
www.allitebooks.com

http://www.allitebooks.org

The Leprechauns of Software
Engineering
How folklore turns into fact and what to
do about it

Laurent Bossavit

This book is for sale at http://leanpub.com/leprechauns

This version was published on 2015-06-28

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight
tools and many iterations to get reader feedback, pivot until
you have the right book and build traction once you do.

©2012 - 2015 Laurent Bossavit

www.allitebooks.com

http://leanpub.com/leprechauns
http://leanpub.com
http://leanpub.com/manifesto
http://www.allitebooks.org

Tweet This Book!
Please help Laurent Bossavit by spreading the word about this
book on Twitter!

The suggested hashtag for this book is #leprechauns.

Find out what other people are saying about the book by
clicking on this link to search for this hashtag on Twitter:

https://twitter.com/search?q=#leprechauns

www.allitebooks.com

http://twitter.com
https://twitter.com/search?q=%23leprechauns
https://twitter.com/search?q=%23leprechauns
http://www.allitebooks.org

Contents

Preface . 1

Chapter 1: Software Engineering’s telephone game . . 3
How we got there . 3
Surface plausibility 5
Leprechaun spotting 6
What you can do . 8

Chapter 2: The Cone of Uncertainty 11
How to feel foolish in front of a class 13
Making sense of the picture 14
Getting to the facts 15
The telephone game in action 16
Controversy . 19
What to make of all this? 20

Chapter 3: Why you should care about empirical results 22
The perils of empirical research 23
Discipline envy . 24
Science and reality 26
Where to go from here 28

www.allitebooks.com

http://www.allitebooks.org

CONTENTS

Chapter 4: The messy workings of scientific discourse 31
Modalities . 32
Citation as modality 33
The construction of facts 34

Chapter 5: The hunt for the 10x files 36
Why is this important? Isn’t it obvious? 36
The impressive list of references 37
The original study and the 10x claim 38
Harshly criticized . 39
The 10x files . 41
Good study, bad study 43
The wild goose chase 44

Chapter 6: The variable programmer 48
Getting just the results you want 48
Within-subject variability 49
Rocket science: the NASA data 50
Needle in a haystack 52
The COCOMO haystacks 53
Environmental effects 55
Summing up . 56

Interlude: How To Lie 59

Chapter 7: Who’s afraid of the Big Bad Waterfall? . . 62
The standard story 63
Alternate endings . 64
Just the facts . 66
No paper is an island 68
Late bloomer . 72
Birth of a myth . 73

www.allitebooks.com

http://www.allitebooks.org

CONTENTS

Chapter 8: Software’s perpetual crisis 75

Chapter 9: A Leprechaun hunting tutorial 78

Chapter 10: The cost of defects: an illustrated history . 86
Origins . 86
First amendments . 88
Where’s the data? . 90
Metamorphoses . 91
Changing the topic altogether 96
Reading curves . 98
Theory-laden diagrams 99
Boehm’s assent . 101

Chapter 11: Rocket science and Flaubert math 105
Flaubert and the math of ROI 105
NASA IV&V’s math 107
How old is the captain? 107
Eighy-three! For some value of eighty-three. 109

Chapter 12: For some value of 56 112
Where bugs come from 112
Sample size of one 113
Poor requirements 114
A software triumph 115

Chapter 13: The cost of bad research 119
Uncritical thinking 119
Extraordinarily suspect claims 120
Terms of inquiry . 122
Research standards 125

www.allitebooks.com

http://www.allitebooks.org

CONTENTS

Chapter 14: Raising the bar 127
Two modest proposals for publications on software

development 127
Will you take the pledge? 127

Chapter 15: A new model of inquiry 129
The Ouroboros effect: circular causation 130
From Requirements To Negotiation 131
The cliffhanger . 132

Appendix A: bibliographical analysis of the 10x files . 135
Questions of indirection 137
Summary results . 138
The quest for primary sources 140
A better list: primary sources with empirical evidence 141

Appendix B: bibliographical analysis for the “defect-
cost-increase curve” 146
The older references 146
The newer references 159

Appendix C - Conceptions and invention of waterfall 166
Invention of waterfall 166
Conceptions of waterfall (articles between 1970 and 1989) 166

www.allitebooks.com

http://www.allitebooks.org

Preface
This book is a work in progress.

I don’t know when, if ever, it will be finished. This is the new
normal for books, apparently. It has been the new normal for
software for a long time now.

The sample contains two chapters in addition to this preface, and
should give you an idea of the topic and my writing style.

I’m still writing further material. If you purchase the book, you
are entitled to free updates with all the new material that goes
into this book, at no extra charge.

I have no schedule to finish the book, nor a very clear idea of
what it will be like when it’s done. Probably not too different
from what it is now, but assume that any of the book is up for
revision.

I’m writing this book because I must, not as marketing material
or anything else. These are topics that I find myself obsessed
with, and I find that the only way I get them out of my system
is to write about them. I write about them in various places,
and you can probably get your hand on nearly everything I’ve
written for free.

Turning these writings into a book only means that I’m making
more of an effort to weave a coherent story out of what learnings
I’ve been able to glean.

www.allitebooks.com

http://www.allitebooks.org

Preface 2

By purchasing the book - at any price and in any state - you are
supporting me in this effort to understand better what we know
about software engineering and why we think we know it.

I appreciate your feedback in any form: cold hard cash, a pat
on the back, a piece of gentle or harsh criticism. You’re even
welcome to tell me what an idiot I am (and I may ignore you).

Thank you.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1: Software
Engineering’s telephone
game
The software profession has a problem, widely recognized but
which nobody seems willing to do much about. You can think of
this problem as a variant of the well known “telephone game”,
where some trivial rumor is repeated from one person to the next
until it has become distorted beyond recognition and blown up
out of all proportion.

Unfortunately, the objects of this telephone game are generally
considered cornerstone truths of the discipline, to the point that
their acceptance now hinders further progress.

It is not that these claims are outlandish in themselves; they
started as somewhat reasonable hypotheses. The problem is that
they have become entrenched as “fact” supposedly supported
by “research”, and attained this elevated status in spite of being
merely anecdotal.

How we got there

One of the ways that anecdote persists is by dressing itself up
in the garments of proper scholarship. Suppose you come across
the following claim for the first time:

www.allitebooks.com

http://www.allitebooks.org

Chapter 1: Software Engineering’s telephone game 4

Early results were often criticized, but decades of
research have now accumulated in support of the
incontrovertible fact that bugs are caused by bug-
producing leprechauns who live in Northern Ire-
land fairy rings. (Broom 1968, Falk 1972, Palton-
Spall 1981, Falk & Grimberg 1988, Demetrios 1995,
Haviland 2001)

Let’s assume that this explanation immediately appeals to you:
it makes sense of so many of the things you’ve seen in software
engineering! The proliferation of bugs in the face of huge efforts
to eradicate them; their capricious-seeming nature - why, that is
very leprechaun-like!

Of course, you, my reader, may be the kind of hard-headed
skeptic who absolutely and definitely dismisses the idea that
fairies and leprechauns exist at all. If so, please allow that
there exists the kind of person who would be persuaded by a
leprechaun-based explanation; but who, while an open-minded
person, nevertheless thinks that it is important that explanations
be adequately backed by evidence.

Surely you agree that this claimwould be convincing to someone
like that, since it cites so many respected authors, and papers
published in peer-reviewed journals.

As it happens, there are many ways this citation style can be
misleading, even without outright fabrication or evil intent:

• the papers are not really empirical research
• the papers support weaker versions of the claim
• the papers don’t support the claim directly, but only cite
research that does

Chapter 1: Software Engineering’s telephone game 5

• the more recent papers are not original research, but only
cite older ones

• the papers are in fact books or book-length, and you’ll be
looking for a needle in a haystack

• the papers are obscure, hard to find, out of print or
paywalled, and thus hard to verify

• the papers are selected only on one “side” of an ongoing
controversy

Surface plausibility

When we look closely at some of the “ground truths” of software
engineering - the “software crisis”, the 10x variability in perfor-
mance, the cone of uncertainty, even the famous “cost of change
curve” - in many cases we find each of these issues pop up, often
in combination (so that for instance newer opinion pieces citing
very old papers are passed off as “recent research”).

Because the claims have some surface plausibility, and because
many people use them to support something they sincerely
believe in - for instance the Agile styles of planning or estimation
- one often voices criticism of the claims at the risk of being
unpopular. People like their leprechauns.

In fact, you’re likely to encounter complete blindness to your
skepticism. “Come on,” people will say, “are you really trying
to say that leprechauns live in, what, Africa? Antarctica?” The
leprechaun-belief is so well entrenched that your opposition is
taken as support for some other silly claim - your interlocutors
aren’t even able to recognize that you question the very terms
upon which the research is grounded.

Chapter 1: Software Engineering’s telephone game 6

For instance, when I argued against the “well-known fact” of 10x
variations in software developers’ productivity, the objection I
often met was “do you really believe that all developers have
the same productivity?” Very few people can even imagine not
believing in “productivity” as a valid construct.

Leprechaun spotting

Leprechauns come in many forms, which I’ll call tacit, folklore
and formal. We need to deal with these various forms differently.

Tacit

Some Leprechaun claims have become so pervasive in software
engineering discourse that they don’t even appear as claims any
more.

For instance, people who are trying to hire “rockstar” or “ninja”
programmers are probably influenced by a tacit belief in the
supposedly large variations in programmer productivity, even
if they don’t explicitly say that they are looking for a “10x
productivity programmer”. There is a hidden inference at work:
“there exist programmers who are ten times as productive as the
average, therefore it is a profitable investment for me to go to
great expense to find one of these”.

Another example might be someone who defends Agile testing
techniques, such as Test-Driven Development (TDD), because
“they reveal defects early”. There is a hidden inference too, which
relies on the “well-known fact” that software defects are more
costly to fix the later they are detected - and therefore TDD

Chapter 1: Software Engineering’s telephone game 7

lowers costs by catching defects early. Unfortunately, this claim
on the cost of fixing defects is at best problematic, as we’ll see
later on.

Folklore

In many cases, the claims are only secondary. They are repro-
duced in an article, a blog post or a Powerpoint presentation,
often by someone who hasn’t read - in fact hasn’t even looked at
- any of the original references.

Here the inference is explicit: there is a point being made, and
the claim is offered in support of the point. It can even be the
same point as when the claim is tacit, such as the importance of
hiring rockstar programmers or the great value of TDD.

Quite frequently, the Leprechaun claim is only ancillary to the
main argument: the author has other reasons for believing in the
conclusion they are presenting, and the claim is mostly there as
a bit of window-dressing.

Formal

Lastly, there is the case of the primary author: someone who
did the bibliographical footwork in the first place, should have
known better, and is causing a leprechaun-belief to spread.

Whether we like it or not, software practitioners pay scant atten-
tion to academic writing about software development. Rather,
most of the insights we take for granted come from authors who
have a knack as popularizers. They play more or less the same
role as popular science journalists with respect to the general
public.

Chapter 1: Software Engineering’s telephone game 8

Science journalism is a fine and important thing, but it has a
well-known failure mode: sensationalism, where the lure of an
attention-grabbing headline causes writers to toss caution to the
wind and radically misrepresent a claim.

The examples I’ve examined (the cone of uncertainty, the 10x
variability, the cost of change curve, etc.) strongly suggest that
we should raise our expectations of rigor in software engineering
writing, especially writing that popularizes research results.

What you can do

This book is intended as a handbook of skeptical thinking and
reading, with worked-out examples.

What I want you to take away from reading the book is a set
of reflexes that you will call on whenever you come across a
strong opinion about software development, whatever “camp”
or “community” or “school” that opinion comes from.

It will probably be easiest to apply these reflexes against what
I’ve called the “folklore” and “formal” version of Leprechaun
claims: when you come across them in an article, blog or book,
and the claim is spelled out explicitly.

It isn’t necessarily the best of ideas to always call out such
claims, especially if you are overly antagonistic about it; you
may end up being seen as a “troll” - someone more interested in
winning arguments than in the truth of things. However, these
false claims will keep spreading unless somehow kept in check.
I cannot any longer accept that it’s better to keep quiet and not
rock the boat.

Chapter 1: Software Engineering’s telephone game 9

The best approach is probably to keep track of where the best
andmost even-handed treatments of these various claims reside,
and to respectfully point people to them. I hope that this book
serves as one such source - but I’m under no illusion that I can
deal with even a substantial fraction of all bogus claims within
the space of a single book.

The hardest step

The real challenge will be to apply these reflexes to your own
beliefs.

..

An inspiring example
Graham Lee is the author of “Test-Driven iOS Develop-
ment” (Addison-Wesley, 2012). Page 4 of his book includes
a table which reproduces a claim about the “cost of defects”,
which we’ll be examining in detail in a later chapter.

In september 2012, after reading an early draft of Lep-
rechauns, Graham published a retraction in the following
terms: “I made a mistake. […] I perpetuated what seems
(now, since I analyse it) to be a big myth in software engi-
neering. I uncritically quoted some work without checking
its authority, and now find it lacking.”

Graham not only took seriously my warning about the
“cost of defects” claim. He actually went looking for the
actual evidence and made his call on that basis, rather than
taking my word for it. That’s the kind of behaviour I’d like
to see more of.

Chapter 1: Software Engineering’s telephone game 10

I hold out little hope that people can, in general, convince others
to let go of specific pet notions. Speaking out against belief X
may not do much for those who currently hold belief X strongly
enough that they are writing or blogging about it, although there
will hopefully be some happy exceptions like Graham.

However, I do believe that if we manage to raise our overall
level of “epistemic hygiene”, we can prevent Leprechauns from
spreading in the first place. Like its real-world counterpart,
epistemic hygiene can be vastly improved by the use of specific
techniques that aren’t hard to learn, like washing hands.

That’s what’s coming next. Onwards!

Chapter 2: The Cone of
Uncertainty
You may have come across something called the “cone of uncer-
tainty”.

Cone of uncertainty, meteorological version

There are several graphics out there called that. The one with the
widest recognition is probably the one used to model the future
paths of hurricanes.

Chapter 2: The Cone of Uncertainty 12

A more obscure one is the “binomial tree” used in the theory of
financial options.

Cone of uncertainty, financial version

In both cases this is diagrammed from a present-time perspec-
tive, with the cone widening toward the future. We have some
certainty about what is going to happen a few seconds from now
- in all likelihood it will be whatever is happening now, more or
less. And the further into the future we try to peek, the murkier
it becomes.

What we’re going to discuss - and what has come to be accepted
as one of the “well known truths” of software engineering, more
specifically of software project management, is the following
“inverted” cone, popularized by SteveMcConnell after a diagram
originally from Barry Boehm.

Chapter 2: The Cone of Uncertainty 13

Cone of uncertainty, project management version

This is diagrammed from a future-time perspective, and shows
uncertainty as a symmetrically widening range as we move
further toward the present, which (given the usual convention
for diagrams with a time axis) is on the left of the figure.

How to feel foolish in front of a class

The diagram becamewell-knownwhen it was published in Steve
McConnell’s “Rapid Software Development”, in 1996. McConnell
cites a 1995 Boehm article as the source, but the diagram can in
fact be found as early as 1981 in Boehm’s famous book “Software
Engineering Economics”.

McConnell’s book is where I first came across the Cone, and it

www.allitebooks.com

http://www.allitebooks.org

Chapter 2: The Cone of Uncertainty 14

struck me as entirely plausible. I started using it to illustrate the
perils of project planning. I distinctly remember one particular
occasion when I was instructing a group of software engineers
on the topic of “agile planning”, and I started drawing a picture
of the cone of uncertainty.

And I stopped dead in my tracks.

Because I’d just realized I hadn’t the foggiest idea what I was
talking about, or how I’d know if it made sense. I was just
parroting something I’d read somewhere, and for once trying
to explain it wasn’t helping me understand it better, it was just
making me confused. And all I wanted to say anyway was “don’t
trust estimates made at the beginning of a project”.

Making sense of the picture

What is odd, to any experienced software engineer, is that
the Cone diagram is symmetrical, meaning that it is equally
possible for an early estimate to be an over-estimate or an under-
estimate. This does not really square with widespread experience
of software projects, which are much more often late than they
are early.

If you think a little about it, it can get quite puzzling what
the diagram is supposed to mean, what each of its data points
represents. A narrative interpretation goes like this: “very early
in the project, if you try to estimate how long it will take, you’re
likely to end up anywhere within a factor of 4 of what the
project will eventually end up costing”. So a 1-year project can be
estimated as a 3-month project early on, or as a 4-year project.

Chapter 2: The Cone of Uncertainty 15

Even after writing a first cut of requirements, a 1-year project
can be estimated as a 6-month project or as a 2-year project.

It’s not clear that this latter case it at all common: a project that
has reached this phase will in general take at least as long as
has been planned for it, an instance of Parkinson’s Law. The
Cone suggests that the distribution of project completion times
follows a well-behaved Gaussian. What the Cone also suggests
is that the “traditional” project management activities help: “By
the time you get a detailed requirements document the range of
uncertainty narrows considerably.” And the Cone suggests that
uncertainty inevitably narrows as a project nears its projected
release date.

Widespread experience contradicts this. Many projects and tasks
remain in the “90% done” state for a very long time. So if you
wanted a diagram that truly represented how awful overall
project estimation can be, you would need something that rep-
resented the idea of a project that was supposed to be delivered
next year, for 15 years in a row. (Yes, I’m talking about Duke
Nukem Forever.)

Getting to the facts

Boehm’s book is strongly associatedwith “waterfall” style project
management, so for a long while I resisted getting the book; I’d
verified earlier by looking at a borrowed copy that the diagram
was indeed there, but I wasn’t really interested in digging
further.

What I seemed to remember from that brief skim was that the
diagram arose from research Boehm had done at TRW while

Chapter 2: The Cone of Uncertainty 16

building his large quantitative database which forms the basis
for the COCOMO cost-modeling framework, and which is the
book’s main topic.

I assumed that the diagramwas the “envelope” of a cluster of data
points obtained by comparing project estimates made at various
times with actuals: some of these points would fall within the
Cone, but the ones farthest from the original axis would draw
the shape of the Cone if you “connected” the dots.

After seeing the Cone turn up in blog post after blog post, for a
number of years, I finally broke down and ordered my own copy.
When it arrived I eagerly turned to p.311, where the diagram is
discussed.

And found a footnote that I missed the first time around:

These ranges have been determined subjectively,
and are intended to represent 80% confidence limits,
that is ‘within a factor of four on either side, 80% of
the time’.

Emphasis mine: the word “subjectively” jumped out at me. This
puzzled me, as I’d always thought that the Cone was drawn from
empirical data. But no. It’s strictly Boehm’s gut feel - at least
that’s what it’s presented as in the 1981 book.

The telephone game in action

And then I chanced across this bit from a bibliography on
estimation from the website of Construx (Steve McConnell’s
company):

Chapter 2: The Cone of Uncertainty 17

Laranjeira, Luiz. ‘Software Size Estimation of Object-
Oriented Systems,’ IEEE Transactions on Software
Engineering, May 1990. This paper provided a theo-
retical research foundation for the empirical obser-
vation of the Cone of Uncertainty.

Wait a minute.What empirical observation?

Curious, I downloaded and read the 1990 paper. Its first three
words are “the software crisis”. (For a software engineering
leprechaun-doubter, that’s a very inauspicious start; the “crisis”
being itself a software engineering myth of epic proportion -
possibly the founding myth of software engineering. We’ll come
back to that in a later chapter.)

The fun part is this bit, on page 5 of the paper:

Boehm studied the uncertainty in software project
cost estimates as a function of the life cycle phase
of a product. The graphic in Fig. 2 shows the result
of this study, which was empirically validated (3,
Section 21.1)

The reference in parentheses is to the 1981 book - in fact precisely
to the section I’d just read moments before. Laranjeira, too, takes
Boehm’s “subjective” results to be empirical! (And “validated”,
even.)

Laranjeira then proceeds to do something that I found quite
amazing: he interprets Boehm’s curve mathematically - as a
symmetrical exponential decay curve - and, given this inter-
pretation plus some highly dubious assumptions about object-
oriented programming, works out a table of how much up-front

Chapter 2: The Cone of Uncertainty 18

OO design one needs to do before narrowing down the “cone” to
a desired level of certainty about the schedule. Of course this is
all castles in the air: no evidence as foundation.

Even funnier is this bit from McConnell’s 1996 book “Rapid
Software Development”:

Research by Luiz Laranjeira suggests that the accu-
racy of the software estimate depends on the level of
refinement of the software’s definition (Laranjeira
1990)

This doesn’t come right out and call Laranjeira’s paper “empir-
ical”, but it is strongly implied if you don’t know the details.
But that paper “suggests” nothing of the kind; it quite straight-
forwardly assumes it, and then goes on to attempt to derive
something novel and interesting from it. (At least a couple later
papers that I’ve come across tear Laranjeira’s apart for “gross”
mathematical errors, so it’s not even clear that the attempt is at
all successful.)

So, to recap: Boehm in 1981 is merely stating an opinion - but he
draws a graph to illustrate it. At least three people - McConnell,
Laranjeira and myself - fall into the trap of taking Boehm’s
graph as empirically derived. And someone who came across
McConnell’s later description of Laranjeira’s “research” should
be forgiven for assuming it refers to empirical research, i.e. with
actual data backing it.

But it’s leprechauns all the way down.

Chapter 2: The Cone of Uncertainty 19

Controversy

In 2006 my friend and former colleague on the Agile Alliance
board, Todd Little, published empirical data in IEEE Software
that contradicted the Cone of Uncertainty. (Such data can be hard
to come by, if only because it’s hard to know what “officially”
counts as an estimate for the purposes of measuring accuracy
Todd used the project manager’s estimates, included in project
status reports).

Todd’s article immediately generated a controversy, which is
precisely what we should expect if the Cone of Uncertainty
belongs to the “folklore” category - it is a belief that is hard to
let go of precisely because it has little empirical or conceptual
backing. It has perceptual appeal, insofar as it supports a message
that “estimation is hard”, but it also has very, very misleading
aspects.

Apparently as a result of the controversy, and in a further
departure from the original concept from Boehm, McConnell
insisted strongly that the Cone “represented a best case” and that
in fact, in addition to the Cone one should envision a Cloud
of Uncertainty, shrouding estimates until the very end of the
project. Metaphorically one “pushes” on the Cloud to get at
something closer to the Cone.

By then though, that model has lost all connectionwith empirical
data: it has become purely suggestive. It has no predictive power
and is basically useless, except for the one very narrow purpose:
providing an air of authority to “win” arguments against naive
software managers. (The kind who insist on their teams commit-
ting to an estimate up front and being held accountable for the

Chapter 2: The Cone of Uncertainty 20

estimate even though too little is known.) But we should not be
interested, at all, in winning arguments. We should be interested
in what’s true and in what works.

The “Cone” isn’t really a good pictorial representation of the
underlying concept that we want to get at (which is really a
probability distribution). It has drifted loose from what little
empirical moorings it had thirty years ago.

What to make of all this?

First, that there is a “telephone game” flavor to this whole thing
that is reminiscent of patterns we’ll see again, such as the claimed
10x variation between software developers’ productivity. One
technical term for it is “information cascade”, where people take
as true information that they should be suspicious of, not because
they have any good reason to believe it but because they have
seen others appear to believe it. This is, for obvious reasons, not
conducive to good science.

Second, the distinction between empirical and conceptual sci-
ence may not be clear enough in software engineering. Mostly
that domain has consisted of the latter: conceptual work. There
is a recent trend toward demanding a lot more empirical science,
but I suspect this is something of a knee-jerk reaction to the vices
of old, and may end up doing more harm than good: the problem
is that software engineering seems bent on appropriating meth-
ods from medicine to cloak itself in an aura of legitimacy, rather
thanworking out for itself methods that will reliably find insight.

Third, I wish my colleagues would stop quoting the “Cone of
Uncertainty” as if it were something meaningful. It’s not. It’s

Chapter 2: The Cone of Uncertainty 21

just a picture which says no more than “the future is uncertain”,
which we already know; but saying it with a picture conveys
misleading connotations of authority and precision.

If you have things to say about software estimation, think them
through for yourself, then say them in your own words. Don’t
rely on borrowed authority.

Key points

Before quoting an “authority” or “well-known
fact” in our field, be sure to apply basic critical
thinking. One formulation I like is by James Bach:
“Huh? Really? So?¹”

That is, Huh?, do I really understand the claim?
Can I rephrase it in my own words? Really, is it
in fact true? Can I locate the evidence behind the
claim? And finally, So? or So what?, does anything
important depend on the claim being true or not?

Finally, remember that if “a picture is worth a
thousand words”, a meaningless picture wastes
the equivalent of two pages or ten minutes of
speech!

¹http://how-do-i-test.blogspot.fr/2011/08/huh-really-so.html

http://how-do-i-test.blogspot.fr/2011/08/huh-really-so.html
http://how-do-i-test.blogspot.fr/2011/08/huh-really-so.html

Chapter 3: Why you should
care about empirical
results
Wherever I go, people tend to tell me that they feel that “aca-
demic” research into software engineering is largely irrelevant
to their work. Greg Wilson, editor of the 2010 book Making
Software which rounded up some of the best empirical research
in the field, later asked²:

When is the last time you read something in an
ACM or IEEE journal that changed how you pro-
gram or the tools you use? Ever?

“Never”, answered Jorge Aranda, who added: “[for researchers],
this should be something to be ashamed of.” Wilson and Aranda
went on to start a very interesting blog³, “It will never work
in theory”, dedicated to bridging this gap between practice and
theory. This is a wonderful effort, and I can’t recommend it
enough. My concern is that the only people likely to read (and
more importantly, comment on) that blog are people already
convinced.

²http://catenary.wordpress.com/page/2/
³http://neverworkintheory.org/about.html

http://catenary.wordpress.com/page/2/
http://neverworkintheory.org/about.html
http://catenary.wordpress.com/page/2/
http://neverworkintheory.org/about.html

Chapter 3: Why you should care about empirical results 23

We still need to gnaw this bone a little more to get at its
marrow: why should we care at all about research, especially
experimental results?

The perils of empirical research

My colleague “Uncle” BobMartin, when he gives talks or lectures
on topics such as “clean code” or “Test-Driven Development”,
makes much⁴ of the story of Semmelweis. In short, Ignaz Sem-
melweis was a physician, who, in the 19th century when germ
theory was still unknown, noticed the higher rates of women
dying in childbirth in certain wards, and made the then-unintu-
itive connection with the fact that doctors in the same hospitals
would often go straight from the dissecting room, where they
had been dissecting corpses in the name of science, to “assisting”
these women in delivery.

What’s arresting and important about this story is that Semmel-
weis, despite having shown conclusive experimental evidence for
the effectiveness of hand-washing in reducing mothers’ deaths,
faced extreme resistance to his ideas from the scientific estab-
lishment of the time, to the point where he basically went into
depression from which he never recovered, dying in a mental
institution before reaching his fifties. It took two more decades
(and many avoidable deaths) before the practice of hand-wash-
ing before patient contact became mandatory for physicians.

This is a disturbing and fascinating story, and I understand
why Bob likes to tell it. Bob argues that software professionals
today failing to at least learn and try test-driven development

⁴http://www.computer.org/csdl/mags/so/2007/03/s3032-abs.html

www.allitebooks.com

http://www.computer.org/csdl/mags/so/2007/03/s3032-abs.html
http://www.computer.org/csdl/mags/so/2007/03/s3032-abs.html
http://www.allitebooks.org

Chapter 3: Why you should care about empirical results 24

are showing the same kind of disregard for the very real and
very painful problems of software development (low quality,
buggy software) that Semmelweis’ contemporaries showed to
the suffering and deaths of mothers - only because there wasn’t
yet a fully worked out theory of infectious disease via germs.

There are, however, several problems with this parallel, not the
least of which that the data on test-driven doesn’t quite measure
up to that on hand-washing: “a survey of all of the studies that
have been done on TDD have shown that the better the study
done, the weaker the signal as to its benefit” (Greg Wilson, com-
menting on the TDD chapter in “Making Software”.) And quite
clearly we know a lot more today about scientific research, and
in particular about experimental design and statistical validation,
than we did in the 19th century.

Can somany researchers be wrong? Is TDD, then, only amirage?
Well… It’s not quite that simple.

Discipline envy

A lot of research in software engineering strikes me as hopelessly
naive in one of two ways. Most of it fails entirely to account for
the social and belief aspects altogether. It looks at its object of
inquiry as if it was entirely material and inert; as if “software”
was some kind of naturally occurring substance, the properties
of which can be revealed in the equivalent of a test tube.

The more interesting but in some ways more distressing part of
software engineering research borrows its experimental design
approach from medicine and calls itself “evidence-based”. Too
often though this seems to be a matter of “discipline envy” and

Chapter 3: Why you should care about empirical results 25

scientific status games, of who can use the most impressive-
sounding statistical method to analyze data that turns out - on
closer inspection - to be useless as empirical evidence, because
of some gross conceptual or methodological flaw.

Take a recent study⁵, Comparing the Defect Reduction Benefits
of Code Inspection and Test-Driven Development.

There is one thing that needs to be said first, before we get on
to the science, and even if this seems like a relatively trivial
complaint: it’s really a shame that most readers will have to
pay $19 to get the PDF with the full text of the study, because
the abstract really isn’t the whole story. (There’s more to say
about the economics of academic publishing, some of which was
eloquently summarized in George Monbiot’s article The Lairds
of Learning⁶; these issues eventually sparked a boycott of well-
known publisher Elsevier.)

The paper “is a quasi-experiment comparing the software defect
rates and implementation costs of two methods of software
defect reduction: code inspection and test-driven development”.
The main claim is that the Inspection group turned in code that
had fewer defects than the TDD group, and the authors claim, at
the p=0.05 level of statistical significance which is the accepted
norm (in medical research, for instance), that this is a reliable
result.

But wait! That’s only the abstract. If you go to the trouble
of reading the whole paper, you learn that this is only true,
statistically speaking, for “adjusted” defect counts. When the
authors look at “unadjusted” defect counts there is no statistically

⁵http://doi.ieeecomputersociety.org/10.1109/TSE.2011.46
⁶http://www.monbiot.com/2011/08/29/the-lairds-of-learning/

http://doi.ieeecomputersociety.org/10.1109/TSE.2011.46
http://www.monbiot.com/2011/08/29/the-lairds-of-learning/
http://www.monbiot.com/2011/08/29/the-lairds-of-learning/
http://doi.ieeecomputersociety.org/10.1109/TSE.2011.46
http://www.monbiot.com/2011/08/29/the-lairds-of-learning/

Chapter 3: Why you should care about empirical results 26

significant difference: “based on the unadjusted defect counts,
we would reject hypotheses H1 and H2”. (This is a common
problem in such studies, pointed out⁷ decades ago: noise swamps
out signal - we will come around to this when we examine the
evidence, or lack thereof, for “10x programmers”.)

What does “adjusted” mean? It means basically that the Inspec-
tion students get credited not only for the bugs they fix during
the one-week period after developing their code; they also get
credited for all the bugs they didn’t fix, that were found during
inspection. This effectively stacks the deck in favor of Inspection
over TDD, and it’s easy to suppose that this entirely accounts
for the supposedly statistically significant difference between the
two groups.

(The authors justify this procedure on the grounds that a well-
run Inspection process would keep inspecting and fixing until all
bugs found in the first Inspection round were in fact fixed. But
that doesn’t change the fact that the Inspection group effectively
gets to do a lot more testing than the TDD group; it’s not so
surprising that this results in fewer defects.)

So what’s going on here, really?

Science and reality

The Inspection vs TDD study is burdened with further flaws:
the participants in the TDD group were given barely more than
one hour of TDD training, for instance, on top of the usual
problems with studies which look at “convenience samples” -

⁷http://dx.doi.org/10.1109/PROC.1981.12088

http://dx.doi.org/10.1109/PROC.1981.12088
http://dx.doi.org/10.1109/PROC.1981.12088

Chapter 3: Why you should care about empirical results 27

that is, graduate students enrolled in the researchers’ course.
But really, the problem here is that the whole study is just too
vulnerable to all kinds of biases, both the researchers’ and the
participants’.

Consider Philip K. Dick’s idea, “Reality is that which, when you
stop believing in it, doesn’t go away.” How does that strike you?
Obviously true? Uncontroversial? To me this captures one essen-
tial aspect of experimental science - reality responds in certain
ways when you prod it, whether you believe in what you’re
seeing or not. “Fact” is the name we give to this stubbornness of
reality, its refusal to be persuaded by what we prefer to believe.
So it goes for matter and gravity, right up to the strange and
counterintuitive properties of light and tiny particles.

But then comes the niggling thought that some aspects of reality
“go away when you stop believing in them”, or more broadly
are significantly affected by how much and in what ways we
believe in them, countering naive reductionism. Some of the
examples that come to mind are romantic love, social status,
money, fashion or art. You can still get at facts about these things,
but by a much more tortuous route than you get facts about the
laws of physics.

Remember the TDD/Semmelweis connection? The bigger issue
there is that while germs are very much in the “don’t go away
if you stop believing in them” category, that’s much less true
of these things we call⁸ “bugs”. (The “better” studies of TDD
mentioned above show some of the naivete I believe is one of
software engineering’s deeper problems; the “anecdotal” reports
on which TDD enthusiasts base their recommendations may not

⁸http://www.ayeconference.com/entomology/

http://www.ayeconference.com/entomology/
http://www.ayeconference.com/entomology/

Chapter 3: Why you should care about empirical results 28

pass muster as “proper” research but may well get at more useful
insights than the academic research.)

The thing is, more aspects of reality than we’d like to believe
belong in the latter category. The so-called “placebo effect”
is a well-known illustration, and there are many subtleties to
designing experiments that take these effects into account. For
instance in medical research⁹ on psychoactive drugs: “many
antidepressant trials have serious methodological weaknesses,
including the unblinding of raters due to the common side effects
of these drugs compared with the inert sugar pill”.

Where to go from here

In fact, researcher John Ioannidis garnered much attention a few
years back with an admittedly provocative headline¹⁰:WhyMost
Published Research Findings Are False. Far from being a shining
example to look up to, medical research turns out to have its own
deep-seated problems!

I am not making this point to dissuade anyone from taking an
interest in software engineering research - far from it. Whether
you think of yourself as a software engineer, a craftsman, or a
“code monkey”, I think you are making a twofold mistake if you
dismiss the work of academic researchers as irrelevant.

First, you are failing to develop yourself as a professional; you
are missing out on some insights that would be useful to you, but
more importantly you are failing to engage with some important

⁹http://www.srmhp.org/0201/media-watch.html
¹⁰http://www.plosmedicine.org/article/info:doi/10.1371/journal.pmed.0020124

http://www.srmhp.org/0201/media-watch.html
http://www.plosmedicine.org/article/info:doi/10.1371/journal.pmed.0020124
http://www.srmhp.org/0201/media-watch.html
http://www.plosmedicine.org/article/info:doi/10.1371/journal.pmed.0020124

Chapter 3: Why you should care about empirical results 29

issues; you are delaying progress not just for yourself but for your
professional community as a whole.

Second, you are taking the risk of being blindsided. Right or
wrong, changing scientific consensus will eventually have some
impact, small or large, on the way you work. To turn a blind eye
to where this consensus is going is to forfeit some of your right
to take part in the conversation about how you work.

As practitioners, it is both in our interest and within our re-
sponsibility to pay attention to research. This includes not just
the findings of such research, but also its processes and its
institutions. Read research papers; find out what’s happening in
that world and why it’s not more relevant to your work; weigh
in; make your voice heard.

It is becoming increasingly clear that we must improve the qual-
ity of the conversation between researchers and practitioners.
To make research more relevant, we must find new models and
new methods, more appropriate to locating and then confirming
hypotheses about software development, and we must make this
a joint effort, with both practitioners and academics involved.
And to do all that, we may need to abandon outdated paradigms
- perhaps even move on from the “software engineering” label.

Chapter 3: Why you should care about empirical results 30

Key points

Research matters. We’re less likely to shoot our-
selves in the foot when we base our decisions on
solid evidence, and much more when we follow
whim, fashion or whoever spoke last or the loud-
est.

However, one crucially important and usually
overlooked fact of software development is that
it involves people, and academic research on the
topic has by and large failed to acknowledge this.

Therefore, while it’s indispensable for practition-
ers to keep abreast of research results in the field,
and for academics to engage with practitioners,
we need always to maintain a critical attitude
towards what we read.

Chapter 4: The messy
workings of scientific
discourse
The trouble with opinions is that everyone has their own; you
can always find one to suit any given prejudice. “Test-driven
development reduces defect count”, says one expert; “test-driven
development will wreck your architecture”, says the next.

Knowledge cannot be disseminated merely by everyone having
a blog of their own. Blogs are great for voicing opinions - are
they ever - and for having debates, but it’s unhealthy for debates
to go on forever. We look to scientists for settling them.

One debate (if it can be called that) which has gone on for
too long without a satisfactory resolution concerns programmer
productivity and the often quoted “observation” or “fact” that
the best programmers are 10 times better than the worst. We will
start examining this observation closely in the next chapter.

This chapter is about why some “facts” refuse to die, and about
how to avoid being fooled by opinion disguised as scientific
“fact”.We start, therefore, with some observations on science and
facts.

Chapter 4: The messy workings of scientific discourse 32

Modalities

Bruno Latour is one of the keenest observers I know of the
work that scientists really do, and one of the most punctilious in
clearing away the myths and misconceptions about how science
is in fact done. I have found good use in some of the tools he
created to assess the status of an ongoing debate about a matter
that falls within the purview of science, one that hasn’t been
settled - what he calls a controversy¹¹.

(I stumbled across Latourwhen someone recommendedAramis¹²,
a book which thoroughly changed the way I saw and thought
about software projects, even though its subject is public trans-
portation. I have been recommending it ever since to colleagues
and friends involved in software in any capacity; it ranks near
the top of my list of must-read books for the profession. It’s
remarkable not just for Latour’s determined and meticulous
manner of observation and of getting to the bottom of things,
it also reads like a detective story.)

Latour draws attention in particular to the role ofmodality¹³ in
scientific discourse. The concept has complicated ramifications
but is really simple at its core, as we’ll see by walking through an
example. Start with a statement of fact, such as “water boils at
100 degrees celsius”. A modality is a way to alter the meaning
of this statement, not by modifying but by extending it: “if I
remember right, water boils at 100 degrees celsius” expresses
uncertainty, whereas “everyone knows that water boils at 100
degrees celsius” implies authority. “Scientists know that water

¹¹http://www.mappingcontroversies.net/
¹²http://en.wikipedia.org/wiki/Aramis,_or_the_Love_of_Technology
¹³http://en.wikipedia.org/wiki/Linguistic_modality

http://www.mappingcontroversies.net/
http://en.wikipedia.org/wiki/Aramis,_or_the_Love_of_Technology
http://en.wikipedia.org/wiki/Linguistic_modality
http://www.mappingcontroversies.net/
http://en.wikipedia.org/wiki/Aramis,_or_the_Love_of_Technology
http://en.wikipedia.org/wiki/Linguistic_modality

Chapter 4: The messy workings of scientific discourse 33

boils at 100 degrees celsius” lends a somewhat different authority
to the same statement, implying that knowledge of it may be
restricted to a select few.

Citation as modality

In the practice of science, a publication takes on the role of an
extended modality. A researcher may wish to state a conclusion:
“water boils at 100 degrees celsius”. Convention dictates that he
should initially add various hedges to his conclusion: “subject
to the threats to validity mentioned above, given our results it
seems legitimate to claim that the boiling point of H2O under
the experimental conditions lies, for a 95% confidence interval,
within 0.01 of a 100 degrees celsius”. The rest of the publication
(or “paper”) amplifies these precautions.

A lone experiment or study rarely being sufficient to establish a
scientific fact, further “papers” are expected to build on an initial
work, whether by the original author or by other researchers.
One prerequisite is that the initial work be interesting; that often
serves as a first filter, and probably a fair fraction of all scientific
work is never cited by other researchers. Thus, citations play a
crucial role in the acquisition by some statement of the status of
a “scientific fact”.

Now you can think of a citation as being itself a modality,
one that can express a degree of confidence: “Preliminary work
by Jones (2001) suggests that the boiling point of water is 100
degrees celsius. We present a replication with slightly different
equipment leading to conclusions which confirm the earlier
result”. The accumulation of citations of a given paper is often

www.allitebooks.com

http://www.allitebooks.org

Chapter 4: The messy workings of scientific discourse 34

a measure of its importance, and if the statement is eventually
confirmed the pattern of citations will also serve to establish
priority.

The construction of facts

What Latour has highlighted is the pattern of progressive
erosion, and eventual disappearance, of modalities as a state-
ment becomes established as a fact in the sciences. For in-
stance, the next step might read as follows: “Numerous studies
(Jones 2001, Smith 2002, Jones 2003, Bogdanoff 2010) have shown
that the boiling point of water is around 100 degrees celsius,
with minor variation; we show how this value depends on
atmospheric pressure”. Further still, one might read “it has been
established that pure water boils at 100 degrees celsius; we
investigate the effect of adjunction of various concentrations of
salt in water”.

At the endpoint of this process of acceptance of a fact, it becomes
stripped of all modalities (“water boils at 100 degrees celsius”),
but even more importantly it becomes operant in producing
further knowledge, or technical effects instrumental in the pro-
duction of knowledge: “to ensure a temperature of 100 degrees
in our experiment we bring water to a boil”. (For a more realistic
example of this transformation happening to actual scientific
facts, see Latour and Woolgar’s Laboratory Life¹⁴.)

Obviously, what makes this scheme of citations a process prop-
erly called scientific is its empirical and conversational character;

¹⁴http://en.wikipedia.org/wiki/Laboratory_Life

http://en.wikipedia.org/wiki/Laboratory_Life
http://en.wikipedia.org/wiki/Laboratory_Life

Chapter 4: The messy workings of scientific discourse 35

the erosion of modalities is not inexorable, a widely cited prelim-
inary study may well be overturned by later work.

Another possibility is that the initial statement, the claimed
“fact”, never quite rids itself of all modalities. It remains spoiled
by hedges and suspicions, and if no one can muster enough
interest to follow it up in further publications, it may simply
be forgotten. In the best case, that is - for in the worst case it
may also persist in the collective discourse as folklore, myth or
misconception¹⁵.

The last chapter was a relatively informal application of these
ideas, looking at the pattern of citations which led to the “cone
of uncertainty” becoming entrenched as empirically supported
fact, even though it started out as purely subjective. In the
next two chapters we turn to another “well-known fact” of
software engineering, and grapplemore extensively with the role
of citation.

Key points

Many popularizers of ideas in software engineer-
ing use citations in the style (Bossavit 2013) to lend
their writings an air of authority. It is often merely
a rhetorical device, and learning not to be fooled
is an important addition to your critical thinking
toolkit.

However, keep in mind that citations play an
important part in science and scientific writing,
not only as acknowledgment of previous work but
also as an integral part of science’s incremental
character.

¹⁵http://en.wikipedia.org/wiki/List_of_common_misconceptions#Science

http://en.wikipedia.org/wiki/List_of_common_misconceptions#Science
http://en.wikipedia.org/wiki/List_of_common_misconceptions#Science

Chapter 5: The hunt for
the 10x files
You have perhaps come across something like the following
statement: “numerous studies have found 10:1 differences in
productivity among individual programmers”. Let’s call this, for
short, the “10x claim”.

This is a book about the software profession’s leprechauns, not
a mystery novel, so I won’t keep you in suspense about the
conclusions I reached when I researched the issue: the 10x claim
is poorly supported by empirical evidence; that is, essentially
anecdotal. It persists largely becausewe lack anywell-articulated
theory of what productivity consists of for a programmer.

Why is this important? Isn’t it obvious?

Several people questioned the value of investigating the claim,
on the basis that “obviously” there are large differences in
productivity among programmers, based on everyday experi-
ence or analogy with other human endeavors such as running
marathons or writing symphonies, and therefore that no “stud-
ies” or precise measurements are required to prove it.

I do not dispute that there are large variations in reported
measurements of programmer productivity; however, close ex-
amination of the evidence suggests that this observed variabil-
ity originates in vague definitions of the term, in unreliable

Chapter 5: The hunt for the 10x files 37

instruments of measurement, or in uncontrolled environmental
factors, much more than it does in the intrinsic capabilities of
programmers at comparable levels of training and experience.

There are many claims which have surface plausibility and turn
out wrong, such as the “well-known fact” that you shouldn’t go
for a swim within an hour of eating. There are many claims
which not only have surface plausibility but also appear to be
borne out by everyday experience; a good example is the “well-
known fact” that we use only a small fraction of the brain cells
we are born with.

Many things of this order are both “obvious” and dead wrong.

A number of people believe that equally obviously we are
quite ignorant of what makes a programmer productive.
Everyday experience is no substitute for the critical examination
of claims, for taking a close look at the research and the evidence,
and using our entire brains to understand what this research tells
us about programmers and the measurement of programmers.

Another benefit of this examination of the evidence for the 10x
claim is that it offers an opportunity to look back on the short but
fascinating history of the software engineering discipline, and to
see what kind of conversations software engineering research
consists of. The rest of this chapter is for curious people, who do
not take “move along, nothing to see here” for an answer.

The impressive list of references

The 10x claims has been around forever - at least if you define
“forever” as “since the beginnings of software engineering as an

Chapter 5: The hunt for the 10x files 38

academic discipline”, and then we have a perfect match in the
year 1968, as we’ll shortly see.

The list of referencesmost often seen (in secondary citations, that
is, usually from people who have read none of the papers) comes
from an article originally published on Steve McConnell’s blog,
and reprinted in edited form as a chapter in the O’Reilly book
“Making Software” (McConnell 2010).

These references are: Sackman et al. 1968, Curtis 1981, Mills 1983,
DeMarco and Lister 1985, Curtis et al. 1986, Card 1987, Boehm
and Papaccio 1988, Valett and McGarry 1989, Boehm et al 2000.

Their sheer number - 9 references in total - appears to lend
significant weight to the 10x claim. But how strong, really, is
the empirical support conferred to the 10x claim by the above
list of references?

The original study and the 10x claim

“Sackman et al. 1968” is generally considered the original study
- the one that started the ball rolling. It characterizes the ex-
periments reported on as follows: “exploratory experiments (…)
to compare debugging performance of programmers working
under conditions of online and offline access to a computer”.

To put things in historical context, 1968 was also the year of the
NATO conference which saw the birth of “software engineering”
as a topic of study and research. People active in this newborn
discipline saw a need to point to research accomplishments to
justify its status.

Here is the main result from the study:

Chapter 5: The hunt for the 10x files 39

…faster debugging under online conditions, but per-
haps the most important practical finding involves
the striking individual differences in programmer
performance.

This is reported, in Table III, as a ratio of 28:1 between best and
worst times for one of the debugging tasks, a figure still quoted
uncritically in some contemporary texts and media (Mall,
Huang). They summarize the finding somewhat whimsically
in the text, without reference to the specific 28:1 ratio, but by
quoting a nursery rhyme: “When a programmer is good, he is
very, very good, but when he is bad, he is horrid.”

Just so we’re clear on what the 10x claim is, I’ll quote the
following passage:

when programmers are first exposed to (…) comput-
ers, a general factor of programming proficiency is
held to account for a large proportion of observed
individual differences.

The claim, then, is that some unknown factor (or set of factors)
intrinsic to the programmer (rather than, say, environmental
conditions) has a variability that translates into the bulk of the
“observed individual differences”. The whole range of this factor
is estimated, summarizing several distinct measurements, as an
“order of magnitude” ratio between best and worst performance.

Harshly criticized

The original study came under harsh criticism as soon as it came
out. (To be perfectly accurate, the “real” original is Sackman and

Chapter 5: The hunt for the 10x files 40

Grant 1967 rather than Sackman et al. 1968 - see full references
at the end of Appendix A. The differences are minute, but the
former really deserves to be called the “original” study.)

The 1967 paper was followed in the same journal by a scathing
critique by Butler Lampson; a choice quote: “Perusal of the paper
leaves a strong impression that the authors are not in close touch
with reality.” (It isn’t unusual for journal editors to publish both
a paper and a response to it when they know that such a paper
is going to be controversial.)

Surveying the literature in 1981, thirteen years after the pilot
experiment, an article by Thomas Dickey in Proceedings of
the IEEE wryly noted of the Sackman experiment that “this
single source, by means of different paths, is responsible for a
large percentage of the common stock of ‘knowledge’ that pro-
gramming productivity is totally unpredictable”. Worse, added
Dickey, Sackman’s stats didn’t check out.

Dickey pointed out that the 28:1 ratio was observed because
“subject 7 required 170 hours to program the ‘algebra’ program
in a batch environment, in machine language (while) subject 3
required 6 hours to program the same problem in JTS (ALGOL)
in a time-shared environment.”

Sackman shouldn’t have directly compared the best and worst
performances in the entire set, argued Dickey, but rather the best
andworst among programmers placed by the experimental setup
under comparable conditions.

Dickey concludes: “After accounting for the differences in the
classes, only a range of 5:1 can be attributed to programmer
variability.” By then it was too late, of course, to put the genie
back into the bottle, the claimwas already widely circulated, and

Chapter 5: The hunt for the 10x files 41

Dickey even pointed to a specific article: “TheMongolian Hordes
Versus Superprogrammer” (J. L. Ogdin, Infosystems, December
1973), as the origin of the popularization of the claim, its vehicle
out of academia and into the broader culture of programming.

The title of that article, acknowledged by historians of the field
as pivotal in bringing the “software engineering” debate to the
attention of the business community, gives us another perspec-
tive on the 10x claim: its importance as a polarizing trope in the
debates on the management of programmers, debates which are
still raging today.

The 10x files

Obviously, the story didn’t stop with Dickey. Someone who
likes leprechauns will argue that even if Sackman wasn’t right,
we’re still left with (take a deep breath) Curtis 1981, Mills 1983,
DeMarco and Lister 1985, Curtis et al. 1986, Card 1987, Boehm
and Papaccio 1988, Valett and McGarry 1989 and Boehm et al
2000.

Surely so many authors can’t all be wrong? Wouldn’t it be futile
to systematically go through that list and check for the data?

Let me try to convince you that it is not futile, by showing you
the result of that systematic analysis in a format which I hope is
more useful than the above “wall o’ cites”.

Chapter 5: The hunt for the 10x files 42

Supporting sources for 10x, table 1

Reference Direct? Task type Sample
size

Curtis 1981 Y/N Debugging 27
Mills 1983 Y unknown unknown
DeMarco
and Lister
1985

Y program to
spec

166

Curtis et al.
1986

N n/a n/a

Card 1987 N project unknown
Boehm and
Papaccio
1988

N n/a n/a

Valett and
McGarry
1989

N project 150

Boehm
2000

Y project 161
(projects)

Supporting sources for 10x, table 2

Reference PopulationMeasure Effect
studied

Variation

Curtis
1981

pros time-
to-com-
plete

LOC on
debug
time

22:1
and 8:1

Mills
1983

unknown unknown unknown 10:1

DeMarco
and
Lister
1985

pros time-
to-com-
plete

workplace 5.6:1

Chapter 5: The hunt for the 10x files 43

Supporting sources for 10x, table 2

Reference PopulationMeasure Effect
studied

Variation

Curtis
et al.
1986

n/a n/a n/a various

Card
1987

pros LOC
per
staff
hour

none not
claimed*

Boehm
and Pa-
paccio
1988

n/a n/a n/a various

Valett
and
Mc-
Garry
1989

pros LOC
per
staff
hour

none not
claimed*

Boehm
2000

pros manager’s
evalua-
tion

none not
claimed

* - see discussion below; a textual claim of “6 or 10 to 1” is found
in the primary

Good study, bad study

When presented with empirical evidence, you’ll usually want
to ascertain its quality. For instance, an experiment is more
convincing from a statistical point of view (all other things equal)
if it has a larger sample size.

www.allitebooks.com

http://www.allitebooks.org

Chapter 5: The hunt for the 10x files 44

Another important question is whether all the studies are talking
about the same thing, which is why the tables above note which
kind of task was being studied and what kind of effect was
reported.

Also, you want to be sure that the results from a study are
generalizable to “the real world”. Students are commonly used
as study subjects because researchers typically have ready access
to students at affordable cost (“convenience samples”). However
this can lead to distortions of the results, if there are systematic
differences between students and professionals which can bias
observations; for instance for our purpose, if the performance
of students can be expected to be more variable than that of
professional programmers.

Sometimes it’s not even possible to answer the questions above,
because the reference you’re pointed to is a secondary source,
that is, a paper which discusses some earlier study. That’s kind of
a big deal if you want your degree of belief to be determined
by the quantity and quality of the empirical evidence, rather
than by the number of apparently authoritative assertions of the
claim; you want to guard against any double-counting of data
sets, for instance.

The wild goose chase

One thing jumps out from the table above: most of the sources in
McConnell’s list are secondary, and provide no direct informa-
tion on the empirical data or the methodology for its collection.
They’re useless for fact-checking!

Since I really wanted to know how much store I ought to put

Chapter 5: The hunt for the 10x files 45

in the 10x claim, I was left with no choice but to chase down
the primary sources. This was an incredibly tortuous process, as
the “telephone game” pattern manifested time and again in the
way the newer papers cited older papers which in turn cited still
older ones… Rather than put you to sleep with a blow-by-blow
analysis (which I reproduce in Appendix A for the terminally
curious), I’ll end this chapter with a quick summary of all the
primary sources I was able to identify with discernible empirical
data:

• Boehm, Brown and Lipow, 1973
• Sheppard et al. 1979
• Curtis 1981
• McGarry 1982
• DeMarco and Lister 1985

The “Mills 1983” reference, which I’ll examinemore closely in the
next chapter, does not directly mention or indirectly reference
empirical data. Two references, Boehm 1981 and Boehm 2000,
do constitute a treatment of empirical data, but as we’ll see in
the next chapter this data is not relevant to the 10x claim for
individuals.

Note that only one of these sources (DeMarco and Lister 1985) is
from the original list of 8 sources claimed to confirm the original
study. The list looks almost nothing like the original!

Tomy eyes at least, the original list of references has taken on the
look of a smokescreen: it exaggerates both the number and the
period of time spanned by the actual studies, and anyone who’s
really intent on looking up the raw factual data behind the claim
is in for a long and frustrating search.

Chapter 5: The hunt for the 10x files 46

This is problematic enough… but if you can bear with me for
a second chapter devoted to the 10x claim, we’ll see that the
“supporting” data isn’t even all that supportive!

Key points

Wewant our degree of belief in a claim to be deter-
mined by the quantity and quality of the empirical
evidence, rather than by irrelevant factors such as
the claim’s popularity.

Because research work is often reported poorly
or falsely, it is important to look for the primary
source rather than secondary or indirect reports.

Alas, even in the Google Age where all informa-
tion, especially scientific, should be at everyone’s
fingertips, it often takes a lot of work to locate
primary sources. Yet, there is no substitute for
reading the real thing.

References

(McConnell 2010) “What Does 10x Mean? Measuring Variations
in Programmer Productivity”, in “Making Software”, O’Reilly,
2010, p567

(Mall) Fundamentals of Software Engineering, RajibMall, Prentice-
Hall of India, 2004

(Huang) http://www2.cs.uh.edu/∼jhuang/JCH/SE/estimation.ppt
(retrieved 27/01/2011)

Chapter 5: The hunt for the 10x files 47

(Sheppard et al. 1979) S. B. Sheppard, B. Curtis, P. Milliman,
and T. Love, “Modern coding practices and programmer perfor-
mance,” Comput., vol. 12, no. 12, pp. 41-49, 1979

(McGarry 1982) F. E. McGarry, “What have we learned in the
last six years?” in Proc. 7th Annu. Software Engineering Work-
shop (SEL-82-007) (Greenbelt, MD: NASA Coddard Space Flight
Center), 1982.

(Brown and Lipow 1973) Brown, J. R., and M. Lipow, The
quantitative Measurement of Software Safety and Reliability,
revised from TRW Report No. SDP-1776, August 1973, TRW
Software

(Curtis 1981) Curtis, Bill. 1981. “Substantiating Programmer Vari-
ability.” Proceedings of the IEEE 69, no. 7: 846.

(DeMarco and Lister 1985) DeMarco, Tom, and Timothy Lister.
1985. “Programmer Performance and the Effects of the Work-
place.” Proceedings of the 8th International Conference on Soft-
ware Engineering. Washington, D.C.: IEEE Computer Society
Press, 268-72.

Chapter 6: The variable
programmer
At the end of the previous chapter, we reached our pot of gold
at the end of the rainbow, despite many obstacles in our path:
actual research!

But how good really is the research claimed to support the 10x
claim?

Getting just the results you want

Let’s start by looking at the 1973 study by Brown and Lipow:
“The quantitative Measurement of Software Safety and Reliabil-
ity”. (What I can say about it actually comes from a fairly detailed
secondary report in Boehm, Brown and Lipow, 1976; the original
paper proved too hard to track down.)

The authors give the following account of the experiment:

there was a deliberate difference in quality empha-
sis in the two programming efforts: one was done
by a ‘hotshot’ programmer who was encouraged
to maximize code efficiency, and one by a careful
programmer who was encouraged to emphasize
simplicity (…) The main results of the study were:
ten times as many errors were detected in the ‘effi-
cient’ program.

Chapter 6: The variable programmer 49

In other words, the reported 10:1 disparity can most economically
be explained by the experimenters’ selection of subject and
instructions to focus on different objectives. (This is consistent
with a similar experiment byWeinberg and Schulman: when you
ask programmers to focus on some objective among efficiency,
quality, etc., they reliably produce output that maximizes that
objective, at the sacrifice of all others.) No conclusion can be
drawn regarding the variance between programmers in compa-
rable conditions.

Boehm and Papaccio’s interpretation fifteen years later, attribut-
ing the disparity to “differences between people”, is totally at
oddswith this straightforward reading of the experimental setup;
we can speculate that time and forgetting are to blame.

Within-subject variability

In the same 1981 volume of Proceedings of the IEEEwhere Dickey
pointed out serious flaws in the Sackman study, the editors
published a brief response by Bill Curtis, who in defense of the
“variability” thesis discussed an earlier study, Sheppard et al.
1979. Curtis was, it turns out, one of the “et al”.

The study, titled “Modern coding practices and programmer per-
formance”, examined three kinds of tasks: debugging, program
comprehension and program modification. In his response to
Dickey, Curtis singled out for discussion data obtained from a
“pre-test” of the study (thus not “really” experimental data), and
specifically from the debugging task.

Debugging is known as an open-ended sort of activity, and even
seasoned programmers expect variable completion times when

Chapter 6: The variable programmer 50

faced with this type of task. We do not know how well findings
regarding debugging may generalize to programming overall.

The authors of the actual study, in the section “Differences
among programmers”, made no claims regarding best-to-worst
ratios. They did note that experience did not generally correlate
with performance in any of the three experiments.

But here is the important part. In the 1981 paper, Curtis went on
to say: “with continued experience on the task the programmer
who spent 67 minutes on our pretest improved his perfor-
mance substantially during later experimental trials”.

This suggests that there is an important “within-subject” vari-
ability, an observationwhich undermines the 10x claim. (Sup-
pose wewere to measure howmany times you smile in a day.We
might find that some days you smile only once, and other days
you smile ten times or more. If we ran this same experiment on
several subjects very similar to you, we would find a ratio of 10:1,
but we would be wrong to conclude that “the happiest people
smile ten times as often as the unhappiest”: variability in what is
being measured accounts, in this thought experiment, for all of
the ratio between high and low measurements.)

Rocket science: the NASA data

Possibly the best data set from the list is that resulting from the
work at NASA’s Software Engineering Laboratory, leading to the
publication of McGarry 1982, “What have we learned in the past
six years?”.

This includes data from 46 projects, all in the domain of “flight
dynamic related software systems”, and a total population of 150

Chapter 6: The variable programmer 51

“programmers and managers”. The NASA SEL data does appear
to directly support the 10x claim, and in fact the authors make
this claim in as many words.

The method for collecting data was to have programmers fill out
weekly forms, “attributing their time to the activity that they
felt they were actually doing, no matter what phase of software
development they were in”. The text does not precisely explain
how the component measurements (“LOC attributed to person”
and “hours of effort attributed to person”) were derived from the
weekly forms, cites no threats to validity, and does not break out
the data in any form closer to raw.

The text also provides no way to evaluate whether the various
individuals assessed were working under roughly comparable
conditions, or whether environmental rather than individual dif-
ferences could account for the variation observed: for instance,
working in low-level versus high-level programming languages,
or workspace conditions (as we encounter in the discussion of
DeMarco and Lister, below).

The separation of the data into “large project” and “small project”,
with markedly different ratios in the two cases, presents a puzzle.
If what was measured was the difference between programmers
rather than some environmental influence, so that by hypothesis
the “large” versus “small” contexts had no effect, how do we
explain the difference between the values? The authors offer this
explanation:

As has been found by other researchers in varying
environments, the productivity of different pro-
grammers can easily differ by a factor of 6 or 10 to 1.

Chapter 6: The variable programmer 52

The SEL did find that there was a greater variation
(from very low productivity of .5 LOC/hour to 10.8
LOC/hour) in small projects. The probable reason
for this is that newer people are typically put on
smaller projects and the SEL has found extreme
differences in the relatively inexperienced per-
sonnel.

(A different kind of answer is that “best-to-worst ratio” may
simply not be an adequate descriptor of the kind of probability
distributions we are interested in, as opposed to the mean (which
is fairly consistent between the large- and small-project popula-
tions) or the standard deviation (not reported by the authors).
The best-to-worst ratio is very sensitive to variations at the
extremes, which by their nature reflect only a small fraction of
the overall population.)

Needle in a haystack

Let’s take a brief look at “Mills 1983”, which is in fact a reference
to an entire book: Harlan Mills’ “Software Productivity”. At least
the title is relevant!

This is a great illustration of one of my pet peeves with the
“terse” citation style. Want to irritate a fact-checker? Give them
a reference to a book of a few hundred pages without including
a page or a section number, forcing them to go through the book
with a fine-toothed comb.

Here is the only quote in the Mills book that is germane to the
10x claim - it appears on page 265:

Chapter 6: The variable programmer 53

There is a 10 to 1 difference in productivity among
practicing programmers today - that is, among pro-
grammers certified by their industrial position and
pay. That differential is undisputed, and it is a
sobering commentary on our ability to mesure and
enforce productivity standards in the industry.

That’s it; that’s all Mills wrote on the topic. Chronologically, it is
possible that Mills is referring to the NASA SEL data; or he may
be referring to his own experience at IBM as “the” original Chief
Programmer. The “Chief Programmer Team” was a technique
invented by Mills and extensively used at NASA - it involved a
“superprogrammer” bossing around a group of lesser individuals,
much as surgical teams are organized around a chief surgeon.

Incidentally, it is worth observing that depending on the details
of data collection, the Chief Programmer Team concept in prac-
tice may be a cause of significant observed performance vari-
ations, since it would involve teaming up one high-performing
programmer with a few lesser ones.

However, Mills cites no sources, not even his own work, and as
far as I was able to ascertain, in the entire text of Mills’ book fails
to provide a smidgen evidential support for the 10x claim.

The COCOMO haystacks

The same “needle in a haystack” problem applies to the two
books by Boehm. These references are quite burdensome to
check, as they do not give a page number (and as well as being
expensive, the books are quite effective as doorstops: lots of
pages!)

www.allitebooks.com

http://www.allitebooks.org

Chapter 6: The variable programmer 54

These two books are the authoritative works on the COCOMO
method of cost estimation, and its later update COCOMO II.
The COCOMO model is an interesting tool and there are many
who swear by it, but it is out of scope for this report to affirm
or criticize the model. All that is relevant here is the empirical
data. The COCOMO frameworks was synthesized from a histor-
ical data base. The reader interested in the raw data from the
COCOMO studies can find most of it online (PROMISE 1981,
PROMISE 2000). However, these studies concerned projects and
not individuals.

Given the premise of this report, this is a critical issue. Only
if they measured individuals could these references provide
support for the form of the 10x claim that is the subject at hand,
i.e. provide “confirmation” of the Sackman et al. experiment.

Page 47 of the 2000 book is explicit on this point, in its dis-
cussion of PCAP, the “cost driver” of the model representing
“programmer capability”: its measurement “should be based on
the capability of the programmers as a team rather than as
individuals”.

Boehm’s 1981 book, an older but in many respects more interest-
ing work, offers no better support. McConnell has attempted to
justify the relevance of the COCOMOdata to the individual form
of 10x by arguing that it “shows differences in team productivity
based on programmer capability of 4.18 to 1. This is not quite
an order of magnitude, but it is for teams, rather than for
individuals”.

The problem is that we cannot infer variations in individual
productivity from data collected at the team level: we do not
have an adequate theory of how a team’s productivity results

Chapter 6: The variable programmer 55

from the aggregation of individual abilities, and in particular
we cannot assume that a team’s output is a linear sum of
individual “productivities”.

It’s a common observation that a single toxic individual is
sometimes sufficient to destroy an entire team’s performance,
and the reverse phenomenon of “catalyst” individuals is also
observed anecdotally. Teams are seen as a desirable manner of
organizing software development efforts precisely because of
such synergistic effects.

Environmental effects

The final data set that we’ll look at, from DeMarco and Lis-
ter’s 1985 article, describes the authors’ “Coding War Games”,
a competition in which contestants participated at their usual
workplace and during normal business hours. Contestants were
paired off, competing against each other as well as with other
pairs.

The text makes clear that this study took place under loosely
controlled conditions, for instance, in showing a “typical” time-
sheet recorded during the exercise, where one programmer was
interrupted no less than six times during a thirty-minute period
while taking part in the contest.

The authors report a 5.6:1 ratio between best and worst con-
tenders.

DeMarco and Lister however disclaim the ascription of vari-
ability solely to individual programmer ability : “While there
were wide variations across the sample, we found evidence that

Chapter 6: The variable programmer 56

characteristics of the workplace and of the organization seemed
to explain a significant part of the difference.”

They observe a variation of 1.2:1 within an average pair. It’s
unclear whether we can make any reliable inferences, based
on what data the authors have made available, concerning the
variability among individual programmers which isn’t affected
by environmental factors. It’s within the realm of possibility that
the best programmers worked in the worst environments, and
that if we could adjust for these effects we would recover 10x
differences, but there’s no way to tell from the data presented.

We don’t know in which direction to adjust the 5.6:1 ratio, given
that it results in “significant part” from environmental factors.
The best we can say is that the DeMarco and Lister study turns
out, on closer examination, to have little to do with assessing
variability in individual performance.

Summing up

How strong is the support conferred to the 10x claim by the best-
reputed list of references, for a reader persistent enough to follow
the chain of citations back to primary sources?

Based on our close reading of the “10x files”, we can now answer:
quite weak.

Not a single one of the references is to a replication, in the sci-
entific sense of the term, of the original exploratory experiment.

The empirical data is in general quite old, most if not all of it
predating widespread use of the Internet - which we can safely
expect to have wrought major changes in programming practice.

Chapter 6: The variable programmer 57

None of the studies address the question of construct valid-
ity, that is, how meaningful it is to speak of an individual
programmer’s productivity, and if it is meaningful, whether
the experimental measurements line up adequately with that
meaning. (The persistent tendency of the software engineering
community to underemphasize construct validity has been noted
in Kaner’s 2004 article, “Software Engineering Metrics: What Do
They Measure and How Do We Know?”.)

The 10x claim is “not evenwrong”, and the question of “how vari-
able is individual programmer productivity” should be dissolved
rather than answered.

Key points

Just citing a publication of some kind as support
for a claim is not enough to compel belief in
the claim. The source itself has to be examined
critically.

Often, what is cited is only opinion, or work of
dubious status. A great many things should count
as “evidence”: quantitative but also qualitative
research, experience reports, and so on; but just
saying “this is so” or “someone else has proved it”
doesn’t count.

Finally, even when the source is a true account of
research, it may not support the author’s claim,
or it could be too inconclusive to have much
influence on our beliefs.

Chapter 6: The variable programmer 58

References

PROMISE 1981¹⁶ (last checked 28/06/2015)

PROMISE 2000¹⁷ (last checked 28/06/2015)

Kaner 2004¹⁸ (last checked 28/06/2015)

¹⁶http://openscience.us/repo/effort/cocomo/coc81.html
¹⁷http://openscience.us/repo/effort/cocomo/nasa93.html
¹⁸http://www.kaner.com/pdfs/metrics2004.pdf

http://openscience.us/repo/effort/cocomo/coc81.html
http://openscience.us/repo/effort/cocomo/nasa93.html
http://www.kaner.com/pdfs/metrics2004.pdf
http://openscience.us/repo/effort/cocomo/coc81.html
http://openscience.us/repo/effort/cocomo/nasa93.html
http://www.kaner.com/pdfs/metrics2004.pdf

Interlude: How To Lie

Interlude: How To Lie 60

Interlude: How To Lie 61

Chapter 7: Who’s afraid of
the Big Bad Waterfall?
Let’s take a break from the numbers game for a chapter or two,
and examine some qualitative rather than quantitative claims.
They’re fun too! And we’ll get back to “harder” topics quite soon.
We are, however, still looking at how strong opinions can form
around a topic, quite independently of any evidence that exists
on the topic.

As software professionals, we should be interested in knowing
at least the basics of our own history, for just the same reasons
that as citizens we are expected to know about our national
history and about world history: so that we will be able to make
informed decisions and know who to trust, who to listen to; so
that we are not deceived by lies. Untrue histories generally have
an agenda - “someone trying to sell you something”, as the saying
goes.

Quite a bit of the current debate on software engineering relies
on opinions regarding the “creation myth” of the discipline: the
so-called waterfall model of sequential software development,
also known as the SDLC (Software Development Life Cycle).

Unfortunately, most of these opinions are wildly inaccurate.

Chapter 7: Who’s afraid of the Big Bad Waterfall? 63

The standard story

An article¹⁹ by Robert Martin provides (along with some other
interpretations that I’ll come back to) what is now the nearly
universal explanation of how conceptions of the SDLC became
pervasive in the discourse of software engineering:

In 1970 a software engineer named Dr. Winston W.
Royce wrote a seminal paper entitled Managing the
Development of Large Software Systems. This paper
described the software process that Royce felt was
appropriate for large-scale systems. As a designer
for the Aerospace industry, he was uniquely qual-
ified. […] Royce’s paper was an instant hit. It was
cited in many other papers, including several very
important process documents in the early ’70s. One
of the most influential of these was DOD2167, the
document that described the software development
process for the American Department of Defense.
Royce was acclaimed, and became known as the
father of the DOD process.

You can find further confirmation of the “seminal” character of
Royce’s paper on Wikipedia:

The first formal description of the waterfall model
is often cited as a 1970 article by Winston W. Royce,
though Royce did not use the term “waterfall” in
this article.

¹⁹http://cleancoder.posterous.com/what-killed-waterfall-could-kill-agile

www.allitebooks.com

http://cleancoder.posterous.com/what-killed-waterfall-could-kill-agile
http://cleancoder.posterous.com/what-killed-waterfall-could-kill-agile
http://www.allitebooks.org

Chapter 7: Who’s afraid of the Big Bad Waterfall? 64

For many, the standard story is the whole story; over the ensuing
decades, even though many variants on the “waterfall” life
cycle were proposed that all have their uses in one context or
another, the waterfall still remains one of the major foundations
of software engineering. It’s the model to learn as a basis for
learning other variants, and as such is taught quite seriously at
many universities. It is a constant fallback of enterprise software
development efforts, a norm against which other models are
judged.

In any case, the following are widely, in fact almost universally,
agreed upon:

• Dr. Winston Royce “invented” the waterfall model in 1970
• The nascent software engineering community welcomed
the break from “artisanal” practice of the past

• The model was instantly enthusiastically adopted as a
sequential, non-overlapping phases model

• Having become an industry norm, the model was taken up
by the US DoD

• Variants of the model were developed later and used
where appropriate

Alternate endings

There are at least two “modern” endings to the mythical story,
told by different people according to whether they agree with
the tenets of the Agile movement; for the Agilists,

• Tragically, this was all a misunderstanding, based on
careless reading of Royce

Chapter 7: Who’s afraid of the Big Bad Waterfall? 65

• Royce was actually advocating an “iterative and incre-
mental” approach in his paper (!)

Whereas for people who disagree with Agilists,

• “waterfall” is recent coinage and has been used only as a
straw-man term

• formal lifecycles are not actually as inflexible and risky as
“waterfall” is made out to be

• Royce’s paper wasn’t actually advocating a rigid sequen-
tial approach

The article by Robert Martin cited above is representative of
the first group, which I’m tempted to characterize as “agile
revisionists”; for instance he writes:

[Royce] began the paper by setting up a straw-man
process to knock down. He described this naïve pro-
cess as “grandiose”. He depicted it with a simple di-
agram on an early page of his paper. Then the paper
methodically tears this “grandiose” process apart.
[…] Apparently the authors of DOD2167 did not
actually read Royce’s paper; because they adopted
the “grandiose”, naïve process that Royce’s paper
had derided. To his great chagrin, Dr. Winston W.
Royce became known as the father of the waterfall.

Larman and Basili, in their “Brief History” of iterative and
incremental development, offer support this interpretation with

Chapter 7: Who’s afraid of the Big Bad Waterfall? 66

a quote by Walker Royce - the son of Winston Royce: “He
was always a proponent of iterative, incremental, evolutionary
development.”

The second group is well represented by the following excerpts
from a 2003 Web essay, titled “There’s no such thing as the
Waterfall Approach (and there never was)”:

I don’t recall when I first saw that term, but I’m sure
it was in a pejorative sense. I’m unaware of any
article or paper that ever put forth the “waterfall
methodology” as a positive or recommended ap-
proach to system development. In fact, “waterfall” is
a straw-man term, coined and used by those trying
to promote some new methodology by contrasting
it with a silly alleged traditional approach that
no competent methodology expert ever favored.
[…] Phase disciplines, when practiced with sensible
judgment and flexibility, are a good thing with
no offsetting downside. They are essential to the
success of large projects. Bogus attacks on the non-
existent “waterfall approach” can obscure a new
methodology’s failure to support long-established
sensible practice.

Just the facts

In fact, both modern interpretations are demonstrably wrong.
Not only that - but all the elements of the standard myth turn
out to be false or at least substantially at odds with the historical
record.

Chapter 7: Who’s afraid of the Big Bad Waterfall? 67

First, what was Royce actually saying in that 1970 paper? Many
who echo the “agile revisionist” quote a part of that paper where
he says that the unmodified sequential approach “is risky and
invites failure”.

However, as we all know, with selective quotation we can make
anyone say anything we want. The full sentence was “I believe
in this concept, but the implementation described above is risky
and invites failure.” In other words, Royce is cautioning against
simplistic interpretations, but not condemning the basic idea; a
few paragraph further Royce adds this, which for some reason is
much more rarely quoted:

I believe the illustrated approach to be fundamen-
tally sound. The remainder of this discussion presents
five additional features that must be added to this
basic approach to eliminate most of the develop-
ment risks.

From a close reading of Royce’s paper, “the illustrated approach”
refers to Figure 3; that is, the picture showing a “cascading”
series of activities, but allowing that iteration occurs between
succeeding phases (the analysis phase may undergo rework on
the basis of errors uncovered in the design phase, for instance; or
the design may undergo rework as a result of errors in the coding
phase). The “risky and invites failure” comment can be inferred,
from its placement in the text, to refer to Figure 2 - which showed
the same cascade of activities but no feedback loops at all.

Regarding the “five additional features”, again many people give
in to the temptation to mention only one, that supports their
reinterpretation of Royce: the recommendation to “Do It Twice”,

Chapter 7: Who’s afraid of the Big Bad Waterfall? 68

i.e. flush out technical risk by building a prototype; and this
is only #3 of the five. For completeness, the remaining four
recommended features are:

• add what we would now call an “architecture phase” at
the start of the process (#1)

• err on the side of too much documentation (#2)
• make sure to “plan, control and monitor” the testing
process (#4)

• have the customer formally involved to sign off on various
deliverables (#5)

Finally, Royce’s “iterative” recommendations stop short of allow-
ing at any point that the first two “requirements” phases of the
cycle can be included within an iterative loop: the “Do It Twice”
recommendation is confined to the design and implementation
stages.

No paper is an island

Anyone with an interest in so-called “development processes”
should read the Royce paper carefully at least a couple times
in their careers, but the really interesting part comes when we
remember that in any discipline with an academic tradition,
papers don’t exist in isolation.

Fortunately, with the help of today’s Web serious bibliographic
research is within everyone’s reach. For instance, we can use
Google Scholar to understand the real history of Royce’s paper
within the larger context of the software engineering discipline.

Chapter 7: Who’s afraid of the Big Bad Waterfall? 69

Scholar gives us in particular a list of the citations of Royce’s
paper, which can be narrowed by date.

Did Royce’s 1970 paper “invent” or “formally define for the first
time” the concept of the software development life cycle, or the
notion of a succession of stages?

The answer is no: the first papers cited that mention (and draw
a diagram of) a sequential or stagewise model of software de-
velopment go back at least to 1956. The identification of Royce’s
paper as the origin of the waterfall is largely arbitrary. Royce’s
paperwas however the origin of the most common picture of the
waterfall - with its instantly recognizable downward cascade of
boxes (and the loops showing iteration between phases, which
some later authors omit). But as I’ll explain presently, that was
probably not Royce’s fault at all - though it wasn’t due to careless
reading either.

Was Royce’s paper “an instant hit”? The answer is no.

Taking a step back, let’s look at a graphical representation of
how often Royce’s paper is cited in the software engineering
literature:

Chapter 7: Who’s afraid of the Big Bad Waterfall? 70

Figure 1

We can see that the 1970 paper in fact remained almost totally
unknown until 1987.

What the chart doesn’t show is a peculiar property of these early
citations: just about every single one of them is by an author
at TRW, a US defense contractor who employed several of the
authors involved in the early years of the software engineering
discipline, including Barry Boehm, known for an exceptional
number of contributions to the field.

It turns out that Boehm (who cannot be accused of having read
Royce “carelessly”) used Royce’s well-known diagram (Figure
3, the one with feedback loop between successive phases that
Royce characterized as “fundamentally sound”) in a 1976 paper
modestly titled “Software Engineering”.

In that paper, Boehm didn’t give credit to Royce for the picture
(though he cites an unrelated paper of Royce’s). Rather, that
diagram was used, with only the briefest of explanation, to
provide a structure for the rest of the paper, which examined

Chapter 7: Who’s afraid of the Big Bad Waterfall? 71

phase by phase the recent advances in software engineering.
Several early authors in fact refer to the diagram as “Boehm’s
waterfall”, rather than “Royce’s waterfall”.

Here is a quote from a paper by two of Boehm’s colleagues at
TRW the same year:

The evolution of approaches for the development of
software systems has generally paralleled the evo-
lution of ideas for the implementation of code. Over
the last ten years more structure and discipline have
been adopted, and practicioners have concluded
that a top-down approach is superior to the bottom-
up approach of the past. The Military Standard set
MIL-STD 490/483 recognized this newer approach
[…] The same top-down approach to a series of
requirements statements is explained, without the
specialized military jargon, in an excellent paper by
Royce; he introduced the concept of the “waterfall”
of development activities.

Rather than support the idea that Royce’s paper drew instant
support and influenced military practice in software develop-
ment, this quote suggests quite the opposite: the defense con-
tractor TRW (who also had contacts within the US Defense
departments responsible at the time for defining these standards)
seems to have seized on Royce’s paper as a good introduction and
justification of existing practice.

Chapter 7: Who’s afraid of the Big Bad Waterfall? 72

Late bloomer

Using Google Scholar to reconstruct the history of Royce’s paper,
we can finally better understand how it ended up being known
as “the origin of waterfall”.

Notice that there is a sudden surge of publications citing Royce’s
paper in 1987: this is due to the paper having been republished
in that year’s international software engineering conference, at
the initiative of none other than Barry Boehm in his “Software
Process Management: Lessons Learned from History²⁰”. Royce’s
paper was republished alongside two others that Boehm deemed
of particular interest from a historical standpoint (one of the
others was the 1956 paper which already defined a stagewise
model).

(Another sudden surge of publications can be seen around 2001:
the cause is harder to identify, because by then the myth is well
established and the overall number of papers published each year
that cite Royce is quite significant; but it is a safe bet that this
renewed interest is due to the growing popularity of Agile at
that time.)

There was a very good reason to call attention to the waterfall
model at that time: Boehm had just introduced the (iterative)
Spiral model of software development which would become one
of his most significant publications. Boehm wrote in 1987

Royce’s paper already incorporates prototyping as
an essential step compatiblewith thewaterfall model.

²⁰http://dl.acm.org/citation.cfm?id=41798

http://dl.acm.org/citation.cfm?id=41798
http://dl.acm.org/citation.cfm?id=41798
http://dl.acm.org/citation.cfm?id=41798

Chapter 7: Who’s afraid of the Big Bad Waterfall? 73

Birth of a myth

What I find particularly striking in this quote is the “compatible
with”. Boehm seems to forget that if he takes Royce as the
originator of waterfall then this prototyping step isn’t compatible
with waterfall - it is * part of* waterfall. So, in effect, this
quotation is kind of a smoking gun - it is the rhetorical moment
where waterfall is being separated into two halves, one “stupid”
waterfall and one “enlightened” reading. This later enlightened
reading isn’t given the name waterfall, perhaps because to do so
would diminish the import of Boehm’s own “Spiral” contribu-
tion.

In this sense, the interpretation of the waterfall as a “straw man”
is not entirely false. But it isn’t accurate, either, to say that
waterfall was always a straw man - for the first two decades,
nearly, it was discussed generally quite favorably - if only within
a relatively small circle of authors.

The story that the written record seems to tell is that the “Royce
inventedWaterfall” was a convenient myth. Convenient because
people could satisfy the requirement of garnishing their papers
with a citation, and because it provided a (relatively protean)
straw man of “older, more primitive” processes that the more
modern “iterative” processes could be contrasted with. And a
myth whose career began seventeen years after original publi-
cation, breaking a long spell of obscurity but also starting down
the road to infamy.

I find this story, the true story of waterfall, much more interest-
ing and enlightening than its caricatures.

Chapter 7: Who’s afraid of the Big Bad Waterfall? 74

Key points

Ideas have histories. They don’t come into the
world complete and of one piece. An idea’s history
is often more interesting and complex than we
suspect.

Knowing (and researching) the history of your
field is an important asset in critical thinking. It
will protect you from common misconceptions.

Indexes like Google and Google Scholar provide
great opportunities to reconstruct the history of
particular ideas and concepts, providing everyone
with basic tools of bibliometrics (“a set of methods
to quantitatively analyze scientific and technolog-
ical literature” as defined by Wikipedia).

Chapter 8: Software’s
perpetual crisis
Here is a claim I long believed to be true: “The Software Engi-
neering conference was convened in response to rising recogni-
tion of the software crisis.” This seems logical - first comes the
problem, then comes the solution.

The problem with this claim is that it’s about 180 degrees from
the truth, if you give any credit to a comparative search for both
phrases in Google’s corpus of books:

Comparative search

One is almost tempted to say, a little mischievously, that the
software crisis is seen to result from software engineering, not

Chapter 8: Software’s perpetual crisis 76

the other way round. If you break out the two phrases separately,
it’s clear that the onset of popularity of “software engineering”
coincides, as would be expected, with the 1968 NATO conference
- though it really takes off in the mid-70s. The phrase “software
crisis”, on the other hand, lags well behind, at least by five years.

The solution came first, then a problem was defined to fit.

Thomas Haigh has written more extensively about the construc-
tion of the “crisis” trope, and it makes for a fascinating story:

http://tomandmaria.com/tom/Writing/SoftwareCrisis_SofiaDRAFT.pdf

One thing that you can easily verify, for instance, is that none
of the participants quoted in the proceedings of the NATO
conference ever refer to a “software crisis” by that name. The
phrase “software crisis” appears exactly once in the proceedings,
and that as an editorial comment. The same is true of the 1969
proceedings - neither of the two founding conferences referred
explicitly to that concept. (The single word “crisis” appears in
one section of the 1968 proceedings, alongside some discussion
of the “software gap”, which an editorial comment places on the
same footing as the phrase “software crisis”.)

Haigh points to Dijkstra as the originator of the term, and that
successfully only in 1972 in his Turing Award lecture “The
Humble Programmer²¹”:

Only a few years ago this was different: to talk about
a software crisis was blasphemy. The turning point
was the Conference on Software Engineering in
Garmisch, October 1968, a conference that created a

²¹http://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html/

http://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html/
http://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html/
http://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html/

Chapter 8: Software’s perpetual crisis 77

sensation as there occurred the first open admission
of the software crisis.

Haigh suggests that it would be more accurate to say that “In
1972 a software crisis was proclaimed by Edsger Dijkstra to have
been proclaimed in 1968 at the NATO Conference on Software
Engineering.”

Key points

Just like “waterfall”, the “software crisis” is more
myth than reality, though an important part of the
overall narrative that provides backdrop and jus-
tification for software engineering as a discipline
as taught, researched and practiced.

Another freely available tool - Google’s N-Gram
“Lab” - provides us with additional ways to inves-
tigate the origin and spread of the “software crisis”
meme and compare it to “software engineering”.

Chapter 9: A Leprechaun
hunting tutorial
I want to say a little bit about my methods. In the process, we’ll
unmask a new Leprechaun. We will also see that Leprechaun-
hunting is easy - you can do it too. It’s a matter of attitude.

Stemmatics²², a branch of something called “textual criticism”,
is the study of text transmission. Here is a longer description,
courtesy of Gregory Mayer:

Stemmaticists carefully study texts, and attempt to
determine which copies were made from which
other copies. The copying is usually traced by the in-
troduction of small copyist’s errors, which are then
perpetuated in any copies descended from the one
in which the error arose. Tracing these small errors
allows one to trace the history of the manuscripts.

This is basically what I do, using Google. Having a compre-
hensive index of nearly the entire Internet, reaching back very
far back in history, that you can search in an instant - I don’t
know any stemmaticists personally, but Google strikes me as the
Promised Land of stemmatics.

²²http://www.canterburytalesproject.org/pubs/desc2.html

http://www.canterburytalesproject.org/pubs/desc2.html
http://www.canterburytalesproject.org/pubs/desc2.html

Chapter 9: A Leprechaun hunting tutorial 79

What I do is start with a claim that strikes me as dubious. Today I
was looking over various instances of the “46% of features never
used” claim (we’ll get to this in a later chapter), and I noticed it
was frequently accompanied by something like the following:

The U.S. Department of Defense (DoD), when fol-
lowing a waterfall lifecycle, experienced a 75% fail-
ure rate.

(This is from one blog post²³ - there are many, many other
citations to this work, “Jarzombek 1999”.)

Exercise: find more citations, and note the context in which they
occur.

My second reflex in such cases is to use the Google “search by
date” feature to try and locate the earliest possible citation. In this
case, I soon found a 2002 article²⁴ from CrossTalk, “The Journal
of Defense Software Engineering”.

Exercise: use the Google “search by date” feature yourself,
using the search terms “Aerospace, Jarzombek, 1999” and try to
replicate my results.

At the 5th Annual Joint Aerospace Weapons Sys-
tems Support, Sensors, and Simulation Symposium
in 1999, the results of a study of 1995 Department of
Defense (DoD) software spending were presented.
A summary of that study is shown in Figure 1. As

²³http://techdistrict.kirkk.com/2010/02/10/agile-the-new-era/
²⁴http://sunnyday.mit.edu/16.355/leishman.html

http://techdistrict.kirkk.com/2010/02/10/agile-the-new-era/
http://sunnyday.mit.edu/16.355/leishman.html
http://techdistrict.kirkk.com/2010/02/10/agile-the-new-era/
http://sunnyday.mit.edu/16.355/leishman.html

Chapter 9: A Leprechaun hunting tutorial 80

indicated, of $35.7 billion spent by the DoD for soft-
ware, only 2 percent of the software was able to be
used as delivered. The vast majority, 75 percent, of
the software was either never used or was cancelled
prior to delivery. The remaining 23 percent of the
software was used following modification.

Now, of course $35.7Bn is a huge sum, and most certainly a
representative sample. These numbers gave me pause.

My first reflex is to locate the original source - the cited text itself.
On this occasion, though, as on many others, the original article
is nowhere to be found. The “Joint Aerospace Weapons Systems
Support, Sensors, and Simulation Symposium” or “JAWS S3”
seems to have been “a thing”, as the saying goes - but Google
appears to have no trace of it.

Most people would give up there. As I said above, Leprechaun
hunting is a matter of attitude. All you have to do is not give up,
ever.

Exercise: (optional) - find the email address of one of the people
citing Jarzombek; email them, politely and courteously asking
if they still have a paper or electronic copy, and would mind
sending you a PDF or a scan. This is an advanced practice. I have
done this on several occasions, instead of giving up.

(Who did I email on this occasion? I chose to email the author, Lt.
Col. Jarzombek (retired), directly. His reply: “I do not have read-
ily available access to that information; yet Capers Jones (copied)
would have similar data, and it would be more updated.”)

Stemmatics to the rescue: my third reflex is to locate an impor-
tant part of the claim and see if I can find an occurrence of that

Chapter 9: A Leprechaun hunting tutorial 81

using Google.

Zeroing in on the pie chart in the CrossTalk article, I tried
searching on the categories: for instance “Software used, but
extensively reworked or abandoned” sounded promising.

Why? Because this phrase is a complex disjunction, unlikely
to be independently reinvented by two authors. The expression
“software used after changes”, by comparison, could turn up in
many places.

Exercise: try this Google search for yourself.

Unfortunately, searching for the full phrase turns up nothing
new; the 2002 CrossTalk article, plus two later (2007 and 2009)
copies.

Now can we finally give up? Of course not. We forge on. Stem-
matics again: the original text is likely to have been somewhat
distorted. This particular phrase still sounds promising, but we
can try to take a guess at what it might have been distorted from.

Exercise: come up with your own variants on the phrase and
Google them. Note your results.

My next move was to try dropping the “or abandoned”. What
I found filled me with shock and perverse joy. Googling for
“software used but extensively reworked” leads among other
things to a very enlightening publication²⁵: a 1979 report by the
“Comptroller General of the United States”. It is a very official
document, hosted on a legal documents website, quite unlikely
to be a fake.

²⁵http://bit.ly/XQWNCv

http://bit.ly/XQWNCv
http://bit.ly/XQWNCv

Chapter 9: A Leprechaun hunting tutorial 82

Page 11 is the smoking gun. It’s a pie chart looking verymuch like
the one in the 2002 article. The labels for the various categories
match up almost exactly:

• “Software that could be used after changes” vs “Software
used after changes”

• “Software that could be used as delivered” vs “Software
used as delivered”

• “Software delivered but never successfully used” vs “Soft-
ware delivered, but not successfully used”

• “Software used but extensively reworked or later aban-
doned” vs “Software used, but extensively reworked or
abandoned”

• “Software delivered but never successfully used” - identi-
cal.

• “Software paid for but not delivered” - identical.

Stemmatics strongly suggests, even at this stage, that the (so far
unseeen) 1995-1999 text is a copy, mutated, of the 1979 text.

Exercise: estimate the probability that the 1995-1999 text was
independently written by a different author, but turned out (by
coincidence, as it were) to use nearly the same phrasing.

What’s more interesting even is the numbers. The GAO data was
obtained as follows:

We examined nine cases in detail, which included
visits to both agency and contractor sites, exam-
ining documents, and interviewing those persons
involved who could still be reached.

Chapter 9: A Leprechaun hunting tutorial 83

The total dollar amount of the projects involved was $6.8M -
three orders of magnitude smaller than the $35.7Bn claimed for
the 1995 study, even after adjusting for inflation.

Yet, the percentages match up almost exactly: - $119,000 out of
$6,8M is 2% - $198,000 out of $6,8M is 3% - $3,2M out of $6,8M is
47% (compared to 46%) - $1,95M out of $6,8M is 29% - $1,3M out
of $6,8M is 19% (compared to 20%)

Again, a quick probabilistic assessment: it is virtually impossible
for a 1995 study on thirty billion dollars’ worth of projects to turn
up the exact same numbers (within 1% tolerance) as a 1979 study
of seven million dollars’ worth, totally independently - and also
by coincidence use the exact same categories to classify projects.

(I ran my reasoning by a professional statistician. Her suggestion
was to use a two-sided chi-squared test, taking for “unit of
population” the cost of the smallest project known in the set,
or $119M, and taking as a null hypothesis that the latter set
of percentages results “by coincidence” from an independent
sampling - as opposed to being a copy of the earlier one. This is
of course a debatable set of assumptions, but in her professional
judgment not unreasonable. Her calculation rules out the null
with a p-value lower than 0.0001, that is, with a very high degree
of confidence.)

Conclusion? Even though I have never seen, and probably will
never see, the Jarzombek “study”, I know it cannot be true.

This doesn’t mean, by the way, that I’m accusing Stanley “Joe”
Jarzombek of making stuff up: I couldn’t say anything definite
on that until I saw the original text. It seems at least equally
plausible that someone who actually attended his presentation
got their wires crossed, and somehow confused a 1995 survey

Chapter 9: A Leprechaun hunting tutorial 84

on billions of dollars’ worth of projects with the 1979 survey,
perhaps cited by Jarzombek.

What matters is that the Jarzombek citation is a Leprechaun -
totally bogus. Another one bites the dust.

Final exercise: replicate this search for a different claim that
strikes you as potentially dubious.

An interesting coda: some of my searches turned up a close
variant of the claim where the study is described as being of “a
$37Bn sample of DoD projects”. It turns out that the $37B is a
late corruption; searching for one²⁶ then the other²⁷ reveals that
the $37B appears in 2005. (That’s only a $1.3 billion inaccuracy
- small change, eh? - I wouldn’t mind seeing that much in book
sales, though.)

Interestingly enough, Googling for “$35.7 billion dod software
costs” brings up an earlier result that looks like a very credible
primary source: this 1994 document²⁸ saying in part:

The MCCRMG²⁹ (Mission-Critical Computer Re-
sources Management Guide) estimated that by 1995
DoD software costs will approach $35.7 billion, up
from $11.4 billion in 1985.

There cannot have been, then, a “$35.7B sample of DoD projects”
- that was the DoD’s best projected estimate of the total size of
its software costs in 1995. This is yet another strike against the

²⁶http://bit.ly/YkgFek
²⁷http://bit.ly/YkgIXn
²⁸http://1.usa.gov/XSrsjw
²⁹http://1.usa.gov/YkhaVD

http://bit.ly/YkgFek
http://bit.ly/YkgIXn
http://1.usa.gov/XSrsjw
http://1.usa.gov/YkhaVD
http://bit.ly/YkgFek
http://bit.ly/YkgIXn
http://1.usa.gov/XSrsjw
http://1.usa.gov/YkhaVD

Chapter 9: A Leprechaun hunting tutorial 85

original claim, but there’s no point beating a dead horse - I have
another reason to bring this up.

Why does the claim, as usually quoted, suggest that the $35.7B
was a “sample”? Because that’s the language of statistics, and the
entire rhetoric of Leprechaun claims hinges on their looking like
“proper” empirical investigation: studying a smaller sample of an
overall population, and drawing inferences from sample mean to
population mean

To understand this is to understand a big part of the entire
Leprechaun phenomenon.

Key points

Leprechaun-hunting requires little in the way of
specialized tools or skills, but is rather a matter
of attitude; tracking down the origins of claims is
largely a matter of curiosity and tenacity.

Google’s “search by date” feature proves invalu-
able in tracking the spread of particular phrases
across time.

The fundamental insight of stemmatics is that
minor errors or alterations afford tracing the “ge-
nealogical tree” of variations of an ancestor text.
Combining this idea with “search by date” allows
us to trace claims back to their point of origin.

Chapter 10: The cost of
defects: an illustrated
history
Everybody knows that the later you find defects, the more
expensive it is to fix them… Unfortunately, it turns out that
“everybody knows” it in more or less the same way “everybody
knows” that the Great Wall of China is the only man-made
structure visible from space to the naked eye.

That is, it’s a claim that has some surface plausibility and has
gained widespread acceptance, but turns out on closer examina-
tion to be not just awkwardly vague, but in fact almost entirely
anecdotal.

Origins

Here is how the “curve” first appeared, in the “Software Re-
quirements Engineering” section of Boehm’s landmark 1976
article, which was titled straightforwardly (if perhaps a little
immodestly) “Software Engineering”.

Chapter 10: The cost of defects: an illustrated history 87

First appearance of Boehm’s curve

Note well the axes and their scales. The horizontal scale is
discrete - even though the added diagonal suggests that it is
continuous. It represents the successive phases of the “software
development life cycle” (also known as the “waterfall”).

The vertical scale represents a ratio of two numbers: the “relative
cost” of fixing a defect that is detected in a given phase, as
opposed to fixing the same defect in a different phase. The
(arbitrary) origin or “baseline” of this comparison is fixed at the
coding stage.

Note also that the scale is logarithmic: the straight line segment
drawn through the various data points therefore means, “it gets
exponentially more expensive to correct a defect, if you detect it
later rather than earlier”.

Chapter 10: The cost of defects: an illustrated history 88

The article attempted to provide a definition of that phrase, sur-
vey current practice, and identify areas of future improvement.
In this context, the diagram was intended to justify the “critical
nature of software requirements engineering”, explained as “the
discipline for developing a complete, consistent, unambiguous
specification - which can serve as a basis for common agreement
among all parties concerned”.

Boehm concluded from the diagram that “it pays off to invest
effort in finding requirements errors early and correcting them
in, say, 1 man-hour rather than waiting to find the error during
operations and having to spend 100 man-hours correcting it”.
In other words, it was an economic rationale for a substantial
requirements analysis effort ahead of any other activity.

First amendments

The initial version was cited a few times, but Boehm’s big hit was
the slightly different version presented in his hugely influential
1981 book, “Software Engineering Economics”.

It is quite easy to find reproductions of the 1981 version with
a Google search for the verbatim phrase, “phase in which error
was detected and corrected”. Here, for instance, is a reproduction
from a 1992 document:

Chapter 10: The cost of defects: an illustrated history 89

Later, common appearance of Boehm’s curve

Note the first few of many changes, alterations and amendments
to affect later versions of the curve.

In the 1981 version, a further exponential relationship is sug-
gested, though with a smaller slope: this, Boehm suggests, only
applies to “smaller projects”. Another interesting thing is that
four data points, supposedly from studies at IBM, have been
added to the chart - even though Boehm’s 1981 book references
exactly the same IBM paper as his 1976 article. (Not pictured
in the above diagram, but shown in the 1981 book, is data
supposedly from the “Safeguard” project at Bell Labs.)

This 1981 version is the one that Boehm reproduces in his chapter
of the 2010 book “Making Software”, and so we can assume it is
his preferred, “definitive” version. The rest of the profession, as

Chapter 10: The cost of defects: an illustrated history 90

we’ll shortly see, had other ideas.

Where’s the data?

As in our earlier stories about the Cone of Uncertainty and the
“10X” claim, reading the primary sources in a search for the
underlying evidence justifying Boehm’s curve turns out to be
a frustrating but in some ways enlightening exercise.

To summarize, the data just isn’t up to any reasonable standard
of “research”. The longer version is given in Appendix B, for
the curious reader; its inclusion here would bloat this chapter
out of decent proportions, and in any case the really interesting
story turns out to be how Boehm’s curve gets increasingly
distorted from the late 1990’s onward. We will only look at some
highlights.

The “smaller projects” curve turns out to be from only two teams
of first-year students, a sample size so small that extrapolating
to “smaller projects in general” is totally indefensible. The GTE
study does not explain its data, other than to say it came from
two projects, one large and one small. The paper cited for
the Bell Labs “Safeguard” project specifically disclaims having
collected the fine-grained data that Boehm’s data points suggest.
The IBM study (Fagan’s paper) contains claims which seem
to contradict Boehm’s graph, and no numerical results which
clearly correspond to his data points.

Boehm doesn’t even cite a paper for the TRW data, except when
writing for “Making Software” in 2010, and there he cited the
original 1976 article. There exists a large study conducted at TRW

Chapter 10: The cost of defects: an illustrated history 91

at the right time for Boehm to cite it, but that paper doesn’t
contain the sort of data that would support Boehm’s claims.

Metamorphoses

Authors until the late 1990’s appear to have taken some pains to
reproduce Boemh’s original diagram fairly faithfully; but as the
years pass, we begin to see the “Boehm curve” distorted in ever
more creative ways. (The chronology is a little hazy, and while
there are ways to pin it down a little more precisely, I hope you
will forgive me for limiting my research to the bare minimum
needed to show you the overall trends.)

Below, for instance, is an interesting version from 1996, changing
the shape to a pyramid. But this is an oddity; the pyramid is
nice-looking but not at all a good fit to the type of data being
represented.

Chapter 10: The cost of defects: an illustrated history 92

Simplified Boehm’s curve - pyramid

Two more “mainstream” directions can be seen. One consists
of changing the diagram type, to a histogram. This entails also
changing the vertical axis, to a linear rather than a logarithmic
scale. This makes the uncertainty in the last data point (given
by Boehm as between 200 and 1000) much more dramatic: the
last column dwarfs all the others, making the diagram woefully
uninformative.

Chapter 10: The cost of defects: an illustrated history 93

Simplified Boehm’s curve - histogram

The other tendency, which eventually wins out for reasons
we’ll shortly explain, starts by first stripping away all of the
data points, retaining only the two straight lines, which on a
logarithmic scale mean two different exponents governing the
exponential curve. Here is a version from 2006:

Chapter 10: The cost of defects: an illustrated history 94

Simplified Boehm’s curve - no points

But what this version gains in simplicity, it lacks in “oomph”, in
drama. Lines are in, but logarithmic scales are out. What would
really have some impact is something like the following:

Chapter 10: The cost of defects: an illustrated history 95

Simplified Boehm’s curve - no points

Never mind that important features, like proportionality on the
vertical scales, or accuracy of the numbers shown with respect
to the source cited (a 2001 Boehm and Basili paper, “Software
Defect Reduction Top 10 List”) are thrown out the window:
Boehm and Basili don’t quote any dollar figures in that paper.
This source contains other inaccuracies, for instance claiming
that “the numbers first published in 1996 were revalidated in
2001” - false on both counts.

But at least this shows the way. The curve is now looking a little
too simple, though, with perhaps the risk that it will not look
authoritative enough. Another attempt looks like this, which is
a lot more impressive with its grid-and-sheets 3D aspect:

Chapter 10: The cost of defects: an illustrated history 96

Elaborated Boehm’s curve - sheets

This last variant is from a U.S. Department of Transporta-
tion technical report on Systems Engineering, credits Steve Mc-
Connell’s “Code Complete” for the source, and is nearly accurate
- it throws in a non-existent phase “ConOps” but otherwise looks
fairly close to its original, which (see Appendix B for details) can
only have originated in one data set, the Hughes Aircraft Study.
The only little problem is that the graphs are not at all accurate
representations of the Hughes Aircraft data.

Changing the topic altogether

Through all the above variants, however, one thing remains
constant: the curve is still a depiction of how “defects become
more expensive the later you fix them”.

This seems to have changed in 2000, with the publication of Kent
Beck’s “Extreme Programming Explained: Embrace Change”,

Chapter 10: The cost of defects: an illustrated history 97

where one chapter - title “Cost of Change” - reprised an earlier
(1999) article of Beck’s in “C++ Report”. (The book had much
more of an impact than the article.)

Here is how Beck’s book tells the story:

I can remember sitting in a big linoleum-floored
classroom as a college junior and seeing the profes-
sor draw on the board the curve found in Figure 1.
: “The cost to fix a problem in a piece of software
rises exponentially over time…”

Beck’s curve

It’s hard to tell if the error is Beck’s or his teacher’s, but this
change, or confusion, is quite significant.

Previously, the import of the curve had already been generalized
from “this is true of defect costs on a few projects surveyed
by researchers known to Boehm in 1976”, to “this is true of

Chapter 10: The cost of defects: an illustrated history 98

defect costs in general”. With this change, the curve’s meaning
changed into “this exponential increase is true of all changes to
all software on all projects”.

Beck didn’t stop there, and claimed - based on personal experi-
ence, and not claiming any numerical evidence to back it up -
that Extreme Programming “flattened the curve”.

Almost single-handedly and almost overnight, Beck had framed
the debate between the “traditional” lifecycle and the “upstart”,
rebellious strategies which would soon become widely known
under the umbrella term “Agile”. One of the main points of
contention of the debate would be the shape of the “cost of
change curve”.

This, even though the curve no longer had the slightest empirical
backing as a general observation applying to how expensive it
is to make changes (of any sort, not just bug fixes) to existing
software.

Reading curves

When you see a curve like the “cost of defects” curve, drawn as
a continuous line, bear in mind that it’s a misleading represen-
tation: the data behind the curve is actually only a few points.
In this case, the horizontal axis represents the “phases” of the
waterfall cycle, so that’s about six points in total. The histogram
representations, for all that they alter Boehm’s original portrayal,
are a little less misleading.

The smooth representation is a distortion, which leads you to
think of the horizontal axis as “time” and invites you to view
the curve as a functional: this is how the “cost of defects” graph

Chapter 10: The cost of defects: an illustrated history 99

morphed over time into the “exponential cost of change curve”
- even though “fixing a defect” and “any kind of change to
software” are radically different kind of beasts.

The other distortion is to view such a curve, because it appears
smooth and equation-like, with physics-glasses on - and to think
that, like the law of gravity, it is a universal law that applies to
all software projects, everywhere, all the time.

You should cultivate a reflex of always asking this question: what
does one data point on this curve represent?

In the original diagram (the one from Boehm in 1976) there are
data points from several different projects plotted on the same
curve. The intention is to compare these different projects, and
the conclusion is “look, they have the same curve, more or less,
so we have uncovered a general law”.

The problem, as we know, is that projects are very different from
each other: there are big projects and large projects, there are
projects with lots of defects and projects with… even greater
numbers of defects. How do we make these comparable with
each other?

Theory-laden diagrams

The only way to do that is to look, not at the total costs of defects,
but at the average cost to fix one defect. (You need to break
down the data even further, to show these averages based on
the “phase” when defects are detected. Few projects have data
this detailed - in fact as we saw, some projects cited by Boehm
did not.)

Chapter 10: The cost of defects: an illustrated history 100

To get one data point on the Boehm curve, what you need to do is
collect the total cost of defects detected in one particular phase,
and divide that by the number of total defects.

To get valid comparisons between different projects, you also
need each project to define “phase”, “defect” and “cost” in the
exact same way, which is not the case in Boehm’s data; and that
requires that you start off by knowing what you mean by each
of these terms, which is by no means a settled issue.

But “average cost to fix one defect” is a stupid metric, as Capers
Jones argues in a paper on “A Short History of the Cost Per Defect
Metric” (see Jones³⁰). It makes bad projects look good, and good
projects look bad.

How? By failing to divide the costs of fixing into two categories:
fixed costs of detecting and fixing defects - costs which are the
same no matter how buggy or how good the product is - and
variable costs, those which you pay for each defect.

The more defects you have, the more your fixed costs get spread
around, and the lower your “average cost per defect”. The better
your quality, the fewer defects you have, the higher the average
will be.

In Jim Highhsmith’s book “Agile Software Development Ecosys-
tems”, Boehm is quoted as saying something that backs away
from the “universal law” interpretation of the curve: he basically
says that the better projects have a “flatter” curve, and it is
only relatively unenlightened projects that had the fast-rising
curve. (This is kind of an odd thing to say: in his 1976 article the
steeper curves were associated with the project at the prestigious

³⁰http://semat.org/wp-content/uploads/2012/03/a_short_history_of_the_cost_per_
defect_metric.doc

http://semat.org/wp-content/uploads/2012/03/a_short_history_of_the_cost_per_defect_metric.doc
http://semat.org/wp-content/uploads/2012/03/a_short_history_of_the_cost_per_defect_metric.doc
http://semat.org/wp-content/uploads/2012/03/a_short_history_of_the_cost_per_defect_metric.doc

Chapter 10: The cost of defects: an illustrated history 101

IBM, and at Boehm’s own employer TRW, where supposedly
enlightened software engineering was the norm.)

You can see where this is leading - Jones’ argument and Boehm’s
are squarely in conflict: we should expect bad projects to have
flatter defect cost curves, if we agree with Jones, because each
point on the curve is an average that will spread the more ex-
pensive fixed costs. And we can assume that “more enlightened”
projects will have more investment in the fixed expenses of
defect prevention activities.

Either Boehm or Jones is operating on a wrong model, and my
money is on Jones being more correct (which, of course, does not
mean “absolutely correct”).

Boehm’s assent

But let’s go back to the “cost of change”. What’s amusing about
this story is that Boehm eventually published a response to
Beck, in a 2003 book co-written with Richard Turner, “Balancing
Agility and Discipline: a Guide for the Perplexed”. There, Boehm
fully assents to Beck’s rewriting of the curve as representative of
all changes:

The steep version of the cost-of-change curve was
discovered by several organizations in the 1970s
(TRW, IBM, Bell Labs Safeguard). They found rather
consistently that a postdelivery software change
was about 100 times as expensive as a Require-
ments-phase software change.

Chapter 10: The cost of defects: an illustrated history 102

Boehm adds the following indication that a renewed inquirymay
be in order:

Considerable uncertainty has arisen over whether
these escalation factors remain representative in
today’s software development environment.

However, this is only to dash any hope, as he immediately claims
confirmation of the ancient findings:

To explore this and related questions, [the Center
for Empirically Based Software Engineering (Ce-
BASE)], performed a literature search and held three
e-Workshops involving people with relevant expe-
rience and data. The results tended to confirm the
100:1 ratio for large projects, with factors of 117:1
and 137:1 recorded, and a 1996 survey showed a
range of 70-125:1.

This is word-for-word identical to the text appearing in Boehm’s
“Making Software” chapter. Sadly, these newer results are not
much more credible than the older ones, as Appendix B details.

Savor the delicious irony of self-fulfilling prophecies: Beck (or
his teacher) misinterpreted Boehm’s curve, but by generating
enough of a stir and prompting Boehm to respond as he did, was
the cause of Boehm’s “cost of defects” curve becoming “Boehm’s
cost of change curve”.

This magical transmogrification is only possible, let us note,
because the curve has 100% ideological and 0% empirical content.

Chapter 10: The cost of defects: an illustrated history 103

The curve is only a blunt instrument of oratory: it is there, not to
convey knowledge about the real world, but to win arguments.

Key points

If a picture is worth a thousand words, a false
picture is a thousand times more serious than one
careless word.

Our previous encounter with the Cone of Uncer-
tainty taught us to ask: is the graph merely con-
ceptual, a pictorial representation of the author’s
opinion? Or does the author claim that there is
data backing the graph?

When looking at a graph or chart, purported to be
backed by empirical data, remember to ask: what
specific measurement does each of the points I’m
looking at represent?

If the picture is a curve, and it has many more
data points than were actually measured, ask: was
the method for interpolating the missing points
actually valid?

Picture references

All pictures are used without permission, for “fair use” illustra-
tive purposes.

The 1996 picture is from Leffingwell’s “Calculating Your Return
on Investment fromMore Effective Requirements Management”.

The 2006 picture is from “The TCAT for Java/Windows User’s
Guide”.

Chapter 10: The cost of defects: an illustrated history 104

The 2007 “simple” picture is from McLeod and Everett’s “Soft-
ware Testing: Testing Across the Entire Software Development
Life Cycle”.

The 2007 “grid and sheets” picture is from the U.S. Federal
Highway Administration’s “Systems Engineering for Intelligent
Transportation Systems”.

Chapter 11: Rocket science
and Flaubert math
The 2006 report³¹ from NASA’s “Independent Verification and
Validation Facility” makes some interesting claims. Turning to
page 6, we learn that thanks to IV&V, “NASA realized a software
rework risk reduction benefit of $1.6 Billion in Fiscal Year 2006
alone”. This is close to 10% of NASA’s overall annual budget,
roughly equal to the entire annual budget of the International
Space Station!

If the numbers check out, this is an impressive feat for IV&V
(the more formal big brother of “testing” or “quality assurance”
departments that most software development efforts include).
Do they?

Flaubert and the math of ROI

Back in 1841, to tease his sister, Gustave Flaubert invented the
“age of the captain problem”, which ran like this:

..

A ship sails the ocean. It left Boston with a cargo of wool.
It grosses 200 tons. […] There are 12 passengers aboard,
the wind is blowing East-North-East, the clock points to a

³¹http://www.nasa.gov/centers/ivv/pdf/174321main_Annual_Report_06_Final.pdf

http://www.nasa.gov/centers/ivv/pdf/174321main_Annual_Report_06_Final.pdf
http://www.nasa.gov/centers/ivv/pdf/174321main_Annual_Report_06_Final.pdf

Chapter 11: Rocket science and Flaubert math 106

..

quarter past three in the afternoon. It is the month of May.
How old is the captain?

Flaubert was pointing out one common way people fail at
math: you can only get sensible results from a calculation if the
numbers you put in are related in the right ways. (Unfortunately,
math education tends to be excessively heavy on the “manipulate
numbers” part and to skimp on the “make sense of the question”
part, a trend dissected by French mathematician Stella Baruk³²
who titled one of her books after Flaubert’s little joke on his
sister.)

Unfortunately, NASA’s math turns out on inspection to be “age-
of-the-captain” math. (This strikes me as a big embarrassment to
an organization literally composed mainly of rocket scientists.)

The $1.6 billion claimed by NASA’s document is derived by
applying a ROI calculation: NASA spent $19 million on IV&V
services in 2006, and the Report further claims that IV&V can
be shown to have a 83:1 ROI (Return on Investment) ratio. Thus,
$19M times 83 gives us the original $1.6 billion. (The $19M is pure
personnel cost, and does not include e.g. the costs of the building
where IV&V is housed.)

What is Return on Investment? Economics defines it as the gain
from an investment, minus the cost of investment, divided by
(again) the cost of investment. An investment is something you
spend so as to obtain a gain, and a gain is something caused by
the investment. This isn’t rocket science but basic economics.

³²http://fr.wikipedia.org/wiki/Stella_Baruk

http://fr.wikipedia.org/wiki/Stella_Baruk
http://fr.wikipedia.org/wiki/Stella_Baruk

Chapter 11: Rocket science and Flaubert math 107

But how does NASA arrive at this 83:1 figure?

NASA IV&V’s math

NASA relies on the cost of defects “research” we’ve just covered.

NASA counted 490 “issues” that IV&V discovered at the re-
quirements stage of the Space Shuttle missions, during some
unspecified period between 1993 (the founding of the IV&V
Facility) and 2006. (An “issue” is not the same as a defect, but
for the time being we will ignore this distinction.) To this, NASA
adds 304 issues found between 2004 and 2006 in other (“Science”)
missions. (We are also told that this analysis includes only the
most “severe” issues, i.e. ones for which a work-around cannot
be found and which impair a mission objective.)

We can verify that (490+304)*200 = 158,000, which NASA
counts as the “weighed sub-total” for Requirements; adding up
the somewhat smaller totals from other phases, NASA finds a
total of 186,505.

NASA also adds up the number of issues found during all phases,
which is 2,239. We can again verify that 186,505 / 2,239 = 83 and
some change.

How old is the captain?

Now, the immediate objection to this procedure is that an ROI
calculation involves dollars, not numbers of “issues”. ROI is a
ratio of money gained (or saved) over money invested, and while
you can reasonably say you’ve “saved” some number of issues
it’s silly to talk about “investing” some number of issues.

Chapter 11: Rocket science and Flaubert math 108

We will want to “steel-man” NASA’s argument. (This is the
opposite of a “straw man”, an easily knocked down argument
that your interlocutor is not actually advancing, but that you
make up to score easy points.) We will be as generous with this
math as we can and see if it has even a small chance of holding
up.

To rescue the claim, we need to turn issues into dollars. Let us
list the assumptions that need to hold for NASA’s calculations to
be valid:

• there is some determinate average cost to detecting an
issue

• there is some determinate average cost to fixing an issue
• if an issue is not detected at the earliest opportunity, it
always ends up being detected “in the field” and its repair
cost is the maximum

The first two assumptions give our steelman attempt some
leeway; not all issues need to cost the same to detect, but it
has to make sense to talk about the “average cost of detecting
an issue”. Mathematically, this implies that the cost of fixing an
issue obeys some well-behaved function such as the famous “bell
curve”. (However, there are some functions for which it makes
no sense, mathematically, to speak of an average: for instance
some “power law” curves. These are distributions often found to
describe, for instance, the size of catastrophes such as avalanches
or forest fires; no one would be very surprised to find that defect
costs in fact follow a power law.)

The third assumption makes things even more problematic.
NASA’s calculations are based on hypotheticals: what if we used

Chapter 11: Rocket science and Flaubert math 109

different assumptions, for instance that an “issue” in Require-
ments has a good likelihood of being found by NASA’s diligent
software engineers in the design phase? If all issues detected by
IV&V in Requirements had been fixed in Design, then the ratio
would only be about 5:1 (that is, the ratio between 200:1 and 40:1).
Using a similar procedure for the other phases, we would find a
“ROI” of less than 3:1. This isn’t to say that my assumption is
better than NASA’s, but merely to observe that the final result is
very sensitive to this kind of assumption.

However, we may grant that it is in NASA’s culture to always
assume the worst case. And anyway “up to $1.6 billion” is almost
as impressive as “$1.6 billion”, isn’t it?

Eighy-three! For some value of
eighty-three.

If we do accept all of NASA’s claim, then an “issue” costs on
average about $9K to detect. (As a common-sense check, note
that this on the order of one person-month, assuming a yearly
loaded salary in the $100K range. That seems a bit excessive; not
a slur on NASA’s competence, but definitely a bad knock for the
notion that “averages” make sense at all in this context.)

However, note that NASA’s data is absolutely silent on how
much the same issues cost to fix. Detecting is IV&V’s job, but
fixing is the job of the software engineers working on the project.

(An “issue” is just an observation that something is wrong,
whereas a “defect” is the thing software developers fix; it’s
entirely possible for several “issues” related to one “defect” to

Chapter 11: Rocket science and Flaubert math 110

be corrected simultaneously by the same fix; NASA’s concep-
tual model grossly oversimplifies the work relationship between
those who “validate and verify” and those who actually write the
software.)

NASA is therefore reporting on the results of the following
calculation…

ROI = (Savings from IV&V - Actual cost of IV&V) / Actual
cost of IV&V

where

Savings from IV&V = Hypothetical cost of fixing defects
without IV&V - Actual cost of fixing defects

…and the above cannot be derived from the numbers used in
the calculation - which are 1) counts of issues and 2) actual
IV&V budget. Even if we do grant an 83:1 ratio between the
hypothetical cost of fixing defects (had IV&V not been present
to find them early) and the actual cost of fixing, we are left with
an unknown variable - an unbound x in the equation - which is
the average cost of fixing a defect.

This, then, is the fatal flaw in the argument, the one that cannot
be steel-manned and that exposes NASA’s math for what it is -
Flaubert-style, “age of the captain” math, not rocket science.

Chapter 11: Rocket science and Flaubert math 111

Key points

When confronted with quantitative claims based
on calculations, critical thinking must still apply.

Obviously, the result of a calculation can only be
as good as the premises upon which the calcula-
tion is based: the GIGO principle applies.

However, it pays to also attend to the calculation
itself: is it sound? Does it relate together quan-
tities in sensible ways? (Physicists are fond of
“dimensional analysis³³” as a tool to detect bad
calculations rapidly.)

Acknowledgements

Thanks to Aleksis Tulonen, a reader, for finding the NASA
document in the first place, and spotting the absurdity of the
ROI calculation.

³³http://en.wikipedia.org/wiki/Dimensional_analysis

http://en.wikipedia.org/wiki/Dimensional_analysis
http://en.wikipedia.org/wiki/Dimensional_analysis

Chapter 12: For some
value of 56
While we’re on the topic of “bad math”, I’d like to make a point
about our apparent craving for precise statistics - and argue that
it is 180 degrees from how we ought to react.

Where bugs come from

One impressively widespread quotation from a 1984 James Mar-
tin book (“An Information SystemsManifesto”) gives us a precise
answer to this question, with which we began this book, and at
first blush leprechauns do not seem to be involved: “requirements
are the source of 56 percent of all defects”.

As with many of these old wives’ tales, this can be used by
anybody to justify any idea they support. So for instance you find
instances of it in relatively recent presentations introducing the
idea of “Behaviour Driven Development”, strictly a 21st century
idea (BDD³⁴).

Let’s think about this one for a minute.

We all know that body water accounts for about two-thirds of
our body weight. I’m pretty sure that no one imagines that one
human body was sampled (leaving aside how it’s measured, an
interesting topic in itself) to get this result.

³⁴http://www.scribd.com/doc/54772257/Behaviour-Driven-Development

http://www.scribd.com/doc/54772257/Behaviour-Driven-Development
http://www.scribd.com/doc/54772257/Behaviour-Driven-Development

Chapter 12: For some value of 56 113

Why? Obviously because a single measurement would have left
wide open the possibility that the individual in question was
somehow anomalous. So, we expect that this statistic comes from
taking measurements from a range of individuals, and as is often
the case we expect that we’ll get a normal distribution, with the
most often seen value falling somewhere in the middle.

Just as obviously, there’s a wide range of values that are “normal”
for individuals at various ages, so we wouldn’t expect that the
“correct” or accepted value would be given even to within one
percent; actual values range from 45% to 75%.

Wewould expect that any given individual’s value couldn’t stray
too far from this already large range… but only because water,
and in particular intracellular water, is a critical component of
a human body. If we look instead at, say, body fat, individual
values might range from 2% to 50%, a huge variation.

So even as a “rule of thumb” 56% is extremely over-precise, and
suspect.

Sample size of one

But here’s the real wake-up call: Martin’s data is from a single
“individual”:

“Figure 4.1 shows the distribution of bugs in a large
bank, of the total, 56% were in the requirements
document and 27% were in design.”

“Defects” is nowhere near as stable a concept as “body fat” or
“body water”, for which you can rely on standardized definitions

Chapter 12: For some value of 56 114

and off-the-shelf instruments, giving you readings in minutes:
you can expect every single decision to attribute some defect
to “requirements” or “design” or “code” could provide fodder
for hours of discussion to a team of project stakeholders. (My
colleague Michael Bolton calls this “the problem of counting to
one” - if it’s already hard to identify one defect, counting many
of them is going to be a fraught enterprise.)

The software engineering profession as a whole needs to feel
ashamed that it will so readily repeat, as if it were a universal
truth, something that is only a half-baked figure from a single
project in a single business, and what’s worse on the strength
of a book published when the discipline was less than half its
current age, and with a title that promised emotional appeals
would dominate over factual findings.

But maybe I’m being too harsh - we all know we use only 10%
of our brains, right?

Poor requirements

And as long as we’re talking statistics, an illustration of the “base
rate neglect fallacy” - and one more reason why you shouldn’t
mindlessly repeat other people’s numerical claims.

A widely circulated one is that “71% of failed software projects
suffer from poor requirements”. Imagine for just a moment that
it’s well-supported, and in fact true. Would you then be able
to infer any causation from this figure, such as the equally
widespread “71% of project failures are caused by poor require-
ments”?

Chapter 12: For some value of 56 115

That would be the case only if the percentage of all projects that
suffer from “poor requirements” is much different from 71%!

If around two-thirds of all software projects have some char-
acteristic X, and this characteristic has no effect on project
outcomes, then when you sample failed projects only you are
going to get the same two-thirds ratio. This number could be
anything else and the previous sentence would still hold. (In fact,
completely different numbers are also seen in the literature: the
Chaos Report is claimed as saying 20-25% - one of these claims
must be wrong.)

In other words, even if true, this statistic offers no support at
all to the hypothesis that “poor requirements” (whatever that is
supposed to mean) is a good predictive test of software project
outcomes.

A software triumph

It is more than a little ironic that this very book is made
possible by an information infrastructure so powerful that it
truly deserves to be called a “software triumph”, even as present-
day articles continue to bemoan a “software crisis”.

So, for instance, not only am I able to scour the whole Web
for instances of the “71% of project that fails do so from poor
requirements” meme, I can even use the date stratification trick
to pinpoint the exact source.

This is a CIO Magazine article from 2005 by a Christopher
Lindquist, and the only source cited is “Analysts report that…”

Chapter 12: For some value of 56 116

As you can verify by searching³⁵ for one variant or another,
the claim is nowhere to be found before this date, but becomes
widespread afterwards; the claim is immediately picked up by
various secondary sources, many of which quote it verbatim, but
with even more changing the wording slightly.

The fun thing is that the attributions change more recently, in
2011:

• one Victor Font³⁶ attributes it to “Grady, 1999”
• the NASCIO conference³⁷ 2011 page attributes it to “Butler
Group”

These apocrypha are interesting to study, because they reveal
something of the telephone game’s routing circuits. For instance,
the Butler Group misattribution is likely due to a blog³⁸ which
cites both CIO magazine and Butler Group, for two distinct
(though equally suspect) claims. (This is kind of bad news for
the US, in this foreigner’s opinion - NASCIO is supposed to be
“representing the CIOs of the States”.)

In the Victor Font case, you can trace some of the spread, such
as to a company called StratNet³⁹, apparently not related to Mr
Font, simply by noting that Font is misspelling the name of
“Liffingwell”, instead of “Leffingwell” - I assume this is the Dean
Leffingwell I’ve already encountered previously.

³⁵http://bit.ly/wXtoB7
³⁶http://www.linkedin.com/groups/Whos-Blame-Troubled-Projects-IT-

51825.S.39024193
³⁷http://www.nascio.org/events/2011Annual/agenda.cfm
³⁸http://basftw.blogspot.com/2010/06/something-for-weekend-new-in-at-1.html
³⁹http://www.stratnet.ca/?c=blog&l=en&art=20110305-1

http://bit.ly/wXtoB7
http://www.linkedin.com/groups/Whos-Blame-Troubled-Projects-IT-51825.S.39024193
http://www.nascio.org/events/2011Annual/agenda.cfm
http://basftw.blogspot.com/2010/06/something-for-weekend-new-in-at-1.html
http://www.stratnet.ca/?c=blog&l=en&art=20110305-1
http://bit.ly/wXtoB7
http://www.linkedin.com/groups/Whos-Blame-Troubled-Projects-IT-51825.S.39024193
http://www.linkedin.com/groups/Whos-Blame-Troubled-Projects-IT-51825.S.39024193
http://www.nascio.org/events/2011Annual/agenda.cfm
http://basftw.blogspot.com/2010/06/something-for-weekend-new-in-at-1.html
http://www.stratnet.ca/?c=blog&l=en&art=20110305-1

Chapter 12: For some value of 56 117

This is all fun and games, though, until you get the idea of
running your search not in Google, which indexes the “layman’s
Web”, but in Google Scholar: the more hallowed residence of
Science.

There you will find at least one academic paper⁴⁰ (I didn’t have
the heart to look for more) picking up the 71% meme. Look at the
attribution: “…echoing earlier work by Lindquist (2005)…” Yes,
this is how the careless, unsourced and unverifiable assertion of
an editorialist becomes the “work” of an academic peer: by the
adoubement of scholarly parentheses.

Here is at least one case of cross-species contagion, raising the
specter of Homo Academicus’ vulnerability to what we might
have hoped was a disease confined to Homo Consultantus.

“Contagion” seems like an appropriate word, and I’m pretty sure
that models from epidemiology would be useful in studying this
kind of thing in quantitative terms: it feels a lot like the spread
of a disease.

With Michele Lanza’s “Requiem for Software Engineering⁴¹” in
mind: software engineering died of a contagious disease, and the
epitaph on its grave shall be “Requirements are the source of 56%
of all bugs in any project, for some value of 56.”

⁴⁰http://proceedings.informingscience.org/InSITE2008/IISITv5p543-551Davey466.
pdf

⁴¹http://soft.vub.ac.be/benevol2011/abstracts/Lanza.html

http://proceedings.informingscience.org/InSITE2008/IISITv5p543-551Davey466.pdf
http://soft.vub.ac.be/benevol2011/abstracts/Lanza.html
http://proceedings.informingscience.org/InSITE2008/IISITv5p543-551Davey466.pdf
http://proceedings.informingscience.org/InSITE2008/IISITv5p543-551Davey466.pdf
http://soft.vub.ac.be/benevol2011/abstracts/Lanza.html

Chapter 12: For some value of 56 118

Key points

Any statistic about software projects that is more
precise than “around somemultiple of 5%” is likely
to be a Leprechaun.

The wonderful thing about over-precise statistics
is that they are the easiest to expose as being
Leprechauns, as you can trace their spread from
one dubious source to another.

However, as with virulent diseases, it is important
to stop them before they reach the world of aca-
demic research and thereby gain such legitimacy
that they can no longer be eradicated.

Chapter 13: The cost of
bad research
Previously, we saw how the “defect-cost-increase curve”, whose
empirical basis appeared to fade into anecdote as soon as we
looked at it a little closely, morphed over the latter decades of
software engineering’s history into the fully generalized (but still
no better supported) “cost of change curve”.

I want to take a closer look at the implications of this telephone
game: what it says about the state of research in the software
engineering discipline.

Uncritical thinking

We have previously encountered the “Citation Needed” heuris-
tic, which states that “if you can’t cite a source for your claim,
then your claim is probably bogus”.

But it scares me that some people apparently operate under the
reverse heuristic: “if you can cite a source for your claim, the
claim is probably true”. Lest you think I’m making this up, one
blogger has evenmade up an acronym for it: INBSIYCNTS⁴², “It’s
Not BS If You Can Name The Source”.

This is madness.

⁴²http://blogs.popart.com/2009/02/inbsiycnts-1/

http://blogs.popart.com/2009/02/inbsiycnts-1/
http://blogs.popart.com/2009/02/inbsiycnts-1/

Chapter 13: The cost of bad research 120

The blog post in question is about the “cost of defects” claims, and
according to the blogger “This fundamental concept is attributed
to Robert Grady”, who studied it while working at Hewlett-
Packard. Deploying the usual arsenal of the Leprechaun hunter
leads to an article, “Dissecting Software Failures”, by the same
Grady; of the study done at HP, Grady writes:

“The data for this example is taken from a detailed
study of defect causes done at HP. In the study, de-
fect data was gathered after testing began. […] This
study didn’t accurately record the engineering
times to fix the defects, so we will use average
times summarized from several other studies to
weight the defect origins.

I want you to read this several times until it sinks in, especially
the bits in bold. The emphasis is mine. “We didn’t bother to study
claim X because we knew it was already proven”, is what this
article cited to support claim X basically says.

Once a claim has taken root, it starts to inform later study: this is
what brings Thomas Kuhn in The Structure of Scientific Revolu-
tions to argue that there is no such thing as “pure” observation,
and that all measurement is “theory-laden”.

Extraordinarily suspect claims

One reaction to “Leprechauns” that I’m anticipating is this.

“Okay,” people will say, “you have shown that some of the older
studies weren’t really up to par. But still, it’s obvious and well

Chapter 13: The cost of bad research 121

supported by everyday experience that defects are harder to fix
the longer they stick around, and you are not showing any really
good studies that suggest otherwise. And have you seen this
newer reference, which does have confirming data?”

The problem is that this game of shifting goalposts can go on
forever. The title of the book isn’t (just) whimsy. I’ve chosen it
quite deliberately because one of my crucial arguments is going
to be about burden of proof, and I know what to expect there
because I’ve followed what happened to people who tried to
debunk ESP and UFO claims: the silly claims will just keep on
coming.

So, I’ll agree that the burden of proof is on me, for the first
few studies, to show that there are some shenanigans going on.
Empirical data will be assumed innocent until proven guilty - to
start with.

But after a few instances of something turning out to be a
leprechaun, it is no longer necessary to respond in detail and
specifically to every single challenge of the type “Have you seen
the data in this paper, which reports on a detailed count of
leprechauns in County Wicklow?”

We should stop responding not because the papers’ methods
or inferences are faulty, but because there are no freaking lep-
rechauns!

People are prone to confirmation bias, and we have seen in lavish
detail how such a claim as the rising cost of defects will take
root, and in effect become a self-fulfilling prophecy. So, after
enough “studies” (or really, references to studies, since it’s rarely
the studies themselves that are bad but what later authors want
to make them claim) are discredited, it’s time to shift the burden

Chapter 13: The cost of bad research 122

of proof.

We can now dismiss any new citations along the lines of “studies
say” that don’t add a great deal more about why the studies
in question are credible. We’ve shown that many authors cite
carelessly, citing papers they haven’t read for instance, or citing
people who are not themselves credible sources but who are in
turn citing other research. So we now insist that the bar is higher:
fool me once, shame on you, fool me twice, shame on me.

This doesn’t mean that we should dismiss new studies out of
hand, as a matter of principle, but we should insist that they
specifically address the reasons which made the older studies
unsatisfactory.

The claims have become suspect enough to fall under a maxim
similar to that used by critics of purported UFO sightings and
other wild claims: “extraordinary claims require extraordinary
evidence”, something that we could express as “once-suspect
claims require particularly careful evidence”.

Terms of inquiry

But surely, you may object, the situation in software engineering
is different: there are no leprechauns, to be sure, but there are
such things as defects and fixing defects? Surely a dollar is a
dollar, and it’s clear that fixing defects has a cost?

Yes and no. But mostly no!

The first thing you have to do, whenever you start thinking about
this kind of thing, is furrow your brows and take a hard look at

Chapter 13: The cost of bad research 123

each of the words in that phrase you’re thinking about: “cost”,
“fix”, “defect”. (Okay, the furrowing is optional.)

Think about “defect”, and think about all of the ways that
two people might reasonably disagree about what counts as a
“defect” and what doesn’t. For instance, if you are a developer,
have you ever argued with a user or a manager about whether
something was a “bug” or really an “enhancement” or even in
fact a “feature”?

Here is what my friend Michael Bolton (to whom I’m indebted
for some of the ideas below, and an expert on testing), had to
say about “defects” within literally seconds of thinking about the
term: “When is it a defect? When the programmer notices his
own typo and fixes it before the build? When he fixes it after
the build? When someone else notices it? What happens if they
notice it during a pair programming session? Is it a defect then?
If you happen to link to a bad library, is that a defect? A link to
a bad library might not manifest a bug for a while; then it might
manifest dozens of different problems when someone tries to call
a particular function. Is that dozens of defects, or just one?”

Definitional debates of this kind are commonplace. (And, gen-
erally, developers hate them with a vengeance for being huge
time wasters.) But if you want to count defects, you first have to
decide what (literally) counts as one. We have a hard time even
agreeing among a single team on what counts as a defect - in fact
I’m pretty sure my own thinking has changed over the years, so
I’m not even agreeing with myself.

Before you could validly generalize results from empirical ob-
servation of “defects”, you would have to be sure that two
researchers looking at “defects” meant the same class of events

Chapter 13: The cost of bad research 124

in the world, in much the same way that scientists looking at
“atoms” or “birds” should look at the same class of thing in the
world.

And notice the distinction above: events are even slipperier
things to deal with than things. Defects are not “things” - they
are, in a nutshell, human decisions, which places their study
squarely in the realm of sociology; a discipline in which no
“computer scientists” or “software engineers” generally receive
training.

And that’s just the start of our difficulties, since the same analysis
can be performed for the next word, “fixing”. (Left as an exercise
for the reader.)

Even “cost” is not as transparent as it looks: an easy way to
recognize that is to look at any study, and observe that this
is almost never measured as-is, but in fact replaced by “time
spent” as a more measurable proxy. “Cost” is actually a fairly
sophisticated notion of accounting, another discipline in which
few software professionals are ever trained.

Evenmeasuring how people spend their time is a tricky business:
you have to decide on a particular way to do that, which include
sitting behind people’s backs with a stopwatch, or having people
fill out time sheets or forms.

Each of these ways may have associated difficulties, not the least
of which is interfering with what it’s measuring: people can get
nervous when someone is timing them with a stopwatch, for
instance, or complain that they spend so much time filling out
time sheets that the time sheets need a new category for that.
(I’m speaking from personal experience.)

Chapter 13: The cost of bad research 125

The upshot of all the above is that unless you are very careful to
ensure a clear connection between the terms inwhich you phrase
your claims, the precise “objects” designated by these terms, and
the inferences that you ultimately derive from observations of
these objects, any “research” you spend time on is only going to
result in confirming your existing prejudices.

Research standards

The prevalence of bias is one of the main reasons why research
papers submitted to peer reviewed journals usually have to
follow a certain form, and (in some disciplines, such as medicine)
this form is ruthlessly enforced: your abstract must state the
conclusions and some key features of your statistical analysis,
you must describe your sample and your procedures, and you
must carefully note any “threats to validity”.

“Threats to validity” is a shorthand for the following question: “is
our experiment a ‘smoking gun’ for whatever it is wewere trying
to reveal, in other words does it rule out most of the alternative
hypotheses that we could think of?” (This subdivides into further,
more technical categories, such as “external validity” and the
ever thorny “construct validity”, onwhich I urge you to read Cem
Kaner’s paper: “Software Engineering Metrics: What Do They
Measure and How Do We Know”, see Metrics⁴³.)

Often, the hard work in research isn’t in performing the experi-
ment and collecting data (that tends to be grunt work, in fact,
in most disciplines). The hard work consists of designing the

⁴³http://testingeducation.org/a/metrics2004.pdf

http://testingeducation.org/a/metrics2004.pdf
http://testingeducation.org/a/metrics2004.pdf

Chapter 13: The cost of bad research 126

experiment that will rule out the most alternative explanations
for what you see happening (or think you see happening).

If your paper doesn’t conform, it will be rejected. That is, if
the review process is doing its job correctly - but that’s more
a feature of the socio-political side of research, and we won’t go
into that here.

But we have now reached the most pressing problem in software
engineering: low standards for research publications. Most of
what passes for “research” in the discipline is ridiculously care-
less with respect to examining the “terms of inquiry”.

Key points

Lack of critical thinking has allowedwrong claims
to take root in the discipline and become en-
trenched.

In light of this situation, we can no longer be con-
tent with incremental additions to research that
continues past tradition. Studies can no longer
claim to measure “defects”, for instance, without
a full-on investigation of whether what the term
means has been pinned down enough to allow
measurement. (The same goes for e.g. “productiv-
ity”.)

Chapter 14: Raising the bar

Two modest proposals for
publications on software development

• Any paper containing a first-degree reference to “the
software crisis” should be rejected summarily.

• Any author citing another paper should be required to
provide proof that they a) possess a copy of that paper,
b) have read that paper, c) have read the paper carefully.

The most economical means of proof is to include a short
quotation from a paper which is available online for free.

For “paywalled” papers, or those only available in print or on
microfiche, stronger proof would be required, such as an MD5
hash of part of the article text, different from all such hashes
provided by other authors.

Will you take the pledge?

The above two suggestions, though not quite up to Swiftian⁴⁴
standards, are nevertheless impractical: they would cause publi-
cation in software engineering to more or less grind to a halt.

⁴⁴http://en.wikipedia.org/wiki/A_Modest_Proposal

http://en.wikipedia.org/wiki/A_Modest_Proposal
http://en.wikipedia.org/wiki/A_Modest_Proposal

Chapter 14: Raising the bar 128

Perhaps a slightly less outrageous idea would be to offer a pledge,
and only suggest that a few brave authors proclaim their intent
to adhere to it, hoping that by their example themovementmight
snowball:

As an author writing about software engineering, I
am committed to providing the best grounding for
any factual claims I make or support. To that end I
will:

• only cite papers that I have in fact personally read
• refrain from indirect quotation (or other ‘telephone game’
variants)

• make it clear whenever I’m citing opinion or indirect
quotation, as opposed to original research

• cite page and section numbers when available, and always
when citing books

• whenever possible, cite papers freely available online in
full text versions

• refrain from citing obscure or non peer-reviewed sources
• check that the data I’m citing actually supports the claim
• look for contradictory evidence as well as supporting, to
avoid confirmation bias

• onlymake prudent claims, and present all plausible threats
to validity.

Chapter 15: A new model
of inquiry

Our industry will start to mature when it stops
thinking about programming as being like some-
thing else, and when it realises that the only thing
that programming is like is programming.

– Nat Pryce

Here is my big, bold thesis. The current approach to inquiry
embodied in the discipline of software engineering is a dead end.
We can’t begin to make progress until and unless we understand
what’s so seductive about the current research paradigm and
thoroughly destroy that appeal. This has been in large part the
mission of this book.

Too many still think that “software engineering” should some-
thing like medicine, studying the impact of various “substances”
(test-driven development, code inspections) on our pathologies
(poor quality, budget overruns, and so on), using the golden
standard of Randomized Controlled Trials.

Software development will not usefully be studied with such
an approach. It needs to be studied with tools that borrow as
much from the social and cognitive sciences as they do from the
mathematical theories of computation.

We need to stop thinking of “code as a naturally occurring
substance” and focusmore on the social and conventional aspects

Chapter 15: A new model of inquiry 130

of software. We need to stop using terms like “requirements”
and “architecture” and “testing” and “performance metrics” as
if they defined the reality of software development, and take a
closer look at programmers and their interlocutors and how they
really work. Better and more useful terms will emerge from that
inquiry.

The Ouroboros effect: circular
causation

Software engineering is a social process, not a naturally occur-
ring one - it therefore has the property that what we believe
about software engineering has causal impacts on what is real
about software engineering.

One reason why fixing defects late can cost more is that the
process makes it more expensive to fix defects later, as one
participant in an online discussion observed: “if a defect is found
later in the our process, at least 2 QA analysts are involved: one
to find the defect and another to confirm…”.

Why does the process make it more costly to fix defects later?
Because the process is built on the assumption that it makes sense
to invest heavily in business analysts at the early stages (to get
the requirements right), not so much into development (they’re
an expensive commodity) and heavily in testing (we all know
these developers still write lots of bugs, they can’t be trusted); so
in that process “a project manager schedules out time and assigns
the defect out to a developer, possibly not the one that introduced
the defect gets the assignment to fix it”.

The causation is circular: of course if you measured the time

Chapter 15: A new model of inquiry 131

to fix bugs under that process you would find the cost rising
according to the phase when bugs are detected, because the
process is built on this very assumption.

From Requirements To Negotiation

I have worked more than once on software development efforts
where one of the input to my or my team’s work was a document
which included pixel-painted (think Photoshop) screenmockups.

Implicitly, this created an expectation that any deviation in
placement, color, text etc. in the software as implemented consti-
tuted a “bug”. In at least one of these projects I behaved, without
prompting, as if that expectation constrained my work. Later,
I tended to question that assumption, but still I met folks from
“the non-technical side” who also subscribed to that assumption,
to the extent of asking the team for corrections. In some cases,
I or the team invested quite a bit of effort into replicating the
exact look of these mockups, even though they conflicted with
standard user interface guidelines of the target platform.

In retrospect, this strikes me as egregiously stupid. People un-
qualified to do so were designing user interface elements poorly,
and people more qualified than them to correct these deficiencies
were prevented from doing so.

Some might be tempted to shrug this off and reply with the
punchline of a standard doctor joke: “Don’t do that then.”

Or you could see that as one of the inevitable problems arising
from the notion of “requirements”.

Creating mockups to communicate is not intrinsically a bad idea.
But, as we are subject to confirmation bias, there’s always a risk

Chapter 15: A new model of inquiry 132

that wewill stop at our first design attempt and become reluctant
to ask if there are better ways to achieve the same goals. Making
these first ideas very detailed; putting them into a document; and
especially blessing that document with the label “requirements”
are all moves which make further revision less likely, and put us
more at risk from confirmation bias.

The first two moves may be survivable, they are just tactical aids
to thinking about the design decisions involved - but because the
term “requirements” comes bundled with a whole set of assump-
tions about the “social contract” of software development, this
last move is much more difficult to undo.

Putting something in a “requirements” document is generally
taken by the various parties involved to mean “the developers
may no longer question this”.

At this point the conversation has changed domains. Before, it
was about “what’s the best way to achieve purpose X or Y”. After
uttering (or writing) the word “requirements”, it has become (at
least in part) about “who’s allowed to tell whom what to do”. I
suspect that when too much of this has taken place, projects are
basically doomed.

This is one reason I’ve been curious for some time now what
would result from systematically expunging the term “require-
ments” from our vocabulary and using “negotiation” instead.
Wouldn’t that be a great experiment?

The cliffhanger

Unfortunately, I must bring this book to a close without answer-
ing the question raised at the start of this chapter, the one implied

Chapter 15: A new model of inquiry 133

by the whole enterprise: if Software Engineering has reached
a dead end, what is to replace it, and what is a better way of
investigating the reality of software development?

I have some ideas about what the fundamental attributes of such
a model are (what even I, after all this work, almost called the
“requirements” for the model):

• it must acknowledge the human nature of the task, and
draw on the cognitive sciences and facts about human
brains and minds

• it must also be rooted in the closest thing we have to “nat-
ural laws”, the mathematical properties of computation
(Turing’s demonstration of the halting problem, and so on)

• it will have to be in part experimental, studying minute
details “in the laboratory”, and in part naturalistic, draw-
ing on observations of “real world” software development

We cannot leave this enterprise to academia: that system’s inertia
is too great. I believe that many of us will have to become
scientists, and study software development even as we practice
it. (In fact, my experience with Agile and Lean thinking and
discourse has convinced me that we all need to become better
scientists; software development efforts present us with such
unique and complex challenges, generating large amounts of
data (and noise), that we all need to become better at generating
and validating, on the fly, hypotheses about “what’s going on
here”.)

My hope is that a few (perhaps many) years down the road,
someone - perhaps even myself - will find an urgent need to

Chapter 15: A new model of inquiry 134

write another book, chronicling the beginning of that exciting
revolution.

Appendix A:
bibliographical analysis of
the 10x files
This appendix is amore detailed explanation of how Iwent about
the bibliographical work summarized in the “10x files” chapter.

My research started with Curtis 1981, chronologically the first of
the sources claimed as support for 10x. My concern was one of
verification. Specifically, I supposed that for each of the sources
listed I could make an assessment of the empirical data contained
therein, and note threats to validity listed by the author.

By following the list of references forward in time, I could
note which later sources referenced the earlier ones, and which
of these sources reported on observational setups designed to
address such threats to validity. This is the standard process
of “incremental” science.

I was most interested in the following particulars of each data
set:

• sample size
• task type
• population type (students or professionals)
• measurement performed (e.g. time to complete task, LOC
per period)

Appendix A: bibliographical analysis of the 10x files 136

• effect being studied
• magnitude of variation reported

Sample size mattered because a large sample should in general
carry more evidential weight than a small sample (leaving aside
considerations such as selection biases). Also, as discussed be-
low, the “best-to-worst ratio” measurement may be sensitive to
sampling effects, and in particular it is likely that a larger sample
will exhibit a greater range than a smaller sample.

Task typemattered because certain tasksmay a) bemore intrinsi-
cally subject to variability than others - debugging is well-known
as this type of very open-ended activity, irrespective of the
programmer’s skill, and b) not necessarily take up a substantial
portion of a typical programmer’s time. More generally, if we
observe substantial variation in performance when looking at a
narrow part of the diverse activity we call “programming”, there
is no guarantee that this observation will generalize to the
whole of the activity.

Population type is a common issue encountered in this type
of research. Students are commonly used as study subjects
because researchers typically have ready access to students at
affordable cost (“convenience samples”). However this can lead
to distortions of the results, if there are systematic differences
between students and professionals which can bias observations;
for instance for our purpose, if the performance of students
can be expected to be more variable than that of professional
programmers.

It is important to know what is being measured and how, since
these are typically major factors considered in the “threats to

Appendix A: bibliographical analysis of the 10x files 137

validity”. Also, the empirical data will have different weight
depending on whether (as in Sackman et al. 1968) the variation
is observed while studying some other effect, or whether the
variability is the direct object of the study.

Finally, of course, the quantitative result must be compared to
the “order of magnitude” claimed in 10x.

Questions of indirection

Early in my investigation it became apparent that some of the
references above did not directly allow these assessments;
most commonly because they were not primary but sec-
ondary sources, that is, publications where the authors asserted
the 10x claim by reference to an earlier source.

Therefore I added to my concerns the following:

• is the reference a primary or secondary source?
• if secondary, what were the authors’ original conclusions,
irrespective of the source’s?

• is the citation to a data set already cited elsewhere in the
list?

This last concern was important because I wanted my degree
of belief to be determined by the quantity and quality of the
empirical evidence, rather than by the number of apparently
authoritative assertions of the claim; I wanted therefore to guard
against “double counting” of some data sets.

Appendix A: bibliographical analysis of the 10x files 138

Summary results

Below are my findings, summarized for the references above,
other than Sackman 1968.

Supporting sources for 10x, table 1

Reference Direct? Task type Sample
size

Curtis 1981 Y/N Debugging 27
Mills 1983 Y unknown unknown
DeMarco
and Lister
1985

Y program to
spec

166

Curtis et al.
1986

N n/a n/a

Card 1987 N project unknown
Boehm and
Papaccio
1988

N n/a n/a

Valett and
McGarry
1989

N project 150

Boehm
2000

Y project 161
(projects)

Appendix A: bibliographical analysis of the 10x files 139

Supporting sources for 10x, table 2

Reference PopulationMeasure Effect
studied

Variation

Curtis
1981

pros time-
to-com-
plete

LOC on
debug
time

22:1
and 8:1

Mills
1983

unknown unknown unknown 10:1

DeMarco
and
Lister
1985

pros time-
to-com-
plete

workplace 5.6:1

Curtis
et al.
1986

n/a n/a n/a various

Card
1987

pros LOC
per
staff
hour

none not
claimed*

Boehm
and Pa-
paccio
1988

n/a n/a n/a various

Valett
and
Mc-
Garry
1989

pros LOC
per
staff
hour

none not
claimed*

Boehm
2000

pros manager’s
evalua-
tion

none not
claimed

* - see discussion below; a textual claim of “6 or 10 to 1” is found
in the primary

Appendix A: bibliographical analysis of the 10x files 140

The quest for primary sources

One direct observation emerges from the summary: most of
the sources in the list of above references were secondary, and
provided no direct information on the empirical data or the
methodology for its collection. So I undertook to find and obtain
the primary sources, that is, the publications where the data was
described for the first time, along with the research methods.

Here is a quick summary of the results of this chasing down
exercise:

From Curtis 1981: the origin of the data is Sheppard et al. 1979.
(Bill Curtis is a coauthor of the original research; one of the “et
al.”)

From Curtis et al. 1986, section II.A:

• the first source is Sackman et al. 1968 (already in our list)
• the second source is Curtis 1981 (already in our list)
• the third source is Boehm 1981
• the fourth source is McGarry 1982

From Card 1987: it is unclear what the primary source is. How-
ever, “Figure 3” which appears to support a claim of large
productivity variation (although no specific ratio is claimed in
the text) reports identical averages to Valett and McGarry 1989;
I therefore considered plausible that either the latter was the
primary source, or that both shared an identical primary source.

From Valett and McGarry 1989: close examination of the text
(figure 2.1) answers the above question, citing the primary source

Appendix A: bibliographical analysis of the 10x files 141

for the “Profile studies” which originate the graphs for individual
variation. This primary is again McGarry 1982.

From Boehm and Papaccio 1988: this cites two primary sources.
In section 1.2: “the (Brown-Lipow, 1973) comparative experiment
showed a 10:1 difference in error rates between personnel.”. The
other reference is in section 2.1.1, which cites Sackman et al. 1968
(already in list) and refers to a 26:1 variation in productivity.

It’s a judgement call whether to consider Curtis 1981 a “primary”
source. It reports on data which were, by design, not included
in the discussion of experimental results in the 1979: they are
data from a “pretest”, a preliminary task used by the Sheppard et
al. to anticipate problems that might arise in the context of the
experimental task. (This was indeed the case: Curtis 1981 reports
that the program initially selected was “too difficult”, leading the
experimenters to switch to a different program.)

The curious reader should also be aware than an earlier and
substantially different version of Card 1987 under an identical
title is available on the Web; this 1985 version is not paywalled,
but the 1987 version is. Some remarks in an earlier essay of mine
were addressed to Card 1985 which I had mistaken for Card
1987. Such is the kind of problem you run into in this kind of
bibliographical work.

A better list: primary sources with
empirical evidence

Summarizing the above, here is the list of all the primary sources
I was able to identify with discernible empirical data:

Appendix A: bibliographical analysis of the 10x files 142

• Boehm, Brown and Lipow, 1973
• Sheppard et al. 1979
• Curtis 1981
• McGarry 1982
• DeMarco and Lister 1985

Mills 1983 does not directly mention or indirectly reference
empirical data. Two references, Boehm 1981 and Boehm 2000,
do constitute a treatment of empirical data, but this data is not
relevant to the 10x claim for individuals.

Only one of these sources (DeMarco and Lister 1985) is from the
original list of 8 sources claimed to confirm Sackman et al 1968.

References (original)

(McConnell 2010) “What Does 10x Mean? Measuring Variations
in Programmer Productivity”, in “Making Software”, O’Reilly,
2010, p567

(McConnell 2011) http://forums.construx.com/blogs/stevemcc/archive/2011/01/09/origins-
of-10x-how-valid-is-the-underlying-research.aspx (retrieved 27/01/11)

(Mall) Fundamentals of Software Engineering, RajibMall, Prentice-
Hall of India, 2004

(Huang) http://www2.cs.uh.edu/∼jhuang/JCH/SE/estimation.ppt
(retrieved 27/01/2011)

(Dickey) Dickey, Thomas E. 1981. “Programmer Variability,”
Proceedings of the IEEE, 69, 7, (July): 844-845.

(Sheppard et al. 1979) S. B. Sheppard, B. Curtis, P. Milliman,
and T. Love, “Modern coding practices and programmer perfor-
mance,” Comput., vol. 12, no. 12, pp. 41-49, 1979

Appendix A: bibliographical analysis of the 10x files 143

(Boehm 1981) B. W. Boehm, Software Engineering Economics.
Englewood Cliffs, NJ: Prentice-Hall, 1981.

(McGarry 1982) F. E. McGarry, “What have we learned in the
last six years?” in Proc. 7th Annu. Software Engineering Work-
shop (SEL-82-007) (Greenbelt, MD: NASA Coddard Space Flight
Center), 1982.

(Brown and Lipow 1973) Brown, J. R., and M. Lipow, The
quantitative Measurement of Software Safety and Reliability,
revised from TRW Report No. SDP-1776, August 1973, TRW
Software

(Boehm, Brown and Lipow, 1976) Barry Boehm, J. R. Brown, M.
Lipow, “Quantitative Evaluation of Software Quality,” Proceed-
ings of the 2nd International Conference on Software Engineer-
ing, San Francisco, California, 1976, pp. 592-605

(Weinberg and Schulman 1974) Weinberg, Gerald M., and Ed-
ward L. Schulman. 1974. “Goals and Performance in Computer
Programming.” Human Factors 16, no. 1 (February): 70-77.

(PROMISE 1981) http://promisedata.org/repository/data/coc81/coc81_-
1_1.arff (retrieved 29/01/11)

(PROMISE 2000) http://promisedata.org/repository/data/nasa93/nasa93.arff
(retrieved 29/01/11)

(Kaner 2004) http://www.kaner.com/pdfs/metrics2004.pdf (retrieved
29/01/11)

(Sackman and Grant 1967) Grant, E. E., and H. Sackman, “An
Exploratory Investigation of Programmer Performance Under
On-line and Off-line Conditions”, IEEE Transactions on Human
Factors in Electronics, Vol. HFE-8. No. 1, March 1967, pp. 33–48.

Appendix A: bibliographical analysis of the 10x files 144

(Lampson 1967) Lampson, B. “A critique of ‘An Exploratory
Investigation of Programmer Performance Under On-line and
Off-line Conditions’”, IEEE Transactions on Human Factors in
Electronics, Vol. HFE-8. No. 1, March 1967, pp. 48-51.

References (from McConnell 2010)

(Augustine 1979) Augustine, N. R. 1979. “Augustine’s Laws and
Major System Development Programs.” Defense Systems Man-
agement Review: 50-76.

(Boehm and Papaccio 1988) Boehm, Barry W., and Philip N.
Papaccio. 1988. “Understanding and Controlling Software Costs.”
IEEE Transactions on Software Engineering SE-14, no. 10 (Octo-
ber): 1462-77.

(Boehm 2000) Boehm, Barry, et al, 2000. Software Cost Estima-
tion with Cocomo II, Boston, Mass.: Addison Wesley, 2000.

(Card 1987) Card, David N. 1987. “A Software Technology Eval-
uation Program.” Information and Software Technology 29, no.
6 (July/August): 291-300.

(Curtis 1981) Curtis, Bill. 1981. “Substantiating Programmer Vari-
ability.” Proceedings of the IEEE 69, no. 7: 846.

(Curtis et al. 1986) Curtis, Bill, et al. 1986. “Software Psychology:
The Need for an Interdisciplinary Program.” Proceedings of the
IEEE 74, no. 8: 1092-1106.

(DeMarco and Lister 1985) DeMarco, Tom, and Timothy Lister.
1985. “Programmer Performance and the Effects of the Work-
place.” Proceedings of the 8th International Conference on Soft-
ware Engineering. Washington, D.C.: IEEE Computer Society
Press, 268-72.

Appendix A: bibliographical analysis of the 10x files 145

(Mills 1983) Mills, Harlan D. 1983. Software Productivity. Boston,
Mass.: Little, Brown.

(Sackman et al. 1968) Sackman, H., W.J. Erikson, and E. E.
Grant. 1968. “Exploratory Experimental Studies Comparing On-
line and Offline Programming Performance.” Communications
of the ACM 11, no. 1 (January): 3-11.

(Valett and McGarry 1989) Valett, J., and F. E. McGarry. 1989. “A
Summary of Software Measurement Experiences in the Software
Engineering Laboratory.” Journal of Systems and Software 9, no.
2 (February): 137-48.

Appendix B:
bibliographical analysis
for the
“defect-cost-increase
curve”
The older set of references examined is from Boehm’s 1981 book
“Software engineering economics”, p.39; the curve itself is on the
next page; and for Boehm 1976 from Boehm’s chapter in the book
“Making software”.

Themore recent set is fromBoehm’s chapter in the book “Making
software”, and from slide decks published on theWeb site of Con-
strux, a consultancy that has compiled extensive bibliographies
on topics related to estimation, software quality and more.

The older references

Boehm 1980

This is given as “Developing Small-Scale Application Software
Products: Some Experiment Results” from IFIP Proceedings.

In fact that is definitely the same study, and possibly the same
text (the abstracts are almost word for word identical) as “An

Appendix B: bibliographical analysis for the “defect-cost-increase curve” 147

Experiment in Small-Scale Application Software Engineering”,
IEEE TSE 1981.

The main difference seems to be that the latter is available online
(for a fee via IEEE’s CSDL), but not the former…

Boehm claims the earlier paper as reference for a 5:1 ratio
between cost to fix defects in “Requirements” phase compared to
“Acceptance testing” phase. (The later paper in fact claims only
a 4:1 ratio. This may not seem like a big deal, but any reduction
in the effect size, given the small sample studied, means it is
that much more likely that the variation arose by pure chance
or because of some influence other than “phase the defect was
detected”.)

Boehm only gives 2 data points when reproducing the diagram
in his books, or in the much more recent book “Making Soft-
ware”, p.163. One for the “requirements” phase and one for the
“acceptance test” phase.

The subjects are two teams of first-year graduate students, in
the Fall. One team using Pascal and the other Fortran. This
is problematic for generalization: these would be very young
people working on their very first programming project.

The workload during the project was self-reported, collected by
having students fill in weekly time forms; the average time spent
on the project ranged from 5 hours per student in week one to
15 hours per student in week 11.

It’s difficult to tell what yields the two data points with a 4:1
ratio. There is no discussion of how many defects were handled
in each phase, only of the total aggregate cost of “fixing” efforts.
(Remember that the cost-to-fix curve is supposedly about the

Appendix B: bibliographical analysis for the “defect-cost-increase curve” 148

average cost to fix one defect.)

Boehm notes a “deadline effect” resulting from the introduction
of two review activities at weeks 3 and 6 of the 11-week project,
and attributes the limited ratio of costs to the deadline effect. In
fact “fixing” effort is (as one might expect) much higher for both
teams in the weeks that follow the review activities.

The single week in which the most effort was spent was - as you
might guess - the final week. This is less an empirical finding
about how costs are distributed throughout a software projet,
and more an empirical finding about how students allocate
working time.

If you look at Fig 2. of the paper, which I reproduce below, you
can see that cost-to-fix ratios are not rising linearly as the usual
curve suggests.

“Distribution of effort” chart

Appendix B: bibliographical analysis for the “defect-cost-increase curve” 149

The curve is sawtooth-like. Week 4, early in Design phase, has
about 20 manhours of fixing, compared to about 50 manhours
in week 11. (That’s only a 2.5:1 ratio between Design and
Acceptance Testing, which is much less than it “should” be.) But
Week 10 “fixing” effort for instance is quite a bit less than Week
4 “fixing” effort.

And in fact you have to wonder why Boehm included only 2 data
points in the book diagram: the effort data was collected for each
of the 11 weeks.

The problem, of course, is that if Boehm had reproduced all of
the data points, his book diagram would have shown a sawtooth
curve, not the smoothly rising linear curve he in fact shows
(linear on the log scale, so smoothly exponential on a normal
scale).

Verdict: leprechaun sighting.

Stephenson 1976

Titled “An analysis of the resources used in the safeguard system
software development”, this paper was published in the proceed-
ings of ICSE (available online from ACM: free to members, for a
fee otherwise).

Boehm obtains three data points from this study on Bell Lab’s
Safeguard project, a “cost to fix” of about 3 midway through
Requirements, and of about 50 to 100 during the span from
“Development” to “Acceptance testing”.

Searching the paper for what figures are used to yield these
data points is a fruitless and frustrating exercise. The paper uses
the term “defect” very little, and elsewhere the more informal

Appendix B: bibliographical analysis for the “defect-cost-increase curve” 150

“problem” is used but in none of these cases in reference to the
cost of corrective activities.

The paper itself specifically disclaims any attempt at breaking
down costs to the level that would support Boehm’s claims:

The data presented addresses total system software
development as opposed to individual programmer
or even group productivity levels. […] The inter-
dependence of actual coding and testing upon the
many other activities, such as system requirements
generation and design […] make it difficult and of
questionable value to isolate to a unit or program
level.

Verdict: leprechaun sighting.

Boehm 1976

This is simply titled “Software engineering”, appeared in IEEE
Transactions on Computers, and is available online for free at
the IEEE, in a stunning departure from their usual policy.

Boehm claims this as the source for “a summary of current
experience” at TRW. Data points are supplied for each phase,
and there are error bars for all the points (except one, and we’ll
come back to that exception).

As the title suggests, this isn’t a paper covering one focused
empirical study. It’s a broad overview, attempting to provide a
definition of the term and a survey of the field at that time, and
of what prospects lay ahead for it.

Appendix B: bibliographical analysis for the “defect-cost-increase curve” 151

The cost-of-defects curve is on page three, just after a page
showing “hardware-software cost trends” (a chart which we
know cannot be strictly empirically derived, since it purports to
extrapolate said trends to the mid-1980s, ten years after the pa-
per), and the usual representation of the Software Development
Life Cycle, also known as “waterfall”.

No numerical data is supplied at all concerning TRW. Nor is any
further reference given suggesting where the TRW data might
be found.

Verdict: leprechaun sighting.

The TRW study

Even though we can quickly dismiss the previous paper, a few
things here need to be noted. First, TRW was where Boehm
worked, so that’s where it was easiest for him to get at studies
showing what he wanted to show; even, if necessary, ahead of
publication.

Second, the study he needed did in fact exist: it is the rather
massive TRW “Software Reliability Study”, also available online
for free TRW⁴⁵. If Boehm had cited that, we would have the
“needle in a haystack” problem, in spades, as the study runs to
350 pages, which I’ve only briefly skimmed.

Page 44 of the study has an interesting tidbit: “coding errors
have been shown by Shooman and Bolsky to be less costly to
diagnose and correct than design errors”, the opposite of the
rising-cost-of-defects claim. The TRW study doesn’t disagree
with this conclusion, apparently.

⁴⁵http://1.usa.gov/yX7srV

http://1.usa.gov/yX7srV
http://1.usa.gov/yX7srV

Appendix B: bibliographical analysis for the “defect-cost-increase curve” 152

Looking at Section 4, you find that the study looked at many of
the questions, on a defect-by-defect basis, that would confirm
the claims in the diagram: when the error was detected, when it
was introduced, how long it took to fix.

The study provides a diagram of this last data on page 144: it
charts “mean problem closure time” as a function of “problem
priority”. The authors don’t seem to be very interested in closure
time, which only rates a brief analysis (compared e.g. to the
dozens of pages, with sophisticated regression charts, of the
relation between defects and code complexity). The chart has
data for four test phases (validation, acceptance, integration,
“operational demonstration”). It does not jump out from the
diagram that times-to-fix are longer in later than in earlier
phases.

Appendix B: bibliographical analysis for the “defect-cost-increase curve” 153

“Mean SPR closure time” chart

Appendix B: bibliographical analysis for the “defect-cost-increase curve” 154

Page 38 adds this: “…errors attributed to a source in software
requirements were probably recorded as design errors in this
investigation, although no problem report specifically cited re-
quirements in either project’s data.” The TRW study did not look
at the cost to fix defects originating in the requirements phase.

Verdict: leprechaun sighting.

And… One more thing.

Remember these error bars we noted earlier in Boehm 1976?
There’s only one data point that doesn’t have them. It’s “coding”,
which is associated with a “relative cost to fix” of exactly 1. In
other words, this diagram is claiming to know exactly howmuch
it costs to fix a defect detected during the coding phase. Whereas
the costs to fix defects detected earlier or later are not known
with much precision.

Later versions of this diagram, in particular that appearing in
Boehm’s 1981 book, do not have this feature: they fix defects
spotted at requirements as having a baseline cost of 1, and show a
cost of 10 (exactly: no error bars) for errors spotted during coding.

We can imagine why the TRW data point associated with “re-
quirements” would need an error bar: it is perforce speculative,
since the TRW study didn’t record that cost data. So Boehm is
saying “I guesstimate that correcting an error in the requirements
phase would be about one-tenth the cost of correcting it while
coding”.

But it’s embarrassing to have this kind of strongly pointed out
by the Coding=1 association. I suspect that’s why later versions
fix Requirements=1. Which doesn’t matter, of course, since the
diagrams chart relative cost to fix.

Appendix B: bibliographical analysis for the “defect-cost-increase curve” 155

Still, I can’t help but see this tiny change as significant.

Daly 1977

This is E.B. Daly’s “Management of Software Development”,
a 1977 paper in IEEE Transactions on Software Engineering,
available online for a fee.

Boehm claims this as the source for two data points, one about
30 to fix a defect in the unit testing phase, the other in the range
150-300 to fix a defect after deployment.

The paper discusses some statistics from project experience
at GTE. It is largely prescriptive rather than descriptive; it
presents a “methodology” for the software development cycle.
The empirical results are interspersed with the description of this
recommended approach, with extremely sparse descriptions of
the data collection methods.

There is relatively little discussion of the cost of fixing defects;
and one illustration, Fig. 13, which I’m reproducing here. (They
say that “a picture is worth a thousand words”. Fig. 13 consists
of fifteen words, and adds no discernible value over and above a
sentence of text containing the same fifteen words. It’s tempting
to call Fig. 13 a waste of 985 words, close to 99% of its potential
value.)

Appendix B: bibliographical analysis for the “defect-cost-increase curve” 156

“Cost of finding a software bug” chart

The text says: “The development cost required to detect an error
by reading code is approximately equal to 25 percent of that
required to detect the same error via machine debugging. This
statistic was gathered from two projects”, one large and one
small.

One should keep in mind, when reading this, that in the 1970s
computers had much more limited capacities, and therefore
the expense referred to above is mostly that of the computer
time required for debugging runs. In fact, here is the sentence
immediately preceding the one I quoted above: “Code reading
and mental testing should always be employed prior to object-
machine testing in order tominimize usage of expensivemachine
time.” So this 4:1 differential would either not exist anymore
nowadays, or arise from very different causes.

Toward the end of the paper there is somewhat more extensive

Appendix B: bibliographical analysis for the “defect-cost-increase curve” 157

discussion of the cost of fixes, and another reference to Fig. 13
says: “The development cost required to detect and resolve a
software bug after it has been placed into service is thirty times
larger than the cost required to detect and resolve a bug during
the early ‘code reading’ phase.”

As you can see from the rather simplistic Fig. 13, only a ratio of
15:1 is claimed, and the comparison isn’t really concerned with
life-cycle phases, but with the type of activity which results in
detecting bugs.

No detailed data is provided, nor any information about the
manner of collecting this “statistic”. It’s hard to treat it as much
more than (possibly informed) opinion.

Verdict: leprechaun sighting.

Fagan 1976

Titled “Design and code inspections to reduce errors in program
development”, this is available online for free: rejoice!

Boehm claims this as the source for five data points labeled
“IBM”: at the Requirements, Design, Development (i.e. Unit)
testing and Acceptance testing phases, plus a relatively wide
spread (100 to 1000) post-deployment.

Four of these data points only appear in the 1981 and later
versions of Boemh’s diagram, even though the study cited is the
same: the 1976 version only shows the last of these data “points”,
in fact a very spread-out range (100 to 1000).

The paper opens with a paean to discipline, and I can’t resist
quoting this bit: “An ingredient that gives maximum play to

Appendix B: bibliographical analysis for the “defect-cost-increase curve” 158

the planning, measurement, and control elements is consistent
and vigorous discipline.” Ah, sweet, vigorous discipline! The
emphasis is Fagan’s, by the way.

But let’s move on to the cost of rework. On page 185, the claim
is presented as a bald assertion: “The cost of reworking errors
in programs becomes higher the later they are reworked in the
process, so every attempt should be made to find and fix errors
as early in the process as possible.”

(I’m pointing this out to show that this isn’t really an “investiga-
tion” in the usual sense; Fagan starts out already well convinced
of this claim, and his research isn’t intended to find out or to
explore, or even to replicate - as far as this topic goes.)

For once the manner of collecting data is described in some
detail. The data provided comes from a sample, “a piece of the
design of a large operating system component”. The process pre-
sented by Fagan includes three inspection steps: one after “design
complete”, one code inspection, and one unit test inspection,
“done to see that the unit test plan had been fully executed”.

Note that there is no requirements inspection, and it is not clear
where Boehm is getting the first data point, the one correspond-
ing to the earliest phase; or the last data point, the 100-to-1000
spread.

And here is the section on the cost of rework: “The error rework
in programmer hours per K.NCSS found in this study due to I1
was 78, and 36 for I2 (24 hours for design errors and 12 for code
errors).”

In other words, Fagan finds a 2:1 ratio in the other direction from
that claimed in the rising-cost-of-defects curve! (Though this

Appendix B: bibliographical analysis for the “defect-cost-increase curve” 159

isn’t really cost-to-fix per defect, but cost-to-fix relative to the
overall code size, but it’s suggestive that what Fagan measured
isn’t quite what Boehm claimed.)

The rest of the paper - which is mostly prescriptive, rather than
an empirical study - does not discuss further empirical data on
the cost of rework.

On page 202 there is one sentence which one could be vaguely
tempted to interpret as support for the final 100-1000 data point:
“This [inspection process] results in much lower cost than in the
‘old’ approach, where the cost of error reworkwas 10 to 100 times
higher and was accomplished in large part during the last half of
the schedule.”

Of course this would be a criminally loose interpretation: what
is being compared is overall cost, not cost per defect; what is
being compared is an older method with a newer method, not
two distinct phases. We’d better assume that Boehm was not
getting that data point from that sentence.

Verdict: leprechaun sighting.

The newer references

Lindner and Tudahl 1994

This is “Software Development at a Baldrige Winner”, appearing
in Proceedings of ELECTRO’94, describing practices at IBM’s
Rochester installation. This is available online for a fee to mem-
bers of the IEEE, but infuriatingly is not available through the
IEEE Computer Society’s Digital Library.

Appendix B: bibliographical analysis for the “defect-cost-increase curve” 160

As to its credibility: it’s a PowerPoint!

There isn’t one page of narrative text. Therefore, obviously, no
information on what the authors mean by “defects” or “cost of
defects”, no information on sample sizes, populations, etc.

The only reference to the defect-cost-increase claim is a diagram,
with unlabeled axes and the title “cost of defects”. This diagram
says “inspection: X, test, 13X, field 92X”. (This is mistakenly
reported as 117X in the eWorkshop paper, other sources report it
as “9X then 13X” - also mistakenly.)

Yes, unlabeled axes: remember in high school when you’d get a
slap on the fingers for failing to label your axes? Well, what is
cited as “research” in our field isn’t up to high school standards.

Verdict: leprechaun sighting

McGibbon 1996

This is given as “Software reliability data summary”, a Data &
Analysis Center for Software (DACS) Technical Report, suppos-
edly presented during a 2002 “eWorkshop” (an online instant-
messaging discussion among experts).

Boehm’s 2010 chapter claims that this reference shows “a range
of 70-125:1”, however this is inconsistent with two versions of the
“minutes” from this eWorkshop, both of which report a “100:1
factor”, see eWorkshop⁴⁶.

The DACS’ own Web site does not list any Technical Report by
that title, see DACS⁴⁷. The author, Thomas McGibbon, is the

⁴⁶http://www.cs.umd.edu/~mvz/pub/eworkshop02.pdf
⁴⁷http://www.thedacs.com/techs/tr.php?orderby=date

http://www.cs.umd.edu/~mvz/pub/eworkshop02.pdf
http://www.thedacs.com/techs/tr.php?orderby=date
http://www.cs.umd.edu/~mvz/pub/eworkshop02.pdf
http://www.thedacs.com/techs/tr.php?orderby=date

Appendix B: bibliographical analysis for the “defect-cost-increase curve” 161

Director of DACS, a US DoD contractor “chartered to collect,
analyze, and disseminate information relating to the software
domain”.

Only one Technical Report is listedwith a date of 1996 and author
McGibbon, and this is “A Business Case for Software Process
Improvement”, available in a 2007 revision on the DACS Web
site, see BizCase⁴⁸.

This 2007 reference contains one 100:1 claim which is consistent
with the eWorkshop minutes, and with a date (1995) which
does not rule out its being already present in the 1996 version.
However, it cites no other evidence in favor of the defect-cost-
increase claim, and this one claim is presented as an “estimate”,
not the result of any measurement.

Verdict: leprechaun sighting.

Leffingwell 1997

This is given as “Calculating the Return on Investment from
More Effective RequirementsManagement,” American Program-
mer, volume 10, issue 4.

The article has been reprinted online in IBM DeveloperWorks,
see Calculating⁴⁹.

The first section title is “The Software Crisis Continues Un-
abated”, which is a preview of things to come: the article is an
editoral piece, not a research report.

In typical telephone game fashion, the only relevant evidence
provided is an older citation:

⁴⁸http://www.thedacs.com/techs/abstract/347616
⁴⁹http://www.ibm.com/developerworks/rational/library/347.html

http://www.thedacs.com/techs/abstract/347616
http://www.ibm.com/developerworks/rational/library/347.html
http://www.thedacs.com/techs/abstract/347616
http://www.ibm.com/developerworks/rational/library/347.html

Appendix B: bibliographical analysis for the “defect-cost-increase curve” 162

Studies performed at GTE, TRW, and IBM mea-
sured and assigned costs to errors occurring at var-
ious phases of the project life-cycle. These statistics
were confirmed in later studies.

The “later studies” are in fact the same as the earlier studies, since
the reference provided is to a well-known 1988 Boehm paper
“Understanding and Controlling Software Costs” that has the
dubious honor of being frequently used as a reference for both
the 10x claim and the defect-cost-increase claim.

But this 1988 article in turn provides no evidence of its own, only
referring back to the same studies cited in Boehm’s 1981 book.

Verdict: leprechaun sighting.

Grady 1999

This is “An Economic Release DecisionModel: Insights into Soft-
ware ProjectManagement” from Proceedings of the Applications
of SoftwareMeasurement Conference, 1999 - an SQE conference.

This paper is available nowhere online. It was presented at
one of the first editions of a little-known SQE conference on
“Applications of Software Measurement”.

This paper is often cited as one of the recent sources for the
“rising cost of defects” claim; people even quote specific “cost
multipliers” depending on phase that come from a chart in this
paper. Unfortunately, its extremely limited availability makes it
hard to check what data it may refer to.

After a lot of digging around, one finds that the author was with
Hewlett Packard, and that the study in question is probably the

Appendix B: bibliographical analysis for the “defect-cost-increase curve” 163

same one that was referred to in one chapter of his book on “Prac-
tical Software Metrics”, titled “Dissecting Software Failures”. If
this is indeed the case, then our search for verifiable information
is over, as one online article, Dissecting⁵⁰ gives details on the
study, including the following quote on page 2:

“The data for this example is taken from a detailed
study of defect causes done at HP. In the study, de-
fect data was gathered after testing began. […] This
study didn’t accurately record the engineering
times to fix the defects, so we will use average
times summarized from several other studies to
weight the defect origins.

(Read this several times until it sinks in, especially the bit in
bold.)

Verdict: leprechaun sighting.

Humphrey et al 1991, Willis et al 1998

Though these two references are seven years apart, they re-
fer to the same long-running process improvement initiative:
“Software process improvement at Hughes Aircraft”, in IEEE
Software, Volume 8, issue 4, tells the beginning of the story;
the rest is in “Hughes Aircraft’s Widespread Deployment of a
Continuously Improving Software Process”, Software Engineer-
ing Institute, paper 115.

⁵⁰http://findarticles.com/p/articles/mi_m0HPJ/is_n2_v40/ai_7180006/

http://findarticles.com/p/articles/mi_m0HPJ/is_n2_v40/ai_7180006/
http://findarticles.com/p/articles/mi_m0HPJ/is_n2_v40/ai_7180006/

Appendix B: bibliographical analysis for the “defect-cost-increase curve” 164

Both are available online, see HughesOne⁵¹ and HughesTwo⁵².

The first reference is focused strictly on Hughes’ ascension from
CMMI level 2 to level 3. It provides no numerical data on the cost
per defect as a function of phase.

The second reference is much more interesting. It is the only
one, out of all the literature surveyed for evidence of the defect-
cost-increase, which in facts attempts to fill the entire “matrix”,
crossing “phase when defect was introduced” with “phase when
defect was corrected”. The defects database analyzed included
close to 70,000 defects at the time the study was written up.

This is the only data set that looks like a credible source for the
“grid and sheets” design variant of the Boehm curve; no other
has this matrix structure.

The problem is that the ratios are far, far from what Boehm
claims, and far, far from what the “grid-and-sheets” variants
depict!

Look at the bigger chart, representing defects introduced in
“Requirements Analysis”. Numerically, fixing the cost of a defect
at 1 in “Requirements Analysis”, it only costs 6 times more to fix
it in the “Functional Test” phase, in the pre-1991 data set. In the
post-1991 data set, the worst ratio is 11:1, between “System Test”
and “Requirements”.

Worse for the “defect-cost-increase curve”, the data do not bear
out a monotonically increasing cost phase after phase: it is again
a sawtooth curve!

⁵¹http://www.ipd.uka.de/mitarbeiter/padberg/lehre/sqs07/
HumphreySnyderWillisSOFTWARE1991.pdf

⁵²http://repository.cmu.edu/sei/115/

http://www.ipd.uka.de/mitarbeiter/padberg/lehre/sqs07/HumphreySnyderWillisSOFTWARE1991.pdf
http://repository.cmu.edu/sei/115/
http://www.ipd.uka.de/mitarbeiter/padberg/lehre/sqs07/HumphreySnyderWillisSOFTWARE1991.pdf
http://www.ipd.uka.de/mitarbeiter/padberg/lehre/sqs07/HumphreySnyderWillisSOFTWARE1991.pdf
http://repository.cmu.edu/sei/115/

Appendix B: bibliographical analysis for the “defect-cost-increase curve” 165

There is also a lot of variance in the data, not at all like the smooth
exponentials suggested by the various pictorial representations
of the curve. If you look at the smaller charts, there are indeed
some large inter-phase ratios in other columns, but there are also
some much smaller ones.

Average Cost to Fix Defects Found in Each Phase

Verdict: a leprechaun sighting, but at least this is clearly “a guy in
a leprechaun suit”, not “a blurry picture which could be anything
including a leprechaun”.

Online references

Appendix C - Conceptions
and invention of waterfall

Invention of waterfall

Prior to 1987 only a single article citing Royce is from someone
other than TRW personnel. One paper cites Royce from an
internal TRW publication, with the same date as the Westcon
venue generally cited. This a joint effort with Loesh from JPL,
and JPL is the one exception to the TRW rule. It’s probably fair
to say that up to 1987 Royce is purely TRW lore.

No less than 10 papers mention “Boehm’s Waterfall”: Lehman
1984, Overstreet et al. 1987, Harbison-Briggs 1990, Chroust et al.
1990, Conger et al. 1991, Chroust 1994, Moretton 1997, Burback
1998, Kuiper 2001, Portougal 2006.

(Blum 1993 has “Boehm’swaterfall” but it is to distinguish it from
“Royce’s waterfall”)

Conceptions of waterfall (articles
between 1970 and 1989)

There is no indication that authors from TRW have direly
misunderstood Royce: the occasional references to Royce’s “5
principles” establish that TRW personnel have a good grasp on
what his article actually said.

Appendix C - Conceptions and invention of waterfall 167

However none of the citing papers from that twenty-year period
uses anything other than the “cascade” picture which is Royce’s
Figure 3 (or sometimes Figure 2).

The Liu article from 1989 suggests that Royce wasn’t opposed to
a conception of his model as one where “the completion of one
phase leads to another” and as a “manufacturing model” - this
article was “recommended by Royce”, a footnote says.

Williams (TRW) 1975

• does not refer to waterfall by name
• pic on p3 is the 8-step cascade
• “the rather conventional step-wise production process il-
lustrated”

• “admittedly a gross simplification”
• “contains the essential ingredients”
• then cites all 5 of the sections of Royce (do it twice, etc.)
• “not necessary to elaborate further upon these important
principles except to state that they […] have come to be
integral to our development approach”

• “much progress is possible through concentrated attention
on the front end of the production process” (in conclu-
sions)

Bell and Thayer (TRW) 1976

• no pic
• top down approach over bottom-up
• “design-to” requirements doc, “code to” design doc

Appendix C - Conceptions and invention of waterfall 168

• succession of documents leads designers through top-
down process

• explained by Royce without military jargon
• few projects map nicely onto that scheme

Tausworthe (JPL) 1976

• 5-step cascade pic on p18, not citing Royce
• the Royce reference is for a later, indirect Royce quote:
“Until coding begins, documentation is the specification
and is the design. If documentation is bad, the design is
bad.”

• refers to “several mutually interacting activities”
• “the fundamental, guiding principle […] is the top-down
procedure”

• diagram on p337 makes clear the sequence is “per phase”,
where “phase” means “a portion of the program” - thus,
somewhat incremental

• schedule diagram on p349 shows substantial overlap in
activities (“phased concurrency”) overall

Boehm (TRW) 1976 (“Software Engineering”)

• pic of 7-step cascade with iterations between steps, not
sourced

• does not mention waterfall by name
• does not cite Royce 1970 (but a different Royce paper on
“problems stemming from a lack of a good requirements”)

Appendix C - Conceptions and invention of waterfall 169

Boehm (TRW) 1983

• pic of 7-step cascade with iterations between steps
• pic of 7-step cascade with “excessive iterations” (Fig 3 of
Royce)

• paper is “ one of a series of efforts at TRW to define such
a set of principles, beginning with a set of five principles
formulated by Royce in 1970 and refined into different sets
of principles […] in subsequent efforts”

• the “waterfall” chart is Figure 2, Royce is not cited
• “the major products of each phase must be thoroughly
understood, and preferably documented, before going to
the next one”

• however “emphasis above on phased development does
not imply that a project should defer all coding until every
last detail has been worked out”

• “several refinements of the waterfall approach […] require
code to be developed early” - prototyping, incremental
development, scaffolding

Boehm (TRW) 1984 (“Prototyping”)

• no waterfall pic
• Royce cited alongside two other papers (Benington 56,
Hosier 61)

• three approaches, Build and Fix, Specify, Prototype
• waterfall is Specifying, and evolved “to avoid the problems
encountered in Building and Fixing”

Appendix C - Conceptions and invention of waterfall 170

• “encounters difficulties in application areas in which it
is hard to specify requirements in advance […] most
frequently in human-machine interface systems”

Loesh (JPL), Reifer, Jacobs (TRW) 1984

• no pic
• no mention of waterfall by name
• the form of the citation is particularly interesting:

Royce, W. W. “Managing the Development of Large Software
Systems: Concepts and Techniques.” TRW Software Series Pub-
lication No. TRW-JS-70-01, August 1970.

Penedo (TRW) 1985

• “the TRW software developmentmethodology, which cov-
ers the entire project life-cycle […] originated in Royce
1970 and has undergone constant evolution”

• pic in Figure 2 of a 10-step cascade heavily modified from
Royce’s Figure 2

• no mention of waterfall by name

Overstreet 1987

• pic is 7-step cascade reproducing Boehm 1976
• legend: “Boehm’s waterfall model”
• “the original treatment […] is given in Royce 1970”

Appendix C - Conceptions and invention of waterfall 171

• “Boehm expands each step to include a V&V activity to
cover hi-risk elements, reuse considerations and prototyp-
ing”

Boehm 1987 (“Software process management”)

• introduces the three papers in a ICSE session
• Benington, Hosier, Royce (cf. his 1984 paper)
• “Royce’s 1970 paper is generally considered to be the paper
which defined the stagewise waterfall”

• “Royce’s paper already incorporates prototyping as an
essential step compatible with the waterfall model.”

• “The primary additional contribution of Royce’s Figure 3
is in the explicit treatment of iteration and feedback”

• “One frequent objection to the waterfall model is that
it forbids prototyping. People interpret it to say, “Thou
shalt not write one line of code until every detailed design
specification is complete.” Royce’s Figure 7 shows that this
was not the intent.”

• “Although these three papers may be of considerable in-
terest for historic perspective on our understanding of the
software process, I do not think that is their primary value.
Their main value is their continuing relevance today.
Most of the specific guidance they provide on require-
ments analysis, prototyping, early planning, precise inter-
face specifications, lean staffing in early phases, core and
time budgeting, objective progressmonitoring, integration
planning and budgeting, support software preparation,
documentation, test planning and control, and involving
the customers and users, can be used as well today as at

Appendix C - Conceptions and invention of waterfall 172

the time they were written. They stand today as the record
of thoughtful people summarizing the lessons they had
learned,in the hopes that those of us who came along later
would be able to repeat the positive software engineering
experiences from history rather than the negative ones. I
hope you will be able to benefit from them.”

Boehm 1988 (“Spiral”)

• explicit contrast with waterfall
• “original treatment” in Royce 1970
• provided two primary enhancements to stagewise model:
• feedback loops betwen (preferably adjacent) stages
• “build it twice” prototyping step
• largely consistent with top-down as discussed by Mills
• some attempts ran into difficulties, resulting in “risk man-
agement variant” supposedly discussed in Boehm’s 1975
“Software Design and Structuring” and Boehm 1976 (it’s
hard to find the relevance of these two citations)

Davis 1988 (“A comparison of techniques…”)

• pic on p2 is 5-step cascade with feedback loops
• cites Royce 1987/70
• waterfall model “characterize[s] the series of software
engineering phases”

• dings waterfall for lack of symmetry, showing a V-model
to fix that

Appendix C - Conceptions and invention of waterfall 173

• “the requirements phase is of extreme importance”, must
yield “a complete description of what the software will do
without describing how it will do it”

Davis et al. 1988 (“A strategy for comparing…”)

• pic is 7-step cascade with feedback loops
• “defined as early as 1970 by Royce and later refined by
Boehm in 1976”

• most standard e.g. military methodologies follow some
variation of waterfall

Humphrey 1989

• no pic
• “outside the research community, much software process
thinking is still based on the waterfall framework, as
described by Win Royce in 1970”

• cites Royce 1970/87 (as two references)
• “does not adequately address the pervasiveness of changes
in software development”

• “unrealistically implies a relatively uniform and orderly
sequence of development activities”

• “does not easily accommodate such recent developments
as rapid prototyping or advanced languages”

• “provides insufficient detail to support process optimiza-
tion”

Appendix C - Conceptions and invention of waterfall 174

• “Over-reliance on the waterfall model has had several
unfortunate consequences. First, by describing the process
as the sequence of requirements, design, implementation,
and test, each step is viewed as completed before the next
one starts. The reality is that requirements live throughout
development and must be constantly updated. Design,
code, and test undergo a similar evolution. The problem
is that when managers believe this unreal process, they
require that design, for example, be completed before
implementation starts. Everybody who has ever devel-
oped much software knows that there are many tradeoffs
between design and implementation. When the design
is not impacted by implementation, it means that either
the design went too far or the process was too rigid to
recognize and adjust for implementation problems.”

Liu 1989 (“A formal model”)

• no pic: “it has been reprinted so often we will not repro-
duce it here”

• cites 1987 reprint for pic source
• ms is recommended by Royce to IEEE, so R presumably
approves of:

• “views software development as a manufacturing process”
• “each step is a phase, and the completion of one phase
leads to another”

• “each phase has inputs from a previous phase and outputs
(some of which are deliverables), that it produces”

• “model is often shown with back pointing arrows as
well as forward pointing arrows, acknowledging that the

Appendix C - Conceptions and invention of waterfall 175

manufacturingmodel captured in the waterfall chart is not
precise, and that previous phases may be returned to”

Weitzel 1989

• no pic
• waterfall not mentioned by name
• “System development life cycles (SDLCs) originated when
most systemswere Transaction Processing Systems.Method-
ologies like Pride, Spectrum, and SDM appeared in the
early 1970s. These methodologies and other SDLCs are
usually variants of Royce’s or Boehm’s life cycles.”

• “Many organizations execute SDLC phases sequentially,
with a sign-off after each phase, an approach that is
suitable for many TPSs.”

• “Unfortunately, knowing information requirements in ad-
vance is unlikely; straight- forward design is rare, even
with TPSs; and sign-offs invite difficulties. Therefore,
Royce and Boehm allow for iteration. In practice, however,
people resist admitting mistakes; iterating is politically
and economically difficult; and people still assume speci-
fications must precede system building.”

Vickers-Benzel 1989 (“Developing Trusted Systems Using DOD-
STD-2167A”)

• pic is 5-step cascade with loops
• cites Royce 1970
• “the major difficulty with the waterfall model is that it
does not include backtracking to correct problems”

Appendix C - Conceptions and invention of waterfall 176

• “systems developed using the waterfall model suffer from
what has come to be known as “snap shot” specifications
[…] the implemented operational system often has little
resemblance to the designed and specified system”

• “the model works well in projects where the problem is
familiar in all phases”

• used as a reference to present the Spiral model as preferred

Kameny et al. 1989 (“Guide for the management of expert sys-
tems development”)

• pic is 8-step cascade with loops sourced to Boehm 1988 “A
Spiral Model…”

• extensive description of how phases feed into each other
• “does not work well for some classes of software, particu-
larly interactive end-user applications for which the user
interfaces and decision support functions may be poorly
understood”

	Table of Contents
	Preface
	Chapter 1: Software Engineering's telephone game
	How we got there
	Surface plausibility
	Leprechaun spotting
	What you can do

	Chapter 2: The Cone of Uncertainty
	How to feel foolish in front of a class
	Making sense of the picture
	Getting to the facts
	The telephone game in action
	Controversy
	What to make of all this?

	Chapter 3: Why you should care about empirical results
	The perils of empirical research
	Discipline envy
	Science and reality
	Where to go from here

	Chapter 4: The messy workings of scientific discourse
	Modalities
	Citation as modality
	The construction of facts

	Chapter 5: The hunt for the 10x files
	Why is this important? Isn't it obvious?
	The impressive list of references
	The original study and the 10x claim
	Harshly criticized
	The 10x files
	Good study, bad study
	The wild goose chase

	Chapter 6: The variable programmer
	Getting just the results you want
	Within-subject variability
	Rocket science: the NASA data
	Needle in a haystack
	The COCOMO haystacks
	Environmental effects
	Summing up

	Interlude: How To Lie
	Chapter 7: Who's afraid of the Big Bad Waterfall?
	The standard story
	Alternate endings
	Just the facts
	No paper is an island
	Late bloomer
	Birth of a myth

	Chapter 8: Software's perpetual crisis
	Chapter 9: A Leprechaun hunting tutorial
	Chapter 10: The cost of defects: an illustrated history
	Origins
	First amendments
	Where's the data?
	Metamorphoses
	Changing the topic altogether
	Reading curves
	Theory-laden diagrams
	Boehm's assent

	Chapter 11: Rocket science and Flaubert math
	Flaubert and the math of ROI
	NASA IV&V's math
	How old is the captain?
	Eighy-three! For some value of eighty-three.

	Chapter 12: For some value of 56
	Where bugs come from
	Sample size of one
	Poor requirements
	A software triumph

	Chapter 13: The cost of bad research
	Uncritical thinking
	Extraordinarily suspect claims
	Terms of inquiry
	Research standards

	Chapter 14: Raising the bar
	Two modest proposals for publications on software development
	Will you take the pledge?

	Chapter 15: A new model of inquiry
	The Ouroboros effect: circular causation
	From Requirements To Negotiation
	The cliffhanger

	Appendix A: bibliographical analysis of the 10x files
	Questions of indirection
	Summary results
	The quest for primary sources
	A better list: primary sources with empirical evidence

	Appendix B: bibliographical analysis for the ``defect-cost-increase curve''
	The older references
	The newer references

	Appendix C - Conceptions and invention of waterfall
	Invention of waterfall
	Conceptions of waterfall (articles between 1970 and 1989)

