{Ys}

| [Q2 X1s X2s Y’s C3s] not in R}
P1YsX1s add [Ys X1s]

if x of [P2 X2s Ys C2s]:
W +:= {[Q2 X1s X2s Y’s C3s]: X1s in P1YsX1s{Ys}

| [Q2 X1s X2s Y’s C3s] not in R}
P2YsX2s add [Ys X2s]

W del x
R add x

Cleaning up

Finally, the code is cleaned up to contain only uniform element-level operations to
prepare for data structure design in Step Implement. We first decompose R and W,
because the different sets obtained will need different data structures. Specifically,
we decompose R into Ri’s, where each Ri is for a single relation that occurs in
the rules. Similarly, we decompose W into Wi’s. For a relation Qi that occurs in the
conclusion of a rule, we also write RQi and WQi in addition to Ri and Wi, respectively.
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We also eliminate relation names from the first component of tuples, and transform
the while clause and pattern-matching clauses to iterate over Wi’s.

For the transitive closure example, after representing R as Redge and Rpath and
representing W as Wedge and Wpath, we obtain the following algorithm. Note that the
first two cases in the general form of the loop body, for hypotheses of the forms
[P Zs As] and [P1 X1s Ys C1s], are merged in this example because both rules for
this example have a hypothesis about edge. Also, Rpath—facts of path that are in
R—is used in place of an auxiliary map pathwv.

Wedge := {[u,v] : edge(u,v) in givenFacts} || W split into
Wpath := {} || Wedge and Wpath
edgewu := {} -- inverse map for edge
Redge := {} || R split into
Rpath := {} || Redge and Rpath
while Wedge!={} or Wpath!={}:
while exists [u,w] in Wedge: -- match rule 1, rule 2 hypo 1
if [u,w] not in Rpath: Wpath add [u,w] -- update W for rule 1
Wpath +:= {[u,v]: v in Rpath{w} || update W for rule 2, and

| [u,v] not in Rpath} || use Rpath as aux map
edgewu add [w,u] -- update inverse map
Wedge del [u,w]
Redge add [u,w]

while exists [w,v] in Wpath: -- match rule 2 hypo 2
Wpath +:= {[u,v]: u in edgewu{w} || update W for rule 2, and

| [u,v] not in Rpath} || use inverse map
Wpath del [w,v]
Rpath add [w,v]

Then, we do the following three sets of transformations.

1. Transform set-level operations (unions here) into loops that use element-
level operations. Specifically, replace commands of the form S +:= {exp: x

in sexp | bexp} with for x in sexp: if bexp: S add exp. Additionally, re-
place enumeration of facts Q(Cs) from givenFacts with reading of facts Q(Cs)
from input one at time, denoted while read Q(Cs).

2. Replace tuples and tuple operations with maps and map operations. Specif-
ically, replace tuples of more than two components with tail nested tuples
of two components, for example, [x,y,z] becomes [x,[y,z]]. Then, replace
while exists [x,y] in Mwith while exists x in dom(M):while exists y in M{x}
and replace for loops similarly. Finally, replace M!={}with dom(M)!={}; replace
[x,y] not in M with x not in dom(M) or y not in M{x}, where or uses short-
circuit semantics, that is, the second operand is evaluated only if the first
evaluates to true; replace M add [x,y] with if x not in dom(M): M{x} := {}
followed by M{x} add y; and replace M del [x,y] with M{x} del y followed by
if M{x}={}: dom(M) del x.

3. Make all element-level updates easy by testing membership first. Specifi-
cally, replace S add x with if x not in S: S add x, and replace S del x with
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if x in S: S del x. There are four exceptions, corresponding to the follow-
ing optimizations: (1) initial addition to Wi from given facts does not need the
additional test if the given facts contains no duplicates; (2) removal from Wi

does not need the additional test, because the removed element is retrieved
from Wi; (3) addition to Ri does not need the additional test, because elements
are moved from Wi to Ri one at a time and each element is put into Wi, and thus
Ri, only once; and (4) addition to PiYsXis does not need the additional test if
the corresponding hypothesis Pi(Xis,Ys,Cis) has no constant arguments, be-
cause the element to add corresponds to an element in some Wj and each
element is put into Wj, and thus the corresponding element is put into PiYsXis,
only once.

For the transitive closure example, after applying the three sets of transforma-
tions, we obtain the following algorithm. The comments show the corresponding
code in the preceding algorithm.

Wedge := {} || Wedge :=...
while read edge(u,v): ||
if u not in dom(Wedge): Wedge{u} := {} ||
Wedge{u} add v || if input has no duplicates

Wpath := {}
edgewu := {}
Redge := {}
Rpath := {}
while dom(Wedge)!={} or dom(Wpath)!={}: -- while Wedge != {} or ...
while exists u in dom(Wedge): || while exists [u,w] in Wedge
while exists w in Wedge{u}: ||
if u not in dom(Rpath) or w not in Rpath{u}:--if [u,w] not in Rpath
if u not in dom(Wpath): Wpath{u} := {} || Wpath add [u,w]
if w not in Wpath{u}: Wpath{u} add w ||

for v in Rpath{w}: || Wpath +:=...
if u not in dom(Rpath) or v not in Rpath{u}:||
if u not in dom(Wpath): Wpath{u} := {} ||
if v not in Wpath{u}: Wpath{u} add v ||

if w not in dom(edgewu): edgewu{w} := {} || edgewu add [w,u]
edgewu{w} add u ||
Wedge{u} del w || Wedge del [u,w]
if Wedge{u} = {}: dom(Wedge) del u ||
if u not in dom(Redge): Redge{u} := {} || Redge add [u,w]
Redge{u} add w ||

while exists w in dom(Wpath): || while exists [w,v] in Wpath
while exists v in Wpath{w}: ||
for u in edgewu{w}: || Wpath +:=...
if u not in dom(Rpath) or v not in Rpath{u}:||
if u not in dom(Wpath): Wpath{u} := {} ||
if v not in Wpath{u}: Wpath{u} add v ||

Wpath{w} del v || Wpath del [w,v]
if Wpath{w} = {}: dom(Wpath) del w ||
if w not in dom(Rpath): Rpath{w} := {} || Rpath add [w,v]
Rpath{w} add v ||
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Exercise 5.7 (Incrementalizing different transitive closure rules) For the dif-
ferent transitive closure rules you transformed into a least fixed-point specification
for Exercise 5.5, derive an algorithm for incrementally computing the fixed point.

Exercise 5.8 (Incrementalizing graph reachability rules) For the graph reach-
ability problem you transformed into a least fixed-point specification for Exer-
cise 5.6, derive an algorithm for incrementally computing the fixed point.

5.4 Implement: design linked and indexed data structures

Data structures are designed based on how sets and set elements are accessed. We
design sophisticated linked structures, whenever possible, so that each element-
level operation can be performed in worst-case constant time and with at most a
small constant factor of space overhead, as done in Chapter 3. However, to com-
pile Datalog rules to achieve the best worst-case time complexity, indexed struc-
tures, that is, arrays, must also be exploited extensively, to allow each operation
to be performed in worst-case constant time, although with possibly larger space
overhead.

Precisely, we describe how to guarantee that each element-level operation from
Step Incrementalize takes worst-case O(1) time, by using a combination of records,
arrays, and linked lists. The operations are of the following kinds:

• set initialization (S := {}) and emptiness test (S={}),

• element addition (S add x) and deletion (S del x),

• element retrieval (in while exists x in S and for x in S),

• domain operation (dom(M)) and image operation (M{x}), and

• membership test (x in S and x not in S).

As in Chapter 3, we use associative access to refer to membership test (x in S and
x not in S) and image operation set (M{x}). Such an operation requires the ability
to locate an element (x) in a set (S or dom(M)).

Need for indexed data structures

We repeat the motivation and description of based representations presented in
Chapter 3 before describing the need for indexed data structures.

Consider using a singly linked list for each set, including the domain set and
image sets of each map, and let each element in a domain set linked list contain a
pointer to the element’s image set linked list. In other words, represent a set as a
linked list, and represent a map as a linked list of linked lists. Then, we have the
following observation:

If associative access can be done in worst-case constant time, so can all
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other element-level operations. To see this, note that initialization and
emptiness test are obvious; adding or deleting an element to or from a
set can be done in constant time after doing an associative access of the
element in the set; retrieving an element from a set only needs to locate
any element or any next element in the set; and a domain operation simply
returns a pointer to the set.

An associative access would take linear time if a linked list is naively traversed
to locate an element. A classical solution to this problem is to use hash tables in-
stead of linked lists, but this gives average-case, not worst-case, constant time for
each operation, and it has the overhead of hash-related computations for each op-
eration. Another solution is to use arrays, but this gives worst-case constant-time
operations only when the sets do not change dynamically, and it may use asymp-
totically more space than necessary and may have bad memory performance when
the arrays are large.

Based representations can be used to design linked structures that support asso-
ciative access in worst-case constant time with little space overhead for a general
class of set-based programs. The basic observation is that an access, x in S, in a
program, is not isolated—the element x must be retrieved from some set W before
the access, as in

...

... -- retrieve x from W

...

... -- access x in S

...

That is, we want to locate x in S after it has been located in W. The idea is to use a
set B, called a base, to store values for both W and S, so that a retrieval of a value
from W also locates this value in S.

• Base B is a set of records (this set is only conceptual), with a K field storing
the key (i.e., value).

• Set S is represented using an S field of B: records of B whose keys are in S are
connected by a linked list whose links are stored in the S field; records of B
whose keys are not in S store a special value, null, indicating undefinedness
in the S field. If set S is never retrieved from, then the S field can be a bit
indicating whether the key is in S.

• Set W is represented as a separate linked list of pointers to records of B whose
keys are in W.

Thus, an element of S is represented as a field in the record, and S is said to be
strongly based on B; an element of W is represented as a pointer to the record, and
W is said to be weakly based on B. This representation allows an arbitrary number
of weakly based sets, but only a constant number of strongly based sets, because
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there can be any number of pointers to a record, but only a constant number of
fields in a record. Essentially, base B provides a kind of indexing to elements of S
starting from elements of W.

Need for indexed data structures arise when a non-constant number of sets must
be strongly based for constant-time associative access. This is particularly the
case here for compiling rules. Specifically, in the resulting algorithm from Step
Incrementalize, there are three kinds of associative access, in the domain, that is,
the set of possible values, of each component of the elements of the following
three kinds of sets, respectively:

1. Result sets RQi’s and work-sets WQi’s for relations Qi’s that occur in the con-
clusions of rules, by tests of whether a fact of Qi to be added to WQi is already
in RQi or WQi.

2. Anchors of auxiliary maps PiYsXis’s, by image operations PiYsXis{Ys}.

3. Auxiliary maps PiYsXis’s, by tests of whether a tuple [Ys Xis] to be added to
PiYsXis is already in it.

Because each value accessed in the domain of a non-last component yields an
image set for the domain of the next component whose values need to be accessed
efficiently again, and there are a non-constant number of values in the domain of a
component, these non-constant number of image sets cannot all be strongly based
directly on the set of possible domain values. Therefore, based representations do
not apply. Nevertheless, we may extend them to use arrays for all the non-constant
numbers of image sets, as described next. This still guarantees worst-case constant
running time for each operation, unlike if hashing is used.

Data structures

The data structures need to support the three kinds of associative access described
and the following two kinds of element retrieval, in the domain of each component
of the elements of the following two kinds of sets, respectively:

1. Work-sets Wi’s, by the while loops in the resulting algorithm from Step Incre-
mentalize.

2. Non-anchors of auxiliary maps PiYsXis’s, by the for loops in the resulting
algorithm from Step Incrementalize that add elements to the work-sets Wi’s.

We describe a uniform method for representing all these sets and maps, using an
array for each non-constant number of sets that have associative access, a linked
list for each set that is traversed by loops, and both an array and a linked list when
both kinds of operations are needed.

Consider all domains from which arguments of relations take values. For each
domain D, we map the values in D one-to-one to the integers from 1 to #D, and
use these integers to refer to the values in D. Recall that Qi’s denote relations that
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occur in the conclusions of rules. We represent RQi’s, WQi’s and other Wi’s, and
PiYsXis’s, respectively, as follows.

• Each RQi of, say, a components is represented using an a-level nested array
structure. The first level is an array indexed by values in the domain of the
first component of RQi; the k-th element of the array is null if there is no tuple
of RQi whose first component has value k, and otherwise is true if a=1, and
otherwise is recursively an (a-1)-level nested array structure for the remaining
components of tuples of RQi whose first component has value k.

• Each WQi is represented in the same way‘ as RQi with two additions. First, for
each array, we add a linked list linking indices of non-null elements of the
array. Second, to each linked list, we add a tail pointer, that is, a pointer to the
last element, to form a queue. We combine the array, the head of the linked
list, and the tail pointer in a record. Each other Wi is represented simply as a
nested linked-list structure (without the underlying arrays or the tail pointers),
one level for each component of Wi, linking the elements (which correspond
to indices of the elements in the array) directly.

• Each PiYsXis for which associative access of the third kind is needed uses a
nested array structure as RQi and WQi do and additionally linked lists (without
the tail pointers) for each component of the non-anchor as WQi does. Each
other PiYsXis uses a nested array structure only for the anchor, where ele-
ments of arrays for the last component of the anchor are each a nested linked-
list structure (without the underlying arrays or the tail pointers) for the non-
anchor. Finally, if an Ri is used in place of an PiYsXis, the corresponding data
structure must be imposed on Ri.

Note that we did not discuss representations for relations Ri’s that do not occur
in the conclusion of any rule and are not used in place of any auxiliary map.
These sets contain only given facts, not newly inferred facts. They are not used
in any way by our derived algorithms, except that their elements are simply taken
from the given facts via the Wi’s. Elements of RQi’s and other Ri’s could be linked
together as we do for WQi’s and other Wi’s if these result sets need to be traversed
in subsequent computations.

A small natural improvement is to avoid using completely separate data struc-
tures for the different kinds of tuples in RQi’s, WQi’s, and PiYsXis’s. For all kinds of
tuples whose first components are from the same domain, we use a single 1st-level
array of records, as a base, for the domain, and use a field for each kind of tuples
that shares the 1st-level array. This does not change the asymptotic complexities
but allows the use of a single indexing operator to locate the first component of
multiple tuples that are always accessed next to each other, for example, RQi and
WQi in each of the three branches in the resulting algorithm from Step Incremental-
ize, and P2YsX2s and P1YsX1s in each of the two branches for the rule of form 2. This
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also allows all the data structures to fall back completely to based representations
when there is no associative access into a non-constant number of sets.

For the transitive closure example, we use integers 1 to V to refer to the vertices.
A base for the domain of all vertices is used, because both arguments of both edge
and path are from this same domain. The resulting data structure is explained
below and is depicted for a small graph in Figure 5.1.
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Figure 5.1 Data structure for the transitive closure algorithm. To reduce clutter, tail pointers
for Wpath and queues in the WpathQueue field are not shown. In the graph, the edges drawn
with solid lines are already processed, and the edges drawn with dashed lines are not yet
processed.

Elements of the base are stored in an array indexed by the vertices 1 to V , for
efficient access of the first component of Rpath, Wpath, and edgewu. Each element u
of the base array is a record of six fields.
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• An RpathArray field of u is for Rpath; it is null if no element of Rpath starts with
u, and otherwise is an array for the second component of Rpath, indexed by
the vertices and whose element at v is true if [u,v] is an element of Rpath and
null otherwise. An RpathList field of u is a linked list of indices of non-null
elements of the array in RpathArray.

• A similar WpathArray field of u is for Wpath. A linked list Wpath with a tail
pointer is used to link indices of the base array elements whose WpathArray
field is not null. A WpathQueue field of u is a linked list with a tail pointer
linking indices of non-null elements of the array in WpathArray.

• A linked list Wedge with a tail pointer is used to link indices of vertices in the
first component of Wedge. A WedgeList field of u is a linked list of indices of
successor vertices of u.

• An edgewuList field of u is used for the inverse map edgewu; it is a linked list
of indices of predecessor vertices of u.

Time and space trade-offs

When elements in a set are sparse over a domain, array representations may re-
sult in non-optimal use of space, but initialization of such arrays does not affect
the time complexity, because an array entry can be initialized the first time it is
accessed. To do this, one can maintain a pointer in each initialized entry to a back
pointer on a memory stack; each time an entry is accessed, one can verify that
the contents are not random by ensuring that the pointer in that entry points to the
active region on the memory stack and that the back pointer points to the entry.

When a set over a domain is sparse, we could use linked lists instead of arrays
for accessing the set elements. This makes the space usage for this domain optimal
but incurs an extra factor of the length of the lists for time complexity. When
worst-case time is not a concern, one could also use hash tables in place of arrays
or linked lists, yielding another set of trade-offs involving also the overheads of
hashing.

These trade-offs can be explored based on the sparsity of domain values in any
specific applications. When space is not a concern, arrays are the most efficient.
When space is a concern, but values are truly sparse, linked lists are best. Other-
wise, when an overhead in either time or space or both is necessary, hash tables
provide a good compromise.

Exercise 5.9 (Data structures for different transitive closure rules) For the
different transitive closure rules that you transformed into an algorithm for incre-
mental computation for Exercise 5.7, derive data structures for efficient access of
facts.
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Exercise 5.10 (Data structures for graph reachability rules) For the graph
reachability problem that you transformed into an algorithm for incremental com-
putation for Exercise 5.8, derive data structures for efficient access of facts.

5.5 Time and space complexity guarantees

We describe how to compute time and space complexities precisely from the rules,
and express the complexities in terms of characterizations of the facts. The idea
is to analyze precisely the number of facts actually used and produced, avoiding
crude approximations that use only sizes of individual argument domains.

Size parameters and basic constraints

We use P.i to denote the set of values of the i-th argument of relation P, that is, P.i
is the projection of P on its i-th argument. We use P.I, where I = {i1, i2, . . . , ik},
to denote the set of tuples of values for the i1-th, i2-th, . . . , and ik-th arguments of
P, that is, P.I is the projection of P on its i1-th, i2-th, . . . , and ik-th arguments.

The analysis uses the following size parameters to characterize the set of given
facts, called relation size, domain size, argument size, and relative argument size,
respectively:

• #P: the number of facts that actually hold for relation P.

• #D(P.i): the size of the domain from which elements of P.i can take values.

• #P.i: the number of values actually in P.i.

#P.I: the number of tuples of values actually in P.I. For I = ∅, we take
#P.I = 1.

• #P.i/j: the maximum number of values that the i-th argument of P actually
takes for each value that the j-th argument of P takes, where i �= j.

#P.I/J : the maximum number of tuples of values that arguments of P with
indices in I actually take for each tuple of values that the arguments with
indices in J take, where I ∩J = ∅. For I = ∅, we take #P.I/J = 1. For J = ∅,
we take #P.I/J = #P.I.

If an argument or a tuple of arguments with indices in J can take only a
particular constant value or tuple of values, we specify that with an equal
sign in between the argument(s) and value(s).

In the transitive closure example, #edge is the number of pairs in relation edge,
that is, the number of edges in the graph; #D(edge.1) is the number of vertices;
#edge.1 is the number of vertices that are sources of edges; #edge.1/2 is the max-
imum number of predecessors of a vertex, that is, the maximum in-degree of ver-
tices; and #edge.1/2 = c is the number of predecessors of a particular vertex c.
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It is easy to see that the following basic constraints hold:

#P=#P.{1, . . . , a} for relation P of a arguments
#P.i ≤ #D(P.i)

#P.I ≤ #P.J for I ⊆ J

#P.(I ∪ J) ≤ #P.I × #P.J/I and #P.J/I ≤ #P.J, for I ∩ J = ∅

These imply commonly used constraints, including in particular

#P ≤ #D(P.1) × . . .× #D(P.a)

for relation P of a arguments, which is especially useful when #P is not an input
parameter, that is, when P occurs in the conclusion of a rule.

For the transitive closure example, let the set of vertices 1 to V be the domain
of the arguments of edge, and thus also the domain of the arguments of path. We
have

#path.2/1 ≤ #path.2 ≤ #D(path.2)=V

#path ≤ #D(path.1) × #D(path.2)=V 2

#edge.1/2 ≤ #edge.1 ≤ #D(edge.1)=V

#edge ≤ #D(edge.1) × #D(edge.2)=V 2

Time complexity and optimality

In our derived algorithms, each fact is added to W once and then moved from W to R
once. Each fact that makes the hypothesis of a rule of form 1 true and each com-
bination of facts that makes both hypotheses of a rule of form 2 simultaneously
true is considered exactly once, leading to a firing of the corresponding rule; the
concluded fact is added to W if it is not in R or W, that is, if it was never put into W. To
see that each combination of facts that makes both hypotheses P1 and P2 of a rule
simultaneously true is considered only once, note that the auxiliary map entry for
a fact f of P1 or P2 is built after retrieving f from a work-set and used afterward. So,
a fact f1 of P1 combines once with each fact of P2 retrieved before f1 is retrieved,
and each fact of P2 retrieved after f1 is retrieved combines once with f1.

It is therefore easy to see that the time complexity is the time of reading in the
given facts plus the total number of firings of all rules, analyzed below. Because
each firing as defined above may imply a new fact as an instance of the conclusion,
it must, in general, be considered at least once. In this sense, the running times of
our derived algorithms are optimal.

For each rule r, let r.firedTimes denote the total number of times r is fired. Let
I Xs denote the set of indices of arguments Xs. For a rule r of form 1, we have

r.firedTimes ≤ #P.
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For a rule r of form 2, we have

r.firedTimes ≤ min(#P1×#P2.I X2s/I Ys,

#P2×#P1.I X1s/I Ys).

Each size used can also be made more precise by making it relative to the values
of the constant arguments. For example, the bound #P for a rule of form 1 can be
#P.I Zs/I As = As.

Consider any given set of rules. Let characteristics of facts be given in terms of
the four kinds of size parameters defined above, and consider the constraints on
these size parameters described above. The total time complexity is the input size
plus the sum of firedTimes over all rules, minimized symbolically with respect to
the given size parameters and the constraints. In particular, if a relative argument
size is needed but not given, we use the corresponding non-relative argument size;
if an argument size #P.I is needed but not given, we use the minimum of (1) the
product of domain sizes for arguments of P that are in I and (2) the argument sizes
of P for arguments that are a superset of I.

For the transitive closure example, the time complexity is the input size #edge

plus the sum of #edge for the first rule and min(#edge × #path.2/1, #path ×
#edge.1/2) for the second rule. When only parameters #edge and V are given,
where V is the number of vertices, this sum is bounded by min(#edge × V, V 3)

based on the constraints above; simplifying it based on #edge ≤ V 2, we obtain the
worst-case time complexity O(#edge× V ). When in-degrees of vertices are given,
the second operand of min, #path × #edge.1/2, indicates that the complexity is
also bounded by the output size times the maximum in-degree.

Additional constraints that capture dependencies among relations and relation
arguments can be constructed from the rules to further bound the sizes for sym-
bolic minimization. They can provide more precise results of symbolic minimiza-
tion for rules that have longer chains of non-circular dependencies among relations
and relation arguments. They can also help understand the complexity in terms of
output size, rather than input size alone. Basically, we can bound, for each rule,
the number of instances of the conclusion based on the number of instances of the
hypotheses combined, and we can bound the number of instances of a hypothesis
by summing all the facts that are instances of the hypothesis based on the rules
that can conclude these instances and on the given facts.

Space complexity

We consider the space needed besides the space taken by the input. The total such
space is the sum of the space needed for each of the result sets RQi’s and other Ri’s,
work-sets WQi’s and other Wi’s, and auxiliary maps PiYsXis’s, described separately
as follows:
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• RQi’s are for relations that occur in the conclusions of the rules, that is, rela-
tions for which new facts may be inferred. For each such relation Qi of, say,
a arguments, the space for RQi is for the a-level nested array structure that RQi
uses. These arrays are indexed by the values in the domains and thus take

#D(Qi.1) × . . .× #D(Qi.a)

space. Other Ri’s take the same amount of space as the given facts for the
corresponding relations.

• WQi’s use the same amount of space for their nested-array structures as RQi’s
use. The queues for WQi’s take no more space than the arrays. The queues
for other Wi’s take the same amount of space as the given facts for the corre-
sponding relations.

• PiYsXis’s are for relations that occur in the hypotheses of rules of form 2.
If associative access of the third kind is needed, then the space for PiYsXis
is for the arrays used for accessing all the components; linked lists for the
components in the non-anchor take no more space. Otherwise, the space is
taken by the arrays for the components in the anchor, plus linked lists for the
non-anchor.

Let the domains of Ys be DY1 to DYj and of Xis be DXi1 to DXik. If associative
access of the third kind is needed, the total space for PiYsXis is

#DY1× . . .× #DYj× #DXi1× . . .× #DXik.

Otherwise, the product after the anchor is replaced with the amount of space
taken by the nested linked-list structures for the non-anchor, one such struc-
ture for each element of the arrays for the last component of the anchor; it
is hard to sum the space used by these structures directly, but it is easy to
express it as the difference between the space for a nested linked-list struc-
ture for all components and the space for a nested linked-list structure for the
anchor. So the total space for PiYsXis is

#DY1× . . .× #DYj+ #Pi.(I Ys ∪ I Xis) − #Pi.I Ys.

We call the space taken by result sets RQi’s the output space, and the space taken by
auxiliary maps PiYsXis’s the auxiliary space. Work-sets WQi’s take asymptotically
the same space as RQi’s, and other Wi’s and Ri’s take asymptotically no more space
than the given facts.

In our data structures for the auxiliary map for each individual relation, and
for the result set for each individual rule, arrays are used only where needed—
each array supports constant-time associative access by index for a non-constant
number of sets that have associative access—and linked structures with minimum
space overhead are used for the rest. However, optimizations that schedule the
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order in which elements in the work-sets are considered may allow reuse of space
by considering relations and rules in a certain order, so space taken by relations
no longer needed can be reused; this may eliminate some summands in the space
usage formula. Therefore the total space used may sometimes be reduced by using
scheduling optimizations to eliminate some summands in the space usage formula.

For the transitive closure problem, the output path takes space #D(path.1) ×
#D(path.2), which is O(V 2), where the set of vertices 1 to V is the domain of
the arguments of edge, that is, {1, ..., V } = edge.1 ∪ edge.2. The auxiliary space
usage is #D(edge.2)+#edge.{2, 1}−#edge.2, which is O(V + #edge) and thus is
O(#edge).

Handling of rules not in simplified form

Recall that in the simplified form, each rule has at most two hypotheses, and equal
cards and wild cards occur only in rules with one hypothesis. Rules not in the
simplified form can either be reduced to the simplified form, as discussed in Sec-
tion 5.1, or be handled with a slight extension to the derivation, with trade-offs, as
discussed below.

Consider decomposing rules with more than two hypotheses into rules with two
hypotheses. For a rule with h hypotheses, the number of ways of decomposing it
into rules with two hypotheses is the double factorial of 2 × h − 3, shown below,
although h is usually a small constant, often no more than two. Note that we are
counting the number of distinct rooted binary leaf-labeled trees with h leaves,
where h ≥ 2. To prove the formula, note that a rooted tree topology with h − 1

leaves has 2× ((h− 1)− 1) branches. The h-th leaf may be added by picking any
one of the branches to split and add the new leaf, or by making an outgrow to the
existing tree, a total of 2 × ((h − 1) − 1) + 1 = 2 × h − 3 possible choices, each
leading to a different tree topology.

(2× h− 3)!! = 1× 3× · · · × (2× h− 3)

Each decomposition leads to certain time and space complexities, calculated from
the rules using the method above; the only modification is that the space taken by
the introduced auxiliary relations should be counted as auxiliary space, not output
space. In principle, the complexities resulting from different decompositions can
be compared to determine which one is best in terms of time and space; in practice,
this needs heuristics. There may be many trade-offs, if no decomposition leads to
the smallest complexities in all measures.

Although decomposing rules is higher-level, simpler, and clearer than handling
more hypotheses in the derivation, the space taken by the auxiliary relations might
be unnecessary. Handling three or more hypotheses directly in the derivation re-
quires us to find matching facts of two or more additional hypotheses, when
adding a fact of one hypothesis, without storing auxiliary relations. This in turn
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requires considering the additional hypotheses one at a time, repeatedly; consid-
ering each additional hypothesis is similar to finding matching facts for rules with
two hypotheses, so the best running time that this approach can achieve is the same
as the transformational method. However, avoiding storing auxiliary relations in
handling three or more hypotheses reduces auxiliary space, except it may cause
repeated computations when common intermediate facts inferred are not stored in
auxiliary relation and trigger repeated further firings.

Handling equal cards and wild cards in rules with more than one hypothesis, ei-
ther by reduction to rules in the simplified form or by extension to the derivation,
results in essentially the same algorithms and complexities. Again, the reduction
approach is higher-level, simpler, and clearer, and the only effect on space is that
the space taken by introduced auxiliary relations should be counted as auxiliary
space, not output space. This auxiliary space is asymptotically no more than the
space needed for the original rules, and it can lead to savings in the time complex-
ity. Specifically, in the derived algorithms for the simplified rules, when rules with
two hypotheses are considered, instances of a hypothesis that differ only in the
wild-card components are considered only once all together, and only instances
whose equal-card components are equal are considered. The domain of an equal-
card component is the intersection of the domains of all the components of the
equal card.

As a final note, for rules with more than two hypotheses, relations used by these
hypotheses can be first restricted to only facts that will contribute to the relation
in the conclusion. This helps ensure that we consider only combinations of facts
that lead to all hypotheses of a rule being simultaneously true.

Exercise 5.11 (Complexity analysis for different transitive closure rules) For
the transitive closure rules that you wrote for Exercise 5.2, give the complexity
formula for running time, output space, and auxiliary space.

Exercise 5.12 (Complexity analysis for graph reachability rules) For the graph
reachability rules that you wrote for Exercise 5.3, give the complexity formula for
running time, output space, and auxiliary space.

5.6 Example: program analysis

Program analysis is important for all kinds of program development and mainte-
nance tasks, yet it is also a challenging field of study, because flows and dependen-
cies for program control and data form complicated cyclic relations. Experience
has shown that most program analyses can be easily specified as Datalog rules. We
discuss one of the most commonly used and studied program analysis—pointer
analysis. This example also shows the decomposition of rules with more than two
hypotheses into rules with two hypotheses.
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Pointer analysis

Pointer analysis determines memory locations that variables in a program point
to. Perhaps the single most studied pointer analysis, and definitely one of the most
studied analyses, is the context-insensitive and flow-insensitive may-point-to anal-
ysis for programs written in the C language. Context-insensitive means that func-
tions and procedures are analyzed for all calling contexts together, rather than
specialized for different calls. Flow-insensitive means all control flows are consid-
ered possible, rather than only flows among certain program points. May-point-to
means an over-approximation of the actual points-to relation.

The analysis defines a points-to relation, denoted points_to, based on four kinds
of assignment statements that involve pointers:

• taking address, p = &q, denoted addr(p,q),

• making copy, p = q, denoted copy(p,q),

• taking content, p = ∗q, denoted cont(p,q), and

• assigning content, ∗p = q, denoted asgn(p,q).

The analysis can be specified straightforwardly using four Datalog rules, one for
each kind of statement; the first column gives the rule number.

1 addr(p,q) -> points_to(p,q)
2 copy(p,q), points_to(q,r) -> points_to(p,r)
3 cont(p,q), points_to(q,r), points_to(r,s) -> points_to(p,s)
4 asgn(p,q), points_to(p,r), points_to(q,s) -> points_to(r,s)

In the resulting points-to relation, each variable can point to a set of memory
locations.

Decomposing rules with more than two hypotheses

The last two rules both have three hypotheses. The most straightforward way of
decomposing such a rule is to combine its first two hypotheses first, and then
combine the resulting auxiliary relation with the third hypothesis. This transforms
the last two rules into two rules each, yielding the following four rules, where new1
and new2 are two fresh auxiliary relations:

3a cont(p,q), points_to(q,r) -> new1(p,r)
3b new1(p,r), points_to(r,s) -> points_to(p,s)
4a asgn(p,q), points_to(p,r) -> new2(q,r)
4b new2(q,r), points_to(q,s) -> points_to(r,s)

Iterate, incrementalize, and implement

An efficient program can be generated from the six rules, 1, 2, 3a, 3b, 4a, and 4b.
Step Iterate simply considers one fact at a time. Step Incrementalize maintains
auxiliary maps for the inverses of copy, cont, and new1. These inverse maps are
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needed because in each of the rules 2, 3a, and 3b, when a fact of points_tois added,
the second argument of copy, cont, or new1, respectively, is bound and is used to
find the corresponding values of the first argument. All other relations are accessed
with the first argument bound, and thus the relation itself can be used to find the
matching values of the second component, and no auxiliary maps are needed.
Step Implement designs a combination of records, linked lists, and arrays, similar
to the transitive closure example, because the rule forms are the same except for
the relation names and that there are more rules.

Time complexity

A bound on the number of firings for each of the six rules is calculated straight-
forwardly as follows:

1 #addr

2 min(#copy×#points_to.2/1, #points_to×#copy.1/2)

3a min(#cont×#points_to.2/1, #points_to×#cont.1/2)

3b min(#new1×#points_to.2/1, #points_to×#new1.1/2)

4a min(#asgn×#points_to.2/1, #points_to×#asgn.2/1)

4b min(#new2×#points_to.2/1, #points_to×#new2.2/1)

By rules 3a and 4a, it is obvious that #new1 and #new2 are bound by the formula for
3a and 4a, respectively. Simply taking the first argument of each min expression,
the total number of firings is bound by

#addr+ (#copy +#cont+ #cont× #points_to.2/1

+#asgn+ #asgn× #points_to.2/1) × #points_to.2/1

Each firing takes constant time, so the total time complexity is

O(#addr+ #copy×#points_to.2/1 + (#cont+ #asgn)×#points_to.2/12)

The sum of #addr, #copy, #cont, and #asgn is O(n), where n is the size of the
program being analyzed. The parameter #points_to.2/1 is the maximum number
of locations that a single variable may point to, denoted to. So the time complexity
is O(n× to2). The resulting to is O(n) in the worst case. So the time complexity
is O(n3) in the worst case, as is well known for this problem.

However, the number of locations a single variable may point to is typically
a very small constant, often zero, for most program variables, so the actual run-
ning time can be much better than the worst-case bound of O(n3), and can even
be O(n) when all but a small number of variables point to a small number of lo-
cations. This explains the typically much better than cubic and often linear time
complexity observed in practice. Besides offering a simple and clear explanation
of this well-known, puzzling symptom, the formula above also shows precisely
how the running time depends on the number of each kind of statement in the
program.
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Space complexity

Both output space and auxiliary space are O(var2), where var is the number of
variables in the program and is bound by O(n).

The output space is for storing the resulting points_to relation. The domain of
both arguments of points_to is the set of variables in the program, so the output
space is O(var2).

The auxiliary space includes space for storing auxiliary relations new1 and new2
and auxiliary maps for the inverses of copy, cont, and new1. Both new1 and new2
are bounded by O(var2), because the domain of their arguments is the set of pro-
gram variables. The inverse maps take space O(#copy+ #cont+ #new1), which
is bound by O(var2). So the total auxiliary space is O(var2).

Exercise 5.13 (Regular path queries) Given a graph with edge relation edge
and source vertex v0, and a regular expression converted into a finite automata
with transition relation trans and start state s0, a regular path query computes
all vertices v in the graph such that there is a path from v0 to v in the graph that
matches a path from s0 to a final state in the automata. The following rule, along
with a simple rule for the base case and a simple rule for the return value, can be
used for answering regular path queries:

match(v1,s1), edge(v1,v2), trans(s1,s2) -> match(v2,s2)

What are all ways of breaking this rule into rules with two hypotheses? For each
way of breaking, give the complexity formula for its running time, output space,
and auxiliary space. Which way gives the least time complexity? Which way gives
the least space complexity? What are the two simple rules not given?

Exercise 5.14 (Graph reachability by even edges*) Given a graph with a set of
edges and a set of source vertices, we want to find all the vertices that are reachable
from the source vertices by following an even number of edges. How do you think
this should be computed and how long should it take? Did you think about writing
rules for computing the solutions? Please do. Then, use our method to find out the
algorithm and data structures and analyze the complexities.

5.7 Example: trust management

Trust management is a unified approach to specifying and enforcing security poli-
cies in distributed systems. It has become increasingly important as systems be-
come increasingly interconnected. At the same time, logic-based languages have
been used increasingly for expressing trust management policies. For policy anal-
ysis and enforcement, a method for generating efficient algorithms and implemen-
tations from policies specified using logic rules is highly desired. We discuss the
core problem of name resolution in a well-known trust management framework.
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This example also shows the handling of an extension to Datalog, where argu-
ments of relations may be sequences.

SPKI/SDSI name-reduction closure

SPKI/SDSI, which stands for Simple Public Key Infrastructure/Simple Distributed
Security Infrastructure, is a well-known trust management framework based on
public keys that is designed to facilitate the development of secure and scalable
distributed systems.

It has two types of certificates. A name certificate defines a local name in the is-
suer’s local name space. An authorization certificate is issued by an issuer to grant
a set of permissions to a subject and possibly allows the subject to delegate the
permission. The heart of authorization checking is to compute the name-reduction
closure given a set of name certificates. It composes certificates to infer reduced
certificates and can be expressed directly as a Datalog rule with a constraint that
tests whether a name is the head of a sequence of names, and with a call to an
external function that returns the tail of a sequence in the conclusion.

Let cert(k1,n,k2,ns) denote the name certificate stating that the entity known
to principal k1 by name n is the entity known to principal k2 by name sequence ns.
Then the name-reduction closure can be specified straightforwardly as

cert(k1,n1,k2,[n2,ns3]), cert(k2,n2,k3,[]) -> cert(k1,n1,k3,ns3)

For example, an instance of the rule may state that

if cert(kyle,wife,kate,[boss,[mom,[]]]), that is, kyle’s wife is kate’s boss’ mom,
and cert(kate,boss,kirk,[]), that is, kate’s boss is kirk,
then cert(kyle,wife,kirk,[mom,[]]), that is, kyle’s wife is kirk’s mom.

It matches the rule above with the mapping of k1 to kyle, n1 to wife, k2 to kate, n2
to boss, ns3 to [mom,[]], and k3 to kirk.

Iterate, Incrementalize, Implement

Step Iterate simply considers one fact at a time. Step Incrementalize maintains
auxiliary maps for finding matching certificates, and must handle the sequence
argument in incremental computation. When a fact of the first hypothesis is added,
the value of its last argument is accessed to locate the head of the sequence, n2, and
the values of k2 and n2 are used to find matching facts of the second hypothesis.
When a fact of the second hypothesis is added, the values of k2 and n2 are used to
find matching facts of the first hypothesis through the third argument and the head
of the fourth argument. To add a newly inferred cert fact, comparison with existing
facts needs to handle the sequence argument; note that the sequence argument is
always a tail of the sequence argument of a given certificate, so the comparison
needs to use only a reference to the tail, in constant time.
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Step Implement decides to use nested arrays for both anchors and non-anchors
of auxiliary maps, because new cert facts can be inferred. It also decides to use an
array for the first two arguments, together, of cert, because these arguments are
always together as in the given certificates, and to use nested arrays for the last
two arguments, where the sequence argument is a reference to a tail sequence in
the input.

Time complexity

Matching and manipulation with an empty sequence and the head of a sequence
for each firing take constant time, so the asymptotic time complexity is bound by
the number of rule firings.

The number of firings is bounded by the number of inferred facts of the first
hypothesis multiplied by the number of matching facts of the second hypothesis,
yielding the following:

#cert× #cert.3/{1, 2, 4 = []}

where #cert.3/{1, 2, 4 = []} denotes the maximum number of key values of the
third argument for each combination of values of the first and second arguments
when the fourth argument is empty.

It is easy to see that #cert is the number of all certificates that can be inferred,
some possibly multiple times, and #cert.3/{1, 2, 4 = []} is the maximum num-
ber of keys a single local name reduces to. The first number, #cert, is bounded
by in × key, where in is the size of the input, that is, the sum of the sizes of the
given certificates, and key is the number of keys. This is because in any inferred
cert fact, the third argument is a key, and all other arguments are from a given
certificate. The second number, #cert.3/{1, 2, 4 = []}, may in the worst case in-
clude all keys that appear in the certificates. Thus, the worst-case time complexity
is O(in× key2). However, one can see that not all names reduces to all keys, for
example, in our example, the name boss for kate reduces to only one key kirk. So
our complexity analysis is more precise and informative than using only worst-
case sizes.

Space complexity

The output space is for storing the relation cert. Let kn be the total number of key
and name pairs in the given certificates. Let s be the sum of the lengths of all name
sequences in the given certificates. Then, the output space is O(kn× key × s).

The auxiliary space is for auxiliary maps, one for each of the two hypothe-
ses. Let name be the total number of names in the given certificates. Then, the
map for the first hypothesis maps k2 and n2 to k1-n1 pairs and ns3, and takes
O(key × name× kn× s) space; the map for the second hypothesis maps k2-n2
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pairs to k3, and takes O(kn× key) space. Therefore, the total auxiliary space is
O(kn× key × name× s).

Exercise 5.15 (Worst case for name-reduction closure*) For the SPKI/SDSI
name-reduction closure problem discussed, give an example set of certificates for
which the worst-case time complexity is realized.

Exercise 5.16 (Permission query using rules) In core RBAC, user-role relation
UR represents the assignment of users to roles, and permission-role relation PR rep-
resents the assignment of permission to roles. The following set query returns the
set of permissions for a given user user.

{p: [user,r] in UR, [p,r] in PR}

Write a rule to infer the same query result. Analyze the cost of evaluating this
query using the method discussed.

5.8 Need for module abstraction

In all of the problems we have seen so far, loops with primitives and arrays, set
expressions, recursive functions, and logic rules are all used for specifying essen-
tially a single functionality, rather than a large system with many functionalities.
Also, there is no module structure in the problem specification—specifications
range from straight-line code to flat rules. For scaled-up applications, many func-
tionalities must be provided over many kinds of data, and module structures are
necessary for organizing all the data and operations.

For example, a complex system may have many components, each encapsu-
lating some data and some functionalities. Some of the functionalities may be
specified as set queries, while others may be specified using recursive functions.

Specifications that use module abstractions, as well as methods for deriving
efficient implementations in the presence of module abstraction, are discussed in
the next chapter.

Exercise 5.17 (Applications with multiple components) Think of an applica-
tion where you would like to have multiple components, each having its own sets
of queries and updates over its own data, independent of how other components’
queries and updates are implemented. Can you think of queries that are easier to
write using rules than using set comprehensions, and vice versa?

Bibliographical notes

Logic rules have been used for programming since as early as the 1970s. The best-
known logic programming language is Prolog. Well-engineered logic program-
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ming systems include XSB [296], Yap [66], and some commercial systems [183].
Datalog [49, 3] is an important database query language based on the logic pro-
gramming paradigm; it is also used increasingly in program analysis [230], model
checking [60], security [180], networking [218], and many other applications.

Efficient implementation of Datalog and general logic programs has been stud-
ied extensively in logic programming and database areas [49, 3]. Smart evaluation
methods include semi-naive evaluation for bottom-up evaluation [49, 228], tabling
for top-down evaluation [297, 53], and static and dynamic filtering [168, 169].
Smart rewriting methods include magic-sets transformation [18, 26] and partial
evaluation [217, 178]. Other methods include notably the Rete algorithm [89],
which builds a network from rules and propagates facts through it, and variations
or improvements, e.g., [224, 177, 41, 158]. There are also methods used in appli-
cations for efficient evaluation of Datalog queries using binary decision diagrams
(BDD) [317, 174] and relational databases [125].

All these methods do not provide precise complexity guarantees, even though
complexity measures and complexity classes for various query languages have
been studied, e.g., [305, 173, 68, 109, 108]. In fact, such analysis can be very
difficult [183]. For example, for top-down evaluation with tabling and index-
ing [297, 274, 53, 264], a graph reachability program may have one of several
different time complexities between linear and quadratic, depending on the order
of the rules, the order of the hypotheses in a rule, the indexing used, and so on. It
is well known that a Datalog program runs in O(nk) time where k is the largest
number of variables in any single rule, and n is the number of constants in the
facts and rules, but such a bound is too loose for most problems.

McAllester [222] introduced an evaluation method for capturing precise time
complexity of logic programs, by counting the number of prefix firings, that is,
combinations of facts that make all prefixes of the hypotheses of a rule true.
Ganzinger and McAllester generalized this method to handle priorities and dele-
tion of rules [95] and furthermore priorities of instances of the same rule [96].
Their time complexity is still sensitive to the order of hypotheses in the rules.
Space complexity is not discussed. Hashing is used, which incurs extra time over-
head, and possibly space overhead, and gives no tight worst-case guarantees on
time and space. A follow-up work [231] discusses how to automate the complex-
ity analysis.

The method in this chapter is by Liu and Stoller [199, 203]. What distinguishes
it is (1) direct transformation of any set of Datalog rules into a complete algorithm
and data structures specialized for those rules, and (2) precise analysis of worst-
case time and space complexities supported by the algorithm and data structures.
It is not an evaluation method because it transforms the rules rather than evalu-
ating them. Nor is it a rewriting method in that it does not transform within the
frameworks of rules. It compiles the rules into an optimized program in a standard
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imperative programming language. The program can be plugged in any applica-
tion, not relying on any rule engine. The program performs a kind of bottom-up
computation based on careful incremental updates with data structure support.
The time and space complexities of the program are easy to analyze based on the
rules.

The idea of considering one new fact at a time and finding other facts using in-
dexing to form firings of rules is quite straightforward, and is used in many imple-
mentations. For example, in compilation of constraint handling rules [135, 278],
the active constraint corresponds to the new fact considered, although constraints
are more general. Reducing the time complexity to the number of firings of rules
is used at least as early as the 1970s by Beeri and Bernstein [25], where they give
a linear-time algorithm for solving the attribute closure problem that is expressed
using rules. The idea of initializing an array entry the first time its is accessed
is suggested in [6, Exercise 2.12]. Willard shows that relations in multiple-join
queries can be first restricted to help ensure that only combinations of facts that
lead to all hypotheses of a rule being simultaneously true are considered [324].

Compared with method described for sets in Chapter 3, Datalog rules are easier
and clearer than fixed-point specifications [44] to start with. The derivation of in-
cremental maintenance handles sets of tuples of any length and sets with different
element types, not just sets and maps of uniform element types handled previ-
ously [236, 243, 238]. The derivation of data structures handles general sets of
tuples, and yields more general and sophisticated combinations of arrays, linked
lists, and records than allowed by the based representation before [239, 42, 110].
Precise complexity formulas are generated from Datalog rules, but were not from
fixed-point specifications previously.

The context-insensitive and flow-insensitive may-point-to analysis for C pro-
grams was proposed by Andersen [12] and formulated using rules by Heintze
and Tardieu [132]. It has been implemented and experimented with extensively
and compared with other variants of the analysis, e.g., [90, 133, 294, 104]. Even
though its worst-case asymptotic time complexity is known to be O(n3), various
experiments show that it appears to be between linear and quadratic in practice.
The more precise complexity formula in Section 5.6 was given previously [203].
Following the same method, similar pointer analysis for Java programs [294] can
also be implemented efficiently and analyzed precisely [301].

SPKI/SDSI [80] is a well-known trust management framework. Trust manage-
ment has become increasingly important [115, 35], and logic-based languages
have been used increasingly for expressing security and trust management poli-
cies [152, 181]. SPKI/SDSI name-reduction closure algorithms are studied in [59,
182, 153, 144]. The bound of O(in×#key2) on #cert was given by Jha and
Reps [153], and the time complexity was analyzed using worst-case sizes [59,
153]. The more precise time complexity in Section 5.7 was given by Liu and



150 5 Rules

Stoller [203], but the space complexity in that paper is incorrect, underestimating
the sequence sizes.

The method discussed in this chapter has been applied to other application prob-
lems in program analysis, model checking, and security, e.g., [142, 143, 144],
leading to improved algorithms for some problems and greatly simplified com-
plexity analysis for all problems. There are many other methods for program anal-
ysis, model checking, and so on, which use equations, constraints, automata, for-
mal languages, and so forth [67, 131, 267, 8, 82], but using rules is typically
more direct and more general. Formal derivation of algorithms and implementa-
tions using a systematic method helps provide correctness assurance, in contrast
to ad hoc development of algorithms. Precise complexity analysis, using detailed
size characterizations of the given facts, helps significantly in understanding the
performance of the generated implementations.

The method discussed in this chapter is limited to inferring all facts and con-
sidering only Datalog. Given certain queries, inferring only facts that are useful
for answering the queries, that is, computing on demand, is important for perfor-
mance [18, 26]; Tekle and Liu [300, 301] extended the method in this chapter to
solve this problem cleanly, using a new demand transformation. The method in
this chapter applies also to Datalog with stratified negation [203], but not general
negation. The SPKI/SDSI example uses Datalog extended with sequences, but all
sequences used are from given inputs, and there is no dynamically constructed
sequences.
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Objects: incrementalize across module abstraction

For building large systems, it is essential to build them from components and use
module abstraction, that is, abstraction of both data and control in modules or
components, to separate what functionalities are provided by a component from
how the functionalities are implemented inside the component. Module abstrac-
tion is best supported as abstract data types. An abstract data type is an interface
for a certain set of operations on a certain kind of data, that is, the “what”, shield-
ing users from having to know how the data are represented and how the opera-
tions are implemented, that is, the “how”. It is a fundamental concept in modern
high-level programming languages, particularly object-oriented languages.

Unfortunately, clear and modular implementations of the modules or compo-
nents result in poor performance when nontrivial query operations are frequently
performed and values of query parameters are gradually updated. At the same
time, efficient implementations that incrementally maintain the query results with
respect to updates to parameter values are much more difficult to develop and to
understand, because the code grows significantly and is no longer clear or mod-
ular. Because the definitions and uses of queries and updates can cross multi-
ple components, transforming clear implementations of the queries into efficient
incremental implementations requires incrementalization across module abstrac-
tion.

We describe a powerful and systematic design method that first allows the
“what” of each component to be specified in a clear and modular fashion and
implemented straightforwardly in an object-oriented language; then analyzes the
queries and updates, across object abstraction, in the straightforward implemen-
tation; and finally derives the sophisticated and efficient “how” of each compo-
nent by incrementally maintaining the results of repeated expensive queries with
respect to updates to their parameter values. We explain the method using an ex-
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ample with two components and then show additional applications in electronic
health records and robot games. We also describe a rule language for specifying
transformations for incrementalization, as well as invariant-driven transformations
in general. We end with a simple and powerful language for more easily express-
ing a large class of queries over complex object graphs.

Example: wireless protocols

Consider a wireless protocol that, among other things, needs to keep a set of
signals and find, frequently, the set of signals whose strength is above a certain
threshold. This may involve two components, Protocol and Signal, as shown be-
low. Each component has its own kind of data and set of operations, including
the relevant ones shown in text below; the ellipses indicate that there are possibly
other data and operations in these two components, and there are possibly other
components.

component: Protocol
data:

signals: set of signals
threshold: threshold for a signal to be strong
. . .

operations:
addSignal: add a given signal to the set of signals
findStrongSignals: return the set of signals whose strength is above

the threshold
. . .

component: Signal
data:

strength: strength of the signal
. . .

operations:
setStrength: set the strength to a given value
getStrength: return the strength
. . .

. . .

First, we need a language to describe components that encapsulate data and op-
erations. Then, for components and systems specified in the language, we need
to analyze all dependencies among the components, as well as within each com-
ponent. For example, the operation findStrongSignals is provided in the Protocol
component, but it needs to know the strengths of signals, which are in the Signal
component. Finally, for efficient incremental computation of frequent expensive
queries, we need to decide, besides what values to maintain and how to do incre-
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mental maintenance, which components store what values and how to coordinate
maintenance among the components. For example, when the strength of a signal is
updated in the Signal component, the query result of findStrongSignals in the Pro-
tocol component needs to be updated, and the two components must coordinate to
achieve this.

Exercise 6.1 (Component design and optimization) For the wireless proto-
col example, think of how to program it and how to maintain the result of find-
StrongSignals efficiently.

6.1 Objects with fields and methods—module abstraction

To express components that encapsulate data and operations, we use an object-
oriented language. Both straightforward and efficient implementations can be writ-
ten in this language.

Language

A program is a set of class definitions, each defining some kinds of data, called
fields, and some kinds of operations, called methods, for a collection of objects. A
class definition is of the form below. It defines a class named c that contains zero
or more field declarations and method definitions, as described below.

class c:
field_declarations
method_definitions

An object of class c is an instance of c; it is an encapsulated entity that con-
tains the fields and methods defined in c. Objects are accessed through references.
Multiple variables may refer to the same object, in which case we say that these
variables are aliases of one another. Objects are created during program execu-
tion. Once created, we can access the fields and invoke the methods of the object,
as explained below. For simplicity of understanding, we consider every value to
be an object.

A field definition is of the form below, where f is the name of a field, and type

is the data type of the field. A data type may be any common type, such as int for
integer, a class name, such as Protocol, or a compound type, such as set(Protocol),
whose components are, recursively, types.

f : type

A method definition is of the form below, where m is the name of a method,
v1 through vk , if any, are names of variables, called parameters, and command
cmd defines the effect of invoking m on an object given values of v1 through vk .
Types may be specified not only for fields but also for method parameters, return
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values, and local variables of methods, although we omit those for simplicity. We
generally omit types when they can be inferred from the program.

def m(v1 ,...,vk): cmd

Commands may be loops, conditionals, sequencing, and assignments as de-
scribed in Chapter 2, except that commands may also be for object creation, as-
signment to a field of an object, and invocation of a method on an object, and may
also use additional kinds of expressions, as described below.

Expressions may involve arithmetic, Boolean, and comparison operations, as in
Chapter 2; set expressions, as in Chapter 3; and additionally, self object reference,
object class test, field access, and method invocation, explained next. Note that
method invocations subsume function calls from Chapter 4, except with the addi-
tional self object reference. We can include rules and queries from Chapter 5 too,
even though our examples here do not need them.

The self object reference expression, self, refers to the object on which the
method being defined is invoked. Although any name could be used, we always
use self for consistency.

An object class test, isinstance(exp,c), returns true if the object returned by
evaluating expression exp is an instance of class c, and false otherwise.

A field access expression is of the form below. It evaluates expression exp to
obtain an object, retrieves the value of field f of the object, and returns the value.

exp.f

A method invocation expression is of the form below, where m is the name of
a method. Method m must have no side effect, that is, update only local variables
of m, and its body must be a command in which every flow of control ends with a
return command. The method invocation evaluates the expression exp to an object,
invokes method m of the object, with the object as the argument value for self,
and with values of expressions exp1 through expk , if any, as additional arguments,
evaluates the body of m , and returns the value of the expression in the return
command encountered.

exp.m(exp1 ,...,expk)

An object creation command is of the form below. It creates and returns an
object of class c. It is both a command and an expression because it both changes
the state and returns a value. The values of expressions exp1 through expk , if any,
are passed as arguments to a specially named method in c that is invoked when
an object of c is created. This specially named method can be defined by the
programmer just as any other method, and defaults to doing nothing if it is not
defined.

new c(exp1 ,...,expk)
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A field assignment command, also called an assignment command, is of the
form below. It evaluates expression exp to obtain an object and assigns the value
of exp1 to field f of the object.

exp.f := exp1

A method invocation command is of the form below. It is of the same form
as a method invocation expression, except that the method invoked in an expres-
sion must have no side effect. The command evaluates exp to obtain an object,
invokes method m of the object, with the object as the argument value for self,
and with values of expressions exp1 through expk , if any, as additional arguments,
and executes the command in the body of m . For a method invocation command
to achieve anything besides consuming time, it must have some side effect.

exp.m(exp1 ,...,expk)

In expressions and commands for field access, field assignment, and method
invocation, if the first expression exp is self, we omit self and the dot that follows
when there is no ambiguity.

We make substantial use of sets, because they are well suited for expressing
queries and updates at a very high level and are well supported in object-oriented
languages. We use set expressions as in Chapter 3, except that they may contain
additional kinds of expressions as described above. We use the following object-
oriented notation for operations from a set class:

• new Set(), set object creation, creates and returns an empty set object.

• S.add(x), element addition, adds x to set S.

• S.del(x), element deletion, deletes x from set S.

• S.contains(x), membership test, returns true if x is in set S and false other-
wise.

• S.size(), size of set S, returns the number of elements in set S.

We make the following assumptions based on well-known principles about
straightforward, clear, and modular programs, and we do not consider concur-
rency here.

• Fields are initialized at object creation time. So it is safe to access the fields
any time after an object is created.

• Fields are updated only in the class where they are declared, and sets are
updated only in the class where they are created. So one only needs to look
for updates to a field or set inside the class that declares or creates it.

For the protocol example, the following straightforward implementation can be
constructed. Note that we show only portions of the classes relevant to our current
discussion.
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class Protocol:
signals: set(Signal)
threshold: float
...
def addSignal(s): signals.add(s)
def findStrongSignals():
return {s in signals | s.getStrength() > threshold}

...
class Signal:
strength: float
...
def setStrength(v): strength := v
def getStrength(): return strength
...

...

Cost model

Because objects only provide organization of data and operations, not new kinds
of data structures or control structures, the costs of operations involving loops,
sets, recursion, and rules are the same as in previous chapters. Because programs
can use operations from library classes, we also need to know the costs for li-
brary operations. Furthermore, because methods of classes may be invoked from
outside, we also need to consider the frequencies of these operations. Finally, as
before, what cost is considered expensive in the application should be specified
explicitly.

To summarize from previous chapters: for loops, the cost is linear in the num-
ber of iterations through the loops; for operations on sets, the cost is linear in the
number of elements to be enumerated for operations other than those that involve
a single element; for functions, the cost is linear in the number of function calls;
for rules, the cost is linear in the number of rule firings. Operations that require it-
eration, enumeration, and recursion are considered expensive, whereas operations
that take constant time are considered inexpensive.

Costs of operations from library classes should be given based on the imple-
mentation of the library, just as the costs of built-in operations on primitive values
is given based on the underlying machine hardware implementation. Frequencies
of operations, at least those directly invoked by users of the application or an ex-
ternal system in the environment of the application, should also be provided if
possible.

For the protocol example, the findStrongSignals operation requires enumeration
and thus is expensive; also, depending on the implementation of the set class,
either the set operations used here are all constant-time and thus inexpensive or
the size operation can be expensive.

Exercise 6.2 (Attribute-based access control) Suppose RBAC needs to be ex-
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tended to query attributes of users, but these user attributes are manipulated largely
independently of usage by access control. How should you design the compo-
nents?

Exercise 6.3 (Attribute-based permission query) In core RBAC, user-role re-
lation UR represents the assignment of users to roles, and permission-role relation
PR represents the assignment of permission to roles. Suppose user objects have an
integer attribute age. Write a query that returns the set of permissions that any user
under 18 years old has.

6.2 Queries and updates: clarity versus efficiency

Although components separate how operations are implemented inside from what
these operations are to the users outside, there is a conflict between clarity and
efficiency in implementing the operations. To resolve this conflict, we will need
to analyze queries and updates.

Queries and updates

What operations are to the users of a system or component can be classified as,
or decomposed into, two kinds: queries and updates. Queries compute results us-
ing data but do not change data, and are sometimes called views or observations.
Updates change data.

For a simple example, consider the LinkedList class in Java 7.1 It has a query
method size that returns the number of elements in the list, 23 methods that add or
remove elements, and 16 other query methods that return elements, their indices,
membership test results, and so on.2

For the protocol example, in class Protocol, findStrongSignals is a query, and
addSignal is an update; in class Signal, getStrength is a query, and setStrength is
an update.

Conflict between clarity and efficiency

How to implement the queries and updates can vary significantly, which reflects a
fundamental conflict between clarity and efficiency.

• A straightforward implementation lets each operation do its respective query
or update and is clear and modular. For example, in the LinkedList class, size
can iterate over elements in the list to count them, and each of the 23 up-
date methods would do exactly the specified addition or removal of elements.
However, this can have poor performance, because queries may be repeated

1 http://download.oracle.com/javase/7/docs/api/java/util/LinkedList.html (Jan. 29, 2013)
2 These numbers have been increasing since LinkedList was introduced in Java 1.2. For example, in Java 5,

there were 15 methods that add or remove elements and 13 other query methods.

http://download.oracle.com/javase/7/docs/api/java/util/LinkedList.html
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and many are expensive. For example, size takes time linear in the number of
elements in the list, and if it occurs in a loop, the overall running time blows
up quickly.

• A sophisticated implementation can have good performance, by storing the
results of expensive queries appropriately and maintaining them incremen-
tally when the data are updated. For example, the LinkedList class may main-
tain the result of size in a field and simply return it when size is queried.
However, this is less clear, less modular, and more error-prone, because each
update that may affect any of the query results must be augmented with ap-
propriate updates to those query results. In the LinkedList class, each of the
23 update methods must also update the field for size appropriately.

Clearly, there is a conflict between clarity and efficiency, even for the simple
LinkedList example. The situation becomes much worse for complex systems that
may have many queries and updates, where queries may cross multiple classes,
and updates may be spread in many places in many classes. A query can be af-
fected by many updates, and an update can affect many queries. It poses a serious
challenge to consider all the complex dependencies and trade-offs and to decide
where and how to maintain what results, and the resulting code can become sig-
nificantly more difficult to understand.

For the protocol example, each of the queries findStrongSignals and getStrength,
and the updates addSignal and setStrength, can be constructed modularly and
clearly in a straightforward fashion, as shown near the end of the previous sec-
tion. Efficient implementations are much more complicated because the expensive
query findStrongSignals must have its result stored and incrementally maintained
for use in class Protocol when the strengths of signals are updated by setStrength
in class Signal and when the set of signals is updated by addSignal.

This conflict between clarity and modularity, and thus software productivity
and cost on one side and program efficiency and system performance on the other
side, manifests itself widely in complex systems and components. To resolve this
conflict, a powerful method for developing systems and components must support
not only creation of module abstraction but also incrementalization across such
abstraction, where the former is needed for clarity and modularity, and the latter
is needed for performance.

Analyzing expensive queries and updates to parameter values

To perform incrementalization across module abstraction, we need to identify ex-
pensive queries and determine updates to their parameter values across the ab-
straction, and we need to analyze their costs and frequencies.

There are two kinds of expensive computations: (1) built-in or library opera-
tions that are specified as expensive in the cost model, such as a library operation
that sorts a list, and (2) compound computations that require repeated operations,
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including set comprehensions, aggregate expressions, iterations, and recursions.
For each expensive computation, three things must be determined: (1) contain-
ing class and method—the class and method where the computation appears, (2)
parameters read—variables and fields that the computation depends on, and (3)
primary cost consideration—asymptotic running time of the computation. Note
that expensive computations may have expensive subcomputations; we identify
all expensive computations, including all expensive subcomputations, and use the
results of the subcomputations as parameters read by the enclosing computation.

Expensive computations are easy to identify given the cost model. For any ex-
pensive computation, its cost can be analyzed based on the cost model. Its contain-
ing class and method are easy to analyze. Its parameters must be analyzed using
a precise analysis that can select parts of members of compound values. For ex-
ample, for the query findStrongSignals in the protocol example, we want to avoid
including all parts of the signals in signals as parameters read, but only the parts
that are actually used, which include only the strength field of the signals. So, we
need to refine the notion of parameters when dealing with objects and sets that
can be arbitrarily nested. Precisely, parameters are of the form of (1) a variable,
(2) a sequence of field accesses starting with a variable, or (3) a comprehension
representing a set of parameters where the sets enumerated are of the form of (1)
or (2).

For the protocol example, in the straightforward implementation given, all built-
in operations used are inexpensive. The only expensive computation is the follow-
ing set comprehension:

{s in self.signals | s.getStrength() > self.threshold}

class: Protocol
method: findStrongSignals
parameters read:self.signals, self.signals.members,

{s.strength: s in self.signals}, self.threshold
cost: O(#signals)

The containing class and method are obvious. The parameters include: the set to
be enumerated, self.signals, which accesses the field signals on variable self;
members of this set, self.signals.members; and parameters of the condition,
{s.strength: s in self.signals} and self.threshold. The cost is linear in the num-
ber of signals in self.signals, because the condition only uses constant-time op-
erations.

All updates to the value of each parameter of each expensive computation must
be determined. To minimize coordination effort and facilitate atomicity, we iden-
tify only the most basic updates. There are two kinds of such basic update opera-
tions: (1) an assignment command that writes to a field or variable, and (2) a call
to a library operation that writes to some fields. For each update operation, three
things need to be determined: (1) containing class and method, (2) parameters
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written—the fields or variables being updated, and (3) cost—asymptotic running
time of the update operation.

To determine whether a particular update is an update to the value of a particular
parameter of a query, we need to determine whether the variable or object field
being updated and a variable or object field appearing in the parameter are aliases
of each other, that is, refer to the same object. This uses alias analysis, which
computes variables and object fields that are aliases of one another. We can use any
conservative analysis of the possible aliases during program execution, and guard
the incremental maintenance code with a runtime check for actual aliasing. For a
library operation, we assume that information about which parts of its arguments
are updated by the operation is given.

For the expensive query in the protocol example, in the straightforward imple-
mentation, there is an update to the value of its parameter self.signals.members:

self.signals.add(s)

class: Protocol
method: addSignal
parameters written: self.signals.members
cost: O(1)

and an update to the value of its parameter {s.strength: s in self.signals}:

self.strength := v

class: Signal
method: setStrength
parameters written: self.strength
cost: O(1)

The update self.signals.add(s), in method addSignal, may update the value of pa-
rameter self.signals.members of the expensive query, in method findStrongSignals,
due to the following. Let selfa and selff denote variable self in addSignal and
findStrongSignals, respectively. Then, selfa may alias selff, because the elided
part of the program, denoted by ellipses, may call addSignal and findStrongSignals
on the same instance of Protocol. Thus, because selfa.signals.add(s) updates the
value of selfa.signals.members, it may update the value of selff.signals.members.

Exercise 6.4 (Query parameters and cost) In core RBAC, user-role relation
UR represents the assignment of users to roles. Suppose user objects have an at-
tribute location. The following query returns the set of roles for users located in
antarctica.

{r: [u,r] in UR, | u.location = antarctica}

What are the parameters of the query? What is the cost of the query if executed
straightforwardly?
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Exercise 6.5 (Updates to parameter values) Consider the query in the previous
exercise. Suppose that a program can do arbitrary updates. What are all possible
updates to the values of the parameters of this query?

6.3 Incrementalize: develop and apply incrementalization rules

Once expensive queries and updates to parameter values are determined, we must
examine where to store the query results, and where and how to update them.
For the expensive query in the protocol example, it is relatively easy to decide
to store the result in a field of class Protocol. For updates, there are more issues
to consider. In particular, the update by setStrength in class Signal may affect the
query result. We want to incrementally maintain the stored query result as follows:
if the strength of the signal is changed from above threshold to below, then the
signal is removed from the query result; and if the strength is changed from below
threshold to above, then the signal is added. However, object abstraction makes
this more difficult.

Should setStrength in class Signal or some method in class Protocol take care of
the update? Clearly setStrength should initiate the update because it changes
the signal strength. However, recall the restriction that fields should be ac-
cessed directly only in the class where they are declared. Thus, setStrength
cannot or should not directly access and update the query result in Protocol,
or access other data that is needed for the update but is not in Signal, whereas
a method in Protocol can. Rather than giving setStrength access to those, a
method can be defined in Protocol and called from setStrength to perform the
update.

Now, how can a Signal object get a reference to the Protocol object to call the
defined method? Note that all and only members of signals need to get such
references. So when a Signal object is added to the signals field of a Protocol
object, a reference to the Protocol object, that is, self, can be passed to the
Signal object. To do this, the Signal class must define a method for taking the
reference to a Protocol object. Additionally, because a Signal object may be
added to signals of multiple Protocol objects, a Signal object must maintain
a set of references to these Protocol objects.

Finally, cost must be considered. Under what conditions will the transforma-
tions to achieve the aforementioned improve performance? In the straightfor-
ward implementation, each query takes O(#signals) time and each update
takes O(1) time; after the transformations, each query takes O(1) time and
each update takes O(#protocols) time, where #protocols is the number of
protocols whose signals field contains the signal being updated. So there is a
trade-off. In an application that has several or many signals but one or a few
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instances of Protocol, and where the query is performed at least as frequently
as the signal strengths change, the transformed implementation is much more
efficient.

The preceding discussion considers only one expensive query and one kind of
update. In general, there may be many expensive queries and many kinds of up-
dates that are interdependent. Even for the tiny program fragments in the straight-
forward implementation of the protocol example, we can see that the query result
of findStrongSignals needs to be updated also in addSignal of Protocol. How to in-
crementally maintain all the invariants involved under all updates in a coordinated
way, using a systematic and even automatic method?

The idea is to maintain invariants one at a time, just as in Chapter 3, but the
maintenance of an invariant at a set of updates may be much more sophisticated,
so a declarative language is desired for specifying the transformations and applica-
tion conditions. We describe incrementalization rules for specifying coordinated
maintenance of a query result at a set of updates to the values of the query pa-
rameters. Then we describe how to apply incrementalization rules, to maintain the
result of a single query as well as the results of any number of queries. Finally, we
discuss how to systematically develop incrementalization rules and build a library
of rules.

The resulting incrementalized implementation for the protocol example is shown
below. All commented lines are added lines compared to the straightforward im-
plementation, except that the one-line query in findStrongSignals has been re-
placed with a retrieval from the maintained query result.

class Protocol:
signals: set(Signal)
threshold: float
strongSignals: set(Signal) -- query result
...
def addSignal(signal):
signals.add(signal)
signal.addProtocol(self) -- add a query object
if signal.getStrength() > threshold: || maintain result under
strongSignals.add(signal) || element addition

def findStrongSignals(): return strongSignals -- retrieve query result
def signalModified(signal): ||
if signals.contains(signal): ||
if strongSignals.contains(signal): || define method for
if not signal.getStrength() > threshold: || maintaining
strongSingals.remove(signal) || query result under

else: || element modification
if signal.getStrength() > threshold: ||
strongSingals.add(signal) ||

...
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class Signal:
strength: float
protocols: set(Protocol) -- query-object set
...
def addProtocol(protocol): || define method for
protocols.add(protocol) || adding a query object

def setStrength(v):
strength := v
for protocol in protocols: || maintain result under
protocol.signalModified(self) || element modification

def getStrength(): return strength
...

...

Clearly, this implementation is significantly more complicated than the straight-
forward, clear, and modular implementation, even though the original expensive
query findStrongSignals is now much more efficient. Automated support for such
incrementalization is highly desired.

Incrementalization rules: core form

An incrementalization rule specifies how to incrementally maintain the invariant
that a result variable holds the result of an expensive query given a set of dif-
ferent kinds of updates to the values of the parameters of the query; it specifies
the maintenance work to be done at each kind of updates. The core form of an
incrementalization rule is

inv r = query
(at update
do maint)+

where query and update are patterns for matching queries and updates, respectively,
that are determined as described in the previous section, and maint is a sequence
of commands. The plus sign (+) around update and maintenance indicates that,
for a given query, there may be one or more kinds of updates to the values of its
parameters and corresponding maintenance.

In the core form above, the maintenance work corresponding to an update can
be done either before or after the update; this is correct if the maintenance code
does not use the values of the variables updated. For many kinds of queries and
updates, the maintenance work must be done before the update, not after, because
it uses values of variables before the update, and the update may change the value
of such a variable. Symmetrically, some maintenance work must be done after the
update, not before. To accommodate this, we allow the do clause to have the form

do (maint)?
(before maint1)?
(after maint2)?
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where maint can be done either before or after the update, maint1 must be done
before, and maint2 must be done after. A question mark (?) after a clause indicates
that the clause may be omitted.

To facilitate cost consideration, an incrementalization rule may specify the costs
of the query, updates, and maintenance, by including a cost clause of the following
form after each of them:

cost cost

where cost is a keyword, and cost is the cost of the corresponding query, update, or
maintenance operations. For ease of reading, we omit the keyword cost and align
the costs to the right.

For example, the following rule expresses that, to maintain the invariant r =

s.size()when all updates that may affect the size of s are s := new set(), s.add(x),
and s.del(x), the respective maintenance is setting r to 0, incrementing r by 1 if
x is not in s before the addition, and decrementing r by 1 if x is in s before the
removal; the cost of the original query is linear in the size of s, and the cost of
each update and maintenance is constant.

inv r = s.size() O(#s)

at s := new set() O(1)

do r := 0 O(1)

at s.add(x) O(1)

do before
if not s.contains(x):

r := r + 1

O(1)

at s.del(x) O(1)

do before
if s.contains(x):

r := r - 1

O(1)

At each update, the maintenance cost is no more than the update cost, so the
linear-time size query can be replaced by a constant-time retrieval from r at no
asymptotic cost increase in maintenance, regardless of the frequencies of queries
and updates.

Variables in the rules in italic font are called meta-variables. They are different
from variables in the program that is being transformed.

• A meta-variable in a query or update pattern may match any program seg-
ment, except restricted by the context of the specific occurrence of the vari-
able in the pattern. For example, in the rule for set size above, s and x are
meta-variables in the query and update patterns; s := new set() restricts s

to match a variable or field in the program being transformed, and s.add(x)
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restricts x to match an expression. Other parts of patterns are displayed in
teletype font and match program text exactly.

• The scope of a meta-variable in the query pattern is the entire rule, and the
scope of a meta-variable in an update pattern is the update clause and the
corresponding maintenance clause. For example, in the set size rule above, all
occurrences of s must match the same program segment, but occurrences of
x in two different update patterns need not match the same program segment.
When matching occurrences of a variable, the scoping rules of the program
being transformed are taken into account.

• In the presence of aliasing, we allow a meta-variable to match different pro-
gram variables that are aliases for the same object. This is because these
variables have the same value. For example, if s1 and s2 are aliases at an up-
date s2.add(x), then this update affects the invariant r1=s1.size(), just like
s1.add(x) does.

• Meta-variables, including r , used in maintenance but not in the query and
update patterns denote distinct names not used for other purposes in the pro-
gram being transformed in the scopes of these names. Such a name can be
defined in any scope that contains all uses of the name in maintenance, but
for program clarity and modularity, by default, it is defined in the smallest of
these scopes.

• Standard substitution is used to replace meta-variables in patterns with pro-
gram text: p[v �→ t] denotes p but with each occurrence of variable v in p

replaced with t . We always rename bound variables beforehand so they are
distinct.

Conditions and declarations

In general, an incrementalization rule may specify additional conditions on the
matched query and update patterns and may declare new variables, fields, meth-
ods, and classes for incremental maintenance. The conditions and declarations
may use meta-variables in the query and update patterns as well as other infor-
mation about the matched query and update. For convenience, a special meta-
variable, query, is used to refer to the matched query, and a special meta-variable,
update, is used after an at clause to refer to the matched update. Other information
used includes results from the following analyses:
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read(exp): set of parameters read by expression exp
write(cmd): set of parameters written by command cmd
type(exp): type of expression exp
vars(exp): set of free variables in expression exp
class(x): enclosing class of a program segment x

method(x): enclosing method of a program segment x

isfieldof(x, c): whether x is a field in class c

isupdatedin(x, c): whether field x of class c is updated in class c

A condition that must be satisfied by a query or an update, matched by the inv
clause or an at clause of a rule, respectively, may be specified by an if clause of the
following form, immediately after the inv clause or at clause, respectively, where
condition is a Boolean expression in the rule language that may use meta-variables
and analysis functions; an unbound meta-variable in a condition denotes a variable
to be instantiated.

if (condition)+

A declaration that is used by maintenance under multiple at clauses or a single
at clause may be specified by a de clause of the following form after the inv clause
or the at clause, respectively, where class is an expression in the rule language that
returns the name of a class, and declaration is a field or method declaration to put
in that class, except that, when the query and all updates are in the same method,
a variable is declared in that method instead of declaring a field. When class is
unspecified, the default is the class of the current query or update, respectively.

de ((in class)? (declaration)+)+

For example, the rule in Figure 6.1 maintains the result of a basic form of set
comprehension. In particular, as shown in the if clauses, it handles set initialization
and element addition and removal that are in the same class as the query, but
element modification, that is, change in a field of an element, in the class of the
element objects that is different from the class containing the query.

The first three at clauses are for updates in the same class as the query and are
simple: for r ={v in s | e}, when s is initialized, r is too; and when an element
x is added to or deleted from s, the condition e is tested for x and, if it holds, x is
added to or removed from r , respectively.

The fourth at clause handles element modification. It matches any command
that is an update to the value of a parameter of the query. The condition is that
s is a field of class(query), elements of s are from class(update), class(update) �=
class(query), a field f of the elements is used in the query, and the update updates
the field f of the self instance of class(update). The transformations for mainte-
nance do two things.

1. In class(update), a field qos is declared to hold the set of class(query) objects
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inv r = {v in s | e} O(#s× time(e))

if vars(e) ⊆ {v, self}
at s := new set() �� set initialization O(1)

if class(update) = class(query)
do r := new set() O(1)

at s.add(x) �� element addition O(1)

if class(update) = class(query)
do if e[v �→ x]:

r.add(x)

O(time(e))

at s.del(x) �� element deletion O(1)

if class(update) = class(query)
do if e[v �→ x]:

r.del(x)

O(time(e))

at cmd �� element modification O(time(cmd))

if isfieldof(s, class(query)), type(s) = set(class(update)),
class(update) �= class(query),
{v.f : vins} ∈ read(query), write(update) = {self.f}

de in class(update)
qos: set(class(query)) �� query-object set

def addqo(qo): || define method for

qos.add(qo) || adding a query object

in class(query)
def elementmodified(x): ||

if s.contains(x): || define method for

if r.contains(x): || maintaining

if not e[v �→ x]: || query result r

r.del(x) || under element

else: || modification to x

if e[v �→ x]: ||

r.add(x) ||

do after
for qo in qos: || maintain query result

qo.elementmodified(self) || under element modification

O(#qos× time(e))

at s.add(x) O(1)

if type(s) = set(c), c �= class(query), isfieldof(f, c), isupdatedin(f, c)

do x.addqo(self) �� add a query object O(1)

Figure 6.1 Rule for basic set comprehension.
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oq whose field s contains this class(update) object ou. In other words, the rule
maintains the additional invariant

oq ∈ ou.qos if and only if ou ∈ oq.s

A method addqo is defined for adding an object to qos. The last at clause of
the rule inserts code that calls addqo when an element is added to s.

2. In class(query), a method elementmodified is defined for updating r given a
class(update) object x: if x is not in s, do nothing; otherwise, if x is in r but
does not satisfy the condition e, remove x from r , and if x is not in r but
satisfies e, add x to r . Code is inserted after the element modification: for
each object qo in qos, elementmodified is called on qowith the self class(update)
object as argument.

The new methods addqo and elementmodified and field qos work together as fol-
lows. Recall that the goal is to incrementally maintain, in a class(query) object,
the result of a query over a set of class(update) objects when a class(update) object
is updated. First, when a class(update) object is added to the set queried by the
class(query) object, method addqo of the class(update) object is called to add the
class(query) object to qos—the set of class(query) objects that query over sets con-
taining the class(update) object. Then, when the class(update) object is updated, it
calls method elementmodified for all class(query) objects in qos to update the query
results in those objects.

The cost clauses say that a straightforward implementation of the set query takes
O(#s× time(e)) time, because testing the condition in the set comprehension
takes O(time(e)) time. An incremental implementation that maintains the query
result at each update can return a reference to the query result in O(1) time. The
query result can be maintained in O(1) time at initialization, in O(time(e)) time at
element addition and deletion, and in O(#qos× time(e)) time at any update to an
element’s field that the query depends on.

This rule is complicated. Indeed, just the fourth and last at clauses alone, with-
out the incremental maintenance code in the body of method elementmodified, al-
ready capture, precisely and at a meta level, the observer pattern. The observer
pattern allows an object, called the subject, here a class(update) object, to main-
tain a list of its dependents, called observers, here class(query) objects, and notify
them automatically about state changes, by calling a method of theirs. It is one of
the most important design patterns used in object-oriented programs, especially in
distributed event handling systems.

Incrementalization rules: general form

Back to the rule language, in general, work can also be done at the query to help
with incremental maintenance. Such work can be specified as a do clause below
the inv clause. For example, to incrementally maintain the average of a set, one
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may incrementally maintain the sum and the count, and do a division right before
the query, instead of doing the division immediately after maintenance of sum and
count.

Finally, in the do clause after an at clause, one could use the keyword instead to
indicate that the original update in the at clause is to be removed. This is especially
useful when an original update needs to be transformed. For example, the rule for
set size indeed has a problem: x might not be a variable, in which case all of add,
del, and maintenance have the cost of computing x . Rather than adding a condition
to limit x to a variable, we can reduce the cost of maintenance to O(1) by replacing
the do before clause under add with the following, and similarly for del:

do instead
v := x

if not s.contains(v):

r := r + 1

s.add(v)

Altogether, the general form of an incrementalization rule is

inv r = query
(if condition +)?
(de ((in class)? declaration +)+)?
(do (maint)? (before maint)? (after maint)?)?
(at update
(if condition +)?
(de ((in class)? declaration +)+)?
(do (maint)? (before maint)? (after maint)? (instead maint)?)? )+

where query, update, declaration, and maint are program text in the language of
the program being transformed, except that they may contain meta-variables, and
condition and class are a Boolean expression and a class-valued expression, respec-
tively, in the rule language.

Applying incrementalization rules

Given the meaning of each clause in an incrementalization rule as explained above,
we describe here how all clauses in a rule are applied together, and how to apply
any number of rules.

For performance improvement, the application of rules needs to use not only
the times but also the frequencies of the operations involved. We use freq(x) to
denote the frequency of executing a program segment x in its context.

An incrementalization rule applies if a query matches query, every update to
the values of the parameters of the query matches at least one update, and the
corresponding conditions, including the cost conditions in item 3 below, hold; all
transformations for the matched query and updates must be applied altogether, or
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none at all. Assuming that the meta-variables in a rule of the general form have
been instantiated for a specific query and for all updates to the query, the semantics
of applying the rule is:

1. Declare variable r in method(query), if method(update) = method(query) for
all update’s; declare field r in class(query), otherwise. Also,

• add the corresponding declaration’s as specified, and

• insert the corresponding maint’s before or after the query as specified.

2. Replace each occurrence of query in the same scope as the query with r .

3. At each update, where the corresponding condition’s hold, and either
time(maint) ≤ time(update) or the sum of time(maint) × freq(update), over
all update’s where time(maint) > time(update), is less than time(query) ×
freq(query),

• add the corresponding declaration’s as specified, and

• insert the corresponding maint’s before, after, or in place of the update as
specified.

For the protocol example, applying the rule for basic set comprehension in Fig-
ure 6.1, the incrementalized implementation is obtained from the straightforward
implementation. The query findStrongSignals in Protocol in the straightforward
implementation can be incrementally maintained at updates addSignal in Protocol
and setStrength in Signal. Testing the condition in the original findStrongSignals
query takes O(1) time. Thus it is easy to see, based on the rule for basic set
comprehension, that the original query takes O(#signals) time, while the new
query takes O(1) time, and incremental maintenance takes O(1) time at all up-
dates except for O(#protocols) time at element modification. The cost condi-
tion of this rule is satisfied when O(#protocols ≤ time(setStrength)), that is,
there are only a few protocols instances, or O(#protocols) × freq(setStrength) ≤
O(#signals)× freq(findStrongSignals), that is, the query is sufficiently frequent.

Now, consider applying incrementalization rules to maintain the results of mul-
tiple queries. If these queries are independent, that is, the parameters of one query
do not depend on the results of other queries, then the results of these queries can
be maintained simply by applying the rules independently to all the queries, either
simultaneously or one query at a time in any order.

To maintain the results of multiple queries that are not independent, that is,
queries where the parameters of some query depend on the results of other queries,
chains of dependencies among the queries must be followed. Dependencies arise
when an expensive computation has expensive subcomputations, but these depen-
dencies are acyclic, because they are between two nested computations or two
sequential computations. Incrementalization first maintains results of queries that
do not depend on results of other queries, with respect to updates to the values
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of its parameters, and then maintains queries that only depend on queries whose
results have already been updated, with respect to updates to those results. Fol-
lowing the chain of dependencies in this fashion is like applying the chain rule
in calculus, as we have seen in Chapter 3. This can be achieved by applying all
the rules to expensive queries following a topological order of the dependencies
among expensive queries.

In general, there may be multiple rules that apply to a query and all updates
to the values of its parameters. Because all the application conditions, including
cost considerations, are specified explicitly in rules, systematic methods and au-
tomated tools can be and should be developed to support the selection of the rule
or rules that lead to the best performance. At the lowest level, this includes data
structure selection. Declarative incrementalization rules facilitate the study of a
general method that works at all levels.

Developing incrementalization rules

We see that incrementalization rules can capture important program design and
development knowledge that is used repeatedly in constructing complex software
systems. This knowledge for refined and efficient designs and implementations
can be general-purpose or domain-specific. While some rules are easy to write,
others are nontrivial to develop. Therefore, three kinds of effort are needed:

1. Rules should be developed systematically, following general methods for
maintaining invariants, whenever possible.

2. A library of rules should be built to include also rules that we do not yet know
how to systematically develop.

3. The correctness of rules should be verified rigorously.

Methods described in previous chapters for deriving incremental maintenance,
for loops and arrays, set expressions, recursive functions, and logic rules, can be
used for developing large classes of incrementalization rules systematically, but
these methods must be extended to handle objects. Recall that objects do not add
fundamentally new constructs for either data or control, but merely provide en-
capsulation through modularity. This encapsulation can be removed by transform-
ing fields of objects into sets of tuples and transforming methods of objects into
functions that have an additional argument for the target object. Then, transforma-
tions described previously for sets and functions can be used to derive incremen-
tal maintenance for the transformed program. Finally, the resulting incremental
maintenance can be transformed back to fields and methods of objects, now incre-
mentalized.

Some incrementalization rules will be developed manually, for example, to cap-
ture new data structures. However, once developed, they can be put in a library of
rules and reused from application to application, as opposed to being rediscovered
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and manually embedded in scattered places in each application program. In fact,
there is no limit on the range of rules that can be included in the library, whether
manually or automatically derived. For example, the library may include rules for
arithmetic operations, as used for strength reduction, rules for bitwise operations,
as needed in hardware design, and rules for relational operations, as performed
in databases. Furthermore, depending on the operations on data, different data
structures can be used, such as heaps for element addition and minimum-element
deletion, and red-black trees for arbitrary element addition and deletion. Clearly,
the larger the library is, the more powerful incrementalization may become.

It is important to verify the correctness of incrementalization rules, especially
those developed manually, in that they correctly maintain the specified invariants
and capture the costs. Verifying invariants in programs is, in general, a very hard
problem, but three features make verifying incrementalization rules much easier
than invariants in programs. First, an incrementalization rule specifies an invariant
with all updates of certain kinds that may affect the invariant and the correspond-
ing maintenance together. Second, an incrementalization rule may explicitly spec-
ify applicability conditions about the queries and the updates, and the conditions
are assumed to hold and are checked only when the rules are applied to programs.
Third, an incrementalization rule is usually much smaller than application pro-
grams that perform incremental maintenance.

Exercise 6.6 (Incrementalizing join query across components*) Suppose two
relations R1 and R2 are maintained in two different classes, and a third class has
the following join query over R1 and R2:

{[x,y]: x in o1.R1, y in o2.R2 | if f(x) = g(y)}

What is the incremental maintenance code under an update that adds a new ele-
ment in R1? Write that in an incrementalization rule that handles this update. Is
this as simple, or as hard, as you had thought?

Exercise 6.7 (Incrementalizing attribute-based RBAC query*) Consider main-
taining the result of the query in Exercise 6.4. Can you design efficient incremental
maintenance code that handles the update that assigns a new location to a user?

6.4 Example: health records

Creating large-scale electronic health record (EHR) databases at a national level
has been under heated discussion and development for quite a number of years in
countries including the United States and United Kingdom. Clearly, there could
be millions or billions of objects of many kinds in such a system, and thus com-
ponents that encapsulate data and operations on objects are critical for the de-
velopment and organization of such a system. However, objects and classes are
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important even for much smaller aspects of such a system—the security and pri-
vacy policies of such a system.

Security and privacy concerns are, in fact, among the most important hurdles
for the creation of such large-scale databases, and how to specify and implement
the policies still poses research challenges. We discuss how to address the chal-
lenges by considering a formal policy for the proposed national EHR service of
the United Kingdom. The formal EHR policy consists of 375 rules in a variant of
Datalog with constraints, taking about 1,500 lines and 30 pages.

EHR service policy specification

Although a formal specification in Datalog with constraints provides good data
abstraction and control abstraction, two main problems make this specification
difficult to understand, use, and maintain:

1. The entire specification is a flat list of rules with no formal structure, and all
names are global, because the rule language used has no support for module
abstraction.

2. All dynamic updates are expressed indirectly as role activation and deac-
tivation, the two updates predefined outside the rule language, because the
language cannot express updates.

We show that the use of objects provides the module abstraction that is extremely
important for understanding such a large policy piece by piece, and the use of
direct updates makes it easy to tell what changes dynamically from what remains
unchanged in such a system.

The policy has an informal structure, used to group rules under sections and
subsections, each with a heading in English. Overall, there are four sections: spine,
patient demographics service, local health organizations, and registration author-
ities. Each section has a first subsection about main roles and one or more other
subsections, including consent, permissions, registration, sealing off data, refer-
rals, and a few others.

Fundamentally, each section really corresponds to a component; the main roles,
as well as a large number of other roles and relations, in that section should be the
data in that component; and the rules in that section essentially define the query
operations and implicit update operations. Clearly, these correspond to objects,
fields, and query and update methods. In the policy, most of the roles have data
about themselves and operations about themselves too, and therefore are also best
modeled as objects with fields and methods.

For example, the following rule in the spine section of the policy specifies that
the count-conceal-requests predicate about the count of y and the patient pat is
true if some entity x has activated the Conceal-request role with y as a parameter,
y is a 4-tuple (what, who, start, end), what is a 7-tuple as specified, and who is
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a 3-tuple as specified. So, for example, calling count-conceal-requests(n, john)
would find the number n of conceal requests about patient john.

count-conceal-requests(count〈y〉, pat)←
hasActivated(x, Conceal-request(y)),

what = (pat, ids, orgs, authors, subjects, from−time, to−time),

who = (orgs1, readers1, spectys1),

y = (what, who, start, end)

Structurally, a role for a Conceal-request operation should be an object of a class,
say called Conceal-request, that has 4 fields, one for each component of the 4-
tuple, and the first two fields are objects of two classes, say called What and Who,
respectively, with fields as specified:

class Conceal-request: class What: class Who
what: What patient: ... ...
who: Who ...
start: time
end: time

The set of entity-role pairs where the entity has activated the role, as captured by
the hasActivated predicate, should be kept in a relation, say called hasActivated, of
the spine component. Then, the following method counts the number of conceal
requests about patient pat.

def count-conceal-requests(pat):
return {y: [x,y] in hasActivated

| isinstance(y,Conceal-request), y.what.patient = pat}.size()

One can see here that representing data using objects and relations not only makes
the data in a component clearer but also makes the query simpler, clearer, easier
to write, and easier to read.

Efficient implementation for policy analysis and enforcement

Queries in the specification are the basis for policy analysis and enforcement.
Queries that involve computing aggregates and set expressions over an unbounded
number of objects, possibly across multiple classes, are expensive. Queries that
use recursion can be expensive too, although the recursive definitions used in the
EHR policy rules do not involve an unbounded number of recursive calls.

There are two ways in which our method for generating efficient implemen-
tations for expensive queries is important: (1) make queries efficient, as for the
join query in Section 3.6, when computing from scratch, and (2) make queries
incremental with respect to updates, as for RBAC in Section 3.5, when the values
of the query parameters change slightly at a time and the queries are performed
sufficiently frequently.

For example, consider the count query above. Clearly, the value of query pa-
rameter hasActivated changes. To make the query efficient, we may maintain two
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direct inverse maps: one from each patient to the set of What objects it is in, and
one from each What object to the set of Conceal-request objects it is in. This avoids
blindly enumerating hasActivated in the query, but enumerates it in a more focused
way using the two inverse maps starting with any patient. Maintaining these two
direct inverse maps, each mapping the value of a field to the containing object,
takes constant time at each update.

Alternatively, we may maintain instead a single inverse map from each pa-
tient to the set of Conceal-request objects it is in. This also avoids enumerating
hasActivated in the query, but enumerates it using the single inverse map, making
the query much more efficient, taking time proportional to the size of the resulting
set. However, maintaining this map requires an iteration at each update, similar to
the iterations needed to maintain the CheckAccess query in Section 3.5.

Finally, we may maintain, in addition to the single inverse map, a result map
from each patient to the resulting count, that is, the size of the set of Conceal-request
objects it is in. This introduces a constant-time overhead at each update to the re-
sulting set in the query, but allows the query to be answered in constant time. Of
course, which map or maps to incrementally maintain depends on the frequencies
of operations and total cost considerations.

Exercise 6.8 (Comparing object query and rule query*) Compare the count-
conceal-requests query specified using objects and sets with the same query spec-
ified using rules. You may notice that the query using objects looks simpler, or
at least is shorter. What do you think is the reason for this? Specifically, look at
things in the query using rules that are not present in the query using objects, and
where those things go. Which way do you think is better, and why?

Exercise 6.9 (Incrementalizing EHR policy query) For the count-conceal-
request query specified using objects and sets, how to maintain the result of the
query efficiently when elements are added and removed from hasActivated? Is that
as obvious for the same query specified using rules?

6.5 Example: robot games

Many games and simulations model real-world objects, such as players in a large
role-playing game, aircraft in an air traffic control simulation, or atoms in a protein-
folding simulation. Queries about the state of the system may combine the posi-
tions, orientations, speeds, and other attributes of the objects. At the same time,
objects may be added and deleted, and their attributes may change in many ways.
If there are n kinds of expensive queries and on average m kinds of updates that
might affect a query result, then a straightforward implementation would have
n + m clear and modular operations, each one performing exactly one kind of
query or update, but this may be inefficient when the queries and updates are re-
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peatedly performed. An efficient, sophisticated implementation could store some
of the query results and, at each kind of update, incrementally maintain each of
the stored results, yielding n ×m kinds of incremental maintenance in the worst
case.

Robocode score calculation

We use one of the robot games, Robocode, as an example, and we consider the
queries that calculate the scores; other kinds of queries can be specified and imple-
mented in a similar way. Robocode is an open-source programming game, where
competitors write programs, in an object-oriented language, that control a robot
tank that battles against other robot tanks in a playing field. Robots move, scan
for each other, shoot at each other, and hit the walls or other robots if they are
not careful. Although the idea of this game may seem simple, the actual strategy
needed to win is not. Some of the more successful robots use techniques such as
statistical analysis and neural networks in their designs.

Robocode keeps a collection of scores at any time during the game for use by
the game strategy and displays them in a table at the end of the game. The scores
are:

• totalScore: This is the sum of all scores and bonuses described below, and it
determines a robot’s rank in the battle.

• survivalScore: A robot that is alive scores 50 points every time another robot
dies. This score is the total of such points.

• survivorBonus: The last robot alive scores 10 additional points for each robot
that died. This bonus is the total of such points.

• bulletDamageScore: A robot scores 1 point for each point of damage it does to
an enemy. This score is the total of such points.

• bulletKillBonus: When a robot kills an enemy, it scores an additional 20% of
all the damage it did to that enemy. This bonus is the total of such points.

• rammingDamageScore: A robot scores 2 points for each point of damage it does
by ramming an enemy. This score is the total of such points.

• rammingKillBonus: When a robot kills an enemy by ramming, it scores an ad-
ditional 30% of all the damage it did to that enemy. This bonus is the total of
such points.

• totalFirst, totalSecond, totalThird: These do not actually contribute to score.
They are the number of rounds that a robot was placed 1st, 2nd, and 3rd,
respectively.

We represent the basic data that a robot uses for calculating scores as follows.
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The first two are kept globally and the rest are kept in the robot, indicated by the
prefix self.

all: all robots
live: live robots
self.allDamage[r]: damage to robot r by self, for each robot r
self.allKilled: set of robots killed by self
self.ramDamage[r]: damage to robot r by self through ramming, for each robot r
self.ramKilled: set of robots killed by self through ramming

Then the scoring calculation can be specified based on the given definitions using
the following queries.

totalScore = survivalScore + survivorBonus
+ bulletDamageScore + bulletKillBonus
+ rammingDamageScore + rammingKillBonus

survivalScore = 50 * #(all - live)
survivorBonus = if #live = 1 then 10 * #(all - live) else 0
bulletDamageScore = sum{1 * allDamage[r]: r in all}
bulletKillBonus = sum{0.2 * allDamage[r]: r in allKilled}
rammingDamageScore = sum{2 * ramDamage[r]: r in all}
rammingKillBonus = sum{0.3 * ramDamage[r]: r in ramKilled}

For real-time gaming, these scores are maintained incrementally in Robocode
at each event that affects the values that the scores depend on. The incremental
calculation is programmed in different methods, to be called at corresponding
events. Even though all the methods for calculation are defined in one file, the
invocations of these methods are spread over different places in different files that
handle different events.

Incrementalize

Using the method described in this chapter, these scores can be incrementally
maintained, automatically, as the basic data in the state of the robots change, and
the incremental maintenance code can be derived automatically. For the queries
above, the following additional values are maintained:

deadCount = #(all - live)
liveCount = #live

These values and the scores must be incrementally maintained. For example, at a
DeathEvent, of a robot r, killed by robot s, through ramming, the following basic
data will be updated:

live -:= {r}
s.allKilled +:= {r}
s.ramKilled +:= {r}

and the following incremental update code will be derived, where the three groups
correspond to the three updates above:
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deadCount +:= 1
liveCount -:= 1
survivalScore +:= 50
totalScore +:= 50
if liveCount = 1:
survivorBonus +:= 10
totalScore +:= 10

bulletKillBonus +:= 0.2 * allDamage[r]
totalScore +:= 0.2 * allDamage[r]

rammingKillBonus +:= 0.3 * ramDamage[r]
totalScore +:= 0.3 * ramDamage[r]

Such incremental maintenance must be done at all possible updates to all basic
data.

Automatically deriving such incremental maintenance helps improve both the
correctness of programs and the productivity of program development, especially
when the method is used for more critical applications, such as telecommunication
networks or medical devices, that require complicated event handling with fast
response time.

Exercise 6.10 (Cost analysis for Robocode score calculation) In Robocode
score calculation, what is the cost of computing totalScore from scratch? What is
the cost of computing it incrementally after a DeathEvent?

Exercise 6.11 (Dead code in incrementalized Robocode score calculation) In
Robocode score calculation, why do we maintain deadCount and liveCount? You
may note that it is not necessary to maintain deadCount. Why?

6.6 Invariant-driven transformations:
incrementalization rules as invariant rules

Incrementalization rules express coordinated transformations driven by the need
to maintain invariants. Although they were meant for design and optimization, that
is, transforming clear high-level specifications into efficient low-level implemen-
tations, they can also be used in the reverse direction, that is, understanding low-
level programs and reverse engineering them into high-level specifications. They
can also be used in validating and verifying low-level programs against high-level
specifications, and in general transformations, including program refactoring, and
program instrumentation for runtime monitoring, profiling, and debugging.

Invariant rules

Before discussing different usages of incrementalization rules, we first interpret
incrementalization rules as invariant rules by giving them a declarative semantics.
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Recall that an incrementalization rule is of the following core form, with three
key components: invariant, updates, and maintenance. Conditions help specify the
queries and updates to be matched, and declarations help specify the maintenance.

inv r = query
(at update
do maint)+

We say that such a rule preserves the invariant r =query, if (1) r =query holds after
initialization of r and (2) for each pair of update and maint, if r =query holds, then
it still holds immediately after execution of update and maint, for all instances of
query, update, and maint. It is easy to see that preserving an invariant is a property
that can be checked individually for each rule.

The declarative semantics of an invariant-preserving rule is: for a variable and
a query that match r and the query pattern, respectively, the value of the variable
equals the result of the query if every update to the values of the parameters of the
query matches at least one of the update patterns, and at each update that matches
an update pattern, the maintenance that matches the corresponding maint pattern is
performed.

Maintaining invariants for design and optimization

Obviously, invariant rules can be used for incrementalization, as we have seen
earlier in this chapter. That is, according to invariant rules, efficient implementa-
tions of expensive queries can be obtained by (1) introducing variables to hold
the results of the queries, (2) inserting code that corresponds to each update to
incrementally maintain the results of queries at all updates to the values of the
parameters of the queries, and (3) replacing the queries by retrievals from the
variables that hold the results of the queries. The invariant maintained is that the
value of a variable introduced to hold a query result always equals the result of the
query.

Such incrementalization is at the center of design and optimization in the pro-
gram development process, because it transforms high-level specifications con-
taining queries that are easy to understand but inefficient to execute into sophisti-
cated but efficient implementations containing low-level maintenance operations.
Such design and optimization methods are an essential part of formal methods for
program synthesis and refinement. Invariant rules specify not only all the query,
update, and maintenance operations, but also costs of all of them, making it possi-
ble to give clear performance guarantees, which are generally lacking in program
development methods.

As we have seen in Section 6.3, expressing coordinated incremental mainte-
nance of invariants using invariant rules is high-level and declarative, which helps
make complex general transformations easier to understand, use, extend, and ver-
ify. The semantics of the rules encapsulates many low-level details. For example,
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all updates to the values of the parameters of a query must be detected, one way
or another, even in the presence of object aliasing, and maintenance must be per-
formed at all updates. While it may be difficult to manually maintain queries under
scattered updates, doing so by automatically applying a library of invariant rules
is easy. Thus, languages and frameworks that facilitate the specification and ap-
plication of invariant rules help increase developers’ productivity.

Discovering invariants for understanding and reverse engineering

While transforming straightforward implementations into efficient implementa-
tions is important for developing new programs, it does not help with existing
programs, which are generally not at all straightforward. Key challenges in deal-
ing with existing real-world programs are program understanding and reverse en-
gineering, which are the opposite of optimization and refinement. Can invariant
rules help with such design recovery activities?

In real-world programs, for acceptable performance, results of expensive queries
that are frequently performed are already incrementally maintained, but the invari-
ants are implicit in the program, perhaps not even mentioned in the documenta-
tion, so the much harder problem is how to discover the invariants. For example,
we may see that the value of a certain variable is returned at some places in the
program and is updated in various ways at other places, and it could have any
name and appear without comments, how do we know that it might be holding the
size of a list, or the result of some more complicated query?

Because invariant rules are high-level and declarative, they allow us to observe
that, given an incrementalization rule, if, at every update to the values that the
invariant depends on, the corresponding maintenance is performed, then the in-
variant holds. For example, according to the invariant rule for maintaining the size
of a set, if at all updates to a set, the corresponding maintenance operations in the
rule are performed on a certain variable, and the variable is not updated anywhere
else, then we can conclude that the variable holds the size of the set. While it is
not hard to make this observation given invariant rules, it is much harder to make
this observation if the transformations are expressed as lower-level rewrite rules
with certain strategies for tree walking, program analysis, and rule applications.

Understanding and reverse engineering real-world programs is not at all so sim-
ple. In particular, the maintenance corresponding to an update is often not done
immediately before or after the update, that is, they are decoupled; in fact, mainte-
nance for different updates may be batched together. Discovering all invariants for
arbitrary programs is in general impossible. However, a framework for discovering
invariants can try to take such decoupling into account. In fact, such decoupling is
a common source of errors in programs, and detecting violations of even simple
patterns of coupling is effective for finding bugs.
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Checking invariants for validation and verification

Program verification is an important and extensively studied topic. A central prob-
lem is to verify or check that certain invariants are preserved by a program. This is
different from either optimization or reverse engineering. How can invariant rules
help?

For program verification, both the program and the invariant to be verified are
given, and the program contains updates and maintenance. In terms of invariant
rules, we can see that optimization yields incremental maintenance given the in-
variant and updates, reverse engineering leads to discovery of the invariant given
the updates and maintenance, and verification boils down to checking consistency
when all three of the desired invariant, updates, and maintenance are given. For
example, we may be given a program where the value of a certain variable is re-
turned at some places and updated at other places, and an invariant that the value
of the variable equals the size of a linked list at a certain place, and we are asked
to prove that the invariant holds at that place.

While one could use traditional verification methods—collecting relevant facts
about the program and proving the invariant using theorem provers, doing abstract
forms of exhaustive checking using model checkers, or adding checks for runtime
verification, invariant rules provide three additional ways. First, one could start
with the invariant and all updates, as for invariant maintenance, and then verify
more locally that the corresponding maintenance is performed at each update.
Second, one could search for relevant updates and maintenance in the program, as
for invariant discovery, and then verify more simply that the discovered invariant
is equivalent to the desired one. Third, one could insert incremental maintenance
code for efficient runtime verification. For example, to verify that a variable v

holds the size of a list at a program point p at runtime, one can insert code that
maintains the size in a fresh variable, say v′, incrementally at each update accord-
ing to the rule and checks that v = v′ at p; this avoids having to compute the
size of the list at p. The first two methods must address the general problem that
maintenance is often not done immediately at each update, the same problem of
decoupling as for discovering invariants.

There is an advantage in using invariant rules for verification. When verification
fails because of an error in the program or the invariant, a challenging problem is
to find fixes to the program or the stated invariant. Invariant maintenance based
on invariant rules can help find fixes to the program based on correct maintenance
code, and invariant discovery based on invariant rules can help find a correct in-
variant.

General program transformations

While invariant rules are designed to express coordinated transformations that to-
gether preserve invariants, they can also express general program transformations
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that do not require such strong coordination. Nevertheless, it is important to note
that general program transformations also preserve various kinds of invariants, al-
beit generally done implicitly. Invariant rules can help make the invariants more
explicit, and help express these transformations more easily and declaratively.
We discuss examples in program instrumentation for profiling, runtime invariant
checking, and debugging, and in program refactoring.

Program instrumentation transforms a program to do additional logging, check-
ing, and so on at runtime. It is important for addressing performance, security, and
general correctness issues, by profiling frequencies of operations, monitoring ac-
cesses to data, and so forth. The invariants are that the behavior of the involved
program fragments is preserved and the additional logging, checking, and so on
are done when certain conditions hold. For example, to profile the frequencies
of queries and updates, to help justify incremental maintenance of invariants, an
invariant rule can match the queries and updates and increment a corresponding
counter when a query or update is executed. For another example, to monitor and
check a complex invariant efficiently at runtime, an invariant rule can be used to
incrementally maintain the results of expensive computations needed for check-
ing the invariant. Invariant rules for these two examples can in fact be generated
automatically from the invariant rules for incremental maintenance.

Debugging is one of the most involved and often tedious programming activ-
ities, because one has to do all kinds of tracing and logging to help understand
code details and determine the causes of bugs. Instrumentation to help debugging,
for example, to log specified kinds of events, can easily be inserted with invariant
rules. For example, to track where the value of a variable was last changed to a
bad value, an invariant rule can match all assignments to that variable and appro-
priately record the program point when the variable is last assigned the bad value.
In general, powerful queries can help debugging significantly, and invariant rules
can incrementally maintain the results of expensive queries.

Program refactoring generally refers to transformations that improve code qual-
ity, for example, readability, extensibility, or modularity. Typical examples are re-
naming variables and turning blocks of code into subroutines. It is not hard to
observe the invariants. For example, for renaming variables, the invariant is that
the value of the old variable in a desired context always equals that of the new
variable. For introducing subroutines, the invariant is that the original block of
code is equivalent to the introduced subroutine call. A nontrivial issue in refac-
toring is the preservation of semantics. For example, when one wants to rename
variable i to interest in a certain context or scope, other occurrences of i should
not be changed. Invariant rules preserve such semantics because scoping rules of
the programs transformed are taken into account.

Exercise 6.12 (Runtime invariant checking*) Write an incrementalization rule



6.7 Querying complex object graphs 183

for efficiently checking the invariant that a variable v holds the size of a set S at
a given program point, while S can be initialized to empty and have an element
added or removed, and reporting an error when this invariant is violated. You
may assume that a statement, x := S.size(), where x is a fresh variable, has been
inserted at the given program point.

Exercise 6.13 (Profiling query and updates*) Write an incrementalization rule
for profiling the frequencies of size queries and updates for each set by counting
the number of queries and the number of each kind of updates for each set.

6.7 Querying complex object graphs

Objects are related to each other, and the relationships can be complex. These re-
lationships among objects form a graph, called object graphs, where the objects
are vertices, and the relationships are edges. Objects may include all attribute val-
ues and even classes. Relationships may include attribution, which relates objects
and their attribute values, instantiation, which relates classes and objects of those
classes, and subclassing, which relates classes and their subclasses.

While queries over objects and their relationships can be written using set ex-
pressions, recursive functions, and logic rules, a large class of queries can be
expressed more easily as regular path expressions. A regular path expression
is an extended regular-expression pattern, defined below, over paths in object
graphs, where a path is a sequence of the form [vertex1] edge1 [vertex2] edge2

... [vertexk].
A regular expression is a concise way of representing a set of sequences of

constant symbols, where segments of a sequence may be concatenated, may have
alternatives, and may be repeated. For example, a(b|c)d* represents the set of
sequences where each sequence is a followed by b or c (denoted by b|c) followed
by zero or more d’s (denoted by d*). The concatenation, alternative, and repetition
can also be nested. For example, (ab|cd)* denotes a sequence of zero or more
pairs, where each pair is either a followed by b or c followed by d.

An extended regular-expression pattern is a regular expression extended with
variables and a number of convenient notations. Thus, vertices and edges to be
matched can be expressed with not only constant symbols but also variables. If a
vertex does not matter to the query, the vertex with its enclosing [] can be omitted
from the query. In the examples below, we assume that x, y, and z are variables,
and all other symbols are constants.

For an example query, consider an object graph that captures a social network,
where vertices include people and other values of interest, such as email addresses,
cities, and jobs, and edges include relationships, such as friend, relative, location,
and affiliation, among people and other values. Suppose kay is moving to the city
ithaca, to attend Cornell University, but she does not have any friend there, and
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she would like to find whether there is any friend’s friend there. She can use the
following query to return the set of people x who is a friend of a friend of kay and
whose city is ithaca:

x: [kay] friend friend [x] city [ithaca]

Expressing this query using a path expression is slightly easier and clearer than
using a set comprehension, such as the following:

{ x: x in kay.friend.friend | x.city = ithaca }

Of course, kay could also find the intermediate friend whose friend lives in ithaca,
by inserting [y] in between the two occurrences of friend and returning the pair
x,y instead of x. Also, she could check not only friends but also relatives by using
friend|relative in place of friend. Expressing these queries using set comprehen-
sions is more complex.

For a more interesting query, we show the use of repetition. Suppose tom would
like to find all relatives whose hometown is not usa. Because all relatives include
relatives’ relatives, repeatedly, he can use the following query:

x: [tom] relative relative* [x] hometown [y] and y!=usa

Because of the use of repetition, it is impossible to write this query using a set
comprehension. It is possible to write it using Datalog with constraints, as follows,
but this is more complicated and less clear.

relative(x,y) -> allrelative(x,y)
relative(x,z), allrelative(z,y) -> allrelative(x,y)
allrelative(tom,x), hometown(x,y), y!=usa -> return(x)

Graph queries can in fact be implemented by transforming them into set com-
prehensions or Datalog with constraints, and then applying our methods for im-
plementing these other kinds of queries.

Exercise 6.14 (Simplifying graph query*) Consider the graph query discussed
that computes relatives of tom whose hometown is not usa. Recall that negation of
an expression e can be expressed as not e. Can you make the query simpler?

Exercise 6.15 (Slightly changed graph query) Consider the graph query dis-
cussed that computes relatives of tom whose hometown is not usa. How to return
the set of hometowns of relatives of tom that are not from usa?
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7
Conclusion

We have shown a systematic method that succeeds in designing efficient imple-
mentations for many problems in many application domains starting with clear
specifications of these problems using high-level language constructs. The method
is systematic by being based on the language constructs used in the specifications
and being guided by the cost considerations taken from the application domains.

The method, even though consisting of Steps Iterate, Incrementalize, and Im-
plement in order, is driven by the middle step—Step Incrementalize. Because ef-
ficient computations on nontrivial input must proceed repeatedly on incremented
input, Step Incrementalize aims to make the computation on each incremented in-
put efficient by storing and reusing values computed on the previous input. Steps
Iterate and Implement are enabling mechanisms: to maximize reuse by Step Incre-
mentalize, Step Iterate determines a minimum input increment to take repeatedly;
to support efficient access of the stored values by Step Incrementalize, Step Im-
plement designs a combination of linked and indexed data structures to hold the
values.

We first take a deeper look at incrementalization, showing how to systemat-
ically exploit the previous result, intermediate results, and auxiliary values for
incremental computation. This will use simple examples specified using recursive
functions, followed by several different sorting programs as additional examples.
We then discuss abstractions in general, focusing on the importance of and prin-
ciples for not only building up, but also breaking through, abstractions. The latter
may sound surprising at first, but it is natural when query functions are incremen-
talized with respect to updates. We then describe issues with implementations and
experiments for the method, including in particular the analyses needed and their
automation. Finally, we point out current limitations and future directions.

187
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Notations

For ease of reading in generic discussions and in examples, this chapter uses a few
new notations.

• The operation ⊕ denotes a generic increment operation. It takes a previous
input x and a change parameter y and returns a new input, denoted x⊕ y.

• The functions f̄ , f̂ , and f̃ denote extended versions of f that return additional
values—all intermediate results, useful intermediate results, and useful inter-
mediate results and auxiliary values, respectively—besides the return value
of f .

• In examples, following tradition, we use cons(h, t) to construct a list with
head element h and tail list t; use hd(l) and tl(l) to select the head and tail,
respectively, of list l; use nil to construct an empty list; and use null(l) to test
whether l is an empty list. For complexity analysis, we use n to denote the
length of the input list.

Additionally, in examples, we use boldface font for keywords and italic font for
the rest, rather than all in teletype font.

7.1 A deeper look at incrementalization

We describe the essence of a transformational approach that exploits the previous
result, determines intermediate results, and discovers auxiliary values for incre-
mentalization in a general and systematic way.

We first define the notion of incremental program precisely using the notation
⊕. Given a program f and an operation ⊕, a program f ′ is called an incremental
version of f under ⊕ if f ′ computes f(x⊕ y) efficiently by making use of f(x), in
addition to x and y. Here are some examples:

• Suppose f is a program sort, x is a list of numbers, and ⊕ prepends a number
y to the old input x, that is, x⊕y is cons(y, x). Then f ′ can be a program sort′

that inserts y at the appropriate place in the sorted list sort(x). If r = sort(x),
then sort′(y, r) = sort(cons(y, x)). While computing sort(cons(y, x)) from
scratch takes Ω(n log n) time, computing sort′(y, r) by inserting y into r takes
only O(n) time.

• Suppose we write computer programs that are compiled into code in some
machine language before running, where f is a compiler, x is a program,
and ⊕ performs changes to the program. Then f ′ is an incremental compiler
that compiles a new program by updating the old compiled code rather than
compiling from scratch.

• For general iterative computer programs, f is a loop body, x is the loop
variable, and ⊕ increments the loop variable. Then f ′ is a general strength-
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reduced version, like one from strength reduction, that computes each itera-
tion incrementally based on the result of the previous iteration.

Given a program f and an operation ⊕, the goal is to derive an incremental
program that computes f(x⊕ y) efficiently by using

P1. the previous result f(x), that is, the return value of f(x),

P2. the intermediate results of f(x), that is, values computed in computing f(x),
not necessarily the return value, and

P3. auxiliary values for f(x), that is, values not computed in computing f(x) and
that can be inexpensively maintained for efficiently computing f(x⊕ y).

Using the value of f(x) gives incrementality, that is, ability to reuse, in contrast
to computing f(x ⊕ y) from scratch; using the intermediate results of f(x) gives
greater incrementality than using only the value of f(x); using auxiliary values
gives even greater incrementality than using only the return value and the interme-
diate results. We use P1, P2, and P3 to denote these three subproblems. Although
P2 is much harder than P1, and P3 is much harder than P1 and P2, we will see
that solution to P2 is reduced to solution to P1, and solution to P3 is reduced to
solutions to P1 and P2.

We use the program cmp in Figure 7.1 as a small example to illustrate our
approach. It compares the sum of odd positions and the product of even positions
of list x. We use the same language to describe the operation ⊕. For example, we
may have x⊕ y = cons(y, x).

def cmp(x) : sum(odd(x)) ≤ prod(even(x))

def odd(x) : if null(x) then nil

else cons(hd(x), even(tl(x)))

def even(x) : if null(x) then nil
else odd(tl(x))

def sum(x) : if null(x) then 0

else hd(x) + sum(tl(x))

def prod(x) : if null(x) then 1
else hd(x) ∗ prod(tl(x))

Figure 7.1 An example program.

P1: exploiting the previous result

Suppose that we have computed f(x) and obtained its result r, as depicted on the
left of Figure 7.2, and that we want to compute f(x ⊕ y) on the right. Clearly,
all subcomputations of f(x ⊕ y) depend on either x or y. For those that depend
on y—a new parameter—we do not attempt to reuse the old result r. For those
that depend only on x, for example, f(x), as shown in the box for f(x ⊕ y), we
avoid recomputation by replacing them with retrievals from the old result r. Thus,
the idea is to symbolically transform f(x ⊕ y) to separate subcomputations on
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x from those on y and replace those on x with retrievals from r. The resulting
program f ′ may depend on x, y, and r, and it satisfies that if f(x ⊕ y) = r′ then
f ′(x, y, r) = r′, as shown on the right at the bottom of Figure 7.2. To summarize,

f(x)
...

|
r −→

f(x⊕ y)
...

f(x)
...
⇓

f ′(x, y, r)

replace with r

f(x) = r f(x⊕ y) = r′ =⇒ f ′(x, y, r) = r′

Figure 7.2 Exploiting the previous result.

we first introduce function f ′ to compute f(x ⊕ y), with the cached result r of
f(x) as an extra argument besides x and y. Then, we do two things to obtain
a definition of the incremental version: (1) unfold (i.e., expand f(x ⊕ y) using
definitions of f and ⊕) and simplify, and (2) replace subcomputations using the
cached result (based on identity, for the case that f(x) appears in the expanded
f(x ⊕ y)). Finally, we replace a function call to f with a call to the incremental
version f ′. Replacement of a subcomputation may cause other subcomputations
on which the replaced subcomputation depends to become dead code. Thus, dead
code elimination is performed at the end.

We can do much better than only directly using the value of f(x). We exploit
the semantics of each program construct, that is, data structures and control struc-
tures. For example, if the return value r of f(x) is a tuple, and g(x) is a component
of the tuple, then the value of g(x) can be retrieved from r, as depicted by g(x)

sitting on the bottom of the box for f(x) on the left of Figure 7.3. Thus, a sub-
computation g(x) in f(x⊕ y) on the right can be replaced with a retrieval from r,
based on equality reasoning. Also, subcomputation g(x) in f(x ⊕ y) on the right
may appear in certain context, for example, in the true branch of a conditional ex-
pression. If f(x) on the left can be specialized to g(x) under the same condition, by
auxiliary specialization—specialization of f(x) to help transform f(x ⊕ y), then
the value of g(x) on the right can be retrieved from r in this branch, even if it may
not be retrievable in the other branch. The transformation steps are as previously
summarized, except that replacements using the cached result are based also on
equality reasoning and auxiliary specialization, as discussed above.

A number of important analyses and transformations are used here. Unfold-
ing and algebraic simplification are among the most basic transformations, while
equality reasoning and auxiliary specialization, which can be regarded as equality
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value
retrievable

from r

f(x)
...

g(x)

|
r −→

f(x⊕ y)
...

g(x)
...
⇓

f ′(x, y, r)

replace
with retrieval

from r

f(x) = r f(x⊕ y) = r′ =⇒ f ′(x, y, r) = r′

Figure 7.3 Exploiting the previous result (continued).

reasoning under conditions, could be arbitrarily powerful. However, limiting the
power of these transformations, by using simple rewrite rules on data structures
and control structures, such as hd(cons(a, b)) = a and (if true then a else b) = a,
and using fully automatable analyses for arithmetic and Booleans, we are able to
derive incremental programs for all the examples discussed in this book and many
more. Two efficient static analyses are also used: a forward dependence analysis
to identify subcomputations depending only on x, and a backward dependence
analysis to identify dead code.

As for most program transformation techniques, it should be noted that the
quality of the resulting program depends on that of the original program. In the
worst case, if no replacement with retrievals can be done, then f(x⊕y) is computed
from scratch. We will show in the next section how our method derives different
incremental programs for three different sorting programs.

For example, consider the given function sum and the operation ⊕ below.

def sum(x) : if null(x) then 0
else hd(x) + sum(tl(x))

x⊕ y = cons(y, x)

We introduce sum′(x, y, r), where r = sum(x), to compute sum(cons(y, x)). Ex-
panding sum(cons(y, x)) yields

if null(cons(y, x)) then 0
else hd(cons(y, x)) + sum(tl(cons(y, x)))

where the condition is simplified to false, the first operand of + is simplified to
y, and the argument of sum is simplified to x. Then replace sum(x) with r. We
obtain

def sum′(y, r) : y + r

where parameter x to sum′ is dead and eliminated. We have, if r= sum(x), then
sum′(y, r) = sum(cons(y, x)). While sum(cons(y, x)) takes O(n) time to com-



192 7 Conclusion

pute, sum′(y, r) takes only O(1) time and needs one unit of space to hold the old
result.

P2: caching intermediate results

Often, intermediate results of f(x) that are not retrievable from the return value
are useful for efficient incremental computation. This is illustrated in Figure 7.4,
which is the same as Figure 7.3 except for the two additional boxes for g1(x) and
the additional line of formulas for f̂ at the bottom. Basically, a subcomputation
g1(x) in f(x ⊕ y) on the right may also be computed in computing f(x) on the
left, but its value is not retrievable from the result r of f(x). If we know which
intermediate results of f(x) are useful for the incremental computation, then we
can extend f(x) to f̂(x) that returns also these results in r̂, as shown on the left
of the bottom line in Figure 7.4; then an incremental version f̂ ′ of f̂ under ⊕
can use these results in r̂ and compute the corresponding results for f̂(x ⊕ y), as
shown on the right of the bottom line in Figure 7.4. The hard problem is that f(x)

value not
retrievable

from r

f(x)
...

g1(x)
...

g(x)

|
r −→

f(x⊕ y)
...

g1(x)
...

g(x)
...
⇓

f ′(x, y, r)

f(x) = r f(x⊕ y) = r′ =⇒ f ′(x, y, r) = r′

f̂(x) = r̂ f̂(x⊕ y) = r̂′ =⇒ f̂ ′(x, y, r̂) = r̂′

Figure 7.4 Caching intermediate results.

may compute a huge number of intermediate results. How can we identify useful
intermediate results?

We can use a three-stage method called cache-and-prune. Stage I constructs a
function f̄ that extends f to return all intermediate results computed by f . The
return value of f̄ is a tree structure, mirroring the control structure incurred by
(recursive) function calls, where the original value of f is, for convenience, the
leftmost child of the root. Now that all intermediate results are cached in the return
value of f̄ , Stage II incrementalizes f̄ under ⊕ to obtain an incremental version
f̄ ′ that can use all of them, as done for P1. Function f̄ ′ computes a new tree of
intermediate results, but only the result corresponding to the new value of f—the
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value of f(x⊕y), at the leftmost child of the new tree—is originally desired. Stage
III analyzes f̄ ′ to determine all cached values needed for computing the desired
value and prunes out the rest in both f̄ and f̄ ′, yielding f̂ and f̂ ′, respectively.

The cache-and-prune method for P2 consists of three relatively independent
stages and thus is modular. Stage I enables maximum speedup via reuse by pro-
viding all intermediate results possibly used by Stage II. Stage II uses these inter-
mediate results for the exclusive purpose of incrementalization and is reduced to
P1. Stage III yields minimum space usage by preserving only intermediate results
used by Stage II. Thus, the overall method for P2 has a kind of optimality—the
best any caching method can do—with respect to the method used in Stage II. The
analyses and transformations used for Stages I and III are simple and efficient.

The method for P2 can be used for general program optimization via caching,
by incrementalizing the body of a loop or recursion. Because intermediate results
are computed by the original program anyway, caching and using them will not in-
crease the asymptotic running time of the transformed program. It can drastically
decrease the running time if the original program performs repeated subcomputa-
tions, as we have seen in the examples in Chapter 4.

For example, consider the given function cmp and the operation ⊕ below.

def cmp(x) : sum(odd(x)) ≤ prod(even(x))

x⊕ [y1, y2] = cons(y1, cons(y2, x))

Clearly, if we cache intermediate results sum(odd(x)) and prod(even(x)), then an
incremental version only needs to add y1 to the former and multiply y2 by the
latter.

Let us use cache-and-prune. First, caching all intermediate results yields func-
tion cmp below, where functions odd, sum, even, and prod return their interme-
diate results in a similar fashion and are omitted. Recall that we use [ ] to denote
a tuple, and selectors 1st, 2nd, and so on to select the corresponding components
of a tuple. Then, incrementalizing cmp under the given ⊕ yields function cmp′

below, such that if r̄= cmp(x), then cmp′(y1, y2, r̄) = cmp(cons(y1, cons(y2, x))).

def cmp(x) :

let u1 := odd(x) in
let u2 := sum(1st(u1)) in
let u3 := even(x) in
let u4 := prod(1st(u3)) in
[ 1st(u2) ≤ 1st(u4), u1, u2, u3, u4 ]

def cmp′(y1, y2, r̄) :
let u1 := [ cons(y1, 1st(2nd(r̄))), 2nd(r̄) ] in
let u2 := [ y1 + 1st(3rd(r̄)), 3rd(r̄) ] in
let u3 := [ cons(y2, 1st(4th(r̄))), 4th(r̄) ] in
let u4 := [ y2 ∗ 1st(5th(r̄)), 5th(r̄) ] in
[ 1st(u2) ≤ 1st(u4), u1, u2, u3, u4 ]

Finally, pruning all returned components not needed for computing 1st(u2) ≤
1st(u4) in cmp′(y1, y2, r̄), we obtain functions ĉmp and ĉmp

′ below. They sat-
isfy that, if r̂ = ĉmp(x), then ĉmp

′
(y1, y2, r̂) = ĉmp(cons(y1, cons(y2, x))), and
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cmp(x) = 1st(ĉmp(x)).

def ĉmp(x) : let v1 := sum(odd(x)) in
let v2 := prod(even(x)) in
[ v1≤ v2, v1, v2 ]

def ĉmp
′
(y1, y2, r̂) : let v1 := y1 + 2nd(r̂) in

let v2 := y2 ∗ 3rd(r̂) in
[ v1≤ v2, v1, v2 ]

While cmp(cons(y1, cons(y2, x))) takes O(n) time, ĉmp
′
(y1, y2, r̂) takes only O(1)

time and needs two additional units of space for two intermediate results.

P3: discovering auxiliary values

Sometimes, auxiliary values not computed by f(x) at all are useful for efficient
computation of f(x⊕ y). However, it is difficult to discover such values. Even for
manually derived incremental algorithms, only a small number of special auxil-
iary data structures have been studied. We propose a systematic method that can
discover a general class of auxiliary values. The idea is illustrated in Figure 7.5
and is explained below. Note that Figure 7.5 is the same as Figure 7.4 except for
the additional box for h(x) on the right and the different bottom line of formulas.

The method has two phases. In Phase A, we transform f(x ⊕ y), shown on the
right of Figure 7.5, to separate subcomputations on x from those on y, as done
for P1. If the value of a subcomputation, for example, g(x) or g1(x) in the box for
f(x ⊕ y), can be retrieved from the return value of f(x) or an intermediate result
of f(x), for example, as g(x) or g1(x) respectively in the box for f(x) on the left,
then it is left alone. However, if the value of a subcomputation depending only on
x, for example, h(x) in the box for f(x⊕ y), cannot be retrieved from either, then
it is collected as a candidate auxiliary value. In Phase B, we determine whether
such values can be used and maintained for efficient incremental computation, as
done for P2. We extend f(x) to compute and cache the candidate auxiliary values,
as well as intermediate results, incrementalize the resulting program, and prune
out useless values and computations. This yields the resulting programs f̃ and
f̃ ′, where f̃ returns useful intermediate results as well as auxiliary values, and f̃ ′

incrementally uses and maintains them, as shown in the bottom line of Figure 7.5.

The overall method for P3 is composed of analyses and transformations similar
to those used for P1 and P2. Phase A uses transformations as those for P1, fol-
lowed by a forward dependence analysis to identify subcomputations depending
on x but not replaced with retrievals from the result of f̄(x), that is, subcom-
putations that are not the return value or intermediate results. Phase B uses the
transformations for P2, except that f̄(x) is further extended to compute the candi-
date auxiliary values. Thus, we have reduced a difficult problem to modular steps
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f(x)
...

g1(x)
...

g(x)

|
r −→

f(x⊕ y)
...

g1(x)
...

g(x)
...

h(x)
...
⇓

f ′(x, y, r)

value not
computed by
f(x) at all

f(x) = r f(x⊕ y) = r′ =⇒ f ′(x, y, r) = r′

f̃(x) = r̃ f̃(x⊕ y) = r̃′ =⇒ f̃ ′(x, y, r̃) = r̃′

Figure 7.5 Discovering auxiliary values.

where solutions to previous problems can be used. Even though the overall method
is complex, each step is relatively simple.

Because auxiliary values are not computed by the original program, we use such
values only if we can conservatively determine that they can be efficiently com-
puted and maintained. Actually, to obtain incremental programs that are asymptot-
ically at least as fast as the original program, we only need to require that auxiliary
values be computed initially as fast as the original program. Usually, the cost of
this initial computation is amortized over repeated computation using the incre-
mental program, and efficient use and maintenance of the auxiliary values allow
the overall computation to be much faster.

For example, consider the given function cmp and the operation ⊕ below.

def cmp(x) : sum(odd(x)) ≤ prod(even(x))

x⊕ y = cons(y, x)

After an input change, the sublists for the odd positions and even positions are
swapped. Caching only intermediate results is useless for the incremental com-
putation. We need to compute and save also the values of sum(even(x)) and
prod(odd(x)). Then, an incremental version can use and maintain each of these
values by a single addition, multiplication, or copy.

Using the two-phase method, we obtain functions c̃mp and c̃mp
′, such that if
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r̃ = c̃mp(x), then c̃mp
′
(y, r̃) = c̃mp(cons(y, x)), and cmp(x) = 1st(c̃mp(x)).

def c̃mp(x) : let v1 := odd(x) in
let u1 := sum(v1) in
let v2 := even(x) in
let u2 := prod(v2) in
[u1≤ u2, u1, u2, sum(v2), prod(v1) ]

def c̃mp
′
(y, r̃) : [ y + 4th(r̃) ≤ 5th(r̃),

y + 4th(r̃), 5th(r̃), 2nd(r̃), y ∗ 3rd(r̃) ]

While cmp(cons(y, x)) takes O(n) time, c̃mp
′
(y, r̃) takes only O(1) time and needs

another two additional units of space for two auxiliary values.

7.2 Example: sorting

We use three different sorting programs, for insertion sort, selection sort, and
merge sort, to illustrate the power of our method for deriving incremental pro-
grams.

The following table shows the running times of both the batch versions and
the incremental versions (with respect to the given ⊕ operations) for the exam-
ples sum and cmp discussed above and the three sorting programs discussed next,
where n is the size of the input list.

Problem Batch Incremental
sum, cmp O(n) O(1)

insertion sort O(n2) O(n)
selection sort O(n2) O(n)

merge sort O(n log n) O(n)

Insertion sort

Insertion sort takes a list, recursively sorts the tail of the list, and then inserts the
first element into the appropriate place in the sorted tail. Consider its definition
below and a change operation that adds an element y to the input list.

def sort(x) : if null(x) then nil
else insert(hd(x), sort(tl(x)))

def insert(i, x) : if null(x) then cons(i, nil)
else if i≤hd(x) then cons(i, x)
else cons(hd(x), insert(i, tl(x)))

x⊕ y = cons(y, x)

We introduce sort′(x, y, r), where r = sort(x), to compute sort(cons(y, x)). Ex-
panding sort(cons(y, x)) yields

if null(cons(y, x)) then nil
else insert(hd(cons(y, x)), sort(tl(cons(y, x))))
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The condition is then simplified to false, the first argument of insert is simplified
to y, and the argument to sort is simplified to x. Then replace sort(x) with r. We
obtain

def sort′(y, r) : insert(y, r)

where parameter x to sort is dead and eliminated. We have, if r = sort(x), then
sort′(y, r) = sort(cons(y, x)). While sort(cons(y, x)) takes O(n2) time, sort′(y, r)
takes O(n) time. This result is easy to obtain. Function sort′ simply calls the given
function insert.

Selection sort

Selection sort takes a list, selects the least element in the list, puts it in the first
place, and then recursively sorts the rest of the list. Consider its definition below
and a change operation that adds an element y to the input list. It is nontrivial
how selection sort applied to the new list can be transformed to use the previously
sorted list. Our approach to P1 allows us to derive a definition of insertion not
given in the original program.

def sort(x) : if null(x) then nil
else let k := least(x) in

cons(k, sort(rest(x, k)))

def least(x) : if null(tl(x)) then hd(x)
else let s := least(tl(x)) in

if hd(x) < s then hd(x) else s

def rest(x, k) : if k = hd(x) then tl(x)
else cons(hd(x), rest(tl(x), k))

x⊕ y = cons(y, x)

We introduce sort′(y, x, r) to compute sort(cons(y, x)), where r = sort(x). First,
expand sort(cons(y, x)) and simplify:

sort(cons(y, x))
= if null(cons(y, x)) then nil

else let k := least(cons(y, x)) in
cons(k, sort(rest(cons(y, x), k)))

= let k := least(cons(y, x)) in
cons(k, sort(rest(cons(y, x), k)))

(7.1)

Then, expand least(cons(y, x)) in (7.1) and simplify:

least(cons(y, x))
= if null(tl(cons(y, x))) then hd(cons(y, x))

else let s := least(tl(cons(y, x))) in
if hd(cons(y, x))<s then hd(cons(y, x)) else s

= if null(x) then y

else let s := least(x) in
if y<s then y else s

(7.2)

and expand (7.2) into (7.1) and simplify:

(7.1)
= let k := if null(x) then y

else let s := least(x) in
if y<s then y else s in

cons(k, sort(rest(cons(y, x), k)))

= if null(x) then cons(y, sort(rest(cons(y, x), y)))
else let s := least(x) in

if y<s then cons(y, sort(rest(cons(y, x), y)))
else cons(s, sort(rest(cons(y, x), s)))

(7.3)
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Then, expand rest(cons(y, x), y) and rest(cons(y, x), s) in (7.3) and simplify:

rest(cons(y, x), y)
= if y = hd(cons(y, x)) then tl(cons(y, x))

else cons(hd(cons(y, x)), rest(tl(cons(y, x)), y))))
= if y = y then x

else cons(y, rest(x, y))
= x

(7.4)

rest(cons(y, x), s)
= if s = hd(cons(y, x)) then tl(cons(y, x))

else cons(hd(cons(y, x)), rest(tl(cons(y, x)), s))))
= if s = y then x

else cons(y, rest(x, s))
(7.5)

and expand (7.4) and (7.5) into (7.3) and simplify:

(7.3)
= if null(x) then cons(y, sort(x))

else let s := least(x) in
if y < s then cons(y, sort(x))
else cons(s, sort(if s = y then x

else cons(y, rest(x, s))))

= if null(x) then cons(y, sort(x))
else let s := least(x) in

if y ≤ s then cons(y, sort(x))
else cons(s, sort(cons(y, rest(x, s))))

(7.6)

Next, we perform equality reasoning and auxiliary specialization and replace sub-
computations in (7.6) with retrievals from r. First, sort(x) in (7.6) is replaced
with r. Also, null(x) = null(r) because, using auxiliary specialization twice,
we have that null(x) is true if and only if null(sort(x)) is true, so null(x) in
(7.6) is replaced with null(r). Furthermore, when null(x) is false, sort(x) is spe-
cialized to let k := least(x) in cons(k, sort(rest(x, k))) by definition, which gives
least(x) = hd(r) and sort(rest(x, least(x))) = tl(r). Thus least(x) in (7.6) is re-
placed with hd(r). Finally, recursive call sort(cons(y, rest(x, s))) is replaced with
sort′(y, rest(x, s), sort(rest(x, s))), where sort(rest(x, s)) in the latter is replaced
with tl(r). We obtain the following, where the underlines indicate replacements:

def sort′(y, x, r) : if null(r) then cons(y, r)

else let s := hd(r) in
if y ≤ s then cons(y, r)
else cons(s, sort′(y, rest(x, s), tl(r)))

Eliminating dead parameter x and dead code in the corresponding argument, we
obtain

def sort′(y, r) : if null(r) then cons(y, r)
else let s := hd(r) in

if y ≤ s then cons(y, r)
else cons(s, sort′(y, tl(r)))

which is exactly an insertion program.

Merge sort

Merge sort takes a list, separates it into two sublists of roughly equal lengths,
recursively sorts both, and then merges the two sorted sublists. Consider its def-
inition below and, again, a change operation that adds an element y to the input
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list.
def sort(x) : if null(x) then nil

else if null(tl(x)) then x
else merge(sort(odd(x)), sort(even(x)))

def odd(x) : if null(x) then nil
else cons(hd(x), even(tl(x)))

def even(x) : if null(x) then nil
else odd(tl(x))

def merge(x, y) : if null(x) then y
else if null(y) then x
else if hd(x) ≤ hd(y) then

cons(hd(x),merge(tl(x), y))
else cons(hd(y),merge(x, tl(y)))

x⊕ y = cons(y, x)

If we are given that sort(cons(y, x)) equals merging a single-element list of y with
the previously sorted list of x, then we can straightforwardly obtain an incremental
version, which is essentially an insertion with a constant-factor overhead.

def sort′(y, r) : merge(cons(y, nil), r)

However, this equality is nontrivial to derive. Even proving it requires a nontrivial
induction. If no additional equality is given, can we compute merge sort of the
new list more efficiently than computing from scratch? The answer is yes, simply
using cache-and-prune.

The derivation is straightforward. We illustrate the idea with the following pic-
ture, rather than code as for selection sort. The top thicker line denotes list x; the
thinner line below denotes sort(x); the two thicker lines below denote odd(x) and
even(x), respectively; and the two thinner lines below denote sort(odd(x)) and
sort(even(x)), respectively. This goes down until each list has a single element.

...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

log n

First, cache all the intermediate results of sorted sublists, as depicted above. Then,
incrementalize after a new element y is added to the top thicker line. Clearly, y
belongs to one of the two thicker lines immediately below, which means that the
intermediate result for the other thicker line can be reused. This goes down until
a single element is left, and comes back up to perform a merge at each level. The
depth is log n, and the amount of work for each level, from bottom to top, is 1 unit,
2 units, 4 units, . . .n/2 units, summing up to a total of O(n) time. Finally, prune
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out intermediate results such as odd(x) and even(x). The resulting incremental
merge sort is as follows:

def ŝort
′
(y, r̂) : if null(1st(r̂)) then [ cons(y, nil) ]

else if null(tl(1st(r̂))) then
[merge(cons(y,nil), 1st(r̂)), [ cons(y,nil) ], [ 1st(r̂) ] ]

else let u1 := ŝort
′
(y, 3rd(r̂)) in

let u2 := 2nd(r̂) in
[merge(1st(u1), 1st(u2)), u1, u2 ]

where function merge is as in the given program. Note that this incremental merge
sort takes O(n log n) space rather than O(n) space. However, no additional equality
is needed for this derivation. The resulting program ŝort

′
(y, r̂) takes O(n) time

while sorting from scratch using sort(cons(y, x)) takes O(n log n) time. To our
knowledge, this algorithm was not known previously, probably due to its log n

factor of additional space, but it reduces the running time by a log n factor without
additional knowledge about the problem.

7.3 Building up and breaking through abstractions

For real-world applications, software needs to be developed fast, to run correctly
and efficiently, and to be easily maintainable, all at low costs. Even though the
ideal way to achieve this is through development of complete high-level specifi-
cations and automatic generation of optimized code, in reality, there is little work
on either, not only because both are hard, but also because there is no incentive to
invest into either when there is no good method for the other. While developing
high-level specifications corresponds to building up abstractions, generating opti-
mized code requires breaking through abstractions, even though this may sound
surprising. To make progress, methods for both must be studied together.

The need for building up abstraction is easy to see, but the need for break-
ing through abstraction is less so. It is well known that higher-level specifica-
tions are clearer and easier to read and write, and thus support faster develop-
ment, higher assurance of correctness, and easier maintenance, all at lower costs,
whereas breaking through abstractions seems to be the opposite. Note, however,
that breaking through abstraction does not mean breaking abstraction; it means
that optimizations need to go inside components or pieces that are encapsulated
by abstraction, to make changes to improve efficiency, but can preserve the same
interfaces to users of the components or pieces. For example, when objects are
used for module abstraction in Chapter 6, incrementalization needs to change the
inside of classes and methods but preserves the given interfaces. When sets, re-
cursion, and rules are used for data and control abstractions in Chapters 3 to 5,
incrementalization needs to change how the queries and updates are done but pre-
serves what they compute.
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The study of systematic incrementalization has led to the development of prin-
ciples and methods for both building up and breaking through high-level abstrac-
tions, which are essential for cost-saving development of software for real-world
systems. Building up abstractions supports correctness and composability, vital
for scaled-up applications, and breaking through abstractions is essential for ef-
ficiency and adaptability in the presence of dynamic changes. We argue that de-
velopment along these lines will lead to a powerful method for constructing com-
plete and fully composable specifications and for generating efficient and opti-
mally adaptable implementations.

Building up abstractions

Building up abstractions, by expressing both data and control at a high level, needs
guiding principles that can be easily followed and checked, and that can let us
achieve ambitious goals: complete, high-level, and fully composable specifica-
tions. While completeness and high-level-ness can be achieved with abstractions
for both data and control, full composability requires something more drastic.

The study of incrementalization has led us to advocate the following key prin-
ciples, which strive for clarity and simplicity and lead naturally to modularity and
composability.

• The central principle is that only basic data should be updated in specifica-
tions, where basic data refers to data given and modified by external sources,
in contrast to derived data, which refers to data that can be computed from
basic data. Maintenance and update of derived data should be automatically
derived based on how they depend on basic data and how basic data are up-
dated.

• The additional principles are to specify basic data explicitly and to define
derived data declaratively. Definition of each kind of derived data can be
completely clear and modular by itself without worrying about updating any
data. This leads to full composability as well as ease of understanding and
verification.

It is easy to see that these principles best support the use of high-level abstractions
and vice versa: sets, relations, and other high-level data abstraction for ease of
writing updates and ease of use by queries; functions, comprehensions, and other
high-level control abstraction for ease of writing queries declaratively; and objects
and classes as module abstraction for ease of organizing the queries and updates.

In fact, we have already seen that these principles are applied to specifications
that use query and update methods on objects and sets. In the protocol example
in Chapter 6, each component has a set of basic data and query and update op-
erations, and only the basic data is updated. In the RBAC example in Chapter 3,
the queries and updates are simplified from many more updates to derived data in
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the original ANSI standard for RBAC. Specifically, core RBAC, which contains
about half of the functionalities in the 47-page standard, can be specified clearly
using sets and set queries and updates in 122 lines of Python; it still contains a few
updates to derived data for maintaining integrity constraints. Specification of such
uses of constraints when input can change is one of the open problems discussed
in Section 7.5.

Breaking through abstractions

Breaking through abstractions, to generate efficient implementations from high-
level specifications, needs a powerful automated method that gives analytical per-
formance guarantees, so that optimality and adaptability can be precisely defined
and achieved. Such a powerful method needs to explore two tightly correlated
fronts:

1. Because abstractions encapsulate definitions of derived data and separate
them from updates to basic data, and possibly encapsulate both in compo-
nents, the method needs to delve into the encapsulated components and def-
initions, to store derived data appropriately and maintain them incrementally
as basic data are updated. Such principled optimizations are key to automati-
cally generating efficient implementations.

2. The method needs to calculate the total cost of computing and maintaining
derived data, accounting for all best ways of doing this, and using not only
the costs of individual operations but also their frequencies, which may vary
over time, as parameters. Such parameterized calculations are essential for
achieving optimality and adaptability.

It is easy to see that incrementalization-based transformations on high-level spec-
ifications provide such a method.

A crucial issue in generating optimally adaptable implementations is to pre-
cisely and declaratively capture all possible transformations together with param-
eterized cost calculations, so that optimality and adaptability can be precisely de-
fined. Incrementalization rules in Chapter 6 provide a means for starting to ad-
dress this issue, because they precisely and declaratively express definitions and
maintenance of derived data together with costs, and frequencies are considered
in applying the rules.

For example, for core RBAC, the transformations use 9 incrementalization rules,
and modify 16 query functions and 12 update functions to store and update derived
data for efficiently answering the queries. We have not formally studied optimality
or adaptability, but we generated three versions, each for a different combination
of frequencies of the operations, and each with different guaranteed complexi-
ties for the queries and updates. A precise method for automatically achieving
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optimality and adaptability is one of the subjects for further study discussed in
Section 7.5.

7.4 Implementations and experiments

We discuss issues with implementations and experiments for the method. Clearly,
the implementations must support not only various transformations but also pow-
erful analyses. A critical issue is how the method can be fully automated. The ex-
periments should be designed to evaluate not only running times, but also a range
of other related measures. The discussions here are based on our experience im-
plementing prototypes and conducting experiments for all of the transformations
described in this book along with the needed analyses.

Analyses and transformations

The transformations can use standard techniques for pattern matching, variable
substitution, and introduction of fresh variables. The analyses may use a combi-
nation of techniques to help determine expensive query computations and updates
to values of query parameters, reason about equality for reuse, calculate costs,
and identify dead code at the end. We summarize below additional analyses and
transformations used for programs that use different data and control abstractions.

For loops and arrays, expensive computations are certain primitive operations
and aggregate array computations. For incrementalization of primitive operations,
algebraic laws, especially distributivity laws, are needed to separate computations
on the increment from previous computations. For aggregate array computations,
transformations are to form aggregates and incrementalize the aggregates. For
both, analyses need to find simplified forms of primitive operations, including
in particular integer arithmetic operations on array indices and loop variables.

For set expressions, transformations need to apply incrementalization rules for
expensive set expressions, analyze types based on accesses to sets to determine the
bases of based representations and to generate data structures. When fixed-point
specifications are used, analyses of high-level properties such as monotonicity
are needed to apply fixed-point theorems. When incrementalization rules are not
available, transformations are also needed for deriving incrementalization rules,
and derivations require analysis of possible bindings of variables.

For recursive functions, transformations need to introduce incremental func-
tions, expand function calls using function definitions, simplify primitive func-
tions and data constructions, replace expressions with retrievals from previous re-
sults, replace recursive function calls with recursive calls to incremental functions,
and form iterative or recursive optimized programs. Analyses need to determine
minimum input increments, reason about equality between expressions and results
of previous computations, and analyze dependencies on recursive data.
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For Datalog rules, analyses and transformations need to identify wild card,
equal card, and shared versus unshared variables in single rules; analyze the do-
mains of variables using their occurrences in the arguments of predicates; decom-
pose rules that have more than two hypotheses; and generate incremental compu-
tation code, low-level data structure manipulation code, and complexity formulas.
Implementations with optimal time complexities can be generated fully automat-
ically.

For objects and classes, the analyses and transformations mentioned above are
needed when the corresponding data and control abstractions are used. Addition-
ally, analysis of aliases among object references is critical for determining updates
to values of query parameters, and analysis of types helps increase the precision
of alias analysis. The analysis results are also used to determine control flow;
determining control flow includes method resolution, that is, determining which
method is called on an object.

We do not discuss the details of these analyses here, but we should point out
that, in general, these analyses are much easier, or are non-problems, for higher-
level language constructs. For example, analysis of array indices and loop vari-
ables becomes extremely easy, or trivial, when aggregate expressions are used in-
stead of loops. For another example, analysis of monotonicity is not needed when
Datalog rules are used instead of fixed-point specifications.

Automation

The overall method combines many existing analyses and transformations, and
puts them together in an overall step-wise procedure. Thus it is systematic. How-
ever, after all, can the method be fully automated? The answer depends on whether
the analyses needed for the transformations can be fully automated, which in turn
depends on the power needed from the analyses. There are mainly three kinds of
analyses in question: simplifications for equality reasoning; program analyses for
dependencies, aliases, types, and costs; and determining minimum increments.

Whether simplifications and equality reasoning using algebraic laws can suc-
ceed is in general undecidable, but is decidable, and thus fully automatable, for
large classes of expressions involving integer arithmetics and Boolean operations.
Simplifications and equality reasoning for constructed data and control struc-
tures can explore algebraic laws for them in an exhaustive way, for example,
c.i(c(x1, . . . , xk)) = xi, that is, applying the selector for the i-th component of
a constructed data of k components retrieves the i-th component, for 1 ≤ i ≤ k.

Precise program analyses for dependencies, aliasing, types, and costs are also
undecidable problems because they depend on program input, but many efficient
algorithms have been developed for conservative analyses of dependencies, aliases,
and types, as well as costs. Note that efficient analyses of dependencies, aliases,
and types, as opposed to merely decidable analyses, are important because they
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are applied to an entire program. This contrasts simplifications and equality rea-
soning, as well as cost analysis, which are applied to a program region, such as a
single function or a single query.

The method used for determining minimum increments needs to select min-
imum changes in arguments of recursive calls and take the opposite of each of
them. Symbolically selecting minimums among arbitrary expressions and taking
the inverse for an arbitrary operation are once again undecidable problems in gen-
eral. However, selecting minimums for linear integer arithmetic expressions is
decidable, and taking the opposite of subtractions is easy; using as a minimum
increment the operation that adds a single element for constructed list or tree data
is also easy.

In general, we do not yet know how to derive all incrementalization rules auto-
matically, such as the rule for efficiently computing the minimum of a set by main-
taining a heap. However, there has been a much smaller number of data structures
for such rules, compared to the number of rules we know how to derive automat-
ically. These rules can be written manually and put in a library so they can be
reused afterward.

To summarize, the method is fully automatable if the three kinds of analyses
described are automatic and a small number of incrementalization rules are given.
By using restricted or conservative methods for the analyses and putting these
small number of incrementalization rules in libraries, the method is fully auto-
matic, and is powerful enough to generate efficient implementations for all the
example problems we described and many many more. Last but not least, the
method can certainly be used manually in algorithm design, and used semiauto-
matically with the analyses and transformations increasingly automated and rule
libraries increasingly built.

Experiments

While it is obvious that experiments should measure and compare running times,
much more needs to be considered.

First of all, the systematic design method is aimed at reducing development and
maintenance costs by allowing straightforward but inefficient implementations to
be transformed into would-be manually developed sophisticated implementations
to achieve the desired efficiency. Evaluating this reduction requires tracking and
comparing development and maintenance costs for the two kinds of implemen-
tations. It can be a significant undertaking. Related measures include the ease of
developing and understanding the two kinds of implementations and the sizes of
the implementations.

Another important goal of the systematic design method is to increase the level
of correctness assurance through straightforward implementations and correctness-
preserving transformations. Evaluating this requires tracking efforts on and results
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from verification, testing, and bug finding and fixing, for the two kinds of im-
plementations and the transformations themselves. Testing, as well as efficiency
evaluation discussed next, need the ability to generate appropriate random data.

When it comes to efficiency, the first measure to use is indeed running times
of the implementations, which is the primary consideration in our cost model.
This requires measuring and comparing the running times of straightforward but
inefficient implementations and incrementalized and efficient implementations.
Note that the main goal is to confirm improvements of asymptotic complexities,
which may involve multiple parameters, so the experiments need to use data that
vary the values of a single parameter at a time in each experiment.

Several other kinds of quantities should be measured to evaluate efficiency. The
time taken to generate efficient implementations from straightforward implemen-
tations should be measured, together with sizes of the implementations. Frequen-
cies of queries and updates should be measured too because they help understand
the total running time. Space usage should be measured as well, because there are
time and space trade-offs, and when too much space is used, running time might
also increase. Another aspect of space usage is data locality, that is, how closely
located are data that are frequently accessed closely in time, because it may affect
running time considerably.

Finally, when the same problem may be specified in multiple ways using dif-
ferent abstractions for data and control, all the above should be measured for each
of the ways, and the trade-offs should be compared.

7.5 Limitations and future work

Despite its power, there are still many limitations with the method and many re-
search problems that need further study. These include characterizations of the
method to help with understanding and improvements, extensions of the method
to handle other aspects of applications, relationships with methods in continuous
domains in mathematics and physics, and experiments with large-scale applica-
tions.

Characterizations

Given the unusual power and generality of the method, it is natural for us to be
extremely curious about a precise characterization of the method. Such a charac-
terization should shed light on the degree of automation and on possible improve-
ments, and perhaps ultimately help us understand the complexity of computational
problems. Unfortunately, such a precise characterization has so far been an open
issue with the method.

There are in fact many ways even to ask questions about this issue.

• The most obvious way is: for what problems, or, better, what kinds of prob-
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lems, can the method derive efficient implementations? This is also the least
amenable way because it is not even clear how the problems, or kinds of
problems, should be specified.

• A more approachable way is perhaps: for problems specified in what lan-
guages, or more specifically, for what combinations of language constructs,
can the method derive efficient implementations? This is still not amenable
to any direct answer, because it is not clear what efficient implementations
mean.

• A more theoretical way is indeed to ask: for what complexity class of prob-
lems can the method derive efficient implementations? This uses the intrinsic
efficiency, the complexity, to describe problems.

• For each of the ways above, one may also ask the negative questions: under
what situations can the method not derive efficient implementations? This is
useful because answers to the positive question might not be complete.

Problem specification deserves much study by itself. We only said we want
to allow straightforward ways of computations to be specified easily and clearly
in high-level programming languages, beyond loops and arrays, to include set ex-
pressions, recursion functions, and logic rules. For example, we did not study how
problems should be specified recursively using recursive functions or rules, such
as for divide and conquer, but, by helping with generating efficient implemen-
tations from recursive functions and rules, we encourage one to try all forms of
recursion.

In general, efficient implementations may mean polynomial time versus expo-
nential time, as is used in algorithms and complexity theory; linear time or close
to linear time, as needed for processing massive data in practice; or anything in
between or beyond. There are many practical problems, including some of the
ones that our method applies to, whose efficient solutions are exponential in some
parameters of the inputs but not other parameters. So, the notion of efficient im-
plementation in practice depends on the cost models of the applications.

For the positive questions listed, we can give conservative characterizations
based on the method, as described in each chapter, but formal and complete char-
acterizations await future work. For example, for any aggregate array computation
where the operator is associative and commutative and the update is addition of
elements, the aggregate computation can be made more efficient. For another ex-
ample, from any Datalog program, efficient implementations with time and space
guarantees can be generated, and the time complexity is optimal. However, for
recursive functions, we do not know how powerful the simple heuristic of find-
ing a minimum increment is, even though it led to success for all the problems we
have encountered. Note that the method depends crucially on the increments being
small, which we believe is true for most problems most times. Furthermore, even
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when drastic changes cannot be handled efficiently, if we are better at handling
small changes, we are better positioned to handle larger changes, at the very least
by reducing any large change to a sequence of small changes.

For the negative questions, we can summarize our experience with using the
method, but again, precise characterizations await future research. For example,
the method has not been able to discover dynamic data structures such as heap,
nor has it been able to find greedy properties used in greedy algorithms. Although
the method has been applied to many examples, there are many more that it has
not been tried on. Among all the problems it has been tested on, one particu-
lar problem has proven to be an exception to success stories: computing strongly
connected components, that is, groups of vertices in a graph such that all vertices
in a group reach each other following edges in the graph. While a quadratic al-
gorithm can be derived from a simple specification using sets and fixed points, a
linear-time algorithm cannot yet be derived systematically.

Extensions

Many extensions to the method described are needed, along several important
dimensions including (1) handling of additional problems in the languages used
and additional features in these language paradigms, (2) designing for concurrent
and distributed systems, (3) designing for fault-tolerant and secure systems, (4)
performing additional optimizations, and (5) designing more powerful languages.

Certainly, the method needs to be extended to handle more problems specified
using the languages described, such as the strongly connected components prob-
lem. There are also many additional features in the language paradigms discussed.
For example, for set-based languages, the method may be extended to systemati-
cally handle ordered sets. For recursive functions, the method could be extended
to handle higher-order functions. For logic rules, the method needs to be extended
to handle negation in general and to allow dynamically constructed structures
that use function symbols, also called functors; some progress has been made
on these, but much more needs to be done. Last but not least, the method should
be extended to generate efficient implementation from a more declarative form of
specification—constraints as in constraint programming; in particular, when used
in systems where input can change, how to declaratively specify different ways of
using the constraints for change propagation is open for study.

The method described handles only sequential and centralized programs, that is,
programs with a single thread of control accessing data at a single site. Concurrent
and distributed applications involve multiple threads of control and multiple sites
for data and code. While the method described can handle concurrency correctly
by requiring updates to be run atomically with the corresponding maintenance,
and can handle distributed data and code by requiring communication with ap-
propriate sites at each access, much more powerful optimizations are needed to
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make all the operations efficient. Such optimizations naturally extend the method
described to be a method for designing concurrent and distributed systems. Yet
another dimension to be addressed is optimization for mobility, as computers are
increasingly mobile, like hand-held devices are.

Study is also needed for making systems fault-tolerant and secure. In fact, if
we view faults as changes to behavior, we could view fault analysis and isolation,
checkpointing and message logging, and redundancy as corresponding to exploit-
ing the previous result, intermediate results, and auxiliary values, respectively. Of
course, precise study of such a systematic method requires significant future work.
We have seen that the method described can derive efficient implementations for
access control and trust management; it can also derive efficient implementations
for other security analysis and enforcement problems, such as information flow
analysis. How to best support security frameworks and build solutions to these
problems into a complete computer system requires much future study.

Many additional optimizations are needed, but two of them stand out. First, the
method needs to be extended to achieve time optimality with respect to a library
of incrementalization rules. When the library of rules contains multiple matches
in transforming a program, how to achieve optimality of the transformed program
based on the frequencies of queries and updates in the program is an open problem.
Further, when frequencies of queries and updates can change dynamically, opti-
mality also requires adaptability. Second, systematic space-driving optimizations
need further study. The method described aims to minimize running time first, by
storing any data that may be useful. It does save space by storing only possibly
needed data, but the space used may exceed any particular given bound. Space-
driven optimizations aim to design programs that run as fast as possible without
exceeding a given space bound; for these, stream processing, for processing large
streams of data sequentially with limited space, is a particularly important class
of applications. A related and important open problem when trade-offs must be
considered is automatic simplifications of complexity formulas.

Currently, there does not exist a powerful programming language that supports
all of the constructs described or the programming paradigms discussed, let alone
extensions that support concurrency, security, and so on at a high level. However,
with the view that all programs are best organized into modules that encapsulate
certain data and certain queries and updates of those data, one may have a lan-
guage that supports queries and updates of data specified using all of loops, set
expressions, recursive functions, and logic rules, and modularized using objects
and classes. One may also specify separate aspects about concurrent query and
update operations, data distribution, faults, and security. Design of such a power-
ful language is a subject for future study.
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Relationships

We have seen that the method corresponds to differentiation and integration in
calculus, except that everything is in discrete domains as opposed to continuous
domains. In fact, this correspondence to differentiation and integration was found
in many places in the method during the development of the method. A formal
and precise correspondence is a subject for further study. This correspondence
may help characterize and improve the method, since continuous domains have
been studied tremendously in the long history of mathematics and physics and
used substantially in engineering system design.

More specifically, the method aims to arrive at reduced-cost solutions in a given
problem space by repeated incremental maintenance of appropriate invariants.
This is similar to optimal engineering system design using invariance in control
and physics, which also underlies the study of hybrid systems as pioneered by
Anil Nerode and Wolf Kohn, combining discrete domains for digital systems and
continuous domains for analog systems.

In fact, Nerode has pointed out that program invariants are the discrete analogue
of conserved quantities in conservation laws in physics, and that conserved quanti-
ties are the hidden variables underlying the study of hybrid system design, param-
eterized complexity, and incrementalization. Indeed, the hidden variables corre-
spond to additional values maintained for incrementalization. The most important
future direction is, as Nerode stated, “We want to build a common framework for
reduction of complexity in modeling and computation in digital programs, con-
tinuous physical systems, digital or analog controllers for physical systems, and
many problems in physics and chemistry.”

The idea underlying the method we studied applies equally well to everyday
problem solving. Life involves mostly small changes from day to day, not like a
war today and an earthquake tomorrow. So we save the work from the previous
day for reuse the next day. Exploiting data structures in reuse is like reusing parts
of work when the whole thing cannot be reused, and exploiting control structures
in reuse is like reusing under certain conditions if reuse cannot be done uncondi-
tionally. Of course we also save and reuse appropriate intermediate work results
and other additional results that we can determine.

Experiments

Finally, the method and future developments need to be validated through substan-
tial effort applying them to more problems in the real world. Only by validation
of such methods through real-world experiments can computer science become a
science like physics and chemistry.
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Bibliographical notes

The approach for deriving incremental programs using semantics-based transfor-
mations was developed in Liu’s dissertation work [216] at Cornell University. The
overview presented in this chapter is based on Liu [188]. There are also separate
publications describing the details for exploiting previous results [213], interme-
diate results [212, 210], and auxiliary values [209, 211]. Contrasting with the use
of cache-and-prune [212, 210] discussed in this chapter for maintaining additional
values, selective caching [196, 204] can be used, as discussed in Chapter 4.

Much effort has also been spent on developing prototypes of program transfor-
mation systems in general and conducting experiments [248, 307]. Some are more
extensively studied than others in terms of deriving efficient algorithms and pro-
grams from straightforward specifications or programs. Examples are CIP [38, 21,
249], KIDS [287, 288], APTS [46, 241], Cachet [185, 332], and InvTS [105, 190].
These systems need very powerful analyses. For example, APTS needs a power-
ful type analysis for data structure design [42]. Cachet needs powerful dependency
analysis for recursive data [187, 198] and used powerful tools, Omega [259] and
MONA [170], for algebraic simplification of arithmetic and Boolean expressions.
InvTS needs powerful data type, control flow, and alias analyses [104] for de-
tecting updates in the presence of object references and applying invariant rules.
Prototypes and experiments for different parts of the III method are discussed in
the references given for the method in each chapter.

Even in areas of characterizations and extensions for future work, there has
already been much research. For example, descriptive complexity characterizes
complexity classes by the kind of logic needed to express the formal languages
in these classes [149], and finite model theory studies the expressive power of
logics on finite models [79, 114]. Many powerful languages for programming
and specification have been studied, for example, languages for constraint pro-
gramming [275] and for specifying distributed algorithms [175]. Some newer
languages well support the use of all of loops, sets, functions, and objects, es-
pecially advanced features such as true iterators, set comprehension, and higher-
order functions. Python is a good example. Logic languages with advanced fea-
tures include F-logic [167] that provides encapsulation through objects, transac-
tion logic [36] that can specify state changes, and HiLog [52] for higher-order
logic programming. The author’s research group has started pursuing some of the
extensions, for example, developing optimizations for general quantifications and
distributed algorithms [208, 207] and for logic rules with general negation.

Nerode [229] reveals that hidden variables underlie hybrid system design, pa-
rameterized complexity, and incrementalization, and correspond to conserved
quantities in conservation laws. Nerode and his coauthors have done much pio-
neering hybrid systems research that relates deeply with mathematics and physics.
For example, Kohn, Brayman, and Nerode [172] describe control synthesis for
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hybrid systems based on Finsler geometry, where a key step in their synthesis
procedure is a new method to solve a dynamic programming problem. Another
branch of related work to incrementalization is automatic differentiation, some-
times also called algorithmic differentiation, in mathematics and computer alge-
bra [263, 121]. It is a method to numerically evaluate the derivative of a function
specified by a computer program through slight program modification and ex-
ploitation of the chain rule. In the area of concurrent systems, Sintzoff et al. study
the theory of synthesizing optimal control systems and games [286, 100], among
a large literature of work in related areas.
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