
www.allitebooks.com

http://www.allitebooks.org

Test-Driven Development
with Django

Develop powerful, fully-featured Django applications
by writing tests first

Kevin Harvey

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Test-Driven Development with Django

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2015

Production reference: 1230715

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-116-7

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Kevin Harvey

Reviewers
Ian Cordasco

Anamta Farook

Jason Myers

Vimal Atreya Ramaka

Yogendra Sharma

Commissioning Editor
Ashwin Nair

Acquisition Editor
Shaon Basu

Content Development Editor
Susmita Sabat

Technical Editors
Prajakta Mhatre

Manan Patel

Copy Editor
Yesha Gangani

Project Coordinator
Milton Dsouza

Proofreader
Safis Editing

Indexer
Rekha Nair

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

www.allitebooks.com

http://www.allitebooks.org

About the Author

Kevin Harvey first fell in love with Django while living in Quelimane, Mozambique,
in 2007. His professional interests include software quality, open source, and teaching.
He continues to be amazed at the Python community's ability to turn a history major
into a software engineer, a feat for which he will forever be indebted. When not writing
unit tests, Kevin enjoys playing the bass (both electric and stand up), and cooking with
entirely too much butter. He lives in Nashville, Tennessee, with his wife and their
two sons.

There are many without whom this book would not have been
possible. My thanks go to: Michael Trachtman, for helping me
hash out my thoughts on the subject over the last 3 years; Julie
Barnick, for helping me apply theory to the real world; Nate Aune,
for his continued guidance; John Roth, for his enthusiasm; Medora
Willmore, for teaching me how to write; Joe Killian, for encouraging
me to write; Eli Bortz, for his industry advice; Jason Myers, for his
unlimited willingness to help others; and finally, my wife Lara, for
providing useful feedback on a topic that she knows nothing about,
and dealing with the twins while daddy worked on his book.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Ian Cordasco is a core developer of requests, Flake8, Twine, Betamax, Chardet,
and github3.py, as well as a core reviewer and driver for multiple OpenStack projects.
As a polyglot, Ian frequently borrows testing ideas from other languages to improve
the quality of Python's testing ecosystem.

Anamta Farook is a software developer with a unique background in education
and design. She graduated from Brown University in 2014 and has been programming
professionally for the past year. Anamta enjoys working at trailblazing startups; she
is currently employed at Maxwell Health, and she previously worked at Coursolve.
She has 10 years of experience in teaching and developing educational content. She is
particularly passionate about opportunities at the nexus of education and computer
science, such as reviewing this book!

I'd like to thank my parents, who encouraged me to take on this
challenge. It's been a fun experience and I've really enjoyed being the
voice of the learner in this book. I am confident that our readers will
find this book an easy, valuable guide to Test-Driven Development.

www.allitebooks.com

http://www.allitebooks.org

Jason Myers works at Cisco as a software engineer, working on OpenStack.
Prior to switching to development a few years ago, he spent 15 years as a systems
architect, and has build data centers and cloud architectures for several of the largest
tech companies, hospitals, stadiums, and telecomm providers. He's a passionate
developer who regularly speaks at local and national events about technology. He's
also the chair of the PyTennessee conference. He loves solving human problems, and
has a side project, Sucratrend, which is devoted to helping diabetics manage their
condition and improve their quality of life. He has used SQLAlchemy in web, data
warehouse, and analytics applications, and is currently writing Essential SQLAlchemy,
2nd Edition.

Vimal Atreya Ramaka has graduated from the University of Prince Edward
Island in computer science and business administration, and after graduation, she
has started working as the tech lead for Climate Research Lab at the University of
Prince Edward Island. Her domain is located at http://vimal.ramaka.com.

Yogendra Sharma works at Siemens Industry Software Pvt. Ltd as a product
developer and lives in Pune. He is a gold medalist in post graduation diploma.
The course that he has graduated in is advance computing from CDAC, and he has
also completed his bachelor's of technology in computer science. He is basically an
engineer by heart and a technical enthusiast by nature.

He has vast experience in the fields of C++, Python, Django, Java, J2EE technologies,
and Web App Security.

Yogendra was also the technical reviewer of Mastering Python Design Patterns,
published by Packt Publishing.

You can find him on LinkedIn at http://in.linkedin.com/in/yogendra0sharma.
You can also visit http://PyLabs.in.

I would like to thank my father for allowing me to learn all that
I did. I would also like to thank my friends for their support
and encouragement.

www.allitebooks.com

http://vimal.ramaka.com
http://in.linkedin.com/in/yogendra0sharma
http://PyLabs.in
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

This book is dedicated to Dr. Eric-Jan Manders. Eric, thanks for showing me the path.

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface v
Chapter 1: Keeping Your Promises 1

What is Test-Driven Development? 1
A simple example 2
Red/green/refactor 4
Testing is a pillar of professional software development 5

Version control 5
Documentation 5
Testing 5
Continuous Integration 6

How does TDD help in building better software? 6
Doesn't it take longer? 9
Can't I just write the tests later? 10
Summary 10

Chapter 2: Your First Test-Driven Application 11
Where do we begin? 11
Functional versus unit tests 12

User versus developer experience 12
Size 12
Breadth 12

The project – jmad.us 13
Setting up your environment 13
Starting the project 14

Getting the sample code 15
Starting a functional test 15
Introducing LiveServerTestCase 16
Introducing Selenium 16

Table of Contents

[ii]

Fleshing out the user story 17
Getting the test to fail 18
Opening a page with WebDriver 20
Finding elements with WebDriver 20
Reading test output 23

Setting up a Django app for unit tests 23
Planning our unit tests 24

Finally writing application code 26
Testing views with RequestFactory 27
Continuing through the functional test 32
Adding search to the view 37

Summary 48
Chapter 3: Ironclad Code 49

Using the Python Debugger in tests 52
Using RequestFactory 52

Running a single test with dot notation 53
Managing test data 57
Refactoring 57

setUpClass versus setUp 57
DRY testing 59
RequestFactory versus TestClient 62

Testing URLs 62
Does that seem like overkill? 63
Displaying search results 63
Selenium tail-chasing 65
Building the Solo detail page 65

Summary 69
Chapter 4: Building Out and Refactoring 71

Improving the application 71
A new view 72
Pretty URLs 73
Back into the TDD cycle 74
Skipping ahead a bit 77
Starting a new app 78
Much ado about migrations 83
Updating the functional test 84
Refactoring the index view 86
Summary 92

Table of Contents

[iii]

Chapter 5: User Stories As Code 93
A second user story 93

Activating the Django admin site 95
Signing in with Selenium 97
Configuring the Django admin model list display 101

Adding content via the Django admin 104
Finishing up 109
Summary 111

Chapter 6: No App Is an Island 113
What is a mock? 113
MusicBrainz 115

Digging around in the MusicBrainz sandbox 115
Using the API in our application 119
Mocking – when and why 119

Adding the MB API to search 120
Encapsulating the API call 122
Our first mock 123
Hacking what's returned from a mocked method 125
Implementing the API calls 129
Moving back up the chain 130
Dealing with change 132
This is just one method 132

Summary 132
Chapter 7: Share and Share Alike 133

It's an API world, we're just coding in it 133
Deceptive simplicity 133

Writing documentation first 134
Documentation-Driven testing 134
More developers, more problems 135

Building an API with Django REST framework 135
Initial documentation 135

Introducing Django REST framework 137
Writing tests for API endpoints 137
API routing with DRF's SimpleRouter 140
Automatic APIs with DRF viewsets 142
Converting Django models with serializers 144
Finishing up with RetrieveModelMixin 146

Adding data via the API 147
POSTing data in a test 147
Validating inbound data with a serializer 150

Summary 152

Table of Contents

[iv]

Chapter 8: Promises Kept 153
How far we've come 153

So, how did it go? 153
We kept ourselves on track 154
Our application can check itself 154
We kept our thinking clear 154
Our code is testable 154
We can take big risks 154
We look like pros 154
Did we do more work than necessary? 155
Did it take longer than it should have? 155

What haven't we done? 155
Production optimization 155
An actual frontend design 156
Quality assurance 156
Load testing 157

What shall we build next? 157
Authentication for creating solos 157
Tagging solos 158
Haystack search 158
Celery for caching MusicBrainz data 158
An errant data interaction for MusicBrainz 158
Exposing API documentation with Django REST framework 158

To tend or not to tend? 158
Fight through the gotchas 159

"No module named" errors when using dotted paths to tests 159
When error messages get weird, Google is your friend 159

Thanks! 160
Index 161

[v]

Preface
Writing software is hard. Even the smallest projects have many moving parts.
We developers are not only expected to get those parts moving, but keep them
moving as the application changes over time. Test-Driven Development (TDD) is
a methodology that allows us to quantify the successful function of each of these
parts before we attempt to code them. Using TDD, we can focus on a single part
of the application at a time, leaving a trail of tests that guard against regression as
we continue to update the application.

Django is a popular web framework written in Python. Its batteries-included: the
framework itself includes URL routing, object-relational mapping, templates, and
many other necessities for building a modern web application. This book will take
you through the process of developing a Django app by writing failing tests first,
then writing application code to make those tests pass.

What this book covers
Chapter 1, Keeping Your Promises, describes the benefits of TDD in comparison to other
styles of programming. We'll look at a very simple example, and talk about testing as
a pillar of professional software development.

Chapter 2, Your First Test-Driven Application, introduces the example application that
we'll be building throughout the book. We'll translate a user story into a browser-based
functional test using Selenium, and write unit tests and application code to start to
fulfill that user story.

Chapter 3, Ironclad Code, continues where the previous chapter left off, digging
deeper into the API available for writing unit tests in Django. We'll cover the
Python Debugger and tools for simulating web requests.

Preface

[vi]

Chapter 4, Building Out and Refactoring, adds new features to the application. We'll use
our test suite to maintain existing functionality while refactoring to keep our code
tidy and maintainable.

Chapter 5, User Stories As Code, focuses on writing functional tests and the packages
available to drive the browser during a test run. We'll learn how to select and click
on elements, submit forms, switch between open windows, and perform other user
actions in our UI.

Chapter 6, No App Is an Island, applies the TDD methodology to third-party API
integration. We'll learn when, why, and how to mock out HTTP requests inside a
single unit test so that our tests aren't relying on an outside resource (even if our
app is).

Chapter 7, Share and Share Alike, introduces Django REST Framework—a tool for
building a REST API with Django. We'll cover the importance of documentation
when writing an API, and use the framework's tools to send requests to the API
during tests.

Chapter 8, Promises Kept, takes a look back at what we've learned, and whether we've
realized all the benefits from the first chapter. We'll get suggestions for next steps in
TDD, and talk about some of the common pitfalls you may encounter.

What you need for this book
In order to follow along with the examples in this book, you'll need a computer with
a command line interface (the default is Terminal for Linux and Mac, and Command
Prompt for Windows) with Python installed. You will also need an Internet connection
to download third-party packages and a text editor for writing Python code.

Who this book is for
This book is for Django developers who want to learn about TDD, and how it might
help them in their work. It's expected that the reader is comfortable with reading and
writing Python and has some familiarity with the Django framework.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Preface

[vii]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "If
you're making HTTP calls, the requests package is a great option."

A block of code is set as follows:

multiplicator.py
defmultiplicator(x, y):
 pass

Any command-line input or output is written as follows:

$ python

>>> from multiplicator import multiplicator

>>>multiplicator(2, 3)

6

New terms and important words are shown in bold, like this: " A Continuous
Integration (CI) server, for our purposes, can pull our project from version control "

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[viii]

The source code for the sample application is available on GitHub at https://
github.com/kevinharvey/jmad on the test-driven-django-development branch
(the repository's default). Development milestones in the book have been tagged
with names like ch5-2-staff-login to make navigating the repository easier.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://github.com/kevinharvey/jmad
https://github.com/kevinharvey/jmad
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Keeping Your Promises
In this chapter, we'll be introduced to Test-Driven Development. We will explore:

• What is Test-Driven Development?
• How does Test-Driven Development help build better software?
• Doesn't it take longer?
• Can't I just write the tests later?

What is Test-Driven Development?
Test-Driven Development (TDD) is the practice of:

1. writing a deliberately failing test,
2. writing application code to make the test pass,
3. refactoring to optimize the code while the test continues to pass, and
4. repeating the process until your project is complete.

The initial test is the bar you set for the logic that you want to write. It's a great
way to ensure that your tests cover every nook and cranny of your code, and that
it delivers exactly what you said it would.

Throughout this book, we'll explore TDD through numerous examples in a medium-
sized Django project. We'll use lots of different Python utilities and see lots of sample
code. The takeaway should not be any particular package (there are many other
tools besides the ones we'll feature in this book), but the process itself and the change
in approach required. It's a methodology, not a technology. It's a way of building
applications and a discipline that requires practice.

www.allitebooks.com

http://www.allitebooks.org

Keeping Your Promises

[2]

A simple example
Here's a quick example using Python's built-in assert, a statement that evaluates
a condition. It will throw an AssertionError if the condition is false, and returns
nothing otherwise.

Let's say we wanted a Python function that could multiply two numbers together
and return the result. Let's call it multiplicator.

The first step in TDD, before writing any code, is to find a way to test the application
you want to write. If you're having trouble coming up with a test scenario, imagine
that you've already written the application (in this case, that single function) and
want to try it out in the command line. You'd probably do something like this:

$ python

>>> from multiplicator import multiplicator

>>> multiplicator(2, 3)

6

You, the human, would look at the output of the function call (6) and confirm that
the operation was performed successfully. How can we teach our application to do
this confirmation itself? Enter assert. Create a file called multiplicator.py and
enter the following code:

multiplicator.py
assert multiplicator(2, 3) == 6

We can translate this statement into English as "run multiplicator with arguments
2 and 3 and throw an error if the returned value does not equal 6."

We'll get into the more interesting tools available in the unittest
library in Chapter 2, Your First Test-Driven Application. For now, this
is all we need to see how TDD works.

We now have a runnable test for our function, without so much as an attempt to
write the function itself. Let's run it and see what happens:

$ python multiplicator.py

Traceback (most recent call last):

 File "multiplicator.py", line 1, in <module>

 assert multiplicator(2, 3) == 6

NameError: name 'multiplicator' is not defined

Chapter 1

[3]

Looks like Python can't find anything called multiplicator. We can fix that with
the following code:

multiplicator.py
def multiplicator():
 pass

assert multiplicator(2,3) == 6

Try running the test now:

$ python multiplicator.py

Traceback (most recent call last):

 File "multiplicator.py", line 4, in <module>

 assert multiplicator(2, 3) == 6

TypeError: multiplicator() takes 0 positional arguments but 2 were
given

Okay, our function needs to accept some arguments. Let's update it:

multiplicator.py
def multiplicator(x, y):
 pass

assert multiplicator(2, 3) == 6

And finally, when we run our test again:

$ python multiplicator.py

Traceback (most recent call last):

 File "multiplicator.py", line 4, in <module>

 assert multiplicator(2, 3) == 6

AssertionError

This AssertionError is the one we asked our test to throw (via assert) if the result
of our function did not equal the expected value (6). Now that we're here, we can
write some logic:

multiplicator.py
def multiplicator(x, y):
 i = 0
 result = 0
 while i < x:
 result += y
 i += 1

Keeping Your Promises

[4]

 return result

assert multiplicator(2, 3) == 6

Whoa there, Tex! That's one way to do it… I suppose. Should we run the tests?

$ python multiplicator.py

Huh? No output? No error? You mean that monstrosity actually made the test pass?

Yes it did! We wrote application code to make the test pass without any pressure to
optimize it, or without picking the best Python function to make it work. Now that
we have the test passing, we can optimize to our heart's content; we know we're safe
as long as the test continues to pass.

Let's update multiplicator to use some of Python's own integer arithmetic:

multiplicator.py
def multiplicator(x, y):
 return x*y

assert multiplicator(2, 3) == 6

Now, we can run our test again:

$ python multiplicator.py

That's better. We built a working, optimized function and a test suite to check for
regressions using basic TDD methodology. This process is often referred to as "red/
green/refactor".

Red/green/refactor
The smallest cycle of TDD typically involves three steps:

1. Writing a test that fails (red).
2. Doing whatever is necessary to get that test to pass (green).
3. Optimizing to fix any subpar code you may have introduced to get the test to

pass (refactor).

In the preceding example, we wrote a test for the desired functionality and watched
it fail (red). Then we wrote some less-than-optimal code to get it to pass (green).
Finally, we refactored the code to simplify the logic while keeping the test passing
(refactor). This virtuous circle is how TDD helps you write code that is both
functional and beautiful.

Chapter 1

[5]

Testing is a pillar of professional software
development
There are four key practices to writing great code:

1. Version control
2. Documentation
3. Testing
4. Continuous Integration

Each builds upon the next and a thoughtful execution of each guarantees the delivery
of quality software.

Version control
Version control is the ultimate undo button. It allows you to check code changes into
a repository at regular intervals and rollback to any of those changes later. We'll be
using Git throughout the course of this book. To get a good primer on Git, check out
http://git-scm.com/doc.

Documentation
If we're using TDD to keep promises, documentation is where we first make these
promises. Simply put, documentation describes how your application works. At a
minimum, your software project needs the development documentation for the next
person to maintain it (even if it's you, you'll forget what you wrote). You'll probably
need some less technical documentation for the end user as well.

Testing
Testing and documentation have a crucial relationship—your tests prove that your
documentation is telling the truth. For instance, the documentation for a REST API
may instruct a developer to send a POST request to a given URL, with a certain JSON
payload in order to get back a certain response. You can ensure this is what happens
by exercising this specific behavior in your tests.

http://git-scm.com/doc

Keeping Your Promises

[6]

Continuous Integration
All of these glorious tests will be pretty useless if no one is running them. Luckily,
actually running the tests (and alerting us of any failures) is another thing we can train
a machine to do. A Continuous Integration (CI) server, for our purposes, can pull
our project from version control, build it, run our tests, and alert us if any errors or
failures occur. It can also be the first place where our tests are run in a production-like
environment (for instance, in the same operating system and database configuration),
allowing us to keep our local environments configured for speed and ease.

How does TDD help in building better
software?
From the outset, Test-Driven Development seems like a lot more work. We could
very well be doubling the size of our code base with a test for every single branch in
our logic. Here's why all that extra code will be worth it:

• It will keep you on track: Writing the tests first is like keeping an executable
checklist of all the development tasks you have to complete. Good functional
tests are the key link between user stories (which is what everyone really
cares about) and your code. A well-designed functional test will ensure
that the end user will be able to do everything they need to do with your
application.

• You will build exactly (and only) what is required: As we'll see in Chapter 2,
Your First Test-Driven Application, a good first step in Test-Driven Development
is the translation of a user story into a distinct, self-contained functional test.
Codifying the project's requirements as a test and only writing enough code
to make that test pass will ensure that you've fulfilled all the user stories and
guard against any scope creep. The project itself will help you determine when
development is complete, or if any changes introduced later would interfere
with any end-user functionality.

• You're teaching your application to check itself: Humans are better at
computers in lots of ways, but the silicon has us beat when it comes to
proofreading code. All we have to do is teach the machines what to look
for by writing tests. Then, we can send them scampering through our files,
confirming every function output, and checking every attribute of every
class, any time we want.

Chapter 1

[7]

• It will help clarify your thinking: Computer applications are abstract
models of real-world systems that solve problems for human beings.
Abstracting solutions to human problems in computer code takes serious
thought and care. By clearly defining the functionality of your application
with a test before you try to develop it, you force yourself to program with
the end goal in mind. Having laid out the meaning of the application in a
functional test (even if it's just stubbed out) helps to keep you on target even
when you're elbow-deep in the logic.

• Post-development tests just don't have the same weight: If you try to write
a test for some code that already does what you want, you'd have already
closed your mind to the other possibilities of that code. You'll wind up with
a narrow test that only covers that aspect of the code that you were thinking
about while you were writing it. Writing the test when you're free of any
preconceptions will yield a test that's more comprehensive, which will in
turn produce stronger, less buggy code.

• You will achieve flow: TDD is all about incremental improvement. Each new
test that passes (or incremental step to get to the next error in a test) is a little
win. Plus, you won't have to spend hours debugging if you mess something
up and a test fails. You'll be able to go right to the problem because the test
that you wrote before you built that part of the application will be the one
that failed.
Have you ever worked on a project where considerable effort went into
maintaining a "development" database? Maybe it was set up so that you
could check the effect of a custom save method from time to time? Or maybe
you needed to dive into ./manage.py shell, import a bunch of your code,
instantiate a few models, and then run your method to see if it worked?
There's no monkey business like this when you write the tests first. The
application state that you need is codified in your test suite. All that set up
will happen in one command and on every run (not just when you're futzing
with that method).

• No one will ever know how buggy your code started out: If you've worked
on software projects of any complexity, you've probably developed a
healthy fear of change. Change breaks stuff, particularly change to a part
of an application that finds itself imported all over your project. However,
if you've developed the entire application writing tests first, you've left a
trail of test coverage that will alert you well before that bug you just wrote
gets in to source control, let alone deployed. TDD allows you to refactor and
optimize without fear of regression.

Keeping Your Promises

[8]

• Bugs will stay fixed: If I write a failing test that demonstrates a bug report
that I receive, then update my application to make the test pass, I'll never
have to worry about that bug coming back ever again because my test will
catch it. Less time worrying about my production application means more
fearless feature development.

• You'll work better with your team: An important part of working in
a development team is explaining the code you write to your fellow
developers. There's no better way to explain your code than to walk through
your tests. Better yet, write tests as a team to foster collaboration and keep
everyone on the same page.

• You'll write testable code: Code that is easily tested is better code. It seems
both silly and obvious but it's worth mentioning. If you can prove beyond
a shadow of a doubt that your code has the desired effect or return value,
you'll be better able to maintain it. Writing the test before you write the
code will force you to write code that can be easily tested.

• You'll achieve the impossible: There is nothing like a blank-slate TDD
project to make you feel like you can save the world. When there is not even
a hint of a function yet, you can assert any return value or effect you can
imagine with any input you want. Don't hold back just because you have no
idea how to build a function that would satisfy the pie-in-the-sky test you
wrote. Write the test, hack away until you get it to pass, and then clean up
your mess with a refactor.

Test-Driven Deep Thought Development

Chapter 1

[9]

• You'll be able to take big risks: We've all been there—late in the development
process or even after shipment, we see a tweak that we'd like to make in a
linchpin model or method. The tweak would be a tremendous boon to system
performance, but the change would have an unknown effect on nearly every
other part of the application. If we've followed TDD, we'll have a complete test
suite that will allow us to know the ramifications of that change immediately.
We'll be able to make the change, run the tests, and see early on what it would
take to keep the rest of the system in place.

• You'll look like a pro: When you release your code out into the world, either
as a user-facing application or an installable package for other developers,
you're making a promise to the people that use it. You're promising that the
documentation was in fact accurate and that the dang thing does what it's
supposed to do. A comprehensive test suite helps keep that promise and
there's no better way to build one than by following the TDD mantra.

Particularly in the open source world, the presence of a test suite lets the
community know that you're serious. It's the first thing you should look for
when evaluating a new PyPI package to install. A test suite says that you
can trust this software.

Doesn't it take longer?
A common criticism of TDD is that it slows down the development cycle. All these
tests are a bunch more code. Wouldn't you have to go back and update them if you
changed your application?

The answer is yes, in the short term, TDD will add time to the development cycle,
particularly when you're first learning it. Writing tests is a skill and skills take
practice. Once you're through the learning curve, writing test functions is much
easier and faster than writing the application code. Tests are generally terse (do this,
do this, check that, and so on) without complicated logic or looping. The best tests
are the simplest ones. You'll be able to crank them out quickly.

The extra effort in TDD comes with the added thinking you have to do. Writing a
test before you write code requires a true understanding of what you're trying to
accomplish, which can be hard. But does that honestly sound like a bad thing? I'd
argue that this is a decidedly positive aspect of TDD—added time spent thinking
through the meaning of your code yields higher quality code. You'll uncover
unforeseen complications as your tests reveal edge cases that didn't come out in code
review sessions. Conversations with project owners will be more meaningful after
you've put the requirements through their paces. Your application code will benefit
from the extra care.

Keeping Your Promises

[10]

Now let's talk about the long term. Towards the end of the project, or even after
launch, a big change will come down from the product owner (this is Agile, right?)
or you'll find something fundamental that you want to modify. The comprehensive
test suite you've built through TDD will pay you back in spades when something
goes wrong, or if you need to refactor. The flexibility provided by your test suite will
likely save you more time than you spent creating it. You'll thank TDD in the end.

Can't I just write the tests later?
There are many reasons that you may want to develop without writing tests first.
Maybe you're using a new API and can't begin to think about how to write tests.
Maybe you want to build a simple application quickly as a proof of concept for
a client.

By all means, write code without tests, but know that code without tests is a prototype
at best. Resist the urge to start the production version of your project from a testless
prototype. After prototyping, start again with TDD instead of trying to go back, and
write tests for the prototype.

Even if you are only creating a prototype, consider TDD for any complexity at all.
If you find yourself repeatedly dropping into ./manage.py shell sessions to set up,
execute, and evaluate a function under development, write a test or two to turn that
process into a single command.

Summary
In this chapter, we introduced the practice of TDD and the benefits of using it.
In the next chapter, we will start a Django project from scratch using rigorous
TDD methodology, learning some of the testing tools available in Django and
Python along the way.

Chapter 2

[11]

Your First Test-Driven
Application

In this chapter, we will start a new web application from the ground up by writing
tests first. To do that, we will:

• Learn the difference between functional tests and unit tests, and when to
use each

• Gather requirements for the application that we're going to build, including a
user story and acceptance criteria

• Learn the basics of the testing APIs available in a Django project

Where do we begin?
We'll get to the code soon enough, but there is work to be done before anything is
committed to the repository. Test-Driven Development (TDD) starts the way you'd
expect—with requirements gathering. We'll write our requirements as user stories
with acceptance criteria, and those user stories will be translated into functional
tests. Functional tests will help us write unit tests, which will in turn lead to
application code.

I encourage you to follow along with the examples by typing them directly into your
command line and text editor. TDD is all about establishing a flow, and you can't
establish a flow by copying and pasting.

www.allitebooks.com

http://www.allitebooks.org

Your First Test-Driven Application

[12]

Functional versus unit tests
There are many ways to describe types of tests. For our purposes, we will
differentiate between unit tests and functional tests. The distinction is semantic
but will inform our testing strategy.

User versus developer experience
When writing tests, we're speaking to someone else about our code. The type of
test that we're writing is determined by our audience. Functional tests are wholly
focused on the user experience. They ensure that the sum total of data and logic in
your application add up to the functionality that you've promised your users.

Alternatively, unit tests typically focus on concerns of the developer. They often
answer the question, "If I run function x with input y, do I get output z as expected?"
Users don't care about the nitty-gritty details such as this, but developers do.

Size
Unit tests are usually tiny, sometimes as small as a single line of code. They run in
microseconds. They're typically written to test a single, atomic part of the project,
so their failure typically indicates an error in a distinct area in an application.

Functional tests can be big, running through an application just as a normal user
would. This means that they can take a long time to run, and that they depend on
a lot of the code to work. A failure in a functional test can sometimes be enough to
debug from, but it's hopefully accompanied by a failure in an associated unit test
that points more directly to the problem.

Breadth
Functional tests cover large parts of an application. For extremely small applications,
it might be possible to write one single monolithic functional test that exercises the
entire user experience.

Breadth is a dirty word when it comes to unit tests. If a unit test feels like it's covering
any more that a few single points of possible failure, look for ways to break it out into
multiple tests.

Chapter 2

[13]

The project – jmad.us
Throughout this book we'll be building a real-life web application—the Jazz
Musicianship Archive & Database, available at http://jmad.us. Improvisation is
a tenant of jazz performance. JMAD is a tool for students of jazz to find particular
solos by artist, instrument, key, or any number of other characteristics.

There are a number of user stories and acceptance criteria that we will implement
throughout the book. We'll be focusing on the first and most simple one in this chapter:

As a Student, I want to search for Solos by basic attributes
so that I can get better at improvisation.

Pretty straightforward, right? We've got a good noun "Solo" that will probably
become a model, and a verb "search" that we can turn into a view. Let's get a little
bit more specific with some acceptance criteria:

• Students can search by instrument, and/or artist
• Students can view search results
• Students can view a single solo detail page (including album, artist,

and time info)

You probably already have some idea of how you'd like to build this out, so let's start
the Django project.

Setting up your environment
There are a few prerequisites to get out of the way before we actually start on
the project:

• You'll need Python installed on your computer. The project in this book is
written with Python 3.4, but 2.7 or a later version will work just fine. Many
OSs come with a version installed, but if you don't have it (or have an older
version but want to use Python 3.4), look for instructions at https://docs.
python.org/3.4/using/. I use Mac OSX and I prefer installing Python with
Homebrew (http://brew.sh/).

• You should use a virtual environment for this project. Once you've got
a version of Python installed, checkout out virtualenv (http://docs.
python-guide.org/en/latest/dev/virtualenvs/) or virtualenvwrapper
(https://virtualenvwrapper.readthedocs.org/en/latest/). These will
allow you to keep separate installations of Python with their own installed
packages. You'll need to activate that virtual environment each time you
restart your terminal.

http://jmad.us
https://docs.python.org/3.4/using/
https://docs.python.org/3.4/using/
http://brew.sh/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
https://virtualenvwrapper.readthedocs.org/en/latest/

Your First Test-Driven Application

[14]

• Use pip to install packages in your environment. Once you get a virtual
environment set up and activated, pip will be available in that environment.

This can be a bit of a pain to get going; some OSs are easier than others. Google
is your friend, as am I. Tutorials abound on the internet, but email me at hello@
kevinharvey.net if you're really stuck.

Starting the project
Once you've got a Python environment set up, the next step is to create and move
into a directory to start your project:

$ mkdir jmad-project

$ cd jmad-project

Now install Django and start a project called jmad:

$ pip install django

Downloading/unpacking django

 Downloading Django-1.8.1-py2.py3-none-any.whl (6.2MB): 6.2MB
downloaded

Installing collected packages: django

Successfully installed django

Cleaning up...

$ django-admin.py startproject jmad

To make sure we have got everything set up correctly, let's move into the project
folder and try running tests:

$ cd jmad

$ python manage.py test

Creating test database for alias 'default'...

Ran 0 tests in 0.000s

OK

Destroying test database for alias 'default'...

$

Chapter 2

[15]

Believe it or not, this actually tells us something. We know that we've got a Django
project where we can write some tests. We also know that our development
environment is set up correctly since we didn't get any errors trying to run that
command.

We've made some good progress, so let's set up our version control repository and
make a commit. You'll need to install Git. Check out http://git-scm.com/ for a
version for your OS. Again, I'm on Mac so I use Homebrew.

Once you've got Git installed, initialize your project directory (one directory up from
where you are now if you're following along) and run the following:

$ cd .. # takes us back to jmad-project

$ git init

You may want to add a remote to push your code to (GitHub is an excellent choice
for this if you don't mind your code being open). Git has a ton of cool features that
warrant their own book, we'll only scratch the surface.

Getting the sample code
All of the source code for this book is available at https://github.com/
kevinharvey/jmad. I'll tag each commit in the book, and if you add my repository as
a remote you'll be able to check out the code at the exact point you're at in the book
(or you can just take a peek in your browser).

Here are the commands to add the new files and make the commit:

$ git add jmad

$ git commit –am 'initial project structure'

$ git tag -a ch2-1-init-project

To check out the repo at this commit, do git checkout <tagname>. In this instance,
the command would be:

$ git checkout ch2-1-init-project

Starting a functional test
Our functional test will be the most direct link between the user stories and the
application code. Let's start by fleshing out that user story into a narrative that
we can follow. Add a tests.py file to the jmad app (one directory down from the
project root) that Django created for us. We're going to need two imports to get us
started, one of which will be a third-party package.

http://git-scm.com/
https://github.com/kevinharvey/jmad
https://github.com/kevinharvey/jmad

Your First Test-Driven Application

[16]

Introducing LiveServerTestCase
If you've done any testing at all with Python or Django, you've probably run
into TestCase. The granddaddy class is from Python's unittest, and Django
has a subclassed version of it that we'll use when we start writing unit tests.
LiveServerTestCase is a further subclass, which provides not only the assertions
that we'll need, but also starts a development server (similar to python manage.py
runserver) that we can use to open the project in a browser during the test. Add the
following to jmad/jmad/tests.py:

from django.test import LiveServerTestCase

So what good is having a development server running? Who is going to be opening a
browser during our automated tests? Enter Selenium.

Introducing Selenium
Selenium is a tool for automating activity in a browser. You can use it to open new
windows, visit web pages, click links, scroll around, and perform a number of other
activities that a real user might in a browser. The bindings are available in the Python
package of the same name:

$ pip install selenium

We're going to use the Selenium's Firefox WebDriver (the default and simplest to
implement) to get started. If you don't already have Firefox installed on your system,
you'll need a copy (https://www.mozilla.org/en-US/firefox).

Add the following import to tests.py:

from selenium import webdriver

With LiveServerTestCase and selenium imported, we can write this stub for our
functional test:

class StudentTestCase(LiveServerTestCase):

 def setUp(self):
 self.browser = webdriver.Firefox()
 self.browser.implicitly_wait(2)

Here we're subclassing LiveServerTestCase to create our own test case,
StudentTestCase, and setting up the web driver in setUp().

https://www.mozilla.org/en-US/firefox

Chapter 2

[17]

The setUp() function is a method from the TestCase superclass that runs before
each test method. We're setting up a new WebDriver instance (and therefore a fresh
browser window) for each test. We're also using the web driver's implicitly_
wait() function to tell it to keep trying for at least two seconds before giving up on
finding an element in the page.

Fleshing out the user story
Now that we've laid the groundwork, let's turn our user story into a real narrative.
Start by creating another method for the test and writing out some user actions
in comments:

...
 def test_student_find_solos(self):
 """
 Test that a user can search for solos
 """
 # Steve is a jazz student who would like to find more
 # examples of solos so he can improve his own
 # improvisation. He visits the home page of JMAD.

 # He knows he's in the right place because he can see
 # the name of the site in the heading.

 # He sees the inputs of the search form, including
 # labels and placeholders.

 # He types in the name of his instrument and submits
 # it.

 # He sees too many search results...

 # ...so he adds an artist to his search query and
 # gets a more manageable list.

 # He clicks on a search result.

 # The solo page has the title, artist and album for
 # this particular solo.

 # He also sees the start time and end time of the
 # solo.

Your First Test-Driven Application

[18]

The first item of note is the name of the test method. Any method on a TestCase
subclass that starts with the test_ prefix will run anytime we run python manage.
py test (assuming that we haven't added an argument to exclude it). Test methods
are typically named as a terse version of what the test actually tests.

Secondly, try to be descriptive about what the test is exercising in the docstring of
the method (here we've added Test that a user can search for solos). The
docstring is your chance to be a little verbose about what this test is doing.

Finally, the comments inside the method are spaced where we'll probably want to
perform a user action, or test the state of the browser.

Getting the test to fail
We're going to be working through this functional test a little at a time, so we
need a way to keep our place. Add the following line at the top of test_student_
find_solos:

...
"""
self.fail('Incomplete Test')
...

Now move back to the top jmad directory and try running the test:

$ cd jmad

$ python manage.py test

Creating test database for alias 'default'...

F

===

FAIL: test_student_find_solos (jmad.tests.StudentTestCase)

Traceback (most recent call last):

 File "/Users/kevin/dev/jmad-project/jmad/jmad/tests.py", line 16, in
test_student_find_solos

 self.fail('Incomplete Test')

AssertionError: Incomplete Test

Chapter 2

[19]

Ran 1 test in 2.512s

FAILED (failures=1)

Destroying test database for alias 'default'...

$

self.fail method simply forces the test to fail. Here we're using it to remind
ourselves that we've still got work to do before this test is complete.

You should have a blank Firefox window on your screen right now. Selenium
opened it in preparation for more commands (which we neglected to provide),
and left it open because we never wrote the code to close it.

A blank Firefox window, similar to the one on your desktop right now

Let's fix that now. Add the following method below setUp in our test case:

...
def tearDown(self):
 self.browser.quit()

Your First Test-Driven Application

[20]

Similar to setUp, tearDown runs after each test method. We can add any clean-up
code we might need here, such as getting rid of open browser windows.

Run python manage.py test again. Notice how the FireFox window appears for
only an instant and then disappears. Much nicer.

Opening a page with WebDriver
Looking back at our fleshed-out user story, the first action that's mentioned is
something about visiting the home page. Let's extend our test to do that. Move the
self.fail() line below the first comment block, and add a Selenium command:

...
the home page of JMAD.
home_page = self.browser.get(self.live_server_url + '/')
self.fail('Incomplete Test')
...

Just as a browser sends a GET request to a server for a URL, we tell the WebDriver
class to get a particular URL so that we can test it. In this case, we're asking for the
home page. self.live_server evaluates to http://localhost:8081 by default,
and we append the trailing slash for good measure. We set the result of get to a
variable called home_page, which we can test against and use to further navigate
through the app.

Run the tests again (python manage.py test). You'll notice that not much has
changed; it's still telling us that our test is incomplete. But in the flash of the browser
opening and closing you might catch a glimpse of a 404 error as it tries to access a
URL that we haven't defined in our application.

Finding elements with WebDriver
Finally, let's write some real test code. The next comment block in our functional test
mentions seeing the name of the site in the heading. We'll need to look for it inside
the page that we've saved in home_page. We can do that with Selenium's find_
element_by_css_selector method.

It will be easier to use find_element_by_css_selector if we've got class and ID
attributes. Let's plan to use Twitter Bootstrap to build out the front end of the site.
That means we'll need the name of the site to be in an <a> tag with a class of
navbar-brand. Add the following lines below the second comment block, and
move the placeholder below it:

...
of the site in the heading.

http://localhost:8081

Chapter 2

[21]

brand_element = self.browser/
 .find_element_by_css_selector('.navbar-brand')
self.assertEqual('JMAD', brand_element.text)
self.fail('Incomplete Test')
...

Run the tests and you'll see the same Firefox flash and then what can only be described
as a big mess in the terminal window. Here's the whole unfortunate traceback:

$ python manage.py test

Creating test database for alias 'default'...

E

===

ERROR: test_student_find_solos (jmad.tests.StudentTestCase)

Traceback (most recent call last):

 File "/Users/kevin/dev/jmad-project/jmad/jmad/tests.py", line 25,
in test_student_find_solos

 brand_element = self.browser.find_element_by_css_selector('.navbar-
brand')

 File "/Users/kevin/.virtualenvs/jmad/lib/python3.4/site-
packages/selenium/webdriver/remote/webdriver.py", line 374, in
find_element_by_css_selector

 return self.find_element(by=By.CSS_SELECTOR, value=css_selector)

 File "/Users/kevin/.virtualenvs/jmad/lib/python3.4/site-
packages/selenium/webdriver/remote/webdriver.py", line 662, in
find_element

 {'using': by, 'value': value})['value']

 File "/Users/kevin/.virtualenvs/jmad/lib/python3.4/site-
packages/selenium/webdriver/remote/webdriver.py", line 173, in
execute

 self.error_handler.check_response(response)

 File "/Users/kevin/.virtualenvs/jmad/lib/python3.4/site-
packages/selenium/webdriver/remote/errorhandler.py", line 166, in
check_response

 raise exception_class(message, screen, stacktrace)

selenium.common.exceptions.NoSuchElementException: Message: Unable to
locate element: {"method":"css selector","selector":".navbar-brand"}

Stacktrace:

www.allitebooks.com

http://www.allitebooks.org

Your First Test-Driven Application

[22]

 at FirefoxDriver.prototype.findElementInternal_
(file:///var/folders/66/drtf6fkn183cszg_9lfl4mt00000gn/T/tmp6ya5p71x/
extensions/fxdriver@googlecode.com/components/driver-
component.js:9641:26)

 at fxdriver.Timer.prototype.setTimeout/<.notify
(file:///var/folders/66/drtf6fkn183cszg_9lfl4mt00000gn/T/tmp6ya5p71x/
extensions/fxdriver@googlecode.com/components/driver-
component.js:548:5)

Ran 1 test in 4.299s

FAILED (errors=1)

Destroying test database for alias 'default'...

$

Tracebacks involving Selenium can get ugly

See that line that starts with selenium.common.exceptions.
NoSuchElementException? What Selenium is trying to tell you here is that it wasn't
able to find an element by the selector '.navbar-brand'. That makes sense, since
we haven't added it to the application yet. Unfortunately the output of the test run at
this stage is hard to read and looks like something has gone seriously wrong.

Chapter 2

[23]

In my book (and this is my book), this counts as progress: we've got a test that's
failing that we need to get to pass. I'm making a commit.

$ git commit -am 'initial functional test scaffolding'

$ git tag –a ch2-2-init-func-test

Reading test output
Interpreting the often arcane output of the test runner is a key skill you'll pick up.
Though at first it's frustrating, there will come a time when you have to track down
a bug with only gobbledygook logs to wade through. The extra time you'll spend
running TDD in the terminal will make the process much easier.

From here on out, I'm going to reduce the amount of test output I share in this book.
If you're running the commands in the terminal you'll see much more. The most
important parts will be printed here, so be sure to look for them in your own system.

Setting up a Django app for unit tests
We've gone as far as we can with the functional test as is, and we're ready to add
some real functionality to the application. Let's start by adding an app to the project:

$ python manage.py startapp solos

Apps are often named for the main model that they contain. This app will contain
the logic for managing and finding solos in our application. With the new app in
place, here's what our directory structure now looks like:

jmad-project
- jmad
 - jmad
 - __init__.py
 - settings.py
 - tests.py
 - urls.py
 - wsgi.py
 - solos
 - migrations
 - __init__.py
 - __init__.py
 - admin.py
 - models.py
 - tests.py
 - views.py
 - manage.py

Your First Test-Driven Application

[24]

Django tips its cap to best practices by creating a tests.py file for us. Since we'll be
writing lots of tests, let's convert it to a package to better organize our code. Here's
the resulting solos app:

- solos
 - migrations
 - __init__.py
 - tests
 - __init__.py
 - __init__.py
 - admin.py
 - models.py
 - views.py

Finally, don't forget to add the solos app to INSTALLED_APPS in jmad/settings.py:

...
INSTALLED_APPS = (
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'solos',
)
...

Planning our unit tests
This is probably a good time to stop and think about what our web application will
actually be capable of doing. We're writing a piece of software that can:

• Accept HTTP requests at certain URLs
• Route those to the appropriate functions
• Access system resources as necessary to fulfill the logic in those functions
• Return a valid HTTP response

Chapter 2

[25]

Let's start with the URL, which is the first part of our system that a user will
encounter. Add a test_urls.py file to our new solos.tests package, and add the
following code:

from django.test import TestCase
from django.core.urlresolvers import resolve

from solos.views import index

class SolosURLsTestCase(TestCase):

 def test_root_url_uses_index_view(self):
 """
 Test that the root of the site resolves to the
 correct view function
 """
 root = resolve('/')
 self.assertEqual(root.func, index)

At first blush, you'd be forgiven for thinking that this is overkill. As we'll see, this
entire file only exists to test what will be one line of urls.py configuration (not
counting imports). However, think about what this function does over the lifetime
of our application. Forever after, we'll have a command that we can run to ensure
that the root of our site routes to the right function. We're training our robot QA
department to clean up after us when we build more of the site.

Now, run the tests:

$ python manage.py test

Creating test database for alias 'default'...

EE

...

===

ERROR: solos.tests.test_views (unittest.loader.ModuleImportFailure)

...

ImportError: cannot import name 'index'

...

Points for you if you saw that coming—we tried to import something that didn't
exist yet.

Your First Test-Driven Application

[26]

Finally writing application code
Okay, we're finally at a place where we can write some of the application! Let's open
up solos/views.py, erase what's there, and stub out our index function:

...
def index():
 pass

I'm being deliberately Spartan here, almost blindly letting the output of the test drive
the code I write. Let's run the tests again:

$ python manage.py test

Creating test database for alias 'default'...

EE

===

ERROR: test_root_url_uses_index_view (solos.tests.test_urls.
SoloViewTestCase)

...

 File "/Users/kevin/.virtualenvs/jmad/lib/python3.4/site-
packages/django/core/urlresolvers.py", line 358, in resolve

 raise Resolver404({'tried': tried, 'path': new_path})

django.core.urlresolvers.Resolver404: {'tried': [[<RegexURLResolver
<RegexURLPattern list> (admin:admin) ^admin/>]], 'path': ''}

...

Django gave me a big fat 404 when it attempted to resolve that URL ('/'). We'll
need to wire it up to our new index function in urls.py. Here's what jmad/urls.py
should look like (including the 'admin/' URL that was created when my project
was initialized):

from django.conf.urls import include, url
from django.contrib import admin

urlpatterns = [
 url(r'^$', 'solos.views.index'),
 url(r'^admin/', include(admin.site.urls)),
]

Now, the tests:

$ python manage.py test

Creating test database for alias 'default'...

Chapter 2

[27]

.E

===

ERROR: test_student_find_solos (jmad.tests.StudentTestCase)

...

See the little dot before E? That's our first passing test! We have now locked down
that the root of our site uses our index function. TDD is all about small, accumulated
victories. Let's put our trophy in the case:

$ git add solos

$ git commit -am 'initial solos app, route to index view'

$ git tag –a ch2-3-init-solos-app

You may have noticed in our last test run that the error in the browser changed
from a 'Not Found' to an 'Internal Server Error (500)'. This probably has something
to do with our comically lightweight index function. Let's build that out further
with a test.

Testing views with RequestFactory
RequestFactory is a tool for creating and fine-tuning HTTP requests that we
can use to test view functions. You can think of it as a stripped-down version of
Selenium's WebDriver.

Add a new file test_views.py to solos/test with the following code:

from django.test import TestCase, RequestFactory

from solos.views import index

class IndexViewTestCase(TestCase):

 def setUp(self):
 self.factory = RequestFactory()

 def test_index_view_basic(self):
 """
 Test that index view returns a 200 response and uses
 the correct template
 """
 request = self.factory.get('/')
 response = index(request)
 self.assertEqual(response.status_code, 200)

Your First Test-Driven Application

[28]

Here we're using the simplest possible implementation of RequestFactory, creating
a new GET request and providing it as the first argument to the index function that
we wrote earlier. Let's run the tests:

$ python manage.py test

Creating test database for alias 'default'...

.EE

===

ERROR: test_index_view_basic (solos.tests.test_views.IndexViewTestCase)

Traceback (most recent call last):

 File "/Users/kevin/dev/jmad-project/jmad/solos/tests/test_views.py",
line 16, in test_index_view_basic

 response = index(request)

TypeError: index() takes 0 positional arguments but 1 was given

...

Oh yeah, we didn't write index to take any arguments. We're continuing the
omniscient test programmer/ignorant application programmer theme here for a
couple of reasons. First, we're trying to guard against writing any more than the
necessary code to get the job done. This ideal is typically referred to as YAGNI,
which stands for "You ain't gonna need it." Any code written in anticipation of
needing it runs the danger of adding unnecessary work. Secondly, it's an attempt
to show tiny steps being taken in TDD. As you get more comfortable with the
methodology, you may decide to bite off a bit more functionality at the first go
(in a similar way to starting view functions with the right arguments).

Let's take care of this latest error by updating our index function to accept an argument:

...
def index(request):
 pass

Now how does it look?

$ python manage.py test

Creating test database for alias 'default'...

.EE

===

ERROR: test_index_view_basic (solos.tests.test_views.IndexViewTestCase)

Chapter 2

[29]

Traceback (most recent call last):

 File "/Users/kevin/dev/jmad-project/jmad/solos/tests/test_views.py",
line 17, in test_index_view_basic

 self.assertEqual(response.status_code, 200)

AttributeError: 'NoneType' object has no attribute 'status_code'

...

Looking at the error message, our test runner is looking for an attribute called
status_code on a variable that is evaluating to None. One line up in the traceback,
we can see that variable is the response. As you probably noticed, we didn't return
a value from index(). Let's fix that now:

from django.http import HttpResponse

def index(request):
 return HttpResponse()

And test it, as follows:

$ python manage.py test

Creating test database for alias 'default'...

..E

===

ERROR: test_student_find_solos (jmad.tests.StudentTestCase)

...

File "/Users/kevin/.virtualenvs/jmad/lib/python3.4/site-packages/
selenium/webdriver/remote/errorhandler.py", line 166, in check_response

 raise exception_class(message, screen, stacktrace)

selenium.common.exceptions.NoSuchElementException: Message: Unable to
locate element: {"method":"css selector","selector":".navbar-brand"}

Stacktrace:

...

Cool, our unit test passes in its current form, but we're still not any further on our
functional test. We need a template. Let's extend our current unit test to check that
our response from our view uses a template. Update solos/tests/test_views.py
as follows:

...
 request = self.factory.get('/')
 with self.assertTemplateUsed('solos/index.html'):

Your First Test-Driven Application

[30]

 response = index(request)
 self.assertEqual(response.status_code, 200)

The with clause in the preceding code snippet is how we use
assertTemplateUsed() as a context manager. There are a number of assertions that
are used in this way. Here we're testing that a template called 'solos/index.html'
is used when that response is rendered. Here's the failing test:

$ python manage.py test

Creating test database for alias 'default'...

.FE

...

===

FAIL: test_index_view_basic (solos.tests.test_views.IndexViewTestCase)

Traceback (most recent call last):

 File "/Users/kevin/dev/jmad-project/jmad/solos/tests/test_views.py",
line 18, in test_index_view_basic

 self.assertEqual(response.status_code, 200)

 File "/Users/kevin/.virtualenvs/jmad/lib/python3.4/site-packages/
django/test/testcases.py", line 151, in __exit__

 self.test_case.fail(message)

AssertionError: solos/index.html was not rendered. No template was
rendered.

...

We get a refreshingly clear error message here: no template got rendered in the code
block inside that context manager. We need to make a couple of changes to get this
to pass. First, let's update our index view to render a template for the response that
it returns:

from django.shortcuts import render_to_response

def index(request):
 return render_to_response('solos/index.html')

Now we need to create a template. Create the solos/templates/solos/index.html
file and directories, leaving it empty for now, and run the tests again:

$ python manage.py test

Creating test database for alias 'default'...

..E

Chapter 2

[31]

===

ERROR: test_student_find_solos (jmad.tests.StudentTestCase)

...

File "/Users/kevin/.virtualenvs/jmad/lib/python3.4/site-packages/
selenium/webdriver/remote/errorhandler.py", line 166, in check_response

 raise exception_class(message, screen, stacktrace)

selenium.common.exceptions.NoSuchElementException: Message: Unable to
locate element: {"method":"css selector","selector":".navbar-brand"}

...

--

Ran 3 tests in 4.187s

FAILED (errors=1)

Destroying test database for alias 'default'...

We're back where we started, with our unit tests passing and our incomplete
functional test failing. This is progress, and we commit progress:

$ git add solos/tests

$ git commit -am 'initial index template, view test'

$ git tag –a ch2-4-init-index-template

Now that we have a template being rendered, we can actually write the code to move
forward with the functional test. Since I know we'll be using Bootstrap, but I don't
know anything else about the implementation, I'm only going to add the necessary
HTML to the template to make my test happy:

JMAD

Run the tests:

$ python manage.py test

Creating test database for alias 'default'...

..F

===

FAIL: test_student_find_solos (jmad.tests.StudentTestCase)

...

AssertionError: Incomplete Test

...

www.allitebooks.com

http://www.allitebooks.org

Your First Test-Driven Application

[32]

Excellent! We're back at our placeholder in the functional test. Let's commit
once more:

$ git commit -am 'Adds heading to index.html'

$ git tag –a ch2-5-adds-index-heading

Continuing through the functional test
Let's keep going, shall we? Move the placeholder down and add the following below
the next comment block:

 # He sees the inputs of the search form, including labels and
 # placeholders.
 instrument_input = self.browser.find_element_by_css_selector(
 'input#jmad-instrument'
)
 self.assertIsNotNone(self.browser.find_element_by_css_selector(
 'label[for="jmad-instrument"]'))
 self.assertEqual(instrument_input.get_attribute('placeholder'),
 'i.e. trumpet')
 artist_input = self.browser.find_element_by_css_selector(
 'input#jmad-artist')
 self.assertIsNotNone(self.browser.find_element_by_css_selector(
 'label[for="jmad-artist"]'))
 self.assertEqual(artist_input.get_attribute('placeholder'),
 'i.e. Davis')

 self.fail('Incomplete Test')

We're going to look for an input and confirm that its placeholder attribute gives us
some helpful information. You know the drill by now:

$ python manage.py test

Creating test database for alias 'default'...

..E

===

ERROR: test_student_find_solos (jmad.tests.StudentTestCase)

...

Chapter 2

[33]

 raise exception_class(message, screen, stacktrace)

selenium.common.exceptions.NoSuchElementException: Message: Unable to
locate element: {"method":"css selector","selector":"input#jmad-
instrument"}

...

Here's more hard-to-read test output. Once again, it's telling us that it couldn't find
the element that it's looking for, as expected. Let's add the instrument and artist
fields to solos/templates/solos/index.html. The entire file should now be:

JMAD

 <label for="jmad-instrument">Instrument</label>
 <input type="text" class="form-control" id="jmad-instrument"
 name="instrument" placeholder="i.e. trumpet" />
 <label for="jmad-artist">Artist</label>
 <input type="text" class="form-control" id="jmad-artist"
 name="artist" placeholder="i.e. Davis" />

Now, run the tests:

$ python manage.py test

Creating test database for alias 'default'...

..F

===

FAIL: test_student_find_solos (jmad.tests.StudentTestCase)

...

AssertionError: Incomplete Test

...

And on to the next comment. Update the test with the following code, moving the
placeholder down as we go:

...
He types in the name of his instrument and clicks the submit button
instrument_input.send_keys('saxophone')
instrument_input.submit()
self.fail('Incomplete Test')

Your First Test-Driven Application

[34]

send_keys lets us type in an input element, and submit allows us to submit a form.
Run the following tests:

$ python manage.py test
Creating test database for alias 'default'...
..E
===
ERROR: test_student_find_solos (jmad.tests.StudentTestCase)

...
selenium.common.exceptions.NoSuchElementException: Message: Element was
not in a form so couldn't submit

Another ugly traceback, but here's a new message that tells us exactly what to do
next. We tried to submit an input element, but we got Element was not in a form
so couldn't submit. Let's wrap it, and while we're at it add a button to click:

...
 <form>
 <label for="jmad-instrument">Instrument</label>
 <input type="text" class="form-control" id="jmad-instrument"
 name="instrument" placeholder="i.e. trumpet" />
 <label for="jmad-artist">Artist</label>
 <input type="text" class="form-control" id="jmad-artist"
 name="artist" placeholder="i.e. Davis" />

 <button type="submit">Search JMAD</button>
 </form>

Now update the test to use the new button:

...
instrument_input.send_keys('saxophone')
self.browser\
 .find_element_by_css_selector('form button').click()

You can download the example code files from your account at
http://www. packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.
The source code for the sample application is also available on
GitHub at https://github.com/kevinharvey/jmad on the
test-driven-django-development branch (the repository's
default). Development milestones in the book have been tagged
with names like ch5-2-staff-login to make navigating the
repository easier.

http://www. packtpub.com
http://www.packtpub.com/support
https://github.com/kevinharvey/jmad

Chapter 2

[35]

Run the tests and you'll see we're back to our placeholder. Nice! Also, here's what
you'd see in Firefox if you halted the script before the failure:

It's actually starting to look like a website

On to the next comment block:

...
He sees too many search results, so he adds a particular
artist to his search query
search_results = self.browser.find_elements_by_css_selector(
 '.jmad-search-result'
)
self.assertGreater(len(search_results), 2)
self.fail('Incomplete Test')
...

Your First Test-Driven Application

[36]

Wow, our test user is awfully impatient wading through search results. You may
have missed it, but we're using a different selector here, find_elements_by_css_
selector() (notice the additional s in elements) returns a list of any elements that
match the CSS selector. Here, we're trying to find some elements that we will identify
by namespaced classes. Let's trick this test into passing. Update the template with
the following:

...
</form>

<div class="jmad-search-result"></div>
<div class="jmad-search-result"></div>
<div class="jmad-search-result"></div>

Run the tests, and we hit the placeholder. It may seem like we're cheating, but all's
fair as long as we're not done with the test. Let's move on.

Here's some more functional test code, including a rephrased comment that flows
better with our WebDriver script:

...
... so he adds a particular artist to his search query and
gets a more manageable list
second_artist_input = self.browser\
 .find_element_by_css_selector('input#jmad-artist')
second_artist_input.send_keys('Cannonball Adderley')
self.browser\
 .find_element_by_css_selector('form button').click()
second_search_results = self.browser\
 .find_elements_by_css_selector('.jmad-search-result')
self.assertEqual(len(second_search_results), 2)
self.fail('Incomplete Test')

And the result of the test run:

$ python manage.py test

Creating test database for alias 'default'...

..F

===

FAIL: test_student_find_solos (jmad.tests.StudentTestCase)

Traceback (most recent call last):

 File "/Users/kevin/dev/jmad-project/jmad/jmad/tests.py", line 46, in
test_student_find_solos

Chapter 2

[37]

 self.assertEqual(len(second_search_results), 2)

AssertionError: 3 != 2

...

Thanks to our growing test coverage, our cheap jmad-search-result trick did not
pan out. We know our application needs to return dynamic results based on user
input, so we can't just change the test to expect three results again. It's time to get our
search form working. But first, a commit:

$ git commit -am 'Adds form elements, fake search results to
index.html.'

$ git tag –a ch2-6-adds-form-elements

Adding search to the view
Let's stop for another minute and assess what we're trying to accomplish. In the
latest version of our test, we send a couple of form inputs and receive differing
numbers of search results. Sounds like we'll need to:

1. Handle search terms in our view
2. Create a model to store some data
3. Return some of that data in our view based on the search term
4. Render that data in our template

Let's add a new test to solos/tests/test_views.py to make sure that we can
handle search terms via GET parameters. Update IndexViewTestCase with the
following code:

 from django.test import TestCase, RequestFactory
 from django.db.models.query import QuerySet
 ...

 class IndexViewTestCase(TestCase):
 def setUp(self):
 self.factory = RequestFactory()
 ...

 def test_index_view_returns_solos(self):
 """
 Test that the index view will attempt to return
 Solos if query parameters exist
 """

Your First Test-Driven Application

[38]

 response = self.client.get(
 '/',
 {'instrument': 'drums'}
)
 self.assertIs(
 type(response.context['solos']),
 QuerySet
)

Say hello to Django's test client (referenced here as self.client), a sort of dummy
browser that can send requests to URLs. We're using it instead of RequestFactory,
so that we'll have access to the response.context dictionary, to make sure that our
view is building the correct response.

We sent in a GET parameter with the request, and we test that the response has
a QuerySet called 'solos' in its context. Note that the QuerySet may be empty,
and this test will still pass. Run the tests:

$ python manage.py test

Creating test database for alias 'default'...

..EF

===

ERROR: test_index_view_returns_solos (solos.tests.test_views.
IndexViewTestCase)

...

KeyError: 'solos'

...

Right, let's add solos to the response:

def index(request):
 context = {'solos': None}
 return render_to_response('solos/index.html', context)

Run the tests again:

$ python manage.py test

Creating test database for alias 'default'...

..FF

===

Chapter 2

[39]

FAIL: test_index_view_returns_solos (solos.tests.test_views.
IndexViewTestCase)

Traceback (most recent call last):

 File "/Users/kevin/dev/jmad-project/jmad/solos/tests/test_views.py",
line 27, in test_index_view_returns_solos

 self.assertIs(type(response.context['solos']), QuerySet)

AssertionError: <class 'NoneType'> is not <class 'django.db.models.query.
QuerySet'>

...

Yep, it's not a QuerySet. Let's make it one:

...
context = {'solos': Solo.objects.all()}
...

What did that do for us?

$ python manage.py test

Creating test database for alias 'default'...

.EEE

===

ERROR: test_index_view_basic (solos.tests.test_views.IndexViewTestCase)

...

NameError: name 'Solo' is not defined

==

ERROR: test_index_view_returns_solos (solos.tests.test_views.
IndexViewTestCase)

--

...

NameError: name 'Solo' is not defined

Okay, I can define Solo:

...
from .models import Solo
...

Your First Test-Driven Application

[40]

Now?

$ python manage.py test

Creating test database for alias 'default'...

EEE

...

===

ERROR: solos.tests.test_urls (unittest.loader.ModuleImportFailure)

...

File "/Users/kevin/dev/jmad-project/jmad/solos/views.py", line 3, in
<module>

 from .models import Solo

ImportError: cannot import name 'Solo'

Not quite. We need to create our model. Let's leave this view test for a moment and
go take care of our first model. Create a new file solos/tests/test_models.py. The
following test will ensure that Solo's API will be in place:

from django.test import TestCase

from solos.models import Solo

class SoloModelTestCase(TestCase):

 def setUp(self):
 self.solo = Solo.objects.create(
 track='Falling in Love with Love',
 artist='Oscar Peterson',
 instrument='piano'
)

 def test_solo_basic(self):
 """
 Test the basic functionality of Solo
 """
 self.assertEqual(self.solo.artist, 'Peterson')

Chapter 2

[41]

If we ran the tests now, we'd see the same error that we've been seeing, except we'd
be seeing it from a new test: ImportError: cannot import name 'Solo'. Let's get
that fixed. Open solos/models.py and add the following:

Solo = None

That doesn't exactly get our test to pass, but it's all we need to get to the next
failure message:

$ python manage.py test

Creating test database for alias 'default'...

E.EEE

===

ERROR: test_solo_basic (solos.tests.test_models.SoloModelTestCase)

Traceback (most recent call last):

 File "/Users/kevin/dev/jmad-project/jmad/solos/tests/test_models.py",
line 9, in setUp

 self.solo = Solo.objects.create(

AttributeError: 'NoneType' object has no attribute 'objects'

...

Solo needs an 'objects' attribute, which would come from its model manager,
which it would have if it were a model. Update solos/models.py to look as follows:

from django.db import models

class Solo(models.Model):
 pass

This will look very familiar if you've done much work with Django. We're subclassing
Model for our solo model, which will give it an objects attribute. Run some tests and
we'll see a new error.

$ python manage.py test

...

sqlite3.OperationalError: no such table: solos_solo

The above exception was the direct cause of the following exception:

...

django.db.utils.OperationalError: no such table: solos_solo

www.allitebooks.com

http://www.allitebooks.org

Your First Test-Driven Application

[42]

What Django is trying to tell us with this database error is that there's no table for the
solos, because we haven't created a migration for our Solo model yet.

You may have noticed that at no point in our development have we run ./manage.
py migrate, or even ./manage.py runserver. We're letting the Django test runner
build the database for us from scratch each time and delete it after we're done.

Go ahead and create your migration:

$ python manage.py makemigrations

Migrations for 'solos':

 0001_initial.py:

 - Create model Solo

Try the tests again:

$ python manage.py test

Creating test database for alias 'default'...

E...F

===

ERROR: test_solo_basic (solos.tests.test_models.SoloModelTestCase)

...

TypeError: 'track' is an invalid keyword argument for this function

===

FAIL: test_student_find_solos (jmad.tests.StudentTestCase)

...

AssertionError: 3 != 2

...

The test runner is trying to add a 'track' to the solo via a keyword argument, but
our model is not having it. Let's add some fields to the model:

class Solo(models.Model):
 track = models.CharField(max_length=100)
 artist = models.CharField(max_length=100)
 instrument = models.CharField(max_length=50)

Chapter 2

[43]

And run the tests:

$ python manage.py test

...

sqlite3.OperationalError: no such column: solos_solo.track

The above exception was the direct cause of the following exception:

...

django.db.utils.OperationalError: no such column: solos_solo.track

The database doesn't have the right columns for our solo yet. No bother, just run
python manage.py makemigrations, then test again. Django's migration tool will
complain about non-nullable fields needing defaults. Choose option 1 throughout:

$ python manage.py makemigrations

You are trying to add a non-nullable field 'artist' to solo without a
default; we can't do that (the database needs something to populate
existing rows).

Please select a fix:

 1) Provide a one-off default now (will be set on all existing rows)

 2) Quit, and let me add a default in models.py

Select an option: 1

Please enter the default value now, as valid Python

The datetime and django.utils.timezone modules are available, so you
can do e.g. timezone.now()

>>> 'n/a'

...

[repeats twice more]

...

Migrations for 'solos':

 0002_auto_20141230_0800.py:

 - Add field artist to solo

 - Add field instrument to solo

 - Add field track to solo

And test again:

$ python manage.py test

Creating test database for alias 'default'...

....F

Your First Test-Driven Application

[44]

===

FAIL: test_student_find_solos (jmad.tests.StudentTestCase)

...

AssertionError: 3 != 2

Four of five tests passed! That means we're getting a QuerySet in our context and we
can create solos. Let's build out the view test a little to see it in action:

...
from solos.models import Solo

class IndexViewTestCase(TestCase):

 def setUp(self):
 ...
 self.drum_solo = Solo.objects.create(
 instrument='drums',
 artist='Rich',
 track='Bugle Call Rag'
)
 self.bass_solo = Solo.objects.create(
 instrument='saxophone',
 artist='Coltrane',
 track='Mr. PC'
)

 def test_index_view_returns_solos(self):
 """
 Test that the index view will attempt to return Solos
 if query parameters exist
 """
 response = self.client.get(
 '/',
 {'instrument': 'drums'}
)

 solos = response.context['solos']

 self.assertIs(type(solos), QuerySet)
 self.assertEqual(len(solos), 1)
 self.assertEqual(solos[0].artist, 'Rich')

Chapter 2

[45]

We've created two solo objects in the setUp function, which we'll be able to use to
test our view. We've also refactored a bit to set the 'solos' QuerySet to a variable
for reuse. Here are our tests now:

$ python manage.py test

Creating test database for alias 'default'...

...FF

===

FAIL: test_index_view_returns_solos (solos.tests.test_views.
IndexViewTestCase)

Traceback (most recent call last):

 File "/Users/kevin/dev/jmad-project/jmad/solos/tests/test_views.py",
line 34, in test_index_view_returns_solos

 self.assertEqual(len(solos), 1)

AssertionError: 2 != 1

...

It would appear that our view is finding two solos when we only expected one.
The culprit is the all() selector in our view. Let's update it to filter on instrument:

def index(request):
 context = {'solos': Solo.objects.filter(
 instrument=request.GET.get(
 'instrument', None
)
)}
 return render_to_response('solos/index.html', context)

If we run the tests, we'll see that test_index_view_returns_solos now passes.
Let's take a moment to commit our work:

$ git add solos/migrations/

$ git commit -am 'Adds Solo model, implemented in index view'

$ git tag –a ch2-7-add-solo-model

We can now continue on the view and template to get the functional test past its
current error. The functional test is looking for three saxophone solos, two of which
should be by Cannonball Adderley. Let's add those to setUp in jmad/tests.py:

 from solos.models import Solo
...
 def setUp(self):

Your First Test-Driven Application

[46]

 ...
 self.solo1 = Solo.objects.create(
 instrument='saxophone',
 artist='John Coltrane',
 track='My Favorite Things'
)
 self.solo2 = Solo.objects.create(
 instrument='saxophone',
 artist='Cannonball Adderley',
 track='All Blues'
)
 self.solo3 = Solo.objects.create(
 instrument='saxophone',
 artist='Cannonball Adderley',
 track='Waltz for Debby'
)

Now, let's update the template to use those new models. Update solos/templates/
solos/index.html, replacing the three repeated divs with the following:

...
{% for solo in solos %}
 <div class="jmad-search-result">
 {{ solo.track }}: {{ solo.artist }} on
 {{ solo.instrument }}
 </div>
{% endfor %}

How do our tests look now?

$ python manage.py test

Creating test database for alias 'default'...

....F

===

FAIL: test_student_find_solos (jmad.tests.StudentTestCase)

Traceback (most recent call last):

 File "/Users/kevin/dev/jmad-project/jmad/jmad/tests.py", line 57, in
test_student_find_solos

 self.assertEqual(len(second_search_results), 2)

AssertionError: 0 != 2

...

Chapter 2

[47]

We've suffered a little bit of regression since we removed our three div hack.
Let's work on the view to get this right. Back to solos/views.py:

...
def index(request):
 context = {'solos': []}

 if request.GET.keys():
 solos_queryset = Solo.objects.all()

 if request.GET.get('instrument', None):
 solos_queryset = solos_queryset.filter(
 instrument=request.GET.get(
 'instrument',
 None
)
)

 if request.GET.get('artist', None):
 solos_queryset = solos_queryset.filter(
 artist=request.GET.get('artist', None)
)

 context['solos'] = solos_queryset

 return render_to_response('solos/index.html', context)

One more test run:

$ python manage.py test

Creating test database for alias 'default'...

....F

===

FAIL: test_student_find_solos (jmad.tests.StudentTestCase)

...

AssertionError: Incomplete Test

...

Your First Test-Driven Application

[48]

And we're back at our placeholder.

The page with search results at the end of the test run

Let's commit before we forge ahead:

$ git commit –am 'Adds filtering to index and model data to template'

$ git tag –a ch2-8-add-filtering

Summary
In this chapter, we gathered requirements for our sample project, set up our
development environment, and started a Django project. We discussed the difference
between functional tests and unit tests, and wrote a few unit tests for Django URLs,
views, and models. We partially completed the first user story for our project using
TDD, learning the basics of building browser-based tests with LiveServerTestCase
and Selenium.

In the next chapter, we will dig deeper into LiveServerTestCase and Selenium as
we continue to build out our sample project.

[49]

Ironclad Code
In this chapter, we're going to learn more about the tools available for unit testing in
Django. In order to do that, we will:

• Pick up where we left off on the previous chapter's functional test
• Explore the assertions available to us in TestCase
• Compare ways to generate web requests in tests
• Refactor a bit

Though we'll be focusing on tools for writing unit tests in this chapter, we'll be doing
so in the context of continuing to work through (and build out) our functional test.
One of the greatest benefits of TDD is how easy it is to come back to your work after
a break. Just run the tests again to see where we are:

$ python manage.py test

Creating test database for alias 'default'...

....F

===

FAIL: test_student_find_solos (jmad.tests.StudentTestCase)

Traceback (most recent call last):

 File "/Users/kevin/dev/jmad-project/jmad/jmad/tests.py", line 57, in
test_student_find_solos

 self.fail('Incomplete Test')

AssertionError: Incomplete Test

Ironclad Code

[50]

Ran 5 tests in 2.480s

FAILED (failures=1)

Destroying test database for alias 'default'...

At line 55 of jmad/tests.py, we find:

...
 second_search_results = self.browser\
 .find_elements_by_css_selector(
 '.jmad-search-result a'
)
 self.assertEqual(len(second_search_results), 2)
 self.fail('Incomplete Test')

 # He clicks on one of the search results.
...

Add the following lines after the comment and move the self.fail placeholder to
the next line:

...
 self.assertEqual(len(second_search_results), 2)

 # He clicks on a search result.
 second_search_results[0].click()
 self.fail('Incomplete Test')
...

Run the tests once more and we'll make it to the placeholder. Our next comment
hints at a new page and a few new fields for our model:

On the solo page he sees the title, artist and album for
this particular solo.

He also sees the start time and end time of the solo.

Complete the test as shown here. No need to move the placeholder, as this will
exercise everything we need in the functional test for now:

On the solo page he sees the title, artist and album for
this particular solo.
self.assertEqual(

Chapter 3

[51]

 self.browser.current_url,
 '{}/solos/2/'.format(self.live_server_url)
)

 self.assertEqual(
 self.browser.find_element_by_css_selector(
 '#jmad-artist').text,
 'Cannonball Adderley'
)
self.assertEqual(
 self.browser.find_element_by_css_selector(
 '#jmad-track').text,
 'All Blues'
)
self.assertEqual(
 self.browser.find_element_by_css_selector(
 '#jmad-album').text,
 'Kind of Blue'
)

He also sees the start time and end time of the solo.
self.assertEqual(
 self.browser.find_element_by_css_selector(
 '#jmad-start-time').text,
 '2:06'
)
self.assertEqual(
 self.browser.find_element_by_css_selector(
 '#jmad-end-time').text,
 '4:01'
)

Since we haven't done anything to make a solo page available, none of this works.
Our test of the browser's current_url fails since we haven't left the home page.
Before we figure out what's going on, let's commit:

$ git commit -am 'Finishes first iteration of functional test'

$ git tag –a ch3-1-finish-func-test

www.allitebooks.com

http://www.allitebooks.org

Ironclad Code

[52]

Using the Python Debugger in tests
Selenium blows through the test case faster than we can see the page in the
browser. Since our test is just a Python script, we have access to my favorite
debugging tool—pdb.

pdb, a.k.a. the Python Debugger, is a tremendously helpful utility in the standard
library. It allows us, among other things, to break execution anywhere in our source
code and have a peak around as if we were in a regular Python terminal, but with
all the current variables defined. Check out the docs at https://docs.python.
org/3.4/library/pdb.html.

Add the following lines just before the failing assertion:

On the solo page he sees the title, artist and album for
this particular solo.
import pdb;pdb.set_trace()
self.assertEqual(
 self.browser.current_url,
 '{}/solos/2/'.format(self.live_server_url)
)

pdb.set_trace() will halt the test, leaving Firefox open and waiting for our input
in the terminal. When we run the test, we see that the browser has the list of solos
that we specified. Selenium was able to click() the element, but of course nothing
happens when you click on a <div>. We need to hyperlink those search results.

We'll explore more of the debugger's methods later, but for now we can type
c to continue through the test. Don't forget to remove the debugger once the
test is finished.

Using RequestFactory
Just as we used RequestFactory in the last chapter to test the index view, let's use it
to write a test for the view that we need. Add the following new class to the bottom
of solos/tests/test_views.py:

class SoloViewTestCase(TestCase):

 def setUp(self):
 self.factory = RequestFactory()

 def test_basic(self):
 """

https://docs.python.org/3.4/library/pdb.html
https://docs.python.org/3.4/library/pdb.html

Chapter 3

[53]

 Test that the solo view returns a 200 response, uses
 the correct template, and has the correct context
 """
 request = self.factory.get('/solos/1/')

 response = SoloDetailView.as_view()(
 request,
 self.drum_solo.pk
)

 self.assertEqual(response.status_code, 200)
 self.assertEqual(
 response.context_data['solo'].artist,
 'Rich'
)
 with self\
 .assertTemplateUsed('solos/solo_detail.html'):
 response.render()

This should look familiar, but with one important change. We're going to use a
class-based view for the individual solo pages (hence the as_view method call).
That, combined with our decision to use the RequestFactory for this test
(as opposed to the self.client) means we'll have to call the render method
on the response to check if it's using the right template.

Note that here we're testing the context_data dictionary on the response. This is
where DetailView puts the single object for use in rendering the template. In this
case, it's a Solo.

Running a single test with dot notation
So far, we've been running the entire test suite, but what if we want to run just a
single test, or a portion of the tests? We can use standard dot notation to specify
which tests to run, like so:

Run all the tests in the solos app

$ python manage.py test solos

Run all the tests in solos/tests/test_views.py

$ python manage.py test solos.tests.test_views

Ironclad Code

[54]

Run all the tests in SoloViewTestCase

$ python manage.py test solos.tests.test_views.SoloViewTestCase

Run only test_basic in SoloViewTestCase

$ python manage.py test solos.tests.test_views.SoloViewTestCase.\

test_basic

Let's try using dot notation to run SoloTestCase.test_basic. Our first run will go
well, but we'll see a tricky gotcha in the second.

$ python manage.py test solos.tests.test_views.SoloViewTestCase.test_
basic

Creating test database for alias 'default'...

E

===

ERROR: test_basic (solos.tests.test_views.SoloViewTestCase)

Traceback (most recent call last):

 File "/Users/kevin/dev/jmad-project/jmad/solos/tests/test_views.py",
line 50, in test_basic

 response = SoloDetailView.as_view()(request, self.drum_solo.pk)

NameError: name 'SoloDetailView' is not defined

Ran 1 test in 0.001s

FAILED (errors=1)

Destroying test database for alias 'default'...

No problem, we can fix that easily. Just add the view to the import statement already
at the top of the file:

from solos.views import index, SoloDetailView
...

Chapter 3

[55]

Now run the test and see the unhelpful error we get:

$ python manage.py test solos.tests.test_views.SoloViewTestCase.test_
basic

Traceback (most recent call last):

...

AttributeError: 'module' object has no attribute 'test_views'

Module has no attribute test_views?!?!? Yes it does!

This gotcha will turn up if you get used to using dot notation to call single tests.
As it turns out, you get this error when you specify down into a module with an
ImportError. Let's try again, this time running all the tests in the solos app:

$ python manage.py test solos

Creating test database for alias 'default'...

..E

===

ERROR: solos.tests.test_views (unittest.loader.ModuleImportFailure)

Traceback (most recent call last):

...

 File "/Users/kevin/dev/jmad-project/jmad/solos/tests/test_views.py",
line 4, in <module>

 from solos.views import index, SoloDetailView

ImportError: cannot import name 'SoloDetailView'

Ran 3 tests in 0.002s

FAILED (errors=1)

Destroying test database for alias 'default'...

We can work with that. Add SoloDetailView to solos/views.py:

class SoloDetailView():
 pass

Ironclad Code

[56]

Let's try dot notation again:

$ python manage.py test solos.tests.test_views.SoloViewTestCase

Creating test database for alias 'default'...

E

===

ERROR: test_basic (solos.tests.test_views.SoloViewTestCase)

Traceback (most recent call last):

 File "/Users/kevin/dev/jmad-project/jmad/solos/tests/test_views.py",
line 49, in test_basic

 response = SoloDetailView.as_view()(request, self.drum_solo.pk)

AttributeError: type object 'SoloDetailView' has no attribute 'as_view'

Ran 1 test in 0.001s

FAILED (errors=1)

Destroying test database for alias 'default'...

No attribute as_view means I need to subclass my class from Django's DetailView:

from django.views.generic.detail import DetailView
...
class SoloDetailView(DetailView):
 pass

Run the test:

$ python manage.py test solos.tests.test_views.SoloViewTestCase

...

AttributeError: 'SoloViewTestCase' object has no attribute
'drum_solo'

And we find that we need some test data. I'm going to commit here, as we're about to
do some refactoring:

$ git commit –am 'Adds test for SoloDetailView and stubs view class'

$ git tag –a ch3-2-stub-solo-view

Chapter 3

[57]

Managing test data
In Chapter 2, Your First Test-Driven Application, we added a few objects to our
database in a setUp method, and we need to do the same here. As a matter of fact,
we need to do exactly the same thing here.

"Don't Repeat Yourself" (a.k.a. the DRY principle) is a common mantra in the
Django community. The idea is that every "thing" (function, value, logic path, etc.)
should only exist in one place in the entire system, as we don't want to hunt
down every instance of something when we (inevitably) need to change it.
It's closely related to the first of the Three Virtues of a GREAT Programmer
(http://threevirtues.com/): laziness.

In the interest of keeping our test suite as DRY as possible, let's refactor the lines that
create test data in such a way that SoloViewTestCase can use it as well.

Refactoring
Refactoring is the act of improving the quality of code without changing its
functionality. It's an art, and your test suite is the easel on which you'll be working.

Before we touch any existing code, let's run the full test suite so we know exactly
where we are:

$ python manage.py test

...

Ran 6 tests in 2.474s

FAILED (failures=1, errors=1)

I snipped the details, but we got the URL failure in our functional test, and the
AttributeError in SoloViewTestCase. When we have finished refactoring,
we should be back in the same spot. Let's start by moving the model creation
steps to setUpClass.

setUpClass versus setUp
We'd previously used setUp to create our models, but let's take this opportunity
to optimize a bit. Since setUp is called before every single test method, it also gets
called in the course of IndexViewTestCase. However, setUpClass is only called
once before the entire test case. And since we're not doing anything with those
models besides looking them up, we can leave them in place from test to test.

http://threevirtues.com/

Ironclad Code

[58]

Edit the top of IndexViewTestCase in solos/tests/test_views.py like this:

class IndexViewTestCase(TestCase):

 def setUp(self):
 self.factory = RequestFactory()

 @classmethod
 def setUpClass(cls):
 super().setUpClass()
 cls.drum_solo = Solo.objects.create(
 instrument='drums',
 artist='Rich',
 track='Bugle Call Rag'
)
 cls.sax_solo = Solo.objects.create(
 instrument='saxophone',
 artist='Coltrane',
 track='Mr. PC'
)

Two important points on setUpClass:

• setUpClass is run as a class method, so we have to decorate it with
@classmethod.

• django.test.TestCase (which IndexViewTestCase inherits from) uses
setUpClass for its own purposes, so we have to be sure to call super().
setUpClass() to pick up that code. Note that this is a significant change
from pre-3.0 Python. If you're not on Python 3 yet, replace that line with
super(IndexViewTestCase, cls).setUpClass().

Run the tests, and we still get the exact same errors. So far so good.

Speaking of subclassing, since we're working with classes, why don't we subclass the
parts of our test cases that are the same? Create a new test case SolosBaseTestCase
above IndexViewTestCase and move the setUp and setUpClass methods to it.
Now we can subclass IndexViewTestCase from the new SolosBaseTestCase.
The new class and the first bit of IndexViewTestCase should now look like this:

...
class SolosBaseTestCase(TestCase):

 def setUp(self):

Chapter 3

[59]

 self.factory = RequestFactory()

 @classmethod
 def setUpClass(cls):
 super().setUpClass()
 cls.drum_solo = Solo.objects
 .create(instrument='drums', artist='Rich',
 track='Bugle Call Rag')
 cls.sax_solo = Solo.objects
 .create(instrument='saxophone',
 artist='Coltrane', track='Mr. PC')

class IndexViewTestCase(SolosBaseTestCase):

 def test_index_view_basic(self):
...

Run the tests again, and we're still the same. No new functionality added, but we've
completed the refactor. Let's commit.

$ git commit -am 'Refactored test data with setUpClass on
SolosBaseTestCase'

$ git tag –a ch3-3-refactor-test-data

DRY testing
Using that test data in SoloViewTestCase is now just a matter of subclassing
SolosBaseTestCase:

class SoloViewTestCase(SolosBaseTestCase):
...

Run that single test:

$ python manage.py test solos.tests.test_views.SoloViewTestCase

Creating test database for alias 'default'...

E

===

ERROR: test_basic (solos.tests.test_views.SoloViewTestCase)

Traceback (most recent call last):

Ironclad Code

[60]

 File "/Users/kevin/dev/jmad-project/jmad/solos/tests/test_views.py",
line 56, in test_basic

 response = SoloDetailView.as_view()(request, self.drum_solo.pk)

...

django.core.exceptions.ImproperlyConfigured: SoloDetailView is missing
a QuerySet. Define SoloDetailView.model, SoloDetailView.queryset, or
override SoloDetailView.get_queryset().

Ran 1 test in 0.001s

FAILED (errors=1)

Destroying test database for alias 'default'...

Now that is a helpful error message. It's practically documentation on how to use
DetailView. The error message offers three options for fixing the error. Let's take its
first suggestion and add a model attribute to the class.

class SoloDetailView(DetailView):
 model = Solo

And now:

$ python manage.py test solos.tests.test_views.SoloViewTestCase

Creating test database for alias 'default'...

E

===

ERROR: test_basic (solos.tests.test_views.SoloViewTestCase)

Traceback (most recent call last):

 File "/Users/kevin/dev/jmad-project/jmad/solos/tests/test_views.py",
line 56, in test_basic

 response = SoloDetailView.as_view()(request, self.drum_solo.pk)

...

AttributeError: Generic detail view SoloDetailView must be called with
either an object pk or a slug.

Chapter 3

[61]

Ran 1 test in 0.001s

FAILED (errors=1)

Here's an implementation oversight on my part—you've got to provide the primary
key as a named argument. Wasn't it better to have a test inform us of that, instead an
error page? Let's fix it in solos/tests/test_views.py:

 response = SoloDetailView.as_view()(
 request,
 pk=self.drum_solo.pk
)

Onto the next error:

$ python manage.py test solos.tests.test_views.SoloViewTestCase

...

 File "/Users/kevin/.virtualenvs/jmad/lib/python3.4/site-packages/
django/template/loader.py", line 194, in select_template

 raise TemplateDoesNotExist(', '.join(not_found))

django.template.base.TemplateDoesNotExist: solos/solo_detail.html

The default template name for a DetailView follows the format <app_
name>/<model_name>_detail.html. It's very easy to change, but we don't have any
reason to change it now. Let's add the template so we can move along.

$ touch solos/templates/solos/solo_detail.html

$ python manage.py test solos.tests.test_views.SoloViewTestCase

Creating test database for alias 'default'...

.

Ran 1 test in 0.003s

OK

Let's commit that:

$ git commit -am 'Adds default functionality for SoloDetailView'

$ git tag –a ch3-4-add-default-solo-view

Ironclad Code

[62]

RequestFactory versus TestClient
You may have noticed something funny about the last test: we made a request using
the RequestFactory instance, passing it a path that does not exist in urls.py yet.
Why did we have to do that?

Recall that a Django view is simply any function that accepts a request and returns a
response. RequestFactory creates a bare-bones WSGIRequest for the first argument
of a view without actually going through the Django framework (URL routing,
middleware, and so on). We provide the first argument (path as a keyword) simply
because you can't have a WSGIRequest without a path. The actual argument is
irrelevant, unless you're using it in the course of your view logic (meaning both /
solos/1/ and /solos/foo/ would have let the test pass).

Using the WSGIRequest created by RequestFactory, we can call a view like
a regular function and test its effects, here setting its returned HttpResponse
to a variable:

response = SoloDetailView.as_view()(request,
 pk=self.drum_solo.pk)

To contrast, here's a snippet from a test we wrote in the previous chapter which
uses TestClient to similar effect. It's in the test_views.py file we're currently
working in, if you've got your editor open:

response = self.client.get('/', {'instrument': 'drums'})

This snippet is simulating an HTTP GET request from outside the application.
Therefore, if the URL doesn't exist, the response would return a 404 error. It
also would have passed through Django's routing, been subjected to any active
middleware, and so on.

Which one you decide to use in your tests is up to you. The difference comes
down to the amount of isolation you're aiming for in your unit tests. I tend toward
RequestFactory for this reason. Not only does it ensure that I'm testing exactly
what I think I'm testing, but I feel like that isolation makes explicit what the Django
framework is actually providing (by virtue of its absence in the tests).

Testing URLs
Let's get our view hooked up to a URL. Add this familiar looking test to solos/
tests/test_urls.py:

 def test_solo_details_url(self):
 """

Chapter 3

[63]

 Test that the URL for SoloDetail resolves to the
 correct view function
 """
 solo_detail = resolve('/solos/1/')

 self.assertEqual(
 solo_detail.func.__name__,
 'SoloDetailView'
)
 self.assertEqual(solo_detail.kwargs['pk'], '1')

A new wrinkle here: we need to test the __name__ of the func attribute on solo_
detail to make sure that it's the string version of our CBV's name. as_view(),
which we use in urls.py, returns a function for the URL, hence solo_detail.func
is a pointer to a function. solo_detail.func and SoloDetailView.as_view()
would not be equal, as they'd be different pointers to the same function.

Does that seem like overkill?
You could argue that testing our implementation of Django's URL routing is
unnecessary, and that test_solo_details_url is testing configuration, not novel
logic. I like to include tests like this for a number reasons:

1. I'm probably the worst regex developer on the planet, and I sleep better
knowing mine are tested.

2. If I'm using RequestFactory to isolate my view tests, nothing is testing my
URL rules if I don't write a specific URL test.

It's up to you to decide if you want the isolation provided by the combination of
RequestFactory and URL testing, or if the simplicity of using TestClient works
for you.

Displaying search results
Let's continue by writing the URL for our view and updating the template to use the
context from the view. First, run the solos tests and we get an error:

$ python manage.py test solos

Creating test database for alias 'default'...

..E...

Ironclad Code

[64]

===

ERROR: test_solo_details_url (solos.tests.test_urls.SolosURLsTestCase)

...

django.core.urlresolvers.Resolver404: {'path': 'solo/1/', 'tried':
[[<RegexURLResolver <RegexURLPattern list> (admin:admin) ^admin/>],
[<RegexURLPattern None ^$>]]}

Let's add that URL to jmad/urls.py:

...
from solos.views import SoloDetailView
...
 url(r'^solos/(?P<pk>\d+)/$', SoloDetailView.as_view()),

Run the full test suite, and we'll see we're back to all passing except the URL problem
in the functional test. Let's save our progress:

$ git commit –am 'Adds URL for SoloDetailView'

$ git tag –a ch3-5-add-solo-url

Now that we've got a URL to point to, let's link up the search results like we said we
would. Update the markup inside the for loop in solos/templates/index.html
like so:

 <div class="jmad-search-result">

 {{ solo.track }}: {{ solo.artist }} on
 {{ solo.instrument }}

 </div>

Another test run results in the exact same error we got before. What gives? Turns
out, the <a> tag is not what we're telling Selenium to click on. Look back at where we
were looking for those links in the Selenium tests (line 55 if you're synced up with
the repository):

second_search_results = self.browser
 .find_elements_by_css_selector('.jmad-search-result')

That returns a list of the divs of the jmad-search-result class. So when we try to
do this (on line 59):

second_search_results[0].click()

we're clicking a div, not the <a> tag.

Chapter 3

[65]

Selenium tail-chasing
This is an unfortunately common pattern in Selenium, when you're early on in the
project, and your template code is not stable. On the other hand, one might argue
that working with Selenium in this way forces you to be judicious about the changes
that you make to your templates.

There are ways to mitigate some of this pain. It's often helpful to put repeated
element searches into methods on the test case, so that you only have to update them
in one place when you update your markup. Let's do that here, since we look up
search elements multiple times. Add the following method to StudentTestCase:

...
def find_search_results(self):
 return self.browser.find_elements_by_css_selector(
 '.jmad-search-result a'
)
...

Then replace the search_results and second_search_results (lines 47 and now
55) variable definitions with this new method:

...
 search_results = self.find_search_results()
...
 second_search_results = self.find_search_results()
...

That's another refactor, so let's commit:

$ git commit –am 'Adds a tag to search results, small test refactor'

$ git tag -a ch3-6-tag-search-results

Building the Solo detail page
When we run the tests again we get another ugly NoSuchElementException, which
makes sense knowing that we're using a completely blank template. If we take a look
at the current state of our model, we can get 'track' and 'artist' on the page. Let's add
them in solos/templates/solo_detail.html:

<p id="jmad-artist">{{ solo.artist }}</p>
<p id="jmad-track">{{ solo.track }}</p>

Ironclad Code

[66]

Run the tests again and we get the same error, but at the line where we tell Selenium
to look for #jmad-album. That's not on the model, and neither are the next two
attributes. Let's go back to solos/tests/test_models.py and update the test before
we add them:

class SoloModelTestCase(TestCase):

 def setUp(self):
 self.solo = Solo.objects.create(
 track='Falling in Love with Love',
 artist='Oscar Peterson',
 instrument='piano',
 album='At the Stratford Shakespearean Festival',
 start_time='1:24',
 end_time='4:06'
)

 def test_solo_basic(self):
 """
 Test the basic functionality of Solo
 """
 self.assertEqual(self.solo.artist, 'Oscar Peterson')
 self.assertEqual(self.solo.end_time, '4:06')

Our test fails nicely, as expected:

$ python manage.py test solos

===

ERROR: test_solo_basic (solos.tests.test_models.SoloModelTestCase)

...

TypeError: 'start_time' is an invalid keyword argument for this
function

You may get that same type of error but on the album or end_time field. Regardless,
this is an error that's happening in setUp. We're trying to give Solo.objects.
create() a keyword argument that is not a field on the model. Let's update the
model in an attempt to get the test to pass:

class Solo(models.Model):
 track = models.CharField(max_length=100)
 artist = models.CharField(max_length=100)

Chapter 3

[67]

 instrument = models.CharField(max_length=50)
 album = models.CharField(max_length=200)
 start_time = models.CharField(max_length=20, blank=True,
 null=True)
 end_time = models.CharField(max_length=20, blank=True,
 null=True)

Now the tests complain about missing columns:

$ python manage.py test solos

...

sqlite3.OperationalError: no such column: solos_solo.album

The above exception was the direct cause of the following exception:

...

django.db.utils.OperationalError: no such column: solos_solo.album

So let's add the migration, and try again:

$ python manage.py makemigrations

I'm asked about a default value for album as Django makes these migrations.
Choose sensible defaults (I picked 'unknown'), but remember that we're probably
going to delete and recreate all these migrations before we launch. Now we can run
the tests and we'll see that we're all good. Time to commit:

$ git commit –am 'Adds album, start_time, end_time fields to Solo'

$ git tag -a ch3-7-add-album-to-solo

Is that enough to move us forward on the functional test? Run the whole suite again
and you'll see that all the tests pass except the functional test. We first need to update
its setUp method to use the new fields:

 def setUp(self):
 self.browser = webdriver.Firefox()
 self.browser.implicitly_wait(2)

 self.solo1 = Solo.objects.create(
 instrument='saxophone',
 artist='John Coltrane',
 track='My Favorite Things',
 album='My Favorite Things'
)

Ironclad Code

[68]

 self.solo2 = Solo.objects.create(
 instrument='saxophone',
 artist='Cannonball Adderley',
 track='All Blues',
 album='Kind of Blue',
 start_time='2:06',
 end_time='4:01'
)
 self.solo3 = Solo.objects.create(
 instrument='saxophone',
 artist='Cannonball Adderley',
 track='Waltz for Debby',
 album='Know What I Mean?'
)

Run the test, and we're in the same spot. Now, try updating solos/templates/
solos/solo_detail.html with our new fields:

<p id="jmad-artist">{{ solo.artist }}</p>
<p id="jmad-track">{{ solo.track }}</p>
<p id="jmad-album">{{ solo.album }}</p>
<p id="jmad-start-time">{{ solo.start_time }}</p>
<p id="jmad-end-time">{{ solo.end_time }}</p>

And now the tests:

$ python manage.py test

Creating test database for alias 'default'...

.......

Ran 7 tests in 2.750s

OK

Destroying test database for alias 'default'...

The functional test passes! Alright! Time for one last victorious commit:

$ git commit –am 'Updates solo detail page to use new attributes'

$ git tag -a ch3-8-solo-detail-attrs

Chapter 3

[69]

Summary
In this chapter, we finished our first user story for JMAD, taking the user all the way
through the process of searching and visiting a single solo. We learned more about
the different tools available in Django's testing toolkit, and when to use them. We
also covered a few best practices for keeping your tests maintainable.

In the next chapter we'll add more functionality and do a bit of a refactor.

[71]

Building Out and Refactoring
In this chapter, we're going to extend our application with new functionality. In the
process, we will:

• Refactor many parts of the app and the test suite
• Leverage our test suite to simplify refactoring
• Learn a few more TDD best practices

Improving the application
There are probably a few things about the application that we've built over the last
three chapters that you'd like to change. Here are a few improvements I think we
should make:

• Better URLs: While /solos/1/ is probably easy to remember, it doesn't tell
me much about what I might find there. We can do a lot better.

• Data normalization: Repeating the album and track on every Solo is hardly
DRY. What's more, we'll probably want to show these objects as URLs of
their own, as well as list Solos by artist. There are more models that we can
add to take advantage of the relational nature of our database backend.

• More views: We should give our users the ability to slice and dice the data
we're presenting. At a minimum, they should be able to view all the solos on
a track, tracks on an album, and solos by a given artist.

Building Out and Refactoring

[72]

A new view
With this in mind, let's take a stab at adding a 'track' view. We can start by updating
the functional test with what we expect to see on a Track page. We will totally
replace the On the solo page section of the test method. Open jmad/test.py from
the repository, and replace from line 67 to the end of the file with the following code:

 # On the solo page...
 self.assertEqual(
 self.browser.current_url,
 self.live_server_url +
 '/recordings/kind-of-blue/all-blues/cannonball-
adderley/'
)

 # he sees the artist...
 self.assertEqual(
 self.browser.find_element_by_css_selector(
 '#jmad-artist').text,
 'Cannonball Adderley'
)
 # the track title (with a count of solos)...
 self.assertEqual(
 self.browser.find_element_by_css_selector(
 '#jmad-track').text,
 'All Blues [2 solos]'
)

 # and the album title (with track count) for this solo.
 self.assertEqual(
 self.browser.find_element_by_css_selector(
 '#jmad-album').text,
 'Kind of Blue [3 tracks]'
)

There are a couple of things to notice about these changes:

• We've got a new URL structure to put in place that takes into account the
track and album for a given solo, as well as a string representation of the
artist's name.

• There are counts of child objects for two parent objects, so we're going to
need more models, and more context for our view.

Chapter 4

[73]

This is enough of change for now; we'll come back to the track and album views in a
minute. Let's run the tests:

$ python manage.py test

Creating test database for alias 'default'...

......F

==

FAIL: test_student_find_solos (jmad.tests.StudentTestCase)

--

Traceback (most recent call last):

 File "/Users/kevin/dev/jmad-project/jmad/jmad/tests.py", line 69, in
test_student_find_solos

 self.live_server_url + '/recordings/kind-of-blue/all-blues/
cannonball-adderley/')

AssertionError: 'http://localhost:8081/solos/2/' != 'http://
localhost:8081/recordings/kind-of-blue/all-blues/cannonball-adderley/'

- http://localhost:8081/solos/2/

+ http://localhost:8081/recordings/kind-of-blue/all-blues/cannonball-
adderley/

--

Ran 7 tests in 2.745s

FAILED (failures=1)

Destroying test database for alias 'default'...

As expected, our new URL did not work. Commit the changes we've made so far:

$ git commit –am 'Extends functional test for model and URL refactor'

$ git tag -a ch4-1-ext-func-test

Pretty URLs
What we're after is a sensible, hierarchical URL structure that gives the user a sense
of where they are in the application. We won't implement everything in this chapter,
but this is what the user should be able to intuit from the URL in the address bar of
the browser:

Building Out and Refactoring

[74]

• /recordings/: This is the root list of all recordings available in our
application. We'd probably see a paginated list of albums on this page.

• /recordings/<album-name>/: This is the root page for a single album.
We'll probably have track and musician listings for the album here as well.

• /recordings/<album-name>/<track-name>/: This is the root page for a
single track. Here, we'd list the solos on the track, perhaps cross-references
to other versions of the same song, and more detailed information about
the song.

• /recordings/<album-name>/<track-name>/<artist-name>/: This is the
root page for a solo.

Therefore our test URL (/recordings/kind-of-blue/all-blues/cannonball-
adderley/) would reference Cannonball Adderley's alto saxophone solo on "All
Blues", off of Miles' Davis 1959 record Kind of Blue. You could visit /recordings/
kind-of-blue/all-blues/ to see all the solos on that tune, or /recordings/kind-
of-blue/ to get the full track listing.

Back into the TDD cycle
Now that we have an expectedly breaking functional test, let's jump down into our
unit tests to get it working. Open solos/tests/test_urls.py and update test_
solo_details_url to be:

 solo_detail = resolve(
 '/recordings/kind-of-blue/all-blues/cannonball-adderley/'
)

 self.assertEqual(solo_detail.func.__name__, 'SoloDetailView')
 self.assertEqual(solo_detail.kwargs['album'], 'kind-of-blue')
 self.assertEqual(solo_detail.kwargs['track'], 'all-blues')
 self.assertEqual(solo_detail.kwargs['artist'],
 'cannonball-adderley')

Run that test and it fails, as expected:

$ python manage.py test solos.tests.test_urls.SolosURLsTestCase.test_
solo_details_url

...

==

ERROR: test_solo_details_url (solos.tests.test_urls.SolosURLsTestCase)

--

...

Chapter 4

[75]

raise Resolver404({'tried': tried, 'path': new_path})

django.core.urlresolvers.Resolver404: {'tried': [[<RegexURLResolver
<RegexURLPattern list> (admin:admin) ^admin/>], [<RegexURLPattern
None ^solos/(?P<pk>\d+)/$>], [<RegexURLPattern None ^$>]], 'path':
'recordings/kind-of-blue/all-blues/cannonball-adderley/'}

To get this test to pass, let's update jmad/urls.py. Change the solo URL to this:

...
 url(r'^solos/(?P<pk>\d+)/$', SoloDetailView.as_view()),
...

To this:

url(r'^recordings/(?P<album>[\w-]+)/(?P<track>[\w-]+)/(?P<artist>\
[\w-]+)/$', SoloDetailView.as_view()),

There's an unfortunate line break in the preceding snippet. Make sure to not use the
\ after <artist> in your code. Have a look at the repository for the exact syntax.

We're now capturing three variables in the URL and checking them in the test. We've
also switched our pattern matcher from \d+ (match any number of decimals) to [\w-
]+ (match any number of alphanumeric characters or hyphens). This is necessary
since these sections of the URL will now contain the names of tracks and artists,
where we formally only had a single primary key.

Run the test, it passes, and we commit:

$ git commit -am 'Updates solos URL with album, track info'

$ git tag -a ch4-2-update-solo-url

Let's see what that change did to the rest of our test suite:

$ python manage.py test

...

AssertionError: 'http://localhost:8081/solos/2/' !=
'http://localhost:8081/recordings/kind-of-blue/all-blues/cannonball-
adderley/'

It didn't do much at all really, as we're still in the same spot. Drop pdb.set_trace()
in jmad/tests.py just before the assertion on line 68 and you'll see that the link is
still using the old URL. Now would be a great time to add a get_absolute_url()
method to the Solo model. Start by adding it to the template, and our functional test
will still fail appropriately:

{% for solo in solos %}
 <div class="jmad-search-result">

Building Out and Refactoring

[76]

 {{ solo.track }}: {{ solo.artist }} on {{ solo.instrument }}

 </div>
{% endfor %}

Running the tests, we still get the failure at the same spot but now the current_url
is http://localhost:8081/?instrument=&artist=Cannonball+Adderley.
Selenium clicked the link, but the a tag had no href since method calls in Django
templates fail silently.

To add the get_absolute_url() method, let's start with a new test. Add the
following to solos/tests/test_models.py:

def test_get_absolute_url(self):
 """
 Test that we can build a URL for a solo
 """
 self.assertEqual(
 self.solo.get_absolute_url(),
 '/recordings/at-the-stratford-shakespearean-festival/'
 'falling-in-love-with-love/oscar-peterson/'
)

Note that the URL is one string on two lines, not the second and third argument to
assertEqual. Running this test we get:

$ python manage.py test solos.tests.test_models.SoloModelTestCase.test_
get_absolute_url

AttributeError: 'Solo' object has no attribute 'get_absolute_url'

So, add the method to solos/models.py:

class Solo(models.model):
 ...
 def get_absolute_url(self):
 pass

Now, running the test produces AssertionError: None != '/recordings/at-
the-stratford-shakespeare[49 chars]son/'.

Chapter 4

[77]

Skipping ahead a bit
I know that I'm eventually going to need to build out more models for the views
that I want in the rest of my application, so let's do it now. First we'll finish up
get_absolute_url with Django's reverse function and the values that I know
I'm going to need from the solo. Import reverse, and add a return statement
to the method:

from django.core.urlresolvers import reverse
...

 def get_absolute_url(self):
 return reverse('solo_detail_view', kwargs={
 'album': self.track.album.slug,
 'track': self.track.slug,
 'artist': self.slug
 })

We've jumped ahead a little bit, doing a little bit of pie in the sky developing: we're
using reverse here as if we've got a named URL (we don't… yet), and we're using
dot notation to get attributes that we know don't exist yet.

Running the test, we get:

$ python manage.py test solos.tests.test_models.SoloModelTestCase.test_
get_absolute_url

...

 File "/Users/kevin/dev/jmad-project/jmad/solos/models.py", line 14,
in get_absolute_url

 'album': self.track.album.slug,

AttributeError: 'str' object has no attribute 'album'

Okay, we'll need more models for this. Let's add them to SoloModelTestCase.
setUp, and update the Solo object with what we want the hierarchy to be. Add a
couple of imports and the following lines to the setUp method in solos/tests/
test_models.py:

from albums.models import Album, Track
...
 def setUp(self):

 self.album = Album.objects.create(
 name='At the Stratford Shakespearean Festival',
 artist='Oscar Peterson Trio',
 slug='at-the-stratford-shakespearean-festival'

Building Out and Refactoring

[78]

)

 self.track = Track.objects.create(
 name='Falling in Love with Love',
 album=self.album,
 track_number=1,
 slug='falling-in-love-with-love'
)

 self.solo = Solo.objects.create(
 track=self.track,
 artist='Oscar Peterson',
 instrument='piano',
 start_time='1:24',
 end_time='4:06',
 slug='oscar-peterson'
)

Trying to run the test at its dotted path will give us AttributeError since we've got
an unusable import. Let's get that import working.

Starting a new app
This is an important milestone in our TDD journey. We are about to add an entire
app to our project, not because we know we need it, but because we are at a point in
our user story that demands it. If we'd started this project with what we thought we
were going to need, we probably would have created this app and its models right
out of the gate. But how would we have known which fields to add? Or what
if we had to deal with bugs in the app itself? Or what if we'd added models just
to find out later we didn't need them?

Instead, we let our tests drive our code where it needed to go, getting our second app
and next models no earlier when we needed them, with tests against regression for
the rest of the code. Without further ado, we can now fearlessly add the new app.

$ python manage.py startapp albums

Then add the following to albums/models.py:

from django.db import models

class Album(models.Model):
 name = models.CharField(max_length=100)
 artist = models.CharField(max_length=100)

Chapter 4

[79]

 slug = models.SlugField()

class Track(models.Model):
 name = models.CharField(max_length=100)
 album = models.ForeignKey(Album)
 track_number = models.PositiveIntegerField(blank=True,
null=True)
 slug = models.SlugField()

Run the test again:

$ python manage.py test solos.tests.test_models.SoloModelTestCase.test_
get_absolute_url

...

sqlite3.OperationalError: no such table: albums_album

The above exception was the direct cause of the following exception:

...

django.db.utils.OperationalError: no such table: albums_album

We need a migration:

$ python manage.py makemigrations albums

App 'albums' could not be found. Is it in INSTALLED_APPS?

Why, you're right, it's not in INSTALLED_APPS. Thanks Django! Fix that in jmad/
settings.py:

INSTALLED_APPS = (
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'solos',
 'albums',
)

And try it again:

$ python manage.py makemigrations albums

Migrations for 'albums':

 0001_initial.py:

 - Create model Album

Building Out and Refactoring

[80]

 - Create model Track

Test again, and we get a somewhat hard-to-read error:

$ python manage.py test solos.tests.test_models.SoloModelTestCase.test_
get_absolute_url

Creating test database for alias 'default'...

E

==

ERROR: test_get_absolute_url
(solos.tests.test_models.SoloModelTestCase)

--

Traceback (most recent call last):

 File "/Users/kevin/dev/jmad-
project/jmad/solos/tests/test_models.py", line 29, in setUp

 slug='oscar-peterson'

 File "/Users/kevin/.virtualenvs/jmad/lib/python3.4/site-
packages/django/db/models/manager.py", line 92, in manager_method

 return getattr(self.get_queryset(), name)(*args, **kwargs)

 File "/Users/kevin/.virtualenvs/jmad/lib/python3.4/site-
packages/django/db/models/query.py", line 370, in create

 obj = self.model(**kwargs)

 File "/Users/kevin/.virtualenvs/jmad/lib/python3.4/site-
packages/django/db/models/base.py", line 454, in __init__

 raise TypeError("'%s' is an invalid keyword argument for this
function" % list(kwargs)[0])

TypeError: 'slug' is an invalid keyword argument for this function

The 'slug' this TypeError is referring to is the slug field on the Solo model, which
we forgot to add. Let's fix that now in solos/models.py:

class Solo(models.Model):
 ...
 slug = models.SlugField()

And run the test:

$ python manage.py test solos.tests.test_models.SoloModelTestCase.test_
get_absolute_url

...

django.db.utils.OperationalError: no such column: solos_solo.slug

Chapter 4

[81]

We need another migration. Choose option one and supply a dummy value when
the output asks about there being no default for the field:

$ python manage.py makemigrations solos

Then test:

$ python manage.py test solos.tests.test_models.SoloModelTestCase.test_
get_absolute_url

...

django.core.urlresolvers.NoReverseMatch: Reverse for
'solo_detail_view' with arguments '()' and keyword arguments
'{'track': 'falling-in-love-with-love', 'album': 'at-the-stratford-
shakespearean-festival', 'artist': 'oscar-peterson'}' not found. 0
pattern(s) tried: []

We get a NoReverseMatch because we're trying to reverse a URL by its name when
we haven't given any URLs names yet. Fix this one by naming the URL we're
working with in jmad/urls.py:

...
url(r'^recordings/(?P<album>[\w-]+)/(?P<track>[\w-]+)/
(?P<artist>[\w-]+)/$',
 SoloDetailView.as_view(),
 name='solo_detail_view'),
...

Now when we run the test, it passes. Let's check out the full test suite:

$ python manage.py test

Creating test database for alias 'default'...

.....E.F

==

ERROR: test_index_view_returns_solos
(solos.tests.test_views.IndexViewTestCase)

--

...

return reverse('solo_detail_view', kwargs={'album':
self.track.album.slug, 'track': self.track.slug,

AttributeError: 'str' object has no attribute 'album'

==

FAIL: test_student_find_solos (jmad.tests.StudentTestCase)

--

Building Out and Refactoring

[82]

Traceback (most recent call last):

 File "/Users/kevin/dev/jmad-project/jmad/jmad/tests.py", line 54,
in test_student_find_solos

 self.assertGreater(len(search_results), 2)

AssertionError: 0 not greater than 2

--

Ran 8 tests in 4.858s

The functional test is still failing, and we need to update our index view
test case with new fields for Solo. Update the setUpClass method in
solos/tests/test_views.py like so:

 @classmethod
 def setUpClass(cls):
 super().setUpClass()
 cls.no_funny_hats = Album.objects.create(
 name='No Funny Hats', slug='no-funny-hats')
 cls.bugle_call_rag = Track.objects.create(
 name='Bugle Call Rag', slug='bugle-call-rag',
 album=cls.no_funny_hats)
 cls.drum_solo = Solo.objects.create(
 instrument='drums', artist='Rich',
 track=cls.bugle_call_rag, slug='rich')

 cls.giant_steps = Album.objects.create(
 name='Giant Steps', slug='giant-steps')
 cls.mr_pc = Track.objects.create(
 name='Mr. PC', slug='mr-pc', album=cls.giant_steps)
 cls.sax_solo = Solo.objects.create(
 instrument='saxophone', artist='Coltrane',
 track=cls.mr_pc, slug='coltrane')

Run that test now and…

$ python manage.py test solos.tests.test_views.IndexViewTestCase.test_
index_view_returns_solos

Creating test database for alias 'default'...

E

...

return reverse('solo_detail_view', kwargs={'album': self.track.album.
slug, 'track': self.track.slug,

AttributeError: 'str' object has no attribute 'album'

Chapter 4

[83]

Wait, what? That's the same error we were getting earlier?

Bonus points for you if you saw this bug coming. We're trying to force a Track-shaped
peg into a str-shaped hole. We forgot to update our Solo fields. In solos/models.
py, update track to use a ForeignKey relation, and remove the album field (which we
capture on the related Track):

from albums.models import Track
...
class Solo(models.Model):
 track = models.ForeignKey(Track)
 artist = models.CharField(max_length=100)
 instrument = models.CharField(max_length=50)
 start_time = models.CharField(max_length=20, blank=True,
 null=True)
 end_time = models.CharField(max_length=20, blank=True,
null=True)
 slug = models.SlugField()

Our tests tell us we need another migration:

$ python manage.py makemigrations solos

Migrations for 'solos':

 0005_auto_20150127_0623.py:

 - Remove field album from solo

 - Alter field track on solo

Run the tests now, and we're back to just the functional test failing, but in a new way.
Let's take a break and make a commit:

$ git add .

$ git commit –m 'Refactors Solo with Album and Track, albums app'

$ git tag -a ch4-3-refactor-solo

Much ado about migrations
We sure are building up a lot of migration files. Are these really important, or should
we try to consolidate?

At this point you have two options. Since our code hasn't made it anywhere near
a production database yet, we can delete all our migrations and let Django rebuild
them with python manage.py makemigrations. Deleting migrations is a tricky
business, and can get you in real trouble if you lose migrations that you might need
later. However, at this early stage, I'd feel safe deleting and recreating them.

Building Out and Refactoring

[84]

Updating the functional test
Like the unit tests, we need to add Albums and Tracks for all the Solos in our
functional test. Update the setUp method in jmad/test.py:

from albums.models import Album, Track
...
 def setUp(self):
 self.browser = webdriver.Firefox()
 self.browser.implicitly_wait(2)

 self.album1 = Album.objects.create(
 name='My Favorite Things', slug='my-favorite-things')
 self.track1 = Track.objects.create(
 name='My Favorite Things', slug='my-favorite-things',
 album=self.album1)
 self.solo1 = Solo.objects.create(
 instrument='saxophone', artist='John Coltrane',
 track=self.track1, slug='john-coltrane')

 self.album2 = Album.objects.create(
 name='Kind of Blue', slug='kind-of-blue')
 self.track2 = Track.objects.create(
 name='All Blues', slug='all-blues',
 album=self.album2, track_number=4)
 self.solo2 = Solo.objects.create(
 instrument='saxophone', artist='Cannonball Adderley',
 track=self.track2, start_time='4:05', end_time='6:04',
 slug='cannonball-adderley')

 self.album3 = Album.objects.create(
 name='Know What I Mean?', slug='know-what-i-mean')
 self.track3 = Track.objects.create(
 name='Waltz for Debby', slug='waltz-for-debby',
 album=self.album3)
 self.solo3 = Solo.objects.create(
 instrument='saxophone', artist='Cannonball Adderley',
 track=self.track3, slug='cannonball-adderley')

After adding these in, we still get an error in the functional test:

$ python manage.py test jmad

Creating test database for alias 'default'...

E

Chapter 4

[85]

==

ERROR: test_student_find_solos (jmad.tests.StudentTestCase)

--

Traceback (most recent call last):

 File "/Users/kevin/dev/jmad-project/jmad/jmad/tests.py", line 79, in
test_student_find_solos

 self.browser.find_element_by_css_selector('#jmad-artist').text,

...

selenium.common.exceptions.NoSuchElementException: Message: Unable to
locate element: {"method":"css selector","selector":"#jmad-artist"}

...

Why aren't we getting the #jmad-artist element? Let's drop in a pdb to see what's
up:

 ...
 # he sees the artist...
 import pdb;pdb.set_trace()
 self.assertEqual(
 self.browser.find_element_by_css_selector('#jmad-
artist').text,
 'Cannonball Adderley'
)
 ...

Run the test now and we stop right on top of a big, fat Internal Server Error on
our solo detail page:

Not the best user experience

Building Out and Refactoring

[86]

Why didn't our unit test catch this?

 def test_basic(self):
 """
 Test that the solo view returns a 200 response and uses
 the correct template
 """
 request = self.factory.get('/solos/1/')

 response = SoloDetailView.as_view()(request,
 pk=self.drum_solo.pk)
 ...

Because it's still doing the look up by primary key, that's why.

Refactoring the index view
Generally speaking, I'm pretty quick to jettison class-based views if the
implementation looks like it's going to get weird. Here, we're going to do the lookup
with multiple arguments, and getting DetailView to do that is just not going to be
any fun. Let's go ahead and refactor the test to expect a function-based view. Don't
forget to update the import:

from solos.views import index, solo_detail

...

 def test_basic(self):

 """

 Test that the solo view returns a 200 response and uses

 The correct template

 """

 request = self.factory.get(

 '/solos/no-funny-hats/bugle-call-rag/buddy-rich/'

)

 response = solo_detail(

 request,

 album=self.no_funny_hats.slug,

Chapter 4

[87]

 track=self.bugle_call_rag.slug,

 artist=self.drum_solo.slug

)

 ...

Running the tests we see an ImportError. Let's refactor in solos/views.py now:

...
class SoloDetailView(DetailView):
model = Solo

def solo_detail():
 pass

Try the failing test again:

$ python manage.py test solos.tests.test_views.SoloViewTestCase

...

TypeError: solo_detail() got an unexpected keyword argument 'album'

Let's add the arguments, and return a render_to_response function (you can get
rid of the DetailView import too):

def solo_detail(request, album, track, artist):
 context = {}
 return render_to_response('solos/solo_detail.html', context)

Running the test we get:

AttributeError: 'HttpResponse' object has no attribute 'context_data'

So our test is a little invalidated. Update it with the following:

...
 request = self.factory.get(
 '/solos/no-funny-hats/bugle-call-rag/buddy-rich/'
)

 with self.assertTemplateUsed('solos/solo_detail.html'):
 response = solo_detail(request,
 album=self.no_funny_hats.slug,
 track=self.bugle_call_rag.slug,
 artist=self.drum_solo.slug)

 self.assertEqual(response.status_code, 200)

Building Out and Refactoring

[88]

 page = response.content.decode()
 self.assertInHTML('<p id="jmad-artist">Buddy Rich</p>', page)
 self.assertInHTML('<p id="jmad-track">Bugle Call Rag</p>',
 page)
...

The test now gives us:

AssertionError: False is not true : Couldn't find '<p id="jmad-artist">

Buddy Rich

</p>' in response

So let's add some context:

def solo_detail(request, album, track, artist):
 context = {
 'solo': Solo.objects.get(slug=artist, track__slug=track,
 track__album__slug=album)
 }
 return render_to_response('solos/solo_detail.html', context)

And test again:

AssertionError: False is not true : Couldn't find '<p id="jmad-track">

Bugle Call Rag

</p>' in response

Now we need to update the template:

<p id="jmad-artist">{{ solo.artist }}</p>
<p id="jmad-track">{{ solo.track.name }}</p>
<p id="jmad-album">{{ solo.track.album.name }}</p>
<p id="jmad-start-time">{{ solo.start_time }}</p>
<p id="jmad-end-time">{{ solo.end_time }}</p>

Finally, the test passes! Let's run the rest of the tests:

$ python manage.py test jmad

Creating test database for alias 'default'...

Traceback (most recent call last):

 File "/Users/kevin/.virtualenvs/jmad/lib/python3.4/site-
packages/django/core/urlresolvers.py", line 364, in urlconf_module

 return self._urlconf_module

AttributeError: 'RegexURLResolver' object has no attribute
'_urlconf_module'

Chapter 4

[89]

During handling of the above exception, another exception occurred:

...

 File "/Users/kevin/dev/jmad-project/jmad/jmad/urls.py", line 4, in
<module>

 from solos.views import SoloDetailView

ImportError: cannot import name 'SoloDetailView'

They almost all fail since we now have an ImportError in jmad/urls.py. Replace
the old class-based SoloDetailView with solo_detail (remove the import):

 url(r'^recordings/(?P<album>[\w-]+)/(?P<track>[\w-]+)/'
 '(?P<artist>[\w-]+)/$',
 'solos.views.solo_detail',
 name='solo_detail_view'),

And try again:

$ python manage.py test jmad

AssertionError: 'All Blues' != 'All Blues [2 solos]'

- All Blues

+ All Blues [2 solos]

So close! Let's update the template again:

<p id="jmad-track">
 {{ solo.track.name }} [{{solo.track.solo_set.count}} solos]
</p>

And add another solo:

self.solo4 = Solo.objects.create(instrument='trumpet',
 artist='Miles Davis',
 track=self.track2,
 slug='miles-davis')

Running the test shows the same issue for the album track count. Fix it in the
template with:

<p id="jmad-album">
 {{ solo.track.album.name }}
 [{{solo.track.album.track_set.count}} tracks]
</p>

Building Out and Refactoring

[90]

Now in the test:

self.track4 = Track.objects.create(name='Freddie Freeloader',
 album=self.album2)
self.track5 = Track.objects.create(name='Blue in Green',
 album=self.album2)

Run the tests:

$ python manage.py test

Creating test database for alias 'default'...

...F..F.

==

FAIL: test_solo_details_url (solos.tests.test_urls.SolosURLsTestCase)

--

Traceback (most recent call last):

 File "/Users/kevin/dev/jmad-project/jmad/solos/tests/test_urls.py",
line 22, in test_solo_details_url

 self.assertEqual(solo_detail.func.__name__, 'SoloDetailView')

AssertionError: 'solo_detail' != 'SoloDetailView'

- solo_detail

+ SoloDetailView

==

FAIL: test_basic (solos.tests.test_views.SoloViewTestCase)

--

Traceback (most recent call last):

 File "/Users/kevin/dev/jmad-
project/jmad/solos/tests/test_views.py", line 72, in test_basic

 self.assertInHTML('<p id="jmad-track">Bugle Call Rag</p>', page)

 File "/Users/kevin/.virtualenvs/jmad/lib/python3.4/site-
packages/django/test/testcases.py", line 671, in assertInHTML

 msg_prefix + "Couldn't find '%s' in response" % needle)

AssertionError: False is not true : Couldn't find '<p id="jmad-
track">

Bugle Call Rag

</p>' in response

Chapter 4

[91]

We broke our URL test, and we're now chasing our tail a bit on the view test. The
URL fix is easy. Update solos/tests/test_urls.py to:

def test_solo_details_url(self):
 ...
 self.assertEqual(solo_detail.func.__name__, 'solo_detail')

Then for the view problem, add the count string into the test in solos/tests/test_
urls.py:

 self.assertInHTML('<p id="jmad-track">Bugle Call Rag [1
solo]</p>', page)

Now the tests:

$ python manage.py test

Creating test database for alias 'default'...

......F.

==

FAIL: test_basic (solos.tests.test_views.SoloViewTestCase)

--

Traceback (most recent call last):

 File "/Users/kevin/dev/jmad-
project/jmad/solos/tests/test_views.py", line 72, in test_basic

 self.assertInHTML('<p id="jmad-track">Bugle Call Rag [1
solo]</p>', page)

 File "/Users/kevin/.virtualenvs/jmad/lib/python3.4/site-
packages/django/test/testcases.py", line 671, in assertInHTML

 msg_prefix + "Couldn't find '%s' in response" % needle)

AssertionError: False is not true : Couldn't find '<p id="jmad-
track">

Bugle Call Rag [1 solo]

</p>' in response

But we're still getting the same error… of course, we need to deal with pluralization
in the template:

<p id="jmad-track">
 {{ solo.track.name }}
 {% with solos=solo.track.solo_set.count %}
 [{{solos}} solo{{ solos|pluralize }}]
 {% endwith %}
</p>

Building Out and Refactoring

[92]

<p id="jmad-album">
 {{ solo.track.album.name }}
 {% with tracks=solo.track.album.track_set.count %}
 [{{tracks}} track{{ tracks|pluralize }}]
 {% endwith %}
</p>

Run the test:

$ python manage.py test

Creating test database for alias 'default'...

........

--

Ran 8 tests in 2.761s

OK

Destroying test database for alias 'default'...

And done. Let's commit:

$ git commit –am 'Refactors solo detail view to use new models'

$ git tag -a ch4-4-refactor-solo-view

Summary
In this chapter we changed the application with TDD, refactoring both our test suite
and application code for maintainability. We also covered options for dealing with
migrations.

In the next chapter we'll explore further the controls available in the Selenium web
driver by building out the Django admin site.

[93]

User Stories As Code
We've made a lot of progress over the last three chapters: we've added views,
models, templates, and URLs for a pretty solid minimally viable product. In this
chapter, we're going to learn more about Selenium and LiveServerTestCase by
writing a new functional test for a second user story. We'll learn about:

• More of the browser actions available in the Python bindings for Selenium
• Why it's crucial for your functional tests to track user experience
• Using the Django admin site to fulfill staff user stories

A second user story
This chapter will focus on the art of enshrining a user story in an executable
functional test. Nothing will give you more confidence as a developer than checking
every single known user interaction in your project after any change you make. Time
invested in having an accurate, comprehensive, and narrative version of your user
story that you can run as a functional test will pay big dividends as your project
grows.

After the last three chapters, we've got a pretty solid foundation in place for the
end user's experience. But what about the folks that are going to be populating our
website? The user stories for staff users (those with access to add, edit, and delete
content) are at least as important if we plan on getting much data added to this site.
Here's a user story for a "Staff User":

As a Staff User, I want to add Albums, Tracks, and Solos to the database
so that they can be presented as content.

User Stories As Code

[94]

As you probably know, Django comes with a great admin site that takes very little
code to get up running. We'll use that to provide an interface to add Albums, Tracks,
and Solos to our application. To get started, let's add a narrative version of the new
user story as comments in jmad/test.py:

...
 def test_staff_can_add_content(self):
 """
 Tests that a 'staff' user can access the admin and
 add Albums, Tracks, and Solos
 """
 # Bill would like to add a record and a number of
 # solos to JMAD. He visits the admin site

 # He can tell he's in the right place because of the
 # title of the page

 # He enters his username and password and submits the
 # form to log in

 # He sees links to Albums, Tracks, and Solos

 # He clicks on Albums and sees all of the Albums that
 # have been added so far

 # Going back to the home page, he clicks the Tracks
 # link and sees the Tracks that have been added.
 # They're ordered first by Album, then by track
 # number.

 # He adds a track to an album that already exists

 # He adds another track, this time on an album that
 # is not in JMAD yet

 # After adding the basic Track info, he clicks on the
 # plus sign to add a new album.

 # The focus shifts to the newly opened window, where
 # he sees an Album form

 # After creating the Album, he goes back to finish
 # the Track

Chapter 5

[95]

 # He goes back to the root of the admin site and
 # clicks on 'Solos'

 # He sees Solos listed by Album, then Track, then
 # start time

 # He adds a Solo to a Track that already exists

 # He then adds a Solo for which the Track and Album
 # do not yet exist

 # He adds a Track from the Solo page

 # He adds an Album from the Track popup

 # He finishes up both parent objects, and saves the
 # Solo

Activating the Django admin site
Just as we did in Chapter 2, Your First Test-Driven Application, we'll start with just a
couple of actions and a placeholder. Let's have our functional test look for the Django
admin at the /admin/ URL, confirm that we can see the title of the page, and move
our placeholder to fail afterward:

Bill would like to add a record and a number of solos to
JMAD. He visits the admin site
admin_root = self.browser.get(
 self.live_server_url + '/admin/')

He can tell he's in the right place because of the title
self.assertEqual(self.browser.title,
 'Log in | Django site admin')
self.fail('Incomplete Test')

We don't have to do any work since the admin site is already set up (check out jmad/
urls.py):

$ python manage.py test

jmad.tests.StudentTestCase.test_staff_can_add_content

...

AssertionError: Incomplete Test

User Stories As Code

[96]

This test will make it to the placeholder, but we'll get a really ugly error message
ending in TypeError: unsupported operand type(s) for +=: 'NoneType' and
'str'. Since our tests are not running in DEBUG mode, the static files aren't being
served by the Django development server. You may have noticed an unstyled admin
page as Firefox whizzed by. Drop in a debugger (import pdb;pdb.set_trace())to
take a closer look if you like.

The unstyled admin login screen

Let's do as little configuration as possible to clean up this test. First, we add a
STATIC_ROOT setting to jmad/settings.py:

STATIC_ROOT = os.path.join(BASE_DIR, 'static')

BASE_DIR is defined higher up as the directory of the settings file (generated when
we originally created our Django project). Now, we can run collectstatic:

$ python manage.py collectstatic

You have requested to collect static files at the destination
location as specified in your settings:

 /Users/kevin/dev/jmad-project/jmad/static

This will overwrite existing files!
Are you sure you want to do this?

Type 'yes' to continue, or 'no' to cancel: yes
Copying '/Users/kevin/.virtualenvs/jmad/lib/python3.4/site-packages/
django/contrib/admin/static/admin/css/base.css'
...
62 static files copied to '/Users/kevin/dev/jmad-project/jmad/static'.

Chapter 5

[97]

Run the tests again and you'll see a flash of the familiar Django admin and no error
in the terminal output:

That's more like it.

Let's commit our clean, stubbed test:

$ git commit -am 'Initial staff functional test, static settings'

$ git tag -a ch5-1-init-staff-func-test

Signing in with Selenium
Next we need to log in to the admin site: to do that, we'll need an admin user. Let's
add one in setUp and log him in (don't forget to move the placeholder):

from django.contrib.auth import get_user_model
...
 def setUp(self):
 ...
 self.admin_user =
 get_user_model().objects.create_superuser(
 username='bill',
 email='bill@example.com',
 password='password'
)
 ...

User Stories As Code

[98]

 def test_staff_can_add_content(self):
 ...
 # He enters his username and password and submits the
 # form to log in
 login_form = self.browser.find_element_by_id(
 'login-form')
 login_form.find_element_by_name('username').\
 send_keys('bill')

 login_form.find_element_by_name('password').\
 send_keys('password')
 login_form.find_element_by_css_selector(
 '.submit-row input').click()
 self.fail('Incomplete Test')

We use find_element_by_id to find the form on the page, and then find_element_
by_name to interact with the individual pieces. Even though we're testing generated
code (the Django admin interface), this pattern ensures a couple of important things
for us:

• We guarantee that we have unique name attributes for each form element.
This way we know we'll be perfectly clear when we POST our forms back to
the server.

• When we find the form by id first but look up the form elements by name,
we're allowing ourselves to standardize form field name in our UI. This is in
case if we ever need more than one form with the same elements in the DOM
(for example, a login form in a header that's hidden via JavaScript, but still
present on our /login/ page)

Run the test and you will see that we make it back to the placeholder. Now we can
look for some links:

 # He sees links to Albums, Tracks, and Solos
 albums_links = self.browser.\
 find_elements_by_link_text('Albums')

 self.assertEqual(
 albums_links[0].get_attribute('href'),
 self.live_server_url + '/admin/albums/'
)

 self.assertEqual(
 albums_links[1].get_attribute('href'),
 self.live_server_url + '/admin/albums/album/'
)

Chapter 5

[99]

 self.assertEqual(
 self.browser.\
 find_element_by_link_text('Tracks').\
 get_attribute('href'),
 self.live_server_url + '/admin/albums/track/'
)

 solos_links = self.browser.\
 find_elements_by_link_text('Solos')
 self.assertEqual(
 solos_links[0].get_attribute('href'),
 self.live_server_url + '/admin/solos/'
)
 self.assertEqual(
 solos_links[1].get_attribute('href'),
 self.live_server_url + '/admin/solos/solo/'
)
 self.fail('Incomplete Test')

We're using find_elements_by_link_text and find_element_by_link_text to
access links by their visible text. The plural form of the locator gets both 'Albums'
links on the page. Since the list honors the order the elements appear on the page,
we're also testing for that order. We're following the Django best practice of naming
our apps based on the plural form of the major model they contain, which is why
we'll wind up with two 'Albums' links and two 'Solos' links.

Whenever possible, try to make Selenium act as much like a human as
you can. That means finding links by their text, using click() to click
on submit buttons instead of submit() forms, and using the browser's
navigation. You're trying to empathize with the user, so don't cut
corners. If Selenium is having trouble finding a link by its text, there's
probably a good chance your users will have that same problem.

All of the find_elements_by_* selectors return lists of elements in the same order
they appear on the page. Therefore we look for the link to http://localhost:8081/
admin/albums/ (the admin root of the albums app) to be the first, and http://
localhost:8081/admin/albums/album/ (the actual Album model admin) to be
the second.

User Stories As Code

[100]

Run the tests:

$ python manage.py test jmad.tests.StudentTestCase.test_staff_can_add_
content

...

Traceback (most recent call last):

 File "/Users/kevin/dev/jmad-project/jmad/jmad/tests.py", line 137,
in test_staff_can_add_content

 albums_links[0].get_attribute('href'),

IndexError: list index out of range

find_elements_by_* selectors always return lists; empty ones if no elements match
the search. Let's get that working by first editing albums/admin.py:

from django.contrib import admin

from .models import Album, Track

admin.site.register(Album)
admin.site.register(Track)

Now the test gives us another IndexError, this time for the solo_links list. Edit
solos/admin.py to get this test to pass:

from django.contrib import admin

from .models import Solo

admin.site.register(Solo)

That's enough to get back to the placeholder. We haven't done a commit since we've
added this and the login action, so now's a good time.

$ git commit -am 'Staff login, initial model admin registration'

$ git tag -a ch5-2-staff-login

Let's go to the next action:

 # He clicks on Albums and sees all of the Albums that
 # have been added so far
 albums_links[1].click()

 self.assertEqual(
 self.browser.find_element_by_link_text(

Chapter 5

[101]

 'Know What I Mean?').get_attribute('href'),
 self.live_server_url + '/admin/albums/album/3/'
)

 self.assertEqual(
 self.browser.find_element_by_link_text(
 'Kind of Blue').get_attribute('href'),
 self.live_server_url + '/admin/albums/album/2/'
)

 self.assertEqual(
 self.browser.find_element_by_link_text(
 'My Favorite Things').get_attribute('href'),
 self.live_server_url + '/admin/albums/album/1/'
)
 self.fail('Incomplete Test')

None of this passes (we get our old friend Unable to locate element). Halt the
test with the debugger and we'll see that each album is represented by 'Album
object'. The Django admin uses the __str__ method on our models. If we don't
define our own, this is the default we get. Let's fix our Album model in albums/
models.py:

class Album(models.Model):
 ...
 def __str__(self):
 return self.name

We're simply returning the value of the Album object's name field. Run the tests, and
we're back to the placeholder. Let's commit:

$ git commit -am 'Adds string representation for Track'

$ git tag -a ch5-3-track-str-rep

Configuring the Django admin model list
display
The next comment in our functional test hints at a more advanced configuration.
Here are the assertions that we need:

Going back to the home page, he clicks the Tracks link and
sees the Tracks that have been added. They're ordered first
by Album, then by track number.
self.browser.find_element_by_css_selector(
 '#site-name a').click()
self.browser.find_element_by_link_text('Tracks').click()

User Stories As Code

[102]

track_rows = self.browser.find_elements_by_css_selector(
 '#result_list tr')

self.assertEqual(track_rows [1].text,
 'Kind of Blue Freddie Freeloader 2')
self.assertEqual(track_rows [2].text,
 'Kind of Blue Blue in Green 3')
self.assertEqual(track_rows [3].text,
 'Kind of Blue All Blues 4')
self.assertEqual(track_rows [4].text,
 'Know What I Mean? Waltz for Debby (None)')
self.assertEqual(track_rows [5].text,
 'My Favorite Things My Favorite Things \ (None)')
self.fail('Incomplete Test')

This block of assertions is implying a lot of configuration. First, we're going to show
the Track's album attribute, then its name, and then its track_number if it has one.
We check for the whole row as one string with spaces, because that's what Selenium
will give us when we ask for the .text of a multi-cell <tr> tag.

We list the track objects in order of their album attribute (instead of id, which is the
default). Note that we start checking at index one, because the first <tr> will be the
heading row.

When we run our test, we get:

AssertionError: 'Track' != 'Kind of Blue Freddie Freeloader 2'

- Track object

+ Kind of Blue Freddie Freeloader 2

As expected, each track is represented by the default __str__. What if we add a__
str__method to Track as we did to Album?

class Track(models.Model):
...
 def __str__(self):
 return self.name

The test now throws a different error:

AssertionError: 'Blue in Green' != 'Kind of Blue Freddie Freeloader
2'

- Blue in Green

+ Kind of Blue Freddie Freeloader 2

Chapter 5

[103]

We do get a track name, but not the right one. Let's set some ordering on the model:

class Track(models.Model):
 ...
 class Meta:
 ordering = ['album', 'track_number']

Now when we run the tests we get:

AssertionError: 'My Favorite Things' != 'Kind of Blue Freddie
Freeloader 2'

- My Favorite Things

+ Kind of Blue Freddie Freeloader 2

Since album is a ForeignKey to Album, we're picking up its ordering, which we never
changed from the default. Let's alphabetize it now:

class Album(models.Model):
 ...
 class Meta:
 ordering = ['name']

Run our test:

AssertionError: 'Blue in Green' != 'Kind of Blue Freddie Freeloader
2'

- Blue in Green

+ Kind of Blue Freddie Freeloader 2

Blue in Green is on the right first album, but we need to add track numbers to our
fixtures. They're in the setUp method:

self.track4 = Track.objects.create(
 name='Freddie Freeloader',
 album=self.album2,
 track_number=2
)
self.track5 = Track.objects.create(
 name='Blue in Green',
 album=self.album2,
 track_number=3
)

User Stories As Code

[104]

Run the test one more time:

AssertionError: 'Freddie Freeloader' != 'Kind of Blue Freddie
Freeloader 2'

- Freddie Freeloader

+ Kind of Blue Freddie Freeloader 2

We've now gone as far as the model's Meta options can take us. To get the rest of the
Track's data in that <tr> tag, we need a customized ModelAdmin. Update albums/
admin.py with this:

class TrackAdmin(admin.ModelAdmin):
 model = Track
 list_display = ('album', 'name', 'track_number')
...
admin.site.register(Track, TrackAdmin).

Don't forget to add TrackAdmin to the register line at the bottom. Try the test now
and we make it back to the placeholder.

$ git commit -am 'Adds str, ordering, and columns for Track admin'

$ git tag -a ch5-4-add-track-columns

Adding content via the Django admin
Our next task is our first chance to add data to the admin site:

He adds a track to an album that already exists
self.browser.find_element_by_link_text('Add track').click()
track_form = self.browser.find_element_by_id('track_form')
track_form.find_element_by_name('name').send_keys('So What')
track_form.find_element_by_name('album').\
 find_elements_by_tag_name('option')[1].click()
track_form.find_element_by_name('track_number').\
 send_keys('1')
track_form.find_element_by_name('slug').send_keys('so-what')
track_form.find_element_by_css_selector(
 '.submit-row input').click()

self.assertEqual(
 self.browser.find_elements_by_css_selector(
 '#result_list tr')[1].text,
 'Kind of Blue So What 1'
)
self.fail('Incomplete Test')

Chapter 5

[105]

We're working with a form again, but this one has a dropdown <select>, which
requires some special care in Selenium. There are a number of ways to get to the
<option> elements, but I prefer two chained find_ calls. It may be more verbose,
but it's a little easier to understand, and is more similar to what a real user does
(clicking the <select> first, then clicking the desired <option>).

This bit of the functional test was exercising functionality that was already activated,
so we're back to the placeholder.

Why are we writing tests for the stuff that already works?
It may seem like overkill, or at the very least not "test-driven" to write
tests for something as basic as adding data to the Django admin. One
might argue that we're testing the inner workings of Django's admin,
not our own code. In this case, however, I'm taking the extra step for
two reasons. One, this functionality is absolutely crucial to the success
of this application. Two, the backend is just as likely to be updated as
the frontend, and I want to guard against regressions as we continue
to build new features.

Building further on the last block, let's try to add a Track with an Album (even
though it's not in the database yet):

He adds another track, this time on an album that is not in
JMAD yet
self.browser.find_element_by_link_text('Add track').click()
track_form = self.browser.find_element_by_id('track_form')
track_form.find_element_by_name('name').\
 send_keys('My Funny Valentine')

After adding the basic Track info, he clicks on the plus
sign to add a new album.
track_form.find_element_by_id('add_id_album').click()

The focus shifts to the newly opened window, where he sees
an Album form
self.browser.switch_to.window(self.browser.window_handles[1])
album_form = self.browser.find_element_by_id('album_form')
album_form.find_element_by_name('name').send_keys('Cookin\'')
album_form.find_element_by_name('artist').\
 send_keys('Miles Davis Quintet')
album_form.find_element_by_name('slug').send_keys('cookin')
album_form.find_element_by_css_selector(
 '.submit-row input').click()

User Stories As Code

[106]

After creating the Album, he goes back to finish the Track
self.browser.switch_to.window(self.browser.window_handles[0])
track_form = self.browser.find_element_by_id('track_form')
track_form.find_element_by_name('track_number').\
 send_keys('1')
track_form.find_element_by_name('slug').\
 send_keys('my-funny-valentine')
track_form.find_element_by_css_selector(
 '.submit-row input').click()

self.assertEqual(
 self.browser.find_elements_by_css_selector(
 '#result_list tr'
)[1].text,
 'Cookin\' My Funny Valentine 1'
)
self.fail('Incomplete Test')

Notice switch_to.window, which takes as its first argument a handle ID to a
window that Selenium can access. We use window_handles to get a list of these IDs.
window_handles will maintain the order in which the windows were opened, so we
can use the index of the window to move back and forth.

Selenium jumping from window to window

Chapter 5

[107]

We now run our tests and they should pass, switching between open windows to
add the records. Moving on, let's add a Solo, Track, and Album all in one shot:

He goes back to the root of the admin site and clicks on
'Solos'
self.browser.find_element_by_css_selector(
 '#site-name a').click()
self.browser.find_elements_by_link_text('Solos')[1].click()

He's sees Solos listed by Album, then Track, then start
time
solo_rows = self.browser.find_elements_by_css_selector(
 '#result_list tr')

self.assertEqual(solo_rows[1].text,
 'All Blues Miles Davis 1:46-4:04')
self.assertEqual(solo_rows[2].text,
 'All Blues Cannonball Adderley 4:05-6:04')
self.assertEqual(solo_rows[3].text.strip(),
 'Waltz for Debby Cannonball Adderley')
self.assertEqual(solo_rows[4].text.strip(),
 'My Favorite Things John Coltrane')
self.fail('Incomplete Test')

Since we haven't done anything more than set up the default implementation, the
test fails.

python manage.py test jmad.tests.StudentTestCase.test_staff_can_add_
content

...

AssertionError: 'Solo object' != 'All Blues Miles Davis 1:46-4:04'

- Solo object

+ All Blues Miles Davis 1:46-4:04

It looks like our list_display for Solos is a bit lacking. Let's update it.
In solos/admin.py:

class SoloAdmin(admin.ModelAdmin):
 model = Solo
 list_display = ['track', 'artist', 'get_duration']
...
admin.site.register(Solo, SoloAdmin)

User Stories As Code

[108]

We haven't defined get_duration, so when we run the tests we get an IndexError
in the terminal and a Server Error (500) in the browser when it tries to serve
the Solos index. Add a quick test to SoloModelTestCase in solos/tests/test_
models.py to define what we want the function to do:

...
 def test_get_duration(self):
 """
 Test that we can print the duration of a Solo
 """
 self.assertEqual(self.solo.get_duration(),
 '1:24-4:06')

This test raises an AttributeError, since we haven't added it to the model yet. Let's
do that now in solos/models.py:

class Solo(models.Model):
...
 def get_duration(self):
 duration_string = ''
 if self.start_time and self.end_time:
 duration_string = '{}-{}'.format(self.start_time,
 self.end_time)
 return duration_string

That gets the model test to pass. Back in the functional test, an assertion fails since
our fixtures aren't up to date:

AssertionError: 'All Blues Miles Davis ' != 'All Blues Miles Davis 1:46-
4:04'

Fix that in setUp:

...
 self.solo4 = Solo.objects.create(
 instrument='trumpet', artist='Miles Davis',
 track=self.track2, slug='miles-davis',
 start_time='1:46', end_time='4:04')

At this point, the test gives us similar ordering errors just as in our earlier Track
section:

AssertionError: 'Waltz for Debby Cannonball Adderley ' != 'All Blues
Cannonball Adderley 4:05-6:04'

- Waltz for Debby Cannonball Adderley

+ All Blues Cannonball Adderley 4:05-6:04

Chapter 5

[109]

Again update solos/models.py:

class Solo(models.Model):
...
 class Meta:
 ordering = ['track', 'start_time']

Now that we've got our list_display and ordering set, our test will make it back to
the placeholder. Let's commit that:

$ git commit -am 'Improves track listing, further tests content mgmt'

$ git tag -a ch5-5-improve-track-listing

Finishing up
Let's add a Solo:

He adds a Solo to a Track that already exists
self.browser.find_element_by_link_text('Add solo').click()
solo_form = self.browser.find_element_by_id('solo_form')
solo_form.find_element_by_name('track').\
 find_elements_by_tag_name('option')[6].click()
solo_form.find_element_by_name('artist').\
 send_keys('McCoy Tyner')
solo_form.find_element_by_name('instrument').\
 send_keys('Piano')
solo_form.find_element_by_name('start_time').\
 send_keys('2:19')
solo_form.find_element_by_name('end_time').\
 send_keys('7:01')
solo_form.find_element_by_name('slug').\
 send_keys('mcoy-tyner')
solo_form.find_element_by_css_selector(
 '.submit-row input').click()

self.assertEqual(
 self.browser.find_elements_by_css_selector(
 '#result_list tr')[5].text,
 'My Favorite Things McCoy Tyner 2:19-7:01')
self.fail('Incomplete Test')

User Stories As Code

[110]

This makes it back to the placeholder without issue. Now on to the grand finale—
adding a Solo for which the Track and Album do not yet exist. This will essentially
take us through the entire admin process:

He then adds a Solo for which the Track and Album do not
yet exist
self.browser.find_element_by_link_text('Add solo').click()
solo_form = self.browser.find_element_by_id('solo_form')

He adds a Track from the Solo page
solo_form.find_element_by_id('add_id_track').click()
self.browser.switch_to.window(self.browser.window_handles[1])
track_form = self.browser.find_element_by_id('track_form')
track_form.find_element_by_name('name').\
 send_keys('In Walked Bud')

He adds an Album from the Track popup
track_form.find_element_by_id('add_id_album').click()
self.browser.switch_to.window(self.browser.window_handles[2])
album_form = self.browser.find_element_by_id('album_form')
album_form.find_element_by_name('name').\
 send_keys('Misterioso')
album_form.find_element_by_name('artist').\
 send_keys('Thelonious Monk Quartet')
album_form.find_element_by_name('slug').\
 send_keys('misterioso')
album_form.find_element_by_css_selector(
 '.submit-row input').click()

He finishes up both parent objects, and saves the Solo
self.browser.switch_to.window(self.browser.window_handles[1])
track_form = self.browser.find_element_by_id('track_form')
track_form.find_element_by_name('track_number').\
 send_keys('4')
track_form.find_element_by_name('slug').\
 send_keys('in-walked-bud')
track_form.find_element_by_css_selector(
 '.submit-row input').click()

self.browser.switch_to.window(self.browser.window_handles[0])
solo_form = self.browser.find_element_by_id('solo_form')
solo_form.find_element_by_name('artist').\
 send_keys('Johnny Griffin')
solo_form.find_element_by_name('instrument').\

Chapter 5

[111]

 send_keys('Tenor Saxophone')
solo_form.find_element_by_name('start_time').\
 send_keys('0:59')
solo_form.find_element_by_name('end_time').\
 send_keys('6:21')
solo_form.find_element_by_name('slug').\
 send_keys('johnny-griffin')
solo_form.find_element_by_css_selector(
 '.submit-row input').click()

self.assertEqual(
 self.browser.find_elements_by_css_selector(
 '#result_list tr')[4].text,
 'In Walked Bud Johnny Griffin 0:59-6:21'
)

Run the full test suite and behold the majesty of two entirely automated user stories!

$ python manage.py test

Creating test database for alias 'default'...

.........

Ran 10 tests in 10.272s

OK

Destroying test database for alias 'default'...

Commit our newly completed feature.

$ git commit -am 'Completes functional test for staff user story'

$ git tag -a ch5-6-complete-staff-func-test

Summary
In this chapter, we covered the importance of automated testing of the user's
experience in the browser. We learned a few more of the controls available in the
Python Selenium bindings, and used Test-Driven Development to build out the
Django admin. In the next chapter, we'll use TDD to build an integration with an
external API.

No App Is an Island
In this chapter, we'll learn how to mock responses for external APIs as we write
functions that integrate with other systems over the Internet. We'll talk about:

• Why we'd need to mock an external system
• unittest.mock and its associated utilities
• Patterns for TDD with external API dependencies

What is a mock?
Permit me an American sports metaphor: imagine you're a baseball player who wants
to learn to hit curveballs. To do so, you'd need to practice. In the normal course of a
game, a pitcher would throw curveballs (as well as other pitches) to you, so you could
ask a pitcher to practice with you.

This may work in the short term, but what if the pitcher isn't always available when
you want to practice? What if she's only able to throw you a certain number of pitches
before she tires out? What if you need to practice hitting curveballs from a left-handed
pitcher and she's a righty? Or maybe you want to practice curveballs thrown to a very
specific part of the strike zone, but she isn't accurate enough to throw a strike every
time?

You might represent the main parts of this system in Python like this:

class Pitch:

 def __init__(self, velocity, accuracy, trajectory):
 self.velocity = velocity
 self.accuracy = accuracy
 self.trajectory = trajectory # 'fastball' or 'curve'

No App Is an Island

[114]

class Pitcher:

 handedness = 'left'

 def throw_curveball(self):
 import random
 return Pitch(velocity=random.randint(0, 100),
 accuracy=random.randint(0, 100),
 trajectory='curve')

class Batter:

 def swing(self, pitch):
 # TODO: hit a curveball
 return

You are a Batter object, and the pitcher would be a Pitcher. A Pitcher can throw_
curveball, which returns a Pitch of variable velocity and accuracy. The swing
method of Batter will accept a Pitch (as returned by throw_curveball), but we
need to develop the method to hit it.

In order to overcome the problems practicing with a human pitcher (inaccuracy,
stamina, handedness), you could replace her with a pitching machine, configured to
throw curveballs in the same part of the strike zone with no stamina limit, toggling
for handedness if you needed.

A mock can mimic an object for the duration of a single test, allowing you to define
how methods on that object react. In the previous example, we might mock out the
Pitcher object in tests for Batter.swing. We'd set the exact velocity and accuracy
of the Pitch returned by throw_curveball, and write one test for each handedness
configuration, thereby accounting for the inaccuracy and fixed configuration of the
real Pitch object.

Mocks are handy for testing around the parts of your project that are hard or
impossible to control, like an external API. Let's integrate such an API into JMAD,
writing mocked tests first along the way.

Chapter 6

[115]

MusicBrainz
You've undoubtedly realized at this stage in the game that very little of what we're
building is novel. In just a couple of decades, the Internet has done a pretty solid
job of collecting most of humanity's written information. Jazz artists, albums, and
tracks are represented in several systems, some of which are already integrated. In
the interest of not reinventing the wheel (and avoiding a lot of data entry), we should
find a preexisting database that can get us this baseline data. That way we can focus
our efforts on adding the solo details to Earth's hive mind. Enter MusicBrainz.

MusicBrainz (https://musicbrainz.org/) (hereafter MB) is an open database of
music and recording information. The data is added and edited by volunteers, and is
freely available for any type of use. The database is most commonly used to identify
digital recordings (think Spotify), but they also expose the core data via a RESTful
API, including search and standard lookup endpoints.

If that wasn't great enough, there's already a Python library we can use to access the
API. musicbrainzngs (https://github.com/alastair/python-musicbrainzngs)
is a pip-installable package that abstracts the MB API into Python functions that
return dictionaries.

Digging around in the MusicBrainz sandbox
Before we dive back into our test suite, let's have a peek around the MB API to get a
feel for how it works. Start by installing musicbrainzngs:

$ pip install musicbrainzngs

Now open up http://python-musicbrainzngs.readthedocs.org/ in your
browser, start up your interpreter, and try out some of the methods:

$ python

>>> import musicbrainzngs as mb

>>> mb.set_useragent('Kevin Test App - kevin@kevinharvey.net',

>>> version='0.0.1')

The set_useragent() bit sets a header for each subsequent API call. MB requires
this so it can keep track of who or what is communicating with it. Most external APIs
require some sort of identification like this, either for authorization or in the event they
need to throttle the number of calls made. This is often accomplished by a header on
each request, as is the case here.

https://musicbrainz.org/
https://github.com/alastair/python-musicbrainzngs
http://python-musicbrainzngs.readthedocs.org/

No App Is an Island

[116]

Let's try a search:

>>> mb.search_artists('Oscar Peterson')

{'artist-count': 577, 'artist-list': [{'sort-name': 'Peterson,
Oscar', 'tag-list': [{'count': '1', 'name': 'piano jazz'}, {'count':
'1', 'name': 'death by kidney failure'}, {'count': '2', 'name':
'jazz'}, {'count': '1', 'name': 'canadian'}], 'life-span': {'ended':
'true',

...

I've snipped quite a lot of output here. The big blob of text you see in your terminal
is the first 25 of 577 artists that match the search phrase Oscar Peterson, ordered by
relevance. Let's clean up the first result so we can read it:

>>> mb.search_artists('Oscar Peterson')

{

 'artist-count': 577,

 'artist-list': [

 {

 'sort-name': 'Peterson, Oscar',

 'tag-list': [

 {

 'count': '1',

 'name': 'piano jazz'

 }, {

 'count': '1',

 'name': 'death by kidney failure'

 }, {

 'count': '2',

 'name': 'jazz'

 }, {

 'count': '1',

 'name': 'canadian'

 }

],

 'life-span': {

 'ended': 'true',

 'end': '2007-12-23',

 'begin': '1925-08-15'

Chapter 6

[117]

 },

 'end-area': {

 'sort-name': 'Ontario',

 'id': '2747553f-b44d-44c4-a7c3-b67412b6f10b',

 'name': 'Ontario'

 },

 'ext:score': '100',

 'id': 'ed801bdd-f057-41c0-94fb-76cb5676cd59',

 'begin-area': {

 'sort-name': 'Montreal',

 'id': 'c3cc624e-b963-49cf-ad0b-e318cb341963',

 'name': 'Montreal'

 },

 'gender': 'male',

 'country': 'CA',

 'alias-list': [

 {

 'sort-name': 'Oscar Petersen',

 'alias': 'Oscar Petersen'

 }, {

 'sort-name': 'Petterson, Oscar',

 'alias': 'Oscar Petterson'

 }

],

 'area': {

 'sort-name': 'Canada',

 'id': '71bbafaa-e825-3e15-8ca9-017dcad1748b',

 'name': 'Canada'

 },

 'type': 'Person',

 'name': 'Oscar Peterson'

 },

...

No App Is an Island

[118]

This is the default data we get back for Oscar Peterson. It's mostly biodemographic
data (someone actually tagged him with death by kidney failure), but I'm most
interested in the 'ext:score', 'id', and 'tag-list' fields. The 'ext:score' is
MB's score of this result's relevance to our query, and 'id' is the universally unique
identifier (UUID) of this record in MB. We'll use 'tag-list' to try to figure out
what instrument an artist plays.

That UUID is known as the MBID ID (MusicBrainz ID), and is used to get more
information about an entity in MB, or to apply filters to other searches. For instance,
if we wanted to get Oscar Peterson's discography, we could do:

>>> mb.browse_releases(artist='ed801bdd-f057-41c0-94fb-76cb5676cd59')

{'release-count': 227, 'release-list': [{'id': '0790458a-58ed-329d-
b979-03b788e98c92', 'text-representation': {'script': 'Latn',

...

Yep, 227 for Mr. Peterson. Each "release" (essentially an album) has a group of
"recordings" (tracks):

>>> mb.browse_recordings(release='eb692ad5-0f9c-34ef-aca2-2fa006ebb4ec')

{'recording-count': 9, 'recording-list': [{'id': '0b718b11-318e-43d3-
a831-d38802f76d91', 'length': '312240', 'title': 'I Hear Music'},

...

… and we can get the personnel on each track by passing 'artists' to the
includes argument:

>>> mb.get_recording_by_id('0b718b11-318e-43d3-a831-d38802f76d91',
includes=['artists'])

{'recording': {'id': '0b718b11-318e-43d3-a831-d38802f76d91',
'length': '312240', 'title': 'I Hear Music', 'artist-credit-phrase':
'Ella Fitzgerald & Oscar Peterson', 'artist-credit': [{'artist':
{'id': '54799c0e-eb45-4eea-996d-c4d71a63c499', 'name': 'Ella
Fitzgerald', 'sort-name': 'Fitzgerald, Ella'}}, ' & ', {'artist':
{'id': 'ed801bdd-f057-41c0-94fb-76cb5676cd59', 'name': 'Oscar
Peterson', 'sort-name': 'Peterson, Oscar'}}]}}

Notice that the dictionaries in the 'artist-credit' list include MBIDs, and that
Oscar Peterson's matches the one we used to get his discography. If we wanted,
we could now go down the same path with Ella Fitzgerald.

Chapter 6

[119]

Using the API in our application
So how shall we use this fount of jazz recording knowledge? We need almost all of
the information it provides, so we should store a local copy. Luckily we've already
got a number of models that map nicely to these MB entities. Here's our strategy:

1. If a user search at JMAD returns insufficient results, use the musicbrainzngs
library to query MB

2. Use the highest scoring results from MB to create the corresponding model
instances at JMAD, and provide links to their pages

3. When the user clicks one of those links, query MB for the child objects
(an artist's discography, an album's tracks, and so on) and create the
corresponding model instances in JMAD

With this pattern, we'll ensure that we're providing up-to-date and accurate
information while keeping the app snappy and not hogging too much of the API.

Mocking – when and why
To get the search result that we're asking for in the new functional test without
adding it to the database, we're going to extend the search view to do a search_
artists() at MB. That's exactly the kind of external integration that we should
mock out in our test.

A mock is simply a replacement for an object or function in the context of a single
test. There are several reasons you might want to mock out external (or even
internal) code, particularly in unit tests:

• Mocks improve test isolation
If our unit test is dependent on an external system working, doesn't that
mean our test is not testing a single unit? And if the external system fails, is
it really fair to fail the test of our code? A mock guarantees that we get the
response we need from the outside code, or if need be, the API error we need
to handle.

• External calls slow tests down
We already know that a hallmark of a good test suite is the speed at which it
runs. Calls out over the Internet can add hundreds of milliseconds to a single
unit test. Mocking takes care of the latency.

No App Is an Island

[120]

• Mocks help us adhere to API rate limits
Most Internet APIs enforce some type of threshold or rate limiting. In our case,
MB asks that we not hit the API anymore than once a second. Mocks help us
play nice with our API providers by not sending out bot-like blasts of calls
with no end-user benefit.

• We can test for graceful failover

What do we do if the API returns something we don't expect, like a 404
Not Found or 500 Internal Server Error? We'd probably need a way
to handle the error case. But how would we write a test for that if we were
using the API directly? Mocks let us return whatever response for an external
system, including any errors we might want to test.

Adding the MB API to search
Let's add a new test to IndexViewTestCase in solos/tests/test_views.py for the
MB-enabled search. We won't worry about the mock just yet:

def test_index_view_returns_external_tracks(self):
 """
 Test that the index view will return artists from the
 MusicBrainz API if none are returned from our database
 """
 response = self.client.get('/', {
 'instrument': 'Bass',
 'artist': 'Jaco Pastorius' # not currently in the DB
 })

 solos = response.context['solos']
 self.assertEqual(len(solos), 1)
 self.assertEqual(solos[0].artist, 'Jaco Pastorius')

Run this test, and we'll hit an AssertionError when we test the length of the solos
context variable. Let's naively add a call to MB in our view at this point to populate
that variable, and drop in a debugger to see what it does. Start by importing the
musicbrainzngs library and setting the user agent for our call:

import musicbrainzngs as mb
...
mb.set_useragent('JMAD – http://jmad.us/', version='0.0.1')

Chapter 6

[121]

Then, inside index, start at the if request.GET.get('artist', None): line and
replace it and the rest of the function with the code here, starting at artist_kwarg:

def index(request):

 ...
 artist_kwarg = request.GET.get('artist', None)
 if artist_kwarg:
 solos_queryset = solos_queryset.\
 filter(artist=artist_kwarg)

 context = {
 'solos': solos_queryset,
 }

 if context['solos'].count() == 0 and artist_kwarg:
 context['solos'] = mb.search_artists(artist_kwarg)

 import pdb;pdb.set_trace()

 return render_to_response('solos/index.html', context)

We've imported the MB Python connector, set the user agent string, factored out the
artist search term into its own variable, and searched for that artist if our QuerySet
has zero results. When we run the test now, the debugger stops just after the
search_artists() call, so we can see the value of the solos variable:

$ python manage.py test solos.tests.test_views.IndexViewTestCase.test_
index_view_returns_external_tracks
...

> /Users/kevin/dev/jmad-project/jmad/solos/views.py(27)index()

-> context = {

(Pdb) solos

{'artist-count': 24, 'artist-list': [{'gender': 'male', 'begin-area':
{'id': '0b345109-5a24-4e47-8bc5-44227f0bdcc3', 'sort-name':
'Norristown', 'name': 'Norristown'}, 'sort-name': 'Pastorius,
Jaco'...

That's the raw response from the MB API, which we'll need to parse. Hit c to finish
out the test (it ends with an AssertionError due to solos being of the wrong type).

No App Is an Island

[122]

Encapsulating the API call
In order to keep our code organized, I'd like to put the code for getting tracks from MB
in a class method on the Track model. Update the view to use an as-yet-nonexistent
class method by removing the musicbrainzngs import and mb.set_useragent()
lines, and changing the search_artists() line to:

 context['solos'] = Solo.\
 get_artist_tracks_from_musicbrainz(artist_kwarg)

Now running the test tells us, as we knew, that Solo does have the method we just
called. Let's add it in solos/models.py:

class Solo(models.Model):
 …
 @classmethod
 def get_artist_tracks_from_musicbrainz(cls):
 pass

Run the tests, and we get TypeError: get_artist_tracks_from_musicbrainz()
takes 1 positional argument but 2 were given. Add an artist
keyword argument:

def get_artist_tracks_from_musicbrainz(cls, artist):
 pass

Now running the test hits the break point in our view. Hit c to go through it (and
remove it at your earliest convenience), and you'll see a new error TypeError:
object of type 'NoneType' has no len(). Let's have our new method return a
blank dictionary for now.

def get_artist_tracks_from_musicbrainz(cls, artist):
 return {}

Our test now gets us back to AssertionError: 0 != 1. It's just one more hop back
to where we were. Let's use the MB library here:

...
import musicbrainzngs as mb
...
mb.set_useragent('JMAD - http://jmad.us/', version='0.0.1')
...
@classmethod
 def get_artist_tracks_from_musicbrainz(cls, artist):
 return mb.search_artists(artist)

Chapter 6

[123]

Finally, we're back at AssertionError: 2 != 1, and if you added the break point
back in and checked solos in the view, you'd see it's the raw response from MB.
We're ready to move on to test that new class method directly.

Our first mock
We're just beginning to get into the meat of our MusicBrainz integration, and it's
finally time to mock out the search_artists() call we've been running over and
over again. We'll get started with a new test method in solos/tests/test_models.
py. We'll use the @patch decorator, which we'll talk about in just a second:

from unittest.mock import patch
...
 @patch('musicbrainzngs.search_artists')
 def test_get_artist_tracks_from_musicbrainz(
 self,
 mock_mb_search_artists
):
 """
 Test that we can make Solos from the MusicBrainz API
 """
 created_solos = Solo.\
 get_artist_tracks_from_musicbrainz(
 'Jaco Pastorius'
)

 mock_mb_search_artists.assert_called_with(
 'Jaco Pastorius')
 self.assertEqual(len(created_solos), 2)
 self.assertEqual(created_solos[0].artist,
 'Jaco Pastorius')
 self.assertEqual(created_solos[1].track.name,
 'Donna Lee')

@patch is a wonderful little decorator that replaces whatever you'd like with a
Python MagicMock object. Pass it a string of the dotted path to the object, function,
or method you'd like to replace, and @patch will replace it with an object with some
pretty neat features:

• You can call any method on a MagicMock object, and it will log that the
method was called and go on its merry way

• You can add specific responses to the object if you need it to behave in a
certain way for your test

No App Is an Island

[124]

• It will respond sensibly to things like len(), __str__(), etc
• The MagicMock object is made available to you as a variable by an argument

passed to your test method

You can read more about @patch, MagicMock, and the test of unittest.mock in the
Python documentation at https://docs.python.org/3.4/library/unittest.
mock.html.

In our example, we're asking patch to mock musicbrainzngs.search_artist. We
add a second argument, mock_mb_search_results, to the test method, which puts
a reference to the mock object inside our function. Now any calls to search_artist
will be completely under our control. The original object, function, or method won't
do anything it would normally do (like sending requests out over the Internet)
without our telling it to do so.

Conveniently, mock objects keep track of whether or not they have been called.
In our test method, we're using the mock's assert_called_with() method to test
that the function being mocked (search_artists) was in fact called in the course of
the test, and that it was called with a specific argument ('Jaco Pastorius').

Go ahead and run this this test:

$ python manage.py test solos.tests.test_models.SoloModelTestCase.test_
get_artist_tracks_from
_musicbrainz

Creating test database for alias 'default'...

F

===

FAIL: test_get_artist_tracks_from_musicbrainz
(solos.tests.test_models.SoloModelTestCase)

Traceback (most recent call last):

 File "/usr/local/Cellar/python3/3.4.2_1/Frameworks/Python.framework/
Versio
ns/3.4/lib/python3.4/unittest/mock.py", line 1136, in patched

 return func(*args, **keywargs)

 File "/Users/kevin/dev/jmad-
project/jmad/solos/tests/test_models.py", line 61, in
test_get_artist_tracks_from_musicbrainz

 self.assertEqual(len(created_solos), 2)

AssertionError: 0 != 2

https://docs.python.org/3.4/library/unittest.mock.html
https://docs.python.org/3.4/library/unittest.mock.html

Chapter 6

[125]

Ran 1 test in 0.003s

FAILED (failures=1)

Destroying test database for alias 'default'...

Since we called search_artists in our function, we made it all the way down to
testing the length of the function's return value with assert_called_with passing.
The len test fails because by default MagicMock returns a len of 0.

Hacking what's returned from a mocked
method
Since we've stopped search_artists from doing its real work, now we need to
teach our test suite to fake a response for it. We'll do this by setting return_value
of mock_mb_search_artists inside our test. Let's hit the MB API directly in the
terminal to see how it will respond to our query:

>>> mb.search_artists('Jaco Pastorius')

{'artist-list': [{'gender': 'male', 'area': {'id': '489ce91b-6658-
3307-9877-795b68554c98', 'sort-name': 'United States', 'name':
'United States'}, 'country': 'US', 'tag-list': [{'count': '1',
'name': ...

We'll need to set a similarly structured dictionary to be the return value of the mock
object. Look back earlier in the chapter for the full pretty-printed version of the
dictionary. For our purposes, we're only going to respond with the keys and values
we need, specifically an artist-list list consisting of a single dictionary with keys
name, ext:score, id, and tag-list. Add the following to the top of test_get_
artist_tracks_from_musicbrainz:

 ...
 mock_mb_search_artists.return_value = {
 'artist-list': [
 {
 'name': 'Jaco Pastorius',
 'ext:score': '100',
 'id': '46a6fac0-2e14-4214-b08e-3bdb1cffa5aa',
 'tag-list': [
 {
 'count': '1',
 'name': 'jazz fusion'
 },

No App Is an Island

[126]

 {
 'count': '1',
 'name': 'bassist'
 }
]
 }
]
 }
 ...

Now when we run the tests, we get to the same line, but the output changes to
AssertionError: 1 != 2. This makes sense, since we're currently returning the
result of search_artists, and we've set the result of that call to a dict with one key/
value pair. But that's not exactly what we want. What we really want is a QuerySet of
Solos that we can drop right into our existing view and template. For that, we'll need
the artist's discography, as well as the track listing for each record.

Taking another look at the musicbrainzngs documentation, it looks like browse_
releases might be of some help, especially if we add 'recordings' to the includes
argument. Let's give it a go:

>>> mb.browse_releases(artist='46a6fac0-2e14-4214-b08e-3bdb1cffa5aa',
includes=['recordings'])

{'release-list': [{'country': 'US', 'release-event-count': 1, 'date':
'1986', 'cover-art-archive': {'count': '0', 'front': 'false',
'artwork': 'false', 'back': 'false'}, 'title': 'PDB', 'medium-count':
1, 'text-representation': {'script': 'Latn', 'language': 'eng'},
'id': '07ae48b5-8ebe-4453-86db-9c45d602c3fe', 'quality': 'normal',
'release-event-list': [{'area': {'id': '489ce91b-6658-3307-9877-
795b68554c98', 'iso-3166-1-code-list': ['US'], 'sort-name': 'United
States', 'name': 'United States'}, 'date': '1986'}], 'medium-list':
[{'position': '1', 'track-list': [{'length': '582826', 'recording':
{'id': 'db029dd5-...

It's tough to read the one-liner output, so try it in your own terminal by setting the
call to a variable and rendering the output with the pprint module. The response
is a dictionary of releases by the artist, including a track listing for each release.
So in one call we can get all the information we need for a given artist. Let's start
incorporating this function by adding it as another patch:

@patch('musicbrainzngs.browse_releases')
@patch('musicbrainzngs.search_artists')
def test_get_artist_tracks_from_musicbrainz(
 self,
 mock_mb_search_artists,
 mock_mb_browse_releases

Chapter 6

[127]

):
 """
 Test that we can make Solos from the MusicBrainz API
 """
 # set the return value of the mocked search_artists call
 mock_mb_search_artists.return_value = {
 'artist-list': [
 ...
]
 }

 # setting a couple recordings to avoid too much nesting
 recording1 = {
 'recording': {
 'id': '12348765-4321-1234-3421-876543210921',
 'title': 'Donna Lee',
 },
 'position': '1'
 }

 recording2 = {
 'recording': {
 'id': '15263748-4321-8765-8765-102938475610',
 'title': 'Sophisticated Lady',
 },
 'position': '6'
 }

 # set the return value of the mocked browse_releases call
 mock_mb_browse_releases.return_value = {
 'release-list': [
 {
 'title': 'Jaco Pastorius',
 'id': '876543212-4321-4321-4321-21987654321',
 'medium-list': [
 {
 # see above
 'track-list': [recording1]
 }
]
 },
 {
 'title': 'Invitation',
 'id': '43215678-5678-4321-1234-901287651234',

No App Is an Island

[128]

 'medium-list': [
 {
 # see above
 'track-list': [recording2]
 }
]
 }
]
 }

 created_solos = Solo.\
 get_artist_tracks_from_musicbrainz('Jaco Pastorius')

 mock_mb_search_artists.assert_called_with(
 'Jaco Pastorius')
 mock_mb_browse_releases.assert_called_with(
 '12345678-1234-1234-1234-123456789012',
 includes=['recordings'])
 self.assertEqual(len(created_solos), 2)
 self.assertEqual(created_solos[0].artist,
 'Jaco Pastorius')
 self.assertEqual(created_solos[1].track.name,
 'Donna Lee')

A few notes to mention here:

• We've got two patches here. Notice that the first patch is the last argument to
the test method. The patch references are passed in reverse order.

• I started out the return_value for mock_mb_browse_releases with a full
single release, then trimmed back as necessary to get one recording from two
different releases. I only want to mock what I need to test my own logic.

• Even if it is a stripped down version, that's a big honkin' response, and
doesn't do much for the readability of my code. I'll probably tuck that away
somewhere in the solos.tests package, particularly if I'm going to need it
anywhere else. Tests should read like a story about your code. As it stands,
this test reads like a phone book.

• I changed the MBID from the real one that I copied and pasted in from
my terminal to an obviously fake one. That way I'm sure that I'm calling
(mocked) browse_releases with the fake. I want to know if a real API call
sneaks in somehow.

Chapter 6

[129]

Implementing the API calls
The last little bit that we need to fill in our Solo model is a way of translating
MusicBrainz' tags into instruments. Recall that there's no other information in the
search_artists call that gives us an artist's instrument directly, only tags like
'bassist' and 'piano jazz'. I wrote another class method on Solo called get_
instrument_from_musicbrainz_tags that does a simple translation. Have a peek
in the source code if you're curious.

After all that, I can freely muck about in the method. Here's the implementation I
came up with:

from django.utils.text import slugify
...
from albums.models import Album, Track
...
@classmethod
def get_artist_tracks_from_musicbrainz(cls, artist):
 """
 Create Album, Track, and Solo records for artists we find
 in the MusicBrainz API

 :param artist: an artist's name as a string to search for
 :return: Queryset of Solos
 """
 search_results = mb.search_artists(artist)
 best_result = search_results['artist-list'][0]
 instrument = Solo.\
 get_instrument_from_musicbrainz_tags(
 best_result['tag-list']
)

 for album_dict in mb.browse_releases(
 best_result['id'],
 includes=['recordings'])['release-list']:

 album = Album.objects.\
 create(name=album_dict['title'],
 artist=artist,
 slug=slugify(album_dict['title']))

 for track_dict in album_dict['medium-\
list'][0]['track-list']:
 track = Track.objects.create(
 album=album,

No App Is an Island

[130]

 name=track_dict['recording']['title'],
 track_number=track_dict['position'],
 slug=slugify(
 track_dict['recording']['title']))

 Solo.objects.create(
 track=track, artist=artist,
 instrument=instrument,
 slug=slugify(artist))

 return Solo.objects.filter(artist=artist)

This method gets the test to pass.

Moving back up the chain
Now that we've got a functioning method, we can apply the same pattern to our
view test. But instead of mocking out the musicbrainszngs calls, we'll mock out
our own method. Just for kicks, let's run the view test right now:

$ python manage.py test solos.tests.test_views.IndexViewTestCase.test_
index_view_returns_exte
rnal_tracks

...

self.assertEqual(len(solos), 1)

AssertionError: 192 != 1

This test hit the MB API directly, and we wound up creating 192 Solos, 192 Tracks,
and a handful of Albums. Let's add in the mock:

from unittest.mock import patch, Mock
...
 @patch('solos.models.Solo.get_artist_tracks_from_musicbrainz')
 def test_index_view_returns_external_tracks(
 self,
 mock_solos_get_from_mb
):
 """
 Test that the index view will return artists from the
 MusicBrainz API if none are returned from our
 database
 """
 mock_solo = Mock()
 mock_solo.artist = 'Jaco Pastorius'
 mock_solos_get_from_mb.return_value = [mock_solo]

Chapter 6

[131]

 response = self.client.get('/', {
 'instrument': 'Bass',
 'artist': 'Jaco Pastorius' # not in our DB
 })

 solos = response.context['solos']
 self.assertEqual(len(solos), 1)
 self.assertEqual(solos[0].artist, 'Jaco Pastorius')

We're doing two mocks here. We mock the call to get_artist_tracks_from_
musicbrainz and create a mocked Solo with a unittest.mock.Mock object (have a
look at the Python docs for details). We then return the mock object in the list we set
as return_value for out mocked method. This gets our test to pass:

$ python manage.py test solos.tests.test_views.IndexViewTestCase.test_
index_view_returns_external_tracks

Creating test database for alias 'default'...

.

Ran 1 test in 0.009s

OK

Destroying test database for alias 'default'...

Give the full test suite a run.

$ python manage.py test

Creating test database for alias 'default'...

.............

Ran 13 tests in 17.090s

OK

Now we can commit. Notice that we didn't commit at any point during this chapter
(save for the tags method not listed here). Since we had test code hitting the live MB
API, I didn't feel we were ready to call the code anything like done. Now we're ready.

$ git commit -am 'Integrates MusicBrainzNGS API'

$ git tag -a ch6-1-integrate-mb

No App Is an Island

[132]

Dealing with change
Our application is now dependent upon an outside resource for part of its
functionality. What happens when the MusicBrainz API changes, breaking our
application but leaving our tests passing? In this example, we'd have to go back
through and update the dictionary responses to match the changes in MusicBrainz.
No fun.

Tools such as VCR.py (https://github.com/kevin1024/vcrpy) can help here. VCR.
py will record HTTP responses in YAML files during an initial test run, then each
subsequent test run will use the recorded version instead of making a new call. Then,
if the API changes, just delete the recorded versions to get a fresh copy (and some
broken tests to fix).

This is just one method
There are lots of ways to integrate with third-party APIs, and still more ways of
testing those integrations. In this case we happened to have access to an existing
Python library that abstracts away the actual HTTP requests. We won't always have
that luxury.

When faced with a REST API integration to build from scratch, I recommend the
superb requests library (http://docs.python-requests.org/). It makes the
process of interacting with HTTP as beautiful as Python itself. Then mock the
responses with VCR.py or Betamax (http://betamax.readthedocs.org/) a tool
similar to VCR.py but built specifically to work with requests.

Summary
In this chapter, we looked at a few reasons why we might want to add mocks to our
tests. We learned a bit about patch and Mock from unittest.mock, as well as how to
write tests when using an external API.

In the next chapter, we'll turn this chapter inside out, building an API for other
systems to interact with our application.

https://github.com/kevin1024/vcrpy
http://docs.python-requests.org/
http://betamax.readthedocs.org/

Share and Share Alike
In this chapter, we'll expose the data in our application via a REST API. As we do,
we'll learn:

• The importance of documentation in the API development process
• How to write functional tests for API endpoints
• API patterns and best practices

It's an API world, we're just coding in it
It's very common nowadays to include a public REST API in your web project.
Exposing your services or data to the world is generally done for one of two reasons:

• You've got interesting data, and other developers might want to integrate
that information into a project they're working on

• You're building a secondary system that you expect your users to interact
with, and that system needs to interact with your data (that is, a mobile or
desktop app, or an AJAX-driven front end)

We've got both reasons in our application. We're housing novel, interesting data in our
database that someone might want to access programmatically. Also, it would make
sense to build a desktop application that could interact with a user's own digital music
collection so they could actually hear the solos we're storing in our system.

Deceptive simplicity
The good news is that there are some great options for third-party plugins for Django
that allow you to build a REST API into an existing application. The bad news is
that the simplicity of adding one of these packages can let you go off half-cocked,
throwing an API on top of your project without a real plan for it.

Share and Share Alike

[134]

If you're lucky, you'll just wind up with a bird's nest of an API: inconsistent URLs,
wildly varying payloads, and difficult authentication. In the worst-case scenario,
your bolt-on API exposes data you didn't intend to make public and you wind up
with a self-inflicted security issue.

Never forget that an API is sort of invisible. Unlike traditional web pages, where bugs
are very public and easy to describe, API bugs are only visible to other developers.
Take special care to make sure your API behaves exactly as intended by writing
thorough documentation and tests to make sure you've implemented it correctly.

Writing documentation first
"Documentation is king."

- Kenneth Reitz

If you've spent any time at all working with Python or Django, you know what good
documentation looks like. The Django folks in particular seem to understand this
well: the key to getting developers to use your code is great documentation.

In documenting an API, be explicit. Most of your API methods' docs should take the
form of "if you send this, you will get back this," with real-world examples of input
and output.

A great side effect of prewriting documentation is that it makes the intention of
your API crystal clear. You're allowing yourself to conjure up the API from thin air
without getting bogged down in any of the details, so you can get a bird's-eye view
of what you're trying to accomplish. Your documentation will keep you oriented
throughout the development process.

Documentation-Driven testing
Once you've got your documentation done, testing is simply a matter of writing test
cases that match up with what you've promised. The actions of the test methods
exercise HTTP methods, and your assertions check the responses.

Test-Driven Development really shines when it comes to API development. There
are great tools for sending JSON over the wire, but properly formatting JSON can
be a pain, and reading it can be worse. Enshrining test JSON in test methods and
asserting they match the real responses will save you a ton of headache.

Chapter 7

[135]

More developers, more problems
Good documentation and test coverage are exponentially more important when two
groups are developing in tandem—one on the client application and one on the API.
Changes to an API are hard for teams like this to deal with, and should come with a
lot of warning (and apologies). If you have to make a change to an endpoint, it should
break a lot of tests, and you should methodically go and fix them all. What's more,
no one feels the pain of regression bugs like the developer of an API-consuming
client. You really, really, really need to know that all the endpoints you've put out
there are still going to work when you add features or refactor.

Building an API with Django REST framework
Now that you're properly terrified of developing an API, let's get started. What sort
of capabilities should we add? Here are a couple possibilities:

• Exposing the Album, Track, and Solo information we have
• Creating new Solos or updating existing ones

Initial documentation
In the Python world it's very common for documentation to live in docstrings, as
it keeps the description of how to use an object close to the implementation. We'll
eventually do the same with our docs, but it's kind of hard to write a docstring for
a method that doesn't exist yet. Let's open up a new Markdown file API.md, right in
the root of the project, just to get us started. If you've never used Markdown before,
you can read an introduction to GitHub's version of Markdown at https://help.
github.com/articles/markdown-basics/.

Here's a sample of what should go in API.md. Have a look at https://github.com/
kevinharvey/jmad/blob/master/API.md for the full, rendered version.

...
Get a Track with Solos

 * URL: /api/tracks/\<pk\>/
 * HTTP Method: GET

Example Response

 {
 "name": "All Blues",
 "slug": "all-blues",
 "album": {

https://help.github.com/articles/markdown-basics/
https://help.github.com/articles/markdown-basics/
https://github.com/kevinharvey/jmad/blob/master/API.md
https://github.com/kevinharvey/jmad/blob/master/API.md

Share and Share Alike

[136]

 "name": "Kind of Blue",
 "url": "http://jmad.us/api/albums/2/"
 },
 "solos": [
 {
 "artist": "Cannonball Adderley",
 "instrument": "saxophone",
 "start_time": "4:05",
 "end_time": "6:04",
 "slug": "cannonball-adderley",
 "url": "http://jmad.us/api/solos/281/"
 },
 ...
]
 }

Add a Solo to a Track

 * URL: /api/solos/
 * HTTP Method: POST

Example Request

 {
 "track": "/api/tracks/83/",
 "artist": "Don Cherry",
 "instrument": "cornet",
 "start_time": "2:13",
 "end_time": "3:54"
 }

Example Response

 {
 "url": "http://jmad.us/api/solos/64/",
 "artist": "Don Cherry",
 "slug": "don-cherry",
 "instrument": "cornet",
 "start_time": "2:13",
 "end_time": "3:54",
 "track": "http://jmad.us/api/tracks/83/"
 }

Chapter 7

[137]

There's not a lot of prose, and there needn't be. All we're trying to do is layout the
ins and outs of our API. It's important at this point to step back and have a look at
the endpoints in their totality. Is there enough of a pattern that you can sort of guess
what the next one is going to look like? Does it look like a fairly straightforward API
to interact with? Does anything about it feel clunky? Would you want to work with
this API yourself? Take time to think through any weirdness now before anything
gets out in the wild.

$ git commit -am 'Initial API Documentation'

$ git tag -a ch7-1-init-api-docs

Introducing Django REST framework
Now that we've got some idea what we're building, let's actually get it going. We'll
be using Django REST Framework (http://www.django-rest-framework.org/).
Start by installing it in your environment:

$ pip install djangorestframework

Add rest_framework to your INSTALLED_APPS in jmad/settings.py:

INSTALLED_APPS = (
 ...
 'rest_framework'
)

Now we're ready to start testing.

Writing tests for API endpoints
While there's no such thing as browser-based testing for an external API, it is
important to write tests that cover its end-to-end processing. We need to be able to
send in requests like the ones we've documented and confirm that we receive the
responses our documentation promises.

Django REST Framework (DRF from here on out) provides tools to help write tests
for the application functionality it provides. We'll use rest_framework.tests.
APITestCase to write functional tests. Let's kick off with the list of albums. Convert
albums/tests.py to a package, and add a test_api.py file. Then add the following:

from rest_framework.test import APITestCase

from albums.models import Album

http://www.django-rest-framework.org/

Share and Share Alike

[138]

class AlbumAPITestCase(APITestCase):

 def setUp(self):
 self.kind_of_blue = Album.objects.create(
 name='Kind of Blue')
 self.a_love_supreme = Album.objects.create(
 name='A Love Supreme')

 def test_list_albums(self):
 """
 Test that we can get a list of albums
 """
 response = self.client.get('/api/albums/')

 self.assertEqual(response.status_code, 200)
 self.assertEqual(response.data[0]['name'],
 'A Love Supreme')
 self.assertEqual(response.data[1]['url'],
 'http://testserver/api/albums/1/')

Since much of this is very similar to other tests that we've seen before, let's talk about
the important differences:

• We import and subclass APITestCase, which makes self.client an
instance of rest_framework.test.APIClient. Both of these subclass their
respective django.test counterparts add a few niceties that help in testing
APIs (none of which are showcased yet).

• We test response.data, which we expect to be a list of Albums. response.
data will be a Python dict or list that corresponds to the JSON payload of
the response.

• During the course of the test, APIClient (a subclass of Client) will use
http://testserver as the protocol and hostname for the server, and our
API should return a host-specific URI.

Run this test, and we get the following:

$ python manage.py test albums.tests.test_api

Creating test database for alias 'default'...

F

===

FAIL: test_list_albums (albums.tests.test_api.AlbumAPITestCase)

Test that we can get a list of albums

Chapter 7

[139]

Traceback (most recent call last):

 File "/Users/kevin/dev/jmad-project/jmad/albums/tests/test_api.py",
line 17, in test_list_albums

 self.assertEqual(response.status_code, 200)

AssertionError: 404 != 200

Ran 1 test in 0.019s

FAILED (failures=1)

We're failing because we're getting a 404 Not Found instead of a 200 OK status
code. Proper HTTP communication is important in any web application, but it really
comes in to play when you're using AJAX. Most frontend libraries will properly
classify responses as successful or erroneous based on the status code: making sure
the code are on point will save your frontend developers friends a lot of headache.

We're getting a 404 because we don't have a URL defined yet. Before we set up
the route, let's add a quick unit test for routing. Update the test case with one new
import and method:

from django.core.urlresolvers import resolve
...
 def test_album_list_route(self):
 """
 Test that we've got routing set up for Albums
 """
 route = resolve('/api/albums/')

 self.assertEqual(route.func.__name__, 'AlbumViewSet')

Here, we're just confirming that the URL routes to the correct view. Run it:

$ python manage.py test

albums.tests.test_api.AlbumAPITestCase.test_album_list_route

...

django.core.urlresolvers.Resolver404: {'path': 'api/albums/',
'tried': [[<RegexURLResolver <RegexURLPattern list> (admin:admin)
^admin/>], [<RegexURLPattern solo_detail_view
^recordings/(?P<album>[\w-]+)/(?P<track>[\w-]+)/(?P<artist>[\w-
]+)/$>], [<RegexURLPattern None ^$>]]}

Share and Share Alike

[140]

Ran 1 test in 0.003s

FAILED (errors=1)

We get a Resolver404 error, which is expected since Django shouldn't return
anything at that path. Now we're ready to set up our URLs.

API routing with DRF's SimpleRouter
Take a look at the documentation for routers at http://www.django-rest
-framework.org/api-guide/routers/. They're a very clean way of setting up
URLs for DRF-powered views. Update jmad/urls.py like so:

...
from rest_framework import routers

from albums.views import AlbumViewSet

router = routers.SimpleRouter()
router.register(r'albums', AlbumViewSet)

urlpatterns = [

 # Admin
 url(r'^admin/', include(admin.site.urls)),

 # API
 url(r'^api/', include(router.urls)),

 # Apps
 url(r'^recordings/(?P<album>[\w-]+)/(?P<track>[\w-]+)/
(?P<artist>[\w-]+)/$',
 'solos.views.solo_detail',
 name='solo_detail_view'),
 url(r'^$', 'solos.views.index'),
]

http://www.django-rest -framework.org/api-guide/routers/
http://www.django-rest -framework.org/api-guide/routers/

Chapter 7

[141]

Here's what we changed:

• We created an instance of SimpleRouter and used the register method to
set up a route. The register method has two required arguments: a prefix
to build the route methods from, and something called a viewset. Here we've
supplied a non-existent class AlbumViewSet, which we'll come back to later.

• We've added a few comments to break up our urls.py, which was starting
to look a little like a rat's nest.

• The actual API URLs are registered under the '^api/' path using Django's
include function.

Run the URL test again, and we'll get ImportError for AlbumViewSet. Let's add a
stub to albums/views.py:

class AlbumViewSet():
 pass

Run the test now, and we'll start to see some specific DRF error messages to help us
build out our view:

$ python manage.py test
albums.tests.test_api.AlbumAPITestCase.test_album_list_route

Creating test database for alias 'default'...

F

...

 File "/Users/kevin/.virtualenvs/jmad/lib/python3.4/site-
packages/rest_framework/routers.py", line 60, in register

 base_name = self.get_default_base_name(viewset)

 File "/Users/kevin/.virtualenvs/jmad/lib/python3.4/site-
packages/rest_framework/routers.py", line 135, in
get_default_base_name

 assert queryset is not None, ''base_name' argument not specified,
and could ' \

AssertionError: 'base_name' argument not specified, and could not
automatically determine the name from the viewset, as it does not
have a '.queryset' attribute.

After a fairly lengthy output, the test runner tells us that it was unable to get base_
name for the URL, as we did not specify the base_name in the register method,
and it couldn't guess the name because the viewset (AlbumViewSet) did not have a
queryset attribute.

Share and Share Alike

[142]

In the router documentation, we came across the optional base_name argument
for register (as well as the exact wording of this error). You can use that argument
to control the name your URL gets. However, let's keep letting DRF do its default
behavior. We haven't read the documentation for viewsets yet, but we know that a
regular Django class-based view expects a queryset parameter. Let's stick one on
AlbumViewSet and see what happens:

from .models import Album

class AlbumViewSet():
 queryset = Album.objects.all()

Run the test again, and we get:

django.core.urlresolvers.Resolver404: {'path': 'api/albums/',
'tried': [[<RegexURLResolver <RegexURLPattern list> (admin:admin)
^admin/>], [<RegexURLPattern solo_detail_view
^recordings/(?P<album>[\w-]+)/(?P<track>[\w-]+)/(?P<artist>[\w-
]+)/$>], [<RegexURLPattern None ^$>]]}

Ran 1 test in 0.011s

FAILED (errors=1)

Huh? Another 404 is a step backwards. What did we do wrong? Maybe it's time to
figure out what a viewset really is.

Automatic APIs with DRF viewsets
Viewsets are DRF's way of handling one or more of the various HTTP verbs (GET,
POST, PUT, PATCH, DELETE, HEAD, and OPTIONS) for a given resource with a single
view class. They take into account two types of API actions: those performed on a
single object, and those performed on a list of objects. Viewsets handle these types of
actions and the verbs that do them with specific methods on the class.

This all sounds a little confusing, but what it really means is that to allow an action
through a viewset, you've got to add that action's method to the viewset class. Once
the method is there, the router will automatically set up the URL to support it, and
route incoming requests with the corresponding HTTP verb to that method.

Chapter 7

[143]

Here's a table of what's available, using our Album example:

Action to perform URL HTTP verb The method that
we should provide

Get a list of objects /api/albums/ GET list()

Create a new object /api/albums/ POST create()

Get an instance of
an object

/api/albums/<pk>/ GET retrieve()

Update an object /api/albums/<pk>/ PUT update()

Update an object
(with partial fields)

/api/albums/<pk>/ PATCH partial_
update()

Delete an object /api/albums/<pk>/ DELETE destroy()

Have a look at the documentation to get the full story: http://www.django-rest
-framework.org/api-guide/viewsets/.

For now, let's try to fix this 404 error by adding a list() method:

…
class AlbumViewSet():
 queryset = Album.objects.all()

 def list(self):
 pass

Now our test tells us AttributeError: type object 'AlbumViewSet' has no
attribute 'as_view'. We need to subclass DRF's GenericViewset, which not only
provides the as_view method, but also get_object and get_queryset, which hook
into a lot of the DRF machinery that handle permissions and authentication:

from rest_framework import viewsets
...
class AlbumViewSet(viewsets.GenericViewSet):
...

Run the test, and it passes! How about the functional test?

$ python manage.py test
albums.tests.test_api.AlbumAPITestCase.test_list_albums

...

TypeError: list() takes 1 positional argument but 2 were given

http://www.django-rest -framework.org/api-guide/viewsets/
http://www.django-rest -framework.org/api-guide/viewsets/

Share and Share Alike

[144]

Easy enough, our method needs to accept the request as an argument. However,
instead of fixing up our list method, let's try using DRF's ListModelMixin (which
provides a list method, http://www.django-rest-framework.org/api-guide/
generic-views/#listmodelmixin). Remove our list method, and add the mixin
to the class declaration. albums/views.py file should now look like this:

from rest_framework import viewsets, mixins

from .models import Album

class AlbumViewSet(viewsets.GenericViewSet,
 mixins.ListModelMixin):
 queryset = Album.objects.all()

How does our functional test look now?

$ python manage.py test
albums.tests.test_api.AlbumAPITestCase.test_list_albums

...

AssertionError: 'AlbumViewSet' should either include a
'serializer_class' attribute, or override the
'get_serializer_class()' method.

This error prompts us to implement one of the most powerful features of DRF—a
model serializer.

Converting Django models with serializers
Serializers do the heavy lifting when it comes to creating JSON representations from
Django QuerySets, and vice versa. We'll use them to define what fields we want to
expose on a model, and perform any validation on data coming into the API. There's
tons of power available in DRF's serializer classes, much of which we won't need for
this first simple endpoint.

First things first, let's fix AssertionError by adding the following attribute:

from .serializers import AlbumSerializer
...
class AlbumViewSet(viewsets.GenericViewSet, mixins.ListModelMixin):
 ...
 serializer_class = AlbumSerializer

http://www.django-rest-framework.org/api-guide/generic-views/#listmodelmixin
http://www.django-rest-framework.org/api-guide/generic-views/#listmodelmixin

Chapter 7

[145]

That'll land us ImportError when we run the test, so create albums/serializers.
py and add in the following:

class AlbumSerializer():
 pass

Run the tests now, and we see that our stubbed AlbumSerializer needs some
more functionality:

$ python manage.py test

...

 File "/Users/kevin/.virtualenvs/jmad/lib/python3.4/site-
packages/rest_framework/generics.py", line 109, in get_serializer

 return serializer_class(*args, **kwargs)

TypeError: object() takes no parameters

It's time to pick one of DRF's serializer classes to subclass from. Since our
documentation calls for a 'url' field to be returned for each album (it's
best practice to return the URI for an object whenever possible), let's use
HyperlinkedModelSerializer:

from rest_framework import serializers

from .models import Album

class AlbumSerializer(
 serializers.HyperlinkedModelSerializer):
 class Meta:
 model = Album

Read up on serializers at http://www.django-rest-framework.org/api-guide/
serializers/. HyperlinkedModelSerializer comes with lots of goodies, and all
we have to do to get them is pass our model to the subclass' Meta.

Warning
HyperlinkModelSerializer provides create() and update()
methods for the Album model. However, since we didn't add
CreateModelMixin or UpdateModelMixin to the viewset, they aren't
exposed via the API. Note that it would take a very small change to do
so (either add the mixins, or the subclass ModelViewSet instead of
GenericViewSet). DRF gives you a lot of stuff for free, but always make
sure that you really want what it's providing, particularly when you're
using more full-featured classes.

http://www.django-rest-framework.org/api-guide/serializers/
http://www.django-rest-framework.org/api-guide/serializers/

Share and Share Alike

[146]

Finishing up with RetrieveModelMixin
Now, our test gives us a very helpful error:

$ python manage.py test albums.tests.test_api.AlbumAPITestCase.test_list_
albums

Creating test database for alias 'default'...

E

===

ERROR: test_list_albums (albums.tests.test_api.AlbumAPITestCase)

Test that we can get a list of albums

...

(lookup_view_s, args, kwargs, len(patterns), patterns))

django.core.urlresolvers.NoReverseMatch: Reverse for 'album-detail'
with arguments '()' and keyword arguments '{'pk': 2}' not found. 0
pattern(s) tried: []

During handling of the above exception, another exception occurred:

...

File "/Users/kevin/.virtualenvs/jmad/lib/python3.4/site-
packages/rest_framework/relations.py", line 272, in to_representation

 raise ImproperlyConfigured(msg % self.view_name)

django.core.exceptions.ImproperlyConfigured: Could not resolve URL
for hyperlinked relationship using view name "album-detail". You may
have failed to include the related model in your API, or incorrectly
configured the 'lookup_field' attribute on this field.

Our HyperlinkedModelSerializer can't find a URL to provide for an Album
instance. And of course it can't because we haven't provided it yet. All our view will
currently do is list albums. We need to make one change to get a view for single
albums. In albums/views.py, add RetrieveModelMixin to AlbumViewSet:

class AlbumViewSet(viewsets.GenericViewSet,
 mixins.ListModelMixin,
 mixins.RetrieveModelMixin):
...

And now, low and behold, our tests pass:

$ python manage.py test albums.tests.test_api.AlbumAPITestCase

Creating test database for alias 'default'...

..

Chapter 7

[147]

Ran 2 tests in 0.018s

OK

Destroying test database for alias 'default'...

It's worth noting how little unit testing we did to get this endpoint working. Our
single functional test was enough to guide us through almost the entire process,
most of which was just configuration of subclassed DRF resources. We did not have
a lot of custom logic to test.

We did add a stub view method and URL in the course of finishing the list test. The
next step would be to build out that view with another functional test, but for now
let's commit and move on to adding new Solo data via the API.

$ git commit –am 'Initial config for DRF, Album list and retrieve'

$ git tag –a ch7-2-init-drf

Adding data via the API
In order to get to this point, I've skipped ahead a bit, repeating much of the same
work on the Album endpoint for Tracks. Either take a peak in the repo, or better yet,
attempt the following tasks on your own and come back to the source to compare:

1. Write a functional test for listing Tracks
2. Add serializers for Solos and Tracks
3. Write a TrackViewSet to satisfy the functional test

If you'd like to grab the code from the repository:

$ git checkout ch7-3-track-view-and-serializer

Now we're ready to open up our API for new, incoming Solo data.

POSTing data in a test
Let's start by writing a new functional test for adding Solos via the API. We'll use
APIClient.post to send a dict (as JSON) to '/api/solos/'. Create a new file
solos/tests/test_api.py and enter:

from rest_framework.test import APITestCase

from albums.models import Album, Track

Share and Share Alike

[148]

class SoloAPITestCase(APITestCase):

 def setUp(self):
 self.giant_steps = Album.objects.create(
 name='Giant Steps',
 slug='giant-steps'
)
 self.mr_pc = Track.objects.create(
 name='Mr. PC',
 slug='mr-pc',
 album=self.giant_steps
)

 def test_create_solo(self):
 """
 Test that we can create a solo
 """
 post_data = {
 'track': '/api/tracks/2/',
 'artist': 'John Coltrane',
 'instrument': 'saxophone',
 'start_time': '0:24',
 'end_time': '3:21'
 }
 response = self.client.post('/api/solos/',
 data=post_data,
format='json')

 self.assertEqual(response.status_code, 201)
 self.assertEqual(response.data, {
 'url': 'http://testserver/api/solos/1/',
 'artist': 'John Coltrane',
 'slug': 'john-coltrane',
 'instrument': 'saxophone',
 'start_time': '0:24',
 'end_time': '3:21',
 'track': 'http://testserver/api/tracks/1/'
 })

Chapter 7

[149]

In the preceding snippet, note that:

1. We pass three arguments to self.client.post: the URL to post to, the
data to send, and the 'format', which sets the Content-Type header on
the request.

2. We're looking for a 201 Created response, since we are adding new data

Running the test from here, we go through a similar process as in the AlbumViewSet
build out. Our first failure is a 404 Not Found status code, where we expected a 201.
Go ahead and build out the view on your own. When I did it, I wrote another test for
the URL using resolve, and went through the following steps:

1. Update the router with a proposed, then stubbed, SoloViewSet.
2. Develop SoloViewSet by subclassing GenericViewSet and adding a

queryset and a stubbed SoloSerializer as a serializer_class.
3. Develop SoloSerializer by subclassing HyperlinkedModelSerializer,

and set its model Meta attribute to Solo.
4. Add DRF's CreateModelMixin to SoloViewSet to allow creation via POST.

Have a look here if you get stuck:

$ git checkout ch7-4-solo-view-and-serializer

After all that, I ran my functional test and got:

$ python manage.py test solos.tests.test_api.SoloAPITestCase.test_create_
solo

Creating test database for alias 'default'...

F

===

FAIL: test_create_solo (solos.tests.test_api.SoloAPITestCase)

Test that we can get a list of albums

Traceback (most recent call last):

 File "/Users/kevin/dev/jmad-project/jmad/solos/tests/test_api.py",
line 25, in test_create_solo

 self.assertEqual(response.status_code, 201)

AssertionError: 400 != 201

DRF viewsets return 400 Bad Request responses when any number of problems
occur, often payload validation errors. 400s are generally accompanied by a message
in the response payload to describe the error.

Share and Share Alike

[150]

Let's add that payload to our status code assertion statement to see what's going on.
In solos/test_api.py:

self.assertEqual(response.status_code, 201, response.data)

Now when we run the test, we get:

AssertionError: 400 != 201 : {'slug': ['This field is required.']}

We'd like for slugs to be autogenerated, but they're required fields on our model.
Let's take care of this in the serializer.

Validating inbound data with a serializer
Generating a slug from another submitted value is an excellent reason to
write a custom validate method on our SoloSerializer. validate is defined
on Serializer (which is a little further up the inheritance ladder from
HyperlinkedModelSerializer) as a pass through, called in all the right places and
just waiting to be overwritten by implementers like us. It takes one argument, a dict
of the data passed to the serializer, and must return a similarly structured dict.

We've been basing our slugs off the 'artist' field on Solo, and we know that we're
passing an 'artist' field into the Solo endpoint. Let's write a test to make sure we
can slugify the artist field and add it to the data passed through our custom validate
class. Here's what I came up with in solos/tests/test_serializers.py:

from unittest import TestCase

from solos.serializers import SoloSerializer

class SoloSerializerTestCase(TestCase):

 def test_validate(self):
 """
 Tests that SoloSerializer.validate() adds a slugged
 version of the artist attribute to the data
 """
 serializer = SoloSerializer()
 data = serializer.validate({'artist': 'Ray Brown'})

 self.assertEqual(data, {
 'artist': 'Ray Brown',
 'slug': 'ray-brown'
 })

Chapter 7

[151]

Run the test, and we can see the default pass-through behavior of validate:

$ python manage.py test solos.tests.test_serializers

Creating test database for alias 'default'...

F

...

AssertionError: {'artist': 'Ray Brown'} != {'artist': 'Ray Brown',
'slug': 'ray-brown'}

- {'artist': 'Ray Brown'}

+ {'artist': 'Ray Brown', 'slug': 'ray-brown'}

Let's overwrite validate to provide a slug value. Back in solos/serializers.py:

from django.utils.text import slugify
...
class SoloSerializer(serializers.HyperlinkedModelSerializer):
 ...
 def validate(self, data):
 data['slug'] = slugify(data['artist'])
 return data

This is a very lightweight validate and doesn't take into account an update to an
existing instance, but I'm going to save that refactor for when I expose the update
method sometime in the future. Now this passes the test. Let's run the functional
test now:

$ python manage.py test solos.tests.test_api.SoloAPITestCase.test_create_
solo

...

AssertionError: 400 != 201 : {'slug': ['This field is required.']}

Same error? Oh yeah, SoloSerializer is looking for slug right out of the gate,
before it even runs validate (you can confirm this by dropping a pdb.set_trace()
in validate and running the test again). We want slug to be a read only field. Add
the declaration to SoloSerializer.Meta in solos/serializers.py:

class SoloSerializer(serializers.HyperlinkedModelSerializer):
 class Meta:
 model = Solo
 read_only_fields = ('slug',)
...

Share and Share Alike

[152]

Let's try this again:

$ python manage.py test solos.tests.test_api.SoloAPITestCase.test_create_
solo

...

raise ImproperlyConfigured(msg % self.view_name)

django.core.exceptions.ImproperlyConfigured: Could not resolve URL
for hyperlinked relationship using view name "solo-detail". You may
have failed to include the related model in your API, or incorrectly
configured the 'lookup_field' attribute on this field.

We saw a similar error earlier on AlbumViewSet. All we need to do is include the
RetrieveModelMixin:

...
class SoloViewSet(viewsets.GenericViewSet,
 mixins.CreateModelMixin,
 mixins.RetrieveModelMixin):
...

Finally, we passed! Let's run the full suite.

$ python manage.py test

Creating test database for alias 'default'...

..................

Ran 20 tests in 22.708s

OK (skipped=1)

Destroying test database for alias 'default'...

And commit:

$ git commit –am 'Sets slug field from artist via serializer method'

$ git tag –a ch7-5-slug-in-serializer

Summary
In this chapter, we covered basic API design and testing patterns, including the
importance of documentation when developing an API. In doing so, we took a deep
dive into Django REST Framework and the utilities and testing tools available in it.

Next, we'll take a look back at what we've learned over the last seven chapters and
talk about the next steps in your TDD journey.

Promises Kept
In this chapter, we will:

• Look back on what we've accomplished through TDD
• Assess what TDD did not cover in our project
• Explore related topics and other development activities to build on the

foundation we've created

How far we've come
Over the course of the last seven chapters, we've managed to build:

• A database for storing data about jazz solos
• A user interface for searching and viewing that information
• A connection to an API where we can get source information for jazz artists

and albums
• An API for accessing our data via external applications

All the while we've written our tests first, letting the failing tests drive our next steps.

So, how did it go?
Now that you've got a taste of what TDD is about, let's look back at the benefits
promised in Chapter 1, Keeping Your Promises as well as the common criticisms of
TDD, and see how our experience compares.

Promises Kept

[154]

We kept ourselves on track
We definitely built only what we needed; our project is nothing if not lean and mean.
We've got just enough code to cover the handful of user stories that we wanted to
address. TDD kept us from building tangential features that we might not ever need.
Our code stayed nimble, testable, and ready to be refactored as new user stories
come in to play.

Our application can check itself
Every line of code, from model methods to external API interactions, is exercised
in a run of our test suite. We'll always know it's working, and we can change it in
controlled ways by amending or adding tests before we tinker with the logic.

We kept our thinking clear
Particularly in building our external API, our up-front tests really made us think
about what we were trying to accomplish before we started. We captured and
quantified the often squishy, "hey-can-you-make-it-do-this" requirements into
functional tests, so we know that we finished what we promised our client.

Our code is testable
This is about as self-evident as a benefit can be, but it's worth stating that our entire
application is written in a very testable way: it's modular, logical branching is kept to
a minimum, and there's very little "magic".

We can take big risks
Want to try replacing SQLite with PostgreSQL? Want to swap out some of those
function-based views for their class-based counterparts? Go ahead and make broadly
sweeping changes. The test suite we've built along side our application will walk you
through any errors that you make in refactoring, and show you exactly where you
need to adjust your code to get a new version of the application running.

We look like pros
Our test suite communicates to other developers who may be interested in helping
with our project (wink, wink) that we're taking it very seriously. We've followed best
practices, and the code that we've written works.

Chapter 8

[155]

Did we do more work than necessary?
One reason often given for avoiding tests (let alone writing them first) is that it's
extra work with little benefit. If you're measuring work by counting the lines of
code, we've definitely done more work in this project than if we'd stuck to just
cranking out models, views, and templates. But if you value test coverage, there's
no way we've exerted more effort than had we tried to write tests after the fact. On
the contrary, in many cases, the application code itself was trivial to write after we'd
thought it through in the test writing phase.

What we unfortunately did not get to experience is the utter joy of a major refactor
with a full-test suite in place. Good test coverage saves us from having to go
back and hand-check all the code after we do something like changing a
CharField to a ForeignKey. Here I'd argue that the TDD approach outpaces even
testless development.

Did it take longer than it should have?
Again, if we're comparing against untested coding, we probably did spend more
time on developing in the green field. But if we don't consider our project done until
there's a comprehensive test suite in place, TDD will definitely get us there fast.
Writing tests first necessarily requires us to ask ourselves "How would I test this?"
from the very beginning, hence our code comes out clean and fast. And once again,
we'll be paid back that time in spades when we refactor.

What haven't we done?
Our development thus far has focused on basic user experience and the business
logic of the application. There are some big holes in what's left to do, some of which
TDD can help us with, and some better left to other processes.

Production optimization
We've eschewed any optimization in the interest of keeping our tests running fast.
The biggest change to make would be the database backend. We've been using
the default SQLite, but we'll likely use PostgreSQL for production. Building a new
PostgreSQL database for every run takes a bit more time, so I'll probably continue to
run tests locally with SQLite in memory. However, we need to make sure our tests
still pass with our production DB in place.

Promises Kept

[156]

The best solution is likely a combination of dedicated settings.py files and some
sort of continuous integration (CI) setup. CI means different things to different
people, but to me the minimal CI setup can:

• Check out code from repository
• Run the tests
• Inform if it failed

The next step might be for the CI server to actually deploy your code, but we're
more interested in getting the tests run. Configure your CI as close to production as
possible. A test suite slowed by building a PostgreSQL database may break my flow,
but an automated CI server doesn't mind at all how long it takes.

To keep different settings for your production and local instances, I'd recommend
the set up described in Two Scoops of Django by Daniel Roy Greenfeld and Audrey
Roy Greenfeld. A simplified version of this might be as easy as leaving your current
settings file in place but adding prod.py next to it. Start off with a wholesale import
from settings.py, only overwriting what you need to change:

From jmad.settings import *

DEBUG = False

DATABASES = {
 ...
 # your production DB settings here
}

Then configure your CI to run tests with python manage.py test
–-settings=jmad.prod. Similarly your WSGI file would use prod.py as its
settings file.

An actual frontend design
To put it generously, our current design is very clean. We definitely need some
thoughtful design work in our templates. Design is not a place where TDD can help
us, but our test suite (most importantly the functional test) can let us know if any
design elements interfere with the user experience. If substantial changes need to be
made, we might need to go back and update the Selenium selectors.

Quality assurance
I can hear you ask, "But I thought we were writing all these tests so we wouldn't have
to do QA anymore?" Sorry, but the QA work remains.

Chapter 8

[157]

The Greatest QA Joke Ever Told:
QA Engineer walks into a bar. Orders a beer. Orders 0 beers. Orders
999999999 beers. Orders a lizard. Orders -1 beers. Orders asfdeljknesv.

When we wrote our tests, we weren't concerning ourselves with anything and
everything that could go wrong. Take the search field—we wrote methods for the
good and known invalid user inputs. There are still plenty of unknown invalid user
inputs; inputs that might even cause server errors. It's our QA process' job to ferret
out those problems. Granted, when those problems are found, our TDD process will
kick back in: we'll write a failing test that demonstrates the error, then update the
application code so that the test passes.

Load testing
Though our functional tests may be a good start to load testing, we don't have
anything in our test suite that's capable of hammering a server. We also need to take
special care with load balancing scripts to make sure that we're not adding extra,
erroneous data to our production database.

Check out Locust (http://locust.io/) if you're looking for a good load testing
tool written in Python. Of course, ab (Apache Bench, http://httpd.apache.org/
docs/2.2/programs/ab.html) is still the industry standard.

What shall we build next?
I've been keeping a little list of features that I'd like to see added to JMAD, as we've
gone through the book. Here are a few of them that would make for good next steps.
If I try them out, I'll try to blog about it (http://kevinharvey.net/). If you attempt
any of them, or can think of any other good features to add, drop me a line at hello@
kevinharvey.net.

Authentication for creating solos
We really ought to create user accounts for users who want to add solo information.
This would involve not only adding a custom user model, but writing and testing
login and logout views. We could also extend authentication to our external API,
allowing authenticated activity from third-party applications.

http://locust.io/
http://httpd.apache.org/docs/2.2/programs/ab.html
http://httpd.apache.org/docs/2.2/programs/ab.html
http://kevinharvey.net/

Promises Kept

[158]

Tagging solos
Solos ought to be able to be tagged with arbitrarily named strings that users can add.
Then, users should be able to view a tag and see all the solos tagged with it.

Haystack search
Right now our search function uses the Django ORM directly. django-haystack
is a venerable project for fine-tuned full text searches. We could start with a simple
implementation of the Whoosh backend, then eventually implement faceted search
(progressively fine-tuned search by attributes) with a move to Solr.

Celery for caching MusicBrainz data
We're asking a lot of our views to cascade through multiple chained API calls to
MusicBrainz and save all of it to the database in a smart way. Why not get the first
few in, then queue the rest for later processing with Celery?

An errant data interaction for MusicBrainz
It's possible that we could get erroneous or incomplete data from the MusicBrainz
API. We should give our users a way of submitting proposed fixes to that data, and
use the MusicBrainz API to submit it to them.

Exposing API documentation with Django
REST framework
We've written such nice documentation for our API, it's a shame to squirrel it away
in source code. DRF's DefaultRouter is one option to expose that documentation via
the web. There is also a DRF Swagger project (https://github.com/marcgibbons/
django-rest-swagger) if you're into JavaScript-y expandables.

To tend or not to tend?
There are competing theories on what to do with a test after you've written it.
One school of thought contends that tests are meant to be forgotten. They exist to
confirm that the code is still running as it ought to, and there's never really any
reason to refactor them later. They either pass or fail, and only need to be changed if
they are failing for the wrong reason, or to drive further development. The Django
documentation itself encourages this approach.

https://github.com/marcgibbons/django-rest-swagger
https://github.com/marcgibbons/django-rest-swagger

Chapter 8

[159]

On the other hand, you could view your test suite as an application to be maintained
unto itself. The activities involved might include:

• Keeping your test suite DRY by writing helper methods and subclasses
whenever possible

• Optimizing your test suite for speedy runs
• Breaking your test suite into logical chunks that can be run independently

I mostly fall in the latter bracket. I've found test suites to grow to the hundreds of
methods, and if it's a drag to run tests or write new ones, you'll quickly find yourself
avoiding it.

Fight through the gotchas
Admittedly, I've presented a lot of best-case scenarios as examples, and worked
through some of the snarling tracebacks that you can get in the TDD process. You're
likely to encounter some nasty ones of your own. Here are a few things to watch
out for.

"No module named" errors when using dotted
paths to tests
You're not crazy. When you try to run python manage.py test solos.tests.
test_models.SoloTestCase, how could you possibly get an error like 'solos.
tests has no model test_models'? Of course it has that module, you're looking
at it right now! This can crop up when you try to import something that doesn't exist
inside one of the modules in the path (most often a class or function that you haven't
created yet).

Just run the full test suite for a more helpful error message. This is a good practice
anyway when you get a single erroneous test that confuses you.

When error messages get weird, Google is
your friend
Output from failed or erroneous tests can be downright ugly, but don't trick yourself
into thinking you're the first one to have ever seen it. Be quick to copy and paste
confusing error messages directly into your favorite search engine. Many developers
have felt your pain, let's just hope they wrote about it in their blog.

Promises Kept

[160]

Thanks!
I hope you enjoyed reading this book as much as I enjoyed writing it. Drop me a line!

• Twitter: @kevinharvey
• hello@kevinharvey.net

[161]

Index
A
API

advantages 133
building, with Django REST

framework 135
data, adding via 147
developer, issues 135
Documentation-Driven testing 134
documentation, writing 134
initial documentation 135-137
using, in application 119

application code
functional test, continuing through 32-36
RequestFactory, used for view

testing 27-32
search, adding to view 37-48
writing 26

application improvements
better URLs 71
data normalization 71
views 71

B
Betamax

URL 132

C
Continuous Integration (CI) server 6

D
data

adding, via API 147-150

inbound data, validating with
serializer 150-152

Django admin
activating 95-97
content, adding via 104-108
model list display, configuring 101-104

Django app
setting, for unit tests 23, 24

Django REST framework
about 137
API routing, with DRF's

SimpleRouter 140-142
automatic APIs, with DRF

viewsets 142, 143
Django models, converting with

serializers 144, 145
 RetrieveModelMixin, used for

finishing 146, 147
tests, writing for API endpoints 137-139
URL 137
used, for building API 135
used, for exposing API documentation 158

DRF Swagger project
URL 158

DRY testing 59-61

F
functional test

updating 84-86
functional tests, versus unit tests

about 12
breadth 12
size 12
user, versus developer experience 12

[162]

G
get_absolute_url() method 76
Git

URL 5, 15
gotchas, TDD

about 159
Google, using 159
No module named errors 159

H
Haystack search 158
Homebrew

URL 13

I
index view

refactoring 86-91

J
jmad.us project

about 13
acceptance criteria 13
elements, searching with

WebDriver 20-22
environment, setting up 13
functional test, starting 15
functional test, working 18-20
initiating 14, 15
LiveServerTestCase 16
page, used for opening WebDriver 20
sample code, obtaining 15
Selenium 16
test output, reading 23
URL 13
user story, narrating 17, 18

K
key practices, for code writing

Continuous Integration (CI) 6
documentation 5
testing 5
version control 5

L
ListModelMixin

URL 144
Locust

URL 157

M
migration files

building 83
mock

about 113-119
advantages 119, 120
API calls, encapsulating 122, 123
API calls, implementing 129, 130
creating 123-125
data catching, Celery 158
MB API, adding to search 120, 121
pattern, applying to view test 130, 131
returning, from mock method 125-128
VCR.py tool 132

MusicBrainz
about 115
errant data interaction 158
sandbox, exploring 115, 118
URL 115

P
pitfalls

about 155
frontend design 156
load testing 157
production optimization 155, 156
quality assurance 156, 157

Python
URL 13

Python Debugger
URL 52
using, in tests 52

R
refactoring

about 57
setUpClass, versus setUp 57-59

[163]

RequestFactory, versus TestClient
about 62
search results, displaying 63, 64
Selenium tail-chasing 65
solo detail page, building 65-68
tests, including 63
URLs, testing 62

RequestFactory
single test with dot notation,

running 53-56
used, for testing tools 28-32
using 52, 53

requests library
URL 132

S
Selenium

used, for signing in 97-100
serializer

URL 145
used, for validating inbound data 150

solos
creating, authentication 157
tagging 158

T
TDD

about 1, 11
benefits 49, 153
cycle, using 74-76
example 2-4
extra time 155
extra work 155
key practices, for code writing 5
limitations 9
new app, starting 78-83
overview 153
red/green/refactor cycle 4
running 49-51
test, writing 10
used, for building software 6-9

TDD, benefits
clear thinking 154
code, working 154
on track feature 154
risks, accepting 154
self-checking 154
testable code 154

test data
managing 57

Test-Driven Development. See TDD
track view

adding 72, 73

U
unit tests

Django app, setting for 23, 24
planning 24, 25

user story
about 93
Django admin, activating 95-97
Django admin model list display,

configuring 101-104
Selenium, used for signing in 97-100
solo, adding 109-111

V
VCR.py tool

URL 132
virtualenv

URL 13

W
WebDriver

used, for finding elements 20-22
used, for opening page 20

Thank you for buying
Test-Driven Development with Django

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Web Development with
Django Cookbook
ISBN: 978-1-78328-689-8 Paperback: 294 pages

Over 70 practical recipes to create multilingual,
responsive, and scalable websites with Django

1. Improve your skills by developing models,
forms, views, and templates.

2. Create a rich user experience using Ajax
and other JavaScript techniques.

3. A practical guide to writing and using
APIs to import or export data.

Learning Django
Web Development
ISBN: 978-1-78398-440-4 Paperback: 336 pages

From idea to prototype, a learner's guide for web
development with the Django application framework

1. Build two real-life based projects, one based
on SQL and other based on NoSQL.

2. Best practices to code, debug, and deploy
the Django web application.

3. Easy to follow instructions and real world
examples to build highly effective Django
web application.

Please check www.PacktPub.com for information on our titles

Django Essentials
ISBN: 978-1-78398-370-4 Paperback: 172 pages

Develop simple web applications with the powerful
Django framework

1. Get to know MVC pattern and the structure
of Django.

2. Create your first webpage with Django
mechanisms.

3. Enable user interaction with forms.

AngularJS Test-driven
Development
ISBN: 978-1-78439-883-5 Paperback: 206 pages

Implement the best practices to improve your
AngularJS applications using test-driven development

1. Learn about TDD techniques, the TDD lifecycle,
and its power through clear examples to
enhance your Angular applications.

2. Integrate AngularJS testing using Karma and
Protractor to perform JavaScript unit tests.

3. A practical guide filled with examples that
focus on a wide range of testing techniques
with AngularJS components.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Keeping Your Promises
	What is Test Driven Development?
	A simple example
	Red/green/refactor
	Testing is a pillar of professional software development
	Version control
	Documentation
	Testing
	Continuous Integration

	How does TDD help in building better software?
	Doesn't it take longer?
	Can't I just write the tests later?
	Summary

	Chapter 2: Your First Test-Driven Application
	Where do we begin?
	Functional versus unit tests
	User versus developer experience
	Size
	Breadth

	The project – jmad.us
	Setting up your environment
	Starting the project
	Getting the sample code
	Starting a functional test
	Introducing LiveServerTestCase
	Introducing Selenium
	Fleshing out the user story
	Getting the test to fail
	Opening a page with WebDriver
	Finding elements with WebDriver
	Reading test output

	Setting up a Django app for unit tests
	Planning our unit tests

	Finally writing application code
	Testing views with RequestFactory
	Continuing through the functional test
	Adding search to the view

	Summary

	Chapter 3: Ironclad Code
	Using the Python Debugger in tests
	Using RequestFactory
	Running a single test with dot notation

	Managing test data
	Refactoring
	setUpClass versus setUp

	DRY testing
	RequestFactory versus TestClient
	Testing URLs
	Does that seem like overkill?
	Displaying search results
	Selenium tail-chasing
	Building the Solo detail page

	Summary

	Chapter 4: Building Out and Refactoring
	Improving the application
	A new view
	Pretty URLs
	Back into the TDD cycle
	Skipping ahead a bit
	Starting a new app
	Much ado about migrations
	Updating the functional test
	Refactoring the index view
	Summary

	Chapter 5: User Stories as Code
	A second user story
	Activating the Django admin site
	Signing in with Selenium
	Configuring the Django admin model list display

	Adding content via the Django admin
	Finishing up
	Summary

	Chapter 6: No App Is an Island
	What is a mock?
	MusicBrainz
	Digging around in the MusicBrainz sandbox

	Using the API in our application
	Mocking – when and why
	Adding the MB API to search
	Encapsulating the API call
	Our first mock
	Hacking what's returned from a mocked method
	Implementing the API calls
	Moving back up the chain
	Dealing with change
	This is just one method

	Summary

	Chapter 7: Share and Share Alike
	It's an API world, we're just coding in it
	Deceptive simplicity
	Writing documentation first
	Documentation-Driven testing
	More developers, more problems

	Building an API with Django REST framework
	Initial documentation

	Introducing Django REST framework
	Writing tests for API endpoints
	API routing with DRF's SimpleRouter
	Automatic APIs with DRF viewsets
	Converting Django models with serializers
	Finishing up with RetrieveModelMixin

	Adding data via the API
	POSTing data in a test
	Validating inbound data with a serializer

	Summary

	Chapter 8: Promises Kept
	How far we've come
	So, how did it go?
	We kept ourselves on track
	Our application can check itself
	We kept our thinking clear
	Our code is testable
	We can take big risks
	We look like pros
	Did we do more work than necessary?
	Did it take longer than it should have?

	What haven't we done?
	Production optimization
	An actual front end design
	Quality assurance
	Load testing

	What shall we build next?
	Authentication for creating solos
	Tagging solos
	Haystack search
	Celery for caching MusicBrainz data
	An errant data interaction for MusicBrianz
	Exposing API documentation with Django REST framework

	To tend or not to tend?
	Fight through the gotchas
	"No module named" errors when using dotted paths to tests
	When error messages get weird, Google is your friend

	Thanks!

	Index

