
www.allitebooks.com

http://www.allitebooks.org

Unity 4 Game
Development
HOTSH T

Develop spectacular gaming content by exploring and
utilizing Unity 4

Jate Wittayabundit

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Unity 4 Game Development HOTSH T

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2011

Second edition: July 2014

Production reference: 1180714

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-558-9

www.packtpub.com

Cover image by Jate Wittayabundit (jatewit@jatewit.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Jate Wittayabundit

Reviewers
John P. Doran

Thomas Finnegan

Chirag Raman

Commissioning Editor
Edward Gordon

Acquisition Editor
Joanne Fitzpatrick

Content Development Editor
Anila Vincent

Technical Editors
Mrunal Chavan

Gaurav Thingalaya

Copy Editors
Janbal Dharmaraj

Mradula Hegde

Deepa Nambiar

Karuna Narayanan

Project Coordinator
Mary Alex

Proofreaders
Maria Gould

Ameesha Green

Paul Hindle

Indexers
Rekha Nair

Priya Subramani

Tejal Soni

Graphics
Abhinash Sahu

Production Coordinator
Komal Ramchandani

Cover Work
Komal Ramchandani

www.allitebooks.com

http://www.allitebooks.org

About the Author

Jate Wittayabundit was born in Bangkok, Thailand, in 1980. One thing that he always
remembers about his childhood is that playing games was something very very special to
him. He was allowed to play only during school breaks. The game that he played would be
kept in a locked chest by his mom; it was Super Mario Bros, the first game he ever played.
Something special in his childhood became something he dreamt to be as a boy in a country
where nobody was familiar with computers at this time. So, he questioned how humans
could create this thing.

"Nothing is impossible", he believes!

However, there was no game development course at all in any Thai college or university
at the time he chose to pursue his career in that field. Going abroad to study was a huge
challenge, which he wasn't ready for. He curtailed his dream, pursuing a Bachelor's degree
in Interior Architecture at King Mongkut's University of Technology Thonburi to be able to
improve his skills in arts, 3D visualization, and mathematics, which he thought were very
important to support what he wanted to be. While he was studying Interior Architecture,
he had a chance to use 3D Studio Max, FormZ, AutoCAD, Maya, Photoshop, After Effects,
Premiere, and lots of 3D tools to create the architecture projects. Ever since, he has loved
it and continues working with these tools. In 2003, after graduation, he started working as
an interior architect and 3D visualizer for several companies in Thailand.

He also applied for a part-time 3D game course in Thailand and made a couple of friends who,
like himself, had a similar passion to create games. They formed a team, making a side-scrolling
game using a panda as the main character named PAN PAN. The game was built using Game
Maker. As a team member, Jate was responsible for creating the graphics and cover art for the
games, because he didn't have any experience in programming at all. At that time, he sensed
an upward trend in the game industry. In 2005, he decided to move to Ottawa, Canada, to
study a brand new Game Development program. It was really tough for him at first, and he
really wanted to quit because of the language barrier and the complexity of programming
languages, as he had no basic knowledge at all. However, he had many good professors and
friends to help him get through the course. He started to love programming, which he thought
he would never understand, and in 2008, he graduated with honors in the Game Development
program from Algonquin College.

www.allitebooks.com

http://www.allitebooks.org

After graduating from the Game Development program, he started working at Launchfire
Interactive Inc. (www.launchfire.com) as a Flash Actionscript Programmer. At Launchfire,
he developed many games and interactive content (for clients such as Dell and Alaska Airline)
as well as learned how to created Flash 3D in Papervision3D and Away3D.

In 2009, he decided to move to Toronto—a big city—to get more experience of working in
the game industry. He started working in a new position as a game developer and 3D artist at
Splashworks.com Inc. (www.splashworks.com). At Splashworks, he had the chance to work
with many different games and clients (such as Shockwave and Swiss Chalet). It also gave him
a great chance to learn about Unity3D. He started using it from September 2009 and just loved
its fast and friendly UI. He really liked how easily Unity imported 3D objects and animations.
Currently, he is working as a senior game developer creating many mobile games for many
clients, including Sunkist, Nickelodeon, and American Girl.

He believes that being an architect is his strength and he is on the right track; it supports
his concepts and ideas of how a real-world perception could apply in a virtual world.
He loves to work on 3D software such as Zbrush or 3D Studio Max in his spare time and
loves painting and drawing. He wants to try marrying his architectural and 3D skills
with his game development skills to create the next innovation in gaming.

You can check out his work on his website, www.jatewit.com. He has also
created a Zbrush character, http://www.zbrushcentral.com/showthread.
php?t=90665&highlight=tyris.

First, I would like to thank the staff of Packt Publishing who, randomly or
by getting interested in my work, gave me this great opportunity to write
this book. Thanks to all the reviewers of this book for their feedback to
make it possible and better for the readers. Thank you Susan Olszynko,
International Marketing Manager at Algonquin College, who went far to get
me from Thailand and gave me an assurance that I will never regret taking
the Game Development course at Algonquin College. Also, I'm very grateful
to my professor, Tony Davidson, for believing in me and directing me to my
first career in Canada. Thanks to the professors and all my friends. I would
like to thank my mom, dad, and family for supporting me anytime, no
matter what happens. I would also like to thank my wife who always stayed
by my side, supporting, helping, and encouraging me to complete this
book. Also, I would like to thank my newborn baby for keeping me awake
at night. Finally, thank you all for buying this book. I hope you will enjoy
this book, and it becomes a part of your inspiration.

www.allitebooks.com

www.launchfire.com
www.splashworks.com
www.jatewit.com
http://www.zbrushcentral.com/showthread.php?t=90665&highlight=tyris
http://www.zbrushcentral.com/showthread.php?t=90665&highlight=tyris
http://www.allitebooks.org

About the Reviewers

John P. Doran is a technical game designer who has been creating games for over
10 years. He has worked on an assortment of games in teams from just himself to over
70 in student, mod, and professional projects.

He previously worked at LucasArts on Star Wars 1313 as the only junior designer in the
team. He later graduated from DigiPen Institute of Technology in Redmond, WA, with a
Bachelor of Science in Game Design.

John is currently working at DigiPen's Singapore campus as the lead instructor of the
DigiPen-Ubisoft Campus Game Programming program, instructing graduate-level students
in an intensive, advanced-level game programming curriculum. In addition to that, he also
tutors and assists students on various subjects while giving lectures on C++, Unreal, Flash,
Unity, and more.

He is the author of Getting Started with UDK and Mastering UDK Game Development,
and he has also co-authored UDK iOS Game Development Beginner's Guide, all available
from Packt Publishing.

Thomas Finnegan worked as a freelance game developer for a few years, having
graduated from Brown College in 2010. Currently, he is teaching game development at the
Minneapolis Media Institute. He has worked on everything from mobile platforms to web
development and even on experimental devices. His past clients include Carmichael Lynch,
Coleco, and Subaru. His most recent project is Battle Box 3D, a virtual table top. His first
book, Unity Android Game Development by Example Beginner's Guide, Packt Publishing,
saw its release in December 2013.

www.allitebooks.com

http://www.allitebooks.org

Chirag Raman began his career as an iOS application developer and a visiting game
programming faculty at the University of Mumbai. During this time, he also worked as
a project engineer at the Indian Institute of Technology, Bombay, on projects employing
Blender 3D for interactive content creation. He subsequently pursued a Master's degree
from the Entertainment Technology Center at Carnegie Mellon University, where he was
fortunate to gain hands-on experience with the User Experience and Creative Services
team at Microsoft and the Next Generation Experience - New Media Group at Walt Disney
Parks and Resorts.

After graduating from Carnegie Mellon University, Chirag worked for a while as a Research
Associate with the Computer Vision group at Disney Research, Pittsburgh. His interests lie
in combining the Arts and Computer Science to craft synergistic experiences for people.
He currently works as the lead iOS UX developer for an upcoming entertainment industry
startup in New York, pursuing his passion to employ science to innovate user experience.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer,
you are entitled to a discount on the eBook copy. Get in touch with us at service@packtpub.com
for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today
and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on Twitter,
or the Packt Enterprise Facebook page.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

Table of Contents
Preface	 1

Project 1: Develop a Sprite and Platform Game	 9
Mission briefing	 10
Setting up a 2D level and collider	 12
Creating a 2D character and animation	 26
Controlling the character with the PlayerController_2D class	 36
Creating a key, door, and replay button	 52
Mission accomplished	 59
Hotshot challenges	 59

Project 2: Create a Menu for an RPG – Add Powerups, Weapons,
and Armors	 61

Mission briefing	 62
Customizing skin with GUISkin	 65
Creating a menu object	 82
Creating the STATUS tab	 90
Creating the INVENTORY tab	 103
Creating the EQUIPMENT tab	 115
Mission accomplished	 127
Hotshot challenges	 128

Project 3: Shade Your Hero/Heroine	 129
Mission briefing	 130
Shader programming – Diffuse and Bump (normal) maps	 132
Shader programming – Ambient and Specular light	 146
Shader programming – Half Lambert, Rim Light, and Toon Ramp	 153
Mission accomplished	 159
Hotshot challenges	 160

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Project 4: Add Character Control and Animation to Our Hero/Heroine	 161
Mission briefing	 162
Setting up character animation and level	 164
Creating an animator controller	 177
Creating a character control script	 187
Creating a third-person camera to follow our character	 198
Mission accomplished	 205
Hotshot challenges	 206

Project 5: Build a Rocket Launcher!	 207
Mission briefing	 208
Setting up a character animation and animator controller	 209
Adding new features to the CharacterControl and CameraControl scripts	 221
Creating a MouseLook script and laser target scope	 231
Creating a rocket prefab and particle effects	 241
Creating a rocket launcher and RocketUI	 253
Mission accomplished	 260
Hotshot challenges	 261

Project 6: Make AI Appear Smart	 263
Mission briefing	 265
Creating the Waypoint and WaypointsContainer scripts	 267
Creating a custom editor for the WaypointsContainer script	 284
Creating the enemy movement with the AI script	 299
Creating a hit-point UI	 313
Mission accomplished	 317
Hotshot challenges	 318

Project 7: Forge a Destructible and Interactive Virtual World	 319
Mission briefing	 320
Creating a ragdoll object	 321
Creating a destructible wall	 332
Creating a rockslide and trigger area	 339
Creating the RocksTrigger and Rocks scripts	 343
Mission accomplished	 351
Hotshot challenges	 352

Project 8: Let the World See the Carnage – Saving and Loading
High Scores	 353

Mission briefing	 354
Creating the UserData and Hiscore scripts	 355
Saving and loading the local high score	 366

iii

Table of Contents

Creating an XMLParser script	 376
Saving and loading server high score	 381
Mission accomplished	 394
Hotshot challenges	 394

Appendix A: Important Functions	 395
Awake()	 396
Start()	 396
Update()	 397
FixedUpdate()	 398
LateUpdate()	 398
OnEnable()	 399
OnDisable()	 400
OnGUI()	 400
OnDrawGizmos()	 401

Appendix B: Coroutines and Yield	 403
Coroutines	 403
YieldInstruction	 404
WaitForSeconds	 406
WaitForFixedUpdate	 409
StartCoroutine	 409
StopCoroutine	 413
StopAllCoroutines	 414

Appendix C: Major Differences Between C# and Unity JavaScript	 417
Unity script directives	 417
Type names	 418
Variable declaration	 418
Variables with dynamically typed resolution	 419
Multidimensional array declaration	 419
Character literals not supported	 420
Class declarations	 420
Limited interface support	 421
Generics	 422
The foreach keyword	 422
The new keyword	 423
The yield instruction and coroutine	 423
Casting	 424
Properties with getters/setters	 425
Changing struct properties by value versus by reference	 426
Function/method definitions	 426

iv

Table of Contents

Appendix D: Shaders and Cg/HLSL Programming	 429
ShaderLab properties	 431
Surface shaders	 432
Cg/HLSL Programming	 436

Index	 441

Preface

Only Unity fits the bill of being a game engine that allows you to create an entire 2D and
3D game for free and with phenomenal community support. Unity 4 Game Development
Hotshot will equip you with the skills to create professional-looking games at no cost.

This book will teach you how to exploit the complete array of Unity 3D and 2D technology
in order to create an advanced gaming experience for the user, with eight exciting and
challenging projects that provide step-by-step explanations, diagrams, and screenshots
to help you achieve that goal.

Every project is designed to push your Unity skills to the very limits and beyond. You will
start with the creation of a 2D platform game with the character sprite sheet. Then, you will
be using Unity's immediate mode GUI system (IMGUI) to create a cool RPG menu that allows
you to customize the character skills and equipment. You will create a shader and animation
controller to make your character look more like a character from a next-gen game than a
simple sprite.

Now for some damage—rocket launchers! Typically, this is the most powerful weapon in any
first-person shooter game. You will create a rocket launcher that has fire and smoke particles
and most importantly, causes splash damage for the all-important area effect. We will create
AI-controlled enemies to eliminate the rocket using the powerful editor script. Then, we will
create an interactive world that is destructible. The final touch will be for you to upload your
scores both online and locally so that everyone can see the carnage.

What this book covers
Project 1, Develop a Sprite and Platform Game, creates a 2D sprite platformer project using
the new 2D sprite feature in Unity. This includes the new sprite object and the new 2D physics
engine that integrated Box2D. There will be an explanation about how to set up and prepare
a sprite sheet and how to set up the 2D camera, 2D physics, and 2D character animation.

Preface

2

Project 2, Create a Menu for an RPG – Add Powerups, Weapons, and Armors, will teach you
how to create a cool and complex UI that is mostly used in an RPG using the new Unity GUI
(IMGUI). This includes creating a hit-point bar, buttons for the user to go to different menus,
a scrolled area and scrollbar for the items, and dragging-and-dropping a character's skills
and equipments.

Project 3, Shade Your Hero/Heroine, will write a custom shader using the surface shader.
We will create an ambient and diffuse shader, bump shader, specular shader, half lambert
shader, toon ramp shader, and rim light shader.

Project 4, Add Character Control and Animation to Our Hero/Heroine, will teach the basics
of character animation using the new Mecanim animation system in Unity. We will begin
by setting up the walk, run, idle, jump, and fall animation clips and then move on to setting
up the animator controller to enable transition between the animation clips, creating a
custom third-person camera, and adding the character controller to control our character.

Project 5, Build a Rocket Launcher!, will continue using our third-person camera from the
previous project. This time, we will add the ability for our project to shoot a rocket via a
rocket launcher. We will also add the laser target effect to make user aiming easier. Then,
we will add particle effects for the rocket and bomb using the Shuriken Particle effect.

Project 6, Make AI Appear Smart, will show you how to create AI that is smart enough
using the waypoint concept. This includes having AI follow a path and adding/removing
the waypoint from the editor using the editor script.

Project 7, Forge a Destructible and Interactive Virtual World, starts with setting up the
ragdoll object. Then, we will be creating a destroyable wall and destructible rock from
multiple cubes, which will be triggered using the event and delegate concept.

Project 8, Let the World See the Carnage – Saving and Loading High Scores, will show
you how to save and load your high scores locally and through the server. This includes
PlayerPref, Serialized/Deserialized data, and WWWForm.

Appendix A, Important Functions, includes details of the important functions that are
mostly used, such as Awake() and Start(), sourced from Unity's scripting document.

Appendix B, Coroutines and Yield, includes a brief explanation of coroutines/yield and
how to use them; this is sourced from Unity's scripting document and the Unity forum.

Appendix C, Major Differences Between C# and Unity JavaScript, shows the differences
between C# and Unity JavaScript using examples that are sourced from Unity's answer
forum and documentation.

Appendix D, Shaders and Cg/HLSL Programming, explains the structure of the shader
programming and the basic function using Cg/HLSL and so on, sourced from Unity's
documentation and the NVIDIA website.

Preface

3

What you need for this book
The following are the requirements for this book:

ff You will need Unity 4.6 or higher, which you can download from http://www.
unity3d.com/download/

ff 3D Studio Max (optional), which can be downloaded from http://usa.
autodesk.com/3ds-max/trial

ff TexturePacker (optional), which can be downloaded from http://www.
codeandweb.com/texturepacker

Who this book is for
This book is for experienced users who already have some basic knowledge of how to use
the Unity game engine and intermediate users who want to explore Unity above and beyond
the basic techniques.

Sections
A Hotshot book has several sections that will be elaborated as the book progresses.

Mission briefing
This section explains what you will build, with a screenshot of the completed project.

Why is it awesome?
This section explains why the project is cool, unique, exciting, and interesting. It describes
the advantages the project will give you.

Your Hotshot objectives
This section explains the major tasks required to complete your project, which are as follows:

ff Task 1

ff Task 2

ff Task 3

ff Task 4, and so on

http://www.unity3d.com/download/
http://www.unity3d.com/download/
http://usa.autodesk.com/3ds-max/trial
http://usa.autodesk.com/3ds-max/trial
http://www.codeandweb.com/texturepacker
http://www.codeandweb.com/texturepacker

Preface

4

Mission checklist
This section mentions prerequisites for the project (if any), such as resources or libraries
that need to be downloaded.

Each task is explained using individual sections.

Task 1

Prepare for lift off
This section explains any preliminary work that you need to do before beginning work
on the task.

Engage thrusters
This section lists the steps required in order to complete the task.

Objective complete – mini debriefing
This section explains how the steps performed in the previous section (Engage thrusters)
allow us to complete the task.

Classified intel
This section provides extra information that is relevant to the task.

After all the tasks are completed, the following sections will be present

Mission accomplished
This section explains the task you accomplished in the project.

A Hotshot challenge / Hotshot
challenges

This section explains additional things that can be done or tasks that can be performed
using the concepts explained in this project.

Preface

5

Conventions
In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Next,
we trigger the jump animation state by using _animator.SetTrigger("Jump");."

A block of code is set as follows:

void Init (bool isEquipment) : void {
 _isEquipment = isEquipment;
 …
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

// C# user:

Vector2 scrollPostion = Vector2.zero;
void OnGUI() {
scrollPostion = GUI.BeginScrollView(new Rect(0,0,100,40),
scrollPostion, new Rect(0,0,80,120));
GUI.Button(new Rect(0,0,80,40),"Button 1");
GUI.Button(new Rect(0,40,80,40),"Button 2");
GUI.Button(new Rect(0,80,80,40),"Button 3");
GUI.EndScrollView();
}

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Finally, we have attached
the sound effect and a Restart button to our game."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

6

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams used in
this book. The color images will help you better understand the changes in the output. You
can download this file from https://www.packtpub.com/sites/default/files/
downloads/5589OT_GraphicsBundle.pdf.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/5589OT_GraphicsBundle.pdf
https://www.packtpub.com/sites/default/files/downloads/5589OT_GraphicsBundle.pdf

Preface

7

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded on our website, or added to any list of existing errata, under the Errata
section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.allitebooks.com

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http://www.allitebooks.org

Project 1
Develop a Sprite and

Platform Game

Even in today's world, people remember Mario, Sonic, and Mega Man. Of course, Mario
was first introduced in the eighties, followed by Mega Man and Sonic, but even now the
new generation loves these games. Yes, we are talking about the old style 2D platform
games, which are still quite popular today, especially among indie game developers.

In this book, we will start the first project with a 2D platform game because there are some
basic tricks for a 2D platform game that will help you—those who haven't got into the
3D world yet—to understand more before jumping into the 3D world for the later projects.

There is a huge improvement on Unity after the release of 4.3. The best feature for most game
developers is the 2D feature in Unity, which will help us to speed up the 2D game development
time. In this project, we will be using a similar concept to the Unity's 2D Platformer project
in the assets store. This includes the new sprite object and the new 2D physics engine that
integrated Box2D (the 2D physics game engine that is used in many games such as Angry Birds).

We can also download the Unity 2D project from the Unity Asset Store:
https://www.assetstore.unity3d.com/#/content/11228

For more information about Box2D, visit the following URLs: http://
box2d.org/about/ and http://en.wikipedia.org/wiki/Box2D

https://www.assetstore.unity3d.com/#/content/11228
http://box2d.org/about/
http://box2d.org/about/
http://en.wikipedia.org/wiki/Box2D

Develop a Sprite and Platform Game

10

Mission briefing
We'll be creating a 2D platform or side-scrolling game, which is similar to Mario or other
games that we mentioned previously; it will have a simple character that can be made to
move, jump, and collect a key item for passing the level, and a Restart button to play the
game again. The following screenshot demonstrates this:

We will use a 2D character sprite sheet (which is the set of many small images in a large
image, as shown in the previous figure), and the new 2D feature in Unity to create our 2D
character. The new 2D feature in Unity helps us to manage the sprite sheet and set up the
animation for each character's movement without writing any script.

There are many tools that can help you to create a sprite sheet, such as
TexturePacker. It basically creates an image file with the data that contains all
the information such as name of the sprite, position, and sprite area. In this
process, we will have two files—the image file (.jpeg or .png) and datafile
(.txt or .xml)— which might be a bit confusing for beginners. So, Unity 4.3
solved this problem by including the Asset Import Setting, which we can just
use to import the asset and set the Texture Type to Sprite, and then set the
mode to either Multiple (the image that contains many sprites packed in one
file) or Single sprite.

For more information about TexturePacker and a sprite sheet, visit the
following URL: http://www.codeandweb.com/texturepacker
and http://www.codeandweb.com/what-is-a-sprite-sheet.

http://www.codeandweb.com/texturepacker
http://www.codeandweb.com/what-is-a-sprite-sheet.

Project 1

11

The purpose of this project is to familiarize you with the new 2D feature and language syntax
in Unity, which is very important when creating a playable game.

We will begin by setting up the sprite for our character, game level, and item in the game.
Next, we will create our character sprite object, create the animator controller, and set up
each animation clip for idle, walk, jump, and fall. We will also create the script, which will
control the character to show the correct animation (idle, walking, and jumping). This script
will allow us to control the character action by pressing the arrow key to move and space
bar to jump. Also, we will learn how to set up the custom input manager.

Next, we will create the level and platform using the sprite object with BoxCollider2D
and PolygonCollider2D attached, which will collide with the character that has
Rigidbody2D attached to make the movement realistic.

To end the game, we will create a trigger event by having a door and key game object. The
player needs to collect the key to be able to open the door and end the game. We will also
add sound to make our game lively, but we are not finishing it yet. The game needs to be
replayable. Lastly, we will add a Replay or Play again button to replay our game by using
Destroy and Instantiate to reset our character's position and key item.

Why is it awesome?
When we are done with this project, we will get a good understanding of how to create a
sprite and 2D platform game by using the new 2D feature in the Unity engine. Also, we will
be able to create our own 2D platform style game such as Sonic, Mario, and Mega Man, and
reuse some of our techniques, scripts, and concepts to create a 3D game at a later stage.

Your Hotshot objectives
This project will be split into five tasks. As we are not creating any enemies in our game,
we don't have to deal with any complex scripting. It will be a simple step-by-step process
from beginning to end. The following is the outline of the tasks:

ff Setting up a 2D level and collider

ff Creating a 2D character and animation

ff Controlling the character with the PlayerController_2D classes

ff Creating a key, door, and replay button

Develop a Sprite and Platform Game

12

Mission checklist
Before we start, we will need to get the latest Unity version (http://unity3d.com/unity/
download/) that includes MonoDevelop, which we will use for our scripting editor. We will
also need a few graphics for our character, key, and door as well as a collection of sound FX.
These can be downloaded as ZIP files from Packt's website: http://www.packtpub.com/
support?nid=8267.

Browse the preceding URL and download the Chapter1.zip package and unzip it. Inside the
Chapter1 folder, there are two unity packages: Chapter1Package.unitypackage (we will
use this package for this project) and Chapter1Package_Completed.unitypackage (this
is the completed project package that includes both C# and Unity JavaScript).

Setting up a 2D level and collider
In this section, we will begin with setting up all sprite assets including the character sprite
sheet, background, platform, door, and key sprite. Then, we will create a custom tag and
layer to use in our game. Next, we will set up our level by using the sprite game object and
attaching the 2D collider including BoxCollider2D and PolygonCollider2D.

Prepare for lift off
Before we start creating this project, we will create the project in Unity by performing the
following steps:

1.	 Create a new project by going to File | New Project to bring up the Project Wizard
window. Next, click on the Create new Project tab and set the Project Directory as
you want, as we can see in the following screenshot:

http://unity3d.com/unity/download/
http://unity3d.com/unity/download/
http://www.packtpub.com/support?nid=8267
http://www.packtpub.com/support?nid=8267

Project 1

13

As we can see from the preceding screenshot, we don't import any Unity assets
package because we won't be using any of those packages in this project. This helps
to reduce the size of the project because we don't have any unnecessary assets.
We also set up the default of Unity mode to use 2D instead of 3D, which basically
will set the camera to use the 2D view instead of the 3D view. It also sets the default
asset importing to use Sprite instead of the Texture type.

By setting the default mode to 2D or 3D in Unity editor, we can go to Edit |
Project Settings | Editor and change the Default Behavior Mode to 2D or 3D,
as we can see in the following screenshot:

We can also switch between the 2D and 3D views by clicking on the 2D tab in the
Scene view, as shown the following screenshot:

2.	 Then, go to Assets | Import Package | Custom Package… and select the
Chapter1Package.unitypackage file from the folder that we just unzipped
and click on Import to import all assets, as we can see in the following screenshot:

Develop a Sprite and Platform Game

14

3.	 To make it easy for us, we will go to SimplePlatform | Scenes in the Project view.
We will see there is one scene in this folder named SimplePlatform; double-click
to open it as shown in the following screenshot:

We will see that nothing in the Hierarchy has changed. No worries, we will use this
scene as our base scene to save all the progress that we will make in this project.

4.	 At the last step, we will go to SimplePlatform | Resources | Sprites | Level and click
on the Background file inside this folder in the Project view. Then, we will go to the
Inspector view, set it as the following screenshot, and click on Apply:

5.	 As we can see, this time we set the Sprite Mode to Single. This means that this file
only contains one sprite. Now we have finished the setup part. Next, we will start
building the level.

Engage thrusters
To start building the level, first we need to add new tags and layers. So, let's get on with it:

1.	 Let's go to Edit | Project Settings | Tags and Layers to bring up the Tags and Layers
inspector view and set it as follows:

Project 1

15

Tags

Size 5

Element 0 Ground

Element 1 RestartButton

Element 2 Key

Element 3 Door

Layers

User Layer 8 Player

User Layer 9 Ground

Tags make it easy to find the object, we need GameObject.
FindWithTag("TagName") or gameObject.tag. More details on
tags can be found at http://docs.unity3d.com/Documentation/
Components/Tags.html.

Layers are used to determine which object will be rendered or used for
raycasting. Sometimes, we can use layers to separate the objects to be
rendered. For example, we could have two cameras and set the first camera
to render only the foreground objects and then another camera to render
only the background object (such as, UI, or minimap). More details on layers
can be found at http://docs.unity3d.com/Documentation/
Components/Layers.html.

2.	 Next, we create the background by going to SimplePlatform | Resources | Sprites |
Level in the Project view, click on Background file, and drag it to the Hierarchy view,
as shown in the following screenshot:

http://docs.unity3d.com/Documentation/Components/Tags.html
http://docs.unity3d.com/Documentation/Components/Tags.html
http://docs.unity3d.com/Documentation/Components/Layers.html
http://docs.unity3d.com/Documentation/Components/Layers.html

Develop a Sprite and Platform Game

16

3.	 Then, we click on the Background object in the Hierarchy view, go to its Inspector
view, and set the parameters as follows:

Layer Level

Transform

Position X: 0, Y: 0, and Z: 0

Scale X: 3, Y: 3, and Z: 1

Sprite Renderer

Color R: 171, G: 245, B: 255, and A: 255

Order in Layer -1

4.	 Next, we will create the Level empty game object to contain our level by going to
GameObject | Create Empty; name it Level, and reset all the transformation to the
default value by going to its Inspector view and right-clicking on the gear wheel icon
and choosing Reset, as shown in the following screenshot:

5.	 Then, we will add the floor and wall by going to SimplePlatform | Resources |
Sprites | Level in the Project view and clicking on the arrow in front of the Platform
file. Then, we will click on the Floor object and drag it inside the Level game object
in the Hierarchy view, and do the same thing with the Wall object, as shown in the
following screenshot:

Project 1

17

6.	 Next, we will click on the Floor object in the Hierarchy view and add Box
Collider 2D by going to Component | Physics2D | Box Collider 2D. Then,
we will go to Inspector and set the values of the attributes as follows:

Tag Ground

Layer Ground

Transform

Position X: 0, Y: -9.2, and Z: 0

Scale X: 5, Y: 5, and Z: 1

Sprite Renderer

Order in Layer 2

Box Collider 2D

Material Ground (drag the Physics2D Material here)

7.	 Then, we duplicate the Floor object by pressing Ctrl + D (on Windows) or
command + D (on Mac) and set the second Floor object and change the
transform position as follows:

Transform

Position X: 0.25, Y: 11, and Z: 0

www.allitebooks.com

http://www.allitebooks.org

Develop a Sprite and Platform Game

18

Next, we will set the Wall object, click on this object, and add the Box Collider
 2D by going to Component | Physics2D | Box Collider 2D. Then, we will go to
Inspector and set it as follows:

Transform

Position X: -14, Y: -1.46, and Z: 0

Scale X: 5, Y: 5, and Z: 1

Sprite Renderer

Order in Layer 1

Box Collider 2D

Material Edge (drag the Physics 2D Material here)

8.	 Then, we duplicate the Wall object by pressing Ctrl + D (on Windows) or command +
D (on Mac) three times and set the second, third, and fourth Wall object and change
the transform position as follows:

Transform (second Wall object)

Position X: 14, Y: -1.47, and Z: 0

Transform (third Wall object)

Position X: -17.8, Y: -1.47, and Z: 0

Transform (forth Wall object)

Position X: 17.8, Y: -1.47, and Z: 0

9.	 Now, we will add LargePlatform. Let's go to SimplePlatform | Resources | Prefabs
in the Project view, and click on the arrow in front of the LargePlatform prefab. Then,
we will click on the Platform_5, Platform_4, Platform_6, and Platform_1 objects and
set Tag and Layer to Ground. Then, we will drag LargePlatform inside the Level game
object in the Hierarchy view, go to its Inspector, and set it as follows:

Transform

Position X: 7.34, Y: 0.7, and Z: 0

Project 1

19

10.	 Next, we add Platform_1. Let's go to SimplePlatform | Resources | Prefabs in the
Project view, click on the Platform_1 object, and set Tag and Layer to Ground. We will
see the Change Layer pop up; click on the No, this object only button. Then, we will
drag it inside the Level game object in the Hierarchy view, go to its Inspector, and set
it as follows:

Transform

Position X: 9.5, Y: -4, and Z: 0

11.	 Then, we do the same thing for Platform_3. Let's go to SimplePlatform | Resources
| Prefabs in the Project view, click on the Platform_3 object, and set Tag and Layer
to Ground. We will see the Change Layer pop up; click on the No, this object only
button. Then, we will drag it inside the Level game object in the Hierarchy view.
Go to Inspector, and set it as follows:

Transform

Position X: -6.28, Y: 2.33, and Z: 0

Scale X: 1.4, Y: 1.4, and Z: 0

12.	 Next, we will duplicate Platform_3 by pressing Ctrl + D or command + D to create
the second Platform_3 object and set it as follows:

Transform

Position X: 7.25, Y: 4.53, and Z: 0

Scale X: -1.4, Y: 1.4, and Z: 0

We will see the level in the Scene and Hierarchy view similar to the
following screenshot:

Develop a Sprite and Platform Game

20

13.	 We can see that we already have the Platform_1 and Platform_3 prefab. Now, we
will create the Platform_2 prefab from scratch. First, we will go to SimplePlatform |
Resources | Sprites | Level in the Project view and click on the arrow in front of the
Platform file. Then, we will click on the Platform_2 object and drag it inside the Level
game object in the Hierarchy view. Click on this object and add Polygon Collider 2D by
going to Component | Physics2D | Polygon Collider 2D. Then, we will go to Inspector
and set the values of the attributes as follows:

Tag Ground

Layer Ground

Transform

Position X: -7, Y: -1.17, and Z: 0

Box Collider 2D

Material Ground (drag the Physics2D Material here)

14.	 Now, we go to the Scene view. We will see that our Platform_2 sprite has
Polygon Collider 2D that matches the shape of this sprite, as shown in the
following screenshot:

15.	 From the preceding screenshot, we will see that there are too many vertices for this
sprite. So, we need to decrease and adjust the vertices to match the sprite.

Removing the vertex in Polygon Collider 2D means decreasing the time to
calculate unnecessary vertices' data, which will also help to speed up the
performance in the runtime.

16.	 Next, we will adjust the vertices in Polygon Collider 2D. To make it easy to
adjust, we will go to Platform_2 Inspector and click on the arrow in front of Sprite
Renderer to hide the 2D outline gizmos, as shown in the following screenshot:

Project 1

21

17.	 Now, we will remove the vertices in Collider Info from 50 to 7, which will optimize the
content and help the overall performance in the scene. We can do this by pressing Ctrl
(on Windows) or command (on Mac) . We will see the red dot. We can now click on
the vertex to remove the vertices from 50 to 7, similar to the following screenshot:

18.	 Next, we will adjust the vertices to match the sprite by pressing Shift. We will see
the green dot. We can go to each vertex to move it.

We can also add the vertex by pressing Shift and then clicking on the line.

For more information about Polygon Physics 2D, visit http://docs.
unity3d.com/Documentation/Components/class-
PolygonCollider2D.html.

http://docs.unity3d.com/Documentation/Components/class-PolygonCollider2D.html
http://docs.unity3d.com/Documentation/Components/class-PolygonCollider2D.html
http://docs.unity3d.com/Documentation/Components/class-PolygonCollider2D.html

Develop a Sprite and Platform Game

22

19.	 We will get the result as shown in the following screenshot (the position of each
vertex shows as the circle):

20.	 Then, we will create the Edge game object, which is basically to prevent the character
from getting stuck on the platform edge. Let's go to GameObject | Create Empty,
name it Edge, and drag it inside Platform_2.

21.	 Then, we will add Box Collider 2D to the Edge object by going to Component |
Physics2D | Box Collider 2D. Go to Inspector and set it as follows:

Transform

Position X: 1.47, Y: -0.2, and Z: 0

Rotation X: 0, Y: 0, and Z: 333.4

Box Collider 2D

Material Edge (drag the Physics 2D Material here)

Size X: 0.21 and Y: 0.5

22.	 Next, we will duplicate the Edge game object by pressing Ctrl + D or command + D
to create the second Edge object and set the values of the attributes as follows:

Transform

Position X: -1.52, Y: -0.02, and Z: 0

Rotation X: 0, Y: 0, and Z: 9.2

Project 1

23

Box Collider 2D

Material Edge (drag the Physics 2D Material here)

Size X: 0.21 and Y: 0.67

23.	 We got our Platform_2 game object. Next, we will create the prefab of this game
object by dragging the Platform_2 game object from the Hierarchy view to the
SimplePlatform | Resources | Prefabs in the Project view.

24.	 Next, we will create two more Platform_2 objects. Let's press Ctrl + D or
command + D twice to create the second and third Platform_2 object and
change the transform position as follows:

Transform (second Platform_2 object)

Position X: -10, Y: -3.27, and Z: 0

Transform (third Platform_2 object)

Position X: -9.25, Y: -5.87, and Z: 0

Scale X: 1.3, Y: 1.3, and Z: 1

25.	 Finally, we will see the result of our level as the following screenshot, and we
are now ready for the next step:

Develop a Sprite and Platform Game

24

Objective complete – mini debriefing
Basically, what we have done here is create a Background object and the Level object, and
set each platform that attached Box Collider 2D and Polygon Collider 2D, which we will use
to check the collision and make our player walkable on the platform. We also set the Order
in Layer in the Sprite Renderer component to get the correct depth from the background to
foreground, as shown in the following diagram:

We also adjust and remove the vertices of Polygon Collider 2D by holding the Shift or
Ctrl/command key. Then, we create the Edge object that uses a different Physics2D Material
from the platform object, which is used to prevent our player from getting stuck on the
platform's edge.

Classified intel
In 3D Unity mode, the camera can be set to either Orthographic or Perspective. The difference
between both projections is that with the Orthographic Projection, the object won't scale by a
factor inversely proportional to the distance from the camera. So in our scene, we will see only
one side of the cube that faces the camera. On the other hand, in the Perspective Projection,
we will see that the face of the cube will scale down depending on the distance from the
camera, which is similar to real life:

Project 1

25

On the other hand, in the 2D mode, we won't see any significant difference between
Orthographic Projection and Perspective Projection. In some cases, we will see only one
side if the cube is directly facing the camera. However, if we want to zoom in or out the
2D camera in the Orthographic Projection, we can only adjust the Size parameter. The Z
transform position will not do anything, which is different from the Perspective Projection.
We can either adjust the Z transform position or the Field of View parameter to zoom in or
out as shown in the following screenshot:

The Sprite Renderer and Sorting Layer
In the Sprite Renderer, we will see that there are two Layer properties, Sorting Layer and
Order in Layer, which will help us sort the depth of our sprite and tell Unity which sprite
should be drawn first (the lower number will get drawn first). We only use the Order in
Layer property to sort the depth of our sprite in the same layer group. So, here's when
Sorting Layer comes in handy.

If we go to Edit | Project Settings | Tags & Layers, we will see that there is Sorting Layers. This
is the new feature in Unity so that we can set our sprites in this layer group and tell Unity which
layer group should be drawn first. For example, we can set the background layer to contain all
the background sprites and then set the foreground layer to contain all the foreground sprites.
This way we will always know that the foreground sprites will be drawn after the background
sprites, as shown in the following screenshot:

For more information about Sprite Renderer and Sorting Layer, visit http://docs.
unity3d.com/Documentation/Components/class-SpriteRenderer.html.

http://docs.unity3d.com/Documentation/Components/class-SpriteRenderer.html
http://docs.unity3d.com/Documentation/Components/class-SpriteRenderer.html

Develop a Sprite and Platform Game

26

Creating a 2D character and
animation

In this step, we will start with setting up our sprites. Next, we will create our 2D character
from the sprite sheet in our SimplePlatform package. Then, we will create the animator
controller and the animation clip for idle, walking, falling, and jumping.

Prepare for lift off
Let's begin with setting up our character from the sprite sheet:

1.	 Now, we will go to SimplePlatform | Resources | Sprites | Characters and click on
the Spritesheet file inside this folder in the Project view. Then, we will go to the
Inspector view, set it as shown the following screenshot, and click on Apply:

2.	 In the Inspector view, we click on the Sprite Editor button, which will open the
Sprite Editor window. Then, we click on the Slice drop-down button to bring up the
Slice window. We will leave the parameters as it is and then click on the Slice button
to slice all the sprites as the following screenshot:

Project 1

27

3.	 Now, we will see the white frame on each sprite, click on the first sprite (on the
top-left corner) to bring up the sprite window, and rename from Spritesheet
_0 to Walk_0, as shown in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Develop a Sprite and Platform Game

28

4.	 Next, we will keep going by clicking on each sprite from top-left to bottom-right
corner and rename the sprites as follows:

Sprite name Renamed sprite

Spritesheet_0 Walk_0

Spritesheet_1 Walk_1

Spritesheet_2 Walk_2

Spritesheet_3 Walk_3

Spritesheet_4 Walk_4

Spritesheet_5 Walk_5

Spritesheet_6 Walk_6

Spritesheet_7 Idle_0

Spritesheet_8 Idle_1

Spritesheet_9 Jump_0

Spritesheet_10 Jump_1

Spritesheet_11 Jump_2

Then, we will click on the Apply button at the top-right corner of the Sprite Editor
window, as shown in the following screenshot:

5.	 If we go to the Project view, we will see that the Spritesheet file has an arrow in
front of it. If we click on the arrow, we see all the sprites that we just renamed,
as shown in the following screenshot:

Project 1

29

6.	 Finally, we will go to SimplePlatform | Resources | PhysicsMaterials in the Project
view. We will see that there is Physics2D Material for Ground and Edge, which control
Friction and Bounciness between Player and Level. We still need to create one more
Physics2D Material player for our player. So, right-click and go to Create | Physics2D
Material, name it Player, and set Friction to 1.2 and Bounciness to 0, as shown in
the following screenshot:

Engage thrusters
Now, we can start creating our character sprite. Let's get started:

1.	 Let's go to SimplePlatform | Resources | Sprites | Characters in the Project view
and click on the arrow in front of the Spritesheet file. Then, we will click on both
the Idle_0 and Idle_1 objects and drag it to the Hierarchy view. We will see the
pop-up window asking to create a new animation, set the filename to Idle, put it
in SimplePlatform | Resources | Sprites | Animation, and click on Save, as shown
in the following screenshot:

Develop a Sprite and Platform Game

30

2.	 Next, we will go to SimplePlatform | Resources | Sprites | Animation and click on
the Idle_0 object and rename it to PlayerAnimator.

3.	 Then, we go back to SimplePlatform | Resources | Sprites | Characters in the
Project view and click on the arrow in front of the Spritesheet file. After that, we
will click on all Walk objects from Walk_0 to Walk_7 (eight objects in total), and
drag them to the Idle_0 game object in the Hierarchy view. We will see the pop-up
window asking us to create the new animation again, set the filename to Walk, put
it in SimplePlatform | Resources | Sprites | Animation, and click on Save.

4.	 In the Spritesheet file in the Project view, we will click on Jump_0 and Jump_1 and
drag them to the Idle_0 game object in the Hierarchy view. We will see the pop-up
window asking us to create the new animation again, set the filename to Jump, put
it in SimplePlatform | Resources | Sprites | Animation, and click on Save.

5.	 We will do the same as the last step, but this time we will click on Jump_1 and
Jump_2, and drag them to the Idle_0 game object in the Hierarchy view. We will see
the pop-up window asking us to create the new animation again, set the filename to
Fall, put it in SimplePlatform | Resources | Sprites | Animation, and click on Save.

6.	 Next, we will go to SimplePlatform | Resources | Sprites | Animation in the Project
view. Then, we will click on the Fall and Jump animation, go to their Inspector view,
and uncheck Loop Time for both clips, as shown in the following screenshot:

Project 1

31

7.	 Then, we go to the Hierarchy view, rename Idle_0 to Player, go to its Inspector
view, and set the values of the attributes as follows:

Tag Player

Layer Default

Transform

Position X: -10, Y: 4.6, and Z: 0

Animator

Apply Root Motion Uncheck this option

Culling Mode Based On Renderers

8.	 Next, we will set up PlayerAnimator. Let's go to SimplePlatform | Resources |
Sprites | Animation in the Project view and double-click the PlayerAnimator object
to bring up the Animator view. Then, we click on each clip and layout the position
similar to the following screenshot:

9.	 Then, we click on each clip and go to Inspector to set the speed of each animation
clip. We will start with the Idle clip and move ahead; let's go to each
clip inspector and set it up as follows:

Clip Speed

Idle 0.15

Walk 0.8

Jump 0.5

Fall 0.5

Develop a Sprite and Platform Game

32

10.	 Next, we will add a few parameters to control when each animation will be played. Let's
go to the Parameters tab at the bottom-left corner of the Animator view, click on the
plus icon four times, and choose the name and type of parameter as follows:

Name Type

Speed Float

Jump Trigger

Fall Trigger

Ground Trigger

These parameters will be used as a condition to control the changing state of each
animation clip on our character.

11.	 Next, we will create the transition between each animation state. First, we will start
with our base animation Idle and transition to Walk. Right-click on the Idle clip and
choose Make Transition, which will bring up the arrow, and click-and-drag again on
top of the Walk clip. We will see the arrow line link from the Idle clip to the Walk
clip, as shown in the following screenshot:

12.	 Then, we want to click on the arrow line that we just created and go to Inspector |
Conditions and set Speed to a value greater than 0.1.

13.	 Next, we will create the transition back from the Walk to Idle animation. So, let's
right-click on the Walk clip, choose Make Transition, and then click-and-drag on
Idle. Then, we will click on the arrow line again to go to the Inspector and set a
value less than 0.1 for Speed in the Conditions view.

Project 1

33

14.	 Then, we set up the rest of the animation. This time we want the transition from
Walk to Fall. So, let's right-click on the Walk clip, choose Make Transition, and
then click-and-drag on Fall. After that, we will click on the arrow line again to go to
Inspector and set the Conditions view to Fall.

15.	 Also, we will create the transition from Fall back to Walk, go to the transition
Inspector, click on the plus icon to add another condition and set Speed as well as
Ground to a value greater than 0.1.

16.	 Next, we want the Idle clip transition to Fall. Let's create the transition arrow from
Idle to Fall, go to Inspector, and set the Conditions view to Fall.

17.	 We also need to create the transition from Fall back to Idle, set up its Inspector view,
click on the plus icon to add another condition, and set Speed to a value less than 0.1.

18.	 Then, we will create the transition arrow from Idle to Jump and set up its Inspector
view by setting its Conditions view to Jump.

19.	 Next, we create the transition arrow from Walk to Jump and set up its Inspector
view by setting its Conditions view to Jump.

20.	 Then, we need the transition arrow from Jump to Fall and set up its Inspector view
by setting its Conditions view to Fall.

21.	 The current Animator view will look similar to the following screenshot:

Develop a Sprite and Platform Game

34

22.	 Finally, we will need to attach Rigidbody 2D and Box Collider 2D to our Player game
object. Let's go back to the Hierarchy view, click on the Player game object, go to
Component | Physics 2D | Rigidbody 2D to add Rigidbody 2D, go to Component |
Physics 2D | Box Collider 2D to add Box Collider 2D, and then set up Inspector
as follows:

Rididbody 2D

Fixed Angle Check the box

Interpolate Interpolate

Box Collider 2D

Material Player (drag the Physics2D Material here)

Rigidbody – Mass and Drag / Rigidbody2D – Mass and Linear Drag

In Unity Rigidbody or Rigidbody2D, Mass doesn't make the object fall
faster or slower. The speed of the object will depend on gravity and drag.
Mass will only be used when the object is colliding with another, as the
higher mass will push the lower mass more. (Make sure you keep Mass
between 0.1 and never more than 10). The links to the documentation
are as follows: http://docs.unity3d.com/Documentation/
ScriptReference/Rigidbody2D-mass.html and http://
docs.unity3d.com/Documentation/ScriptReference/
Rigidbody-mass.html.

Drag or Linear Drag can be used to slow down the object. The higher the
drag, the more the object will slow down. The links to the documentation
are as follows: http://docs.unity3d.com/Documentation/
ScriptReference/Rigidbody2D-drag.html and http://
docs.unity3d.com/Documentation/ScriptReference/
Rigidbody-drag.html.

Objective complete – mini debriefing
We just set up the Player sprite from the Spritesheet file that included multiple sprites by
using the Unity Sprite Import Settings to slice each sprite and rename it to make it easier
to use in each animation clip. We also create the animator controller, which is a part of the
Mecanim animation system, to switch the state between each animation clip by using the
float value and trigger condition.

The Mecanim animation system is the new animation system in Unity, which helps us to
simplify the complex interactions between each animation with a visual programming tool.
It also provides an easy workflow to set up the humanoid character animation. For more
information on the Mecanim animation system, visit http://docs.unity3d.com/
Documentation/Manual/MecanimAnimationSystem.html.

http://docs.unity3d.com/Documentation/ScriptReference/Rigidbody2D-mass.html
http://docs.unity3d.com/Documentation/ScriptReference/Rigidbody2D-mass.html
http://docs.unity3d.com/Documentation/ScriptReference/Rigidbody-mass.html
http://docs.unity3d.com/Documentation/ScriptReference/Rigidbody-mass.html
http://docs.unity3d.com/Documentation/ScriptReference/Rigidbody-mass.html
http://docs.unity3d.com/Documentation/ScriptReference/Rigidbody2D-drag.html
http://docs.unity3d.com/Documentation/ScriptReference/Rigidbody2D-drag.html
http://docs.unity3d.com/Documentation/ScriptReference/Rigidbody-drag.html
http://docs.unity3d.com/Documentation/ScriptReference/Rigidbody-drag.html
http://docs.unity3d.com/Documentation/ScriptReference/Rigidbody-drag.html
http://docs.unity3d.com/Documentation/Manual/MecanimAnimationSystem.html
http://docs.unity3d.com/Documentation/Manual/MecanimAnimationSystem.html

Project 1

35

We will get in more details about Mecanim in Project 4, Add Character Control and
Animation to Our Hero/Heroine.

Finally, we add RigidBody 2D and Box Collider 2D to our player. Then, we tell Rigidbody 2D
to use the Fixed Angle and Interpolate mode. Also, we set the Box Collider 2D Material to
use the Player Physics 2D Material that we've created.

Fixed Angle and Interpolate mode

Why do we need to perform Fixed Angle of RigidBody 2D? Is this also similar
to the freezing of the rotation and position of Rigidbody? To use Fixed Angle
of RigidBody 2D, we basically tell Unity that it will ignore the calculation
of the rotation of the object. This will make our character always stay at
the same angle while moving. In this way, we can also save the CPU cycles
because Unity will ignore the unnecessary calculation and only calculate
the one it needs. For the Interpolate mode, we've set it to Interpolate to
ensure smooth motion, which use the object's position of the previous
frame to calculate the next position. This will also prevent jerky movement.
For more information on Interpolate, visit http://docs.unity3d.
com/Documentation/ScriptReference/Rigidbody2D-
interpolation.html.

Classified intel
In this step, we create the Player physics 2D material object and assign it to Box Collider
2D for our Player game object. So, what is Physics2D Material? If we take a close look at
the inspector of the Physics2D Material object, we will see that there are two properties:
Friction and Bounciness. Friction is the force that resists the relative motion of this collider.
Bounciness is the degree to which collisions rebound from the surface (0 means no bounce
and 1 means perfect bounce with no loss energy).

For more details of Physics2D Material, visit http://docs.
unity3d.com/Documentation/Components/class-
PhysicsMaterial2D.html.

We've set Friction for the Player physics 2D material to 1.2, which means that we will use 1
to calculate the coefficient of friction in this collider. If we remember the previous step, we
also assigned the Edge and Ground physics 2D material object on our platform and edge. If
we take a look at the Ground physics 2D material's Friction value, we will see that the value
is equal to 1. This means that when we stop moving our character, there won't be any much
force left to push the character forward.

http://docs.unity3d.com/Documentation/ScriptReference/Rigidbody2D-interpolation.html
http://docs.unity3d.com/Documentation/ScriptReference/Rigidbody2D-interpolation.html
http://docs.unity3d.com/Documentation/ScriptReference/Rigidbody2D-interpolation.html
http://docs.unity3d.com/Documentation/Components/class-PhysicsMaterial2D.html
http://docs.unity3d.com/Documentation/Components/class-PhysicsMaterial2D.html
http://docs.unity3d.com/Documentation/Components/class-PhysicsMaterial2D.html

Develop a Sprite and Platform Game

36

On the other hand, the Edge physics 2D material object has the Friction value set to 0, which
means that there is no friction in this collider. So, it will result our character not being able to
stop on this collider. This helps us to prevent our character from getting stuck on the edge of
the platform, as shown in the following screenshot:

Controlling the character with the
PlayerController_2D class

In this section, we will create a new script to control the movement of our character and a
sprite animation for each action of our character. We will use MonoDevelop as our scripting
editor, which comes with Unity. MonoDevelop is mainly designed for the C# and .NET
environments, so if you are comfortable with C#, you will probably love it. However, if you use
Unity JavaScript, it also has many tools to help us write the script faster and debug better, such
as finding as well as replacing words in the whole project by pressing command + Shift + F in
Mac or Ctrl + Shift + F in Windows and autocomplete (or Intellisense), to name a few. Moving
from Unity JavaScript to C# or C# to Unity JavaScript is also a comparatively smooth transition.

In this version of this book, we will show examples for both Unity JavaScript
and C#. You can check out the major difference between Unity JavaScript and
C# in the Appendix C, Major differences Between C# and Unity JavaScript.

Prepare for lift off
Now, we are just about to start coding, but first let's make sure that we have everything ready:

1.	 Next, we want to make sure that Unity uses MonoDevelop as our main Scripting
editor (Unity | Preferences in Mac or Edit | Preferences in Windows).

2.	 We will see a Unity Preferences window. In the External Tools tab, go to the
External Script Editor and make sure that the MonoDevelop option is selected. Click
on Browse…, go to Applications | Unity | MonoDevelop.app in Mac or {unity install
path} | Unity | MonoDevelop | MonoDevelop.exe in Windows, and we are done:

Project 1

37

If we develop a game for Android, we can also set the Android SDK Location path here as
shown in the previous screenshot.

Engage thrusters
Now, we are ready to create the PlayerController_2D script. Let's get started:

1.	 First, go to Assets | Create | Javascript (for Unity JavaScript developers)
or Assets | Create | C# Script (for C# developers) and name our script as
PlayerController_2D.

2.	 Double-click on the script; it will open the MonoDevelop window.

3.	 Now, we will see three windows in the MonoDevelop screen:

�� On the top-left is Solution; we can see our project folder here, but it
will only show the folder that contains a script

�� On the bottom-left, we will see a Document Outline; this window will
show all the functions, classes, and parameters in the file

�� The last window on the right will be used to type our code

4.	 Let's get our hands dirty with some code—first start with defining the following
functions to initialize the variables: the Awake() and Start() function.

Awake ()

Awake () is called when the script instance is being loaded. It used to
initialize any variable or game state before calling the Start() function.
In the Awake() function, we usually put any GetComponent()
or Find() object function, which will make it easier to set up all the
parameters during Start().

www.allitebooks.com

http://www.allitebooks.org

Develop a Sprite and Platform Game

38

5.	 We need to remove the autogenerated code and replace it with the following code:

// Unity JavaScript user:

#pragma strict
@script RequireComponent(AudioSource)
@script RequireComponent(BoxCollider2D)
@script RequireComponent(Rigidbody2D)
// Distance from the character position to the ground
private final var RAYCAST_DISTANCE : float = 0.58f;
// This number should be between 0.35 to 0.49
private final var CHARACTER_EDGE_OFFSET : float = 0.40f;	
var doorOpenSound : AudioClip;
var getKeySound : AudioClip;
var jumpSound : AudioClip;
var moveForce : float = 80f;
var jumpForce : float = 350f;
var maxSpeed : float = 3f;
var layerMask : LayerMask;
private var _animator : Animator;
private var _boxCollider2D : BoxCollider2D;
private var _isFacingRight : boolean = true;
private var _isJump : boolean = false;
private var _isFall : boolean = false;
private var _isGrounded : boolean = false;
private var _gameEnd : boolean = false;
private var _height : float;
private var _lastY : float;
private var _horizontalInput : float;
function Awake() {
 _animator = GetComponent.<Animator>();
 _boxCollider2D = GetComponent.<BoxCollider2D>();
 _height = _boxCollider2D.size.y;
}
function Start () {
 _isFacingRight = true;
 _isJump = false;
 _isFall = false;
 _isGrounded = false;
 _gameEnd = false;
 _lastY = transform.position.y;
 Camera.main.transform.position = new Vector3(transform.
position.x, transform.position.y, Camera.main.transform.
position.z);
}

Project 1

39

#pragma strict

In Unity JavaScript, we can use #pragma strict to tell Unity to disable
dynamic typing (var name = 5) and force us to use static typing (var
name : int = 5). This will make it easy for us to debug. For example, if
we forgot to use static typing, you will see an error message from the Unity
console window. Using strict typing also makes the code run faster as the
complier doesn't have to go and do the type lookups.

// C# user:

using UnityEngine;
using System.Collections;
[RequireComponent(typeof(AudioSource))]
[RequireComponent(typeof(BoxCollider2D))]
[RequireComponent(typeof(Rigidbody2D))]
public class PlayerController_2D : MonoBehaviour
{
 // Distance from the character position to the ground
 const float RAYCAST_DISTANCE = 0.58f;
 // This number should be between 0.35 to 0.49
 const float CHARACTER_EDGE_OFFSET = 0.40f;

 public AudioClip doorOpenSound;
 public AudioClip getKeySound;
 public AudioClip jumpSound;
 public float moveForce = 80f;
 public float jumpForce = 350f;
 public float maxSpeed = 3f;
 public LayerMask layerMask;
 Animator _animator;
 BoxCollider2D _boxCollider2D;
 bool _isFacingRight = true;
 bool _isJump = false;
 bool _isFall = false;
 bool _isGrounded = false;
 bool _gameEnd = false;
 float _height;
 float _lastY;
 float _horizontalInput;
 void Awake() {
 _animator = GetComponent<Animator>();
 _boxCollider2D = GetComponent<BoxCollider2D>();
 _height = _boxCollider2D.size.y;

Develop a Sprite and Platform Game

40

 }
 void Start () {
 _isFacingRight = true;
 _isJump = false;
 _isFall = false;
 _isGrounded = false;
 _gameEnd = false;
 _lastY = transform.position.y;
 Camera.main.transform.position = new Vector3(transform.
position.x, transform.position.y, Camera.main.transform.
position.z);
 }
}

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

@script RequireComponent(Component) and [RequireCompon
ent(typeof(Component))]

We add RequireComponent to force the script to automatically add
the required component as a dependency when adding this class to the
game object. For more details, visit http://docs.unity3d.com/
Documentation/ScriptReference/RequireComponent.html.

6.	 Next, we will add the Flip() function after the Start() function to make our
character sprite show the correct graphics when moving left or right. The code for
Unity JavaScript and C# users are as follows:

// Unity JavaScript user:

private function Flip () {
 _isFacingRight = !_isFacingRight;
 var scale : Vector3 = transform.localScale;
 scale.x *= -1;
 transform.localScale = scale;
}

// C# user: (Put the code inside the class)

void Flip () {
 _isFacingRight = !_isFacingRight;

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://docs.unity3d.com/Documentation/ScriptReference/RequireComponent.html
http://docs.unity3d.com/Documentation/ScriptReference/RequireComponent.html

Project 1

41

 Vector3 scale = transform.localScale;
 scale.x *= -1;
 transform.localScale = scale;
}

7.	 Next, we will add another function, which will use Physics2D.Raycast to check
whether the player is on the ground or not. Let's create the Grounded() function
as follows:

// Unity JavaScript user:

private function Grounded () {
 var distance : float = _height*RAYCAST_DISTANCE;
 var hitDirectionV3 : Vector3 = transform.TransformDirection(-
Vector3.up);
 var hitDirection : Vector2 = new Vector2(hitDirectionV3.x,hitDir
ectionV3.y);	
 var rightOrigin : Vector2 = new Vector2(transform.position.x
+ (_boxCollider2D.size.x*CHARACTER_EDGE_OFFSET), transform.
position.y);
 var leftOrigin : Vector2 = new Vector2(transform.position.x
- (_boxCollider2D.size.x*CHARACTER_EDGE_OFFSET), transform.
position.y);
 var origin : Vector2 = new Vector2(transform.position.x,
transform.position.y);
 if (Physics2D.Raycast (origin, hitDirection, distance,
layerMask.value)) {
 _isGrounded = true;
 } else if (Physics2D.Raycast (rightOrigin, hitDirection,
distance, layerMask.value)) {
 _isGrounded = true;
 } else if (Physics2D.Raycast (leftOrigin, hitDirection,
distance, layerMask.value)) {
 _isGrounded = true;
 } else {
 if (_isGrounded) {
 if (Mathf.Floor(transform.position.y) == _lastY) {
 _isGrounded = true;
 } else {
 _isGrounded = false;
 }
 }
 }
 _lastY = Mathf.Floor(transform.position.y);
}

// C# user: (Put the code inside the class)

Develop a Sprite and Platform Game

42

void Grounded () {
 float distance = _height*RAYCAST_DISTANCE;
 Vector3 hitDirectionV3 = transform.TransformDirection (-Vector3.
up);
 Vector2 hitDirection = new Vector2(hitDirectionV3.x,hitDirection
V3.y);
 Vector2 rightOrigin = new Vector2(transform.position.x +
(_boxCollider2D.size.x*CHARACTER_EDGE_OFFSET), transform.
position.y);
 Vector2 leftOrigin = new Vector2(transform.position.x -
(_boxCollider2D.size.x*CHARACTER_EDGE_OFFSET), transform.
position.y);
 Vector2 origin = new Vector2(transform.position.x, transform.
position.y);
 if (Physics2D.Raycast (origin, hitDirection, distance,
layerMask.value)) {
 _isGrounded = true;
 } else if (Physics2D.Raycast (rightOrigin, hitDirection,
distance, layerMask.value)) {
 _isGrounded = true;
 } else if (Physics2D.Raycast (leftOrigin, hitDirection,
distance, layerMask.value)) {
 _isGrounded = true;
 } else {
 if (_isGrounded) {
 if (Mathf.Floor(transform.position.y) == _lastY) {
 _isGrounded = true;
 } else {
 _isGrounded = false;
 }
 }
 }
 _lastY = Mathf.Floor(transform.position.y);
}

8.	 Next, we will include the script in the Update() function and LateUpdate()
function that get called after the Update() function. These functions will be used
to check the input from the user and update the camera to follow our character
movement. The code for these functions are as follows:

// Unity JavaScript user:

function Update() {
 if (!_gameEnd) {
 _horizontalInput = Input.GetAxis("Horizontal");
 if ((!_isFacingRight && (_horizontalInput > 0)) ||
 (_isFacingRight && (_horizontalInput < 0))) {

Project 1

43

 Flip();
 }
 Grounded();
 if(Input.GetButtonDown("Jump") && _isGrounded) {
 _isJump = true;
 }
 }
}
function LateUpdate() {
 if (!_gameEnd) {
 Camera.main.transform.position = new Vector3(transform.
position.x, transform.position.y, Camera.main.transform.
position.z);
 }
}

// C# user: (Put the code inside the class)

void Update() {
 if (!_gameEnd) {
 _horizontalInput = Input.GetAxis("Horizontal");
 if ((!_isFacingRight && (_horizontalInput > 0)) ||
 (_isFacingRight && (_horizontalInput < 0))) {
 Flip();
 }
 Grounded();
 if(Input.GetButtonDown("Jump") && _isGrounded) {
 _isJump = true;
 }
 }
}
void LateUpdate() {
 if (!_gameEnd) {
 Camera.main.transform.position = new Vector3(transform.
position.x, transform.position.y, Camera.main.transform.
position.z);
 }
}

9.	 Then, we create a FixedUpdate() function, which will handle the animation state
changing (Idle, Walk, Jump, or Fall) and add force to move our character horizontally
and vertically. Let's add this function as follows:

// Unity JavaScript user:

function FixedUpdate () {

Develop a Sprite and Platform Game

44

 if (!_gameEnd) {
 _animator.SetFloat("Speed", Mathf.Abs(_horizontalInput));
 var xSpeed : float = Mathf.Abs(_horizontalInput * rigidbody2D.
velocity.x);
 if (xSpeed < maxSpeed) {
 rigidbody2D.AddForce(Vector2.right * _horizontalInput *
moveForce);
 }
 if (Mathf.Abs(rigidbody2D.velocity.x) > maxSpeed) {
 var newVelocity : Vector2 = rigidbody2D.velocity;
 newVelocity.x = Mathf.Sign(newVelocity.x) * maxSpeed;
 rigidbody2D.velocity = newVelocity;
 }
 if(_isJump) {
 _animator.SetTrigger("Jump");
 audio.volume = 0.3f;
 audio.PlayOneShot(jumpSound);	
 rigidbody2D.AddForce(new Vector2(0f, jumpForce));
 _isJump = false;
 }
 if (!_isGrounded) {
 if ((rigidbody2D.velocity.y <= 0f) && !_isFall) {
 _animator.SetTrigger("Fall");
 _isFall = true;
 }
 }
 if (_isGrounded) {
 if (_isFall) {
 _animator.SetTrigger("Ground");
 _isFall = false;
 } else {
 var animationStateInfo : AnimatorStateInfo = _animator.
GetCurrentAnimatorStateInfo(0);
 if ((rigidbody2D.velocity.y < 0f) && (animationStateInfo.
IsName("Base Layer.Jump"))) {
 _animator.SetTrigger("Fall");
 _isFall = true;
 }
 }
 }
 }

Project 1

45

}

// C# user: (Put the code inside the class)

void FixedUpdate () {
 if (!_gameEnd) {
 #region Setting player horizontal movement
 _animator.SetFloat("Speed", Mathf.Abs(_horizontalInput));
 float xSpeed = Mathf.Abs(_horizontalInput * rigidbody2D.
velocity.x);
 if (xSpeed < maxSpeed) {
 rigidbody2D.AddForce(Vector2.right * _horizontalInput *
moveForce);
 }
 if (Mathf.Abs(rigidbody2D.velocity.x) > maxSpeed) {
 Vector2 newVelocity = rigidbody2D.velocity;
 newVelocity.x = Mathf.Sign(newVelocity.x) * maxSpeed;
 rigidbody2D.velocity = newVelocity;
 }
 #endregion
 #region If the player should jump
 if(_isJump) {
 _animator.SetTrigger("Jump");
 audio.volume = 0.3f;
 audio.PlayOneShot(jumpSound);	
 rigidbody2D.AddForce(new Vector2(0f, jumpForce));	
 _isJump = false;
 }
 #endregion
 #region If the player should fall
 if (!_isGrounded) {
 if ((rigidbody2D.velocity.y <= 0f) && !_isFall) {
 _animator.SetTrigger("Fall");
 _isFall = true;
 }
 }
 #endregion
 #region If the player is grounded
 if (_isGrounded) {
 if (_isFall) {
 _animator.SetTrigger("Ground");
 _isFall = false;
 } else {

Develop a Sprite and Platform Game

46

 AnimatorStateInfo animationStateInfo = _animator.
GetCurrentAnimatorStateInfo(0);
 if ((rigidbody2D.velocity.y < 0f) && (animationStateInfo.
IsName("Base Layer.Jump"))) {
 _animator.SetTrigger("Fall");
 _isFall = true;
 }
 }
 }
 #endregion
 }
}

#region YourComment - #endregion

In C#, we can put any script between #region Your Code
Discription and #endregion to specify a block of code that
we can expand or collapse by clicking on the plus and minus sign
in MonoDevelop.

We can see how to use #region ….. #endregion in the following screenshot:

Lastly, we will add the OnDrawGizmos() function in this class. It is a very nice
function that allows us to debug the game, the result of which we won't see in
the real game. Let's add the following block of code:

// Unity JavaScript user:

function OnDrawGizmos() {

Project 1

47

 _boxCollider2D = GetComponent.<BoxCollider2D>();
 _height = _boxCollider2D.size.y;
 var distance : float = (_height * RAYCAST_DISTANCE);
 var rightOrigin : Vector3 = new Vector3(transform.position.x
+ (_boxCollider2D.size.x*CHARACTER_EDGE_OFFSET), transform.
position.y, transform.position.z);
 var leftOrigin : Vector3 = new Vector3(transform.position.x - (_
boxCollider2D.size.x*CHARACTER_EDGE_OFFSET), transform.position.y,
transform.position.z);
 Gizmos.color = Color.red;
 Gizmos.DrawRay(transform.position, transform.TransformDirection
(-Vector3.up) * distance);
 Gizmos.DrawRay(rightOrigin, transform.TransformDirection
(-Vector3.up) * distance);
 Gizmos.DrawRay(leftOrigin, transform.TransformDirection
(-Vector3.up) * distance);
}

// C# user: (Put the code inside the class)
void OnDrawGizmos() {
 _boxCollider2D = GetComponent<BoxCollider2D>();
 _height = _boxCollider2D.size.y;
 float distance = (_height * RAYCAST_DISTANCE);
 Vector3 rightOrigin = new Vector3(transform.position.x + (_
boxCollider2D.size.x*CHARACTER_EDGE_OFFSET), transform.position.y,
transform.position.z);
 Vector3 leftOrigin = new Vector3(transform.position.x - (_
boxCollider2D.size.x*CHARACTER_EDGE_OFFSET), transform.position.y,
transform.position.z);
 Gizmos.color = Color.red;
 Gizmos.DrawRay(transform.position, transform.TransformDirection
(-Vector3.up) * distance);
 Gizmos.DrawRay(rightOrigin, transform.TransformDirection
(-Vector3.up) * distance);
 Gizmos.DrawRay(leftOrigin, transform.TransformDirection
(-Vector3.up) * distance);
}

10.	 Now, save it and go back to Unity; drag-and-drop the PlayerController_2D script
to Player, click on Player, and go to the Inspector window. Click on Idle Sprite and
Walk Sprite to expand it and then set the following:

Player Controller_2D (Script)

Door Open Sound doorOpen

Get Key Sound getkey

www.allitebooks.com

http://www.allitebooks.org

Develop a Sprite and Platform Game

48

Player Controller_2D (Script)

Jump Sound jump

Layer Mask Ground

Yes! We are done. Let's click on the Play button to play the game. We will see our player
moving his hand back and forth. Next, press the A or left arrow / D or right arrow to move
the player to the left or to the right; now we see that he is walking. We can also press the
Space bar to make our character jump. Isn't that cool?

Objective complete – mini debriefing
We just created a script that controls the movement of our character and his animation.
First, we created the parameters to use in our script. We also used the const keyword in
C# and the final keyword in Unity JavaScript to create the constant variables.

The const and final keywords

We used the const keyword in C# to specify that the value of the field
or local variable is constant, which means it can't be modified from
anywhere else.

However, there is no const keyword in Unity JavaScript, so we use the
final keyword instead; there is a slight difference between the final
and const keywords. The const keyword can only applied to a field
whose value is to be known at compile time, such as const float. So,
this means that we can't use the const keyword with Vector3, Rect,
Point, and all the struct that are included in Unity. On the other hand,
we will use readonly instead. However, the final keyword can be
used in the both cases.

For more details, visit http://tutorials.csharp-online.net/
CSharp_FAQ%3A_What_are_the_differences_between_
CSharp_and_Java_constant_declarations.

Then, we get _animator, _boxCollider2D, and _height in the Awake() function to
check the animation state while it is moving. Then, we set all the variables to their default
value. Next, we created the Flip() function, which will set _isFacingRight to true or
false depending on the character movement. This function also sets the local x scale to 1
if the character is facing right and -1 if it's facing left.

The next function that we created is the Grounded() function that uses Physics2D.
Raycast to check whether our character is on the ground or not.

http://tutorials.csharp-online.net/CSharp_FAQ%3A_What_are_the_differences_between_CSharp_and_Java_constant_declarations
http://tutorials.csharp-online.net/CSharp_FAQ%3A_What_are_the_differences_between_CSharp_and_Java_constant_declarations
http://tutorials.csharp-online.net/CSharp_FAQ%3A_What_are_the_differences_between_CSharp_and_Java_constant_declarations

Project 1

49

In the Update() function, we get the character's horizontal movement by using Input.
GetAxis("Horizontal"). Then, we check for the movement direction and call the
Flip() function. After that, we call the Grounded() function to check whether the
character is on the ground or not. If not, we can make the character jump by using Input.
GetButtonDown("Jump"). Next, we update our camera position by using Camera.main
to get access to the Main Camera object and set its position relative to Player.

Camera.main lets us access a Camera object that has the
MainCamera tag from anywhere we want.

In the FixedUpdate() function, we change the animation state from Idle to Walk by using
_animator.SetFloat("Speed", Mathf.Abs(_horizontalInput));. Next, we get the
x speed and check that the speed is lower than the maximum speed. Then, we add the force to
Rigidbody2D by using rigidbody2D.AddForce(Vector2.right * _horizontalInput
* moveForce);. We also make sure that the velocity doesn't reach the maximum limit after
adding the force by assigning newVelocity to rigidbody2D.velocity.

Next, we trigger the jump animation state by using _animator.SetTrigger("Jump");.
We also add the force to make our character jump using rigidbody2D.AddForce
(new Vector2(Of,jumpForce);. Then, we trigger the fall animation state by using
_animator.SetTrigger("Fall");. We also trigger the ground animation state by
using _animator.SetTrigger("Ground"); if our character is falling.

Then, we check for the current animation state by getting animatorStateInfo using
_animator.GetCurrentAnimatorStateInfo(0);. Then, if the current state is the
jump state and y velocity lower than 0, we will change the animation state to the fall
state using if ((rigidbody2D.velocity.y < 0) && (animationStateInfo.
IsName("BaseLayer.Jump")).

At last, we use the OnDrawGizmos() function to see the visual of the ray that was drawn
in the Grounded() function using Physics2D.Raycast. We can also use this function to
debug the game without removing any code when releasing the game. Because all the code
in the OnDrawGizmos() function won't be shown in the real game, it's a convenient way to
debug our game. As we can see from the following figure, the red arrows represent where
the raycast is, which will only show in the scene view:

Develop a Sprite and Platform Game

50

Classified intel
In Unity, we can set a custom Input Manager by going to Edit | Project Settings | Input. In
Inspector, click on Axes and you will see that the value of Size is 15, which is the array length
of all the inputs. If we want more than 15 inputs, we can put the number here (the default
is 15). Next, we will see all 15 names from Horizontal to Jump as a default setting. Each one
will have its own parameters, which we can set up as follows:

For more information of each parameter, go to the following link: http://docs.unity3d.
com/Manual/class-InputManager.html.

http://docs.unity3d.com/Manual/class-InputManager.html
http://docs.unity3d.com/Manual/class-InputManager.html

Project 1

51

The Negative Button and Positive Button here will send the negative and positive value,
which in most cases is used to control directions such as, left, right, up, and down.
There is a Dead parameter, which will set any number that is lower than this parameter
to 0, which is very useful when we use a joystick.

Also, setting Type to Key or Mouse Button and enabling the Snap parameter will reset axis
values to zero after it receives opposite inputs.

Physics2D.Raycast
If we take a look at the Grounded() function and check out the following highlighted code,
we will see that we have cast the ray a bit longer than the sprite collider:

if (Physics2D.Raycast (origin, hitDirection, distance, layerMask.
value)) {
 _isGrounded = true;
} else if (Physics2D.Raycast (rightOrigin, hitDirection, distance,
layerMask.value)) {
 _isGrounded = true;
} else if (Physics2D.Raycast (leftOrigin, hitDirection, distance,
layerMask.value)) {
 _isGrounded = true;
}

From the highlighted code, we draw Raycast from the middle of our character downward
by 0.58 units. Why don't we set it to 0.5? We set it this way to make our character stay on
the edge of the floor surface. If we set it to 0.5, we will see that the character will not hit
the ground. This is because of the way Box Collider 2D and Polygon Collider 2D detect other
collider objects in Unity, as we can see in the following screenshot:

One last thing for Gizmos: if we want to see our gizmos in the game scene, we can click on
the Gizmos tab on the top-right corner of the game scene:

Develop a Sprite and Platform Game

52

Creating a key, door, and replay
button

In this step, we will create the end point (door). We will also create a trigger Collider,
which will check for the condition that if the player collected the item, he/she can win the
game; of course, the item's the key to open our door. At last, we will create the restart
button so that we can restart the game after the game ends.

Prepare for lift off
Let's make sure that we have the sound effects setting correct by going to the SimplePlatform
| Resources | Sound folder in the Project view. We will see buttonClick.aiff, doorOpen.wav,
getKey.aiff, and jump.wav. Unity, by default, translates every sound that we import in our
project to 3D, but we don't really need it as we are creating a 2D game. So, we will click on
each sound in the Sound folder in the Project view, go to their Inspector window, and make
sure that the 3D Sound is unchecked. If not, uncheck it and click on the Apply button:

Engage thrusters
Here, we will create the object's Key and Door object first, and then we will create the
RestartButton using GUITexture. Let's do this as follows:

1.	 Let's go to SimplePlatform | Resources | Sprites | Level in the Project view and
drag the Key object to the Hierarchy view. At the Hierarchy view, we will click on
the Key game object and then go to Component | Physics 2D | Circle Collider 2D
to add the Circle Collider 2D component. Next, we will go to its Inspector view,
and set it as follows:

Project 1

53

Tag Key

Transform

Position X: 10, Y: -2, and Z: 0

Scale X: 0.7, Y: 0.7, and Z: 1

Sprite Renderer

Color R: 255, G: 142, B: 0, and A: 255

Circle Collider 2D

Is Trigger Check the box

2.	 Next, we click on the Key game object in the Hierarchy view and drag inside
SimplePlatform | Resources | Prefabs in the Project view to create the Key
prefab object.

3.	 Then, we will create the Door game object by going to SimplePlatform | Resources
| Sprites | Level in the Project view and dragging the DoorClose object to the
Hierarchy view. At the Hierarchy view, we will click on the DoorClose game object,
go to Component | Physics 2D | Box Collider 2D, and then go to Component |
Miscellaneous | Animator.

4.	 Next, we will click on the DoorClose game object, rename it to Door, and go to
Inspector, and set it as follows:

Tag Door

Transform

Position X: 0.65, Y: -2.38, and Z: 0

Scale X: 1.5, Y: 1.5, and Z: 1

Circle Collider 2D

Is Trigger Check the box

Animator

Controller DoorAnimator

Apply Root Motion Uncheck the box

Culling Mode Based On Renderers

5.	 Now we've got the Key and Door game object. We need to go back to the
PlayerController_2D script and add a function to make this work. Let's open
the PlayerController_2D script and add the OnTriggerEnter2D() function
as shown in the following highlighted script:

// Unity JavaScript user:

private var _hasKey : boolean = false;
 …

Develop a Sprite and Platform Game

54

function Start () {
…
 _hasKey = false;
}
…
function OnTriggerEnter2D (hit : Collider2D) : IEnumerator {
 if (!_gameEnd) {
 if (hit.tag == "Key") {
 if (!_hasKey) {
 _hasKey = true;
 audio.volume = 1.0f;
 audio.PlayOneShot(getKeySound);
 Destroy (hit.gameObject);
 }
 }

 if (hit.tag == "Door") {
 if (_hasKey) {
 _gameEnd = true;
 _animator.enabled = false;
 audio.volume = 1.0f;
 audio.PlayOneShot(doorOpenSound);
 var doorAnimator : Animator = hit.
GetComponent.<Animator>();
 doorAnimator.SetTrigger("DoorOpen");
 yield WaitForSeconds(1);
 doorAnimator.SetTrigger("DoorClose");
 Destroy (gameObject);
 }
 }
 }
}

// C# user: (Put the code inside the class)

bool _hasKey = false;
…
void Start () {
…
 _hasKey = false;
}
…
IEnumerator OnTriggerEnter2D (Collider2D hit) {
 if (!_gameEnd) {

Project 1

55

 if (hit.tag == "Key") {
 if (!_hasKey) {
 _hasKey = true;
 audio.volume = 1.0f;
 audio.PlayOneShot(getKeySound);
 Destroy (hit.gameObject);
 }
 }
 if (hit.tag == "Door") {
 if (_hasKey) {
 _gameEnd = true;
 _animator.enabled = false;
 audio.volume = 1.0f;
 audio.PlayOneShot(doorOpenSound);
 Animator doorAnimator = hit.GetComponent<Animator>();
 doorAnimator.SetTrigger("DoorOpen");
 yield return new WaitForSeconds(1);
 doorAnimator.SetTrigger("DoorClose");
 Destroy (gameObject);	
 }
 }
 }
}

6.	 Next, we click on the Player game object in the Hierarchy view and drag the object
inside SimplePlatform | Resources | Prefabs in the Project view to create the Player
prefab object.

7.	 Inside SimplePlatform | Resources | Prefabs in the Project view, we will see
the RestartButton_C# and RestartButton_JS prefab. Now, we will create a new
RestartButton from those prefabs, drag the RestartButton_C# prefab (for C# user),
and drag the RestartButton_JS prefab (for Unity JavaScript user) to the Hierarchy view.

From now on, we will call this prefab RestartButton instead of
RestartButton_C# or RestartButton_JS.

8.	 Then, let's click on the RestartButton prefab, go to its Inspector view, and set the
values of the attributes as follows:

Tag RestartButton

Texture Button (Script)

Key Drag the Key prefab object from the Project view

Player Drag the Player prefab object from the Project view

Develop a Sprite and Platform Game

56

Make sure that you use the prefab object from the Project view, not the
Hierarchy view. If not, the script might not work properly.

9.	 For the last step, we will go back to the PlayerController_2D script and the
_restartButton variable to make this work. Let's open the PlayerController_2D
script and add the OnTriggerEnter2D() function as shown in the highlighted script:

// Unity JavaScript user:
…
private var _restartButton : GUITexture;
…
function Awake () {
 …
 _restartButton = GameObject.FindWithTag("RestartButton").
guiTexture;
}
function Start () {
 …
 _restartButton.enabled = false;
}
…
function OnTriggerEnter2D (hit : Collider2D) : IEnumerator {
 if (!_gameEnd) {
 …
 if (hit.tag == "Door") {
 if (_hasKey) {
 …
 _restartButton.enabled = true;
 }
 }
 }
}

// C# user: (Put the code inside the class)
…
GUITexture _restartButton;
…
void Awake () {
 …
 _restartButton = GameObject.FindWithTag("RestartButton").
guiTexture;
}

Project 1

57

void Start () {
…
 _restartButton.enabled = false;
}
…
IEnumerator OnTriggerEnter2D (Collider2D hit) {
 if (!_gameEnd) {
 …
 if (hit.tag == "Door") {
 if (_hasKey) {
 …
 _restartButton.enabled = true;
 }
 }
 }
}

Ok, now we are done; click on Play to see what we have. Now, when we collect the key and
go inside the door, we will see a Restart button appear; click on this button and the game
will restart.

Objective complete – mini debriefing
We just created a Key and Door object and placed them in our level. We also created the
function that will trigger when the character hits the Key and Door objects. For the Door
object, we used DoorAnimator for Animator Controller. If we double-click on DoorAnimator
and check the Animator view, we will see that there are only two animation states and two
trigger parameters to switch between the opening and closing of the door, which is
a concept similar to PlayerAnimator, as shown in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Develop a Sprite and Platform Game

58

We switched the state to DoorOpen when the character got the Key object and hit the Door
object. Then, we waited for one second to remove our character from the scene and switch
animation back to DoorClose by using Yield and Destroy.

Lastly, we added the RestartButton prefab to the scene. This prefab is the GUITexture object,
which we can click to reset the game after the player goes to the door.

Classified intel
In our script, we need to wait for a second between opening the door and ending the game.
We could do this by looping or performing some other task for a second, but that would
stop the animations, the sound, and everything else. We get around this by using the yield
command and the Coroutines() function.

Coroutines
The yield command tells Unity to stop running our function and come back later (in our
game, one second later as we call yield WaitForSecond(1) (Unity JavaScript) or yield
return new WaitForSecond(1) (C#). By using the yield command, our function
becomes Coroutines and now it must return IEnumerator (Unity needs this so that it
can tell when to start our function again). This means Coroutines can't return a value like
a normal function. We can change most functions in our MonoBehaviours script into
Coroutines, apart from the ones that already run in every frame, such as Update(),
FixedUpdate(), and OnGUI(). We can get more information about Coroutines from the
following Unity script reference: http://unity3d.com/support/documentation/
ScriptReference/Coroutine.html

The Restart button
If we take a look at the TextureButton script, we will see that it uses the mouse event
function, which will check for the mouse roll over, mouse roll out, and mouse up events.
In the OnMouseUp() function, we will see that we create the new player and key by using
Instantiate to clone both prefab objects and set it back in the scene.

We can also add Application.LoadLevel(LevelName) to reset our game, which is
much easier than using Instantiate, but Application.LoadLevel will destroy all the
game objects in the scene and reload again.

In this case, we use Instantiate in our game because we only have one scene and don't
want to load the whole game level again. However, we can also put DontDestroyOnLoad()
in the Awake() function of the object that we don't want to destroy, but it needs a bit of
setting up. So, there is no right or wrong. It depends on what we want to use or where we
want the project to go.

http://unity3d.com/support/documentation/ScriptReference/Coroutine.html
http://unity3d.com/support/documentation/ScriptReference/Coroutine.html

Project 1

59

Mission accomplished
We just created a simple 2D platform game, and it is our first piece in getting started with
Unity. In this project, we learned how to manage a sprite animation by using the new 2D
feature in Unity and the Animator Controller from the Mecanim Animation system. We have
gone through the MonoDevelop scripting editor. Also, we learned the basics of how to use
Input Manager, Physics2D Raycast, Gizmos, and Collider2D. Finally, we attached the sound
effect and a Restart button to our game. Let's take a look at what we have:

Hotshot challenges
Now we have a game that looks good, but it's not complete yet. So, why don't you try to do
something by using the knowledge gained from this project to add more fun to your game
and make it look better? Let's try the following:

ff Add a background music and more sound effects

ff Design a challenging level, such as create a movable platform, collect more items
at open the door, or even have a longer level

ff Add obstacles that can make your character die, lose hit points, or restart to
another position

ff Add hit point for our character

ff Create an animated background or level by using the sprite

ff Create a parallax background by adding more layers for the background or
foreground objects

Project 2
Create a Menu for an
RPG – Add Powerups,
Weapons, and Armors

Here, we are in the second project. When we talk about traditional role-playing games, we
will probably be thinking about the development of the character, such as the attributes, skills,
powers, levels, or experiences. When we are playing an RPG, we typically have to open the
menu or UI to adjust and manage our main character, such as increase the character attribute,
change the weapon, or choose skills. The menu is very important in an RPG. So, in this project,
we will create the menu window for a simple RPG-like game using a GUI class in Unity.

From Unity 4.6, there will be the new GUI system for a Unity user, which
is faster in performance, easier to use, and has many more features such
as 3D canvas, dynamic GUI, and event system. This project won't go over
the new GUI system because the book is based on Unity 4.3. However, the
project will show you how to use the old GUI system or the Immediate
Mode GUI (IMGUI) system. The good thing to know is that the custom
editor in Unity is based on the IMGUI system, which will help you to get
the basic understanding to create the custom editor. More details on the
new GUI system (uGUI) can be found at the following links:

ff http://blogs.unity3d.com/2014/05/28/
overview-of-the-new-ui-system/

ff https://www.youtube.com/
watch?feature=player_embedded&v=EOX6itCuKOc

http://blogs.unity3d.com/2014/05/28/overview-of-the-new-ui-system/
http://blogs.unity3d.com/2014/05/28/overview-of-the-new-ui-system/
https://www.youtube.com/watch?feature=player_embedded&v=EOX6itCuKOc
https://www.youtube.com/watch?feature=player_embedded&v=EOX6itCuKOc

Create a Menu for an RPG – Add Powerups, Weapons, and Armors

62

Mission briefing
We'll create a simple menu, yet complex enough for the RPG. In this project, we will continue
using some assets from Project 1, Develop a Sprite and Platform Game. So, we won't have
to recreate the character. The menu will include a STATUS tab that will show us the current
attributes, skills, and equipments of our character. Next is the INVENTORY tab that will contain
all the items that our character has as well as the information for each item when the user rolls
over the tab.

The last tab is the EQUIPMENT tab with which the user will be able to change the weapons,
armors, accessories, and skills, as shown in the following screenshot:

Project 2

63

The purpose of this project is to understand the GUI class in Unity and create our custom
user interface, which is different from GUITexture that we used to create our RestartButton
in Project 1, Develop a Sprite and Platform Game. There is also GUIText, which is used
to display the text of any font that we import in the screen coordinate. Both are types of
rendering components that can be used once per object. So, if we try to creat e a complete
menu, we will need many GUITexture/GUIText objects and the scripts to handle them.
On the other hand, the GUI class is operating inside one function OnGUI, and we only
deal with one object and only create a script that will display all buttons in the Menu tab.

The OnGUI function acts in a similar way to an Update function, but
OnGUI gets called more than once for rendering and handling the GUI
events, meaning that the OnGUI implementation might be called several
times per frame (one call per event), which means it is recalculated
at least twice per frame, which can make it slow than another
GUIElement (GUITexture or GUIText). More importantly, each
GUI object will also create one or more draw calls, which means that
this can cause a performance hit easily. So, it's not recommended to use
OnGUI for the in-game UI (especially in game development), instead,
we can use GUIElement.

Draw calls is how many materials from each object are being drawn to
the screen. Around 200 to 300 draw calls is considered acceptable on a
mobile platform.

Also, there are many remarkable UI tools in the assets store that are
easier to implement and they have a great performance for mobile
development, such as the new GUI system (uGUI) on Unity 4.6, NGUI
(recommended), and EZGUI.

On the other hand, the GUI class can also be used with the editor
class to create a custom inspector or window in Unity, which is very
helpful. (We will learn about this in a later project.)

In this project, we will apply the custom GUI graphics to Unity by using GUISkin. We can
have multiple styles for our GUI graphics in Unity. Let's say that we have multiple types
of fonts that we want to use in our menu; Unity has a way to do this. We can create a
GUISkin element and apply our custom skin to the area that we want to show the font
in. That is the great thing about Unity.

Create a Menu for an RPG – Add Powerups, Weapons, and Armors

64

First, we will create the Item, ItemsContainer, and SkillsContainer classes to contain
our items and equipments. Then, we will create a menu scripting class that will bring up
a new menu window in the game scene when the player presses the M key. Next, we will
generate a script to create three tab buttons, which will take the player to each window,
STATUS, INVENTORY, and EQUIPMENT.

In the STATUS tab, we will create a script that will show the image of our character, hit
points, magic points, skills, and all attributes of this character. Next, we will create the
INVENTORY tab, which will contain all the items that the player can scroll up and down
to choose an item. Finally, we will create the EQUIPMENT tab that the player can use to
manage and change the equipments and skills of the character by clicking on it.

Next, we will create a menu game object and item game objects, and apply scripts to them.
Then, we will add parameters and textures to our menu and start playing the game. Lastly,
we will add the item script to the Key element on the scene. Then, we will add an item and
show this in the menu when we will collect the Key element and remove it when we use the
Key element to open the door.

Why is it awesome?
When we will complete this project, we will be able to create our custom UI for our RPG;
this GUI can be used not only in an RPG, but we can also create the user interface for every
genre. We will get a good understanding of the GUI class in Unity, which is very powerful
to create an awesome user interface such as with Dungeon Hunter, and Final Fantasy,
and can be used in the editor class too.

Your Hotshot objectives
Because we are creating a menu for an RPG-styled game, we need a menu that is a little
more complex than the usual menu. So, this menu will be split into five tasks. The following
is an outline of the tasks:

ff Customizing skin with GUISkin

ff Creating a menu object

ff Creating the STATUS tab

ff Creating the INVENTORY tab

ff Creating the EQUIPMENT tab

Project 2

65

Mission checklist
Before we start, we will need to get the project folder and assets from this book's website,
http://www.packtpub.com/support?nid=8267, which includes the finished project
from Project 1, Develop a Sprite and Platform Game, and the assets that we will need to use
in this project.

Browse the preceding URL and download the Chapter2.zip package and then unzip it.
Inside the Chapter2 folder, there are two unity packages, which are Chapter2Package.
unitypackage (we will use this package for this project) and Chapter2Package
_Completed.unitypackage (this is the completed project's package, which includes
both C# and Unity JavaScript).

Customizing skin with GUISkin
Those who are familiar with HTML will probably have a good understanding of using a
repetitive image for a background to reduce memory usage. Unity uses the same idea to create
a graphic for the user interface, which will save a lot of memory and size for our game. In this
section, we will take a look at the GUISkin feature, which is the main key to creating a custom
skin in Unity.

Prepare for lift off
We will begin by creating a new project in Unity. Let's start our project by performing the
following steps:

1.	 First, create a new project and name it MenuInRPG, similar to what we did in
Project 1, Develop a Sprite and Platform Game. Click on the Create new Project
button, as shown in the following screenshot:

http://www.packtpub.com/support?nid=8267

Create a Menu for an RPG – Add Powerups, Weapons, and Armors

66

2.	 Next, import the assets package by going to Assets | Import Package | Custom
Package…; choose Chapter2Package.unityPackage, which we just
downloaded, and then click on the Import button in the pop-up window link,
as shown in the following screenshot:

3.	 Wait until it's done, and you will see the MenuInRPGGame and SimplePlatform
folders in the Window view. Next, click on the arrow in front of the
SimplePlatform folder to bring up the drop-down options and you will see
the Scenes folder and the SimplePlatform_C# and SimplePlatform_JS scenes,
as shown in the following screenshot:

Project 2

67

4.	 Next, double-click on the SimplePlatform_C# (for a C# user) and SimplePlatform_JS
(for a Unity JavaScript user) scenes, as shown in the preceding screenshot, to open
the scene that we will work on in this project.

5.	 When you double-click on either of the SimplePlatform scenes, Unity will display
a pop-up window asking whether you want to save the current scene or not. As we
want to use the SimplePlatform scene, just click on the Don't Save button to open
up the SimplePlatform scene, as shown in the following screenshot:

6.	 Then, go to the MenuInRPGGame/Resources/UI folder and click on the first
file to make sure that the Texture Type and Format fields are selected correctly,
as shown in the following screenshot:

Why do we set it up in this way? This is because we want to have a UI graphic to
look as close to the source image as possible. However, we set the Format field
to Truecolor, which will make the size of the image larger than Compress, but will
show the right color of the UI graphics.

Create a Menu for an RPG – Add Powerups, Weapons, and Armors

68

7.	 Next, we need to set up the Layers and Tags configurations; for this, go to
Edit | Project Settings | Tags and set them as follows:

Tags

Element 0 UI

Element 1 Key

Element 2 RestartButton

Element 3 Floor

Element 4 Wall

Element 5 Background

Element 6 Door

Layers

User Layer Background

User Layer Level

Use Layer UI

8.	 At last, we will save this scene in the MenuInRPGGame/Scenes folder, and name
it MenuInRPG by going to File | Save Scene as… and then save it.

Engage thrusters
Now we are ready to create a GUI skin; for this, perform the following steps:

1.	 Let's create a new GUISkin object by going to Assets | Create | GUISkin, and
we will see New GUISkin in our Project window. Name the GUISkin object as
MenuSkin. Then, click on MenuSkin and go to its Inspector window. We will
see something similar to the following screenshot:

Project 2

69

2.	 You will see many properties here, but don't be afraid, because this is the main key
to creating custom graphics for our UI. Font is the base font for the GUI skin. From
Box to Scroll View, each property is GUIStyle, which is used for creating our custom
UI. The Custom Styles property is the array of GUIStyle that we can set up to apply
extra styles. Settings are the setups for the entire GUI.

3.	 Next, we will set up the new font style for our menu UI; go to the Font line in the
Inspector view, click the circle icon, and select the Federation Kalin font.

Create a Menu for an RPG – Add Powerups, Weapons, and Armors

70

4.	 Now, you have set up the base font for GUISkin. Next, click on the arrow in front of
the Box line to bring up a drop-down list. We will see all the properties, as shown in
the following screenshot:

For more information and to learn more about these properties,
visit http://unity3d.com/support/documentation/
Components/class-GUISkin.html.

Name is basically the name of this style, which by default is box (the default style
of GUI.Box). Next, we will be setting our custom UI to this GUISkin; click on the
arrow in front of Normal to bring up the drop-down list, and you will see two
parameters—Background and Text Color.

http://unity3d.com/support/documentation/Components/class-GUISkin.html
http://unity3d.com/support/documentation/Components/class-GUISkin.html

Project 2

71

5.	 Click on the circle icon on the right-hand side of the Background line to bring up
the Select Texture2D window and choose the boxNormal texture, or you can drag
the boxNormal texture from the MenuInRPG/Resources/UI folder and drop it
to the Background space.

We can also use the search bar in the Select Texture2D window or the
Project view to find our texture by typing boxNormal in the search bar,
as shown in the following screenshot:

6.	 Then, under the Text Color line, we leave the color as the default color—because
we don't need any text to be shown in this style—and repeat the previous step with
On Normal by using the boxNormal texture.

7.	 Next, click on the arrow in front of Active under Background. Choose the boxActive
texture, and repeat this step for On Active.

8.	 Then, go to each property in the Box style and set the following parameters:

�� Border: Left: 14, Right: 14, Top: 14, Bottom: 14

�� Padding: Left: 6, Right: 6, Top: 6, Bottom: 6

For other properties of this style, we will leave them as default.

Create a Menu for an RPG – Add Powerups, Weapons, and Armors

72

9.	 Next, we go to the following properties in the MenuSkin inspector and set them
as follows:

Label

Normal | Text Color R 27, G: 95, B: 104, A: 255

Window

Normal | Background myWindow

On Normal | Background myWindow

Border Left: 27, Right: 27, Top: 55, Bottom: 96

Padding Left: 30, Right: 30, Top: 60, Bottom: 30

Horizontal Scrollbar

Normal | Background horScrollBar

Border Left: 4, Right: 4, Top: 4, Bottom: 4

Horizontal Scrollbar Thumb

Normal | Background horScrollBarThumbNormal

Hover | Background horScrollBarThumbHover

Border Left: 4, Right: 4, Top: 4, Bottom: 4

Horizontal Scrollbar Left Button

Normal | Background arrowLNormal

Hover | Background arrowLHover

Fixed Width 14

Fixed Height 15

Horizontal Scrollbar Right Button

Normal | Background arrowRNormal

Hover | Background arrowRHover

Fixed Width 14

Fixed Height 15

Vertical Scrollbar

Normal | Background verScrollBar

Border Left: 4, Right: 4, Top: 4, Bottom: 4

Padding Left: 0, Right: 0, Top: 0, Bottom: 0

Vertical Scrollbar Thumb

Normal | Background verScrollBarThumbNormal

Hover | Background verScrollBarThumbHover

Border Left: 4, Right: 4, Top: 4, Bottom: 4

Project 2

73

Vertical Scrollbar Up Button

Normal | Background arrowUNormal

Hover | Background arrowUHover

Fixed Width 16

Fixed Height 14

Vertical Scrollbar Down Button

Normal | Background arrowDNormal

Hover | Background arrowDHover

Fixed Width 16

Fixed Height 14

We have finished setting up of the default styles.

10.	 Now we will go to the Custom Styles property and create our custom GUIStyle
to use for this menu; go to Custom Styles and under Size, change the value to 6.
Then, we will see Element 0 to Element 5.

11.	 Next, we go to the first element or Element 0; under Name, type Tab Button,
and we will see Element 0 change to Tab Button. Set it as follows:

Tab Button (or Element 0)

Name Tab Button

Normal

Background tabButtonNormal

Text Color R: 27, G: 62, B: 67, A: 255

Hover

Background tabButtonHover

Text Color R: 211, G: 166, B: 9, A: 255

Active

Background tabButtonActive

Text Color R: 27, G: 62, B: 67, A: 255

On Normal

Background tabButtonActive

Text Color R: 27, G: 62, B: 67, A: 255

Border Left: 12, Right: 12, Top: 12, Bottom: 4

Padding Left: 6, Right: 6, Top: 6, Bottom: 4

Font Size 14

Alignment Middle Center

Fixed Height 31

Create a Menu for an RPG – Add Powerups, Weapons, and Armors

74

The settings are shown in the following screenshot:

For the Text Color value, we can also use the eyedropper tool next to the color box
to copy the same color, as we can see in the following screenshot:

Project 2

75

12.	 We have finished our first style, but we still have five styles left, so let's carry on with
Element 1 with the following settings:

Exit Button (or Element 1)

Name Exit Button

Normal | Background buttonCloseNormal

Hover | Background buttonCloseHover

Fixed Width 26

Fixed Height 22

The settings for Exit Button are showed in the following screenshot:

Create a Menu for an RPG – Add Powerups, Weapons, and Armors

76

13.	 The following styles will create a style for Element 2:

Text Item (or Element 2)

Name Text Item

Normal | Text Color R: 27, G: 95, B: 104, A: 255

Alignment Middle Left

Word Wrap Check

The settings for Text Item are shown in the following screenshot:

14.	 To set up the style for Element 3, the following settings should be done:

Text Amount (or Element 3)

Name Text Amount

Normal | Text Color R: 27, G: 95, B: 104, A: 255

Alignment Middle Right

Word Wrap Check

Project 2

77

The settings for Text Amount are shown in the following screenshot:

15.	 The following settings should be done to create Selected Item:

Selected Item (or Element 4)

Name Selected Item

Normal | Text Color R: 27, G: 95, B: 104, A: 255

Hover

Background itemSelectHover

Text Color R: 27, G: 95, B: 104, A: 255

Active

Background itemSelectHover

Text Color R: 27, G: 95, B: 104, A: 255

On Normal

Background itemSelectActive

Text Color R: 27, G: 95, B: 104, A: 255

Border Left: 6, Right: 6, Top: 6, Bottom: 6

Margin Left: 2, Right: 2, Top: 2, Bottom: 2

Padding Left: 4, Right: 4, Top: 4, Bottom: 4

Alignment Middle Center

Word Wrap Check

Create a Menu for an RPG – Add Powerups, Weapons, and Armors

78

The settings are shown in the following screenshot:

16.	 To create the Disabled Click style, the following settings should be done:

Disabled Click (or Element 5)

Name Disabled Click

Normal

Background itemSelectNormal

Text Color R: 27, G: 95, B: 104, A: 255

Border Left: 6, Right: 6, Top: 6, Bottom: 6

Margin Left: 2, Right: 2, Top: 2, Bottom: 2

Padding Left: 4, Right: 4, Top: 4, Bottom: 4

Alignment Middle Center

Word Wrap Check

Project 2

79

The settings for Disabled Click are shown in the following screenshot:

And now, we have finished this step.

Objective complete – mini debriefing
Basically, what we have done in this project is we have created the custom GUI skin to use for
our menu. First, we tell the GUI that we want to use the font name Federation Kalin as our
default font for this GUISkin by setting up the Font type at the first line of the skin's inspector.
Then, we changed all the default skin textures to use our custom UI graphics from the UI
folder by setting up all the necessary properties and parameters in the Box, Label, Window,
Horizontal Scrollbar, Horizontal Scrollbar Thumb, Horizontal Scrollbar Left Button, Horizontal
Scrollbar Right Button, Vertical Scrollbar, Vertical Scrollbar Thumb, Vertical Scrollbar Up
Button, and Vertical Scrollbar Down Button styles. Then, we created six Custom Styles—Tab
Button, Exit Button, Text Item, Text Amount, Selected Item, and Disabled Click, which will be
used for scripting in the next section.

Create a Menu for an RPG – Add Powerups, Weapons, and Armors

80

The Custom Style feature is basically GUIStyle that we can add to GUISkin.
This style allows us to create a custom style that will act differently from the
default styles (Box, Label, Window, and so on) in this GUISkin.

Classified intel
In this section, we applied the UI graphics to GUISkin. You might have a question here—how
does it work? Here, we will go through the basic concept of how to create a custom UI in
Photoshop and get the right texture to use in our GUISkin.

First, let's take a look at the myWindow.png in our MenuInRPGGame/Resources/UI folder.
If we select this file, we will see something similar to the following capsule-shaped image. You
might be curious—how are we going to create a window graphics with this capsule shape?
Well, the trick is the properties of Border in which we can set the parameters, Left, Right, Top,
and Bottom. It uses these parameters to set the number of pixels that will be shown in the
fixed image. On the other hand, the pixels in the middle will get repeated depending on the
width and height of the settings similar to the HTML style or scale9grid in Flash (the concept
is to draw the pixel perfectly on the four corners and then repeat them in the middle to match
the size we need).

The following figure shows us how the Unity GUIStyle works:

Project 2

81

First, we set the parameters for the Border attribute. These parameters will offset the pixels
of the current UI graphics from 0 to the number that we will assign. For example, if we want
to draw a rectangular window, which is 320 pixels in width and 240 pixels in height, and we set
the borders, Left to 27, Right to 27, Top to 55, and Bottom to 96, this will tell Unity GUIStyle
to always draw the graphics from pixel 0 to pixel 27 on the left-hand side with the same scale
as the source texture. What will happen from pixel 28? Basically, it will repeat pixel 27 until it
hits the right-hand side border, which is also set to 27 pixels from the right-hand side. So, this
means that we tell GUIStyle to draw graphics from the source texture, that is from pixel 0 to
pixel 27, and then repeat the texture from pixel 28 to pixel 293, then switch back and draw
pixel 294 to pixel 320 from the source texture, which is the offset of 27 pixels from the right
-hand side. This also applies to the top and bottom borders, as we can see on the left-hand
side of the preceding figure.

From this concept, we can save a lot of memory because instead of using a 320 x 240 pixel
image, we just use 54 x 151 pixels. However, in some cases, we don't want any repeating
pixels for our UI such as fixed button graphics—for example, our Exit Button style—or any
fixed texture, and so on, as we can see in the following figure:

We can also set the Fixed Width and Fixed Height properties in GUIStyle to match our
image size. For instance, we have the Exit Image button, which is 26 pixels wide and 22
pixels high. So, we just set the Fixed Width value to 26 and Fixed Height to 22. On the
other hand, we can also set either Fixed Width or Fixed Height in GUIStyle—as we
already did in our Tab Button of Custom Styles—as we can see in the following figure:

We set the Fixed Height value to 31, and we leave the Fixed Width value at 0, which means
that the height of the style will be 31 pixels always but the width can vary from zero to infinity.

Create a Menu for an RPG – Add Powerups, Weapons, and Armors

82

Creating a menu object
Continuing from the first step, we will now create our menu game object in the scene that
can open and close the menu window. Pressing the M key will open the menu window,
and clicking on the x button in the window will close the menu window. We will also create
three tab buttons for the player to be able to see through the different pages, STATUS,
INVENTORY, and EQUIPMENT, as we can see in the following screenshot:

Engage thrusters
We will begin by creating the menu using the following steps:

1.	 First, we want to create an empty game object in our scene and name it menu;
go to GameObject | Create Empty and name it MenuObject and set its Tag and
Layer to UI. We will use this object for our menu.

2.	 Next, we will create the menu script that will control our entire menu; go to Assets |
Create | Javascript (for Unity JavaScript users) or Assets | Create | C# (for C# users),
name it Menu, double-click on it to launch MonoDevelop, and we will get our hands
dirty with the code.

3.	 Open the Menu script file and type the following variables:

// Unity JavaScript user

#pragma strict
public enum TAB {STATUS,INVENTORY,EQUIPMENT};
var customSkin : GUISkin;
var heroTexture : Texture;

Project 2

83

var statBox1Texture : Texture;
var statBox2Texture : Texture;
var skillBoxTexture : Texture;
private final var TOOLBARS : String[] =
[TAB.STATUS.ToString(), TAB.INVENTORY.ToString(),
 TAB.EQUIPMENT.ToString()];
private final var HERO_RECT : Rect =
 new Rect (19, 35, 225, 441);
private final var CLOSE_BTN_RECT : Rect =
 new Rect (598, 8, 26, 22);
private final var TAB_BTN_RECT : Rect =
 new Rect (35, 15, 480, 40);
private var _currentTool : TAB = TAB.STATUS;
private var _windowRect : Rect =
 new Rect (10, 10, 640, 480);
private var _isMenuOpen : boolean = false;

final: We use the word final here because we want the value to be
assigned only once. We can say that this is the constant value and it is
used to prevent the error from reassigning the value.

// C# user:

using UnityEngine;
using System.Collections;
public class Menu : MonoBehaviour {
 public enum TAB {STATUS,INVENTORY,EQUIPMENT};
 public GUISkin customSkin;
public Texture heroTexture;
 public Texture statBox1Texture;
 public Texture statBox2Texture;
 public Texture skillBoxTexture;
 readonly string[] TOOLBARS =
{TAB.STATUS.ToString(), TAB.INVENTORY.ToString(),
 TAB.EQUIPMENT.ToString()};
 readonly Rect HERO_RECT = new Rect (19, 35, 225, 441);
 readonly Rect CLOSE_BTN_RECT =
 new Rect (598, 8, 26, 22);
 readonly Rect TAB_BTN_RECT =
 new Rect (35, 15, 480, 40);
TAB _currentTool = TAB.STATUS;
 Rect _windowRect = new Rect (10, 10, 640, 480);
bool _isMenuOpen = false;
…
}

Create a Menu for an RPG – Add Powerups, Weapons, and Armors

84

readonly: We use readonly instead of const here because string[]
and Rect aren't the constant expressions in C# and are not known at the
compile time. So, it will produce a compile error if we use const. Also,
readonly is basically similar to the word final in Java, which can be
initialized only once.

Here, we just created the necessary variables for our menu window, as shown in
the following screenshot:

The result of statBox1Texture, statBox2Texture, and skillBoxTexture will be
shown in the Creating the STATUS tab section.

4.	 Next, we will set _isMenuOpen to false in the Start() function, because we
don't want our menu to show until the player presses the M key, so type the code
as follows:

// Unity JavaScript user:

function Start () : void {

Project 2

85

 _isMenuOpen = false;
}

// C# user:

void Start () {
 _isMenuOpen = false;
}

5.	 Then, we go to the OnGUI function, and we will use the Event class to check if
the user is pressing the correct key.

The OnGUI function acts in a similar way to the Update function, but
OnGUI gets called more than once, for rendering and handling the GUI
events, meaning that OnGUI implementation might be called several
times per frame (one call per event).

// Unity JavaScript user:

function OnGUI () : void {
 GUI.skin = customSkin;
 var e : Event = Event.current;
 if ((e.isKey) && (e.keyCode == KeyCode.M) &&
 (!_isMenuOpen)) {
 _isMenuOpen = true;
 Time.timeScale = 0.0f;
 }
}

// C# user:

void OnGUI () {
 GUI.skin = customSkin; //Assigning custom MenuSkin
 Event e = Event.current;
 if ((e.isKey) && (e.keyCode == KeyCode.M) &&
 (!_isMenuOpen)) {
 _isMenuOpen = true;
 Time.timeScale = 0.0f;
 }
}

Create a Menu for an RPG – Add Powerups, Weapons, and Armors

86

6.	 Next, we will create a draggable window menu, which will contain all the buttons
and background textures; add this code after the OnGUI function as follows:

// Unity JavaScript user:

private function DoMyWindow (windowID : int) : void {
 _currentTool = GUI.Toolbar (TAB_BTN_RECT,
 parseInt(_currentTool), TOOLBARS,
 GUI.skin.GetStyle("Tab Button"));
 GUI.DrawTexture(HERO_RECT, heroTexture);
 if (GUI.Button (CLOSE_BTN_RECT, "", GUI.skin.GetStyle("Exit
Button"))) {
 _isMenuOpen = false;
 Time.timeScale = 1.0f;
 }
 GUI.DragWindow();
}

// C# user:

void DoMyWindow (int windowID) {
 _currentTool = (TAB) GUI.Toolbar (TAB_BTN_RECT,
 (int)_currentTool, TOOLBARS,
 GUI.skin.GetStyle("Tab Button"));
 GUI.DrawTexture(HERO_RECT, heroTexture);
 if (GUI.Button (CLOSE_BTN_RECT, "", GUI.skin.GetStyle("Exit
Button"))) {
 _isMenuOpen = false;
 Time.timeScale = 1.0f;
 }
 GUI.DragWindow();
}

7.	 Then, we go back to the OnGUI function. We will add the code to create a draggable
window by using GUI.Window and passing the DoMyWindow() function that we
just created. We also make sure that the window is always on the screen by checking
the x and y positions of _windowRect, so add the following highlighted code to the
OnGUI function.

// Unity JavaScript user:

function OnGUI () : void {
 …

Project 2

87

 if ((e.isKey) && (e.keyCode == KeyCode.M) &&
 (!_isMenuOpen)) {
 …
 }
 if (_isMenuOpen) { //Open menu if 'true'
 _windowRect = GUI.Window (0, _windowRect, DoMyWindow, "");
 _windowRect.x = Mathf.Clamp(_windowRect.x, 0.0f,
 Screen.width - _windowRect.width);
 _windowRect.y = Mathf.Clamp(_windowRect.y, 0.0f,
 Screen.height - _windowRect.height);
 }
}

// C# user:

void OnGUI () {
 …
 if ((e.isKey) && (e.keyCode == KeyCode.M) &&
 (!_isMenuOpen)) {
 …
 }
 if (_isMenuOpen) { //Open menu if 'true'
 _windowRect = GUI.Window (0, _windowRect, DoMyWindow, "");
 _windowRect.x = Mathf.Clamp(_windowRect.x, 0.0f,
 Screen.width - _windowRect.width);
 _windowRect.y = Mathf.Clamp(_windowRect.y, 0.0f,
 Screen.height - _windowRect.height);
 }
}

As we want everything inside our menu window, we used the DoMyWindow()
function to take GUI.Window as one parameter. Inside the DoMyWindow()
function, we create all the buttons and textures. Then, we make our window
draggable by adding GUI.DragWindow(). With that, we are done with coding
for this step.

Create a Menu for an RPG – Add Powerups, Weapons, and Armors

88

8.	 Next, go back to Unity, click on the Menu script file and drag-and-drop it to
MenuObject in the Hierarchy view. Next, click on MenuObject in the Hierarchy view,
open the Inspector view under the menu (script), and set the parameters as follows:

Parameters Settings

Custom Skin Drag-and-drop MenuSkin

Hero Texture Drag-and-drop player

Stat Box 1Texture Drag-and-drop stat1

Stat Box 2Texture Drag-and-drop stat2

Skill Box Texture: Drag-and-drop skillBox

9.	 Then, we can click on the Play button to see the result. In the game scene, we can
press the M key to bring up our window and click on the x button at the top-right
corner of the screen to close it, as shown in the following screenshot:

Objective complete – mini debriefing
We just created a menu window, which can be opened by pressing the M key and closed
by clicking on the x button at the top-right corner of the menu window. We also have our
character texture nicely placed inside our menu window. Next, we made this window
draggable and made sure it is always on the screen by using the following code:

_windowRect.x = Mathf.Clamp(_windowRect.x, 0.0f,
 Screen.width - _windowRect.width);
_windowRect.y = Mathf.Clamp(_windowRect.y, 0.0f,
 Screen.height - _windowRect.height);

Project 2

89

Basically, we set the minimum limit of our window in the x position to 0 and the maximum
to the screen width subtracted by the window width; we also set the minimum limit of y
position to 0 and the maximum to the screen height subtracted by the window height.

We will see this result when we click on Play the game and try to drag this window off
the screen. Lastly, we created a tab that can be clicked to change to a different page.

Classified intel
In this step, we used the GUI class to create our window, box, and buttons, but we can
also use a GUILayout class to create the same thing as we did with the GUI class. The
only difference between these two classes is that GUI will need to take a Rect object to
specify the size and position of the UI. On the other hand, GUILayout doesn't need to take
the Rect object. It will automatically adjust the size according to the source it has. Let's
say, we want to create a box that contains a text or image, GUILayout will automatically
adjust the height and width to nicely fit your text or image. For the position, GUILayout
will automatically set the first position to the top-left corner of the screen, which is (0, 0),
and it will continue to the right-hand side or down depending on the GUILayout object
that we already have on the screen. However, the downside is that we will not be able to
create a fixed position or size for the GUILayout class. Also, because the GUILayout class
will automatically calculate the position and size for us, this means that it will be more
expensive to use than the GUI class. However, the GUILayout class is very convenient and
the UI editor in Unity is based on this class, we can use it to create the custom editor script
combined with the EditorGUILayout (we will learn about the custom editor in a later
project). Both of these classes are very powerful. We can use them in different situations.

You can see more details of the GUI class at the following URL:

http://unity3d.com/support/documentation/ScriptReference/GUI.html

You can see the details of the GUILayout class at the following URL:

http://unity3d.com/support/documentation/ScriptReference/GUILayout.
html

The GUI.DragWindow() function allows us to create a draggable window by specifying the
drag area on our window. You can visit the following URL to see the details:

http://unity3d.com/support/documentation/ScriptReference/GUI.
DragWindow.html

This function takes one Rect parameter, which is the area that allows the user to drag
the window around. However, we didn't assign the Rect parameters to our GUI.
DragWindow() function, which means that we can drag the whole window in an area.

http://unity3d.com/support/documentation/ScriptReference/GUI.html
http://unity3d.com/support/documentation/ScriptReference/GUILayout.html
http://unity3d.com/support/documentation/ScriptReference/GUILayout.html
http://unity3d.com/support/documentation/ScriptReference/GUI.DragWindow.html
http://unity3d.com/support/documentation/ScriptReference/GUI.DragWindow.html

Create a Menu for an RPG – Add Powerups, Weapons, and Armors

90

Creating the STATUS tab
In this step, we will create a STATUS page for our menu, which will show all attributes of the
character, including hit points, magic points, levels, experiences, experience needed for the
next level, attacks, defense, agility, intelligence, luck, and the current equipments and skills
of that character, as shown in the following screenshot:

Engage thrusters
We will start with assigning the STATUS parameters for our character and displaying them
on the menu by performing the following steps:

1.	 Let's go back to our menu script in MonoDevelop, and include variables before the
Start() function as highlighted in the following code.

// Unity JavaScript user:

…
private var _isMenuOpen : boolean = false;
var fullHP : int = 9999;
var fullMP : int = 999;
var currentHP : int = 9999;
var currentMP : int = 999;
var currentLV : int = 99;
var currentEXP : int = 9999999;

Project 2

91

var currentNEXT : int = 99999;
var currentATK : int = 999;
var currentDEF : int = 999;
var currentAGI : int = 999;
var currentINT : int = 999;
var currentLUC : int = 999;
private final var MAX_HP : int = 9999;
private final var MAX_MP : int = 999;
private final var MAX_LV : int = 99;
private final var MAX_EXP : int = 9999999;
private final var MAX_NEXT : int = 99999;
private final var MAX_ATK : int = 999;
private final var MAX_DEF : int = 999;
private final var MAX_AGI : int = 999;
private final var MAX_INT : int = 999;
private final var MAX_LUC : int = 999;
private final var STAT_1_RECT : Rect = new Rect (252, 77, 331,
125);
private final var STAT_2_RECT : Rect = new Rect (252, 244, 331,
142);
private final var HP_RECT : Rect = new Rect (313, 75, 120, 25);
private final var MP_RECT : Rect = new Rect (313, 100, 120, 25);
private final var LV_RECT : Rect = new Rect (313, 124, 120, 25);
private final var EXP_RECT : Rect = new Rect (313, 150, 120, 25);
private final var NEXT_RECT : Rect = new Rect (313, 177, 120, 25);
private final var ATK_RECT : Rect = new Rect (529, 75, 50, 25);
private final var DEF_RECT : Rect = new Rect (529, 100, 50, 25);
private final var AGI_RECT : Rect = new Rect (529, 124, 50, 25);
private final var INT_RECT : Rect = new Rect (529, 150, 50, 25);
private final var LUC_RECT : Rect = new Rect (529, 177, 50, 25);
private final var STAT_BOX_RECT : Rect = new Rect (237, 67, 360,
147);
private final var WEAPON_BOX_RECT : Rect = new Rect (237, 230,
360, 207);
private final var WEAPON_LABEL_RECT : Rect = new Rect (252, 264,
180, 40);
private final var ARMOR_LABEL_RECT : Rect = new Rect (252, 324,
180, 40);
private final var ACCESS_LABEL_RECT : Rect = new Rect (252, 386,
180, 40);
private final var SKILL_TEX_RECT : Rect = new Rect (464, 288, 119,
117);

Create a Menu for an RPG – Add Powerups, Weapons, and Armors

92

private final var SKILL_BOX_RECT : Rect = new Rect (460, 284, 127,
125);
function Start () : void {
…

// C# user:

…
bool _isMenuOpen = false;
public int fullHP = 9999;
public int fullMP = 999;
public int currentHP = 9999;
public int currentMP = 999;
public int currentLV = 99;
public int currentEXP = 9999999;
public int currentNEXT = 99999;
public int currentATK = 999;
public int currentDEF = 999;
public int currentAGI = 999;
public int currentINT = 999;
public int currentLUC = 999;
const int MAX_HP = 9999;
const int MAX_MP = 999;
const int MAX_LV = 99;
const int MAX_EXP = 9999999;
const int MAX_NEXT = 99999;
const int MAX_ATK = 999;
const int MAX_DEF = 999;
const int MAX_AGI = 999;
const int MAX_INT = 999;
const int MAX_LUC = 999;
readonly Rect STAT_1_RECT = new Rect (252, 77, 331, 125);
readonly Rect STAT_2_RECT = new Rect (252, 244, 331, 142);
readonly Rect HP_RECT = new Rect (313, 75, 120, 25);
readonly Rect MP_RECT = new Rect (313, 100, 120, 25);
readonly Rect LV_RECT = new Rect (313, 124, 120, 25);
readonly Rect EXP_RECT = new Rect (313, 150, 120, 25);
readonly Rect NEXT_RECT = new Rect (313, 177, 120, 25);

Project 2

93

readonly Rect ATK_RECT = new Rect (529, 75, 50, 25);
readonly Rect DEF_RECT = new Rect (529, 100, 50, 25);
readonly Rect AGI_RECT = new Rect (529, 124, 50, 25);
readonly Rect INT_RECT = new Rect (529, 150, 50, 25);
readonly Rect LUC_RECT = new Rect (529, 177, 50, 25);
readonly Rect STAT_BOX_RECT = new Rect (237, 67, 360, 147);
readonly Rect WEAPON_BOX_RECT = new Rect (237, 230, 360, 207);
readonly Rect WEAPON_LABEL_RECT = new Rect (252, 264, 180, 40);
readonly Rect ARMOR_LABEL_RECT = new Rect (252, 324, 180, 40);
readonly Rect ACCESS_LABEL_RECT = new Rect (252, 386, 180, 40);
readonly Rect SKILL_TEX_RECT = new Rect (464, 288, 119, 117);
readonly Rect SKILL_BOX_RECT = new Rect (460, 284, 127, 125);
void Start () {
…

We basically created variables for the Rect positions for each UI texture and text
labels for each attribute.

2.	 Next, we will create a new function in this menu script after the DoMyWindow()
function and call it CheckMax(), which will limit the maximum and minimum
values of the attributes that are highlighted in the following code.

// Unity JavaScript user:

…
private function DoMyWindow (windowID : int) : void {
…
}
private function CheckMax () : void {
 fullHP = Mathf.Clamp(fullHP, 0, MAX_HP);
 fullMP = Mathf.Clamp(fullMP, 0, MAX_MP);
 currentHP = Mathf.Clamp(currentHP, 0, fullHP);
 currentMP = Mathf.Clamp(currentMP, 0, fullMP);
 currentLV = Mathf.Clamp(currentLV, 0, MAX_LV);
 currentEXP = Mathf.Clamp(currentEXP, 0, MAX_EXP);
 currentNEXT = Mathf.Clamp(currentNEXT, 0, MAX_NEXT);
 currentATK = Mathf.Clamp(currentATK, 0, MAX_ATK);
 currentDEF = Mathf.Clamp(currentDEF, 0, MAX_DEF);
 currentAGI = Mathf.Clamp(currentAGI, 0, MAX_AGI);
 currentINT = Mathf.Clamp(currentINT, 0, MAX_INT);
 currentLUC = Mathf.Clamp(currentLUC, 0, MAX_LUC);

Create a Menu for an RPG – Add Powerups, Weapons, and Armors

94

}

// C# user:

…
void DoMyWindow (int windowID) {
 …
}
void CheckMax () {
 fullHP = Mathf.Clamp(fullHP, 0, MAX_HP);
 fullMP = Mathf.Clamp(fullMP, 0, MAX_MP);
 currentHP = Mathf.Clamp(currentHP, 0, fullHP);
 currentMP = Mathf.Clamp(currentMP, 0, fullMP);
 currentLV = Mathf.Clamp(currentLV, 0, MAX_LV);
 currentEXP = Mathf.Clamp(currentEXP, 0, MAX_EXP);
 currentNEXT = Mathf.Clamp(currentNEXT, 0, MAX_NEXT);
 currentATK = Mathf.Clamp(currentATK, 0, MAX_ATK);
 currentDEF = Mathf.Clamp(currentDEF, 0, MAX_DEF);
 currentAGI = Mathf.Clamp(currentAGI, 0, MAX_AGI);
 currentINT = Mathf.Clamp(currentINT, 0, MAX_INT);
 currentLUC = Mathf.Clamp(currentLUC, 0, MAX_LUC);
}

3.	 Then, we will create a StatusWindow() function, which will show all the statuses
in the menu window, so add this function after CheckMax().

// Unity JavaScript user:

…
private function CheckMax () : void {
 …
}
private function StatusWindow() : void {
 GUI.Box (STAT_BOX_RECT, "");
 GUI.Box (WEAPON_BOX_RECT, "");
 GUI.DrawTexture(STAT_1_RECT, statBox1Texture);
 GUI.DrawTexture(STAT_2_RECT, statBox2Texture);
 GUI.DrawTexture(SKILL_BOX_RECT, skillBoxTexture);
 CheckMax();
 GUI.Label(HP_RECT, currentHP.ToString() + "/" +
 fullHP.ToString(), "Text Amount");

Project 2

95

 GUI.Label(MP_RECT, currentMP.ToString() + "/" +
 fullMP.ToString(), "Text Amount");
 GUI.Label(LV_RECT, currentLV.ToString(), "Text Amount");
 GUI.Label(EXP_RECT, currentEXP.ToString(), "Text Amount");
 GUI.Label(NEXT_RECT, currentNEXT.ToString(), "Text Amount");
 GUI.Label(ATK_RECT, currentATK.ToString(), "Text Amount");
 GUI.Label(DEF_RECT, currentDEF.ToString(), "Text Amount");
 GUI.Label(AGI_RECT, currentAGI.ToString(), "Text Amount");
 GUI.Label(INT_RECT, currentINT.ToString(), "Text Amount");
 GUI.Label(LUC_RECT, currentLUC.ToString(), "Text Amount");
}

// C# user:

…
void CheckMax () {
 …
}
void StatusWindow() {
 GUI.Box (STAT_BOX_RECT, "");
 GUI.Box (WEAPON_BOX_RECT, "");
 GUI.DrawTexture(STAT_1_RECT, statBox1Texture);
 GUI.DrawTexture(STAT_2_RECT, statBox2Texture);
 GUI.DrawTexture(SKILL_BOX_RECT, skillBoxTexture);
 CheckMax();
 GUI.Label(HP_RECT, currentHP.ToString() + "/" +
 fullHP.ToString(), "Text Amount");
 GUI.Label(MP_RECT, currentMP.ToString() + "/" +
 fullMP.ToString(), "Text Amount");
 GUI.Label(LV_RECT, currentLV.ToString(), "Text Amount");
 GUI.Label(EXP_RECT, currentEXP.ToString(), "Text Amount");
 GUI.Label(NEXT_RECT, currentNEXT.ToString(), "Text Amount");
 GUI.Label(ATK_RECT, currentATK.ToString(), "Text Amount");
 GUI.Label(DEF_RECT, currentDEF.ToString(), "Text Amount");
 GUI.Label(AGI_RECT, currentAGI.ToString(), "Text Amount");
 GUI.Label(INT_RECT, currentINT.ToString(), "Text Amount");
 GUI.Label(LUC_RECT, currentLUC.ToString(), "Text Amount");
}

Create a Menu for an RPG – Add Powerups, Weapons, and Armors

96

4.	 Then, we need to call StatusWindow() from our DoMyWindow() to make it show
up on our menu window; for this, go back to the DoMyWindow() function and add
the highlighted code as follows:

// Unity JavaScript user:

…
private function DoMyWindow (windowID : int) : void {
 _currentTool = GUI.Toolbar (TAB_BTN_RECT, parseInt(_
currentTool), TOOLBARS, GUI.skin.GetStyle("Tab Button"));
 switch (_currentTool) {
 case TAB.STATUS : //Status
 StatusWindow();
 break;
 }
 GUI.DrawTexture(HERO_RECT, heroTexture);
 …
}
…

// C# user:

…
void DoMyWindow (int windowID) {
 _currentTool = (TAB) GUI.Toolbar (TAB_BTN_RECT,
 (int)_currentTool, TOOLBARS,
 GUI.skin.GetStyle("Tab Button"));
 switch (_currentTool) {
 case TAB.STATUS : //Status
 StatusWindow();
 break;
 }
 GUI.DrawTexture(HERO_RECT, heroTexture);
 …
}

Project 2

97

switch-case: To make the code run efficiently, why don't we use the if-
else statement? Well, the switch-case statement makes the code easier
to read, and also, this performs faster because the complier doesn't need to
compare the value of each state before jumping to the next one, which might
be the case when we use the if-else statement. The last state might take
more time to access because of waiting for the previous state to finish.

Basically, for the switch-case statement, all the items will get access at
the same time. In our case, we will add another two states later in the next
step. Even though there is a slight boost in our code, it recommended to use
the switch-case if we have more than two states.

We can go back to Unity and click on Play to see the result; we will see that all the
attributes are shown in the window. However, we will still see that there is no text
shown under the Weapon, Armor, and Accessory sections.

5.	 Next, we will create a new class named Item, which basically contains the
information of the item, icon, and name. For this, go to Assets | Create | Javascript
(for Unity JavaScript users) or Assets | Create | C# (for C# users), name it Item,
double-click on it to launch MonoDevelop, and replace the code as follows.

// Unity JavaScript user:

#pragma strict
var icon : Texture;
var info : String;
private var _guiContent : GUIContent;
function get guiContent () : GUIContent {
 return new GUIContent(this.name, this.icon, this.info);
}

// C# user:

using UnityEngine;
using System.Collections;

[System.Serializable]
public class Item : MonoBehaviour {
 public Texture icon;
 public string info;
 GUIContent _guiContent;
 public GUIContent guiContent {
 get { return new GUIContent(this.name, this.icon, this.info);
}
 }
}

Create a Menu for an RPG – Add Powerups, Weapons, and Armors

98

This class is basically to set the information of each item and then return the
information as GUIContent via the guiContent() function, which will be
shown in our information window.

6.	 Then, we need to create a class called ItemsContainer to contain all the items,
initializations, and to set the scroll view (which we will use in the next step); go to
Assets | Create | Javascript (for Unity JavaScript users) or Assets | Create | C# (for
C# users), name it ItemsContainer, double-click on it to launch MonoDevelop,
and replace the code as follows:

// Unity JavaScript user:

#pragma strict
class ItemsContainer {
private final var UNEQUIP : String = "UNEQUIP";
 private final var NONE : String = "NONE";
 private var _guiContent : GUIContent;
 private var _isEquipment : boolean;
 function get guiContent () : GUIContent {
 return _guiContent;
 }
 function Init (isEquipment : boolean) : void {
 _isEquipment = isEquipment;
 _guiContent = (_isEquipment) ? new GUIContent(UNEQUIP) : new
GUIContent(NONE);
 }
}

// C# user (put the code inside the class):

using UnityEngine;
using System.Collections;
[System.Serializable]
public class ItemsContainer {
 const string UNEQUIP = "UNEQUIP";
 const string NONE = "NONE";
 GUIContent _guiContent;
 bool _isEquipment;
 public GUIContent guiContent {
 get { return _guiContent; }
 }

Project 2

99

 public void Init (bool isEquipment) {
 _isEquipment = isEquipment;
 _guiContent = (_isEquipment) ? new GUIContent(UNEQUIP) : new
GUIContent(NONE);
 }
}

get: We use the get keyword here because we don't want to set a value
outside of this class. This is very helpful to prevent an error from setting the
value of this variable outside of this class.

7.	 Next, we still need to create the last class, which is similar to the ItemsContainer
class, but this one will contain the skill information; go to Assets | Create |
Javascript (for Unity JavaScript users) or Assets | Create | C# (for C# users),
name it SkillsContainer, double-click on it to launch MonoDevelop,
and replace the code as follows:

// Unity JavaScript user:

#pragma strict
class SkillsContainer {
 private var _guiContent : GUIContent;
 private var _skillBoxTexture : Texture;
 function get guiContent () : GUIContent {
 return _guiContent;
 }
 function Init (skillBoxTexture : Texture) : void {
 _guiContent = new GUIContent("");
 _skillBoxTexture = skillBoxTexture;
 }
}

// C# user (put the code inside the class):

using UnityEngine;
using System.Collections;
[System.Serializable]
public class SkillsContainer {
 GUIContent _guiContent;
 Texture _skillBoxTexture;
 public GUIContent guiContent {

Create a Menu for an RPG – Add Powerups, Weapons, and Armors

100

 get { return _guiContent; }
 }
 public void Init (Texture skillBoxTexture) {
 _guiContent = new GUIContent("");
 _skillBoxTexture = skillBoxTexture;
 }
}

8.	 Then, we will add variables and initialize it to our menu script; open the menu
script and type the following highlighted code:

// Unity JavaScript user:

…
private final var SKILL_BOX_RECT : Rect = new Rect (460, 284, 127,
125);
var weapons : ItemsContainer;
var armors : ItemsContainer;
var accessories : ItemsContainer;
var items : ItemsContainer;
var skills : SkillsContainer;
function Start () : void {
 _isMenuOpen = false;
 weapons.Init(true);
 armors.Init(true);
 accessories.Init(true);
 items.Init(false);
 skills.Init(skillBoxTexture);
}
…

// C# user:

…
readonly Rect SKILL_BOX_RECT = new Rect (460, 284, 127, 125);
public ItemsContainer weapons;
public ItemsContainer armors;
public ItemsContainer accessories;
public ItemsContainer items;

Project 2

101

public SkillsContainer skills;
void Start () {
 _isMenuOpen = false;
 weapons.Init(true);
 armors.Init(true);
 accessories.Init(true);
 items.Init(false);
 skills.Init(skillBoxTexture);
}
…

9.	 Lastly, we go to the StatusWindow() function in this SkillsCointainer class,
and add the following highlighted code:

// Unity JavaScript user:

private function StatusWindow() : void {
 …
 GUI.Label(LUC_RECT, currentLUC.ToString(), "Text Amount");
 GUI.Label(WEAPON_LABEL_RECT, weapons.guiContent, "Text Item");
 GUI.Label(ARMOR_LABEL_RECT, armors.guiContent, "Text Item");
 GUI.Label(ACCESS_LABEL_RECT, accessories.guiContent, "Text
Item");
 GUI.Label(SKILL_TEX_RECT, skills.guiContent, "Text Item");
}

// C# user (put the code inside the class):

void StatusWindow() {
 …
 GUI.Label(LUC_RECT, currentLUC.ToString(), "Text Amount");
 GUI.Label(WEAPON_LABEL_RECT, weapons.guiContent, "Text Item");
 GUI.Label(ARMOR_LABEL_RECT, armors.guiContent, "Text Item");
 GUI.Label(ACCESS_LABEL_RECT, accessories.guiContent, "Text
Item");
 GUI.Label(SKILL_TEX_RECT, skills.guiContent, "Text Item");
}

Create a Menu for an RPG – Add Powerups, Weapons, and Armors

102

10.	 Now, we can go back to Unity, click on Play, and press the M key to bring up our
menu window. We will see all the attributes for our character, as shown in the
following screenshot:

Objective complete – mini debriefing
We just created the Item, ItemsContainer, and SkillsContainer classes to contain
our items and skills information, which will be shown on the equipment box. All these classes
will be used in the next step to create the item's scroll view. Then, in the Start() function,
we initialized items, equipments, and skills. In this function, we also set the equipment to
the default state, which is the UNEQUIP state.

Next, we created the StatusWindow() function to show the STATUS page when the players
see our menu when they first click on the STATUS tab. We also created a CheckMax() function
to make sure that the number of the character attributes is not over or under the limit.

Classified intel
In this section, we used GUIContent to contain information of our items and skills, then
passed it to the GUI.Label() function. Basically, if we take a look at each GUI class's function,
we will see that they can take many variables such as Rect, string, Texture, GUIContent,
and GUIStyle. We already know Rect, string, and Texture. Also, GUIStyle is the
name of the style from our MenuSkin object that we created, but what is GUIContent? It is
basically a class that contains the necessary variables (image, text, and tooltip) to apply to our
GUI. For example, if we want our button to have an icon, name, and information when the user
rolls over it, we can add the following code:

Project 2

103

GUI.Button(Rect(0,0,100,20), GUIContent("My Button Name", icon, "This
is the button info").

The first parameter is the string that will be the text or in our case, it is the button name,
which is seen on the button, and next is the graphic's texture or icon that will also be seen
on this button. The last string is the information that will be stored in this button, which we
call tooltip. We can show this tooltip when the user rolls over this button by calling GUI.
tooltip. This will automatically show the current button's tooltip that the user rolls over.
We will use it in the next section.

For more details about GUIContent and GUI.tooltip, check
out the following website:

http://unity3d.com/support/documentation/
ScriptReference/GUIContent.html

Creating the INVENTORY tab
So, we are now in the second page of our menu window, which is the INVENTORY page.
In this section, we will create an item scroll that the player can use to scroll up and
down to select the item and see its name, amount, and information about the item.

Engage thrusters
We will start with adding the parameters by performing the following steps, which we will
use to store the data in our INVENTORY page:

1.	 Open the ItemsContainer class; now, we will create the item's array object and
the scroll view that can contain all the items; firstly, add the following highlighted
code to create new variables:

// Unity JavaScript user:

#pragma strict
import System.Collections.Generic;
…
private var _isEquipment : boolean;
private final var ITEM_BOX_POS : Rect =
 new Rect (257, 87, 320, 200);
private final var TOOL_BOX_RECT : Rect =
 new Rect (0, 0, 280, 40);
private final var EQUIP_BOX_POS : Rect =
 new Rect (257, 300, 320, 120);

http://unity3d.com/support/documentation/ScriptReference/GUIContent.html
http://unity3d.com/support/documentation/ScriptReference/GUIContent.html

Create a Menu for an RPG – Add Powerups, Weapons, and Armors

104

var items : List.<Item>;
private var _itemCount : int;
private var _selectedItem : int;
private var _scrollPosition : Vector2;
function get guiContent () : GUIContent {
…

// C# user:

using UnityEngine;
using System.Collections;
using System.Collections.Generic;
…
bool _isEquipment;
readonly Rect ITEM_BOX_POS = new Rect (257, 87, 320, 200);
readonly Rect TOOL_BOX_RECT = new Rect (0, 0, 280, 40);
readonly Rect EQUIP_BOX_POS = new Rect (257, 300, 320, 120);
public List<Item> items;
int _itemCount;
int _selectedItem;
Vector2 _scrollPosition;
public GUIContent guiContent {
…

List.<T> or List<T>: The List<T> array is basically an array of type
<T>, which is easier to add, remove, or insert later in the next step than
using the built-in array. Also the performance is a lot better than using an
array. To use the List<T> array, we need to add the following code at the
beginning of the class:

import System.Collections.Generic (Unity Javascript)
 using System.Collections.Generic (C#)

2.	 Next, we will go to the Init() function and add the highlighted code as follows
to set up the value of those variables that we've just created:

// Unity JavaScript user:

function Init (isEquipment : boolean) : void {
 _isEquipment = isEquipment;
 _guiContent = (_isEquipment) ? new GUIContent(UNEQUIP) : new
GUIContent(NONE);

Project 2

105

 _selectedItem = 0;
 _scrollPosition = Vector2.zero;
 _itemCount = items.Count;
}

// C# user:

public void Init (bool isEquipment) {
 _isEquipment = isEquipment;
 _guiContent = (_isEquipment) ? new GUIContent(UNEQUIP) : new
GUIContent(NONE);
 _selectedItem = 0;
 _scrollPosition = Vector2.zero;
 _itemCount = items.Count;
}

3.	 Then, we will add the SetupScrollBar() function after the Init() function
as shown the following highlighted code:

// Unity JavaScript user:

function Init (isEquipment : boolean) : void {
…
}
function SetupScrollBar () {
 var position : Rect = (_isEquipment) ? EQUIP_BOX_POS : ITEM_BOX_
POS;
 var view : Rect = TOOL_BOX_RECT;
 var itemCount = _itemCount;
 var isNoItem : boolean = false;
 if (_isEquipment) {
 itemCount++;
 } else {
 if (itemCount == 0) {
 itemCount++;
 isNoItem = true;
 }
 }
 view.height *= itemCount;
 _scrollPosition = GUI.BeginScrollView (position, _
scrollPosition, view);

Create a Menu for an RPG – Add Powerups, Weapons, and Armors

106

 var itemsContent : GUIContent[] = new GUIContent[itemCount];
 if (itemCount > 1) {
 for (var i: int = 0; i < itemCount; i++) {
 itemsContent[i] = (_isEquipment) ? ((i == 0) ? new
GUIContent(UNEQUIP) : items[i-1].guiContent) : items[i].
guiContent;
 }
 } else {
 itemsContent[0] = (isNoItem) ? new GUIContent(NONE) : ((_
isEquipment) ? new GUIContent(UNEQUIP) : items[0].guiContent);
 }
 _selectedItem = GUI.SelectionGrid (view, _selectedItem,
itemsContent, 1, GUI.skin.GetStyle("Selected Item"));
 GUI.EndScrollView ();
 _guiContent = itemsContent[_selectedItem];
}

// C# user:

public void Init (bool isEquipment) {
 …
}

public void SetupScrollBar () {
 Rect position = (_isEquipment) ? EQUIP_BOX_POS : ITEM_BOX_POS;
 Rect view = TOOL_BOX_RECT;
 int itemCount = _itemCount;
bool isNoItem = false;
 if (_isEquipment) {
 itemCount++;
 } else {
 if (itemCount == 0) {
 itemCount++;
 isNoItem = true;
 }
 }
 view.height *= itemCount;
 _scrollPosition = GUI.BeginScrollView (position, _
scrollPosition, view);
 GUIContent[] itemsContent = new GUIContent[itemCount];

Project 2

107

 if (itemCount > 1) {
 for (int i = 0; i < itemCount; i++) {
 itemsContent[i] = (_isEquipment) ? ((i == 0) ? new
GUIContent(UNEQUIP) : items[i-1].guiContent) : items[i].
guiContent;
 }
 } else {
 itemsContent[0] = (isNoItem) ? new GUIContent(NONE) : ((_
isEquipment) ? new GUIContent(UNEQUIP) : items[0].guiContent);
 }
 _selectedItem = GUI.SelectionGrid (view, _selectedItem,
itemsContent, 1, GUI.skin.GetStyle("Selected Item"));
 GUI.EndScrollView ();
 _guiContent = itemsContent[_selectedItem];
}

There is a bug in GUI.SelectionGrid in Unity 4.0 to 4.2. When you roll over the
items, the tooltip always returns an empty string. If you are using Unity 4.0 to 4.2,
you can replace these lines of code with the following code:

// Unity JavaScript user:

_selectedItem = GUI.SelectionGrid (view, _selectedItem,
itemsContent, 1, GUI.skin.GetStyle("Selected Item"));

The preceding code should be replaced with the following code:

for (var j: int = 0; j < itemsContent.Length; j++) {
 if (_selectedItem == j) {
 GUI.Label(new Rect (0, j*40, 280, 40),itemsContent[j],GUI.
skin.GetStyle("Disabled Click"));
 } else {
 if (GUI.Button(new Rect (0, j*40, 280,
40),itemsContent[j],GUI.skin.GetStyle("Selected Item"))) {
 _selectedItem = j;
 }
 }
}

For a C# user, the following code exists:

_selectedItem = GUI.SelectionGrid (view, _selectedItem,
 itemsContent, 1, GUI.skin.GetStyle("Selected Item"));

Create a Menu for an RPG – Add Powerups, Weapons, and Armors

108

The preceding code should be replaced with the following code:

for (int j = 0; j < itemsContent.Length; j++) {
 if (_selectedItem == j) {
 GUI.Label(new Rect (0, j*40, 280,
 40),itemsContent[j],GUI.skin.GetStyle("Disabled
 Click"));
 } else {
 if (GUI.Button(new Rect (0, j*40, 280,
 40),itemsContent[j],GUI.skin.GetStyle("Selected
 Item"))) {
 _selectedItem = j;
 }
 }
}

In this function, first, we check the equipments or items to get the Rect position
of the item box. Then, we add the itemCount item if it's the equipment, which is
standing for the UNEQUIP selection. Next, we get the height of the scroll view by
calculating the number of items from the itemCount item. Then, we create the
scroll view by using GUI.BeginScrollView. Next, we create a GUIContent array
to contain our items and check if it's the equipment that we add as the first item to
UNEQUIP then add the rest. Next, we create GUI.SelectionGrid and apply the
selected item to _guiContent, which will be used in the next step in the Menu script.

In this step, we've used the ? and : syntaxes. These syntaxes are basically a
shortcut to get variables from the if-else statement. Consider the following
example:

var something;
if (condition) { something = true; }
else { something = false; }

We can change this to something like the following code:

var something = (condition) ? true : false;

4.	 Next, we go back to the Menu script and add the variables as highlighted in the
following code:

// Unity JavaScript user:

…

Project 2

109

var skills : SkillsContainer;
private final var ITEM_BOX_RECT : Rect = new Rect (237, 67, 360,
247);
private final var ITEM_TIP_BOX_RECT : Rect = new Rect (237, 330,
360, 107);
private var _scrollPosition : Vector2 = Vector2.zero;
function Start () : void {
…

// C# user:

…
public SkillsContainer skills;
readonly Rect ITEM_BOX_RECT = new Rect (237, 67, 360, 247);
readonly Rect ITEM_TIP_BOX_RECT = new Rect (237, 330, 360, 107);
Vector2 _scrollPosition = Vector2.zero;
void Start () {
…

5.	 Then, we will add the ItemWindow() function after the StatusWindow() function
as highlighted in the following code:

// Unity JavaScript user:

private function StatusWindow() : void {
 …
}
private function ItemWindow() : void {
 GUI.Box (ITEM_BOX_RECT, "");
 GUI.Box (ITEM_TIP_BOX_RECT, "");
 items.SetupScrollBar();
 var info : String = (items.guiContent.tooltip == "") ? "Show
items information here" : items.guiContent.tooltip;
 var style : GUIStyle = GUI.skin.GetStyle("Label");
var tooltip : String = (GUI.tooltip != "") ? GUI.tooltip : info;
 var height : float = style.CalcHeight(GUIContent(tooltip),
330.0f) + 20;
 _scrollPosition = GUI.BeginScrollView (new Rect (257, 343, 320,
75), _scrollPosition, new Rect (0, 0, 280, height));
 GUI.Label(new Rect (0, 0, 280, height), tooltip);

Create a Menu for an RPG – Add Powerups, Weapons, and Armors

110

 GUI.EndScrollView ();
}

// C# user:

void StatusWindow() {
 …
}
void ItemWindow() {
 GUI.Box (ITEM_BOX_RECT, "");
 GUI.Box (ITEM_TIP_BOX_RECT, "");
 items.SetupScrollBar();
 string info = (items.guiContent.tooltip == "") ?
 "Show items information here" : items.guiContent.tooltip;
 GUIStyle style = GUI.skin.GetStyle("Label");
 string tooltip = (GUI.tooltip != "") ? GUI.tooltip : info;
 float height = style.CalcHeight(new GUIContent(tooltip),
 330.0f) + 20;
 _scrollPosition = GUI.BeginScrollView (new Rect (257, 343, 320,
75),
 _scrollPosition, new Rect (0, 0, 280, height));
 GUI.Label(new Rect (0, 0, 280, height), tooltip);
 GUI.EndScrollView ();
}

In this function, we first set up the item box and the item tooltip box. Then, we
create the item scroll view by calling items.SetupScrollBar(). Lastly, we get
the selected item tooltip, check if the tooltip isn't an empty string if it's assigned to
our string. Then, we calculate the height of this tooltip box by using the Label style
and create the scroll view for it.

6.	 Then, we go to the DoMyWindow() function inside the switch statement and add
the highlighted code inside this function to show the INVENTORY window when we
click on the INVENTORY tab, as follows:

// Unity JavaScript user:

private function DoMyWindow (windowID : int) : void {
 …

Project 2

111

 switch (_currentTool) {
 case TAB.STATUS : //Status
 …
 break;
 case TAB.INVENTORY : //Items
 ItemWindow();
 break;
 }
 …
}

// C# user:

void DoMyWindow (int windowID) {
 …
 switch (_currentTool) {
 case TAB.STATUS : //Status
 …
 break;
 case TAB.INVENTORY : //Items
 ItemWindow();
 break;
 }
 …
}

7.	 Let's go back to Unity, we can click on Play to see the result. We will see only NONE
in the inventory box and the Show items information here text in the tooltip box.
So, we need to create the item GameObject and add it our MenuObject by going
to GameObject | Create Empty to create the empty game object and name it
Golden Key.

8.	 Next, click on the Golden Key object that we just created and add the item script
to this object, then go to its Inspector view and set up the attributes as follows:

Item (script)

Icon keyIcon

Info This golden key looks very old. Looks like,
it was made by someone in the Ancient Rome.

Create a Menu for an RPG – Add Powerups, Weapons, and Armors

112

9.	 Next, drag the Golden Key object from the Hierarchy view to the
MenuInRPGGame/Resources/Prefab folder in the Project view to create
a prefab of this item. Then, we will remove the Golden Key object from the
Hierarchy view by right-clicking on the object and choosing Delete.

10.	 Lastly, click on the MenuObject item in the Hierarchy view to bring up its
Inspector view at the Menu (script); go to Items and add it as follows:

Items

Size 1

Element 0 Golden Key (drag from the Project view)

Now, click on Play and press the M key to bring up the menu window. Click on
the INVENTORY tab and we will see our item page. Isn't that cool?

We can add more variety of items to the INVENTORY page by adding the
GameObject item that has the item script attached, and give a name,
icon, and information to the Menu (script) as we did in step 10. We can see
the result, as shown in the following screenshot:

Project 2

113

Objective complete – mini debriefing
We just created our INVENTORY page that we'll be able to view by clicking on the INVENTORY
tab. First, we created the item array by using List<T> to contain all the items. Then we added
the SetupScrollBar() function in the ItemsContainerclass in this function, we created
a scroll view for the items by using GUI.BeginScrollView() and GUI.EndScrollView(),
and created a scrollable area that contains all the items. We also used GUI.SelectionGrid
to align all items in the list from which the player can select any item. Lastly, we passed the
GUIContent selection to use in the Menu script.

Then, in the Menu script in the Start() function, we initialized our items, armors,
accessories, weapons, and skills objects. Next, we created the ItemWindow() function,
which we used to control our item page. In this function, we created a scroll view. Then,
we got the current tooltip from GUIContent that we get from ItemsContainer and
checked whether there is any information or not. Next, we checked GUI.tooltip for any
stored string; if nothing is stored here, we assigned the current tooltip from our selected
items to GUI.tooltip, which showed the result that if we roll over each item, the current
information will change to the roll-overed item. On the other hand, if we roll over from our
items list, the result will show the selected item's information. Next, we get the Label style
height from the current GUI.tooltip item. Then, we created another scroll view to show
this tooltip information in the box area.

In the DoMyWindow() function, we added the INVENTORY state to show the item page
when the user clicks on the INVENTORY tab by calling the ItemWindow() function.

At last, we created the GameObject prefab that has the item script attached to it and
added it to our item page.

Classified intel
In this step, we were using GUI.SelectionGrid to create a list of the items. By using
GUI.SelectionGrid, we were able to create a list of buttons using one line of code that
have a fixed height and space, which was very convenient. We can see more details on
how to use GUI.SelectionGrid at the following URL:

http://unity3d.com/support/documentation/ScriptReference/GUI.
SelectionGrid.html

http://unity3d.com/support/documentation/ScriptReference/GUI.SelectionGrid.html
http://unity3d.com/support/documentation/ScriptReference/GUI.SelectionGrid.html

Create a Menu for an RPG – Add Powerups, Weapons, and Armors

114

GUI.tooltip
We also used the GUI.tooltip parameter to show our items' information when the player
rolls over each item and showed the selected item's information if the player rolls out. So,
how does GUI.tooltip work? Basically, GUI.tooltip will return the string from each
button that contains a tooltip string when the player rolls over it. However, if the player rolls
out or that button doesn't have any tooltip stored in it, this parameter will automatically
return a blank string, similar to the following code that we used in the ItemWindow()
function in the Menu script's class.

A Unity JavaScript user can use the following code:

var tooltip : String = (GUI.tooltip != "") ? GUI.tooltip : info;

A C# user can use the following code:

string tooltip = (GUI.tooltip != "") ? GUI.tooltip : info;

We basically tell GUI.tooltip that we will assign the rollover tooltip information to the
label when the player rolls over. And, if the player rolls out, we will show the selected item's
information for which the default is the first item, as we can see in the following screenshot:

From the preceding screenshot, we can see that the left-hand side shows that when we roll
over the second key, the information box shows the tooltip of the second key. The right-hand
side shows that when we roll out from the second key, the information box shows the tooltip
of the selected key, which is the first key.

You can see more details about GUI.tooltip at the following URL:

http://unity3d.com/support/documentation/
ScriptReference/GUI-tooltip.html

http://unity3d.com/support/documentation/ScriptReference/GUI-tooltip.html
http://unity3d.com/support/documentation/ScriptReference/GUI-tooltip.html

Project 2

115

Creating the EQUIPMENT tab
This is the last step of our menu. We will create a tab with which the player can change the
weapons, armors, accessories, and skills, which will also update variables in the STATUS tab,
as we can see in the following screenshot:

Engage thrusters
We will start this section by going to the SkillsContainer script and adding new
variables. This is done by performing the following steps:

1.	 Open the SkillsContainer script and add the following highlighted code:

// Unity JavaScript user:

…
private var _skillBoxTexture : Texture;
private final var SKILL_BOX_POS : Rect = new Rect (253, 286, 330,
140);
private final var SKILL_BOX_RECT : Rect = new Rect (0, 0, 125,
117);
var textures : Texture[];

Create a Menu for an RPG – Add Powerups, Weapons, and Armors

116

private var _textureCount : int;
private var _selectedSkill : int;
private var _scrollPosition : Vector2;
function get guiContent () : GUIContent {
…

// C# user:

…
Texture _skillBoxTexture;
readonly Rect SKILL_BOX_POS = new Rect (253, 286, 330, 140);
readonly Rect SKILL_BOX_RECT = new Rect (0, 0, 125, 117);
public Texture[] textures;
int _textureCount;
int _selectedSkill;
Vector2 _scrollPosition;
public GUIContent guiContent {
…

2.	 Next, we go to the Init() function and add the following highlighted code to set
up all variables:

// Unity JavaScript user:

function Init (skillBoxTexture : Texture) : void {
 _guiContent = new GUIContent("");
 _skillBoxTexture = skillBoxTexture;
 _selectedSkill = 0;
 _scrollPosition = Vector2.zero;
 _textureCount = textures.Length;
}

// C# user:

public void Init (Texture skillBoxTexture) {
 _guiContent = new GUIContent("");
 _skillBoxTexture = skillBoxTexture;
 _selectedSkill = 0;
 _scrollPosition = Vector2.zero;
 _textureCount = textures.Length;
}

Project 2

117

3.	 Then, we will set up the scroll view for our skill textures, which is very similar to
the one we set in the ItemsContainer class, but in this function, we will have a
horizontal scroll view instead. So, add the new function after the Init() function
and name it SetupSkillScrollBar(); add the highlighted code as follows:

// Unity JavaScript:

function Init (skillBoxTexture : Texture) : void {
 …
}
function SetupSkillScrollBar () : void {
 var itemCount = _textureCount+1;
 var itemsContent : GUIContent[] = new GUIContent[itemCount];
 for (var i: int = 0; i < itemCount; i++) {
 itemsContent[i] = (i == 0) ? new GUIContent(_skillBoxTexture)
: new GUIContent(textures[i-1]);
 }
var newView : Rect = SKILL_BOX_RECT;
 newView.width *= itemCount;
_scrollPosition = GUI.BeginScrollView (SKILL_BOX_POS, _
scrollPosition, newView);
 newView,y = 4;
 _selectedSkill = GUI.SelectionGrid (newView, _selectedSkill,
itemsContent, itemCount, GUI.skin.GetStyle("Selected Item"));
 GUI.EndScrollView ();
 _guiContent = (_selectedSkill > 0) ? itemsContent[_
selectedSkill] : new GUIContent("");
}

// C# user:

public void Init (Texture skillBoxTexture) {
 …
}
public void SetupSkillScrollBar () {
 int itemCount = _textureCount+1;
 GUIContent[] itemsContent = new GUIContent[itemCount];
for (int i = 0; i < itemCount; i++) {
 itemsContent[i] = (i == 0) ? new GUIContent(_skillBoxTexture) :
new GUIContent(textures[i-1]);
}

Create a Menu for an RPG – Add Powerups, Weapons, and Armors

118

Rect newView = SKILL_BOX_RECT;
newView.width *= itemCount;
 _scrollPosition = GUI.BeginScrollView (SKILL_BOX_POS, _
scrollPosition, newView);
 newView.y = 4;
 _selectedSkill = GUI.SelectionGrid (newView, _selectedSkill,
itemsContent, itemCount, GUI.skin.GetStyle("Selected Item"));
 GUI.EndScrollView ();
 _guiContent = (_selectedSkill > 0) ? itemsContent[_
selectedSkill] : new GUIContent("");
}

4.	 Next, we will go back to our Menu script and add the new variables for the
EQUIPMENT window, so add the highlighted code as follows:

// Unity JavaScript user:

…
private var _scrollPosition : Vector2 = Vector2.zero;
private final var EQUIP_BOX_RECT : Rect = new Rect (237, 67, 360,
207);
private final var EQUIP_WEAPON_RECT : Rect = new Rect (237, 280,
360, 157);
private final var EQUIP_STAT_RECT : Rect = new Rect (252, 81, 331,
142);
private final var EQUIP_SKILL_RECT : Rect = new Rect (460, 121,
127, 125);
private final var EQUIP_RECTS : Rect[] = [new Rect (252, 101, 180,
40), new Rect (252, 161, 180, 40), new Rect (252, 221, 180, 40),
new Rect (464, 125, 119, 117)];
private final var EQUIP_WINDOW_RECT : Rect = new Rect (500, 0, 70,
100);
private var _equipBooleans : boolean[] = new boolean[4];
…

// C# user:

…
Vector2 _scrollPosition = Vector2.zero;
readonly Rect EQUIP_BOX_RECT = new Rect (237, 67, 360, 207);
readonly Rect EQUIP_WEAPON_RECT = new Rect (237, 280, 360, 157);
readonly Rect EQUIP_STAT_RECT = new Rect (252, 81, 331, 142);
readonly Rect EQUIP_SKILL_RECT = new Rect (460, 121, 127, 125);

Project 2

119

readonly Rect [] EQUIP_RECTS = { new Rect (252, 101, 180, 40),
new Rect (252, 221, 180, 40), new Rect (464, 125, 119, 117)};
bool[] _equipBooleans = new bool[4];
…

5.	 Then, we create EquipWindow(), which will contain the script that is used to
create the EQUIPMENT window's UI. In this function, we also check whether each
equipment label is clickable or not. Here, we use the switch-case statement again
to check which state we are in when the player clicks on each equipment label in the
box at the top of the screen. It will basically show the correct equipments or skills
in the box at the bottom of the screen, which also allows the player to select a new
equipment or skill. So, let's type the following code after the ItemWindow() function:

// Unity JavaScript user:

…
private function ItemWindow() : void {
 …
}
private function EquipWindow() : void {
 GUI.Box (EQUIP_BOX_RECT, "");
 GUI.Box (EQUIP_WEAPON_RECT, "");
 GUI.DrawTexture(EQUIP_STAT_RECT, statBox2Texture);
 GUI.DrawTexture(EQUIP_SKILL_RECT, skillBoxTexture);
 var equipContent : GUIContent[] = [weapons.guiContent, armors.
guiContent, accessories.guiContent, skills.guiContent];
 for (var i : int = 0; i < _equipBooleans.Length; i++) {
 if (_equipBooleans[i] == true) {
 GUI.Label(EQUIP_RECTS[i], equipContent[i], "Disabled
Click");
 switch (i) {
 case 0: weapons.SetupScrollBar(); break;
 case 1: armors.SetupScrollBar(); break;
 case 2: accessories.SetupScrollBar(); break;
 case 3: skills.SetupSkillScrollBar(); break;
 }
 } else {
 if (GUI.Button(EQUIP_RECTS[i], equipContent[i],
 "Selected Item")) {
 _equipBooleans[i] = true;
 for (var j : int = 0; j < _equipBooleans.Length; j++) {

Create a Menu for an RPG – Add Powerups, Weapons, and Armors

120

 if (i != j) {_equipBooleans[j] = false; }
 }
 }
 }
 }

}

// C# user:

…

void ItemWindow() {

 …

}

void EquipWindow() {
 GUI.Box (EQUIP_BOX_RECT, "");
 GUI.Box (EQUIP_WEAPON_RECT, "");
 GUI.DrawTexture(EQUIP_STAT_RECT, statBox2Texture);
 GUI.DrawTexture(EQUIP_SKILL_RECT, skillBoxTexture);
 GUIContent[] equipContent = {weapons.guiContent, armors.
guiContent, accessories.guiContent, skills.guiContent};
 for (int i = 0; i < _equipBooleans.Length; i++) {
 if (_equipBooleans[i] == true) {
 GUI.Label(EQUIP_RECTS[i], equipContent[i], "Disabled
Click");
 switch (i) {
 case 0: weapons.SetupScrollBar(); break;
 case 1: armors.SetupScrollBar(); break;
 case 2: accessories.SetupScrollBar(); break;
 case 3: skills.SetupSkillScrollBar(); break;
 }
 } else {
 if (GUI.Button(EQUIP_RECTS[i], equipContent[i],
 "Selected Item")) {
 _equipBooleans[i] = true;
 for (int j = 0; j < _equipBooleans.Length; j++) {
 if (i != j) { _equipBooleans[j] = false; }
 }
 }
 }
 }
}

Project 2

121

6.	 Then, we go back to the DoMyWindow() function and add the following highlighted
code in the switch-case statement to inform the EQUIPMENT window when the
user clicks on the EQUIPMENT tab:

// Unity JavaScript user:

private function DoMyWindow (windowID : int) : void {
 …
 switch (_currentTool) {
 …
 case TAB.INVENTORY : //Items
 …
 break;
 case TAB.EQUIPMENT : //Equip
 EquipWindow();
 break;
 }
 …
}

// C# user:

void DoMyWindow (int windowID) {
 …
 switch (_currentTool) {
 …
 case TAB.INVENTORY : //Items
 …
 break;
 case TAB.EQUIPMENT : //Equip
 EquipWindow();
 break;
 }
…
}

7.	 Now, we need to create three prefabs for weapons, armors, and accessories; so, go
back to Unity and create the first GameObject (weapon) by going to GameObject
| Create Empty to create the empty game object and name it Dark Fist, and add
the item script to this object by going to its Inspector view, and then click on Add
Component and choose Scripts | Item.

Create a Menu for an RPG – Add Powerups, Weapons, and Armors

122

8.	 Next, we right-click on this object and choose Duplicate twice to create two other
objects and name those two objects as Dark Armor and Dark Mask.

9.	 Now, we need to put the information in each item that we just created; go to the
Inspector view of each item and set them as follows:

�� For Dark Fist, add the following information:

Item (script)

Icon weapon (drag the weapon texture here)

Info This is the dark weapon.

�� For Dark Armor, add the following information:

Item (script)

Icon armor (drag the armor texture here)

Info This is the dark armor.

�� For Dark Mask, add the following information:

Item (script)

Icon accessory (drag the accessory texture here)

Info This is the dark accessory.

Then, we drag all three objects to the MenuInRPGGame/Resources/Prefab
folder in the Project view to create a prefab of those objects. Then, we will
remove all three objects from the Hierarchy view by right-clicking on each
object and choosing Delete.

10.	 Next, we will click on the MenuObject item in the Hierarchy view to bring up its
Inspector view. Then, we set up the following properties:

�� For weapons, set up the following properties:

Items

Size 1

Element 0 Dark Fist (drag from the Project view)

�� For armors, set up the following properties:

Items

Size 1

Element 0 Dark Armor (drag from the Project view)

Project 2

123

�� For accessories, set up the following properties:

Items

Size 1

Element 0 Dark Mask (drag from the Project view)

�� For skills, set up the following properties:

Textures

Size 4

Element 0 skill1 (drag from the Project view)

Element 1 skill2 (drag from the Project view)

Element 2 skill3 (drag from the Project view)

Element 3 skill4 (drag from the Project view)

Now, we will finish the last step of the menu; click on Play, open the menu window,
click on the EQUIPMENT tab, and roll over it, and click on the UNEQUIP label or the
skill box. We will be able to change the character's equipments, as we can see in the
following screenshot:

Objective complete – mini debriefing
We just finished the last tab of our menu window. In this step, we created the EQUIPMENT
button that will bring up the selection window from which the player can choose the type
of equipment or skill. It will update the current equipment's status on the STATUS tab too.

Create a Menu for an RPG – Add Powerups, Weapons, and Armors

124

If we take a look at our EquipWindow() function, we will see that we call the
SetupScrollBar() function in the ItemsContainer class similar to what we did in
the ItemWindow() function, but this time it is the equipment. We know it is the equipped
object because we call the Init() function and pass the value isEquipment to the
Start() function of the Menu script.

For a Unity JavaScript User, the following code can be used:

function Init (isEquipment : boolean) : void {
 _isEquipment = isEquipment;
 …
}

For a C# User, the following code can be used:

void Init (bool isEquipment) : void {
 _isEquipment = isEquipment;
 …
}

Then, in the SetupScrollBar() function in the ItemsContainer class, we just check
that value to return the information and show it on the scroll view correctly.

For a Unity JavaScript user, the following highlighted code can be used:

if (itemCount > 1) {
 for (var i : int = 0; i < itemCount; i++) {
 itemsContent[i] = (_isEquipment) ? ((i == 0) ? new
GUIContent(UNEQUIP) : items[i-1].guiContent) : items[i].guiContent;
 }
} else {
 itemsContent[0] = (isNoItem) ? new GUIContent(NONE) :
((_ isEquipment) ? new GUIContent(UNEQUIP) : items[0].guiContent);
}

For a C# user, the following highlighted code can be used:

if (itemCount > 1) {
 for (int i = 0; i < itemCount; i++) {
 itemsContent[i] = (_isEquipment) ? ((i == 0) ? new
GUIContent(UNEQUIP) : items[i-1].guiContent) : items[i].guiContent;
 }
} else {
 itemsContent[0] = (isNoItem) ? new GUIContent(NONE) :
((_isEquipment) ? new GUIContent(UNEQUIP) : items[0].guiContent);
}

Project 2

125

Next, we call the SetupSkillScrollBar() function in the SkillsContainer
class, which has a very similar concept to the SetupScrollBar() function in the
ItemsContainer class, but this time it contains the texture instead of item information,
as shown in the following script:

itemsContent[i] = (i == 0) ? new GUIContent(_skillBoxTexture) :
new GUIContent(textures[i-1]);

In SetupSkillScrollBar(), we also set up the GUI.SelectionGrid parameter to show
the result in a horizontal view instead of a vertical view by passing the itemCount item to
the GUI.SelectionGrid() function, as we can see in the following code:

_selectedSkill = GUI.SelectionGrid (newView, _selectedSkill,
itemsContent, itemCount, GUI.skin.GetStyle("Selected Item"));

At last, we create the equipment prefabs and add it to our Menu script to show all items that
the users can equip themselves when a weapon, armor, or accessory is selected.

We can create and add more weapons, armors, or accessories similar to
the INVENTORY page by creating a new prefab and adding it to the items
array in the Weapons, Armors, or Accessories properties in the Menu script
inspector, as shown in the following screenshot:

Classified intel
We have created a vertical and horizontal scroll view by using GUI.BeginScrollView()
to begin the scroll view and ended it with GUI.EndScrollView(). Basically, we can use
this function, which is very convenient to use, when we want to create a scrollable area that
contains any type of a GUI object, because this function will automatically create a scrollable
area from the two Rect parameters that we set up.

Create a Menu for an RPG – Add Powerups, Weapons, and Armors

126

For example, in order to create a vertical scroll area at position x: 0, y: 0, Width: 100 pixels,
and Height: 40 pixels, which contains three buttons with each button having 40 pixels height,
we'd use code similar to the following snippets:

// Unity JavaScript user:

var scrollPostion : Vector2 = Vector2.zero;
function OnGUI() {
 scrollPostion = GUI.BeginScrollView(new Rect(0,0,100,40),
scrollPostion, new Rect(0,0,80,120));
 GUI.Button(new Rect(0,0,80,40),"Button 1");
 GUI.Button(new Rect(0,40,80,40),"Button 2");
 GUI.Button(new Rect(0,80,80,40),"Button 3");
 GUI.EndScrollView();
}

// C# user:

Vector2 scrollPostion = Vector2.zero;
void OnGUI() {
 scrollPostion = GUI.BeginScrollView(new Rect(0,0,100,40),
 scrollPostion, new Rect(0,0,80,120));
 GUI.Button(new Rect(0,0,80,40),"Button 1");
 GUI.Button(new Rect(0,40,80,40),"Button 2");
 GUI.Button(new Rect(0,80,80,40),"Button 3");
 GUI.EndScrollView();
}

From the preceding code, we can see that the GUI.BeginScrollView() function returns
Vector2, which is the vertical and horizontal position of this scroll view. It also takes two Rect
objects; the first Rect object is the area that the player will see, or we can call it a mask area.
The second Rect object is the area of our content, which is based on the content that we
included between the GUI.BeginScrollView() and GUI.EndScrollView() functions,
which are the three lines of GUI.Button. We can see more details of this function at the
following URL:

http://unity3d.com/support/documentation/ScriptReference/GUI.
BeginScrollView.html

http://unity3d.com/support/documentation/ScriptReference/GUI.BeginScrollView.html
http://unity3d.com/support/documentation/ScriptReference/GUI.BeginScrollView.html

Project 2

127

The following figure shows how the GUI.BeginScrollView() function works in a
visual representation:

Mission accomplished
In this project, we just created a nice menu, which has the features for an RPG menu. This
menu can move around the screen, and we can change the equipment of the character, too.
We used a GUI class, GUISkin, and the OnGUI function to create this menu. In the GUI class,
we used GUI.window to create our main menu, GUI.box to create the background box area,
GUI.DrawTexture to show our character's graphics, GUI.Button to create a button, GUI.
ToolBar to create a tab button, GUI.SelectionGrid to create a list of clickable items, GUI.
BeginScrollView and GUI.EndScrollView to create a scrolling area, and lastly, we used
GUI.Label to create a text label. We also used GUIContent to contain the information
of our button or label. Let's take a look at what we learned from this project from the
following screenshot:

Create a Menu for an RPG – Add Powerups, Weapons, and Armors

128

We can also go back to the STATUS tab to see the result when we equip all the equipments,
as seen in the following screenshot:

Hotshot challenges
Now, we have a nice menu, but we still have room to improve this menu to work better.
So, why don't you try something to make this menu much more interesting? Try the
following challenges:

ff Add a new tab called OPTION that the player can use to adjust music and volume

ff Create more items or any equipment to make the menu much more interesting

ff Add the ability to update the character's graphics when we change the equipment
or skill of the character

ff Pause the game when we bring up our menu

ff Create your own custom UI graphic and use it instead of the one mentioned in
this project

The completed package that comes with this project package has included
pausing the game while the menu is showing and adding the new item in
the INVENTORY page when the key is collected.

Project 3
Shade Your

Hero/Heroine

In the last two projects, we learned how to create a UI using the GUI object as well as a 2D
platform game that used the 2D sprite texture to create our 2D character, and we also got to
know a bit about the 3D world in the first project. So, in this project, we will be using a full
3D character. We will take a close look at how to apply a material and shader to the model.

In Unity, there are three different types of shaders. First, surface shaders is the best option
if we want our shader to be affected by lights and shadows. Next, Vertex and Fragment
Shaders will be required when our shader doesn't need to interact with lighting or needs
an effect that surface shaders can't handle. Finally, ShaderLab and Fixed Function Shaders
use the old hardware that don't support programmable shaders (GLSL and HLSL/CG), which
is mostly used for fallback from a fancy shader. Each type has its advantages. However, we
will use surface shaders in this project, which is very convenient and easiest to use when
we want to deal with the lighting and shadow. (For more details, check out Appendix D,
Shaders and CG/HLSL Programming.)

Computer Graphics (CG) is a high-level shader language developed by NVIDIA in
close collaboration with Microsoft to programme the vertex and pixel shader. It
is similar to High Level Shader Language or High Level Shading Language (HLSL),
which is a proprietary shading language developed by Microsoft for use with
the Microsoft Direct3D API. These references are taken from http://http.
developer.nvidia.com/CgTutorial/cg_tutorial_chapter01.
html and http://msdn.microsoft.com/en-us/library/
bb509635(v=VS.85).aspx.

http://http.developer.nvidia.com/CgTutorial/cg_tutorial_chapter01.html
http://http.developer.nvidia.com/CgTutorial/cg_tutorial_chapter01.html
http://http.developer.nvidia.com/CgTutorial/cg_tutorial_chapter01.html
http://msdn.microsoft.com/en-us/library/bb509635(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb509635(v=VS.85).aspx

Shade Your Hero/Heroine

130

We will also get an understanding of shader programming in Unity and create custom
shaders by using surface shaders. We can then use the Cg shading language or HLSL to
write vertex and fragment shaders.

Surface shaders in Unity is basically the repetitive code that makes
it easier to write the shaders that interact with lighting than using
low-level vertex/pixel shader programs (Vertex and Fragment Shaders),
such as lighting calculation. However, we still need to know Cg/HLSL
to write surface shaders. For more information, refer to http://
docs.unity3d.com/Documentation/Components/SL-
SurfaceShaders.html.

When we are writing shaders, we need to deal with the vertex and pixel shader
programming. We will need to get the vertex data from our geometry, calculate the
data, and pass it out to the pixel level. At the pixel level, we will calculate the color of the
geometry, light, and shadow, and then we will get the result. This can be very complex and
repetitive, especially when we have to deal with lighting. It can be a nightmare. Unity 3 has
come up with a new style of writing the shader program that is shorter and simpler—surface
shaders—which helps us to reduce the time to write the repetitive code over and over again.
However, we still need to know the basics of Cg/HLSL programming, but we won't go too
deep into how to create a shader from scratch or how Cg/HLSL works. We will just introduce
some functions and variables that are required for our custom shader.

Mission briefing
We will create a basic custom shader and apply this shader to the character model that we
already have. That's it. We might say, "Hey! Why is it so short?" Well, it's short to say but it
takes a long time to explain the whole concept of writing a shader.

First, we will import the character model to Unity and start applying a build material and
take a look at the default shader in Unity.

Then, we will start creating a shader as follows:

ff Create the diffuse and bump maps using built-in lighting models

ff Apply a custom light model, which will include the ambient color and
specular color

http://docs.unity3d.com/Documentation/Components/SL-SurfaceShaders.html
http://docs.unity3d.com/Documentation/Components/SL-SurfaceShaders.html
http://docs.unity3d.com/Documentation/Components/SL-SurfaceShaders.html

Project 3

131

ff Apply Half Lambert, Toon Ramp, and Rim Light

Lastly, we will apply all of them together to create our custom Cel shading style, as shown
in the following screenshot:

Shade Your Hero/Heroine

132

Why is it awesome?
When we complete this project, we will be able to write a cool shader effect similar to most
AAA games without scratching our head and trying to write per-pixel lighting calculations.
By going through this project, we will get a basic understanding of how surface shaders
in Unity works. Then, we can adapt, add, or tweak the parameters, or even create a new
custom cool lighting model, which can be used to create a more advanced shader in the
future such as reflection.

Your Hotshot objectives
As we are not shader programmers, we don't want to deal with the low-level vertex/pixel
shader programs. So, we will just go through the basic structure of how to create a surface
shader step by step, as follows:

ff Shader programming – Diffuse and Bump (normal) maps

ff Shader programming – Ambient and Specular light

ff Shader programming – Half Lambert, Rim Light, and Toon Ramp

Mission checklist
Before we start, we will need to get the project folder and assets from this book's website,
http://www.packtpub.com/support?nid=8267, which includes the finished package
from the first project and the assets that we need to use in this project.

Browse to the preceding URL and download the Chapter3.zip package and unzip it.
Inside the Chapter3 folder, there are two unity packages, which are Chapter3Package.
unitypackage (we will use this package for this project) and Chapter3Package
_Completed.unitypackage (this is the completed project package).

Shader programming – Diffuse and
Bump (normal) maps

In this first step, we will import Chapter3.unitypackage (which is already included in the
FBX model and textures) and create a shader program, which will include all the properties
that we can edit from the Material Inspector. We will start by assigning the Diffuse and Bump
(normal) maps. Then, we will use the built-in lighting models, Lambert and BlinnPhong,
which are located in the Lighting.cginc file inside the Unity application, to see our result.

http://www.packtpub.com/support?nid=8267

Project 3

133

Lambert or diffuse reflection will cause all closed polygons to reflect light
equally in all directions when rendered. This algorithm is named after Johann
Heinrich Lambert, who invented it.

Blinn-Phong or Blinn-Phong reflection is a shading model that is a modification
of the Phong reflection model and was developed by Jim Blinn.

The Phong reflection model is a shading model that includes a model for
the reflection of light from surfaces. It also has a compatible method of
estimating pixel colors using the interpolation of surface normals across
rasterized (or bitmap) polygons. This was developed by Bui Tuong Phong.

The references used are as follows:

ff http://www.opengl-redbook.com

ff http://en.wikipedia.org/wiki/Lambertian_
reflectance

ff http://en.wikipedia.org/wiki/Phong_shading

ff http://en.wikipedia.org/wiki/
Blinn%E2%80%93Phong_shading_model

We can find Lighting.cginc from the following locations:

ff For Windows: {unity install path}/Data/CGIncludes/
Lighting.cginc

ff For Mac: /Applications/Unity/Unity.app/Contents/
CGIncludes/Lighting.cginc

The following screenshot shows an example of the Lambert and BlinnPhong lighting
models and how they are different from each other. We will see that the Blinn-Phong is
shiny, but the Lambert is matte.

http://www.opengl-redbook.com
http://en.wikipedia.org/wiki/Lambertian_reflectance
http://en.wikipedia.org/wiki/Lambertian_reflectance
http://en.wikipedia.org/wiki/Phong_shading
http://en.wikipedia.org/wiki/Blinn%E2%80%93Phong_shading_model
http://en.wikipedia.org/wiki/Blinn%E2%80%93Phong_shading_model

Shade Your Hero/Heroine

134

Prepare for lift off
Now, we can start the shader programming by implementing the following steps:

1.	 Let's create a new project named Shader, similar to that in the last project,
and click on the Create Project button, as shown in the following screenshot:

2.	 Import the assets package by going to Assets | Import Package | Custom Package…,
choose Chapter3.unityPackage, which we downloaded earlier, and then click on
the Import button in the pop-up window, as shown in the following screenshot:

Project 3

135

Wait until it's done, and you will see the FBX, Materials, and Textures folders,
as we can see in the following screenshot:

3.	 Next, double-click on the Shader scene, as shown in the preceding screenshot,
to open the scene that we will work on in this project. When you double-click on
the Shader scene, Unity will bring up the pop up and ask whether we want to save
the current scene or not, similar to what we saw in the last project. Just click on the
Don't save button to open up the Shader scene.

4.	 Then, go to the FBX folder and click on Heroine in this folder to bring up its
Inspector view. In the Inspector view, we will see three tabs: Model, Rig, and
Animations. In the Model tab, we will make sure that Scale Factor is set to 1.
This is to make sure that our model size matches the physics calculation in Unity.

5.	 Next, in the Rig and Animations tabs, we set Animation Type in the Rig tab to
None and uncheck the Import Animation option in the Animations tab, as we
don't have any animation in this model; so, we don't need to attach it to our
model, as we can see in the following screenshot (we will take a look at the Rig
and Animations tabs in the next project):

Shade Your Hero/Heroine

136

6.	 Scale Factor can be set to rescale the whole FBX file. In Unity, the Physics Engine
is scaled as 1 unit equals 1 meter. So, we can set the model scale to match Unity's
Physics Engine to get an accurate result when we use the physics calculation.

Our model height is around 1.7 meters, so it is about 1.7 units in Unity.
We can also measure the model by using the cube game object in Unity,
which is 1 x 1 x 1 unit, or turn on the grid to measure the model size
related to Unity's unit scale:

7.	 Then, go to the Textures folder and click on Normal to bring up its Inspector view.
In the Inspector view, change Texture Type to Normal Map, check Generate from
Grayscale, set the Bumpiness to 0.07, and click on the Apply button, as shown in
the following screenshot:

Project 3

137

8.	 We set Texture Type to Normal map, which can adjust Bumpiness and Filtering
to get the bump effect we want by checking Create from Grayscale.

Engage thrusters
Now, we will put the 3D model into our scene and start writing our custom shader.
Follow the ensuing steps:

1.	 First, we drag the Heroine model in the FBX folder from the Project view to
the Hierarchy view.

2.	 Next, we will click on the Heroine model in the Hierarchy view to bring its
Inspector view up. Then, we will go to the Inspector view and set the value
of Y under Rotation to 180, as shown in the following screenshot:

3.	 If we go to the material component, we will see Diffuse applied to the shader in this
material, which has two properties, Main Color and Base (RGB). Main Color takes the
color that we edited and then applies it to our model. Base (RGB) takes the texture
that is used for our model. Both properties can be edited and adjusted in the Unity
editor to get the best look for our model, as shown in the following screenshot:

Shade Your Hero/Heroine

138

4.	 Now, we will start coding by going to Assets | Create | Shader and naming
it MyShader. Then, we double-click or right-click on it and choose Sync
MonoDevelop Project to open MonoDevelop.

The Sync MonoDevelop Project step might not work if we haven't
set MonoDevelop as our default editor. (This was discussed in the
first project.)

In Unity 4.x, we can double-click on the shader file and Unity will
automatically open the shader file on MonoDevelop for us.

In MonoDevelop, you will see the default setup of the shader script, as shown
in the following screenshot:

Project 3

139

On the other hand, if you create the shader inside MonoDevelop, the default
setup of the shader script will be different from the preceding screenshot and
similar to the following screenshot:

5.	 Next, go to the first line in the MyShader.shader file and modify the existing
code as follows:

Shader "Custom/MyShader (Toon Rim)" {

6.	 In this line, we change the folder position and name our shader, which will appear
in the Shader dropdown when we select the Shader properties in the object's
Inspector view.

7.	 Then, go back to Unity and click on the Heroine model in the Hierarchy view to
bring the Inspector view up.

8.	 In the Shader properties in the material component, we will click on the
small arrow on the right-hand side to bring up the dropdown and then go
to Custom | MyShader (Toon Rim), as shown in the following screenshot:

Shade Your Hero/Heroine

140

9.	 Then, we go back to MonoDevelop again, go to the next line of the MyShader.
shader file, and start modifying the Properties section, as follows:

Properties {
 _MainTex ("Diffuse (RGBA)", 2D) = "white" {}
 _BumpMap ("Bumpmap", 2D) = "bump" {}
}

10.	 Then, we go to the SubShader section to modify and add the following
highlighted code:

SubShader {
 Tags { "RenderType"="Opaque" }
 LOD 300
 CGPROGRAM
 #pragma surface surf Lambert

 sampler2D _MainTex;
 sampler2D _BumpMap;

 struct Input {
 float2 uv_MainTex;
 float2 uv_BumpMap;
 };
 void surf (Input IN, inout SurfaceOutput o) {
 half4 c = tex2D (_MainTex, IN.uv_MainTex);
 o.Albedo = c.rgb;
 o.Alpha = c.a;
 o.Normal = UnpackNormal (tex2D (_BumpMap, IN.uv_BumpMap));
 }
 ENDCG
}

We just take the bump texture to create a normal map by getting the normals
from the texture using UnpackNormal and set it to the normal of SurfaceOutput
(o.Normal).

Normals, or surface normals, are a technique used to add details
on the surface of the object without using more polygons by faking
the lighting of bumps and dents.

Project 3

141

11.	 Finally, we go back to Unity and apply the texture to our model. Let's click on the
Heroine model in the Hierarchy view to bring its Inspector view up. In the Inspector
view, we will go to the material component and set the following:

�� Texture: Drag-and-drop Diffuse in the Textures folder from the Project view
to this thumbnail

�� Bumpmap: Drag-and-drop Normal in the Textures folder from the
Project view to this thumbnail

You will see the Inspector view, as shown in the following screenshot:

12.	 Now, click on play and behold the result:

Shade Your Hero/Heroine

142

Objective complete – mini debriefing
Let's take a look at what we did here.

First, we added a new property, _BumpMap, which is used to get the surface normal
of our character's geometry.

For more details on surface normals, refer to http://en.wikipedia.
org/wiki/Normal_(geometry).

Properties can be created using the following syntax:

name ("display name", property type) = default value

The components of this code snippet are as follows:

ff name: This is the name of the property inside the shader script

ff display: This is the name that will be shown in the Material Inspector

ff property type: This is the type of the property that we can use in our shader
programming, which can be Range, Color, 2D, Rect, Cube, Float, or Vector

ff default: This is the default value of our property

Every time you add new properties in the Properties section, you will
need to create the same parameter inside CGPROGRAM in the SubShader
section, as shown in the following code:

Properties { _BumpMap ("Bumpmap", 2D) = "bump" {} }
SubShader {
 …
 CGPROGRAM
 #pragma surface surf Lambert
 sampler2D _BumpMap;
 …
 ENDCG

}

This is to make sure that our properties can be passed and used in the
CGPROGRAM section.

We can see more details about this and see what each parameter does at
http://docs.unity3d.com/Documentation/Components/SL-
Properties.html.

http://en.wikipedia.org/wiki/Normal_(geometry)
http://en.wikipedia.org/wiki/Normal_(geometry)
http://docs.unity3d.com/Documentation/Components/SL-Properties.html
http://docs.unity3d.com/Documentation/Components/SL-Properties.html

Project 3

143

Then, we set the LOD (Level of Detail) for our shader to 300. The LOD is the setup that
will limit our shader to use the maximum graphic details of this SubShader section to the
number that we set. We used 300 because we have included a bump map in our shader,
which is the same number of the Unity built-in setup for the diffuse bump. You can get
more information on shader LOD at http://unity3d.com/support/documentation/
Components/SL-ShaderLOD.html.

We added the sampler2D _BumpMap; line, which is the same property that gets passed
from the Properties section:

_BumpMap ("Bumpmap", 2D) = "bump" {}

sampler2 is basically a two-dimensional texture, which is the type of
parameter used in Cg/HLSL. We can get more information about the Cg
parameter from https://developer.nvidia.com/content/
cg-tutorial-chapter-3-parameters-textures-and-
expressions.

Next, we added float2 uv_BumpMap in struct Input {}, which will be used to
calculate the color information from _BumpMap. The uv_BumpMap parameter is the
texture coordinate, which is basically similar to vector2.

In the surf() function, we have the following:

half4 c = tex2D (_MainTex, IN.uv_MainTex);
o.Albedo = c.rgb;
o.Alpha = c.a;
o.Normal = UnpackNormal (tex2D (_BumpMap, IN.uv_BumpMap));

The surf(Input IN, inout SurfaceOutput o) function
is basically the function that will get the input information from
struct Input {}. Then, we will assign the new parameter to
SurfaceOutput o. This parameter will get passed and used next in the
vertex and pixel processor.

We can get more details on Input struct and the default parameter
of SurfaceOutput struct at http://docs.unity3d.com/
Documentation/Components/SL-SurfaceShaders.html.

Talking about SurfaceOutput struct, it is the default struct in Unity, which allows us to
pass the parameters easily without creating one.

http://unity3d.com/support/documentation/Components/SL-ShaderLOD.html
http://unity3d.com/support/documentation/Components/SL-ShaderLOD.html
https://developer.nvidia.com/content/cg-tutorial-chapter-3-parameters-textures-and-expressions
https://developer.nvidia.com/content/cg-tutorial-chapter-3-parameters-textures-and-expressions
https://developer.nvidia.com/content/cg-tutorial-chapter-3-parameters-textures-and-expressions
http://docs.unity3d.com/Documentation/Components/SL-SurfaceShaders.html
http://docs.unity3d.com/Documentation/Components/SL-SurfaceShaders.html

Shade Your Hero/Heroine

144

SurfaceOutput struct is the default struct in Unity, which is located in
the Lighting.cginc file inside the Unity application. We can also create
a custom SurfaceOutput struct to pass other variables that are not
a part of the default struct by creating a new SurfaceOutputCustom
{…} struct and passing it to the surf() function like surf (Input IN,
inout SurfaceOutputCustom o).

The tex2D() function will return the color value (Red, Green, Blue, Alpha) or (R,G,B,A) from
the sample state, _MainTex, and the texture coordinate, IN.uv_MainTex, which we will then
assign to o.Albedo and o.Alpha, respectively. The o.Albedo parameter will store the color
information (RGB) and the o.Alpha parameter will store the alpha information.

Albedo, or the reflection coefficient, is defined as the ratio of the reflected
radiation from the surface to the incident radiation upon it. It also refers to
the diffuse reflectivity or the reflecting power of a surface.

More information can be found at http://en.wikipedia.org/
wiki/Albedo.

The next line is to get the normal information, which is the vector that contains the position
(x, y, and z). Then, we used the tex2D() function to get the color values (R,G,B,A) from the
sample state, _BumpMap, and the texture coordinates from IN.uv_BumpTex. Then, we used
the UnpackNormal() function to get the normal as the result of the tex2D() function.

Classified intel
Talking about shader programming, there are a lot of things to get to know and understand,
for example, how the shader works. We will take a look at the basic structure of shader
programming in Unity. The following diagram explains how shaders work:

http://en.wikipedia.org/wiki/Albedo
http://en.wikipedia.org/wiki/Albedo

Project 3

145

The preceding diagram is from Amir Ebrahimi and Aras Pranckevčius, who
presented the Shader Programming course at Unite 2008, and it represents
how a shader works in Unity. We can get more information from the following
website (warning: this presentation might be difficult to understand, as it
showed how to create the shader without using any surface shader and it used
the old version of Unity): http://unity3d.com/unite/archive/2008.

Let's get back to the diagram—we can see that the shader file that we are writing works on
both the vertex and pixel (fragment) levels. Then, it will show the result to the frame buffer,
but what are vertex and pixel shaders? These are the different types of processors in the
GPU. First, the vertex processor gets the vertex data, which contains the position and color
of each vertex in the 3D model; then, it draws a triangle from these vertices and passes the
data to the pixel processor. The pixel processor will get that value and translate it to the
per-pixel screen. It is similar to taking vector art from Illustrator or Flash and translating
it to pixel art in Photoshop. Then, it interpolates color data to each pixel, as shown in the
following diagram:

From the explanation, we know that we need to deal with the vertex and pixel shader
programming when we want to write a shader program. For example, if we want to create
a shader, we will need to get the vertex data from our geometry, calculate the data, and
pass it out to the pixel level. At the pixel level, we will calculate the color of the geometry,
light, and shadow, and then we will get the result.

However, this can be very complex and repetitive when we have to handle lighting manually.
That's why Unity created surface shaders so that we don't have to deal with various types
of lightning, rendering, and so on.

If you check out the ShaderLab link in Unity, you will see that there are many things
to do, but don't be afraid because we don't need to understand everything that's there
to create our custom shader. In the next step, we will create the custom lighting models
in surface shaders.

http://unity3d.com/unite/archive/2008

Shade Your Hero/Heroine

146

Shader programming – Ambient and
Specular light

In this step, we will add Ambient and Specular light to our shader script as well as
create our custom lighting models.

The custom lighting model is basically the function that will be used to
calculate our surface shader, which is the output of the surf() function's
interaction with the lights.

The surf() function is the function that will take any UVs or data we need
as input and fill in the output structure SurfaceOutput (the predefined
structure, such as Albedo, Normal, Emission, Specular, Gloss,
and Alpha).

Engage thrusters
Let's get started. Go to MonoDevelop, open the MyShader file, and go to the Properties
section and add the highlighted script:

Properties {
 _AmbientColor ("Ambient Color", Color) = (0.5, 0.5, 0.5, 1.0)
 _SpecularColor ("Specular Color", Color) = (0.17, 0.42, 0.75, 1.0)
 _Shininess ("Shininess", Range (0.01, 1)) = 0.078125
 _MainTex ("Diffuse (RGBA)", 2D) = "white" {}
 _BumpMap ("Bumpmap", 2D) = "bump" {}
}

Next, go to the SubShader section and modify it as well as add the following highlighted code:

SubShader {
 Tags { "RenderType"="Opaque" }
 LOD 400
 CGPROGRAM
 #pragma surface surf Lambert
 fixed4 _AmbientColor;
 fixed4 _SpecularColor;
 half _Shininess;
 sampler2D _MainTex;
 sampler2D _BumpMap;

Project 3

147

 struct Input {
 float2 uv_MainTex;
 float2 uv_BumpMap;
 };

 void surf (Input IN, inout SurfaceOutput o) {
 fixed4 c = tex2D (_MainTex, IN.uv_MainTex);
 o.Albedo = c.rgb * _AmbientColor.rgb;
 o.Alpha = c.a * _AmbientColor.a;
 o.Specular = _Shininess;
 o.Gloss = c.a;
 o.Normal = UnpackNormal (tex2D (_BumpMap, IN.uv_BumpMap));
 }
 ENDCG
}

Basically, we just added three properties for Ambient as well as Specular color and shininess.
Then, in the surf() function, we changed half4 to fixed4 to increase the performance by
reducing the precision of our texture. We also multiplied c.rgb with _AmbientColor.rgb
and c.a with _AmbientColor.a. This will add the color value from the _AmbientColor
properties with our main texture. Then, we passed _Shininess to o.Specular and c.a
to o.Gloss to control the amount of gloss on our model.

If we open the diffuse texture in Photoshop and go to the alpha channel, we will see
the black and white color area, which is used to specify the amount of glossiness on our
character. As we can see in the following screenshot, the armor path is white and the
character skin is almost black:

Shade Your Hero/Heroine

148

We will add our custom lighting, which will show the Specular and Ambient color similar
to 3D Studio Max, which uses the gray color as the base color.

The good thing about using the gray color as the base color is that we can
add more brightness to our main texture such as Specular and Ambient light.

We can go to the end of the surf() function, and before ENDCG, add the following
highlighted code:

void surf (Input IN, inout SurfaceOutput o) {
 …
}

inline fixed4 LightingRampSpecular (SurfaceOutput s, fixed3 lightDir,
fixed3 viewDir, fixed atten) {
 //Ambient
 fixed3 ambient = s.Albedo * _AmbientColor.rgb;
 //Diffuse
 fixed NdotL = saturate(dot (s.Normal, lightDir));
 fixed3 diffuse = s.Albedo * _LightColor0.rgb * NdotL;
 //Specular
 fixed3 h = normalize (lightDir + viewDir);
 float nh = saturate(dot (s.Normal, h));
 float specPower = pow (nh, s.Specular * 128) * s.Gloss;
 fixed3 specular = _LightColor0.rgb * specPower * _SpecularColor.rgb;
 //Result
 fixed4 c;
 c.rgb = (ambient + diffuse + specular) * (atten * 2);
 c.a = s.Alpha + (_LightColor0.a * _SpecularColor.a * specPower*
atten);
 return c;
}

ENDCG

Next, go to the #pragma surface surf Lambert line and change it to the
following code:

#pragma surface surf RampSpecular

Project 3

149

We can now go back to Unity and click on Play to see our result with the specular reflection,
as shown in the following screenshot:

Objective complete – mini debriefing
In this step, we first added the new properties, _AmbientColor, _SpecularColor,
and _Shininess, which will be used to calculate in our custom lighting models function
to get the specular reflection.

Next, we increased LOD to 400 because we wanted to increase the LOD for our custom
lighting model that will calculate the specular lighting.

Next, in the surf() function, we changed the first line from half4 c = tex2D (_
MainTex, IN.uv_MainTex); to fixed4 c = tex2D (_MainTex, IN.uv_MainTex);
to increase the performance of our shader. As the return value from the tex2D() function
is the color value (R,G,B,A), which has a range from 0 to 1, it will be expensive to use half
or float.

Shade Your Hero/Heroine

150

What are the half and fixed parameters for? When we are writing a
shader in Cg/HLSL, there are three types of parameters that we can use:
fixed, half, and float. These parameters determine the precision of
computations. The parameter fixed is low precision (11 bits, should be
in the range of -2.0 to +2.0, and has a precision value of 1/256), half is
medium precision (16 bits, in the range of -60000 to +60000, and 3.3
decimal digits of precision), and float is high precision (32 bits and
similar to float on the computer architecture).

The reference is taken from http://docs.unity3d.com/
Documentation/Components/SL-ShaderPerformance.html.

However, it follows a trend wherein the more precision we have, the more
calculation we need. If we use float every time for our shader, it will cause
the game to slow down. So, if we want to improve the performance of our
game, we should use the lowest precision possible while still having enough
output. It's the task of the programmer to decide which aspects need to be
precise and which do not.

Then, in the surf() function, we also multiplied c.rgb with _AmbientColor.rgb
and c.a with _AmbientColor.a, which will get passed to o.Albedo and o.Alpha,
respectively. This will add the color value from the _AmbientColor properties with
our main texture. Then, we passed _Shininess to o.Specular and c.a to o.Gloss
to control the amount of gloss on our model.

Next, we created our custom lighting function, which is inline half4
LightingRampSpecular (SurfaceOutput s, half3 lightDir, half3 viewDir,
half atten). This function passes four parameters, surface output, light direction, view
direction, and light attenuation, which we will use to calculate the output for our shader.
Then, we changed #pragma surface surf from Lambert to RampSpecular, which
means that we changed our lighting calculated from the built-in Lambert model
to RampSpecular in our custom lighting function, LightingRampSpecular.

Why is the name of this function not RampSpecular? First, we call this
function by using #pragma surface surf RampSpecular, but
to have this function working properly, we need to add Lighting as a
prefix to the name of our custom lighting function so that Unity will know
that this function is a custom lighting function. This is how surface shaders
are set up in Unity. You can find out more detail on this from http://
docs.unity3d.com/Documentation/Components/SL-
SurfaceShaderLighting.html.

http://docs.unity3d.com/Documentation/Components/SL-ShaderPerformance.html
http://docs.unity3d.com/Documentation/Components/SL-ShaderPerformance.html
http://docs.unity3d.com/Documentation/Components/SL-SurfaceShaderLighting.html
http://docs.unity3d.com/Documentation/Components/SL-SurfaceShaderLighting.html
http://docs.unity3d.com/Documentation/Components/SL-SurfaceShaderLighting.html

Project 3

151

In the LightingRampSpecular() function, we first got the ambient color value by
getting s.Albedo, which is the o.Albedo parameter from the surf() function, and
then multiplied s.Albedo by _AmbientColor.rgb, where _AmbientColor is the color
information from the Properties section at the beginning of our code.

The fixed, half, and float parameters in Cg/HLSL can contain one,
two, three, or four values of floating numbers such as 1.0, (1.0, 1.0),
(1.0, 1.0, 1.0) or (1.0, 1.0, 1.0, 1.0) by calling it fixed,
fixed2, fixed3, fixed4; half, half2, half3, half4; or float,
float2, float3, float4, respectively. We can also access the value
in these parameters by using (x, y, z, w) or (r, g, b, a). For
example, if you have fixed4 color = (1.0, 0.5, 0.3, 0.8);
and you want to create another parameter that will contain only three
values (1.0, 0.5, 0.3) from fixed4 color, you can name it like
the following: fixed3 newColor = color.rgb;. However, if you
want the newColor value equal to (0.5, 1.0, 0.3), you can name it
fixed3 newColor = color.grb;.

Then, we calculated the diffuse color by getting the dot product of the surface normal of
the object, s.Normal, and we passed o.Normal from the surf() function and the light
direction fixed NdotL = dot (s.Normal, lightDir);. Then, we used this value to
multiply it with the object diffuse texture, s.Albedo, and light color, _LightColor0.rgb,
which is similar to the Lambert model.

Next, we calculated the specular color by first getting the normalize vector of the light
direction and view direction using the following line of code:

fixed3 h = normalize (lightDir + viewDir);

In float nh = saturate(dot (s.Normal, h));, we calculated the dot product of
the surface normal and normalize vector and made sure that the returned number isn't
greater than 1 or lower than 0 by using saturate().

Then, we used nh to calculate the specular power by powering it with the s.Specular
and s.Gloss properties using the following line of code:

float specPower = pow (nh, s.Specular * 128) * s.Gloss;

Next, we got the specular color by multiplying the light color, specular power, and the
specular color properties using the following line of code:

_LightColor0.rgb * specPower * _ SpecularColor.rgb;

Shade Your Hero/Heroine

152

This is similar to the Blinn-Phong model.

In the last step, we added ambient, diffuse, and specular together and doubled the lighting
attenuation value to get a smooth specular effect:

c.rgb = (ambient + diffuse + specular) * (atten * 2);.

This way, we get the result that the default color is gray, and then we can adjust the color
from white to black the way we want as the following screenshot shows (this shader is
similar to the standard materials in 3D Studio Max):

The major part of the code is in the Cg/HLSL language, so you might not be familiar with it.
However, you can still get an idea of how it works by trying to see more examples and taking
a look at the Cg/HLSL language at https://developer.nvidia.com/content/cg-
tutorial-appendix-e-cg-standard-library-functions.

We can also see an example of the custom lighting model from http://docs.unity3d.
com/Documentation/Components/SL-SurfaceShaderExamples.html.

Classified intel
How exactly do the surface shaders work?

First, we get the parameters from the Input struct, and these parameters will get passed
to the SurfaceOutput struct inside the surf() function. Then, the return value of the
SurfaceOutput struct will go to the lighting model function to calculate both the vertex
and pixel (fragment) shaders.

https://developer.nvidia.com/content/cg-tutorial-appendix-e-cg-standard-library-functions
https://developer.nvidia.com/content/cg-tutorial-appendix-e-cg-standard-library-functions
http://docs.unity3d.com/Documentation/Components/SL-SurfaceShaderExamples.html
http://docs.unity3d.com/Documentation/Components/SL-SurfaceShaderExamples.html

Project 3

153

Lastly, the result from the lighting model function will be passed to the frame buffer, as
shown in the following diagram:

Shader programming – Half Lambert,
Rim Light, and Toon Ramp

In this last step, we will add the last three properties, _RimColor, _RimPower, and _Ramp
to get the toon shader result. The _RimColor and _RimPower properties basically control
the back lighting effect of our character. The _Ramp properties will be the ramp textures that
are used to calculate the lighting effect based on the angle between the light direction and
surface normal of the object. We will also get the Half Lambert lighting effect to make
a smooth lighting effect.

Engage thrusters
This is the last section, after which you will be able to see the result of your custom shader:

1.	 Go to MonoDevelop, open the MyShader file, go to the Properties section,
and add the highlighted script as follows:

Properties {
 _BumpMap ("Bumpmap", 2D) = "bump" {}
 _RimColor ("Rim Color", Color) = (0.07, 0.2, 0.42, 1.0)
 _RimPower ("Rim Power", Range(0.01,8)) = 7
 _Ramp ("Ramp Texture", 2D) = "gray" {}
}

Shade Your Hero/Heroine

154

2.	 Go to the SubShader section and add the highlighted code as follows:

SubShader {
 Tags { "RenderType"="Opaque" }
 LOD 400
 CGPROGRAM
 #pragma surface surf RampSpecular exclude_path:prepass

 fixed4 _AmbientColor;
 fixed4 _SpecularColor;
 half _Shininess;

 sampler2D _MainTex;
 sampler2D _BumpMap;

 fixed4 _RimColor;
 half _RimPower;
 sampler2D _Ramp;

 struct Input {
 float2 uv_MainTex;
 float2 uv_BumpMap;
 fixed3 viewDir;
 };

}

We can see that we put exclude_path:prepass after the #pragma line. This
means that this lighting model will only work on the forward lighting (no deferred
lighting). This is because we don't have the angle between the light direction and
normal to calculate in the prepass, which is needed for the deferred lighting.

3.	 Add the following highlighted code inside the surf() function to create the Rim
Light effect using Emission:

void surf (Input IN, inout SurfaceOutput o) {
 o.Normal = UnpackNormal (tex2D (_BumpMap, IN.uv_BumpMap));
 fixed rim = 1.0 - saturate(dot (normalize(IN.viewDir),
 o.Normal));
 o.Emission = (_RimColor.rgb * pow (rim, _RimPower));
}

4.	 Finally, go to the custom lighting function LightingRampSpecular(). In this, we
will calculate the diffuse color by using the Half Lambert or Warp Lambert method
to get the lighting warp around our model. Then, we get the ramp texture from the
property and multiply it with the light color and our main color texture. Let's modify
and add the following code:

inline fixed4 LightingRampSpecular (SurfaceOutput s, fixed3
lightDir, fixed3 viewDir, fixed atten) {

Project 3

155

 //Ambient
 fixed3 ambient = s.Albedo * _AmbientColor.rgb;
 //Ramp – Diffuse (Half Lambert)
 fixed NdotL = saturate(dot (s.Normal, lightDir));
 fixed halfLambert = NdotL * 0.5 + 0.5;
 fixed3 ramp = tex2D(_Ramp, float2(halfLambert, halfLambert)).
rgb;
 fixed3 diffuse = s.Albedo * _LightColor0.rgb * ramp;
 //Specular

}

5.	 Finally, we go back to Unity and apply the ramp texture to our model. Let's click
on the Heroine model in the Hierarchy view to bring up its Inspector view. In the
Inspector view, we will go to the material component in the new property, Ramp
Texture, and set the following:

�� Ramp Texture: Drag-and-drop Ramp in the Textures folder from the Project
view to this thumbnail

After doing this, we will see the Inspector view as shown in the following screenshot:

Shade Your Hero/Heroine

156

6.	 Now, we can click on Play to see the result, as shown in the following screenshot:

We can also move or rotate our camera to see our character with the
shader in a different angle.

Objective complete – mini debriefing
In this section, first we added three properties, _RimColor, _RimPower, and _Ramp,
in the Properties section, which are used to calculate the Rim Light as well as the
Toon Ramp shader styles.

Then, we placed exclude_path:prepass after #pragma surface surf
RampSpecular. This means that we set our shader to compile without the deferred
rendering. Why would we want to do this? As our Toon Ramp shader needs the angle
data between the light direction and surface normals to calculate the lighting that can't
be calculated in the deferred rendering, we excluded it.

Project 3

157

In Unity, we can choose three types of rendering paths: Vertex Lit, Forward,
and Deferred Lighting. Vertex Lit is basically the lowest lighting quality and
doesn't support any real-time shadows. Forward is shader-based, which
is the default setting in Unity and only supports real-time shadows from
one-directional light. Deferred Lighting is the rendering path with the
most lighting and shadow quality, which is available only in Unity Pro with
no support for mobile devices. We can get more information about the
rendering path from http://docs.unity3d.com/Documentation/
Manual/RenderingPaths.html.

Next, we added half3 viewDir; in struct Input {}, which allows us to get the
user view direction vector. This parameter will be used to calculate the specular reflection
on our model.

Inside the surf() function, we calculated the rim power or the brightness of our backlight,
which is fixed rim = 1.0 - saturate(dot (normalize(IN.viewDir),
o.Normal));, by using the saturation of the dot product of the view direction normalize
and surface normals. In the next line, o.Emission = (_RimColor.rgb * pow (rim,
_ RimPower));, we multiplied the Rim Light color with the power of the rim power that we
got. Then, we assigned the result to o.Emission to show the rim light effect on our object.

In the LightingRampSpecular() function, we changed the calculation of the lighting by
using the Half Lambert model, which makes our object brighter with the light that warps
around the object by dividing it by half and adding 0.5:

fixed diff = NdotL * 0.5 + 0.5;

Half Lambert lighting is a technique first developed in the original
Half-Life. It is designed to prevent the rear of an object from losing its
shape and looking too flat. Half Lambert is a completely non-physical
technique and gives a purely perceived visual enhancement and is an
example of a forgiving lighting model.

This reference is taken from http://developer.valvesoftware.
com/wiki/Half_Lambert.

http://docs.unity3d.com/Documentation/Manual/RenderingPaths.html
http://docs.unity3d.com/Documentation/Manual/RenderingPaths.html
http://developer.valvesoftware.com/wiki/Half_Lambert
http://developer.valvesoftware.com/wiki/Half_Lambert

Shade Your Hero/Heroine

158

We can see the difference between each lighting model in the following diagram:

Next, we used halfLambert to calculate the ramp texture, _Ramp, to get the color result
using the tex2D() function, as follows:

fixed3 ramp = tex2D (_Ramp, float2(halfLambert, halfLambert)).rgb;

Then, we multiplied this value with the diffuse color and light color, as follows:

fixed3 rampDiffuse = s.Albedo * _LightColor0.rgb * ramp;

We will get a result that is different from the previous section, as shown in the
following screenshot:

Project 3

159

Mission accomplished
In this project, we learned the basic concepts of shader programming using a surface shader
and created the custom lighting model for the shader. Some of you might find shader
programming to be very complex with a lot of things to learn; well, yes, that's true! There is
no easy way to write the code for shader programming. However, if you want to know more
about shader programming, you should definitely learn the Cg/HLSL language, which will help
you to understand more about the structure and syntax of the shader language. Now, let's see
our result in the following screenshot:

We can also get more detail on shader programming in Appendix D, Shaders
and Cg/HLSL Programming, and from Unity at the following websites:

ff NVIDIA CG: http://http.developer.nvidia.com/
CgTutorial/cg_tutorial_chapter01.html

ff Unify Community: http://wiki.unity3d.com/index.
php?title=Shaders

ff Unity Shader Reference: http://docs.unity3d.com/
Documentation/Components/SL-Reference.html

ff Unity ShaderLab forum: http://forum.unity3d.com/
forums/16-ShaderLab

http://http.developer.nvidia.com/CgTutorial/cg_tutorial_chapter01.html
http://http.developer.nvidia.com/CgTutorial/cg_tutorial_chapter01.html
http://wiki.unity3d.com/index.php?title=Shaders
http://wiki.unity3d.com/index.php?title=Shaders
tp://docs.unity3d.com/Documentation/Components/SL-Reference.html
tp://docs.unity3d.com/Documentation/Components/SL-Reference.html
http://forum.unity3d.com/forums/16-ShaderLab
http://forum.unity3d.com/forums/16-ShaderLab

Shade Your Hero/Heroine

160

Hotshot challenges
We have learned the basic concepts of how to write a custom shader using a surface
shader in Unity. Why don't we try out something to get more familiar with it by playing
with the properties to get a different type of rendering style?

ff Adjust a value in the material editor in our shader to create a different lighting
color and effect

ff Create a new ramp texture and apply it to the shader to see the new result of
just changing the ramp texture

ff Try taking out some properties and using new properties such as cubes

ff Try changing some parameters in the custom lighting function by adding a
different method to calculate the lighting direction

ff Adjust some equations by changing plus to multiply or have more properties
to get the different types of rendering techniques

ff You can also create your own custom lighting models

Project 4
Add Character Control

and Animation to Our
Hero/Heroine

Here we are in part two of hero/heroine. In this project, we will make our character come to
life using the Mecanim animation system (the new animation system in Unity 4.x, which allows
us to easily set up the complex character animation) and some custom scripts to control our
character to walk, jump, and run with smooth transition from one animation to another.

Why Mecanim? The advantage of the Mecanim animation system in Unity is that we can use
the animation from different characters and retarget the animation. This is a very convenient
way to reuse the same animation on a different character.

Add Character Control and Animation to Our Hero/Heroine

162

We will learn the basics behind the Mecanim animation system and the Animator Controller
window for our character as well as understand the concept of the third-person controller
and camera. This way, we will obtain a good understanding of the new animation system
in Unity and can adapt it to use for the specific extra animation later on. The following
screenshot shows the state machine of the Mecanim system:

For more details on the Mecanim animation system, we can go to the following
Unity website: http://docs.unity3d.com/Documentation/Manual/
MecanimAnimationSystem.html.

There is also the old legacy animation system in Unity (which we will not
cover in this project), which we can use to animate characters and objects.
We can get more details on this from the following Unity websites:

ff http://docs.unity3d.com/Documentation/Manual/
Animations40.html

ff http://docs.unity3d.com/Documentation/Manual/
AnimationEditorGuide40.html

ff http://docs.unity3d.com/Documentation/Manual/
AnimationScripting40.html

Mission briefing
In this project, we will start by setting up the animation clip from the imported FBX model
with animation (walk, run, jump, and fall), which is created using other 3D software, such as
3D Studio Max, Maya, Blender3D. Then, we will create Animator Controller and set up the
Mecanim animation system using the Animator view.

http://docs.unity3d.com/Documentation/Manual/MecanimAnimationSystem.html
http://docs.unity3d.com/Documentation/Manual/MecanimAnimationSystem.html
http://docs.unity3d.com/Documentation/Manual/Animations40.html
http://docs.unity3d.com/Documentation/Manual/Animations40.html
http://docs.unity3d.com/Documentation/Manual/AnimationEditorGuide40.html
http://docs.unity3d.com/Documentation/Manual/AnimationEditorGuide40.html
http://docs.unity3d.com/Documentation/Manual/AnimationScripting40.html
http://docs.unity3d.com/Documentation/Manual/AnimationScripting40.html

Project 4

163

Next, we will add Character Controller, instead of the Physics component, Rigidbody.
Character Controller will give us the ability to access collision detection as well as the
Move() function, which is very easy to use.

We will use the Move() function to move our character while playing the
animation. This function can be accessed from the CharacterController
class when we add the Character Controller component to our game object.
The Move() function will return CollisionFlags bitmask, which will
tell us which part of our character hits other collider objects.

Then, we will create the third-person character controller script to control our character's
walk, run, and jump by using the Move() function in the Character Controller class.
In this step, we will also create the OnAnimatorMove() function to tell Mecanim to play
the correct animation clip. Next, we will create the camera script to follow our character.
We will then attach the script to our character and make it move on the level.

Why is it awesome?
After we complete this project, we will know how to set up the animation clip from an FBX
file. We will also be able to set up the rig using the Humanoid animation type for our character
as well as set the animation clip to use in our project. We will be able to create a custom
controller script to control our character in the 3D world and blend the animation from idle
to walk, walk to run and jump, and so on by using a state machine in the Mecanim animation
system. We will also learn how to create a third-person camera to follow our character.

This project will give you an understanding of how to create the third-person character
control script and the basic setup of the Mecanim animation system. By the end, you will
be able to apply this technique and use it for other characters.

Your Hotshot objectives
Unity is already provided with a built-in third-person controller script, but it only works
on the old legacy animation system. For the new Mecanim, we will need to create a new
third-person controller. To do this, we need to perform the following:

ff Setting up character animation and level

ff Creating an animator controller

ff Creating a character control script

ff Creating a third-person camera to follow our character

Add Character Control and Animation to Our Hero/Heroine

164

Mission checklist
Before we start, we will need to get the project folder and assets from http://www.
packtpub.com/support?nid=8267, which includes the executed file from Project 1,
Develop a Sprite and Platform Game, and the assets that we need to use in this project.

Browse to the preceding URL, download the Chapter4.zip package, and unzip it. Inside
the Chapter4 folder, there are two Unity packages: Chapter4Package.unitypackage
(we will use this package for this project) and Chapter4Package_Completed.
unitypackage (this is the complete chapter package).

Setting up character animation and
level

In Unity, we can import the FBX format file with the rigging animation and set it up either for
one clip per FBX or multiple clips per FBX, however we want.

For more information on how to import the FBX, visit http://docs.unity3d.com/
Documentation/Manual/HOWTO-importObject.html.

The concept behind the multiple clips is that we have one file that includes all small clips
from walking, running, or jumping. Then, we divide it to each type of animation by telling
Unity the range of frames for this animation. For example, if we create a walking cycle
animation from frames 1 to 30, we can just tell Unity that we want to use the range of
frames from 1 to 30 for the walking animation. This concept is very flexible to adjust and
change the animation clip on the fly.

Prepare for lift off
In this section, we will begin by preparing the animation for our character, which is the same
model and shader from the last project, but this character will include all the necessary
animations that we need for this section. Perform the following steps:

1.	 Create a new project with the name CharacterAnimation, as shown in the
following screenshot:

http://www.packtpub.com/support?nid=8267
http://www.packtpub.com/support?nid=8267
http://docs.unity3d.com/Documentation/Manual/HOWTO-importObject.html
http://docs.unity3d.com/Documentation/Manual/HOWTO-importObject.html

Project 4

165

2.	 To import the assets package, go to Assets | Import Package | Custom Package…,
choose Chapter4.unityPackage, which we downloaded earlier, and then click on
the Import button in the pop-up window, as shown in the following screenshot:

3.	 Wait until it has completed importing the package, and you will see the Chapter4 and
Resources folders in the Window view. Go to Chapter4 | Scene | CharacterAnimation
and double-click to open the scene, as shown in the following screenshot:

Add Character Control and Animation to Our Hero/Heroine

166

Engage thrusters
Now, we are ready to start this section:

1.	 Let's go to Resources | FBX; click on Heroine_animate to bring up the Inspector
view, as shown in the following screenshot:

There are two ways to import the animations to use in Unity. The first method is the
one that we currently use. We import a single model that contains all animations and
split the animation by setting the duration of the frame. In the second method, we
don't have to set up the animation frame from start to end. Unity will automatically
export the animation clip for you. (We will use this method in the next project.)

However, this method will need to import the multiple model files, each file having
a different animation clip such as idle, walk, and run. Also, we need to follow the
naming convention for Unity to be able to import the animation clip properly.

For more details, visit the following website: http://docs.unity3d.
com/Documentation/Manual/Splittinganimations.html.

http://docs.unity3d.com/Documentation/Manual/Splittinganimations.html
http://docs.unity3d.com/Documentation/Manual/Splittinganimations.html

Project 4

167

For example, we have imported the base FBX model named Heroine_animate
without any animation clips. Then, we will import another FBX model that contains
only the idle animation; we should name it Heroine_animate@idle, as we can
see in the following screenshot:

2.	 Then, click on the Rig tab; for the Animation Type, choose Humanoid and click
on Apply button. Now, we will see the Configure… button is clickable; click on
this button, as shown in the following screenshot:

3.	 Next, we will see the character with all the bones in the Scene view. In the
Inspector view, we will see that all bones have been placed to each circle
area of the green avatar, as we can see in the following screenshot:

Add Character Control and Animation to Our Hero/Heroine

168

4.	 Here, we want to make sure that our character maps correctly with the T-Pose. So,
we go to Inspector for all the bones. We will see the drop-down buttons: Mapping
and Pose. At Mapping, choose Automap, and then at Pose, choose Enforce T-Pose
as shown in the following screenshot:

Usually, Mecanim will automatically map all the bones for us, like the one we just
did. However, there might be some cases in which we might have to set up the
bones ourselves by dragging the bone from the project view to each circle area
in the green avatar.

We can also map the bones by dragging-and-dropping the bone from
the Hierarchy view to each bone in the Inspector view. However, for
the retargeting animations, it helps to have the bone setup on the
target similar to the previous source model. For more details, go to
http://docs.unity3d.com/Documentation/Manual/
ConfiguringtheAvatar.html.

5.	 Next, we will click on the Done button to finish the avatar setup and go back to the
Inspector view.

If we take a look at Inspector, we will see the top tabs: Mapping and
Muscles. The Mapping tab is basically the one we set up right now.
However, we can also set up the Muscles tab, which allows us to set up the
range of the bone (the minimum and maximum movement of each bone).

For more details, visit http://docs.unity3d.com/
Documentation/Manual/MuscleDefinitions.html.

6.	 Then, we will click on the Animations tab to set up the animation clip for our
character to use in the game. We will see a small window here with the word
Clips, as shown in the following screenshot:

7.	 Here, we will see one clip named Animation, which starts from frame 2 and ends at
frame 361. So, we want to rename the Animation clip to idle by changing the text
in the textbox underneath the clip window to idle. Then, we can go down and type
in 7 in the Start input textbox and 210 in the End input textbox, as shown in the
following screenshot:

http://docs.unity3d.com/Documentation/Manual/ConfiguringtheAvatar.html
http://docs.unity3d.com/Documentation/Manual/ConfiguringtheAvatar.html
http://docs.unity3d.com/Documentation/Manual/MuscleDefinitions.html
http://docs.unity3d.com/Documentation/Manual/MuscleDefinitions.html

Project 4

169

8.	 Next, we will set up the rest of parameters for this idle animation as follows:

Loop Pose Click on the checkbox

Root Transform Rotation

Bake into Pose Click on the checkbox

Root Transform Position (Y)

Bake into Pose Click on the check box

Root Transform Position (XZ)

Bake into Pose Click on the check box

Then, we click on the Apply button and save this setup, as shown in the
following screenshot:

Add Character Control and Animation to Our Hero/Heroine

170

In the last setup, we tell this clip to be a looping animation and set all the transforms
(rotation, Y position, and XZ position) to use Baked into Pose. This will make sure
that all the root transforms will be constant and delta root rotation, Y position, and
XZ position equal zero. This means that our character, gameObject, will not rotate
or move at all by AnimationClip.

9.	 Next, we will set up other animation clips. Let's go back to the Clips window and
click the plus sign four times to create four more animation clips and set them up
as follows:

Start 230

End 280

Loop Pose Click on the checkbox

Root Transform Rotation

Bake into Pose Click on the checkbox

Root Transform Position (Y)

Bake into Pose Click on the checkbox

Root Transform Position (XZ)

Bake into Pose Click on the checkbox

run

Start 290

End 320

Loop Pose Click on the checkbox

Root Transform Rotation

Bake into Pose Click on the checkbox

Root Transform Position (Y)

Bake into Pose Click on the checkbox

Root Transform Position (XZ)

Bake into Pose Click on the checkbox

jump

Start 325

End 339

Root Transform Rotation

Bake into Pose Click on the checkbox

Project 4

171

Root Transform Position (Y)

Bake into Pose Click on the checkbox

Root Transform Position (XZ)

Bake into Pose Click on the checkbox

fall

Start 340

End 360

Root Transform Rotation

Bake into Pose Click on the checkbox

Root Transform Position (Y)

Bake into Pose Click on the checkbox

Root Transform Position (XZ)

Bake into Pose Click on the checkbox

10.	 Now we have set up the walk and run clips similar to our idle clip. On the other
hand, we set the jump and fall clips a bit differently because we only want to play
both clips once and stay at the last frame, so we don't need to check Loop Pose:

11.	 Next, we want to add the level to our scene. Go to the Project view under the
Prefabs folder and drag the Level prefab to the Hierarchy view, as shown in the
following screenshot:

Add Character Control and Animation to Our Hero/Heroine

172

12.	 Before we finish this step, we will add our character to the scene. Go to
the Resources | FBX in the Project view and drag Heroine_animate to the
Hierarchy view:

13.	 In the preceding screenshot, we can see the outline, which shows the white boxes
on the character that represent extra bones to control the extra objects on our
character. In this case, the extra objects are the sword, sword sheath, dragonhead
on the shoulder, and the back plate.

The extra bone meshes are usually exported from other 3D software,
depending on the artist or animator who sets it up. Sometimes, we can
use these meshes for collision detection for the attack action if we have
a fighting animation attached to the character.

14.	 In this case, we don't need to show the mesh here. We can either remove or hide it,
but we will choose to remove it because we don't need to use the Mesh Renderer
component for this project. Let's do this by clicking on Heroine_animate in the
Hierarchy view. Then, we will use the search box in the Hierarchy view to search
and put the bones in this box, as shown in the following screenshot:

Project 4

173

15.	 Let's click on the first bone, back_plate_bone, to bring up its inspector and go to
the Inspector view, right-click on the Mesh Renderer component, and then click
on Remove Component to remove it, as we can see in the following screenshot:

16.	 Then, we go to the next bones, shoulder_bones, sword_bone and
sword_sheath_bone, perform tasks similar to what we performed for
back_plate_bone, and we will see all the white boxes disappear, as shown
in the following screenshot:

Objective complete – mini debriefing
Basically, what we have done here is set up our character to use the Humanoid animation
type and create the avatar for our character. Then, we set up the animation clip for idle,
walk, run, jump, and fall, as well as set up each animation to Bake into Pose to make sure
that AnimationClip won't rotate or move our gameObject character.

Add Character Control and Animation to Our Hero/Heroine

174

Then, we also created the level for our scene and added our character, which included the
animation clips that we have set up. Lastly, we removed the Mesh Renderer of the extra
bones because we don't want to show it in our scene.

If we click on Heroine_animate in the Hierarchy view, we will see that there
is the Animator component attached in the Inspector view. This Animator
component is the new component that Mecanim uses to control our
character, which will contain Animation Controller (we will create this in the
next step), Avatar (which is Heroine_animateAvatar that we just created),
Apply Root Motion (we will talk about this later in the project), Animate
Physics, and Culling Mode.

For more details on each parameter, visit http://docs.unity3d.com/
Documentation/Components/class-Animator.html.

Classified intel
As we know, most 3D software uses the y axis as the upward direction, and Unity is no
exception. However, 3D Studio Max uses the z axis as the upward direction.

Tip for 3Ds Max users
As we know, 3D Studio Max uses the z axis as the upward direction, but Unity uses the y axis
for the same purpose. Usually, when we export a 3D model without any animation attached,
we set the x rotation of the character pivot to -90 degrees. However, if we set the model
with animation this way, we will have a problem of the biped having the wrong rotation.
The good thing is that we don't need to do anything; just leave the rotation of the pivot
as default, as shown in the following screenshot:

http://docs.unity3d.com/Documentation/Components/class-Animator.html
http://docs.unity3d.com/Documentation/Components/class-Animator.html

Project 4

175

This is because our character has two objects attached to it—the model and bones. Then,
when we import it to Unity, the FBX Importer in Unity will basically handle it for us by
creating the container and add both objects and its children, which will solve the problem of
wrong rotation and set the default rotation of the model as X to 0, Y to 0, and Z to 0, as we
can see in the following screenshot:

Some of you might be curious—how do we know when to rotate the pivot or not rotate the
pivot in 3D Studio Max? Well, it's very simple; just remember that with any 3D model that is
static and not complicated or has only one mesh object included, we should rotate its pivot.
On the other hand, if we have a character model with rigging, or maybe a simple mesh for
detecting the collision, we can just leave it as it is.

We can also fix the rotation of the imported model in Unity by creating
the empty object as a parent of the imported model. For more
information on how to fix the rotation of the imported model in Unity,
we can go to http://docs.unity3d.com/Documentation/
Manual/HOWTO-FixZAxisIsUp.html.

The Animations inspector
If we click on Heroine_animate in the Project view and go to the Animations tab in the
Inspector view, we will see the clip window that contains all the clips that we created. Here,
we can select any clip, for example, the idle clip. Then, we can go down to see the ruler bar
under the clip's name. We can drag the arrow marker to adjust the Start and End points
of the clip instead of typing in the number in the textbox.

http://docs.unity3d.com/Documentation/Manual/HOWTO-FixZAxisIsUp.html
http://docs.unity3d.com/Documentation/Manual/HOWTO-FixZAxisIsUp.html

Add Character Control and Animation to Our Hero/Heroine

176

As soon as we drag the marker, we will see the Looping fitness curves for all parameters
(Rotation and Position). The green line shows the best loop match followed by yellow and
red, as shown in the following screenshot:

This feature is very convenient to adjust the looping animation. For example,
if we have the animation clip from the motion capture data, we can easily find
a good match for the looping animation.

For more details, visit http://docs.unity3d.com/Documentation/
Manual/LoopingAnimationClips.html.

At last, we can use the play button in the Preview view to see each animation clip in action
and adjust the speed of our clip by dragging the slider bar close to the time icon, before
applying it, as shown in the following screenshot:

http://docs.unity3d.com/Documentation/Manual/LoopingAnimationClips.html
http://docs.unity3d.com/Documentation/Manual/LoopingAnimationClips.html

Project 4

177

Creating an animator controller
In this step, we will create the Animator Controller, which we will use to control our
character animation using the state machine and parameters to create a condition to change
the type of animation. This animation will be controlled using the script that we will create in
the next step.

Engage thrusters
Let's get started:

1.	 Click on Animation under the Chapter4 folder in the Project view, right-click and
go to Create | Animator Controller, and rename it to MyAnimatorController.

2.	 Double-click on MyAnimatorController to bring up the Animator view, as seen in
the following screenshot:

Add Character Control and Animation to Our Hero/Heroine

178

3.	 Double-click on Base Layer in the top-left corner and change the name of this
layer to Base, as shown in the following screenshot:

4.	 Next, we go to Resources | FBX in the Project view, click on the arrow in front of
Heroine_animate, and drag the idle clip to the Animator view, as shown in the
following screenshot:

Project 4

179

5.	 Then, we drag four more clips (walk, run, jump, and fall) to the Animator view, similar
to the idle clip, and place it in the positions shown in the following screenshot:

6.	 Now, we will click on each clip and go to the Inspector view to set up our parameter.
We will start with the idle clip; let's go to each clip Inspector and set it up as follows:

idle

Speed 0.7

Foot IK Check the box

walk

Speed 1.5 1.5

Foot IK Check the box: check the box

run

Speed 1.7 1.7

Foot IK Check the box

jump

Speed 4

Check the boxFoot IK

fall

Speed 0.7

We just set the speed of each animation as well as the foot IK, which we will use to
control our character.

Add Character Control and Animation to Our Hero/Heroine

180

7.	 Next, we will add a few parameters to control when each animation will be played.
Let's go to the Parameters tab at the bottom-left corner of the Animator view and
click on the plus icon thrice and choose the name and type of parameter as follows:

Name Type

Speed Float

IsRun Bool

MotionState Int

These parameters will be used in the script to change the state of each animation clip.

8.	 Next, we will create the transition between each animation state. First, we will start
with our base animation, idle, and transition to walk. Right-click on the idle clip and
choose Make Transition, which will bring up the arrow, and click-and-drag on top of
the walk clip. We will see the link from the idle clip to the walk clip, as shown in the
following screenshot:

Project 4

181

9.	 Then, we want to click on the arrow line that we just created, then go to the
Inspector, uncheck the Atomic checkbox, and go to the Conditions view; click on the
plus icon to add another condition and set up as shown in the following screenshot:

The Atomic checkbox ensures that this animation will finish playing before another
animation can be played. However, in our case, we want the animation to be
interrupted anytime when the character jumps or falls down, which we will
set up in the next step.

More details about animation transition can be found at http://
docs.unity3d.com/Manual/class-Transition.html.

10.	 Next, we want to create another transition back from walk to the idle animation.
So, let's right-click on the walk clip, choose Make Transition, and then click-and-drag
on idle. Then, we will click on the arrow line again to go to the Inspector view and
set it up as follows:

Atomic Uncheck the box

Conditions Speed Less 0.1

http://docs.unity3d.com/Manual/class-Transition.html
http://docs.unity3d.com/Manual/class-Transition.html

Add Character Control and Animation to Our Hero/Heroine

182

11.	 Then, we set up the rest of the animation. This time, we want the transition to go
from walk to run. So, let's right-click on the walk clip, choose Make Transition, and
then click-and-drag on run. Then, we will click on the arrow line again to go to the
Inspector and set it up as follows:

Atomic Uncheck the box

Conditions IsRun true

Also, we will create the transition from run back to walk. Go to the transition
inspector and set it up as follows:

Atomic Uncheck the box

Conditions IsRun false

12.	 Next, we want the run clip to transition back to idle. Let's create the transition
arrow from run to idle, go to Inspector, and set it up as follows:

Atomic Uncheck the box

Conditions Speed Less 0.1

We also need to create the transition from idle to run. Set up its Inspector view
as follows:

Atomic Uncheck the box

Conditions

Speed Greater 0.1

IsRun true

13.	 Now, we finished the ground animation setup. Next, we will set up the jump and fall
animations, and we will use the MotionState parameter to control each state of the
animation. Let's set up the transition from fall to idle; set Inspector as follows:

Atomic Uncheck the box

Conditions

Speed Less 0.1

MotionState Equals 0

Project 4

183

Also, we need to create the transition from idle to fall; set Inspector as follows:

Atomic Uncheck the box

Conditions MotionState Equals 2

14.	 Next, we will create another transition from fall to walk; set Inspector as follows:

Atomic Uncheck the box

Conditions

Speed Greater 0.1

IsRun false

MotionState Equals 0

Now, the transition from walk to fall; set Inspector as follows:

Atomic Uncheck the box

Conditions MotionState Equals 2

15.	 Then, the last transition from the fall clip. We will set it from fall to run;
set Inspector as follows:

Atomic Uncheck the box

Conditions

Speed Greater 0.1

IsRun true

MotionState Equals 0

Now, the transition from run to fall; set Inspector as follows:

Atomic Uncheck the box

Conditions MotionState Equals 2

Add Character Control and Animation to Our Hero/Heroine

184

The current Animator view will look like the following screenshot:

16.	 Next, we will set up the jump state animation. As we already know, we want our
character to be able to jump from any state when the character hits the ground.
So, we will do this by creating the transition from the Any State clip (the green
color box) to jump by right-clicking on Any State and clicking-and-dragging again
on jump. Then, we will set Inspector as follows:

Atomic Leave it checked

Conditions MotionState Equals 1

We can see here that this time, we leave the Atomic box checked, which means
that our transition to the jump state won't get interrupted by any other animation.
We also need to edit the curve and tweak the blending time to 0 to make the
transition from Any State instantly change to the jump animation when the
character jumps, as shown in the following screenshot:

We can zoom in/out the curve editor by scrolling the middle mouse button or pan
by clicking the middle mouse button and moving the cursor.

Project 4

185

17.	 Lastly, we will need the transition from jump to fall. We have set it this way because
we don't know how high the character will jump; so, we want to show the jump
animation clip until the character starts falling. Simultaneously, we switch to the fall
animation clip. Let's right-click on jump and create the transition to the fall clip and
set Inspector as follows:

Atomic Leave it checked

Conditions MotionState Equals 2

Now, we have finished setting up the Animator Controller in the Animator view,
which will look like the following screenshot:

18.	 Before we finish this section, we need to add MyAnimatorController (which we just
created) to our character. Let's click on the Heroine_animate object in the Hierarchy
view and bring up the inspector. Go to Controller and put MyAnimatorController,
as shown in the following screenshot:

Add Character Control and Animation to Our Hero/Heroine

186

If we click on the play button to play the game while opening the Animator window,
we can change the condition parameter and see the animation changing in action:

Objective complete – mini debriefing
In this step, we have created the Animator Controller, which we used to control the animation
state of our character. First, we named the layer to Base. Then, we dragged all the animation
clips and linked them with the transition. In the transition, we set up three parameters to give
the condition for each changing state, which are Speed, IsRun, and MotionState.

The Speed parameter is a condition to check whether the character is moving, which uses
the float object. IsRun is a boolean object, which is used to check whether the player hit
the key to run (in this case, we will use the Shift key to toggle it in the next step). The last
parameter, MotionState, is the integer that is used to check which state the character is in.
In this case, we use 0 = Ground, 1 = Jump, 2 = Fall, and 3 = Jump Hold (this state
will hold the jump animation to the last frame).

At last, we have put the Animator Controller to our character in the scene.

Classified intel
From the transition between each clip, we will see that there is the Exit Time parameter in
the Conditions view that is always set to default. However, we never use it in this section.
What is it and how do we use it?

The Exit Time parameter is basically to tell the animation to change to the other state
by the percentage of the current animation. For example, if we set it to 0.9, the next
animation state will trigger when the current animation has already played 90 percent
through. We can also use the curve editor to set and see the matching of both clips.
Have a look at the following screenshot:

Project 4

187

For more details, visit http://docs.unity3d.com/Documentation/Manual/
AnimationTransitions.html.

In Transitions, we can also add more than one transition between each transition, which
we can sometimes use to check some conditions such as direction greater than 1 and
direction less than -1. We will see the three arrows on the transition line as shown in the
following screenshot:

In this case, it might be difficult to see which transition is on. We can use the Solo and Mute
toggles to see each transition while we are playing the game. This is very useful to debug
when we have many transitions on the same state.

For more details on Solo and Mute, visit http://docs.unity3d.com/Manual/class-
Transition.html.

Creating a character control script
In this step, we will create a script that controls our character's movements such as forward
and backward movements, turning left or right, and other actions such as jumping and falling
by using the CharacterController component and the OnAnimatorMove() function.

http://docs.unity3d.com/Documentation/Manual/AnimationTransitions.html
http://docs.unity3d.com/Documentation/Manual/AnimationTransitions.html
http://docs.unity3d.com/Manual/class-Transition.html
http://docs.unity3d.com/Manual/class-Transition.html

Add Character Control and Animation to Our Hero/Heroine

188

We can also use the Rigidbody and CapsuleCollider components instead of
CharacterController. However, in this book, we want to show the example of
using CharacterController because there are many convenient functions to
use to control the character such as Move(), collisionFlags (checking
where the character is collided), and slopeLimit (the character can move
up on the slope by a limited degree). If we use Rigidbody and CapsuleCollider,
we have to create those functions ourselves.

Engage thrusters
Now, we will create the script to control our character. Perform the following steps:

1.	 We will create the CharacterControl script that will control our entire menu;
go to Assets | Create | Javascript (for Unity JavaScript users) or go to Assets |
Create | C# (for C# user), name it ChracterControl, double-click on it to
launch MonoDevelop, and we will get our hands dirty with the code.

2.	 Open the ChracterControl script file and type the following variables:

// Unity JavaScript user:

#pragma strict
@script RequireComponent(Animator)
@script RequireComponent(CharacterController)
public enum MOTION_STATE {GROUND,JUMP,FALL,JUMP_HOLD}
private final var GRAVITY : float = 20.0f;
private final var MIN_AIR_TIME : float = 0.15f; // 0.15 sec.
var rotationSpeed : float = 1.0f;
var walkSpeed : float = 2.0f;
var runSpeed : float = 5.0f;
var jumpSpeed : float = 8.0f;
private var _animator : Animator;
private var _hDirection : float;
private var _vDirection : float;
private var _moveDirection : Vector3;
private var _movement : Vector3;
private var _isMoveBack : boolean;
private var _isRun : boolean;
private var _isJumping : boolean;

private var _motionState : MOTION_STATE;
private var _baseCurrentState : AnimatorStateInfo;
private var _characterController : CharacterController;
private var _moveSpeed : float;
private var _verticalSpeed : float;

Project 4

189

private var _inAirTime : float;
private var _inAirStartTime : float;
public function get IsMoveBackward () : boolean {
 return _isMoveBack;
}
public function get IsGrounded () : boolean {
 return _characterController.isGrounded;
}
public function get IsFall () : boolean {
 return (_inAirTime > MIN_AIR_TIME);
}

// C# user:

using UnityEngine;
using System.Collections;
[RequireComponent(typeof(Animator))]
[RequireComponent(typeof(CharacterController))]
public class CharacterControl : MonoBehaviour {
 public enum MOTION_STATE {GROUND,JUMP,FALL,JUMP_HOLD}
 const float GRAVITY = 20.0f;
 const float MIN_AIR_TIME = 0.15f; // 0.15 sec.
 public float rotationSpeed = 1.0f;
 public float walkSpeed = 2.0f;
 public float runSpeed = 5.0f;
 public float jumpSpeed = 8.0f;
 Animator _animator;
 float _hDirection;
 float _vDirection;
 Vector3 _moveDirection;
 Vector3 _movement;
 bool _isMoveBack;
 bool _isRun;
 bool _isJumping;
 MOTION_STATE _motionState;
 AnimatorStateInfo _baseCurrentState;
 CharacterController _characterController;
 float _moveSpeed;
 float _verticalSpeed;
 float _inAirTime;
 float _inAirStartTime;
 public bool IsMoveBackward {
 get { return _isMoveBack; }

Add Character Control and Animation to Our Hero/Heroine

190

 }
 public bool IsGrounded {
 get { return _characterController.isGrounded; }
 }
 public bool IsFall {
 get { return (_inAirTime > MIN_AIR_TIME); }
 }
 …
}

Here, we have all the necessary parameters to use in our script. In the first line,
we want to make sure that we have the CharacterController and Animator
components attached when we use this script. Then, we have the enum variable,
which we will use to set the state of the animation clip. (The enums are integer
values that start from 0,1,2….) Next, we have the animation speed to control
how fast the character rotation and movement should be.

We have the GRAVITY property because we will use it to calculate the Move()
function in the CharacterController class. In the last three functions, we
basically have the get function to return if our character is moving backward,
on the ground, or is falling. For the IsFall() function, we basically check
whether our character stays in the air longer than MIN_AIR_TIME.

3.	 Next, we will start creating the first function, Awake(), using the following
code to get the _animator and _characterController components:
// Unity JavaScript user:

function Awake () {
 _animator = GetComponent.<Animator>();
 _characterController = GetComponent.<CharacterController>();
}

// C# user:

void Awake () {
 _animator = GetComponent<Animator>();
 _characterController = GetComponent<CharacterController>();
}

4.	 Then, we create the Start() function and set up all the variables as follows:

// Unity JavaScript user:

function Start () {
 _moveDirection = Vector3.zero;

Project 4

191

 _motionState = MOTION_STATE.GROUND;
 _isRun = false;
 _isMoveBack = false;
 _moveSpeed = 0.0f;
 _verticalSpeed = 0.0f;
 _inAirTime = 0.0f;
 _inAirStartTime = Time.time;
}

// C# user:

void Start () {
 _moveDirection = Vector3.zero;
 _motionState = MOTION_STATE.GROUND;
 _isRun = false;
 _isMoveBack = false;
 _moveSpeed = 0.0f;
 _verticalSpeed = 0.0f;
 _inAirTime = 0.0f;
 _inAirStartTime = Time.time;
}

5.	 Next, we will create the Update() function. In this function, we will calculate all
movements for our character. First, we will use input and _targetDirection by
using the main camera transform to calculate _moveDirection as follows:

// Unity JavaScript user:

function Update () {
 _hDirection = Input.GetAxis("Horizontal");
 _vDirection = Input.GetAxis("Vertical");
 var cameraTransform : Transform = Camera.main.transform;
 var _forward : Vector3 = cameraTransform.
TransformDirection(Vector3.forward);
 _forward.y = 0f;
 var _right : Vector3 = new Vector3(_forward.z, 0f, -_forward.x);
 if (_vDirection < 0) { _isMoveBack = true; }
 else { _isMoveBack = false; }
 var _targetDirection : Vector3 = (_hDirection * _right) + (_
vDirection * _forward);
 if (_targetDirection != Vector3.zero) {
 _moveDirection = Vector3.Slerp(_moveDirection, _
targetDirection, rotationSpeed * Time.deltaTime);
 _moveDirection = _moveDirection.normalized;

Add Character Control and Animation to Our Hero/Heroine

192

 } else {
 _moveDirection = Vector3.zero;
 }
}

// C# user:
void Update () {
 _hDirection = Input.GetAxis("Horizontal");
 _vDirection = Input.GetAxis("Vertical");
 Transform cameraTransform = Camera.main.transform;
 Vector3 _forward = cameraTransform.TransformDirection(Vector3.
forward);
 _forward.y = 0f;
 Vector3 _right = new Vector3(_forward.z, 0f, -_forward.x);
 if (_vDirection < 0) { _isMoveBack = true; }
 else { _isMoveBack = false; }
 Vector3 _targetDirection = (_hDirection * _right) + (_vDirection
* _forward);
 if (_targetDirection != Vector3.zero) {
 _moveDirection = Vector3.Slerp(_moveDirection, _
targetDirection, rotationSpeed * Time.deltaTime);
 _moveDirection = _moveDirection.normalized;
 } else {
 _moveDirection = Vector3.zero;
 }
}

Vector3.Slerp() is the function that we can use to interpolate between
two vectors spherically by the amount of time, and the return vector's
magnitude will be the difference between the magnitudes of the first vector
and the second vector. This function is usually used when we want to get
the smooth rotation from one vector to another vector in a fixed amount
of time. You can see more details at http://docs.unity3d.com/
Documentation/ScriptReference/Vector3.Slerp.html.

6.	 We are still in the Update() function. Next, we will calculate _verticalSpeed
and _inAirTime by checking whether our character is grounded. Let's continue
from the previous step and put the highlighted code as follows:

// Unity JavaScript user:

function Update () {
 …
 } else {

http://docs.unity3d.com/Documentation/ScriptReference/Vector3.Slerp.html
http://docs.unity3d.com/Documentation/ScriptReference/Vector3.Slerp.html

Project 4

193

 _moveDirection = Vector3.zero;
 }
 if (IsGrounded) {
 _isJumping = false;
 _verticalSpeed = 0.0f;
 _inAirTime = 0.0f;
 _inAirStartTime = Time.time;
 } else {
 _verticalSpeed -= GRAVITY * Time.deltaTime;
 _inAirTime = Time.time - _inAirStartTime;
 }
}

// C# user:
void Update () {
 …
 } else {
 _moveDirection = Vector3.zero;
 }
 if (IsGrounded) {
 _isJumping = false;
 _verticalSpeed = 0.0f;
 _inAirTime = 0.0f;
 _inAirStartTime = Time.time;
 } else {
 _verticalSpeed -= GRAVITY * Time.deltaTime;
 _inAirTime = Time.time - _inAirStartTime;
 }
}

7.	 Next, if our character is able to jump, we will check for the jump action and
set _verticalSpeed to jumpSpeed. We also check that if the user holds Shift,
_isRun is set to true. Then, we set _moveSpeed depending on the character's
action (run or walk). Let's put the highlighted code as follows:

// Unity JavaScript user:

function Update () {
 …
 } else {
 _verticalSpeed -= GRAVITY * Time.deltaTime;
 _inAirTime = Time.time - _inAirStartTime;
 }
 if (!_isJumping && (_motionState == MOTION_STATE.GROUND)) {

Add Character Control and Animation to Our Hero/Heroine

194

 _isRun = (Input.GetKey (KeyCode.LeftShift) || Input.GetKey
(KeyCode.RightShift));
 _moveSpeed = (_isRun) ? runSpeed : walkSpeed;
 if (Input.GetButtonDown ("Jump")) {
 _verticalSpeed = jumpSpeed;
 _isJumping = true;
 _inAirTime = 0.0f;
 _inAirStartTime = Time.time;
 }
 }
}

C# user:
void Update () {
 …
 } else {
 _verticalSpeed -= GRAVITY * Time.deltaTime;
 _inAirTime = Time.time - _inAirStartTime;
 }
if (!_isJumping && (_motionState == MOTION_STATE.GROUND)) {
 _isRun = (Input.GetKey (KeyCode.LeftShift) || Input.GetKey
(KeyCode.RightShift));
 _moveSpeed = (_isRun) ? runSpeed : walkSpeed;
 if (Input.GetButtonDown ("Jump")) {
 _verticalSpeed = jumpSpeed;
 _isJumping = true;
 _inAirTime = 0.0f;
 _inAirStartTime = Time.time;
 }
 }
}

8.	 The last section of code that we will add to the Update() function is to control our
character's movement and rotation, which is a very important part to create our
character when we press the button to control it. Let's add the following highlighted
code in continuation with the last step:

// Unity JavaScript user:

function Update () {
 …
 _inAirStartTime = Time.time;
 }
 }

Project 4

195

 _movement = (_moveDirection * _moveSpeed) + new Vector3 (0, _
verticalSpeed, 0);
 _movement *= Time.deltaTime;

 if (_movement != Vector3.zero) {
 _characterController.Move(_movement);
 }
 if (_moveDirection != Vector3.zero) {
 transform.rotation = Quaternion.LookRotation(_moveDirection);
 }
}

// C# user:

void Update () {
 …
 _inAirStartTime = Time.time;
 }
 }
 _movement = (_moveDirection * _moveSpeed) + new Vector3 (0, _
verticalSpeed, 0);
 _movement *= Time.deltaTime;

 if (_movement != Vector3.zero) {
 _characterController.Move(_movement);
 }

 if (_moveDirection != Vector3.zero) {
 transform.rotation = Quaternion.LookRotation(_moveDirection);
 }
}

9.	 Now, in the last function of this CharacterControl script, we will add the
OnAnimationMove() function to control the state of our animation.
So, let's add the following code:

// Unity JavaScript user:

function OnAnimatorMove (){
 if (_animator) {
 if (_isJumping) {
 if (IsGrounded) {
 _motionState = MOTION_STATE.FALL;
 } else {
 if (_motionState == MOTION_STATE.GROUND) {

Add Character Control and Animation to Our Hero/Heroine

196

 _motionState = MOTION_STATE.JUMP;
 } else if (_motionState == MOTION_STATE.JUMP) {
 _motionState = MOTION_STATE.JUMP_HOLD;
 }
 }
 } else {
 if (IsFall) {
 _motionState = MOTION_STATE.FALL;
 } else {
 _motionState = MOTION_STATE.GROUND;
 }
 }
 var velocity: Vector3 = new Vector3(_hDirection,0.0f,_
vDirection);
 velocity.y = 0.0f;
 _animator.SetFloat ("Speed", velocity.sqrMagnitude);
 _animator.SetBool ("IsRun", _isRun);
 _animator.SetInteger ("MotionState", parseInt(_motionState));
 }
}

// C# user:
void OnAnimatorMove (){
 if (_animator) {
 if (_isJumping) {
 if (IsGrounded) {
 _motionState = MOTION_STATE.FALL;
 } else {
 if (_motionState == MOTION_STATE.GROUND) {
 _motionState = MOTION_STATE.JUMP;
 } else if (_motionState == MOTION_STATE.JUMP) {
 _motionState = MOTION_STATE.JUMP_HOLD;
 }
 }
 } else {
 if (IsFall) {
 _motionState = MOTION_STATE.FALL;
 } else {
 _motionState = MOTION_STATE.GROUND;
 }
 }
 Vector3 velocity = new Vector3(_hDirection,0.0f,_vDirection);
 velocity.y = 0.0f;
 _animator.SetFloat ("Speed", velocity.sqrMagnitude);

Project 4

197

 _animator.SetBool ("IsRun", _isRun);
 _animator.SetInteger ("MotionState", (int)_motionState);
 }
}

The OnAnimatorMove() function is the callback function that will be
called each frame after the state machines and the animations have been
evaluated. We can say that this is very similar to the FixedUpdate()
function. However, the OnAnimatorMove() function will make sure that
all the parameters will be got and set correctly before we do something.

For more details, visit http://docs.unity3d.com/
Documentation/ScriptReference/MonoBehaviour.
OnAnimatorMove.html.

10.	 Lastly, we will go back to Unity editor; drag-and-drop the CharacterControl script
that we just created on Heroine_animate in the Hierarchy view. Then, we click on
the Heroine_animate object in the Hierarchy view and go to its Inspector view and
set it up as follows:

Character Controller

Skin Width 0.01

Center X: 0, Y: 0.85, and Z: 0

Radius 0.2

Height 1.7

Click on play and now our character can move, jump, and run.

Objective complete – mini debriefing
In this section, we created a script called the CharacterControl script that we can use to
control the character's movement by using the Move() function in the CharacterController
component. This function needs the Vector3 direction passed in and returns CollisionFlags,
which are very convenient to track the position of the character that has been collided.

We can get CollisionFlags by accessing the CharacterController component,
which in our case, can be done using _characterController.
collisionFlags. For example, we can use this flag to check if the
character only hits the ceiling by using the following expression:

If (_characterController.collisionFlags ==
CollisionFlags.Above) {…}

For more detail, visit http://docs.unity3d.com/Documentation/
ScriptReference/CollisionFlags.None.html.

http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.OnAnimatorMove.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.OnAnimatorMove.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.OnAnimatorMove.html
http://docs.unity3d.com/Documentation/ScriptReference/CollisionFlags.None.html
http://docs.unity3d.com/Documentation/ScriptReference/CollisionFlags.None.html

Add Character Control and Animation to Our Hero/Heroine

198

We also applied GRAVITY while the character falls down from the jump or from the platform
where there is no collider. Also, we used the OnAnimatorMove() function to control the
animation state.

Classified intel
If we click on play, we will be able to control our character. However, we might see that there
is a sliding movement or it is still playing the idle animation when our character begins to
walk or run. This is because the transition blending is too high. So, when we click to walk or
run, the animation doesn't change instantly as it should do. This problem can be solved by
setting the Transition blending curve in the inspector to 0 or less transition. Have a look at
the following screenshot:

Creating a third-person camera to
follow our character

From the last section, we got a controllable character with animation, but the camera isn't
actually following the character at all. So, in this section, we will create the third-person
camera to follow our character.

Engage thrusters
Now, we will create the script to control our character:

1.	 We will create the CameraControl script that will control our entire menu; go
to Assets | Create | Javascript (for Unity JavaScript users) or Assets | Create |
C# (for C# users), name it CameraControl, double-click on it to launch
MonoDevelop, and then we will get our hands dirty with the code.

Project 4

199

2.	 Open the CameraControl script file and type in the following code:

// Unity JavaScript user:

#pragma strict
@script RequireComponent (CharacterControl)
var smoothTime : float = 0.1f;
var maxSpeed : float = 150.0f;
var heightSmoothTime : float = 0.1f;
var distance : float = 2.5f;
var height : float = 0.75f;
private var _heightVelocity : float = 0.0f;
private var _angleVelocity : float = 0.0f;
private var _velocity : Vector3;
private var _targetTransform : Transform;
private var _cameraTransform : Transform;
private var _maxRotation : float;
private var _characterControl : CharacterControl;
private var _targetHeight : float = Mathf.Infinity;
private var _centerOffset : Vector3 = Vector3.zero;

// C# user:
using UnityEngine;
using System.Collections;
[RequireComponent(typeof(CharacterControl))]
public class CameraControl : MonoBehaviour {
 public float smoothTime = 0.1f;
 public float maxSpeed = 150.0f;
 public float heightSmoothTime = 0.1f;
 public float distance = 2.5f;
 public float height = 0.75f;
 float _heightVelocity = 0.0f;
 float _angleVelocity = 0.0f;
 Vector3 _velocity;
 Transform _targetTransform;
 Transform _cameraTransform;
 float _maxRotation;
 CharacterControl _characterControl;
 float _targetHeight = Mathf.Infinity;
 Vector3 _centerOffset = Vector3.zero;
 …
}

Using the preceding code, we created all the variables required for this script.

Add Character Control and Animation to Our Hero/Heroine

200

3.	 Next, we will start creating the first function, Awake(), using the following code
to get the camera transform and the CharacterController component:

// Unity JavaScript user:

function Awake () {
 _cameraTransform = Camera.main.transform;
 _targetTransform = transform;
 _characterControl = GetComponent.<CharacterControl>();
}

// C# user:

void Awake () {
 _cameraTransform = Camera.main.transform;
 _targetTransform = transform;
 _characterControl = GetComponent<CharacterControl>();
}

4.	 Then, we create the Start() function as follows, to get the center position of the
target, which is the character we are pointing at:

// Unity JavaScript user:

function Start () {
 var collider : Collider = _targetTransform.collider;
 _centerOffset = collider.bounds.center - _targetTransform.
position;
}

// C# user:
void Start () {
 Collider collider = _targetTransform.collider;
 _centerOffset = collider.bounds.center - _targetTransform.
position;
}

5.	 Next, we will create the AngleDistance() function to get the angle distance
between the current angle and target; let's add the following code:

// Unity JavaScript user:

function AngleDistance (a : float, b : float) : float {
 a = Mathf.Repeat(a, 360);
 b = Mathf.Repeat(b, 360);
 return Mathf.Abs(b - a);
}

// C# user:

Project 4

201

float AngleDistance (float a, float b) {
 a = Mathf.Repeat(a, 360);
 b = Mathf.Repeat(b, 360);
 return Mathf.Abs(b - a);
}

Mathf.Repeat(t,l) is the function that we can use to loop the t value
but not higher than l and not lower than 0.

Mathf.Abs(n) is the function that will return the absolute number n.

For more details, visit the following websites:

ff http://docs.unity3d.com/Documentation/
ScriptReference/Mathf.Repeat.html

ff http://docs.unity3d.com/Documentation/
ScriptReference/Mathf.Abs.html

6.	 Then, we need to create the SetupRotation() function to update the rotation of
our camera. Type in the following code:

// Unity JavaScript user:

function SetUpRotation (centerPos : Vector3) {
 var cameraPos : Vector3 = _cameraTransform.position;
 var offsetToCenter : Vector3 = centerPos - cameraPos;
 var yRotation : Quaternion = Quaternion.LookRotation(new
Vector3(offsetToCenter.x, offsetToCenter.y + height,
offsetToCenter.z));
 var relativeOffset : Vector3 = Vector3.forward * distance +
Vector3.down * height;
 _cameraTransform.rotation = yRotation * Quaternion.
LookRotation(relativeOffset);
}

// C# user:
void SetUpRotation (Vector3 centerPos) {
 Vector3 cameraPos = _cameraTransform.position;
 Vector3 offsetToCenter = centerPos - cameraPos;
 Quaternion yRotation = Quaternion.LookRotation(new
Vector3(offsetToCenter.x, offsetToCenter.y + height,
offsetToCenter.z));
 Vector3 relativeOffset = Vector3.forward * distance + Vector3.
down * height;
 _cameraTransform.rotation = yRotation * Quaternion.
LookRotation(relativeOffset);

}

http://docs.unity3d.com/Documentation/ScriptReference/Mathf.Repeat.html
http://docs.unity3d.com/Documentation/ScriptReference/Mathf.Repeat.html
http://docs.unity3d.com/Documentation/ScriptReference/Mathf.Abs.html
http://docs.unity3d.com/Documentation/ScriptReference/Mathf.Abs.html

Add Character Control and Animation to Our Hero/Heroine

202

7.	 Next, we will create the LateUpdate() function to update the camera position and
rotation after all the objects have their Update() functions called. So, let's add the
following code:

The LateUpdate() function will be called after the Update()
function has been called. This function will make sure that all the
calculation in the Update() function is finished before we start the
LateUpdate() function. We use the LateUpdate() function for
the camera calculation because we don't want the target position of the
camera to lerp (linear interpolation) or get affected by any concurrent
physics or location calculations. It should be calculated after the
character's orientation and position has been determined in Update().

For more details on this function, refer to http://docs.unity3d.
com/Documentation/ScriptReference/MonoBehaviour.
LateUpdate.html.

// Unity JavaScript user:

function LateUpdate () {
 var targetCenter : Vector3 = _targetTransform.position + _
centerOffset;
 var originalTargetAngle : float = _targetTransform.
eulerAngles.y;
 var currentAngle : float = _cameraTransform.eulerAngles.y;
 var targetAngle : float = originalTargetAngle;
 if (AngleDistance (currentAngle, targetAngle) > 160 && _
characterControl.IsMoveBackward) {
 targetAngle += 180;
 }
 currentAngle = Mathf.SmoothDampAngle(currentAngle, targetAngle,
_angleVelocity, smoothTime, maxSpeed);
 _targetHeight = targetCenter.y + height;
 var currentHeight : float = _cameraTransform.position.y;
 currentHeight = Mathf.SmoothDamp (currentHeight, _targetHeight,
_heightVelocity, heightSmoothTime);
 var currentRotation : Quaternion = Quaternion.Euler (0,
currentAngle, 0);
 _cameraTransform.position = targetCenter;
 _cameraTransform.position += currentRotation * Vector3.back *
distance;
 var newCameraPos : Vector3 = _cameraTransform.position;
 newCameraPos.y = currentHeight;
 _cameraTransform.position = newCameraPos;
 SetUpRotation(targetCenter);

http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.LateUpdate.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.LateUpdate.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.LateUpdate.html

Project 4

203

}

// C# user:
void LateUpdate () {
 Vector3 targetCenter = _targetTransform.position + _
centerOffset;
 float originalTargetAngle = _targetTransform.eulerAngles.y;
 float currentAngle = _cameraTransform.eulerAngles.y;
 float targetAngle = originalTargetAngle;
 if (AngleDistance (currentAngle, targetAngle) > 160 && _
characterControl.IsMoveBackward) {
 targetAngle += 180;
 }
 currentAngle = Mathf.SmoothDampAngle(currentAngle, targetAngle,
ref _angleVelocity, smoothTime, maxSpeed);
 _targetHeight = targetCenter.y + height;
 float currentHeight = _cameraTransform.position.y;
 currentHeight = Mathf.SmoothDamp (currentHeight, _targetHeight,
ref _heightVelocity, heightSmoothTime);
 Quaternion currentRotation = Quaternion.Euler (0, currentAngle,
0);
 _cameraTransform.position = targetCenter;
 _cameraTransform.position += currentRotation * Vector3.back *
distance;
 Vector3 newCameraPos = _cameraTransform.position;
 newCameraPos.y = currentHeight;
 _cameraTransform.position = newCameraPos;
 SetUpRotation(targetCenter);
}

Mathf.SmoothDampAngle() is the function that gradually changes the
angle given in degrees towards the target angle over time.

Mathf.SmoothDamp() is the function that gradually changes the value
towards the target value over time.

For more details, visit the following websites:

ff http://docs.unity3d.com/Documentation/
ScriptReference/Mathf.SmoothDampAngle.html

ff http://docs.unity3d.com/Documentation/
ScriptReference/Mathf.SmoothDamp.html

http://docs.unity3d.com/Documentation/ScriptReference/Mathf.SmoothDampAngle.html
http://docs.unity3d.com/Documentation/ScriptReference/Mathf.SmoothDampAngle.html
http://docs.unity3d.com/Documentation/ScriptReference/Mathf.SmoothDamp.html
http://docs.unity3d.com/Documentation/ScriptReference/Mathf.SmoothDamp.html

Add Character Control and Animation to Our Hero/Heroine

204

8.	 Finally, we will go back to the Unity editor and drag-and-drop the CameraControl
script that we just created on Heroine_animate in the Hierarchy view. Then, we can
click on the play button to see the result.

Objective complete – mini debriefing
In this section, we created a third-person camera script to follow our character. This script
also allows us to set the distance from our character and the height of our camera position
by using some code from the built-in third-person camera script and adapting it to match
our character.

Classified intel
Why do we need the LateUpdate() function instead of the Update() function in this
script? Well, we use it to guarantee that the player position is already updated when we are
performing the camera calculations. If we perform the calculation in the Update() function,
the camera position might be calculated before the player position is updated. This will result
in jitter.

We can also explain it this way: we wait for the input from the user and then get the
direction in which the character will move from the Update() function. Then, we use the
position of the character as the target position that our camera will follow and calculate the
camera position in the LateUpdate() function.

What's the difference between Update(), LateUpdate(), and
FixedUpdate() functions? Update() is called for every frame.
LateUpdate() is also called for every frame but after all the Update()
functions have been called. FixedUpdate() is called for every fixed frame
rate, which means that no matter how our game is running, slow or fast, the
FixedUpdate() function will always call at the same rate. For example,
if our game is slow, the FixedUpdate() function gets called more than
once before calling the Update() function.

The following link is useful for Update() and FixedUpdate():
http://answers.unity3d.com/questions/10993/whats-
the-difference-between-update-and-fixedupdat.html.

http://answers.unity3d.com/questions/10993/whats-the-difference-between-update-and-fixedupdat.html
http://answers.unity3d.com/questions/10993/whats-the-difference-between-update-and-fixedupdat.html

Project 4

205

This way, we will be able to track each movement of our character and the camera will
follow the direction smoothly without any jitter, as we can see in the following diagram:

Mission accomplished
In this project, we learned how to set up the animation using the Mecanim system as well as
the basic Animator Controller window and how to use the Animator view to set up the state
machine. We also created parameters to use as a condition to change to each animation
state and the transition between each clip.

Next, we created our CharacterControl script to control our character. We also learned how
to use the Move() function in the CharacterController script and how to speed up or
slow down the animation clip by setting the speed of the clip. We also learned how to adjust
the transition blending between each animation clip to change the state instantly. Then,
we used the OnAnimationMove() function to set the animation state and parameters to
control our animation clip.

Lastly, we created CharacterCamera to follow our character by using the LateUpdate()
function to track the position of the character.

We will see a result similar to the following screenshot:

Add Character Control and Animation to Our Hero/Heroine

206

Hotshot challenges
Now we know how to create a custom character control script, camera, and animation from
our custom script. Even though our custom script works really well with this character, it
still has a lot of things that we can improve to make our script much more flexible. Let's do
something to make our script better and much more flexible. Give the following ideas a try:

ff Add your own character with a different animation, even if the character has more
than five animation clips

ff Use a different method to make the camera not follow the character when our
character jumps (or basically just rotate the camera)

ff Change some parameters such as distance or height in the CameraControl script
to see how the game will look

ff Create more action for the character such as slide or crawl and control them by
using the state machine

ff Add the backward walk or run by setting the negative speed for those animation
clips and using the _isBackward property to check it

ff Download the Mecanim Locomotion Starter Kit package from Unity Asset Store
(https://www.assetstore.unity3d.com/#/content/7673) and use the
Mocap data inside this package and retarget to our character

https://www.assetstore.unity3d.com/#/content/7673

Project 5
Build a Rocket

Launcher!

In this project, we will learn how to create a rocket launcher. Here, we will first reuse the
CameraControl and CharacterControl classes from Project 4, Add Character Control
and Animation to Our Hero/Heroine, and we will tweak the camera to make the shooting
view more similar to Resident Evil 4 or Resident Evil 5:

Build a Rocket Launcher!

208

We will also take the robot character model and animation from the old FPS tutorial
package from Unity, which we can download from the following website:

http://armedunity.com/files/file/32-fps-tutorial-unity-4x/

We will build the rocket launcher from scratch, add particle effects, and switch the camera
view between the normal movement and aim. We will still use the Mecanim animation
system to create the animation state, which makes it easy to set up the character animation.

Mission briefing
This project will start with how to set up the character animation by setting the animation
clip using Mecanim and how to adapt the third-person controller (CharacterControl) and
camera controller (CameraControl) scripts to make our character shoot, walk, run, jump, fall,
and remain idle. Then, we will create a rocket prefab and the rocket launcher script to fire our
rocket and add the particle effects for explosion, fire trail, and smoke that will appear from
the barrel of the rocket launcher when the player shoots. We will use the Shuriken Particle
system to create these effects.

Then, we will create the laser target to aim and the rocket GUITexture to track the number
of rockets we are left with after each shot as well as the reload button to refill the rockets.

Why is it awesome?
This project will teach you how to deal with the extra bone in setting the humanoid character
in Mecanim and how to use the blend tree and substate machine diagrams in Mecanim. You
will understand how to switch the camera view and settings in the Shuriken Particle system,
which is very powerful in Unity.

By the end of this project, you will have the basic knowledge required to create a third-
person shooter style game with the aiming camera view and laser.

Your Hotshot objectives
In Project 4, Add Character Control and Animation to Our Hero/Heroine, we learned how
to create a third-person controller script to control our character. For this project, we will
use a similar concept: adapt and reuse the script to create the third-person shooter to fire
a rocket from the rocket launcher. We will complete the following tasks:

ff Setting up a character animation and animator controller

ff Adding new features to the CharacterControl and CameraControl scripts

http://armedunity.com/files/file/32-fps-tutorial-unity-4x/

Project 5

209

ff Creating a MouseLook script and laser target scope

ff Creating a rocket prefab and particle effects

ff Creating a rocket launcher and RocketUI

Mission checklist
Before we start, we will need to get the project folder and assets from http://www.
packtpub.com/support?nid=8267, which includes the finished project and the
assets that we need to use in this project.

Browse to the preceding URL and download the Chapter5.zip package and unzip it.
Inside the Chapter5 folder, there are two Unity packages, which are Chapter5Package.
unitypackage (we will use this package for this project) and Chapter5Package
_Completed.unitypackage (this is the complete chapter package).

Setting up a character animation and
animator controller

In Project 4, Add Character Control and Animation to Our Hero/Heroine, we imported the
FBX file with multiple animation clips attached. However, in this project, we shall import the
animation clips using another method. This method entails using multiple FBX files, with each
file containing a separate animation clip. The concept behind this method is that you can create
separate model files and name them using the convention modelName@animationName.
fbx. For example, if you have the main model, robot.fbx, you will need to name this as
robot@idle.fbx to create an idle animation clip.

The advantage of this method is that we can have multiple animators
working on the same model with the different animation files, and we can
put them all together in Unity. For more details, visit the following link:

http://docs.unity3d.com/Documentation/Manual/
Splittinganimations.html

http://www.packtpub.com/support?nid=8267
http://www.packtpub.com/support?nid=8267
http://docs.unity3d.com/Documentation/Manual/Splittinganimations.html
http://docs.unity3d.com/Documentation/Manual/Splittinganimations.html

Build a Rocket Launcher!

210

Prepare for lift off
In this section, we will begin by preparing an animation for our character, which will use the
humanoid type to set up the animation; this can be done by performing the following steps:

1.	 Import the assets package by going to Assets | Import Package | Custom
Package… and choosing Chapter5.unityPackage, which we downloaded
earlier, and then clicking on the Import button in the pop-up window, as shown
in the following screenshot:

2.	 Wait until the package is completely imported and you will see the Chapter5
and Resources folders in the Window view. Then, go to the Chapter5/Scene/
RocketLaucher scene and double-click on it to open the scene, as shown in the
following screenshot:

Project 5

211

3.	 Next, go to the Resources/FBX/Robot Artwork folder and click on robot to
bring up the Inspector view, as shown in the following screenshot:

4.	 Then, go to its Inspector view and click on the Rig tab and make sure that the
Inspector view is set as per the following screenshot:

We can see that we have the extra bone on Rig in the Extra Transforms to Expose
window because this robot has been set up with the extra bone, which is the gun skin.

For a humanoid character, the bone structure is similar to the human bone
structure. Mecanim takes advantage of this similarity by automatically
setting up the basic skeleton structure, such as body, head, and limbs.
However, in our character, the gun bone isn't usually in the human bones
structure, so we need to set this as an extra bone.

Build a Rocket Launcher!

212

Engage thrusters
Now, we are ready to start this section; perform the following steps:

1.	 Go to the Chapter5/Animation folder in the Project view and then double-click
on MyAnimatorController to bring up the Animator view, as shown in the
following screenshot:

2.	 Next, we will add the blend tree by right-clicking on the Animator window
and navigating to Create State | From New Blend Tree, and then we'll name
it Locomotion, as shown in the following screenshot:

Project 5

213

3.	 Then, we will double-click on the Locomotion state and click on the Blend Tree state
and go to its Inspector view. Set the Blend Type parameter to 1D, Parameter to Speed,
and in the Motion section, click on the + button and choose Add Motion Field twice.

4.	 After that, we will click on the circle icon and choose the walk clip as the first motion.
Then, choose the run clip as the second motion, as shown in the following screenshot:

5.	 Now we will set up the Threshold and Animation time values for each clip to control
the blending between the walk and run clips by using Speed as Parameter. This is
done by going to the graph under Parameter, as shown in the following screenshot:

Build a Rocket Launcher!

214

6.	 Next, we set up the transition from fall to Locomotion. So, let's right-click on the fall
clip, choose Make Transition, and then click-and-drag on the Locomotion clip. Then,
click on the arrow line to go to the Inspector view and set up the view as follows:

Atomic Uncheck the box

Conditions Speed Greater 0.1

MotionState Equals 0

7.	 Also, we will create the transition back from Locomotion to fall. Go to the
transition's Inspector view and set up the view as follows:

Atomic Leave this checked

Conditions MotionState Equals 2

8.	 Next, we will set the blending time to 0 from fall to idle and from back idle to fall,
as shown in the following screenshot:

9.	 Now we need to add the transitions from idle to Locomotion. So, let's right-click
on the idle clip, choose Make Transition, and then click-and-drag this clip on the
Locomotion clip. Then, we will click on the arrow line to go to the Inspector view
and set up the view as follows:

Atomic Leave this checked

Conditions Speed Greater 0.1

Project 5

215

10.	 Also, we will create the transition from Locomotion back to idle. Go to the
transition's Inspector view and set up the view as follows:

Atomic Leave this checked

Conditions Speed Less 0.1

11.	 Next, we will create the substate machine, which will be used to control the
shooting and aiming animations. Let's right-click on the Animator window and
choose the Create Sub-State Machine option and then name it Shooting,
as shown in the following screenshot:

12.	 Let's double-click on the Shooting substate machine to open it and go to the
Resources/FBX/Robot Artwork folder in the Project view; click on the arrow
in front of robot@shoot; then drag the shoot and aiming clips to the Animator view,
as shown in the following screenshot:

Build a Rocket Launcher!

216

13.	 Now, we need to create the transition from the aiming state to shoot. Let's right-
click on the aiming clip, choose Make Transition, and then click-and-drag this on
the shoot clip. Then, we will click on the arrow line again to go to the Inspector
view and set up the view as follows:

Atomic Uncheck the box

Conditions IsShot true

14.	 Also, we will create the transition back from shoot to aiming. Go to the transition's
Inspector view and set up the view as follows:

Atomic Uncheck the box

Conditions Exit Time 0.8

15.	 Before we go to the Base Layer transition, we need to add the transition from
aiming to (Up) Base. Then we will see the pop-up window; choose idle, as shown
in the following screenshot:

16.	 After that, we will click on the arrow line again to go to the Inspector view and set
up the view as follows:

Atomic Uncheck the box

Conditions MotionState Equals 0

Project 5

217

17.	 Now, we go to the Base Layer transition and add the transition from idle state
to Shooting. Let's right-click on the idle clip, choose Make Transition, and then
click-and-drag the idle clip on to the Shooting clip. Then we will see the pop-up
window; choose aiming, as shown in the following screenshot:

18.	 Click on the arrow line again to go to the Inspector view and set up the view
as follows:

Atomic Uncheck the box

Conditions MotionState Equals 4

IsShot false

19.	 Finally, the last transition is from Locomotion to Shooting. Let's right-click on the
Locomotion clip, choose Make Transition, and then move the cursor and click on
the Shooting clip. Then, we will see the pop-up window, choose aiming, as shown
in the following screenshot:

20.	 Then, we will click on the arrow line again to go to the Inspector view and set up
the view as follows:

Atomic Uncheck the box

Conditions MotionState Equals 4

IsShot false

Build a Rocket Launcher!

218

21.	 Now, we will get all the transitions, as shown in the following screenshot:

Objective complete – mini debriefing
Basically, what we have done here is set up the animator controller for our robot character,
which is similar to the way we set up our character in Project 4, Add Character Control and
Animation to Our Hero/Heroine. However, in this project, we've used the Blend Tree settings
to set up the walk and run animations.

In Blend Tree, we can add as many animations as we want. The animation will change the
state depending on the parameter we set up. In our case, we used Speed as our Parameter
and set up 2 as the minimum value for the walk animation and 5 as the maximum for the
run animation. We use the minimum value of 2 because we want our robot to change the
animation state from idle to walk at the Speed value of 2, which will be created in the next
step. Also, the value 5 is the maximum speed for our character to run. The settings for
Speed are shown in the following screenshot:

Project 5

219

We also added a new substate machine for our Shooting animation. This substate machine
contains two animations, which are the aiming and shoot clips. The substate machine is used
to identify the separate stages that consist of a number of states. In our case, we used this
because we knew that the shoot state only connects to the aiming state, as we can see in the
following screenshot:

For more information on Sub-State Machine, visit the following link:

http://docs.unity3d.com/Documentation/Manual/NestedStateMachines.html

Classified intel
From this project, we have learned many things about how to set up the animator controller
including Blend Tree. So, what is Blend Tree?

http://docs.unity3d.com/Documentation/Manual/NestedStateMachines.html

Build a Rocket Launcher!

220

Blend Tree
Blend Tree is a very powerful state that allows us to blend multiple animations smoothly by
using the blending parameters. For example, we can blend the walk straight, walk left, and
walk right states by using the Direction setting as a blending parameter, or we can get a bit
crazy by having two Blend Tree settings for the run and walk clips. Then, each clip will have
its own Blend Tree setting to control the direction of the animation, as we can see in the
following screenshot:

We can also set the Blend Type parameter in Blend Tree from 1D to 2D for advanced
setting by using two parameters to check for the blending of states, as we can see in
the following screenshot:

Project 5

221

For more information on Blend Tree, visit the following links:

ff http://docs.unity3d.com/Manual/class-BlendTree.html

ff http://docs.unity3d.com/Manual/BlendTree-1DBlending.html

ff http://docs.unity3d.com/Manual/BlendTree-2DBlending.html

ff http://docs.unity3d.com/Manual/BlendTree-AdditionalOptions.html

Adding new features to the
CharacterControl and CameraControl
scripts

In this step, we will adapt and add new features to the CharacterControl and
CameraControl scripts that we created in Project 4, Add Character Control and Animation
to Our Hero/Heroine. We will add the script to control our character's movement by
gradually changing the speed from idle to walk and walk to run. Then, we will add the
ability to switch between shooting and movement, which will also change the camera's
view position.

Engage thrusters
Let's get started! To add new features to the CharacterControl and CameraControl
scripts, perform the following steps:

1.	 Go to the Chapter5/Scripts/C# (for C# users) or Chapter5/Scripts/
Javascript (for Unity JavaScript users) folder in the Project view and
double-click on the CharacterControl script file to open it, as we can
see in the following screenshot:

http://docs.unity3d.com/Manual/class-BlendTree.html
http://docs.unity3d.com/Manual/class-BlendTree.html
http://docs.unity3d.com/Manual/BlendTree-1DBlending.html
http://docs.unity3d.com/Manual/BlendTree-1DBlending.html
http://docs.unity3d.com/Manual/BlendTree-2DBlending.html
http://docs.unity3d.com/Manual/BlendTree-2DBlending.html
http://docs.unity3d.com/Manual/BlendTree-AdditionalOptions.html
http://docs.unity3d.com/Manual/BlendTree-AdditionalOptions.html

Build a Rocket Launcher!

222

2.	 Open the ChracterControl script file; add the following highlighted script in the
variable area as follows:

// Unity JavaScript user:

public enum MOTION_STATE {GROUND,JUMP,FALL,JUMP_HOLD,AIM}
…
private var _currentEulerAngle : Vector3;
private var _isAiming : boolean;
private var _isShot : boolean;
…
function get IsFall () : boolean {
 return (_inAirTime > MIN_AIR_TIME);
}
function get IsAiming () : boolean {
 return _isAiming;
}
function get GetCharacterEulerAngle() : Vector3{
 return _currentEulerAngle;
}

// C# user:

public class CharacterControl : MonoBehaviour {
 public enum MOTION_STATE {GROUND,JUMP,FALL,JUMP_HOLD,AIM}
 …
 Vector3 _currentEulerAngle;
 bool _isAiming;
 bool _isShot;
 …
 public bool IsFall {
 get { return (_inAirTime > MIN_AIR_TIME); }
 }
 public bool IsAiming {
 get { return _isAiming; }
 }
 public Vector3 GetCharacterEulerAngle {
 get { return _currentEulerAngle; }
 }
 …
}

Project 5

223

3.	 Next, we will go to the Start() function and add the following highlighted code:

// Unity JavaScript user:

function Start () {
 …
 _inAirStartTime = Time.time;
 _currentEulerAngle = transform.eulerAngles;
 _isAiming = false;
}

C# user:

void Start () {
 …
 _inAirStartTime = Time.time;
 _currentEulerAngle = transform.eulerAngles;
 _isAiming = false;
}

4.	 Then, we go to the Update() function to set the running and aiming animation
controller. Let's go to the If (IsGround) function and replace the old code from
if (!_isJumping && (_motionState == MOTION_STATE.GROUND)) {…}
to if (_moveDirection != Vector3.zero) {…}, as shown in the following
highlighted script:

// Unity JavaScript user:
If (IsGround) {
 …
} else {
 …
}
if (!_isJumping) {
 _isAiming = (Input.GetKey(KeyCode.E));
 if (_isAiming) {
 _isShot = Input.GetButtonDown("Fire1");
 } else {
 if (_motionState == MOTION_STATE.GROUND) {
 _isRun = (Input.GetKey (KeyCode.LeftShift) || Input.GetKey
(KeyCode.RightShift));
 if (_isRun) {
 if (_moveDirection != Vector3.zero) {
 _moveSpeed += 0.15f;
 _moveSpeed = Mathf.Clamp(_moveSpeed,0.0f,runSpeed);
 }

Build a Rocket Launcher!

224

 } else {
 if (_moveDirection != Vector3.zero) {
 _moveSpeed -= 0.15f;
 _moveSpeed = Mathf.Max(walkSpeed,_moveSpeed);
 } else {
 _moveSpeed = 0.0f;
 }
 }
 if (Input.GetButtonDown ("Jump")) {
 _verticalSpeed = jumpSpeed;
 _isJumping = true;
 _inAirTime = 0.0f;
 _inAirStartTime = Time.time;
 }
 }
 }
} else {
 // TODO – Reset Aiming
}

if (!_isAiming) {
 _movement = (_moveDirection * _moveSpeed) + new Vector3 (0, _
verticalSpeed, 0);
 _movement *= Time.deltaTime;
 if (_movement != Vector3.zero) {
 _characterController.Move(_movement);
 }
transform.eulerAngles = _currentEulerAngle;
 if (_moveDirection != Vector3.zero) {
 transform.rotation = Quaternion.LookRotation(_moveDirection);
 }
 _currentEulerAngle = transform.eulerAngles;
}

// C# user:
If (IsGround) {
 …
} else {
 …
}
if (!_isJumping) {
 _isAiming = (Input.GetKey(KeyCode.E));
 if (_isAiming) {

Project 5

225

 _isShot = Input.GetButtonDown("Fire1");
 } else {
 if (_motionState == MOTION_STATE.GROUND) {
 _isRun = (Input.GetKey (KeyCode.LeftShift) || Input.GetKey
(KeyCode.RightShift));
 if (_isRun) {
 if (_moveDirection != Vector3.zero) {
 _moveSpeed += 0.15f;
 _moveSpeed = Mathf.Min(_moveSpeed,runSpeed);
 }
 } else {
 if (_moveDirection != Vector3.zero) {
 _moveSpeed -= 0.15f;
 _moveSpeed = Mathf.Max(walkSpeed,_moveSpeed);
 } else {
 _moveSpeed = 0.0f;
 }
 }
 if (Input.GetButtonDown ("Jump")) {
 _verticalSpeed = jumpSpeed;
 _isJumping = true;
 _inAirTime = 0.0f;
 _inAirStartTime = Time.time;
 }
 }
 }
} else {
 // TODO – Reset Aiming
}
if (!_isAiming) {
 _movement = (_moveDirection * _moveSpeed) + new Vector3 (0, _
verticalSpeed, 0);
 _movement *= Time.deltaTime;

 if (_movement != Vector3.zero) {
 _characterController.Move(_movement);
 }
 transform.eulerAngles = _currentEulerAngle;
 if (_moveDirection != Vector3.zero) {
 transform.rotation = Quaternion.LookRotation(_moveDirection);
 }
 _currentEulerAngle = transform.eulerAngles;
}

Build a Rocket Launcher!

226

5.	 Next, we go to the OnAnimatorMove() function to set up the MOTION_STATE.AIM
and IsShot parameters. Let's replace the code with following highlighted code:

// Unity JavaScript user:

function OnAnimatorMove (){
 if (_animator) {
 if (_isJumping) {
 …
 } else {
 if (IsFall) {
 …
 } else {
 if (_isAiming) {
 _motionState = MOTION_STATE.AIM;
 } else {
 _motionState = MOTION_STATE.GROUND;
 }
 }
 }
 _animator.SetFloat ("Speed", _moveSpeed);
 _animator.SetBool ("IsShot", _isShot);
 _animator.SetInteger ("MotionState", parseInt(_motionState));
 }
}

// C# user:
void OnAnimatorMove (){
 if (_animator) {
 if (_isJumping) {
 …
 } else {
 if (IsFall) {
 …
 } else {
 if (_isAiming) {
 _motionState = MOTION_STATE.AIM;
 } else {
 _motionState = MOTION_STATE.GROUND;
 }
 }
 }

Project 5

227

 _animator.SetFloat ("Speed", _moveSpeed);
 _animator.SetBool ("IsShot", _isShot);
 _animator.SetInteger ("MotionState", (int)_motionState);
 }
}

6.	 We have finished setting up the CharacterControl script. Now, we will go to the
CameraControl script. Let's go to the Chapter5/Scripts/C# (for C# users) or
Chapter5/Scripts/Javascript (for Unity JavaScript users) folder in the Project
view. Double-click on the CameraControl script and add the variables as follows:

// Unity JavaScript user:
…
var heightSmoothTime : float = 0.1f;
var distanceAimming : float = 1.5f;
var distance : float = 2.5f;
var height : float = 1.0f;
var shootTarget : Transform;
…

// C# user:
…
public float heightSmoothTime = 0.1f;
public float distanceAimming = 1.5f;
public float distance = 2.5f;
public float height = 1.0f;
public Transform shootTarget;
…

7.	 Next, we will go to the Start() function to offset the target in the y position and
replace the old code with the following highlighted code:

// Unity JavaScript user:
function Start () {
 var newCenter : Vector3 = _targetTransform.collider.bounds.
center + new Vector3(0,0.45f,0);
 _centerOffset = newCenter - _targetTransform.position;
}

// C# user:
void Start () {

Build a Rocket Launcher!

228

 Vector3 newCenter = _targetTransform.collider.bounds.center +
new Vector3(0,0.45f,0);
 _centerOffset = newCenter - _targetTransform.position;
}

8.	 Now, we will go to the LateUpdate() function because we want to make sure
that the camera's position will always be updated after our character has finished
moving. Add the following highlighted code to set up the camera's position when
our character is aiming:

// Unity JavaScript user:

function LateUpdate (){
 var targetCenter : Vector3 = _targetTransform.position + _
centerOffset;

 if (!_characterControl.IsAiming) {
 var originalTargetAngle : float = _targetTransform.
eulerAngles.y;
 …
 …
 SetUpRotation(targetCenter);
 } else {
 currentRotation = Quaternion.Euler (0, _characterControl.
GetCharacterEulerAngle.y, 0);
 _cameraTransform.position = targetCenter;
 _cameraTransform.position += currentRotation * Vector3.back *
distanceAimming;
 newCameraPos = _cameraTransform.position;
 newCameraPos.y += height;
 _cameraTransform.position = newCameraPos;
 _cameraTransform.LookAt(shootTarget.position);
 }
}

// C# user:

void LateUpdate () {
 Vector3 targetCenter = _targetTransform.position + _centerOffset;
 if (!_characterControl.IsAiming) {
 float originalTargetAngle = _targetTransform.eulerAngles.y;
 …
 …
 SetUpRotation(targetCenter);

Project 5

229

} else {
 Quaternion currentRotation = Quaternion.Euler (0, _
characterControl.GetCharacterEulerAngle.y, 0);
 _cameraTransform.position = targetCenter;
 _cameraTransform.position += currentRotation * Vector3.back *
distanceAimming;
 Vector3 newCameraPos = _cameraTransform.position;
 newCameraPos.y += height;
 _cameraTransform.position = newCameraPos;
 _cameraTransform.LookAt(shootTarget.position);
 }
}

9.	 Now, we've finished the first coding part. We need to go back to Unity and set
up our character and camera's target position when aiming. Let's go to the
Resources/FBX/Robot Artwork folder in the Project view and drag the
robot prefab to the Hierarchy view; then go to the robot Inspector view and
set it as follows:

Transform Position X: 0, Y: 0.25, and Z: -6

Animator Controller MyAnimatorController

10.	 Next, we will create our CameraAiming position object by going to GameObject |
Create Empty; name it CameraAimingPosition. Then, we need to drag this inside
our game object of robot, as shown in the following screenshot:

11.	 Then, we click on the CameraAimingPosition option and set Transform as follows:

Transform Position X: 0.6,Y: 1, and Z: 0.4

Build a Rocket Launcher!

230

12.	 After that, we need to add CameraControl to our robot. Let's go to the robot
Inspector view and click on the Add Component button and then navigate to Script
| CameraControl.

13.	 Then, we will see that our robot has Character Controller, Character Control
(Script), and Camera Control (Script) attached to the Inspector view. Let's go to
the robot Inspector view again and set the Character Controller and Camera
Control (Script) parameters as follows:

Character Controller

Center X: 0, Y: -0.05, and Z: 0

Height 2.4

Camera Control (Script)

Shoot Target CameraAimingPosition (drag it here)

We have now finished this step. Let's click on play to see the result. We will see
that we can press the Space bar to jump, WASD or arrow keys to walk, and if we
are pressing the Shift key while the character is walking, this will trigger the running
state. The last thing to note is, if we hold the E key, our character will prepare to
shoot, and if we press the left-mouse button, our character will shoot.

Objective complete – mini debriefing
Basically, what we have done here is create the script to control our robot character. We
added the new aiming and shooting animation states to get the scene ready for the next
step. In this step, we added the script that will detect whether our character is walking or
running by increasing the value of the _moveSpeed parameter while we move our character
or hold the Shift key. On the other hand, we decrease the speed when we aren't moving.

We created the CameraAimingPosition object, which is the target position while our
character is aiming. We also have the script to switch our camera between aiming and
normal movement, as shown in the following screenshot:

Project 5

231

However, right now, we won't be able to rotate our character while it is aiming. So, in the
next step, we will add the MouseLook script and Laser target object to make our character
able to look around while aiming.

Creating a MouseLook script and
laser target scope

From the previous section, we have the basic control setup for our robot to run, walk, aim,
or shoot. Now, we need a script to control our character's rotation using the mouse while
the character is aiming. We also add the laser target scope object, which will be used by
the player to aim.

Engage thrusters
We will now create the MouseLook script to control our character by performing the
following steps:

1.	 We will create the MouseLook script that will control our entire menu; go to
Assets | Create | Javascript (for Unity JavaScript users) or Assets | Create | C#
(for C# users), name it MouseLook, double-click on it to launch MonoDevelop,
and we will start writing some code.

2.	 Open the MouseLook script file and type in the following variables:

// Unity JavaScript user:

#pragma strict

enum RotationAxes { MouseXAndY = 0, MouseX = 1, MouseY = 2 }
var axes : RotationAxes = RotationAxes.MouseXAndY;
var sensitivityX : float = 5f;
var sensitivityY : float = 5f;
var minimumX : float = -10f;
var maximumX : float = 70f;
var minimumY : float = -5f;
var maximumY : float = 5f;

private var _characterControl : CharacterControl;
private var _rotationX : float = 0f;
private var _rotationY : float = 0f;

// C# user:

using UnityEngine;

Build a Rocket Launcher!

232

using System.Collections;

public class MouseLook : MonoBehaviour {

 public enum RotationAxes { MouseXAndY = 0, MouseX = 1, MouseY = 2
}
 public RotationAxes axes = RotationAxes.MouseXAndY;
 public float sensitivityX = 5f;
 public float sensitivityY = 5f;

 public float minimumX = -10f;
 public float maximumX = 70f;

 public float minimumY = -5f;
 public float maximumY = 5f;

 CharacterControl _characterControl;

 float _rotationX = 0f;
 float _rotationY = 0f;
 …
}

Now, we have all the necessary parameters for our script. The enum type is to
choose whether we need our script to control the X and Y rotations, only X ,
or only the Y rotation.

3.	 Next, we will start creating the first function, Awake(), using the following code
to get the _characterControl component:

// Unity JavaScript user:

function Awake () {
 _characterControl = GetComponent.<CharacterControl>();
}

//C# user:

void Awake () {
 _characterControl = GetComponent<CharacterControl>();
}

4.	 After that, we create the Start() function to make sure that our character has a
rigidbody component attached, even though we don't have it.

Project 5

233

This setting is just for the fact that we can reuse the code for other
character's settings in the future.

We will freeze the rigidbody rotation as follows:

// Unity JavaScript user:

function Start () {
 if (rigidbody) { rigidbody.freezeRotation = true; }
}

//C# user:

void Start () {
 if (rigidbody) { rigidbody.freezeRotation = true; }
}

5.	 Next, we will create the Update() function. In this function, we will calculate the
rotation of each axis and assign the value to the character to make it rotate when
moving the mouse in each direction, as follows:

// Unity JavaScript user:

function Update () {
 if (axes == RotationAxes.MouseXAndY) {
 _rotationX += Input.GetAxis("Mouse X") * sensitivityX;
 _rotationX = Mathf.Clamp (_rotationX, minimumX, maximumX);
 _rotationY += Input.GetAxis("Mouse Y") * sensitivityY;
 _rotationY = Mathf.Clamp (_rotationY, minimumY, maximumY);
 transform.localEulerAngles = new Vector3(-_rotationY,
 _rotationX + _characterControl.GetCharacterEulerAngle.y, 0);
 } else if (axes == RotationAxes.MouseX) {
 _rotationX = transform.localEulerAngles.y +
 Input.GetAxis("Mouse X") * sensitivityX;
 _rotationX = Mathf.Clamp (_rotationX, minimumX, maximumX);
 transform.Rotate(0, _rotationX +
 _characterControl.GetCharacterEulerAngle.y, 0);
 } else {
 _rotationY += Input.GetAxis("Mouse Y") * sensitivityY;
 _rotationY = Mathf.Clamp (_rotationY, minimumY, maximumY);
 transform.localEulerAngles = new Vector3(-_rotationY,
 transform.localEulerAngles.y, 0);
 }

Build a Rocket Launcher!

234

}

// C# user:

void Update () {
 if (axes == RotationAxes.MouseXAndY) {
 _rotationX += Input.GetAxis("Mouse X") * sensitivityX;
 _rotationX = Mathf.Clamp (_rotationX, minimumX, maximumX);
 _rotationY += Input.GetAxis("Mouse Y") * sensitivityY;
 _rotationY = Mathf.Clamp (_rotationY, minimumY, maximumY);
 transform.localEulerAngles = new Vector3(-_rotationY, _
rotationX + _characterControl.GetCharacterEulerAngle.y, 0);
 } else if (axes == RotationAxes.MouseX) {
 _rotationX = transform.localEulerAngles.y + Input.
GetAxis("Mouse X") * sensitivityX;
 _rotationX = Mathf.Clamp (_rotationX, minimumX, maximumX);
 transform.Rotate(0, _rotationX + _characterControl.
GetCharacterEulerAngle.y, 0);
 } else {
 _rotationY += Input.GetAxis("Mouse Y") * sensitivityY;
 _rotationY = Mathf.Clamp (_rotationY, minimumY, maximumY);
 transform.localEulerAngles = new Vector3(-_rotationY,
transform.localEulerAngles.y, 0);
 }
}

transform.localEulerAngles: This is the parameter that we can
use to set up the rotation based on the degree of each axis that is related
to the parent transform.

For more details on this, visit the following Unity website:

http://docs.unity3d.com/Documentation/
ScriptReference/Transform-localEulerAngles.html

6.	 Now, we need to go back to our CharacterControl script and add more variables
using the following highlighted code:

// Unity JavaScript user:

enum MOTION_STATE {GROUND,JUMP,FALL,JUMP_HOLD,AIM}

private final var GUN_LASER_DISTANCE : float = 1000f;
var laser : LineRenderer;

http://docs.unity3d.com/Documentation/ScriptReference/Transform-localEulerAngles.html
http://docs.unity3d.com/Documentation/ScriptReference/Transform-localEulerAngles.html

Project 5

235

private var _mouseLook : MouseLook;
…

// C# user:

public enum MOTION_STATE {GROUND,JUMP,FALL,JUMP_HOLD,AIM}

const float GUN_LASER_DISTANCE = 1000f;
public LineRenderer laser;
MouseLook _mouseLook;
…

7.	 Go to the Awake() and Start() functions and set them as in the following
highlighted code:

// Unity JavaScript user:

function Awake () {
 …
 _mouseLook = GetComponent.<MouseLook>();
}
function Start () {
 …
 _isAiming = false;
 _mouseLook.enabled = false;
 if (laser != null) {
 laser.gameObject.SetActive(false);
 }
}

// C# user:

void Awake () {
 …
 _mouseLook = GetComponent<MouseLook>();
}
void Start () {
 …
 _isAiming = false;
 _mouseLook.enabled = false;
 if (laser != null) {
 laser.gameObject.SetActive(false);
 }
}

Build a Rocket Launcher!

236

8.	 Go inside the Update() function to make our robot rotate around while aiming
and show the laser target scope. Let's go inside the if (!_isJumping)
condition and enter the following highlighted code:

// Unity JavaScript user:

function Update () {
 …
 if (!_isJumping) {
 _isAiming = (Input.GetKey(KeyCode.E));
 if (_isAiming) {
 if (laser != null) {
 laser.gameObject.SetActive(true);
 laser.SetPosition(1,new Vector3(GUN_LASER_DISTANCE,0,0));
 }
 _mouseLook.enabled = true;
 _isShot = Input.GetButtonDown("Fire1");
 } else {
 if (laser != null) {
 laser.gameObject.SetActive(false);
 }
 _mouseLook.enabled = false;
 if (_motionState == MOTION_STATE.GROUND) {
 …
 }
 }
 } else {
 // TODO – Reset Aiming
 if (laser != null) {
 laser.gameObject.SetActive(false);
 }
 _mouseLook.enabled = false;
 }
…
}

// C# user:

void Update() {
 …
 if (!_isJumping) {
 _isAiming = (Input.GetKey(KeyCode.E));

Project 5

237

 if (_isAiming) {
 if (laser != null) {
 laser.gameObject.SetActive(true);
 laser.SetPosition(1,new Vector3(GUN_LASER_DISTANCE,0,0));
 }
 _mouseLook.enabled = true;
 _isShot = Input.GetButtonDown("Fire1");
 } else {
 if (laser != null) {
 laser.gameObject.SetActive(false);
 }
 _mouseLook.enabled = false;
 if (_motionState == MOTION_STATE.GROUND) {
 …
 }
 }
 } else {
 // TODO – Reset Aiming
 if (laser != null) {
 laser.gameObject.SetActive(false);
 }
 _mouseLook.enabled = false;

 …
}

9.	 Now, we are finished with the scripting part, so we will go back to the Unity
editor. Let's create the laser target scope. First, go to GameObject | Create
Empty to create an empty game object and name it LaserScope.

10.	 Click on the LaserScope object in the Hierarchy view and then go to Component |
Effects | Line Renderer to add the Line Renderer component to this object.

11.	 Drag the LaserScope object inside the gun_model option in the robot object in
the Hierarchy view, as we can see in the following screenshot:

Build a Rocket Launcher!

238

12.	 Next, we will click on the LaserScope object and go to its Inspector view and set it
as follows:

Transform

Position X: 6.5 Y: 0.25 Z: 0

Rotation X: 0 Y: 0 Z: 0

Scale X: 1 Y: 1 Z: 1

Line Renderer

Cast Shadows Uncheck

Receive Shadows Uncheck

Materials

Element 0 Laser

Positions

Size 2

Element 0 X: 0 Y: 0 Z: 0

Element 1 X: 0 Y: 0 Z: 0

Parameters

Start Width 0.02

End Width 0.02

Use World Space Uncheck

13.	 Then go back to the Hierarchy view and click on the robot object in the Hierarchy
view to go to its Inspector view and click on the Add Component button; navigate
to Scripts | Mouse Look (or we can drag the Mouse Look script here).

14.	 Go to Character Control (Script) in the Laser property and then set the
LaserScope object as follows:

Character Control (script)

Laser LaserScope

Project 5

239

Finally, we can click on play. We will see that the laser will turn on only when our
character is aiming. Also, the robot can rotate by moving the mouse. This is shown
in the following screenshot:

Isn't this cool?

Objective complete – mini debriefing
In this section, we created a MouseLook script to control the character's rotation while it
is aiming. Basically, this script will get the mouse's x or y axis multiplied by the sensitivity,
which will be used as a degree to control the rotation of our character.

Then, we added code in the CharacterControl script to toggle the MouseLook script to
enable or disable the character while the character is in an animation state. We also hid and
showed the laser scope.

Finally, we created the LaserScope object, which used the Line Renderer component to
draw a line on the screen.

Classified intel
We already knew that we can use Gizmos.DrawLine to draw the line in the debug mode,
but drawing the line in the game mode is different. We will need to deal with drawing of
the mesh, setting up of vertices, UVW map, and so on, which might be very complicated
for a beginner. This is why Unity provides us with Line Renderer.

Build a Rocket Launcher!

240

Line Renderer
In this step, we have used the Line Renderer component as our LaserScope. The Line Renderer
component is a very convenient way to create a line or/and curve in the 3D world by taking an
array of points and drawing them in an order. We can also add materials and apply the start or
end color to create more variety. This is shown in the following screenshot:

Here, the faces will always face the camera no matter what position we set. The advantage
is that the players always see the object facing toward them. However, when we need to
move the camera, the Line Renderer component will show all the faces toward the camera,
which might sometimes cause an unpredictable shape.

For more details on Line Renderer, visit the following link:

http://docs.unity3d.com/Documentation/Components/
class-LineRenderer.html

http://docs.unity3d.com/Documentation/Components/class-LineRenderer.html
http://docs.unity3d.com/Documentation/Components/class-LineRenderer.html

Project 5

241

Creating a rocket prefab and particle
effects

In the previous section, we got a controllable character with all the animations and mouse
rotation, but there is nothing really happening when we click on the left mouse button. So, in
this step, we will create the rocket prefab object and all of the particle effects for this prefab
object, which are Smoke, Fire Trail, and Explosion so that we can use them in the next step.

Engage thrusters
Let's get started. To create a Rocket prefab object and particle effects, perform the
following steps:

1.	 First, we will create the Explosion prefab by going to GameObject | Create Empty
and name it Explosion and reset its Transform values as follows:

Transform

Position X: 0, Y: 0, and Z: 0

Rotation X: 0, Y: 0, and Z: 0

Scale X: 1, Y: 1, and Z: 1

2.	 Next, we will create the Flame particle by going to GameObject | Create Other |
Particle System and name it Flame. We need to drag it inside our Explosion object,
as shown in the following screenshot:

Build a Rocket Launcher!

242

3.	 Then, go to the Inspector view of Flame and set it as follows:

Transform

Position X: 0, Y: 0, and Z: 0

Rotation X: -90, Y: 0, and Z: 0

Scale X: 1, Y: 1, and Z: 1

Particle System

Duration 2.00

Looping Uncheck

Start Lifetime 2

Start Speed 2

Start Size 2.5

Start Color R: 255, G: 87, B: 38, A: 145

Max Particle 70

Emission Click to view the drop-down menu

Rate 30

Shape Click to view the drop-down menu

Shape Cone

Angle 10

Random Direction Check

Color over LifeTime Click to bring the drop-down menu

Color Set this as shown in the following screenshot:

Renderer Click to bring the drop-down menu

Material Flame

Project 5

243

4.	 Next, we will add Light by going to GameObject | Create Other | Point Light; name
it Light and drag it inside the Flame object, as shown in the following screenshot:

5.	 Go to the Inspector view of Light and set its as follows:

Transform

Position X: 0, Y: 0, and Z: 0.6

Rotation X: 0, Y: 0, and Z: 0

Scale X: 1, Y: 1, and Z: 1

Light

Range 15

Color R: 255, G: 120, B: 47, A: 255

6.	 Next, we will add another particle effect, FireSmoke, by going to GameObject
| Create Other | Particle System and name it FireSmoke. Drag it inside our
Explosion object, as shown in the following screenshot:

7.	 Go to the Inspector view of FireSmoke and set it as follows:

Transform

Position

Rotation

Scale

X: 0, Y: 0, and Z: 0

X: -90, Y: 0, and Z: 0

X: 1, Y: 1, and Z: 1

Build a Rocket Launcher!

244

Particle System

Duration 1.00

Looping Uncheck

Start Delay 1

Start Lifetime 2

Start Speed 2

Start Size 4

Start Color R: 137, G: 137, B: 137, A: 25

Simulation Space World

Max Particle 50

Emission Click to bring the drop-down menu

Rate 3

Shape Click to bring the drop-down menu

Shape Cone

Angle 15

Random Direction Check

Color over LifeTime Click to bring the drop-down menu

Color Set it as shown in the following screenshot:

Renderer Click to bring the drop-down menu

Material Smoke

8.	 Next, we will create a script to control our Explosion particle. Let's go to Assets |
Create | Javascript (for Unity JavaScript users) or Assets | Create | C# (for C# users),
name it AutoDestroyParticle, double-click on it to launch MonoDevelop, and
define the variables and functions as follows:

// Unity JavaScript user:

#pragma strict

var timeOut : float = 4.0f;
private var _light : Light;
private var _decreaseTime : float;

Project 5

245

private var _isRemoveLight : boolean = false;

function Awake () {
 _light = GetComponentInChildren.<Light>();
}

function Start () {
 _decreaseTime = _light.range/timeOut;
 Invoke("KillObject", timeOut);
}

function Update () {
 if (!_isRemoveLight) {
 if (_light.range > 0) {
 _light.range -= _decreaseTime*Time.deltaTime;
 } else {
 _isRemoveLight = true;
 GameObject.Destroy(_light);
 }
 }
}

function KillObject () {
 var fireExplosions : ParticleSystem[] = GetComponentsInChildren.
 <ParticleSystem>();
 for (var i : int = 0; i < fireExplosions.Length; ++i) {
 if (fireExplosions[i] != null) {
 fireExplosions[i].Stop();
 fireExplosions[i].loop = false;
 }
 }
 GameObject.Destroy(gameObject);
}

// C# user:

using UnityEngine;
using System.Collections;

public class AutoDestroyParticle : MonoBehaviour
{
 public float timeOut = 4.0f;
 Light _light;
 float _decreaseTime;
 bool _isRemoveLight = false;

 void Awake () {

Build a Rocket Launcher!

246

 _light = GetComponentInChildren<Light>();
 }
 void Start () {
 _decreaseTime = _light.range/timeOut;
 Invoke("KillObject", timeOut);
 }

 void Update () {
 if (!_isRemoveLight) {
 if (_light.range > 0) {
 _light.range -= _decreaseTime*Time.deltaTime;
 } else {
 _isRemoveLight = true;
 GameObject.Destroy(_light);
 }
 }
 }

 void KillObject () {
 ParticleSystem[] fireExplosions = GetComponentsInChildren<Part
 icleSystem>();
 for (int i = 0; i < fireExplosions.Length; ++i) {
 if (fireExplosions[i] != null) {
 fireExplosions[i].Stop();
 fireExplosions[i].loop = false;
 }
 }
 GameObject.Destroy(gameObject);
 }
}

9.	 Then, go back to Unity and add the AutoDestroyParticle script to the
Explosion object in Hierarchy. We will also create the prefab of the Explosion
object by dragging it to the Resources/Prefabs folder in the Project view.
Remove the Explosion object from our Hierarchy view by right-clicking on this
and then choosing Delete. Now, we have got our Explosion particle.

10.	 Now we need to create our rocket prefab by going to the Resources/FBX/
Rocket folder in the Project view and drag the rocket prefab object to the
Hierarchy view.

11.	 Then, we will create FireTrail, which gets attached to our rocket. Let's go to
GameObject | Create Other | Particle System and name it FireTrail. We need
to drag it inside our rocket object, as shown in the following screenshot:

Project 5

247

12.	 Go to the Inspector view of FireTrail and set it as follows:

Transform

Position X: 0, Y: 0, and Z: -0.25

Rotation X: 0, Y: -180, and Z: 0

Scale X: 1, Y: 1, and Z: 1

Particle System

Duration 4.00

Check

2

1.5

0.75

10

R: 255, G: 164, B: 66, A: 96

World

Looping

Start Lifetime

Start Speed

Start Size

Start Rotation

Start Color

Simulation Space

Max Particle 50

Click to bring the drop-down menu

15

Click to bring the drop-down menu

Cone

0

0.05

Check

Click to view the drop-down menu

Emission

Rate

Shape

Shape

Angle

Radius

Random Direction

Color over LifeTime

Color Set it as shown in the following screenshot:

Renderer Click to view the drop-down menu

Material FireTrail

Build a Rocket Launcher!

248

13.	 Next, we will create the Rocket script, which will be used to trigger the
Explosion particle. Let's go to Assets | Create | Javascript (for Unity JavaScript
users) or Assets | Create | C# (for C# users), name it Rocket, double-click on it
to launch MonoDevelop, and define the variables as follows:

// Unity JavaScript user:

#pragma strict
@script RequireComponent(ConstantForce)

var timeOut : float = 3.0f;
var explosionParticle : GameObject;

private var _smokeTrail : ParticleSystem;

function Awake () {
 _smokeTrail = GetComponentInChildren.<ParticleSystem>();
}

function Start () {
 Invoke("KillObject", timeOut);
}

function OnCollisionEnter (others : Collision) {
 var contactPoint : ContactPoint = others.contacts[0];
 var rotation : Quaternion = Quaternion.Euler(Vector3.up);
 GameObject.Instantiate(explosionParticle, contactPoint.point,
rotation);

 KillObject();
}

private function KillObject () {
 if (_smokeTrail != null) {
 _smokeTrail.Stop();
 _smokeTrail.loop = false;
 }
 GameObject.Destroy(gameObject);

Project 5

249

}

// C# user:

using UnityEngine;
using System.Collections;

[RequireComponent(typeof(ConstantForce))]
public class Rocket : MonoBehaviour {

 public float timeOut = 3.0f;
 public GameObject explosionParticle;
 ParticleSystem _smokeTrail;

 void Awake () {
 _smokeTrail = GetComponentInChildren<ParticleSystem>();
 }

 void Start () {
 Invoke("KillObject", timeOut);
 }

 void OnCollisionEnter (Collision others) {
 ContactPoint contactPoint = others.contacts[0];
 Quaternion rotation = Quaternion.Euler(Vector3.up);
 GameObject.Instantiate(explosionParticle, contactPoint.point,
rotation);

 KillObject();
 }

 void KillObject () {
 if (_smokeTrail != null) {
 _smokeTrail.Stop();
 _smokeTrail.loop = false;
 }
 GameObject.Destroy(gameObject);
 }

}

Build a Rocket Launcher!

250

14.	 Then, we go back to Unity and add the Box Collider component to the rocket
object by going to Component | Physics | Box Collider.

When we add the Box Collider component to the new object, Box Collider
will automatically adjust its size to fit around the object. This is why we
don't have to set up the size or the position of Box Collider.

15.	 Now add the Rocket script to the rocket object in Hierarchy and set up
the Inspector as follows:

Rigidbody

Use Gravity Uncheck

Rocket (script)

Explosion Particle Explosion (drag from the Project view that we just created)

16.	 We need to create the prefab of the rocket object by dragging it to the Resources
/Prefabs folder in the Project view and removing the rocket object from our
Hierarchy view by right-clicking and choosing Delete. Now, we have got our
rocket prefab.

17.	 After that, we will create the Smoke particle by going to GameObject | Create Other
| Particle System; name it Smoke. Drag it inside our gun_model object in Hierarchy,
as shown in the following screenshot:

18.	 Go to the Inspector view of Smoke and set it as follows:

Transform

Position X: 6.9, Y: 0.25, and Z: 0

Rotation X: 270, Y: 0, and Z: 0

Scale X: 1, Y: 1, and Z: 1

Project 5

251

Particle System

Duration 0.50

Looping Uncheck

Start Lifetime 1

Start Speed 1

Start Size 0.5

Start Color R: 120, G: 120, B: 120, A: 80

Simulation Space World

Play On Awake Uncheck

Max Particle 20

Emission Click to view the drop-down menu

Rate 15

Shape Click to bring the drop-down menu

Shape Cone

Angle 0

Radius 0.5

Random Direction Check

Color over LifeTime Click to view the drop-down menu

Color Set it as shown in the following screenshot:

Renderer Click to view the drop-down menu

Material Smoke

Now we have finished creating all the particles that we'll use in the next step.

Objective complete – mini debriefing
In this section, we created the rocket prefab and particle effects that will appear when
the player clicks on fire. It seems like we didn't see any progress in this section, but we will
definitely see the progress in the last step, so be prepared!

Build a Rocket Launcher!

252

First, we created the Explosion particle system, which contains the Flame, Light, and
FireSmoke elements. We also created the AutoDestroyParticle element to control
the time this particle takes to be destroyed from the scene. In this Rocket script, we
also controlled the intensity of the light related to the particle's appearance. We used
the Invoke() function to call the KillObject() function after the timeout (4.0
seconds) parameter.

Next, we created the Rocket script, we used @script
RequireComponent(ConstantForce) in Unity JavaScript and [RequireComponen
t(typeof(ConstantForce))] in C# to tell the script to acquire the ConstantForce
component for the rocket prefab; this will tell Unity to automatically add the
ConstantForce component when we add this component to the object.

ConstantForce is one of the Physics components in Unity that will add a
constant force to the RigidBody object (ConstantForce works with the
RigidBody components, so when we add ConstantForce to our object,
Unity will automatically add the RigidBody object as well), which will
contain the properties that we can use to control the rocket's movements.
For more detail, have a look at the following website:

http://docs.unity3d.com/Documentation/Components/
class-ConstantForce.html

In this script, we also checked whether the rocket collides with other objects in the scene. This
will trigger the script to instantiate the Explosion particle on the point that it collided by using
ContactPoint. Then, we created the FireTrail particle and attached to the rocket object.

Finally, we created the Smoke particle and attached it to the gun barrel, which will be
triggered when the player shoots and this will be done in the next step.

Classified intel
In this section, we used the Instantiate() function to clone a new game object from the
prefab object in the Project view. The Instantiate() function takes three parameters,
which are the original Object, Position (Vector3), and Rotation (Quaternion).
The Position and Rotation objects are the transform parameters at the start position
of the object, which will be created in the scene. The Instantiate() function can take
any kind of object, and the result can also be returned to any kind of object. We can also
see more examples and details from the Unity document at the following links:

ff http://docs.unity3d.com/Documentation/ScriptReference/Object.
Instantiate.html

ff http://docs.unity3d.com/Documentation/Manual/
InstantiatingPrefabs.html

http://docs.unity3d.com/Documentation/Components/class-ConstantForce.html
http://docs.unity3d.com/Documentation/Components/class-ConstantForce.html
http://docs.unity3d.com/Documentation/ScriptReference/Object.Instantiate.html
http://docs.unity3d.com/Documentation/ScriptReference/Object.Instantiate.html
http://docs.unity3d.com/Documentation/Manual/InstantiatingPrefabs.html
http://docs.unity3d.com/Documentation/Manual/InstantiatingPrefabs.html

Project 5

253

Next, we will talk about the Invoke() function, which we used to call the function after
the time we have set in seconds. If some of you have experience with ActionScript or
JavaScript, this function is very similar to the setTimeOut() function. We can also use
InvokeRepeating() to call a method similar to the Invoke() function, but this function
will repeat calling that function every time we set the time in seconds. We can see more
details of the Invoke() function from the Unity document at the following website:

http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.
Invoke.html

To know more about the InvokeRepeating() function, refer to the following website:

http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.
InvokeRepeating.html

Creating a rocket launcher and
RocketUI

In this final step, we will create the RocketLauncher and RocketUI scripts to make our
robot actually shoot the rocket object, which we created in the previous step, by adding
a script in our CharacterControl script to trigger them.

Engage thrusters
Let's get started. To create the RocketLauncher and RocketUI scripts, perform the
following steps:

1.	 First, in the Hierarchy view, we will create the RocketUI prefab by going to
GameObject | Create Other | GUI Texture; name it RocketUI and set it as follows:

Transform

Position X: 0.9, Y: 0.08, and Z: 0

Rotation X: 0, Y: 0, and Z: 0

Scale X: 0, Y: 0, and Z: 1

GUITexture

Texture rocketUI (located in the Resources/UI folder in the
Project view)

Pixel Inset X: -64, W: 128, Y: -32, and H: 64

http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.Invoke.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.Invoke.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.InvokeRepeating.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.InvokeRepeating.html

Build a Rocket Launcher!

254

2.	 Now, we will create the Text and Shadow objects by going to GameObject | Create
Other | GUI Text twice; name the first object Text and the second one Shadow. Then,
in the Hierarchy view, we need to drag the Shadow object inside the Text object and
the Text object inside the RocketUI object, as shown in the following screenshot:

3.	 Then, we will click on the Text object, go to the Inspector view, and set it as follows:

Transform

Position X: 0, Y: 0, and Z: 0

Rotation X: 0, Y: 0, and Z: 0

Scale X: 0, Y: 0, and Z: 0

GUIText

Text 20

Font Federation (located in Resources/Fonts in the Project view)

Font Size 25

Font Style Bold

4.	 Next, we will click on the Shadow object and go to the Inspector view and set it
as follows:

Transform

Position X: 0, Y: 0, and Z: -1

Rotation X: 0, Y: 0, and Z: 0

Scale X: 0, Y: 0, and Z: 0

GUIText

Text 20

Pixel X: 2, Y: -2

Font Federation (located in Resources/Fonts in the Project view)

Font Size 25

Font Style Bold

Color R: 0, G: 0, B: 0, A: 255, (black color)

Project 5

255

5.	 Next, we will create the script to control our RocketUI object. Let's go to Assets |
Create | Javascript (for Unity JavaScript users) or Assets | Create | C# (for C# users),
name it RocketUI, double-click on it to launch MonoDevelop, and define the
variables as follows:

// Unity JavaScript user:

#pragma strict

private var _guiTexts : GUIText[];

function Awake () {
 _guiTexts = GetComponentsInChildren.<GUIText>();
}

function UpdateUI (ammo : int) {
 for (var i : int = 0; i < _guiTexts.Length; ++i) {
 _guiTexts[i].text = ammo.ToString();
 }
}

// C# user:

using UnityEngine;
using System.Collections;

public class RocketUI : MonoBehaviour {
 GUIText[] _guiTexts;

 void Awake () {
 _guiTexts = GetComponentsInChildren<GUIText>();
 }

 public void UpdateUI (int ammo) {
 for (int i = 0; i < _guiTexts.Length; ++i) {
 _guiTexts[i].text = ammo.ToString();
 }
 }
}

6.	 Then, we go back to Unity and add the RocketUI script to the RocketUI object
in Hierarchy.

Build a Rocket Launcher!

256

7.	 In the Hierarchy view, we need to create the RocketLauncher object by going
to GameObject | Create Empty; name it RocketLauncher and drag it inside
our gun_model object, as shown in the following screenshot:

8.	 Now we will create the script to control our RocketLauncher object. Let's go to
Assets | Create | Javascript (for Unity JavaScript users) or Assets | Create | C#
(for C# users), name it RocketLauncher, double-click on it to launch
MonoDevelop, and define the variables as follows:

// Unity JavaScript user:

#pragma strict

var smoke : ParticleSystem;
var rocket : ConstantForce;
var speed :float = 10f;
var ammoCount : int = 20;

private var lastShot : float = 0.0f;
private var _rocketUI : RocketUI;

function Start () {
 _rocketUI = FindObjectOfType(typeof(RocketUI));
}

public function Fire(reloadTime : float) {
 if (Time.time > (reloadTime + lastShot) && ammoCount > 0) {
 var rocketPrefab : ConstantForce = ConstantForce.
 Instantiate(rocket, transform.position, transform.rotation)
 as ConstantForce;
 rocketPrefab.relativeForce = new Vector3(0, 0, speed);

 smoke.Play();

 //We ignore the collision between rocket and character

Project 5

257

 Physics.IgnoreCollision(rocketPrefab.collider, transform.root.
 collider);

 //Get the last shot time
 lastShot = Time.time;
 //Decrease the bullet
 ammoCount--;

 _rocketUI.UpdateUI(ammoCount);
 }
}

public function Reload () {
 ammoCount = 20;
 _rocketUI.UpdateUI(ammoCount);
}

// C# user:

using UnityEngine;
using System.Collections;

public class RocketLauncher : MonoBehaviour {

 public ParticleSystem smoke;
 public ConstantForce rocket;
 public float speed = 10f;
 public int ammoCount = 20;

 float lastShot = 0.0f;
 RocketUI _rocketUI;

 void Start () {
 _rocketUI = GameObject.FindObjectOfType<RocketUI>();
 }

 public void Fire(float reloadTime) {
 if (Time.time > (reloadTime + lastShot) && ammoCount > 0) {
 ConstantForce rocketPrefab = ConstantForce.
 Instantiate(rocket, transform.position, transform.rotation)
 as ConstantForce;
 rocketPrefab.relativeForce = new Vector3(0, 0, speed);

 smoke.Play();

 //We ignore the collision between rocket and character

Build a Rocket Launcher!

258

 Physics.IgnoreCollision(rocketPrefab.collider, transform.
 root.collider);

 //Get the last shot time
 lastShot = Time.time;
 //Decrease the bullet
 ammoCount--;
 _rocketUI.UpdateUI(ammoCount);
 }
 }

 public void Reload () {
 ammoCount = 20;
 _rocketUI.UpdateUI(ammoCount);
 }
}

9.	 Finally, we will go back to Unity and add the RocketLauncher script to the
RocketLauncher object in the Hierarchy view. Then, go to its Inspector view
and set it as follows:

Transform

Position X: 6.5 Y: 0.25 Z: 0

Rotation X: 0 Y: 90 Z: 0

Scale X: 1 Y: 1 Z: 1

Rocket Launcher (script)

Smoke Smoke (drag the Smoke object located in robot/
gun_model in the Hierarchy view)

Rocket rocket (drag the rocket prefab located in the
Resources/Prefabs folder in the Project view)

We are done. Click on play to see the result!

Objective complete – mini debriefing
In this section, we created the RocketUI script to show the number of bullets left on the
screen. The script will automatically update the number of bullets we have left when we
click on fire or reload.

Project 5

259

Next, we created the RocketLauncher object and script to fire the rocket, which will show
the Smoke particle when we click on fire by getting the playbackTime value from the
current animation using AnimationStateInfo. We get the time left for the current
animation to finish by using currentState.normalizedTime % 1 to calculate the
remaining time and pass it to BroadcastMessage ("Fire", playbackTime)
to trigger the Fire event.

Classified intel
In the CharacterControl script, we will see that we have used
BroadcastMessage("Fire", playbackTime). We will learn
what the BroadcastMessage() function actually does.

BroadcastMessage
The BroadcastMessage() function basically calls all the functions named Fire in this game
object or any of its children. This is a great way to make our script and object more organized.

Performance-wise, BroadcastMessage() is slower than a function call
because it iterates through all the possible target objects, finds matches of the
desired function, and executes them. Therefore, it won't cause a huge increase
in performance if we don't have a large number of function calls.

We can have different scripts attached to the children of this parent object and trigger them
at the same time. For example, BroadcastMessage("Fire", playbackTime) will call
the Fire(var f:float) or Fire(float f) function in each component attached to the
object (irrespective of whether we're calling it on Component or GameObject). So, when
the user clicks on fire, we will have the rocket shot at the same time with the smoke coming
out from the launcher without having to code everything in one big script. We can see more
details at the following links:

ff http://docs.unity3d.com/Documentation/ScriptReference/
Component.BroadcastMessage.html

ff http://docs.unity3d.com/Documentation/ScriptReference/
GameObject.BroadcastMessage.html

If we use C#, we can avoid using the BroadcastMessage() function
by using delegate and event to trigger all the objects that have an
event listener attached. We will talk about delegate and event in
Project 7, Forge a Destructible and Interactive Virtual World.

http://docs.unity3d.com/Documentation/ScriptReference/Component.BroadcastMessage.html
http://docs.unity3d.com/Documentation/ScriptReference/Component.BroadcastMessage.html
http://docs.unity3d.com/Documentation/ScriptReference/GameObject.BroadcastMessage.html
http://docs.unity3d.com/Documentation/ScriptReference/GameObject.BroadcastMessage.html

Build a Rocket Launcher!

260

Mission accomplished
In this project, we created the aiming camera and laser, the same as the ones used in Resident
Evil by adapting the old CharacterControl script. We also learned how to set up the camera
for a third-person view while the character is aiming, created new AnimatorController
to control each action, created a rocket launcher, created the rocket prefab, and used the
Shuriken Particle system to create the smoke from the launcher barrel, smoke trial from the
rocket, and the explosion.

Next, we also learned how to use the Instantiate() function to clone the game object
and display it in the scene. We used Invoke() to call the function after the time that we
assigned. Lastly, we created a UI to track the number of rockets left by using GUITexture
and GUIText.

Let's take a look at the following screenshot to see what we have done so far:

The preceding screenshot shows the camera view of the character. The following screenshot
shows the character shooting:

Project 5

261

Hotshot challenges
Now we know how to create the first person controller, the rocket launcher weapon using
particles, and the shadow text by using GUIText. Let's make this project more fun by taking
up the following challenges:

ff Include your own character or even your own type of weapon

ff Adjust the particle or use a different particle effect to create the smoke
effect or explosion

ff Add the ability to change the type of rocket or bullet; you can even have
a different type of rocket that is slower or faster than the one created in
this project or even add gravity to it and make it a grenade launcher

ff Add sound for each action

ff Add physics and explosions to our rocket when the rocket hits something

ff Add an ammo to pickup

Project 6
Make AI Appear Smart

Creating AI can be the most difficult and complex task in the development of a game
because we have to create a balance between intelligence with good game play environment
restrictions and performance. The game AI is very different from the traditional AI in many
ways because traditional AI tries to make it as close to the human brain as possible. On the
other hand, the game AI cares more about the player experience. So, the workarounds and
cheats are acceptable. In many cases, we will see the computer abilities have toned down
to give the human players a sense of fairness. For example, we don't want to have the
enemy kill players all the time without a chance to fight back.

Most games need AI for the enemy to be able to react to the player. The AI will run towards
and attack the player, or it will jump or walk avoiding the obstacles, and so on. However,
we have to be careful with the balance between making the AI smart and the performance
speed to get the best moves. This is why the game AI and traditional AI are different.
To get the best moves means more calculation, so it might cause a problem with
performance slowing down.

For more details on the comparison between the game AI and traditional AI,
visit http://www.ai-blog.net/archives/000183.html.

http://www.ai-blog.net/archives/000183.html

Make AI Appear Smart

264

We can use A* algorithm for the pathfinder or Minimax algorithm to calculate the best
move, but these algorithms are very complex for a beginner.

A* algorithm or A Star algorithm is a computer algorithm that is
widely used in path finding and graph traversal nodes. Noted for its
performance and accuracy, it enjoys widespread use. Peter Hart, Nils
Nilsson, and Bertram Raphael first described the algorithm in 1968. It
is an extension of Edsger Dijkstra's 1959 algorithm.

The reference is taken from http://en.wikipedia.org/
wiki/A*_search_algorithm.

The following links provide some useful information:

ff http://theory.stanford.edu/~amitp/
GameProgramming/AStarComparison.html

ff http://www.policyalmanac.org/games/
aStarTutorial.htm

Minimax algorithm is a decision rule used in decision theory, game
theory, statistics, and philosophy for minimizing the possible loss
while maximizing the potential gain. Alternatively, it can be thought
of as maximizing the minimum gain (maximin). Originally formulated
for two-player zero-sum game theory, covering both the cases
where players take alternate moves and those where they make
simultaneous moves, it has also been extended to more complex
games and to general decision making in the presence of uncertainty.

The reference is taken from http://en.wikipedia.org/
wiki/Minimax.

The following links provide some useful information:

ff http://ai-depot.com/articles/minimax-
explained/

ff http://www.stanford.edu/~msirota/soco/
minimax.html

The following link contains useful information for the AI book:
http://web.media.mit.edu/~jorkin/aibooks.html.

AI code is a lot to cover and can be written in a whole new book, but we will learn how to
create a simple and easy way to make our AI look smart by using a simple method such as
the random function instead of using search algorithms to get the possible moves of the
enemies. It might not make our AI as smart as using those algorithms, but we will get the
basic idea of how to create smart AI.

http://en.wikipedia.org/wiki/A*_search_algorithm
http://en.wikipedia.org/wiki/A*_search_algorithm
http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html
http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html
http://www.policyalmanac.org/games/aStarTutorial.htm
http://www.policyalmanac.org/games/aStarTutorial.htm
http://en.wikipedia.org/wiki/Minimax
http://en.wikipedia.org/wiki/Minimax
http://ai-depot.com/articles/minimax-explained/
http://ai-depot.com/articles/minimax-explained/
http://www.stanford.edu/~msirota/soco/minimax.html
http://www.stanford.edu/~msirota/soco/minimax.html
http://web.media.mit.edu/~jorkin/aibooks.html

Project 6

265

After the release of Unity 3.5, there is a new feature for AI called NavMesh (Navigation
Mesh), which is a pathfinder system that calculates the walkable area by using the original
mesh to create the new one, which is used to calculate the possible path for the AI. Even
though the NavMesh feature is available in the free version after Unity 4.2, there is still
the Off Mesh Links feature. This feature is used to check for the character when it isn't
in the mesh area, such as when the character is jumping.

For more information, visit http://docs.unity3d.com/
Documentation/Manual/OffMeshLinks.html.

For a quick start tutorial on how to set up NavMesh, visit
http://www.youtube.com/watch?v=TD11AzSQ0Ao.

In this chapter, we will reuse the scripts and assets from Project 5, Build a Rocket Launcher!,
to implement the AI enemy. We will be creating an enemy by implementing the simple AI.
However, this AI would be smart enough to detect when to jump, run, walk, stop, or shoot
at the player by creating the waypoint for the enemy to walk to each point, run towards the
player and then shoot when the player gets closer, and jump when it detects the wall.

Mission briefing
This project will start by setting up the Waypoint script. The waypoint is basically a path
made from many points that AI will be following from the start to the end point. This script
will allow us to control the direction and area where AI can be moved. We will also create
the WaypointsContainer script and CustomEditor for it. This editor script will make
it easy for us to add/remove and control how the AI should be moved, such as randomly
moving or moving by order to each waypoint.

To make it easier for us to see each waypoint and its moving direction, we will use the
OnDrawGizmos() function, which will allow us to see the wireframe, raycast line, icons,
and the area while we are playing or editing the game in the Scene view. This is very
powerful for debugging and editing the level in the game.

Next, we will create the AI character and its script, which will be inherited from
CharacterClass. This class is basically the class that contains all the functions and
parameters similar to the CharacterControl class that we have used in the Project 5,
Build a Rocket Launcher!, with some additional methods. The AI script will be able to move
the AI character to each waypoint, stop, walk, jump if it hits the wall, and run and shoot if
the player is in the range.

Finally, we will add the hit-point UI bar for our character and the AI to show how much
damage is caused when the enemy attacks us or when we shoot at the enemy.

http://docs.unity3d.com/Documentation/Manual/OffMeshLinks.html
http://docs.unity3d.com/Documentation/Manual/OffMeshLinks.html
http://www.youtube.com/watch?v=TD11AzSQ0Ao

Make AI Appear Smart

266

Why is it awesome?
When we complete this project, we will be able to create a simple AI behavior that is smart
enough to detect the player and respond to the player's reaction. From this project, we will
begin to create smart AI for any kind of game. Most of the methods or equations in this
project are very straightforward and are easy enough to use to create a simple AI and can
be developed to make the AI smarter. For example, we can mix the waypoint script with the
NavMesh to make our AI even more efficient.

However, NavMesh is superior to waypoints in certain cases, especially
where there are the corners to move around. Having the waypoint implies
following only a single path, while the Navmesh gives more freedom to move,
thereby appearing more real. For more information on Navmesh in Unity, visit
http://docs.unity3d.com/Manual/Navigation.html.

We will also get the basic knowledge to create CustomEditor, which will be extremely helpful
when we want to design the level in our game. This is the most powerful feature in Unity,
which is very useful to create a level editor for our game.

Your Hotshot objectives
We will create the new AI script that is derived from the CharacterClass script, which
has methods and parameters similar to the CharacterControl class that we have in
Project 5, Build a Rocket Launcher!. This script will control the AI movement and behavior
by implementing the new waypoint system to limit the movable area of our enemy. Then,
we will create the hit-point UI for both player and enemy, as well as the Restart button
when either one dies. The following are the steps that we will go through in this project:

ff Creating the Waypoint and WaypointsContainer scripts

ff Creating a custom editor for the WaypointsContainer script

ff Creating the enemy movement with the AI script

ff Creating a hit-point UI

Mission checklist
Before we start, we will need to get the project folder and assets from Packt's website,
http://www.packtpub.com/support?nid=8267, which includes the package from
the first project and the assets that we need to use in this project.

Navigate to the preceding URL and download the Chapter6.zip package and unzip it.
Inside the Chapter6 folder, there are two Unity packages, which are Chapter6Package.
unitypackage (we will use this package for this project) and Chapter6Package
_Completed.unitypackage (this is the completed project package).

http://docs.unity3d.com/Manual/Navigation.html
http://www.packtpub.com/support?nid=8267

Project 6

267

Creating the Waypoint and
WaypointsContainer scripts

In the first section, we will create the Waypoint and WaypointsContainer script to place
the waypoint for our AI movement direction, which can be edited in the editor.

First, we will create the Waypoint script and use the Gizmos object to draw an image icon
(Gizmos.DrawIcon()) and the wire sphere (Gizmos.DrawWireSphere()) by putting
it in OnDrawGizmos(). Both functions are used to draw the image icon and the radius of
waypoint, which is used to display the position of waypoint and the radius that the character
should start turning to the next waypoint.

Then, we will create WaypointsContainer that will contain all necessary functions
to get the direction of the current waypoint to the next one. We also use the line color
(Gizmos.DrawLine()) to create the link of each waypoint in OnDrawGizmos().

Prepare for lift off
We will begin with importing the package, preparing the Assets folder, and making sure
that we have everything ready to start. Let's create a new project and import the package:

1.	 Import the assets package by going to Assets | Import Package | Custom Package…,
choose Chapter6.unityPackage, which we downloaded earlier, and then click
on the Import button in the pop-up window, as shown in the following screenshot:

Make AI Appear Smart

268

2.	 Wait until it's done, and you will see the Chapter6 and Resources folders in the
Window view, then go to the Chapter6 folder and drag the Gizmos folder outside
the Chapter6 folder, as shown in the following screenshot:

Why did we move the Gizmos folder outside the Chapter6 folder? Refer to the
following Unity document: https://docs.unity3d.com/Documentation/
ScriptReference/Gizmos.DrawIcon.html

We will see that the function Gizmos.DrawIcon() takes three parameters,
which are Vector3 for the position that the object will be drawn, string for
the name of the icon image, and boolean to allow scaling. Then, the last
sentence said the following:

"The image file should be placed in the Assets/Gizmos folder"

This simply means that if we want to have our custom icon image, we basically
need to put our image inside the folder mentioned earlier.

We can also show the gizmos icon in the Scene view by going to the Inspector
view and clicking on the Color Cube image to choose the type of icon for that
game object, as we can see in the following screenshot:

https://docs.unity3d.com/Documentation/ScriptReference/Gizmos.DrawIcon.html
https://docs.unity3d.com/Documentation/ScriptReference/Gizmos.DrawIcon.html

Project 6

269

3.	 Next, go to Chapter6 | Scenes; double-click on the scene (for C# users,
double-click on AI_C#, and for JavaScript users, double-click on AI_JS) as
shown in the following screenshot:

4.	 Then, go to Chapter6 | Scenes; we will see the C# and JavaScript folder, (for C# users,
we will go to Chapter6 | Scenes | C# | Waypoint, and for JavaScript users, we will go
to Chapter6 | Scenes | JavaScript | Waypoint). Now, we are ready to start.

Engage thrusters
Let's get started:

1.	 Go to the folder (for C# users, go to Chapter6 | Scenes | C# | Waypoint and for
JavaScript users, go to Chapter6 | Scenes | JavaScript | Waypoint) in the Project
view, and then right-click and choose (for C# users) Create | C# Script or (for
JavaScript users) Create | JavaScript and rename it to Waypoint.

Make AI Appear Smart

270

2.	 Double-click on the Waypoint script to open it in MonoDevelop and start creating
the waypoint, which will only have the OnGizmos() function to show the icon
image and the wire sphere for the radius of the waypoint as follows:

// Unity JavaScript user:

#pragma strict

private var _radius : float;
private var _showGizmos : boolean;

function OnDrawGizmos ()
{

 if (transform.parent != null) {
 if (transform.parent.GetComponent.<WaypointsContainer>() !=
null) {
 _showGizmos = transform.parent.GetComponent.
 <WaypointsContainer>().showPath;
 if (_showGizmos) {
 _radius = transform.parent.GetComponent.
 <WaypointsContainer>().radius;
 Gizmos.color = Color.green;
 Gizmos.DrawIcon(transform.position, "wayIcon.psd");
 Gizmos.DrawWireSphere (transform.position, _radius);
 }
 }
 }
}

// C# user:

using UnityEngine;
using System.Collections;

public class Waypoint : MonoBehaviour
{
 float _radius;
 bool _showGizmos;

 void OnDrawGizmos ()
 {
 if (transform.parent != null) {

Project 6

271

 if (transform.parent.GetComponent<WaypointsContainer>() !=
null) {
 _showGizmos = transform.parent.GetComponent
 <WaypointsContainer>().showPath;
 if (_showGizmos) {
 _radius = transform.parent.GetComponent<WaypointsContain
er>().radius;
 Gizmos.color = Color.green;
 Gizmos.DrawIcon(transform.position, "wayIcon.psd");
 Gizmos.DrawWireSphere (transform.position, _radius);
 }
 }
 }
 }
}

OnDrawGizmos() lets us draw the gizmos object, which will allow
us to see the visual of the empty game object while in the editor. In
this case, we use the Gizmos.DrawIcon() function to draw the
icon image for each waypoint to make it easier to edit. Then, we use
Gizmos.DrawWireSphere() to draw and calculate the area of
each waypoint related to the radius of WaypointContainer.

We will see the error on the console that WaypointsContainer cannot be found,
but don't worry, we will add it in the next step.

3.	 Next, we will create the script in the same folder and name it
WaypointsContainer. This script will have the basic function that checks
for the direction, distance, and draws the gizmos line between each waypoint.
First, let's add the following code:

// Unity JavaScript user:

#pragma strict

var showPath : boolean = true;
var isRandom : boolean = false;
var radius : float = 1.0f;
var waypoints : Waypoint[];

private var _lastWaypoint : Waypoint;
private var _nextIndex : int;
private var _wayIndex : int;
private var _wayLength : int;

Make AI Appear Smart

272

private var _isHitRadius : boolean;
private var _direction : Vector3;

function Awake ()
{
 showPath = false;
 _isHitRadius = false;
 _wayIndex = 0;
 _nextIndex = _wayIndex + 1;
 _wayLength = waypoints.Length;
 _direction = Vector3.zero;
}

// C# user:

using UnityEngine;
using System.Collections;

public class WaypointsContainer : MonoBehaviour
{
 public bool showPath = true;
 public bool isRandom = false;
 public float radius = 1.0f;
 public Waypoint[] waypoints;

 Waypoint _lastWaypoint;
 int _nextIndex;
 int _wayIndex;
 int _wayLength;
 bool _isHitRadius;
 Vector3 _direction;

 void Awake ()
 {
 showPath = false;
 _isHitRadius = false;
 _wayIndex = 0;
 _nextIndex = _wayIndex + 1;
 _wayLength = waypoints.Length;
 _direction = Vector3.zero;
 }
}

Project 6

273

4.	 Next, we will add another function that basically checks if the enemy is away from
the next waypoint or not. We will use this function to make sure that the enemy
isn't going too far from the area, which will give our enemy more characteristics.
Let's add the following code after the Awake() function:

// Unity JavaScript user:

function AwayFromWaypoint (position : Vector3, distance : float)
: boolean {
 var offset : Vector3 = position - waypoints[_nextIndex].
transform.position;
 var length : float = offset.sqrMagnitude;
 var sqrDistance : float = distance*distance;
 if (length > sqrDistance) {
 return true;
 } else {
 return false;
 }
}

// C# user:

public bool AwayFromWaypoint (Vector3 position, float distance)
{
 Vector3 offset = position - waypoints[_nextIndex].transform.
position;
 float length = offset.sqrMagnitude;
 float sqrDistance = distance*distance;
 if (length > sqrDistance) {
 return true;
 } else {
 return false;
 }
}

5.	 Then, we need to add another function, which will basically return the direction
from our AI to the player. This function is to make our enemy follow the player to
make it more aggressive. Let's add the function after the AwayFromWaypoint()
function as follows:

// Unity JavaScript user:

function GetDirectionToPlayer (enemy : Vector3, player : Vector3
) : Vector3 {

Make AI Appear Smart

274

 var currentPosition : Vector3 = new Vector3(enemy.x, waypoints[_
wayIndex].transform.position.y, enemy.z);
 var playerPosition : Vector3 = new Vector3(player.x, waypoints[_
wayIndex].transform.position.y, player.z);
 _direction = (playerPosition - currentPosition).normalized;
 return _direction;

}
// C# user:

public Vector3 GetDirectionToPlayer (Vector3 enemy, Vector3
player) {
 Vector3 currentPosition = new Vector3(enemy.x, waypoints[_
wayIndex].transform.position.y, enemy.z);
 Vector3 playerPosition = new Vector3(player.x, waypoints[_
wayIndex].transform.position.y, player.z);
 _direction = (playerPosition - currentPosition).normalized;
 return _direction;
}

6.	 Next, we will add the core function, which will calculate and return the enemy's
direction related to the player's position. We will also set the way the enemy will
be moved through the waypoint either by an order or randomness. So, type the
following code:

// Unity JavaScript user:

function GetDirection (myTransform : Transform) : Vector3
{
 var offset : Vector3 = myTransform.position - waypoints[_
nextIndex].transform.position;
 var length : float = offset.sqrMagnitude;
 var sqrDistance : float = radius*radius;
 if (length <= sqrDistance) {
 if (!_isHitRadius) {
 _isHitRadius = true;
 _wayIndex = _nextIndex;
 if (isRandom) {
 var _randomWay : int = Mathf.FloorToInt(Random.value * _
wayLength);
 if (_wayLength > 1) {
 while (_wayIndex == _randomWay) {
 _randomWay = Mathf.FloorToInt(Random.value * _
wayLength);
 }

Project 6

275

 }
 _nextIndex = _randomWay;
 } else {
 _nextIndex = (_nextIndex + 1) % _wayLength;
 }
 }
 } else {
 _isHitRadius = false;
 }
 var currentPosition : Vector3 = new Vector3 (myTransform.
position.x, waypoints[_nextIndex].transform.position.y,
myTransform.position.z);
 _direction = (waypoints[_nextIndex].transform.position -
currentPosition).normalized;
 return _direction;
}

// C# user:

public Vector3 GetDirection (Transform myTransform)
{
 Vector3 offset = myTransform.position - waypoints[_nextIndex].
transform.position;
 float length = offset.sqrMagnitude;
 float sqrDistance = radius*radius;
 if (length <= sqrDistance) {
 if (!_isHitRadius) {
 _isHitRadius = true;
 _wayIndex = _nextIndex;
 if (isRandom) {
 int _randomWay = Mathf.FloorToInt(Random.value * _
wayLength);
 if (_wayLength > 1) {
 while (_wayIndex == _randomWay) {
 _randomWay = Mathf.FloorToInt(Random.value * _
wayLength);
 }
 }
 _nextIndex = _randomWay;
 } else {
 _nextIndex = (_nextIndex + 1) % _wayLength;
 }
 }

Make AI Appear Smart

276

 } else {
 _isHitRadius = false;
 }
 Vector3 currentPosition = new Vector3 (myTransform.position.x,
waypoints[_nextIndex].transform.position.y, myTransform.
position.z);
 _direction = (waypoints[_nextIndex].transform.position -
currentPosition).normalized;
 return _direction;
}

7.	 The last function of this script is the OnDrawGizmos() function, which will only be
used in the editor or debugging process, similar to the one we use on the Waypoint
script. We will use this function to draw the line direction between each waypoint.
Let's add it as follows:

// Unity JavaScript user:

function OnDrawGizmos ()
{
 if ((waypoints != null) && (waypoints.Length > 1) && (showPath
== true)) {
 if (isRandom) {
 for (var j : int = 0; j < waypoints.Length; ++j) {
 for (var k : int = j; k < waypoints.Length; ++k) {
 if ((waypoints[j] != null) && (waypoints[k] != null)) {
 Gizmos.color = Color.blue;
 Gizmos.DrawLine(waypoints[j].transform.position,
waypoints[k].transform.position);
 }
 }
 }
 } else {
 for (var point : Waypoint in waypoints) {
 if ((_lastWaypoint != null) && (point != null)) {
 if (point != null) {
 Gizmos.color = Color.blue;
 Gizmos.DrawLine (point.transform.position, _
lastWaypoint.transform.position);
 }
 }
 _lastWaypoint = point;
 }
 }
 }
}

Project 6

277

// C# user:

void OnDrawGizmos ()
{
 if ((waypoints != null) && (waypoints.Length > 1) && (showPath
== true)) {
 if (isRandom) {
 for (int j = 0; j < waypoints.Length; ++j) {
 for (int k = j; k < waypoints.Length; ++k) {
 if ((waypoints[j] != null) && (waypoints[k] != null)) {
 Gizmos.color = Color.blue;
 Gizmos.DrawLine(waypoints[j].transform.position,
waypoints[k].transform.position);
 }
 }
 }
 } else {
 foreach (Waypoint point in waypoints) {
 if ((_lastWaypoint != null) && (point != null)) {
 if (point != null) {
 Gizmos.color = Color.blue;
 Gizmos.DrawLine (point.transform.position, _
lastWaypoint.transform.position);
 }
 }
 _lastWaypoint = point;
 }
 }
 }
}

8.	 We use Gizmos.DrawLine() to draw the line between each waypoint.

9.	 Now, we are done with the WaypointsContainer and Waypoint script. Go
back to the Unity editor to create the waypoint container game object by going
to GameObject | Create Empty to create the empty game object and name it
WaypointsContainer. Then, drag the WaypointsContainer script (that we
just created) to this WaypointsContainer game object, and set the Transform
properties as follows:

Position X: 0, Y: 0, and Z: 0

Rotation X:0, Y: 0, and Z: 0

Scale X: 1, Y: 1, and Z: 1

Make AI Appear Smart

278

We can click on the little gear in the Inspector view and choose Reset to reset all to
the default positions, as shown in the following screenshot:

10.	 Next, we need to create a waypoint. Let's create a new empty game object
again. Go to GameObject | Create Empty to create the empty game object,
name it Waypoint, and drag the Waypoint script to it. Then, we drag this
object inside WaypointsContainer, which we already have in the scene, and
reset its transform position as X to 0, Y to 0, and Z to 0. We will see something
similar to the following screenshot:

11.	 Then, we need to create more Waypoint game objects by pressing Crtl + D
(in Windows) or command + D (on a Mac) five times to duplicate another five
Waypoint game objects, and set all these objects' transform positions as follows:

Position X: 5, Y: 1.5, and Z: 3

Position X: 4, Y: 0, and Z: 7

Position X: 0, Y: 0, and Z: 9

Position X: -1, Y: 0, and Z: 6

Position X: -1.5, Y: 2, and Z: 3

Project 6

279

If we take a look at the Hierarchy view, we will see something similar to the
following screenshot:

12.	 Next, we will click on WaypointsContainer and go to its Inspector view, set Size under
the Waypoints property to 6, and drag all the Waypoint objects to the Waypoints
array in the Inspector view, as the shown in the following screenshot:

Make AI Appear Smart

280

13.	 Then, if we click on WaypointsContainer and go to its Inspector view, we will
see the Is Random property. We can toggle it On or Off to enable the random
movement of the AI, which will also show the result on the editor screen,
as we can see in the following screenshot:

14.	 We can also toggle the Show Path parameter to turn the visual gizmos On or Off.
Both results are controlled by the OnDrawGizmos() function, which we created
in our script.

We have done this step. However, if we have many waypoints, we need to add the
Waypoint objects to the array one by one. This sounds like a lot of work and sometimes
it's inconvenient and takes so much time. So, in the next step, we will solve this problem
by creating CustomEditor to do this for us.

Objective complete – mini debriefing
What we have done here is created the waypoint system that basically controls the
movement of the enemy. We started by creating the Waypoint script, which gets the
showPath and radius variable from the WaypointsContainer script. Then, we used
those variables to show the gizmo objects, which are the icons and wire spheres in
the OnDrawGizmos() function.

Project 6

281

Next, we created the WaypointsContainer script that has all the necessary code to
control the enemy movement. First, we have the AwayFromWayPoint() function that
will check the distance between the enemy's current position to the next waypoint. In this
function, we've used myVector3.sqrMagnitude to check for the distance. If we take a
look at the Unity documentation, we can also use Vector3.Distance() or myVector3.
magnitude to check for the distance between two positions. So, why did we use
sqrMagnitude instead of others?

Let's take a close look at the equation of the Vector3.Distance() function:

Vector3 vector = new Vector3 (a.x – b.x, a.y – b.y, a.z – b.z);
float distance = Math.Sqrt(vector.x* vector.x+ vector.y* vector.y+
vector.z* vector.z);

As we can see, we need to find the difference between two vectors first, use the power of 2
to the result vector, and square root it.

The difference between two vectors is the vector from the tail of the
base vector to the head of the reverse of another vector. Then, the
root of the square is just to calculate the magnitude of this vector.

Assuming myVector3 is the difference between vectors, a and b like the vector parameter
in the preceding script, then the following is the equation of myVector.magnitude:

float magnitude = Mathf.Sqrt(myVector.x* myVector.x+ myVector.y*
myVector.y+ myVector.z* myVector.z);

The equation of myVector.sqrMagnitude is as follows:

float sqrMagnitude = myVector.x* myVector.x+ myVector.y* myVector.y+
myVector.z* myVector.z;

As we can see, the difference is that sqrMagnitude doesn't need to calculate Math.Sqrt
or the square root, which makes it faster to calculate.

So, if we want to compare the distance, sqrMagnitude is often the best choice because
using the distance's power of 2 is a lot faster than the square root of the magnitude, as we
can see in the following script:

If (myVector3.sqrMagnitude < distance*distance) { … }

Make AI Appear Smart

282

For more details, visit the following websites:

ff http://docs.unity3d.com/Documentation/
ScriptReference/Vector3-magnitude.html

ff http://answers.unity3d.com/questions/384932/
best-way-to-find-distance.html

Next, we added the GetDirectionToPlayer() function to find the direction between
our enemy and the player by using the y position of the waypoint to make sure that the
direction gets calculated on the XZ plane. Then, we add the GetDirection() function,
which checks the distance between the enemy position and waypoint position, as shown
in the following diagram:

We can see from the preceding diagram that if the distance between the enemy and the
waypoint position is smaller than the radius of the waypoint, it will trigger the waypoint to
change the next waypoint index, which will also change the movement direction of the enemy.

Next, we used the OnDrawGizmos() function to create the visual line link for each Waypoint
game objects to show in the editor. Waypoint is the empty game object, which is sometimes
difficult to edit in the editor because we cannot see it in the editors.

It is better to use gizmo than trying to use camera layers and
meshes for the waypoint.

So, using gizmo is the best solution and the best way that Unity provides us to see the visual of
an empty game object. We also have the trigger parameter in the Inspector view to turn the
visual on or off and to tell our enemy to walk randomly or by the order of the waypoint index.

http://docs.unity3d.com/Documentation/ScriptReference/Vector3-magnitude.html
http://docs.unity3d.com/Documentation/ScriptReference/Vector3-magnitude.html
http://answers.unity3d.com/questions/384932/best-way-to-find-distance.html
http://answers.unity3d.com/questions/384932/best-way-to-find-distance.html

Project 6

283

Classified intel
At the Waypoint script, we use the following lines in the OnDrawGizmos() function to get
both values from the WaypointsContainer script as follows:

// Unity JavaScript user:

_showGizmos = transform.parent.GetComponent.<WaypointsContainer>().
showPath;
_radius = transform.parent.GetComponent.<WaypointsContainer>().radius;

// C# user:

_showGizmos = transform.parent.GetComponent<WaypointsContainer>().
showPath;
_radius = transform.parent.GetComponent<WaypointsContainer>().radius;

This function is called generic functions, which is usually known to the C# user. However, for
the JavaScript user, this might be a new thing. This is basically the function that can be called
to return the strict type. It means that we don't need to cast the type, as we can see in the
following pseudo code:

Function FunctionName.<T>() : T;

This is very useful if we want to get around the limitations of dynamic tying in JavaScript, as
shown in the following code:

var obj = GetComponent.<Transform>();

From the preceding code, obj will be the Transform type. However, if we use
GetCompent(Transform), the obj type will be the Component type.

The good thing about generic functions is that it will return the
correct type and the JavaScript code doesn't need to find the
correct type when it compiles, which will make our code faster.

For the C# user, generic functions can help us save time to cast it to the correct type,
as shown in the following script:

Transform t = go.GetComponent<Transform>();

We can use a generic function instead of using the following methods:

Transform t = (Transform) go.GetComponent(typeof(Transform));
Transform t = go.GetComponent(typeof(Transform)) as Transform;

Make AI Appear Smart

284

We can see that it's a lot shorter.

For more details, visit http://docs.unity3d.com/
Documentation/Manual/GenericFunctions.html.

Gizmos
We've used the OnDrawGizmos() function to create the visual viewable for the waypoint
game object, which will show only in the editor and we won't see anything during the game
play in the Game view or in the real game after we build it.

However, if we want to see it while we are playing the game in the Game view, we can click
on the Play button and click on the Gizmos button on the top-right to toggle the gizmos on
or off, as shown in the following screenshot:

Creating a custom editor for the
WaypointsContainer script

In this step, we will create the WaypointsContainerEditor script, which will create the
custom inspector for our WaypointsContainer component. We will have the Slider bar
to limit the minimum and maximum radius of each the waypoint, the Add and Remove
waypoint buttons that automatically add and remove the waypoint from the scene, and
finally, we will update the name of each waypoint automatically when adding or removing
from the scene to make it easier for us to edit.

Prepare for lift off
We will begin by removing the old WaypointsContainer object in the Hierarchy view:

1.	 Let's right-click on the WaypointsContainer game object that we created in the
previous step and choose Delete to remove it from the scene, as we can see in
the following screenshot:

http://docs.unity3d.com/Documentation/Manual/GenericFunctions.html
http://docs.unity3d.com/Documentation/Manual/GenericFunctions.html

Project 6

285

2.	 Next, we will create the new container, but this time, we will have a bit of a different
setup, which will be prepared for the next step. Let's go to GameObject | Create
Empty to create a new empty game object and name it Enemy. Then, we will set
its position as X to 0.5, Y to 0.25, and Z to -5.

3.	 Then, we create another empty game object; go to GameObject | Create Empty,
name it WaypointsContainer, drag it inside the Enemy game object, and set
its Position as X to 0, Y to 0, and Z to 0, as shown in the following screenshot:

4.	 Finally, we need to create the Editor folder in the Project view and create
the C# (for C# user) or JavaScript (for JavaScript user) script and name it
WaypointsContainerEditor, as we can see in the following screenshot:

Make AI Appear Smart

286

This will tell Unity that this script is an editor script and will compile after our game script,
which allows us to get access to WaypointsContainer.

For more information on the script compilation order, visit
http://docs.unity3d.com/Documentation/Manual/
ScriptCompileOrderFolders.html.

Now, we are ready to begin.

Engage thrusters
Let's get started:

1.	 Double click on WaypointsContainerEditor to open it and type the following code:

// Unity JavaScript user:

#pragma strict
@CustomEditor(WaypointsContainer)

class WaypointsContainerEditor extends Editor {
 private final var OBJECT_NAME : String = "Waypoint";
 private final var s_showPath : String = "showPath";
 private final var s_random : String = "isRandom";
 private final var s_radius : String = "radius";
 private final var s_arraySizePath : String = "waypoints.Array.
size";
 private final var s_arrayData : String = "waypoints.Array.
data[{0}]";

 private var seo_object : SerializedObject;
 private var sep_radius : SerializedProperty;
 private var sep_showGizmo : SerializedProperty;
 private var sep_random : SerializedProperty;
 private var sep_waypointCount : SerializedProperty;

 private var _wayPointsContainer : WaypointsContainer;

 function OnEnable ()
 {
 seo_object = new SerializedObject (target);
 sep_showGizmo = seo_object.FindProperty (s_showPath);
 sep_random = seo_object.FindProperty (s_random);
 sep_radius = seo_object.FindProperty (s_radius);

http://docs.unity3d.com/Documentation/Manual/ScriptCompileOrderFolders.html
http://docs.unity3d.com/Documentation/Manual/ScriptCompileOrderFolders.html

Project 6

287

 sep_waypointCount = seo_object.FindProperty (s_arraySizePath);
 _wayPointsContainer = seo_object.targetObject as
WaypointsContainer;
 }
}

// C# user:

using UnityEngine;
using UnityEditor;
[CustomEditor(typeof(WaypointsContainer))]
public class WaypointsContainerEditor : Editor
{
 const string OBJECT_NAME = "Waypoint";
 const string s_showPath = "showPath";
 const string s_random = "isRandom";
 const string s_radius = "radius";
 const string s_arraySizePath = "waypoints.Array.size";
 const string s_arrayData = "waypoints.Array.data[{0}]";

 private SerializedObject seo_object;
 private SerializedProperty sep_radius;
 private SerializedProperty sep_showGizmo;
 private SerializedProperty sep_random;
 private SerializedProperty sep_waypointCount;

 WaypointsContainer _wayPointsContainer;

 void OnEnable ()
 {
 seo_object = new SerializedObject (target);
 sep_showGizmo = seo_object.FindProperty (s_showPath);
 sep_random = seo_object.FindProperty (s_random);
 sep_radius = seo_object.FindProperty (s_radius);
 sep_waypointCount = seo_object.FindProperty (s_arraySizePath);
 _wayPointsContainer = seo_object.targetObject as
WaypointsContainer;
 }
}

We have used SerializeObject and SerializeProperty to access the
property from WaypointsContainer script and set all properties.

Make AI Appear Smart

288

2.	 Next, we will add the functions to set, get, add, and remove waypoints. Let's add the
following code after the OnEnable() function:

// Unity JavaScript user:

function GetWaypointArray () : Waypoint[]
{
 var waypoints : Waypoint[] = _wayPointsContainer.GetComponentsIn
Children.<Waypoint>();
 return waypoints;
}
function GetWaypointAtIndex (index : int) : Waypoint
{
 return seo_object.FindProperty (String.Format (s_arrayData,
index)).objectReferenceValue as Waypoint;
}
function SetWaypoint (index : int, waypoint : Waypoint)
{
 if (waypoint != null) {
 Undo.RecordObject(waypoint.gameObject,"Update"+index.
ToString());
 var nameIndex : String = (index < 9) ? "0"+(index+1).
ToString() : (index+1).ToString();
 waypoint.name = OBJECT_NAME+nameIndex;
 seo_object.FindProperty (String.Format (s_arrayData, index)).
objectReferenceValue = waypoint;
 }
}
function RemoveWaypointAtIndex (index : int)
{
 var arrayCount : int = sep_waypointCount.intValue;
 for (var i : int = index; i < arrayCount - 1; i++) {
 SetWaypoint (i, GetWaypointAtIndex (i + 1));
 }
 if (GetWaypointAtIndex(index) != null) {
 var go : GameObject = GetWaypointAtIndex(index).gameObject;
 Undo.DestroyObjectImmediate(go);
 }
}
function AddWayPoint (waypoint : Waypoint)
{
 sep_waypointCount.intValue++;
 SetWaypoint (sep_waypointCount.intValue - 1, waypoint);
}

Project 6

289

// C# user:

Waypoint[] GetWaypointArray ()
{
 Waypoint[] waypoints = _wayPointsContainer.GetComponentsInChildr
en<Waypoint>();
 return waypoints;
}
Waypoint GetWaypointAtIndex (int index)
{
 return seo_object.FindProperty (string.Format (s_arrayData,
index)).objectReferenceValue as Waypoint;
}
void SetWaypoint (int index, Waypoint waypoint)
{
 if (waypoint != null) {
 Undo.RecordObject(waypoint.gameObject,"Update"+index.
ToString());
 string nameIndex = (index < 9) ? "0"+(index+1).ToString() :
(index+1).ToString();
 waypoint.name = OBJECT_NAME+nameIndex;
 seo_object.FindProperty (string.Format (s_arrayData, index)).
objectReferenceValue = waypoint;
 }
}
void RemoveWaypointAtIndex (int index)
{
 int arrayCount = sep_waypointCount.intValue;
 for (int i = index; i < arrayCount - 1; i++) {
 SetWaypoint (i, GetWaypointAtIndex (i + 1));
 }
 if (GetWaypointAtIndex(index) != null) {
 GameObject go = GetWaypointAtIndex(index).gameObject;
 Undo.DestroyObjectImmediate(go);
 }
}
void AddWayPoint (Waypoint waypoint)
{
 sep_waypointCount.intValue++;
 SetWaypoint (sep_waypointCount.intValue - 1, waypoint);
}

Make AI Appear Smart

290

3.	 Then, we will add the OnInspectorGUI() function, which acts in a similar
way to the OnGUI() function, but this function updates every time we go to
the inspector. Let's add the following code after the AddWayPoint() function:

// Unity JavaScript user:

function OnInspectorGUI ()
{
 if ((targets != null) && (target != null)) {
 seo_object.Update ();
 sep_showGizmo.boolValue = EditorGUILayout.Toggle ("Show
Gizmos", sep_showGizmo.boolValue);
 if (sep_showGizmo.boolValue) {
 sep_random.boolValue = EditorGUILayout.Toggle ("Random
Path", sep_random.boolValue);
 }
 EditorGUILayout.Slider(sep_radius, 1.0f, 3.0f, "Way Point
Radius");
 GUILayout.Label ("Waypoints", EditorStyles.boldLabel);
 var waypoints : Waypoint[] = GetWaypointArray ();
 sep_waypointCount.intValue = waypoints.Length;
 for (var i : int = 0; i < waypoints.Length; i++) {
 GUILayout.BeginHorizontal ();
 var result : Waypoint = EditorGUILayout.ObjectField
(waypoints[i], typeof(Waypoint), true) as Waypoint;
 if (GUI.changed) {
 SetWaypoint (i, result);
 }
 if (GUILayout.Button ("-")) {
 RemoveWaypointAtIndex (i);
 }
 GUILayout.EndHorizontal ();
 }
 if (GUILayout.Button("Add Waypoint")) {
 var indexString : String = (waypoints.Length < 9) ?
"0"+(waypoints.Length+1).ToString() : (waypoints.Length+1).
ToString();
 var go : GameObject = new GameObject(OBJECT_
NAME+indexString);
 go.transform.parent = _wayPointsContainer.transform;
 go.transform.localPosition = Vector3.zero;
 var waypoint : Waypoint = go.AddComponent.<Waypoint>();
 AddWayPoint (waypoint);
 Undo.RegisterCreatedObjectUndo(go,"AddWaypointButton");
 }

Project 6

291

 seo_object.ApplyModifiedProperties ();
 }
}

// C# user:

public override void OnInspectorGUI ()
{
 if ((targets != null) && (target != null)) {
 seo_object.Update ();
 sep_showGizmo.boolValue = EditorGUILayout.Toggle ("Show
Gizmos", sep_showGizmo.boolValue);
 if (sep_showGizmo.boolValue) {
 sep_random.boolValue = EditorGUILayout.Toggle ("Random
Path", sep_random.boolValue);
 }	
 EditorGUILayout.Slider(sep_radius, 1.0f, 3.0f, "Way Point
Radius");
 GUILayout.Label ("Waypoints", EditorStyles.boldLabel);
 Waypoint[] waypoints = GetWaypointArray ();
 sep_waypointCount.intValue = waypoints.Length;
 for (int i = 0; i < waypoints.Length; i++) {
 GUILayout.BeginHorizontal ();
 Waypoint result = EditorGUILayout.ObjectField (waypoints[i],
typeof(Waypoint), true) as Waypoint;
 if (GUI.changed) {
 SetWaypoint (i, result);
 }
 if (GUILayout.Button ("-")) {
 RemoveWaypointAtIndex (i);
 }
 GUILayout.EndHorizontal ();
 }
 if (GUILayout.Button("Add Waypoint")) {
 string indexString = (waypoints.Length < 9) ?
"0"+(waypoints.Length+1).ToString() : (waypoints.Length+1).
ToString();
 GameObject go = new GameObject(OBJECT_NAME+indexString);
 go.transform.parent = _wayPointsContainer.transform;
 go.transform.localPosition = Vector3.zero;
 Waypoint waypoint = go.AddComponent<Waypoint>();
 AddWayPoint (waypoint);
 Undo.RegisterCreatedObjectUndo(go,"AddWaypointButton");
 }
 seo_object.ApplyModifiedProperties ();
 }
}

Make AI Appear Smart

292

Here, we have created the boolean properties to toggle the show/hide gizmos
and enabled/disabled a random waypoint and the Slider property to adjust the
waypoint radius, and added a button to add a new waypoint to the scene.

4.	 Before we finish this step, we need to add the one last function that will make the
update when we remove the waypoint object or create the object in the Hierarchy
view. So, let's add the following function after OnInspectorGUI():

//Unity JavaScript user:

function UpdateHierarchy ()
{
 if ((targets != null) && (target != null)) {
 seo_object.Update();
 var waypoints : Waypoint[] = GetWaypointArray();
 sep_waypointCount.intValue = waypoints.Length;
 for (var i : int = 0; i < sep_waypointCount.intValue; i++) {
 Undo.RecordObject(waypoints[i].gameObject,"Update"+i.
ToString());
 SetWaypoint(i,waypoints[i]);
 }
 seo_object.ApplyModifiedProperties();
 }
}

//C# user:

void UpdateHierarchy ()
{
 if ((targets != null) && (target != null)) {
 seo_object.Update();
 Waypoint[] waypoints = GetWaypointArray();
 sep_waypointCount.intValue = waypoints.Length;
 for (int i = 0; i < sep_waypointCount.intValue; i++) {
 SetWaypoint(i,waypoints[i]);
 }
 seo_object.ApplyModifiedProperties();
 }
}

Project 6

293

5.	 Then, we need to go back to the OnEnable() function and add one line of code
that will call this function when the Hierarchy view has changed. Let's add the
highlighted code as follows:

// Unity JavaScript user:

function OnEnable ()
{
 …
 EditorApplication.hierarchyWindowChanged = UpdateHierarchy;
}

// C# user:

void OnEnable ()
{
 …
 EditorApplication.hierarchyWindowChanged = UpdateHierarchy;
}

6.	 Now, let's finish our code. We can go back to the Unity editor and add the
WaypointsContainer script (not the WaypointsContainerEditor) to
the WaypointsContainer object in the Hierarchy view. We will see in the
following screenshot that the inspector has changed from the way it was:

Make AI Appear Smart

294

7.	 Next, we will click on the Add Waypoint button six times. Go to its Inspector view
and set each position values as follows:

Position X: 0, Y: 0, and Z: 0

Position X: 5, Y: 0, and Z: 5

Position X: 4, Y: 0, and Z: 12

Position X: 0, Y: 0, and Z: 11

Position X: -1.6, Y: 2, and Z: 8

Position X: -2, Y: 0, and Z: 3.5

We will see something like the following screenshot:

Now, we have finished this step. We can also play around by clicking the – button to remove
the waypoint or delete it from the Hierarchy view. This will automatically update the name
of the waypoint and reorder each one.

To create a new waypoint alternatively, we can do it by pressing Crtl + D (in
Windows) or command + D (on Mac) on the last one in the Hierarchy view. This
will also update the name and reorder the waypoint; this happens by setting
the EditorApplication.hierarchyWindowChanged() function.

For more details, visit http://docs.unity3d.com/
Documentation/ScriptReference/EditorApplication-
hierarchyWindowChanged.html.

http://docs.unity3d.com/Documentation/ScriptReference/EditorApplication-hierarchyWindowChanged.html
http://docs.unity3d.com/Documentation/ScriptReference/EditorApplication-hierarchyWindowChanged.html
http://docs.unity3d.com/Documentation/ScriptReference/EditorApplication-hierarchyWindowChanged.html

Project 6

295

We can also change the waypoint radius, show/hide the gizmos, make it random, move the
waypoint object around to serve what we need, or even add or remove the waypoint objects
to fit our level.

The waypoint script will not work properly if we put the waypoint where
the enemy can't walk through, which means that our enemy should be
able to walk through and touch each waypoint (hit the green wire sphere
area of each waypoint, as shown in the preceding screenshot). Otherwise,
the enemy won't be able to move to the next waypoint.

We can also adjust the radius (you will see the green wire sphere change
its size) in the waypoint radius, which will make our enemy start turning to
the next waypoint faster or slower. However, we should be careful when
adjusting the radius. If we set it too low, the character might not hit it and
not turn to the next waypoint. That's why we have set the minimum radius
equal to 1.0 and maximum equal to 3.0 in the OnInspectorGUI()
function at the line EditorGUILayout.Slider(sep_radius,
1.0f, 3.0f, "Way Point Radius");.

In the next step, we will continue by creating the AI script to make our enemy walk through
each waypoint.

Objective complete – mini debriefing
First, we use @CustomEditor(WaypointsContainer) (in JavaScript) or [CustomEditor
(typeof(WaypointsContainer))] (in C#) to tell Unity that this custom editor will
be based on the WaypointsContainer script and we inherited the class from the
Editor class.

Next, we just added SerializeObject and SerializeProperty, which allows us to
access the property from the WaypointsContainer script.

We can also use serializedObject instead of the new
SerializedObject (target) too. The result is similar; however, in
our case, we need to get the serialized object from the target to make sure
that when we delete the object in the Hierarchy view, it won't return null.

Then, we use the OnEnable() function to initialize all the properties. OnEnable() is
the function that is called every time that the game object becomes enabled and active.
This function is opposite to OnDisable(), which will be called when the game object is
disabled and not active.

Make AI Appear Smart

296

We can use this to set the parameters or reset it when we enabled or
disabled the game object. To toggle the object that is disabled or enabled,
we can use gameObject.SetActive(true/false) or check or
uncheck the box in front of the game object name in the Inspector view.

For more details, visit the following links:

ff http://docs.unity3d.com/Documentation/
ScriptReference/MonoBehaviour.OnEnable.html

ff http://docs.unity3d.com/Documentation/
ScriptReference/MonoBehaviour.OnDisable.html

ff http://docs.unity3d.com/Documentation/
ScriptReference/GameObject.SetActive.html

Next, we've created the function, which will get the waypoints array from the children of
this _waypointsContainer object. Then, we write the following line to find the waypoint
object using the following index:

seo_object.FindProperty (string.Format (s_arrayData, index))

FindProperty allows us to pass the name of the object and return
the SerializedProperty object. In this case, we need to access
the array, so we use the string.Format() function and pass
the string and index to get the result string such as waypoints.
Array.data[index].

For more information on string.Format(), visit http://
msdn.microsoft.com/en-us/library/system.string.
format(v=vs.110).aspx.

At the SetWaypoint() function, we've updated the name of waypoint by index, set it to the
waypoints array, and used Undo.RecordObject() to record the object information for
the undo command. In the RemoveWaypointAtIndex() function, we basically removed
the waypoint by index, saved the information of the object for undo, and destroyed the
object by using Undo.DestroyObjectImmediate().

Then in the AddWayPoint() function, we just increase the size of the array and add the
new waypoint object.

http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.OnEnable.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.OnEnable.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.OnDisable.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.OnDisable.html
http://docs.unity3d.com/Documentation/ScriptReference/GameObject.SetActive.html
http://docs.unity3d.com/Documentation/ScriptReference/GameObject.SetActive.html
http://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx

Project 6

297

Next, we created the OnInspectorGUI() function and applied all the properties by using
the EditorGUILayout object to access each type of the object. This object is similar to
the GUILayout object, and it allows us to get and set the property.

For more details, visit the following links:

ff http://docs.unity3d.com/Documentation/
ScriptReference/Editor.OnInspectorGUI.html

ff http://docs.unity3d.com/412/Documentation/
ScriptReference/EditorGUILayout.html

Here, we have created the boolean properties to toggle the show/hide gizmos and
enabled/disabled random waypoint and the Slider property to adjust the waypoint
radius, and added the button to add a new waypoint to the scene.

Finally, we've created the UpdateHierarchy() function and added the following line
in the OnEnable() function to tell Unity to call the UpdateHierarchy() function every
time something changes in the Hierarchy view:

EditorApplication.hierarchyWindowChanged = UpdateHierarchy;

Classified intel
In the Unity editor, there is an old way to access the property from the Editor class. We can
either use the target keyword to access all the properties directly from the editor or the
SerializeProperty class and the SerializeObject keyword to access the property.

One way is to use target as follows:

function OnInspectorGUI() {
 target.radius = EditorGUILayout.FloatField("Radius:", target.
radius);
 if (GUI.changed) {
 EditorUtility.SetDirty(target);
 }
}

http://docs.unity3d.com/Documentation/ScriptReference/Editor.OnInspectorGUI.html
http://docs.unity3d.com/Documentation/ScriptReference/Editor.OnInspectorGUI.html
http://docs.unity3d.com/412/Documentation/ScriptReference/EditorGUILayout.html
http://docs.unity3d.com/412/Documentation/ScriptReference/EditorGUILayout.html

Make AI Appear Smart

298

On the other hand, we use the SerializedObject keyword and the SerializedProperty
class to access the property, as we can see in the following code:

SerializedProperty sep_radius;
function OnEnable() {
 sep_radius = serializedObject.FindProperty("radius");
}
function OnInspectorGUI() {
 serializedObject.Update();
 sep_radius.floatValue = EditorGUILayout.FloatField("Radius:", sep_
radius.floatValue);
 serializedObject.ApplyModifiedProperties();
}

The target keyword can be used to access to the radius property directly by typing target.
radius. Then, we checked if the GUI has changed or not by using GUI.changed. Then, we
update the property by using EditorUtility.SetDirty(target);.

We use the SerializedProperty class and the serializedObject keyword to set the
serialize property in OnEnable():

To use SerializedProperty, we need to put the property between
serializedObject.Update(); and serializedObject.
ApplyModifiedProperties();. This will make sure that the
property is updated and saves it when we have change the value.

Using SerializedProperty seems to be more complex than the target, so why
are we using it? The advantage of SerializedProperty is that it will handle the
multi-object editing, undo, and prefab override for us, to which we can attach @
CanEditMultipleObjects (in JavaScript) or [CanEditMultipleObjects]
(in C#) to make our script editor multiple objects.

If we copy our current WaypointsContainer script and select both the objects, we will
see the message in the inspector say Multi-object editing not supported as we can see in
the following screenshot:

Project 6

299

To make it work, we just add the line @CanEditMultipleObjects (in JavaScript) or
[CanEditMultipleObjects] (in C#) in the WaypointsContainerEditor script
before the class. Let's have a look at the following line:

seo_object = new SerializedObject (target);

We change this line to the following:

seo_object = new SerializedObject (targets);

Otherwise, replace the keyword seo_object with serializedObject and remove the
seo_object property.

Basically, we were getting the last selection object by using target, but if we change it to
targets or serializedObject, it will return all the objects that have been selected.

To make the multi-object editing work properly with all the properties
in WaypointsContainerEditor, we might have to change the way the
code is structured. For example, we probably need to change the
GetWaypointAtIndex() function to return Waypoint[] for each
WaypointsContainer scripts.

Creating the enemy movement with
the AI script

In the previous section, we have the waypoint set up for our enemy to move, but we
don't have the enemy yet. In this section, we will create the script to control it by using a
concept that was used in Project 5, Build a Rocket Launcher!. This AI script will inherit from
CharacterClass that comes with the package.

If we open CharacterClass, which is located at Chapter6 | Scenes | C# | Actor
(for C# users) or Chapter6 | Scenes | JavaScript | Actor (for JavaScript users),
we will see that there is a class that contains the methods and parameters that
we have used in Project 5, Build a Rocket Launcher!.

Make AI Appear Smart

300

Prepare for lift off
We will begin by adding the AI character to the Hierarchy view. Let's go to Resources | Prefabs
in the Project view and drag robotAI_C# (for C# users) or robotAI_JS (for JavaScript users)
inside the Enemy game object in the Hierarchy view, as shown in the following screenshot:

Engage thrusters
Now, we will create the AI script to control our character:

1.	 Go to the folder (for C# users, Chapter6 | Scenes | C# | Actor or for JavaScript users,
Chapter6 | Scenes | JavaScript | Actor) in the Project view, right-click and choose
(for C# user) Create | C# Script or (for JavaScript users) Create | JavaScript, and
then rename it to AI.

2.	 Double-click on the AI script to open it in MonoDevelop and start by creating the
AI class that inherits from CharacterClass as follows:

// Unity JavaScript user:

#pragma strict

public class AI extends CharacterClass {

Project 6

301

 var shotRange : float = 15.0f;
 var playerRange : float = 5.0f;
 var distanceToShot : float = 10.0f;
 var walkingTime : float = 6.0f;
 var thinkingTime : float = 3.0f;
 var waypointsContainer : WaypointsContainer;

 private var _lastTime : float = 0f;
 private var _angle : float;
 private var _angleVelocity : float;
 private var _isThinking : boolean;

 protected override function Start () {
 super.Start();
 if (laser != null) {
 laser.gameObject.SetActive(false);
 laser.SetPosition(1,new Vector3(0f,0f,GUN_LASER_DISTANCE));
 }
 }
}

// C# user:

using UnityEngine;
using System.Collections;

public class AI : CharacterClass {
 public float shotRange = 15.0f;
 public float playerRange = 5.0f;
 public float distanceToShot = 10.0f;
 public float walkingTime = 6.0f;
 public float thinkingTime = 3.0f;
 public CSharp.WaypointsContainer waypointsContainer;

 float _lastTime = 0f;
 float _angle;
 float _angleVelocity;
 bool _isThinking;

 protected override void Start () {
 base.Start();
 if (laser != null) {

Make AI Appear Smart

302

 laser.gameObject.SetActive(false);
 laser.SetPosition(1,new Vector3(0f,0f,GUN_LASER_DISTANCE));
 }
 }
}

With the preceding code, we basically created all the necessary parameters for
the AI script. We also override the start function and set the laser length on the
y-axis, which is a bit different to our CharacterControl script in Chapter 5,
Build a Rocket Launcher!.

3.	 Next, we will create four functions to give our enemy a personality and make
it smarter:

�� The first function is the CanShoot() function, which will make the
enemy shoot when the player is within their shooting range by checking
the distance of the player and enemy. We will also use the Physics.
Raycast() function to see if there is anything blocking the direction
of the shot; if there isn't, we just make the enemy shoot by adding the
following code:

// Unity JavaScript user:

function CanShoot () : boolean {
 var offset : Vector3 = targetLookat.position - transform.
position;
 var length : float = offset.sqrMagnitude;
 var range : float = shotRange * shotRange;
 var hit : RaycastHit;
 if (length <= range) {
 if (Physics.Raycast(transform.position, offset.
normalized, hit, shotRange)) {
 if (hit.transform.CompareTag("Player")) {
 return true;
 }
 }
 }
 return false;
}

// C# user:

public bool CanShoot () {
 Vector3 offset = targetLookat.position - transform.
position;

Project 6

303

 float length = offset.sqrMagnitude;
 float range = shotRange * shotRange;
 RaycastHit hit ;
 if (length <= range) {
 if (Physics.Raycast(transform.position, offset.
normalized, out hit, shotRange)) {
 if (hit.transform.CompareTag("Player")) {
 return true;
 }
 }
 }
 return false;
}

�� Secondly, we will create the Jump() function to make our enemy smarter
by using the Physics.Raycast() function, but this time, we will also
check the wall height. If the wall is higher than the limited height, our
character will not jump. If not, it will jump over and continue walking
towards its direction, as in the following code:

// Unity JavaScript user:

function Jump (direction : Vector3) : boolean {
 var hit : RaycastHit;
 var up : Vector3 = Vector3.up * (-_characterController.
height*0.5f);
 var leg : Vector3 = transform.position + _
characterController.center + up;
 var distance : float = _characterController.radius * 2;
 if (Physics.Raycast(leg, direction, hit, distance)) {
 if (hit.transform.CompareTag("Wall")) {
 var height : float = hit.collider.bounds.max.y - hit.
point.y;
 if (height <= 2.5f) {
 return true;
 }
 }
 }
 return false;
}

// C# user:

public bool Jump (Vector3 direction) {

Make AI Appear Smart

304

 RaycastHit hit;
 Vector3 up = Vector3.up * (-_characterController.
height*0.5f);
 Vector3 leg = transform.position + _characterController.
center + up;
 float distance = _characterController.radius * 2;
 if (Physics.Raycast(leg, direction, out hit, distance)) {
 if (hit.transform.CompareTag("Wall")) {
 float height = hit.collider.bounds.max.y - hit.
point.y;
 if (height <= 2.5f) {
 return true;
 }
 }
 }
 return false;
}

�� Then, we will check the distance between the player and the enemy to
see if the distance is higher than shotRange and lower than shotRange
+ playerRange. So, let's add it as follows:

// Unity JavaScript user:

function Run () : boolean {
 var distanceToPlayer : float = (targetLookat.position -
transform.position).sqrMagnitude;
 var runDistance : float = (playerRange+shotRange)*(playerR
ange+shotRange);
 var shotDistance : float = shotRange*shotRange;
 if ((distanceToPlayer <= runDistance) && (distanceToPlayer
> shotDistance)) {
 return true;
 }
 return false;
}

// C# user:

public bool Run () {
 float distanceToPlayer = (targetLookat.position -
transform.position).sqrMagnitude;
 float runDistance = (playerRange+shotRange)*(playerRange+
shotRange);

Project 6

305

 float shotDistance = shotRange*shotRange;
 if ((distanceToPlayer <= runDistance) && (distanceToPlayer
> shotDistance)) {
 return true;
 }
 return false;
}

�� In the last function, to control the enemy behavior, we will make our enemy
walk and stop for a certain amount of time:

// Unity JavaScript user:

function IsThinking() : boolean {
 if (IsAiming) {
 _lastTime = Time.time;
 _isThinking = false;
 return false;
 }
 var time : float;
 if (_isThinking) { time = thinkingTime; }
 else { time = walkingTime; }
 if (Time.time >= (_lastTime + time)) {
 _isThinking = !_isThinking;
 _lastTime = Time.time;
 }
 return _isThinking;
}

// C# user:

public bool IsThinking() {
 if (IsAiming) {
 _lastTime = Time.time;
 _isThinking = false;
 return false;
 }
 float time;
 if (_isThinking) { time = thinkingTime;}
 else { time = walkingTime; }
 if (Time.time >= (_lastTime + time)) {
 _isThinking = !_isThinking;
 _lastTime = Time.time;
 }
 return _isThinking;
}

Make AI Appear Smart

306

4.	 The next step is the override function GetTargetDirecion(), which will control
all the movement direction of our enemy when it isn't aiming or shooting. So, let's
type it as follows:

// Unity JavaScript user:

protected override function GetTargetDirection () : Vector3 {
 var targetDirection : Vector3;
 if (IsRun) {
 targetDirection = waypointsContainer.
GetDirectionToPlayer(transform.position, targetLookat.position);
 } else {
 if ((thinkingTime > 0) && IsThinking()) {
 targetDirection = Vector3.zero;
 } else {
 targetDirection = waypointsContainer.
GetDirection(transform);
 }
 }
 return targetDirection;
}

// C# user:

protected override Vector3 GetTargetDirection () {
 Vector3 targetDirection;
 if (IsRun) {
 targetDirection = waypointsContainer.
GetDirectionToPlayer(transform.position, targetLookat.position);
 } else {
 if ((thinkingTime > 0) && IsThinking()) {
 targetDirection = Vector3.zero;
 } else {
 targetDirection = waypointsContainer.
GetDirection(transform);
 }
 }
 return targetDirection;
}

5.	 Next, we will create the Update() function. In this function, we will calculate all the
movement and behavior of our enemy. Let's add the following code:

// Unity JavaScript user:

function Update () {

Project 6

307

 if (!IS_GAMEOVER) {
 ApplyGravity();
 if (!IsJumping) {
 if ((MotionState == MOTION_STATE.GROUND) || (MotionState ==
MOTION_STATE.AIM)) {
 IsAiming = CanShoot();
 } else {
 IsAiming = false;
 }
 if (IsAiming) {
 IsShowLaser(true);
 if (_animator) {
 var currentState : AnimatorStateInfo = _animator.
GetCurrentAnimatorStateInfo(0);
 if (!IsWaitForAiming) {
 var lookat : Vector3 = targetLookat.transform.
position;
 lookat.y = transform.position.y;
 transform.LookAt(lookat);
 _rocketLauncher.transform.LookAt(targetLookat.
transform.position);
 IsShot = true;
 if (IsShot) {
 if (currentState.IsName("Shooting.Aiming")) {
 var playbackTime : float = currentState.length;
 BroadcastMessage("Fire",playbackTime);
 IsWaitForAiming = true;
 }
 }
 } else {
 if (IsShot) {
 if (currentState.IsName("Shooting.Shoot")) {
 IsShot = false;
 playbackTime = currentState.length;
 StartCoroutine(WaitForShot(playbackTime));
 }
 }
 }
 }
 } else {
 IsShowLaser(false);
 IsRun = (waypointsContainer.AwayFromWaypoint(transform.
position, distanceToShot)) ? false : Run();
 ApplyMoveDirection();

Make AI Appear Smart

308

 ApplyMoveSpeed();
 ApplyJumping(Jump(MoveDirection));
 }
 } else {
 IsShowLaser(false);
 }
 if (!IsAiming) {
 UpdateMovement();
 }
 }
}

// C# user:

void Update () {
 if (!IS_GAMEOVER) {
 ApplyGravity();
 if (!IsJumping) {
 if ((MotionState == MOTION_STATE.GROUND) || (MotionState ==
MOTION_STATE.AIM)) {
 IsAiming = CanShoot();
 } else {
 IsAiming = false;
 }
 if (IsAiming) {
 IsShowLaser(true);
 if (_animator) {
 AnimatorStateInfo currentState = _animator.
GetCurrentAnimatorStateInfo(0);
 if (!IsWaitForAiming) {
 Vector3 lookat = targetLookat.transform.position;
 lookat.y = transform.position.y;
 transform.LookAt(lookat);
 _rocketLauncher.transform.LookAt(targetLookat.
transform.position);
 IsShot = true;
 if (IsShot) {
 if (currentState.IsName("Shooting.Aiming")) {
 float playbackTime = currentState.length;
 BroadcastMessage("Fire",playbackTime);
 IsWaitForAiming = true;
 }
 }

Project 6

309

 } else {
 if (IsShot) {
 if (currentState.IsName("Shooting.Shoot")) {
 IsShot = false;
 float playbackTime = currentState.length;
 StartCoroutine(WaitForShot(playbackTime));
 }
 }
 }
 }
 } else {
 IsShowLaser(false);
 IsRun = (waypointsContainer.AwayFromWaypoint(transform.
position, distanceToShot)) ? false : Run();
 ApplyMoveDirection();
 ApplyMoveSpeed();
 ApplyJumping(Jump(MoveDirection));
 }
 } else {
 IsShowLaser(false);
 }
 if (!IsAiming) {
 UpdateMovement();
 }
 }
}

6.	 Now, we have finished our AI script. Go back to the Unity editor and drag the AI
script on robotAI_C# (for C# users) or robotAI_JS (for JS users). Then, we will click
on robotAI_C# (for C# users) or robotAI_JS (for JS users) to bring up its Inspector
view and drag the game object from the Hierarchy view of the parameter, as shown
in the following screenshot:

Make AI Appear Smart

310

7.	 Finally, we will click on the robot object in the Hierarchy view to bring up its Inspector
view and drag robotAI_C# (for C# user) or robotAI_JS (for JS user) to the Target Lookat
slot under Player (script), as we can see in the following screenshot:

Now, we have finished this step. We can click on play to see the result. We can also
change the parameter to make our enemy behave differently by changing the value in
the AI inspector. In the next step, we will create the hit point for the player and enemy
to make it more fun.

Objective complete – mini debriefing
In this section, we just created our AI script, which is derived from CharacterClass.
Most of the CharacterClass script is based on the CharacterControl script from Project
5, Build a Rocket Launcher!. If we take a look at CharacterClass, we will see that we have
similar methods and parameters such as the UpdateAnimator() function, which get called
in OnAnimatorMove() to control the animation state of our characters (Player and Enemy).

We also added the new code section to give our enemy some characteristics and make
it smart enough to shoot the player, run towards the player, jump when it hits the wall,
and to stop and walk after a certain time.

In the Run() function, we used the following code:

var distanceToPlayer : float = (targetLookat.position - transform.
position).sqrMagnitude;
var runDistance : float = (playerRange+shotRange)*(playerRange+shotRa
nge);
var shotDistance : float = shotRange*shotRange;

Project 6

311

if ((distanceToPlayer <= runDistance) && (distanceToPlayer >
shotDistance)) {
 return true;
}

We used the following code to check for the distance between the enemy and the player:

if ((distanceToPlayer <= runDistance) && (distanceToPlayer >
shotDistance)) { return true; }

Have a look at the following diagram:

As we can see from the preceding diagram, the enemy will run towards the player if the
distance between the player and the enemy is higher than shotRange but lower than or
equal to playerRange. Also, the enemy will shoot the player if the distance between him
and the player is in shotRange.

We also use Physics.Raycast() to check if there is a wall in front of the enemy or not.
If there is, we check the different height of the current object y position to the maximum of
wall height by using hit.collider.bounds.max.y - hit.point.y; and make sure
that the height is lower than 2.5. Then, our enemy can jump over.

Make AI Appear Smart

312

Classified intel
In this step, we have used both the Physics.Raycast() functions to check if there is
anything blocking the enemy movement direction or the rocket bullet direction. In the
CanShoot() function, we basically cast the ray from the position of the enemy's rocket
launcher to the player by checking to see if there is anything blocking it, as shown in the
following diagram:

Then, we also use the Physics.Raycast() function in the Jump() function to check if the
enemy hits the wall or not. If it hits, we will check for the height for the enemy to jump over
or not. By calculating from the raycast hitting position to the maximum y position of the wall,
we can check the height, as shown in the following diagram:

Project 6

313

Creating a hit-point UI
Now, we are at the last step of this project. We will add the hit-point game object for the
player and enemy as well as create the HitPointUI script.

Engage thrusters
Let's get started:

1.	 Go to the folder (for C# users, Chapter6 | Scenes | C# | UI, or for JavaScript users,
Chapter6 | Scenes | JavaScript | UI) in the Project view, right-click and choose
Create | C# Script (for C# users) or Create | Javasrcript (for JavaScript users),
rename it to HitPoint.

2.	 Double-click on the HitPoint script to open it in MonoDevelop. Start by creating
all properties and the Update() function, as follows:

// Unity JavaScript user:

#pragma strict
var ai : AI;
var player : Player;
var frameTexture : Texture2D;
var hpTexture : Texture2D;
var aiTexture : Texture2D;
var textHpTexture : Texture2D;
var textAiTexture : Texture2D;
function Update() {
 if ((player.HpPercent <= 0.0f) || (ai.HpPercent <= 0.0f)) {
 CharacterClass.IS_GAMEOVER = true;
 StopAllCoroutines();
 }
}

// C# user:

using UnityEngine;

Make AI Appear Smart

314

using System.Collections;

public class HitPoint : MonoBehaviour {
 public AI ai;
 public Player player;
 public Texture2D frameTexture;
 public Texture2D hpTexture;
 public Texture2D aiTexture;
 public Texture2D textHpTexture;
 public Texture2D textAiTexture;
 void Update() {
 if ((player.HpPercent <= 0.0f) || (ai.HpPercent <= 0.0f)) {
 CharacterClass.IS_GAMEOVER = true;
 StopAllCoroutines();
 }
 }
}

3.	 Next, we will add the OnGUI() function to create the hit-point UI as follows:

// Unity JavaScript user:

function OnGUI() {
 GUI.DrawTexture (new Rect (10,10,46,32), textHpTexture);
 GUI.DrawTexture (new Rect (10,42,95,32), textAiTexture);
 GUI.BeginGroup (new Rect (110,15,156,21));
 GUI.DrawTexture(new Rect (0,0,156,21), frameTexture);
 GUI.BeginGroup (new Rect (0,0,player.HpPercent * 156, 21));
 GUI.DrawTexture (new Rect (0,0,156,21), hpTexture);
 GUI.EndGroup ();
 GUI.EndGroup ();

 GUI.BeginGroup (new Rect (110,47,156,21));
 GUI.DrawTexture(new Rect (0,0,156,21), frameTexture);
 GUI.BeginGroup (new Rect (0,0,ai.HpPercent * 156, 21));
 GUI.DrawTexture (new Rect (0,0,156,21), aiTexture);
 GUI.EndGroup ();
 GUI.EndGroup ();
}

// C# user:

void OnGUI() {

Project 6

315

 GUI.DrawTexture (new Rect (10,10,46,32), textHpTexture);
 GUI.DrawTexture (new Rect (10,42,95,32), textAiTexture);
 GUI.BeginGroup (new Rect (110,15,156,21));
 GUI.DrawTexture(new Rect (0,0,156,21), frameTexture);
 GUI.BeginGroup (new Rect (0,0,player.HpPercent * 156, 21));
 GUI.DrawTexture (new Rect (0,0,156,21), hpTexture);
 GUI.EndGroup ();
 GUI.EndGroup ();

 GUI.BeginGroup (new Rect (110,47,156,21));
 GUI.DrawTexture(new Rect (0,0,156,21), frameTexture);
 GUI.BeginGroup (new Rect (0,0,ai.HpPercent * 156, 21));
 GUI.DrawTexture (new Rect (0,0,156,21), aiTexture);
 GUI.EndGroup ();
 GUI.EndGroup ();
}

In the preceding function, we just use the GUI.BeginGroup() function to draw the
mask for the hit-point bar.

4.	 Now, we will go back to Unity and drag the HitPoint script to the UI game object
in the Hierarchy view. Then, we will go to its Inspector view and set the following:

Hit Point UI (Script)

AI robotAI_C# (AI) or robotAI_JS (AI) Drag the robotAI_C# or
robotAI_JS game object inside
the Enemy game object to the
Hierarchy view

Player robot (Player) Drag the robot game object to
the Hierarchy view here

Frame Texture hitPointFrame This is located in the Resources/
UI folder

Hp Texture hitPointBarHP This is located in the Resources/
UI folder

Ai Texture hitPointEnemy This is located in the Resources/
UI folder

Text Hp Texture HP This is located in the Resources/
UI folder

Text Ai Texture ENEMY This is located in the Resources/
UI folder

Now, we have finished our game, so click on Play to see the result. We will see that when
the player or enemy gets shot, the hit-point bar will decrease.

Make AI Appear Smart

316

Objective complete – mini debriefing
We just created the UI game object and the script, which we use to control the hit-point UI.
We also used GUI.BeginGroup() to mask the decreasing damage from either the player
or enemy hit-points.

Classified intel
In this section, we have used GUI.BeginGroup() to mask out the texture to show how many
hit points are left. The GUI.BeginGroup() function must be close to GUI. EndGroup().

In our code, we basically created the first group to contain the background texture, which
is the bar frame. Then, we drew another group on top of the first group, which contains the
bar texture as a clip mask. This second group's width will relate to the hit-point value left for
the player or enemy, as shown in the following code:

//Draw the background group
GUI.BeginGroup (Rect (110,15,156,21));
GUI.DrawTexture(Rect (0,0,156,21), frameTexture);
// Create a second Group which will be clipped
GUI.BeginGroup (Rect (0,0, player.GetHpPercent() * 156, 21));
GUI.DrawTexture (Rect (0,0,156,21), hpTexture);
//End both Groups
GUI.EndGroup ();
GUI.EndGroup ();

We can translate the preceding code into the following diagram:

Project 6

317

Mission accomplished
In this project, we created Waypoint, WaypointsContainer and
WaypointsContianerEditor for the enemy to follow. We also created the enemy AI
that can jump, run towards the player, walk, and stop for a certain time by creating the
AI script. This script is derived from the CharacterClass script that is based on the
CharacterControl script from Project 5, Build a Rocket Launcher!.

We also learned more about the Gizmos() function to display the visual of our Waypoint
empty game object by using Gizmo.DrawIcon(), Gizmo.DrawLine(), and Gizmo.
DrawWireSphere().

We also learned how to use the CustomEditor class as well as SerializedObject and
SerializedProperty to create a cool custom editor for our WaypointsContainer script.

Finally, we learned how to use the GUI.BeginGroup() function to mask and show the
hit-point UI object for the player and the enemy.

So, let's take a look at the following screenshot to see what we have done so far:

Make AI Appear Smart

318

Hotshot challenges
Now we have an understanding of the basic concept of creating the enemy AI, but our AI
script still needs a lot of improvement to make it smarter. Why don't we do something to
spice it up? Let's try the following things:

ff Try mixing the Navmesh or Pathfinder system to our Waypoints system

ff Add different types of weapons for our enemy

ff Try changing or adjusting the parameter of the AI, such as shotRange or
playerRange, to make the enemy react to the player faster

ff Add more waypoints for our WaypointsContainer game object to make sure
our enemy has more choice to walk

ff Add multiple enemies in the scene (you will need to adapt the HitPoint UI
game object to be able to track the hit points for each enemy)

ff Try changing the AI code for the enemy to avoid the rocket or make the rocket
follow the player's movement

ff Add a multi-editor object to WaypointsContainer and make it work when
editing more than one WaypointsContainer object

Project 7
Forge a Destructible

and Interactive
Virtual World

In games, there are many features that help the player get involved and experience the
game much more. The most important feature is the game's level. So, what's the meaning
of a game's level or just a level in general? First of all, a level marks a gradation in either the
difficulty at that stage or the logical progression of the story of the game. It makes our game
much more fun to the player. There might be a puzzle to solve, or sometimes it's just a cool
graphics environment. Each level will include static and nonstatic objects. The static objects
do not respond to physics and may include bridges, houses, and so on. On the other hand,
nonstatic objects such as rocks, doors, and switches will interact with the player.

In many cases, we will see that games use interactive objects to make a level much more fun
to play by adding events or triggers to the objects and making them interact with the players.
For example, the player has to push the switch to open the door, or he gets blocked by a
destroyed bridge on moving close to it. We can also add physics to the nonstatic objects to
make them behave realistically, such as adding physics to the rocks when they are falling
down to the ground.

In this project, we will learn how to create an interactive environment by using the trigger
event and the callback function. We will create a destructible rock that will be triggered
when the player gets close to it, and we will also create a destroyable wall that the player
and AI can shoot at to destroy it. We will also learn how to set up the ragdoll object for
the AI, which will add the physics interaction when the player kills it.

Forge a Destructible and Interactive Virtual World

320

Mission briefing
This project will start with setting up the AI's ragdoll object, which will be used to replace
the AI when it dies. Then, we add the script in our AI script to switch the ragdoll object
with the AI object. Next, we will create the destroyable wall from four cube objects, which
will each have Rigidbody attached. Of course, we will create a script to break the object
apart by having a script to check for the colliding object.

Then, we will also create another destructible rock from multiple cubes, which will fall when
the player gets close to it. We will create a trigger area, RocksTrigger, and Rock scripts
to make the rock fall down when the player enters this trigger area using the delegate
and event functions. However, the delegate and event functions are only available for
C# users. For Unity JavaScript users, we will create the JSDelegate class to create our
custom delegate and event functions.

Why is it awesome?
We already know that in Project 1, Develop a Sprite and Platform Game, Unity has integrated
Box2d as its 2D physics engine. For 3D animations, Unity also has the built-in NVIDIA PhysX
physics engine, which is very powerful to create realistic physics simulations for our game
world. In this project, we will learn how to apply physics to our game by applying ragdoll
physics to the character, as well as attaching Rigidbody to make the objects or environment
react to the player whenever we want. With this technique, we will create more variety in
the game play or level, which will make our game very challenging to play.

Your Hotshot objectives
We will start by importing the chapter 7 package, and then move on to each topic as follows:

ff Creating a ragdoll object

ff Creating a destructible wall

ff Creating a rockslide and trigger area

ff Creating the RocksTrigger and Rocks scripts

Mission checklist
Before we start, we will need to get the project folder and assets from http://www.
packtpub.com/support?nid=8267, which includes the finished project and the
assets we need to use in this project.

http://www.packtpub.com/support?nid=8267
http://www.packtpub.com/support?nid=8267

Project 7

321

Go to the preceding URL and download the Chapter7.zip package and unzip it. In the
Chapter7 folder, there are two Unity packages: Chapter7Package.unitypackage (we
will use this package for this project) and Chapter7Package_Completed.unitypackage
(this is the complete project package).

Creating a ragdoll object
In the first section, we will set up and create a ragdoll object, which will be used to replace
the AI game object when it dies.

Prepare for lift off
We will begin by importing a package, preparing the assets folder, and ensuring that we have
everything ready in order to start. Let's create a new project and import a package with the
following steps:

1.	 Import the assets package by navigating to Assets | Import Package | Custom
Package… and choose Chapter7.unityPackage, which we downloaded
earlier. Then, click on the Import button in the pop-up window, as shown in
the following screenshot:

Forge a Destructible and Interactive Virtual World

322

2.	 Wait until the package is imported, and you will see the Chapter7, Editor, Gizmos,
Resources, and Standard Assets folders in the Project view. Then, go to the
Chapter7/Scenes folder and double-click on a scene (C# users can double-click
on the VirtualWorld_C# scene, and Unity JavaScript users can double-click on the
VirtualWorld_JS scene), as shown in the following screenshot:

3.	 Next, go to the Resources/Prefabs folder and drag the robotAI_ragdoll prefab
from the Project view to the Hierarchy view, as shown in the following screenshot
(this screenshot is for the VirtualWorld_C# scene):

Project 7

323

4.	 Click on the robotAI_ragdoll game object in the Hierarchy view, go to the Scene
view, and press the F key to zoom into the robotAI_ragdoll game object in the
scene, as shown in the following screenshot:

Engage thrusters
Now we can start applying ragdoll physics to the robotAI_ragdoll game object as follows:

1.	 Go to GameObject | Create Other | Ragdoll…. You will see the Create Ragdoll
window pop up, as shown in the following screenshot:

Forge a Destructible and Interactive Virtual World

324

2.	 Go back to the Hierarchy view and click on the triangle in front of the robotAI_ragdoll
game object to see the roothandle child name. Then, drag it to the Root option in the
Create Ragdoll window, as shown in the following screenshot:

3.	 Next, we will continue dragging other objects to the Create Ragdoll window.
Let's drag the upleg_L object from the Hierarchy view to the Left Hips option
in the Create Ragdoll window, and click on the upleg_L object to bring its child
name lowleg_L.

4.	 Drag the lowleg_L object to the Left Knee option in the Create Ragdoll window.
Then, click on the lowleg_L object to bring up its child name heel_L, and drag it
to the Left Foot option in the Create Ragdoll window.

5.	 Again, perform this action with the left bone object by dragging the upleg_R object
to the Right Hips option, lowleg_R to the Right Knee option, and heel_R to the Right
Foot option in the Create Ragdoll window, as shown in the following screenshot:

Project 7

325

It may be time-consuming to expand the object's children hierarchy by clicking on
each object. The good thing in Unity is that we can collapse or expand all of the
object's children using the Option key (for Mac) or the Alt key (for Windows).

We can hold the Option (for Mac) or Alt (for Windows) key, and
click on the triangle in front of the object to expand or collapse
the object's children.

6.	 Now, we are done with the lower body settings. Next, we will continue to set the
upper part of the body by applying physics to each bone as follows:

The Create Ragdoll window The Hierarchy window

Left Arm uparm_L

Left Elbow elbow_L

Right Arm uparm_R

Right Elbow elbow_R

Middle Spine spine1

Head head

Forge a Destructible and Interactive Virtual World

326

We will see the results as shown in the following screenshot:

7.	 Click on the Create button to create the ragdoll for our AI object. If we click
on robotAI_ragdoll in the Hierarchy view, we will see that the capsule and box
colliders get merged on each joint, as shown in the following screenshot:

Project 7

327

However, we are not done yet. From the preceding screenshot, we can see that
we still need to adjust the colliders associated with the character's shape.

8.	 Click on head in the Hierarchy view, go to the Inspector view, and set the
following values:

Sphere Collider

Center X: -0.04, Y: -0.06, and Z: 0

Radius 0.15

9.	 Next, click on roothandle in the Hierarchy view, go to the Inspector view, and set
the following:

Box Collider

Center X: -0.5, Y: -0.1, and Z: -0.175

Size X: 1.3, Y: 0.5, and Z: 0.35

10.	 Click on spine1 in the Hierarchy view, go to the Inspector view, and set the
following:

Box Collider

Center X: -0.32, Y: 0.1, and Z: -0.175

Size X: 1.3, Y: 0.5, and Z: 0.35

11.	 We just set up the ragdoll for the AI game object, but we still need to apply the
collider and Rigidbody components to the gun object. So, we will click on the gun
game object and apply Rigidbody to this by navigating to Component | Physics |
Rigidbody. Go to the Inspector view of this game object and set the following:

Rigidbody

Mass 3

12.	 Next, click on the triangle in front of the gun game object to bring up the
gun_ model object, as shown in the following screenshot:

Forge a Destructible and Interactive Virtual World

328

13.	 Apply the Box Collider component to the gun_model object (this will
make the gun collide with other objects when it falls down) by going to
Component | Physics | Box Collider. We are now done with the creation
of the robotAI_ragdoll game object.

14.	 Next, we will click on the robotAI_ragdoll game object in the Hierarchy view
and go to the Inspector view. Then, click on the Apply button to update the
prefab, as shown in the following screenshot:

15.	 As we have already updated the robotAI_ragdoll prefab in the Project view,
we don't need to keep the robotAI_ragdoll game object in the Hierarchy view
anymore. So, we just delete this by right-clicking on it and choosing Delete.

16.	 Now, we need to go to the Chapter7/Scripts/C#/Actor (for C# users) or
Chapter7/Scripts/Javascript/Actor (for Unity JavaScript users) folder,
and open the AI script, which will be used to replace the robotAI_ragdoll
game object when the AI is dead. Let's open the AI script and go to the
UpdateHitPoint() function and add the highlighted code as follows:

// Unity JavaScript user:
protected override function UpdateHitPoint (collision :
 Collision) {
 if (IS_GAMEOVER == false) {
 if (collision.transform.tag == "Rocket") {
 HitPoint.CURRENT_AI_INDEX = index;
 var rocket : Rocket =
 collision.gameObject.GetComponent.<Rocket>();
 HP = Mathf.Clamp(HP-rocket.damage, 0, _maxHP);
 if (HP == 0) {
 var myRagdoll : GameObject =
 Instantiate(ragdoll,transform.position,
 transform.rotation);

 var rigids : Rigidbody[] =
 myRagdoll.GetComponentsInChildren.<Rigidbody>();
 var rocketForce : Vector3 = rocket.transform.forward *
 rocket.constantForce.relativeForce.magnitude;
 for (var rigid : Rigidbody in rigids) {

Project 7

329

 rigid.AddForce(rocketForce,ForceMode.VelocityChange);
 }
 GameObject.Destroy(gameObject);
 onEnemyDie.Invoke();
 }
 }
 }
}

// C# user:

protected override void UpdateHitPoint (Collision
 collision) {
 if (IS_GAMEOVER == false) {
 if (collision.transform.tag == "Rocket") {
 HitPoint.CURRENT_AI_INDEX = index;
 Rocket rocket = collision.gameObject.GetComponent<Rocket>();
 HP = Mathf.Clamp(HP-rocket.damage, 0, _maxHP);
 if (HP == 0) {
 GameObject myRagdoll =
 (GameObject)Instantiate(ragdoll,transform.
 position,transform.rotation);
 Rigidbody[] rigids =
 myRagdoll.GetComponentsInChildren<Rigidbody>();
 Vector3 rocketForce = rocket.transform.forward *
 rocket.constantForce.relativeForce.magnitude;
 foreach (Rigidbody rigid in rigids) {
 rigid.AddForce(rocketForce,ForceMode.VelocityChange);
 }
 GameObject.Destroy(transform.parent.gameObject);
 onEnemyDie();
 }
 }
 }
}

Our AI class is derived from CharacterClass. So, if we open CharacterClass,
we will see the UpdateHitPoint() function getting called from the
OnCollisionEnter() function. We will also see that there is the ragdoll
GameObject variable that we use to instantiate a ragdoll object. This function
will check whether the rocket hits the AI or not. If the AI is hit and its hit point is
equal to 0, we will create a ragdoll object for the scene and add the rocket
force to the ragdoll rigidbody object to make this more realistic.

Forge a Destructible and Interactive Virtual World

330

17.	 Save the AI script and go back to the Resources/Prefabs folder in the Project
view. Click on the robotAI_C# (for C# users) or robotAI_JS (for Unity JavaScript
users) prefab, and go to the Inspector view, as shown in the following screenshot:

18.	 In the Inspector view, we will go to the Ragdoll property in the AI (Script) section, and
drag robotAI_ragdoll to this Ragdoll property, as shown in the following screenshot:

With this step, we will update all the robotAI prefabs in the Hierarchy view. Now
we have finished this step. We can click on play and see the result—when we kill the
enemy, we will see that the ragdoll game object gets created at the same position
as the robotAI game object. Then, the robotAI game object gets destroyed, as shown
in the following screenshot:

Project 7

331

Objective complete – mini debriefing
In this step, we created the ragdoll object by assigning bones to it. Then, Unity automatically
attaches all colliders, rigidbody, and character joints to match our character to use for the
ragdoll object. This ragdoll will be added to the game scene when the robotAI object is
dead using the Instantiate() function. We also added the force to Rigidbody to make
the ragdoll follow the direction of the rocket, which will make it more realistic using the
rigidbody.AddForce() function.

Classified intel
In this section, we have used the robotAI_ragdoll prefab and added it to the scene when
our AI gets destroyed. The concept of this section is that we have to separate the ragdoll from
the AI object. Then, we add the ragdoll and destroy the AI object. Of course, this is just one
way to create the ragdoll effect for the character. The advantage of separating them is that we
don't need to worry about the ragdoll object when we need to update the character. We can
have the ragdoll already set up and just work on the update of character's animation. This will
prevent us from making an error when we change something in the script.

On the other hand, this method isn't that good if we need an accurate collider for each part of
the character's body. In this case, we can also have the ragdoll and character animation in the
same game object by attaching the Animator component to control the animation. Then, we
can use Is Kinematic in Rigidbody to enable or disable the ragdoll physics to use the ragdoll
mode or character animation.

Forge a Destructible and Interactive Virtual World

332

When we added the ragdoll prefab to the scene, we also added force using the AddForce()
function to our ragdoll's rigidbody. This makes our ragdoll object move following the
rocket's direction. We set the force mode to ForceMode.VelocityChange to change the
velocity as soon as the rocket hits the character by ignoring its mass. This way we can make
sure that we have the same velocity applied to all the parts of our ragdoll object.

For more information on ForceMode.VelocityChange, visit the
following URL:

http://docs.unity3d.com/Documentation/
ScriptReference/ForceMode.VelocityChange.html

Creating a destructible wall
In this section, we will start by creating a destructible wall with multiple cube game objects
in the Unity engine, as well as adding some code to the rocket script to make this wall
breakable when the player shoots the rocket to hit it.

Prepare for lift off
We will begin with creating a new tag for our destructible wall:

1.	 Let's go to Edit | Project Settings | Tags to bring out the Inspector view for Tags.
In the Inspector view, we will click on the triangle in front of the Tags element and
then on the Element 4 type Destructible, as you can see in the following screenshot:

2.	 Next, we will go to GameObject | Create Empty to create an empty game
object and name it Wall to reset its transform position to X: 0, Y: 0, and Z: 0.
Then we are ready to start.

http://docs.unity3d.com/Documentation/ScriptReference/ForceMode.VelocityChange.html
http://docs.unity3d.com/Documentation/ScriptReference/ForceMode.VelocityChange.html

Project 7

333

Engage thrusters
Now, we have set the Destructible tag and created an empty game object, Wall.
Next, we will create the four cubes to represent each piece of the broken wall:

1.	 Go to GameObject | Create Other | Cube, name it Cube1, and drag it to the
Wall game object, which we just created, as shown in the following screenshot:

2.	 Add the Rigidbody component to Cube1 to make the wall fall realistically when it
breaks by navigating to Component | Physics | Rigidbody and adding Rigidbody.

3.	 Next, we will go to the cube's Inspector view to set up the parameters as follows:

Transform

Position X: 3, Y: 3, and Z: 0

Rotation X: 0, Y: 0, and Z: 0

Scale X: 6, Y: 6, and Z: 1

Box Collider

Material Rock (drag the Rock physics material from the Resources/
Physics Materials folder to the Project view)

Mesh Renderer

Materials Size 1

Element 0 Rock (drag the Rock material from the Resources/
Materials folder to the Project view)

Rigidbody

Mass 9

Is Kinematic Check

Tag Destructible

Now we have finished setting up the first cube. Let's duplicate three more cubes
using Command + D (for Mac) or Ctrl + D (for Windows), and name all three as
Cube2, Cube3, and Cube4, as shown in the following screenshot:

Forge a Destructible and Interactive Virtual World

334

Then, we go to each new cube's Inspector view and set up its transform position
as follows:

Transform (Cube2)

Position X: 3, Y: 9, and Z: 0

Transform (Cube3)

Position X: -3, Y: 9, and Z: 0

Transform (Cube4)

Position X: -3, Y: 3, and Z: 0

The wall that is created will look like the following screenshot:

4.	 Next, we will click on the Wall game object in the Hierarchy view and go to the
Inspector view, and set up Transform as follows:

Transform

Position X: 1037.5, Y: 4, and Z: 693

Rotation X: 0, Y: 36, and Z: 0

Scale X: 1, Y: 1, and Z: 1

5.	 Now, we will add a script that makes this Wall object break apart when the
character shoots at it. Let's go to the Chapter7/Scripts/C#/Object (for C# users)
or Chapter7/Scripts/Javascript/Object (for Unity JavaScript users) folder,
and double-click on the rocket script to open this script in the script editor.

Project 7

335

6.	 In the rocket script, we will add two parameters at the beginning of the script,
as highlighted in the following code:

// Unity JavaScript user:
var explosionParticle : GameObject;
var explosionRadius : float = 50;
var explosionForce : float = 1000;

//C# user:

public GameObject explosionParticle;
public float explosionRadius = 50;
public float explosionForce = 1000;

7.	 Next, we will go to the OnCollisionEnter() function and add the following
highlighted script:

// Unity JavaScript user:

function OnCollisionEnter (others : Collision) {
 var contactPoint : ContactPoint = others.contacts[0];
 var rotation : Quaternion = Quaternion.Euler(Vector3.up);
 GameObject.Instantiate(explosionParticle,
 contactPoint.point, rotation);
 var position : Vector3 = transform.position;
 var hits : Collider[] = Physics.OverlapSphere(position,
 explosionRadius);
 for (var c : Collider in hits) {
 if (c.tag == "Destructible") {
 var r : Rigidbody = c.rigidbody;
 if (r != null) {
 r.isKinematic = false;
 r.AddExplosionForce(explosionForce, position,
 explosionRadius);
 }
 }
 }
 KillObject();
}

// C# user:

void OnCollisionEnter (Collision others) {

Forge a Destructible and Interactive Virtual World

336

 ContactPoint contactPoint = others.contacts[0];
 Quaternion rotation = Quaternion.Euler(Vector3.up);
 GameObject.Instantiate(explosionParticle, contactPoint.point,
 rotation);
 Vector3 position = transform.position;
 Collider[] hits = Physics.OverlapSphere(position,
 explosionRadius);
 foreach (Collider c in hits) {
 if (c.tag == "Destructible") {
 Rigidbody r = c.rigidbody;
 if (r != null) {
 r.isKinematic = false;
 r.AddExplosionForce(explosionForce, position,
 explosionRadius);
 }
 }
 }
 KillObject();
}

We have used the Physics.OverlapSphere() function to get all the colliders
that collide within the explosion radius of the rocket. Then, we will loop through
each collider and add the explosion force using the AddExplosionForce()
function to make the destructible pieces explode.

The Physics.OverlapSphere() function is used to get all the
colliders that touch each other or that are inside the given sphere
radius. For more details on this function, visit the following URL:

http://docs.unity3d.com/Documentation/
ScriptReference/Physics.OverlapSphere.html

The AddExplosionForce() function basically applies a force to
the Rigidbody component, which will simulate the explosion effect.
This means that the force will be decrease depending on the distance
of Rigidbody. For more details on this function, visit the following URL:

http://docs.unity3d.com/Documentation/
ScriptReference/Rigidbody.AddExplosionForce.html

http://docs.unity3d.com/Documentation/ScriptReference/Physics.OverlapSphere.html
http://docs.unity3d.com/Documentation/ScriptReference/Physics.OverlapSphere.html
http://docs.unity3d.com/Documentation/ScriptReference/Rigidbody.AddExplosionForce.html
http://docs.unity3d.com/Documentation/ScriptReference/Rigidbody.AddExplosionForce.html

Project 7

337

8.	 Save the script and click on the play button; in the scene, if we go to the path on
the right, we will see the Wall object that we have just created. We can shoot at it
and it will break, as shown in the following screenshot:

We will see that the current wall breaks into four pieces. We can also fracture the
mesh in a modeling program and make it much more dynamic and realistic. You
might also want to check out the following link for the simple fracture script:

http://forum.unity3d.com/threads/57994-Simple-Fracture-
Script-v-1-01

Objective complete – mini debriefing
In this step, we basically created four cubes, and each one has its own collider and
Rigidbody attached, which will create physical movement when we apply the explosion
force. This will create a realistic behavior for the wall when it's breaking apart, as shown
in the following diagram:

http://forum.unity3d.com/threads/57994-Simple-Fracture-Script-v-1-01
http://forum.unity3d.com/threads/57994-Simple-Fracture-Script-v-1-01

Forge a Destructible and Interactive Virtual World

338

To make this work, we disabled the Is Kinematic component in each cube's Rigidbody.
The Is Kinematic property is basically used to enable or disable the physics calculation of the
object that has Rigidbody attached. In some cases, we can apply Rigidbody on the character's
animation and then enable or disable the Is Kinematic property when we need to, such as
using the ragdoll physics or character animation on the ragdoll object as we mentioned in
the first step of this project, Creating a ragdoll object.

Classified intel
In this step, we have also applied the Rock physics material to the Box Collider material in
the cube. We can apply friction and bounciness values to each object of the Box Collider
material to get a realistic reaction while calculating the physics.

For the Rock physics material, we go to the Resources/Physics Materials folder in
the Project view, and then click on the Rock physics material object to bring up its Inspector
view. We will see to it that we have set the Dynamic Friction value to 0.3 and Static Friction
to 0.3, which will make each piece slow down when it collides with another. This way, we
can make the rock be not too slippery or too hard to move. Also, the rock should not bounce
at all. So, we set the Bounciness value to 0, as shown in the following screenshot:

For more details on each property, visit the following URL:

http://docs.unity3d.com/Documentation/Components/class-
PhysicMaterial.html

http://docs.unity3d.com/Documentation/Components/class-PhysicMaterial.html
http://docs.unity3d.com/Documentation/Components/class-PhysicMaterial.html

Project 7

339

Creating a rockslide and trigger area
In the previous section, we created the destructible wall object, which contains four cubes.
Each one has the Rigidbody and Box Collider components attached, which will make the wall
such that we are able to shoot and break it. In this section, we will create a rockslide that will
be triggered when the player hits the trigger area, which will have the script attached later in
the next step.

Prepare for lift off
We will begin with creating an empty object for our rockslide:

1.	 Let's go to GameObject | Create Empty to create the empty game object and
name it Rockslide. Reset its position to X: 0, Y: 0, and Z: 0.

2.	 Then, we will create another empty game object by going to GameObject |
Create Empty and name it Break. Drag this inside the Rockslide game object,
as shown in the following screenshot:

3.	 Next, reset Transform of the Break game object to default by clicking on the
little gear on the right-hand side of the screen and then choose Reset.

Engage thrusters
Here, we will create six cube objects that will slide down the hill and two cube objects,
which will be static objects, to make it look like part of the rock is still stuck to the terrain.
Then, we will create the trigger area to make the rock fall down when the player
hits it. Let's get started:

1.	 Let's go to GameObject | Create Other | Cube, name it Cube1, and drag it to
the Break game object in Rockslide, which we just created, as shown in the
following screenshot:

2.	 Next, we will go to the Inspector view of Break and set its Transform position
to X: 0, Y: -1.32, and Z: 5.97.

Forge a Destructible and Interactive Virtual World

340

3.	 Then, we will add the Rigidbody component to the Cube1 object by going to
Component | Physics | Rigidbody.

4.	 Next, we will go to the cube's Inspector view to set up the parameters as follows:

Transform

Position X: -1.5, Y: 0, and Z: -4.1

Rotation X: 0, Y: 0, and Z: 0

Scale: X: 3, Y: 3, and Z: 5

Box Collider

Material Rock (drag the Rock physics material from the Resources/
Physics Materials folder to the Project view)

Mesh Renderer

Materials

Size 1

Element 0 Rock (drag the Rock material in the Resources/Materials
folder in the Project view)

Rigidbody

Mass 10

Is Kinematic Check

Tags Terrain

5.	 Now, we have finished setting up the first cube. Let's duplicate five more cubes by
using the shortcut Command + D (for Mac) or Ctrl + D (for Windows), and naming
all five cubes to Cube2, Cube3, Cube4, Cube5, and Cube6, which is similar to what
we did for the Wall game object in the previous section, Creating a destructible wall.
Then, we go to each new cube's Inspector view and set up its position as follows:

Transform (Cube2)

Position X: 1.5, Y: 0, and Z: -4.1

Transform (Cube3)

Position X: -1.5, Y: 0, and Z: 0.92

Transform (Cube4)

Position X: 1.5, Y: 0, and Z: 0.92

Transform (Cube5)

Position X: -1.5, Y: 0, and Z: 5.92

Transform (Cube6)

Position X: 1.5, Y: 0, and Z: 5.92

Project 7

341

The six cubes will form the following structure:

6.	 Now, we need two static rocks that won't fall down. Let's duplicate the Cube1 object
that we just created by using Command + D (for Mac) or Ctrl + D (for Windows).
Name it CubeBase1, and drag it outside the Break game object but inside the
Rockslide game object, as shown in the following screenshot:

7.	 Go to the Inspector view of CubeBase1 and set the parameters as follows:

Transform

Position X: 0, Y: -1.32, and Z: -3.15

Rotation X: 0, Y: 0, and Z: 0

Scale X: 6, Y: 3, and Z: 5

Rigidbody Right-click and choose Remove Component

8.	 Duplicate this object to another side using Command + D (for Mac) or Ctrl + D (for
Windows), name it CubeBase2, and set Transform as follows:

Transform

Position X: 0, Y: -1.32, and Z: 16.9

Rotation X: 0, Y: 0, and Z: 0

Scale X: 6, Y: 3, and Z: 5

Forge a Destructible and Interactive Virtual World

342

9.	 We are almost done creating this object. The last thing to create the trigger area
to make the rock fall down when the player hits this area. So, we go to GameObject
| Create Empty, name it TriggerArea, and drag it in the Rockslide game object.

10.	 Add the Box Collider component to this by going to Component | Physics | Box
Collider. Then, set the parameters as follows:

Transform

Position X: -35, Y: -7, and Z: -3

Rotation X: 0, Y: 335, and Z: 0

Scale X: 1, Y: 1, and Z: 1

Box Collider

Is Trigger Check

Size X: 12, Y: 36, and Z: 24

You will see that the object will look something similar to the following screenshot:

11.	 Finally, we will click on the Rockslide game object, go to its Inspector view, and set
its Transform component as follows:

Transform

Position X: 1068, Y: 24, and Z: 677

Rotation X: 0, Y: 140, and Z: 0

Scale X: 1, Y: 1, and Z: 1

Now, we have finished this step. In the next section, we will add a script to make
our rocks slide down the hill when the player hits the trigger area. The following
screenshot shows the Rockslide game object and trigger area:

Project 7

343

Objective complete – mini debriefing
In this section, we set up the rock slider, which will be used in the next step. We've set up rocks
from multiple cubes similar to the way we set up the destructible wall. However, in this step,
we also created the trigger area, which will be used to trigger the rock to slide down when the
character hits this area.

Creating the RocksTrigger and Rocks
scripts

Now, we are at the last step of this project. We will create the RocksTrigger and Rocks
scripts to make the rock fall down.

Engage thrusters
Let's create the RocksTrigger script first by performing the following steps:

1.	 Go to the Scripts folder in the Project view to create the script by right-clicking
and navigating to Create | C# (for C# users) or Create | Javascript (for JavaScript
users) and rename it RocksTrigger.

2.	 Double-click on the RocksTrigger script to open it in MonoDevelop and start adding
the script as follows:

// Unity JavaScript user:

#pragma strict
private var _isTrigger : boolean = false;

Forge a Destructible and Interactive Virtual World

344

static var onTrigger : JSDelegate = new JSDelegate();

function OnTriggerEnter(collider : Collider) : void {
 if ((collider.transform.tag == "Player") && (_isTrigger ==
false)) {
 _isTrigger = true;
 onTrigger.Invoke();
 }
}

// C# user:

using UnityEngine;
using System.Collections;

public class RocksTrigger : MonoBehaviour {
 bool _isTrigger = false;
 public delegate void OnRocksTrigger ();
 public static event OnRocksTrigger onTrigger;

 public void OnTriggerEnter(Collider collider) {
 if ((collider.transform.tag == "Player") && (_isTrigger ==
false)) {
 _isTrigger = true;
 onTrigger();
 }
 }
}

Here, we've used the delegate and event methods (available only in C#), which
basically call the onTrigger() function on any object that has the event listener.
However, in JavaScript, we don't have the delegate and event methods, so we
use the custom class called JSDelegate, which is already present in with the
project's package. We can go to the Chapter7/Scripts/Javascript/Utils
folder in the Project view and open JSDelegate to check out this class. We will
get more details on this in the Classified intel section.

3.	 We already have the trigger script. Next, we need the listener script to listen
to the trigger and make the rocks fall down. We will create a new script by going
to the Scripts folder in the Project view to create a script by right-clicking and
navigating to Create | C# (for C# users) or Create | Javascript (for JavaScript user)
and rename it Rocks.

Project 7

345

4.	 Double-click on the Rocks script to open it in MonoDevelop and start adding the
script as follows:

// Unity JavaScript user:

#pragma strict
@Range(-100, 0)
var downForce : int = -80;
private var _rigidbodys : Rigidbody[];

function OnEnable () : void
{
 RocksTrigger.onTrigger.Add(OnTrigger);
}

function OnDisble () : void
{
 RocksTrigger.onTrigger.Remove(OnTrigger);
}

function OnTrigger () : void
{
 EnabledRigidbody();
}

function Awake () : void {
 _rigidbodys = gameObject.GetComponentsInChildren.<Rigidbody>();
}

function Start () : void {
 DisabledRigidBody();
}

function EnabledRigidbody () : void {
 for (var r : Rigidbody in _rigidbodys) {
 r.useGravity = true;
 r.isKinematic = false;
 r.AddForce(new Vector3(0,downForce,0),ForceMode.
VelocityChange);
 }
}

function DisabledRigidBody() : void {
 for (var r : Rigidbody in _rigidbodys) {
 r.useGravity = false;

Forge a Destructible and Interactive Virtual World

346

 r.isKinematic = true;
 }
}

// C# user:

using UnityEngine;
using System.Collections;

public class Rocks : MonoBehaviour {
 [Range(-100, 0)]
 public int downForce = -80;

 Rigidbody[] _rigidbodys;

 void OnEnable ()
 {
 RocksTrigger.onTrigger += OnTrigger;
 }

 void OnDisble ()
 {
 RocksTrigger.onTrigger -= OnTrigger;
 }

 void OnTrigger ()
 {
 EnabledRigidbody();
 }

 void Awake () {
 _rigidbodys = gameObject.GetComponentsInChildren<Rigidbody>();
 }

 void Start () {
 DisabledRigidBody();
 }

 public void EnabledRigidbody () {
 foreach (Rigidbody r in _rigidbodys) {
 r.useGravity = true;
 r.isKinematic = false;
 r.AddForce(new Vector3(0,downForce,0),ForceMode.
VelocityChange);
 }

Project 7

347

 }

 public void DisabledRigidBody() {
 foreach (Rigidbody r in _rigidbodys) {
 r.useGravity = false;
 r.isKinematic = true;
 }
 }
}

In the preceding function, we create the event listener and then apply a down
force to make the rock fall down faster by using the OnEnable() and
OnDisable() functions to add and remove the event listener. OnEnable()
gets called every time the game object is enabled or active. On the other hand,
OnDisable() will be called every time the game object is disabled or inactive.

We also use the [Range(Min,Max)] function in C# or
@Range(Min,Max) followed by the int, float, or double
variables to create the limit-value slider in the editor.

This is a very convenient way to create the slider without creating a custom
inspector as we did in Project 6, Make AI Appear Smart. We can see the result
in the following screenshot:

5.	 Now we are finished with the script. We will go back to Unity, go to the Hierarchy
view, and click on the TriggerArea game object. Then, we will drag the RocksTrigger
script on this game object, as shown in the following screenshot:

Forge a Destructible and Interactive Virtual World

348

6.	 Still in the Hierarchy view, we will click on the Break game object and then drag
the Rocks script on it, as shown in the following screenshot:

Now that we are done with the project, we can click on play to see the result.
We will see that if we are entering the trigger area, the rocks will start falling
down, as shown in the following screenshot:

Objective complete – mini debriefing
We just created the RocksTrigger and Rocks scripts, which are used to trigger the
rockslide event when the player hits the trigger area. First, we created the Rocks script
and used OnTriggerEnter() to check whether the player has entered the trigger area or
not. Then, we call the onTrigger() event function to send the event to the listener, which
is RocksTrigger, using the delegate and event functions in C#.

However, there are no delegate and event functions in Unity JavaScript. So, we have to
use our custom script, which is the JSDelegate script available in the Chapter7/Scripts/
Javascript folder in the Project view, which already comes with the project's package.

Next, we listen to the trigger by adding the following script:

// Unity JavaScript user:

function OnEnable () : void

Project 7

349

{
 RocksTrigger.onTrigger.Add(OnTrigger);
}

function OnDisble () : void
{
 RocksTrigger.onTrigger.Remove(OnTrigger);
}

function OnTrigger () : void
{
 EnabledRigidbody();
}

// C# user:

void OnEnable ()
{
 RocksTrigger.onTrigger += OnTrigger;
}

void OnDisble ()
{
 RocksTrigger.onTrigger -= OnTrigger;
}

void OnTrigger ()
{
 EnabledRigidbody();
}

We used the OnEnable() function to add a function that will be called when the event is
triggered. We use the OnDisable() function to remove a function when the game object is
inactive. Then, the OnTrigger() function is the function that will be called when the event
is triggered, which we call the EnabledRigidbody() function, to make the rock slide.

The delegate and event methods are better than the
BroadcastMessage method that we've used in Project 5, Build a
Rocket Launcher!, because we don't have to set up the listener as a child
of the event trigger. Also, the BroadcastMessage method is slower
than the delegate and event methods because it needs to iterate
to all the children in this game object to be able to call the function.

Forge a Destructible and Interactive Virtual World

350

Classified intel
In this section, we have used the delegate and event functions to set the event and event
listener. The basic idea of the delegate and event functions in C# is that we can call the
functions from other scripts by having it to listen to the event function. We do this by first
creating the delegate function as follows:

public delegate void OnDelegateFunction();

Then, we create a static event of the delegate function that we just created:

public static event OnDelegateFunction myEvent;

We use static because we want to have the same event for every listener. This way,
we can have multiple listeners listen to the same event. Next, we trigger this event by
calling myEvent();.

Then, we use the plus (+) sign to add the function to the event and use the negative (-) sign
to remove it from the event that is calling.

For a Unity JavaScript user, if we go to the Chapter7/Scripts/Javascript folder in
the Project view, we will see the JSDelegate script there. Double-click on this script to
open it and you will see the following code:

import System.Collections.Generic;

class JSDelegate {
 private var _callbacks : List.<Function> = new List.<Function>();
 function Add (callback : Function) : void {
 _callbacks.Add(callback);
 }
 function Remove (callback : Function) : void {
 _callbacks.Remove(callback);
 }
 function Clear () : void {
 _callbacks.Clear();
 }
 function Invoke () : void {
 for (var callback in _callbacks) {
 callback();
 }
 }
}

If we check out this script, we will see that this script uses List<T>, which is available in
the C# generic library, so we need to use import System.Collections.Generic;.

Project 7

351

List<T> is basically similar to JavaScript's the Array or ArrayList
type, but we need to specify the <T> type. This also performs significantly
faster than JavaScript's Array and ArrayList. A good link to understand
which type of array to use in Unity is as follows:

http://wiki.unity3d.com/index.php?title=Which_Kind_
Of_Array_Or_Collection_Should_I_Use?

We will see that we have List to store the Function type. Then, we have Add, Remove,
Clear, and Invoke functions. The Invoke() function is basically to call all the functions
in List. This is similar to the delegate and event functions in C#.

Mission accomplished
In this project, we first created the ragdoll object and applied this to our AI character.
Then, we created the destructible Wall object and destroyed it when we shot at it by adding
some script to the rocket script. We also created the Rockslide game object, the Rocks
script to enable and disable Rigidbody of the rocks, and the TriggerArea game object and
RocksTrigger script to make the rocks fall down when the player hits the trigger area. The
following screenshot shows these stages:

http://wiki.unity3d.com/index.php?title=Which_Kind_Of_Array_Or_Collection_Should_I_Use?
http://wiki.unity3d.com/index.php?title=Which_Kind_Of_Array_Or_Collection_Should_I_Use?

Forge a Destructible and Interactive Virtual World

352

Hotshot challenges
Now, we have understood the concept of creating destructible objects, but the objects that
we created are on the cube from the Unity engine. We can make it more interesting with
something like the following:

ff Create your own object in any 3D software instead of the cube to make it much
more realistic and attach the Rocks script to it and see how it works

ff Add some script that will make the rock damage the player and AIs when they
get hit while the rock is falling down

ff Add the smoke particle to the rocks when they are falling down

ff Make a ragdoll match the last AI animation post by creating a ragdoll with the AI
game object and using the is Kinematic method to enable or disable ragdoll physics
instead of replacing the new object

ff Create a random rock that will fall every time the player walks by the lake

ff Create a trigger area such as door or switch that can trigger multiple events at
the same time by using the delegate and event functions

Project 8
Let the World See the
Carnage – Saving and
Loading High Scores

The high score is the highest logged point value, which is used to show how well the
players do in the game. Many a times, a game will have a list of several high scores called
the high score table, which shows a list of scores that each player gets when playing the game.
During the era of arcade games or some current puzzle games that involve endless cycles of
continuous gameplay, scores had a much greater relevance in giving the player the replayable
value and the feeling of achievement.

Why do we need to save the high score? The advantage of the high score is to keep a
record of the players and how well they progress each time they play the game. It also
creates a challenge for the players to beat their record and keep playing the game again.
There are some games such as Journey that don't need the high scores. However, for most
online games, the high score is very important to let the players see their progress and
compare it with that of their friends or other players.

We can save the high scores on the player's local machine or use the database and keep it on
the web server. In most case, we will use the database server to keep track of the high-score
table, which is more secure. In this project, we will show you how to save the high score on
the local machine using the PlayerPref and System.Serializable techniques. Then, we will also
save and load the high score from the server database using WWWFrom, XML, and so on.

Let the World See the Carnage – Saving and Loading High Scores

354

Mission briefing
This project will start with a creation of the simple high score table so that the players can
submit their names and scores locally as well as post it to the server database. We will
continue the project from Project 7, Forge a Destructible and Interactive Virtual World.

First, we will create the high score menu UI using OnGUI(), which will be visible when the
game is over. The menu will include the final score, a text input area for the player's name,
a submit button, a local hi-score button, a server hi-score button, and a restart button.

Then, we will have the UserData script that contains the name and score for each user.
We will also create the LocalHiscore script, which we will use to save and load the
local hi-score using PlayerPref, BinaryFormatter, and MemoryStream to serialize
and deserialize the data.

The serialize and deserialize techniques will make it easy for us to save complex
data as well as preventing the user from changing the data outside the game.

Next, we will create the XMLParser script to get the XML value from the provided database
server and the ServerHiscore script to save and load the user's data to the server using
the www object. We also encrypt our data for security purposes using the MD5 encryption
class written by Matthew Wegner, which we will download from http://wiki.unity3d.
com/index.php?title=MD5.

The MD5 encryption script will allow us to encrypt the hash key, which will
prevent the submission of fake high scores.

Why is it awesome?
What we will get from this project is a way to use PlayerPrefs combined with
BinaryFormatter and MemoryStream to serialize and deserialize objects to save and load
complex data. From this project, we will be able to adapt the technique to save more complex
in-game data, such as the location of the player, current stage, or current hit points. We will
also learn how to set up a basic database server using MySQL and PHP scripts to return high
score data in the XML format and parse it to the game using XMLDocument from the .NET
library. This is very useful when reading the XML file. Finally, we will get to know how to
prevent the submission of fake data using the MD5 script to encrypt user data before
sending it to the server database.

http://wiki.unity3d.com/index.php?title=MD5
http://wiki.unity3d.com/index.php?title=MD5

Project 8

355

Your Hotshot objectives
We will start by importing the chapter 8 package, and then we will go through each of
the following topics:

ff Creating the UserData and Hiscore scripts

ff Saving and loading the local high score

ff Creating an XMLParser script

ff Saving and loading the server high score

Mission checklist
Before we start, we will need to get the project folder and assets from Packt's website,
http://www.packtpub.com/support?nid=8267, which includes the first finished
project and the assets that we need to use in this project.

Go to the preceding URL and download the Chapter8.zip package and unzip it. Inside
the Chapter8 folder, there are two unity packages, which are Chapter8Package.
unitypackage (we will use this package for this project) and Chapter8Package
_Completed.unitypackage (this is the completed project package).

Creating the UserData and Hiscore
scripts

In the first section, we will create the UserData script, which will collect the username
and score. This script will inherit from the IComparable<T> interface, which is a custom
comparison method in the .NET library that a value type or class implements to create a
type-specific comparison method to order instances. This class will have the CompareTo()
function, which will be used to sort users by their score. Then, we will add the UserData
object in the UIHiscore script and set up the input text field for the player's name.

For more information about the IComparable<T> interface, visit the
following links:

ff http://msdn.microsoft.com/en-us/
library/4d7sx9hd(v=vs.110).aspx

ff http://www.dotnetperls.com/icomparable

Then, we will create the Hiscore script, which will be the super class of both the
LocalHiscore and ServerHiscore scripts. The Hiscore script will include the
necessary variables such as the array of the UserData, Save and Load functions,
Sort function, and so on.

http://www.packtpub.com/support?nid=8267
http://msdn.microsoft.com/en-us/library/4d7sx9hd(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/4d7sx9hd(v=vs.110).aspx
http://www.dotnetperls.com/icomparable

Let the World See the Carnage – Saving and Loading High Scores

356

Prepare for lift off
We will begin with importing the package, preparing the assets folder, and making sure
that we have everything ready to start. Let's create a new project and import the package:

1.	 Import the assets package by navigating to Assets | Import Package | Custom
Package…, choose the Chapter8.unityPackage file, which we downloaded
earlier, and then click on the Import button in the pop-up window, as shown in
the following screenshot:

2.	 Wait until it's done and we will see the Chapter8, Editor, Gizmos, Resources, and
Standard Assets folders in the Project view. Then, we will navigate to Chapter8
| Scenes and double-click on either scene (for C# users, double-click on the
Hiscore_C# scene; for Unity JavaScript users, double-click on the Hiscore_JS scene),
as shown in the following screenshot:

Project 8

357

3.	 Next, we will navigate to Chapter8 | Scripts/C#/Hiscore (for C# users) or Chapter8 |
Scripts | Javascript | Hiscore (for Unity JavaScript users), right-click and navigate to
Create | C# Script (for C# users) or Create | Javascript, and name it UserData, as
shown in the following screenshot:

Let the World See the Carnage – Saving and Loading High Scores

358

Engage thrusters
Now, we can start creating the UserData script by performing the following steps:

1.	 Double-click on the UserData script that we just created and include the code
as follows:

// Unity JavaScript user:

#pragma strict
import System;
import System.Collections.Generic;

public class UserData implements IComparable.<UserData> {
 var name : String;
 var score : int;

 public function CompareTo (compare : UserData) : int
 {
 // Null value means that this object is greater
 if (compare == null) return 1;
 else {
 return this.score.CompareTo(compare.score);
 }
 }
}

// C# user:

using UnityEngine;
using System;
using System.Collections;
using System.Collections.Generic;

[System.Serializable]
public class UserData : IComparable<UserData> {
 public string name;
 public int score;

 public int CompareTo (UserData compare)
 {
 // Null value means that this object is greater

Project 8

359

 if (compare == null) return 1;
 else {
 return this.score.CompareTo(compare.score);
 }
 }
}

In this step in C# script, we added [System.Serializable] to enable the
ability to serialize the UserData object. This process will translate the object
data structure to a series of bits, which can easily be stored in a file or memory
buffer. On the other hand, we don't need to include any script for Unity JavaScript
because all Unity JavaScript classes are automatically serialized. This script is used
to contain the information for each user. This will be used with BinaryFormatter
and MemoryStream to save multiple users' data to the local machine using
PlayerPrefs in the Saving and loading the local high score section.

In C#, sometimes, we add [System.Serializable] in our code to
embed a class with subproperties in the inspector. This is similar to how
Vector3 looks in the inspector. However, we don't need to add anything
for Unity JavaScript because the Serializable attribute is implicit and
not necessary.

More details can be found at http://docs.unity3d.com/
Documentation/ScriptReference/Serializable.html.

2.	 Next, we will navigate to Chapter8 | Scripts | C# | UI (for C# users) or Chapter8 |
Scripts | Javascript | UI (for Unity JavaScript users); double-click on UIHiscore to
open it, as shown in the following screenshot:

http://docs.unity3d.com/Documentation/ScriptReference/Serializable.html
http://docs.unity3d.com/Documentation/ScriptReference/Serializable.html

Let the World See the Carnage – Saving and Loading High Scores

360

3.	 Next, we will go inside the UIHiscore script to add the script. Let's add the
variables, as shown in the following highlighted code:

// Unity JavaScript user:

…
var customSkin : GUISkin;
@Range(1,50) var maxUser : int = 10;
private var _user : UserData;

// C# user:

…
public GUISkin customSkin;
[Range(1,50)] public int maxUser = 10;
UserData _user;

4.	 Then, we will go to the Start() function and add the highlighted code as
follows to create the current UserData script and set the default value for it:

// Unity JavaScript user:

…
function Start () {
 _page = PAGE.GAMEOVER;
 _clickRestart = false;
 _clickSubmit = false;
 _user = new UserData();
 _user.name = "PLAYER 1";
 _user.score = 0;
}

// C# user:

…
void Start () {
 _page = PAGE.GAMEOVER;
 _clickRestart = false;
 _clickSubmit = false;
 _user = new UserData();
 _user.name = "PLAYER 1";
 _user.score = 0;
}

5.	 Now go to the Gameover() function. Inside the if (_clickSubmit == false)
{ line, we will add the highlighted code as follows to create the input text field for
the username:

Project 8

361

// Unity JavaScript user:
…
private function Gameover ()
{
 …
 if (_clickSubmit == false) {
 GUI.Label(new Rect((Screen.width - 300)*0.5f, (Screen.
height*0.1f) + 80, 300, 25), "Enter Your Name", GUI.skin.
GetStyle("CustomText3"));
 //Creating the input text field to get the player name
 _user.name = GUI.TextField(new Rect((Screen.width -
240)*0.5f, (Screen.height*0.1f) + 120, 240, 40), _user.name, 8);
 //Submit button
 if (GUI.Button(_buttonRect1, "SUBMIT")) {
 _clickSubmit = true;
 _user.score = HitPoint.CURRENT_SCORE;
 //Submitting both local and server high score here
 }
 }
 …
}

// C# user:
…
void Gameover ()
{
 …
 if (_clickSubmit == false) {
 GUI.Label(new Rect((Screen.width - 300)*0.5f, (Screen.
height*0.1f) + 80, 300, 25), "Enter Your Name", GUI.skin.
GetStyle("CustomText3"));
 //Creating the input text field to get the player name
 _user.name = GUI.TextField(new Rect((Screen.width -
240)*0.5f, (Screen.height*0.1f) + 120, 240, 40), _user.name, 8);
 //Submit button
 if (GUI.Button(_buttonRect1, "SUBMIT")) {
 _clickSubmit = true;
 _user.score = HitPoint.CURRENT_SCORE;
 //Submitting both local and server high score here
 }
 }
 …
}

Let the World See the Carnage – Saving and Loading High Scores

362

6.	 Now, we have finished adding UserData in the UIHiscore script. If we click on Play
and let our character die or kill all enemies, we will see that there is the GAMEOVER
UI similar to to the following screenshot (to make it faster to test, we can set the
CharacterClass.IS_GAMEOVER to true and click on Play to see the result too):

The SUBMIT, LOCAL HI-SCORE, and SERVER HI-SCORE buttons don't do anything
right now. We will add the functionality for each of the other buttons later.

7.	 Next, we will create the Hiscore script, which will be the base case of both the
LocalHiscore and ServerHiscore scripts. So, let's navigate to Chapter8 |
Scripts | C# | Hiscore (for C# users) or Chapter8 | Scripts | Javascript | Hiscore
(for Unity JavaScript users), right-click and navigate to Create | C# Script (for C#
users) or Create | Javascript (for Unity JavaScript users), and name it Hiscore.

8.	 Double-click on the Hiscore script and add the following code:

// Unity JavaScript user:

#pragma strict
import System.Collections.Generic;

public class Hiscore extends MonoBehaviour {
 protected var _hashKey : String = "UNITYGAMEDEVELOPMENTHOTSHOT";
 protected var _privateMaxUser : int;
 protected var _users : List.<UserData>;

 function get userLength() : int {

Project 8

363

 return (_users.Count < _privateMaxUser) ? _users.Count : _
privateMaxUser;
 }

 function Initialize (maxUser : int) {
 _privateMaxUser = maxUser;
 }

 function LoadUserData () {
 _users = new List.<UserData>();
 }

 function SaveUserData (user : UserData) { }

 function GetUserDataAt (index : int) : UserData {
 return _users[index];
 }

 function SortByScore () {
 _users.Sort();
 _users.Reverse();
 }
}

// C# user:

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

public class Hiscore : MonoBehaviour {
 protected string _hashKey = "UNITYGAMEDEVELOPMENTHOTSHOT";
 protected int _privateMaxUser;
 protected List<UserData> _users;

 public int userLength {
 get {
 return (_users.Count < _privateMaxUser) ? _users.Count : _
privateMaxUser;
 }
 }

 public virtual void Initialize (int maxUser) {

Let the World See the Carnage – Saving and Loading High Scores

364

 _privateMaxUser = maxUser;
 }

 public virtual void LoadUserData () {
 _users = new List<UserData>();
 }

 public virtual void SaveUserData (UserData user) { }

 public UserData GetUserDataAt (int index) {
 return _users[index];
 }

 public void SortByScore () {
 _users.Sort();
 _users.Reverse();
 }
}

Now we have finished this step. In the next step, we will create the LocalHiscore script
to save and load the user data from the local machine.

Objective complete – mini debriefing
In this step, we created the UserData script that implements from the IComparable<T>
generic interface to create a custom sort for the UserData object. We also added System.
Serialiable to the UserData script to enable the ability to serialize this object and save it
in a later step. Then, we added the UserData object in the UIHiscore script and created the
username input text field. Finally, we created the Hiscore class that will be the base class for
the LocalHiscore and ServerHiscore scripts in the next step. In this Hiscore class, we
created List<UserData> to store all the users' data. Then, we sorted them using _users.
Sort() to sort from the lowest to the highest score. However, we need to show the score
from the highest, so we also use users.Reverse() to reverse the sorting object.

Classified intel
In this section, we used the IComparable<T> generic interface to create a custom sorting
method to sort the generic List<T> objects. We know that the generic List<T> objects
are similar to ArrayList, except with the specific type; in this case, UserData.

Project 8

365

To be able to order List<T>, we will call the List<T>.Sort() method. This method will
automatically call the CompareTo() function, which is the method in IComparable<T>.
This method is used to compare the value between two objects, which will return only three
values (less than 0 or -1, 0, greater than 0 or 1). The value less than 0 means the first object is
less than other object. 0 means both objects are equal. Then the value greater than 0 means
the first object is greater than other object.

In the Hiscore script in SortByScore(), we will see that we used the Sort() function
for _users, which is the List<UserData>() array. The Sort() method uses the default
comparer, Comparer<T>.Default, for type T to determine the order of the list elements.
Then, the Comparer<T>.Default property will check whether or not the IComparable<T>
generic interface is implemented, which we already implemented in our UserData script.

The result from the sorting method will return _users from the lowest score to the
highest score. So, we use the Reverse() function to reverse the result, which will
give _users order from the highest to the lowest score.

List<T> is in the .NET framework class library. We might want to check out
the following MSDN Microsoft library links:

ff For more information about the List<T> method, visit
http://msdn.microsoft.com/en-us/library/
s6hkc2c4(v=vs.110).aspx.

ff For more information about the Sort() method, visit
http://msdn.microsoft.com/en-us/library/
b0zbh7b6(v=vs.110).aspx.

ff For more information about the Comparer<T> class and example,
visit http://msdn.microsoft.com/en-us/library/
azhsac5f(v=vs.110).aspx.

ff For more information about the IComparable<T> interface and the
CompareTo() method, visit the following links: http://msdn.
microsoft.com/en-us/library/4d7sx9hd(v=vs.110).
aspx and http://msdn.microsoft.com/en-us/
library/43hc6wht(v=vs.110).aspx respectively

ff For more information about the List<T>.Reverse() method,
visit http://msdn.microsoft.com/en-us/library/
b0axc2h2(v=vs.110).aspx.

We can also overload the Sort() function to sort using the name of the user instead of the
score by adding the following code in the Hiscore script:

// Unity JavaScript user:

function SortByName () {
 _users.Sort(function (user1 : UserData, user2 : UserData)

http://msdn.microsoft.com/en-us/library/s6hkc2c4(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/s6hkc2c4(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/b0zbh7b6(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/b0zbh7b6(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/azhsac5f(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/azhsac5f(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/4d7sx9hd(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/4d7sx9hd(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/4d7sx9hd(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/43hc6wht(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/43hc6wht(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/b0axc2h2(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/b0axc2h2(v=vs.110).aspx

Let the World See the Carnage – Saving and Loading High Scores

366

 {
 if (user1.name == null && user2.name == null) return 0;
 else if (user1.name == null) return -1;
 else if (user2.name == null) return 1;
 else return user1.name.CompareTo(user2.name);
 });
}

// C# user:
public void SortByName () {
 _users.Sort(delegate (UserData user1, UserData user2)
 {
 if (user1.name == null && user2.name == null) return 0;
 else if (user1.name == null) return -1;
 else if (user2.name == null) return 1;
 else return user1.name.CompareTo(user2.name);
 });
}

From the method, we will see that we still use the Sort() function, but this time, we compare
using the name. The result will order the usernames from A to Z.

Saving and loading the local high
score

In this section, we will be creating the LocalHiscore script, which we will use to save and
load the users' data. We will use PlayerPrefs, BinaryFormatter, and MemoryStream
to save and load the user data. Then, we will add the ability to save and load the local high
score to our UIHiscore script.

Engage thrusters
Now we can start creating the LocalHiscore script using the following steps:

1.	 Navigate to Chapter8 | Scripts | C#/Hiscore (for C# users) or Chapter8 | Scripts |
Javascript | Hiscore (for Unity JavaScript users), right-click and navigate to Create |
C# Script (for C# users) or Create | Javascript, and name it LocalHiscore.

2.	 First, we will create a random name for the default user and the SaveUserData()
function to save the user data. Let's double-click on the LocalHiscore script that
we just created and use the following code:

Project 8

367

// Unity JavaScript user:

#pragma strict
import System;
import System.Runtime.Serialization.Formatters.Binary;
import System.IO;
import System.Collections.Generic;

class LocalHiscore extends Hiscore {
 private var RANDOM_NAMES : String[] = ["Antony", "John", "Will",
"Kate", "Jill"];

 override function SaveUserData (user : UserData) {
 _users.Add(user);
 var binary : BinaryFormatter = new BinaryFormatter();
 var memory : MemoryStream = new MemoryStream();
 binary.Serialize(memory, _users);
 PlayerPrefs.SetString(_hashKey+"Highscore",Convert.
ToBase64String(memory.GetBuffer()));
 }
}

// C# user:

using UnityEngine;
using System;
using System.Runtime.Serialization.Formatters.Binary;
using System.IO;
using System.Collections;
using System.Collections.Generic;

public class LocalHiscore : Hiscore {
 private string[] RANDOM_NAMES = new string[] {"Antony", "John",
"Will", "Kate", "Jill"};

 public override void SaveUserData (UserData user) {
 _users.Add(user);
 BinaryFormatter binary = new BinaryFormatter();
 MemoryStream memory = new MemoryStream();
 binary.Serialize(memory, _users);
 PlayerPrefs.SetString(_hashKey+"Highscore",Convert.
ToBase64String(memory.GetBuffer()));
 }
}

Let the World See the Carnage – Saving and Loading High Scores

368

We created the save function by first adding the new user to the list, and then we
created BinaryFormatter to serialize all users data to MemoryStream. Finally,
we saved the users data by converting it to a string and saving it in PlayerPrefs.

3.	 Next, add two more functions—Initialize() and LoadUserData()—to set
and load the user data. Let's add both the methods as follows:

// Unity JavaScript user:

…
override function Initialize (maxUser : int) {
 super.Initialize(maxUser);
 LoadUserData();
}

override function LoadUserData () {
 super.LoadUserData();
 var data : String PlayerPrefs.GetString(_hashKey+"Highscore");

 if (data != "") {
 var binary : BinaryFormatter = new BinaryFormatter();
 var memory : MemoryStream = new MemoryStream(Convert.
FromBase64String(data));
 _users = binary.Deserialize(memory) as List.<UserData>;
 } else {
 for (var i : int = 0 ; i < RANDOM_NAMES.Length; ++i) {
 var user : UserData = new UserData();
 user.name = RANDOM_NAMES[i];
 user.score = Mathf.FloorToInt(UnityEngine.Random.value *
1000);
 _users.Add(user);
 }
 }
 this.SortByScore();
}
…

// C# user:

…
public override void Initialize (int maxUser) {
 base.Initialize(maxUser);
 LoadUserData();
}
public override void LoadUserData () {

Project 8

369

 base.LoadUserData();
 string data = PlayerPrefs.GetString(_hashKey+"Highscore");
 if (data != "") {
 BinaryFormatter binary = new BinaryFormatter();
 MemoryStream memory = new MemoryStream(Convert.
FromBase64String(data));
 _users = binary.Deserialize(memory) as List<UserData>;
 } else {
 for (int i = 0 ; i < RANDOM_NAMES.Length; ++i) {
 UserData user = new UserData();
 user.name = RANDOM_NAMES[i];
 user.score = Mathf.FloorToInt(UnityEngine.Random.value *
1000);
 _users.Add(user);
 }
 }
 this.SortByScore();
}

We just created the function to load the string data using PlayerPrefs.
GetString (key,"") from the key. We also checked that it was not an empty
string. Then, we deserialized the data by first converting it from string to the byte
array using MemoryStream, and then we used BinaryFormatter to deserialize
the data to List<UserData>.

4.	 Next, we will go to the UIHiscore script to add the script to initialize the local
hi-score table, as shown in the following highlighted code:

// Unity JavaScript user:
…
private var _user : UserData;
private var _localHiscore : LocalHiscore;
private var _scrollLocal : Vector2 = Vector2.zero;
…
function Awake () {
 _localHiscore = GetComponent.<LocalHiscore>();
 if (_localHiscore == null) {
 _localHiscore = gameObject.AddComponent.<LocalHiscore>();
 }
}
function Start () {
 …
 _localHiscore.Initialize(maxUser);
}

// C# user:

Let the World See the Carnage – Saving and Loading High Scores

370

…
UserData _user;
LocalHiscore _localHiscore;
Vector2 _scrollLocal = Vector2.zero;
…
void Awake () {
 _localHiscore = GetComponent<LocalHiscore>();
 if (_localHiscore == null) {
 _localHiscore = gameObject.AddComponent<LocalHiscore>();
 }
}
void Start () {
 …
 _localHiscore.Initialize(maxUser);
}

5.	 Next, we will go to the Gameover() function to add the load and save data functions
when the user clicks the button, as shown in the following highlighted code:

// Unity JavaScript user:
…
private function Gameover ()
{
 …
 if (_clickSubmit == false) {
 …
 if (GUI.Button(_buttonRect1, "SUBMIT")) {
 …
 _user.score = HitPoint.CURRENT_SCORE;
 _localHiscore.SaveUserData(_user);
 }
 }
 if (GUI.Button(_buttonRect2, "LOCAL HI-SCORE")) {
 // Load
 _localHiscore.LoadUserData();
 _page = PAGE.LOCALSCORE;
 }
…
}

// C# user:
…
void Gameover ()
{
 …

Project 8

371

 if (_clickSubmit == false) {
 …
 if (GUI.Button(_buttonRect1, "SUBMIT")) {
 …
 _user.score = HitPoint.CURRENT_SCORE;
 _localHiscore.SaveUserData(_user);
 }
 }
 if (GUI.Button(_buttonRect2, "LOCAL HI-SCORE")) {
 // Load
 _localHiscore.LoadUserData();
 _page = PAGE.LOCALSCORE;
 }
…
}

6.	 Finally, we will go to the LocalHiscore() function to add the code to show the
high-score table data, as shown in the following highlighted code:

// Unity JavaScript user:
…
private function LocalHiscore ()
{
 CreateBackgroundBox("LOCAL HI-SCORE");
 if (_localHiscore.userLength > 0) {
 _scrollLocal = GUI.BeginScrollView (new Rect ((Screen.width -
320)*0.5f, (Screen.height*0.1f) + 80, 320, 180), _scrollLocal, new
Rect (0, 0, 300, 30*_localHiscore.userLength));
 for (var i : int = 0; i < _localHiscore.userLength; i++) {
 GUILayout.BeginHorizontal(GUILayout.Width(300));
 GUILayout.Label((i+1).ToString() + ". " + _localHiscore.
GetUserDataAt(i).name, GUI.skin.GetStyle("Name"));
 GUILayout.Label(_localHiscore.GetUserDataAt(i).score.
AddCommas(), GUI.skin.GetStyle("Score"));
 GUILayout.EndHorizontal();
 }
 GUI.EndScrollView();
 }
…
}

// C# user:
…
void LocalHiscore ()
{

Let the World See the Carnage – Saving and Loading High Scores

372

 CreateBackgroundBox("LOCAL HI-SCORE");
 if (_localHiscore.userLength > 0) {
 _scrollLocal = GUI.BeginScrollView (new Rect ((Screen.width -
320)*0.5f, (Screen.height*0.1f) + 80, 320, 180), _scrollLocal, new
Rect (0, 0, 300, 30*_localHiscore.userLength));
 for (int i = 0; i < _localHiscore.userLength; i++) {
 GUILayout.BeginHorizontal(GUILayout.Width(300));
 GUILayout.Label((i+1).ToString() + ". " + _localHiscore.
GetUserDataAt(i).name, GUI.skin.GetStyle("Name"));
 GUILayout.Label(_localHiscore.GetUserDataAt(i).score.
AddCommas(), GUI.skin.GetStyle("Score"));
 GUILayout.EndHorizontal();
 }
 GUI.EndScrollView();
 }
 …
}

We just created the scroll view for our local high-score table. Now, we have
finished this step, we can click on the Play button to see the result. Have a
look at the following screenshot:

Project 8

373

Objective complete – mini debriefing
In this step, we basically created LocalHiscore to save and load the user's local high-score
data and displayed it on the LOCAL HI-SCORE page. The LocalHiscore class is derived from
the Hiscore class, which we already created. In this class, we added the Initialize(),
LoadUserData(), and SaveUserData() methods, which is overridden from the Hiscore
base class. Using the virtual and override keywords, we will be able to share the method
and variables from the Hiscore class.

In the SaveUserData() function, we first passed the user data that we'd like to save.
Then, we added the user data to the list of UserData, which is _users.Add(user);.
Next, we created BinaryFormatter and MemoryStream to serialize the list of UserData
to the series of bits to the memory buffer using binary.Serialize(memory, _users);.
Next, we used PlayerPrefs to save the data by first converting the string using Convert.
ToBase64String(memory.GetBuffer());. Then, we used PlayerPrefs.SetString()
to set the data by passing the key, which is _hashkey + "Highscore", and the converting
string data.

We need to convert our data to a string first. This is because PlayerPrefs
can only save string, int, or float and not the bytes array. We can
check the following link for more details: http://docs.unity3d.com/
Documentation/ScriptReference/PlayerPrefs.html.

Next, we created Initialize() and LoadUserData() to set up and load the default
user data if there is no local user data. In the first line, we called base.Initialize()
(for C# users) and super.Initialize() (for Unity JavaScript users). This basically calls
the Initialize() method from the base class, which is the Hiscore class to set the
maximum users that should be shown on the high-score table.

In the LoadUserData() method, we first checked whether the local user data exists or
not using string data = PlayerPrefs.GetString(_hashkey+"Highscore",
"");. Then, we checked to see whether the return string isn't equal to an empty string.
We converted it back to the memory buffer and deserialized it to the list of UserData.
On the other hand, if the data was an empty string, we added the random user to the list
of UserData. Then, we sorted the list based on the score of each user.

Finally, we added the script to the UIHiscore class to save, load, and show the local high
score from the list of UserData.

http://docs.unity3d.com/Documentation/ScriptReference/PlayerPrefs.html
http://docs.unity3d.com/Documentation/ScriptReference/PlayerPrefs.html

Let the World See the Carnage – Saving and Loading High Scores

374

Classified intel
In Unity C#, we used [System.Serializable] to enable the ability to serialize this object.
Serialization is the process of translating the data structure or object state in the format that
can easily be stored (for example, a file/memory buffer, or transmitted data across a network
connection link) and reconstructed later in the same or another computer environment.

More explanation about serialization can be found from the following links:

ff http://stackoverflow.com/questions/3042665/
what-is-the-meaning-of-serialization-concept-
in-programming-languages

ff http://en.wikipedia.org/wiki/Serialization

Whether you add @script System.Serializable in the class or not, we will be able
to serialize them.

The serialization technique can be stored as a file and saved on your local machine too. This
is a very efficient way to save the game data, such as a player's hit point, player's location,
and enemies' hit point. To store the data to the file, we can add something similar to the
following code:

// Unity JavaScript user:

function SaveData () {
 var binary : BinaryFormatter = new BinaryFormatter();
 var file : FileStream = new FileStream(Application.
persistentDataPath+"/highscores.dat", FileMode.Append);
 binary.Serialize(file, _users);
}
function LoadData () {
 try {
 var binary : BinaryFormatter = new BinaryFormatter();
 var file : FileStream = new FileStream(Application.
persistentDataPath+"/highscoresJS.dat", FileMode.Open);
 _users = binary.Deserialize(file) as List.<UserData>;
 } catch (error) {
 Debug.Log("File not found");
 }
}

// C# user:

public void SaveData () {

http://stackoverflow.com/questions/3042665/what-is-the-meaning-of-serialization-concept-in-programming-languages
http://stackoverflow.com/questions/3042665/what-is-the-meaning-of-serialization-concept-in-programming-languages
http://stackoverflow.com/questions/3042665/what-is-the-meaning-of-serialization-concept-in-programming-languages
http://en.wikipedia.org/wiki/Serialization

Project 8

375

 BinaryFormatter binary = new BinaryFormatter();
 FileStream file = new FileStream(Application.persistentDataPath+"/
highscores.dat", FileMode.Append);
 binary.Serialize(file, _users);
}
public void LoadData () {
 try {
 BinaryFormatter binary = new BinaryFormatter();
 FileStream file = new FileStream(Application.persistentDataPath+"/
highscores.dat", FileMode.Open);
 _users = binary.Deserialize(file) as List<UserData>;
 } catch (System.IO.FileNotFoundException) {
 Debug.Log("File not found");
 }
}

Next, we will talk about PlayerPrefs, which is basically used to save and load the data
using the key string to identify each piece of data. The values that we can set or get
are string, float, and int. We will use PlayerPrefs.SetString(Key,Value),
PlayerPrefs.SetFloat(Key,Value), and PlayerPrefs.SetInt(Key,Value)
to store the data. These methods will set each value based on the key string and save
them to the local machine when the user quits the application. However, we might want
to write the data after setting the value. In this case, we will use the PlayerPrefs.Save()
function to write the data at the time we call this method.

It's not recommend that you call PlayerPrefs.Save() during the
actual gameplay, because it will write the data to the disk and cause small
hiccups. More details can be found at http://docs.unity3d.com/
Documentation/ScriptReference/PlayerPrefs.Save.html.

We use PlayerPrefs.GetString(Key,DefaultValue=""), PlayerPrefs.GetFlo
at(Key,DefaultValue=0.0f), and PlayerPrefs.GetInt(Key,DefaultValue=0)
to load the data. These methods will get the data value from the given key string. If the
key cannot be found, it will return the default value depending on the individual function.
We can also use PlayerPrefs.HasKey(Key) to check if the key exists or not. At last,
if we want to remove the key data, we can use PlayerPrefs.Delete(Key) to remove
the specific key. Also, if we want to remove all the keys, we can use PlayerPrefs.
DeleteAll().

For more details on PlayerPrefs, visit http://docs.unity3d.
com/Documentation/ScriptReference/PlayerPrefs.html.

http://docs.unity3d.com/Documentation/ScriptReference/PlayerPrefs.Save.html
http://docs.unity3d.com/Documentation/ScriptReference/PlayerPrefs.Save.html
http://docs.unity3d.com/Documentation/ScriptReference/PlayerPrefs.html
http://docs.unity3d.com/Documentation/ScriptReference/PlayerPrefs.html

Let the World See the Carnage – Saving and Loading High Scores

376

Creating an XMLParser script
In this section, we will create the XMLParser script that will parse the XML data from the
server to use for the Saving and loading server high score section. We will use XmlDocument
from the .NET framework in C#.

Engage thrusters
Now, we can start creating the XMLParser script using the following steps:

1.	 We will navigate to Chapter8 | Scripts | C# | Hiscore (for C# users) or Chapter8 |
Scripts | Javascript | Hiscore (for Unity JavaScript users), and right-click and go to
Create | C# Script (for C# users) or Create | Javascript. We will name it XMLParser
and double-click on it to open the XMLParser file.

2.	 First, we will start coding at the beginning of the XMLParser script, as shown in
the following code:

// Unity JavaScript user:

#pragma strict
import System.Xml;

// C# user:

using UnityEngine;
using System.Collections;
using System.Xml;

We added using System.Xml, and import System.Xml allows us to access
the System.Xml library in the .NET framework.

3.	 Next, we will create the XMLParser class as the static class, which allows us to
access the method of this class directly without creating a new XMLParser object
and all the necessary variables. Let's add the following code:

// Unity JavaScript user:

public static class XMLParser {
 private var _doc : XmlDocument;
 private var _root : XmlNode;
 private var _users : UserData[];
 private var _userLength : int;

 public function get users() : UserData[] {

Project 8

377

 return _users;
 }
 public function get usersLength () : int {
 return _userLength;
 }
}

// C# user:

public static class XMLParser {
 static XmlDocument _doc;
 static XmlNode _root;
 static UserData[] _users;
 static int _usersLength;

 public static UserData[] users {
 get { return _users; }
 }
 public static int usersLength {
 get { return _usersLength; }
 }
}

4.	 Then, we will add the Parse() function, which will be used to parse the XML string
to the array of UserData. Let's add this method inside the XMLParser class, as
shown in the following highlighted code:

// Unity JavaScript user:

public static class XMLParser {
 …
 public function get usersLength () : int {
 return _userLength;
 }

public function Parse(xml : String) : void {
 _doc = new XmlDocument();
 _doc.LoadXml(xml); // Loading from String
 //Using doc.Load("HiScore.xml"); When load from an xml file
 //Using Last Child to Skip the <?xml version="1.0"
encoding="UTF-8"?>
 //If we load from the xml file we will use the FirstChild
instead
 _root = _doc.LastChild;
 if (_root.HasChildNodes) {

Let the World See the Carnage – Saving and Loading High Scores

378

 _userLength = _root.ChildNodes.Count;
 _users = new UserData[_userLength];
 for (var i : int = 0; i < _userLength; i++) {
 if (_root.ChildNodes[i].InnerText.Contains("No entries
yet.") == false) {
 var nameAtt : XmlAttribute = _root.ChildNodes[i].
Attributes["name"];
 var scoreAtt : XmlAttribute = _root.ChildNodes[i].
Attributes["score"];
 var user : UserData = new UserData();
 user.name = nameAtt.Value;
 user.score = parseInt(scoreAtt.Value);
 _users[i] = user;
 } else {
 break;
 }
 }
 }
 }
}
// C# user:

public static class XMLParser {
 …
 public static int usersLength {
 get { return _usersLength; }
 }

 public static void Parse(string xml) {
 _doc = new XmlDocument();
 _doc.LoadXml(xml); // Loading from String
 //Using doc.Load("HiScore.xml"); When load from an xml file
 //Using Last Child to Skip the <?xml version="1.0"
encoding="UTF-8"?>
 //If we load from the xml file we will use the FirstChild
instead
 _root = _doc.LastChild;
 if (_root.HasChildNodes) {
 _usersLength = _root.ChildNodes.Count;
 _users = new UserData[_usersLength];
 for (int i = 0; i < _usersLength; i++) {
 if (_root.ChildNodes[i].InnerText.Contains("No entries
yet.") == false) {

Project 8

379

 XmlAttribute nameAtt = _root.ChildNodes[i].
Attributes["name"];
 XmlAttribute scoreAtt = _root.ChildNodes[i].
Attributes["score"];
 UserData user = new UserData();
 user.name = nameAtt.Value;
 user.score = Convert.ToInt32(scoreAtt.Value);
 _users[i] = user;
 } else {
 break;
 }
 }
 }
 }
}

Objective complete – mini debriefing
In this section, we basically just created the XMLParser script to parse the XML string
that we loaded from the server, and then we stored the user's data in this class to use it
at a later stage.

First, we used the static keyword for this class because we wanted it to be accessible
from the entire project. Then, we created the XmlDocument and XmlNode parameters to
hold the XML data that we want to parse. Then, we had the array of UserData to contain
all the user data. The last parameter is to store the length of the users that we have got
from the XML data.

Next, we created the Parse(string xml) function. In this function, we created
XmlDocument and then loaded the XML string data of this document using _doc.
LoadXml(xml) to load the string XML that we pass from the server. Then, we get
XmlNode from the last child of XmlDocument as follows:

_root = _doc.LastChild;

We used LastChild() because we wanted to skip the first node, which is the headline
 of the <?xml version="1.0" encoding="UTF-8"?> XML file. Next, we checked if
the _root node has a child node or not. If it has, we get the length of this child node.
Then, we created the array of UserData to store username and score data.

Next, we looped through the child node, got the name and score from the XML attribute,
set it to the UserData object, and then we added the data to the array of UserData.

Let the World See the Carnage – Saving and Loading High Scores

380

Classified intel
From the previous section, if we go to the UIHiscore script at the LocalHiscore()
function inside the for loop, we will see that we have shown the score with the commas
as the following script:

_localHiscore.GetUserDataAt(i).score.AddCommas()

As we can see from the preceding script, _localHiscore.GetUserDataAt(i).score
is the int type, which doesn't have the AddCommas() method to call. So, why doesn't it
work? Let's go to the Project view in Unity and go to the Standard Assets folder; we will
see the ExtensionMethods C# script, as shown in the following screenshot:

We can double-click on the file to open it. We will see that there are four methods here.
All these are the extension methods. The extension method is the custom method for the
class, struct, or variable that we don't have the permission or access to modify, such as
float, int, Transform, and Vector3. To create the extension method, we need to
create a static class and the static method, which need to have the first parameter set
to this followed by its class type and the class name, as shown in the following code:

using UnityEngine;
using System.Collections;
public static class ExtensionMethods {
 public static void ResetTransform (this Transform t)
 {
 t.position = Vector3.zero;
 t.rotation = Quaternion.identity;
 t.localScale = Vector3.one;
 }
}

Project 8

381

To use it, we can just call the transform.ResetTransform() function from the
game object.

This extension method can only be created in C#. So, how can we use it if we use
Unity JavaScript? We can use the extension method by reordering the script complier to
compile the ExtensionMethods script before other scripts. This is because all the Unity
JavaScript will get executed before the C# script. To solve this problem, we can either put
the ExtensionMethods script in the Standard Assets folder or navigate to Edit | Project
Settings | Script Execution Order and add the script that we want to reorder.

For more details, visit the following links:

ff http://docs.unity3d.com/Documentation/
Manual/ScriptCompileOrderFolders.html

ff http://docs.unity3d.com/Documentation/
Components/class-ScriptExecution.html

Saving and loading server high score
In this section, we will create the ServerHiScore script to post and load the high score
data from the server, which also inherits from the Hiscore class. We will use the WWWForm
class to communicate with the PHP file on the website, which I already set up on my website.
We will also use the hash key and encrypt it with MD5 encryption to protect and check for
the user before posting the score to the database.

Prepare for lift off
Before we create the ServerHiScore script, we will take a look at this implementation of
MD5 encryption, which is written by Matthew Wegner (http://www.unifycommunity.
com/wiki/index.php?title=MD5).

If we go to the Project view, navigate to Chapter8 | Scripts | C# | Utils (for C# users) or
Chapter8 | Scripts | Javascript | Utils (for Unity JavaScript users), and double-click on it to
open the MD5 file. We will see that there is Md5Sum(string) to encrypt the string data.

Engage thrusters
Let's create the ServerHiScore script first using the following steps:

1.	 Navigate to Chapter8 | Scripts | C# | Hiscore (for C# users) or Chapter8 | Scripts |
Javascript | Hiscore (for Unity JavaScript users) and right-click and go to Create |
C# Script (for C# users) or Create | Javascript. Name it ServerHiscore and
double-click to open the ServerHiscore file.

http://docs.unity3d.com/Documentation/Manual/ScriptCompileOrderFolders.html
http://docs.unity3d.com/Documentation/Manual/ScriptCompileOrderFolders.html
http://docs.unity3d.com/Documentation/Components/class-ScriptExecution.htm
http://docs.unity3d.com/Documentation/Components/class-ScriptExecution.htm
http://www.unifycommunity.com/wiki/index.php?title=MD5
http://www.unifycommunity.com/wiki/index.php?title=MD5

Let the World See the Carnage – Saving and Loading High Scores

382

2.	 First, we will start coding at the beginning of the ServerHiscore script, as shown
in the following code:

//Unity JavaScript user:

#pragma strict
class ServerHiscore extends Hiscore
{
 private var _wwwForm : WWWForm;
 private var _isLoaded : boolean;
 private var _phpUrl : String;

 function get isLoaded () : boolean {
 return _isLoaded;
 }
 function Initialize (maxUser : int , phpUrl : String) {
 super.Initialize(maxUser);
 _phpUrl = phpUrl;
 }
}
// C# user:

using UnityEngine;
using System.Collections;
public class ServerHiscore : Hiscore
{
 public delegate void CallBackFunction (string data);
 WWWForm _wwwForm;
 bool _isLoaded;
 string _phpUrl;

 public bool isLoaded {
 get { return _isLoaded; }
 }
 public void Initialize (int maxUser, string phpUrl) {
 base.Initialize(maxUser);
 _phpUrl = phpUrl;
 }
}

From the preceding code, we created WWWForm to send and load the data to the
server. We also created the Initialize() function, which will set the maximum
number of users that can be displayed on the UI. Also, we set the PHP URL that will
be used for positing and loading data from the server.

Project 8

383

3.	 Next, we will create the WaitForServerResponse() function, which will wait
for the server to finish sending the data. In this function, we will use the coroutine
to wait for the server, and then, if there is no error, we will call the callback function.
Let's add the WaitForServerResponse() function to this class as follows:

// Unity JavaScript user:

private function WaitForServerResponse (www : WWW, callback :
Function) : IEnumerator
{
 yield www;
 if (www.error == null) {
 Debug.Log("Successful.");
 if (callback != null) {
 callback(www.text);
 callback = null;
 }
 } else {
 Debug.LogError("Failed.");
 }
 //Clear Data
 www.Dispose();
}

// C# user:

IEnumerator WaitForServerResponse (WWW www, CallBackFunction
callback)
{
 yield return www;
 if (www.error == null) {
 Debug.Log("Successful.");
 if (callback != null) {
 callback(www.text);
 callback = null;
 }
 } else {
 Debug.LogError("Failed.");
 }
 //Clear Data
 www.Dispose();
}

Let the World See the Carnage – Saving and Loading High Scores

384

4.	 Then, we will add the SaveUserData() method, which will create WWWForm,
set the data, and send it to the server using the WWW object. On the last line, we will
use StartCoroutine to wait for the server to finish reading the data, as shown
in the following code:

// Unity JavaScript user:

override function SaveUserData (user : UserData) {
 _wwwForm = new WWWForm();
 // Calling PHP for posting score action
 _wwwForm.AddField("action","PostScore");
 // Encrypt with MD5
 _wwwForm.AddField("hash",MD5.Md5Sum(user.name + "-" + user.
score.ToString() + "-" + _hashKey));
 _wwwForm.AddField("score",user.score);
 _wwwForm.AddField("name",user.name);
 StartCoroutine(WaitForServerResponse(new WWW(_phpUrl,_
wwwForm),null));
}

// C# user:

public override void SaveUserData (UserData user) {
 _wwwForm = new WWWForm();
 // Calling PHP for posting score action
 _wwwForm.AddField("action","PostScore");
 // Encrypt with MD5
 _wwwForm.AddField("hash",MD5.Md5Sum(user.name + "-" + user.
score.ToString() + "-" + _hashKey));
 _wwwForm.AddField("score",user.score);
 _wwwForm.AddField("name",user.name);
 StartCoroutine(WaitForServerResponse(new WWW(_phpUrl,_
wwwForm),null));
}

5.	 From the preceding code, we have the function to send data. Now, we will create
the function to load data. Before creating the function to load data, we need to
create the ParseData() function, which will be used to parse the XML data that is
sent from the server. Let's add the following function:

// Unity JavaScript user:

private function ParseXMLData (xmlText : String)
{

Project 8

385

 Debug.Log("XML Text = " + xmlText);
 XMLParser.Parse(xmlText);
 if (XMLParser.users != null) {
 _users.AddRange(XMLParser.users);
 }
 _isLoaded = true;
}

// C# user:

void ParseXMLData (string xmlText)
{
 Debug.Log("XML Text = " + xmlText);
 XMLParser.Parse(xmlText);
 if (XMLParser.users != null) {
 _users.AddRange(XMLParser.users);
 }
 _isLoaded = true;
}

6.	 Then, we will add the last method, LoadUserData(), to load the user data from
the server, wait until it is finished, and then call ParseXMLData() to parse the
data to _users. Let's add the following code:

// Unity JavaScript user:

override function LoadUserData () {
 super.LoadUserData();
 _isLoaded = false;
 _wwwForm = new WWWForm();
 // Calling PHP for getting score action
 _wwwForm.AddField("action","GetScore");
 StartCoroutine(WaitForServerResponse(new WWW(_phpUrl,_
wwwForm),ParseXMLData));
}

// C# user:

public override void LoadUserData () {
 base.LoadUserData();
 _isLoaded = false;
 _wwwForm = new WWWForm();

Let the World See the Carnage – Saving and Loading High Scores

386

 // Calling PHP for getting score action
 _wwwForm.AddField("action","GetScore");
 StartCoroutine(WaitForServerResponse(new WWW(_phpUrl,_
wwwForm),ParseXMLData));
}

7.	 Now, we finished creating the ServerHiscore script. Next, we will go to the
UIHiscore script to add the code that will show all users' scores from the server.
First, we will add the script to initialize the server hi-score table, as shown in the
following highlighted code:

// Unity JavaScript user:
…
…
private var _scrollLocal : Vector2 = Vector2.zero;
var phpUrl : String = "http://www.jatewit.com/Packt/HiScore.php";
private var _scrollServer : Vector2 = Vector2.zero;
private var _serverHiscore : ServerHiscore;
…
function Awake () {
 _localHiscore = GetComponent.<LocalHiscore>();
 if (_localHiscore == null) {
 _localHiscore = gameObject.AddComponent.<LocalHiscore>();
 }
 _serverHiscore = GetComponent.<ServerHiscore>();
 if (_serverHiscore == null) {
 _serverHiscore = gameObject.AddComponent.<ServerHiscore>();
 }
}
function Start () {
 …
 _localHiscore.Initialize(maxUser);
 _serverHiscore.Initialize(maxUser,phpUrl);
}

// C# user:
…
…
Vector2 _scrollLocal = Vector2.zero;
public string phpUrl = "http://www.jatewit.com/Packt/HiScore.php";

Project 8

387

Vector2 _scrollServer = Vector2.zero;
ServerHiscore _serverHiscore;
…
void Awake () {
 _localHiscore = GetComponent<LocalHiscore>();
 if (_localHiscore == null) {
 _localHiscore = gameObject.AddComponent<LocalHiscore>();
 }
 _serverHiscore = GetComponent<ServerHiscore>();
 if (_serverHiscore == null) {
 _serverHiscore = gameObject.AddComponent<ServerHiscore>();
 }
}
void Start () {
 …
 _localHiscore.Initialize(maxUser);
 _serverHiscore.Initialize(maxUser,phpUrl);
}

8.	 We are still in the UIHiscore class. We will go to the Gameover() function to
add the load and save data functions when the user clicks on the button, as shown
in the following highlighted code:

// Unity JavaScript user:
…
private function Gameover ()
{
 …
 if (_clickSubmit == false) {
 …
 if (GUI.Button(_buttonRect1, "SUBMIT")) {
 …
 _localHiscore.SaveUserData(_user);
 _serverHiscore.SaveUserData(_user);
 }
 }
 if (GUI.Button(_buttonRect2, "LOCAL HI-SCORE")) {
 …
 }
 if (GUI.Button(_buttonRect3, "SERVER HI-SCORE")) {

Let the World See the Carnage – Saving and Loading High Scores

388

 _serverHiscore.LoadUserData();
 _page = PAGE.SERVERSCORE;
 }
}

// C# user:
…
void Gameover ()
{
 …
 if (_clickSubmit == false) {
 …
 if (GUI.Button(_buttonRect1, "SUBMIT")) {
 …
 _localHiscore.SaveUserData(_user);
 _serverHiscore.SaveUserData(_user);
 }
 }
 if (GUI.Button(_buttonRect2, "LOCAL HI-SCORE")) {
 …
 }
 if (GUI.Button(_buttonRect3, "SERVER HI-SCORE")) {
 _serverHiscore.LoadUserData();
 _page = PAGE.SERVERSCORE;
 }
}

9.	 At last, we will go to the ServerHiscore() function to add the code to show the
high score table data, as shown in the following highlighted code:

// Unity JavaScript user:
…
private function ServerHiscore ()
{
 CreateBackgroundBox("SERVER HI-SCORE");
 if (_serverHiscore.isLoaded && (_serverHiscore.userLength > 0))
{
 _scrollServer = GUI.BeginScrollView (new Rect ((Screen.width
- 320)*0.5f, (Screen.height*0.1f) + 80, 320, 180), _scrollServer,
new Rect (0, 0, 300, 30*_serverHiscore.userLength));
 for (var i : int = 0; i < _serverHiscore.userLength; i++) {

Project 8

389

 GUILayout.BeginHorizontal(GUILayout.Width(300));
 GUILayout.Label((i+1).ToString() + ". " + _serverHiscore.
GetUserDataAt(i).name, GUI.skin.GetStyle("Name"));
 GUILayout.Label(_serverHiscore.GetUserDataAt(i).score.
AddCommas(), GUI.skin.GetStyle("Score"));
 GUILayout.EndHorizontal();
 }
 GUI.EndScrollView();
 } else {
 GUI.Label(new Rect((Screen.width-150)*0.5f, (Screen.
height*0.1f)+120, 150, 50), "LOADING...", GUI.skin.
GetStyle("CustomText"));
 }
 if (GUI.Button(_buttonRect3, "BACK")) {
 _page = PAGE.GAMEOVER;
 }
}

// C# user:
…
void ServerHiscore ()
{
 CreateBackgroundBox("SERVER HI-SCORE");
 if (_serverHiscore.isLoaded && (_serverHiscore.userLength > 0))
{
 _scrollServer = GUI.BeginScrollView (new Rect ((Screen.width
- 320)*0.5f, (Screen.height*0.1f) + 80, 320, 180), _scrollServer,
new Rect (0, 0, 300, 30*_serverHiscore.userLength));
 for (int i = 0; i < _serverHiscore.userLength; i++) {
 GUILayout.BeginHorizontal(GUILayout.Width(300));
 GUILayout.Label((i+1).ToString() + ". " + _serverHiscore.
GetUserDataAt(i).name, GUI.skin.GetStyle("Name"));
 GUILayout.Label(_serverHiscore.GetUserDataAt(i).score.
AddCommas(), GUI.skin.GetStyle("Score"));
 GUILayout.EndHorizontal();
 }
 GUI.EndScrollView();
 } else {
 GUI.Label(new Rect((Screen.width-150)*0.5f, (Screen.
height*0.1f)+120, 150, 50), "LOADING...", GUI.skin.
GetStyle("CustomText"));

Let the World See the Carnage – Saving and Loading High Scores

390

 }
 if (GUI.Button(_buttonRect3, "BACK")) {
 _page = PAGE.GAMEOVER;
 }
}

We just created the scroll view for our server high score table. Now, we have finished this
project. We can click on the Play button to see the result.

Objective complete – mini debriefing
In this section, we learned how to use the WWWForm and WWW objects to post and load the
high score from/to the server. We also used the MD5 encryption to encrypt the key before
posting the data to protect it from unwanted users. Then, we used the StartCoroutine()
function to wait for the response from the server.

First, we created the ServerHiScore script to send and receive the user data from the server
database. In the Initialize() function, we set the maximum number of users that will be
shown in the UI. We also set the PHP URL for communication with the server database.

Next, we have the WaitingForResponse() function, which will wait for the response
from the server and check if the sending request succeeds. Then, we checked if there is
any callback function to call. If there is a callback function, we will call it after the
communication has been finished. Finally, we just cleared all data using www.Dispose().

Project 8

391

Then, in the SaveUserData() function, we first created WWWForm. Then, we used
AddField("action", "PostScore");, which will tell PHP that we want to send the
score by setting action to PostScore. The action parameter and PostScore value are
set in the PHP code, which you can see in HiScore.php by navigating to Chapter8 | PHP
in the Project view included with the package. Then, we added hash filed with the MD5
encryption value of the combination of user.name, user.score, and hashKey. We also
added the score and name fields and set their value to the WWWForm object. In the last line,
we used the StartCoroutine(WaitingForResponse(new WWW(_phpUrl, _wwwForm),
null)); function to wait for the response from the server. The StartCoroutine() function
basically takes IEnumerator, which is the WaitingForResponse(new WWW(_phpUrl,
_wwwForm), null)) function here. This function basically creates the WWW object that
sends the WWWForm object to the specific _phpUrl variable. It also takes the function to
callback when it is finished.

For more information on WWWForm and WWW, visit the following links:

ff http://docs.unity3d.com/Documentation/
ScriptReference/WWWForm.html

ff http://docs.unity3d.com/Documentation/
ScriptReference/WWW.html

Then, we created the ParseXMLData() function, which will call the XMLParser. Parse()
function to parse the XML string data that returns from the server, and then, we stored it in
the XMLParser class as the UserData array. Then, we set the UserData array to the list of
UserData using _users.AddRange(XMLParser.users);. At last, we set _isLoaded to
true, which means that the data has been loaded.

Next, we created the LoadUserData() function, which is very similar to the
SaveUserData() function, except that we only send one parameter to PHP, which is
the action field to tell PHP that we want GetScore. Also, in the StartCoroutine()
function, we put the callback function in the WaitingForResponse() function,
which is ParseXMLData. This function will be called after the loading is completed.

Then, we go back to the UIHiScore script and add the ServerHiScore object to show
the server hi-score data in the UI.

Classified intel
In this step, we use AddField("fieldname", "value"); in WWWForm to add the
value and pass it to the server. In this function, fieldname depends on the PHP script
that the programmer has set up.

http://docs.unity3d.com/Documentation/ScriptReference/WWWForm.html
http://docs.unity3d.com/Documentation/ScriptReference/WWWForm.html
http://docs.unity3d.com/Documentation/ScriptReference/WWW.html
http://docs.unity3d.com/Documentation/ScriptReference/WWW.html

Let the World See the Carnage – Saving and Loading High Scores

392

We can open the HiScore.php file in Chapter8 | PHP that is attached with the project
package, and then we can take a look at the following line:

$action = $_POST['action']; //Get request action from Unity

The word action is the same keyword that we assigned in the AddField() function at
the beginning of the SaveUserData() function:

_wwwForm.AddField("action", "PostScore");

This keyword is the value that we will use to communicate between the Unity script and
PHP script on the web server side.

In this PHP file, I've set up the database using MySQL. So, if you have your
own database set up on MySQL, you can adjust this PHP to point to your
database and put the file to your own web hosting.

To create your custom high score database, you can go to the following link to get free
MySQL hosting: http://www.freemysqlhosting.net.

After you finished registration and got the database name ready, you will see something
like the following screenshot:

Now, you can open the HiScore.php file, and then you can change the first and second
lines of this code to match your database information as follows:

$link = mysql_connect("your host","your username","your password") or
die(mysql_error());
mysql_select_db("your database name") or die(mysql_error());

The following list explains the variables being used in the preceding code:

ff your host: This is the information in the Database Host in the preceding screenshot

ff your username: This is the information in the Database Username in the
preceding screenshot

http://www.freemysqlhosting.net

Project 8

393

ff your password: This is the Database Password, which will be in your e-mail

ff your database name: This is the information in the Database Name in the
preceding screenshot

Then, you can log in to your database (www.phpmyadmin.co) and click on your database's
name at the right-hand side of the web page. Then, you can create the table and name it
scores. Next, you need to put each value as shown in the following screenshot:

At last, you can put the HiScore.php file on your web hosting service. Then, you will need
to change phpUrl in the UIHiscore script to your web hosting.

For more information on how to set up MySQL database on your website,
you can go to the following link and download the file: http://www.
webwisesage.com/addons/free_ebook.html.

There is also a video tutorial of how to set up the MySQL database, PHP,
and Flash by Lee Brimelow; just check out the MySQL and PHP parts. You
can find it at the following link: http://www.gotoandlearn.com/
play.php?id=20.

www.phpmyadmin.co
http://www.webwisesage.com/addons/free_ebook.html
http://www.webwisesage.com/addons/free_ebook.html
http://www.gotoandlearn.com/play.php?id=20
http://www.gotoandlearn.com/play.php?id=20

Let the World See the Carnage – Saving and Loading High Scores

394

Mission accomplished
In this project, we have created the scripts that help us save, load, and post the high score
locally and to the server database. We also used the serialization technique to save the list
of users to the bytes array, convert it to the string, and then use PlayerPrefs to save it to
the local machine. Then, we created the script to parse the XML string format to the value.

Finally, I would like to thank all of you for reading this book. I hope that you got some useful
information or some new techniques from this book. Thank you very much!

Hotshot challenges
We have learned many things from this project, such as saving and loading the value locally
using PlayerPrefs and Serialization, using WWWForm to post and load the high
score from the server, encrypting the key code with MD5, and loading the XML string using
XmlDocument. However, these aren't the only things that we can do. Let's try something
out and see how much we learned from this project:

ff Create the save game position for our game using the PlayerPrefs and
Serialization techniques to save the current position of our character
in the game and load it as well

ff Save the game to the file using the PlayerPrefs and Serialization techniques

ff Try to adapt the XMLParser script to load the XML file using xml.
Load(filename.xml) to load the XML file to your game

ff Create your database and PHP on your website using HiScore.php and
changing phpUrl on your website; you can also change the hash key to the
one that you prefer

ff Make the game prompt the user to enter their name only if they actually qualify
for the new high score

ff Post to the server the high score data using the serialization technique and the
MD5 encryption

A
Important Functions

The purpose of this appendix is to explain the meaning of some important methods used
in Unity, referenced from the Unity scripting documentation. The following is a basic Unity
MonoBehaviour diagram:

Basic Unity MonoBehaviour Diagram

Awake()

OnEnable()

Start()

Update()

LateUpdate()

OnDisable()

OnDestroy()

FixedUpdate() OnGUI()

Called once per lifetime

Called every time when
object is active

Called every time when
object is active

Called once per lifetime

Called once per lifetime

Important Functions

396

Awake()
The Awake() function is called when the script instance is being loaded.

Awake is used to initialize any variable or a game state before the game starts. It is called only
once during the lifetime of the script instance. It is also called after all the objects are initialized,
so you can safely speak to other objects or query them using, for example, GameObject.
FindWithTag. Each Awake() function of a GameObject is called in a random order between
objects. As a result of this, you should use Awake() to set up references between scripts and
use Start() to pass any information back and forth. Awake() is always called before any
Start() function. This allows you to order the initialization of scripts.

For C# and Boo users, use Awake() instead of the constructor for
initialization, as the serialized state of the component is undefined at
construction time. Awake() is called once, just like the constructor.

Awake() cannot be a coroutine (we will cover more about coroutines
in Appendix B, Coroutines and Yield).

An example of Awake() is as follows:

// JavaScript user:

private var myTarget : GameObject;
function Awake() {
 myTarget = GameObject.FindWithTag("Target");
}

// C# user:

GameObject myTarget;
void Awake() {
 myTarget = GameObject.FindWithTag("Target");
}

Start()
The Start() function is called just before any of the Update() methods is called.

Start() is only called once in the lifetime of the behavior. The difference between
Awake() and Start() is that Start() is only called if the script instance is enabled.
This allows you to delay any initialization of code until it is really needed.

Appendix A

397

The Start() function is called after all Awake() functions on all script instances have been
called. An example of the Start() function is as follows:

// JavaScript user:

private var myLife : int;
function Start() {
 myLife = 5;
}

// C# user:

int myLife;
void Start() {
 myLife = 5;
}

Update()
The Update() function is called at every frame, if MonoBehaviour is enabled.

MonoBehaviour is the base class for every script derived from Unity.
We can use SetActive(true) to enable or SetActive(false)
to disable the script. For more details, visit the following link:

https://docs.unity3d.com/Documentation/
ScriptReference/MonoBehaviour.html

Update() is the most commonly used function to implement any kind of game behavior.
An example of the Update() function is as follows:

// JavaScript user:

// Moves the object forward 1 meter per second
function Update () {
 transform.Translate(0, 0, Time.deltaTime*1);
}

//C# user:

// Moves the object forward 1 meter per second
void Update () {
 transform.Translate(0f, 0f, Time.deltaTime*1f);
}

https://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.html

Important Functions

398

FixedUpdate()
The FixedUpdate() function is called every fixed framerate frame (or every constant time),
if the MonoBehaviour class is enabled.

The difference between FixedUpdate() and Update() is that
the Update() function is called every frame. On the other hand,
FixedUpdate() is called every fixed framerate frame. This depends on
the Fixed Timestep value that we have set up. This will result in stable physics
calculations for all machines. For more information, visit the following link:

https://docs.unity3d.com/Documentation/Components/
class-TimeManager.html

FixedUpdate() should be used instead of Update() when dealing with physics calculations.
For example, when adding a force to a rigidbody, you have to apply the force to every fixed
frame inside FixedUpdate() instead of every frame inside Update(), because the physics
simulation is carried out in discrete timesteps. The FixedUpdate() function is called
immediately before each step. An example of FixedUpdate() is as follows:

// JavaScript user:

// Apply an upward force to the rigidbody every frame
function FixedUpdate () {
 rigidBody.AddForce(Vector3.up);
}

// C# user:

// Apply an upward force to the rigidbody every frame
void FixedUpdate () {
 rigidBody.AddForce(Vector3.up);
}

LateUpdate()
The LateUpdate() function is called every frame after all the Update() functions have
been called, if the MonoBehaviour class is enabled.

LateUpdate() is called after all Update() functions have been called. This is useful to
order script execution. For example, follow camera should always be implemented in
LateUpdate(), because this tracks objects that may have moved inside Update().

https://docs.unity3d.com/Documentation/Components/class-TimeManager.html
https://docs.unity3d.com/Documentation/Components/class-TimeManager.html

Appendix A

399

An example of LateUpdate() is as follows:

// JavaScript user:

// Moves the object forward 1 meter per second
function LateUpdate () {
 transform.Translate(0, 0, Time.deltaTime*1);
}

// C# user:

// Moves the object forward 1 meter per second
void LateUpdate () {
 transform.Translate(0f, 0f, Time.deltaTime*1f);
}

OnEnable()
The OnEnable() function is called when an object is enabled and active.

This means that the OnEnable() function will be called every time the object is enabled
and active. This is different from the Start() function, which is only called once for the
object's lifetime.

An example of OnEnable() is as follows:

// JavaScript user:

// Reset object position every time the object is active
function OnEnable () {
 transform.position = Vector3.zero;
}

// C# user:

// Reset object position every time the object is active
void OnEnable () {
 transform.position = Vector3.zero;
}

Important Functions

400

OnDisable()
The OnDisable() function is called when an object/behavior is disabled or inactive.

This is also called when an object is destroyed and can be used for any clean-up code.
When scripts are reloaded after compilation has finished, OnDisable() will be called,
followed by an OnEnable() function after the script has been loaded.

An example of OnDisable() is as follows:

// JavaScript user:

function OnDisable () {
 Debug.Log("script becomes inactive");
}

// C# user:

void OnDisable () {
 Debug.Log("script becomes inactive");
}

OnGUI()
The OnGUI() function is called to render and handle GUI events, such as GUI.Button,
GUI.Label, and GUI.Box.

This means that your OnGUI() implementation might be called several times per frame
(one call per event). If the MonoBehaviour object is enabled and is set to false, OnGUI()
will not be called.

An example of OnGUI() is as follows:

// JavaScript user:

//Draw the Button (width=150,height=50) at the position x = 10, y =
10.
function OnGUI () {
 if (GUI.Button(Rect(10, 10, 150, 50), "My Button")) {
 Debug.Log("Hello World");
 }

Appendix A

401

}

// C# user:

//Draw the Button (width=150,height=50) at the position x = 10, y =
10.
void OnGUI () {
 if (GUI.Button(new Rect(10, 10, 150, 50), "My Button")) {
 Debug.Log("Hello World");
 }
}

OnDrawGizmos()
Implement the OnDrawGizmos() function if you want to draw gizmos that are also pickable
and always drawn. This allows you to quickly pick important objects in your scene. You can also
use OnDrawGizmos() to draw a line or different type of gizmos, such as Gizmos.DrawRay,
Gizmos.DrawLine, and Gizmos.DrawWireSphere, which will make it easier for you to
debug the code.

OnDrawGizmos() will use a mouse position that is relative to the
Scene view. This function only works for debugging in the editor.

An example of OnDrawGizmos() is as follows:

// JavaScript user:

var target : Transform;
// Draw the blue line from this object to the target
function OnDrawGizmos () {
 if (target != null) {
 Gizmos.color = Color.Blue;
 Gizmos.DrawLine(transform.position, target.position);
 }
}

// C# user:

Transform target;

Important Functions

402

// Draw the blue line from this object to the target
void OnDrawGizmos () {
 if (target != null) {
 Gizmos.color = Color.Blue;
 Gizmos.DrawLine(transform.position, target.position);
 }
}

References
For more details and references, check out the following Unity scripting document links:

ff http://docs.unity3d.com/Documentation/ScriptReference/
MonoBehaviour.Awake.html

ff http://docs.unity3d.com/Documentation/ScriptReference/
MonoBehaviour.Start.html

ff http://docs.unity3d.com/Documentation/ScriptReference/
MonoBehaviour.Update.html

ff http://docs.unity3d.com/Documentation/ScriptReference/
MonoBehaviour.FixedUpdate.html

ff http://docs.unity3d.com/Documentation/ScriptReference/
MonoBehaviour.LateUpdate.html

ff http://docs.unity3d.com/Documentation/ScriptReference/
MonoBehaviour.OnGUI.html

ff http://docs.unity3d.com/Documentation/ScriptReference/
MonoBehaviour.OnDrawGizmos.html

ff http://docs.unity3d.com/Documentation/ScriptReference/Gizmos.
DrawLine.html

ff http://docs.unity3d.com/Documentation/ScriptReference/
MonoBehaviour.OnEnable.html

ff https://docs.unity3d.com/Documentation/ScriptReference/
MonoBehaviour.OnDisable.html

http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.Awake.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.Awake.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.Start.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.Start.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.Update.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.Update.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.FixedUpdate.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.FixedUpdate.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.LateUpdate.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.LateUpdate.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.OnGUI.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.OnGUI.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.OnDrawGizmos.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.OnDrawGizmos.html
http://docs.unity3d.com/Documentation/ScriptReference/Gizmos.DrawLine.html
http://docs.unity3d.com/Documentation/ScriptReference/Gizmos.DrawLine.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.OnEnable.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.OnEnable.html
https://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.OnDisable.html
https://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.OnDisable.html

B
Coroutines and Yield

This appendix presents a brief review of coroutines and yield, from the Unity
scripting references.

Coroutines
StartCoroutine returns a Coroutine. Instances of this class are only used to reference
these coroutines and do not hold any exposed properties or functions.

A coroutine is a function that can suspend its yield execution until the given
YieldInstruction class finishes calling.

An example of coroutine is as follows:

// JavaScript user:

function Start() {
 // Starting = 0.0
 Debug.Log ("Starting = " + Time.time);
 // Start function WaitAndPrint as a Coroutine
 yield WaitAndPrint();
 // Done WaitAndPrint = 5.0
 Debug.Log ("Done WaitAndPrint = " + Time.time);
}

function WaitAndPrint() {
 //Suspend execution for 5 seconds

Coroutines and Yield

404

 yield WaitForSeconds(5);
 // WaitAndPrint = 5.0
 Debug.Log ("WaitAndPrint = " + Time.time);
}

// C# user:

IEnumerator Start() {
 // Starting = 0.0
 Debug.Log ("Starting = " + Time.time);
 // Start function WaitAndPrint as a Coroutine
 yield return WaitAndPrint();
 // Done WaitAndPrint = 5.0
 Debug.Log ("Done WaitAndPrint = " + Time.time);
}

IEnumerator WaitAndPrint() {
 //Suspend execution for 5 seconds
 yield return new WaitForSeconds(5f);
 // WaitAndPrint = 5.0
 Debug.Log ("WaitAndPrint = " + Time.time);
}

YieldInstruction
When writing a game code, one often ends up needing to script a sequence of events.
This could result in code like the following:

// JavaScript user:

private var state : int = 0;

function Update() {
 if (state == 0) {
 // do step 0
 Debug.Log("Do step 0");
 state = 1;
 return;
 }
 if (state == 1) {
 // do step 1

Appendix B

405

 Debug.Log("Do step 1");
 state = 0;
 return;
 }
}

// C# user:

int state = 0;

void Update() {
 if (state == 0) {
 // do step 0
 Debug.Log("Do step 0");
 state = 1;
 return;
 }
 if (state == 1) {
 // do step 1
 Debug.Log("Do step 1");
 state = 0;
 return;
 }
}

The preceding code basically executes step 0 and step 1 and then goes back to step 0
(as a loop), but if there are more events, execution will happen after step 1 and so on.
Too many if statements can make the code look ugly in the long run. In this case, it's more
convenient to use the yield statement. The yield statement is a special kind of return
that ensures that the function will continue from the line after the yield statement is called
the next time. The result could be something like the following code:

// JavaScript user:

function Start() {
 while (true) { //Use this line instead of Update()
 //do step 0
 Debug.Log("Do step 0");
 yield; //wait for one frame
 //do step 1
 Debug.Log("Do step 1");

Coroutines and Yield

406

 yield; //wait for one frame
 }
}

// C# user

IEnumerator Start() {
 while (true) { //Use this line instead of Update()
 //do step 0
 Debug.Log("Do step 0");
 yield return null; //wait for one frame
 //do step 1
 Debug.Log("Do step 1");
 yield return null; //wait for one frame
 }
}

The preceding code will have a similar result without having a new variable and an extra if
statement to check for each step event.

You can also pass special values to the yield statement to delay the execution of the
Update() function until a certain event has occurred, such as WaitForSeconds,
WaitForFixedUpdate, Coroutine, and StartCoroutine.

You cannot use yield from within Update() or FixedUpdate(), but you
can use StartCoroutine to start a function that can use yield.

WaitForSeconds
WaitForSeconds suspends the coroutine execution for the given amount of seconds.

WaitForSeconds can only be used with a yield statement in coroutines. An example
of WaitForSeconds is as follows:

// JavaScript user:

function Start() {
 // Prints 0
 Debug.Log (Time.time);

Appendix B

407

 // Waits 5 seconds
 yield WaitForSeconds (5);
 // Prints 5.0
 Debug.Log (Time.time);
}

// C# user:

IEnumerator Start() {
 // Prints 0
 Debug.Log (Time.time);
 // Waits 5 seconds
 yield return new WaitForSeconds (5f);
 // Prints 5.0
 Debug.Log (Time.time);
}

You can both stack and chain coroutines.

The following example will execute Do(). We will see that it will call the first line in Do().
Then, it will call the last line in Start() immediately, while waiting for 5 seconds to call
the last script in Do().

// JavaScript user:

function Start() {
 // StartCoroutine(Do()) (In JavaScript, you can also use DO() which
 will get the same result.
 StartCoroutine(Do());
 Debug.Log ("This is printed immediately");
}

function Do() {
 Debug.Log ("Do now");
 yield WaitForSeconds (5); //Wait for 5 seconds
 Debug.Log ("Do 5 seconds later");
}

// C# user:

void Start() {

Coroutines and Yield

408

 StartCoroutine(Do());
 Debug.Log ("This is printed immediately");
}

IEnumerator Do() {
 Debug.Log ("Do now");
 yield return new WaitForSeconds (5f); //Wait for 5 seconds
 Debug.Log ("Do 5 seconds later");
}

The following example will execute Do() and wait until Do() has finished waiting for 5
seconds before continuing its own execution:

// JavaScript user:

//Chain Coroutine
function Start() {
 yield StartCoroutine(Do());
 Debug.Log ("This is printed after 5 seconds");
 Debug.Log ("This is after the Do coroutine has finished execution");
}

function Do() {
 Debug.Log ("Do now");
 yield WaitForSeconds (5); //Wait for 5 seconds
 Debug.Log ("Do 5 seconds later");
}

// C# user:

//Chain Coroutine
IEnumerator Start() {
 yield return StartCoroutine(Do());
 Debug.Log ("This is printed after 5 seconds");
 Debug.Log ("This is after the Do coroutine has finished execution");
}

IEnumerator Do() {
 Debug.Log ("Do now");
 yield return new WaitForSeconds (5f); //Wait for 5 seconds
 Debug.Log ("Do 5 seconds later");
}

Appendix B

409

WaitForFixedUpdate
WaitForFixedUpdate waits until the next frame rate of the FixedUpdate() function.
(For more details on FixedUpdate(), refer to Appendix A, Important Functions.)

WaitForFixedUpdate can only be used with a yield statement in coroutines.

An example of WaitForFixedUpdate is as follows:

// JavaScript user:

function Start() {
 // Wait for FixedUpdate to finished
 yield new WaitForFixedUpdate();
 // Call After FixedUpdate
 Debug.Log ("Call after FixedUpdate");
}

function FixedUpdate() {
 Debug.Log ("FixedUpdate");
}

// C# user

IEnumerator Start() {
 // Wait for FixedUpdate to finished
 yield return new WaitForFixedUpdate();
 // Call After FixedUpdate
 Debug.Log ("Call after FixedUpdate");
}

function FixedUpdate() {
 Debug.Log ("FixedUpdate");
}

StartCoroutine
StartCoroutine starts a coroutine.

The execution of coroutine can be paused at any point using the yield statement. The
yield return value specifies when coroutine is resumed. Coroutines are excellent
when modeling behavior over several frames. Coroutines have virtually no performance
overhead. The StartCoroutine() function always returns a value immediately; therefore,
you can yield the result. This will wait until coroutine has finished execution.

Coroutines and Yield

410

When using JavaScript, it is not necessary to use StartCoroutine; the
compiler will do this for you. However, when writing C# code, you must
call StartCoroutine. (For more details, refer to Appendix C, Major
Differences Between C# and Unity JavaScript.)

In the following example, we will show how to invoke a coroutine and continue executing
the function in parallel:

// JavaScript user:

function Start() {
 // Starting = 0.0
 Debug.Log ("Starting = " + Time.time);
 // StartCoroutine WaitAndPrint (In JavaScript, you can also use
 WaitAndPrint(5.0) which will get the same result.
 StartCoroutine(WaitAndPrint(5.0));
 // Before WaitAndPrint = 5.0
 Debug.Log ("Before WaitAndPrint = " + Time.time);
}

function WaitAndPrint(waitTime : float) {
 //Suspend execution for 5 seconds
 yield WaitForSeconds(waitTime);
 // WaitAndPrint = 5.0
 Debug.Log ("WaitAndPrint = " + Time.time);
}

// C# user:

void Start() {
 // Starting = 0.0
 Debug.Log ("Starting = " + Time.time);
 StartCoroutine(WaitAndPrint(5.0f));
 // Before WaitAndPrint = 5.0
 Debug.Log ("Before WaitAndPrint = " + Time.time);
}

IEnumerator WaitAndPrint(float waitTime) {
 //Suspend execution for 5 seconds
 yield return new WaitForSeconds(waitTime);

Appendix B

411

 // WaitAndPrint = 5.0
 Debug.Log ("WaitAndPrint = " + Time.time);
}

The following example will wait until the WaitAndPrint() function has finished its
execution and then continue executing the rest of the code in the Start() function:

// JavaScript user:

function Start() {
 // Starting = 0.0
 Debug.Log ("Starting = " + Time.time);
 // StartCoroutine WaitAndPrint (In JavaScript, you can also use
 yield WaitAndPrint(5.0) which will get the same result.
 yield StartCoroutine(WaitAndPrint(5.0));
 // Done WaitAndPrint = 5.0
 Debug.Log ("Done WaitAndPrint = " + Time.time);
}

function WaitAndPrint(waitTime : float) {
 //Suspend execution for 5 seconds
 yield WaitForSeconds(waitTime);
 // WaitAndPrint = 5.0
 Debug.Log ("WaitAndPrint = " + Time.time);
}

// C# user:

IEnumerator Start() {
 // Starting = 0.0
 Debug.Log ("Starting = " + Time.time);
 yield return StartCoroutine(WaitAndPrint(5.0f));
 // Done WaitAndPrint = 5.0
 Debug.Log ("Done WaitAndPrint = " + Time.time);
}

IEnumerator WaitAndPrint(float waitTime) {
 //Suspend execution for 5 seconds
 yield return new WaitForSeconds(waitTime);
 // WaitAndPrint = 5.0
 Debug.Log ("WaitAndPrint = " + Time.time);
}

Coroutines and Yield

412

Using StartCoroutine with method name
(string)
In most cases, you want to use the StartCoroutine variation at the start of a code.
However, StartCoroutine using a string method name allows you to use StopCoroutine
with a specific method name.

The downside is that the string version has a higher runtime overhead to
start coroutine, and you can pass only one parameter.

In the following example, we will see how to invoke coroutine using a string name and
stop it:

// JavaScript user:

function Start() {
 // Start Coroutine DoSomething
 StartCoroutine("DoSomething", 5.0);
 // Wait for 2 seconds
 yield WaitForSeconds(2.0);
 // Stop Coroutine DoSomething
 StopCoroutine("DoSomething");
}

function DoSomething (someParameter : float) {
 while (true) {
 // DoSomething Loop
 Debug.Log ("DoSomething Loop = " + Time.time);
 // Yield execution of this coroutine and return to the main
 loop until next frame
 yield;
 }
}

// C# user:

IEnumerator Start() {
 // Start Coroutine DoSomething
 StartCoroutine("DoSomething", 5.0f);

Appendix B

413

 // Wait for 2 seconds
 yield return new WaitForSeconds(2.0f);
 // Stop Coroutine DoSomething
 StopCoroutine("DoSomething");
}

IEnumerator DoSomething (float someParameter) {
 while (true) {
 // DoSomething Loop
 Debug.Log ("DoSomething Loop = " + Time.time);
 // Yield execution of this coroutine and return to the main
 loop until next frame
 yield return null;
 }
}

StopCoroutine
StopCoroutine stops all coroutines for the specific method name running on
this behavior.

Note that only StartCoroutine using a string method name
can be stopped using StopCoroutine.

An example of StopCoroutine is as follows:

// JavaScript user:

function Start() {
 // Start Coroutine DoSomething
 StartCoroutine("DoSomething", 5.0);
 // Wait for 2 seconds
 yield WaitForSeconds(2.0);
 // Stop Coroutine DoSomething
 StopCoroutine("DoSomething");
}

function DoSomething (someParameter : float) {
 while (true) {

Coroutines and Yield

414

 // DoSomething Loop
 Debug.Log ("DoSomething Loop = " + Time.time);
 // Yield execution of this coroutine and return to the main
 loop until next frame
 yield;
 }
}

// C# user:

IEnumerator Start() {
 // Start Coroutine DoSomething
 StartCoroutine("DoSomething", 5.0f);
 // Wait for 2 seconds
 yield return new WaitForSeconds(2.0f);
 // Stop Coroutine DoSomething
 StopCoroutine("DoSomething");
}

IEnumerator DoSomething (float someParameter) {
 while (true) {
 // DoSomething Loop
 Debug.Log ("DoSomething Loop = " + Time.time);
 // Yield execution of this coroutine and return to the main
 loop until next frame
 yield return null;
 }
}

StopAllCoroutines
StopAllCoroutines stops all coroutines running on this behavior.

An example of StopAllCoroutines is as follows:

// JavaScript user:

function Start() {

Appendix B

415

 // Start Coroutine DoSomething
 StartCoroutine("DoSomething", 5.0);
 // Wait for 1 seconds
 yield WaitForSeconds(1.0);
 // Stop All Coroutine
 StopAllCoroutines();
}

function DoSomething (someParameter : float) {
 while (true) {
 // DoSomething Loop
 Debug.Log ("DoSomething Loop = " + Time.time);
 // Yield execution of this coroutine and return to the main
 loop until next frame
 yield;
 }
}

// C# user:

IEnumerator Start() {
 // Start Coroutine DoSomething
 StartCoroutine("DoSomething", 5.0f);
 // Wait for 1 seconds
 yield return new WaitForSeconds(1.0f);
 // Stop All Coroutine
 StopAllCoroutines();
}

IEnumerator DoSomething (float someParameter) {
 while (true) {
 // DoSomething Loop
 Debug.Log ("DoSomething Loop = " + Time.time);
 // Yield execution of this coroutine and return to the main
 loop until next frame
 yield return null;
 }
}

Coroutines and Yield

416

References
For more details and references, please check out the following links from Unity
scripting documents:

ff http://docs.unity3d.com/Documentation/ScriptReference/
YieldInstruction.html

ff http://docs.unity3d.com/Documentation/ScriptReference/
WaitForSeconds.html

ff http://docs.unity3d.com/Documentation/ScriptReference/
WaitForFixedUpdate.html

ff http://docs.unity3d.com/Documentation/ScriptReference/
Coroutine.html

ff http://docs.unity3d.com/Documentation/ScriptReference/
MonoBehaviour.StartCoroutine.html

ff http://docs.unity3d.com/Documentation/ScriptReference/
MonoBehaviour.StopCoroutine.html

ff http://docs.unity3d.com/Documentation/ScriptReference/
MonoBehaviour.StopAllCoroutines.html

http://docs.unity3d.com/Documentation/ScriptReference/YieldInstruction.html
http://docs.unity3d.com/Documentation/ScriptReference/YieldInstruction.html
http://docs.unity3d.com/Documentation/ScriptReference/WaitForSeconds.html
http://docs.unity3d.com/Documentation/ScriptReference/WaitForSeconds.html
http://docs.unity3d.com/Documentation/ScriptReference/WaitForFixedUpdate.html
http://docs.unity3d.com/Documentation/ScriptReference/WaitForFixedUpdate.html
http://docs.unity3d.com/Documentation/ScriptReference/Coroutine.html
http://docs.unity3d.com/Documentation/ScriptReference/Coroutine.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.StartCoroutine.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.StartCoroutine.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.StopCoroutine.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.StopCoroutine.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.StopAllCoroutines.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.StopAllCoroutines.html

C
Major Differences

Between C# and Unity
JavaScript

This appendix will provide a brief reference of the syntactical differences between C# and
JavaScript in Unity. This section references the Unity answer forum:

http://answers.unity3d.com/questions/12911/what-are-the-syntax-
differences-in-c-and-javascript.html

Unity script directives
Unity has a number of script directives, such as RequireComponent; we can find them
at http://docs.unity3d.com/412/Documentation/ScriptReference/20_
class_hierarchy.Attributes.html and http://docs.unity3d.com/Manual/
Attributes.html. The following code illustrates the use of RequireComponent:

// JavaScript user:

@script RequireComponent(RigidBody)

// C# user:

[RequireComponent(typeof(Rigidbody))]

http://answers.unity3d.com/questions/12911/what-are-the-syntax-differences-in-c-and-javascript.html
http://answers.unity3d.com/questions/12911/what-are-the-syntax-differences-in-c-and-javascript.html
http://docs.unity3d.com/412/Documentation/ScriptReference/20_class_hierarchy.Attributes.html
http://docs.unity3d.com/412/Documentation/ScriptReference/20_class_hierarchy.Attributes.html
http://docs.unity3d.com/Manual/Attributes.html
http://docs.unity3d.com/Manual/Attributes.html

Major Differences Between C# and Unity JavaScript

418

Type names
A couple of the basic types are spelled differently in pure Unity C#. In JavaScript, we use
Boolean and String, but in pure Unity C#, we use bool and string, as shown in the
following code:

// JavaScript user:

var isHit : Boolean; //The space between ':' isn't necessary.
var myName : String;

// C# user:

bool isHit;
string myName;

However, there is an exception. If you include System in your C# script, you will be able to
use .NET's String and Boolean classes (uppercase) as shown in the following script:

// C# user:

using System;

Boolean isHit;
String myName;

Variable declaration
Variable declaration is different and includes access and type specification, which are
explained as follows:

ff A JavaScript user: For this, a type specification is not necessary:

var playerLife = 1; //**public** access is default
private var playerLife = 2; //a private var
var myObj : GameObject; //a type is specified (no value
assigned)

ff A C# user: For this, a type is always stated when declaring a variable:

public var playerLife = 1; //a public var
int playerLife = 2; //**private** access is default
public GameObject myObj; a type is specified (no value assigned)

Appendix C

419

Variables with dynamically typed
resolution

Only in JavaScript, variables can have an unspecified type. This only occurs if you don't
assign a value or specify a type while declaring the variable:

// JavaScript user: The type specification is not necessary.
var playerLife : int; //statically typed (because
 type specified)
var playerLife = 2; //statically typed (because
 type is inferred from value
 assigned)
var playerLife; //dynamically typed (because
 neither a type or value is
 specified)

The dynamically typed variables will cause slower performance, and you can run into
casting problems. You can use #pragma strict by including this at the top of a script to
tell Unity to disable the dynamic typing in the script and report compile errors when there
is a dynamic type in the script.

On the other hand, var in C# means that the type of variable being declared on the right-
hand side of the code will be inferred by the compiler, which will be similar to a static type
declaration. However, var cannot be used for the dynamic type:

// C# user:

var playerLife = 2; //This statement is equivalent
int playerLife = 2; //to this statement

Multidimensional array declaration
The multidimensional array for a C# and Unity JavaScript user is very similar to the
following script:

// JavaScript user:

var myArray = new int[8,8]; //8x8 2d int array

// C# user:

int[,] myArray = new int[8,8]; //8x8 2d int array

Major Differences Between C# and Unity JavaScript

420

Character literals not supported
Unity's JavaScript seems to be missing the syntax to declare character literals. This means
you need to get them implicitly by referencing a character index from a string as follows:

// JavaScript user:

var myChar = "a"[0]; //implicitly retrieves the first character of
the string "a"

// C# user:

char myChar = 'a'; //character 'a'

Class declarations
You can define classes in JavaScript in a way that is similar to C#. The following example is a
class named MyClass that inherits from the MonoBehaviour class:

// JavaScript user:

class MyClass extends MonoBehaviour {
 var myVar = 1;
 function Start() {
 Debug.Log("Hello World!");
 }
}

// C# user:

class MyClass : MonoBehaviour {
 public int myVar = 1;
 void Start() {
 Debug.Log("Hello World!");
 }
}

However, in JavaScript, if you're inheriting from MonoBehaviour, you don't need to write
a class body at all. You can also write following the script in JavaScript, which will fetch a
similar result as the preceding JavaScript example:

var myVar = 1;

Appendix C

421

function Start() {
 Debug.Log("Hello World!");
}

Unity will automatically implement an explicit class body for you. You can also write classes
that do not inherit from anything; however, you cannot place these scripts in the game
objects, but you have to instantiate them with the new keyword as follows:

// JavaScript user:

class MyClass {
 var myVar = 1;
 function MyClass() {
 Debug.Log("Hello World!");
 }
}

// C# user:

class MyClass {
 public int myVar = 1;
 void MyClass() {
 Debug.Log("Hello World!");
 }
}

If you are inheriting from MonoBehaviour, you should not use
constructors or destructors. Instead, use the event handler functions
such as Start(), Awake(), and OnEnabled().

Limited interface support
While Unity's JavaScript does support inheritance and interfaces, it has a very limiting caveat:
you can either inherit your class from an existing class or declare one interface:

// JavaScript user: (Only on allowed)

class MyClass extends MyObject implements IMyObject {…}

// C# user:

class MyClass : MonoBehaviour, IMyObject, IMyItem {…}

Major Differences Between C# and Unity JavaScript

422

Generics
The C# syntax supports generics that allow you to use classes and methods, which do not
specifically declare a type. Instead, the type is passed as a parameter when calling the
method or instantiating the class at runtime.

.Net comes with some useful generic classes such as List and Dictionary, and Unity's
own API has some generic functions. They remove the need for some of the verbose casting,
which would otherwise be necessary in C#, as follows:

// JavaScript user:

//Automatically cast the correct type
var someScript : MyScript = GetComponent(MyScript);

//or using the Generic version in JavaScript
var someScript : MyScript = GetComponent.<MyScript>();

// C# user:

//with out Generic
MyScript someScript = (MyScript)GetComponent(typeof(MyScript));
//or using the Generic version in C#
MyScript someScript = GetComponent<MyScript>();

The foreach keyword
C# iterators use foreach instead of for. Also notice the variable declaration within the
for/foreach statement in the following code. C# requires the type of the item contained
in the list to be explicitly declared:

// JavaScript user:

for (var item in itemList) {
 item.DoSomething();
}

// C# user:

foreach (ItemType item in itemList) {
 item.DoSomething();
}

Appendix C

423

The new keyword
In JavaScript, you can create a new instance of an object or struct without using the new
keyword. In C#, using new is mandatory:

// JavaScript user:

var myPosition = Vector3(0,0,0);
var myInstance = MyClass();
//We can also use new keyword in JavaScript
var myInstance = new MyClass();

// C# user:

Vector3 myPosition = new Vector3(0,0,0);
MyClass myInstance = new MyClass();

The yield instruction and coroutine
There are differences syntaxes between C# and JavaScript; they are as follows:

// JavaScript user:

yield WaitForSeconds(3); //pauses for 3 seconds
yield WaitForMyFunction(); //start coroutine

function WaitForMyFunction() {…} //coroutine function

// C# user:

yield return new WaitForSeconds(3); //pauses for 3 seconds
yield return WaitForMyFunction(); //start coroutine

IEnumerator WaitForMyFunction() {…} //coroutine function

JavaScript will automatically generate the return type to IEnumerator
if you put the yield instruction inside the function. On the other hand,
in C#, you will need to specify the return type to IEnumerator.

Major Differences Between C# and Unity JavaScript

424

However, if we want to wait for the user input in C#, which may be over several frames, you
will have to use StartCoroutine. In JavaScript, the compilers will automatically do it for you:

// JavaScript user:

yield WaitForMyFunction(5);
//This is similar to
yield StartCoroutine(WaitForMyFunction(5));

function WaitForMyFunction(waitTime : float) {…}
//coroutine function

// C# user:

//Need to put StartCoroutine
yield return StartCoroutine(WaitForMyFunction(5));

IEnumerator WaitForMyFunction(waitTime : float) {…}
//coroutine function

Casting
JavaScript automatically casts from one type to another, where possible. For example, the
Instantiate command returns a type of Object, as shown in the following code:

// JavaScript user:

//There's no need to cast the result of "Instantiate" provided the
variable's type is declared.
var newObject : GameObject = Instantiate(sourceObject);

// C# user:

// in C#, both the variable and the result of instantiate must be
declared.
// C# first version
GameObject foo = (GameObject) Instantiate(sourceObject);
// C# second version
GameObject foo = Instantiate(sourceObject) as GameObject;

Appendix C

425

There are two different ways of casting in C#. For the first line in the preceding
code, if the object can't be instantiated, it will throw an exception. You will
need to use a try/catch statement to handle this exception properly. The
second line, if it fails, will set foo to null and not throw an exception. Then,
you would just need to test if the returned object is null or not.

Properties with getters/setters
It is possible to define special functions that can be accessed as if they are variables. For
instance, we could say foo.someVar = "testing";, and under the hood, there are get
and set functions that process the testing argument and store it internally. However, they
can also do any other processing on it, for instance, capitalizing the first letter before storing
it. So, you're not just doing a variable assignment, but you're calling a function that sets the
variable, and it can do whatever other functions can do:

// JavaScript user:

private var foo = 8; //"backing store"
function get Foo () : int {
 return foo;
}
function set Foo (value) {
 foo = value;
}

// C# user:

public class MyClass {
private int foo = 8; //"backing store"
public int Foo {
 get {
 return foo;
 }
 set {
 foo = value;
 }
 }
}

Major Differences Between C# and Unity JavaScript

426

Changing struct properties by value
versus by reference

Structures are passed by values in C#, so you cannot change the x, y, or z value of a Vector3.
You need to create a new Vector3 and assign it to the Vector3 that you want. However, in
JavaScript, you can write it as follows:

// JavaScript user:

transform.position.x = 1;

// C# user:

transform.position = new Vector3(1, transform.position.y, transform.
position.z);

Function/method definitions
First of all, terminology in JavaScript uses the term Function, while C# calls these Methods.
They mean the same thing, and most C# coders understand the term Function.

JavaScript functions are declared with the function keyword before the function name.
C# method declarations just use the return type and the method name. The return type is
often void for common Unity events. JavaScript functions are public by default, and you
can specify them as private, if required. C# methods are private by default, and you
can specify that they should be public, if required.

In JavaScript, you can omit the parameter types and the return type from the declaration,
but it's also possible to explicitly specify these (which is sometimes necessary if you run
into type ambiguity or problems):

// JavaScript user:

// a common Unity MonoBehaviour event handler:
function Start () { ...function body here... }

// a private function:
private function TakeDamage (amount) {
 energy -= amount;
}

// a public function with a return type.

Appendix C

427

// the parameter type is "Transform", and the return type is "int"

function GetHitPoint (hp : int) : int {
 return (maxHp – hp);
}

// C# user:

// a common Unity monoBehaviour event handler:
void Start() { ...function body here... }

// a private function:
void TakeDamage(int amount) {
 energy -= amount;
}

// a public function with a return type.
// the parameter type is "Transform", and the return type is "int"

public int GetHitPoint (int hp) {
 return (maxHp – hp);
}

References
For more details and references, please check out the following links:

ff http://answers.unity3d.com/questions/12911/what-are-the-syntax-
differences-in-c-and-javascript.html

ff http://www.unifycommunity.com/wiki/index.php?title=Csharp_
Differences_from_JS

ff http://docs.unity3d.com/Documentation/Manual/
CreatingAndUsingScripts.html

http://answers.unity3d.com/questions/12911/what-are-the-syntax-differences-in-c-and-javascript.html
http://answers.unity3d.com/questions/12911/what-are-the-syntax-differences-in-c-and-javascript.html
http://www.unifycommunity.com/wiki/index.php?title=Csharp_Differences_from_JS
http://www.unifycommunity.com/wiki/index.php?title=Csharp_Differences_from_JS
http://docs.unity3d.com/Documentation/Manual/CreatingAndUsingScripts.html
http://docs.unity3d.com/Documentation/Manual/CreatingAndUsingScripts.html

D
Shaders and Cg/HLSL

Programming

This appendix presents a brief overview of the structure of surface shaders and
Cg/HLSL programming.

Shaders in Unity can be written in one of the following three different ways:

ff Surface shaders: These will probably be the best option if your shader needs to be
affected by the lights and shadows. These shaders also make it easy to write complex
shaders in a compact way—it's a higher level of abstraction for interaction with Unity's
lighting pipeline. Most surface shaders automatically support forward and deferred
lighting (the exception is some very custom lighting models), which allows your shader
to efficiently interact with many real-time lights. You write surface shaders in a couple
of lines of Cg/HLSL, and a lot more code gets autogenerated from that.

Do not use the surface shaders if the shaders have anything to
do with lights, such as image effects or special-effects shaders
(glowing effect and so on), because surface shaders will do the
lighting calculations for no reason.

ff Vertex and fragment shaders: These are your best option to write the image
effect or special-effect shaders. They will be required if your shader doesn't need to
interact with lighting or you need some very exotic effects that the surface shaders
can't handle. Shader programs written in this way are the most flexible way to create
the effect you need (even surface shaders are automatically converted to a bunch
of vertex and fragment shaders), but that comes with more work: you have to write
more code, and it's difficult to make it interact with lighting. These shaders are
written in Cg/HLSL as well.

Shaders and Cg/HLSL Programming

430

ff Fixed function shaders: These need to be written for old hardware that doesn't
support programmable shaders. You will probably want to write fixed function
shaders as an nth fallback to your fancy fragment or surface shaders to make sure
that your game still renders something sensible when it is run on an old hardware
or simpler mobile platforms. Fixed function shaders are entirely written in a
language called ShaderLab, which is similar to Microsoft's FX files or NVIDIA's CgFX.

This is also a good option if your shader doesn't need a fancy effect
such as a 2D game on mobile. This could save your time so that you
can write a shader that supports old and new hardware.

Regardless of which type you choose, the actual code of the shader code will always be
wrapped in ShaderLab, which is used to organize the shader structure. It looks like the
following code:

Shader "MyShader" {
 Properties {
 // All properties go here
 _MyTexture ("My Texture", 2D) = "white" { }
 }
 SubShader {
 // Choose your written style
 // - surface shader or
 // - vertex and fragment shader or
 // - fixed function shader
 }
 SubShader {
 // Optional - A simpler version of the SubShader above that
 can run on older graphics cards
 }
}

However, we will only talk about the surface shaders that we used in Project 3, Shade Your
Hero/Heroine, of this book.

For more information about other shader types, visit the following URLs:
ff ShaderLab: http://docs.unity3d.com/Documentation/

Components/SL-Shader.html
ff Vertex and fragment shaders: http://docs.unity3d.com/

Documentation/Components/SL-ShaderPrograms.html

http://docs.unity3d.com/Documentation/Components/SL-Shader.html
http://docs.unity3d.com/Documentation/Components/SL-Shader.html
http://docs.unity3d.com/Documentation/Components/SL-ShaderPrograms.html
http://docs.unity3d.com/Documentation/Components/SL-ShaderPrograms.html

Appendix D

431

ShaderLab properties
From the preceding example, in the Properties block, we can define the type of
properties, as shown in the following table:

Type Description

name ("display name", Range (min,
max)) = number

This defines a float property, represented as a
slider from min to max in the Inspector view

name ("display name", Color) =
(number,number,number,number)

This defines a color property

name ("display name", 2D) = "name"
{ options }

This defines a 2D texture property

name ("display name", Rect) =
"name" { options }

This defines a rectangle (nonpower of 2)
texture property

name ("display name", Cube) =
"name" { options }

This defines a cubemap texture property

name ("display name", Float) =
number

This defines a float property

name ("display name", Vector) =
(number,number,number,number)

This defines a four-component vector
property

Each property inside the shader is referenced by a name (in Unity, it's common to start
shader property names with an underscore). The property will show up in the Material
inspector as Display name. For each property, a default value is given after the equals
sign as follows:

ff For range and float properties: Its default value is just a single number

ff For color and vector properties: Its default value is four numbers in parentheses

ff For texture (2D, rect, and cube): Its default value is either an empty string or one
of the built-in default textures such as white, black, gray, or bump

An example of the shaderLab properties is as follows:

Properties {
 _MainTex ("Texture ", 2D) = "white" {} // textures
 // color
 _SpecColor ("Specular color", Color) = (0.30,0.85,0.90,1.0)
 _Gloss ("Shininess", Range (1.0,512)) = 80.0 // sliders
}

Shaders and Cg/HLSL Programming

432

Surface shaders
To use the surface shaders, you need to define a surface function (void surf(Input IN,
inout SurfaceOutput o)) that takes any UVs or data you need as an input and fills in
the output structure, SurfaceOutput. SurfaceOutput, which basically describes the
properties of the surface (its albedo color, normal, emission, specularity, and so on).
Then, you write this code in Cg/HLSL.

The surface shaders' compiler then figures out what inputs are needed, what outputs are
filled, and so on and generates actual vertex and pixel shaders as well as rendering passes
to handle forward and deferred rendering.

The surface shaders placed inside the CGPROGRAM...ENDCG block are to be placed inside
the SubShader block, and it uses the #pragma surface ... directive to indicate that it's
a surface shader. You will see that the surface shaders are placed inside the CGPROGRAM and
ENDCG blocks in the following example:

Shader "My Lambert" {
 Properties {
 _MainTex ("Texture", 2D) = "white" {}
 }
 SubShader {
 Tags { "RenderType"="Opaque" }
 LOD 200 //Optional that allows the script to turned the shader
 on or off when the player's hardware didn't support your shader.
 CGPROGRAM
 #pragma surface surf Lambert
 sampler2D _MainTex;

 struct Input {
 float2 uv_MainTex;
 };

 void surf (Input IN, inout SurfaceOutput o) {
 fixed4 c = tex2D (_MainTex, IN.uv_MainTex);
 o.Albedo = c.rgb;
 o.Alpha = c.a;
 }
 ENDCG
 }
 FallBack "Diffuse"
}

Appendix D

433

#pragma surface
The #pragma surface directive is used as follows:

#pragma surface surfaceFunction lightModel [optionalparams]

The required parameters to use this directive are as follows:

ff surfaceFunction: This is used to define which Cg function has the surface
shader code. The function should have the form of void surf (Input IN,
inout SurfaceOutput o), where Input is a structure you have defined. Input
should contain any texture coordinates and extra automatic variables needed by
surface function.

ff lightModel: This is used to define a lighting model to be used. The built-in
models are Lambert (diffuse) and BlinnPhong (specular). You can also write
your own lighting model using the following custom lighting models:

�� half4 LightingName (SurfaceOutput s, half3 lightDir,
half atten);: This is used in forward rendering the path for light
models that are not view-direction dependent (for example, diffuse)

�� half4 LightingName (SurfaceOutput s, half3 lightDir,
half3 viewDir, half atten);: This is used in forward rendering
path for light models that are view-direction dependent

�� half4 LightingName_PrePass (SurfaceOutput s, half4
light);: This is used in the deferred lighting path.

Note that you don't need to declare all functions. A lighting model either uses
view direction or it does not. Similarly, if the lighting model does not work
in deferred lighting, you just do not declare the _PrePass function, and all
shaders that use it will compile to forward rendering only, such as the shader
that we created in Project 3, Shade Your Hero/Heroine. We don't need the
_PrePass function because our shader needs the view direction (viewDir)
and the light direction (lightDir) for our custom lighting function to calculate
the ramp effect for the cartoon style shader (toon shader / cel shader), which is
only available in forward rendering.

Shaders and Cg/HLSL Programming

434

Optional parameters [optionalparams] to use #pragma surface are listed in the
following table:

Type Description

alpha This is the alpha blending mode. This is used for
semitransparent shaders.

alphatest:VariableName This is the alpha testing mode. This is used for
transparent-cutout shaders. The cut-off value is
in the float variable with VariableName.

vertex:VertexFunction This is the custom vertex modification function. See
tree bark shader, for example.

exclude_path:prepass or
exclude_path:forward

This does not generate passes for the given
rendering path.

addshadow This adds shadow caster and collector passes.
This is commonly used with custom vertex
modification so that shadow casting also gets
a procedural vertex animation.

dualforward This uses dual lightmaps in the forward path.

fullforwardshadows This supports all shadow types in the forward
rendering path.

decal:add This is an additive decal shader (for example,
terrain AddPass).

decal:blend This is a semitransparent decal shader.

softvegetation This makes the surface shader render only when
soft vegetation is on.

Noambient This does not apply any ambient lighting or
spherical harmonic lights.

novertexlights This does not apply any spherical harmonics or
per-vertex lights in forward rendering.

nolightmap This disables lightmap support in this shader
(makes a shader smaller).

Noforwardadd This disables forward rendering of an additive pass.
This makes the shader support one full directional
light, with all other lights computed per vertex/SH.
This makes shaders smaller as well.

Appendix D

435

Type Description

approxview This computes normalized view direction per vertex
instead of per pixel for shaders that need it. This is
faster, but view direction is not entirely correct
when the camera gets close to the surface.

halfasview This passes a half-direction vector into the lighting
function instead of view direction. Half direction
will be computed and normalized per vertex. This
is faster, but not entirely correct.

Additionally, you can write #pragma debug inside the CGPROGRAM block, and then the
surface compiler will spit out a lot of comments of the generated code. You can view them
using an open compiled shader in the Shader inspector.

Surface shaders input structure
The input structure, Input, generally has any texture coordinates needed by the shader.
texture coordinates and must be named uv followed by a texture name (or start it with uv2
to use the second texture coordinate set).

An example of surface shader input structure is as follows:

Properties {
 _MainTex ("Texture", 2D) = "white" {}
}
……
 sampler2D _MainTex;
……
 struct Input {
 float2 uv_MainTex;
 };

We can also have additional values that can be put into the Input structure, as mentioned
in the following table:

Type Description

float3 viewDir This will contain the view direction to compute
Parallax effects, rim lighting, and so on.

float4 with COLOR semantic This will contain an interpolated per-vertex color.

float4 screenPos This will contain the screen space position for
reflection effects. This is used by the WetStreet
shader in Dark Unity, for example.

Shaders and Cg/HLSL Programming

436

Type Description

float3 worldPos This will contain the world space position.

float3 worldRefl This will contain the world reflection vector if the
surface shader does not write to o.Normal. See
the Reflect-Diffuse shader, for example.

float3 worldNormal This will contain the world normal vector if the
surface shader does not write to o.Normal.

float3 worldRefl; INTERNAL_
DATA

This will contain the world reflection vector if
the surface shader writes to o.Normal. To get
the reflection vector based on per-pixel normal
map, use WorldReflectionVector (IN,
o.Normal). See the Reflect-Bumped shader
for example.

float3 worldNormal; INTERNAL_
DATA

This will contain the world normal vector if the
surface shader writes to o.Normal. To get the
normal vector based on per-pixel normal map, use
WorldNormalVector (IN, o.Normal).

The SurfaceOutput structure
A standard output structure of surface shaders is as follows:

struct SurfaceOutput {
 fixed3 Albedo;
 fixed3 Normal;
 fixed3 Emission;
 half Specular;
 fixed Gloss;
 fixed Alpha;
};

You can also find it in the Lighting.cginc file inside Unity (unity install path}/
Data/CGIncludes/Lighting.cginc in Windows and /Applications/Unity/Unity.
app/Contents/CGIncludes/Lighting.cginc in Mac).

Cg/HLSL Programming
This section presents a brief idea of how to access the shader properties in the
Cg/HLSL programming and what are the data type and common methods used in
Cg/HLSL programming.

Appendix D

437

Accessing shader properties in Cg/HLSL
A shader can be declared in its properties in a Properties block. If you want to access
some of those properties in Cg/HLSL shader programming, you need to declare a Cg/HLSL
variable with the same name and a matching type.

Consider the following example:

Properties {
 _MainTex ("Texture", 2D) = "white" {}
}

SubShader {
 ……
 CGPROGRAM
 sampler2D _MainTex;
 …

The properties that map to the Cg/HLSL variables are as follows:

ff Color and vector properties map to float4 variables.

ff Range and float properties map to float variables.

ff Texture properties map to sampler2D variables for regular (2D) textures. The CUBE
and RECT textures map to samplerCUBE and samplerRECT variables, respectively.

Data types
Cg/HLSL has six basic data types. Some of them are the same as in C, while others are
especially added for GPU programming. These types are listed in the following table:

Data type Description

float This is a 32-bit floating point number (a high-precision floating point is generally 32
bits, just like the float type in regular programming languages)

half This is a 16-bit floating point number (a medium-precision floating point is generally
16 bits, with a range of -60,000 to +60,000 and 3.3 decimal digits of precision)

int This is a 32-bit integer

fixed This is a 12-bit fixed point number (a low-precision fixed point is generally 11 bits,
with a range of -2.0 to +2.0 and 1/256th precision)

bool This is a boolean variable (FALSE = 0 and TRUE = 1)

sampler* This represents a texture object (sampler1D, sampler2D, sampler3D,
samplerCUBE, or samplerRECT)

Shaders and Cg/HLSL Programming

438

Cg/HLSL also features vector and matrix data types that are based on the basic data types,
such as float3 and float4x4. Such data types are quite common when dealing with 3D
graphics programming. Cg/HLSL also has the struct and array data types, which work
in a way that is similar to their C equivalents.

Common methods to create shaders

Method Description

dot(a, b) This gives the dot product of two vectors.

cross(A, B) This gives the cross product of vectors A and B. A and B must be
three-component vectors.

max(a, b) This gives the maximum of a and b.

min(a, b) This gives the minimum of a and b.

floor(x) This gets the largest integer not greater than x.

round(x) This gets the closest integer to x.

ceil(x) This gets the smallest integer not less than x.

pow(x, y) This computes x raised to the power y.

normalize(v) This returns a vector of length 1 that points in the same direction
as vector v.

saturate(x) This clamps x to the [0, 1] range.

tex2D(sampler, x) This is a 2D texture lookup (the sampled data at the location
indicated by the texture coordinate set in the sampler object).

The methods mentioned in the preceding table are the common methods that you can
use to create your shader with Cg/HLSL. There are a lot of methods that you can also
use in Cg/HLSL.

For more details, you can visit the following site:

http://http.developer.nvidia.com/CgTutorial/cg_tutorial_appendix_e.
html

Note that UnpackNormal(x) is the method that is provided by Unity to
unpack the normal or bump texture, which you can find in the UnityCG.
cginc file inside Unity (unity install path}/Data/CGIncludes/
UnityCG.cginc in Windows and /Applications/Unity/Unity.
app/Contents/CGIncludes/UnityCG.cginc in Mac).

http://http.developer.nvidia.com/CgTutorial/cg_tutorial_appendix_e.html
http://http.developer.nvidia.com/CgTutorial/cg_tutorial_appendix_e.html

Appendix D

439

References
For more details and references, please check out the following links:

ff http://docs.unity3d.com/Documentation/Manual/Shaders.html

ff http://docs.unity3d.com/Documentation/Components/SL-
SurfaceShaders.html

ff http://docs.unity3d.com/Documentation/Components/SL-
PropertiesInPrograms.html

ff https://docs.unity3d.com/Documentation/Components/SL-
Properties.html

ff http://docs.unity3d.com/Documentation/Components/SL-
ShaderPerformance.html

ff http://en.wikipedia.org/wiki/Cg_%28programming_language%29

ff http://http.developer.nvidia.com/CgTutorial/cg_tutorial_
frontmatter.html

http://docs.unity3d.com/Documentation/Manual/Shaders.html
http://docs.unity3d.com/Documentation/Components/SL-SurfaceShaders.html
http://docs.unity3d.com/Documentation/Components/SL-SurfaceShaders.html
http://docs.unity3d.com/Documentation/Components/SL-PropertiesInPrograms.html
http://docs.unity3d.com/Documentation/Components/SL-PropertiesInPrograms.html
https://docs.unity3d.com/Documentation/Components/SL-Properties.html
https://docs.unity3d.com/Documentation/Components/SL-Properties.html
http://docs.unity3d.com/Documentation/Components/SL-ShaderPerformance.html
http://docs.unity3d.com/Documentation/Components/SL-ShaderPerformance.html
http://en.wikipedia.org/wiki/Cg_%28programming_language%29
http://http.developer.nvidia.com/CgTutorial/cg_tutorial_frontmatter.html
http://http.developer.nvidia.com/CgTutorial/cg_tutorial_frontmatter.html

Index
Symbols
2D character

setting up, from sprite sheet 26-29
2D level

setting up 12-24
2D platform game project

2D character, creating from sprite sheet 26-29
2D level, setting up 12-24
character, controlling with PlayerController_2D

class 36-51
character sprite, creating 29-34
collider, setting up 12-24
features 11
Hotshot challenges 59
Hotshot objectives 11
mission accomplished 59
overview 10, 11
requisites 12
trigger event, creating for door game

object 52-58
trigger event, creating for key game

object 52-58
trigger event, creating for replay button 52-58

3D Studio Max
tips, for users 174, 175

_BumpMap property 142
#pragma strict 39
#pragma surface directive

about 433
addshadow parameter 434
alpha parameter 434
alphatest:VariableName parameter 434
approxview parameter 435
decal:add parameter 434

decal:blend parameter 434
dualforward parameter 434
exclude_path:forward parameter 434
exclude_path:prepass parameter 434
fullforwardshadows parameter 434
halfasview parameter 435
lightModel parameter 433
Noambient parameter 434
Noforwardadd parameter 434
nolightmap parameter 434
novertexlights parameter 434
optional parameters 434
softvegetation parameter 434
surfaceFunction parameter 433
vertex:VertexFunction parameter 434

_PrePass function 433
[System.Serializable] 359, 374

A
A* algorithm

about 264
URL 264

AddExplosionForce() function 336
AddForce() function 332
addshadow parameter 434
AddWayPoint() function 296
AI

creating 263
AI behavior

custom editor, creating for WaypointsContainer
script 284-299

enemy movement, creating with AI
script 299-312

features 266
hit-point UI, creating 313-316

442

Hotshot challenges 318
Hotshot objectives 266
mission accomplished 317
mission checklist 266
WaypointsContainer script, creating 267-283
Waypoint script, creating 267-283

AI character
creating 265

AI script
enemy movement, creating with 299-312

Albedo
about 144
URL 144

alpha parameter 434
alphatest:VariableName parameter 434
Ambient light

adding 146-152
Animations inspector

about 175, 176
URL, for information 176

animation splitting
URL, for information 166

animation transitions
URL, for information 187

animator controller
creating 177-186
setting up 209-219

approxview parameter 435
A Star algorithm. See A* algorithm
Awake() function

about 37, 396
example 396

AwayFromWayPoint() function 281

B
Blend Tree

about 220
URL 221

Blinn-Phong 133
bool data type 437
Box2D

URLs 9
BroadcastMessage() function 259
Bump map

creating 132-145

C
C# 36
CameraControl script

features, adding to 221-230
CanShoot() function 302, 312
casting 424, 425
ceil(x) method 438
Cg/HLSL programming

about 436
data types 437
methods, used for creating shaders 438
shader properties, accessing 437

Cg/HLSL variables
properties, mapping to 437

Cg parameter 143
character

controlling, with PlayerController_2D
class 36- 51

character animation
setting up 164-219

character control
third-person camera, creating for 198-205

character control project
animator controller, creating 177-186
character animation, setting up 164-173
character control script, creating 187-198
features 163
Hotshot challenges 206
Hotshot objectives 163
mission accomplished 205
overview 162
requisites 164

character control script
creating 187-198

CharacterControl script
features, adding to 221-230

character sprite
creating 29-34

CheckMax() function 93, 102
class declarations 420, 421
collider

setting up 12-24
Comparer<T> class

URL 365
CompareTo() function

about 355

443

URL 365
components, code snippet

about 142
default 142
display 142
name 142
property type 142

Computer Graphics (CG) 129
ConstantForce component 252
const keyword 48
coroutine

about 403, 423, 424
example 403

Coroutines 58
cross(A, B) method 438
C# user 418
custom editor

creating, for WaypointsContainer
script 284-299

custom lighting model
about 146
URL 152

Custom Style feature 80
Custom Styles property 69

D
decal:add parameter 434
decal:blend parameter 434
Deferred Lighting 157
delegate function 350
destructible wall

creating 332-338
Diffuse map

creating 132-145
diffuse reflection. See Lambert
dot(a, b) method 438
Drag 34
dualforward parameter 434

E
EditorApplication.hierarchyWindowChanged()

function 294
EditorGUILayout object 297
enemy movement

creating, with AI script 299-312

enum type 232
EQUIPMENT tab

about 62, 64
creating 115-127

EquipWindow() function 119
Event class 85
event function 350
exclude_path:forward parameter 434
exclude_path:prepass parameter 434
Exit Time parameter 186

F
FBX import

URL, for information 164
features

adding, to CameraControl script 221-230
adding, to CharacterControl script 221-230

features, 2D platform game project 11
features, character control project 163
final keyword 48, 83
FindProperty 296
Fixed Angle 35
fixed data type 437
fixed function shaders 430
FixedUpdate() function

about 197, 204, 398
Update() function, differences 398
example 398

F key 323
float data type 437
floor(x) method 438
foreach keyword 422
Forward 157
fragment shaders 429
fullforwardshadows parameter 434
function

defining 426

G
game AI

and traditional AI comparison, URL 263
game level 319
generic functions 283
generics 422
GetDirection() function 282

444

GetDirectionToPlayer() function 282
get keyword 99
getters/setters

properties 425
GetWaypointAtIndex() function 299
Gizmos 284
Gizmos.DrawIcon() function 271
Gizmos.DrawLine() 277
Gizmos.DrawWireSphere() function 271
Gizmos() function 317
Gizmos object 267
GUI.BeginGroup() function 315-317
GUI.BeginScrollView() function 126
GUI class

URL 89
GUI.DragWindow() function 89
GUILayout class 89

URL 89
GUI object 63
GUI.SelectionGrid

URL 113
GUI.SelectionGrid parameter 125
GUI skin

customizing, with GUISkin feature 65-81
GUI.tooltip parameter 114

H
halfasview parameter 435
half data type 437
Half Lambert

about 157
adding 153-158

High Level Shader Language. See HLSL
High Level Shading Language. See HLSL
high score

challenges 394
Hiscore scripts, creating 355
LocalHiscore script, creating 366
mission accomplished 394
saving 353
ServerHiScore script, creating 381
UserData script, creating 355
XMLParser script, creating 376

high score table 353
Hiscore scripts

creating 355, 356

hit-point UI
creating 313-316

HLSL 129

I
Immediate Mode GUI (IMGUI) 61
input structure

additional values 435
input structure, surface shaders 435
Instantiate() function 331, 252, 260
int data type 437
interactive environment

challenges 352
creating 319
features 320

interface support 421
Interpolate mode 35
INVENTORY tab

about 62, 64
creating 103-113
GUI.tooltip parameter 114

Invoke() function 252, 253, 260
InvokeRepeating() 253
Is Kinematic property 338
item game object

creating 64
items.SetupScrollBar() 110
ItemWindow() function 113

J
JavaScript user 418
Jump() function 303, 312

L
Lambert 133
laser target scope

creating 231-239
LateUpdate() function

about 202, 204, 228, 398
example 398

layers
about 15
URL, for information 15

lighting model 433

445

Linear Drag 34
Line Renderer component

URL 240
using 240

List<T> method
URL 365

List<T>.Reverse() method
URL 365

LoadUserData() method 385
LocalHiscore script

creating 366-375
LOD (Level of Detail)

about 143
URL 143

M
Mass 34
Mathf.Abs(n) function 201
Mathf.Repeat(t,l) function 201
Mathf.SmoothDampAngle() function 203
Mathf.SmoothDamp() function 203
max(a, b) method 438
MD5 encryption 354
Mecanim 208
Mecanim animation system

about 34, 161
advantages 161
state machine 162
URL, for information 34, 162

menu creation, RPG
checklist 65
EQUIPMENT tab, creating 115-127
GUI skin customization, with GUISkin

feature 65-81
Hotshot challenges 128
Hotshot objectives 64
INVENTORY tab, creating 103-113
menu game object, creating 82-89
mission accomplished 127, 128
STATUS tab, creating 90-103

menu game object
creating 64-89

method
defining 426

method name (string)
StartCoroutine, used with 412

min(a, b) method 438
Minimax algorithm

about 264
URL 264

Mocap 206
MonoBehaviour 397
MonoDevelop 12, 36
MouseLook script

creating 231-239
Move() function 163
multidimensional array declaration 419

N
NavMesh (Navigation Mesh)

about 265
URL 265

new GUI system (uGUI)
URL 61

Noambient parameter 434
Noforwardadd parameter 434
nolightmap parameter 434
normal 140
normalize(v) method 438
novertexlights parameter 434
NVIDIA CG

URL 159
NVIDIA PhysX physics engine 320

O
o.Albedo parameter 144
Off Mesh Links feature

about 265
URL 265

OnAnimatorMove() function
about 163, 197, 226
URL, for information 197

OnDisable() function
about 349, 400
example 400

OnDrawGizmos() function
about 46, 265, 271, 282, 284, 401
example 401

OnEnable() function
about 295, 349, 399
example 399

446

OnGizmos() function 270
OnGUI() function

about 63, 85, 400
example 400

OnTrigger() function 349
Option key 325
Orthographic Projection 24
output structure, surface shaders 436

P
ParseData() function 384
ParseXMLData() function

URL 392
particle effects

creating 241-253
Perspective Projection 25
Phong reflection model 133
Physics2D Material

creating 35, 36
reference link 35

Physics2D.Raycast 51
Physics.OverlapSphere() function 336
Physics.Raycast() function 302, 311, 312
PlayerController_2D class

character, controlling with 36-51
PlayerPref

URL 375
using 366-372

Polygon Physics 2D
URL 21

pow(x, y) method 438

R
radius variable 280
ragdoll object

adding, to AI object 331
creating 321-330

readonly keyword 84
Rect object 89, 126
Rect parameter 89
references 427
references, Cg/HLSL programming 439
RemoveWaypointAtIndex() function 296
rendering path

URL 157

RequireComponent
about 40
URL, for information 40

Restart button 58
Reverse() function 365
Rigidbody 34
Rigidbody2D 34
rigidbody.AddForce() function 331
Rim Light

adding 153-158
rocket launcher creation

about 207-258
animator controller, setting up 209-219
character animation, setting up 209-219
features 208
features, adding to CameraControl

script 221-230
features, adding to CharacterControl

script 221-230
Hotshot challenges 261
Hotshot objectives 208
laser target scope, creating 231-239
mission accomplished 260
mission checklist 209
MouseLook script, creating 231-239
particle effects, creating 241-253
rocket launcher, creating 253-258
rocket prefab, creating 243-253
RocketUI, creating 253-258

rocket prefab
creating 241-253

RocketUI
creating 253-258

rockslide
creating 339-342

Rocks scripts
creating 345-351

RocksTrigger script
creating 343-351

rotation of imported model, fixing
URL 175

round(x) method 438

S
sampler2 143
sampler* data type 437

447

saturate(x) method 438
SaveUserData() method 384
script compilation order

URL 286
serialization 374
serializedObject keyword 298
SerializedProperty class

about 298
advantage 298

ServerHiScore script
about 381
creating 381-390
creating, prerequisite 381

ServerHiScore script variables
your host 392
your password 393
your username 392

SetupScrollBar() function 113, 124
shader creation

about 130, 131
Ambient light, adding 146-152
Bump map, creating 132-145
Diffuse map, creating 132-145
features 132
Half Lambert, adding 153-158
Hotshot challenges 160
Hotshot objectives 132
mission accomplished 159
mission checklist 132
Rim Light, adding 153-158
Specular light, adding 146-152
Toon Ramp, adding 153-158

ShaderLab
about 430
URL 430

ShaderLab properties
about 431
example 431
types 431

shader programming
starting 134-136

shader properties
accessing, in Cg/HLSL 437

shaders
fixed function shaders 430
fragment shaders 429
surface shaders 429

vertex shaders 429
showPath variable 280
Shuriken Particle 208
simple menu

creating 62, 63
softvegetation parameter 434
Sorting Layer

about 25
URL, for information 25

Sort() method
URL 365

Specular light
adding 146-152

sprite object 9
Sprite Renderer

about 25
URL, for information 25

sprite sheet
2D character, setting up from 26-29
URL, for information 10

StartCoroutine
about 409, 411
used, with method name (string) 412

Start() function
about 102, 113, 227, 396
example 397

STATUS tab
about 62, 64
creating 90-103

StatusWindow() function 94, 102
StopAllCoroutines

about 414
example 414

StopCoroutine
about 413
example 413

string.Format() function
about 296
URL 296

struct properties
changing by value, versus by reference 426

Sub-State Machine
URL 219

surfaceFunction parameter 433
surface normal. See normal
surface shaders

#pragma surface directive 433

448

about 130, 429, 432
input structure 435
output structure 436
URL 130

surf() function 146, 154
switch-case statement 97

T
tags

about 15
URL, for information 15

target keyword 297, 298
tex2D() function 144
tex2D(sampler, x) method 438
TexturePacker

about 10
URL 10

third-person camera
creating, for character control 198-205

Toon Ramp
adding 153-158

transform.localEulerAngles parameter 234
trigger area

creating 339-342
type names 418

U
Undo.RecordObject() 296
Unify Community

URL 159
Unity

URL, for documentation 162
URL, for downloading latest version 12

Unity 3D
URL, for documentation 34
URL, for functions 202, 203

Unity 4.3 9
Unity answer forum

URL 417
Unity Asset Store

URL, for downloading 2D project 9
URL, for downloading Mecanim Locomotion

Starter Kit package 206

Unity document
URL 268

Unity JavaScript 36
Unity MonoBehaviour diagram

about 395
Awake() function 396
FixedUpdate() function 398
LateUpdate() function 398
OnDisable() function 400
OnDrawGizmos() function 401
OnEnable() function 399
OnGUI() function 400
Start() function 396
Update() function 397

Unity script directives 417
Unity scripting documents

references 402, 416
Unity ShaderLab forum

URL 159
Unity Shader Reference

URL 159
UnpackNormal() function 144
UnpackNormal(x) method 438
unsupported character literals 420
UpdateAnimator() function 310
Update() function

about 202, 204, 233, 306, 397
example 397
FixedUpdate() function, difference

between 398
UserData script

creating 355-364
uv_BumpMap parameter 143

V
variable declaration 418
variables

with dynamically typed resolution 419
Vector3.Slerp() function

about 192
URL, for information 192

vertex:VertexFunction parameter 434
vertex and fragment shaders

URL 430
Vertex Lit 157
vertex shaders 429

449

W
WaitForFixedUpdate

about 409
example 409

WaitForSeconds
about 406, 407
example 406

WaitForServerResponse() function 383
WaitingForResponse() function 390
Warp Lambert method. See Half Lambert
WaypointsContainer script

creating 267-284
custom editor, creating for 284-299

Waypoint script
creating 267-284

X
XMLParser script

creating 376-380

Y
yield command 58
yield instruction 423, 424
YieldInstruction 404-406
yield return value 409
yield statement 405

Thank you for buying
Unity 4 Game
Development HOTSH T

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our unique
business model allows us to bring you more focused information, giving you more of what you need to
know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be sent
to author@packtpub.com. If your book idea is still at an early stage and you would like to discuss
it first before writing a formal book proposal, contact us; one of our commissioning editors will get in
touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Unity Game Development
Essentials
ISBN: 978-1-84719-818-1 Paperback: 316 pages

Build fully functional, professional 3D games with realistic
environments, sound, dynamic effects, and more!

1.	 Kick start game development, and build
ready-to-play 3D games with ease.

2.	 Understand key concepts in game design including
scripting, physics, instantiation, particle effects,
and more.

3.	 Test and optimize your game to perfection with
essential tips and tricks.

4.	 Written in clear, plain English, this book is packed
with working examples and innovative ideas.

Unity 4.x Cookbook
ISBN: 978-1-84969-042-3 Paperback: 386 pages

Over 100 recipes to spice up your Unity skills

1.	 A wide range of topics are covered, ranging
in complexity, offering something for every
Unity 4 game developer.

2.	 Every recipe provides step-by-step instructions,
followed by an explanation of how it all works,
and alternative approaches or refinements.

3.	 Book developed with the latest version of
Unity (4.x).

Please check www.PacktPub.com for information on our titles

Unity 3.x Game Development
Essentials
Game development with C# and Javascript

ISBN: 978-1-84969-144-4 Paperback: 488 pages

Build fully functional, professional 3D games with realistic
environments, sound, dynamic effects, and more!

1.	 Kick start your game development, and build
ready-to-play 3D games with ease.

2.	 Understand key concepts in game design including
scripting, physics, instantiation, particle effects,
and more.

3.	 Test and optimize your game to perfection with
essential tips and tricks.

4.	 Learn game development in Unity Version 3 or
above, and learn scripting in either C# or JavaScript.

Unity 3 Game Development
Hotshot
ISBN: 978-1-84969-112-3 Paperback: 380 pages

Eight projects specifically designed to exploit Unity's
full potential

1.	 Cool, fun, advanced aspects of Unity Game
Development, from creating a rocket launcher
to building your own destructible game world.

2.	 Master advanced Unity techniques such as surface
shader programming and AI programming.

3.	 Elite Unity programming for those looking to take
their skills to the next level.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Project 1: Develop a Sprite and Platform Game
	Mission briefing
	Setting up a 2D level and collider
	Creating a 2D character and animation
	Controlling the character with the PlayerController_2D class
	Creating a key, door, and replay button
	Mission accomplished
	Hotshot challenges

	Project 2: Create a Menu for an RPG – Add Powerups, Weapons, and Armors
	Mission briefing
	Customizing skin with GUISkin
	Creating a menu object
	Creating the STATUS tab
	Creating the INVENTORY tab
	Creating the EQUIPMENT tab
	Mission accomplished
	Hotshot challenges

	Project 3: Shade Your Hero/Heroine
	Mission briefing
	Shader programming – Diffuse and Bump (normal) maps
	Shader programming – Ambient and Specular light
	Shader programming – Half Lambert, Rim Light, and Toon Ramp
	Mission accomplished
	Hotshot challenges

	Project 4: Add Character Control and Animation to Our Hero/Heroine
	Mission briefing
	Setting up character animation and level
	Creating an animator controller
	Creating a character control script
	Creating a third-person camera to follow our character
	Mission accomplished
	Hotshot challenges

	Project 5: Build a Rocket Launcher!
	Mission briefing
	Setting up a character animation and animator controller
	Adding new features to the CharacterControl and CameraControl scripts
	Creating a MouseLook script and laser target scope
	Creating a rocket prefab and particle effects
	Creating a rocket launcher and RocketUI
	Mission accomplished
	Hotshot challenges

	Project 6: Making AI Appear Smart
	Mission briefing
	Creating the Waypoint and WaypointsContainer scripts
	Creating a custom editor for the WaypointsContainer script
	Creating the enemy movement with AI script
	Creating a hit-point UI
	Mission accomplished
	Hotshot challenges

	Project 7: Forge a Destructible and Interactive Virtual World
	Mission briefing
	Creating a ragdoll object
	Creating a destructible wall
	Creating a rockslide and trigger area
	Creating the RocksTrigger and Rocks scripts
	Mission accomplished
	Hotshot challenges

	Project 8: Let the World See the Carnage – Saving and Loading High Scores
	Mission briefing
	Creating the UserData and Hiscore scripts
	Saving and loading the local high score
	Creating an XMLParser script
	Saving and loading server high score
	Mission accomplished
	Hotshot challenges

	Appendix A: Important Functions
	Awake()
	Start()
	Update()
	FixedUpdate()
	LateUpdate()
	OnEnable()
	OnDisable()
	OnGUI()
	OnDrawGizmos()

	Appendix B: Coroutines and Yield
	Coroutines
	YieldInstruction
	WaitForSeconds
	WaitForFixedUpdate
	StartCoroutine
	StopCoroutine
	StopAllCoroutines

	Appendix C: Major Differences Between C# and Unity JavaScript
	Unity script directives
	Type names
	Variable declaration
	Variables with dynamically typed resolution
	Multidimensional array declaration
	Character literals not supported
	Class declarations
	Limited interface support
	Generics
	The foreach keyword
	The new keyword
	The yield instruction and coroutine
	Casting
	Properties with getters/setters
	Changing struct properties by value versus by reference
	Function/method definitions

	Appendix D: Shaders and Cg/HLSL Programming
	ShaderLab properties
	Surface shaders
	Cg/HLSL Programming

	Index

