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Chapter 1

Introduction

Among the various speech and language technologies (such as automatic speech

recognition, speech synthesis, speaker recognition, language and accent recogni-

tion, etc.), it can be easily said that ‘speech coding’ is the most successful, both in

terms of how well the underlying sciences of information theory, quantization,

source coding, channel coding, etc. apply to the real world signals, as well as in

terms of how well such an application of the different theories to realize actual

speech coding systems has led to their seamless and indispensable permeation into a

wide range of digital communication scenarios. This is easily borne by the fact that

speech coding is also the only speech technology that has reached a level of

practically deployable applicability, making it possible (and hence, requiring) to

be standardized, as reflected by a gamut of standards (such as prescribed by various

standards organizations such as ITU-T, ETSI, MPEG, INMARSAT, DoD, NATO,

TIA, etc.) in communications technologies spanning a wide range of operating

conditions, each marked by specific bit-rates and associated quality of the coded

speech, along with other speech coding operational parameters such as delay,

complexity, robustness, etc. [C95].

While alluding to the success of a wide range of speech coders operating at

various bit-rates and speech quality, governed by standards and deployable levels of

maturity, we note that there is one interesting range of bit-rates, namely 1 Kbps and

less, down to possibly 100 bps, that has not received as much attention or success as

the other ranges, reflected in the fact that this range is yet to be standardized with

practically deployable coders, but which is nevertheless marked by a host of highly

specialized quantization techniques, all striving towards realizing acceptable

speech quality in this challenging lower end of bit-rates.

This book will be concerned with this range of bit-rates, referred to as ‘ultra-low’

bit-rate speech coding, with this range posing a challenging problem as it deals with

an extreme compression of speech from what is defined as the reference bit-rate of

128 Kbps for un-coded speech. This reference bit-rate corresponds to the output of

an analog-to-digital converter with a linear PCM of telephone speech (band limited

to 300–3,400 Hz) sampled at 8 kHz with a resolution of 16 bits/sample and is

© The Author 2015
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considered to yield the highest possible quality for digitally represented speech

termed ‘broadcast’ or ‘commentary’ quality [F79].

In general, speech coding is primarily concerned with encoding this reference

speech signal with as low a bit rate as possible while maintaining acceptable speech

quality. Such bit-rate reductions (starting from the reference 128 Kbps) are natu-

rally obtained at progressive reductions in the quality and the various coding

techniques till date are categorized depending on the operating bit-rates and the

quality of speech that the techniques can offer. The main categories, in terms of the

quality of speech, are toll quality, communications quality and synthetic quality.

The corresponding bit-rates are 16–64 Kbps, 2.4–16 Kbps and 2.4 Kbps and below

[F79, Sp94, KP95b, K05]. Yet another categorization of these bit-rate ranges are:

High bit rate coders (>16 Kbps), Medium bit rate coders (4–16 Kbps), Low bit rate

coders (1–4 Kbps) and Very low bit rate coders (<1 Kbps). This book is concerned

with the last category, namely, <1 Kbps, also referred to as “Ultra-low bit-rate

coding”, and more particularly at the lower ends of this range, e.g. down to 100 bps.

Due to the extremely low bit-rates involved, the objective of these coders is to

ensure “intelligible” speech quality while also potentially preserving the speaker-

identity.

In this chapter, we limit our discussion to providing the following perspectives

that allow us to view such ultra low bit-rate ranges.

(a) How ultra low bit-rates are indeed possible from qualitative considerations of

the lowest achievable bit-rates, also referred as ‘linguistically motivated’ limits.

(b) How this is made possible within a vocoder framework; specifically consider-

ing the LPC-10 vocoder framework, we see how the definition of progressively

longer units of quantization leads to the generalized framework of ‘segment

vocoder’ that leads to progressive reduction in quantization bit-rates even while

retaining the LPC-10 coder quality or better.

(c) How the notion of a large continuous codebook in the place of a clustered

variable segment codebook in a segment vocoder framework leads to a break

away from conventional segment quantization notions and to unit-selection

based quantization frameworks, allowing the coder to potentially reach speech

quality close to the 1 dB spectral distortions corresponding to transparent

quality speech.

(d) How the unit-selection based segment quantization framework can be seen to

be a speech-to-speech synthesis baseline of a text-to-speech synthesis frame-

work, thereby promising quality equivalent to that of current standard high-

quality single speaker TTS or better, even while having the potential to become

speaker-independent by adopting means of speaker adaptation and voice con-

version principles currently in vogue in text-to-speech synthesis systems.

In the following, we expand on each of these perspectives, which together

characterize the basic principles driving a generic system operating in the ultra

low bit-rate ranges, and particularly in the class of systems based on unit-selection

based segment quantization that constitute the central theme of this book.

2 1 Introduction
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1.1 Lower Limit of Bit-Rate

A possible lower limit of bit-rate, also called as a ‘linguistically motivated’ rate

[KP95a], can be derived based on the criteria that it is sufficient to transmit the

phonetic content of a speech signal, which is then used to reconstruct the speech

signal at the receiver by synthesizing the sounds of each phone while also

concatenating them appropriately. This is shown schematically in Fig. 1.1. Such a

scheme involves transcribing a given input speech signal into a sequence of the

constituent phonemes of the language of the speech signal, such as can be done

using a phoneme recognition system and transmitting the phoneme indices. At the

receiver or the decoder, the phonemes can be converted to speech using any of the

several well established speech synthesis techniques, such as rule-based synthesis,

formant vocoder, or even waveform concatenation, such as the PSOLA technique.

This is essentially a very coarse signal-to-symbol encoding system at the transmit-

ter, with each symbol being one of the several phonemes in a language, and

transmission of the index of the symbol in binary form, which is then used at the

receiver to concatenate and synthesize the phonemes in a sequence to realize the

synthetic speech.

The total bit-rate for such a system is simply IR bps, where I¼�∑ N
i¼ 1Pi logPi

is the average bit allocation required for the phone set of N phones, and R is the

number of phonemes per second under a normal speaking rate. For English lan-

guage, it is reasonable to use N¼ 42. Given the relative probabilities Pi of the

phonemes of English (see for instance, the distribution obtained in [PD89]), we get

an estimate of I¼ 5 bits per phoneme and with R¼ 10 phonemes/s, the effective

bit-rate is 50 bps. This can be seen to be a reasonable limit even if one considers a

uniform coding scheme of each of the 40–60 phonemes in any language, using

an indexing scheme of log264 bits/phoneme, (with 64 serving as the upper bound

of the number of phonemes in a language), resulting in a 60 bps lower limit of

the bit-rate.

Fig. 1.1 Schematic of an ultra low bit-rate speech coder at its minimal operating limit

1.1 Lower Limit of Bit-Rate 3



Thus, a bit-rate of 50–60 bps can be considered as a lower limit for the bit-rate

required for a speech coder considering that the main content of speech can be

given as a sequence of phonemes. Note that such a scheme does not consider

quantization or transmission of other important parameters, necessary for natural-

ness of the coded speech, such as prosody (mainly in terms of phone duration,

intonation and intensity) and speaker identity. Therefore, the speech synthesized at

the receiver sans all these additional information that are crucial for natural speech,

but nevertheless adequate in conveying the primary phonetic content of the speech,

thereby ensuring that information akin to textual content is communicated. Such a

bare-minimum skeletal system does indeed serve as a limit which ultra-low bit-rate

speech coding can strive to reach while ensuring intelligibility.

Note that additional bits are required over and above the 50–60 bps estimated as

above, to represent (a) prosodic information that is much needed to render the

speech natural, devoid of which the synthesized speech with only the phonetic

content sounds monotonic and unnatural, as well as (b) any means of representing

speaker information to be able to retain the input speaker identity, even if it is

known how this can be extracted from the input speech signal and incorporated

back into the synthesized speech, other than perhaps using parameters such as vocal

tract length, vocal tract configuration, higher formants values, bandwidths, etc., that

would broadly carry such speaker-specific information (see for instance the brief

discussion on this in Sect. 2.6).

1.1.1 Using Text Accompanying Speech

The above discussion essentially defined the limiting case of ultra low bit-rate

speech coding as 50–60 bits/s arising from transmission of the phonetic units

transcribed from the input speech, with the coded speech reconstructed by driving

a synthesizer at the decoder using the phonetic information, with additional bits

being required to code for information carrying prosody, speaker identity and

emotion. We highlight here three different work [BD94, VB97, LC99], which

represent a kind of copybook style of realizing the above ‘lower-limit’ baseline

framework involving a transmission (or storage) of phonetic unit (indices) with

additional prosody/speaker/emotion information getting incorporated into a TTS

system at the decoder driven primarily by the phonetic unit stream. These represent

an unusual work in the sense that they explored the question of how the text

information corresponding to the input speech, if available in some unique appli-

cations, can be made use of in realizing such low bit-rates.

These work essentially used the text to extract phonetic or phone-like (e.g.

segmental or sub-phone) information, which are transmitted (or stored) to further

drive a TTS to realize the synthesized speech as a close reconstruction of the input

speech, and where the input speech signal (to be stored or transmitted at low rates)

is actually used to derive the prosodic, speaker and/or emotional information

that get incorporated into the TTS system for prosody modification or in a

4 1 Introduction
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post-processing in a speaker/emotion converter system. It can be noted that in these

work, briefly outlined below, the problem was not posed so much as coding the

input speech, as much as viewing the input speech signal as providing the additional

prosody/speaker/emotion information that can enrich the TTS output (driven by the

accompanying text) towards realizing TTS synthesized speech that is more natural

and a close copy of the input speech.

These early attempts [BD84, VB97, LC99] used accompanying text transcript

assumed to be available in certain applications (such as talking book, tele-text,

multi-media, etc.). Among these, the earliest work of [BD84] treats the problem of

realizing low bit-rate speech coding as one where the text provides the segmental

information (in the form of target sub-phones and transition sub-phones derived

from the text after phonological analysis) with the pitch of the input speech copied

on to the frames of the sub-phones during LP synthesis (with the mapping between

the input speech frames’ pitch and the sub-phone sequence frames obtained by

warping the LP parameter sequence of the sub-phone sequence derived from the

text and the input speech via dynamic time warping) yielding an effective bit-rate of

420 bits/s and speech comparable to conventional LPC coded speech. This is

essentially a segment vocoder set in a LPC-10 framework, but with the sub-

phone units derived from text, rather than the input speech. Further, this work

reduced the bit-rate to 100 bits/s (60 bits for coding the segmental aspect, i.e., sub-

phone units derived from text and 40 bits for prosodic aspect), by using a dictionary

of 32 pitch patterns and 32 duration patterns which are used to quantize an input

pitch contour and duration. It can be easily noted that such a system becomes a fully

speech based coder, i.e., without the text, if it were to only derive the sub-phone

units from the input speech.

The proposal-like work of [VB97] (which did not report any actual results, but

which is nevertheless an important contribution in setting the basis of the proposed

framework), approached the problem of low bit-rate speech coding as one which can

exploit the accompanying text (targeting the same specific application as in [BD94],

namely the talking book – requiring compression of the speech to allow efficient

storage) to drive a TTS at the ‘expander’, but which also uses prosodic, speaker and

emotional information from the speech signal, either to modify the prosody of the

TTS or as input to an explicit, post-processing module to perform speaker and

emotion convertor on the speech synthesized by the TTS using only the text

information. The encoder processes speech and text together, deriving speaker and

emotion information by comparing the speech synthesized by TTS (at the encoder)

with the actual speech, and dynamic ‘conversion’ control information is determined

as an enrichment of the text stream, where the conversion control data carries

prosodic and speaker specific information, and is stored along with text for storage

compression purposes, together constituting highly reduced storage in comparison

to the original speech; this is further used in an ‘expander’ to use the text to drive the

TTS followed by a conversion of speaker characteristics and emotion using

the stored conversion control data stream. Note that this method realizes a compres-

sion of the original speech which is not stored, but which is used only to derive the

conversion data that enriches the TTS output during the expansion stage.
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Yet another work, also making use of accompanying text is that of [LC99],

though here the dependency on text is to derive the phonetic transcription after

force-aligning the text with the corresponding speech, with the phonetic transcrip-

tion being transmitted for further driving a TTS at the receiver. While this work was

followed up further towards a more elaborate and rigorously formulated unit-

selection framework [LC01, LC02], the emphasis of this particular precursor

work of Lee and Cox in [LC99] was more in establishing the f0 contour coding in

a rate-distortion framework, wherein a piece-wise linear approximation is used to

code f0 in a way to minimize the bit-rate while maintaining the f0 error below a

specified threshold. The system realized a 300 bit/s rate and it should be noted that

the phonetic transcription derived and transmitted from text can as well be derived

from the input signal using a phoneme-recognition as has been actually done in

various other systems [MCRK77, SKMKZ79, SKMS80, PD89, IP97, OPT00, T98,

H03, MTK08] (as noted in Sect. 2.2.3.5).

1.2 Vocoder Framework

The landscape of speech coders can be effectively characterized in terms of quality

vs. bit-rate performance as shown in Fig. 1.2. Specifically, we see that the entire

range of speech coders can be broadly categorized into waveform approximating

coders, parametric coders and hybrid coders, with each category having its best

operating bit-rates and quality. A detailed treatment of these categories with their

Fig. 1.2 Rate-distortion (bit-rate vs. quality) of LPC-10 vocoder and (Rate, Distortion) regions

targeted by segment vocoders: Region A retaining quality of LPC-10 at ultra low rates and Region

B with higher quality considering potentially low spectral distortions possible with segment

quantization with very large segment codebooks, as well as better excitation modeling and

synthesis methods
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individual coders is beyond the scope of this book, but can be easily looked up from

several sources [F79, Sp94, KP95b, K05, M08, BSH08].

An important pivotal point in the progress towards ultra low bit-rate coding, as

will be dealt with in this book, is the coder marked FS1015 on the ‘parametric

coders’. This is the well established linear-prediction based vocoder, also referred

to as LPC-10 [T82], operating at 2.4 Kbps with a subjective speech quality

considered acceptable, though sounding machine-like due to the categorical

decision of voiced and unvoiced speech, with occasional perceivable annoyance

due to incorrect voicing/unvoicing decision. This vocoder, nevertheless occupies a

pivotal position in the sense that it led to progressive reduction in bit-rates from

2.4 Kbps all the way down to 100–300 bps by employing quantization schemes

that defined increasingly longer units of quantization. Starting with scalar quan-

tization of the linear prediction coefficients (actually, the reflection coefficients) in

LPC-10, a series of quantization techniques evolved, moving from the scalar

quantization to vector quantization (VQ) of the linear-prediction coefficients

taken as a vector (e.g. 800 bps [W82]), further to matrix quantization (MQ) of a

block of linear prediction vectors (e.g. 300 bps [WJC83, TG85]), and to the more

generic segment quantization of variable length segments of linear prediction

vectors (e.g. 150 bps [SH88]), finally leading to a variety of ‘segment quantiza-

tion’ techniques that differed in the way the variable length segments were derived

(automatic segmentation techniques), modeled (segments, HMM, etc.), clustered

to yield variable length segment codebooks (such as random codebooks, clustered

codebooks, etc.), and quantized (segment matching techniques such as dynamic

time warping, HMM likelihoods with Viterbi alignment, space sampling, vector

interpolation, etc.), and in the way the segments were put together at the receiver

after appropriate duration normalization to match the duration of the input seg-

ments, along with other prosodic modifications including pitch and gain of the

synthesized speech within a linear prediction synthesis framework. These are

referred to as the class of ‘segment vocoders’ which give rise to a rate-distortion

performance marked as region A in Fig. 1.2, characterized by significant reduc-

tions in bit-rate below that of 2.4 Kbps of LPC-10, with speech quality comparable

to that of LPC-10.

While there are several well-established coders such as the MELP, MELPe and

MELP suite [M08] that operate at the bit-rates of LPC-10, but with superior speech

quality, the primary difference is that we focus on the class of segment vocoders,

which continue to use linear-prediction framework, and differ primarily in the way

the segmental units are defined, derived, modeled, quantized, duration normalized

and synthesized.

This view of the class of segment quantization vocoders that try to realize ultra

low bit-rate speech coding sees them as an evolution from the pivotal LPC-10

operating point, and with LPC-10 as the reference, leads to expecting ultra low

bit-rate performances of comparable speech quality and bit-rates lower than

2.4 Kbps progressively down to 100 bps. While there would be considerable

deviations from the essential LPC-10 framework, such as in the HMM based

recognition-synthesis frameworks, or in the way the unit models are derived

1.2 Vocoder Framework 7



(e.g. phonetic vocdoer in [PD89] or by temporal decomposition, VQ, multigrams

and HMM in [CBC98a]), the primary reference to LPC-10 serves more to under-

score the advantage realized in moving from a scalar quantization or vector

quantization of the linear prediction coefficients away towards quantizing them as

variable length segments, regardless of the underlying feature representation, how

they are derived by automatic segmentation, how they are modeled, and how they

are eventually synthesized.

In this context, it is important to make two observations with regard to realizing

better quality than that of the 2.4 Kbps LPC-10 standard in the segment vocoder

framework, as shown in Fig 1.2, with the second arrow reaching the rate-distortion

region marked B. This appears implausible at the outset, but is actually possible, by

virtue of (a) better quantization of the LP coefficients, such as what certain classes

of segment quantization can actually achieve (as pointed out in Sect. 1.3.5 to

follow) and, (b) better (or even no) modeling and quantization (or even transmis-

sion) of the residual (as in the algorithms to be discussed in Chap. 6):

a. With regard to the LP parameter quantization, it is to be noted that there are a

class of quantization techniques, all set in the vector quantization framework,

that operate at significantly much higher bit-rates, such as 24 bits/frame with an

effective bit-rate for spectral quantization as 1,200 bps (using a frame-rate of

50 frames/s) and above that are geared towards achieving high speech quality,

referred to as ‘transparent quality’, characterized by the underlying spectral

distortion of 1 dB [PA93, PK95]. Since the segment quantization techniques

employed in segment vocoders operate at significantly lower bit-rates, at the

outset, it seems natural to conclude that these two ranges of operation (and the

corresponding quality) are not congruent. However, in line with the reasonings

given in Sect. 1.3.5 and also based on the performance trends reported in several

segment quantization techniques (e.g., [KCT91, LF93, B95, HR08]), which

report reaching spectral distortions of 2.5–2 dB (and even less) at low bit-rates

of 500 bps and less, it seems plausible that there could be a convergence of these

two directions of LP quantization, i.e., the high-rate quantizers and the very low

rate segment quantizers, and consequently, allow for targeting speech quality far

superior to that of the LPC-10 baseline.

b. It is known that the quality of the resulting LP synthesis speech is strongly

influenced (and limited) by the residual modeling employed, namely the cate-

gorical voicing/unvoicing decision and the corresponding excitation by a pulse

train with an appropriate pitch or a random noise sequence. Much effort in

realizing a more realistic model of the residual has resulted in coders such as the

MELP [MB95, M08]. As a baseline, it can be noted that when the residual is

retained as it is, i.e., without any modeling or quantization and used in the LP

synthesis at the decoder, with only LP parameter quantization, such a baseline

yields the best quality speech possible, under the constraint that only the LP

parameters are quantized, and thereby truly reflects the LP quantization effi-

ciency (note that, with no quantization of the LP parameters and the residual, the

synthesized speech is identical to the original speech). Thus, techniques which
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attempt to do little or no processing or change of the residual can actually yield

better quality speech at the decoder, than what is possible by the LPC-10

baseline system. Towards this, we will see that the no-residue transmission

system proposed by us in [RH09, R12] and discussed in Chap. 6 can target

subjective performances superior to that of LPC-10.

A more detailed treatment of the segment quantization principles and the various

techniques that have been proposed and studied to date is given in Chap. 2, before

proceeding to the subsequent chapters that focus on the unit-selection based

segment quantization in detail. The perspective of how unit-selection segment

quantization arises as a natural, though very distinctively different paradigm,

from variable length segment quantization is now presented.

1.3 Clustered Codebook to Continuous Codebook

In this section, we see a set of apparently disparate, but yet converging observations

that help us to reason about how a segment quantization paradigm which uses a

segment codebook derived from a long continuous sequence of vectors (such as

from 4 h of continuous speech) can lead to quantization performances, that were

hitherto considered capable of being achieved only by high-rate vector quantization

techniques.

1.3.1 Clustered Segment Codebook

While dealing with segment quantization, the segment codebook which is made of a

set of (say, N) variable length segments plays a crucial role in determining the rate-

distortion performance. As we will note in more detail in Chap. 2, the first attempt

to design an optimal variable length segment codebook of a given size N was by

Shiraki and Honda [SH88], who used the framework of segmental K-means algo-

rithm to derive a clustered segment codebook that minimizes the average quanti-

zation distortion defined between an input segment and the nearest variable length

segment in the codebook, the average being calculated over a large collection of

naturally occurring input segments from continuous speech. A clustered codebook

of size 1,024 (10 bits/segment) was shown to offer down to 2.5 dB spectral

distortion in [SH88, HR06] (also in this book, Sect. 4.3.1). While the distortion

would continue to decrease with increase in codebook size, no major efforts have

been expended further in exploring how large a ‘clustered’ codebook size could be

used to reach even lower spectral distortions, primarily owing to the complexity of

the codebook design algorithms such as the segmental K-means algorithm.
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1.3.2 Vector Quantization Performance Trends and Limits

In this context, it is worthwhile examining the fundamental results of quantizing

linear prediction coefficient vectors using vector codebooks (i.e., vector quantiza-

tion) of increasing size. Paliwal and Kleijn [PK95] showed the following:

(a) From actual measurements of average nearest-neighbor quantization error

using randomized codebooks of sizes varying from 2 to 16,384, it was seen

that a random codebook of size 14 bits/vector (i.e., size 16,384) can yield a

spectral distortion upper bound of 2 dB, implying that an optimally designed

codebook of same size will yield distortions less than 2 dB.

(b) By means of linear extrapolation of the above measured rate-distortion trend—

involving the linear relationship between the log root-mean-squared distance in

a uniformly distributed set of points (LPC vectors) and their density—it was

concluded that a random codebook of size 20 bits/frame (1,024 K vectors or

frames) can yield a spectral distortion upper bound of 1 dB, which is now well

established as the important ‘transparent quality’ quantization [PK95].

The fact that a random vector codebook or a random segment codebook yields

the above linear performance can be further interpreted as follows: As the codebook

size is doubled progressively, the spectral distortion continues to reduce linearly.

However, considering the vector quantization case of [PK95], reaching codebook

sizes of 20 bits/vector (even if it be a random codebook) is formidable primarily

from computational complexity considerations. This is precisely what led to the

important developments in realizing transparent quality quantization (1 dB spectral

distortion) with 24 bits/frame split vector codebook schemes [PK95], which

allowed manageable complexities of the split codebooks.

However, even if we were able to double the (random) codebook sizes up to

20 bits/vector at a frame rate of 50 frames/s (using an effective frame size of 20 ms),

this would demand an increase of bit-rate by only 50 bps for every doubling of the

codebook, eventually leading to an overall bit-rate of only 1,000 bps (for a 20 bits/

vector codebook) for the quantization of spectral information (LP coefficient vec-

tors). This does fall within the low bit-rate range, considering that additional bits

need to be spent in the quantization of the residual information in a LPC-10

framework. Clearly, this shows that the effective bit-rate needed for high quality

spectral quantization is not a bottleneck by itself, as much as the computational

complexity in handling such large codebooks.

1.3.3 Random Segment Codebooks

An interestingly similar result was obtained by Roucos, Schwartz and Makhoul

[RSM83] for segment quantization using actual measurements on speech LP

coefficient vectors (LARs), using both clustered codebooks (segment) and
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randomly selected segment codebooks of large sizes (up to 8,192 variable length

segments or 13 bits/segment). In this work, [RSM83] showed that the mean-square

quantization error (in dB) reduces linearly for every doubling of the codebook size

(or directly with bits/segment) and that, for a given spectral distortion, the random

codebook was only 2 bits/segment larger than the clustered codebook (i.e. 4 times

larger), or conversely, for a given segment codebook size (e.g. in the upper end of

11–12 bits/segment), the random codebook had only 1–1.5 dB poorer mean-square

quantization error than a carefully optimized clustered segment codebook.

1.3.4 Vector to Segment Quantization Performance
Retention

Here, we consider a very important result by Svendsen [S94], in the context of

moving from vector quantization to variable length segment quantization. This

work establishes that it is possible to use a vector quantizer on segments larger than

a single frame in the input speech, so as to be able to realize effective frame-rates

lower than the vector based frame-rate and which in turn lowers the effective

bit-rate by a factor of 2 under the constraint that the spectral distortion incurred

in quantizing a segment instead of a vector by a given vector quantization

codevector remains same, i.e., at the 1 dB transparent quality spectral distortion

threshold used in the paper [S94].

This work poses the question whether a ‘segment representation vector’ (possi-

bly also quantized) can be made to represent a variable length segment instead of a

single input vector, with the segmentation being derived under constrained–opti-

mization conditions, of limiting the resulting spectral distortion within a desired

threshold (e.g. 1 dB). It uses a maximum likelihood formulation of deriving the

optimal segmentation in such a manner that the resulting distortion D(m) which is a
function of only the m segments, and being the sum of the spectral distortion of the

individual segments each obtained as the average spectral distortion of the vectors

in the segment when represented and quantized by the segment representation

vector. This essentially serves to reduce the frame-rate of the resulting segment

representation and quantization, which is perhaps more aptly called the segment

rate, since there are now less segments than single frames in 1 s of speech that are

represented (and quantized) using the same segment representation vector (with

either a simultaneous or a subsequent scalar or vector quantization).

Through this formulation, the work shows that a 40 bits/frame scalar quantizer of

LP-cepstral parameters can be made to work at an effective segment rate that is

approximately two times less than that of the original frame-rate, thereby leading to

an effective bit-rate of 22.6 bits/frame, even while preserving the 1.06 dB spectral

distortion. In the following section, we will see how this result contributes to the

converging viewpoint that helps reason about how segment quantization can lead to

spectral distortions close to that of limiting vector quantization with very large

vector codebooks, even while incurring very low bit-rates.
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1.3.5 A Converging Viewpoint

In this section, we put together the above stated fundamental trends (in Sects. 1.3.1,

1.3.2, 1.3.3 and 1.3.4) to carry out two types of reasoning to show the possibility

that segment quantizers with reasonable size segment codebook sizes (or unit

databases) can reach the low spectral distortions characteristic of the 1 dB trans-

parent quality quantization (presently in the realm of high rate vector quantizers) at

ultra low bit-rate ranges.

1.3.5.1 Reasoning I

In this reasoning, we put together the above stated facts that (i) a random vector

codebook of 14 bits/vector can yield a spectral distortion of 2 dB and less and a

random codebook of 20 bits/vector can yield a spectral distortion of 1 dB (trans-

parent quality) and less, and (ii) a similar scenario arises with segment codebooks,

wherein a random segment codebook of size 1,024 can yield 2.5 dB spectral

distortion, with a linear trend in the decrease in spectral distortion for every

doubling of the segment codebook, and that a random segment codebook is only

2 bits/segment larger than a clustered segment codebook in realizing comparable

spectral quantization distortion. This reasoning is illustrated in Fig. 1.3, which is

divided into two parts, as discussed below.

Fig. 1.3 Reasoning I: Vector and segment quantization scenarios and associated (Distortion,

Rate)
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Part (a)

Consider a long continuous speech represented in terms of a sequence of LP

coefficient vectors (e.g. LARs as in [RSM83]). Let the number of vectors in this

continuous sequence be M. Typically, the above results showed that for

M¼ 220¼ 1024 K vectors or 20 bits/vector rate, such a continuous codebook

is a random codebook, but can reach D*¼ 1 dB spectral distortion limits. This

corresponds to about 4 h of continuous speech. The corresponding bit-rate is

RA¼F log2 M¼ 1, 000 bit/s (for F¼50 frames/sec frame-rate). We denote this as

Case A in Fig. 1.3 and marked as point A with (Distortion, Rate) of (D*,F log2M )

in Fig. 1.4.

Part (b)

Now consider segmenting this long vector codebook and ‘reforming’ it into a

segment codebook U of N contiguous variable length segments (or units) U¼
(un, n¼ 1, . . .,N ), with an average segment length l̂ ¼

XN

n¼1
ln, where ln is the

length of the individual units un, n¼ 1, . . .,N. Clearly, N ¼ M=l̂ . This variable

length segment codebook can now be used to perform segment quantization of an

input speech of 1 s, with typical number of segments K¼ 10 being determined by

the typical speaking rate of 10 phonemes/s, with each segment assumed to be

a phoneme-like unit. The effective bit-rate of this segment quantization is

Fig. 1.4 Reasoning I: The quantization scenarios marked in the rate-distortion space
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RB¼K log2N bps which is also obtained equivalently as F=L̂
� �

log2 N ¼ F=L̂
� �

log2 M=l̂
� �

bps, where F is the frame-rate which is 50 frames/s, for a frame size of

20 ms and L̂ is the average length (in frames) of the input segments as derived by

the segmentation resulting from segmentation and quantization of the input speech

using the segment codebook U. Typical values of K¼ 10 correspond to L̂ ¼ 5, i.e.,

the number of segments per second of speech is 10, with each segment being on an

average 5 frame long (or 100 ms duration). Note that since the segment codebook

U is formed by a similar segmentation of the original vector codebook (of size

M vectors), the average length of the units in the segment codebook l̂ is likely to be

same as L̂ , thus allowing us to use l̂ ¼ L̂ ¼ 5.

Starting from the primary result (in Part (a) above) that a 20 bit vector codebook

(4 h of speech) can reach 1 dB spectral distortion, we first note that a 18 bits/

segment segment codebook derived by segmenting this long vector codebook is

identical to the 20 bit codebook, with a variable length segment entry in the segment

codebook being made of a short sequence of contiguous frames of the vector

codebook. Thus, segment quantizing an input speech using the segment codebook

can yield spectral distortions comparable to that obtained by vector quantizing the

input speech by the long vector codebook, but conditioned by the following

observation: When each LP coefficient vector in the input speech is quantized by

the lowest distortion vector in the vector codebook, every vector in the vector

codebook was a potential candidate for being the quantization vector of the input

vector. However, in the segment quantization scenario, a sequence of vectors in the

input speech gets quantized as a segment to the best segment in the segment

codebook, and by this, a vector in the input speech segment is constrained to be

quantized by one of the vectors in the same segment (unit) that quantizes that input

speech segment. This is illustrated in Fig. 1.3 as Case B.

Due to this constraint, each vector in the input speech is not quantized by the

least distortion ‘vector’ in the vector codebook, but by the vector in the least

distortion ‘segment’ in the segment codebook, thereby resulting in a higher quan-

tization distortion. But this increase in quantization distortion is bound to be

marginal, considering that the segment selected from the segment codebook to

quantize an input segment (a sequence of vectors) is indeed a segment that

minimizes the segmental measure of quantization distortion, and hence each vector

in the input segment does not suffer any unduly higher quantization distortion than

it would have, had it been quantized by the best vector from the entire vector

codebook in an unconstrained manner. Therefore, it is not unreasonable to expect

the 18 bits/segment random segment codebook (obtained by reforming the original

20 bits/vector vector codebook) might actually reach the same quantization distor-

tion D* as did the 20 bits/vector vector codebook or marginally higher distortions

D* + E.
We denote this as the point B in Fig. 1.4, marked by a (Distortion, Rate) of

D� þ E, F=L̂
� �

log2 M=l̂
� �� �

. For typical values of M¼ 220, l̂ ¼ L̂ ¼ 5 and K¼ 10,

we get N¼ 218 and RB¼ 18� 10¼ 180 bit/s. Note that the corresponding bit-rate in
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bits/vector is log2Mð Þ=L̂ ¼ 18=5 ¼ 3:6, which turns out to be the effective bit-rate

for quantizing a vector of input speech at only marginally higher distortions of

D* + E, which is remarkably lower than the 20 bits/vector quantization limit that is

considered necessary to reach the D*¼ 1 dB transparent quality spectral distortions

[PK95].

1.3.5.2 Reasoning II

An alternative and supporting evidence to the above line of reasoning emerges from

the result of [S94] discussed in Sect. 1.3.4. This result showed that it is possible to

use a vector quantizer (VQ) codevector to represent (and quantize) all the vectors in

a variable length segment, when the segments are derived under optimality con-

straints (such as the maximum-likelihood segmentation used in [SS87, S94]),

without increasing the spectral distortion (above a specified threshold, which in

the work of [S94] was set to D*¼ 1 dB). Using this result here, we provide the

second reasoning, as illustrated in Fig. 1.5, in three parts, namely, (a) a code vector

in a 20 bits/frame VQ codebook quantizes a vector in the input speech, (b) the same

code vector quantizes a segment in the input feature vector sequence and (c) the VQ

codebook is reformed into a variable length segment codebook, and a segment

(unit) in the segment codebook quantizes the same input segment (as in part (b)), in

the place of a codevector.

Fig. 1.5 Reasoning II: Vector and segment quantization scenarios and associated (Distortion,

Rate)
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Part (a)

Let the vector quantizer with the long 20 bits/frame VQ codebook (of size M¼ 220

vectors) realize a certain spectral distortion, say D*¼ 1 dB, as considered in Case A
of Reasoning I. This is shown as Case A in Fig. 1.5 with the baseline (Distortion,

Rate) of (D*,F log2M ) bps, as also marked in the rate-distortion space in Fig. 1.6

as the point A.

Part (b)

With reference to part (b) of Fig. 1.5, we consider the result of [S94] as indicated

above, by which it is possible to let each of the codevector in this M size VQ

codebook to quantize a sequence of vectors making up a variable length segment in

the input speech, without increasing the overall distortion. If the average segment

length (in the resulting input speech segmentation) is L̂ , then the effective bit-rate is

F=L̂
� �

log2M bps, with F=L̂
� �

now representing the reduced segment rate. For

L̂ ¼ 2, we get a remarkable halving of the frame-rate to 25 segments/s, (though

shown in [S94] for the higher rate scalar quantization of 40 bits/frame, reducing it to

22.6 bits/frame) while retaining the 1 dB spectral distortion. This is shown as Case

B in Fig. 1.5, with the associated (Distortion, Rate) of D�, F=L̂
� �

log2M
� �

, with

L̂ ¼ 2. This is also marked as a transition from Case A to Case B in the rate-

distortion space in Fig. 1.6, with associated bit-rate of 500 bps (half of the 1,000 bps

of Case A) and at the same distortion D*.

Fig. 1.6 Reasoning II: The quantization scenarios marked in the rate-distortion space
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It is now easily conceivable that we can increase L̂ to as much as 5, leading to the

natural segment rates of 10 segments/s and an effective bit-rate of 200 bps. Values

of L̂ ¼ 5 arises from considerations of quasi-stationarity of speech, where it can be

assumed that most phonemes have natural durations of that order, characterized by

steady-state regions and transitions from and to their left- and right-context phones,

but with spectral variability within a segment limited to the extent of allowing the

entire segment to be quantized by a single vector (say xm, as shown in Fig. 1.5) from
the 20 bits/vector VQ codebook. This is shown as Case C, with the associated

(Distortion, Rate) of D� þ δ1, F=L̂
� �

log2M
� �

for L̂ > 2 and marked as C in the

rate-distortion space in Fig. 1.6, with a transition from B to C associated with a

decrease in bit-rate from 500 bps to 200 bps (for L̂ ¼ 5) and an increase in distortion

to D* + δ1.

Part (c)

As part (c) in Fig. 1.5, we extend the reasoning further and let a segment (say, unit

un as shown in Fig. 1.5 under Case D) centered at the vector (xm) in question in the

20 bits/vector VQ codebook to quantize the input segment that was originally

quantized only by vector xm. By this, the spectral distortion is clearly decreased,

with reference to that achieved by Case C. Use of a segment codebook, formed from

variable length segments of this type, therefore serves to reduce both the bit-rate

and spectral distortion further to the scenario outlined above: (i) reduction in

bit-rate is realized as the number of bits used to represent a segment (or unit)

in the segment codebook is reduced from 20 bits/frame to log2 M=l̂
� � ¼ 20�

log2 l̂ ¼ 18bits/unit, where l̂ is the average segment length in the segment codebook

(using typical values of l̂ ¼ 4 or 5, as outlined in Part (b) of Reasoning I), formed

by such segments from the 20 bits/frame vector codebook, and (ii) reduction in

spectral distortion is realized (with respect to the distortion of Case C), by having

requisitioned an entire segment (from the segment codebook) to quantize an entire

input segment, where originally, only a single vector from the 20 bits/frame vector

codebook was used. This is shown as Case D in Fig. 1.5, with the associated

(Distortion, Rate) of D� þ δ1 � δ2, F=L̂
� �

log2 M=l̂
� �� �

, and marked in the rate-

distortion space in Fig. 1.6, with a rate of 180 bps, and a transition from C to D.

Once the above two lines of reasoning are established, the accompanying

arithmetic shows that a random variable-length segment codebook of size 18 bits/

segment, reformed from a 20 bit/vector random vector codebook can realize

spectral distortions close to 1 dB (i.e., D* + δ1� δ2), at an equivalent 3.6 bits/

frame given an average segment (unit) length of 5 frames in the variable length

segment codebook (or unit database), resulting in an overall bit-rate of 180 bits/

frame (at a frame-rate of 50 frames/s). It is easy to extend this result further to show

that longer the average length of the segment in the segment codebook (i.e., the unit

of quantization gets longer, with higher l̂ ), lower is the overall bit-rate, and at the

1.3 Clustered Codebook to Continuous Codebook 17



same time better the subjective quality of coded speech, considering that longer

segments in the input speech are now approximated by longer naturally occurring

segments in the segment codebook (i.e., higher l̂ leading to higher L̂ ), which help

retain the intra-segment co-articulatory effects, even if the longer segment serves as

a constraint for a sequence of vectors in the input segment to have to be quantized

by only those vectors in the quantizing segment (unit) from the segment codebook

(unit database).

This also provides a means to have very large segment codebook sizes and sets

the basis for a new paradigm to emerge—that of moving away from the conven-

tional segment quantization as finding the best quantizing segment from a segment

codebook for a given input segment—to the notion of unit-selection based segment

quantization using a large unit-database (such as ‘reformed’ from continuous

speech data, as in the reasonings above), as in text-to-speech synthesis by unit-

selection based concatenative synthesis, as will be discussed further in the

next section.

1.4 Speech-to-Speech Synthesis by Unit-Selection

As seen in the previous section, the shift from using small clustered segment

codebooks to very large continuous codebooks leads to the possibility of segment

quantization within the unit-selection framework, as is now well established in text-

to-synthesis systems. Even without dwelling into details of what such a unit-

selection mechanism entails, it is easy to visualize how the entire chain of TTS

gets adapted to what can be called ‘speech-to-speech’ (STS) synthesis, i.e. driving

the synthesis chain with abstract features derived from the input speech signal to be

quantized, rather than the phonetic and prosodic units derived from text, and

continuing to leverage the subsequent unit-selection mechanism using a large

unit-database of units that now replace the conventional segment codebook in a

segment quantization system.

Figure 1.7 shows the schematic of a typical unit-selection based TTS system.

Such a system starts from the input text, which is converted to a sequence of

phonetic units by means of letter-to-sound rules (also called grapheme-to-phoneme

or G2P convertor), which are referred to as the target t1, t2, . . ., tk, . . ., tK. The target
tk, k¼ 1, . . .,K for a text defines the string of phonemes required to synthesize the

text, and is primarily made of the phonetic identity as well as the prosodic content

of that phoneme such as duration, pitch and intensity. In a more complete setting,

the phonetic aspect of ti can be in the form of a multi-dimensional feature vector

representing various aspects of preceding and following phonetic context in the

text, comprising a set of distinctive features such as vowel vs. consonant, voicing,

consonant type, point of articulation and vowel height, length and rounding

[HB96].
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The role of unit-selection in a TTS system is to select a set of units uq1 , uq2 , . . . ,

uqk , . . . , uqK that are a closest approximation of the given target sequence t1, t2, . . .,

tk, . . ., tK in such a manner that the unit-sequence uqk , k ¼ 1, . . . ,K, when synthe-

sized by means of a concatenative synthesis module, realizes the speech

corresponding to the input text, firstly, by being faithful to the phonetic content,

secondly, by having the correct prosodic variation that makes it sound natural, and

thirdly, by being of acceptable quality without artefacts arising from the concatena-

tion of the units uqk , k ¼ 1, . . . ,K drawn from diverse contexts in the unit-database

or from the signal processing that converts the units to the speech signal.

Current state-of-the-art TTS synthesis systems based on the above broad prin-

ciple, are able to achieve phenomenally high quality of the synthesized speech, for

most languages around the world, due to highly evolved techniques that go into

almost all the components that make up the system— the G2P, context specifica-

tion, prosodic prediction from text, large unit databases (anywhere from 2 to 10 h of

speech), annotations of the unit-database that characterize the various phonetic,

contextual and prosodic aspects, highly refined unit-selection procedures with well-

defined unit-costs and joint-costs, and sophisticated signal processing in the actual

synthesis of speech from the units retrieved from the unit-database.

Imagine now a speech-to-speech synthesis (STS) system that works with the

target t1, t2, . . ., tk, . . ., tK being derived not from an input text but from the input

speech signal. It is likely that the target can be derived more precisely from the

speech signal than from the text, given that this calls for signal processing to derive

the phonemes, their context and prosodic aspects. However, two important varia-

tions are needed to mark such a shift from TTS to STS: (i) the target are specified as

spectral feature vectors, such as the linear prediction coefficient vectors or MFCCs

given as o1, o2, . . ., ot, . . ., oT, i.e., T feature vectors (corresponding to the

K phoneme targets for the same underlying textual content, but now with T�K,
since each phone label would correspond to several, (e.g., 10), frames). This

excludes dependence on higher level phoneme recognition kind of transcription

Fig. 1.7 Generic text-to-speech (TTS) system based on unit-selection and concatenative synthesis
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which would come with their associated errors, and allows the target to represent

phonetic content of the input speech in the form of acoustic feature vectors, which

now represents a fine-grained representation of the input speech signal, (ii) The unit

database can now be a long continuous sequence of feature vectors (the same as the

target, e.g. LP vectors or MFCC) with prosodic annotation such as pitch, duration

and intensity. This is illustrated in Fig. 1.8.

The role of unit-selection in a STS system is to select a set of units uq1 , uq2 , . . . ,

uqt , . . . uqT that are a closest approximation of the given target sequence o1, o2, . . .,

ot, . . ., oT in such a manner that the unit-sequence uqt , t ¼ 1, . . . ,T, when

synthesized by means of a concatenative synthesis module, realizes an output

speech corresponding to the input speech.

It can be seen that this is in the lines of copy-synthesis, where a synthesizer

(using any of the many possible synthesis models, e.g. LP synthesis, formant

synthesis, sinusoidal modeling, HNM etc.), is driven by parameters extracted

from an input signal, and how close the synthesized speech is to the input signal

is a useful measure of how good the synthesis model is, in the first place, and how

good the front-end speech analysis is that extracts the various synthesis parameters

needed to drive the synthesizer model [D97]. In the context of STS by unit-

selection, as discussed here, the synthesis method is unit-selection based

concatenative synthesis, and the synthetic speech is close to the input speech

depending on the effectiveness of the feature vector measurement from the input

speech and the unit-selection method in selecting units that ensure high fidelity to

the spectral and prosodic target specification and low artifactual distortion in the

concatenative synthesis and the synthesis itself.

It is clear that the fine-grained target specification (in terms of spectral and

prosodic measurements) as extracted from the input speech signal are more

Fig. 1.8 Generic speech-to-speech synthesis set in the unit-selection based concatenative synthe-

sis, as a parallel to TTS
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accurate representations of the speech to be synthesized, in comparison to the

course-grained (and error prone) target specification (of phonetic labels and pro-

sodic prediction) from input text. As a consequence, the resulting synthesized

speech can be as good or even better than the speech synthesized from text,

considering the following considerations: (i) the STS system is driven by fine-

grained acoustic feature vector target representation, which can be matched finely

(in terms of spectral match) by the unit-selection procedure, (ii) the potential

misrepresentation of input text through faulty G2P or prosodic prediction from

text is completely avoided, as these are now derived directly from the speech signal

by signal processing, (iii) the synthesis of speech from the unit-database

represented in form of fine-grained spectral features is potentially of higher quality,

such as is already in practice in the unit-selection based speech coding systems

(such as using HNM or LPC synthesis).

With the above considerations in place, what needs to be stressed here is that

current TTS systems in most languages have very high quality (subjective listening

scores such as MOS of 3.5 and above) as typified in applications such as

car-navigation, telephony information retrieval systems, iPhone SIRI, audio

books etc.. Such speech is undoubtedly speaker dependent, as they work with a

single speaker unit-database, but the resultant speech is of such high quality that it

would definitely be rated as significantly better than any of the low rate coding

standards operating in the range of 2.4 Kbps and less.

This then sets the basis for realizing as good or better quality of coded speech in

a STS framework based on unit-selection principles. A major part of this book will

indeed focus on such unit-selection frameworks (Chaps. 3–6), starting with the

pioneering work of Lee and Cox [LC01, LC02], followed by our own contributions

[RH06, RH07, HR08, RH08, RH09, R12] that are in the form of

i. unified, optimal and generalized unit-selection algorithms [RH06], [RH07]

ii. comparative study with vector quantization, matrix quantization and variable

length segment quantization [HR08]

iii. generalizations over the Lee and Cox algorithms to render it more optimal

[RH08] and,

iv. an interesting framework of joint spectral-residual quantization in unit-

selection framework, that obviates the need to transmit any information about

the residual [RH09], [R12]

1.5 Alternate Perspectives for Ultra Low Bit-Rate
Speech Coding

Interestingly, the success of speech coding as a viable every-day technology probably

rests also in its not having to reach up to a parallel ‘human’ performance benchmark

or reference, as is the case with the other speech technologies, such as for example,

the high human performance levels in speech recognition, understanding, speaker-,
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language- and accent-recognition, binaural hearing, source localization and source

separation, etc., in contrast to the comparatively poorer performance levels of

machines in the respective tasks, particularly in unrestricted domains, characterized

by various dimensions such as large vocabulary, spontaneous and conversational

speech, language perplexity, additive and convolutive noise, sound mixtures, etc.

The reason that speech coding seems to have no ‘human’ parallel is largely due

to the problem definition that it is required to perform a lossy data compression of

an original speech signal, in such a manner to progressively reduce the bit-rate

required for its representation, transmission and reproduction over digital commu-

nication channels, even while ensuring a graceful (or even no) degradation of the

quality of compressed speech, considered acceptable for human-to-human commu-

nication, such as in telephony, broadcast, storage, etc.

Human speech communication in its biological form has practically no equiva-

lent of this process, except possible in two extreme and rather esoteric forms of

communication modalities: One being the word of mouth communication, where

speech heard by one person is memorized and spoken out by that person to another

person, and the other being the invocation of the written form, wherein the heard

speech is committed to a script, that can be further read out in spoken form.

Undoubtedly, humans excel in both these two process, bringing in a variety of

deep cognitive processes to play, starting from speech recognition, understanding,

speaker and accent recognition, along with the various aspects of prosodic, expres-

sive and emotional content of the heard speech, memorizing, and being able to

reproduce the heard speech in a kind of imitation (or mimicry), restoring back, as

far as possible, the various aspects of speech content, prosody, expressiveness and

emotion.

In the second scenario alluded above, i.e., when the interim representation is not

memory, but a form of script, here again the success of reproduction (in terms of

how close the reproduced speech is to the heard speech) is largely governed by how

well the heard speech in its totality (with respect to the phonetic and prosodic

content, expressiveness and emotional aspects) is captured uniquely in the script

form, how well it is deciphered when read back, and how well it is faithfully

reproduced while speaking out. In both the above scenarios, the internal represen-

tation in memorizing the heard speech or the scriptural form of representation,

corresponds to the coded form of speech, which allows faithful reproduction (such

as at the receiver or decoder in a communication system), and the relative com-

pression ratios possible with such representations would possibly set the achievable

lower bounds for bit-rates and quality in speech coding. This is remarkably difficult

to quantify, considering very little is still known as to wherein lies the speaker

identity, language identity or accent identity and expressive and emotional content

in the speech signal, despite significant progress in the understanding of the

phonetic and prosodic content of a given speech signal and significant efforts in

unraveling the speaker-specific information and recent efforts in similarly under-

standing expressive and emotional content of speech signals [NA05]; further

difficulty lies in knowing, let alone quantifying, the way human cognition retrieves

these multiple interwoven layers of information from the speech signal, and how
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these are represented in human memory and further retrieved and used for

reproduction.

While the preceding paragraph may appear a bit too qualitative and venturing

into a rather nebulous and as yet, poorly understood, cognitive dimensions of

speech and language, a careful thought along these lines reveals the human perfor-

mance reference that a speech coding system does indeed have. As we shall see

further, such a setting can lend itself to asking how a computational framework for

speech coding can be evolved that draws from the above qualitative chain of

hearing-(script)-speaking, towards realizing effective speech coding systems. This

could well be the underlying basis, though within practically well-defined analysis-

by-synthesis formulations, for articulatory parameter estimation and articulatory

synthesis based very low bit-rate speech coding in the early works of Flanagan

et al. [FIS80] and later work on the articulatory parameter estimation problem

(e.g. Parthasarathy and Coker [PC92] and Sondhi and Sinder [SS05]) for synthesis.

These frameworks, which by and large represent remarkable, and perhaps the only

very few, ventures into articulatory basis for speech coding might as well hold the

promise of potential directions towards reaching truly ultra low bit-rate coders

being able to operate at parsimoniously low representations of the speech signal,

even while being able to deliver high quality natural sounding speech.

1.6 Applications of Ultra Low Bit-Rate Speech Coding

The applications of speech coding in general are well known, that of being able to

transmit or store speech at low bit-rates, as constrained by a given physical

communication (or storage) system or channel, even while being able to maintain

the highest possible speech quality of the coded speech. While the broad categories

of bit-rate and quality that most speech coders fall in were indicated in the early part

of this chapter, we alluded to the ultra low bit-rate as posing special challenges and

which have to be addressed at before realizing coders at par with those at higher bit-

rates and which have reached maturity of becoming standards. It would therefore be

appropriate to ask as to what the special applications of such a range of coders are,

given the intrinsic challenges and yet to be realized viable operational status.

At the outset, the answer to such a question is that the challenge of reaching the

lower limits of speech coding (as outlined in Sects. 1.1–1.5 in this chapter) is

appealing and enticing simply as a scientific pursuit, and which is likely to unravel

various new paradigms that would become effective to realize such coders, such as

the example quoted in Sect. 1.5 about the articulatory basis for low bit-rate coding

or even the more abstract notions hazarded in the same section. More similar

frameworks and paradigms are bound to emerge in such a pure pursuit of the

science behind such ultra low bit-rate realizations, and which, by virtue of bringing

about paradigmatically promising and yet unexplored techniques, has the potential

to have a bearing on the very nature of speech coding, even possibly to the extent of

being disruptive enough to make such newfound high quality ultra low bit-rate
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coding principles offer qualities comparable to higher rate coders and thereby push

the rate-distortion performances to new limits.

On a less ambitious note, the next answer to the question of why such ultra low

bit-rates are needed is the dictum that ‘lower the bit-rate, always the better’,

provided it is possible to ensure acceptable quality coded speech, which in turn

can be qualified as at least intelligible and natural sounding, at such ultra low bit-

rates. This is simply in keeping with the practical consideration that more speech

channels can then be made to operate within a specified and available channel

bandwidth.

Rather than be able to give only such a broad desideratum, it is in fact possible to

identify specific niche applications where ultra low bit-rate speech coding is indeed

of much use. One such niche is in HF communications (e.g. HF-ECCM—Elec-

tronic Counter Counter Measure [MLG95]) in defense applications, where it is

required to build a ciphered and highly protected digitized speech communications

on HF links. In such applications, even a baseline 2,400 bps coder (e.g. LPC10 or

LPC10e) is considered to require too large a bit rate along with error protecting

schemes, for this kind of channel. This immediately calls for the baseline coder to

operate at much lower bit-rates (e.g. 800 bps, as identified in the NATO STANAG

4479 standardization efforts [MLG95]), so that the overall bit-rate including EDAC

(Error Detection and Correction Code) is within the limits of 2,000–3,000 bps for

such channels. In general, such a very low data rate (VLDR) deployment scenario

typically arises in secure voice communications over narrowband channels and

low-probability-of-intercept (LPI) communication and narrowband integrated

voice/data systems [KF85, F93, W91]. Another application, also in communica-

tions setting, is the need for low bit-rate coders for underwater acoustic speech

communications, considering the very low bandwidths available for such channels.

This includes both ultra low bit-rate ranges, e.g. [Li11], at 600 bps in [DFGSL13]

and at 300 bps in [Ji12] with frequency hopping communication system require-

ments with low probability of intercept and anti-interference, as well as higher rates

as in [Luo11] at 2–2.4 Kbps and [GTLL05] at 5.4 Kbps for the speech encoder.

On a different note, the other niche application is in storage, where large speech

data needs to be stored efficiently with as low a footprint as possible, even while

being able to retrieve the same to yield high quality speech. Examples of audio

storage abound already in multi-media applications, with various standards in place

(e.g. the now popular and ubiquitous MP3 for general audio, with typical compres-

sion ratios of 1:11). However, when dealing with much higher compression ratios

for speech, ultra low bit-rate speech coding would come into play typically to

handle speech data as in audio books (also called talking book) or large archival

data, as constituting the motivations in [BD84, VN97, LC01]. Specifically, [BD84]

and [VN97] explored the rather esoteric application where the text transcript of the

large archival type of speech is available. However, in a more general setting, it is

clear that storage of industry grade bulk of speech (as in broadcast, archiving, multi-

media, lectures, audio-visual content, telephony surveillance data, meeting capture

data etc.) will call for as low rates as possible, even while ensuring that the speech

retrieved satisfies certain baseline intelligibility and natural sounding requirements.
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The desired quality of coded speech (i.e., the speech as would be retrieved from

storage for later consumption) largely depends on the further use the coded and

stored speech is put to, such as for audio-search and retrieval (as in lecture browsing

or meeting capture data skimming) or forensic search (as in telephony surveillance

data) or content based retrieval in general, for a wide range of analytics for

actionable intelligence that is beginning to emerge as an important and specialized

domain of application across a wide variety of data.

An important consideration in these two applications of ultra low bit-rate speech

coding are various performance dimensions, in addition to the primary rate-distor-

tion performance, such as coding delay, computational complexity, storage all

impacting such coders’ eventual realization in an embedded form for real-time

operation or deployment on a server (e.g. cloud) for multi-channel real-time

operations or off-line processing. It should however be noted that while the former

application of communication scenarios require real-time operations with low delay

and algorithmic footprint, the latter application of storage does not call for similar

real-time processing requirement, as this can be done off-line, in the sense of

allowing non real-time processing, where large data is compressed and stored at

periodic intervals (say, end of day in a broadcast scenario or telephony surveillance

scenario) for later retrieval.

1.7 Organization of the Book

While there are excellent review articles and collections of papers on speech coding

techniques, standards and systems at bit-rates of 2.4 Kbps and above [F79, KP95b,

K05, M08, MSH08], the range of 1 Kbps and below has received far less attention

in the speech coding community. For instance, there are about 90+ essential papers

in ultra low-bit rate coding over the last 3 decades, including the segment vocoder

framework employing segment quantization principles, but there has been no effort

so far in providing a consolidated framework of the techniques that operate at

these ultra low bit-rates, except perhaps the early reviews of [SR83] and [JF94].

This book attempts to fill this gap and provides an overview of the various coding

techniques proposed and developed till date for ultra low bit-rate coding, specifi-

cally in the framework of segment vocoders using segment quantization, in Chap. 2

while also offering a unifying perspective of the underlying operating principles

that the various techniques share.

Chapter 3 introduces the pioneering work of Lee and Cox [LC01] in establishing

the unit-selection framework for speech coding, and presents the essential algo-

rithms for single-frame unit-selection and the segmental unit-selection proposed in

their original papers [LC01, LC02]. Noting the dichotomy of these two methods, we

also examine and bring out the inherent sub-optimality of the segmental unit-

selection algorithm proposed by them.

Chapter 4 is exclusively devoted to our initial work in the unit-selection based

coding framework [RH06, RH07] wherein we present optimal and unified unit-
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selection algorithms based on the one-pass dynamic programming framework and

study its relative rate-distortion advantages over the sub-optimal segmental version

of Lee and Cox [LC02]. Further in this chapter, we also provide a comprehensive

comparative study of how the unit-selection framework fares in terms of rate-

distortion performance over the clustered codebook based vector quantization,

matrix quantization and variable-length segment quantization frameworks [HR08].

Following this, in Chap. 5, we examine the optimality and complexity tradeoff

inherent in the segmental algorithm proposed by Lee and Cox [LC02] and our

optimal one-pass DP formulation [RH08]. We propose and study a n-best lattice

based search framework for the segmental version of Lee and Cox [LC02] unit-

selection algorithm, and show how this enhances its optimality towards that of the

one-pass DP algorithm, even while retaining the low complexity that the Lee and

Cox segmental version inherently enjoys [RH08].

Chapter 6 provides an interesting and important contribution in the form of a

joint spectral-residual quantization paradigm [RH09, R12], within the unit-

selection frameworks of Lee and Cox [LC02] and our one-pass DP framework

[RH06], [RH07], which obviates the need to transmit any information about the

residual in a LPC vocoding framework. This result is likely to redefine the way LPC

vocoding is done, wherein a speech-to-speech synthesis (STS) framework becomes

completely self-contained in finding units that can be used for speech synthesis at

the decoder without needing any information about the residual.
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Chapter 2

Ultra Low Bit-Rate Coders

In this chapter, we present the definition and principles of ultra-low bit-rate coders.

Here the emphasis is to point to the fact that this class of coders is typically the

‘vocoders’, which are ‘parametric’ coders that are essentially linear-prediction

(LP) based vocoders. This is in contrast to the ‘waveform’ coders, which operate at

the higher bit-rates. Among the various frameworks employed for realizing ultra low

bit-rate speech coding, we restrict our attention to the generic linear-prediction

(LP) based vocoding, (of which the LPC-10 coder [T82] sets the baseline) mainly

for its rather ubiquitous adoption to a range of segment quantization vocoders as well

as for its simplicity and effectiveness in establishing the low bit-rate operation and

quality of coded speech. Here, the parameterization is based on the linear prediction

filter model of human vocal tract wherein the linear prediction parameters (such as

reflection coefficients, log-area-rations, line-spectral-frequencies, etc.) characterize

the spectral shape of every frame of speech (typically of 20 ms duration) and the

prediction error (residual) characterizes the excitation source of the speech production

model. Coders have evolved to efficiently model and quantize both these information,

i.e., the linear prediction parameters and the residual of each frame of the speech

signal. However, by and large, the ultra low bit-rate coders have focused mainly on

how to efficiently quantize the linear-prediction parameters either one frame at a time

or by taking them as a sequence of frames together in the form of a ‘segment’.

The main part of the book will focus on the various quantization schemes that

have evolved towards quantizing the spectral parameters at the target bit-rates

(of ultra low bit rate speech coding at less than few hundreds of bits/second).

This chapter is organized to cover the various techniques in segment quantization,

both conceptually and chronologically, as can be summarized under the following

broad conceptual categories.

1. Vector quantization (VQ) and Matrix quantization (MQ) e.g., the VQ-LPC and

MQ-LPC systems at 300–800 bps, viewed as fixed length segment vocoders.

2. Structure of generic variable length segment vocoders comprising various com-

ponents and steps, such as feature extraction (e.g. LP analysis), automatic
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segmentation, segment quantization (or joint segmentation and quantization),

segment codebooks, duration modification, residual (or prosody) modeling,

parameterization and quantization and synthesis. We provide a brief review of

the various salient techniques proposed till date for each of these components

and steps. Some of the techniques outlined include spectral transition measures,

maximum likelihood segmentation, temporal decomposition for automatic seg-

mentation, variable length segment quantization (VLSQ) using 2-level dynamic

programming (DP) algorithm, joint segmentation and clustering algorithm

(or the segmental K-means algorithm) for template segment codebook design,

phoneme recognition and phonetic vocoders, template and HMM codebooks,

space sampling for segment distortion and duration modification, pitch profile

quantization, etc.

3. Rate-distortion constrained variable length segmentation and quantization, also

referred to as R/D optimal linear prediction.

4. HMM based recognition-synthesis paradigms (sub-300 bps to 1 Kbps) focusing

on HMM based phone class modeling and phone recognition in the HMM

framework, followed by HTS based synthesis at the decoder.

5. ALISP units and refinements, focusing on the unit definition and modeling,

segmentation and synthesis, with variants including definition of long synthesis

units and short synthesis units by dynamic unit selection in a corpus based

approach.

6. Unit selection paradigms, that mark a major departure from the notion of

clustered codebooks or HMM codebooks to use of long continuous codebooks,

in the form of single-frame vector codebooks or variable length segmental

codebook, and which are used for segment quantization by unit-selection prin-

ciples, as derived from TTS techniques.

On a related note, with regard to the LP parameter quantization, it is to be noted

that we shall not attempt to review another important, and what can possibly be

considered as mainstream class of quantization techniques, all set in the vector

quantization framework (of quantizing vectors) and that operate at significantly

much higher bit-rates, such as 24 bits/frame and with an effective bit-rate for

‘spectral quantization’ of 1,200 bps (using a frame-rate of 50 frames/s) and

above. These are geared towards achieving high speech quality, referred to as

‘transparent quality’, characterized by the underlying spectral distortion of 1 dB

[PK95]. In contrast, the focus here is exclusively on ‘segment quantization’,

typically set in a segment vocoder framework, and operating at the lowest end

of the bit-rate range of few hundreds of bits/second and less. In this regard, in

addition to such high-rate vector quantizers (details of which can be found in the

very comprehensive treatment of LP parameter quantization [PK95]), we also

exclude from our consideration, another class of quantizers, also operating in the

same bit-rate ranges, but based on exploiting inter-frame correlation between LP

parameter vectors (LSF) such as [D04], [G07], [DP10].
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2.1 Vector and Matrix Quantization

Figure 2.1 shows the basic LPC segment vocoder framework. Here, the speech

signal is first analyzed at typical frame size 20 ms (in [T82], the standard LPC-10

vocoder uses a 22.5 ms frame size) yielding a LP parametric vector of dimension

p¼ 10 corresponding to a LP order 10 in the LP analysis. Each frame also yields a

residual associated with the LP parametric vector, which is further processed to

derive the voiced/unvoiced decision, pitch and gain, which are the excitation

parameters used to resynthesize speech at the decoder. LPC-10 quantizes the

parametric vector (reflection coefficients) using non-uniform scalar quantization

for each of the coefficients as described in [T82] with 41 bits/vector (and as

shown in Fig. 2.2) and the excitation parameters (voicing, pitch, gain, sync) by

scalar quantization with 13 bits/vector, yielding a total bit-rate of 54 bits/frame or

2.4 Kbps for a frame-rate of 44.4 frames/s. The quality of the LPC-10 coder is

typically expressed as ‘synthetic’ quality, given in terms of subjective quality MOS

score of 2.3.

As noted in Sect. 1.2, LPC-10 sets the basis for a class of low and ultra low

bit-rate speech coding, all typically in the same LP vocoder framework, but

essentially differing in the way the LP parameters are quantized using various

techniques such as vector quantization, matrix quantization, variable length seg-

ment quantization, etc., progressively striving to reduce the effective bit-rate down

from 2.4 Kbps, but keeping the LPC-10 quality as the target to achieve.

Fig. 2.1 Generic structure of the LPC-10 vocoder

Fig. 2.2 Bit-rate allocation for quantization of reflection coefficients, pitch and gain in LPC-10

vocoder
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Figure 2.3 shows a schematic of the manner in which the LP parameter vector is

quantized by the various quantization techniques referred above, namely, scalar

quantization, vector quantization, matrix quantization and variable length segment

quantization. Figure 2.4 shows a schematic of the feature space of the LP parameter

vectors, where the input LP parameter vector sequence is quantized differently by a

vector quantizer, matrix quantizer and variable length segment quantizer. In the

following, we note these briefly, with reference to Figs. 2.3 and 2.4.

It can be seen that scalar quantization (as in the basic LPC-10 vocoder [T82])

quantizes each co-efficient separately, while vector quantization quantizes the

entire LP parameter vector. This is shown in row 2 in Figs. 2.3 and 2.4a. The

principles of VQ that lead to rate-distortion advantage over scalar quantization are

well established, such as based on exploiting the higher dimensionality of vectors,

linear and non-linear dependencies between the vector components, and vector pdf

shape [M85]. The VQ-LPC coder [W82, M85, WJC83] marked an important

milestone in ultra low bit-rate coding by applying the then emerging concept of

vector quantization (VQ) to quantize the LP parameters as a vector for each frame

of speech as against the conventional scalar quantization of the parameters as in

the standard LPC-10 vocoder [T82]. This brought about a remarkable reduction of

the bit-rate from 2.4 Kbps to 800 bps while preserving the quality of the LPC-10

vocoder.

A natural extension of quantizing a vector to a vector-of-vectors (or also referred

to as ‘fixed length segments’), saw the emergence of matrix-quantization based

LPC-10 system, which reduced the bit-rate to 300 bps while preserving the quality

of coded speech as same as that of LPC-10 [WJC83, TG85]. This is shown as

row 3 in Figs. 2.3 and 2.4b. Other variants of the basic matrix quantization concept

have also been proposed, notably, the multi-frame coding schemes [KCT91,

KCT92] at 600–800 bps, [ML92] at 800 bps, [MLG95] at 800 bps and the matrix

product quantization [Br95] at 300 to 700 bps. Such multi-frame coding paradigms

Fig. 2.3 Schematic of the various quantization schemes for LP parameter quantization and

corresponding bit-rates
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Fig. 2.4 Vector, matrix and

variable length segment

quantization in feature

space
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approximate a matrix of LP parameters (also called a super-frame) by a few frames

as anchor points, with the other frames being differentially encoded or interpolated

at the receiver. Among these, [Br95] employed a more rigorous formulation of

representing the reconstruction matrix Y (of an input matrix X of m successive LPC

parameter vectors to be quantized) as a product of a diagonal centroid matrix S

representing the average parameter vector of the matrix and a temporal contour

represented as a contour matrix V, and arriving at an iterative framework to design

the joint S and V matrix codebooks. This work also extended this formulation to

variable size matrices, i.e., segments, as is the topic of discussion in the next

section. A further generalization of the multi-frame encoder of [KCT91] is the

combined quantization-interpolation (CQI) method of [LF93] where the ’target’

vectors defining the break-points or the end-frames of variable length segments

marked by spectral discontinuity are determined sequentially in a two-pass frame-

work to realize spectral distortions lower than that of [KCT91] at bit-rates below

350 bps. As we shall note later, the maximum-likelihood formulation of [SS87] in

Sect. 2.2.1.2 provides an optimal framework for such a scheme, as was explored

and compared in [S94].

The next important development was the progression from quantizing ‘fixed

length segment’ to ‘variable length segments’, as in [SH88]. These techniques

exploited the variable durations of speech units (typically, phones) and then quan-

tized them efficiently using structured or unstructured ‘segment’ codebooks. Seg-

ment vocoders based on variable-length segment quantization has provided the

means of achieving low to ultra low bit-rates in the range of 800 to 150 bps while

offering intelligible speech quality [RSM83, RWR87, SH88, HS92]. This is illus-

trated in row 4 in Figs. 2.3 and 2.4c. We shall consider this class of quantization in a

more general setting that is referred to as ‘segment vocoders’, in the following

section in a little more detail, and provide an overview of a wide variety of ultra low

bit-rate quantizers in this framework.

2.2 Segment Vocoders

The basic functioning of a segment vocoder framework is given in Fig. 2.5 and can

be described as made of the following main components and/or steps:

1. Automatic segmentation: Segmentation of input speech (a sequence of LP

parameter vectors) into a sequence of variable length segments (also referred

to as ‘units’).

2. Variable-length segment quantization: Segment quantization of each of these

segments using a segment codebook C¼ (c1, c2, . . ., cN) and transmission of the

best-match code—segment index and input segment duration.

3. Joint segmentation quantization: While the early systems used automatic

segmentation and segment quantization as separate steps, (i.e., segmentation

yielded the variable length segments that are further quantized), most segment
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vocoders that evolved subsequently employed techniques that can be referred to

as ‘joint segmentation quantization’, wherein the segmentation and quantization

are combined within a single step for a given segment codebook, essentially

solving what can be called a segmentation and labeling using methods derived

from speech recognition. In Fig. 2.5, this is shown as block C that combines Step

1 and 2 above.

4. Segment codebook: The segment codebook of size N is typically made of

N variable length segments or statistical models of segmental units such as

HMMs, that are derived from training speech (long sequence of LP vectors)

using special techniques such as joint segmentation and clustering procedures

(or segmental K-means algorithm) and acoustic modeling techniques in speech

recognition that yield the HMMs. Note that in Fig. 2.5, we have referred to the

segment codebook at the encoder as ‘recognition units’ and the one at the

decoder as the ‘synthesis units’. As we will see in subsequent sections detailing

this aspect, these are identical codebooks in most segment vocoders, particularly

those using templates [RSM82b, RSM83, RWR87, RS04] and in the HMM

based recognition/synthesis systems [T98, H03, MTK98]. However, these

could also be different codebooks, differing in terms of the representation of

the segments in the codebook (as long as each segment is associated with the

same underlying acoustic properties); an example is [MBCC01, MGC01], where

the recognition units are HMMs derived from LPCC representation, while the

decoder has synthesis units that allow either LP synthesis or HNM synthesis.

Other examples include [C08, CMC08a, CMC08b, PSVH10] (using syllable

HMMs for segment quantization at the encoder and template based synthesis at

the decoder) [LC01, LC02] (MFCC units for unit-selection based segment

quantization at the encoder and HNM based synthesis at the decoder).

Fig. 2.5 Generic structure of a segment vocoder using LP analysis (at the encoder) and LP

synthesis (at the decoder)
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5. Duration modification: The code-segment corresponding to each received

code-segment index is time normalized (duration modified) to match the dura-

tion of the corresponding input segment.

6. Residual modeling and quantization: The residual obtained by LP analysis is

also parameterized, quantized and transmitted; the residual decoder reconstructs

the residual to be used for synthesis in Step 6.

7. Synthesis: Synthesis of speech by LP synthesis using the code-segment time-

normalized to match input segment duration.

The various segment vocoders proposed till date differ primarily in some or all

of these aspects. In the following, we briefly describe each of the above components

in more detail, primarily providing a review of how various segment quantization

techniques for ultra low bit-rate coding differ with reference to these specific

components and steps outlined above.

2.2.1 Automatic Segmentation

Here, we briefly review the automatic segmentation techniques in various segment

vocoders that derive a variable length segmentation prior to segment quantization.

Much of the basic architecture in the segment vocoder framework was laid by

the work at BBN [MCRK77, SKMKZ79, SKMS80, RSM82a, RSM82b, RSM83,

RW85, RWR87, M06]. Some of these early work followed a segment-then-quan-

tize approach, for example in [RSM82b, RSM83] where automatic segmentation

was done using a simplistic spectral transition measure to generate diphone-like

units which are used in both segment codebook design and segment quantization. In

contrast, [RWR87] employed a combinatorial search for the best segmentation of a

given block of input speech, under the constraint that segment durations are to be

from a finite set, and optimized to minimize the quantization error for the block.

An interesting work by Svendsen [S94] showed that using an VQ codebook for

quantizing segments derived automatically by the maximum-likelihood

(ML) segmentation [SS87] yields a bit-rate reduction by a factor of 2, while

preserving the speech quality. This clearly established the essence of segment

quantization, namely, that it is more efficient to quantize a segment as whole, if

the segment corresponds to an acoustic unit such as a phone (which comprises of a

steady-state and therefore can be quantized parsimoniously by a single vector or a

code-segment from a segment codebook).

[RS04] extended these early studies above and explored automatically derived

phone and diphone units using spectral-transition measures and phone-like units

using maximum-likelihood segmentation [SS87] and showed that automatically

derived phone-like units are more efficient than diphone-like units for typical

segment codebook sizes (made of randomly selected phone-like or diphone-like

units in the form of segments).
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2.2.1.1 Spectral Transition Measure

The ‘spectral transition measure’ (STM) is based on the principle of measuring the

spectral derivative at every frame instant. STM was adopted in early segment

vocoders for diphone-like segmentation [RSM82b, RSM83]. We consider two

types of STM as used in [RSM82b], namely, the d1 and d3 measures. These are

defined as follows: Let on be the LP parameter vector at the nth frame. The STM at

frame n, di(n), is given by di(n)¼kon� on� ik2, i¼ 1, 3.

Figure 2.6 illustrates the STM profile with respect to phone-like and diphone-

like segments and the corresponding peak/valley picking as described below. d1(n)
as a function of n exhibits peaks at fast spectral transitions (such as from one phone

to another) and valleys at steady state regions (such as within a vocalic segment).

d3(n) gives a smoother measure of the spectral derivative. Thus, peak-picking of

d1(n) or d3(n) locates transitions or phone boundaries and results in a phone-like

segmentation. Picking the minima (valleys) of these functions locates a frame

within steady-state regions that has maximum local stationarity and corresponds

to a diphone boundary. Successive peaks therefore mark phone-like (PL) segments

and successive valleys mark diphone-like (DPL) segments.

Fig. 2.6 Spectral transition measure (STM) based definition of phone-like and diphone-like

segmentation and corresponding STM profile used for peak/valley picking
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[RS04] used an extrema picking algorithm (EPA) for peak- and valley-picking

on d1(n) and d3(n) functions. This algorithm employs a threshold (δ) to detect the

extrema (peaks and valleys) alternatingly in a left-to-right scanning. The algorithm

can be stated as follows:

Search

for a peak (valley) by repeated updating of current maximum p (current minimum v)
every time a local maximum (minimum) is detected
Until

a function value smaller than (1� δ)p (larger than (1 + δ)v) is encountered.
After this,

Go to Search and start searching for a valley (peak).

While small values of δ (close to 0) result in over-segmentation, large values of δ
(close to 1) result in under-segmentation and needs to be optimized for a desired

segment rate. Thus, the threshold δ used in the extrema-picking-algorithm plays a

crucial role in determining the quality of segmentation and hence needs to be

optimized to yield good segmentation match as defined above. For this purpose,

[RS04] used the segment rate (number of segment/second) as the primary measure

to be matched. For instance, TIMIT has a phone-rate of R¼ 12.5 phones/s, as

measured over 300 sentences. In STM, [RS04] set δ to a value that results in this

segment rate. The optimal δ corresponding to a segment rate of 12.5 segments/s also

results (automatically and interestingly) in the highest percent match (between the

automatically determined segment boundaries and the true segment boundaries

within a specific tolerance limit) as well as the lowest percent insertion and deletion

values. Based on segmentation applied on TIMIT sentences, it was shown that d1 is
well suited for detecting fast spectral transitions such as phone boundaries and

hence in better phone-like segmentation than d3. Conversely, the smoother d3 is

more suited for a diphone-like segmentation than d1, where it is necessary to detect
steady-states by valley-picking. As a consequence, [RS04] used STM (d1) for

phone-like (PL) segmentation and STM (d3) for diphone-like (DPL) segmentation

in the overall vocoder.

2.2.1.2 Maximum-Likelihood Segmentation

Let a speech utterance be given by OT
1 ¼ (o1, o2, . . ., oT), which is a LP parameter

vector sequence of T speech frames, where, on is a p-dimensional parameter vector

at frame ‘n’. The segmentation problem is to find ‘K’ consecutive segments in the

observation sequence OT
1 . Let the segment boundaries be denoted by the sequence

of integers B¼ (b0, b1, . . ., bk� 1, bk, . . ., bK). The kth segment starts at frame

bk� 1 + 1 and ends at frame bk; b0¼ 0 and bK¼ T. This is illustrated in Fig. 2.7.

The maximum likelihood (ML) segmentation is based on using the piecewise

(quasi) stationarity of speech as the acoustic criterion for determining segments. The

criteria is to obtain segments which exhibit maximum acoustic homogeneity within
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their boundaries. The acoustic inhomogeneity of a segment ismeasured in terms of an

‘intra-segmental distortion’, given by the sum of distances from the frames that span

the segment, to the centroid of the frames comprising the segment. For a given K, the

optimal segmentation B*¼ (b�0, b
�
1, . . ., b

�
K) is obtained so as to minimize the sum of

intra-segment distortion over all possible segment boundaries, i.e., minimize

D K; Tð Þ ¼
XK
k¼1

Xbk
n¼bk�1þ1

d on; μkð Þ

which can be given as,

B� ¼ argmin
B

D K; Tð Þ

where, D(K,T) is the total distortion of a K-segment segmentation of OT
1 ¼ (o1,

o2, . . ., oT); μk is the centroid of the kth segment consisting of the spectral sequence

Obk
bk�1þ1 ¼ obk�1þ1; . . . ; obkf g for a specific distance measure d(�,�). For the Euclidean

distance ‘d’, μk is the average of the frames in the segmentObk
bk�1þ1. This is illustrated

in Fig. 2.7.

The optimal segment boundaries are solved efficiently using a dynamic pro-

gramming (DP) procedure [SS87, SRS02] using the recursion

D k; bkð Þ ¼ min
bk�1

D k � 1, bk�1ð Þ þ Δ bk�1 þ 1, bkð Þ½ �

for all possible bk� 1; D(k, bk) is the minimum accumulated distortion up to the kth
segment (which ends in frame bk), i.e., D(k, bk) is the minimum distortion of a

segmentation of o1; o2; . . . ; obkð Þ into k segments; Δ(bk� 1 + 1, bk) is the

intra-segment distortion of the kth segment Obk
bk�1þ1. This is illustrated in Fig. 2.8.

The segmentation problem is solved by invoking (2) for D(K,T ); this is computed

efficiently by a trellis realization. The optimal segment boundaries (b�0, b
�
1, . . ., b

�
K)

are retrieved by backtracking on the trellis along the optimal alignment path

corresponding to min{D(K,T )}.
Figure 2.9 shows a schematic of the feature space where the input feature

sequence corresponding to the word ‘emotion’ is segmented by ML-segmentation

into corresponding phone-like units.

Fig. 2.7 Schematic of maximum-likelihood segmentation
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2.2.1.3 ML Segmentation: Duration Constrained (ML(DC))

By definition, ML segmentation produces a segmentation where each segment is

maximally homogenous; when the segment rate equals the phone-rate of natural

speech, the resulting segments will be quasi-stationary and would correspond to the

steady-state regions of phonetic units. However, even for a correct segment rate,

ML segmentation can result in segment lengths which are unnaturally short

(1 frame long) or long (up to even 70 frames). Such segments will be distorted

significantly during segment quantization and result in poor vocoder performance.

In the distribution of phone durations in TIMIT database, nearly 95 % of the

labeled phonetic segments are in the range of 1-20 frames. In order to limit the

segment lengths of ML segmentation to such a meaningful range (of actual phones

durations), [RS04] modified the ML segmentation to have ‘duration constraints’.

Here, the optimal segments are forced to be within a duration range of [α, β], where

Fig. 2.9 Illustration of a typical phone-like segmentation derived by ML segmentation in a

feature space

Fig. 2.8 Recursive structure employed in maximum-likelihood segmentation

38 2 Ultra Low Bit-Rate Coders



α and β are the minimum and maximum lengths possible (in frames). Segments of

lengths < α and > β are not generated at all. This is achieved by restricting the

candidate boundaries in the search for optimal segment boundaries in (2) as fol-

lows, and as illustrated in Fig. 2.10:

D k; bkð Þ ¼ min
bk�β�bk�1�bk�α

D k � 1, bk�1ð Þ þ Δ bk�1 þ 1, bkð Þ½ �

This also has the advantage of reducing the computational complexity of ML

segmentation from O(T2) to O(lT ), where l¼ β� α+ 1 with typical values of

[α, β]¼ [2, 20].

This work [RS04] evaluated the STM and ML segmentations for phone-like

units (PLU) and diphone-like units (DPLU) as shown in Fig. 2.11. It used various

segmentation accuracy measures and segmental SNR to compare the performance

of the different phone-like and diphone-like units (by retaining the residual without

modeling or quantization), and showed that ML segmentations realize phone-like

units which are significantly better than those obtained by STM in terms of match

accuracy with TIMIT phone segmentation as well as actual vocoder performance

measured in terms of segmental SNR. Further, it was shown that the phone-like

units of ML segmentations also outperform the diphone-like units obtained using

STM in early vocoders. The resulting segment vocoder had an average bit-rate of

300 bps, with very high intelligibility when used in a single-speaker mode. The

interesting observation to be made in this context is that phone-like units are

typically characterized by segments between two transitions with a stable steady-

Fig. 2.11 Different

segmentation techniques in

STM and ML framework

and corresponding phone-

like and diphone-like units

explored in [RS04]

Fig. 2.10 Recursive structure employed for duration-constrained ML segmentation
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state at its center. Hence these units have a good means of representing a phonetic

unit for a given codebook size, despite the high invariability arising in the transi-

tional parts arising from context dependency. In contrast, the diphone units, defined

from the steady-state of one phoneme to the steady-state of another, has low

variability and hence represent a particular diphone better than a phone-like unit

would. However, considering that the number of diphones is large O(M2) for

M phones, the codebook size needs to be larger than that of phone-like units to

ensure adequate coverage and representation of all possible diphones. Thus, for a

given codebook size of the order of 8,192, as considered in this work, the phone-like

units have the possibility of being represented by several segments belonging to a

given phone-class (e.g. 128 segments¼ 8,192/64, for number of phones as 64)

thereby accounting for contextual variability to a certain extent; on the other hand,

this codebook size is still inadequate for representing diphone-like units

(e.g. 642¼ 4,096), which approximately allows only two segments of a diphone

class to be present in the codebook. (Of course, these numbers are approximate to

allow reasoning with the scenarios, and the units are bound to be distributed

non-uniformly). This gives a reasonable explanation for why the above work reported

a better performance of the phone-like units for the kind of codebook sizes employed.

2.2.1.4 ML Segmentation: A Generalized Basis

An interesting observation to note here is that the ML segmentation formulation

outlined above sets the basis for at least five different kinds of segmentation and

quantization techniques that are discussed in this chapter, namely,

1. Distortion constrained segmentation and vector quantization of [S94] pointed to

in Sect. 2.2.1 (also generalizing over the sequentially determined combined

quantization-interpolation method of [LF93] indicated in Sect. 2.1) and

discussed in some detail under the R/D optimal techniques in Sect. 2.3.4.

2. Joint segmentation and quantization technique forming the core of the variable

length segment quantization [SH88], and derived based on the 2-level dynamic

programming algorithm discussed in Sects. 2.2.3, 2.2.3.2 and 2.2.3.3.

3. R/D optimal algorithm of [PV00] discussed in Sect. 2.3.1.

4. Rate-distortion constrained segmentation in the variable-to-variable length vec-

tor quantization (VVVQ) formulation of [CL94] discussed in Sect. 2.3.2.

5. Multigram formulation (and sequence segmentation) of [B95] and reinterpreta-

tion with reference to VVVQ in [BCC97], discussed in Sect. 2.3.3.

2.2.1.5 Syllable-like units and other segmentations

In an interesting departure from classical units such as phone-like and diphone-like

units, [C08, CMC08a, CMC08b, PSVH10] proposed the use of syllable as the unit

of segmentation and quantization and derive syllable-like units using group-delay

based automatic segmentation [NM04, MY11] in a syllable-based segment vocoder
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framework. Other work to use syllable based unit definition for segmentation are

[CKBC99] which detects local maxima of the function of ‘sonority decrease’ to

further identify and select syllables, (this work uses syllables as alternative to the

ALISP units, discussed separately in Sect. 2.5), and [HN89] which uses syllable as

an unit for recognition and synthesis, and defines reference patterns of syllable units

using hand labeling.

In a study of segmentation techniques for segment vocoders, [C05] considers the

segmentation algorithm by [v91, BS00], reporting spectral distortions of 2.5–1.5 dB

at bit-rates in the range of 100–400 bps. [v91] define a segmentation by treating

phonemes as stationary regions and detecting the transitional boundaries of a

phoneme marked by a drop in the normalized correlation between frames below a

specified threshold. [BS00] use a vowel-spotting approach by peak-detection of

average magnitude, by viewing vowels as characterized by larger average magni-

tudes than nearby frames.

2.2.1.6 Temporal Decomposition

Temporal decomposition is an important technique [A83] to model the articulatory

dynamics of speech production, where speech is described as a result of a sequence of

distinct articulatory gestures towards and away from articulatory targets, the influ-

ence of the neighboring gestures thereby contributing to the co-articulatory effects

commonly underlying all continuous speech. Atal [A83] proposed temporal decom-

position as a means of describing a sequence of parametric vectors representing

continuous speech as a linear combination of the underlying targets, by solving for a

set of target vectors which when linearly combined by (a small number of)

overlapping target functions, can approximate a parametric vector at each frame.

Among the further work in this direction [V89, VM89, BA91], Van Dijk-Kappers

[V89] studied the phonetic relevance of temporal decomposition. Temporal decom-

position has evinced interest for application in speech recognition and speech coding,

notably very low bit-rate speech coding, given its appealing property to approximate

continuous speech in terms of a parsimonious set of representations in the form of the

target vectors and target (overlapping) functions, even while being amenable to

synthesis by the very nature of the formulation being to approximate each vector in

the sequence by the linear combination of a limited number of target vectors. In this

regard, we note here that the temporal decomposition framework has led to signifi-

cant work in the context of very low bit-rate speech coding, such as the 450–600 bps

vocoders of [CS90, CS91, CS93] yielding speech, that, when compared to the

2,400 bps LPC, is very intelligible and more natural sounding speech, the 600 bps

range vocoder yielding intelligible speech in [GD96, GDB97b], comparative study of

different spectral representations of [GDB97a] including LPC, reflection coeffi-

cients, LAR, cepstrum, and band filters for event detection with respect to their

decomposition suitability (not for their phonetic relevance, but the degree of recon-

struction accuracy possible), 1,000–1,200 bps high fidelity compression in [GDS98],

the 996 bps vocoder of [Sung98] using temporal decomposition on LSF parameters
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yielding reasonable speech quality compared to the 2,400 bps LPC10e and a related

work of [P95] in terms of step decomposition of speech. An important application of

temporal decomposition is in the definition and modeling of ALISP units, which has

been successfully applied for very low bit-rate speech coding, and which has been

discussed separately in Sect. 2.5.

In the context of deriving segments by an automatic segmentation algorithm, it is

to be noted that the problem of automatic segmentation to yield various types of

meaningful acoustic segments is well studied with numerous techniques proposed

till date. While the above sections did touch on some of the salient segmentation

techniques specifically in the context of ultra low bit-rate speech coding, a broader

discussion into all other techniques is beyond the scope here. Details of a wide

range of automatic segmentation techniques can be found in the very comprehen-

sive review of Vidal and Marzal [VM90].

2.2.2 Segment Quantization

Segment quantization as an explicit step is applicable only when the automatic

segmentation is done as a first step to result in variable-length segments, and hence

is specific to only those techniques discussed above under automatic segmentation.

Once the variable length segments are obtained, each of these segments sk,
k¼ 1, . . .,K is quantized using the best segment cqk in the segment codebook C¼
(c1, c2, . . ., cN) defined as the segment yielding the lowest segmental distortion. This

is shown in Fig. 2.12.

Quantizing an input segment to the best matching segment from the segment

codebook calls for the definition of a distance metric to measure the segmental

distortion between two arbitrary variable-length segments (the input segment to be

quantized and a segment from the segment codebook). Such a measure needs to

account for non-linear temporal and acoustic variability between two such seg-

ments, and ideally, this is best computed by dynamic time warping (DTW) well

defined and applied for speech recognition and widely used in the ALISP units

based segment quantization discussed in detail in Sect. 2.5. Linear warping, as a

computationally simpler approximation to a full-fledged DTW as well as the

so-called space-sampling based matrix-distortions have also been applied.

Fig. 2.12 Segmentation and quantization
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For instance, in the primary work from BBN [RSM82b, RSM83, RWR87] which

performed a diphone-like segmentation, they employed a space-sampling technique

by which both the input segment and each of the variable-length segment in the

segment codebook were re-sampled in the feature space (e.g. LAR vector space) to

yield a fixed number of vectors that are equally spaced along the trajectory of the

original segments. This can be visualized as shown in Fig. 2.13. The number of

resampled vectors is set as 10, thereby converting each variable length segment to a

fixed length segment (matrix) of length 10. Subsequently, a matrix distortion is

computed as the sum of 10 Euclidean distortions, each between the corresponding

LAR vectors of the resampled input segment and codebook segment. An input

segment is then quantized to the codebook segment that has the minimum matrix

distortion. While being computationally simple, this method circumvents a more

exact and optimal dynamic time-warping kind of distance calculation, whose

computation cost is proportional to the lengths of the input segment and each

segment in the segment codebook being matched. The latter work of [RS04] also

followed the same approach for segment quantization using a segment codebook

for phone-like and diphone-like units.

In the case of the segment codebook being a HMM codebook, i.e., each entry is

an HMM modeling a phone or phone-like or acoustic units, segment quantization

takes the form of finding the best matching HMM from the HMM codebook, that

has the maximum likelihood (usually, the Viterbi likelihood) for the input segment.

While most of the HMM codebook based methods perform a transcription of

the input speech in terms of the units that the HMMs model (and thereby falling

under the joint segmentation and quantization approach, described in the next

sub-section), the syllable based approach of [C08, CMC08a, CMC08b, PSVH10]

used syllable HMM codebook, and performed a separate segment quantization

Fig. 2.13 Schematic of space sampling and correspondence between space-sampled vectors

between two trajectories
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using this method of finding the best matching HMM for an input segment, which is

a syllable-like segment derived from a first stage group-delay based segmentation,

as pointed out in Sect. 2.2.1.

2.2.3 Joint Segmentation Quantization

We first give the problem definition of joint segmentation and quantization, before

attempting a brief overview of different techniques that falls within this definition.

In reviewing the class of segment vocoder that use joint segmentation and quanti-

zation as above, we also point to the nature of the segment codebook employed in

the various joint segmentation and quantization work alongside here, considering

the dependence of the joint segmentation and quantization (or segmentation and

labeling) on the ‘segment codebook’. We also devote a separate section for segment

codebooks in order to highlight additional details as may be required in specific

instances.

2.2.3.1 Basic framework

As the name implies, joint segmentation and quantization performs a segmentation

and quantization of the associated segments simultaneously, i.e., given an input

sequence of speech feature vectors (e.g. LPC parameter vectors), it obtains a set of

segments each labeled by a segment from a segment codebook under some opti-

mality consideration. This can be viewed as a ‘segmentation and labeling’ process,

where each segment is labeled by a segment index from a segment codebook. Due

to this, joint segmentation and quantization necessarily requires a segment code-

book with which the segmentation and labeling is done.

Figure 2.12 shows a typical segmentation and labeling of a feature vector

sequence O¼ (o1, o2, . . ., oT). Let the segment codebook used for such a segmen-

tation and labeling be given by a collection of N variable length segments C¼ (c1,
c2, . . ., cn . . ., cN), where a segment cn is a sequence of LP parameters of some

length. Figure 2.12 shows the segmentation of the input feature vector sequence

into K segments, defined by the segment boundaries B¼ (b0, b1, . . ., bK). Each
segment sk ¼ xbk�1þ1; xbkð Þ is given a label qk, where qk ∈ (1,N ). Let the set of

labels associated with the K segments S¼ (s1, s2, . . ., sk� 1, sk, . . ., sK) be Q¼ (q1,
q2, . . ., qk� 1, qk, . . ., qK).

A typical segmentation is completely defined by

1. The number of segments K,
2. The segment boundaries for a given K, B¼ (b0, b1, . . ., bk� 1, bk, . . ., bK) and,
3. The segment labels Q¼ (q1, q2, . . ., qk� 1, qk, . . ., qK).
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The problem of joint segmentation and quantization naturally needs to minimize

the quantization error (or distortion) associated with each segment, and hence a

measure of total segment distortion which, for a given (K,B,Q), can be expressed as

D ¼
XK
k¼1

d sk; cqk
� �

The optimal segmentation is determined as (K*,B*,Q*) that minimizes D. Thus
the solution for optimal segmentation can be given as

K�;B�;Q�ð Þ ¼ arg min
K,B,Q

D ¼ arg min
K,B,Q

XK
k¼1

d sk; cqk
� �

This is clearly a combinatorial search problem, which by brute force search will

require first hypothesizing a K, and then hypothesizing a B with K segment bound-

aries, and for each resulting segment, obtaining the best matching codebook

segment cqk and repeating this for all K and B, until the minimum overall distortion

D is found. Fortunately, this problem is already well solved in the context of speech

recognition, where the above definition of segmentation and labeling is exactly

what corresponds to the now well established ‘connected word recognition’ (CWR)

problem [RJ93], where we are given a input feature vector sequence of a test speech

spoken in a continuous fashion made of a sequence of words drawn from a fixed

vocabulary of N words and it is required to determine the sequence of words

spoken, i.e., that best explains the feature vector sequence according to a distance

measure or likelihood measure with respect to a set of N word models that the CWR

system has [which could be template models or hidden Markov model (HMM)].

The CWR problem has at least three types of algorithmic solutions [RJ93], namely,

(a) 2-level dynamic programming (DP) algorithm

(b) Level-building algorithm

(c) One-pass DP algorithm

In light of the above basic definition of joint segmentation and quantization, it

can be noted that ‘segment quantization’ techniques in segment vocoders essen-

tially performed a ‘connected segment recognition’ by which they determined the

optimal segment boundaries (and hence the segment lengths) and the segment

labels that were transmitted and used for reconstructing speech at the decoder

after duration normalization.

2.2.3.2 Shiraki and Honda Variable-Length Segment Quantization

At this point, it is appropriate to refer to the work of Shiraki and Honda [SH88,

HS92] as who first established the notion of joint segmentation and quantization in

the context of variable length segment quantization. While the joint segmentation
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and quantization algorithm used by Shiraki and Honda [SH88] was essentially the

2-level DP algorithm proposed much earlier by Sakoe [S79] for connected word

recognition, the importance of the variable length segment quantization work in

[SH88] lies in the fact that [SH88] defined and addressed the design of ‘optimal’

variable length segment codebooks of any desired size, from continuous speech

training data using an iterative ‘joint segmentation and clustering’ algorithm, which

in speech recognition literature had been developed independently and referred to

as the segmental K-means (or SKM) algorithm [RWJ86, RJ93]. We shall illustrate

this codebook design algorithm in Sect. 2.2.4 as part of a discussion on ‘segment

codebook’. [SH88] also defined segment to segment distortions (within the joint

segmentation and quantization framework) using linear interpolation and warping

transform matrices.

2.2.3.3 2-Level DP Framework for Joint Segmentation

and Quantization

We give now a brief note on the 2-level DP algorithm employed by Shiraki and

Honda [SH88] for performing joint segmentation and quantization, particularly

with respect to how it can be viewed and realized as a variant of the ML algorithm

described in Sect. 2.2.1.2. It was seen that the ML algorithm solves for the optimal

segmentation boundaries as B* given by,

B� ¼ argmin
B

D K; Tð Þ

where D(K,T ) is the sum of the K intra-segmental distortions each being defined as

in the second summand below,

D K; Tð Þ ¼
XK
k¼1

Xbk
n¼bk�1þ1

d on; μkð Þ

In the ML formulation, the intra-segment distortion for a segment Obk
bk�1þ1 ¼

obk�1þ1; . . . ; obkf g is defined with respect to the centroid μk of this segment. Instead,

assume that the ML formulation is to be posed as the joint segmentation and

quantization problem, as defined above, such that each resulting segment has the

lowest possible quantization distortion and the segments (from the solution for the

segment boundaries) are to be determined so as to minimize the total distortion. In

this case, we first need to take into account a segment codebook from which the best

segment is to be chosen to optimally quantize a given segment. The ML formula-

tion can now be redefined so as to yield the desired joint segmentation and

quantization with respect to this explicitly defined codebook by performing two

changes in the basic ML equations:
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(a) The intra-segment distortion
Xbk

n¼bk�1þ1
d on; μkð Þ is replaced by the minimum

quantization distortion of the segmentObk
bk�1þ1 ¼ obk�1þ1; . . . ; obkf gwith respect

to the segment codebook C¼ (c1, c2, . . ., cn . . ., cN), i.e., by defining D(K,T ) as

D K; Tð Þ ¼
XK
k¼1

d�k

where, d�k is the minimum quantization distortion of the segment Obk
bk�1þ1 ¼

obk�1þ1; . . . ; obkf g given by

d�k ¼ min
cn ∈C

d Obk
bk�1þ1; cn

� �

where d Obk
bk�1þ1; cn

� �
is the segmental distortion between segmentObk

bk�1þ1 and a

code segment cn in the segment codebook C, realized by an appropriate time-

warping (such as an optimal dynamic time-warping [RJ93]) or by the linear

warping defined by [SH88].

(b) Note that in the ML formulation, the overall distortion D(K, T) decreases

monotonically with K, reaching a value of 0 when K¼ T, i.e., the input feature
vector sequence of T vectors is segmented into T segments, yielding the trivial

solution of each segment being a single vector. However, interestingly, in the

case of 2-level DP based segmentation and quantization (or connected segment

recognition), when D(K, T ) is obtained for a range of K of interest (from

considerations of minimum to maximum search range for the desired number

of segments, in the extreme case giving the limits of 1 to T), it is possible to

obtain an optimal K* for which D(K*, T ) is a minimum, i.e., the segment to

segment matching requirement dictates and constrains the segmentation solu-

tion to an optimal number of segments for which the overall quantization

distortion is minimum, with less or more number of segments leading to

duration mismatches between the segments in the segment codebook and

the input segments being quantized. This leads to the second modification

to the ML formulation, that K* is obtained as

K� ¼ argmin
K

D K; Tð Þ

Thus the 2-level DP can be realized as a reformulation of the ML-segmentation

algorithm with the above two modifications, defined with respect to an explicit

codebook (in the place of the implicitly defined ‘centroid’ as the approximation of a

segment) with the joint segmentation and quantization solved as (K*,B*,Q*) as
above (Note that Q� ¼ q�1, q

�
2, . . . q

�
k , . . . , q

�
K� is obtained incidentally from K* and
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B* as solved above, where once segment sk is solved as sk ¼ ob�k�1þ1; . . . ; ob�k

n o
, the

quantization index q�k for this segment is simply given as

q�k ¼ arg min
n¼1, ...,N

d O
b�k
b�k�1þ1; cn

� �

2.2.3.4 One-Pass DP Algorithm

We now briefly describe the one-pass DP algorithm listed as one of the three

algorithms for solving the connected word recognition (or ‘connected segment rec-

ognition’ in the context of joint segmentation and quantization) for two reasons—

firstly that it is also called the nowwell-knownViterbi-decodingwhen thewordmodel

is a HMM and we shall shortly discuss phone HMM based phoneme recognition

which forms the joint segmentation and labeling for a class of segment quantizers, and

secondly, we will use the one-pass DP algorithm in a modified form in the subsequent

chapters to realize the unified and optimal algorithms for unit-selection based segment

quantization and this short introduction to this algorithm serves as a precursor to these

following chapters.

Here, we will mainly illustrate how the solution looks like for the one-pass DP

algorithm for the case when the segment codebook is a set of templates of variable

length segments, rather than go into the actual algorithmic realization of the

one-pass DP algorithm (which can be found in [RJ93, N84]). The one-pass DP

algorithm is applied on the sequence of feature vectors (in the x-axis) and the set of
templates in the segment codebook (in the y-axis), and derives the solution in the

form of an optimal decoding path, as shown in Fig. 2.14, which is retrieved by a

backtracking procedure at the end of applying a path growing procedure (made of

recursions) from left to right (i.e., from the starting frame in the input feature vector

sequence to the last frame). This path establishes the mapping between the input

feature vector sequence and the templates, yielding the segmentation and labeling

solution (K*,B*,Q*) as follows: The discontinuities in the path represent a transi-

tion from one word to another, and the number of distinct such sub-paths yields

the optimal number of segments K*. The segment to segment transition, marked by

the discontinuity, corresponds to the optimal segment boundaries B* and the

identity of the sub-path (mapping a segment in the input feature vector sequence),

in terms of the template qk in the y-axis, gives the optimal label to the corresponding

input segment sk. The one-pass DP solution also yields the optimal matching

distortion D* corresponding to this optimal path, which is a measure of the overall

quantization distortion in the joint segmentation and quantization.

2.2.3.5 Phoneme Recognition and Phonetic Vocoders

A typical application of the above ‘connected word recognition’ is the continuous

phone recognition problem, where the input speech (in the form of a feature vector
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sequence) is decoded into a sequence of phonemes using a set of phone-models,

typically HMMs, either in the form of monophone (context independent) models

or triphone (context-dependent) models. This will be seen to be one of the primary

joint segmentation and quantization technique repeatedly used in a good number of

segment vocoders to derive phone-like segmentation and transmission of phonetic

indices.

Though we attributed the advent of joint segmentation and quantization frame-

work to Shiraki and Honda’s variable length segment quantization algorithm and

the joint segmentation and clustering algorithm for design of variable length

segment codebooks, the principle of performing a ‘connected phoneme recogni-

tion’ using phone HMMs dates back to the work of [MCRK77, SKMKZ79,

SKMS80] from BBN. These work represent the earliest work in segment vocoder

framework focused on deriving and transmitting phonetic units at the encoder,

using a phoneme recognition system and fall within the framework of joint seg-

mentation and quantization. In this work, the transmitted phone indices were then

used in the decoder to derive a diphone sequence that were used for synthesis,

following an earlier feasibility study that established the merit of diphone synthesis

that alleviates concatenation issues that is typical of phone-based concatenation and

synthesis.

The next work (and an early one representing a conceptual milestone in ultra low

bit-rate coding), that also employed phone recognition in the encoder (as in

[SKMS80] referred above) and thereby falls within the joint segmentation-

quantization framework is the ‘phonetic vocoder’ system of [PD89]. Here, the

Fig. 2.14 Joint segmentation and quantization (segmentation and labeling) in an one-pass DP

(Viterbi) framework
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input speech is segmented and labeled in terms of phonetic units using speech

recognition techniques (essentially a connected phone recognition system) with the

phone HMM acoustic models (numbering 60) trained from phonetically labeled

TIMIT database. The state sequence path, as a sequence of state transition infor-

mation, through each phone HMM in the resulting phone transcription is further

used to specify the frame-level quantization of the input feature vector (10th order

LPC coefficients), which are transmitted and used at the decoder to reconstruct the

speech signal.

To generalize further, an entire class of segment vocoders evolved based on the

principle of phone recognition using HMM based acoustic modeling of phonetic or

acoustic sub-word units, and using conventional speech recognition techniques (for

deriving a phonetic transcription of the input speech to be coded) [IP97, OPT00,

T98, H03, MTK98, McC06]. All of these undoubtedly fall within the joint

segmentation and quantization framework, by virtue of performing a phoneme

recognition, implying a simultaneous solution to both the segmentation and label-

ing problem as defined above. Having noted this class of segment vocoders, we

shall discuss the HMM based approaches separately in some detail in a section to

follow (Sect. 2.4).

2.2.4 Segment Codebook

As a precursor to discussing variable length segment codebooks, it is best to consider

the fixed length variants, namely, the vector quantization (VQ) codebooks and

matrix quantization (MQ) codebooks. As the name implies, VQ is a codebook of

single vectors, derived by the K-means algorithm or the LBG algorithm [M85]. MQ

is derived similarly, by treating each matrix segment as an entity and defining

matrix-to-matrix distortion, and setting the problem of MQ codebook design also

in the K-means framework [M85]. The interesting work of Svendsen [S94], who

showed that a ML segmentation can be made to yield a variable length segmenta-

tion, with each segment quantized by a single vector from a VQ codebook also fits

into the notion of a vector codebook, but applied on variable length segments. In a

similar vein, the R/D optimal linear prediction, which uses a collection of LP models

(of various orders and quantized and coded in different ways) to quantize variable

length segments, also fits into the notion of a vector codebook, though derived in a

manner similar to variable-length segment quantizer design, but with additional

constraints on the rate of the resulting codebook, which we shall show later (in a

separate section devoted to R/D optimal LP coding, Sect. 2.3).

Segment codebooks that have been employed in segment vocoders typically fall

in two categories:

(a) Templates: Variable length segments, also called templates, made of a sequence

of feature vectors (e.g. LP parameter vectors, MFCCs, etc.) representing

phones, diphones, syllables or automatically derived acoustic units.
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(b) Hidden Markov models (HMMs): Parametric models of phones (context-

independent monophones or context-dependent triphones), diphones, syllables

or automatically derived acoustic units.

These type of segment codebooks have been used both for an independent

segment quantization (following a first stage automatic segmentation) as well as

in a joint segmentation and quantization step (as is more common for HMM based

modeling of phonetic units in the form of phoneme recognition).

2.2.4.1 Template Segment Codebooks

The segment codebooks, in the form of templates are either derived as randomly

populated segments (selected from a long sequence of speech feature vectors by

means of automatic segmentation, such as described in Sect. 2.2.1 [RSM82b,

RSM83, RWR87, RS04]) or designed by means of the joint segmentation and

clustering algorithm (or the segmental K-means algorithm) as in [SH88], as pointed

out earlier in Sect. 2.2.1. Considering the importance of the VLSQ scheme using the

clustered codebook design, we add some details on this here. Figure 2.15 shows a

typical joint quantization and clustering algorithm (also referred to as segmental

K-means algorithm), which shares it iterative framework with the more conventional

K-means algorithm, but now adapted to segments occurring in continuous speech,

with the added step of having to extract them optimally in the first place, followed by

defining a cluster of such segments and its centroid. This algorithm is illustrated in

Fig. 2.15 and explained in the following.

The joint segmentation and clustering algorithm (or the SKM algorithm)

comprises the following two steps carried out iteratively, until convergence deter-

mined typically by a rate of decrease in the overall quantization distortion over the

training corpus:

1. Joint segmentation and quantization: This step first performs a segmentation

and labeling of the input speech (training corpus) using an initial segment

codebook, which could be randomly populated fixed length segments or variable

length segments derived from some other automatic segmentation methods. This

segmentation and labeling is carried out by the joint-segmentation and quanti-

zation algorithm (realized in the form of a 2-level DP algorithm, as noted in

Sect. 2.2.3.3) as shown in Fig. 2.15a in the form of the input feature vector

sequence being segmented and labeled in terms of the segment codebook

indices, for e.g. the variable length segments (A, B, C, D, E, F, G) labeled

with the index 32 are shown. For a segment codebook of size N, this step results
in N clusters of variable length segments each indexed by one of the codebook

segments. Each such cluster has a number of variable length segments which can

be said to share the same acoustic property as the codebook segment whose

index it is labeled by.

2. Segment codebook update: In this step, each codebook segment (corresponding

to a cluster derived above) is replaced by the centroid (or also called the pseudo-
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centroid) of the cluster, defined as the segment (from among the segments in the

cluster) which has the lowest average segment-to-segment distortion with all the

other segments in the cluster. When defined as a pseudo-centroid, the resulting

optimal segment satisfying this condition happens to be one of the segments in

the cluster. This is illustrated in Fig. 2.15b, which shows a cluster corresponding

to index 32, made of the variable length segments (A, B, C, D, E, F, G). The

centroid update step chooses segment D as the pseudo-centroid (that minimizes

the average intra-cluster quantization distortion) as the one that replaces the

previous codebook segment 32. Once all the N codebook segments are updated

in this manner, the new codebook is used to perform a variable length segmen-

tation in Step 1.

The above two steps are carried out iteratively, until the average segment

quantization distortion (for instance, as is obtained during the centroid update

step, as the average of the N intra-cluster segment quantization distortion with

Fig. 2.15 Joint

segmentation and clustering

algorithm (or the segmental

K-means algorithm). (a)

Basic iterative structure,

(b) Centroid update
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respect to the updated codebook) converges, i.e., the rate of decrease of this

segment quantization distortion (on the training corpus) converges below a thresh-

old. The segment codebook at the end of the convergence is the desired variable

length segment codebook.

2.2.4.2 HMM Segment Codebook

The segment codebooks, in the form of HMMs (say, phone HMMs) are derived by

now well established techniques in speech recognition, namely, acoustic model

training. Here, the HMMs are trained from a training corpus (which could be

manually or semi-automatically) labeled in terms of the units of interest (phones,

diphones, syllables, etc.), e.g. as in [T98, H03, MTK98, C08, CMC08a, CMC08b,

PSVH10]. Alternately, and more commonly, the training speech corpus would have

only the associated orthographic transcription from which model-estimation algo-

rithms such as ‘embedded re-estimation’ are used to train the HMMs. As will be

indicated in a following section on HMM based recognition-synthesis techniques,

an interesting departure from phone HMMs are the HMM modeling of abstract

acoustic units (automatically derived units) corresponding to multi-grams which

can span several successive phonetic units [CBC98a] or the recognition acoustic

units (RAUs) and synthesis acoustic units (SAU) of [BC03].

2.2.5 Duration Modification

As noted in Fig. 2.5, the decoder receives the indices of segments (from the segment

codebook) which quantize successive segments in the input (derived by either

separate automatic segmentation and segment quantization or a single-step joint

segmentation-quantization). These indices are used to retrieve the corresponding

segments from a segment codebook, which is usually identical to the one in the

encoder or identical in the nature of the underlying speech each segment represents

or models (in the case of HMM), but represented using different parametric

representation more conducive for synthesis. The retrieved segments are

concatenated together and used for synthesis along with the residual information

(also received by the decoder in some parameterized and quantized form) in the

case of a LPC synthesis framework or other prosodic information in the case of

alternate synthesis framework (such as HNM, PSOLA or HTS).

In the case of template based segment codebook representation, an important

step in the decoder ‘prior’ to the concatenation of the templates corresponding to

the received indices is ‘duration modification’ (also called ‘duration normaliza-

tion’), where a template in the segment codebook corresponding to a received index

is modified to have a duration of the original segment in the input speech (at the

encoder). The durational information is also quantized and transmitted to the

decoder, thereby enabling this duration modification step. This has been typically
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done via space-sampling [RSM82b, RSM83, RWR87] (as depicted in Sect. 2.2.2)

or by a linear warping matrix [SH88] or DTWwarping path [CBC00]. In the case of

the segment codebook being a HMM codebook, the duration modification is

implicitly carried out during HMM-based synthesis using the state-duration infor-

mation transmitted as side-information [PD89, T98, H03, MTK98].

The general notion of duration modification is shown in Fig. 2.16. The input LP

parameter vector sequence o1, o2, . . ., oT is segmented into K segments (s1, s2, . . .,
sk� 1, sk, . . ., sK) of duration (L1,L2, . . .,Lk� 1, Lk, . . .,LK) and corresponding seg-

ment quantization labels (or indices) (q1, q2, . . ., qk� 1, qk, . . ., qK). The encoder

transmits both the segment indices (q1, q2, . . ., qk� 1, qk, . . ., qK) and the

corresponding original segment durations (L1,L2, . . .,Lk� 1, Lk, . . .,LK). At the

decoder, let the segment codebook of size N (identical to the one at the encoder)

be C¼ (c1, c2, . . ., cn . . ., cN) with corresponding lengths (l1, l2, . . ., ln . . ., lN). Each
of the segments in the segment codebook which is retrieved using the received

indices thus has its own duration, i.e., a segment in the codebook cqk retrieved using

index qk is supposed to represent the input segment sk; the length of input segment

sk is Lk, whereas the length of the corresponding codebook segment cqk is lk. This

necessitates the duration modification of the codebook segment cqk (of duration lk)

to duration Lk so as to match the duration of the input segment sk. Let this duration

modified codebook segment be c
0
qk
; the sequence of duration modified codebook

segments at the decoder is now c
0
q1
; c

0
q2
; . . . ; c

0
qk�1

; c
0
qk
; . . . ; c

0
qK

� �
and speech

Fig. 2.16 Illustration of duration modification in the flow of processing starting from segmenta-

tion and quantization (at encoder) and duration modification codebook segments (at decoder)
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synthesized from these concatenated units will have the individual units matching

the corresponding units in input speech and together match the duration of the

original speech.

2.2.6 Residual Parameterization and Quantization

Figure 2.5 showed the general structure of a segment vocoder in the framework of

LP analysis and synthesis. In this framework, the spectral quantization part enjoys

most attention given the importance of minimizing spectral distortion for high

quality synthesis at the decoder. However, the role of the residual information in

this LP framework is equally important, as is evidenced by the fact that the original

LPC-10 vocoder is acknowledged to have a synthetic voice owing to the use of a

voiced/unvoiced modeling of the residual in terms of a pulse train or random noise

as the excitation signal as an approximation of the original residual in synthesis at

the decoder. Much effort has been expended in rendering the LPC-10 quality better

by an enhanced modeling of the residual, such as in the MELP coder [M08].

In the context of the segment vocoder framework shown in Fig. 2.5, the residual

therefore continues to play an important role in the overall quality of synthesized

speech at the decoder. A wide variety of residual modeling, parameterization and

quantization has been adapted in the segment vocoder literature, each motivated by

both parsimonious representation of the residual and ensuring minimal loss of

speech quality during synthesis.

The basic modeling and representation of the residual in terms of voicing/

unvoiced decision and pitch (with the gain parameter considered here as a global

parameter, governing the short-term energy of the signal) continues to be the

primary means of quantization in early segment vocoders, though in each case

employing some special means of lowering the effective rate for the residual

(e.g. 800 bps VQ-LPC uses 8 bits/frame for pitch, gain and voicing quantization

by combining three consecutive frames in comparison to 13 bits/frame in the

2,400 bps LPC-10 vocoder). Specific techniques for incurring highly reduced bit

rates for pitch or gain information typically includes modeling and quantizing pitch

and gain profiles over an entire segment (the segments determined by automatic

segmentation or joint segmentation quantization step) or use of vector quantization

to quantize such pitch and gain vectors. For instance, we note here some salient

techniques used in the residual (for LP based synthesis) or prosody (for other types

of synthesis, e.g. HNM) modeling and quantization. In the earliest segment vocoder

work, [RSM82b, RSM83] transmitted pitch with only 3 bits/segment and

1 bit/segment respectively, using a piece-wise linear approximation of pitch, with

the pitch profile in a segment being modeled by a linear function, and the change in

pitch quantized by an adaptive 2-level quantizer, with the level being proportional

to the segment duration. The latter work on variable length segment quantization

[SH88] used 4 bits/segment for differential pitch quantization.
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Considering the more recent HMM based recognition-synthesis system, [T98]

used pulse train or white noise excitation (of the MLSA filters) as in the classic LP

vocoder, but reported results without quantization of pitch. In a subsequent work in

the same framework, [H03] used a F0 quantization scheme based on a VQ version

of the multi-space distribution HMM. Piece-wise linear approximation of the

contour was adapted in other work too, such as in [LC99], in a rate-distortion

framework for coding the pitch contours and notably in their later unit-selection

framework [LC01, LC02], though used in a HNM based synthesis at the decoder.

From among the series of work reported based on the ALISP units based on HMM

recognition and synthesis by LPC or HNM, [PCB04a, PCB04b] can be seen to use

unit selection based on a pitch profile correlation between the input segment and

codebook segments, and quantizing a pitch correction parameter to apply on the

codebook segment to match with the input segments pitch profile. In the parallel

formant synthesizer used in the decoder in [OPT00], an appropriate excitation

signal is chosen, depending on the amount of voicing and frication present in the

sound being synthesized. [McC06] explored an interesting combination of the

HMM based phonetic recognition and MELP based residual modeling within a

predictive vector quantization of the MELP parameters for synthesis to realize a

scalable phonetic vocoder framework operating at bit rates from 300–1100 bps.

2.2.7 Synthesis

As indicated in Fig. 2.5, the segment vocoder is typically set in LPC vocoder

framework based on the source-filter model, with LP analysis in the encoder

computing the spectral parameters (filter part) and the residual (source part) and

quantizing and transmitting them. The synthesizer at the decoder uses the LPC

synthesis framework to use the received filter and residual parameters to synthesize

speech. When the residual is modeled by voicing decision, pitch and gain, the

synthesized speech resembles that of LPC-10 vocoder. This is more or less the

synthesizer framework and methodology adapted in a range of segment vocoders

[W82, RSM82a, RSM82b, RSM83, RWR87].

A major departure from this was adapted in the unit-selection based coders of

Lee and Cox [LC01, LC02], who employed the ‘harmonic plus noise model’

(HNM) framework, though continuing to use prosodic parameter estimation at

the encoder, and their use in modifying the synthesis unit’s representation for

HNM based synthesis at the decoder. The ALISP unit based work (reported in a

series of papers which are reviewed in Sect. 2.5) [MBCC01, MGC01], explored

both LPC synthesis framework and the HNM framework, choosing to prefer HNM

over LPC synthesis, owing to the artifacts observed in LPC synthesis.

In an interesting departure from these work, [OPT00] used a parallel formant

synthesizer at the decoder, driven by synthesis parameters derived from rules which

in turn were acquired by a mapping from acoustic segments obtained by the speech

recognition based segmentation at the encoder. In what can be considered as a
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convergence of recognition-synthesis frameworks, the HMM recognition-synthesis

work of [T98, H03, MTK98] used the HMM-based speech synthesis framework,

now widely popular, successful and referred to as HTS [T13], where the synthesis is

done using the MLSA filter (derived from the mel-cepstral coefficients derived

from the concatenated state sequence of the recognized HMM phone units) and

driven by a pulse train or white noise depending on the voicing decision. The fact

that the quality of the HTS synthesis in a speaker-adaptive mode could reach a MOS

of 4 [MTK98] seems to herald a new direction in ultra low bit-rate coding, where

high quality speech is possible in a speaker-adaptive (and hence speaker-

independent) mode of operation.

2.3 R/D Optimal Linear Prediction

In this section, we review a class of segment quantization algorithms, namely by

Prandoni and Vetterli [PGV97, PV00], Chou and Lookabaugh [CL94] and the

closely related work of Baudoin et al. [BCC97], all set within a formulation of

rate-distortion optimization, where the segmentation and quantization is performed

with respect to constraints on the overall rate of the resulting quantization, as well

as impacting the underlying codebook design. We also provide an interpretation of

Svendsen [S94], which sets a constraint on the distortion in performing the

segmentation.

2.3.1 Prandoni and Vetterli R/D Optimal Linear Prediction

An important development in the framework of segment quantization is that of

Prandoni et al. [PGV97] and Prandoni and Vetterli [PV00] termed R/D optimal

linear prediction. To state briefly, in this work, segmental distortion is defined with

respect to the LPC residual error and the bit-rate is defined as the trading-off

parameter based on the cost of the LPC order for each segment, so as to yield a

R/D trade-off in controlling the choice of LP order per segment and the resulting

overall distortion, resulting in ultra low rate coding (working in a variable bit-rate

manner) with average bit-rates of 300–900 bps.

Considering the importance of such a formulation in the segment vocoder

framework, we give below in some detail the basic formulation of this work, but

using the notations already introduced above in the definition of the variable length

segment quantization framework in Sect. 2.2.3. A codebook is given in the form of

a collection of N different LP models (which could be predictors of different orders

as well as predictors whose parameters are quantized and coded in different ways).

Let this codebook be C¼ (c1, c2, . . ., cn . . ., cN). Let a segmentation and quantization

of an input speech LP parameter sequence O¼ (o1, o2, . . ., oT) be given by the

segment boundaries B¼ (b0, b1, . . ., bk� 1, bk, . . ., bK), with corresponding segments
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(s1, s2, . . ., sk� 1, sk, . . ., sK) and the quantization labels Q¼ (q1, q2, . . ., qk� 1, qk, . . .,
qK). Here, the quantization label qk represents a LP model cqk (of some order) from

the codebook C. The distortion corresponding to such a segmentation and quanti-

zation is given by D(O,K,B,Q) given by the sum of the K segmental LP prediction

errorsd2 sk; cqk
� �

, where each of these errors is the squared LP prediction error when

model cqk is applied on segment sk, i.e.,

D O;K;B;Qð Þ ¼
XK
k¼1

d2 sk; cqk
� �

In addition, this work defines the overall bit-rate for such a quantization by using

a cost function r cqk
� �

that reflects the cost (in bits) as a function of the order b cqk
� �

,

including the side information for specifying the segment duration and the relative

LP order; i.e., the overall bit-rate load for a typical segmentation of O in terms of

(K,B,Q) is given by

R O;K;B;Qð Þ ¼
XK
k¼1

r cqk
� �

The important formulation in this work arises from solving the segmentation and

quantization problem to yield the optimal (K*,B*,Q*) under a rate-distortion trade-
off specified by the constrained minimization for a given K, given by

B�;Q�ð Þ ¼ min
B

min
Q

D O;K;B;Qð Þ ð2:1Þ

R O;K;B�;Q�ð Þ � R� ð2:2Þ

where Eq. (2.2) dictates that the overall quantization distortion D(O,K,B,Q) be
minimized under the constraint that the overall bit-rate load be less than a specified

bit-rate budget (or limit) R*. This formulation is easily understood by noting that

the segmentation and quantization solution of Eq. (2.1) for a given K is simply the

ML kind of segmentation with the intra-segment distortion of a segment being

replaced by the squared LP error with respect to the ‘best’ LP model from the

collection of possible LP models C. As with the ML formulation, this overall

distortion is monotonically decreasing for increase in K, as the segments becomes

shorter and shorter. However, when it is required that the overall bit-rate be limited

to a maximum of R*, this translates into the maximum number of segments that can

be derived and further to the maximum order of the LP model that can be used for

quantizing a segment; i.e., without the bit-rate budget constraint, an extreme

solution is one where the number of segments equals the number of frames

(K¼ T ), i.e., each frame is modeled by its best LP model from the collection,

which in turn can be the LP model of the highest order available. However, with the

bit-rate budget in place, the number of segments is optimized with the bit-rate
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resource distributed over the segments, so that each segment is modeled by some

LP model of lower order (not necessarily the highest order among the models

available). This can also be seen as a combination of two functions as a function

of the number of segments K, one being the overall distortion which decreases with
K and the overall bit-rate which increases linearly with K.

When the constrained minimization problem in Eqs. (2.1) and (2.2) is combined

via a Langrangian multiplier, these two functions combine to yield an optimum

(minimum) for some K*. Such a joint functional using a Lagrange multiplier is

given by,

J λð Þ ¼ D O;K;B;Qð Þ þ λR O;K;B;Qð Þ

which can further be simplified to yield the optimization as

J� λð Þ ¼ min
B

min
Q

XK
k¼1

d2 sk; cqk
� �þ λr cqk

� �( )

It can be easily seen that this is exactly in the form of a ML segmentation that can

be reformulated and solved by the 2-level DP algorithm outlined above in

Sect. 2.2.3.3, by defining the distortion (or cost) associated with the kth segment

[in the recursion of Eq. (2.3)] as the term

min
cqk ∈C

d2 sk; cqk
� �þ λr cqk

� �� �

for some choice of λ (which weighs the bit-rate load in addition to the distortion

function appropriately). The recursion, as in the 2-level DP algorithm, is given by

J�1;bk½ � ¼ min
1�bk�1�bk�1

J�1;bk�1½ � þ min
cqk ∈C

d2 sk; cqk
� �þ λr cqk

� �� �� 	
ð2:3Þ

where J�1;bk½ � is a k segment segmentation of the input segment Obk
1 ¼ o1; . . . ; obkf g

described recursively as the sum of the optimal k� 1 segmentation of the segment

Obk�1

1 ¼ o1; . . . ; obk�1
f g (i.e., J�1;bk�1½ �) and the minimum cost (segmental squared LP

error of segment sk ¼ Obk
bk�1þ1 ¼ obk�1þ1; . . . ; obkf g plus the corresponding λ

weighted bit-rate load) associated with segment sk. The final solution is obtained

by invoking the above recursion [Eq. (2.3)] for J�½1;N� for a given λ and finding the

optimum over a desired range of K. Note that the solution is obtained in the same

manner as the 2-pass DP kind of recursion solved by a trellis realization, and

recovering the optimal segmentation and quantization parameters by backtracking.
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2.3.2 Variable-to-Variable Length Vector Quantization

In the context of designing segment codebooks within the constraint of a rate-

distortion trade-off, a related work is that of Chou and Lookabaugh [CL94]. This

is an important work in the following ways: It formulated the problem of

‘variable-to-variable’ length codes, where the terminology derives from whether

the segments (or blocks) in the input speech (parameter sequence) vary in length

or not and whether the blocks of channel symbols vary in length or not. The term

‘variable-to-variable’ refers to a scheme that quantizes variable length segments

into variable length bit patterns (channel symbol). While it is interesting to note

that this formulation handles variable length segments in the input speech, the

‘variable’ part of the channel symbol comes from performing an entropy coding

(e.g. Huffmann code) that exploits the non-uniform probability distribution of

the segment usage from a segment codebook. While this formulation is set in a

constrained rate-distortion optimization (as in [PV00] above), the solution

derived is very similar to the one by [PV00] in the form of a recursive relation

that can be seen as a variant of the ML-formulation (Sect. 2.2.1.2) redefined into

the 2-level DP solution. [CL94] also give an iterative solution for the design of

the segment codebook, along the same lines as the joint segmentation and

clustering (but with the additional bit-rate constraint on the joint segmentation

and quantization step) or the segmental K-means algorithm as noted above

in Sect. 2.2.4.1.

An important aspect in this formulation is that, though the segment codebook is

made of variable length segments, the mapping between an input segment to the

codebook segment that quantizes the input segment is such that they are of same

length, i.e., it does not perform any kind of segment to segment warping between

potentially unrestricted set of variable length codebook segments to each input

segment as may be required. [CL94] points to this as an important difference

from Shiraki and Honda’s [SH88] variable length segment quantization algorithm.

As a result of not using segment to segment warping, [CL94] show that their

method outperforms that of [SH88]. Moreover, [CL94] note that a related work

Jeanrenaud and Peterson [JP91, PJV90] from BBN, is more close to their formu-

lation, in the sense that [JP91] use duration dependent segment codebooks, which

is populated (and designed by means of an iterative algorithm) with segments of

variable lengths, but ensuring that it has sub-codebooks each with several seg-

ments of a fixed length. However, it should be noted that having a variable length

segment codebook and allowing for warping based segment quantization allows a

particular segment representing a particular acoustic realization of speech to

quantize a varied number of input segments belonging to the same acoustic

category; in the absence of such a warping of a particular segment in the code-

book, the codebook is constrained to have segments of different lengths to match

with the different realizations of the same acoustic category (i.e. without

warping), thereby increasing the effective codebook size and the bit-rate to

achieve a desired quantization distortion.
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2.3.3 Multigrams Quantization

In a related work, Baudoin et al. [BCC97] provided a reinterpretation of the

VVVQ method of Chou and Lookabaugh [CL94] with reference to the multigrams

quantization method, where a spectral vector sequence is segmented and quan-

tized using a codebook of variable length segments called multigrams, and the

codebook is obtained by maximizing the joint likelihood of the optimal segmen-

tation and the observation sequence under two different scenarios, one when in the

form of quantization indices (classical multigrams) and the other without vector

quantization (modified multigrams) [BCC97]. The concept of multigrams was

earlier introduced in an interesting formulation by Bimbot et al. [B95], which

allowed segmentation of a symbol string (e.g. text data or spectral sequence

indices resulting from VQ) into characteristic sequences, and building a dictionary

of such sequences using a maximum likelihood parsing of a stringW using Viterbi

decoding, given by

L Wð Þ ¼ max
Bf g

Y
k

p Skð Þ

where, B is the set of all possible segmentations into variable length sequences Sk.
The solution to this parsing is expressed in a recursive manner akin to the maximum

likelihood (or the 2-level DP algorithm) formulation and solved by dynamic

programming.

2.3.4 Distortion Constrained Segmentation

In the context of the above R/D optimal segmentation, it can be noted that the

earlier work of Svendsen [S94] can be restated in the form of R/D constrained

segmentation, but with the difference that in this work, the segmentation was

optimized to let the distortion be not above a threshold distortion (corresponding

to the 1 dB transparent quality quantization), and the associated segmentation was

observed to reduce the bit-rate by a factor of 2, i.e.., the number of segments

could be reduced to the extent that each segment can be made of several frames

thereby ensuring more effective use of a codevector, and such that when each

segment is quantized by the best codevector in a vector quantization codebook, the

average distortion is limited to be less than the specified threshold. This is illus-

trated in Fig. 2.17. Note that point A corresponds to the baseline case of each frame

being quantized by a codevector in the VQ codebook; the corresponding distortion

is not 0, as was the case with ML segmentation (for the limiting case when the

number of segments K equals the number of frames T in the input sequence and

where the centroid happened to be the approximating vector), since here the

quantization of the individual frames is done with an external vector codebook
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thereby yielding a minimum non-zero distortion, which sets the asymptotic perfor-

mance, when K¼ T. Point B corresponds to the solution obtained by the algorithm

of Svendsen [S94] characterized by an average distortion not greater than the

specified threshold and the corresponding bit-rate derived from the associated

number of segments (effective bit-rate¼ segment-rate K�= T
F

� �
segments/second

� log2N bits/segment) for a VQ codebook of size N and a frame-rate of F frames/

second.

The ML formulation of [SS87], adopted in [S94] as above in a distortion-

constrained segmentation can also be seen to generalize over the combined quan-

tization-interpolation (CQI) [LF93], referred to in Sect. 2.1, by noting that the

intra-segmental distortion of a segment (as defined in the sub-section on ML-

segmentation in Sect. 2.2.1.2) needs to be defined as the distortion due to approx-

imating the frames in the segment by interpolated and quantized frames using the

end frames of the segment as the ’target’ vectors as defined in [LF93], even while

retaining the constraint of realizing a distortion within some predefined threshold.

2.4 HMM Based Recognition-Synthesis Paradigm

As noted already in Sects. 2.2.3 and 2.2.4, joint segment quantization using phone-

HMM codebooks for realizing a phonetic transcription of input speech represents

a major departure in segment vocoder framework from the more classical segment

Fig. 2.17 Distortion vs. number of segments in the distortion constrained segmentation (in ML

segmentation formulation) of [S94]
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codebooks in which each segment is a template comprising a sequence of LP

parameter vectors and an associated template based segment quantization scheme.

Following the early work of [SKMS80, PD89], the use of HMM codebooks and

phonetic transcription has further lead to a class of segment vocoder systems that

have refined the HMM based approach into a recognition/synthesis framework

and have resulted in very high quality speech coding. We briefly review

these here.

2.4.1 HTS Based Framework

Subsequent to the above early work that explored phonetic HMMs in a phonetic

vocoder setting, a major initiative in HMM based segment vocoders emerged with

the very successful paradigm of parametric speech synthesis, or HMM-based

synthesis, now referred to as HTS [T13]. We review these briefly here [T98, H03,

MTK98] which were originally referred to as being set in a ‘recognition-synthesis’

paradigm. Figure 2.18 shows a generic structure of the HMM based recognition-

synthesis framework adapted in these work.

Tokuda et al. [T98] proposed an HMM-based speech recognition and synthesis

technique for a very low bit rate speech coder operating at 150 bps and yielding

subjective quality comparable to that of a VQ at 400 bps (50 frames/s and 8 bits/

frame) and a DMOS of 3.4. This system derives the name of being in ‘recognition-

synthesis’ paradigm, as the encoder is a HMM based phoneme recognizer and the

decoder does the inverse operation of using an HMM-based speech synthesis

Fig. 2.18 Generic structure of HMM based recognition/synthesis framework
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technique. More specifically, here, the speech spectra is represented by mel-cepstral

coefficient vectors and transcribed into a phoneme sequence using context depen-

dent (triphone) phoneme HMMs, where each triphone HMM was a 3-state left-to-

right model with no skip. A total of 34 phonemes and silent models were used.

Subsequent to phoneme recognition at the encoder using these triphone HMMs, the

phoneme indices are transmitted to the decoder along with the state duration and

pitch information. In the decoder, the phoneme HMMs corresponding to the

phoneme indices are extracted from the phoneme-HMM codebook and

concatenated and a sequence of mel-cepstral coefficient vectors (conditioned on

the state sequence reconstructed from the received state duration information) is

generated using a ‘speech parameter generation’ algorithm first proposed for HMM

based speech synthesis [T13]. An important consequence of the parameter gener-

ation result is that the mel-cepstral coefficient vectors thus obtained reflect not only

the means of static and dynamic feature vectors but also their covariances, resulting

in a natural-sounding synthetic speech. Subsequent to the derivation of the

mel-cepstral coefficients from the concatenated HMM, speech is synthesized by

exciting a MLSA (Mel Log Spectrum Approximation) filter (derived from the

mel-cepstral coefficients) by a pulse train or white noise generated according to

the pitch information. However, a drawback of this coder was that it was speaker

dependent.

Further improvements of the above phoneme-based HMM vocoder were pro-

posed by Hoshiya et.al. [H03]. It was found that, by using a pitch coding scheme for

quantizing each of the phoneme segments of the low bit-rate speech coder, the

coder’s performance at 110 bit/s was superior to that of a 600 bit/s VQ based

vocoder in terms of the subjective MOS quality.

In a variant of these ‘phonetic vocoder’ approaches, [CCTC97] proposed a

recognition-synthesis coder using HMM based phone modeling (48 phones and

2463 diphones) for phoneme recognition of the input speech to transmit the

phonetic indices and further synthesis at the decoder using time-domain pitch-

synchronous overlap method (TD-PSOLA) to realize a 750 bps coder which

preserved speaker characteristics and had a MOS of 3.0.

2.4.2 Speaker Adaptive HMM Recognition-Synthesis

In order to render the first HMM-based recognition-synthesis vocoder speaker-

independent, Masuko et al. extended the work in [T98] to be speaker adaptive in

[MTK98]. The decoder was initially populated only with synthesis units from a

single speaker. Therefore, regardless of the input speaker, the synthetic speech was

limited only to the HMMs used in the decoder. Furthermore, it was likely that the

mismatch between the training and input speakers caused recognition errors, further

degrading the quality of the output speech quality. This problem could be handled

in two ways. One was to have speaker dependent codebooks. The other more
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reasonable approach was to adapt a standard codebook to the input speech by

accounting for any mismatch between the input speech and the HMMs trained at

the decoder. As a result, the HMMs at the decoder are adapted to the input speech

by moving the output distributions of HMMs by adding a transfer vector to mean

vectors to fit the distributions to the input parameter vectors. The transfer vector is

determined for each phonetic segment by maximizing the output probability of the

input sequence.

In this work, the segment codebook comprised 49 speaker independent, 5-state

left-to-right triphone HMM. Transfer vectors are also trained for every 100 ms of

speech contributing an additional bit-rate of 100 bps. The speaker dependent

(SD) coder of [MTK98] was shown to significantly improve the quality of the

coded speech and the recognizability of the speaker as opposed to the speaker

independent (SI) system in [T98]. For one of the speakers in the system, a Degra-

dation Mean Opinion Score (DMOS) of 3.8 was reported for the SD coder and 4.0

for the speaker adaptive system, while the DMOS for an SI coder was 1.5. This

remarkable enhancement in DMOS for speaker adaptation can be considered as a

milestone in ultra low bit-rate speech coding, given that the overall coder now

becomes applicable to unseen test speaker, even while being capable of yielding

high DMOS, in keeping with the underlying HMM-based synthesis system’s

potential to yield high quality synthetic speech, which currently marks the success

of the HTS framework for TTS [T13].

2.4.3 Ergodic HMM Framework

In a related, but conceptually different, work within the HMM-based recognition-

synthesis paradigm, [Lee05] proposed use of an ergodic HMM to replace the set of

phone-HMMs, by having a large number of states (e.g. 64) to model any spoken

language as a sequence of abstract acoustic units, which correspond to the individ-

ual states of such an ergodic HMM. By definition, such an ergodic HMM is trained

from a long unlabeled training corpus and enjoys the advantage of not requiring

phonetically labeled training corpus as is required for the phone-HMMs of [T98,

H03, MTK98]. A transcription of input speech using such a large ergodic HMM

yielded a state sequence which is transmitted to the decoder along with fractional

pitch. The synthesis at the decoder follows the same HMM-based speech synthesis

as in [T98], first by deriving spectral parameters from the HMM and the transmitted

state sequence (MLSA filters derived from the mel-cepstral coefficients of the state-

sequence) and mixed excitation signal from a MELP decoder using band-pass

voicing strengths associated with a feature vector of the HMM to enable increased

naturalness. While no direct comparison with the previously established HMM

segment vocoders of [T98] or [MTK98] is done, this method shows that an ergodic

HMM with number of states as 128 yields a good overall quality and intelligibility

with speaker characteristics preserved at an effective bit-rate of 128 bps, though no
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formal listening tests are done. The notions of the optimal number of states being

64 for American English to correspond to the phones in this work is based on earlier

work [Pepp90, FC86, Pepp91] and is closely in corroboration with a related work

on using ergodic-HMMs to model spoken languages for language-identification

[RSS03, SR05].

2.4.4 Ismail and Ponting HMM Based Vocoders

In a work contemporary to that of [T98], Ismail and Ponting [IP97], Ismail [I98],

and Ovens, Ponting and Turner [OPT00] propose a 300 bps HMM based vocoder

also in a recognition-synthesis framework. This system is a variant of the method-

ology adapted in [T98] in at least 2 ways: Firstly, it uses a HMM that models

abstract acoustic sub-word unit segments, rather than phones. In this context, it is

also task-dependent and talker dependent and is also word-mediated in the sense

that the HMM recognizer works with a vocabulary of 500 words, an associated

pronunciation dictionary and acoustic models, and the recognized sub-word unit

acoustic segment sequences are constrained to correspond to sequences of words

from the known (500 word) vocabulary. Secondly, at the decoder, for synthesis it

uses a parallel formant synthesizer, in tandem with a rule-based system that maps

the recognized acoustic segments to formant parameters; i.e., it does not use

HMM-based synthesis, quoting the trainable HMM synthesis framework of Dono-

van and Woodland [DW95] as computationally intensive for training for a single

talker, though considering the system of [MTKI97] as viable for its rapid speaker

adaptation ability.

In this system, the incoming speech is transcribed into a sequence of sub-word

acoustic units with corresponding pitch and duration information. The sub-words

are modelled around phones which are expanded to segments by defining the

context and using a set of rules to define such an expansion. The HMMs modelled

on such sub-word units allow for flexibility to extend the dictionary without having

to train models afresh for new words. The pitch and voice information is also

transmitted to add to the naturalness of the synthesized speech. This approach of

HMM recognition followed by synthesis-by-rule where the synthesizer parameters

are derived from natural speech results in a synthetic quality very nearly as the

original speech. [OPT00] concludes that, though no formal evaluation of the system

was performed, informal listener tests indicated that speaker-specific characteristics

are preserved and that the re-synthesized speech sounds more natural than speech

coded using a 2,400 bps LPC-based system.
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2.4.5 Formant Trajectory Model Based
Recognition-Synthesis

While the above sections dealt with various types of HMM based recognition-

synthesis frameworks for ultra low bit-rate speech coding, we briefly describe the

work of Wendy Holmes [H98] which is also set in the recognition-synthesis

framework using HMMs, but with two important differences from the conventional

HMM based recognition and synthesis, and being more in line with the work of

Ismail and Ponting in Sect. 2.4.4 for the synthesis part: Firstly, the work in [H98]

used a feature set comprising of the first three formant frequencies together with

five mel-cestrum coefficients for a phone-like recognition using phone-level linear-

trajectory segmental HMMs. The identified segments are represented by straight-

line formant parameters for coding. Secondly, speech is synthesized at the receiver

using a parallel-formant synthesizer (rather than HTS as in the systems described in

Sects. 2.4.1, 2.4.2 and 2.4.3), driven by the frame-by-frame control parameters

derived from the formant parameters.

The system was shown to produce speech with good intelligibility and preserv-

ing speaker characteristics at 600–1,000 bits/s. This work specifically highlights in

being a unified model, in the sense of using the same linear formant-trajectory

model for both recognition and system and further emphasizes that such a model

used for recognition-based coding represents speech in such a manner that the

model can be used for coding at a range of data rates, trading bits for a graded

speech quality, incorporating increasing speaker characteristics at higher rates, over

and above a baseline phoneme sequence synthesis (at the lower end of the data

rate), though this paper focuses on the high bit-rate end of the range—i.e., coding

formant trajectories—but not yet demonstrating the graceful degradations that the

unified model is claimed to be capable of (for decreasing rates), which would have

been a very appealing and dramatic phenomenological result of such a modeling

approach, in the context of speech coding, and something yet to be attempted in

most speech coding formulations.

2.5 ALISP Units and Refinements

In a significant departure from use of phone-like or diphone-like units to define the

segmentation and labeling and the segment codebooks in most segment vocoder

frameworks, a series of work reporting a coherent evolution of techniques first

explored the use of ALISP units (Automatic Language Independent Speech

Processing) [C98] that could span multiple phones as the coding units (for segmen-

tation and labeling) and progressed towards different kind of recognition and

synthesis units by refining the ALISP units in order to address various issues such

as concatenation continuity, corpus based dynamic selection of units, speaker
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adaptation, robustness to noise, etc.. In the following we give an overview of

this series of contributions, highlighting the main aspects of each publication

even while maintaining the chronological progression of techniques proposed and

evaluated.

2.5.1 Basic ALISP Framework

Primarily based on the early work of Cernocky [C98], the ALISP units were

motivated towards finding alternative approaches to defining units in contrast to

the conventional notions of sub-word units derived based on phonetic knowledge.

The ALISP units are defined using a combination of techniques—temporal

decomposition, unsupervised clustering (e.g. vector quantization) of the target

vectors so derived and multigrams, followed by HMM based modeling of the

segments associated with multigram labels. One of the application of the ALISP

units in [C98] was for very low bit-rate speech coding, realizing intelligible

speech at an average bit-rate of 120 bps for two sets of speaker-dependent

experiments.

The earliest of the work reported in this direction is [CBC97b] where the authors

follow their early experiences with multigrams and modified multigrams [CBC97a]

similar to the earlier VVVQ formulation of [CL94]. The main part of this work is on

the lines of proposing the techniques further reported in [CBC98a, CBC98b, B99]

which is described in some detail below.

This procedure first applies a temporal decomposition technique of the speech

feature vector sequence, first proposed by [A83], to derive a series of spectral

events each consisting of a target and an interpolation function, representing

speech as being made of steady-state vectors blended by the interpolation

function as would typify an underlying articulatory process. The parameter vectors

(e.g. LPCC vectors in [CBC98b]) located at the gravity centers of the interpolation

functions are vector quantized to obtain a string of symbols, from which a set of

characteristic variable length symbol patterns called multi-grams (MG) are

derived, further leading to a dictionary of multi-grams; in [CBC98a], a MG

dictionary of size 1,666 is used, made of 64 1-g, 1,514 2-g and 88 3-g, with

corresponding average length of a sequence in terms of spectral events being

1.638 of 112.7 ms. Each sequence in this MG dictionary is represented by a

HMM trained on a training corpus labeled by the MG entries. This yields HMMs

that model variable length units of speech, but with an underlying correspondence

with speech units defined by the multi-gram process, rendered meaningful by the

fact that each such sequence is derived and quantized by a temporal decomposition.

The HMMs were left-to-right, with number of emitting states being proportional to

the number of temporal-decomposition events in the modeled sequence. The

HMMs are used as in phone transcription, but now yielding variable length

acoustic segments matching the sequences that each HMM models. The work
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reported natural synthetic speech, though with limited experiments, and pointed to

various possibilities including different synthesis methods (PSOLA, MBROLA)

and speaker adaptation.

Further, [CKBC99] combine the earlier reported approach of ALISP units

(based on TD, VQ, and HMM) with syllable-segments which were derived from

semi-automatic segmentation procedure used for a syllable speech synthesizer.

The system was reported to operate at 175 bps on test data for ALISP derived

units with a spectral distortion of 4.39 dB and having subjectively intelligible

speech, though unnatural and with strongly audible artifacts. The syllable

based approach had an average bit-rate of 62 bps with spectral distortion of

8.9 dB and subjectively poor quality of the synthesized speech which was hard

to understand.

2.5.2 Re-segmented Long Synthesis Units

In a progression from the basic ALISP units, [CBC00] propose a technique at

120–195 bps with main emphasis on identifying the need to use a dichotomy of

recognition (or coding) units (CU) and synthesis units (SU) and in going from

phone-like units (defined from transition to transition, marked by intersections of

the interpolation functions obtained from temporal decomposition) to long synthe-

sis units that are defined from steady-state region to steady-state region, as marked

by TD target vectors. Closely following this work, [MBCC01, MGC01] propose

specific techniques for defining ‘new units’ that were derived from the ‘original

units’ which were characterized by having unstable parts at their boundaries,

contributing to ‘transition noise’ due to poor concatenation (high discontinuities).

This paper further motivates the need to reduce these poor concatenation by

proposing new units that can be obtained by a re-segmentation of the original

units from stable part to stable part (steady-state to steady-state) so that the

concatenation discontinuity is low. Specific techniques for such a re-segmentation

is proposed, namely, according to middle frames of original units, or according to

middle frames of middle states of original unit HMMs, or according to gravity

centers of original TD-based units. This paper also marked a departure from LPC

analysis-synthesis to HNM based synthesis considering the LPC framework to

contribute to artifacts in the synthesized speech. This work also discusses the choice

of ‘synthesis units’, for each coding unit wherein the best synthesis units (from

three representatives) is chosen, using minimum DTW distance between a repre-

sentative and an input speech segment, with the DTW path transmitted to the

decoder. The paper reported a speaker dependent coder at 370 bps with a best

spectral distortion of 5.5 dB.
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2.5.3 Short Synthesis Units by Dynamic Unit Selection

[B02, BC03] mark a significant departure from the earlier ALISP units as well as

the long synthesis units derived by re-segmentation towards the notion of short

synthesis units with dynamic selection of units, close to corpus based text to speech

synthesis, though not in the exact formulation of the classical unit-selection for

TTS [HB96] or [LC01, LC02] to be discussed further in the subsequent chapters.

This work makes a distinction between ALISP based recognition acoustic units or

RAUs (as a codebook of HMM models trained on LPCC based ALISP units as in

earlier work) and synthesis acoustic units (SAUs) with the speech segments

representative of a synthesis unit being named synthesis speech representatives

(SSR). With this distinction and definition in place, the dynamic unit selection in

this work [BC03] is briefly outlined as below. Let the number of ALISP units used

for input speech segmentation (also called recognition acoustic units or RAUs) be

64. Each class Hj is partitioned into 64 sub-classes, called HiHj containing all

speech segments of Hj that have Hi as left-context. A subset of this sub-class

(e.g. K segments) are used as synthesis representatives. In the coding phase, the

ALISP based segmentation and labeling is derived for an input speech; this is

followed by determination of the synthesis unit for each segment based on the HiHj

information and transmits the index of the class and the synthesis representative

for each segment. At the decoder, the synthesizer concatenates the synthesis units,

in the process ensuring that the left-context continuity is maintained for each

segment. While [B02] also addresses speaker independent coding and VQ based

speaker clustering and adaptation in this framework, [BC03] reports an average

bit-rate of 400 bps with good quality speech.

2.5.4 Pre-selection of Units

In a further refinement of the corpus based coding in [B03, PCB04a, PCB04b]

propose an additional pre-selection of units according to F0 so that the final

selection process is done by incorporating both prosodic and spectral information;

the time-alignment between the segment to be encoded and the pre-selected syn-

thesis is given as a linear length correction (rather than in the form of a precise

alignment at the frame level through DTW). Different selection criteria such as

correlation measure on pitch profile, energy profile and harmonic spectrum are

proposed. The information necessary for retrieving the synthesis unit at the decoder

(for an input segment) is the class index (coded with 6 bits for 64 classes and

64 HMM RAU models) and the unit index in the associated sub-class (4 bits for

16 closest units according to the averaged pitch). This work reports an average

bit-rate of 481 bps (~500 bps) with intelligibility tests (DRT) scores of 80 % for the

proposed coder, in comparison to 77 % for Stanag 4479 at 800 bps and 88 % for

Stanag 4591 at 2,400 bps.
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2.5.5 Noise Robustness

In the same framework as [B03, PCB04a, PCB04b] as above, [PCB05] study the

effect of noise on HMMs and the selection of units. It considers various methods for

noise robustness such as speech enhancement, joint feature extraction and noise

reduction and noise robust modeling using parallel model combination. The paper

focuses on unit recognition errors rather than synthesis unit selection, as this is

considered robust due to inherent robustness of pitch (for SNR greater than 15 dB)

and the closeness of synthesis units even in the presence of errors. Experimental

results showed that AURORA MFCC features were more robust in terms of

recognition errors when compared to MMSE MFCC and that PMC LPCC gave

the best recognition errors.

2.6 Speaker Adaptation in Phonetic Vocoders

Within the basic framework of the phonetic vocoder in [PD89] (outlined in

Sect. 2.2.3.5), most vocoders are based on a transcription and transmission of the

input speech into similar phonetic units or some form of acoustic units along with

prosodic information such as the duration of the units, average pitch (or pitch profile

of the segments) and gain (or gain profile of the segments). As a result, they face a

limitation that the input speaker characteristics are lost in the transmission and

further synthesis at the decoder, i.e., all the transmitted information carries no

(input) speaker-specific information (except perhaps the prosodic information,

which when in the form of pitch and energy profiles as in some of the vocoder

frameworks, can apparently convey some speaker characteristics). Moreover, the

synthesized speech at the decoder is usually from the segment codebook in the form

of templates or HMMs (of phone-like units) derived from some training speaker,

and in the absence of any information about the input speaker at the decoder, the

speech synthesized from the single-speaker trained synthesis codebook invariably

carries the speaker identity of the training speaker. This makes such vocoder

framework speaker-dependent (i.e., dependent on the speaker on which the synthe-

sis unit models are trained).

In order to render such vocoders be able to synthesize speech at the decoder

which is in close resemblance to the input speaker, it is necessary to employ special

techniques that either incorporates the speaker information in the information

extracted and transmitted at the encoder or uses some type of speaker adaptation

technique to suitably adapt the segment codebook (obtained from a training

speaker). This problem of speaker adaptation is addressed by Ribeiro and Trancoso

in [RT96, RT97, RT98]. [RT96, RT97] propose an adaptation strategy involving

transmitting the mean value and standard deviation of the radius and angle of the

poles corresponding to formant frequencies for each phone. In the decoder, a

speaker modification method alters the formant frequencies and bandwidths of
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vowel segments, by first retrieving a set of normalized values of each phone index,

and restoring the RMS and LSP coefficients frame-by-frame, adapting the

codeword to the input speaker by matching the mean value and standard deviation

before duration normalization and speech synthesis using the adapted code words.

[RT98] extend this work further to perform new codebook adaptation strategies,

with gender dependence and interpolation frames, leading to better speaker recog-

nizability and speech quality.

Following these contributions to speaker adaptation for phonetic vocoders,

[RTC00] carry out intelligibility and speaker recognizability tests on their phonetic

vocoders with and without speaker adaptation. The tests were based on the meth-

odology used to select the new 2,400 bps DoD speech coder, where a listener is

presented with a pair of utterances and is required to judge if they are spoken by the

same or by different speakers. This work reports two sets of experiments: the first

verified the degree to which each coder preserved speaker identity and the second,

verified how well each coder preserved the information necessary to distinguish one

speaker from another. Further tests included listeners rating the dissimilarity

between two voices using a 6-point scale. This work also presented recent devel-

opments on their coder using the SpeechDat corpus of Portuguese that includes

telephone calls from 5,000 speakers, and which allowed improvements to HMM

models, codebooks and quantization tables and to study the performance with a

wide speaker population.

2.7 Unit-Selection Paradigms

In what can be considered a very significant convergence of recognition, synthesis

and coding, Lee and Cox [LC01, LC02] proposed a sub-1,000 bps coder which

operated on the principles of ‘unit selection’ that is normally employed in text-to-

speech synthesis using the concatenative synthesis methodology. Here, a large

codebook (actually a continuous speech database) is used for selecting the appro-

priate segments that best match the input speech using a modified Viterbi decoding

principle that incorporates the costs of both the segment quantization and the

segment-to-segment continuity.

The first work [LC01] marks a major paradigm shift in segment-quantization for

very low bit-rate speech coding, in the sense that the continuous codebook used is a

‘single-frame codebook’, i.e. a codebook of single frame vectors like a vector

quantizer, but obtained without any clustering. The basic structure of this frame-

level unit-selection segment quantization system of [LC01] is shown in Fig. 2.19.

This is along the lines of the long vector codebook considered in the two reasonings

in Sect. 1.3.5, which allows transparent quality quantization in the limit of large

vector codebooks at rates 20 bits/frame and above. The Viterbi algorithm used for

segment quantization performs ‘unit selection’ that favors quantizing consecutive

frames of input speech using consecutive frames in the ‘continuous codebook’;

such an ‘index contiguity’ was further exploited using a run-length coding thereby
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achieving low effective bit-rates though the codebook sizes used were significantly

large (19 bits/frame). At the decoder, the received unit indices are used to retrieve

the corresponding units from the unit database (now with a representation to aid

synthesis) and concatenated prior to synthesis by a HNM synthesizer.

In another major milestone in large codebook based segment quantization, Lee

and Cox also came up with a ‘segmental’ version of the above system [LC02] using

a large size ‘continuous codebook’ (called ‘unit database’) made of variable length

segments. Figure 2.20 shows the basic structure of this segmental unit-selection

system of [LC02]. Here, Lee and Cox [LC02] used a segmental unit database for

segment quantization of a ‘pre-segmented and quantized’ (by a VLSQ [SH88]

quantizer) input speech, using a modified form of Viterbi decoding working on

Fig. 2.19 Generic structure of the frame-level unit-selection based speech coding framework of

[LC01]

Fig. 2.20 Generic structure of segment-level unit-selection based speech coding framework

of [LC02]
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grouped units from the unit database and that favors contiguity of the quantization

indices for run-length coding. At the decoder, the received unit indices are used to

retrieve the corresponding units from the synthesis unit database and concatenated

prior to synthesis by a HNM synthesizer.

In a recent and significant development in the unit-selection based segment

quantization approach, we analyzed the algorithm of Lee and Cox [LC02], to

show how it intrinsically suffers from several sub-optimality, such as due to

pre-quantization of the test utterance using an intermediate Shiraki-Honda clustered

segment codebook, and resulting fixing of unit labels and segment boundaries in

test speech as well as the use of only a sub-set of units from the unit-database for

concatenative unit-selection. Here [RH06, RH07], we proposed a unified and

generalized framework for segment quantization of speech at ultra low bit-rates

of 150 bps based on unit-selection principle using a modified one-pass dynamic

programming algorithm and showed how it is exactly optimal for both fixed and

variable-length segments and how it solves the sub-optimality of the Lee and Cox

[LC02] algorithm by performing unit-selection based quantization ‘directly’ using

the units of a continuous codebook without pre-quantizing the input speech. The

unified unit-selection algorithm proposed by us handles both fixed- and variable-

length units in a unified manner, thereby providing a generalization over both the

two unit selection methods of Lee and Cox [LC01, LC02] which deal with ‘single-

frame’ and ‘segmental’ units in a disparate manner. Moreover, the ‘single-frame’

algorithm of Lee and Cox [LC01] becomes a special case of the unified algorithm

proposed by us.

In these algorithms presented by us [RH06, RH07], we showed three important

results with respect to the early algorithms of Lee and Cox [LC01, LC02], based on

rate-distortion curves using a very large continuous speech multi-speaker database:

Firstly, our algorithm has a significantly superior performance than the segmental

algorithm of Lee and Cox [LC02], by achieving considerably lower spectral

distortions (up to 1.5 dB less) as well as much lower bit-rates over a range of

database sizes; secondly, fixed length units perform significantly better than single-

frame units, an important aspect overlooked by Lee and Cox’s algorithm; and

thirdly, use of fixed length units of 6–8 frames length offer spectral distortions

similar to that of variable-length phonetic units, thereby circumventing expensive

segmentation and labeling (manual or even automatic) of a continuous database

(to define the variable-length units) for unit selection based low bit-rate coding.

Further, in [RH08], we proposed a low complexity unit-selection algorithm for

ultra low bit-rate speech coding based on a first-stage n-best pre-quantization lattice

and a second-stage run-length constrained Viterbi search to efficiently approximate

the complete search space of the fully-optimal unit-selection algorithm recently

proposed by us earlier [RH06, RH07]. By this, the proposed low complexity

algorithm is rendered near-optimal in terms of rate-distortion performance while

retaining the low complexity of the segmental unit-selection framework of Lee and

Cox [LC02].

In another recent work [HR08], we analyzed the relative performances of

different segment quantization methods, by considering five classes of segment
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quantizers used for low to ultra low rate speech coding, namely, vector quantization

(VQ), matrix quantization (MQ), variable-length segment quantization (VLSQ)

and the two unit-selection (US) based segment quantization algorithms US(LC)

[LC01, LC02] and US(1-pass DP) [RH06, RH07] which represent an important

shift in using large un-clustered continuous codebooks in contrast to the conven-

tional clustered codebooks of VQ, MQ and VLSQ. Here, we examined the advan-

tage, if any, in this shift from small clustered codebooks of VQ, MQ and VLSQ

(10–14 bits/segment), to the larger continuous unit databases (16–18 bits/segment)

in the unit-selection framework, by comparing their rate-distortion curves. We

concluded in favor of variable-length segment quantization (VLSQ) over VQ and

MQ and also showed how the unit-selection framework offers a promising direction

in terms of providing steep fall in rate-distortion behavior.

In an important recent result [RH09], we showed that use of large unit databases

(as in the above unit-selection framework for variable-length segment quantization)

allows speech to be reconstructed at the decoder by using the best unit’s residual

itself (in the unit database), thereby obviating the need to transmit any side

information about the residual of the input speech. For this, it becomes necessary

to jointly quantize the spectral and residual information at the encoder during unit

selection, and we proposed various composite measures for such a joint spectral-

residual quantization within the unit-selection algorithm proposed earlier [LC01,

LC02]. We realized ultra low bit-rate speaker-dependent speech coding at an

overall rate of 250 bps using unit database sizes of 19 bits/unit (524,288 phone-

like units or about 6 h of speech) with spectral distortions less than 2.5 dB that

retains intelligibility, naturalness, prosody and speaker-identity.

More recently, in [R12], we extended this result further by considering the fact

that the overall rate-distortion performance of such a joint spectral-residual quan-

tization was compromised owing to the original sub-optimality of the unit-selection

framework [LC02] within which it was set. In this work, in order to realize better

rate-distortion performance, we proposed joint spectral-residual quantization in an

optimal unit-selection framework based on the modified one-pass dynamic pro-

gramming (DP) algorithm as in [RH06, RH07] By this, we realized ultra low

bit-rate speaker-dependent speech coding with spectral distortions lower by up to

0.5 dB than the earlier algorithm [RH09].

The following chapters of this book (Chaps. 3 to 6) are primarily devoted to this

unit-selection paradigm, specifically on the algorithms outlined in this section.

2.8 Performance Measures for Segment Quantization

The class of waveform coders can be evaluated with signal-to-quantization-noise

ratio (SQNR) which measures the sample-to-sample distortion between the original

speech waveform and the quantized and reconstructed waveform, by virtue of the

fact that such coders preserve the sample-to-sample correspondence between the

original and synthesized speech. However, in vocoders, starting from the LPC10
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framework, and in the entire class of segment vocoders described in this chapter,

such a sample-to-sample correspondence is not preserved due to the simple fact that

the synthesizer (at the decoder) synthesizes speech using the quantized LP param-

eters and an approximation of the original residual derived from the prosodic

parameters (voicing/unvoiced decision and pitch and gain) which renders the output

speech waveform with no correspondence to the original speech waveform at the

sample level.

In view of this, the LPC10 type of vocoders have been evaluated in terms of

(i) the spectral quantization distortion, measured in terms of spectral distortion and

(ii) subjective listening tests under various types of measures such as MOS, DRT,

etc. In keeping with this practice, most segment vocoders and segment quantization

techniques have adapted similar measures, among which the most preferred mea-

sure is the spectral distortion for the high-rate quantizers of LP spectral parameters

[PK95]. We define this spectral distortion measure here, as this is employed in

several segment vocoder work, and specifically in all of our work which we report

in the following chapters (and outlined in Sect. 2.7).

The spectral distortion is a measure of the distortion between the spectra

corresponding to the LP parameters of the original speech, as available at the

encoder immediately after LP analysis (and prior to segment quantization) and

the spectra corresponding to the LP parameters after segment quantization

(and ideally, after channel transmission, though this is not relevant in the absence

of any channel coding or errors) and as used in the LP synthesizer at the decoder,

after duration modification, so that there is an one-to-one correspondence between

the input frames (before quantization) and output frames (as used in the synthesis at

the decoder). To this end, the two spectra between which the spectral distortion is

computed corresponds to the points marked A and B in Fig. 2.5. The spectral

distortion for a frame i is defined (in dB) as follows:

Di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Fs

ðFs

0

10log10 Pi fð Þð Þ � 10log10 P̂ i fð Þ� �� �2
df

s
ð2:4Þ

where Fs is the sampling frequency in Hz, and Pi( f ) and P̂ i fð Þ are the LPC power

spectra of the ith frame given by

Pi fð Þ ¼ 1

Ai j2πf=Fsð Þj j2

and

P̂ i fð Þ ¼ 1

Â i j2πf=Fsð Þ

 

2
where Ai(z) and Â i zð Þ are the original (unquantized) and quantized LPC poly-

nomials, respectively, for the ith frame. Thus, the single frame spectral distortion is
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the squared difference between the log of the linear-prediction power spectra of the

original frame and the quantized frame, averaged over frequency. The average

spectral distortion is the average of the single frame spectral distortion given by

Eq. 2.4, over the number of frames in the input speech. This average value

represents the spectral distortion associated with a particular quantizer, and can

be used as a quantization performance measure.

While we entirely rely on the above spectral distortion measure (SD in dB) to

quantify and compare the performances of the different segment quantization

schemes in the following chapters, several vocoders have also reported results of

their segment quantization techniques using this measure, e.g., [KCT91, LF93, S94,

CKBC99, MBCC01, C05]. Other measures that have been used include DRT

[W82, RWR87, KCT91, PCB04a, PCB04b] and DAM [KCT91] and the PESQ

measure [C08, CMC08b, PSVH10]. See also [TKCK93] for the kind of evaluation

metrics and considerations that go into characterizing the performance of low rate

coders in the range of 600–1200 bps, and which have a bearing on the evaluation of

the coders operating at ultra low bit-rates too.

Note also that with the advent and promise of the unit-selection paradigm as

demonstrated in the techniques outlined in Sect. 2.7, setting the basis for speech-to-

speech synthesis in the unit-selection framework at ultra low bit-rates, it is also

likely that objective and subjective measures used to characterize the quality of

speech in the context of TTS (e.g. [vHvB95, D97]) could well be relevant for

benchmarking the performance of such ultra low bit-rate coders.
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Chapter 3

Unit Selection Framework

In what can be considered as a major paradigm shift in segment-quantization for

very low bit-rate speech coding, Lee and Cox [LC01] proposed a system based on a

unit-selection framework. This has several important distinctions from the conven-

tional segment vocoder structure described in Chap. 2. Firstly, they used a ‘contin-

uous codebook’, which is a sequence of mel-frequency cepstral coefficient (MFCC)

vectors as obtained from continuous speech; the codebook is thus a ‘single-frame

codebook’, i.e. a codebook of single frame vectors like a vector quantizer, but

obtained without any clustering. Secondly, they employed a Viterbi decoding

algorithm to perform segmentation and segment quantization using the ‘unit selec-

tion’ principle. Here, the Viterbi decoding uses concatenation costs which favor

quantizing consecutive frames of input speech using consecutive frames in the

‘continuous codebook’. The system then exploited this ‘index-contiguity’ to per-

form a run-length coding thereby achieving low effective bit-rates though the

codebook sizes used were significantly large (19 bits/frame).

Subsequently, Lee and Cox also came up with a ‘segmental’ version of the above

system [LC02]. Here, they used a similar large size ‘continuous codebook’ (called

‘unit database’, henceforth), but now segmented and quantized (i.e., labeled) by a

‘clustered’ codebook designed by the joint-segmentation quantization algorithm of

Shiraki and Honda [SH88]. By this, the database now becomes a codebook of

variable-length segments with each segment having an index from the clustered

codebook. Lee and Cox [LC02] use this segmented and labeled database for a

second stage quantization of the input speech, which is also segmented and quan-

tized by the same clustered codebook. Here again, they apply a Viterbi decoding

based unit selection procedure, but now to aid run-length coding on the unit indices

of the database.

Figure 3.1 illustrates the principle of unit-selection based quantization for this

segmental system of Lee and Cox [LC02]. The color sequence in the top shows the

continuous speech which is segmented into variable length segments thus compris-

ing the unit-database (each color bar representing a unit of some arbitrary length),
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say of length N¼ 262,144 units. The color sequence in the bottom represents the

input speech being quantized by unit-selection principle. Here, the unit-selection

based quantization yields a mapping between the input segments and the units,

representing a quantization of an input segment by the corresponding unit. This

solution is obtained in a manner identical to unit-selection based text to speech

synthesis, wherein a total optimization cost (in this case, a distortion) is defined as a

combination of unit costs and concatenation costs—the unit cost representing the

distortion between an input segment and its corresponding quantizing unit and the

concatenation cost defined in such a manner to favor units that are contiguous in the

unit database to quantize consecutive segments in the input speech being quantized.

Such unit contiguity is further exploited to yield low transmission bit-rates by

employing run-length coding, where a contiguous sequence of units can be parsi-

moniously represented by the base index of the contiguous sequence of units and

the number of units following the base unit that make up the contiguous sequence of

units.

In this example shown in Fig. 3.1, three such contiguous groups are shown: three

contiguous units 16, 17, 18 quantize three consecutive segments in the input speech,

four contiguous units 20, 21, 22, 23 quantize four consecutive segments in the input

speech and eight contiguous units 63–70 quantize eight consecutive segments in the

input speech, each with its run-length advantage which is proportional to the length

of the contiguity. This reveals the importance of the unit selection paradigm for

quantization and the concatenation costs therein which facilitates the selection of

such contiguous units. Note for instance, the input segment between the first group

and the second group is quantized by unit number 2, thereby breaking the contigu-

ity. Instead, if this segment had been quantized by unit 19, a long contiguous

sequence of units 16–23 would have quantized eight consecutive segments in the

input speech.

Note that this figure illustrates the basic principle of unit-selection based quan-

tization where the unit database is made of variable length units. When the length of

the units reduces to 1, this yields a single-frame continuous codebook as in the first

algorithm of Lee and Cox [LC01], while the contiguity advantage holds good, but

with a contiguous group of units being a sequence of single frames.

Fig. 3.1 Basic principle of unit-selection based segment quantization
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3.1 Lee-Cox Single-Frame Unit Selection Quantization

Let the input speech to be quantized using unit-selection be a sequence of TMFCC

or LP vectors O¼ (o1, o2, . . ., ot, . . ., oT). The unit database is a ‘continuous code-

book’, which is essentially a sequence of MFCC or linear-prediction (LP) vectors as

obtained from continuous speech. The unit database U is a sequence of N
consecutive frames U ¼ u1; u2; . . . ; un; . . . ; uNð Þ, where a unit un is a single frame

vector.

It is desired to quantize the input speech O¼ (o1, o2, . . ., ot, . . ., oT) by a sequence

of units U ¼ uq1 ; uq2 ; . . . ; uqt ; . . . ; uqT
� �

from the database U, in such a way to

minimize a total quantization cost given by

D O;Uð Þ ¼
XT
t¼1

Du ot; uqt
� �þXT

t¼2

Dc qt�1; qtð Þ ð3:1Þ

where, Du ot; uqt
� �

is the unit (or acoustic target) cost given by

Du ot; uqt
� � ¼ d ot; uqt

� � ð3:2Þ

where d ot; uqt
� �

is the Euclidean distance between the MFCC vectors ot and uqt .

Dc(qt�1, qt) is the concatenation cost given by

Dc qt�1; qtð Þ ¼ βt�1, t � d uqt�1
; uqt

� � ð3:3Þ

Where, d uqt�1
; uqt

� �
is the Euclidean distance between the units uqt�1

and uqt .

βt� 1,t¼ 0 if uqt�1
and uqt are consecutive in the database and βt� 1,t¼ 1 otherwise.

By this, the total cost is made to favor selection ofuqt�1
anduqt that are contiguous in

the database to quantize consecutive input vectors ot� 1 and ot. Such a concatena-

tion cost attempts to preserve natural coarticulation and spectral continuity to the

extent that a sequence of input speech can get quantized by a matching sequence of

vectors in the unit database.

The optimal unit sequenceU� ¼ uq�
1
; uq�

2
; . . . ; uq�

t�1
; uq�t ; . . . ; uq�T

� �
that quantizes

the input O¼ (o1, o2, . . ., ot� 1, ot, . . ., oT) with the minimum total distortion

D(O,U ) is obtained as

U� ¼ arg min
U∈U

D O;Uð Þ ð3:4Þ

where, U is any sequence of units, with each unit drawn from the unit database U.
Equation (3.4) is solved using a Viterbi search using the following recursions for

the ith unit ui in the database to be the unit that quantizes the input vector ot at time t
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Dt ið Þ ¼ min
1� j�N

Dt�1 jð Þ þ Dc uj; ui
� �� �þ Du ot, uið Þ ð3:5Þ

ψ t ið Þ ¼ arg min
1� j�N

Dt�1 jð Þ þ Dc uj, ui
� �� � ð3:6Þ

This recursion is done time synchronously for t¼ 1, . . ., T and i¼ 1, . . .,N
(at every t). ψ t(i) is the backtracking pointer for the ith unit at time t, Dt(i) is the
accumulated cost for the ith unit at time t and Dc(uj, ui)¼ 0 if the units uj and ui are
consecutive in the unit database; i.e., i¼ jþ 1.

The recursion is applied for t¼ 1, . . .,T and i¼ 1, . . .,N (at every t) and

when DT(i), i¼ 1,. . .,N is computed, the optimal unit sequence U� ¼
uq�

1
; uq�

2
; . . . ; uq�

t�1
; uq�t ; . . . ; uq�T

� �
is recovered from the backtracking pointer ψ t(i)

using the following backward recursion

q�T ¼ arg min
1�i�N

DT ið Þ ð3:7Þ

q�t ¼ ψ tþ1 q�tþ1

� �
, t ¼ T � 1, T � 2, . . . , 2, 1 ð3:8Þ

3.1.1 An Alternate ‘5 ms Segment’ Single-Frame
Unit-Selection Algorithm

At this point, it is appropriate to refer to the work of [HT04] which sets out with the

objective of showing how concatenative TTS with very short ‘segment’ durations

of 5 ms is bound to be better than longer units, such as phones, diphones or

syllables, mainly from the viewpoint that such short segments, in a given speech

that will constitute the unit-database, provides more ‘concatenation variation’—

which is to be interpreted as offering more choice of such short segmental units in

the database and which in turn have more concatenation options to match a given

target specification derived from an input text. Though attempting to show this

concept for TTS, this work resorts to ‘speech-to-speech synthesis’ (as discussed in

Sect. 1.4), using short 5 ms segments for two reasons: (1) it is difficult to derive such

short target vectors from text (for which the paper suggests use of a HMM based

intermediate mapping to convert text into a sequence of target vectors which are to

be further input to the proposed system) and, (2) it is easier to derive to such short

‘acoustic vectors’ directly from the speech signal (the paper uses fundamental

frequency F0, power and spectrum), and thereby be able to demonstrate that such

short unit based concatenative synthesis does indeed produce acceptable quality

speech, with the focus on the size of the unit.

Towards this objective, the paper actually realizes a ‘speech coding’ system

incidentally, though without any accompanying standard objective quality mea-

sures or bit-rates that would normally qualify a coder. Instead, the paper does

82 3 Unit Selection Framework

http://dx.doi.org/10.1007/978-1-4939-1341-1_1#Sec4


establish that short 5 ms units can yield natural speech, retaining the speaker

identity (which is not surprising since both the unit-database speech and the test

speech were from the same single speaker, and which would eventually result in the

unit-database speaker to more naturally reflect in the synthesized speech, and which

will invariably be mistaken as ‘retaining’ the same input speaker identity). More

importantly, what is to be noted here is that the paper formulates the unit-selection

step somewhat differently, starting with a n-best list of candidates from the unit-

database for each 5 ms vector in the input, which is further searched for a sequence

of units that have the best concatenation property, with appropriately defined

concatenation-costs (e.g. KL distance on the normalized power spectrum at the

concatenation points of the units).

We note here that the basic premise of this paper is questionable, firstly in not

having provided fair comparison of different unit sizes in the same framework using

objective measures, and secondly it runs contrary to the result shown by us in Sect.

4.1.2, where we have used a generalized framework for unit-selection with arbitrary

sized units, and actually shown that the rate-distortion performances is enhanced

considerably with unit-size, i.e., in progressing from single-frame units (as in

[LC01] and in this paper [HR05]) to longer size units (e.g. 8 frames long) and

further to variable-length phonetic units.

However, this work clearly belongs to the class of unit-selection based speech

coding that is in focus here, though best seen as a (what seems independently

arrived at by [HR05]) sub-optimal realization of the pioneering work of [LC01]

which is the earliest single-frame unit-selection based speech coding as discussed

above. The sub-optimality of [HR05] is due to the use of only the n-best candidates

(a value of n = 300 was used in this paper) for each input vector, whereas it can be

seen that the single-frame Lee and Cox [LC01] algorithm described above solves

this by letting each input frame be quantized by (and concatenated to) any single-

frame vector in the entire single-frame unit database.

3.2 Lee-Cox Segmental Unit Selection Quantization

Figure 3.2 gives a schematic of the ‘segmental’ unit-selection framework and

algorithm used by Lee and Cox [LC02], described below:

1. Unit database: Consider a long continuous speech with continuous sequences of
LP parameter vectors or mel-frequency cepstral coefficient (MFCC) vectors. A

‘unit-database’ is derived from this continuous speech by segmenting

and quantizing (i.e., labeling) the continuous speech using a ‘clustered’

codebook V ¼ v1; v2; . . . ; vp; . . . ; vP
� �

by variable-length segment quantization

(VLSQ) [SH88]. This results in a unit-database which is a sequence of variable-

length units U ¼ u1; u2; . . . ; un; . . . ; uNð Þ, where a unit un is of length ln frames,

given by un¼ (un(1), un(2), . . ., un(ln)); each unit has an index (or label) from the
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clustered codebook V, i.e., the label of unit un is ℒ(un) ∈ [1, . . .,P]. Typical
value of P is 64.

2. Input speech segmentation: The input speech (speech to be coded) is seg-

mented and labeled by the same clustered codebook V using variable length

segment quantization [SH88] (which is essentially realized by the 2-pass

dynamic programming (DP) algorithm [RJ93]). If the input speech utterance is

a sequence of vectors (MFCC or LP parameters) O¼ (o1, o2, . . ., ot, . . ., oT), this
results in a segmentation of O into K segments given by S¼ (s1, s2, . . ., sk� 1,

sk . . ., sK) with corresponding segment lengths (L1, L2, . . .,Lk� 1,Lk . . ., LK). This
segmentation is specified by the segment boundaries, such that the kth segment

sk is given by sk ¼ obk�1þ1; . . . ; obkð Þ. By virtue of the segmentation of O into

K segments using the VLSQ codebook V, each segment sk is associated with

a label from the VLSQ codebook V, denoted by ℒ(sk) which can take a value

from 1 to P.
3. Unit Grouping: Define a group Gk corresponding to each sk, k¼ 1, . . .,K where

Gk is a collection of all units in the unit databaseU such that the VLSQ label of all

these units are the same as that of sk, i.e., Gk ¼ un : ℒ unð Þ ¼ ℒ skð Þf g.
This defines a collection of units Gk from the unit-database U for each segment

sk of the input speech utterance, which are now the potential candidate units for

quantizing segment sk.
4. Unit selection segment quantization: With the definition of S¼ (s1, s2, . . .,

sk� 1, sk . . ., sK) andGk, k ¼ 1, . . . ,K as above in Steps 2 and 3, it is now required

to determine the optimal sequence of unit indices Q*¼ (q�1, q
�
2, . . ., q

�
k� 1, q

�
k , . . .

q�K) that minimize an overall decoding distortion (quantization error) when the

segment sequence S¼ (s1, s2, . . ., sk� 1, sk . . ., sK) is quantized by the

corresponding unit sequence uq�
k
, k ¼ 1, . . . ,K

� �
: Before proceeding to give

Fig. 3.2 Lee and Cox [LC02] segmental unit selection framework for variable length segment

quantization (Reused with permission from [RH07])
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the basic algorithm that solves this, we first give below the basic formalism that

the above unit-selection quantization procedure solves.

The overall distortion (quantization error) in quantizing S by any Q is given by

D� ¼ min
Q

α
XK
k¼1

Du sk; uqk
� �þ 1� αð Þ

XK
k¼2

Dc qk�1; qkð Þ
" #

ð3:9Þ

with the corresponding optimal unit sequence Q*¼ (q�1, q
�
2, . . ., q

�
k� 1, q

�
k , . . . q

�
K)

that quantizes sk, k¼ 1, . . .,K being

Q� ¼ arg min
Q

α
XK
k¼1

Du sk; uqk
� �þ 1� αð Þ

XK
k¼2

Dc qk�1; qkð Þ
" #

ð3:10Þ

Here, Du sk; uqk
� �

is the unit-cost (or distortion) in quantizing segment sk using

unit uqk which is restricted to belong toGk. Dc(qk� 1, qk) is the concatenation-cost

(or distortion) when unit uqk�1
is followed by unit uqk , but with the restriction that

uqk�1
, uqk belong respectively to groups Gk�1 and Gk, i.e., uqk�1

∈Gk�1 and

uqk ∈Gk. Further, the actual units uqk�1
, uqk selected from these groups are subject

to the concatenation constraint

Dc qk�1; qkð Þ ¼ βk�1,k � d uqk�1
lqk�1

� �
, uqk 1ð Þ� � ð3:11Þ

where, d uqk�1
lqk�1

� �
, uqk 1ð Þ� �

is the Euclidean distance between the last frame of

unituqk�1
and the first frame of unituqk . βk� 1,k¼ 0 if qk¼ qk� 1þ1 (i.e.,uqk�1

and

uqk are consecutive in the unit database) and βk� 1,k¼ 1 otherwise. This favors

quantizing two consecutive segments (sk� 1, sk) with two units which are con-

secutive in the codebook; run-length coding further exploits such ‘contiguous’

unit sequences to achieve lowered bit-rates.

A Viterbi decoding solves for the optimal sequence of unit indices Q*¼ (q�1,
q�2, . . ., q

�
k� 1, q

�
k , . . . q

�
K) that minimize the above defined overall decoding dis-

tortion (quantization error) D* when the segment sequence S¼ (s1, s2, . . ., sk� 1,

sk . . ., sK) is quantized by the corresponding unit sequence uq�
k
, k ¼ 1, . . . ,K

� �
under the constraints that

(a) Unit uq�
k
quantizes segment sk and is drawn from the group of units Gk,

(b) Two consecutive segments (sk� 1, sk) are favored to be quantized by two

units uq�
k�1
, uq�

k
which are consecutive in the unit-database.

This is realized via a Viterbi decoding

(a) On a trellis of segment distortion values Du sk; uqk
� �� �

, k ¼ 1, . . . ,K where

uqk ∈Gk and Du sk; uqk
� �

is an appropriately defined distortion between

segment sk and unit uqk and,
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(b) By using concatenation costs which favor quantizing consecutive segments

of input speech using consecutive units in the unit-database.

This is illustrated in Fig. 3.3. Specifically, we note the following:

(a) The x-axis shows the input speechO¼ (o1, o2, . . ., ot, . . ., oT), segmented into

K segments given by S¼ (s1, s2, . . ., sk� 1, sk . . ., sK), by means of the

variable-length segment quantization as described in Step 2 above.

(b) Following this, the y-axis is made of the K unit groupsGk, k ¼ 1, . . . ,K each

with Mk units drawn from the unit database, such that

Gk ¼ un : ℒ unð Þ ¼ ℒ skð Þf g as described in Step 3 above.

(c) The trellis based Viterbi decoding to find the optimal quantizing unit

sequence indices Q*¼ (q�1, q
�
2, . . ., q

�
k� 1, q

�
k , . . . q

�
K) is shown in the central

part of the figure bound by the x- and the y-axes. As described in this Step

4, this involves finding the optimal path through the trellis that minimizes the

total cost made of the unit-cost and the concatenation costs. The recursions

employed in the Viterbi search for this optimal path is given as (as also

shown in Fig. 3.3),

Fig. 3.3 Lee and Cox [LC02] segmental unit selection algorithm for variable length segment

quantization
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D k; ið Þ ¼ min
j¼1, ...,Mk�1

D k � 1, jð Þ þ 1� αð Þ � D0
c j; ið Þ

n o
þ α � dseg k; ið Þ

ð3:12Þ

where, D(k, i) is the accumulated distortion of the path reaching segment sk
by quantizing it using a segmental unit ui ∈Gk (from among Mk possible

units in this group). D(k� 1, j) is the accumulated distortion of the path at

segment sk� 1 having been quantized by a segmental unit uj ∈Gk�1 (from

among possibleMk� 1 units in this group). A path from (k� 1, j) to (k, i) has

a concatenation cost of D
0
c( j, i) which takes on a value of 0 if uj and ui are

contiguous in the original unit database, and takes on a value of the Euclid-

ean distortion between the last frame of uj and the first frame of ui, if they are
not contiguous. dseg(k, i) is the unit cost in quantizing segment sk by unit ui
from the group Gk corresponding to the segment sk. α defines the relative

proportion of weighing the unit cost and the concatenation cost, as defined in

the total cost definition in Eq. (3.9).

The recursion Eq. (3.12) is computed for k¼ 1, . . .,K, and for each k for

all i¼ 1, . . .Mk. At the end of the recursions, all MK path endings yield

D(K, i), i¼ 1, . . .,MK. Starting from the unit q�K ¼ mini¼1, ...,MK
D K; ið Þ,

backtracking yields the best path and the best unit sequence Q*¼ (q�1,
q�2, . . ., q

�
k� 1, q

�
k , . . . q

�
K). This optimal solution by Viterbi search essentially

selects the optimal unit uq�
k
from among the Mk units in group Gk to quantize

input segment sk, so as to minimize a global cost involving the unit costs of

all the K segments and the unit-to-unit concatenation costs across segments.

Such selected units in each group are shown in Fig. 3.3 by a bold segment

below the x-axis under each segment sk, and the dotted line connecting these
bold segments is essentially the optimal path recovered by the Viterbi

backtracking search.

This completes the segmental unit-selection for quantizing the input

speech segments S¼ (s1, s2, . . ., sk� 1, sk . . ., sK) by the optimal units

uq�
k
, k ¼ 1, . . . ,K

� �
from the unit database. Note that, frame level quanti-

zation of the input O¼ (o1, o2, . . ., ot, . . ., oT) is further obtained by duration

matching the unit uq�
k
to segment sk by appropriate means.

5. Run-length coding: The system then exploited the ‘index-contiguity’ in the

above unit-sequence Q* to perform a run-length coding thereby achieving low

effective bit-rates though the unit-database sizes used could be significantly

large. Details of run-length coding and effective bit-rate calculations are given

in Sect. 3.3.

6. Duration modification: Here, we add a note on ‘duration modification’ that is to

be done at the decoder to make the unit uqk (of length lqk) to match the duration of

the input segment sk (of length Lk) that it quantizes, as well as in the computation

of the unit cost Du sk; uqk
� �

in the Viterbi solution at the encoder above. This

involves time warping of the unit uqk (of length lqk) to match the duration of the
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input segment sk (of length Lk). While Lee and Cox [LC02] employ a bi-linear

interpolation to carry out this duration modification, we do this here by ‘space-

sampling’—a resampling of unit uqk to yield Lk frames so as to match the

duration of sk, which is as follows: The total length of unit uqk is computed

(using a Euclidean norm on the LP vectors (say, LARs) of uqk ; then the spectral

trajectory of the unit uqk is resampled at Lk equispaced points in the LAR space.

Thus, if the segment sk is given by the sequence of frames sk(1), sk(2), . . .,
sk(l ), . . ., sk(Lk) and the unit uqk is given by the sequence of frames

uqk 1ð Þ, uqk 2ð Þ, . . . , uqk lð Þ, . . . uqk lqk
� �

, the resampled version of the unit uqk is

given as u0qk ¼ u0qk 1ð Þ, u0qk 2ð Þ, . . . , u0qk lð Þ, . . . u0qk Lkð Þ, wherein the re-sampled

unit u0qk is now matched in duration with the input segment sk. The unit cost Du

sk; uqk
� �

is then defined as

Du sk; uqk
� � ¼ XLk

l¼1

d sk lð Þ, u0
qk

lð Þ
� �

ð3:13Þ

3.3 Run-Length Coding and Effective Bit-Rate

Run length coding refers to the following coding scheme applied on the decoded

label sequence obtained by the above algorithms. Let a partial sequence of labels in

Q* be (. . ., q�i� 1, q
�
i , q

�
iþ 1, q

�
iþ 2, . . ., q

�
iþm� 1, q

�
iþm, . . .) which are such that

q�i� 1 6¼ q�i , q
�
iþ j ¼ q�i + j, j¼ 1, . . .,m� 1 and q�iþm� 1 6¼ q�iþm. The partial sequence

(q�i , q
�
iþ 1, q

�
iþ 2, . . ., q

�
iþm� 1) is referred to as a ‘contiguous group’ with a ‘contigu-

ity’ of m, i.e., a group of m segments whose labels are consecutive in the unit

codebook. Run-length coding exploits this contiguity in coding the above contig-

uous group by transmitting the address of unit q�i first (henceforth referred to as the

base-index), followed by the value m� 1 (quantized using an appropriate number

of bits). At the decoder, this indicates that q�i is to be followed by its m� 1

successive units in the codebook, which the decoder retrieves for reconstruction.

Naturally, all the m segment lengths li+ j, j¼ 1, . . .,m� 1 are quantized and trans-

mitted as in a normal segment vocoder.

Use of an appropriate concatenation cost favors the optimal label sequence to be

‘contiguous’ thereby aiding run-length coding and decreasing the bit-rate effec-

tively. The unit-cost represents the spectral distortion and the concatenation cost

(indirectly) the bit-rate; a trade-off between the two costs allows for obtaining

different rate-distortion points for the above algorithm. This is achieved by the

factor α (which takes values from 0 to 1).

The effective bit-rate with the run-length coding depends entirely on the

specific contiguity pattern for a given data being quantized. For a given input

utterance O¼ (o1, o2, . . ., oT), let Q
� ¼ q�1, q

�
2, . . . , q

�
k�1, q

�
k , . . . , q

�
K� be the optimal

labels obtained by the algorithm as above. Let there beP ‘contiguous groups’ in this

K-segment label sequence, given by g1, g2, . . ., gp, . . ., gP, where the group gp has a
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‘contiguity’ cp, i.e., cp segments whose labels are contiguous in the unit codebook.

Then the total number of bits B for quantization of the input utterance O with

run-length coding is given by

B ¼ P log2 N þ P log2 cmax þ K� log2 Lmax ð3:14Þ

where the first term is the total number of bits for the base-indices for the P
contiguous groups, each being quantized to the address of the size N continuous

codebook. The second term is the number of bits for the ‘contiguity’ information

(providing for a maximum contiguity of cmax units) and the third term is the number

of bits for the individual segment lengths in the K* segment solution (providing for

a maximum length of Lmax frames). The effective bit-rate in bits/second is obtained

by dividing this total number of bits B by the duration of the speech utterance Tf, for
an input of T frames with a frame-size of fms (20 ms in this paper with no overlap).

Figure 3.4 illustrates an example of the bit-rate advantage derived from such

a run-length coding. Case-I corresponds to an input of 9 frames shown in

Fig. 3.1 as quantized with two sections of contiguous units 16–18 and 20–23.

Normal sequential coding (row 1), without using run-length scheme, quantizes

each frame with 18 bits, with no contiguity advantage, yielding a net bit-rate

of 162 bits for this sequence of frames. Case-I shows the net bit-rate due to

unit-selection quantization with two run-length sections—16–18 with

run-length of 2 and 20–23 with a run-length of 3, yielding a run-length

based bit-rate of 88 bits. Case II shows the effective bit-rate for a longer

contiguity—the section with units 63–70 in Fig. 3.1. This has one base-index

(63) followed by the run-length value of 7, yielding an effective bit-rate of

22 bits—comprising of one base-index and one run-length value. Use of

log2 C¼ 4 bits for quantizing the run-length contiguity allows representing a

maximal contiguity of C, which in this case allows unit-selection of up to

16 contiguous units, as shown in the last row considering a sequence of units

Fig. 3.4 Examples illustrating run-length coding principle and resultant bit-rate reduction

advantage.
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1 to 16. The significant reduction in the effective bit-rate with high

contiguity by means of unit-selection and run-length coding is the principle

advantage of this scheme, as illustrated in this example.

3.4 Sub-optimality of Lee-Cox Segmental
Unit-Selection Algorithm

In extending the ‘single-frame’ unit-selection principle to a ‘segmental codebook’,

Lee and Cox [LC02] had introduced several sub-optimality in the segment quanti-

zation procedure, arising in the following ways:

1. Pre-quantization of the input speech before Viterbi decoding produces a seg-

mentation that is sub-optimal with respect to the units of the actual units in the

database.

2. The use of a unit-selection quantization on such pre-segmented and

pre-quantized input utterance results in further loss of optimality as the optimal

segmentation (and the corresponding quantization) would be significantly dif-

ferent, particularly with respect to the overall spectral distortion.

3. Using only those segments from the database which have the labels of the

pre-quantized input speech restricts the units available for quantization to a

small sub-set of units.

4. The unit selection Viterbi decoding essentially works only on segments defined

by pre-quantization, and hence incurs a sub-optimality with respect to the overall

spectral distortion of the final segmentation and quantization of the input speech

with respect to the database units, which after all are the actual units used for

synthesis at the receiver.

The focus of the following Chap. 4 is primarily on this sub-optimality issue and

how a modified 1-pass dynamic programming (DP) algorithm proposed by us

earlier [RH06, RH07], represents a unified and optimal algorithm for unit-selection

based segment quantization, generalizing over both the algorithms of Lee and Cox

[LC01, LC02], with consequent highly enhanced rate-distortion performances.

Specifically, Sect. 4.1.1.1 provides a quantitative reasoning of the above sources

of sub-optimality of the Lee and Cox [LC02] algorithm with reference to the

optimal solution and search space of 1-pass DP algorithm to be discussed in detail

in Chap. 4.
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Chapter 4

Unified and Optimal Unit-Selection
Framework

In this chapter, we present a unified framework for segmenting and quantizing the

input speech using a constrained one-pass dynamic programming algorithm for

performing unit-selection on continuous codebooks as used by Lee and Cox [LC01,

LC02] for both single-frame and segmental unit-selection based quantization,

which were described in detail in Chap. 3. Unlike the sub-optimal algorithm in

[LC02], the algorithm proposed here provides an optimal segment quantization of

the input speech with respect to the ‘units’ of the continuous codebook. Moreover,

unlike the very disparate ways in which Lee and Cox realized the single-frame unit

selection [LC01] and segmental unit selection [LC02], our proposed framework

provides a ‘unified’ approach to treating the continuous codebook as made up of

segmental units which can be of two kinds: (i) fixed lengths of arbitrary length (such

as 1, 2, 3, 4, etc.) or, (ii) variable lengths such as phone-like units or units as derived

after segmenting (and labeling) the continuous speech database using a ‘clustered

codebook’ (as done in [LC02]). By this, we achieve several advantages over the

methods of [LC01, LC02]:

1. The framework is based on a single elegant algorithm which is a generalization

of both the single-frame system [LC01] and segmental system [LC02].

2. This allows evaluation of the unit-selection based system for fixed unit sizes

greater than 1; this was not attempted in [LC01] or [LC02]. We show that using

long fixed sized units of 6–8 frames offers significantly improved performance

over ‘single-frame’ units [LC01].

3. We also show that using fixed size units of 6–8 frames (that approximate phone-

like segments) offers performance comparable to variable sized units (such as

phonetic units), thereby completely obviating the need to segment and label the

continuous speech database manually or automatically using phonetic or clus-

tered codebooks.

Figure 4.1 shows a schematic of the proposed unified and optimal unit-selection

framework employing the modified one-pass DP algorithm for unit-selection based
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variable-length segment quantization directly on the units of the continuous

unit-database. Note the absence of a first-stage variable-length ‘pre-quantization’

(using a clustered codebook) as employed in Lee and Cox [LC02] algorithm which

labels the unit-database as well as the input speech.

This chapter is primarily based on the work reported in [RH06], [RH07] and

[HR08], with several parts reproduced here with permission.

4.1 Unified Unit-Selection Framework

Consider a ‘continuous codebook’ U ¼ u1; u2; . . . ; uNð Þ which is essentially a

sequence of MFCC or linear-prediction (LP) vectors as occurring in continuous

speech, being composed of N variable length segments (u1, u2, . . ., un . . ., uN), where
a unit un is of length ln frames, given by un¼ (un(1), un(2), . . ., un(ln) ). The code-

book is said to be made of ‘fixed length’ units, if ln¼ l, 8 n¼ 1, . . .,N, i.e., each
unit has l frames (when l¼ 1, the codebook is said to be a ‘single-frame’ codebook).

The codebook is said to be made of ‘variable length’ units if ln is variable over n.
Let the input speech utterance which is to be quantized using the above code-

book be a sequence of vectors (MFCC or LP parameters)O¼ (o1, o2, . . ., ot, . . ., oT).
Segment quantization, in its most general form involves segmenting and labeling

this sequence of vectors O by a ‘decoding’ or ‘connected segment recognition’

algorithm (as outlined in Sect. 2.2.2 and Sect. 2.2.3), which optimally segments the

sequence and quantizes each segment by an appropriate label or index from the

codebook. The segment indices and segment lengths together constitute the infor-

mation to be transmitted to the decoder at the receiver, which then reconstructs a

Fig. 4.1 Schematic of the proposed unified and optimal unit-selection framework employing a

modified one-pass DP algorithm (Reused with permission from [RH07])
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sequence of vectors by concatenating the segments of the received indices after

normalizing the original segments in the codebook to the received segment lengths.

In contrast, it should be noted that segment quantization based on ‘unit-selection

framework’ (as dealt with in Chap. 3) differs from a conventional ‘connected

segment recognition’ in minimizing a total distortion made of both the unit cost

(or segment distortion) and concatenation cost (or unit-to-unit spectral discontinu-

ity measure) which in turn makes the decoding solution to favor quantization of

successive segments in the input by long contiguous units from the unit-database. In

the following, we present an optimal formulation of this unit-selection based

segment quantization which generalizes over and unifies the algorithms of

[LC01] and [LC02] presented in Chap. 3.

Consider an arbitrary sequence ofK segments S¼ (s1, s2, . . ., sk� 1, sk . . ., sK) with
corresponding segment lengths (L1, L2, . . .,Lk� 1,Lk . . .,LK). This segmentation can

be specified by the segment boundaries B¼ ((b0¼ 0), b1, b2, . . ., bk� 1, bk . . .,
(bK¼ T )), such that the kth segment sk is given by sk ¼ obk�1þ1; . . . ; obkð Þ. Let each
segment be associated with a label from the codebook, with each index having a

value from 1 to N; let this index sequence be Q¼ (q1, q2, . . ., qk� 1, qk, . . ., qK).
Figure 4.2 gives the schematic of the basic formalism of the unified unit

selection principle we use here. This generalizes to single-frame units, fixed-length

units and variable length units (unlike the disparate formalisms adapted in Lee and

Cox [LC01, LC02] for single-frame and variable-length segments).

The optimal decoding algorithm solves for K*,B*,Q* so as to minimize an

overall decoding distortion (quantization error) given by

D� ¼ min
K,B,Q

α
XK

k¼1

Du sk; uqk
� �þ 1� αð Þ

XK

k¼2

Dc qk�1; qkð Þ
" #

ð4:1Þ

Fig. 4.2 Basic formalism of the unit-selection principle for generalized variable-length

quantization
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Here, Du sk; uqk
� �

is the unit-cost (or distortion) in quantizing segment sk using

unit uqk . This is as measured along the optimal warping path between sk and uqk
in the case of the one-pass DP based decoding which is described in Sect. 4.1.1.

Dc(qk� 1, qk) is the concatenation-cost (or distortion) when unit uqk�1
is followed

by unit uqk , which is given by

Dc qk�1; qkð Þ ¼ βk�1,k � d uqk�1
; uqk

� � ð4:2Þ

where, d uqk�1
; uqk

� �
is the Euclidean distance between the last frame of unit uqk�1

and the first frame of unit uqk : βk�1,k ¼ 0 if qk¼ qk� 1 þ1 (i.e., uqk�1
and uqk are

consecutive in the database and βk� 1,k¼ 1 otherwise. This favors quantizing two

consecutive segments (sk� 1, sk) with two units which are consecutive in the

codebook, and more generally, favors several consecutive segments to be quan-

tized by contiguous units in the unit-database; run-length coding (Sect. 3.3)

further exploits such ‘contiguous’ unit sequences to achieve lowered bit-rates.

4.1.1 Proposed One-Pass DP Algorithm

We propose here a constrained one-pass dynamic-programming algorithm which

performs an optimal segment quantization by employing ‘concatenation costs’ in

order to constrain the resultant decoding by a measure of how ‘good’ is the

sequence Q with respect to ease of run-length coding (described in Sect. 3.3).

We give here the modified one-pass dynamic programming algorithm to solve

the above optimal decoding problem of Eq. (4.1). Figure 4.3 shows the structure of

Fig. 4.3 Modified one-pass DP algorithm with the within-unit and cross-unit recursions to solve

the basic unified and optimal unit-selection formalism
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the modified one-pass DP algorithm, with the within-unit and cross-unit recursions,

computed time-synchronously, using a unit database of N units (on the y-axis) to

quantize the input speech of T frames (in the x-axis).

We state here the dynamic program recursions of our modified one-pass DP

algorithm based unit-selection. The recursions are in two parts: within-unit recur-

sion and cross-unit recursions.

Within-unit recursion

D i; j; nð Þ ¼ min
k∈ j, j�1, j�2f g

D i� 1, k, nð Þ þ α � d i; j; nð Þ½ � ð4:3Þ

Cross-unit recursion

D i; 1; nð Þ ¼ min a; bð Þ þ α � d i; 1; nð Þ ð4:4Þ

where,

a ¼ D i� 1, 1, nð Þ
b ¼ min

r∈ 1;...;Nð Þ
D i� 1, lr, rð Þ þ 1� αð Þ � Dc r; nð Þ½ �

Here, the above two recursions are applied over all frames of all the units in the

codebook for every frame i of the input utterance. The within-unit recursion is

applied to all frames in a unit which are not the starting frame, i.e., for j 6¼ 1; the

cross-unit recursion is applied only for the starting frames of all units, i.e., for j¼ 1,

to account for a potential entry into unit n from the last frame lr of any of the units

r¼ 1, . . .,N in the codebook.

D(i, j, n) is the minimum accumulated distortion by any path reaching the grid

point defined by frame ‘i’ of the input utterance and frame ‘j’ of unit un in the

codebook. d(i, j, n) is the local distance between frame ‘i’ of the input utterance and
frame ‘j’ of unit un. Dc(r,n) is the concatenation cost (or distortion) when unit ur is
followed by unit un (accounting for the concatenation term Dc(qk�1,qk) in Eq. (4.1))
as defined in Eq. (4.2). α and 1� α respectively weigh the unit-cost and concate-

nation cost, thereby realizing Eq. (4.1) and providing a parameter for controlling the

relative importance of the two costs in determining the optimal path (this is

described further in the next section on run-length coding). The final optimal

distortion is given by,

D� ¼ min
n¼1, ...,N

D T; ln; nð Þ ð4:5Þ

The optimal number of segments K*, segment boundaries B* and segment labels

Q* [corresponding to this optimal D* in Eq. (4.1)] are retrieved by back-tracking as
in the conventional one-pass DP algorithm [N84].

Figure 4.4 shows an example of the optimal quantization solution obtained by the

proposed one-pass DP algorithm, giving the optimal path retrieved by back-tracking,
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which in turn is made of the quantization information and the unit-contiguity infor-

mation. Note the three sections of contiguous units quantizing consecutive segments

in the input speech—two segments quantized by contiguous units 51, 52; four

segments quantized by four contiguous units 17–20; five consecutive segments

quantized by five contiguous units 63–67.

The above modified one-pass DP algorithm can be viewed as a ‘non-parametric’

version of the Viterbi decoding employed in continuous speech recognition (CSR)

using whole-word HMMs. The unit-selection framework here presents a unique

setting for such a formulation, which incorporates a ‘concatenation-cost’ in the

cross-unit recursions; (the conventional one-pass DP algorithm refers to this as

‘cross-word transition’, but does not use any transition cost). This concatenation

cost corresponds to the word-to-word language model probabilities in the Viterbi

decoding for CSR with word HMMs.

4.1.1.1 Comparison with Lee and Cox Single-Frame
and Segmental Unit-Selection

The Viterbi algorithm used by Lee and Cox [LC01] with a ‘single-frame’ contin-

uous codebook is a special case of the above one-pass DP algorithm when the

units in the continuous codebook are of fixed length one. For variable length units,

the above algorithm performs a decoding of the input utterance ‘directly’ using

Fig. 4.4 Example of unit-selection solution obtained by the proposed optimal one-pass DP

algorithm
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the units of the unit codebook, unlike the two-stage procedure of Lee and Cox

[LC02] which uses an intermediate segmentation (and labeling) using a clustered

codebook (of size 64) followed by a conventional forced-alignment Viterbi

decoding. As a result, we do not incur any of the sub-optimalities that the

algorithm in [LC02] suffers from, as pointed in Sect. 3.4 qualitatively. This is

made apparent quantitatively in the following.

Note that an optimal solution of unit-selection based quantization needs to solve

Eq. (4.1) exactly, which is precisely what the modified 1-pass DP algorithm in

Sect. 4.1.1. does. Stated differently, the optimal decoding needs to solve for (K∗,

B*, Q*) that corresponds to the minimum quantization distortion D∗. While

the optimal 1-pass DP algorithm solves this efficiently via dynamic programming,

it indeed finds this optimal solution over the entire search space of (K, B, Q)
considered jointly.

In contrast, the segmental unit-selection algorithm of Lee and Cox [LC02], as

outlined in Sect. 3.2, incurs sub-optimality in its solution for the following reasons

(as outlined qualitatively in Sect. 3.4):

i. The pre-segmentation and pre-quantization (by a joint segmentation and quanti-

zation) of the input speech using an intermediary clustered segment codebook V
(in Step 2 of Sect. 3.2, say of size 64), solves for K0 and B0 first, where K0 and B0

are not the same as the globally optimal K* and B*, i.e., while K* and B* are

optimal with respect to the ‘units’ of the unit-database U, K0 and B0 are optimal

only with respect to the intermediate clustered codebook V, and are not optimal

with respect to the unit-database U (whose units are after all the ones which are

used in the synthesis at the decoder).

ii. The unit-selection in Step 4 (Sect. 3.2) solves for an optimalQ0= (q01, q02, . . ., q0k�1,

q0k, . . ., q0K0) in Eq. (3.10) by restricting uq0k to be drawn from the group of units Gk

to quantize the segment sk (obtained by the 1st step pre-segmentation). The

resultant Q 0 is clearly sub-optimal, as each of the segments sk does not get to be

quantized by the least distortion unit from the entire database U, thereby leading

to higher unit-costs Du sk; uqk
� �

. Note that the concatenation cost Dc(qk�1, qk) is

also higher (than the optimal) owing to the fact that uqk�1
and uqk are restricted to

be from the groups of unitsGk�1 andGk, thereby not allowing for the best possible

concatenation of potential units from the entire unit-database U.
Consequently, the solution (K 0, B 0, Q 0) obtained by the Lee and Cox [LC02]

algorithm is sub-optimal in comparison to the globally optimal (K*, B*, Q*) in the

sense that the overall quantization distortion associated with (K0,B0,Q0) with respect
to the unit-database U is not the minimum possible and would be higher (in fact,

‘significantly’ higher, as will be shown in the results in Sect. 4.2) than D* (in

Eq. (4.1)) realized by the optimal 1-pass DP algorithm. The sub-optimality of Lee

and Cox [LC02] segmental unit-selection algorithm can be viewed as essentially

arising from the reduced search space that it considers for the choice of (K0, B0,Q0).
As pointed out further in Sect. 5.4 (as part of a discussion on optimality vs

complexity tradeoff), this reduced search space is what makes the Lee and Cox
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[LC02] algorithm have a relatively low computational complexity in comparison to

the fully optimal 1-pass DP unit-selection algorithm which finds its optimal solu-

tion over the entire search space.

Thus, the above 1-pass DP algorithm handles fixed-length segments of any size

as well as variable length segments in a unified and optimal manner without taking

recourse to two different ways of decoding as was done in [LC01, LC02] for single-

frame and variable-length units respectively.

4.1.2 Experiments and Results

We now present results of the proposed unit-selection based segment quantization

algorithm with respect to its quantization accuracy in terms of rate-distortion curves

between spectral distortion and the effective bit-rate with run-length coding. We

measure the segment quantization performance in terms of the average spectral

distortion between the original sequence of linear-prediction vectors and the sequence

obtained after segment quantization and length renormalization as defined in Sect. 2.8.

The average spectral distortion is the average of the single frame spectral

distortion over the number of frames in the input speech; the single frame spectral

distortion is the squared difference between the log of the linear-prediction power

spectra of the original frame and the quantized frame, averaged over frequency. The

bit-rate for segment quantization is measured as given in Eq. (3.14) in Sect. 3.3

using the run-length coding. We have used the TIMIT database for all the exper-

iments. We have used a value of α¼ 0.5 [Eqs. (4.1), (4.3), and (4.4)] in all the

experiments, giving equal weightage to both unit-cost and concatenation cost.

In Fig. 4.5, we show the rate-distortion performance of the unit-selection algo-

rithm for two kinds of unit sizes: (i) fixed length units with lengths ranging from 1 to

8 and (ii) variable-length phonetic units. In both cases, the codebook is a continuous

sequence of linear-prediction vectors (log-area ratios) of continuous speech utter-

ances in the TIMIT database, but treated as being made of fixed length units or

variable sized units. Since TIMIT is phonetically segmented, we used this phonetic

segmentation to define the variable-length units. This represents the best performance

achievable for variable length units, such as when the automatic segmentation used to

obtain the units is as good as a manual segmentation that defines phonetic segments.

In both cases, we have used codebooks of sizes 32–4,096 which are essentially the

first 32 (or 4,096) vectors of the TIMIT sentences ordered with male and female

sentences interleaved. The numbers alongside each curve is the codebook size

(in bits/unit). The number of sentences used to form these codebooks range from

1 to 128 sentences. The test data used was eight sentences with four male and four

female speakers from outside the speakers used in the codebook.

From this figure, it can be observed that the effective bit-rate reduces

significantly (nearly halves, such as from 200 bits/s to 100 bits/s), with increase

in the fixed length unit-size from 1 to 4 to 8 frames. This is largely due to the fact

that with a larger unit, the segment rate (number of segments per second) is reduced,

and even without run-length coding, the number of bits used for base-index
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quantization would decrease proportionately. In addition, the use of run-length

coding further reduces the effective bit-rate; the contiguity of larger length units

implies that more frames are quantized with the same run-length base indices

resulting in improved run-length advantage for longer fixed length units.

It can be noted that the variable length phonetic units performs the best, offering

an halving of the bit-rate from 300 bits/s (for single-frame units) to 150 bits/s for the

same distortion, clearly validating the potential of the unit-selection algorithm to

gain rate-distortion with larger unit sizes that approximate phone-like units. How-

ever, fixed length units of length 6 and 8 (shown up to codebook sizes 4,096 and

2,048) also provide a performance comparable to that of variable length phonetic

units. This circumvents the need for defining variable length units in a continuous

codebook by automatically segmenting it or by other means. It would be sufficient

to simply use a large continuous speech data and define fixed length units of lengths

comparable to phonetic units.

The effect of increasing the fixed length on the run-length based bit-rate

advantage is brought out clearly from the distribution of contiguity in Fig. 4.6

which plots the number of times a contiguity group of contiguity ‘m’ occurs. As

can be expected, the contiguity is high even for units of length one. With increase

in the unit lengths from 1 to 2, 4, 6, and 8, and finally to the variable length

phonetic units, the largest contiguity tends to come down, since each unit now

already spans multiple frames. However, the effective number of frames grouped

by a contiguity has increased considerably even with limited contiguity for longer

units. For instance, for unit lengths of 4, a contiguity of 4 performs an effective

run-length coding over 16 frames in comparison to the maximum of 9 frames of

single-frame units.

Fig. 4.5 Rate-distortion curves for different fixed length units and variable length phonetic units

(Reused with permission from [RH06])
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It is important to note that, in Fig. 4.5, for longer fixed length units and variable

length units, there is a sharper decrease in spectral distortion (SD) for a given

bit-rate increase, in comparison to single-frame units. This steep trend in the rate-

distortion curves of the proposed unit-selection algorithm even with fixed-length

units, indicates that large reductions in spectral distortion can be achieved by using

suitably large codebook sizes. This is particularly appealing since the codebook

need not be ‘designed’ by any complex algorithms and nor does it have to be

segmented (phonetically or otherwise) prior to use. Solutions to make the one-pass

DP unit-selection algorithm perform with low computational complexities at very

large codebook sizes, will enable it to achieve close to 1–2 dB average spectral

distortions, which can make this unit-selection based ultra low bit rate quantization

paradigm as good as high rate spectral quantizers.

4.2 Comparison with Lee and Cox Suboptimal
Segmental Unit Selection

We now present results of the proposed unit-selection algorithm for segment

quantization and compare it with the algorithm of Lee and Cox [LC02] in terms

of quantization accuracy using rate-distortion curves between spectral distortion

and the effective bit-rate with run-length coding, which are as defined in Sect. 4.1.2.

In Fig. 4.7, we show the rate-distortion performance of the unit-selection algo-

rithm proposed by us here and the algorithm of Lee and Cox [LC02]. For both the

Fig. 4.6 Contiguity distribution for different fixed length units and variable length phonetic units

(Reused with permission from [RH06])
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algorithms, we use the same continuous speech codebook as the ‘unit database’

which is a continuous sequence of linear-prediction vectors (log-area ratios) of

continuous speech utterances in the TIMIT database, treated as being made of

variable sized units as defined by the manually defined phonetic units. Since TIMIT

is phonetically segmented, we have used this phonetic segmentation to define the

variable-length units for both the algorithms. This represents the best performance

achievable for variable length units, and can be expected to provide an optimal

baseline performance to the case when automatic segmentation is used to obtain the

units such as using a clustered codebook [by the variable-length segment quanti-

zation (VLSQ) technique] as used in Lee and Cox [LC02].

We have used ‘unit databases’ of size ranging from 512 to 65,536 corresponding

bit-rates of 9 to 17 bits. These are essentially the first 65,536 phonetic segments of

the TIMIT sentences ordered with male and female sentences interleaved, from

about 200 sentences from 20 speakers constituting nearly 2 h of continuous speech.

The number alongside each point in the curves is the codebook size (in bits/unit). In

the case of the proposed algorithm, we have used database size up to 8,192, as this

achieves the same spectral distortions as the Lee and Cox algorithm [LC02] with a

database size of 65,536 and was hence adequate to bring out the performance

advantage achievable (at significantly lower bit-rates), due to optimality of the

proposed algorithm. The test data used was 10 sentences with 5 male and 5 female

speakers from outside the speakers used in the codebook.

Fig. 4.7 Rate-distortion curves for proposed unified optimal unit-selection algorithm and the

2-stage suboptimal algorithm of Lee and Cox [LC02]. Solid lines: Unit selection with both unit-

cost and concatenation cost (CC); Dashed-lines: Unit-selection without CC (Reused with permis-

sion from [RH07])
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From this figure, the following important differences between the proposed

optimal unified unit-selection algorithm and the sub-optimal algorithm of Lee and

Cox [LC02] can be noted:

1. In general, the rate-distortion curve of the proposed algorithm has the ideal shift

towards left-bottom with a significant distortion and rate margins over the rate-

distortion curve of Lee and Cox [LC02]. This is as would be expected for an

enhanced quantization scheme with both rate and distortion advantages.

2. Specifically, it can be seen that the proposed algorithm has significantly lower

distortions for a given database size (given in bits alongside) and final effective

bit-rate. For instance, for a database size of size 512 (9 bits), the spectral

distortion of the proposed algorithm is about 1.5 dB less than that of Lee

and Cox algorithm [LC02] with a corresponding effective bit-rate that is

75 bits/s less.

3. For a size of 13 bits, the proposed algorithm is able to provide a much lower

spectral distortions (as much as 3 dB less) than the Lee and Cox [LC02]

algorithm at the same effective bit-rate. It should be noted that this 3 dB

difference is highly significant for the ultra low-rate ranges being dealt

with here.

4. It can be further noted that the 13 bit database with the proposed algorithm gives

about 1.5 dB performance improvement over that of Lee and Cox [LC02] and at

a much lower bit-rate.

5. Further, it can be noted that the Lee and Cox [LC02] algorithm needs extremely

large database sizes (of the order of 17 bits which is 65,536 segmental units or

approximately 2 h of continuous speech), to achieve distortions comparable to

that achievable by the proposed algorithm with a much smaller database size

13 bits (8,192 segmental units, or about 13 min of continuous speech, which is

nearly 8 times less than that needed by Lee and Cox algorithm [LC02]).

We also show another important performance advantage of the proposed algo-

rithm due to its optimality when compared to the sub-optimal algorithm of Lee and

Cox [LC02]:

1. Figure 4.7 shows the rate-distortion curves of the two algorithms when the

concatenation cost is not used; i.e., the Viterbi decoding in Lee and Cox

[LC02] as well as the proposed one-pass DP constraints in this paper does not

have the second term ∑ K
k¼ 2Dc(qk� 1, qk) in Eq. (4.1). By this, the two algorithms

have better (i.e., lower) spectral distortions, since not using the concatenation

constraint leads to more optimal decoding with respect to the unit-cost of term

1 in this equation. It can be observed that the proposed algorithm has signifi-

cantly lower spectral distortions than Lee and Cox [LC02] for a given unit

database size. This clearly brings out the effect of gain of optimality resulting

from quantizing the input utterance ‘directly’ using ‘all’ the units of the data-

base, unlike the two step procedure of Lee and Cox [LC02] which uses an

intermediate quantization (with a separate clustered codebook using the Shiraki

and Honda VLSQ algorithm [SH88]) and a subsequent unit-selection using a
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highly ‘reduced’ choice of units for each segment of the pre-segmented input

utterance.

2. Further, it can be noted that the proposed algorithm gains significantly in

achieving much lower effective bit-rates, once the concatenation-constraints

are restored, again indicating another performance advantage of the optimality

of the proposed algorithm: The proposed algorithm is able to produce more

contiguous decoding, which in turn reduces the effective bit-rate with run-length

coding. Again, this is due to the fact, the decoding is done with the entire unit-

database, in comparison to the highly ‘reduced’ unit choices available in Lee and

Cox [LC02] algorithm due to the pre-quantization using the clustered interme-

diate codebook.

While we have used phonetically defined variable length units as available in the

TIMIT database, the above algorithms should in principle be usedwith a unit database

defined automatically, i.e. with units defined by automatic methods such as the VLSQ

method of Shiraki andHonda [SH88]. However, in an interesting result shown by us in

an earlier work [RH06], it turns out it is possible to completely avoid such expensive

segmentation and labeling (either manually or by automatic methods), by using

fixed-length units of sufficient lengths (comparable to average phonetic units) such

as 6–8 frames and still get rate-distortion performances comparable towhat is possible

with variable-length units. This leads to the conclusion that the ‘optimal’ algorithm

proposed here is able to firstly overcome the sub-optimalities of the Lee and Cox

[LC02] algorithm with a consequent improved rate-distortion performance and in

addition, completely circumvent the need to have pre-defined variable-length units, as

was obtained by using clustered codebooks in the Lee and Cox [LC02] algorithm.

4.3 Comparison with VQ, MQ, VLSQ

In this section, our objective is to benchmark the performances of some salient

segment quantization algorithms using rate-distortion curves. This has more or less

not been attempted at all, though [SH88] provides the early comparisons betweenVQ,

MQ and VLSQ. However, here we put these early algorithms in perspective

with respect to the recent unit-selection algorithms cited above. By this, our main

intention is to bring out the important differences between the classical segment

quantization schemes (VQ, MQ and VLSQ) and the current unit-selection based

segment quantization algorithms, and provide insights into these differences and the

causative factors. Primarily, as noted earlier, the difference comes about in that

classical quantizers using clustered segment codebooks (fixed and variable length

segments), whereas the unit-selection algorithms use large (long) continuous unit

databases as in concatenative TTS. The question that arises is regarding what partic-

ular advantage does the use of very large continuous unit databases bring about (in the

range of 16–18 bits/segment), in comparison to the much smaller clustered codebook

sizes that VQ, MQ and VLSQ use (in the range of 8–10 bits/segment). Moreover, the
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early work of Lee and Cox did not also concern itself with quantifying the segment

quantization performances in terms of rate-distortion curves, or answer the above

question of what particular advantage has been gained by resorting to the unit-

selection principles using large continuous codebook sizes. This section essentially

attempts to answer this.

4.3.1 Experiments and Results

We now present results comparing the following segment quantizers, namely,

vector quantization (VQ) [W82], matrix quantization (MQ) [TG85], variable-

length segment quantization (VLSQ) [SH88] and the unit-selection algorithms of

[LC02] discussed in Sect. 3.2 and [RH07] discussed in Sect. 4.1. The comparison is

mainly in terms of quantization accuracy using rate-distortion curves between

spectral distortion and the effective bit-rate (as appropriate in each case), which

are as defined in Sect. 4.1.2.

In Fig. 4.8, we show the rate-distortion performance of these five quantizers

(algorithms), obtained through different frame/matrix/segment codebook sizes

for VQ, MQ and VLSQ and unit-database sizes for the unit-selection algorithms.

For vector quantization, the VQ codebooks of size 16–2,048 (4–11 bits/frame) were

Fig. 4.8 Rate-distortion curves for VQ [W82], MQ [TG85], VLSQ [SH88] and the two unit-

selection algorithms (i) Optimal algorithm [RH07] and (ii) Lee-Cox 2-stage algorithm [LC02]

(Reused with permission from [HR08])
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designed from 48,000 frames of training data (320 sentences from 32 speakers,

16 male and 16 female) using the LBG algorithm and used for spectral quantization

as given in [W82]. For matrix quantization, MQ codebooks of size 16–2,048 (4–11

bits/matrix) were designed for matrix block-sizes of 2 and 4 from the same training

data as for VQ and used for quantization as in [TG85]. The VLSQ codebooks of

size 32–16,384 (5–14 bits/segment) were designed by the joint segmentation and

quantization algorithm of [SH88] from 90,000 frames of training data

(600 sentences from 60 speakers, 30 male and 30 female) and used for segment

quantization.

For both the unit-selection algorithms used here [LC02, RH07], we use the same

continuous speech codebook as the ‘unit database’ which is a continuous sequence

of linear-prediction vectors (log-area ratios) of continuous speech utterances in the

TIMIT database, treated as being made of variable sized units as defined by the

manually defined phonetic units.

Since TIMIT is phonetically segmented, we have used this phonetic segmenta-

tion to define the variable-length units for both the algorithms. This represents the

best performance achievable for variable length units, and can be expected to

provide an optimal baseline performance to the case when automatic segmentation

is used to obtain the units such as using a clustered codebook (by the variable-length

segment quantization (VLSQ) technique) as used in Lee and Cox [LC02].

We have used ‘unit databases’ of size ranging from 512 to 131,072

corresponding to bit-rates of 9 to 17 bits/unit. These are the first 131,072 phonetic

segments of TIMIT sentences with male and female sentences interleaved, from

~200 sentences from 20 speakers of nearly 2 h of continuous speech.

The test data used for obtaining the R-D curves for all the quantizers was the

same set of 8 sentences with 4 male and 4 female speakers from outside

the speakers used in the codebook design for VQ, MQ and VLSQ and outside the

unit-database for the unit-selection algorithms. In the rate-distortion curves in

Fig. 4.8, the number alongside each point in the curves is the effective bits/frame

(which is essentially the codebook size in bits/segment divided by the average

length of a segment in the codebook, i.e., frames/segments); this yields the effective

bit-rate in bits/sec when multiplied by the frame-rate of frames/sec, which in this

case is 50 frames/s for a frame size of 20 ms). The numbers shown alongside each

point within parenthesis is the codebook size (in bits/segment or bits/unit as

appropriate). Both these are given to facilitate a quick comparison of the R-D

performance of the different quantizers, either with respect to a given codebook

size (which is appropriate when comparing VLSQ and unit-selection) or with

respect to bits/frame which is more appropriate when comparing VQ, MQ and

VLSQ, since these quantizers differ in the segment size in their codebooks. In the

case of the proposed algorithm we have used database size up to 8,192, as this

achieves the same spectral distortions as the Lee and Cox algorithm [LC02] with a

database size of 65,536 and was hence adequate to bring out the performance

advantage achievable (at significantly lower bit-rates), due to optimality of the

proposed algorithm.
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We observe the following from this set of R-D curves:

1. The VQ and MQ family of curves are as expected, with MQ of larger block sizes

providing a left and downward shift the R-D curve; the reduction in spectral

distortion (SD) for increase in block-size from 1 (VQ) to MQ(2) and MQ(4) for

the same bits/frame is quite evident.

2. VLSQ offers improvement over VQ and MQ though only marginally with

respect to MQ of block size 4.

3. When we shift to the unit-selection algorithms of Lee and Cox [LC02] or the

optimal algorithm of [RH07], the codebook is unclustered and therefore these

R-D curves have higher distortion for a given codebook size when compared to

the clustered codebook performances of VLSQ, at least up to the maximum of

14 bit codebooks of VLSQ we have used.

4. However, the unit-selection algorithm reduce the spectral distortion more rap-

idly for every doubling of the codebook size, thanks largely to the run-length

advantage of unit-selection and the associated reduction in the effective bit-rate

which does not increase in proportion to the base-index bit-rate of the full

codebook size. This results in a steep fall in spectral distortion even within

400 bits/s, while in contrast, VLSQ saturates at a SD of 2.5 dB for codebook

sizes of size 16,384.

5. The advantage of the optimal unit-selection algorithm over the 2-stage

sub-optimal segmental unit-selection of Lee and Cox can also be noted.

6. This optimal algorithm starts offering spectral distortions lower than VLSQ for

considerably smaller unit database sizes than the sub-optimal unit-selection

algorithm, and at a significantly smaller effective bits/frame than both VLSQ

and the sub-optimal unit-selection.

In summary, we note that the unit-selection framework does offer an interesting

rate-distortion trend of rapidly decreasing the spectral distortion for increase in the

unit-database size, i.e., a steeper rate-distortion curve when compared to the VQ,

MQ and VLSQ algorithms which tend to saturate in their spectral distortion

reductions around codebook sizes of 10–14 bits/segment. This alone would be the

distinctive factor that would allow unit-selection frameworks to offer distortion

even in the range of 2 dB and less even though with use of very large continuous

codebook sizes (perhaps exceeding even 18 bits/unit). More importantly, we

believe issues related to computational complexity and memory and decoding

latency time in the unit-selection algorithms will have to be addressed to take

advantage of this rate-distortion trend and establish this class of segment quantizers

as truly applicable for real ultra low bit-rate applications, in keeping with its

seeming potential to offer low distortions with only marginal bit-rate increases,

thanks to the run-length coding principles and advantages underlying the unit-

selection framework.
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4.4 Conclusions

We have proposed a unified framework for segment quantization of speech at ultra

low bit-rates of 150 bits/s based on unit-selection principle using a constrained

one-pass dynamic programming algorithm. The algorithm handles both fixed- and

variable- length units in a unified manner, thereby providing a generalization over

two existing unit selection methods, which deal with ‘single-frame’ and ‘segmen-

tal’ units in different ways. We show that fixed length units of 6–8 frames perform

significantly better than single-frame units and offer the same spectral distortions as

variable-length phonetic units, thereby circumventing expensive segmentation

and labeling of a continuous database for unit selection based low bit-rate coding

(Sect. 4.1).

We have brought out the intrinsic sub-optimalities of an algorithm proposed

recently by Lee and Cox [LC02] for segmental unit-selection. We have proposed an

alternative generalized unit-selection algorithm for segment quantization based on

a modified one-pass dynamic programming algorithm. We have shown that the

proposed algorithm is exactly optimal for variable length unit-selection based

segment quantization and that it solves the sub-optimalities of the Lee and Cox

[LC02] algorithm. Based on rate-distortion curves from a very large continuous

speech multi-speaker database, we have shown that our algorithm has a signifi-

cantly superior performance than the algorithm of Lee and Cox with considerably

lower spectral distortions (up to 3 dB lower distortions) as well as much lower

bit-rates for a given distortion over a range of unit database sizes (Sect. 4.2).

We have considered the class of segment quantizers used for low to ultra-low

rate speech coding, ranging from vector quantization (VQ), matrix quantization

(MQ), variable-length segment quantization (VLSQ) and two more recent

unit-selection based segment quantization algorithms. We have examined the

advantage, if any, in using large unclustered continuous unit databases by the

unit-selection algorithms, in comparison to the smaller clustered codebook sizes

that VQ, MQ and VLSQ use, by comparing the rate-distortion curves of these

quantizers. We have shown that while unlike VQ, MQ and VLSQ, the unit-

selection algorithms tend to provide lower distortions and steeper reductions at

marginally low increase in bit-rates and justify exploring their potential further

(Sect. 4.3).
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Chapter 5

Optimality and Complexity Considerations

We propose a low complexity unit-selection algorithm for ultra low bit-rate speech

coding based on a first-stage n-best pre-quantization lattice and a second-stage run-

length constrained Viterbi search to efficiently approximate the complete search

space of the fully-optimal 1-pass DP based unit-selection algorithm described in the

previous chapter. By this, the n-best low complexity algorithm dealt with here,

approaches near-optimality with increasing n, in terms of rate-distortion perfor-

mance while having highly reduced complexity. The segmental unit-selection

algorithm of Lee and Cox described in Chap. 3 is a 1-best special case of the

algorithm proposed here, with the proposed n-best lattice based algorithm general-

izing to a larger search space and hence a significantly improved rate-distortion

performance towards the fully optimal 1-pass DP unit-selection performance.

In a recent work [RH06, RH07, HR08] (discussed in Chap. 4, Sect. 4.1), we

proposed a unified and generalized framework for segment quantization of speech

at ultra low bit-rates of 300 bits/s based on unit-selection principle using a modified

one-pass dynamic programming algorithm. This one-pass DP algorithm offers the

optimal rate-distortion performance, in the sense of the lowest spectral distortions

with correspondingly low effective run-length based bit-rates that it accrues from

the unit-selection framework. However, this algorithm suffers from a very high

computational complexity of the order of O(N2T), where N is the number of units in

the continuous unit database (of the order of 8–13 � 105 for a 17-bit unit-database)

and T is the number of frames in the input test utterance being quantized (typically

50 for 1 s of speech). This represents a very high complexity for practical coding

applications and it becomes important to find ways of reducing the complexity to

practical proportions without sacrificing the optimal rate-distortion performance.

In this chapter, we elaborate on a recent result by us [RH08], where we proposed

a n-best lattice based unit-selection towards rendering the sub-optimal Lee and Cox

[LC02] algorithm more optimal, close to the fully optimal 1-pass DP unit-selection

algorithm, even while retaining the low complexity that is inherent in the Lee and

Cox [LC02] algorithm.
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5.1 Complexity of 1-Pass DP Optimal

Unit-Selection Algorithm

In Sect. 4.1.1, we presented the unified and optimal 1-pass DP algorithm for unit-

selection based segment quantization. This algorithm is optimal in the sense of

solving the segment quantization problem stated in the form of Eq. (4.1), and the

1-pass DP solution (in the form of recursions Eqs. (4.3) and (4.4)) for this problem

realizes the minimum distortion D* in Eq. (4.1). However, the 1-pass DP algorithm

achieves this optimality at the cost of high computational complexity, which is the

focus in this chapter. Specifically, we quantify this computational complexity

incurred by the main two recursions [Eqs. (4.3) and (4.4)] primarily as a function

of the unit-database size (N units).

We reproduce the recursions (4.3) and (4.4) here to show the inherent compu-

tational complexity arising from these. Figure 5.1 shows the details of this recursion

and the associated complexity components.

Within-unit recursion

D i; j; nð Þ ¼ min
k∈ j, j�1, j�2ð Þ

D i� 1, k, nð Þ þ α � d i; j; nð Þ½ � ð5:1Þ

Cross-unit recursion

D i; 1; nð Þ ¼ min a; bð Þ þ α � d i; 1; nð Þ ð5:2Þ

Fig. 5.1 Modified 1-pass DP recursion structure for unit-selection and associated complexity

110 5 Optimality and Complexity Considerations

http://dx.doi.org/10.1007/978-1-4939-1341-1_4#Sec2


where,

a ¼ D i� 1, 1, nð Þ

b ¼ min
r∈ 1;...;Nð Þ

D i� 1, lr, rð Þ þ 1� αð Þ � Dc r; nð Þ½ �

We give the computational cost in terms of three component costs (1) local

distance calculations, (2) within-unit recursions, (3) cross-unit recursions.

5.1.1 Local Distance Calculations Cost

Both the within-unit recursion and the cross-unit recursion need d(i, j, n), the local
distance between frame i in the input test utterance and frame j of unit un in the unit-
database. Given N units in the database, and assuming the average number of frames

per unit to be M, this yields the dominant computational cost of MNT distance

calculations, to compute d(i, j, n), for i¼ 1, . . ., T, j¼ 1, . . .,M and n¼ 1, . . .,N.

5.1.2 Within-Unit Recursion Cost

The within-unit recursion in Eq. (5.1) is computed for i¼ 2, . . .,T and j¼ 2, . . .,M
for each unit un, n¼ 1, . . .,N (excluding (a) the initialization for i¼ 1 for all frames

in all units and (b) the cross-unit recursion for i¼ 2, . . .,T for j¼ 1 for all the

N units). For each grid-point (i, j), i¼ 2, . . .,T and j¼ 2, . . .,M, the recursion needs

the min operator over 3 preceding grid points (at i� 1), involving three compari-

sons. The total number of recursions for a frame i in the input utterance and unit un
is 3(M� 1) comparisons, yielding a total cost of 3(M� 1)N(T� 1) for all the

N units in the unit-database and (T� 1) frames in the input utterance. This is

O(3MNT) comparisons.

5.1.3 Cross-Unit Recursion Cost

The cross-unit recursions in Eq. (5.2) is computed for i¼ 2, . . .,T for j¼ 1 for each

unit un, n¼ 1, . . .,N. For each i, the dominant computation in this recursion is the

N cross-unit terms accounting for the concatenation cost Dc(r, n), which is the cost

for unit ur to be followed by unit un, calculated as the Euclidean distance between

the last frame of unit ur and the first frame of unit un. While this is O(N2) distance

calculations, this is independent of i, and can be calculated as a pre-processing step

and stored with a storage complexity of O(N2). We therefore exclude this from the

computational cost in the cross-unit recursions making up the quantization for a

given input utterance.
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Having excluded the fixed cost of Dc(r, n), the other remaining computational

cost recurring for each i are the N additions and comparison in the cross-unit

recursions, to evaluate minr∈ 1;...;Nð Þ D i� 1, lr, rð Þ þ 1� αð Þ � Dc r; nð Þ½ �. This has

a cost of N2 per frame i of the input test utterance, and N2(T� 1) for i¼ 2, . . ., T. We

represent this as a cost of O(N2T ) additions and comparisons. We note here that,

though the cost of additions and comparisons in the above recursions are of

significantly lower complexity than the distance calculations, we need to include

this in the total complexity considering the large grid over which the calculations

need to be made for large unit-database sizes N.
The total computational costs for the 1-pass DP optimal unit-selection algorithm

are thus: O(MNT) distance calculations, O(3MNT) comparisons and O(N2T) addi-
tions and comparisons. Figure 5.1 gives typical numbers of M, N and T to give a

measure of this total cost: N¼ 217 to 220 units, M¼ 4� 6 frames/unit and T¼ 50

frames for 1 s, (at a frame rate of 50 frames/s, using 20ms framesizewithout overlap).

We combine these as a total overall complexity ofO(MNT) distance calculations and
comparisons and O(N2T) additions and comparisons, which we state as being made

of two parts—O(MNT) Euclidean distance calculations and O(3MNT+N2T) recur-
sion calculations. Numerically, using N¼ 217, M¼ 6 and T¼ 50 for 1 s of input

utterance, this translates to a cost of 225 distance calculations and 240 recursion

calculations per second of input utterance. In order to highlight the quadratic depen-

dence onN, we state the overall dominant complexity of the 1-passDP algorithm asO
(N2T), as shown in Fig. 5.1, considering its significant dominance over the O(MNT)
distance calculations, which is only linear in N.

As illustrated above, the overall complexity of the 1-pass DP optimal unit-

selection is indeed very high for typical values of unit-database sizes and unit-

lengths. Clearly, the optimality in terms of minimizing the overall quantization

distortion and bit-rate comes at the price of a very high computational cost. We now

obtain the computational cost of the Lee-Cox segmental unit-selection algorithm,

and see that this algorithm, though sub-optimal in terms of the overall distortion and

bit-rate, nevertheless has a very low complexity. We then view the issue of trade-off

between optimality and complexity, and consider ways of rendering the Lee-Cox

algorithm more optimal (i.e. closer to the optimality provided by the 1-pass DP

algorithm), even while retaining the low complexity of the Lee-Cox segmental unit-

selection framework.

5.2 Complexity of Lee-Cox Segmental

Unit-Selection Algorithm

In Sect. 3.2, we described the Lee-Cox segmental unit-selection algorithm.

The main computational part in this algorithm is as given in Eq. (3.12) which is

the recursion employed in the Viterbi search for finding the optimal path that yields

the solution to the segment quantization for an input utterance. Equation (3.12) is

reproduced here for convenience of further discussion.
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D k; ið Þ ¼ min
j¼1, ...,Mk�1

D k � 1, jð Þ þ 1� αð Þ � D0
c j; ið Þ

n o
þα � dseg k; ið Þ

ð5:3Þ

This recursion corresponds to the trellis as given in Fig. 5.2 (which is essentially

Fig. 3.3, but reproduced here highlighting the computational components). The

trellis is made of K sections in the x-axis and K groups in the y-axis formed by the

unit-grouping step (Step 3 in Sect. 3.2). In Sect. 3.2, we noted each groupGk to have

Mk units. Here, for convenience of estimating the computational complexity, it can

be reasonably assumed that each group Gk has the same number of units m; i.e.,
Mk¼m, k¼ 1, . . .,K. This corresponds to a roughly equal distribution (of m¼N/L)
of the original unit-database of N units into L disjoint groups, when the unit-

database is derived by quantizing the original continuous speech database using a

VLSQ codebook of size L (typically, 64 in the work here), as given in Step 1 of

Sect. 3.2; i.e. the unit database of N units is divided into L groups each withm¼N/L
units having the same index from the VLSQ codebook.

5.2.1 Distance Calculations

Figure 5.2 shows the trellis as having m entries (dots in the cell corresponding to

section k of the input utterance, and the corresponding group Gk ), which are the

m segmental distortions dseg(k, i) which in turn is the unit cost in quantizing segment

Fig. 5.2 Lee and Cox [LC02] segmental unit-selection algorithm, recursion structure and

associated complexity
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sk by unit ui from the group Gk corresponding to the segment sk. From the

assumption of m units in each group Gk, k¼ 1, . . .,K, the number of distance

computations per k is m, totaling mK distance calculations for the entire input

utterance. A single distance computation is actually a ‘segmental’ distance,

between a segment sk and an unit ui in group Gk. Ideally, a dynamic time warping

based distance calculation between a segment sk and unit ui can have a complexity

of O(M2) Euclidean distance calculations, whereM is the typical length (in frames)

of the two segments. However, using the space sampling method [RSM82b,

RSM83] of computing this segmental distance, only a linear alignment is required,

which in turn requires only C Euclidean calculations between the aligned segments,

thereby making the total number of distance calculations as O(CmK), with typical

C¼ 10 [RSM83].

5.2.2 Recursion Calculations

The second computational component in Eq. (5.3), is the recursion from section

k� 1 to k, which requires m2 additions and comparisons for j¼ 1, . . .,m and

i¼ 1, . . .,m in Eq. (5.3), corresponding to m2 transitions from each of the m entries

in the cell at section k� 1 to each of the m entries in the cell at section k. The total
recursion cost for an input utterance of K sections involves applying the recursion

(5.3) for k¼ 2, . . .,K and is m2(K� 1), which is given as O(m2K ).

In summary, we state the computational costs of the Lee and Cox segmental

unit-selection algorithm as O(CmK) distance calculations and O(m2K ) recursion

calculations, where the input utterance has K sections after a K-segment

pre-quantization (Step 2 in Sect. 3.2), and m¼N/L for a unit-database size N and

VLSQ codebook of size L. Typical values are N¼ 217,K¼ 10 for an input utterance

of 1 second (or 50 frames), L¼ 64 and C¼ 10, yieldingO(218) distance calculations
and O(225) recursions calculations.

5.3 Comparison of 1-Pass DP and Lee-Cox

Segmental Unit-Selection

It can be noted that Lee and Cox segmental unit-selection has several orders of

magnitude less complexity than the optimal 1-pass DP unit-selection algorithm

(Sect. 5.1). This comes from noting that m¼N/L, and for L¼ 64¼ 26, the O(CmK)
cost is 27 less than the corresponding cost of the 1-pass DP algorithm. This is easy to

observe considering that each segment sk in the input utterance is matched against

only m units in a group Gk, and requires C distance calculations per segment, with

the number of segments being K. This is in contrast to the 1-pass DP algorithm

where a distance is calculated between every frame in the input utterance and all the

frames of all the N units in the database.
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Likewise, with respect to the recursion cost, Lee and Cox unit-selection algorithm

hasO(m2K) cost, which, for L¼ 64¼ 26 andK¼ T/M forM¼ 6 is 215 factor less than

the corresponding cost of O(N2T) of the 1-pass DP optimal unit-selection algorithm.

Noting that the quadratic complexity of both the algorithms is likely to be the

dominating cost, it is clear that the optimal 1-pass DP algorithm is orders of

magnitude more complex than the Lee and Cox segmental unit-selection algorithm.

5.4 Optimality-Complexity Tradeoff

Examining the two algorithms more carefully, the following can be noted with

regard to how they trade off optimality and complexity.

1. The low computational complexity of Lee and Cox segmental unit-selection

algorithm arises in primarily two ways: Firstly, the segmentation of the input

utterance into K segments by a pre-quantization using the VLSQ codebook. By

this, the problem reduces to a trellis of K sections, rather than all T frames as in

the 1-pass DP optimal algorithm. This brings about a factor of T/M reduction in

the trellis search complexity. Secondly, and more dominantly, the trellis involves

only the units in each groupGk corresponding to segment sk of the input utterance.
Given that the number of units in a group Gk is m¼N/L (for L¼ 64¼ 26), this

yields a reduction of the search space to the highly reduced number of units in

each group, as the candidates for the unit quantizing segment sk.
2. On the same count, as we have noted earlier in Sect. 4.1.1.1, these reductions in

the search-space is what leads to the sub-optimality of the Lee and Cox algo-

rithm in terms of poorer rate-distortion performance.

3. In contrast, the fact that the optimal 1-pass DP algorithm makes no similar

reductions in search space, and solves the unit-selection based segment quanti-

zation formulation of Eq. (3.1) exactly is what makes it optimal in the first place,

and also makes it much more computation intensive than the sub-optimal Lee

and Cox segmental algorithm.

From these observations, it immediately follows that we can either attempt to

make the 1-pass DP algorithm less complex while retaining its optimality or to

make the Lee and Cox segmental algorithm more optimal while retaining its low

complexity. While both are indeed feasible, we focus on the latter, and discuss

further a solution that renders the Lee and Cox segmental algorithm more optimal

even while retaining its low complexity, in the process allowing means of reaching

the optimality of the 1-pass DP algorithm at lowered complexity within the Lee and

Cox unit-selection framework. To illustrate this, Fig. 5.3 shows the relative spaces

occupied by the two algorithms with respect to the two aspects—complexity and

optimality (measured in terms of spectral distortion). The 1-pass DP algorithm

occupies the top-left region (marked A) characterized by low spectral distortions

(high optimality) and high complexity. On the other hand, the Lee and Cox

segmental algorithm occupies the right-bottom region (marked B), characterized
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by high spectral distortions (low optimality) and low complexity. What we attempt

here is to propose a means of rendering the Lee and Cox segmental algorithm more

optimal, i.e., move the operating region more to the left (lower spectral distortions)

(marked as C) possibly closer to the distortions of the optimal 1-pass DP algorithm,

even while retaining its low complexity.

5.5 Proposed n-Best Lattice Search

In this section, we propose and discuss an n-best lattice search based two-stage unit-

selection algorithm to render the Lee and Cox segmental unit-selection algorithm

more optimal, close to the optimal performance of the more complex 1-pass DP

algorithm, even while retaining the inherently low complexity of the 2-stage Lee

and Cox segmental unit-selection framework.

The proposed n-best lattice search algorithm is set in the same framework as the

Lee and Cox segmental unit-selection framework and differs from it primarily in

the addition of a step involving defining the search space over which the trellis

based Viterbi decoding works. In the following, we describe the algorithm with

steps as in Sect. 3.2, but with the additional n-best lattice and corresponding

expanded grouping and associated Viterbi search. The lattice search space, the

trellis and Viterbi decoding are illustrated in Fig. 5.4.

1. Unit-database and input segmentation: The unit-database generation and

input speech quantization are as in Step 1 and 2 of Sect. 3.2. Given the unit-

Fig. 5.3 Relative spaces (in optimality vs. complexity) occupied by the Lee and Cox [LC02]

algorithm (B), optimal 1-pass DP unit-selection algorithm (A) and the proposed n-best lattice

based unit-selection algorithm (C)
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database, the input utterance O¼ (o1, o2, . . ., ot, . . ., oT) is quantized using the

variable-length segment quantizer (VLSQ) to yield a segmentation and

corresponding VLSQ codeword labels.

2. n-best lattice: Following the segmentation of the input utterance into

K segments, (s1, s2, . . ., sk� 1, sk . . ., sK), derive a n-best lattice of this

pre-quantization using the n-best VLSQ segment labels of each segment sk,
i.e., let the units wkm, m¼ 1, . . ., n be the n-best labels from the VLSQ codebook

that have the least distortions with the input segment sk.
3. n-best grouping: For each segment obtained after the above pre-quantization of

the input utterance, hypothesize a collection of units from the large continuous

unit-database having the same labels as the “union” of all labels in the n-best

lattice for that segment sk i.e, define group of units corresponding to segment sk
as Gk¼ {Gk1[Gk2[ � � � [ Gkm[ � � � [ Gkn}, where Gkm¼ {un : L(un)¼wkm} is the

unit-group corresponding to the mth-best VLSQ label of segment sk.
4. Viterbi decoding: Perform a constrained Viterbi-decoding with concatenation

costs (to favor run-length sequences) on these (n-best lattice based) expanded

unit-groups G1,G2, . . .,Gk, . . .,GK.

The Viterbi decoding uses the same recursion Eq. (5.3), as in the original

Lee and Cox unit-selection, but with the difference in the definition of the unit-

group Gk as above. Each group Gk has approximately n times the original

unit-group, being defined as the union of the units that have the n labels in the

n-best list of segment sk.
It can be seen that the Viterbi recursion now solves the basic unit-selection

formulation of minimizing the total distortion given below [as given in Eq. (3.9)]

Fig. 5.4 Trellis and recursion structure of proposed n-best lattice based unit-selection set in Lee

and Cox [LC02] framework
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D� ¼ min
K,B,Q

α
XK
k¼1

Du sk; uqk
� �þ 1� αð Þ

XK
k¼2

Dc qk�1; qkð Þ
" #

ð5:4Þ

The n-best lattice search algorithm given above solves for the optimal K* and B*
from the first stage pre-quantization using the VLSQ codebook. However, the

optimal sequence of units Q*¼ (q�1, q
�
2, . . ., q

�
k� 1, q

�
k , . . . q

�
K) is obtained from the

second stage Viterbi search of the n-best lattice groups, i.e., with the constraint that,

in the solution to Eq. (5.4), the optimal unit qk� 1 ∈ Gk� 1 and qk ∈ Gk, results in an

increased search-space for both the choice of the best quantizing unit of sk as well as
in determining units qk� 1 and qk that are contiguous in the unit-database, which

quantize consecutive segments sk� 1 and sk of the input utterance. Clearly, these two
consequential result of the increased search space (by a factor of n, for a n-best

lattice) can be expected to yield a better rate-distortion performance (i.e., lower

distortions at lower bit-rates—lower distortions due to the availability of a larger

search space in minimizing the unit-cost and lower bit-rates ensuing from better

contiguity of units).

This improved performance with increase in n in the n-best lattice algorithm is

clearly brought out in Fig. 5.5 which shows the overall spectral distortion realized at

various overall bit-rates obtained for various unit-database sizes N. This figure

shows the two base-line performances—that of the optimal 1-pass DP algorithm

(red-line) and the sub-optimal (but low complexity) Lee and Cox [LC02] algorithm

Fig. 5.5 Rate-distortion performance of proposed n-best lattice based unit-selection (family of

curves for n¼ 2–30) with reference to the rate-distortion curves of the sub-optimal Lee and Cox

[LC02] segmental unit-selection algorithm and the optimal 1-pass DP unit selection algorithm

(Reused with permission from [RH08])
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(blue-line). The family of rate-distortion curves for increasing n of the n-best lattice
algorithm lies in between these two baseline rate-distortion curves. We make the

following observations from this figure:

1. For n¼ 1, the earlier unit-selection algorithm [LC02] becomes a 1-best special

case (blue-circle, Fig. 5.1) of the n-best lattice algorithm proposed here; how-

ever, the proposed n-best hypothesis generalizes to a larger search space and has

significantly improved rate-distortion (R-D) for increasing n (dashed line

curves).

2. The proposed n-best lattice based algorithm offers a progressive lowering of

R-D curves towards left-bottom for increasing n (from 1 to 30). Interestingly,

even a doubling of the search space with n¼ 2 helps in a significant jump in the

rate-distortion curve (from the base-line Lee Cox [LC02] curve). Increasing

n results in very pleasing reduction in the rate-distortion curve and even n¼ 30

reaches a performance that is ‘near-optimal’ to fully-optimal one-pass DP

algorithm (the lowest and best R-D curve at the left-bottom—red-square).

Further increase in n will certainly approach the performance of the 1-pass DP

algorithm, but more gradually, and more importantly, with commensurate

increase in the complexity of the n-best lattice, which quickly reaches that of

the 1-pass DP algorithm’s complexity for higher n.

The primary observation here is to note that the Lee and Cox algorithm has been

rendered to realize better rate-distortion performance by the n-best lattice based

generalization for unit-selection, and very tangible performance improvements are

indeed possible over the sub-optimal rate-distortion performance of the Lee and

Cox [LC02] algorithm, even while retaining its low complexity (as will be shown in

the following results and discussions).

It now remains to be seen whether the expected improvement in rate-distortion

performance of the above n-best lattice based search is realized at the cost of

increased complexity due to the use of the n-best lattice grouping in the Viterbi

search. Following the same line of complexity derivation for the basic Lee and Cox

segmental unit-selection algorithm, it can be seen that the complexity of the

proposed n-best lattice has a multiplicative constant n to both the distance calcu-

lation cost O(CmK) and the recursion costs O(m2K ) of the Lee and Cox basic

algorithm arising from the fact that each n-best lattice group has n times the number

of units in group Gk when compared to the basic Lee and Cox unit-groups, i.e., the

n-best lattice has O(CnmK) distance calculation cost and O(Cn2m2K ) recursion

costs. This is illustrated in Fig. 5.6.

In Table 5.1, we summarize the complexities of the three different algorithms

considered here, namely, (i) optimal 1-pass DP unit-selection, (ii) sub-optimal Lee

and Cox [LC02] segmental unit-selection and (iii) optimality-enhanced n-best

lattice based unit-selection. Shown are the complexities of distance calculations

and recursion calculations and the overall complexity considering the quadratic

recursion complexity to be the dominant one. The last column shows the equiva-

lence of the overall complexities, providing a direct comparison of the three

algorithms, starting with that of the 1-pass DP as the reference (O(N2T )), further
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reduced by a factor of L2M for the Lee-Cox algorithm and by L2M/n2 for the n-best
lattice based algorithm.

Table 5.2 shows the different variables involved in the complexity calculations,

and their typical values, so as the help realize actual numbers of these complexities.

Such a typical numerical quantification of the overall complexity of the three

algorithms is further shown in Table 5.3. Table 5.3 shows the overall complexity

of the three algorithms as in the fourth column of Table 5.1, with the following

parameters: N¼ 217 and T¼ 50 (1 s of input utterance), L¼ 64 (m¼ 211), K¼ 10

(10 segments/s also obtained as ~ T/M forM¼ 6 as average), and n¼ 10 (this value

of n is chosen considering the corresponding rate-distortion performance of the

n-best lattice, which reaches close to that of the optimal 1-pass DP algorithm’s rate

distortion performance). It can be seen that while the 1-pass DP algorithm has a

high complexity of O(240), the Lee and Cox [LC02] algorithm has a relatively very

low complexity of O(226), which is many orders of magnitude less than the 1-pass

Fig. 5.6 Trellis search space and recursions of the proposed n-best lattice based unit-selection and

associated complexity

Table 5.1 Relative complexities of 1-pass DP, Lee and Cox [LC02] and proposed n-best lattice

based unit-selection algorithms

Algorithm

Distance

calculations

Recursion

calculations

Overall

complexity Equivalence

One-pass DP MNT (3MN+N2)T O(N2T) O(N2T)

Lee and Cox [LC02] CmK m2K O(m2K) O(N2T/L2M)

n-best Lattice CnmK (nm)2K O(n2m2K) O(n2N2T/L2M)
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DP algorithm. The complexity of the n-best lattice based unit-selection is O(232),
which is higher than Lee and Cox algorithm, but a factor of 26 less than the 1-pass

DP algorithm.

The reduced complexity of the n-best lattice relative to the 1-pass DP algorithm

and its relative marginal increase over the Lee and Cox algorithm can be visualized

more comprehensively in the figures for complexity, Figs. 5.7 and 5.8 which show

respectively the distance calculation complexity (column 2 in Table 5.1) and the

recursion complexity (column 3 in Table 5.1, also treated as the overall complexity

due to its quadratic dependence on the unit-database size N), as function of N, for
the three different algorithms. The following can be noted from the figure:

1. In both the figures, the high complexity of the 1-pass DP algorithm (red-squared

solid line) and particularly its rapid increase with N (linear with N for distance

calculation in Fig. 5.7 and quadratic with N for recursion calculations in Fig. 5.8)

can be noted.

2. In contrast, the relatively and dramatically low complexity of the Lee and Cox

[LC02] algorithm (blue-squared solid line) and its significant independence on

N can be noted in both these figures.

3. The complexity of the n-best lattice algorithm (dashed lines for various n) can be
noted to lie in between these two lines, with a general trend of increasing

complexity with n. While the distance calculations tend to seem to increase

faster with n, the dominant recursion complexity (quadratic in N for all the three

algorithms, but scaled down by a factor of L2M for the Lee and Cox [LC02]

and n-best lattice algorithms) is significantly low, particularly relative to the

1-pass DP algorithm’s complexity, wherein the relative differences are more

significant owing to the rapid increase in the 1-pass DP algorithm’s un-factored

quadratic complexity.

In summary, it seems reasonable to conclude from the results presented above

(for n-best lattice based unit-selection for n up to 30), that the additional

Table 5.3 Numerical order complexity of the three algorithms: 1-pass DP, Lee and Cox [LC02],

and n-best lattice based unit-selection

High complexity of optimal one-pass DP unit selection O(240)

Low complexity of Lee and Cox unit selection O(226)

For 10-best (n¼ 10), low complexity of n-best unit selection O(232)

Table 5.2 Variables in the complexity calculations

Number of units N 217–220

Average number of frames/unit M 4–8

Number of frames in i/p utterance (1 s) T 50

Size of VLSQ clustered codebook L 64

n-best lattice factor n 2–30 (max 64)

Segment to frame factor (space sampling) C 10
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multiplicative cost of n to the distance calculation cost and n2 to the recursion cost

do not increase the computational complexity of the n-best lattice search signifi-

cantly above that of the basic Lee and Cox unit-selection algorithm. This is

satisfactory in the sense that the results do show a significant lowering of spectral

Fig. 5.7 Distance calculations complexity of 1-pass DP unit-selection, Lee and Cox [LC02] unit-

selection and n-best lattice based unit-selection (for n¼ 2–30) algorithms

Fig. 5.8 Recursion complexity of 1-pass DP unit-selection, Lee and Cox [LC02] unit-selection

and n-best lattice based unit-selection (for n¼ 2–30) algorithms
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distortion (or enhancement of the optimality) for reasonable n in the n-best lattice

formulation without proportional increase in the complexity; or in other words, the

rate-distortion performance of the n-best lattice search seems to reach those of the

optimal 1-pass DP unit-selection algorithm, even while retaining the low complex-

ity of the Lee and Cox segmental unit-selection framework.

5.6 Conclusions

We have proposed an n-best lattice based unit-selection algorithm that has near-

optimal R-D performance as the fully optimal one-pass DP algorithm at a highly

reduced complexity for practical ultra low bit-rate coding.
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Chapter 6

No Residual Transmission: Joint

Spectral-Residual Quantization

In this chapter, we present a unit-selection based segment quantization scheme

which leads to the interesting possibility of not having to transmit any side-

information about the residual at all [RH09], [R12]. This chapter elaborates on

these two earlier work in a coherent manner, with several parts reproduced here

with permission. We arrive at this scheme from the important observations (i) that

unit-selection based segment quantization systems typically employ large unit-

databases (as termed in concatenative speech synthesis) and, (ii) that by virtue of

the largeness of the continuous codebook, it becomes possible to quantize an input

segment by an unit in the unit database in such a way that the speech corresponding

to the unit (after applying ‘only’ duration modification) is a close reconstruction of

the input speech (of that input segment). This is realized in a LPC synthesis

framework as follows: (i) apply duration modification on the unit quantizing the

input segment to match the duration of the input segment, (ii) the speech

corresponding to the (duration modified) unit is synthesized at the decoder using

the LP frames of that unit and the corresponding residual in the unit-database

without requiring any information about the input residual.

Figure 6.1 shows the generic block diagram of such a scheme, set in a LP

analysis-synthesis framework. The encoder and decoder employ a large continuous

codebook (‘unit-database’) as required for the unit-selection framework. The code-

book is shown to be made of variable length segmental units, derived by either

manual phonetic labeling (as in TIMIT type of databases) or by using the variable

length segment quantization algorithm with a clustered codebook (such as

discussed earlier in Chap. 3); the codebook is however, essentially a continuous

codebook, typically derived from a long continuous speech (e.g. 6 h in the examples

to be discussed later in this chapter), but segmented into variable length segments,

as shown in this figure. With reference to such a codebook as used in Chap. 4, the

main difference is, here the codebook is made of two components—the spectral

codebook and the residual codebook—where each variable length segmental unit in

the codebook consisting of a sequence of frame, has an associated sequence of
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residuals, one for each frame in the unit. As noted above, note how the residual

quantization and transmission part is non-functional here.

In order to ensure that a selected unit in the unit-database can indeed approxi-

mate the input speech by using its own residual for synthesis, we propose a joint

spectral-residual quantization scheme using various ‘composite measures’ for the

unit-selection based segment quantization. These measures quantify how well both

the spectra (LP envelope) and the residual (excitation component) of an unit (i.e.,

the frames in the unit) match those of the original input segment, thereby providing

a match of the overall speech signal and ensuring that the synthesis at the decoder

using the unit in totality (with its own residual) does indeed produce a speech signal

‘close’ to the input speech signal. By the proposed approach, we incur only the

bit-rates for spectral and duration quantization and are able to limit the overall

bit-rate to 250 bits/s for a continuous codebook of size 19 bits/unit (i.e., 524,288

units or about 6 h of speech).

A related work in this direction is the ‘waveform segment vocoder’ [RW85],

where the templates selected for quantizing the input segment is represented at the

decoder as a waveform (and not the spectral information), and the pitch, gain and

duration of this ‘waveform template’ are modified to match those of the input

segment. The modified segments are then concatenated to produce the output

waveform. However, this method involved intricate pitch and duration modification

in a RELP framework, where the waveform segment was decomposed into an LPC

envelope and its corresponding residual and the residual is up sampled, low-pass

filtered and down sampled by a pitch scaling factor with the resultant residual being

both pitch-scale modified, and time-scale modified by an overlap-add procedure for

Fig. 6.1 Unit-selection framework with joint spectral-residual quantization employing a large

continuous codebook made of spectral and residual components
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linear time-warping. However, no overall operating bit-rate or spectral distortion

was reported, but this work concluded that the initial results indicate that such an

approach has potential for transmitting speech at rates below 300 bits/s.

In the approach proposed here, we are able to achieve a similar ‘no-residue’

transmission, but with far less complex processing on the units than the approach

above, and show actual bit-rates of less than 300 bits/s (and associated spectral

distortions) and consequently more accurate reconstruction of speech. This in a way

corroborates the expectations of this much earlier work, but in a far more elegant,

pleasing and computationally simpler framework set in the recent paradigm of unit-

selection based quantization.

6.1 Joint Spectral-Residual Quantization in Lee-Cox

Unit-Selection Framework

Figure 6.2 shows the proposed joint spectral-residual quantization (using composite

distance measures) set in the unit-selection framework proposed earlier

[LC02]. Note that the structure of the system is essentially same as in the basic

algorithm described in Chap. 3 (Fig. 3.2), except for the definition of the ‘compos-

ite’ unit database, which is now shown to have a ‘corresponding residual’ compo-

nent along with the main ‘unit database’ which has the spectral component. While

the details of the steps in the unit-selection procedure of Lee and Cox [LC02] are as

in the algorithm in Sect. 3.2, we give below the essential definitions again, in order

to further develop the joint spectral-residual quantization formulation in a self-

contained manner here.

Fig. 6.2 Proposed ‘no-residue transmission’ unit-selection framework with joint spectral-residual

quantization (Reused with permission from [RH09])
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Composite Unit Database As defined before, the spectral component of the unit

database is a long continuous speech with continuous sequences of LP parameter

vectors. The unit-database is derived from this continuous speech by segmenting

and quantizing (i.e., labeling) the continuous speech using a ‘clustered’ codebook

V ¼ v1; v2; . . . ; vp; . . . ; vP
� �

by variable-length segment quantization (VLSQ)

[SH88]. This results in a unit-database which is a sequence of variable-length

units U ¼ u1; u2; . . . ; uNð Þ, where a unit un is of length ln frames, given by

un¼ (un(1), un(2), . . ., un(ln) ); each unit has an index (or label) from the clustered

codebook V, i.e., the label of unit un is L(un) ∈ [1, . . .,P]. Typical value of P is 64.

The residual component corresponding to each unit un is as follows: Each unit

un¼ (un(1), un(2), . . ., un(l ), . . ., un(ln) ) of ln frames has a sequence of associated

residual run ¼ (run(1), r
u
n(2), . . ., r

u
n(l ), . . ., r

u
n(ln)) where the frame with the LP vector

un(l ) has its own residual run(l ). As we will see in Sect. 6.1.1, this enables synthesis

at the decoder using the units in the unit database in a self-contained manner,

without requiring the input residual to be modeled, quantized and transmitted.

Input Speech Segmentation and Unit Grouping As in the unit-selection proce-

dure of Lee and Cox’02 [LC02] described in detail in Sect. 3.2, the input speech

utterance O¼ (o1, o2, . . ., ot, . . ., oT) is segmented and labeled by the clustered

codebook V to yield a segmentation of K segments given by S¼ (s1, s2, . . ., sk� 1,

sk . . ., sK) with corresponding segment lengths (L1,L2, . . .,Lk� 1,Lk . . .,LK). Each
segment sk is associated with a label from the VLSQ codebookV, denoted by L(sk).
Following the input segmentation, a unit group Gk is computed corresponding to

each sk, k¼ 1, . . .,K where Gk is a collection of all units in the unit database U such

that the VLSQ label of all these units are the same as that of sk, i.e.,

Gk ¼ un : L unð Þ ¼ L skð Þf g, where the units in group Gk are the potential candidate

units for quantizing segment sk.

Unit-Selection Formulation With the definition of S¼ (s1, s2, . . ., sk� 1, sk . . ., sK)
and Gk, k ¼ 1, . . . ,K as above, it is now required to determine the optimal sequence

of unit indices Q*¼ (q�1, q
�
2, . . ., q

�
k� 1, q

�
k , . . . q

�
K) that minimize an overall decoding

distortion (quantization error) when the segment sequence S¼ (s1, s2, . . ., sk� 1,

sk . . ., sK) is quantized by the corresponding unit sequence uq�
k
, k ¼ 1, . . . ,K

� �
:

The overall distortion (quantization error) in quantizing S by any Q is given by

D� ¼ min
Q

α
XK

k¼1

Du sk; uqk
� �þ 1� αð Þ

XK

k¼2

Dc qk�1; qkð Þ
" #

ð6:1Þ

with the corresponding optimal unit sequence Q*¼ (q�1, q
�
2, . . ., q

�
k� 1, q

�
k , . . . q

�
K)

that quantizes sk, k¼ 1, . . .,K being

Q� ¼ arg min
Q

α
XK

k¼1

Du sk; uqk
� �þ 1� αð Þ

XK

k¼2

Dc qk�1; qkð Þ
" #

ð6:2Þ
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Here, Du sk; uqk
� �

is the unit-cost (or distortion) in quantizing segment sk using

unit uqk which is restricted to belong to Gk:Dc qk�1; qkð Þ is the concatenation-cost

(or distortion) when unit uqk�1
is followed by unit uqk , but with the restriction that

uqk�1
, uqk belong respectively to groups Gk�1 and Gk, i.e., uqk�1

∈Gk�1 and uqk ∈Gk.

Further, the actual units uqk�1
, uqk selected from these groups are subject to the

concatenation constraint

Dc qk�1; qkð Þ ¼ βk�1,k � d uqk�1
lqk�1

� �
, uqk 1ð Þ� � ð6:3Þ

where, d uqk�1
lqk�1

� �
, uqk 1ð Þ� �

is the Euclidean distance between the last frame of

unit uqk�1
and the first frame of unit uqk : βk�1,k ¼ 0 if qk¼ qk� 1 þ 1 (i.e., uqk�1

and

uqk are consecutive in the unit database) and βk� 1,k¼ 1 otherwise. This favors

quantizing two consecutive segments (sk� 1, sk) with two units which are consecu-

tive in the codebook; run-length coding further exploits such ‘contiguous’ unit

sequences to achieve lowered bit-rates.

Duration Modification In addition to the basic formulation as above, the joint

spectral-quantization to be discussed in the next section stems from the definition

of ‘duration modification’ that is to be done at the decoder to make the unit uqk
(of length lqk ) to match the duration of the input segment sk (of length Lk) that it

quantizes, as well as in the computation of the unit cost Du sk; uqk
� �

at the

encoder above. This involves time warping of the unit uqk (of length lqk ) to

match the duration of the input segment sk (of length Lk). While Lee and Cox

[LC02] employ a bi-linear interpolation to carry out this duration modification, we

do this here by ‘space-sampling’ - a resampling of unit uqk to yield Lk frames so as

to match the duration of sk, which is as follows: The total length of unit uqk is

computed (using a Euclidean norm on the LP vectors (say, LARs) of uqk ; then the

spectral trajectory of the unit uqk is resampled at Lk equispaced points in the LAR

space. Thus, if the segment sk is given by the sequence of frames sk(1), sk(2), . . .,
sk(l ), . . ., sk(Lk) and the unit uqk is given by the sequence of frames

uqk 1ð Þ, uqk 2ð Þ, . . . , uqk lð Þ, . . . uqk lqk
� �

, the resampled version of the unit uqk is

given as u
0
qk
¼ u

0
qk

1ð Þ, u0
qk

2ð Þ, . . . , u0
qk

lð Þ, . . . u0
qk

Lkð Þ, wherein the re-sampled unit

u
0
qk
is now matched in duration with the input segment sk. The unit costDu sk; uqk

� �
is

then defined as

Du sk; uqk
� � ¼

XLk

l¼1

d sk lð Þ, u0
qk

lð Þ
� �

ð6:4Þ

6.1.1 Joint Spectral-Residual Quantization

The essential principle of joint spectral-residual quantization is based on the fact that

the output speech is synthesized using the unit sequence u
0
q�
1
; u

0
q�
2
; . . . ; u

0
q�
k
; . . . ; u

0
q�K

� �

where each frame’s LP filter is driven by its own corresponding residual without
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having any side information of the residual transmitted to the decoder. The optimi-

zation involved in determining Q* therefore has to solve for Q* by using an

appropriate ‘composite distance measure’ in defining Du sk; uqk
� �

, so that the

resulting minimized distortion reflects the best match between the input segments

sk, k¼ 1, . . .,K with the corresponding units uqk , k ¼ 1, . . . ,K. Each resultant space

sampled unit u
0
qk
, k ¼ 1, . . . ,K can then be used for LP synthesis with its own

residual in a self-containedmanner without requiring any side-information about the

residual (of the frames of the input segments sk) to be transmitted to the decoder.

The main modification to the above framework for realizing a joint spectral-

residual quantization lies in defining Du sk; uqk
� �

appropriately to take into account

the matching of both the spectral properties (as defined by the LP parameters) and

the residual properties by means of ‘composite distance measures’ so as to arrive at

an overall match between the speech signal corresponding to segment sk and unit

uqk . Such composite distance measures consider the residual information along with

the spectral information in different ways.

For defining the composite distance measures, let the segment sk¼ (sk(1),

sk(2), . . ., sk(l ), . . ., sk(Lk)) be associated with its residual frames rik ¼ (rik(1),

rik(2), . . ., r
i
k(l ), . . ., r

i
k(Lk)) where the superscript i stands for input segment. Like-

wise, let the resampled unit u
0
qk
¼ u

0
qk

1ð Þ, u0
qk

2ð Þ, . . . , u0
qk

lð Þ, . . . u0
qk

Lkð Þ
� �

have its

associated residual frames as r uqk ¼ r uqk 1ð Þ, r uqk 2ð Þ, . . . , r uqk lð Þ, . . . , r uqk Lkð Þ
� �

where

the superscript u stands for unit. Note that one way to obtain the residual frame r uqk lð Þ
(i.e., the lth frame in the sequence of residuals r uqk ) corresponding to the resampled

frame u
0
qk

lð Þ (i.e., the lth frame in the resampled unit u
0
qk
) is as follows: u

0
qk

lð Þ is made

to inherit its residual r uqk lð Þ from the original frame uqk l
0� �

that is closest to u
0
qk

lð Þ
in terms of frame-to-frame spectral distortion. Figure 6.3 illustrates this with a

schematic—the duration modified unit u
0
qk

with Lk frames is shown matched with

the input segment sk with Lk frames. Each frame in sk and u
0
qk

is shown to have

two components—the spectral component (vertical rectangle) and the residual com-

ponent (circle).

Fig. 6.3 Schematic of the duration modified unit matching with the original input segment. Each

frame is shown to have two components—rectangle (spectral component) and circle (residual

component)
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We now consider five definitions of the unit costDu sk; uqk
� �

in Eq. (6.4) based on

the underlying distance measures used in matching the corresponding frames in

input segment sk and unituqk . Of these, the first is the standard LAR based Euclidean

distance and is not really a ‘composite’ measure in the sense that it measures ‘only’

the spectral quantization error and is used here mainly as a baseline to represent a

conventional system which does not concern matching the residual also. The other

four definitions are ‘composite measures’ in the sense they combine spectral and

residual information in different ways to match the overall spectra (speech).

1. LAR only (LAR): sk(l ) and u
0
qk

lð Þ are LAR vectors (of dim d ) given by

sk lð Þ ¼ sk l; jð Þ, j ¼ 1, . . . , dð Þ and u
0
qk

lð Þ ¼ u
0
qk

l; jð Þ; j ¼ 1; . . . ; d
� �

and

d sk lð Þ; u0
qk

lð Þ
� �

is the Euclidean distance between them, given by

Xd

j¼1

sk l; jð Þ � u
0
qk

l; jð Þ
���

���
2

2. High dimension MFCC (MFCC): sk(l ) and u
0
qk

lð Þ are MFCC vectors of high

dimension (80) derived by using 80 triangular filters and all the 80 coefficients

after DCT. d sk lð Þ, u0
qk

lð Þ
� �

is the Euclidean distance between them. The high

dimension MFCC is intended to represent both the spectral and residual infor-

mation by virtue of its larger number of finely spaced filters. A dimension of

80 was found optimal (among values 40, 80, 120, 160) for best performance.

3. LAR and Pitch (LAR+P): This combines the LAR based distance metric with

pitch differences between corresponding frames of input segment sk and unit u
0
qk

given by

d sk lð Þ, u0
qk

lð Þ
� �

¼ γ
Xd

j¼1

sk l; jð Þ � u
0
qk

l; jð Þ
���

���
2

þ 1� γð Þ Pi
k lð Þ � Pu

qk
lð Þ

���
���
2

ð6:5Þ

where Pi
k(l ) is the pitch value of the lth frame of input segment sk andP

u
qk

lð Þ is the
pitch value of the lth frame of the re-sampled unit u

0
qk
. The pitch values are zero

for unvoiced segments/units. γ¼ 0.6 was used for best performance.

4. Log magnitude power spectral distortion (PSD): Here, sk(l ) and u
0
qk

lð Þ are the
log magnitude power spectra (256 point spectra) of the lth frame of the input

segment sk and unit u
0
qk
. Such an attempt to match the power spectra takes into

account both the LP spectra and the excitation spectra together, thereby provid-

ing a direct match between the input speech and the unit speech segments.

d sk lð Þ, u0
qk

lð Þ
� �

is given by

d sk lð Þ, u0
qk

lð Þ
� �

¼
X256

j¼1

sk l; jð Þ � u
0
qk

l; jð Þ
���

���
2

ð6:6Þ
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5. Cross-correlation (CC):Herewe defined sk lð Þ, u0
qk

lð Þ
� �

as a weighted sum of the

Euclidean distance d
0
sk lð Þ, u0

qk
lð Þ

� �
between the LAR vectors (sk(l) and u

0
qk

lð Þ)
and one minus the best cross-correlation value between their corresponding

residual rik(l) and r
u
qk

lð Þ. This is given by

d sk lð Þ, u0
qk

lð Þ
� �

¼ γ d
0
sk lð Þ, u0

qk
lð Þ

� �
þ 1� γð Þ 1� CC r ik lð Þ, r uqk lð Þ

� �� �
ð6:7Þ

where, CC r ik lð Þ, r uqk lð Þ
� �

is given by [SS92]

CC r ik lð Þ, r uqk lð Þ
� �

¼ max
m

ρ mð Þ ð6:8Þ

ρ mð Þ ¼ a ið Þb i� mð Þh i � a ið Þh i b i� mð Þh i
a2 ið Þh i � a ið Þh i2

� �1
2

b2 ið Þ	 
� b ið Þh i2
� �1

2

ð6:9Þ

where a(�) and b(�) are used to represent respectively rik(l ) and r uqk lð Þ
(for notational convenience), m is the positive window shift of the unit residual

r uqk lð Þ in computing the cross-correlation, h i denotes the time average of the

enclosed expression for i ranging over the window length. Note that the index i
used in Eq. (6.9) is not to be confused with the super-script i representing ‘input’

in the input residual r ik lð Þ in Eq. (6.8). ρ(m) is the normalized cross-correlation

defined and used earlier in [SS92] between the synthetic glottal volume velocity

(obtained from a glottal model) and that obtained from inverse filtering the

original speech as part of a set of cost functions minimized in estimating

articulatory parameters from a given speech signal. This was perhaps a rare

instance of a measure that matches residual in time domain and suits

the composite measure required here. γ¼ 0.5 was used for best performance.

By using these ‘composite measures’, the attempt is to match the spectra

(LP envelope) and the residual jointly in order to give a measure of the overall

match of the input segment sk and unit u
0
qk
. Selection of a unit uqk for quantizing

segment sk through a good match under the composite measure then indicates that

the use of the residual r uqk lð Þ in LP synthesis with filter parameters (prediction

coefficients) derived from u
0
qk

lð Þ can yield a speech signal frame very close to the

speech signal corresponding to the frame sk(l ) in the input segment sk and conse-

quently in being able to synthesize an output speech segment that closely resembles

sk,8 k¼ 1, . . .,K.
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6.1.2 Experiments and Results

The proposed unit-selection with joint spectral-residual quantization using the

five different composite measures was evaluated on a unit-database derived

from an audio book ‘The Red-Limit’ (http://www.harpercollins.com/books/

9780061632112/Red\_Limit\_The/index.aspx) which is a single speaker database

comprising of passages in the domain of astronomy spoken in English by a male

speaker with an American accent. The unit-database was divided into two parts,

Train and Test, with about 6 h of speech in Training and 1 h of speech in Test.

We used unit-databases from Train with sizes ranging from 9 bits/unit (512 units) to

19 bits/unit (524,288 units or the full 6 h of speech). We report results on one test

sentence (‘By which time the sun has moved across the face of our galaxy’) from

Test of about 5 s duration (same speaker as Train but outside all the unit-databases

from Train).

We present results of the proposed unit-selection based segment quantization in

terms of quantization accuracy using rate-distortion curves between conventional

average spectral distortion (as defined in Sect. 2.8) and the overall bit-rate with

run-length coding. This is shown in Fig. 6.4 for the five composite measures.

The conventional average spectral distortion (SD) is measured between the

original sequence of linear-prediction vectors and the sequence obtained after

segment quantization and duration modification at the decoder. The average spec-

tral distortion is the average of the single frame spectral distortion over the number

of frames in the input speech; the single frame spectral distortion is the squared

difference between the log of the linear-prediction power spectra of the original

frame and the quantized frame, averaged over frequency. This essentially measures

Fig. 6.4 Rate-distortion plot (SD vs. overall bit-rate) (Reused with permission from [RH09])
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how well the spectral information is quantized under the joint spectral-residual

quantization scheme.

The following can be noted:

(a) LAR performs the best since it matches only the spectra; the other four

composite measures perform with slightly higher spectral distortion since

they emphasize matching both the spectra and residual and in the process

compromise on the spectral match alone.

(b) Of the other composite measures, CC and PSD perform the next best indicating

they do manage to achieve a good spectral match too. LAR+P and MFCC have

higher distortions.

(c) The spectral distortion shows a prominent reduction with bit-rate and reaches as

low as 2.5 dB (for LAR and CC) for effective overall bit-rates of 250 bits/s.

(As a reference, 1 dB spectral distortion corresponds to the standard transparent

quality [PK95]).

Since our objective is to compare the 5 different composite measures used under

the ‘no-residue transmission’ framework, it is meaningful to show the ‘overall’

performance in terms of the average log magnitude power spectral distortion (PSD)

between the input speech frames and output speech frames vs. overall bit-rate. This

is shown in Fig. 6.5 for the five composite measures. For PSD, the single frame

power spectral distortion is the squared difference between the log of the magnitude

power spectra of the original speech frame and the output synthesized speech

frame.

Fig. 6.5 Rate-distortion plot (PSD vs. overall bit-rate) (Reused with permission from [RH09])
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The following can be observed from this figure:

(a) The PSD values are higher than SD values since the overall PSD includes the

residual spectra mismatch (over and above LP envelope spectral differences),

(b) CC performs the best indicating that it achieves the best match of spectra and

residual combined,

(c) This is followed by PSD and then by MFCC indicating their ability to match the

overall spectra (including residual) quite adequately,

(d) LAR performs the poorest indicating it is unable to select units with the residual

also matching; LAR+P performs better indicating the addition of pitch is able

to do a better composite match in selecting units with the right residual by

virtue of using just a single prosody parameter, pitch.

The above observations, when interpreted in a combined way (SD and PSD),

corroborates with the actual quality of the synthesized speech by listening. While

formal listening tests are underway, we found that CC performs the best in terms of

overall quality of speech which is intelligible, natural and retains speaker-identity

and prosody (gain and intonation) and is closest to the input speech; this is borne out

by the fact the CC has the lowest PSD and second best SD (very close to the SD that

LAR alone can achieve). This shows the feasibility of realizing practical ultra low

bit-rate speech coding at 250 bits/s under the joint spectral-residual quantization

scheme in the unit-selection framework using unit-database of size 19 bits/unit

(or about 6 h of data). Since the SD continues to decrease at a steady rate, it can be

expected that use of larger unit-databases (perhaps 10 h or more as in concatenative

TTS) can yield spectral distortions as low as 2 dB and less.

This is also borne out by the plots of speech waveform (Fig. 6.6) and residual

(Fig. 6.7) for the five composite measures. The selected speech is the diphthong/ay/

Fig. 6.6 Input speech and output speech waveforms (Reused with permission from [RH09])
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from the word ‘time’. Clearly, CC performs closest to the original input speech,

with a remarkable match of the residue with differences in the region of fourth and

fifth pitch period between 1,000 and 1,500. The non-exact match of the speech

waveform (given the more or less exact match of the residual) is due to the spectral

quantization errors. PSD is close to CC; LAR+P and MFCC perform poorly and

LAR has some match due to the inherent coupling of the residual to the LP

parameters (but with a gross mismatch in gain).

6.2 Joint Spectral-Residual Quantization in an Optimal

Unit-Selection Framework

Recognizing the sub-optimality of the unit-selection framework of [LC02] used in

our joint spectral-residual quantization [RH09] (discussed in Sect. 6.1), we present

in this section the algorithm proposed by us in [R12], which uses joint spectral-

residual quantization in our earlier optimal one-pass DP framework of [RH06,

RH07], thereby leading to better rate-distortion performance of the overall ‘no-

residual-transmission’ system than the results we obtained in [RH09]. Within the

optimal one-pass DP based unit-selection segment quantization presented here, the

‘composite distance measures’ (underlying the ‘joint spectral-residual quantiza-

tion’) are defined within the local distance used in the recursions of the one-pass

DP unit-selection procedure. Here, these measures quantify how well both the

spectra (LP envelope) and the residual (excitation component) of a frame of a unit

Fig. 6.7 Input residual and unit-database residuals used in synthesis (Reused with permission

from [RH09])
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(in the unit database) match those of a frame of the original input speech, thereby

providing a match of the overall speech signal and ensuring that the synthesis at the

decoder using the unit in totality (with its own residual) does indeed produce a

speech signal ‘close’ to the input speech signal.

6.2.1 Joint Spectral-Residual Quantization in 1-Pass
DP Framework

The basic modifications to the 1-pass DP framework to carry out joint spectral-

residual quantization are comparatively different than in the Lee and Cox

sub-optimal framework described in Sect. 6.1. In order to further develop the

basic formulation of the joint spectral-residual quantization in the 1-pass DP

framework, but without repeating the basic formulation of the 1-pass DP unit-

selection framework, we refer back to Sect. 4.1.1. All notations in the following

treatment are consistent with the equations in Sect. 4.1.1.

Figure 6.8 shows the basic structure of the unit-selection based quantizer using

joint-spectral residual quantization set in the 1-pass DP framework. Note the use of

the composite database with the spectral component and the associated residual

component. Also note that absence of the pre-quantization of the input speech, as is

done in the Lee-Cox segmental unit-selection framework in Fig. 6.2. The clustered

codebook used for variable length segment quantization (VLSQ), applied on the

continuous speech is to render the continuous codebook into a variable-length ‘unit-

database’.

Fig. 6.8 Joint spectral-residual quantization set in the optimal unit-selection framework based on

1-pass DP algorithm (Reused with permission from [R12])
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The main modification to the 1-pass DP framework (referred above, as in

Sect. 4.1.1) for realizing a joint spectral-residual quantization lies in defining

Du sk; uqk
� �

in Eq. (4.1) appropriately to take into account the matching of both

the spectral properties (as defined by the LP parameters) and the residual properties

by means of ‘composite distance measures’ so as to arrive at an overall match

between the input utterance and the synthesis units (in the unit database). This in

turn is realized by defining the local distance d(i, j, n) in Eq. (4.3) and d(i, 1, n) in
Eq. (4.4) as a ‘composite distance measure’ in such a way as to take into account the

spectral mismatch and the residual mismatch between frame ‘i’ of input utterance
and frame ‘j’ of unit ‘n’ in the unit-database.

In order to define such a composite distance measure d(i, j, n), let frame ‘i’ in
the input utterance be associated with spectral information Si (say, a LAR vector

of dim d) and residual information ri. Likewise, let frame ‘j’ of unit n be associated

with spectral information Snj and residual information rnj .

We had earlier proposed five different ‘composite distance measures’ [RH09],

namely, (1) LAR only, (2) High dimension MFCC (MFCC), (3) LAR and Pitch

(LAR+P), (4) Log magnitude power spectral distortion (PSD) and (5) Cross-

correlation (CC). Of these, we had shown in Sect. 6.1 ([RH09]) that CC performed

the best among the various composite distance measures; hence, we consider here

only two of these measures, namely, (1) LAR only (LAR) and (2) Cross-correlation

(CC) for defining d(i, j, n) as a ‘composite distance measure’ in Eqs. (4.3) and (4.4).

Of these, the first is the standard LAR based Euclidean distance and is not really a

‘composite’ measure in the sense that it measures ‘only’ the spectral quantization

error and is used here mainly as a baseline to represent a conventional system which

does not concern matching the residual also. CC is a ‘composite measure’ in the

sense it combines spectral and residual information to match the overall spectra

(speech).

1. LAR only (LAR): Si and Snj are LAR vectors (of dimension d ); i.e., Si¼ Si(l ),

l¼ 1, . . ., d and Snj ¼ Snj (l ), l¼ 1, . . ., d. d(i, j, n) is the Euclidean distance between

them, given by,

d i; j; nð Þ ¼
Xd

l¼1

Si lð Þ � Sn
j lð Þ

���
���
2

ð6:10Þ

2. Cross-correlation (CC): Here we define d(i, j, n) as a weighted sum of the

Euclidean distance between the LAR vectors (Si and Snj ) and one minus

the best cross-correlation value between their corresponding residual ri and rnj .

This is given by, (γ¼ 0.5 was used for best performance),
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d i; j; nð Þ ¼ γ
Xd

l¼1

Si lð Þ � Sn
j lð Þ

���
���
2

þ 1� γð Þ 1� CC ri; r
n
j

� �� �
ð6:11Þ

where CC(ri, r
n
j ) is given by [SS92]

CC ri; r
n
j

� �
¼ max

m
ρ mð Þ ð6:12Þ

ρ mð Þ ¼ a ið Þb i� mð Þh i � a ið Þh i b i� mð Þh i
a2 ið Þh i � a ið Þh i2

� �1
2

b2 ið Þ	 
� b ið Þh i2
� �1

2

ð6:13Þ

where a(�) and b(�) are used to represent respectively ri and rnj (for notational

convenience), m is the positive window shift of the unit residual rnj in computing

the cross-correlation, h i denotes the time average of the enclosed expression for

i ranging over the window length. Note that the index i used in Eq. (6.13) is not

to be confused with the index i in d(i, j, n) in Eq. (6.11) and sub-script i in
Eqs. (6.11) and (6.12) representing the ith frame of input utterance. ρ(m) is the
normalized cross-correlation defined and used earlier in [SS92] between the

synthetic glottal volume velocity (obtained from a glottal model) and that

obtained from inverse filtering the original speech as part of a set of cost

functions minimized in estimating articulatory parameters from a given speech

signal. This was perhaps a rare instance of a measure that matches residual in

time domain and suits the composite measure required here. γ¼ 0.5 was used for

best performance.

By using these ‘composite distance measures’, the attempt is to match the

spectra (LP envelope) and the residual jointly in order to give a measure of the

overall match of the ‘speech signal’ of the input frame i and the unit frame j.
Subsequent to the optimal decoding (segment quantization) by Eq. (4.1) and

Eq. (4.5), selection of a unit uq�
k
for quantizing segment sk through a good match

under the composite measure then indicates that the use of the residual r
q�k
j in LP

synthesis with filter parameters (prediction coefficients) of frame j of unit uq�
k
can

yield a speech signal frame very close to the speech signal corresponding to the

frame i of segment sk in the input utterance; this would hold good for every frame

j of unit uq�
k
and further for all units uq�

k
, k ¼ 1, . . . ,K thereby ensuring synthesis of

output speech segments that closely resemble the corresponding input speech

segments sk 8 k¼ 1, . . .,K.
The decoder performs LP synthesis using units uq�

k
, k ¼ 1, . . . ,K (with their own

associated residuals) after performing duration modification of unit uq�
k
to the length

of input segment sk as follows: The within-unit recursion Eq. (4.3) allows for

reaching the trellis grid point corresponding to (i, j)], say Q(i, j), (for any n) from
the candidate grid points P1(i� 1, j) or P2(i� 1, j� 1) orP3(i� 1, j� 2). This in turn

implies that the optimal warping (part of the overall optimal path) between an
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optimal unit uq�
k
and an input segment sk, (8 k¼ 1, . . .,Kmaking up the full decoding)

can be specified as incremental steps of the kind P(i� 1, j+Δi)!Q(i, j), where
Δi ∈ {0, 1, 2}. This allows durationmodification of unituq�

k
(of length lq�

k
) to segment

sk (of length Lk) along the optimal warping path by appropriately inserting/repeating/

deleting frames ofuq�
k
according toΔi to yield the quantized version of each frame i in

the input segment. This duration modification results in a quantized version of input

segment sk using the frames of unituq�
k
exactly as determined by the optimal one-pass

DP based unit-selection at the encoder. This requires transmission of Δi using

log2jΔij or 2 bits per frame i, resulting in an additional bit-rate of 100 bits/s (for a

frame rate of 50 frames/s) over the overall bit-rate of the coder in Sect. 6.1 [RH09],

which used space-sampling based duration modification (which is another source of

sub-optimality). Figures 6.2 and 6.3 reflect this additional 100 bits/s in the optimal

unit-selection algorithm proposed here.

6.2.2 Experiments and Results

We evaluate the proposed optimal unit-selection based on one-pass DP with joint

spectral-residual quantization (OPT-1P-DP) using the 2 composite measures (LAR

and CC) on a unit-database derived from an audio book and compare it with [RH09]

(SUBOPT-LeeCox) set in the suboptimal framework [LC02] (Sect. 6.1). The audio

book used (‘The Red-Limit’ (http://www.harpercollins.com/books/9780061632112/

Red\_Limit\_The/index.aspx) is a single speaker database comprising of passages in

the domain of astronomy spoken in English by a male speaker with an American

accent. The unit-database was divided into 2 parts, Train and Test, with about 6 h of

speech in Training and 1 h of speech in Test. We used unit-databases from Train with

sizes ranging from 9 bits/unit (512 units) to 19 bits/unit (524,288 units or the full 6 h of

speech). We report results on one test sentence (‘By which time the sun has moved

across the face of our galaxy’) from Test of about 5 s duration (same speaker as Train

but outside all the unit-databases from Train).

We present results comparing the proposed optimal one-pass DP based algo-

rithm (OPT-1P-DP) and the earlier sub-optimal version (SUBOPT-LeeCox) using

rate-distortion (R-D) curves for the two composite measures LAR and

CC. Figure 6.9 shows the conventional average spectral distortion (SD) vs overall

bit-rate with run-length coding for OPT-1P-DP (solid lines) and SUBOPT-LeeCox

(dashed lines).

The conventional average spectral distortion (SD) (as defined in Sect. 2.8), is

measured between the original sequence of linear-prediction vectors and the

sequence obtained after segment quantization and duration modification at the

decoder. The average spectral distortion is the average of the single frame spectral

distortion over the number of frames in the input speech; the single frame spectral

distortion is the squared difference between the log of the linear-prediction power

spectra of the original frame and the quantized frame, averaged over frequency.
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This essentially measures how well the spectral information is quantized under the

joint spectral-residual quantization scheme.

The following can be noted from Fig. 6.9:

(a) LAR performs the best since it matches only the spectra; CC performs with

higher spectral distortion since it emphasizes matching both the spectra and

residual and in the process compromises the spectral match alone.

(b) The spectral distortion shows a prominent reduction with bit-rate and reaches as

low as 1.7–2 dB (for LAR and CC) for OPT-1P-DP for an effective overall

bit-rates of 350 bits/s. (As a reference, 1 dB spectral distortion corresponds to

the transparent quality [PK95]).

Since our objective is to compare the two different composite measures used

under the ‘no-residue transmission’ framework, it is meaningful to show the

‘overall’ performance in terms of the average log magnitude power spectral distor-

tion (PSD) between the input speech frames and output speech frames vs. overall

bit-rate. This is shown in Fig. 6.10 for the two composite measures LAR and CC for

both OPT-1P-DP (solid lines) and SUBOPT-LeeCox (dashed lines). For PSD, the

single frame power spectral distortion is the squared difference between the log of

the magnitude power spectra of the original speech frame and the output synthe-

sized speech frame.

The following can be observed from Fig. 6.10:

(a) The PSD values are higher than SD values since the overall PSD includes the

residual spectra mismatch (over and above LP spectral envelope differences),

(b) CC performs the best indicating that it achieves the best match of spectra and

residual combined,

Fig. 6.9 Rate-distortion plot (SD vs. overall bit-rate) (Reused with permission from [R12])
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(c) LAR perform poorly indicating it is unable to select units with the residual also

matching and points to the need for a composite measure such as CC to

effectively match both spectra and residual,

(d) The other composite measures (not shown here), namely, MFCC, LAR+P and

PSD fall in between these two R-D curves indicating their relative ability to

match the spectra and residual jointly.

More importantly, we note from these figures that the optimality of the

one-pass DP unit-selection (OPT-1P-DP) shows in the R-D performance of SD

and PSD which are up to 0.5 dB lower than SUBOPT-LeeCox, particularly at the

higher unit database sizes (higher bit-rates, close to 350 bits/s), clearly validating

the optimality of the 1-pass DP unit-selection algorithm proposed here.

Figures 6.9 and 6.10 also show OPT-1P-DP incurring an additional 100 bits/s

over SUBOPT-LeeCox (as discussed in Sect. 6.2.1) with an overall bit-rate of

225–350 bits/s.

The above observations, when interpreted in a combined way (SD and PSD),

corroborates with the actual quality of the synthesized speech by listening. We

found that OPT-1P-DP offers an overall quality of speech which is intelligible,

natural and retains speaker-identity and prosody (gain and intonation). Since

OPT-1P-DP CC is 0.5 dB lower in SD and PSD than SUBOPT-LeeCox [RH09],

it is closer to the input speech and offers a proportional enhancement in the overall

quality of speech over SUBOPT-LeeCox: while SUBOPT-LeeCox has a percepti-

ble coarseness representing the 2.5 dB SD, OPT-1P-DP (with its 1.7–2 dB SD),

does not have this coarseness over the entire 5 s input test sentence and offers a

smooth listening quality of the quantized speech. This shows how the optimality of

Fig. 6.10 Rate-distortion plot (PSD vs. overall bit-rate) (Reused with permission from [R12])

142 6 No Residual Transmission: Joint Spectral-Residual Quantization



the proposed one-pass DP based joint spectral-residual quantization manifests in

the overall quality of the coded speech and the feasibility of realizing ultra low

bit-rate speech coding at bit-rates of 350 bits/s within a ‘no-residue-transmission’

framework.

Use of better LP parameters (such as LSFs in place of LARs) and use of larger

codebooks (say 20–21 bits), can take the SD values in the R-D curve of Fig. 6.9

closer to the 1 dB transparent quality reference, thereby making it feasible to realize

high quality coding at ultra low bit-rates of 300–400 bits/s within the ‘no-residue-

transmission’ framework proposed here using unit-selection based joint spectral-

residual quantization scheme.

6.3 Conclusions

We have proposed an ultra low bit-rate speech coder based on unit-selection which

obviates the need for transmitting any residual information by virtue of joint

spectral-residual quantization under various types of composite distance measures.

The system realizes spectral distortions of less than 2.5 dB at an overall rate of

250 bits/s. We have also proposed an optimal unit-selection algorithm with joint

spectral-residual quantization for ultra low bit-rate speech coding which realizes a

better rate-distortion performance than the former algorithm above, set in a

sub-optimal unit-selection framework.
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