
CYAN
MAGENTA

YELLOW
BLACK
PANTONE 123 CV

this print for content only—size & color not accurate 7" x 9-1/4" / CASEBOUND / MALLOY
(0.9375 INCH BULK -- 472 pages -- 50# Thor)

THE EXPERT’S VOICE® IN UML MODELING

Doug Rosenberg and Matt Stephens

Use Case Driven
Object Modeling
with UML
Theory and Practice

Fast-track your project from use cases to working, maintainable code

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Use Case Driven Object Modeling with UML:
Theory and Practice
Dear Reader,

In theory you’d like to be using UML and use cases, but in practice it’s often
difficult. Here are a few reasons why:

• UML is too big. In theory it’s all good, but in practice UML’s size makes it
impractical and causes analysis paralysis. We’ll teach you a UML core subset
and a minimalist process that’s been proven on hundreds of projects.

• Your analysts write vague and ambiguous use cases. In theory the use cases
are abstract, technology-free, and implementation independent, but in
practice they’re vague and ambiguous, so your programmers ignore them.
We’ll teach you how to disambiguate them.

• Your team has difficulty getting from use cases to code. In theory it seems
easy, but in practice something doesn’t quite mesh. The team has difficulty
crossing the gap between “what” and “how.” We’ll unveil secrets of the
“missing link” between analysis and design that have been closely guarded
by goat-herding Druids in darkest Wales for centuries.

• You have dysfunctional requirements. In theory you’re capturing everything
(functional, nonfunctional, and behavior requirements), but in practice these
are all intermangled together. We’ll show you how to disintermangle the
active-voice scenarios from the passive-voice requirements.

• Your team struggles with issues like requirements traceability, test cover-
age, and keeping models and code in sync. In theory tools should help you
with these problems, but in practice you’re not sure how it all fits together
and whether all the requirements have been implemented, even though you
unit test. We’ll show you the latest in automated tools and process support
for these issues.

This book is suitable for classroom use and as a resource for professionals.
We take an example project (the Internet Bookstore) from use cases and
requirements all the way through working Java/Spring code and unit tests, in a
step-by-step approach with dozens of exercises and questions at the back of
each chapter.

Doug Rosenberg and Matt Stephens

Doug Rosenberg,
author of

Use Case Driven Object
Modeling with UML: A
Practical Approach

Applying Use Case Driven
Object Modeling with UML:
An Annotated e-Commerce
Example

Extreme Programming
Refactored: The Case
Against XP (Apress, 2003)

Agile Development with
ICONIX Process: People,
Process, and Pragmatism
(Apress, 2005)

Shelve in
Systems Analysis

User level:
Intermediate–Advanced

www.apress.com
SOURCE CODE ONLINE

THE APRESS ROADMAP

Use Case Driven Object
Modeling with UML:
Theory and Practice

Fast Track UML 2.0
Agile Development with
ICONIX Process: People,

Process, and Pragmatism

Use Case Driven
Object M

odeling w
ith UM

L
Rosenberg,

Stephens
ISBN-13: 978-1-59059-774-3
ISBN-10: 1-59059-774-5

9 781590 597743

90000

Companion
eBook Available

Packed with
examples and

student exercises

Packed with
examples and

student exercises

Matt Stephens, author of

Extreme Programming
Refactored: The Case
Against XP (Apress, 2003)

Agile Development with
ICONIX Process: People,
Process, and Pragmatism
(Apress, 2005)

Companion eBook

See last page for details
on $10 eBook version

www.allitebooks.com

http://www.allitebooks.org

Doug Rosenberg and
Matt Stephens

Use Case Driven Object
Modeling with UML
Theory and Practice

7745fmfinal.qxd 12/13/06 9:23 PM Page i

www.allitebooks.com

http://www.allitebooks.org

Use Case Driven Object Modeling with UML: Theory and Practice

Copyright © 2007 by Doug Rosenberg and Matt Stephens

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-774-3

ISBN-10 (pbk): 1-59059-774-5

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jonathan Gennick
Technical Reviewer: Dr. Charles Suscheck
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Matt Wade

Senior Project Manager: Tracy Brown Collins
Copy Edit Manager: Nicole Flores
Assistant Production Director: Kari Brooks-Copony
Senior Production Editor: Laura Cheu
Compositor: Linda Weidemann, Wolf Creek Press
Proofreader: Nancy Riddiough
Indexer: Toma Mulligan
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com,
or visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every pre-
caution has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The UML model and source code for the example use cases in this book are available to readers at
http://www.apress.com and http://www.iconixprocess.com/InternetBookstore.

7745fmfinal.qxd 12/13/06 9:23 PM Page ii

www.allitebooks.com

http://www.allitebooks.org

For Rob, who has the brightest future of anyone I know.
Keep locating your fastball in unhittable spots,

and good things will continue to happen.

—Doug Rosenberg

To Michelle, for her never-ending patience and support.

—Matt

7745fmfinal.qxd 12/13/06 9:23 PM Page iii

www.allitebooks.com

http://www.allitebooks.org

Contents at a Glance

About the Authors . xv

About the Technical Reviewer. xvii

Acknowledgments . xix

Preface. xxi

Introduction . xxvii

■CHAPTER 1 Introduction to ICONIX Process . 1

PART 1 ■ ■ ■ Requirements Definition
■CHAPTER 2 Domain Modeling . 23

■CHAPTER 3 Use Case Modeling . 49

■CHAPTER 4 Requirements Review . 83

PART 2 ■ ■ ■ Analysis, Conceptual Design, and
Technical Architecture

■CHAPTER 5 Robustness Analysis . 101

■CHAPTER 6 Preliminary Design Review. 143

■CHAPTER 7 Technical Architecture . 159

PART 3 ■ ■ ■ Design and Coding
■CHAPTER 8 Sequence Diagrams . 185

■CHAPTER 9 Critical Design Review . 233

■CHAPTER 10 Implementation: Getting from Detailed Design
to Code. 257

■CHAPTER 11 Code Review and Model Update . 297

iv

7745fmfinal.qxd 12/13/06 9:23 PM Page iv

www.allitebooks.com

http://www.allitebooks.org

PART 4 ■ ■ ■ Testing and Requirements
Traceability

■CHAPTER 12 Design-Driven Testing . 329

■CHAPTER 13 Addressing Requirements. 373

PART 5 ■ ■ ■ Appendixes
■APPENDIX A What’s New in UML 2.0 . 395

■APPENDIX B Spring Bin . 409

■INDEX . 425

v

7745fmfinal.qxd 12/13/06 9:23 PM Page v

www.allitebooks.com

http://www.allitebooks.org

7745fmfinal.qxd 12/13/06 9:23 PM Page vi

www.allitebooks.com

http://www.allitebooks.org

Contents

About the Authors . xv

About the Technical Reviewer. xvii

Acknowledgments . xix

Preface. xxi

Introduction . xxvii

■CHAPTER 1 Introduction to ICONIX Process . 1

ICONIX Process in Theory. 2

Overview: Getting from Use Cases to Source Code 2

Requirements . 4

Analysis/Preliminary Design . 9

Detailed Design . 12

Implementation . 15

Extensions to ICONIX Process . 19

Persona Analysis . 19

Test-Driven Development (TDD) . 19

Driving Test Cases from the Analysis Model . 20

ICONIX Process in Practice: The Internet Bookstore Example 20

Summary . 20

PART 1 ■ ■ ■ Requirements Definition

■CHAPTER 2 Domain Modeling . 23

The 10,000-Foot View . 24

What’s a Domain Model? . 24

Why Start with the Domain Model Instead of Use Cases? 25

Domain Modeling in Theory. 26

Top 10 Domain Modeling Guidelines . 26

Internet Bookstore: Extracting the First-Pass Domain Model
from High-Level Requirements . 30

Internet Bookstore: Second Attempt at the Domain Model. 35

Internet Bookstore: Building Generalization Relationships 37
vii

7745fmfinal.qxd 12/13/06 9:23 PM Page vii

www.allitebooks.com

http://www.allitebooks.org

Domain Modeling in Practice. 39

Exercises . 39

More Practice . 45

Summary . 47

■CHAPTER 3 Use Case Modeling. 49

The 10,000-Foot View . 49

Why Do I Need Use Cases in Addition to
Functional Requirements? . 50

Don’t Forget the Rainy-Day Scenarios . 50

Do an Initial Domain Model Before You Write the Use Cases 50

Driving Your Design (and Your Tests) from the Use Cases. 51

Use Case Modeling in Theory . 51

Top 10 Use Case Modeling Guidelines . 51

Organizing Use Cases into Packages: Internet Bookstore. 61

Use Case Relationship Roundup . 67

Internet Bookstore: Refining Use Cases . 70

Internet Bookstore: Basic and Alternate Courses 72

A Couple of Thoughts on Use Case Templates 74

Use Case or Algorithm? . 76

Use Case Modeling in Practice . 77

Exercises . 77

Exercise Solutions . 78

More Practice . 80

Summary . 81

■CHAPTER 4 Requirements Review . 83

Requirements Review in Theory . 84

Why Review Requirements? . 84

Top 10 Requirements Review Guidelines . 85

Allocating Functional Requirements to Use Cases. 89

Requirements Review in Practice: Internet Bookstore 89

Removing Everything That’s Out of Scope. 90

Naming Participating Domain Objects . 92

Making Sure You Have All the Alternate Courses 93

Checking That the Use Case Text Isn’t Too Abstract 93

Changing Passive Voice to Active Voice . 95

Tracing Each Requirement to Its Use Cases . 96

Summary . 97

■CONTENTSviii

7745fmfinal.qxd 12/13/06 9:23 PM Page viii

www.allitebooks.com

http://www.allitebooks.org

PART 2 ■ ■ ■ Analysis, Conceptual Design, and
Technical Architecture

■CHAPTER 5 Robustness Analysis. 101

The 10,000-Foot View . 101

Where Does Robustness Analysis Fit into the Process? 102

Like Learning to Ride a Bicycle . 102

Anatomy of a Robustness Diagram . 103

Robustness Analysis in Theory . 104

Top 10 Robustness Analysis Guidelines. 104

More About Robustness Diagram Rules. 112

How Do You Perform Robustness Analysis? 114

Updating Your Domain (Static) Model . 125

Robustness Analysis in Practice . 128

Exercises . 128

Exercise Solutions . 132

More Practice . 140

Summary . 141

■CHAPTER 6 Preliminary Design Review . 143

Preliminary Design Review in Theory . 144

Why Do a PDR At All? . 144

Top 10 PDR Guidelines . 145

Preliminary Design Review in Practice: Internet Bookstore 149

PDR for the “Write Customer Review” Robustness Diagram 149

The Finished “Write Customer Review” Robustness Diagram. . . . 155

Summary . 157

■CHAPTER 7 Technical Architecture. 159

The 10,000-Foot View . 160

What Is Technical Architecture? . 160

What Are the Duties of a Technical Architect? 160

Technical Architecture in Theory. 161

Top 10 Technical Architecture Guidelines . 161

Architectural Layering . 162

Technical Architecture in Practice: Internet Bookstore 164

About Spring Framework . 164

Anatomy of Spring Framework . 165

■CONTENTS ix

7745fmfinal.qxd 12/13/06 9:23 PM Page ix

www.allitebooks.com

http://www.allitebooks.org

The Internet Bookstore Architecture. 172

Layered Architecture . 172

Flow of Events . 178

Testability . 179

Web Security. 179

Top 10 Technical Architecture Errors (the “Don’ts”) 180

Summary . 181

PART 3 ■ ■ ■ Design and Coding

■CHAPTER 8 Sequence Diagrams . 185

The 10,000-Foot View . 185

Sequence Diagrams and Detailed OOD . 186

Sequence Diagram Notation . 186

Sequence Diagramming in Theory . 187

Top 10 Sequence Diagramming Guidelines 187

How to Draw a Sequence Diagram: Four Essential Steps 195

Continuing the Internet Bookstore Example 206

Updating Your Class Diagrams As You Go Along 210

Synchronizing the Static and Dynamic Parts of the Model 211

Internet Bookstore: Updating the Static Model 211

Sequence Diagramming in Practice. 217

Exercises . 217

Exercise Solutions . 221

More Practice . 228

Summary . 230

■CHAPTER 9 Critical Design Review. 233

The 10,000-Foot View . 234

Critical Design Review in Theory . 235

Top 10 Critical Design Review Guidelines . 235

Using the Class Diagrams to Find Errors on the
Sequence Diagrams. 238

■CONTENTSx

7745fmfinal.qxd 12/13/06 9:23 PM Page x

Critical Design Review in Practice: Internet Bookstore 238

CDR for the “Show Book Details” Use Case 238

CDR for the “Write Customer Review” Use Case 245

The Updated Bookstore Diagrams . 252

Summary . 255

■CHAPTER 10 Implementation: Getting from Detailed Design
to Code. 257

The 10,000-Foot View . 258

Programmer-Driven Design . 258

Spring Framework . 258

Implementation in Theory: Getting from Design to Code 258

Top 10 Implementation Guidelines . 259

Implementation in Practice: Internet Bookstore . 263

Creating the Database . 263

Preparing the Style Sheet. 265

Mapping Domain (Entity) Classes to Real Classes 266

Implementing the “Show Book Details” Use Case 268

Implementing the “Write Customer Review” Use Case. 278

More Practice . 294

Summary . 295

■CHAPTER 11 Code Review and Model Update . 297

The 10,000-Foot View . 298

Code Review and Model Update in Theory . 298

Top 10 Code Review and Model Update Guidelines. 299

Why Are Code Reviews Necessary After All That
Design Work? . 302

Code Review and Model Update in Practice . 303

Code Review and Model Update Checklist . 304

“Show Book Details” Use Case . 304

“Write Customer Review” Use Case . 309

Future Iterations. 324

Summary . 325

■CONTENTS xi

7745fmfinal.qxd 12/13/06 9:23 PM Page xi

PART 4 ■ ■ ■ Testing and Requirements
Traceability

■CHAPTER 12 Design-Driven Testing . 329

Design-Driven Testing in Theory . 330

Top 10 Design-Driven Testing Guidelines . 330

Different Kinds of Testing . 331

Driving Test Cases from Robustness Diagrams 334

Using the Agile ICONIX/EA Add-in . 336

Driving Unit Tests from the Test Cases. 338

A Quick Introduction to JUnit . 339

Writing Effective Unit Tests. 342

Design-Driven Testing in Practice. 343

Unit Tests for the Internet Bookstore . 344

Top 10 Design-Driven Testing Errors (the “Don’ts”). 369

More Practice . 370

Summary . 371

■CHAPTER 13 Addressing Requirements . 373

Requirements Gathering in Theory. 374

Top 10 Requirements Gathering Guidelines 374

Why Bother Tracking Requirements? . 377

Requirements Allocation and Traceability in Theory 378

Requirements Gathering in Practice. 379

Organizing Requirements in EA: BillyBob 2.0 379

Using a Visual Modeling Tool to Support Requirements 382

More Practice . 389

Summary . 390

■CONTENTSxii

7745fmfinal.qxd 12/13/06 9:23 PM Page xii

PART 5 ■ ■ ■ Appendixes

■APPENDIX A What’s New in UML 2.0 . 395

Overview of Changes in UML 2.0 . 395

Composite Structure Diagrams . 396

Activity and State Diagrams. 399

Sequence and Interaction Overview Diagrams. 401

Timing Diagrams . 404

Component and Deployment Diagrams . 406

What’s Still Missing in UML . 407

■APPENDIX B Spring Bin . 409

Spring in More Detail . 409

A (Very) Brief Example of IoC . 409

Models, Views, and Controllers . 412

Internet Bookstore Design: Spring Details. 414

“Show Book Details” Use Case . 414

“Write Customer Review” Use Case . 416

Internet Bookstore Implementation: Spring Details 417

Folder Structure . 418

Contents of the war\WEB-INF Folder . 418

Contents of the war\WEB-INF\jsp and
war\WEB-INF\jsp\include Folders . 421

Java Package Hierarchy . 422

■INDEX . 425

■CONTENTS xiii

7745fmfinal.qxd 12/13/06 9:23 PM Page xiii

7745fmfinal.qxd 12/13/06 9:23 PM Page xiv

About the Authors

■DOUG ROSENBERG is the founder and president of ICONIX Software
Engineering, Inc. (www.iconixsw.com). Doug spent the first 15 years of his
career writing code for a living before moving on to managing program-
mers, developing software design tools, and teaching object-oriented
analysis and design.

Doug has been providing system development tools and training for
nearly two decades, with particular emphasis on object-oriented methods.

He developed a unified Booch/Rumbaugh/Jacobson design method in 1993 that preceded
Rational’s UML by several years. He has produced more than a dozen multimedia tutorials on
object technology, including “COMPREHENSIVE COM” and “Enterprise Architect for Power
Users,” and is the coauthor of Use Case Driven Object Modeling with UML (Addison-Wesley,
1999) and Applying Use Case Driven Object Modeling with UML (Addison-Wesley, 2001), both
with Kendall Scott, as well as Extreme Programming Refactored: The Case Against XP (Apress,
2003) with Matt Stephens, and Agile Development with ICONIX Process (Apress, 2005) with
Matt Stephens and Mark Collins-Cope.

A few years ago, Doug started a second business, an online travel website
(www.VResorts.com) that features his virtual reality photography and some innovative
mapping software.

■MATT STEPHENS is a Java developer, project leader, and technical architect
based in Central London. He’s been developing software commercially for
over 15 years, and has led many agile projects through successive cus-
tomer releases. He has spoken at a number of software conferences on
OO development topics, and his work appears regularly in a variety of
software journals.

Matt is the coauthor of Extreme Programming Refactored: The Case
Against XP (Apress, 2003) with Doug Rosenberg, and Agile Development with ICONIX Process
(Apress, 2005) with Doug Rosenberg and Mark Collins-Cope.

Catch Matt online at www.softwarereality.com.

xv

7745fmfinal.qxd 12/13/06 9:23 PM Page xv

7745fmfinal.qxd 12/13/06 9:23 PM Page xvi

About the Technical Reviewer

■DR. CHARLES SUSCHECK is an assistant professor of computer information systems at
Colorado State University, Pueblo campus. He specializes in software development method-
ologies and project management, and has over 20 years of professional experience in infor-
mation technology.

Dr. Suscheck has held the positions of process architect, director of research, principal
consultant, and professional trainer at some of the most recognized companies in America.
He has spoken at national and international conferences on topics related to project manage-
ment. Most recently, he’s been heavily involved in delivering the “ICONIX Process Roadmap”
(as defined by the activity diagrams in this book) via the Eclipse Process Framework.

xvii

7745fmfinal.qxd 12/13/06 9:23 PM Page xvii

7745fmfinal.qxd 12/13/06 9:23 PM Page xviii

Acknowledgments

First and foremost, thanks to Gary Cornell for picking up this project midstream.
Thanks to Geoff Sparks and the folks at Sparx Systems for building a great product, for

tailoring it to support ICONIX Process, and for helping us with the UML 2.0 tutorial in
Appendix A.

Thanks to Philip Nortey for his valuable feedback and his contribution to the chapter
on design-driven testing; to Chuck Suscheck for his reviews and insights, especially about the
student exercises; and to Mark Collins-Cope for his contribution to the architecture chapter.

And thanks, of course, to the Apress team: Gary; our editor, Jonathan Gennick; “The PM,”
Tracy Brown-Collins (Queen of the 48-hour chapter-editing turnaround deadline), without whose
schedule this project would have forever remained in “manuscript paralysis”; “The World’s Great-
est Copy Editor” (once again), Nicole Flores; Diana Van Winkle for the outstanding design; and
our production editor, Laura Cheu.

xix

7745fmfinal.qxd 12/13/06 9:23 PM Page xix

www.allitebooks.com

http://www.allitebooks.org

7745fmfinal.qxd 12/13/06 9:23 PM Page xx

Preface

Matt’s Preface
This book illustrates how to get from use cases to working, maintainable source code in as few
steps as possible . . . but without cutting the essential corners. It’s also about how to minimize
the amount of rework you need to do once you’ve gotten to source code.

Learning by Doing
In this book we’ve tried to capture the essential qualities of Doug’s ICONIX training courses—
that is, the “magic qualities” of learning by doing. The ICONIX Jumpstart courses are very
practical and hands-on; they draw students in by encouraging them to learn new skills by
practicing, often on the real projects that they’ll be returning to once the course is finished.

This idea of learning by doing has long been recognized as an optimal form of education.
Even at the start of the twentieth century, John Dewey, an American psychologist and educa-
tional reformer, recognized that learning from experience gives rise to increasing productivity.
The key is to engage the brain with practical tasks rather than to fall into the all-too-familiar
“study trap” of rote learning. Memorizing long lists of names or API functions might help
someone score highly on a test, but it isn’t the same as understanding a subject in depth. For
one thing, people tend not to retain information for very long if they’ve simply memorized it.

In this book, we do several things to avoid the “rote learning” trap. We walk through exam-
ple diagrams, each starting with a blank screen, and show the steps—and, essentially, the
thought process—involved in creating the various types of diagrams. Each step in the ICONIX
Process finishes with a review. For the review milestones, we’ve had some fun and created fic-
tional dialogues between a reviewer and a developer, to demonstrate the sorts of issues that
reviewers or senior developers should address at each stage. We also highlight the most com-
mon (and the most dangerous) mistakes that developers tend to make.

A key part of learning by doing concerns learning from your mistakes. From the day
we’re born, we learn by discovering how not to do things, and then trying over and over until
we get it right. Experts eventually “perfect” their art because they no longer make mistakes (at
least none that they’ll admit to!). So again, we’ve applied the principle in this book and created
an Internet Bookstore example that we follow from use cases to source code, making plenty of
“deliberate mistakes” along the way, which then get corrected. Also, throughout the book,
you’ll find workbook exercises, student exercises, and inline exercises within the chapters.
(See the “Introduction” section for more information about these different types of exercises.)

The large number of exercises and step-by-step examples should help to explain why this
book contains around 400 pages, to describe a process that is essentially “minimal yet suffi-
cient.” You could say that it’s a 150-page book at heart, but it’s packed with an unusual number
of exercises and examples. It’s safe to say that after reading this book and completing all the
exercises, you’ll have a thorough, in-depth understanding of use case–driven object modeling!

xxi

7745fmfinal.qxd 12/13/06 9:23 PM Page xxi

ICONIX: A Pluggable Process
ICONIX Process is a “cookbook” process in that it describes a series of specific steps that we’ve
found work really well on many different projects. However, it doesn’t prescribe the project
life-cycle side of things in the way that most other development methodologies do.

So the decision of whether to do just a little bit of up-front modeling before code (one use
case at a time) or model all the use cases first before coding is entirely yours to make. You can
be as agile (with short iterations and quick, successive releases) or as “waterfall” (first writing
all the requirements, then doing all the design, and then writing all the code) as befits your
project, and still be following ICONIX Process.1

For this reason, the process should plug neatly into other development methodologies,
as it covers the analysis and design steps but doesn’t make any fixed assumptions about the
project life cycle. But however you choose to apply the process to your own projects, we hope
you’ll start to see positive results very quickly.

Matt Stephens
Software Reality, www.softwarereality.com

Doug’s Preface
It was 13 or 14 years ago, somewhere around 1992 or 1993, when one of my first training
clients, Dan Mosten of Philip Morris in New York, said to me, “You should write a cookbook
on how to design for OO. My people like cookbooks.”

At that time, Grady Booch was at Rational, Jim Rumbaugh was at GE writing books about
OMT, and Ivar Jacobson was in Sweden working on his Objectory CASE Tool. There was no
UML, no Java language, no C#/.NET, and the Internet itself largely existed only in universities.
Smalltalk and C++ were the dominant object-oriented (OO) languages. The ancestor of Ratio-
nal Rose was being developed by Jon Hopkins at Palladio Software as a Booch diagramming
tool for the PC. There was no eXtreme Programming (jumping too quickly to code was known
as “hacking” back then), and no Agile Manifesto had yet declared tools and process to be
second-class citizens.

The More Things Change, the More They Stay the Same
At ICONIX, we were trying to make some sense out of OO analysis and design (like everybody
else), and our efforts produced a tool called ObjectModeler, which supported Booch, Rum-
baugh (OMT), and Jacobson (Objectory) methods. We got into training because we had
to—nobody would buy our object-oriented analysis and design (OOAD) tool if they didn’t
understand OOAD.

We synthesized what is now known as ICONIX Process (and was originally called “A Uni-
fied Object Modeling Approach”) from what we felt were the best aspects of the three method-
ologies that were combined a few years later to form the UML. As we did this, it seemed clear
that the art of driving object models from use cases ought to be the core of our approach, and

■PREFACExxii

1. Most projects benefit from being somewhere between these two extremes. We show how to fit ICONIX
Process into an “ideal medium” agile project life cycle in this book’s companion volume, Agile Devel-
opment with ICONIX Process (Apress, 2005).

7745fmfinal.qxd 12/13/06 9:23 PM Page xxii

as we gained experience in teaching it to clients, it became obvious that Jacobson’s approach
(use cases, robustness diagrams, and sequence diagrams) really worked pretty well.

In fact it continually amazed us how well it worked on a wider and wider range of proj-
ects. Experience in teaching the process convinced us that the “missing link” between
requirements and design was the robustness diagram, and when UML was created and this
diagram got relegated to an obscure appendix in the UML specification, we were seriously
concerned that it would become a lost art form.

Our training business was given a bit of a boost when UML came into existence, as sud-
denly a lot more people were interested in how to do OOAD using a combined Jacobson/
Rumbaugh/Booch approach, while our tools business (being Macintosh-based) didn’t fare
as well.

So ICONIX became a training company instead of a tools company, and, as our experi-
ence delivering training grew, there eventually came an opportunity to write a book: Use Case
Driven Object Modeling (UCDOM), which I wrote with Kendall Scott. One of the reviewers of
that book, Greg Wilson of Dr. Dobbs Journal, suggested that we write an example-intensive
companion workbook, which we did. Applying Use Case Driven Object Modeling (AUCDOM),
built around the Internet Bookstore example, was published a few years later.

The Truth About Disambiguation
Meanwhile, we continued to deliver training, year after year, and (as far as we could tell) our
clients continued to succeed with it. At least, they kept hiring us back to teach additional
classes, which was the best metric we could think of for judging this.

OO technologies such as CORBA and COM appeared on the scene, followed by Java,
DCOM, EJBs, C#, and .NET, and our use case–driven approach just kept right on working
without skipping a beat. Occasionally we’d sit back and ponder why it hadn’t broken, and it
seemed like we (following in Ivar Jacobson’s footsteps) had hit on a systematic approach that
provided the answers to some fundamentally important questions that addressed the issue
of how to get from use cases to code. This approach involved things like understanding all
the scenarios and user interactions (both sunny- and rainy-day scenarios) before trying to
do design; taking a little bit of extra time to disambiguate the behavior requirements before
attacking detailed design issues; and focusing on “object discovery” first and “behavior allo-
cation” (assigning operations to classes) later.

As the years went by and the number of training classes grew from dozens to hundreds, it
became increasingly obvious that the notion of disambiguating behavior requirements using
robustness diagrams was one of the most important “fundamental truths” that had emerged
from Jacobson’s work.

We can state that fundamental truth as follows: one of the main reasons that program-
mers get frustrated by attempts to bring analysis and design (and especially use cases) into
their projects is that they are generally given vague and ambiguous requirements to design
against. And the reason for so much ambiguity in use cases is that so many of the books
and gurus out there preach “abstract, essential, technology-free, and implementation-
independent” as the right way to write use cases.

To carry it one small step further, I’ll make the following claim: if you hand a programmer
an abstract, technology-free, implementation-independent, “essential” use case, that pro-
grammer will find the use case to be vague, ambiguous, incomplete, and therefore incorrect.

■PREFACE xxiii

7745fmfinal.qxd 12/13/06 9:23 PM Page xxiii

ICONIX Process seems to resonate better with programmers than many other approaches
to use cases and UML/OOAD because it actually forces the use cases into concrete, tangible,
and specific statements of required system behavior that programmers can deal with effi-
ciently. If there’s a secret to all of this, that’s it.

What’s New
I took a writing detour for a few years (while continuing to deliver training in ICONIX Process)
and Matt Stephens and I wrote Extreme Programming Refactored: The Case Against XP 2 and
Agile Modeling with ICONIX Process 3 for Apress. Matt and I discovered that we work pretty
well together, so he’s joined me for the current effort. Meanwhile, Use Case Driven Object Mod-
eling continues to sell and reached somewhere around 45,000 copies, including Chinese,
Japanese, and Korean editions the last time I checked.

When we decided to do an update, we determined that there were a number of things
that we could do that might justify a new edition (aka this book), including the following:

■PREFACExxiv

FOOTLOOSE AND TECHNOLOGY-FREE

Without disambiguation, analysts write “essential, abstract, technology-free, and implementation-
independent” use cases. The programmers who must read these use cases are, from their perspective,
reading “vague, ambiguous, incomplete, and incorrect” use cases.

These use cases don’t have enough detail to allow programmers to get to code while driving the
OO design from the use cases. So, the use case–driven process doesn’t work very well without robustness
analysis (a technique we describe in detail in this book).

2. See www.softwarereality.com/ExtremeProgrammingRefactored.jsp.

3. See www.softwarereality.com/AgileDevelopment.jsp.

7745fmfinal.qxd 12/13/06 9:23 PM Page xxiv

• Merge UCDOM and AUCDOM into a single title, all based around the Internet Book-
store example

• Add student exercises, with the idea that some universities might start using the book
as a text

• Create “top 10 to-do” lists, in addition to the “top 10 error” lists we already had

• Carry the Internet Bookstore forward all the way through code and test

• Update the process with a few new tricks we’ve learned over the years, and fully lever-
age some advances in modeling tools

• Update the book to be current with the new UML 2.0 specification (and with Ivar
Jacobson’s new ideas on aspect-oriented programming [AOP])

As you’ll see, these goals have resulted in a typical chapter structure that’s in three parts:
“Theory” (the process explained, using the Internet Bookstore as a running example), “Prac-
tice” (workbook exercises), and “More Practice” (student exercises). Matt went ahead and
implemented a small Internet bookstore in Java, complete with unit tests driven from the use
cases, which has allowed us to extend the book both in breadth and depth over the original
titles (thanks, Matt).

We think that we’ve improved upon the original books in a number of ways, and we hope
that you agree and like the result.

Doug Rosenberg
ICONIX, www.iconixsw.com

■PREFACE xxv

7745fmfinal.qxd 12/13/06 9:23 PM Page xxv

7745fmfinal.qxd 12/13/06 9:23 PM Page xxvi

Introduction

The difference between “theory” and “practice” is that in theory there is no difference

between theory and practice, but in practice, there is.

Doug has been using this phrase to open each and every training class for so long now that
he’s forgotten where he first heard it. Matt did some research and found that it’s commonly
credited to a Jan L. A. van de Snepscheut, who, in addition to having a wonderful name, was
quite a distinguished professor at Caltech.4

Matt also found the quote attributed to Yogi Berra, who said, “In theory there is no differ-
ence between theory and practice. In practice there is.”5 This makes us wonder if Professor
Snepscheut might have been a baseball fan, or if Yogi made a practice of attending lectures at
Caltech in the off-season, but no matter—they were both right.

Regardless of who said it first, we like to apply this statement to UML modeling, because,
to be blunt, UML is way too big. A project trying to ingest all of UML into its working practices
resembles a python that has just swallowed a pig. It’s going to take an awfully long time to
digest, and your project probably can’t afford it.

The Unified Modeling Language User Guide by Grady Booch, James Rumbaugh, and Ivar
Jacobson (Addison-Wesley, 1998) tells us that “you can do 80% of your modeling with 20% of
the UML” somewhere after page 400.6 They would have saved the industry many millions (bil-
lions?) of dollars and horrific cases of analysis paralysis (see the upcoming sidebar titled “The
Mysterious Case of Analysis Paralysis”) if they had said that in the Introduction, but they did-
n’t. To compound the felony, they never tell us which 20% of UML is the useful part.

Most people that we meet usually want to apply UML in the up-front stages of their proj-
ect. And most of them usually want to start their analysis process with use cases. So, in our
search for the “minimal, yet sufficient” core subset of UML, we focus on the question, How
do you get from use cases to code?

So, in theory, everything in the UML is useful, but in practice, a whole lot of people and
projects need to know how to drive an OO software design from use cases. And they also need
to know which diagrams from the UML directly help to accomplish this.

This book explains the minimalist, core subset of UML and the thought process behind
using it to drive OO software designs from use cases (collectively referred to as ICONIX
Process), with an eye toward the practical as opposed to the theoretical. We hope the journey
will be both informative and entertaining.

xxvii

4. Read Edgser W. Djikstra’s “In Memoriam” for Professor Snepscheut at www.cs.utexas.edu/users/EWD/
transcriptions/EWD11xx/EWD1177.html.

5. More Yogi-isms can be found here: http://en.wikiquote.org/wiki/Yogi_Berra. Yogi also said, “It’s
tough to make predictions, especially about the future,” which clearly applies to software cost estima-
tion, and “It was hard to have a conversation with anyone; there were so many people talking,” which
is applicable to the “all the programmers in one big room” XP working environment.

6. See page 431 of the first edition.

7745fmfinal.qxd 12/13/06 9:23 PM Page xxvii

■INTRODUCTIONxxviii

THE MYSTERIOUS CASE OF ANALYSIS PARALYSIS

It was a blustery, cold, rainy night at our flat on Baker Street. The howl of the wind whipping raindrops against
the windows could be heard over Holmes’ violin as I read the paper in front of the fireplace. Mrs. Hudson had
just cleared away the dishes from our late supper of pork pie and beans, when Holmes suddenly paused in the
aria he was playing, sat bolt upright in his chair, and exclaimed, “Watson, the game’s afoot!”

A few moments later, our good friend Inspector Lestrade from Scotland Yard clattered up the stairs and
burst in the doorway, exclaiming, “Thank goodness you’re home, Mr. Holmes—you’ve got to come quickly!”

“Come in, Lestrade. Pray take a seat by the fire and tell us every detail,” said Holmes.
“They’re all dead, Mr. Holmes, every one of them—the whole project’s dead! And no signs of violence,

not a mark on any of them!” said Lestrade.
“Who’s dead?” I asked.
“The entire staff of Scotland Yard’s new automated fingerprint recognition system,” Lestrade responded.

“The whole technical staff . . . sitting dead right in the conference room . . . as if they’d been frozen to their
chairs!”

“Has anything been touched?” asked Holmes.
“No, I’ve left the strictest instructions that the conference room be completely sealed off until you could

inspect it,” said Lestrade.
“Most excellent,” murmured Holmes. “You are learning, Lestrade. Come along, Watson.” Grabbing our

coats and hats, we hastened down to Lestrade’s waiting hansom cab.
We arrived shortly at Scotland Yard and were escorted to the conference room, where we were con-

fronted by a bizarre and grisly death scene. Still in their seats, but struck down by some mysterious assassin,
was the entire staff of the new automated fingerprint recognition project. Holmes walked around the room
excitedly, his highly trained senses alert for any sort of clue. He paused at the whiteboard, and again at a
stack of UML books on the table.

“You see, Mr. Holmes, they’re all dead, and not a mark on any of them. How could a whole project just
die like that?” asked Lestrade.

“Elementary, my dear Lestrade. A clear case of that obscure poison from the Amazon jungle known as
analysisparalysisflagrantis. Perhaps you’ve seen my monograph on the topic? No? Tut, tut,” murmured
Holmes.

“But Holmes, how can you be sure?” I queried. “All I can see is these UML books scattered around the
table. Here’s one called Fully Dressed Use Cases: The Hallway Closet Approach by Professor Moriarty. It
suggests you should stuff everything you can think of into your use cases, just like you do with the hallway
closet,” I said.

“You see, Watson, but you do not observe. Notice the three-day growth of beard on all the corpses, and
the scrawls of <<includes>> and <<extends>> on the whiteboards?” asked Holmes.

“Sure enough, Mr. Holmes,” said Lestrade. “Even the women have grown beards!”
“Great Scott!” I exclaimed. “Gives me the shivers.”
“Analysis paralysis, Watson,” said Holmes. “The second fastest killer of software projects, after

DoingTheSimplestThingThatCanPossiblyWork, and nearly as dangerous. It’s caused by a lethal overdose of
formality and strict adherence to the UML semantics documentation. Moriarty’s been up to his evil tricks
again. You see the hollow expressions on the victims’ faces, caused by interminable meetings spent debating
topics of marginal uselessness. The despair and the anguish. The feverish search for a practical approach
instead of highbrow theories. And all so easily avoidable,” he sighed. “Come along, Watson, we have arrived
too late.”

We headed homeward toward Baker Street and the fireplace.

7745fmfinal.qxd 12/13/06 9:23 PM Page xxviii

Theory, in Practice
Each chapter in this book starts with the theory, and then explores said theory using the Inter-
net Bookstore project. Over the course of the book, we’ll demonstrate, in practice, the theory
of getting from use cases to source code, using the Internet Bookstore as the main example
throughout.

The practice doesn’t stop there, though. This book also contains practical exercises of var-
ious types, which we describe here.

Workbook Exercises
It’s been clear for some time that the process of reviewing models is critically important and
not well understood by many folks. So, in this book, we dissect the design of the Internet
Bookstore, step by step, in great detail. This involves showing many common mistakes, and
then showing the relevant pieces of the model with their mistakes corrected.

We’ve been teaching workshops using the Internet Bookstore example for many years,
and as a result we have a rich source of classroom UML models with real student mistakes in
them. We’ve collected some of our favorite mistakes—that is, the kinds of mistakes we saw
repeated over and over again—and turned these into workbook exercises that you can find at
the end of many of the chapters.

The following aspects are common to each set of exercises:

• There’s an example diagram, with some errors intentionally left in.

• There’s a corrected version of the diagram a few pages later. Corrections to the errors
presented on the associated “bad” page are explicitly indicated; explanations of the
mistakes are provided in detail.

Student Exercises
At the end of most chapters in the “More Practice” section, you’ll find student exercises to help
you to test whether you truly “got” what the chapter is about. These exercises are in the form
of more traditional numbered questions, and can thus be assigned as tasks for students.

For this reason, we don’t provide the answers to these exercises in the book, although
of course it’s possible to learn the answers by reading and understanding the chapters!
We do plan to provide some sort of “teacher’s guide” material on the book’s website,
www.iconixprocess.com. The exact form of this teacher’s guide has yet to be determined,
so check the website for details.

Inline Exercises Within the Chapters
Getting things right first time is great, but getting something wrong initially and then learning
from your mistakes is a much better way to learn. Because of the way your brain is wired, you
end up with a deeper understanding of the subject that way.

As we develop the example Internet Bookstore application through the course of the
book, we don’t just show the right thing to do next. We slip some “deliberate” mistakes into the
diagrams, and then discover and correct them later (usually in the review chapters). However,
unlike the “More Practice” exercises (where we do reveal the errors, in great detail), we don’t

■INTRODUCTION xxix

7745fmfinal.qxd 12/13/06 9:23 PM Page xxix

www.allitebooks.com

http://www.allitebooks.org

tell you precisely what the mistake is for these inline exercises. Instead, we provide a clue as to
the nature of the error, and then invite you to scrutinize the diagram (and the relevant review
chapter) and figure out what’s wrong with it.

Trying to figure out what’s wrong in the diagram is a good way to learn, but there’s
another element to this. Notice that we didn’t say “the answer can be found on page 141” or
“check the list of answers at the end of this chapter,” as that would be too easy. An important
part of the learning process is in searching through the next chapter, looking for the para-
graph that reveals the answer. You’ll be surprised how well you learn while you’re hunting
down the solution to a particular problem.

Cool set of premises, aren’t they? We’re not aware of another book like this one, and
we’re hoping you’ll find it useful in your efforts to apply use case–driven object modeling
with UML.

Top 10 Things People Who Use ICONIX Process Like About It
Each chapter in this book kicks off with a top 10 list of guidelines, and the first half of each
chapter is structured around its top 10 list. For this Introduction, we’ve put together a list of
the top 10 comments that we’ve heard from clients who’ve applied ICONIX Process on their
own projects.

10. The process uses a core subset of UML.

(We’d rather learn 4 diagrams than 14 . . .)

9. It actually gets me all the way to code.

(I have 13 use case books on my shelf that don’t get within 50 miles of code.)

8. It’s traceable from one step to the next.

7. It addresses both sunny- and rainy-day scenarios.

(If another one of my programmers tells me they’re “Doing The Simplest Thing That
Could Possibly Work” [DTSTTCPW], I think I’m gonna scream.)

6. It assumes that the requirements I’m initially given are vague, ambiguous, incomplete,
and incorrect.

(Have Doug and Matt actually met our business analysts?)

5. It actually drives the OO design from the use cases.

(I know RUP says that it’s use case–driven, but I get lost somewhere around the Elabo-
ration phase.)

4. It works well in an “agile” (short iteration, small increment) environment.

(I wish somebody would write a book on how to do Agile/ICONIX, though.)7

■INTRODUCTIONxxx

7. We did: Agile Development with ICONIX Process (Apress, 2005).

7745fmfinal.qxd 12/13/06 9:23 PM Page xxx

0c8b62c78daaa2d101c6afa8a1dc3480

3. It doesn’t drown me in five-syllable buzzwords.

(What about multiple polymorphic inheritance, anyway?)8

2. It operates at a tangible level where the use cases talk about what the users are doing on
the screens, and there are no huge use case templates.

(In other words, the use cases aren’t abstract, essential, technology-free, or implemen-
tation independent.)

1. It’s a practical approach that’s been proven to work in the real world, on hundreds of
projects.

■INTRODUCTION xxxi

8. Although we do have fun making up new buzzwords and phrases, like “disintermangling dysfunc-
tional requirements.”

7745fmfinal.qxd 12/13/06 9:23 PM Page xxxi

7745fmfinal.qxd 12/13/06 9:23 PM Page xxxii

Introduction to ICONIX Process

One process is much larger

And the other’s way too small

And the full UML that OMG gives you

Is incomprehensible to all . . .

(Sing to the tune of “Go Ask Alice” by Jefferson Airplane)

In theory, every single aspect of the UML is potentially useful, but in practice, there never
seems to be enough time to do modeling, analysis, and design. There’s always pressure from
management to jump to code, to start coding prematurely because progress on software proj-
ects tends to get measured by how much code exists. ICONIX Process, as shown in the chap-
ter’s opening figure, is a minimalist, streamlined approach that focuses on that area that lies
in between use cases and code. Its emphasis is on what needs to happen at that point in the
life cycle where you’re starting out: you have a start on some use cases, and now you need to
do good analysis and design.

1

C H A P T E R 1

GUI Storyboard Use Case

Model
Sequence

Diagram

Robustness Diagram

Dynamic

Static

Domain

Model
Updated

Domain Model Class Model

Test Plans

Code

Tests
+ Unit

Test 1

Test 2
Test 3

7745ch01final.qxd 12/13/06 8:26 PM Page 1

WHEN TO USE A COOKBOOK

There’s a growing misconception in software development that cookbook approaches to software develop-
ment don’t work. We agree with this to an extent, because analysis and programming are massive, highly
complex fields, and the number of different software project types is roughly equal to the number of software
projects. However, we firmly believe that analysis and design can—and in fact should—be a specific
sequence of repeatable steps. These steps aren’t set in stone (i.e., they can be tailored), but it helps to have
them there. In a world filled with doubt and uncertainty, it’s nice to have a clearly defined sequence of “how-
to” steps to refer back to.

Way back in the pre-UML days when Doug first started teaching a unified Booch/Rumbaugh/Jacobson
modeling approach (around 1992/1993), one of his early training clients encouraged him to “write a cook-
book, because my people like following cookbook approaches.” While many have claimed that it’s impossible
to codify object-oriented analysis and design (OOAD) practices into a simple, repeatable set of steps (and it
probably isn’t possible in its entirety), ICONIX Process probably comes as close as anything out there to a
cookbook approach to OOAD.

While there’s still room for significant flexibility within the approach (e.g., adding in state or activity dia-
grams), ICONIX Process lays down a simple, minimal set of steps that generally lead to pretty good results.
These results have proven to be consistent and repeatable over the last 12 years.

ICONIX Process in Theory
In this section we provide an overview of ICONIX Process, showing how all the activities fit
together. We’ll start with a very high-level view—kind of an overview of the overview—and
then we’ll examine each activity in more detail. As you’re walking through the overview, keep
referring back to the process diagram at the start of this chapter, to see how each part fits into
the overall process.

Overview: Getting from Use Cases to Source Code
The diagram at the start of this chapter gives an overview of ICONIX Process. (We’ll repeat
this diagram at the start of each chapter, with the relevant section of the diagram shown in
red.) As you can see from the diagram, ICONIX Process is divided into dynamic and static
workflows, which are highly iterative: you might go through one iteration of the whole
process for a small batch of use cases (perhaps a couple of packages’ worth, which isn’t a
huge amount given that each use case is only a couple of paragraphs), all the way to source
code and unit tests. For this reason, ICONIX Process is well suited to agile projects, where
swift feedback is needed on such factors as the requirements, the design, and estimates.

Let’s walk through the steps that we’ll cover in the course of this book. The items in red
correspond with the subtitles in this section (pretty slick, huh?).

As with any project, at some stage early on you begin exploring and defining the require-
ments. Note that within each phase there’s a degree of parallelism, so all the activities in the
requirements definition phase go on sort of overlapped and interleaved until they’re ready.

2 CHAPTER 1 ■ INTRODUCTION TO ICONIX PROCESS

7745ch01final.qxd 12/13/06 8:26 PM Page 2

■Note There are many different types of requirements (e.g., nonfunctional requirements such as
scalability). However, at a process level, we distinguish between functional requirements and behavioral
requirements.

1. REQUIREMENTS

a. Functional requirements: Define what the system should be capable of doing.
Depending on how your project is organized, either you’ll be involved in creating
the functional requirements or the requirements will be “handed down from on
high” by a customer or a team of business analysts.

b. Domain modeling: Understand the problem space in unambiguous terms.

c. Behavioral requirements: Define how the user and the system will interact (i.e.,
write the first-draft use cases). We recommend that you start with a GUI prototype
(storyboarding the GUI) and identify all the use cases you’re going to implement,
or at least come up with a first-pass list of use cases, which you would reasonably
expect to change as you explore the requirements in more depth.

d. Milestone 1: Requirements Review: Make sure that the use case text matches the
customer’s expectations. Note that you might review the use cases in small
batches, just prior to designing them.

Then in each iteration (i.e., for a small batch of use cases), you do the following.

2. ANALYSIS/PRELIMINARY DESIGN

a. Robustness analysis: Draw a robustness diagram (an “object picture” of the steps
in a use case), rewriting the use case text as you go.

b. Update the domain model while you’re writing the use case and drawing the
robustness diagram. Here you will discover missing classes, correct ambiguities,
and add attributes to the domain objects (e.g., identify that a Book object has a
Title, Author, Synopsis, etc.).

c. Name all the logical software functions (controllers) needed to make the use case
work.

d. Rewrite the first draft use cases.

3. Milestone 2: Preliminary Design Review (PDR)

4. DETAILED DESIGN

a. Sequence diagramming: Draw a sequence diagram (one sequence diagram per
use case) to show in detail how you’re going to implement the use case. The pri-
mary function of sequence diagramming is to allocate behavior to your classes.

CHAPTER 1 ■ INTRODUCTION TO ICONIX PROCESS 3

7745ch01final.qxd 12/13/06 8:26 PM Page 3

b. Update the domain model while you’re drawing the sequence diagram, and add
operations1 to the domain objects. By this stage, the domain objects are really
domain classes, or entities, and the domain model should be fast becoming a
static model, or class diagram—a crucial part of your detailed design.

c. Clean up the static model.

5. Milestone 3: Critical Design Review (CDR)

6. IMPLEMENTATION

a. Coding/unit testing: Write the code and the unit tests. (Or, depending on your
preferences, write the unit tests and then the code.2)

b. Integration and scenario testing: Base the integration tests on the use cases, so that
you’re testing both the basic course and the alternate courses.

c. Perform a Code Review and Model Update to prepare for the next round of devel-
opment work.

For most of the rest of this chapter, we describe these steps in a little more detail.
Throughout the rest of the book, we describe these steps in much greater detail, and provide
lots of examples and exercises to help you understand how best to apply them to your own
project.

Requirements
Figure 1-1 shows the steps involved in defining the behavioral requirements—that is, draw-
ing the initial domain model and writing the first-draft use cases.

The steps shown in Figure 1-1 are covered in Chapters 2, 3, and 4.

CHAPTER 1 ■ INTRODUCTION TO ICONIX PROCESS4

1. Also called methods, functions, or messages, depending which programming language you use.

2. For Test-Driven Development (TDD) fans, in Chapter 12 we illustrate a method of incorporating the
“test first” approach into ICONIX Process. The result is essentially “Design-Driven Testing.”

7745ch01final.qxd 12/13/06 8:26 PM Page 4

CHAPTER 1 ■ INTRODUCTION TO ICONIX PROCESS 5

Figure 1-1. Requirements analysis

Identify real-world
domain objects

Draw the domain
model

Do some rapid
prototyping of the

proposed new system

Identify use cases, and
put them on use case

diagrams

Organize the use cases
logically into groups.

Capture this information in
a package diagram

Allocate functional
requirements to the use

cases and domain objects

Milestone 1: Requirements Review

Write the first-draft
use cases

Gather information about
the legacy system you're

re-engineering

Screens

Database
tables

Requirements Analysis

Put the domain
objects on here

7745ch01final.qxd 12/13/06 8:26 PM Page 5

Functional Requirements (What Will the System Be Capable Of?)
Right at the start of the project, somebody (possibly a team of business analysts) will be talk-
ing to the customer, end users, and various project stakeholders, and that person (or team)
will most likely create a big Microsoft Word document packed to the brim with functional
requirements. This is an important document, but it’s difficult to create a design from (or to
create an accurate estimate from, for that matter), as it tends to be quite unstructured. (Even
if every requirement is numbered in a big document-length list, that still doesn’t quite count
as being structured.)

■Note The initial stages of ICONIX Process involve creating a set of unambiguous behavioral requirements
(use cases) that are “closer to the metal” than the functional requirements specification, and that can be
easily designed from.

Creating functional requirements falls just slightly outside the scope of ICONIX Process,
but we do offer some advice on the matter.3 Probably the best way to describe our approach to
requirements gathering is to list our top 10 requirements gathering guidelines. We describe
these in more detail in Chapter 13.

10. Use a modeling tool that supports linkage and traceability between requirements and
use cases.

9. Link requirements to use cases by dragging and dropping.

8. Avoid dysfunctional requirements by separating functional details from your behav-
ioral specification.

7. Write at least one test case for each requirement.

6. Treat requirements as first-class citizens in the model.

5. Distinguish between different types of requirements.

4. Avoid the “big monolithic document” syndrome.

3. Create estimates from the use case scenarios, not from the functional requirements.

2. Don’t be afraid of examples when writing functional requirements.

1. Don’t make your requirements a technical fashion statement.

With the functional requirements written (whether by your team or by somebody else),
you’ll really want to do some additional analysis work, to create a set of behavioral require-
ments (use cases) from which you can create a high-level, preliminary design.

CHAPTER 1 ■ INTRODUCTION TO ICONIX PROCESS6

3. In Chapter 13, we show how to link your use cases back to the original requirements.

7745ch01final.qxd 12/13/06 8:26 PM Page 6

Domain Modeling
Domain modeling is the task of building a project glossary, or a dictionary of terms used in
your project (e.g., an Internet bookstore project would include domain objects such as Book,
Customer, Order, and Order Item). Its purpose is to make sure everyone on the project under-
stands the problem space in unambiguous terms. The domain model for a project defines the
scope and forms the foundation on which to build your use cases. The domain model also
provides a common vocabulary to enable clear communication among members of a project
team. Expect early versions of your domain model to be wrong; as you explore each use case,
you’ll “firm up” the domain model as you go.

Here are our top 10 domain modeling guidelines. We describe these in more detail in
Chapter 2.

10. Focus on real-world (problem domain) objects.

9. Use generalization (is-a) and aggregation (has-a) relationships to show how the objects
relate to each other.

8. Limit your initial domain modeling efforts to a couple of hours.

7. Organize your classes around key abstractions in the problem domain.

6. Don’t mistake your domain model for a data model.

5. Don’t confuse an object (which represents a single instance) with a database table
(which contains a collection of things).

4. Use the domain model as a project glossary.

3. Do your initial domain model before you write your use cases, to avoid name
ambiguity.

2. Don’t expect your final class diagrams to precisely match your domain model, but
there should be some resemblance between them.

1. Don’t put screens and other GUI-specific classes on your domain model.

Once you have your first-pass domain model, you can use it to write the use cases—that
is, to create your behavioral requirements, which we introduce in the next section.

Behavioral Requirements (How Will the User and the System Interact?)
ICONIX Process is a scenario-based approach; the primary mechanism for decomposing and
modeling the system is on a scenario-by-scenario basis. But when you use ICONIX Process,
your goal is to produce an object-oriented design that you can code from. Therefore, you need
to link the scenarios to objects. You do this by writing the use cases using the domain model
that you created in the previous step.

Storyboarding the GUI

Behavior requirements detail the user’s actions and the system’s responses to those actions.
For the vast majority of software systems, this interaction between user and system takes
place via screens, windows, or pages. When you’re exploring the behavioral requirements,

CHAPTER 1 ■ INTRODUCTION TO ICONIX PROCESS 7

7745ch01final.qxd 12/13/06 8:26 PM Page 7

www.allitebooks.com

http://www.allitebooks.org

you capture the usage scenarios in narrative text form in the use cases, and these narratives
have come from detailed conversations with customers and end users.

It’s notoriously difficult for us humans to picture a proposed system in our mind’s eye.
So quite often it’s easier for the customers and end users to relate to a visual aid, which often
takes the form of a sequence of screens. These can be simple line drawings on paper, a Power-
Point slide show that sequences through the screens, an HTML prototype with core function-
ality left out—the exact form doesn’t matter much. What’s important is that they present a
sequence of screens as they will appear to the users within the context of the usage scenarios
being modeled.

It’s also important that the screen mockups include details about the various buttons,
menus, and other action-oriented parts of the UI. It’s amazing how often a use case done
without this sort of accompanying visual aid will omit alternate course behavior for events
like “user clicks Cancel button,” and how much better the use cases become when accompa-
nied by a UI storyboard.

Use Case Modeling

Use cases describe the way the user will interact with the system and how the system will
respond. Here are our top 10 use case modeling guidelines. We describe these in more detail
in Chapter 3.

10. Follow the two-paragraph rule.

9. Organize your use cases with actors and use case diagrams.

8. Write your use cases in active voice.

7. Write your use case using an event/response flow, describing both sides of the
user/system dialogue.

6. Use GUI storyboards, prototypes, screen mockups, etc.

5. Remember that your use case is really a runtime behavior specification.

4. Write the use case in the context of the object model.

3. Write your use cases using a noun-verb-noun sentence structure.

2. Reference domain classes by name.

1. Reference boundary classes (e.g., screens) by name.

Milestone 1: Requirements Review
Right at the end of Figure 1-1, you’ll see the Requirements Review milestone. This vital step
ensures that the requirements are sufficiently well understood by both the development team
and the customer/users/project stakeholders.

Here are our top 10 requirements review guidelines. We describe these in more detail in
Chapter 4.

CHAPTER 1 ■ INTRODUCTION TO ICONIX PROCESS8

7745ch01final.qxd 12/13/06 8:26 PM Page 8

10. Make sure your domain model describes at least 80% of the most important abstrac-
tions (i.e., real-world objects) from your problem domain, in nontechnical language
that your end users can understand.

9. Make sure your domain model shows the is-a (generalization) and has-a (aggregation)
relationships between the domain objects.

8. Make sure your use cases describe both basic and alternate courses of action, in active
voice.

7. If you have lists of functional requirements (i.e., “shall” statements), make sure these
are not absorbed into and “intermangled” with the active voice use case text.4

6. Make sure you’ve organized your use cases into packages and that each package has at
least one use case diagram.

5. Make sure your use cases are written in the context of the object model.

4. Put your use cases in the context of the user interface.

3. Supplement your use case descriptions with some sort of storyboard, line drawing,
screen mockup, or GUI prototype.

2. Review the use cases, domain model, and screen mockups/GUI prototypes with end
users, stakeholders, and marketing folks, in addition to more technical members of
your staff.

1. Structure the review around our “eight easy steps to a better use case” (see Chapter 4).

Once the requirements review is complete, you can move on to the preliminary design
stage.

Analysis/Preliminary Design
Analysis is about building the right system. Design is about building the system right.
Preliminary design is an intermediate step between analysis and design.

Preliminary design explicitly recognizes something that many people recognize implicitly:

You usually can’t fully understand the requirements that you’re dealing with unless you

do some exploratory design.

Figure 1-2 (which follows on from Figure 1-1) shows the preliminary design steps.

CHAPTER 1 ■ INTRODUCTION TO ICONIX PROCESS 9

4. In Chapter 13, we introduce the term “intermangled” to describe use case text that has had functional
requirements text mangled into it.

7745ch01final.qxd 12/13/06 8:26 PM Page 9

CHAPTER 1 ■ INTRODUCTION TO ICONIX PROCESS10

Figure 1-2. Analysis/preliminary design

For each use case . . .iterative

Milestone 1: Requirements Review

Disambiguate the
first-draft use case text

Perform robustness
analysis:

Identify a first cut of
objects that

accomplish each
scenario

Update your domain
model as you discover

new objects and
attributes

Finish updating the
analysis-level class

diagram

Milestone 2: Preliminary Design Review

7745ch01final.qxd 12/13/06 8:26 PM Page 10

The preliminary design step (aka robustness analysis) involves doing the exploratory
design you need to understand the requirements, refining and removing ambiguity from (aka
disambiguating) those requirements as a result of the exploratory design, and linking the
behavior requirements (use case scenarios) to the objects (domain model).

The steps shown in Figure 1-2 are covered in Chapters 5, 6, and 7.

Robustness Analysis
To get from use cases to detailed design (and then to code), you need to link your use cases to
objects. Robustness analysis helps you to bridge the gap between analysis and design by doing
exactly that. It’s a way of analyzing your use case text and identifying a first-guess set of
objects for each use case.

Here are our top 10 robustness analysis guidelines. We describe these in more detail in
Chapter 5.

10. Paste the use case text directly onto your robustness diagram.

9. Take your entity classes from the domain model, and add any that are missing.

8. Expect to rewrite (disambiguate) your use case while drawing the robustness diagram.

7. Make a boundary object for each screen, and name your screens unambiguously.

6. Remember that controllers are only occasionally real control objects; they are typi-
cally logical software functions.

5. Don’t worry about the direction of the arrows on a robustness diagram.

4. It’s OK to drag a use case onto a robustness diagram if it’s invoked from the parent
use case.

3. The robustness diagram represents a preliminary conceptual design of a use case,
not a literal detailed design.

2. Boundary and entity classes on a robustness diagram will generally become object
instances on a sequence diagram, while controllers will become messages.

1. Remember that a robustness diagram is an “object picture” of a use case, whose pur-
pose is to force refinement of both use case text and the object model.

With the preliminary design complete, your use cases should now be thoroughly dis-
ambiguated and thus written in the context of the domain model. The domain model itself
should have helped to eliminate common issues such as duplicate names for the same item,
and the classes on the domain model should also have attributes assigned to them (but not
operations, yet).

In theory you should now be ready to start the detailed design, but in practice, it really
helps to perform a quick Preliminary Design Review (PDR) first.

CHAPTER 1 ■ INTRODUCTION TO ICONIX PROCESS 11

7745ch01final.qxd 12/13/06 8:26 PM Page 11

Milestone 2: Preliminary Design Review
The Preliminary Design Review (PDR) session helps you to make sure that the robustness
diagrams, the domain model, and the use case text all match each other. This review is the “gate-
way” between the preliminary design and detailed design stages, for each package of use cases.

Here are our top 10 PDR guidelines. We describe these in more detail in Chapter 6.

10. For each use case, make sure the use case text matches the robustness diagram, using
the highlighter test.

9. Make sure that all the entities on all robustness diagrams appear within the updated
domain model.

8. Make sure that you can trace data flow between entity classes and screens.

7. Don’t forget the alternate courses, and don’t forget to write behavior for each of them
when you find them.

6. Make sure each use case covers both sides of the dialogue between user and system.

5. Make sure you haven’t violated the syntax rules for robustness analysis,

4. Make sure that this review includes both nontechnical (customer, marketing team,
etc.) and technical folks (programmers).

3. Make sure your use cases are in the context of the object model and in the context
of the GUI.

2. Make sure your robustness diagrams (and the corresponding use case text) don’t
attempt to show the same level of detail that will be shown on the sequence diagrams
(i.e., don’t try to do detailed design yet).

1. Follow our “six easy steps” to a better preliminary design (see Chapter 6).

With this review session complete, you can now be confident that the diagrams and the
use case text match each other, and that both are complete and correctly represent the desired
system behavior. It should now be a relatively straightforward matter to create the detailed
design.

Detailed Design
Detailed design is about building the system right. We hope that by the time you get to this
point, you have a pretty good understanding of what the “right system” is, because you’ve
worked hard to develop that understanding. So now you’re worrying about efficiency in terms
of execution times, network loading, and memory footprint, and you’re concerned with
reusability of code where possible.

Figure 1-3 shows the steps involved in detailed design.
The steps shown in Figure 1-3 are covered in Chapters 8 and 9.

CHAPTER 1 ■ INTRODUCTION TO ICONIX PROCESS12

7745ch01final.qxd 12/13/06 8:26 PM Page 12

CHAPTER 1 ■ INTRODUCTION TO ICONIX PROCESS 13

Figure 1-3. Detailed design

For each use case . . .iterative

Milestone 2: Preliminary Design Review

Allocate behavior by
drawing sequence

diagrams

«automagic»
Generate a skeleton

sequence diagram from
boundary and entity objects
on the robustness diagram

«automagic»
Update class

diagrams with new
attributes and

operations

Clean up the static
model

Review design to
ensure it satisfies all

the requirements

Milestone 3: Critical Design Review

One sequence diagram
per use case

Split the domain model into
as many class diagrams as

needed

«automagic»
Generate unit test stubs
for all controllers on the

robustness diagram

Draw message
arrows between

objects

Allocate operations to
classes

7745ch01final.qxd 12/13/06 8:26 PM Page 13

Sequence Diagramming (Allocate Behavior to Classes)
ICONIX Process uses the sequence diagram as the main vehicle for exploring the detailed
design of a system on a scenario-by-scenario basis.

In object-oriented design, a large part of building the system right is concerned with find-
ing an optimal allocation of functions to classes (aka behavior allocation). The essence of this
is drawing message arrows on sequence diagrams and allowing a modeling tool to automati-
cally assign an operation to the class of the target object that receives the runtime message.

Here are our top 10 sequence diagramming guidelines. We describe these in more detail
in Chapter 8.

10. Understand why you’re drawing a sequence diagram, to get the most out of it.

9. Do a sequence diagram for every use case, with both basic and alternate courses on
the same diagram.

8. Start your sequence diagram from the boundary classes, entity classes, actors, and use
case text that result from robustness analysis.

7. Use the sequence diagram to show how the behavior of the use case (i.e., all the con-
trollers from the robustness diagram) is accomplished by the objects.

6. Make sure your use case text maps to the messages being passed on the sequence
diagram. Try to line up the text and message arrows.

5. Don’t spend too much time worrying about focus of control.

4. Assign operations to classes while drawing messages. Most visual modeling tools
support this capability.

3. Review your class diagrams frequently while you’re assigning operations to classes,
to make sure all the operations are on the appropriate classes.

2. Prefactor your design on sequence diagrams before coding.

1. Clean up the static model before proceeding to the CDR.

By now, you’re almost ready to begin coding. You’ll need to perform a Critical Design
Review (CDR) first; but before that, it pays dividends to revisit the static model and clean
it up.

Cleaning Up the Static Model
Take a long, hard look at your static model, with a view toward tidying up the design, resolv-
ing real-world design issues, identifying useful design patterns that can be factored in to
improve the design, and so on. This should at least be done as a final step before proceeding
to the CDR, but you can start thinking at this level in the design before drawing the sequence
diagram.

By this stage, you should have an extremely well-factored design that works within the
real-world constraints of your project’s requirements, application framework design, deploy-
ment topology, and so forth. There’s just one last stop before you begin coding: the CDR.

CHAPTER 1 ■ INTRODUCTION TO ICONIX PROCESS14

7745ch01final.qxd 12/13/06 8:26 PM Page 14

Milestone 3: Critical Design Review
The CDR helps you to achieve three important goals, before you begin coding for the current
batch of use cases:

• Ensure that the “how” of detailed design matches up with the “what” specified in your
requirements.

• Review the quality of your design.

• Check for continuity of messages on your sequence diagrams (iron out “leaps of logic”
in the design).

Here are our top 10 CDR guidelines. We describe these in more detail in Chapter 9.

10. Make sure the sequence diagram matches the use case text.

9. Make sure (yes, again) that each sequence diagram accounts for both basic and alter-
nate courses of action.

8. Make sure that operations have been allocated to classes appropriately.

7. Review the classes on your class diagrams to ensure they all have an appropriate set of
attributes and operations.

6. If your design reflects the use of patterns or other detailed implementation constructs,
check that these details are reflected on the sequence diagram.

5. Trace your functional (and nonfunctional) requirements to your use cases and classes
to ensure you have covered them all.

4. Make sure your programmers “sanity check” the design and are confident that they
can build it and that it will work as intended.

3. Make sure all your attributes are typed correctly, and that return values and parameter
lists on your operations are complete and correct.

2. Generate the code headers for your classes, and inspect them closely.

1. Review the test plan for your release.

If you’ve gone through the detailed design for each use case and performed a CDR
(as described in Chapter 9), then your design really should be fighting-fit now, and easily
ready for coding.

Implementation
Figure 1-4 shows the steps involved in coding and testing (i.e., implementation).

Once you’ve made the effort to drive a model from use cases through detailed design,
it would be lunacy to disregard the model and just start coding totally independent of the
model you’ve produced.

Similarly, your modeling should provide a basis for knowing exactly what software func-
tions will need to be unit tested, so you can drive the unit tests from the model in a similar
manner to generating code from the detailed class diagrams.

CHAPTER 1 ■ INTRODUCTION TO ICONIX PROCESS 15

7745ch01final.qxd 12/13/06 8:26 PM Page 15

CHAPTER 1 ■ INTRODUCTION TO ICONIX PROCESS16

Figure 1-4. Implementation

For each controller on the robustness diagram . . .iterative

Milestone 3: Critical Design Review

Write the source
code

Implement unit tests

Tests

passed?

Run the tests

Coding and testing

Perform system and
user-acceptance

testing

Generate your

unit test stubs

from the

robustness

diagram

controllers

Milestone 4: Delivery

Code Review and
Model Update

Generate the
domain classes

Also generate whatever code

you can get your IDE or code

generator to create for you

Synchronize the design with the

code in preparation for the next

release or iteration

yes

no

7745ch01final.qxd 12/13/06 8:26 PM Page 16

Technology available in today’s modeling tools (at least the ones we use) also provides for
easy and convenient linkage between the UML model and the coding environment. We’ve
extended ICONIX Process to leverage this exciting new technology.

The steps shown in Figure 1-4 are covered in Chapters 10, 11, and 12.

Implementation (Coding)
Here are our top 10 implementation guidelines. We describe these in more detail in
Chapter 10.

10. Be sure to drive the code directly from the design.

9. If coding reveals the design to be wrong in some way, change it. But also review the
process.

8. Hold regular code inspections.

7. Always question the framework’s design choices.

6. Don’t let framework issues take over from business issues.

5. If the code starts to get out of control, hit the brakes and revisit the design.

4. Keep the design and the code in sync.

3. Focus on unit testing while implementing the code.

2. Don’t overcomment your code (it makes your code less maintainable and more
difficult to read).

1. Remember to implement the alternate courses as well as the basic courses.

Unit testing is an important (and integral) part of implementation.

Unit Testing
While coding, you should also be writing unit tests that are tied into the use cases. These tests
allow you to prove, in an automated and repeatable way, that the system behavior described
in each use case has been implemented correctly. Essentially, you’re testing all the software
functions that you identified during robustness analysis.

Here are our top 10 unit testing guidelines. We describe these in more detail in
Chapter 12.

10. Adopt a “testing mind-set” wherein every bug found is a victory and not a defeat. If you
find (and fix) the bug in testing, the users won’t find it in the released product.

9. Understand the different kinds of testing, and when and why you’d use each one.

8. When unit testing, create one or more unit tests for each controller on each robustness
diagram.

7. For real-time systems, use the elements on state diagrams as the basis for test cases.

CHAPTER 1 ■ INTRODUCTION TO ICONIX PROCESS 17

7745ch01final.qxd 12/13/06 8:26 PM Page 17

www.allitebooks.com

http://www.allitebooks.org

6. Do requirement-level verification (i.e., check that each requirement you have identi-
fied is accounted for).

5. Use a traceability matrix to assist in requirement verification.

4. Do scenario-level acceptance testing for each use case.

3. Expand threads in your test scenarios to cover a complete path through the appropri-
ate part of the basic course plus each alternate course in your scenario testing.

2. Use a testing framework like JUnit to store and organize your unit tests.

1. Keep your unit tests fine-grained.

As we discuss in Chapter 12, other types of testing are performed on different project arti-
facts and at different stages in the project—in particular, integration/scenario testing.

Expand Threads for Integration and Scenario Testing
This activity involves expanding the sunny day/rainy day threads of the use cases. The inte-
gration tests come from the use cases, in the form of testing the following:

1. The entire sunny-day scenario (the basic course)

2. Part of the sunny-day scenario plus each individual rainy day scenario (the alternate
courses)

For example, a use case with three alternate courses would need (at minimum) four inte-
gration test scenarios: one for the basic course and one for each alternate course (including
whichever part of the basic course goes along with it).

With the code and tests written for a particular use case (and with the tests passing!), it’s
important to perform a Code Review and Model Update.

Code Review and Model Update
The main purpose of the Code Review and Model Update milestone is to synchronize the
code and the model before the next iteration begins. This ongoing effort to keep the design
tight prevents entropy, or code rot, from setting in as more and more functionality is added
to a complex system. Once you’ve completed this milestone, the design and the code
should be in a very good state, ready for development to begin on the next use case (or
batch of use cases).

Here are our top 10 Code Review and Model Update guidelines. We describe these in
more detail in Chapter 11.

10. Prepare for the review, and make sure all participants have read the relevant review
material prior to the meeting.

9. Create a high-level list of items to review, based on the use cases.

8. If necessary, break down each item in the list into a smaller checklist.

7. Review code at several different levels.

CHAPTER 1 ■ INTRODUCTION TO ICONIX PROCESS18

7745ch01final.qxd 12/13/06 8:26 PM Page 18

6. Gather data during the review, and use it to accumulate boilerplate checklists for
future reviews.

5. Follow up the review with a list of action points e-mailed to all people involved.

4. Try to focus on error detection during the review, not error correction.

3. Use an integrated code/model browser that hot-links your modeling tool to your code
editor.

2. Keep it “just formal enough” with checklists and follow-up action lists, but don’t overdo
the bureaucracy.

1. Remember that it’s also a Model Update session, not just a Code Review.

That about wraps up our overview of ICONIX Process. It probably seems as if there’s a
lot of information to absorb, but the process itself is actually very straightforward once you
understand exactly why each step is performed.

Extensions to ICONIX Process
Although it’s been used in hundreds of large-scale IT projects, the core ICONIX Process has
stayed much the same in the last 10 to 15 years. However, in Agile Development with ICONIX
Process (Apress, 2005), we published some extensions to the core process. These extensions
include the following:

• Performing persona analysis

• Supplementing the process with Test-Driven Development (TDD)

• Driving test cases from the analysis model

Persona Analysis
Persona analysis as an interaction design technique makes actors and use cases more concrete
and tangible for project stakeholders. Many people find actors and use cases too abstract, so
this approach addresses the issue head-on.

A persona is a description of a fictional person: a prototypical target user. The person is
given a name and a brief description of his or her job, goals and aspirations, level of ability—
anything that might be relevant to how that person uses and perceives the product you’re
designing. You’d then write interaction scenarios (a form of use case that describes in more
detail the user’s motivations behind his or her interaction with the system), based around
the persona you’ve defined. Using ICONIX Process, you would write a few detailed interaction
scenarios to make sure the system is correctly focused on your target user, and then proceed
to write the more minimal, ICONIX-style use cases for the system as a whole.

Test-Driven Development (TDD)
TDD is an increasingly popular method of designing software by writing unit tests. The design
effectively “evolves” as you write the code. Teams have begun to realize that TDD by itself can

CHAPTER 1 ■ INTRODUCTION TO ICONIX PROCESS 19

7745ch01final.qxd 12/13/06 8:26 PM Page 19

be a long-winded design process (to say the least) and benefits greatly from some initial, up-
front design modeling. ICONIX Process is a prime candidate for this, because its robustness
analysis technique works well in collaborative design workshops with teams modeling on
a whiteboard (or on a CASE tool hooked up to a projector).

Driving Test Cases from the Analysis Model
It makes sense to link your models as closely as possible to testing, and in fact to drive the
testing effort from your use case–driven models. This extension to ICONIX Process drives the
identification of test cases directly from the robustness diagram, in a parallel manner to the
way we drive the creation of a skeleton sequence diagram from a robustness diagram. In
short, the nouns (Entity and Boundary objects) from the robustness diagram become object
instances on the sequence diagram, and the verbs (controllers) get test cases created for
them. We discuss this process in depth in Chapter 12.

ICONIX Process in Practice:
The Internet Bookstore Example
Starting in the next chapter, we’re going to be following a running example, which we call
the Internet Bookstore, through each phase of the process we’ve just outlined for you.

When we get to the sequence diagramming (detailed design) stage in Chapter 8, we’ll
begin to implement the Internet Bookstore using the Spring Framework, a popular Java
enterprise application framework. This book isn’t primarily about Spring, so we won’t dwell
on the technical details regarding Spring itself (although we will suggest further resources,
both print and online). Instead we’ll focus on the ways in which ICONIX Process is used to
create well-designed source code for a realistic web-based application.

The techniques we describe in this book should still be more than relevant to users of
other application frameworks and other object-oriented programming languages.

The use cases we’ll be working through and the classes we’ll discover exist to satisfy
certain requirements that our customer (the fictional owner of the bookstore we’re going
to build) has specified. We’ll cover these requirements in Chapter 2, where we show how to
derive our first-pass version of the domain model from the requirements.

Summary
In this chapter we introduced ICONIX Process and described its background and the driving
principles behind it. We also described its key features and walked through the process, from
use cases to code.

In the next chapter, we describe in detail the first major stage of ICONIX Process: domain
modeling.

CHAPTER 1 ■ INTRODUCTION TO ICONIX PROCESS20

7745ch01final.qxd 12/13/06 8:26 PM Page 20

Requirements
Definition

P A R T 1

7745ch02final.qxd 12/13/06 8:28 PM Page 21

7745ch02final.qxd 12/13/06 8:28 PM Page 22

Domain Modeling

Imagine if everyone on your team was talking a different language. Let’s say you’re speaking
German, your teammate is speaking French, and someone else is speaking Swahili. Every
time someone speaks, people glean whatever slivers of meaning they can, and then nod as
if they’ve understood perfectly. They then walk away with a completely wrong interpretation
of what the speaker was really trying to say.

In virtually all IT projects, the problem of miscommunication is rampant, but it’s rarely
noticed because everybody thinks they’re speaking the same language. They’re not. One per-
son says “book review” and some people interpret this as meaning “editorial review” (a review
written by an editorial team), whereas others might interpret it as meaning “customer review”
(a review written by a customer and posted to the site). The results can be—and often are—
catastrophic, as the system gets developed with everyone interpreting the requirements and
the design differently.

The domain model is a live, collaborative artifact. It is refined and updated throughout
the project, so that it always reflects the current understanding of the problem space.

23

C H A P T E R 2

7745ch02final.qxd 12/13/06 8:28 PM Page 23

In this chapter we’ll look at domain modeling, which aims to solve the problem of
miscommunication on projects by establishing a common vocabulary that maps out the
problem space.

The 10,000-Foot View
Domain modeling is the task of building a project glossary, or a dictionary of terms used in
your project. The domain model for a project defines the scope and forms the foundation on
which to build your use cases. A domain model also provides a common vocabulary to enable
clear communication between members of a project team. So even though this book is about
use case–driven development, we have to begin at the beginning with domain modeling.

What’s a Domain Model?
As just mentioned, a domain model is, essentially, a project glossary: a “live” dictionary of all
the terms used in your project. But a domain model is better than a project glossary, because
it shows graphically how all these different terms relate to each other. In practice it’s a simpli-
fied class diagram, with lines drawn between the different classes (domain objects) to show
how they relate to each other. The domain model shows aggregation and generalization rela-
tionships (has-a and is-a relationships) between the domain classes.

Figure 2-1 shows an excerpt from a domain model. Don’t worry about the details for
now—our purpose in presenting this figure is just so you can visualize what it is we’re going
to be talking about the rest of the chapter.

24 CHAPTER 2 ■ DOMAIN MODELING

7745ch02final.qxd 12/13/06 8:28 PM Page 24

Why Start with the Domain Model Instead of Use Cases?
You’ll find that it really helps if you take a quick stab at a domain model right at the start of
a project. When you write use cases, it’s tempting to make them abstract, high-level, vague,
and ambiguous. In fact, some gurus even recommend that you write your use cases this way
(only they call it “abstract,” “essential,” “technology-free,” etc.)—but more about that later.
Our advice is pretty much the opposite: your use case text should be grounded in reality, and
it should be very close to the system that you’ll be designing. In other words, the use cases
should be written in the context of the object model (i.e., the use case text needs to reference
the domain objects by name). By doing this, you’ll be able to tie together the static and
dynamic parts of the model, which is crucial if you want your analysis and design effort to
be driven forward by your use cases.

So before you write your use cases, you need to come up with a first-pass attempt at
a domain model. The domain model forms the foundation of the static part of your model,
while the use cases are the foundation of the dynamic part. The static part describes struc-
ture; the dynamic part describes behavior.

■Note At the analysis level, the terms “object” and “class” are sometimes used interchangeably (an object
is a runtime instance of a class). However, when we get to the more grounded design level, the distinction
between objects and classes becomes more important.

CHAPTER 2 ■ DOMAIN MODELING 25

Figure 2-1. Example of a domain model diagram

Book
Review

Editorial
Review

Reader
Review

Book
Rating

Book

Line Item

Price

Book
Catalog

Master
Book

Catalog

Category

7745ch02final.qxd 12/13/06 8:28 PM Page 25

Domain Modeling in Theory
As you read this book, you’ll see that each chapter follows a familiar pattern. We start by
describing an aspect of modeling “in theory,” using our Internet Bookstore example to illus-
trate the points we make. Then we cover it “in practice,” showing typical modeling errors
and how to correct them, and presenting a number of exercises. Finally, we round off each
chapter with “more practice.”

Top 10 Domain Modeling Guidelines
The principles discussed in this chapter can be summed up as a list of guidelines. Our top 10
list follows.

10. Focus on real-world (problem domain) objects.

9. Use generalization (is-a) and aggregation (has-a) relationships to show how the
objects relate to each other.

8. Limit your initial domain modeling efforts to a couple of hours.

7. Organize your classes around key abstractions in the problem domain.

6. Don’t mistake your domain model for a data model.

5. Don’t confuse an object (which represents a single instance) with a database table
(which contains a collection of things).

4. Use the domain model as a project glossary.

3. Do your initial domain model before you write your use cases, to avoid name
ambiguity.

2. Don’t expect your final class diagrams to precisely match your domain model,
but there should be some resemblance between them.

1. Don’t put screens and other GUI-specific classes on your domain model.

Let’s look at each of these in more detail.

10. Focus on Real-World Objects
When creating a domain model, be sure to focus on real-world objects within the problem
domain. Try to organize your software architecture around what the real world looks like. The
real world tends to change less frequently than software requirements.

CHAPTER 2 ■ DOMAIN MODELING26

7745ch02final.qxd 12/13/06 8:28 PM Page 26

9. Use Generalization (Is-a) and Aggregation (Has-a) Relationships
Over time, you’ll flesh out your domain model with new domain classes, as and when you
identify them. You’ll also notice relationships (or associations) between them—for example,
a Book Review belongs to a Book, and a Purchase Order and Credit Card are two of a kind, as
they’re both Payment Types.

The first relationship (Book Review belongs to a Book) is called aggregation (has-a,
because a Book has a Book Review). The second relationship (Purchase Order and Credit Card
are both Payment Types) is called generalization (is-a, because a Purchase Order is a Payment
Type). Figure 2-3 shows an illustration of these concepts.

CHAPTER 2 ■ DOMAIN MODELING 27

CLASS NOTATION

Figure 2-2 shows two different types of class notation. On a full-blown detailed class diagram, you’d use the
version on the left, with attributes and operations. However, during the initial domain modeling effort, it’s too
early to allocate these parts of a class. It’s better to use the simpler notation shown on the right. This version
only shows the domain class’s name.

Figure 2-2. Class notations

Figure 2-3. Aggregation and generalization relationships

Book

Book Review Purchase
Order

Credit Card

Payment
Type

7745ch02final.qxd 12/13/06 8:28 PM Page 27

www.allitebooks.com

http://www.allitebooks.org

These and regular (plain vanilla) associations are the most important relationships in
your domain model. Ninety-five percent of your model’s class relationships can be modeled
using aggregation and generalization relationships.

■Tip Wherever possible, place your associations so that they read left to right and top to bottom, just like
regular text. This will improve the readability of your diagrams.

8. Limit Your Initial Domain Modeling Efforts to a Couple of Hours
We recommend that you establish a time budget for building your initial domain model.
A couple of hours is all you should need. You’re not going to make it perfect anyway, so do it
quickly and expect to fix it as you proceed. You should be vigilant about making necessary
adjustments to your analysis-level class model in response to discoveries made during robust-
ness analysis and throughout the project.

You’ll discover missing objects as you work through use cases and robustness diagrams.
The use case–driven process assumes that the domain model is incomplete and provides
a mechanism for discovering what was missed.

The initial domain modeling session is probably the most important two hours you’ll
spend on the project! It’s likely that you’ll discover 80% of your domain classes during that
two-hour brainstorming session. If you can get 80% of your domain vocabulary disambig-
uated, then that’s two hours well spent.

7. Organize Your Classes Around Key Abstractions in the Problem Domain
It’s generally good practice to organize your classes around key abstractions in the problem
domain. Remember that the domain model is a first-cut class diagram that becomes the foun-
dation of your software architecture. This makes the model more resilient in the face of
change. Organizing the architecture around real-world abstractions makes the model more
resilient in the face of changing requirements, as the requirements will usually change more
frequently than the real world does.

6. Don’t Mistake Your Domain Model for a Data Model
Even though the diagrams might look similar, remember that what’s good practice on a data
model is not likely to be good practice on a class diagram (and vice versa). Classes are small
and tables are bigger. A table in a relational database often relates a number of things. Con-
versely, classes are better designed if they’re relatively small packets of data and behavior.

In a class diagram, it’s likely that you’ll have a class that manages a database table, and
you might show some sort of TableManager class aggregating a regular domain class. The pur-
pose of these TableManager-type classes is to hide the details of the database management
system (DBMS) from the rest of the code base.

CHAPTER 2 ■ DOMAIN MODELING28

7745ch02final.qxd 12/13/06 8:28 PM Page 28

5. Don’t Confuse an Object with a Database Table
An object represents a single instance of something. A database table represents a collec-
tion of things. You don’t have to be as literal-minded as in the Enterprise JavaBeans (EJB)
world, where an entity bean generally represents a single row in a table. Domain classes
are similar, though. If you call a domain class Book, then you don’t mean a book table—you
mean a single book.

Columns in a table generally map to attributes on a class. However, database tables
typically contain a lot more columns than a class contains attributes (tables often have
foreign keys, as one example), so there may not be a direct 1:1 mapping between table
rows and objects.

4. Use the Domain Model As a Project Glossary
If ambiguous requirements are the enemy, the domain model is the first line of defense.
Ambiguous usage of names by “subject matter experts” is very common and very harmful.
The domain model should serve as a project glossary that helps to ensure consistent usage
of terms when describing the problem space.

Using the domain model as a project glossary is the first step toward disambiguating your
model. In every Jumpstart workshop that Doug teaches, he finds at least two or three domain
classes where students are using ambiguous names (e.g., “shopping cart,” “shopping basket,”
or “shopping trolley”).

3. Do Your Domain Model Before You Write Your Use Cases
Since you’re using the domain model to disambiguate your problem domain abstractions,
it would be silly to have your use cases written using ambiguous terms to describe domain
classes. So spend that two hours working on the domain model before writing your use cases.
Writing the use cases without a domain model to bind everything together stores up lots of
problems for later.

2. Don’t Expect Your Final Class Diagrams to Precisely Match Your Domain Model
The class diagrams will become a lot more detailed than the domain model as the design
progresses; the domain model is deliberately kept quite simple. As you’re designing (using
sequence diagrams), detailed design constructs such as GUI helpers, factory classes, and
infrastructure classes get added to the class diagram, and the domain model diagram will
almost certainly be split out into several detailed class diagrams. However, it should still
be possible to trace most classes back to their equivalent domain class.

1. Don’t Put Screens and Other GUI-Specific Classes on Your Domain Model
Doing so opens up Pandora’s box and leads to an overcrowded domain model containing lots
of implementation-specific detail. Performance optimization classes, helper classes, and so
on should also be kept out of the domain model. The domain model should focus purely on
the problem domain.

CHAPTER 2 ■ DOMAIN MODELING 29

7745ch02final.qxd 12/13/06 8:28 PM Page 29

Internet Bookstore: Extracting the First-Pass Domain Model
from High-Level Requirements
When you’re creating your domain model, a good source of domain classes includes the high-
level requirements—the ones that are usually (but not always) written in the form “The system
shall do this; the system shall not do that.” It’s useful to scan these requirements, extracting
the nouns and noun phrases. You can then refine these to create the initial domain model.

With that in mind, let’s go through the high-level requirements for the Internet Bookstore
and extract some domain classes from them.

1. The bookstore will be web based initially, but it must have a sufficiently flexible
architecture that alternative front-ends may be developed (Swing/applets, web
services, etc.).

2. The bookstore must be able to sell books, with orders accepted over the Internet.

3. The user must be able to add books into an online shopping cart, prior to checkout.

a. Similarly, the user must be able to remove items from the shopping cart.

4. The user must be able to maintain wish lists of books that he or she wants to purchase
later.

5. The user must be able to cancel orders before they’ve shipped.

6. The user must be able to pay by credit card or purchase order.

7. It must be possible for the user to return books.

8. The bookstore must be embeddable into associate partners’ websites using mini-
catalogs, which are derived from an overall master catalog stored in a central
database.

a. The mini-catalogs must be defined in XML, as they will be transferred between this
and (later to be defined) external systems.

b. The shipping fulfillment system shall be carried out via Amazon Web Services.

9. The user must be able to create a customer account, so that the system remembers
the user’s details (name, address, credit card details) at login.

a. The system shall maintain a list of accounts in its central database.

b. When a user logs in, his or her password must always be matched against the
passwords in the master account list.

10. The user must be able to search for books by various search methods—title, author,
keyword, or category—and then view the books’ details.

11. It must be possible for the user to post reviews of favorite books; the review comments
should appear on the book details screen. The review should include a customer rat-
ing (1–5), which is usually shown along with the book title in book lists.

CHAPTER 2 ■ DOMAIN MODELING30

7745ch02final.qxd 12/13/06 8:28 PM Page 30

a. Book reviews must be moderated—that is, checked and “OK’d” by a member of
staff before they’re published on the website.

b. Longer reviews should be truncated on the book details screen; the customer may
click to view the full review on a separate page.

12. It must be possible for staff to post editorial reviews of books. These should also
appear on the book details screen.

13. The bookstore shall allow third-party sellers (e.g., second-hand bookstores) to add
their own individual book catalogs. These are added into the overall master book
catalog so that sellers’ books are included in search results.

14. The bookstore must be scalable, with the following specific requirements:

a. The bookstore must be capable of maintaining user accounts for up to 100,000
customers in its first six months, and then a further 1,000,000 after that.

b. The bookstore must be capable of serving up to 1,000 simultaneous users (10,000
after six months).

c. The bookstore must be able to accommodate up to 100 search requests per minute
(1,000/minute after six months).

d. The bookstore must be able to accommodate up to 100 purchases per hour
(1,000/hour after six months).

These requirements are a rich source of domain classes. Let’s put all the highlighted
nouns and noun phrases into a list (in the process, we’ll turn all the plurals into singulars,
and put them all in alphabetical order):

CHAPTER 2 ■ DOMAIN MODELING 31

Associate Partner

Author

Book

Book Catalog

Book Details

Book List

Book Review

Bookstore

Category

Checkout

Credit Card

Customer

Customer Account

Customer Rating

Database

Editorial Review

Internet

Item

Keyword

List of Accounts

Master Account List

Master Book Catalog

Master Catalog

Mini-Catalog

Order

Password

Purchase Order

Review Comment

Search Method

Search Results

Seller

Shipping Fulfillment
System

Shopping Cart

Title

User Account

Wish List

7745ch02final.qxd 12/13/06 8:28 PM Page 31

There’s quite a bit of duplication in this list; similar terms are being used for basically the
same thing. But that’s really the main benefit of the domain modeling approach: you get to
identify and eliminate these duplicate terms early on in the project.

■Exercise Disambiguation via Grammatical Inspection: We’ll go through this list next, whipping it into
shape and eliminating the duplicate terms. But first, try to identify the six duplicate pairs in the list. (Be care-
ful: one pair seems like a duplicate but really isn’t.)

Some of the items in the list are simply unnecessary because they fall outside the scope of
the domain model, or they’re actions sneakily masquerading as nouns.

Let’s step through the list now and tune it up a bit:

• You’d think that the terms “Customer” and “Customer Account” are duplicates, but in
fact they represent subtly different things: “Customer Account” is an entity stored in the
database, whereas “Customer” is an actor (see the next item in this list).

• “Customer” and “Seller” are actors, and thus should be placed on use case diagrams.
(See Chapter 3.)

• The terms “User Account” and “Customer Account” are duplicates. The choice of which
one to keep is fairly arbitrary, so we’ll go with “Customer Account.”

• The terms “List of Accounts” and “Master Account List” are duplicates, so one of them
should be removed. As we also have a “Master Book Catalog,” the consistent thing
would be to keep “Master Account List.”

• The terms “Book Review” and “Review Comment” are duplicates, so we’ll keep “Book
Review.”

• We have several different candidate terms for a catalog, or list of books: “Book Catalog,”
“Book List,” “Mini-Catalog,” and “Master Catalog.” Catalogs and lists are probably dif-
ferent concepts. In fact, it seems that the requirements are trying to tell us something,
which may just be implied in the text. When in doubt, talk to the customer. Ask ques-
tions until you get a clear, unambiguous answer.

“Book Catalog” and “Master Catalog” are in fact the duplicates here, so we’ll keep
“Master Catalog,” as it provides a good contrast with “Mini-Catalog.” “Book List,”
meanwhile, is probably an umbrella term for different types of lists; we’ll keep it in
there for now and see how it fits in when we draw the domain model diagram.

• There’s another duplicate in this area: “Master Catalog” and “Master Book Catalog.”
We’ll delete “Master Catalog,” as “Master Book Catalog” is the more descriptive term.

• The word “Internet” is too generic and doesn’t add anything here.

• The word “Password” is a too small to be an object and would be shown as a UI ele-
ment, so we should remove it from the domain model. If we start to include all the UI
elements in the domain model, we’re opening a serious can of worms and could be
here all night backed into a corner, fighting them away with a large stick.

CHAPTER 2 ■ DOMAIN MODELING32

7745ch02final.qxd 12/13/06 8:28 PM Page 32

• Same goes for “Title” and “Keyword.”

• Yet another duplicate is “Book” and “Book Details.” We’ll just keep “Book,” as it’s more
concise than “Book Details,” without losing any meaning.

• The word “Item” is just vague and fuzzy, but it does represent a valid concept: an item
that’s been added to the user’s shopping cart. So we’ll rename it “Line Item” and keep
it in the list.

• The word “Bookstore” is a bit too broad and is unlikely to be referred to explicitly, so we
can get rid of it.

Following is the updated list of candidate domain classes. Figure 2-4 shows those classes
laid out in a class diagram.

As we mentioned earlier, although grammatical inspection techniques are useful to get
a quick start, you shouldn’t spend weeks or even days doing this. (As you’ll see in Chapter 4,
the rest of the objects for the Internet Bookstore were identified during robustness analysis.)
A couple of hours is about the right amount of time to spend on the domain model before
getting started writing the use cases.

■Caution Don’t get bogged down in grammatical inspection.

Figure 2-4 shows one type of relationship, aggregation (aka has-a), which we described
earlier. As this is a first-pass attempt, not all the relationships shown are correct.

A helpful technique is to read the diagram aloud and include the term “has-a.” For
example, a Shopping Cart “has” Line Items. But, does an Order “have” Checkouts? Perhaps
not. Notice that a few of the domain objects currently don’t match up with anything else
(namely, Associate Partner, Shipping Fulfillment System, Database, and Search Method).
We’ve grouped these together over on the right for now; during robustness analysis, these
may get linked to other objects, warped into something different, or removed altogether.

CHAPTER 2 ■ DOMAIN MODELING 33

Associate Partner

Author

Book

Book List

Book Review

Category

Checkout

Credit Card

Customer Account

Customer Rating

Database

Editorial Review

Line Item

Master Account List

Master Book Catalog

Mini-Catalog

Order

Purchase Order

Search Method

Search Results

Shipping Fulfillment
System

Shopping Cart

Wish List

7745ch02final.qxd 12/13/06 8:28 PM Page 33

CHAPTER 2 ■ DOMAIN MODELING34

Figure 2-4. First-pass domain model for the Internet Bookstore project

Associate
Partner

Author

Book

Book List

Book Review

Category

Checkout

Credit Card

Customer
Rating

Database

Editorial
Review

Line Item

Mini-Catalog

Master
Account List

Master
Book

Catalog

Order

Purchase
Order

Search
Method

Search
Results

Shipping
Fulfillment

System

Shopping Cart

Wish List

Customer

Seller

Customer
Account

7745ch02final.qxd 12/13/06 8:28 PM Page 34

There’s still some work that needs to be done on this domain model before we’re ready to
move on to the next stage, so let’s do some more tidying up work next. Hopefully, this will help
to illustrate an important element of the ICONIX approach: continuous improvement via
ongoing iteration and refinement.

Internet Bookstore: Second Attempt at the Domain Model
When drawing up the domain model diagram, you’re generally brainstorming as a team. Often
the team will identify further domain objects that weren’t in the requirements, but instead
have been dredged from somebody’s own understanding of the problem domain. To illustrate
this, let’s say we’ve discovered two additional domain objects: Order History and Order
Dispatch. These weren’t mentioned explicitly in the requirements, but they could still classify
as minimum requirements for an Internet bookstore.

The updated diagram is shown in Figure 2-5, with the new domain classes shown in red.
In Figure 2-5, we’ve explored the concept of order fulfillment and dispatch. Shipping

Fulfillment System still remains on the diagram, but we’ll have to decide whether this is in
scope for the current model or it’s an external system that we need to interface with. External
systems are always modeled as actors.

We’ve also removed Checkout, as on reflection this was really a verb in noun’s clothing.
And we’ve removed Author, as this is really just another field in the Book (i.e., it’s too small to be
a first-class object on the domain model1). Authors . . . who needs ’em?

There’s some ambiguity around Master Book Catalog, which we’ve attempted to
resolve. We’ve removed the link between Book and Master Book Catalog, and instead added
a class called Book Catalog and linked Book to that instead. So we end up with a tangle of
relationships: we’re effectively saying that a Book belongs to a Book Catalog, and a Book
Catalog belongs to a Master Book Catalog (i.e., a Master Book Catalog is really a catalog of
catalogs). Ideally, a Mini-Catalog should also belong to the Master Book Catalog. But this
tangle is getting complicated. What we really need is a simple way of saying that a Book can
belong to Book Catalogs, and there can be various types of Book Catalogs. Luckily, a light
sprinkling of generalization can work wonders on such relationship tangles, as you’ll see
in the next section.

CHAPTER 2 ■ DOMAIN MODELING 35

1. Remember we’re not creating a data model here. If this were a database design, we would almost cer-
tainly create a separate Authors table.

7745ch02final.qxd 12/13/06 8:28 PM Page 35

CHAPTER 2 ■ DOMAIN MODELING36

Figure 2-5. Second snapshot of the evolving domain model for the Internet Bookstore project

7745ch02final.qxd 12/13/06 8:28 PM Page 36

Internet Bookstore: Building Generalization Relationships
A generalization relationship is one in which one class is a “kind of” some other class—
for example, a Cat is a kind of Animal. This is why generalization is often called an is-a
relationship.

Cat is more specific than Animal (Cat is a “refinement” of the more general Animal class),
hence the term “generalization.” The more specific class is called the subclass, and the more
general class is the superclass. Creating subclasses of more general classes is known as
subtyping.

Within the Internet Bookstore, Book Catalog is a good candidate for subtyping, because
doing so will help to “de-cloud” the relationship between Mini-Catalog and Master Book
Catalog. Book List is also a good candidate for subtyping, because there may well be differ-
ent types of accounts and different types of book lists.

As we delve more deeply into the user’s needs for the Internet Bookstore system, we’re
beginning to identify different types of book lists: customer wish lists, recommendation lists,
Related Books, Search Results, and so on. It’s becoming clear that these are all simply lists of
Books, so they could (conceptually, at least) have a common parent class. We’ve discovered
that there are indeed aspects of Wish Lists, Related Books, and so on that are different
enough to justify separate treatment, while they still have enough in common that they’re
all kinds of Book List. Figure 2-6 shows the notation for this generalization structure.

The new classes (Related Books, Recommendation List, Wish List, and Search Results)
inherit the attributes and operations that we define for Book List. Let’s read this diagram out
loud: A book list has books. Related Books is a book list. Recommendation List is a book list.
Wish List is a book list. Search Results is a book list. All true statements that describe the prob-
lem space? Great, let’s move on.

■Tip You could also add additional specialized attributes and operations for each of the new classes. In
other words, if you were to add an operation to Related Books, it would only be available to Related
Books. However, if you add it to Book List, the new operation would be available to all of its subclasses.

CHAPTER 2 ■ DOMAIN MODELING 37

Figure 2-6. Book Lists detail from the Internet Bookstore domain model

BookBook List

Related
Books

Recommendation
List

Wish List Search
Results

7745ch02final.qxd 12/13/06 8:28 PM Page 37

www.allitebooks.com

http://www.allitebooks.org

Figure 2-7 shows the updated Internet Bookstore domain model, which makes good use
of generalization to clarify the relationships between the domain classes. The new classes are
shown in red.

CHAPTER 2 ■ DOMAIN MODELING38

Figure 2-7. Third snapshot of the evolving domain model for the Internet Bookstore project

7745ch02final.qxd 12/13/06 8:28 PM Page 38

We’ve also changed the definition of Book Review, so that it’s now the parent class for
Editorial Review and the new class, Reader Review. And, finally, we’ve disentangled the rela-
tionships surrounding Order and its payment types (Credit Card and Purchase Order), by
adding a new superclass, Payment Type.

■Tip If you need to, you can generalize to more than one level of subclass. Remember to look for is-a
statements that are true in the real world.

Domain Modeling in Practice
The following exercises, taken from the domain model for the Internet Bookstore, are
designed to test your ability to spot the most common mistakes that people make during
domain modeling. After the exercises, you can find the diagrams with the errors highlighted
on them, followed by the corrected diagrams.

Exercises
Each of the diagrams in Figures 2-8 to 2-11 contains one or more typical modeling errors. For
each one, try to figure out the errors and then draw the corrected diagram. The answers are in
the next section.

Exercise 2-1

Figure 2-8 shows a class diagram produced during the initial domain modeling effort. The UML syntax is correct,
yet the diagram does point out a process-related error. Why is that? (Hint: The diagram is showing too much
detail.)

CHAPTER 2 ■ DOMAIN MODELING 39

Figure 2-8. Class diagram from the initial domain modeling effort

Shopping
Cart

Line Item

OrderCustomer

0..*

0..1

1

1

7745ch02final.qxd 12/13/06 8:28 PM Page 39

Exercise 2-2

Figure 2-9 shows a domain model diagram with attributes on the Order class. What database-related problem
does the diagram suggest?

Exercise 2-3

Figure 2-10 shows a domain model diagram in which the modeling team may have leapt ahead a little too soon.
Which parts of the diagram were added too early in the process?

CHAPTER 2 ■ DOMAIN MODELING40

Figure 2-9. Class diagram showing attributes

Order

- customerID: int
- DispatchDate: int
- FirstName: String
- OrderDate: int
- OrderID: int
- Surname: String

Order
History

Payment
Type

Figure 2-10. Domain model diagram with details added too early

Book List

Book

- ISBN: String
- title: String

Book Review

+ approveForPublication() : void
+ checkReviewLength() : void

Editorial
Review

Reader
Review

7745ch02final.qxd 12/13/06 8:28 PM Page 40

Exercise 2-4

Figure 2-11 shows another domain model diagram in which the modeling team began thinking about certain
details too early. What’s gone wrong in this diagram?

Exercise Solutions

Following are the solutions to the exercises.

Exercise 2-1 Solution: Multiplicity

Figure 2-12 highlights the errors in Figure 2-9. The initial domain modeling effort is way too early to start thinking
about details like multiplicity. At this early stage, your main concern should be identifying domain objects and
thinking at a broad level about how they relate to one another. Figure 2-13 shows the corrected diagram.

CHAPTER 2 ■ DOMAIN MODELING 41

Figure 2-11. Another domain model diagram with details added too early

Customer

Customer
Account

Session
Factory

Customer
Session

creates

Figure 2-12. Errors in Figure 2-9

7745ch02final.qxd 12/13/06 8:28 PM Page 41

Exercise 2-2 Solution: Mapping Database Tables to Domain Classes

The Order domain class includes attributes that really don’t seem like they belong in an Order class (see
Figure 2-14). The most likely cause is that the modeler has mapped these domain classes directly from a
relational database schema. Figure 2-15 gives the corrected diagram. The extra attributes have been sepa-
rated out into their own domain classes (Customer Account and Dispatch). Note that we’d generally not
show the attributes at all during domain modeling.

CHAPTER 2 ■ DOMAIN MODELING42

Figure 2-13. Corrected version of Figure 2-9

Shopping
Cart

Line Item

OrderCustomer

Figure 2-14. Order class domain attributes erroneously influenced from database schema

7745ch02final.qxd 12/13/06 8:28 PM Page 42

Exercise 2-3 Solution: Operations and Abstract Classes

The domain model diagram shown in Figure 2-16 has a couple of problems. The first is that Book Review is an
abstract class. While this isn’t especially destructive, and the world probably won’t end as a direct result, domain
modeling is just a bit too early in the development process to be thinking about these sorts of design details.

Staying with Book Review, the other problem is that a couple of operations have been assigned:
checkReviewLength() and approveForPublication(). Identifying and assigning operations to classes is
very much a design thing—so again, domain modeling is just too early to be thinking about these sorts of details.

Figure 2-17 shows the corrected diagram.

CHAPTER 2 ■ DOMAIN MODELING 43

Figure 2-15. Domain attributes from Figure 2-14, but this time in more appropriate classes

Order

- OrderDate: int
- OrderID: int

Order
History

Payment
Type

Customer Account

- CustomerID: int
- FirstName: String
- Surname: String

Dispatch

- DispatchDate: int

7745ch02final.qxd 12/13/06 8:28 PM Page 43

Exercise 2-4 Solution: Premature Patternization

In Figure 2-18, you can see the telltale beginnings of a Factory design pattern. Using this particular design pattern,
the SessionFactory class will create new instances of CustomerSession. A SessionFactory is clearly
part of the solution space, not the problem space, as are most design patterns. This sounds an awful lot like
design, and the use cases haven’t even been written yet, so again this is way too early to be thinking about
implementation details.

CHAPTER 2 ■ DOMAIN MODELING44

Figure 2-16. Solution-space details (design) added into the problem space (domain model)

Figure 2-17. Corrected version of Figure 2-16

Book List

Book

Book Review

Editorial
Review

Reader
Review

7745ch02final.qxd 12/13/06 8:28 PM Page 44

Design patterns usually begin to emerge during robustness analysis (preliminary design), but domain modeling
really isn’t the time to be thinking about them.

Figure 2-19 shows the corrected diagram.

More Practice
This section provides a list of modeling questions that you can use to test your knowledge of
domain modeling. The questions get progressively harder, but the answers can all be found by
reading (and thinking about!) the domain modeling techniques described in this chapter.

1. Which of the following is not one of the four types of association in a domain model?

a) Has-a

b) Creates

c) Is-a

d) Knows about

CHAPTER 2 ■ DOMAIN MODELING 45

Figure 2-18. Design details added too early in the project

Figure 2-19. Domain model diagram with the design details removed

Customer

Customer
Account

Customer
Session

7745ch02final.qxd 12/13/06 8:28 PM Page 45

2. When creating a domain class list, how do you tell when you have an attribute?

a) An attribute has cardinality in all cases.

b) An attribute can only be contained in instances with no behavior.

c) An attribute has a value that is typically not compound.

d) An attribute has a value that is made up of lots of other values.

3. What technique(s) can you use to figure out domain classes in a system?

a) Noun phrase analysis

b) Reverse engineering

c) Class verb category

d) Extreme Programming

4. What term is used to describe when a child class is an extension of a parent class?

a) Aggregation

b) Inheritance

c) Composition

d) Encapsulation

5. Draw a domain model for an online music store, first by trying to imagine how it works
in the abstract, without looking at any screens, and then after looking at an example
website such as iTunes or Napster. Which of your domain models is better? Explain.

6. Assume you could reverse engineer the database schema from Amazon.com and
import this into a visual modeling tool. Would this be a good starting point for a
domain model? What changes would need to be made to a reverse-engineered
database schema to make it a good domain model?

7. Assume someone hands you some Java code for a GUI prototype of a new Internet
bookstore and you reverse engineer it into UML. Would this be a good starting point
for a domain model? What changes would need to be made to a reverse-engineered
GUI prototype to make it a good domain model?

8. Assume you are working on Release 3 of a project, and you have a detailed set of class
diagrams showing the complete implementation of Release 2 that has been reverse
engineered from C# code. Release 3 involves migrating the system to a new GUI frame-
work and a different DMBS. What changes would need to be made to your detailed
class diagrams from the previous release to make it a good domain model for the cur-
rent release?

CHAPTER 2 ■ DOMAIN MODELING46

7745ch02final.qxd 12/13/06 8:28 PM Page 46

Summary
In this chapter we described in detail the first major stage of ICONIX Process. Domain model-
ing forms the basis for the whole object modeling activity. As you’ll see in the next chapter, the
use cases are written in the context of the domain model, and (as you’ll see in Chapter 5)
robustness analysis helps to tighten up both the domain model and the use case text, bringing
them closer together.

The activity diagram in Figure 2-20 shows how domain modeling fits into the overall
requirements analysis effort. The activities we covered in this chapter are shown in red.

CHAPTER 2 ■ DOMAIN MODELING 47

7745ch02final.qxd 12/13/06 8:28 PM Page 47

CHAPTER 2 ■ DOMAIN MODELING48

Figure 2-20. Requirements Analysis Checkpoint 1

7745ch02final.qxd 12/13/06 8:28 PM Page 48

Use Case Modeling

With an initial domain model in place, it’s time to begin writing use cases. Use cases give
you a structured way of capturing the behavioral requirements of a system, so that you can
reasonably create a design from them. They help you to answer some fundamental questions:
What are the users of the system trying to do? What’s the user experience? A surprising amount
of what your software does is dictated by the way in which users must interact with it.

The 10,000-Foot View
Use cases give you something that you can design from, and from which you can reliably
estimate time and effort. While some use case books treat use cases as more of an abstract
requirements specification technique, this book teaches you how to write use cases as the
first step toward doing a good object-oriented design and as a means to help you get
quickly to high-quality code.

49

C H A P T E R 3

7745ch03final.qxd 12/13/06 8:29 PM Page 49

■Note Look again at the process diagram at the start of this chapter. As you can see, you should create
your use case model close to the start of the development process, just after creating an initial attempt at
the domain model.

Why Do I Need Use Cases in Addition to Functional
Requirements?
Functional requirements tend to be a mixture of high- and low-level requirements—virtually
a stream of consciousness from managers, customers, and the marketing team captured in
serial form and placed into a Word document. Not that there’s anything wrong with that; it’s
just the first, early step along the path of getting a finalized, clear, unambiguous set of behav-
ioral requirements that you can realistically create a design from.

Functional specifications are important, of course. But designing, coding, or estimating
directly from a functional spec is like playing an enthralling game of “pick a random number.”
You need to do some exploratory work to even out the playing field. Use case modeling—and
preliminary design after it—gets you there.

■Note Functional requirements aren’t the only source of use cases. Further in-depth conversations with
the customer and end users are also a very important source. Creating storyboards and prototypes (UI mock-
ups, barely functional demos—those sorts of things) helps enormously when defining the use cases.

Don’t Forget the Rainy-Day Scenarios
When you’re writing your use cases, write them in such a way that your efforts are focused
on capturing your users’ actions and the associated system responses. As you’ll see, use case
modeling involves analyzing both the basic course (a user’s typical “sunny-day” usage of the
system; often thought of as 90% of the behavior) and the alternate courses (the other 90% of
the system functionality, consisting of “rainy-day” scenarios of the way in which the user
interacts with the system; in other words, what happens when things go wrong, or when the
user tries some infrequently used feature of the program). If you capture all of this in your
use cases, you have the vast majority of the system specced out.

Do an Initial Domain Model Before You Write the Use Cases
The use case is written in the context of the domain model—that is, all the terms (nouns
and noun phrases) that went into the domain model should also be used directly in your use
case text.

The ICONIX approach assumes that the initial domain model is wrong and provides
for incrementally improving it as you analyze the use cases. That’s why you should spend
only a couple of hours at most on domain modeling before you begin use case modeling.
As you write your use cases, you’ll inevitably want to feed information and changes back

50 CHAPTER 3 ■ USE CASE MODELING

7745ch03final.qxd 12/13/06 8:29 PM Page 50

into the domain model. Do so! Keep on updating the domain model, correcting it, and flesh-
ing it out with details. That’s how it evolves from the first-cut domain model into your
detailed design-level static model.

During preliminary design, the domain model turns into an updated domain model,
which in turn eventually (during detailed design) becomes your class model (i.e., the static
model that defines the software classes). You should update the domain model not just when
modeling use cases, but also when drawing robustness diagrams and sequence diagrams.

Driving Your Design (and Your Tests) from the Use Cases
Over the next few chapters, we’ll show you how to write use cases that are directly tied into the
classes that you design from. This gives you traceability from your code and your unit tests all
the way back up to your behavioral requirements.

We’ve found in practice that if you write your use cases in the way we describe in this
chapter and do robustness analysis (see Chapter 5), then it’s also quite easy to identify a set of
unit tests that verify your behavioral requirements. In other words, you’re writing tests that
prove that the use cases have been implemented.

Use Case Modeling in Theory
In this section, we describe the theory behind use case modeling, interspersed with examples
from the Internet Bookstore project. Your primary concern is with writing use cases that you
can drive the design from. In practical terms, this means that there’s a very close relationship
between your use cases and your classes. We’ll begin with our top 10 list of things you should
do when writing use cases.

Top 10 Use Case Modeling Guidelines
The principles discussed in this chapter can be summed up as a list of guidelines. These
guidelines, in turn, can be summed up in a single sentence:

DESCRIBE SYSTEM USAGE IN THE CONTEXT OF THE OBJECT MODEL.

Items 10 through 5 of the following list relate to describing system usage, and items 4
through 1 relate to putting the usage description in the context of the object model.

10. Follow the two-paragraph rule.

9. Organize your use cases with actors and use case diagrams.

8. Write your use cases in active voice.

7. Write your use case using an event/response flow, describing both sides of the user/
system dialogue.

6. Use GUI prototypes and screen mock-ups.

5. Remember that your use case is really a runtime behavior specification.

4. Write the use case in the context of the object model.

CHAPTER 3 ■ USE CASE MODELING 51

7745ch03final.qxd 12/13/06 8:29 PM Page 51

3. Write your use cases using a noun-verb-noun sentence structure.

2. Reference domain classes by name.

1. Reference boundary classes (e.g., screens) by name.

Let’s look at each of these items in more detail.

10. Follow the Two-Paragraph Rule
Each use case should fit comfortably into two paragraphs, including both the basic course
and alternate courses. Anything much longer than two paragraphs will result in some incom-
prehensible sequence diagrams. If your use case goes over two paragraphs, it probably needs
to be divided into two or more separate use cases.

If someone gives you a long use case template, you can almost bet that that person is
not expecting you to drive a software design from those use cases (at least not any time
soon). Long use case templates slow you down! It’s also a good bet that the template will
be full of non-use-case information such as functional requirements. (See the sidebar titled
“Disintermangling Dysfunctional Requirements from the Scenario Text” in Chapter 13.)

■Tip The use case writer should not include long lists of functional requirements in his or her scenario
text. Instead, the writer should just write about how the users will be using the system and what the system
will do in response.

CHAPTER 3 ■ USE CASE MODELING52

HOW TO WRITE A USE CASE: THE THREE MAGIC QUESTIONS

Well, OK, this whole chapter describes how to write a use case. But when writing use cases, you need to
keep asking the following three fundamental questions:1

1. What happens?

(This gets your “sunny-day scenario” started.)

2. And then what happens?

(Keep asking this question until your “sunny-day scenario” is complete.)

3. What else might happen?

(Keep asking this one until you’ve identified all the “rainy-day scenarios” you can think of, and
described the related behavior.)

1. For more about these “three magic questions,” see p. 48 of Use Case Driven Object Modeling with
UML: A Practical Approach by Doug Rosenberg and Kendall Scott (Addison-Wesley, 1999).

7745ch03final.qxd 12/13/06 8:29 PM Page 52

9. Organize Your Use Cases with Actors and Use Case Diagrams
This seems like as good a time as any to stop for a moment and talk about use case diagrams
and how they relate to use cases and actors.

A use case diagram shows multiple use cases on the one diagram. It’s an overview of
a related group of use cases. The text in each oval is the use case title. Figure 3-1 shows an
example use case diagram.

An actor is represented on the diagram as a stick figure and is analogous to a “role” that
users can play. Sometimes the actor will just be called “User,” but is often given a specific role
name. For example, our Internet Bookstore system will have actors called Webmaster, Stock

CHAPTER 3 ■ USE CASE MODELING 53

Questions 1 and 2 relate to the use case’s basic course (also known as a sunny-day scenario, or the
basic series of steps when it all goes right). Question 3 relates to the alternate courses (also known as
rainy-day scenarios, or what happens when the user does something wrong or steps outside the basic
course in some way). We’ll return to these three questions later in the chapter, but it’s worth stating them
up front because, boiled down to the essence, they are really what writing use cases is all about.

Figure 3-1. Example use case diagram

Customer Checkout

Pay by Card

Enter Address

Pay by
Purchase

Order

Pay by Check

7745ch03final.qxd 12/13/06 8:29 PM Page 53

Purchaser, Shipping Clerk, and Customer. The user (actor) is external to the system—he or
she is on the “outside,” whereas the system is on the “inside.” Actors can represent nonhuman
external systems as well as people. Sometimes people are confused by this notion; we’ve
found that drawing a “robot stick figure” icon seems to clear this up.

An association from the actor to a use case means that the actor is the one who carries
out that use case. The association can also signify responsibilities. For example, an Adminis-
trator pointing to a Moderate Forum Messages use case means “The administrator is responsi-
ble for moderating forum messages.”

You can have more than one actor pointing to one use case, which simply means that the
use case is associated with more than one role. Similarly, a user can serve as more than one
type of actor; the same user might be both the Stock Purchaser and the Shipping Clerk.

8. Write Your Use Cases in Active Voice
If you weren’t paying attention in your high-school English class (and you don’t have a great
copy editor like we do), then you may not be familiar with the terms active voice and passive
voice. The terms have to do with the perspective from which you write a sentence. When you
write in passive voice, you describe what is done without emphasizing—indeed, often without
mentioning—who or what is performing the action. For example:

The capability is provided for users to log in, using a password-protected authorization

scheme.

Isn’t this great? The capability is apparently already provided, so you don’t have to worry
about it. Unfortunately, that may or may not be the case (you might have to build that capabil-
ity). The problem with passive sentences is that they hide the actor(s) and, more important,
the software functions. The sentence just doesn’t tell you. The example sentence also sounds
remarkably like a functional requirement—the kind of thing that you tend to see in big, pas-
sively worded requirements specs (aka dusty tomes), and that it’s your job to decipher for
everyone by respecifying the requirements in use cases (i.e., by using active voice behavioral
descriptions of the system).

To identify passive sentences, watch for forms of the verb “to be” (“is” in the preceding
example) in front of another verb (“provided” in the example). The second verb is often in the
past tense. A form of “to be” followed by a past-tense verb is a sure sign of a passive sentence
that you should rewrite in active voice.

Passive sentences are often unclear and they lack energy; your readers will doze off. Active
sentences make clear who does what, and they keep readers awake. Use active sentences and write
from the user’s perspective, and your use cases will be sharper and less likely to be misconstrued.

Here’s an active voice rewrite of this use case:

The user enters her username and password, and then clicks the Login button. The sys-

tem looks up the user profile using the username and checks the password. The system

then logs in the user.2

CHAPTER 3 ■ USE CASE MODELING54

2. Remember this is the basic course—the sunny-day scenario that assumes everything goes correctly.
There would also be an alternate course describing what happens if the username or password
weren’t found.

7745ch03final.qxd 12/13/06 8:29 PM Page 54

7. Write Your Use Case Using an Event/Response Flow
A use case is often triggered by a user-initiated event that the system has to respond to. How-
ever, it can also be triggered by a system-initiated event to which the user responds. But in
either case, the use case follows the event/response flow (see Figure 3-2).

■Note Quite often, the user is reacting to a system action, so the use case starts with “The system
displays the XYZ screen (showing ZZZ information),” and then the user does something in response. The
main benefit of starting your use case with "The system displays..." is that the system showing some-
thing on the screen involves initialization behavior (getting ZZZ information from somewhere) that is often
forgotten otherwise.

We can refine our use case a bit further by starting with the system action, which has the
beneficial effect of causing us to assign an unambiguous name to the screen, as follows (with
the new sentence in red):

The system displays the Login screen. The user enters her username and password, and

then clicks the Login button. The system looks up the user profile using the username

and checks the password. The system then logs in the user.

CHAPTER 3 ■ USE CASE MODELING 55

Figure 3-2. Anatomy of a use case scenario

7745ch03final.qxd 12/13/06 8:29 PM Page 55

Notice that in this version, we’ve identified more detail than the original passive-voice
requirement contained. We now know that to log in, the user must click a Login button and
that the system must then find the user profile using the username. This gets at the heart of
what use cases are about: show, don’t tell. That is, instead of saying, “The system allows users
to log in via a password-protected authorization scheme,” you should actually describe the
steps involved in logging in: the user entering the username and password, the user clicking
the Login button, and then the system checking the details and responding. Writing the use
cases in this format encourages you to think through the finer details of the system’s behavior.

It’s also important to remember to write both sides of the user/system dialogue in your
use case. Use case modeling can be thought of as an outside-in type of approach. When you
write use case scenarios, you’re describing the user’s interaction with the system. But interac-
tion is a two-way thing, so you also need to describe the system’s behavior in addition to the
user’s behavior. A use case will typically consist of several steps. Each step involves an event
and a response: the user’s action and the system’s reaction, or vice versa (see Figure 3-2).

So a use case really describes a dialogue between a user and the system. You need to
write about the user side of the dialogue to keep your behavior requirements firmly user-
focused, but it’s not sufficient to just write down what the user does, because ultimately
you’re trying to spec software, and software really consists of the system’s behavior. So it’s
vitally important to describe both sides of the dialogue between the user and the system in
every use case.

6. Use Storyboards, GUI Prototypes, and Screen Mock-ups
Storyboards, GUI prototypes, and screen mock-ups are often very useful visual aids when
writing a use case. If you’re basing the use case on a GUI prototype, for example, it’s impor-
tant to include all the buttons and menus the user can touch to generate events within the
use case.

Recently we’ve been gravitating toward the term “storyboard” instead of “prototype,”
because there’s always the danger that GUI prototyping can escalate into extended GUI
design. Then little bits of functionality get added into the supposedly “nonfunctional” proto-
type UI, and suddenly you’ve implemented the “complete” system, all cobbled together with
string and sticky tape, before you’ve even begun to analyze the alternate courses (that other
90% of the system functionality).

If this scenario worries you, there are a few possible remedies:

• Use something like the Napkin Look & Feel3 to give your prototype GUI that “sketched
on the back of a napkin” appearance. This look sets management and customer expec-
tations appropriately, so they don’t think that your team has somehow miraculously
reached the implementation stage yet.

• Use line drawings like the one in Figure 3-3. This keeps everyone focused on opera-
tional concepts, rather than being sidetracked with GUI minutiae (“That button should
be 3 pixels to the right! Use spin buttons—no, a pop-up scrollbar!”). There will be plenty
of time (although hopefully not too much time) for that tortuous experience later.

CHAPTER 3 ■ USE CASE MODELING56

3. See http://napkinlaf.sourceforge.net.

7745ch03final.qxd 12/13/06 8:29 PM Page 56

• Use your CASE tool to storyboard your screens and attach them to your use cases.
For example, in Enterprise Architect (EA), you can create a Custom (Extended Class)
diagram as a subdiagram beneath your use case, and then place UI elements on the
diagram.

Here’s an example use case derived from the storyboard in Figure 3-3:

The user clicks the Edit Shopping Cart button, and the system shows the Edit Shopping

Cart page with a list of books in the user’s shopping cart. The user selects one of the

books, changes the quantity, and clicks the Update button. The system shows the page

with the quantities and price totals updated.

The use case avoids making any references to specific element types. The hyperlinks for
each book title could turn into buttons next to the book titles, for example, if you switched
from an HTML front-end to a Flash rich-client front-end. But the use case text doesn’t focus
on these details, and instead focuses on event/response behavior.

If you created your UI files outside your CASE tool or have screenshots from a legacy
system, then using Rational Rose or Enterprise Architect you can link the UI files to your use
cases (see Figure 3-4).

CHAPTER 3 ■ USE CASE MODELING 57

Figure 3-3. Example UI storyboard

Internet Bookstore - Edit Shopping Cart

Items in Your Shopping Cart Price: Qty:

1$42.65Domain Driven Design

1$29.65Extreme Programming Refactored

Update

7745ch03final.qxd 12/13/06 8:29 PM Page 57

5. Remember That Your Use Case Is Really a Runtime Behavior Specification
With ICONIX Process, you’re driving the design from the use cases. In practical terms, this
means that you draw a sequence diagram for each and every use case in the current release.
The sequence diagram shows in great detail how object instances collaborate together at run-
time to accomplish the behavior of the use case. Therefore, the use case text will serve as a
specification of the runtime behavior that you show on the sequence diagrams.

CHAPTER 3 ■ USE CASE MODELING58

Figure 3-4. Linking files to use cases within Enterprise Architect

Q&A: USE CASE = USER DOCUMENTATION?

You can always think of the use case text as being a narrative describing the user’s adventures when inter-
acting with the system. So it goes, “First the user does this; next the user does that.”

Q: But don’t I also have to describe the system’s response?
A: Yes. So the text should really go, “First the user does this; then the system responds with that. Next the
user does something; then the system responds with . . .” and so on.

Q: Isn’t that similar to writing a user guide?
A: You got it. In fact, being “use case driven” can be summed up like this: First write the user guide and then
write the code.

7745ch03final.qxd 12/13/06 8:29 PM Page 58

4. Write Your Use Case in the Context of the Object Model
Repeat this mantra at least a hundred times before breakfast:

You can’t drive object-oriented designs from use cases unless you tie your use cases
to objects.

In practical terms, this means that you need to reference domain classes that partici-
pate in the use case, and you need to name your screens and other boundary objects
explicitly in the use case text. Otherwise, your behavior requirements will be completely
disconnected from your object model, and (surprise!) you won’t be able to drive designs
from the use cases.

3. Write Your Use Cases Using a Noun-Verb-Noun Sentence Structure
You’ll be amazed how much easier it is to create an object-oriented design if your use case
text follows the noun-verb-noun style. Your use case text will ultimately reside on the margin
of your sequence diagram (see Chapter 8). And sequence diagrams are fundamentally geared
around nouns and verbs:

• The nouns are the object instances. These usually either come from the domain model
(entities) or are boundary/GUI objects.

• The verbs are the messages between objects. These represent the software functions
(controllers) that need to be built.

So, by writing your use case in noun-verb-noun format, you’re setting yourself up to
make the sequence diagramming task considerably easier than it would be otherwise.

2. Reference Domain Classes by Name
Remember from Chapter 2 that the domain model serves as a project glossary that helps to
ensure consistent usage of terms when describing the problem space. As we mentioned in
item 4, when you try to drive an object-oriented design from use cases, it’s critically impor-
tant that the use cases are linked to the objects. While this may seem obvious after it’s stated,

CHAPTER 3 ■ USE CASE MODELING 59

Q: Presumably this principle carries all the way through to the design?
A: Yes, the goal is to build something that implements the behavior requirements, so the system you’ll be
designing will be strongly correlated with the viewpoint of the end users. In other words, first you’re describ-
ing system usage from the user’s perspective, and then you’re designing and unit-testing from the user’s
perspective, too.

Q: What if we’re updating a legacy system?
A: The same principle still applies. Simply work backward from the user guide. Analyze the existing function-
ality, and then make changes based on how those functions will be performed in the new system. You should
find yourself breaking the legacy user guide down into its fundamental components, from which you can then
derive your use case scenarios.

7745ch03final.qxd 12/13/06 8:29 PM Page 59

it’s a fact that’s ignored in many books about use cases. But think about it: how can you drive
an object model from use cases, if the use cases aren’t linked to the objects? The short answer
is you can’t. At the same time, you don’t have full knowledge of the eventual object model
when you start writing use cases. What you do have knowledge of at that point in time is a
preliminary version of the object model that describes the problem domain in unambiguous
terms—that is, the domain model. So, link the use cases to the domain objects. In practice,
this means referencing the domain classes by name in the use case text.

Let’s say you have a domain model that contains domain classes such as Wish List, Book,
Book List, and Shopping Cart. The following use case text is “sort of” using these domain
classes, but it doesn’t reference them by name (the errant text is shown in red):

The user selects a title and adds it to his list of books to be saved for later. The system

displays a page with the updated list and also shows a list of titles in the user’s cart,

ready for checkout.

Although this text seems clear, it’s a hotbed of ambiguity. “List of books to be saved for
later” might, in subsequent use case scenarios, be shortened to “list of books” or “saved
books,” both of which could be interpreted to mean something completely different.

Here’s the corrected text (the corrected parts are shown in bold):

The user selects a Book and adds it to his Wish List. The system displays a page with the

updated list and also displays the user’s Shopping Cart.

You’ve gone to the trouble of building a domain model so that you could unambiguously
communicate about details of the system you’re developing. Since keeping ambiguity out of
your use cases is one of your primary goals, it would be silly not to use the terminology that
your team collectively agreed upon in the domain model.

■Exercise There’s one other item in this section’s use case text that is potentially ambiguous. We cover it
in the next section (“Reference Boundary Classes by Name”), but see if you can spot it before moving on.
Think about what you would replace it with.

CHAPTER 3 ■ USE CASE MODELING60

7745ch03final.qxd 12/13/06 8:29 PM Page 60

1. Reference Boundary Classes by Name
Since you’re on a mission to write unambiguous behavior requirements, and since behavior
requirements nearly always involve the user interface, it’s a good idea to not write vague and
ambiguous phrases like “The system displays a web page” in your use cases. Rather, name
your screens explicitly—for example, “The system displays the Checkout page.”

In many cases, significant software behavior is related to initializing a page before display,
and you need to write about this behavior as well: “The system displays the Checkout page
showing the user’s default billing and shipping addresses.” Notice how the use case text is get-
ting progressively less ambiguous!

Returning to the Wish List example, here’s how the text would appear once the boundary
class is referred to by name (the corrected text is shown in bold):

The user selects a Book and adds it to his Wish List. The system displays the user’s Wish
List Page (which also shows the user’s up-to-date Shopping Cart).

Note that we’ve progressively squeezed ambiguity out of the use case by putting it in the
context of the object model and the GUI.

Organizing Use Cases into Packages: Internet Bookstore
Pretty soon we’re going to start writing some of the use cases for the Internet Bookstore. But
before we do that, we need some way of organizing all of these use cases. In a decent-sized
system, you could have anywhere from 100 use cases upward.

Luckily, the UML provides us with the package mechanism, which is a way of grouping
related elements (e.g., classes, diagrams, or use cases). Packages are basically hierarchical
containers that can contain almost any UML constructs, including other packages. If you’re
a Java programmer, UML packages are not entirely dissimilar to Java packages, in that they
allow you to divide your work broadly into different areas.

For the Internet Bookstore, Figure 3-5 shows a package diagram containing four packages.
Each package contains lots of use cases. In addition, the shopping package contains an actor
(Customer), and the admin package contains four actors (Customer Service, Seller, Shipping
Clerk, and Webmaster).

CHAPTER 3 ■ USE CASE MODELING 61

7745ch03final.qxd 12/13/06 8:29 PM Page 61

Figures 3-6 through 3-9 show the individual use case diagrams for each of the four pack-
ages. You’ll notice that we haven’t bothered to pretty up the diagrams or even connect all the
use case bubbles with arrows. That’s because the more important part of the job is writing
the use case text.

We do provide a brief discussion of the relationships that we’ve drawn in, but as you’ll
gather by the end of the discussion, we value what goes into the use case text much more
than the relationships between the use cases.

CHAPTER 3 ■ USE CASE MODELING62

Figure 3-5. Package diagram for the Internet Bookstore example

admin
+ Customer Service

+ Seller

+ Shipping Clerk

+ Webmaster

+ Add Books to Catalog

+ Add Editorial Review

+ Add External Books to Catalog

+ Dispatch Order

+ Moderate Customer Reviews

+ Monitor Stock Levels

+ Order Books from Publisher

+ Process Refund

+ Remove Books from Catalog

+ Remove External Books from Catalog

+ Respond to Enquiry

+ Unlock Locked Account

general
+ Add to Wish List

+ Cancel Order

+ Edit Shopping Cart

+ Login

+ Logout

+ Open an Account

+ Return a book

+ View Order History

+ Where's My Stuff?

searching
+ Advanced Search

+ Search by Author

+ Search by Category

+ Search by Keyword

+ Search by Title

+ Search for Books

shopping
+ Customer

+ Add Item to Shopping Cart

+ Checkout

+ Edit Shopping Cart

+ Enter Address

+ Pay by Card

+ Pay by Check

+ Pay by Purchase Order

+ Remove Item From Shopping Cart

+ View Recommendations

+ View Review

+ Write Reader Review

7745ch03final.qxd 12/13/06 8:29 PM Page 62

CHAPTER 3 ■ USE CASE MODELING 63

FACTORING OUT COMMON BEHAVIOR

The last thing you want to do when writing use cases is to repeat the same behavior multiple times. This
is a horrendous waste of effort, which you don’t have time for, and one of the leading causes of analysis
paralysis. So you need a mechanism for factoring this common behavior into its own use case. Our prefer-
ence for this is an association called <<invokes>> and its partner-in-crime <<precedes>>.

Figure 3-7 has an arrow labeled “invokes” that points to Dispatch Order. You should read this in the
direction of the arrow—in other words, “Checkout invokes Dispatch Order.” It simply means that in the
course of stepping through the Checkout use case, the Dispatch Order use case can be invoked.

You should mention the use case being invoked in the use case text; otherwise, the invokes relationship
won’t make a lot of sense. So the use case description might say, “The user clicks the Confirm Order button;
invoke Dispatch Order.”

The << and >>s are the UML notation for stereotypes. The stereotype is UML’s extension mechanism,
so you can extend its core notation with your own semantics by assigning a stereotype to a UML element.

Figure 3-6. Use case diagram for the “general” package

Return a book

View Order History

Login

Logout

Where's My Stuff?
Edit Shopping Cart

Add to Wish List
Cancel Order

Open an Account

Customer

(from shopping)

7745ch03final.qxd 12/13/06 8:29 PM Page 63

WHAT ABOUT <<INCLUDES>> AND <<EXTENDS>>?

UML defines some standard stereotypes for moving between use cases (notably, <<includes>> and
<<extends>>; more about the subtle distinction between these shortly). You read <<includes>> associa-
tions in the direction of the arrow, while you read <<extends>> associations in the reverse direction.

It’s good practice to have your use cases reviewed by “non-UML-experts” like end users and marketing
people (because they’re the ones who understand what the behavior should be). We’ve noticed that these folks
sometimes get confused trying to read use case diagrams with some of the associations pointing forward and
some pointing backward. And, after working with use cases for 15 years or so, we’re convinced that the
details inside the use cases are really the important bits, not the associations on the diagrams. You can think
of <<invokes>> as a superset of <<includes>> and <<extends>>. If A invokes B, you can get to B from A,

CHAPTER 3 ■ USE CASE MODELING64

Figure 3-7. Use case diagram for the “admin” package

Shipping Clerk

Customer Service

Seller

Webmaster

Process Refund

Moderate
Customer
Reviews

Remove Books
from Catalog

Respond to
Enquiry

Unlock Locked
Account

Dispatch Order

(from shopping)

Checkout Monitor Stock
Levels

Order Books
from Publisher

Add External
Books to Catalog

Add Editorial
Review

Add Books to
Catalog

Remove External
Books from

Catalog

«invokes»«invokes»

«invokes»

«invokes»

7745ch03final.qxd 12/13/06 8:29 PM Page 64

CHAPTER 3 ■ USE CASE MODELING 65

and the subtle details of inclusion and extension usually aren’t all that important to getting the job done (see
the sidebar titled “Use Cases and Aspects” later in this chapter for a case where those details are important).

Recall from Figure 3-7 that there is some sort of connection between Checkout and the use cases sur-
rounding it. In Figure 3-8 (the complete version of that use case diagram) we’ve drawn in the relationships
using <<invokes>> arrows.

Figure 3-8. Use case diagram for the “shopping” package

Customer

Enter Address

Checkout

Pay by Check

Pay by Card

Add Item to
Shopping Cart

Remove Item
From Shopping

Cart

View Review
Edit Shopping

Cart
View

Recommendations

Write Reader
Review

(from general)

Login

Pay by Purchase
Order

«precedes»

«precedes»

«invokes»

«invokes»

«invokes»

«invokes»

7745ch03final.qxd 12/13/06 8:29 PM Page 65

There are also a couple of <<precedes>> stereotypes in Figure 3-8. A <<precedes>> rela-
tionship simply means that one use case must be completed before the next one is begun.
So in the diagram, the Login use case must be completed before Checkout is begun, and also
Login must be completed before Write Reader Review is begun.

Figure 3-9 shows the “generalization” relationship, denoted by an arrow with a triangular
arrowhead. This relationship is similar to generalization with classes (we used this on the
Internet Bookstore domain model in Chapter 2). For example, in the diagram, Search by
Author “is-a” type of Search for Books use case.

Note that in addition to generalization, UML also defines an “extends” relationship,
modeled as a stereotype. Java developers might find this confusing at first, because in Java
“extends” is the mechanism used for implementing a generalization relationship between
classes. However, with use cases, generalization and extends are different concepts.

A concrete use case can “extend” an abstract parent use case. You denote it on a use case
diagram using the <<extends>> stereotype. The differences between extends and generaliza-
tion are subtle but important:

CHAPTER 3 ■ USE CASE MODELING66

Figure 3-9. Use case diagram for the “searching” package

Search for
Books

Customer

(from shopping)

Search by
Author

Search by Title

Search by
Category

Search by
Keyword

Advanced
Search

7745ch03final.qxd 12/13/06 8:29 PM Page 66

• Extends defines a set of extension points in the parent use case; generalization doesn’t.

• With extends, the parent must know that it’s going to be extended (in order to define
the extension points); this is not so with generalization.

• Extends adds to the parent’s functionality; generalization overrides it (i.e., totally
replaces it, albeit with something similar).

However, our experience with generalization has been that it’s almost always of no value
whatsoever in use case modeling. For example, in Figure 3-9, what do we gain from modeling
the different search use cases as types of an abstract Search for Books use case? Absolutely
nothing! The reason we don’t gain anything from modeling this is because for our purposes,
use cases are not classes, they’re fragments of a user guide.

■Tip If you think you might need to show use case generalization on your diagram, think of what you
intend to do as “user guide generalization,” and hopefully (like us) you’ll then think, “Huh?!”

With class design, generalization is useful, because you can use it to factor out common-
ality and eliminate duplicate code. However, with use cases, generalization doesn’t give you
this benefit. There are, however, other relationships that you can use to factor out commonal-
ity, to avoid writing duplicate use case text. (See Table 3-1 in the next section.)

Our advice is to really not dwell on these different relationship types for very long, if at
all. Imagine you’re doing some critical use case modeling with a roomful of expensive busi-
ness consultants, and your main objective is to elicit all of the behavioral requirements from
them. But the clock’s ticking before they all stampede out for their three-hour liquid lunch
break. What’s more important: getting the notation exactly right, or extracting all the details
that you can from the consultants, while you have them in the room with you?

■Tip Remember, it’s what’s inside the use cases that counts, not the way they’ve been drawn together on
the use case diagram.

Use Case Relationship Roundup
Just as the deck chairs on the Titanic could be arranged in different configurations, use
cases can be related many different ways, the most common of which are listed in Table 3-1.
Note that it’s perfectly acceptable to make hissing noises at the following table and to back
carefully away shouting, “Back, evil stereotype spirits!” Use case relationships have been the
cause of many lost hours of valuable use case modeling time, as analysts argue heatedly
over which one would be best suited to put on their diagram next. Our own advice is simply
to pick one of these and stick with it, and to not worry too much about which ones to use.

CHAPTER 3 ■ USE CASE MODELING 67

7745ch03final.qxd 12/13/06 8:29 PM Page 67

■Tip We’ve found that 97.3% of the time, the <<invokes>> and <<precedes>> relationships work just
fine for linking up use cases; the other relationships shown in Table 3-1 mostly aren’t needed.

For regular (non-aspect-oriented) OOAD, the important thing is that you’re showing that
the use cases are logically related in some way, and the really important thing is what goes
inside the use case descriptions, because that’s what you’ll be designing, testing, and estimat-
ing from. You drive OOAD from class diagrams and sequence diagrams; the use cases drive the
sequence diagrams. Therefore, the includes/extends construct is a distraction. It doesn’t buy
you anything, it slows you down, and it confuses readers of the use case model.

■Note There’s a big exception to our point about includes/extends being a distraction. If you’re going to
structure your code along use case boundaries via aspects, then suddenly the distinction between includes
and extends becomes important. See the sidebar “Use Cases and Aspects” later in this chapter.

Table 3-1. Common Use Case Relationships

Relationship Description Most Effective Remedy

Generalization (denoted Use case B is a type of use case A➤(Think of Garlic placed around
by an arrow pointing it as an “overrides” relationship, as the child the neck while sleeping
from B to A, with a white use case inherits none of the steps of the
triangle arrowhead) parent use case.)

A <<includes>> B Halfway through use case A, use case B is Silver bullet
called. When B finishes, A carries on from
where it left off. Most similar to a function
call or a GOSUB in BASIC.➤A bit like saying
“A has-a B.”

A <<extends>> B All the steps from use case A are performed Stake through the heart
during the execution of use case B, at the
extension point which is specified within
B.➤For the most part, <<extends>> is
<<includes>> with a backward arrow. (Both
are subtypes of invokes.)

A <<precedes>> B Use case A must take place in its entirety Holy water
before use case B even begins.

A <<invokes>> B Use case B happens during the lifespan of A nice cup of tea and a
use case A. chocolate Easter egg

You might notice from Table 3-1 that all of these relationship types are remarkably simi-
lar; they’re just subtly different enough to make them a real pain when people disagree
about which one to use. In fact, we’re hoping that the (quite factual) description in the side-
bar “Use Case Diagram Stereotypes As a Treatment for Insomnia” should help to persuade
you that 99% of the time, the distinction between these relationships just isn’t important.

CHAPTER 3 ■ USE CASE MODELING68

7745ch03final.qxd 12/13/06 8:29 PM Page 68

CHAPTER 3 ■ USE CASE MODELING 69

USE CASE DIAGRAM STEREOTYPES AS A TREATMENT FOR INSOMNIA

If you’re worried about whether to use <<extends>>, <<includes>>, <<precedes>>, <<invokes>>, or
generalization on your use case diagram, or if you’ve been having difficulty sleeping recently, this handy little
sidebar should help you to decide and/or help you doze off. Feel free to print this out on a postcard and place
it above your monitor:

The extending use case must define extension points where it may be extended, but the extended use
cases must remain independent of the extending use cases, whereas including use cases do not define
extension points even though their behavior is extended by the included use case, which is similar to use
cases using generalization, which also do not define extension points but their behavior is not extended by
the included use case per se—it’s overridden, as opposed to preceding use cases, which must take place in
their entirety before the child use case begins. The extends arrow MUST be drawn from the extended use
case to the extending use case in an analogous fashion to a generalization arrow being drawn from the sub-
class toward its parent class, while an includes arrow is ALWAYS drawn from the including use case to the
included use case in an analogous fashion to an aggregation arrow being drawn from the aggregate class to
the classes being aggregated. You may consider both includes and extends to be subtypes of invokes (that is
to say, invokes includes extends and invokes also includes includes, but includes does not include invokes,
nor does extends include invokes), with the distinction being all that stuff about extension points and whether
the extended use case knows about the use case that’s extending it or not. If you think of a use case as a
fragment of a user guide, as opposed to thinking of it as a classifier, which is, of course, how it is formally
defined within the UML, you may discover that the difference between having extension points or simply
including the use case into which you will be branching is not particularly significant, in which case a simple
invokes may suffice and you don’t have to worry about which way you should draw the arrow on the diagram
since the extends arrow points in the opposite direction from the includes arrow, in a similar manner to how
a generalization and an aggregation arrow are drawn in opposite directions, more specifically the extends
arrow MUST be drawn from the extended use case to the extending use case in an analogous fashion to
a generalization arrow being drawn from the subclass toward its parent class, while an includes arrow is
drawn from the including use case to the included use case in an analogous fashion to an aggregation arrow
being drawn from the aggregate class to the classes being aggregated. The bottom up-arrow convention for
extends being analogous to generalization may cause confusion between generalization and extends, espe-
cially among Java programmers, to whom extends already means generalization. (Extends is a subtype of
invokes, so you could say that extends extends invokes; but here we’re using extends in the generalization
sense, not in the UML extends sense, so it’s an extension of the extended OO terminology; but to say that
extends extends extends [but not a UML extends] would be extending the truth.) Additionally, when non-
technical personnel are asked to review the use cases, they occasionally experience consternation while
attempting to follow the arrows on the use case diagrams, since some arrows point from the invoking use
case to the invoked use case, while others point from the invoked use case back toward the invoking use
case. This problem is generally indicative of a lack of UML training among nontechnical personnel and is
readily solved by forcing all users and marketing folks to attend a three-day “UML for nontechnical person-
nel” workshop, which will educate them on these subtle yet critically important features of UML. Precedes,
on the other hand, is a somewhat different stereotype than includes, invokes, or extends, in that it simply
indicates a temporal precedence; that is to say it is occasionally useful to indicate on a use case diagram
that use case A needs to happen BEFORE use case B (i.e., there is temporal precedence in which A MUST
OCCUR before B). Neither of the standard UML use case diagram stereotypes (i.e., neither includes nor
extends) provides a convenient mechanism for expressing this concept of temporal precedence (despite the
fact that showing temporal precedence is often more useful than showing whether the invoked use case has

7745ch03final.qxd 12/13/06 8:29 PM Page 69

Internet Bookstore: Refining Use Cases
It’s high time that we wrote the use case description for our first Internet Bookstore use case.
We’ll start with Write Reader Review, which over the course of the book we’ll follow all the way
to source code. (We’ll also track the progress of the Show Book Details use case, beginning in
Chapter 4.)

Checking the latest version of the domain model (see Figure 2-7), we have two types of
book reviews: Reader Reviews (reviews submitted by Customers) and Editorial Reviews
(reviews written by staff).

Here’s the first cut of our use case:

The user types in a review of the selected item, gives it a score, and sends it. The review is

sent to a moderator.

■Exercise The Write Reader Review use case scenario captures the basic points of the user’s interaction
with the system, but the text is rather terse. When it comes to writing text for use cases, a detailed descrip-
tion is preferable to a terse one. We improve on our current version in just a moment, but first, have a look
at the reader review process on existing bookstore websites (e.g., Amazon.com or SpringerOnline.com), and
try writing a more detailed version.

The text of your use case is important enough to take some care with. In particular, make
sure that it’s in active voice (present tense, describing user actions and system responses, or
vice versa) and that you explicitly name the domain objects that participate. Your goals are to
unambiguously describe the required behavior of the system and to identify which domain
objects will be performing that required behavior.

CHAPTER 3 ■ USE CASE MODELING70

knowledge of the invoking use case or not), and so in these cases you MAY find it useful to label the arrow
with a stereotype of precedes. It is strongly recommended that in these cases the precedes arrow should
originate from A (i.e., the preceding use case) and terminate with the arrowhead pointing at B (i.e., the use
case that has been preceded), lest you cause massive confusion among readers of the use case diagram.
Precedes does not necessarily imply that the preceded use case has intimate knowledge of the preceding
use case, although in practice this is often the case, but the precedes stereotype simply indicates a temporal
precedence. The case has been made that it is possible to draw an equally valid use case diagram by revers-
ing the direction of the arrow and changing the stereotype from precedes to invokes, but IN FACT the
meaning is changed subtly by this action, in that the invokes arrow would generally indicate that the invoking
use case invokes the invoked use case during its execution, while the precedes arrow would indicate that the
preceding use case actually temporally precedes (that is to say, happens earlier in time) than the preceded
use case.

Conclusion (assuming you’re still awake): Don’t worry about it, just focus on what goes inside the
use cases.

7745ch03final.qxd 12/13/06 8:29 PM Page 70

■Tip Any ambiguity you leave in a use case will just result in more disambiguation work later, so try to be
as precise as you can in your descriptions.

Let’s now expand the use case text and put some meat on its bones:

The Customer selects the book. The system displays a book detail page. The Customer

clicks the Write Review button, and the system shows the Write Review screen. The user

types in a review of the book, gives it a rating out of five stars, and clicks the Send button.

The system ensures that the review isn’t too long or short, and that the rating is within

one and five stars. The system then displays a confirmation screen, and the review is sent

to a moderator, ready to be added.

With this new version, the narrative has begun slightly too early. By describing the events
leading up to the Write Review page, we’re actually describing part of a different use case. So
let’s remove the duplicate text:

The Customer clicks the Write Review button for the book currently being viewed, and

the system shows the Write Review screen. The Customer types in a Book Review, gives it

a Book Rating out of five stars, and clicks the Send button. The system ensures that the

Book Review isn’t too long or short, and that the Book Rating is within one and five

stars. The system then displays a confirmation screen, and the review is sent to a Moder-

ator, ready to be added.

Reading through the use case, you can see how it relates back to the domain model.
Objects such as Book Review and Book Rating, which appear on the domain model, are refer-
enced explicitly by name in the use case. There’s a human actor named Customer, and we’ve
also identified a new actor called Moderator (someone responsible for checking the reviews
before they are added). And there will also be some kind of Write Reader Review screen.

The updated use case also describes the validation that the system performs on the sub-
mitted data (e.g., checking that the Book Rating is a legal value, within one and five stars).
As you’ll see when we move on to robustness analysis in Chapter 5, describing the validation
right in the use case text is an important method of identifying controllers.

One last thing: The actual name of the use case also needs some work. It’s called Write
Reader Review, but in the domain model the name we have for the reader is Customer. So
to keep the use case matched up with the domain model, we should change the title to Write
Customer Review.

■Exercise One question that our use case hasn’t yet answered is, What happens if the Customer does
something wrong? This important question is covered by exploring the alternate courses, which we cover
in the next section. But before that, have another look at the use case text and try to think about the different
ways that the Customer might stray off the beaten track.

CHAPTER 3 ■ USE CASE MODELING 71

7745ch03final.qxd 12/13/06 8:29 PM Page 71

Internet Bookstore: Basic and Alternate Courses
Within the Write Reader Review use case, all the text we have at this point is for the basic course,
such as “The Customer types in a Book Review, gives it a Book Rating out of five stars, and clicks
the Send button.” There’s an implicit assumption that the Customer has entered all the data for
the given review correctly—the review isn’t longer than The Lord of the Rings and War and
Peace combined, the rating is in the range 1–5 (there may well be JavaScript validation in the
browser, but the user could feasibly fiddle their local HTML page so that they can enter a 100-
star rating, for example), and so forth. We should identify some alternate courses. Remember,
keep asking yourself “What else happens?” Sort of like this:

We have our basic course. But, what else happens?

Uh . . . the user might not be logged in?

OK. And what else might happen?

The user might enter a review that is too long.

CHAPTER 3 ■ USE CASE MODELING72

SUNNY-DAY/RAINY-DAY SCENARIOS

A use case describes a sequence of events—the “flow” of a user’s interaction with the system. But users
often don’t use a system as if they’re on rails. They do different or unexpected things, or the system might go
wrong somehow (e.g., network error). But you have to ask yourself, “What happens if something goes wrong,
or if the user does something out of the typical path?”

So, a use case consists of an “on rails” scenario and various “gone off the rails” scenarios.
There’s one basic course (sometimes called the sunny-day scenario) and one or more alternate courses

(rainy-day scenarios) Alternates can represent less typical usage paths as well as errors.
In their zeal to create a “use case guru” market by making the inherently simple task of modeling use

cases incomprehensively complex, some authors (you know who you are) have proposed long and compli-
cated use case templates to follow when describing users interacting with the various scenarios of a system.
Overly complicated use case templates usually just create unnecessary work; you end up trying to dream
details up (i.e., guess) to go into an array of subheadings that probably aren’t appropriate for your use case
anyway. (See the section “A Couple of Thoughts on Use Case Templates” later in this chapter.) So, our use
case “template” is really simple. It just consists of a “BASIC COURSE” heading and an “ALTERNATE
COURSES” heading. Trust us, it’s all you need!

The important thing (well, one of them) is not to skip any of the rainy-day scenarios. Remember the
“three magic questions” from earlier in this chapter? The third one to keep asking is “What else might hap-
pen?” Each time you ask this question, the answer gets you a new alternate course for your use case. Write it
down under the “ALTERNATE COURSES” heading.

7745ch03final.qxd 12/13/06 8:29 PM Page 72

Cool. What else?

The review might be too short.

Too short?

Like, blank, or fewer than ten characters, say.

. . .and so on.

With these rainy-day scenarios typed up as alternate courses, our Write Reader Review use
case should now look like this:

BASIC COURSE:

The Customer clicks the Write Review button for the book currently being viewed, and

the system shows the Write Review screen. The Customer types in a Book Review, gives it

a Book Rating out of five stars, and clicks the Send button. The system ensures that the

Book Review isn’t too long or short, and that the Book Rating is within one and five

stars. The system then displays a confirmation screen, and the review is sent to a Moder-

ator, ready to be added.

ALTERNATE COURSES:

User not logged in: The user is first taken to the Login screen and then to the Write

Review screen once he is logged in.

The user enters a review that is too long (text > 1MB): The system rejects the review and

responds with a message explaining why the review was rejected.

The review is too short (< 10 characters): The system rejects the review.

■Exercise See if you can uncover some more alternate courses for this use case (there are plenty more
to be found!). If you’re stuck, read each line of the basic course and ask yourself, “How might this go
wrong?” and “What might the user do differently here?”

CHAPTER 3 ■ USE CASE MODELING 73

7745ch03final.qxd 12/13/06 8:29 PM Page 73

A Couple of Thoughts on Use Case Templates
Teams who adopt use cases usually do so because they are trying to “do the right thing.” So
the natural assumption would be that they therefore need to bury the project under reams
of documentation, especially long and complex use case templates. Although well inten-
tioned, this approach is—dare we say it—horribly misguided.

■Caution Don’t waste time with long and involved use case templates.

Here’s an example of a long and particularly ghastly (in our opinion) use case template
from renowned guru Alistair Cockburn’s book Writing Effective Use Cases:4

CHAPTER 3 ■ USE CASE MODELING74

USE CASES AND ASPECTS

Synergy between use case modeling and aspect-oriented programming (AOP) is the topic of Ivar Jacob-
son’s book, Aspect-Oriented Software Development with Use Cases (Addison-Wesley, 2004). We highly
recommend you give this book a careful read-through, but we would like to present the following brief
introduction to the material here. As it turns out, if you’re doing AOP, the difference between extends and
includes can be significant.

• Use cases help us to organize requirements around user concerns, while aspects help us to organize
code around user concerns.

• A pervasive problem in software development is cross-cutting concerns, which generally affect multi-
ple classes and components. Examples of cross-cutting concerns would be things like security,
transaction management, persistence, and so forth.

• There are two main types of cross-cutting concerns, and they can be modeled as use cases: peer use
cases (separate, independent use cases) and extension use cases. Extension use cases can extend
one use case (e.g., enhancements) or multiple use cases (e.g., security, transaction management, per-
sistence). The latter are called infrastructure use cases.

• In traditional (non-aspect) languages, implementation of peers can become tangled and/or scattered
among components, and it’s difficult to keep extension behavior separate from base behavior.

• Aspects help to organize peer code without scattering or tangling, and extensions can be kept separate
using pointcuts and advices.

In short, if you partition your software into use cases and choose to program in an aspect-oriented lan-
guage, you can basically organize your code along use case boundaries, something you can’t readily do in
traditional OO programming languages. Organizing code along use case boundaries has the potential for
major cost savings over the lifetime of a program.

4. Alistair Cockburn, Writing Effective Use Cases (New York: Addison-Wesley, 2000), p. 119.

7745ch03final.qxd 12/13/06 8:29 PM Page 74

USE CASE 24: FULLY DRESSED USE CASE TEMPLATE <NAME>

<the name should be the goal as a short active verb phrase>

Context of use: <a longer statement of the goal, if needed, its normal occurrence

conditions>

Scope: <design scope, what system is being considered black-box under design>

Level: <one of: summary, user-goal, subfunction>

Primary Actor: <a role name for the primary actor, or description>

Stakeholders & Interests: <list of stakeholders and key interests in the use case>

Precondition: <what we expect is already the state of the world>

Minimal Guarantees: <how the interests are protected under all exits>

Success Guarantees: <the state of the world if goal succeeds>

Trigger: <what starts the use case, may be time event>

Main Success Scenario:

<put here the steps of the scenario from trigger to goal delivery and any cleanup after>

<step #> <action description>

Extensions:

<put here there [sic] extensions, one at a time, each referring to the step of the main

scenario>

<step altered> <condition>: <action or sub use case>

<step altered> <condition>: <action or sub use case>

Technology & Data Variations List:

<put here the variations that will cause eventual bifurcation in the scenario>

CHAPTER 3 ■ USE CASE MODELING 75

7745ch03final.qxd 12/13/06 8:29 PM Page 75

<step or variation #> <list of variations>

<step or variation #> <list of variations>

Related Information:

<whatever your project needs for additional information>

We regard this template as ghastly because, while it is theoretically elegant in that it
comprehensively covers everything you might possibly want to discuss in conjunction with
a use case, in practice, if you require your team to “fill out the long form” use case template,
they will rapidly discover that

1. They are wasting time.

2. Wasting time will turn them off to the entire modeling process.

3. They can mindlessly fill out the form without focusing on the important parts (basic
course and alternate courses) of the use case, and nobody will know the difference.

We’ve seen this happen in the real world on many occasions.
Consider the statements we just made as warnings about ways you might build up resist-

ance to doing use cases, which offers an excuse to ditch modeling altogether—and we all
know what happens then. (Hint: “The code’s written, so I guess we’re done!”)

Use Case or Algorithm?
Many people get confused over the difference between use cases and algorithms, as both
tend to be described with verb phrases and generally can be thought of as a sequence of
steps. So here are some guidelines on how to differentiate between the two.

One of the main differences between a use case and an algorithm is that an algorithm,
while it may contain a sequence of steps, will not represent the dialogue between a user
and the system. From the use case perspective, even very complicated algorithms should
just be considered a single step within the user/system dialogue. If you’re faced with hav-
ing to describe a complex algorithm when writing a use case (e.g., generating a list of
recommended books, or sorting the list alphabetically), you should specify the algorithm
elsewhere, but give the algorithm a name (e.g., “Generate Recommendations,” “Sort List”)
so that it can be referred to in the use case text.

Table 3-2 sums up the differences between a use case and an algorithm.

CHAPTER 3 ■ USE CASE MODELING76

7745ch03final.qxd 12/13/06 8:29 PM Page 76

Table 3-2. Use Case vs. Algorithm

Use Case Algorithm

Dialogue between user and system “Atomic” computation

Event/response sequence Series of steps

Basic/alternate courses One step of a use case

Multiple participating objects Operation on a class

User and System All System

Use Case Modeling in Practice
In this section, we illustrate the theory presented in the first part of this chapter by walking
through a series of exercises that show the most commonly made use case modeling mistakes.

Exercises
For each of the following use cases, see how many errors you can spot, and try to rewrite the
use case text. Then compare your rewritten version with the “fixed” version found near the
end of this chapter. Good luck!

Exercise 3-1: Search by Author

BASIC COURSE:

The system displays the page with the search form; the user clicks the Author field and types in an author name
(e.g., Fred Smith). The user clicks the Search button; the system reads the search form, looks up any books
matching that author name, and displays them in a list.

ALTERNATE COURSES:

No matching books found: A page is displayed informing the user that no matching books were found.

CHAPTER 3 ■ USE CASE MODELING 77

7745ch03final.qxd 12/13/06 8:29 PM Page 77

Exercise 3-2: Edit Shopping Cart

PRECONDITIONS:

The user has logged in.

The user has navigated to the Edit Shopping Cart page.

BASIC COURSE:

The user adds or removes whatever items he wants to change, and then clicks the Update button. The system
adds or removes the items, and then displays the page with the updated shopping cart.

ALTERNATE COURSES:

Shopping cart is empty: No items can be removed.

Exercise 3-3: Open an Account

BASIC COURSE:

The system displays the Create New Account page and enters the following fields: Username (must be unique),
password, confirm password, first name, last name, address (first line), address (second line), city, state, country,
zip/postal code, telephone number, and e-mail address. Then the user clicks the Submit button; the system checks
that the Username is unique, creates the new user account, and displays the main Hub Page, along with a mes-
sage indicating that the user account is now created and logged in.

ALTERNATE COURSES:

Password and Confirm Password don’t match: The page is redisplayed with a validation message.

Username not unique: The page is redisplayed and the user is asked to choose a different username.

Exercise Solutions
Following are the solutions to the exercises.

Exercise 3-1 Solution: Explicit Boundary Object Names

The same problem can be found several times in this use case: the boundary objects haven’t been given explicit
names. The fixed version follows.

BASIC COURSE:

The system displays the Search Page; the user clicks the Author field and types in an author name (e.g., Fred
Smith). The user clicks the Search button; the system reads the search form, looks up any books matching that
author name, and displays the Search Results page showing the resulting Book List.

ALTERNATE COURSES:

No matching books found: The Search Not Found page is displayed.

CHAPTER 3 ■ USE CASE MODELING78

7745ch03final.qxd 12/13/06 8:29 PM Page 78

Exercise 3-2 Solution: Vague and Ambiguous

There are at least three problems with this use case.

Problem 1: The use case includes a “Preconditions” clause. Although on very rare occasions, you might find that
it’s useful to include this clause, most of the time it serves no appreciable purpose. In this example, it actually
throws the use case text off course, as the initial “display” action is missed. This would in turn be missed out on
the robustness diagram, meaning it would likely be skipped on the design, not estimated for, and not tested.

Problem 2: The basic course text is a bit woolly. It doesn’t describe a specific scenario, but instead tries to cover
all bases (“The user adds or removes whatever item . . .”). As a result, an important behavioral aspect is missed:
the user wouldn’t necessarily want to add items from this page, just remove them (or change the quantity).

Problem 3: The alternate course doesn’t tie into any particular action in the use case text. There are also several
relatively obvious alternate courses that are missing.

The fixed version follows.

BASIC COURSE:

The system displays the Shopping Cart page. The user clicks the Remove button next to a Line Item. The system
removes the item from the user’s Shopping Cart, and then redisplays the page. The user then clicks the Quantity
text field for another Line Item, changes its value from 1 to 2, and clicks the Update button. The system updates
the Shopping Cart, recalculates the total amount, and redisplays the page.

ALTERNATE COURSES:

Item not found: The item that the user chose to remove wasn’t found in the Shopping Cart (this could happen if
the user had two browser tabs open and is viewing an older version of the page). The system refreshes the Shop-
ping Cart page, along with a warning message that the user’s action failed because the page was out of date.

Quantity changed to zero: This counts as removing the item, so the item is removed from the Shopping Cart.

Negative value or non-numeric “value” entered: The page is redisplayed with the original Quantity value, and
a message next to it informs the user that he entered an invalid value.

Exercise 3-3 Solution: Too Many Presentation Details

This use case gets bogged down in presentation details; it spends too long listing the fields to be found on the Create
New Account page. Instead, these fields should be added as attributes to the appropriate class in your domain model
(most likely the Customer class). Then, when you need them later, they’ll be right there. The fixed version follows.

BASIC COURSE:

The system displays the Create New Account page and enters the fields to define a new Customer account (user-
name, password, address, etc.). Then the user clicks the Submit button; the system checks that the Username is
unique, creates the new user account, and displays the main Hub Page, along with a message indicating that the
user account is now created and logged in.

ALTERNATE COURSES:

Password and Confirm Password don’t match: The page is redisplayed with a validation message.

Username not unique: The page is redisplayed and the user is asked to choose a different username.

CHAPTER 3 ■ USE CASE MODELING 79

7745ch03final.qxd 12/13/06 8:29 PM Page 79

More Practice
This section provides a list of questions that you can use to test your knowledge of use case
modeling.

1. A use case captures

a) Objects, classes, and their associations

b) The flow of operations within a system

c) A discrete, visible user function

d) Collaborations between objects organized by time

2. A use case that is used to drive a software design must be

a) Abstract, essential, technology-neutral, and implementation-independent

b) Vague, incomplete, fuzzy, and ambiguous

c) Specific and unambiguous, and must explicitly account for all user actions and
system responses

d) “Fully dressed”—in particular, specify preconditions, postconditions, and func-
tional requirements

3. When writing a use case, a rainy-day scenario is referred to as

a) An extension point

b) A use case generalization

c) An alternate course of action

d) A precondition

4. Robustness diagramming a use case serves which of the following purposes:

a) Makes sure you understand which objects participate in the use case

b) Makes sure you understand how the users interact with the GUI

c) Makes you double-check that you’ve covered all possible courses of action

d) Disambiguates the use case text and puts it into proper noun-verb-noun form

e) All of the above

5. List three things that are common between a use case and a section of a user’s manual
for a system. List three things that are different. (Hint: What things are missing from
a user manual that are needed to develop an OO software design?)

CHAPTER 3 ■ USE CASE MODELING80

7745ch03final.qxd 12/13/06 8:29 PM Page 80

6. Attack or defend the following statement:

Long use case templates that include items like preconditions, postconditions, and
functional requirements are a cause of analysis paralysis, and thus long templates
should be avoided.

Cite the pros and cons of this argument, and explain your conclusion.

7. List three major differences between use cases and Extreme Programming (XP) user
stories. What are the advantages of each?

8. Explain the difference between <<includes>> and <<extends>> according to the UML
specification. In particular, attack or defend the following statement:

The difference between the <<includes>> and <<extends>> stereotypes on associa-
tions on use case diagrams is not generally significant unless the software is to be
implemented using an aspect-oriented programming language that directly sup-
ports organizing code around extensions.

How does the <<invokes>> stereotype relate to <<includes>> and <<extends>>? What
is the primary purpose of all three of these stereotypes? Which do you feel are the more
useful set of stereotypes: <<invokes>> and <<precedes>>, or <<includes>> and
<<extends>>?

Summary
In this chapter, we covered in detail how to write the kinds of use cases that can be used to
drive a software design. The activity diagram in Figure 3-10 shows how use case modeling fits
into the overall requirements analysis effort; the tasks we discussed in this chapter are shown
in red.

At Milestone 1, you’ll have written the first-draft version of your use cases, having quizzed
and grilled the customer, end users, and others to extract all the information you can from
them about how the new system should behave. But the customer’s role doesn’t end there. In
the next chapter, we cover the Requirements Review stage, in which you ensure that the
domain model and the use cases work together to address the customer’s requirements.

CHAPTER 3 ■ USE CASE MODELING 81

7745ch03final.qxd 12/13/06 8:29 PM Page 81

CHAPTER 3 ■ USE CASE MODELING82

Figure 3-10. Requirements Analysis Checkpoint 2

7745ch03final.qxd 12/13/06 8:29 PM Page 82

Requirements Review

The requirements review session ensures that the system as described genuinely matches
up with the requirements. It’s a collaborative review session involving the customer represen-
tative(s), end users (i.e., the people who will actually be using the system, or who are using the
current system being replaced), and marketing people—basically, all the project stakeholders
who have a vested interest in ensuring the requirements fit their view of the system.

In this chapter, we provide an overview of the Requirements Review stage, and then show
an example review for the Internet Bookstore.

83

C H A P T E R 4

7745ch04final.qxd 12/13/06 8:31 PM Page 83

Requirements Review in Theory
In this section, we look at the key elements of requirements review, including our top 10
requirements review guidelines.

Why Review Requirements?
Why bother reviewing requirements? Here’s a hypothetical conversation that we hope will
shed some light on the subject.

Q: My project looks like it’s in pretty good shape already. I have a domain model that
I’ve updated as I wrote the use case descriptions, and my use cases are, for the most
part, written in the context of the domain model. It must be time to start coding, right?
(After all, I’ve never done this much up-front work pre-coding before.)

A: Well, almost, but not quite. The customer was involved in the initial requirements-
gathering effort and hopefully also involved in your use case modeling workshop. But,
now that the first-draft use cases are all written up, you need to get the customer back and
make sure that the system as described genuinely matches up with their requirements.

Q: That sounds like a tall order. My customer never even reads requirements specs—
why should I waste time producing them?

A: If you e-mailed your customer a 200-page document and asked them to reply with
a “Yes, please” or a set of required modifications, chances are that you’ll just get a “Yes,
please” a few minutes later. Then, in a year’s time, the system you produce will be
nothing like what the customer wanted.

What’s needed (aside from breaking down the development into smaller releases) is to
make the sign-off process collaborative. You need to get the customer representatives
into the room for a requirements review session, and go through all of the use cases with
them.

There’s a whole set of techniques for doing these reviews that work pretty well in practice.
We’ll demonstrate those in this chapter.

Q: But what if I can’t get the customer to visit me for the requirements review session?

A: Sure, all customers are infinitely busy. But if your customer won’t offer you even a cou-
ple hours of their time before signing off on a costly IT project, then you’re probably
already looking at a “death march” project, whatever process you follow. But at least we
don’t require the customer to be in the same room as the programmers for the full dura-
tion of the project (like some “processes” we know)!1

84 CHAPTER 4 ■ REQUIREMENTS REVIEW

1. For a lyrical view of why this is a bad thing, see “The Customer’s a Beast of Burden” on page 120 of our
book Extreme Programming Refactored: The Case Against XP (Apress, 2003).

7745ch04final.qxd 12/13/06 8:31 PM Page 84

Top 10 Requirements Review Guidelines
The advice given in this chapter is summed up in our top 10 requirements review guidelines.

10. Make sure your domain model describes at least 80% of the most important abstrac-
tions from your problem domain (i.e., real-world objects), in nontechnical language
that your end users can understand.

9. Make sure your domain model shows the is-a (generalization) and has-a (aggregation)
relationships between the domain objects.

8. Make sure your use cases describe both basic and alternate courses of action, in active
voice.

7. Make sure that passive voice, functional requirements (i.e., “shall” statements), are not
absorbed into and “intermangled” with the active voice use case text.2

6. Make sure you’ve organized your use cases into packages and that each package has
at least one use case diagram.

5. Make sure your use cases are written in the context of the object model.

4. Make sure your use cases are written in the context of the user interface.

3. Make sure you’ve supplemented your use case descriptions with some sort of story-
board, line drawing, screen mock-up, or GUI prototype.

2. Review the use cases, domain model, and screen mock-ups/GUI prototypes with end
users, stakeholders, and marketing folks, in addition to more technical members of
your staff.

1. Structure the review around our “eight easy steps to a better use case.”

Let’s walk through these top 10 items in more detail, and then we’ll illustrate them in
practice by following a requirements review for the Internet Bookstore.

10. Make Sure Your Domain Model Covers the Problem Domain
Sometimes “the best is the enemy of the good.”3 You don’t want to spend endless weeks (and
catch a case of analysis paralysis) fiddling around with the domain model, trying to make it
perfect. Instead, you should be aiming for the following:

• A domain model diagram that has the most important abstractions from the problem
domain

CHAPTER 4 ■ REQUIREMENTS REVIEW 85

2. In Chapter 13, we introduce the term “intermangled” to describe use case text that has had functional
requirements text mangled into it.

3. General George S. Patton, War as I Knew It (New York: Mariner Books, 1995), p. 335 (referring to battle
planning).

7745ch04final.qxd 12/13/06 8:31 PM Page 85

• All the boxes on this diagram have unambiguous names that the users of the system
can relate to

• Getting this diagram done quickly!

Further details will be uncovered as you analyze the use cases.

9. Show Generalization and Aggregation Relationships
These generalization (is-a) and aggregation (has-a) relationships go a long way toward making
the diagram concrete and specific as opposed to vague and ambiguous.

Occasionally, you might need a “link class” (especially if you have underlying many-to-
many relationships in the data model), but it’s best not to overuse this construct. You can get
most of the way just by using is-a and has-a.

Don’t split hairs (yet) between aggregation and composition, either—it’s too early to
worry about this distinction.

8. Describe Both Basic and Alternate Courses of Action, in Active Voice
You already know this, but the use cases describe how the users are using the system, in pres-
ent tense, active voice, and they must include both normal (sunny day) usage as well as less
typical (rainy day) usage.

We know that you already know this, but we’ve also seen many of your peers who (in the-
ory) already knew, but didn’t do it correctly (in practice). So we’re telling you again. We might
tell you a couple more times, too.

7. Don’t Mix Functional Requirements into Your Use Case Text
Functional requirements are passive voice “shall” requirements (e.g., “The system shall do
this”). A common mistake is to include these in the use case descriptions. Instead, the func-
tional requirements should be kept separately and “allocated” to the use cases. That is, the
use cases satisfy the functional requirements, but the passive voice “shall” requirements
don’t compose the use cases. Keep the use cases focused on system usage (active voice).

In Chapter 13, we’ll show you how easy it is to allocate requirements to use cases. It’s just
a single drag and drop if you do it correctly.

6. Organize Your Use Cases into Packages
You can organize your use case model by functionally related areas (subsystems), by release,
or both. One useful strategy is to identify all the use cases within a functional area on the use
case diagram, but write the narrative descriptions only for the use cases that will participate
in the current release.

■Tip It’s useful to use color-coding on the use case diagram to show which use cases will be implemented
in the current release.

CHAPTER 4 ■ REQUIREMENTS REVIEW86

7745ch04final.qxd 12/13/06 8:31 PM Page 86

By all means don’t get hung up on trying to perfect your use case diagram with a flawless
use of stereotypes—here again, “the best is the enemy of the good” (i.e., you don’t have time
on your schedule for endless fiddling around). The use case diagram really serves as a visual
table of contents for the package, and so it should be clear and easy to understand, but the
real “meat” of the use case model is the text of the use cases and the corresponding robustness
and sequence diagrams for each use case.

5. Write Your Use Cases in the Context of the Object Model
By far the most effective way to base your use cases on the domain model is to do the domain
model first, and write the use cases to explicitly reference the domain objects by name.

Much of the ambiguity in use cases arises from the fact that they are often written entirely
in “user terms” without explicitly and precisely referring to the particular “problem domain
elements” that are affected by the scenario in question. So the first step in disambiguating
your use case text is to make that text explicitly refer to the appropriate domain objects.

4. Put Your Use Cases in the Context of the User Interface
To base your use cases on the user interface, name the screens that will participate in the use
case, and use those names in the use case text.

The use cases really need to link not only the object model but also the GUI model to the
narrative behavior descriptions. In practical terms, this usually means that you should name
your screens explicitly and use those names in the use case text.

While there is a theory that preaches keeping your use cases completely divorced from
the user interface, our experience is that in practice, this inevitably leads to vagueness and
ambiguity in the use cases. So name your screens. Trust us, you’ll need to give them names
anyway. You’ll be happy that you’ve named them. Really.

■Tip Name your screens, and use those names in your use case descriptions.

3. Use Storyboards, Line Drawings, Screen Mock-ups, or GUI Prototypes
Make sure all of the user’s behavior (e.g., buttons they can click, menus they can pick from)
is accounted for in the use cases.

Once you’ve given your screen a name, you have no excuse for not creating some sort of
storyboard or mock-up that helps you to walk through the actions that users can take when
they interact with the system. It’s amazing how much system behavior might be tied to, let’s
say, the Cancel button in, for example, a transaction-oriented system. You might have to roll
back to the previously completed transaction. But if you don’t draw some sort of visual aid
that shows what’s on the screen, you might forget to write the “On Click Cancel” behavior in
your use case text. And you wouldn’t want to forget that, would you?

Remember that these mock-ups don’t need to be high-fidelity renderings with animated
buttons (“the best is the enemy of the good,” again). They need to be simple, clear illustrations
that focus on what system behavior can be triggered by the user, and they need to be quick to
create (otherwise you’ll ignore our advice and skip drawing them—admit it!).

CHAPTER 4 ■ REQUIREMENTS REVIEW 87

7745ch04final.qxd 12/13/06 8:31 PM Page 87

■Tip Don’t be afraid to build some exploratory prototypes to help validate your requirements.

If you do have any exploratory prototypes, walk through them in conjunction with
reviewing the use cases to gain insight into the required behavior. Sometimes a storyboard
might not be enough, and you want to string a few screens together before a presentation to
your users. If you need to do this, go right ahead.

2. Review the Behavioral Requirements with the Right People
Review the use cases, domain model, and screen mock-ups/GUI prototypes with end users,
stakeholders, and marketing folks, in addition to more technical members of your staff. Make
sure the requirements are well understood and agreed upon by all parties before proceeding
toward design.

Your requirements review is a collaborative workshop that should be attended by the cus-
tomer (or representatives of the customer), the business analyst (i.e., the senior analyst
responsible for the use cases), and a senior member of your development team, plus any proj-
ect managers who will be closely involved in the project. Ideally, an actual end user of the
proposed (or current) system should also be there, to provide real-world feedback on whether
the new system matches up with what is really needed.

The goal of your requirements review session is to achieve basic agreement among all
parties that the use cases capture the behavioral requirements of the system.4 And in order
to achieve that goal, you must ensure that the required system behavior is unambiguously
understood by all.5

In fact, you’re not just reviewing the use cases; you also need to review the domain model
and whatever prototype elements are in place. This works best when everyone is in a room
together, with a facilitator/moderator who keeps the conversations on track and a scribe who
records the results and the action items.

Call us old-fashioned, but we’ve found that “ready-aim-fire” works better than “ready-
fire-aim.” We’ve found over the years of doing Jumpstart training workshops that an amazing
amount of understanding can be gained in a remarkably short period of time by getting
everybody on the team to agree to a set of screens, a set of behavior descriptions that explain
how users will use those screens, and a set of objects that support the behavior descriptions.
We haven’t met a project yet that didn’t benefit from a common understanding of these
things, reached early in the life cycle of the project.

1. Structure the Review Around Our “Eight Easy Steps to a Better Use Case”
Once you have everyone in the room, and they all understand why they’re there and what they
must achieve during the review session, then the following steps can be performed. As you’ll
see shortly, these steps form the bulk of the review session:

CHAPTER 4 ■ REQUIREMENTS REVIEW88

4. Doug Rosenberg and Kendall Scott, Applying Use Case Driven Object Modeling With UML (New York:
Addison-Wesley, 2001), p. 53.

5. Ibid.

7745ch04final.qxd 12/13/06 8:31 PM Page 88

1. Remove everything that’s out of scope.

2. Change passive voice to active voice.

3. Check that your use case text isn’t too abstract.

4. Accurately reflect the GUI.

5. Name participating domain objects.

6. Make sure you have all the alternate courses.

7. Trace each requirement to its use cases.

8. Make each use case describe what the users are trying to do.

These eight steps will help you transmogrify your use case from a vague and ambiguous
piece of mush to a razor-sharp, concise, and precise behavior specification. In the “Require-
ments Review in Practice” section, we walk through an example requirements review that
illustrates most of these checks.

Allocating Functional Requirements to Use Cases
At some stage, you’ll need to link up the functional requirements to the use cases, so that you
can demonstrate that all the customer’s requirements have been successfully implemented.
It’s good practice to do this just after you’ve written the use case descriptions, as the act of
allocating requirements to use cases often shows up some areas of the requirements that
might have been left out. But if you don’t perform this activity at that stage, then you should
definitely try to do this during the requirements review.

If you’ve used the functional requirements as the primary source of use cases, then there
should already be a direct correlation between the requirements and the use cases. But for
others (e.g., use cases that were discovered from UI prototypes or legacy user manuals), some
backward-tracing (and possible updating of the functional requirements, in collaboration
with the customer) may need to be done.

In Chapter 13, we show an example of modeling the linkages between functional require-
ments and use cases visually using the Enterprise Architect tool.

Requirements Review in Practice:
Internet Bookstore
In this section, we illustrate the theory from the first part of this chapter, using an example
from our Internet Bookstore project. We’ll walk through an example review of the Show Book
Details use case (we provided a “critique” of the Write Customer Review use case in Chapter 3).

For the Internet Bookstore requirements review, we’ll follow the reviewer/use case analyst
conversation as it unfolds in the following subsections.

CHAPTER 4 ■ REQUIREMENTS REVIEW 89

7745ch04final.qxd 12/13/06 8:31 PM Page 89

■Note As described earlier, the requirements review should include at least one customer representative,
the business analyst, a senior member of your development team, an end user, and any managers closely
involved in the project. For the purposes of this example, and to keep the dramatis personae from running
rampant, we’re only following the conversation between the business analyst and a reviewer (who also
doubles as a process mentor).

Removing Everything That’s Out of Scope
A common affliction when specifying behavioral requirements is to begin or end each use
case in the wrong place, or to include extra information that’s way outside the scope of the
simple use case being described. What follows is an extreme, but all too familiar, example.

Analyst: Here’s the text for Show Book Details:

USE CASE: Show Book Details

LEVEL: User Goal

PRECONDITIONS:

1. The user MUST be viewing the website.

2. The user MAY be logged in.

BASIC COURSE:

If the user has an account, he MAY log in first (though this isn’t essential for this use

case). The user MAY navigate to the website’s main area. This area MUST be easily

accessible and SHOULD provide easy access to a search area and various book direc-

tories (e.g., top 10 bestsellers in different categories, editors’ picks, etc.). Then the user

browses the details for a book title. The system displays the screen showing the book

information. If the user wishes to, he may proceed to purchase the book. Allowed pay-

ment options are as follows: Visa, American Express, and check (the check must be

received by the billing department before the order is dispatched).

POSTCONDITIONS:

1. The Book Details screen is being shown.

2. The details for the selected book have been retrieved.

CHAPTER 4 ■ REQUIREMENTS REVIEW90

7745ch04final.qxd 12/13/06 8:31 PM Page 90

Reviewer: (Silently, to self) Oh, sweet mother of our great Lord Cthulhu. Where to begin?

Analyst: I’m actually quite proud of this use case, as I’ve packed in loads of extra detail
around the subject matter.

Reviewer: Well, there are several ways this use case could be improved. We’ll take them one
at a time. To summarize, though, we can shorten the template and move those precondi-
tions and postconditions out of the use case text. Remember the purpose of these use cases:
we want to be able to link them to our classes, so that we can drive the design directly from
the use case text. So things like preconditions and postconditions aren’t needed.

Analyst: But hang on, the preconditions are important. They describe things that must be
in place before the use case can proceed.

Reviewer: You’re absolutely right that the information they contain is important, and it
does need to be recorded somewhere. But the preconditions and postconditions describe
stuff outside the scope of this use case. Most of the time, you can just delete them from
the use case text, and you won’t lose anything. If you must show them, it’s better to show
the ordering on the use case diagram with a <<precedes>> link between the two use
cases.

Analyst: So you could have a Login use case that precedes Show Book Details.

Reviewer: Yep. You could also lose the Level field at the top of the use case template, as
it doesn’t achieve a huge amount. So that gives us the following:

BASIC COURSE:

If the user has an account, he MAY log in first (though this isn’t essential for this use

case). The user MAY navigate to the website’s main area. This area MUST be easily

accessible and SHOULD provide easy access to a search area and various book direc-

tories (e.g., top 10 bestsellers in different categories, editors’ picks, etc.). Then the user

browses the details for a book title. The system displays the screen showing the book

information. If the user wishes to, he may proceed to purchase the book. Allowed pay-

ment options are as follows: Visa, American Express, and check (the check must be

received by the billing department before the order is dispatched).

Reviewer: That’s much more concise and, if you think about it, doesn’t actually convey
any less information. But it’s still a long way from being the kind of use case we need. For
one thing, the description still goes outside the use case’s scope. Remember, we’re only
concerned with describing the steps involved to view a book’s details. So all the stuff
about proceeding to purchase the book is irrelevant. It all really belongs in a different use
case.

CHAPTER 4 ■ REQUIREMENTS REVIEW 91

7745ch04final.qxd 12/13/06 8:31 PM Page 91

Analyst: OK, so if we move that stuff out, then we’re left with this:

BASIC COURSE:

The user MAY navigate to the website’s main area. This area MUST be easily accessible

and SHOULD provide easy access to a search area and various book directories (e.g.,

top 10 bestsellers in different categories, editors’ picks, etc.). Then the user browses the

details for a book title. The system displays the screen showing the book information.

Reviewer: Yes. Those other steps are important, of course, but they just belong in a differ-
ent use case.

Naming Participating Domain Objects
When you try to drive an object-oriented design from use cases, it’s vital that the use cases are
linked to the objects. In the next review segment, our reviewer discovers a major disconnect
between the use case text and the objects in the domain model.

Reviewer: This is a critical point. Most of this text doesn’t match up with the domain
model. That’s just inviting trouble, because we’ll end up talking at cross-purposes, the
designers will add in duplicate classes, and so on.

Analyst: I didn’t think it was that bad. Can you give me some examples?

Reviewer: Sure. Let’s take a look at the first sentence: “The user may navigate to the web-
site’s main area.” The domain model doesn’t have a “user,” but it does have a Customer.
And instead of saying “website” you should really say Bookstore. Keep it consistent.

Analyst: OK . . .

Reviewer: Similarly, later on you have “book directories,” but in the domain model we
have “Book Lists” (see Figure 2-7). More precisely, we have an abstract Book List class,
with concrete types called Wish List, Recommendation List, Related Books, and so on.
It looks as if we could add another Book List type called, say, Bestseller List, or maybe
Home Page List, to represent lists of books that appear on the Bookstore's home page.

Analyst: OK, I see what you’re getting at. We also have “book information” in the final
sentence. Perhaps that should match up with a domain object as well?

Reviewer: Well, since the use case is called Show Book Details, we could have an object
called Book Details. But really, that’s what the Book domain object is. So, for consistency
we could reword “showing the book information” to be “showing the Book Details.”
Anyway, here’s the updated text:

BASIC COURSE:

The Customer MAY navigate to the Bookstore’s main area. This area MUST be easily

accessible and SHOULD provide easy access to a search area and various Bestseller

Lists. Then the Customer browses the details for a book title. The system displays the

screen showing the Book Details.

CHAPTER 4 ■ REQUIREMENTS REVIEW92

7745ch04final.qxd 12/13/06 8:31 PM Page 92

Making Sure You Have All the Alternate Courses
When you decompose a system along usage scenario boundaries, it’s a good idea to consider
not just sunny-day scenarios (the basic course) but also rainy-day scenarios (the alternate
courses)—at least if you’re planning to build a robust system. While some methodologies offer
mantras such as Do The Simplest Thing That Could Possibly Work (DTSTTCPW) and You
Aren’t Gonna Need It (YAGNI), our experience has been that these philosophies, when taken
literally, and especially when combined together, can often lead to disastrous results. The
main reason for this is that well over half of the complexity of a software project is usually
caused by dealing with alternate courses of action. Failure to build adequate infrastructure
to account for the rainy-day behavior is simply unacceptable on many industrial-strength
software projects. So, make sure you’ve accounted for all the alternate courses of action.

Reviewer: I couldn’t help noticing that this use case has no alternate courses. I guess that
the main alternate course is just what happens if the book details aren’t found. Let’s add
that at least:

ALTERNATE COURSES:

Book not found: The system displays a Book Details Not Found screen.

Reviewer: Notice that we’ve just identified a new screen, or page.

Analyst: Handling a book not found is a fairly obvious one, I suppose. But now that you
mention it, there are several other parts of the system where we could identify all sorts of
“special cases.” That adds up to a lot of missing functionality.

Reviewer: And all that functionality would have been missed when you estimate how long
it’s all going to take to develop. Plus it would have been missed when you wrote the test
cases, did the design, and so on . . .

■Tip If you see a use case without any alternate courses, alarm bells should start ringing. It’s often a tell-
tale sign that the user and system behavior for that use case haven’t been explored in sufficient depth.

Checking That the Use Case Text Isn’t Too Abstract
Many books about use cases, especially those that are focused strictly on use cases as a
requirements definition technique, preach writing use cases that are “abstract, essential,
technology-free, and implementation-independent.” Our approach is a bit different, as
you’ll see in the following review segment, since we both come from a programming back-
ground (most programmers would call the aforementioned use cases “vague, ambiguous,
incomplete, and incorrect”).

CHAPTER 4 ■ REQUIREMENTS REVIEW 93

7745ch04final.qxd 12/13/06 8:31 PM Page 93

Reviewer: The original text did get quite abstract in places, although we seem to have
deleted most of it now. But there are a couple of things we could improve on, such as,
what’s a bookstore main area?

Analyst: The home page, I guess.

Reviewer: Actually, while we’re at it, “browses the details for a book title” is a bit vague. In
fact, the sentences around it seem rather strange:

Then the Customer browses the details for a book title. The system displays the screen

showing the Book Details.

Analyst: Should that change to “displays the Book Details screen”?

Reviewer: I think what we’re missing here is the whole user action/system response thing.
The use case isn’t describing the user’s action followed by the system’s response to that
action. So those two sentences should be

Then the Customer clicks a link to view a Book. The system retrieves the Book details

and displays the Book Details screen.

Reviewer: That’s much more specific. It describes exactly how the customer interacts with
the UI: clicking a link to view a book. And then it describes precisely what the system does
in response. This is the kind of use case text that can be designed from. Let’s go through
the rest of the text and make it all follow the same user action/system response pattern.

BASIC COURSE:

The Customer MAY navigate to the Bookstore’s main area, which the system displays.

This area MUST be easily accessible, and SHOULD provide easy access to a search

area and various Bestseller Lists). Then the Customer clicks a link to view a Book. The

system retrieves the Book details and displays the Book Details screen.

ALTERNATE COURSES:

Book not found: The system displays a Book Details Not Found screen.

Analyst: So why is this version better?

Reviewer: Well, it still isn’t perfect (we’ll fix the remaining problems in a moment). But it’s
in a much better state, where we could hand this to the programmers and reasonably ask
them to create a design from it. You want to avoid writing use cases that are abstract,
essential, technology-free, or implementation-independent.

CHAPTER 4 ■ REQUIREMENTS REVIEW94

7745ch04final.qxd 12/13/06 8:31 PM Page 94

Analyst: Hey, but I just read a book on use cases that specifically told me to write use
cases that are abstract, essential, technology-free, and implementation-independent.

Reviewer: Surprisingly, yes, it’s depressingly common advice. But think about what hap-
pens when you hand that abstract, vaguely written use case to a programmer. Wouldn’t
it be better if the use case was coherent, specific, and unambiguous? That’s the sort of use
case that can be coded from!

Changing Passive Voice to Active Voice
Generally, passive voice statements describe requirements. Some people like to “intermangle”
the passive voice requirements with the active voice usage descriptions (see the sidebar titled
“Disintermangling Dysfunctional Requirements from the Scenario Text” in Chapter 13). We
advocate linking the requirements to the use cases and keeping the active voice description
(which becomes a runtime behavior specification) separate. As you’ll see in the following
review segment, activities are much more effectively described in active voice.

Reviewer: We’re getting there. There’s a lot of passive voice text in there, though: “The Cus-
tomer MAY navigate . . . SHOULD provide easy access . . .” These sound like functional
requirements to me. They definitely don’t belong in a use case.

Analyst: But we can’t just delete this stuff. I wrote those details in there because they’re
important!

Reviewer: Agreed. The goal here isn’t to delete important requirements—it’s just to make
sure that they get recorded in the appropriate place. In this case, that will be the func-
tional requirements spec, not the use case.

Analyst: I’m still not convinced that we can’t just describe these details in the use case itself.

Reviewer: Think about it this way. “Use case” is a shorter way of saying “usage scenario”—
that is, a scenario that describes how the user is interacting with the system. The key word
here is “interacting.” Describing user interactions and system responses is by its very
nature a description of the user’s activities. Can we describe activities in passive voice?
Not really. “Shall” statements such as “the system shall support 300 concurrent transac-
tions per minute” don’t describe user actions or system responses.

Analyst: I see. So if we mix those “shall” statements into the use case, it’s really defeating
the purpose of the use case format.

Reviewer: You got it. OK, here’s the reviewed and updated text for Show Book Details:

BASIC COURSE:

The Customer types in the URL for the bookstore’s home page, which the system dis-

plays. Then the Customer clicks a link to view a Book. The system retrieves the Book

details and displays the Book Details screen.

CHAPTER 4 ■ REQUIREMENTS REVIEW 95

7745ch04final.qxd 12/13/06 8:31 PM Page 95

ALTERNATE COURSES:

Book not found: The system displays a Book Details Not Found screen.

Analyst: Actually, in retrospect, perhaps we should have made the active voice change
right at the start of the review.

Reviewer: I think you’re right. Out of all these steps, it’s the one that helped clean up the
use case text the most, so doing it at the start would have made a lot of other things fall
right into place early on. That plus the “remove everything that’s out of scope” step.

■Note ICONIX Process is an intensely feedback-driven process. In the next chapter, we cover robustness
analysis, in which the use case text gets even more of a going-over, to prepare it for the design stage.

Tracing Each Requirement to Its Use Cases
We once read a newsgroup posting by a famous and self-important “guru” that asked the
question “Why would anybody want to trace requirements?” and then went on to profess that
requirements traceability was all a matter of “fear” (see the inside front cover of Extreme Pro-
gramming Refactored: The Case Against XP [Apress, 2003] if you’d like to find out who said it).

Our feeling about this is that it would be funny if it wasn’t so sad. In the world we live in,
project teams trace requirements (for example) to make sure that they are fulfilling their con-
tractual obligations, which then allows them to get paid for delivering what the client ordered.
If you’re going to describe the functionality being delivered as a set of use cases, it would seem
pretty obvious that those requirements would need to be traced back to the use cases. In our
final requirements review segment, we show how this process could be started (see Chapter 13
for more about traceability).

Reviewer: OK, let’s do a final check of the Show Book Details use case. Currently, we don’t
have a traceability matrix to show which requirements are satisfied by this use case, so we
should sort that out.

■Tip As we discuss in Chapter 13, the Enterprise Architect (EA) tool has a useful Relationship Matrix fea-
ture for tracing between requirements and use cases, among other model elements (see Figure 13-10).

Analyst: Well, we were meant to go through the use cases earlier on and allocate them to
the functional requirements. (See Figure 3-10 and the section “Allocating Functional
Requirements to Use Cases” in this chapter.) But as we didn’t do that then, we should
really do it now.

CHAPTER 4 ■ REQUIREMENTS REVIEW96

7745ch04final.qxd 12/13/06 8:31 PM Page 96

Reviewer: OK. So, looking at the requirements list (see Chapter 2), Show Book Details
pretty clearly relates back to these requirements:

11. It must be possible for the user to post reviews of their favorite books; the review
comments should appear on the book details screen. The review should include a

customer rating (1–5), which is usually shown along with the book title in book lists.

a. Book reviews must be moderated—that is, checked and “OK’d” by a member of

staff before they’re published on the website.

b. Longer reviews should be truncated on the book details screen; the customer
may click to view the full review on a separate page.

Analyst: What about requirement number 1?

1. The bookstore will be web based initially, but it must have a sufficiently flexible

architecture that alternative front-ends may be developed (Swing/applets, web serv-

ices, etc.).

Reviewer: Strictly speaking, all the use cases could be traced back to that one, although
there isn’t a very concrete connection there. We’re really looking for functional links
between the use cases and the requirements.

Analyst: Ah, OK.

Summary
In this chapter, we covered the Requirements Review milestone. It’s a vital step because it
ensures that the requirements are sufficiently well understood by both the development
team and the customer/users/project stakeholders.

In the next chapter, we launch into preliminary design, a step that provides intensive
feedback into the use cases and domain model, and an essential bridge between analysis
and design.

Figure 4-1 shows where we are. (The item covered in this chapter is shown in red.)

CHAPTER 4 ■ REQUIREMENTS REVIEW 97

7745ch04final.qxd 12/13/06 8:31 PM Page 97

CHAPTER 4 ■ REQUIREMENTS REVIEW98

Figure 4-1. Analysis and Preliminary Design Checkpoint 1

7745ch04final.qxd 12/13/06 8:31 PM Page 98

Analysis, Conceptual
Design, and Technical
Architecture

P A R T 2

7745ch05final.qxd 12/14/06 11:24 AM Page 99

7745ch05final.qxd 12/14/06 11:24 AM Page 100

Robustness Analysis

To get from use cases to detailed design (and then to code), you need to link your use cases
to objects. The technique we describe in this chapter, robustness analysis, helps you to bridge
the gap from analysis to design by doing exactly that. In a nutshell, it’s a way of analyzing your
use case text and identifying a first-guess set of objects for each use case. These are classified
into boundary objects, entity objects, and controllers (which are often more like functions
than objects).

The 10,000-Foot View
A robustness diagram is an object picture of a use case. The robustness diagram and the use
case text have to match precisely, so the robustness diagram forces you to tie the use case text
to the objects. This enables you to drive object-oriented designs forward from use cases, and
this is really the “magic” of robustness analysis.

101

C H A P T E R 5

7745ch05final.qxd 12/14/06 11:24 AM Page 101

Drawing a robustness diagram ensures that the use case is written in the context of the
domain model—that is, all the terms (nouns and noun phrases) that went into the domain
model should also be used directly in your use case text.

Where Does Robustness Analysis Fit into the Process?
Looking at Figure 5-1, robustness analysis sort of takes place in the murky middle ground
between analysis and design. If you think of analysis (i.e., the use cases) as the “what” and
design as the “how,” then robustness analysis is really preliminary design. During this phase,
you start making some preliminary assumptions about your design, and you start to think
about the technical architecture (also see Chapter 7) and to think through the various possi-
ble design strategies. So it’s part analysis and part design.

It’s also an important technique to remove ambiguity from (disambiguate) your use case text.

Like Learning to Ride a Bicycle
Learning this technique has a bit in common with learning to ride a bicycle. Until you “get it,”
robustness analysis can seem devilishly difficult, but once you do get it, it’s really very simple.
To jump-start your understanding, we’ll walk through plenty of examples in this chapter.
Experience has shown us that you usually need to draw six or so robustness diagrams before
the penny drops and you suddenly get it. Just remember, a robustness diagram is an object
picture of a use case.

Once you get the hang of it, you should be able to rattle off a robustness diagram in about
ten minutes (or less) for each use case. Actually, as you’ll see, the trick is in writing your use
case correctly. If a robustness diagram takes more than ten minutes to draw, you can bet
you’re spending most of that time rewriting your use case text.

■Tip Using a CASE tool can make your life easier, but robustness diagrams are really quick and simple
diagrams that you can scribble on a piece of paper or a whiteboard. It’s often very helpful to sketch your
diagram on paper before attempting to draw it on the computer (especially when you’re first learning the
technique).

102 CHAPTER 5 ■ ROBUSTNESS ANALYSIS

Figure 5-1. Bridging the gap between “what” and “how”

7745ch05final.qxd 12/14/06 11:24 AM Page 102

Anatomy of a Robustness Diagram
A robustness diagram is somewhat of a hybrid between a class diagram and an activity dia-
gram. It's a pictorial representation of the behavior described by a use case, showing both
participating classes and software behavior, although it intentionally avoids showing which
class is responsible for which bits of behavior. Each class is represented by a graphical stereo-
type icon (see Figure 5-2). However, a robustness diagram reads more like an activity diagram
(or a flowchart), in the sense that one object “talks to” the next object. This flow of action is
represented by a line between the two objects that are talking to each other.

There’s a direct 1:1 correlation between the flow of action in the robustness diagram and
the steps described in the use case text.

The three class stereotypes shown in Figure 5-2 are as follows:

• Boundary objects: The “interface” between the system and the outside world (think
back to Figure 3-2). Boundary objects are typically screens or web pages (i.e., the pres-
entation layer that the actor interacts with).

• Entity objects: Classes from the domain model (see Chapter 2).

• Controllers: The “glue” between the boundary and entity objects.

It’s useful to think of boundary objects and entity objects as being nouns, and controllers
as being verbs. Keep the following rules in mind when drawing your robustness diagrams:

• Nouns can talk to verbs (and vice versa).

• Nouns can’t talk to other nouns.

• Verbs can talk to other verbs.

We’ll revisit these rules later in this chapter (see Figures 5-8 and 5-9).

CHAPTER 5 ■ ROBUSTNESS ANALYSIS 103

Figure 5-2. Robustness diagram symbols

7745ch05final.qxd 12/14/06 11:24 AM Page 103

■Exercise Two of the following are legal constructs, but which two?

a. Boundary ➤ Controller ➤ Entity

b. Entity ➤ Entity

c. Controller ➤ Controller

d. Boundary ➤ Boundary ➤ Controller

These rules help to enforce a noun-verb-noun pattern in your use case text. If your use
case text follows this pattern, robustness diagrams are a snap to draw; if not, the diagrams can
be really difficult to draw.

Think of this as an early warning signal: if you can’t draw a simple ol’ robustness diagram
from a use case, how are you ever going to create a detailed design from it? Sequence diagrams
are completely noun-verb-noun in nature: the objects are the nouns, and the messages that
go between them are the verbs. So by getting your text in noun-verb-noun format now, you’re
making the detailed design task much easier than it would otherwise be.

Robustness analysis provides a sanity check for your use cases.

Robustness Analysis in Theory
In this section, we describe the theory behind robustness analysis, interspersed with exam-
ples from the Internet Bookstore project. We’ll begin with our top 10 robustness analysis
guidelines.

Top 10 Robustness Analysis Guidelines
The principles discussed in this chapter can be summed up as a list of guidelines. Our top 10
list follows.

10. Paste the use case text directly onto your robustness diagram.

9. Take your entity classes from the domain model, and add any that are missing.

8. Expect to rewrite (disambiguate) your use case while drawing the robustness diagram.

7. Make a boundary object for each screen, and name your screens unambiguously.

6. Remember that controllers are only occasionally real control objects; they are more
typically logical software functions.

5. Don’t worry about the direction of the arrows on a robustness diagram.

4. It’s OK to drag a use case onto a robustness diagram if it’s invoked from the parent use
case.

CHAPTER 5 ■ ROBUSTNESS ANALYSIS104

7745ch05final.qxd 12/14/06 11:24 AM Page 104

3. The robustness diagram represents a preliminary conceptual design of a use case, not
a literal detailed design.

2. Boundary and entity classes on a robustness diagram will generally become object
instances on a sequence diagram, while controllers will become messages.

1. Remember that a robustness diagram is an “object picture” of a use case, whose
purpose is to force refinement of both use case text and the object model.

Let’s walk through the items in this list in more detail.

10. Paste the Use Case Text Directly onto Your Robustness Diagram
Doing this really helps to reinforce the fact that you’re drawing an object picture of the events
described in the use case. Plus, you’ll work through the use case a sentence at a time as you
draw the diagram, so it’s handy to have the text nearby.

Figure 5-3 shows an example work-in-progress robustness diagram for the Internet Book-
store, for the Login use case. This is a snapshot of the diagram in its early stages. So far, only
the first few sentences of the use case have been drawn onto the diagram.

In Figure 5-3, the use case text has been pasted directly into a note on the diagram.
Because the robustness diagram is essentially a pictorial representation of the use case, it helps
to have the text right there on the diagram: they’re two different views of the same thing, so you
should be able to walk through the text and trace it on the diagram (and vice versa).

■Tip Using a CASE tool such as EA, it’s possible to create a live link between the use case and the note on
the robustness diagram, so that if the use case is updated, the note on the diagram is updated automatically.

■Exercise We show the completed version of this diagram later, in Figure 5-5. But before you take a
look, try completing the diagram, following the example of the controllers and message arrows that we’ve
added so far in Figure 5-3. Simply follow the use case text, and draw the literal interpretation into the dia-
gram (without trying to think about design details. Remember, you’re not doing a real OO design yet—
you’re doing just enough preliminary design to validate that you understand the use case).

(Hint: It’s early days yet, as we’ve only barely introduced the basic concepts, so expect to make some
mistakes. But don’t be discouraged; the intention here is simply to give it a try, and then think about the
diagram that you drew while you read the next few pages.)

CHAPTER 5 ■ ROBUSTNESS ANALYSIS 105

7745ch05final.qxd 12/14/06 11:24 AM Page 105

9. Take Your Entity Classes from the Domain Model, and Add Any That Are Missing
Most of the entities on your robustness diagram will come from your domain model. However,
since you time-boxed your initial domain modeling effort at a couple of hours, it’s natural to
expect that you might be missing some domain classes. When you’re drawing robustness dia-
grams and this happens, make sure you add the missing classes into the domain model.

ICONIX Process assumes that your initial domain model will be incomplete and expects
that missing objects will be discovered during robustness analysis. In this book, we refer to
this process as object discovery.

CHAPTER 5 ■ ROBUSTNESS ANALYSIS106

Figure 5-3. Partially completed robustness diagram with the use case text pasted in

BASIC COURSE:

The user clicks the login link from

any of a number of pages; the

system displays the login page.

The user enters their username

and password and clicks Submit.

The system checks the master

account list to see if the user

account exists. If it exists, the

system then checks the

password. The system retrieves

the account information, starts an

authenticated session, and

redisplays the previous page with

a welcome message.

ALTERNATE COURSES:

User forgot the password: The

user clicks the What's my

Password? link. The system

prompts the user for their

username if not already entered,

retrieves the account info, and

emails the user their password.

Invalid account: The system

displays a message saying that

the "username or password" was

invalid, and prompts them to

reenter it.

Invalid password: The system

displays a message that the

"username or password" was

invalid, and prompts them to

reenter it.

User cancels login: The system

redisplays the previous page.

Third login failure: The system

locks the user's account, so the

user must contact Customer

Support to reactivate it.

User

Login page

Display login page

Enter username and

password

Does account exist?

click submit

7745ch05final.qxd 12/14/06 11:24 AM Page 106

8. Expect to Rewrite Your Use Case While Drawing the Robustness Diagram
Experience has shown that first-draft use cases tend to exhibit the following characteristics:
they are typically vague, ambiguous, incomplete, and incorrect. Small wonder that so many
projects have struggled with use cases in the absence of a disambiguation technique like
robustness analysis. Removing ambiguity from use cases is one of the primary purposes of
this technique.

The “magic” of this technique is in reality hard work: drawing a robustness diagram
forces you to work through the use case one sentence at a time. This simple act almost

CHAPTER 5 ■ ROBUSTNESS ANALYSIS 107

TYING YOUR USE CASE TO THE DESIGN

The robustness diagram ties three elements to your use case: the GUI, the domain classes, and an intended
list of software functions (see Figure 5-4).

As Figure 5-4 shows, the behavior requirements defined in your use case need to touch on several
different aspects of the system, including how users interact with the GUI and manipulate the core objects
from the problem domain. In between the GUI and the domain objects is the place where the software
functions live.

On robustness diagrams, you describe GUI elements using boundary objects, software functions using
controllers, and domain objects using entities. Note that this is substantially different from a collaboration
diagram, which is sometimes confused with a robustness diagram. (Collaboration diagrams simply show
object interactions.)

Figure 5-4. Robustness diagrams tie three elements to your use case.

7745ch05final.qxd 12/14/06 11:24 AM Page 107

always brings to the surface errors in the first-draft use case text, so it’s important to rewrite
the use case in parallel with drawing the robustness diagram.

7. Make a Boundary Object for Each Screen
Drawing a robustness diagram can enforce unambiguous naming (or, as we like to say, disam-
biguated nomenclature of your boundary objects1). If you see boundary objects labeled “web
page” on a robustness diagram, stop, figure out the name of the page, and use the real name.

6. Remember that Controllers Are Typically Logical Software Functions
It’s certainly possible to have control-intensive classes in your design (e.g., manager
classes), and you can definitely represent these as controllers. However, don’t presume that
every controller on a robustness diagram will represent an actual control class. In many
cases, a controller on a robustness diagram is simply used as a placeholder for a software
function. Overuse of controller classes (e.g., one use case controller per use case) in a design
can lead us back to functional decomposition, so controller classes should be used spar-
ingly.2 Showing a mix of objects and functions is one of the other ways in which a robustness
diagram is substantially different from a collaboration diagram.

If you see a cluster of controllers on a robustness diagram that are all communicating
with each other, then that’s a good candidate for a manager class (especially if the finite
state behavior is nontrivial). If you feel like you might need to draw a state diagram for the
use case, you might also need a controller class, but the majority of your use cases generally
aren’t likely to be state-intensive (even in some real-time systems).

5. Don’t Worry About the Direction of the Arrows on a Robustness Diagram
Remember that your robustness diagram has two main missions in life:

• To force you to disambiguate your use case text

• To help you to discover missing objects in your domain model

Which direction the arrowheads point on the robustness diagram does nothing to further
either of these goals. As a consequence, the direction of the arrows just . . . doesn’t . . . matter.
Seriously. Trust us. It really doesn’t. Oh, and one other thing: it’s not important.

Formally speaking, arrows on robustness diagrams represent communication
associations. You can show either data flow or control flow and, in case we didn’t mention it
before, the direction of the arrows is not important.

CHAPTER 5 ■ ROBUSTNESS ANALYSIS108

1. For the benefit of any XPers who might be reading this book (!), that’s
“DisambiguatedNomenclatureOfYourBoundaryObjects.”

2. As you’ll see later, the current trend seems to be an even greater overuse of controller classes, where
each software function actually has a controller class. It seems to us that the industry might have
taken a giant step backward with this sort of thinking.

7745ch05final.qxd 12/14/06 11:24 AM Page 108

4. Show Invoked Use Cases on Your Robustness Diagram
It’s OK to drag a use case onto a robustness diagram if it’s invoked from the parent use case.

Not only is it OK to do this, but it’s also the simplest way to show one case being invoked
by another on a robustness diagram. In fact, it’s the only reasonable way that we’ve found.
Try it—it works really well.

3. The Robustness Diagram Represents a Preliminary Conceptual Design of a Use Case
Here are a couple of fundamental truths about system development:

• It’s a good idea to fully understand the requirements before doing a design.

• It’s often impossible to fully understand the requirements without doing some
exploratory design.

These two statements may seem contradictory, but the solution is quite simple: you can
do a conceptual design for the purpose of validating the behavior requirements before doing
the real design, which you’re going to code from. The robustness diagram represents the con-
ceptual design, whereas the real design is shown on the sequence diagrams.

Programmers often have trouble with robustness diagrams because they’re accustomed
to thinking in terms of concrete detailed designs, and they need to take a step back from being
literal-minded and learn to think at a slightly more abstract, conceptual level. This can be
tricky, as programming tends to be a very literal-minded skill. However, once you’ve mastered
the skill of manipulating designs at the conceptual level of abstraction, you’ll find that a
number of benefits result, especially the ability to write precise and unambiguous use cases.

The good news is, mastering this skill doesn’t require you to retire to a Tibetan monastery
to meditate and practice for several years; it only takes a few hours of drawing diagrams.

2. Objects on Your Robustness Diagram Will “Morph” into the Detailed Design
Boundary and entity classes on a robustness diagram will generally become object instances
on a sequence diagram, while controllers will become messages. It’s also advisable to create
test cases for the controllers.

Keep in mind that both boundary objects and entity objects are nouns, and that con-
trollers are verbs (i.e., an action performed on an object). As such, it makes sense that the
controllers (the actions) will become methods on the boundary and entity classes.

1. Remember That a Robustness Diagram Is an “Object Picture” of a Use Case
A robustness diagram is an “object picture” of a use case, whose purpose is to force refinement
of both use case text and the object model. Robustness diagrams tie use cases to objects (and
to the GUI).

A robustness diagram isn’t the same as a UML collaboration diagram. You show object-to-
object communication on a collaboration diagram, but a robustness diagram is quite literally
an object picture of a use case. Since the robustness diagram and the use case text have to
match precisely, the robustness diagram forces you to tie the use case text to the objects, thus
enabling you to drive object-oriented designs forward from use cases.

An important implication of all of this is that, because the robustness diagram must show
all of the use case, it must show not just the basic course, but all the alternate courses as well

CHAPTER 5 ■ ROBUSTNESS ANALYSIS 109

7745ch05final.qxd 12/14/06 11:24 AM Page 109

(all on the same diagram). This is a good reason why your use cases should follow the two-
paragraph rule (see Chapter 3).

Figure 5-5 shows the completed diagram for the Login use case (which we began earlier
in this chapter), showing the basic course and the alternate courses.

CHAPTER 5 ■ ROBUSTNESS ANALYSIS110

Figure 5-5. Example robustness diagram

7745ch05final.qxd 12/14/06 11:24 AM Page 110

■Tip In Figure 5-5, some of the objects are shaded red. These are the objects (mainly controllers) for the
alternate courses. Though it isn’t essential, it’s helpful to show the alternate courses in a different color from
the basic course. The same effect can be achieved (and has an additional benefit as a form of review) by
printing out the diagram and using different colored highlighter pens to trace the basic course and alternate
courses.

CHAPTER 5 ■ ROBUSTNESS ANALYSIS 111

DO I REALLY NEED ALL THOSE #$%^ DISPLAY CONTOLLERS?

A common issue that some people get concerned about when drawing robustness diagrams is that their
diagram sometimes has a number of Display controllers.

Generally, if a controller is talking to a boundary object (as in Figure 5-6), then it wouldn’t violate the
diagram’s noun-verb-noun rules to leave out the additional Display controller. The fact that the page is going
to be displayed is already implied by the arrow from the Get Requested Addresses controller to the Delivery
Address Page boundary object.

However, if you think of Display as being “Initialize page,” it makes sense to put the Display con-
troller on the diagram wherever needed (see Figure 5-7). In fact, if it helps, call it “Initialize page” instead of
“Display.” In Figure 5-7, you can see that the system is getting the default delivery address and then initializ-
ing the page with the default settings (via the Display controller).

Display initialization code tends to be nontrivial, so it helps to place a Display controller explicitly
on the robustness diagram. If you start leaving out the Display controllers, then you’re actually skipping a
lot of initialization behavior in the use case. For the most part, this is not stuff you want to forget about.
When you draw a Display controller, ask yourself, “What gets displayed on this screen? Do I have to fetch
it from the database?” (etc.)

In fact, when you begin drawing the sequence diagrams from the use case text (see Chapter 8), the
Display controller usually becomes an operation on the boundary class, but that’s a design decision (allocat-
ing operations to classes), and you shouldn’t worry about design details while drawing the robustness
diagrams.

As you’ll see in Chapter 12, you can generate test cases directly from the controllers on your robust-
ness diagrams, so this is another impetus to add that Display controller!

7745ch05final.qxd 12/14/06 11:24 AM Page 111

More About Robustness Diagram Rules
The robustness diagram noun-verb-noun rules may seem unnecessarily restrictive at first,
but in reality they help you to prepare your use case text for the much more rigorous (if
sometimes implicit) rules that you would need to apply when you create designs from your
use cases. The robustness diagram rules are easy to learn, but there’s now emerging tools
support to catch rule violations. Figures 5-8 and 5-9 show our favorite modeling tool, EA,
validating a couple of robustness diagrams for model errors. As far as we know, the folks at
Sparx Systems (www.sparxsystems.com) are the only ones who have implemented rule check-
ing for this diagram, as of the time of this writing.

CHAPTER 5 ■ ROBUSTNESS ANALYSIS112

Figure 5-6. Controller talking directly to the boundary object

User Account

Get Default
Address

Delivery
Address Page

Shopping Cart
Page

Click checkout

Figure 5-7. Controller talking to the boundary object via a Display controller

User Account

Get Default
Address

Delivery
Address Page

Shopping Cart
Page

Display

Click checkout

7745ch05final.qxd 12/14/06 11:24 AM Page 112

In Figure 5-8, all of the possible valid relationships are shown (even though the diagram
itself doesn’t make a huge amount of sense), and in Figure 5-9, all of the possible invalid rela-
tionships are shown.

The relationships shown in Figure 5-8 are allowed because

• An Actor can talk to a Boundary Object.

• Boundary Objects and Controllers can talk to each other (Noun <-> Verb).

• A Controller can talk to another Controller (Verb <-> Verb).

• Controllers and Entity Objects can talk to each other (Verb <-> Noun).

CHAPTER 5 ■ ROBUSTNESS ANALYSIS 113

Figure 5-8. All possible valid robustness diagram relationships

7745ch05final.qxd 12/14/06 11:24 AM Page 113

The relationships shown in Figure 5-9 are not allowed because

• An Actor can’t talk directly to a Controller or an Entity (must talk to a Boundary Object).

• Boundary Objects and Entity Objects can’t talk directly to each other (must go via a
Controller).

• Entities can’t talk directly to other Entities (must go via a Controller).

• Boundary Objects can’t talk directly to other Boundary Objects (must go via
a Controller).

How Do You Perform Robustness Analysis?
You perform robustness analysis for a use case by working through the use case text, one
sentence at a time, and drawing the actor(s), the appropriate boundary and entity objects and
controllers, and the connections among the various elements of the diagram. You should be
able to fit the basic course and all of the alternate courses on one diagram.

CHAPTER 5 ■ ROBUSTNESS ANALYSIS114

Figure 5-9. Robustness diagram rule checker in EA showing all possible invalid relationships

7745ch05final.qxd 12/14/06 11:24 AM Page 114

Now for a couple of examples (both from the Internet Bookstore). We’ll start with a com-
pleted robustness diagram, and then we’ll walk through another diagram step by step.

Robustness Diagram for the “Show Book Details” Use Case
Figure 5-10 shows a first attempt at the robustness diagram for the Show Book Details use
case, which we introduced in Chapter 4.

As you can see, it’s possible to walk through the robustness diagram by reading the use
case text and following along in the diagram itself. If you ever find that there’s something in
the use case text that isn’t in the diagram, then the diagram is incomplete (and vice versa).

CHAPTER 5 ■ ROBUSTNESS ANALYSIS 115

Figure 5-10. A first attempt at a robustness diagram for the Show Book Details use case

7745ch05final.qxd 12/14/06 11:24 AM Page 115

There are a few issues with this diagram that are worth clearing up:

• The “click link” should come from the home page boundary object and go to a controller
that drives the display of the book details page (it’s probably a “book details page” and not
a “view book details page”). Always show the user actions coming off the boundary object
and thus linking the previous screen/page to the next screen/page via a controller.

• Right now there are two boundary classes: “view book details page” and “book details
JSP.” Are there really two boundaries at the conceptual design level? Or do both of these
represent the book details page? Is the “view book details page” boundary actually sup-
posed to be a controller called “display book details page”?

• Don’t call things JSPs (or ASPs, or whatever) on the robustness diagrams, as that’s too
technology specific for conceptual design. It’s better to call them screens and pages
(this is already done in the use case text).

• Try not to mix nouns and verbs as in “view book details page”—you will confuse your-
self! The name of the page should be a noun.

Figure 5-11 shows the corrected version.

CHAPTER 5 ■ ROBUSTNESS ANALYSIS116

Figure 5-11. Corrected robustness diagram for the Show Book Details use case

7745ch05final.qxd 12/14/06 11:24 AM Page 116

We’ll return to the Show Book Details use case periodically throughout the book, and we’ll
take it all the way to source code.

Of course, it’s easy for us to simply show you a finished diagram and say, “There, that’s
how you do it!” So in the next section, we’ll walk through the process of drawing a robustness
diagram from the beginning.

Robustness Diagram for the “Write Customer Review” Use Case
We’ll now walk through the robustness analysis process step by step for the Write Customer
Review use case.

The first step is shown in Figure 5-12. We create a new, blank robustness diagram.

■Tip Make the robustness diagram a child diagram of the use case you’re modeling. (The same goes for
the sequence diagram, which you’ll add later.) Nest these diagrams “inside” the use case in the project
browser.

Next, paste the use case text directly onto the diagram.
The next stage is to read through the first sentence of the basic course in the use case text:

The Customer clicks the Write Review button for the book currently being viewed, and

the system shows the Write Review screen.

The first thing referenced is the Customer, so we need to put a Customer actor onto the
diagram.

■Tip You can drag the actor directly from the tree view (project browser).

■Tip If you’re staring at the screen wondering how to begin . . . well, you aren’t alone. When you’re learn-
ing how to draw robustness diagrams, getting started on a new diagram is usually the trickiest part.

The easiest way to begin is simply to start at the first sentence of the use case text and draw
what you read. If it just won’t translate easily onto the diagram, then it’s possible that the use case is
starting at the wrong point (e.g., if it describes the actions leading up to the user’s first action, then it’s
probably describing part of a different use case and should be rewritten).

CHAPTER 5 ■ ROBUSTNESS ANALYSIS 117

7745ch05final.qxd 12/14/06 11:24 AM Page 117

Next, it seems like the obvious thing to do would be to show the Write Review button as
a boundary object and show the Customer interacting with it (see Figure 5-13).

You might wonder whether it’s OK to put GUI widgets such as buttons on our robust-
ness diagrams. In practice, we find that doing so opens up Pandora’s box. If you include one
GUI widget, then you start to think that you should include them all, which means . . . you’ll
be there all night drawing controllers and boundary objects for all the text fields, list boxes,
buttons, labels, and so on for every screen. Yikes. It’s better to avoid falling into that trap,
and avoid drawing individual GUI widgets (below the screen/page/frame level) on the
robustness diagrams.

As you can see in Figure 5-14, we’ve removed the Write Review Button boundary object
and relegated it to a message between the Customer and the Write Review Screen object. If
the UI element absolutely must be mentioned explicitly (e.g., if you feel it makes the diagram
clearer), then it could be included as a message label, as we’ve done in Figure 5-15. It isn’t
essential, though—in fact, the diagram would probably even be slightly clearer without it.

CHAPTER 5 ■ ROBUSTNESS ANALYSIS118

Figure 5-12. Step 1: Create a new, blank Write Customer Review robustness diagram

BASIC COURSE:

The Customer clicks the

Write Review button for the

book currently being viewed,

and the system shows the

Write Review page. The

Customer types in a Book

Review, gives it a Book

Rating out of 5 stars, and

clicks the Send button. The

system ensures that the

Book Review isn't too long

or short, and that the Book

Rating is within 1-5 stars.

The system then displays a

confirmation page, and the

review is sent to a Moderator

ready to be added.

ALTERNATE COURSES:

User not logged in: The user

is first taken to the Login

page, and then to the Write

Review page once they've

logged in.

The user enters a review

which is too long (text >

1MB): The system rejects

the review, and responds

with a message explaining

why the review was rejected.

The review is too short (< 10

characters): The system

rejects the review.

7745ch05final.qxd 12/14/06 11:24 AM Page 118

In Figure 5-14, we’ve also added a couple of controllers to represent the validation
described in the use case text. The text represented in the diagram (so far) is as follows:

The Customer types in a Book Review, gives it a Book Rating out of five stars, and clicks

the Send button. The system ensures that the Book Review isn’t too long or short, and

that the Book Rating is within one and five stars.

CHAPTER 5 ■ ROBUSTNESS ANALYSIS 119

Figure 5-13. Step 2: Spot the deliberate mistake.

BASIC COURSE:

The Customer clicks the

Write Review button for the

book currently being

viewed, and the system

shows the Write Review

page. The Customer types

in a Book Review, gives it a

Book Rating out of 5 stars,

and clicks the Send button.

The system ensures that

the Book Review isn't too

long or short, and that the

Book Rating is within 1-5

stars. The system then

displays a confirmation

page, and the review is sent

to a Moderator ready to be

added.

ALTERNATE COURSES:

User not logged in: The

user is first taken to the

Login page, and then to

the Write Review page once

they've logged in.

The user enters a review

which is too long (text >

1MB): The system rejects

the review, and responds

with a message explaining

why the review was

rejected.

The review is too short (<

10 characters): The system

rejects the review.

Customer

(from shopping)
Write Review button

click

7745ch05final.qxd 12/14/06 11:24 AM Page 119

There are a few issues with this diagram so far. The two messages between the Customer
and the Write Review Screen boundary object are quite clumsy. In addition, this approach
introduces some ambiguity into the diagram, as it isn’t clear which controller is called when
the user clicks the Write Review button versus when the user enters the review and clicks
Send. As it turns out, the first sentence of the use case text (“The Customer clicks the Write
Review button for the book currently being viewed”) hints at a Book Detail screen, which isn’t
shown either in the text or on the diagram. If we add that screen, then we can have an arrow
going from the Customer to the Book Detail screen, and we can also add a Display controller
to show the Write Review screen being displayed.

Another issue is that the controller name “Is Book Review text too long or short?” is a tad
long, so we could shorten this to “Is Book Review length OK?”

CHAPTER 5 ■ ROBUSTNESS ANALYSIS120

Figure 5-14. Step 3: We’ve now corrected the mistake and added some validation controllers.

BASIC COURSE:

The Customer clicks the

Write Review button for the

book currently being

viewed, and the system

shows the Write Review

page. The Customer types

in a Book Review, gives it a

Book Rating out of 5 stars,

and clicks the Send button.

The system ensures that

the Book Review isn't too

long or short, and that the

Book Rating is within 1-5

stars. The system then

displays a confirmation

page, and the review is

sent to a Moderator ready

to be added.

ALTERNATE COURSES:

User not logged in: The

user is first taken to the

Login page, and then to

the Write Review page once

they've logged in.

The user enters a review

which is too long (text >

1MB): The system rejects

the review, and responds

with a message explaining

why the review was

rejected.

The review is too short (<

10 characters): The system

rejects the review.

Write Review page

Customer

(from shopping)

Is Book Review text too

long or short?

Is rating in allowed

range?

enter review and

click Send

click Write Review button

7745ch05final.qxd 12/14/06 11:24 AM Page 120

In Figure 5-15, we’ve corrected the diagram and also walked through the remainder of the
basic course text. Notice that we’ve also corrected the use case text so that it doesn’t just hint
at a Book Detail screen, but instead refers to it explicitly.

The text shown in the new part of the diagram is

The system then displays a confirmation screen, and the review is sent to a Moderator,

ready to be added.

(As you’ll discover later, this text also needs work!)

CHAPTER 5 ■ ROBUSTNESS ANALYSIS 121

Figure 5-15. Step 4: The remainder of the basic course text in graphic form

Write Review page

Is Book Review length

okay?

Is Review Rating in

allowed range?

Customer

(from shopping)

Confirmation page

Display

(from admin)

Moderate
Customer Reviews

Book Detail page

Display

BASIC COURSE:

On the Book Detail page

for the book currently

being viewed, the

Customer clicks the Write

Review button, and the

system shows the Write

Review page. The

Customer types in a Book

Review, gives it a Book

Rating out of 5 stars, and

clicks the Send button.

The system ensures that

the Book Review isn't too

long or short, and that the

Book Rating is within 1-5

stars. The system then

displays a confirmation

page, and the review is

sent to a Moderator ready

to be added.

ALTERNATE COURSES:

User not logged in: The

user is first taken to the

Login page, and then to

the Write Review page

once they've logged in.

The user enters a review

which is too long (text >

1MB): The system rejects

the review, and responds

with a message explaining

why the review was

rejected.

The review is too short (<

10 characters): The

system rejects the review.

click Write

Review

button

yes

invoke

yes

enter Review

and click Send

7745ch05final.qxd 12/14/06 11:24 AM Page 121

We’ve included a controller called Display, which “controls” the display of the Confir-
mation Screen boundary. We don’t attempt to draw the review being sent to the Moderator,
because this is handled by a separate use case, Moderate Customer Reviews (from the admin
package). Instead, we simply drag that use case onto the diagram as a link, and indicate that
we’ll invoke it directly.

You’d be forgiven for thinking that we’ve finished at this stage; the robustness diagram
looks pretty complete. However, we still haven’t modeled the alternate courses, and this is
often where robustness diagrams provide the most value.

Let’s take a look at the first alternate course:

User not logged in: The user is first taken to the Login screen and then to the Write

Review screen once he is logged in.

To model this course, we’ll add a new controller: “Is user logged in?” If the user isn’t logged
in, we’ll invoke the Login use case; otherwise, control passes to the Display controller as it did
previously. Because the use case text specifies that the Write Review screen is displayed once
the user has logged in, we also need to show this on the diagram, so there should be a line
between the Login use case and the Display controller. As we do this on the diagram, we
should also modify the use case to match:

User not logged in: Invoke Login. Then display the Write Review screen.

■Exercise Which object should the system ask whether the user is logged in? Currently there isn’t
a Customer Session class, but it looks as if we’re going to need one. (If you're wondering what "object
discovery" means, this is it. We just discovered that we're missing an object.) Looking at Figure 5-15, where
should this go on the diagram? You’d also need to update the use case text to refer to Customer Session.
Try doing this first, and then compare the result with the updated diagram in Figure 5-16.

The updated diagram and use case text are shown in Figure 5-16. Notice that we’ve
shaded the arrow pointing to the Login use case in red, to indicate that it’s part of an alternate
course. While not essential, this is a useful visual aid. If you print out the diagrams, you can
use highlighter pens to do this part.

In Figure 5-16, the new Customer Session object has been added to the robustness dia-
gram (note that you’ll also need to update the domain model anytime you identify a new
domain object). The use case text shown to the left of the diagram has also been updated to
refer to the Customer Session: “The system checks the Customer Session to make sure the
Customer is logged in.”

Finally, let’s add the last two alternate courses:

The user enters a review that is too long (text > 1MB): The system rejects the review and

responds with a message explaining why the review was rejected.

The review is too short (< 10 characters): The system rejects the review and displays an

error message.

CHAPTER 5 ■ ROBUSTNESS ANALYSIS122

7745ch05final.qxd 12/14/06 11:24 AM Page 122

Note the two implied requirements: the book review length shall not exceed 1MB, and the
book review length shall not be fewer than ten characters.

The updated diagram is shown in Figure 5-17 (again, the objects for the alternate courses
are shown in red).

CHAPTER 5 ■ ROBUSTNESS ANALYSIS 123

Figure 5-16. Step 5: The first alternate course has been added.

7745ch05final.qxd 12/14/06 11:24 AM Page 123

■Exercise In Figure 5-17, following the “enter Review and click Send” arrow, it’s difficult to say which
controller we go to after Write Review page. How could the diagram be improved to make this clearer?
We reveal the answer during the PDR in Chapter 6.

CHAPTER 5 ■ ROBUSTNESS ANALYSIS124

Figure 5-17. Step 6: Robustness diagram with the last two alternate courses added

7745ch05final.qxd 12/14/06 11:24 AM Page 124

■Exercise In Figure 5-17, the diagram invokes the Moderate Customer Reviews use case, but this doesn’t
match up with the text on the left. What should be done to make the diagram and the text match up? (Again,
check the PDR in Chapter 6 for the answer.)

This diagram is now “functionally” complete, and you could reasonably happily draw
a sequence diagram from it. But there are still a few ambiguities that should be ironed out,
a couple of which are mentioned in the Exercise elements here. Ironing out these ambiguities
will make our lives that much easier when we draw the sequence diagram.

This fresh in from the Department of Cliffhanger Endings: We’ll cover those issues (and
improve this diagram some more) in the Preliminary Design Review (PDR) in Chapter 6.

Updating Your Domain (Static) Model
While you’re drawing robustness diagrams, it’s a good idea to also be updating the domain
model incrementally, as you go along. You’ll almost inevitably discover new domain classes.
You’ll also identify attributes to be added to classes. This all needs to go on the domain model
(aka analysis-level static model), and it’s best do it now, as soon as you identify these changes
or new details, before they’re forgotten about.

The new attributes may be discovered from the use case text, or from the UI prototypes,
or even from the functional requirements.

■Caution Try not to get sidetracked by assigning operations to your classes just yet—that’s a detailed
design activity. If you spend time doing that now, you’ll probably just need to redo it later.

The feedback cycle between the robustness model and the static model is shown in
Figure 5-18.

CHAPTER 5 ■ ROBUSTNESS ANALYSIS 125

7745ch05final.qxd 12/14/06 11:24 AM Page 125

Figure 5-19 shows the updated static model for the Internet Bookstore, following robust-
ness analysis for the Show Book Details and Write Customer Review use cases. The added or
updated classes are shown in red.

The changes that we’ve made to this diagram are as follows.
After doing robustness analysis for the Show Book Details use case (see Figure 5-11), we

• Added attributes to Book: title and synopsis (these details weren’t in the use case text,
but were found from looking at the screen UI mock-ups)

After doing robustness analysis for the Write Customer Review use case (see Figure 5-17), we

• Added CustomerSession, gave it an attribute called loggedIn (a Boolean), and linked it to
CustomerAccount (which will later, in Chapter 8, become simply Customer)

• Deleted CustomerRating, because it turned into an attribute on BookReview

• Added new attributes to BookReview that were mentioned in the use case text

CHAPTER 5 ■ ROBUSTNESS ANALYSIS126

Figure 5-18. Robustness model/static model feedback loop

7745ch05final.qxd 12/14/06 11:24 AM Page 126

There’s one last step before you finish robustness analysis. Once all of your robustness
diagrams are drawn, you must finish updating the analysis-level class diagram. Take a sweep
through all of the robustness diagrams that you’ve drawn for this release, and make sure that
all of the relevant details have been fed back into the static model.

CHAPTER 5 ■ ROBUSTNESS ANALYSIS 127

Figure 5-19. Static model for the Internet Bookstore, after robustness analysis for two use cases

7745ch05final.qxd 12/14/06 11:24 AM Page 127

Robustness Analysis in Practice
The following exercises, taken from the preliminary design activities for the Internet Book-
store, are designed to test your ability to spot the most common mistakes that people make
during robustness analysis.

Exercises
Each of the diagrams in Figures 5-20 to 5-23 contains one or more typical modeling errors. For
each one, try to figure out the errors and then draw the corrected diagram. The answers are in
the next section.

Exercise 5-1

Figure 5-20 shows an excerpt from a robustness diagram for the Create New Customer Account use case. It vio-
lates one of the rules of robustness analysis that we described earlier in this chapter—but which one?

Exercise 5-2

Figure 5-21 shows a robustness diagram for the Add External Books to Catalog use case (in which bookseller
partners may add their own titles to the Internet Bookstore website). It contains a couple of errors to do with the
sort of detail you should put on a robustness diagram (Hint: Look at External Book) and an error where the alter-
nate course doesn’t have any relation to the events in the basic course. Speaking of alternate courses, there’s
also one other error related to alternate courses.

CHAPTER 5 ■ ROBUSTNESS ANALYSIS128

Figure 5-20. Excerpt from a robustness diagram showing an invalid relationship

User

Create New
Account page

create

Customer
Account

Account
Created page

enter details and
click Submit

display

7745ch05final.qxd 12/14/06 11:24 AM Page 128

CHAPTER 5 ■ ROBUSTNESS ANALYSIS 129

Figure 5-21. Robustness diagram for the Add External Books to Catalog use case, with four
modeling errors

Seller clicks Add

Book button

Seller

Add External Books to Catalog:

BASIC COURSE:

The system displays the Add

External Book page. The Seller

types in the External Book details

(title, ISBN, price etc) and clicks

the Add Book button. The system

checks that each field has a value,

and that the price is numeric, isn't

a negative value or > $1,000, then

creates the External Book in the

database. The system then

displays the Add External Book

page again (so the user can add

another External Book), along with

a message confirming that the

External Book was successfully

added.

ALTERNATE COURSES:

ISBN wasn't found in the

Bookstore database: The Add

External Book page is

redisplayed, with a message that

the ISBN wasn't found.

Price was invalid: Page is

redisplayed with "Invalid price"

message.

Display

Add External

Book page
Does each field

have a value?

Is the price

numeric?
Is price > $0?

Is price >

$1000?

Create in DB

External Book

Book

Display with

confirmation

message

save() : void

validate() : void

Extends

7745ch05final.qxd 12/14/06 11:24 AM Page 129

Exercise 5-3

The robustness diagram excerpt in Figure 5-22 shows at least five modeling errors, including at least one in the
use case text, in the last sentence of the basic course, and two where the text and the diagram don’t match up.
Have fun finding them all!

CHAPTER 5 ■ ROBUSTNESS ANALYSIS130

Figure 5-22. Excerpt from a robustness diagram containing five errors

Checkout:

BASIC COURSE:

The system displays the Edit

Shopping Cart page. The user

clicks the Checkout button; the

system displays the Delivery

Address page showing any

addresses already registered

for the user's account. The user

selects the address; the

system sets the delivery

address in the order.

. . .

User

Proceed to

checkout button

Select address

Set delivery

address
Order

click

7745ch05final.qxd 12/14/06 11:24 AM Page 130

Exercise 5-4

The robustness diagram in Figure 5-23 is for the Search for Books use case. The diagram shows a total of eight
modeling errors, including one in the first sentence of the use case text (Hint: Page name) and another in the fourth
paragraph of the use case text. See how many errors you can find!

CHAPTER 5 ■ ROBUSTNESS ANALYSIS 131

Figure 5-23. Robustness diagram for the Search for Books use case showing eight errors

BASIC COURSE:

The system displays a page allowing

the user to enter the Search Criteria:

The user enters Search Criteria and

clicks the Search Now button.

The system verifies the Search Criteria

and creates a Search Criteria Object.

The system searches the Catalog

using the Search Criteria and adds any

matching entries to the Search Results.

The system then displays the Search

Results via the Use Case "View

Search Results".

ALTERNATE COURSES:

No Text entered in Search Criteria: The

system re-displays the Search page

and prompts the user to re-select the

required Search Criteria.

No matches found : The system returns

a message indicating no matches

found and prompts the user to re-enter

the Search Criteria.

User Search page

Display with

default settings

Verify search

details

Create Search

Criteria object

enter search criteria

and click Search

Search Catalog

View
Search
Results

«invokes»

7745ch05final.qxd 12/14/06 11:24 AM Page 131

Exercise Solutions
Following are the solutions to the exercises.

Exercise 5-1 Solution: Noun-Noun Relationship

Figure 5-24 highlights the part of the diagram that violates a robustness diagramming relationship rule. The
“Create New Account page” boundary object is talking to the “Account Created page” boundary object. These
are both “nouns,” and a noun-noun relationship isn’t allowed. There must be a controller (a verb) between
them, so that the relationship is noun-verb-noun.

Looking at Figure 5-24, the arrow is already labeled “display,” so it makes sense simply to create a Display con-
troller. Figure 5-25 shows the corrected diagram.

■Note See Figures 5-8 and 5-9 for all of the possible valid and invalid relationships that you can show on
a robustness diagram.

CHAPTER 5 ■ ROBUSTNESS ANALYSIS132

Figure 5-24. The robustness diagram excerpt from Exercise 5-1, with the error highlighted

7745ch05final.qxd 12/14/06 11:24 AM Page 132

Exercise 5-2 Solution: Allocating Behavior

Figure 5-26 highlights the errors in Figure 5-21.

Let’s start at the top of the diagram and work our way down. The diagram contains the validation controllers to
check the incoming form values for the Add External Book page, but it doesn’t show what happens if any of the
validation checks fail. The solution is actually pretty straightforward—we just need a “Display with error message”
controller pointing back to the Add External Book page—but it still needs to be shown on the diagram, so that the
extra processing doesn’t get forgotten about.

The next error, over on the left of Figure 5-26, is that there’s an alternate course called “ISBN wasn’t found in the
Bookstore database,” but there’s no matching text in the basic course for this error condition to ever arise. The fact
that it appeared in the alternate courses shows that the error condition was on the use case author’s mind, but it
needs to be stated explicitly so that the designers know that they’re meant to deal with it.

Over to the right, Figure 5-26 shows an extends relationship between External Book and its parent Book. While this
might be a valid relationship, the robustness diagram definitely isn’t the right place to capture this sort of informa-
tion. Extends relationships belong on the domain model diagram (and later, the class diagrams).

Finally, there’s a note attached to External Book showing two methods (save() and validate()). Again, the
robustness diagram just isn’t the right place to allocate operations to classes; this information should go on the
class diagrams and be captured during sequence diagramming (see Chapter 8).

CHAPTER 5 ■ ROBUSTNESS ANALYSIS 133

Figure 5-25. The corrected robustness diagram excerpt for Exercise 5-1

User

Create New
Account page

create

Customer
Account

Account
Created page

enter details and
click Submit

Display

7745ch05final.qxd 12/14/06 11:24 AM Page 133

CHAPTER 5 ■ ROBUSTNESS ANALYSIS134

Figure 5-26. The robustness diagram from Exercise 5-2, with errors highlighted

7745ch05final.qxd 12/14/06 11:24 AM Page 134

Figure 5-27 shows the corrected diagram. In this version, we’ve also collapsed three controllers into one and
called the new controller Check legal price range.

CHAPTER 5 ■ ROBUSTNESS ANALYSIS 135

Figure 5-27. The corrected robustness diagram from Exercise 5-2

7745ch05final.qxd 12/14/06 11:24 AM Page 135

Exercise 5-3 Solution: Diagram Doesn’t Match Up with the Description

Figure 5-28 highlights the errors in Figure 5-22. The first error in the example is that the text starts at an earlier
point in time than the diagram (a common mistake). An easy way to spot this type of error is to use the “highlighter
test” (see earlier in this chapter).

The second error—the GUI widget is shown as a boundary object—is another common mistake. A GUI widget
such as a button is too fine-grained to be the boundary object; instead, the boundary object should be the screen
or web page.

The third error is rather fundamental: an entire chunk of the use case text has been left off the diagram. It’s sur-
prising how often this happens. It's usually a sign that somebody isn't working through the use case one sentence
at a time.

The fourth and final error is a direct consequence of ambiguous use case text: the text wasn’t tied closely enough
to the objects, so the modeler just sort of went off in a pseudo-random direction and, lacking the real boundary
object to work with, used “Select address” as the boundary object, even though it’s a verb and therefore is a con-
troller masquerading as a boundary object. And as we’re sure you know by now, actors can’t talk directly to
controllers.

Figure 5-29 shows the corrected diagram and use case text. In redrawing the diagram, we discovered another
ambiguity in the text (funny how that happens!). The text “the system displays the Delivery Address page showing
any addresses already registered for the user’s account” implies some search and retrieval initialization behavior,
which currently also doesn’t appear anywhere on the diagram. So we rewrote this part of the use case and added

CHAPTER 5 ■ ROBUSTNESS ANALYSIS136

Figure 5-28. The robustness diagram excerpt from Exercise 5-4, with errors highlighted

7745ch05final.qxd 12/14/06 11:24 AM Page 136

it into the diagram, and in the process we discovered another domain class (Delivery Address List). This is exactly
the kind of scenario where robustness analysis proves invaluable—discovering hidden functionality and missing
domain classes, just in time to begin designing.

Exercise 5-4 Solution: Alternate Courses Not Shown

Figure 5-30 highlights the errors in Figure 5-23.

To kick off, the text “a page allowing the user to enter the Search Criteria” sounds like a roundabout way of saying
“the Search Page,” and it’s always better to give your pages explicit names.

On the arrow between User and Search Page, the text “click Search” should be “click the Search Now button” to
match it up with the use case text.

On the controller at the top right, some extra detail has been added to the diagram—“Display with default settings”—that
doesn’t appear in the use case text. Remember, the text and the diagram should be virtual carbon copies of each other.
As “Display with default settings” is a bit like saying, “The system displays what it displays” (i.e., it doesn’t add anything
meaningful in this case since the screen doesn't have to fetch any data when it initializes), it can safely be removed.

Back in the use case description, the text “adds any matching entries to the Search Results” is rather vague.
It doesn’t describe exactly what the “entries” are. “Entries” is vague and ambiguous. This is another example of
use case text that isn’t tied closely enough to the domain model. Simply replacing “matching entries” with “match-
ing Books” fixes this.

CHAPTER 5 ■ ROBUSTNESS ANALYSIS 137

Figure 5-29. The corrected robustness diagram excerpt for Exercise 5-4

Checkout:

BASIC COURSE:

The system displays the Edit

Shopping Cart page. The user

clicks the Checkout button; the

system retrieves the Delivery

Addresses already registered

for this user, and then displays

the Delivery Address page.

The user selects the address

to use from the Customer

Address list selector, and

clicks the Select button. The

system sets the Delivery

Address in the Order.

. . .

User

Edit Shopping

Cart page

display

Delivery

Address page

display

retrieve for this

user

Delivery

Address List

OrderSet Delivery

Address

click Checkout

Button

select address

7745ch05final.qxd 12/14/06 11:24 AM Page 137

There’s another naming mismatch on the “Verify search details” controller: it should be called “Verify Search
Criteria.” And while we’re at it, this is really validating the search form, but the diagram doesn’t walk through the
validation checks, which it should.

CHAPTER 5 ■ ROBUSTNESS ANALYSIS138

Figure 5-30. The robustness diagram from Exercise 5-3, with errors highlighted

7745ch05final.qxd 12/14/06 11:24 AM Page 138

■Note The robustness diagram doesn’t need to specify the validation checks in detail, as that would be
quite cumbersome, but it should at least name the function, with a controller per function (or group of closely
related functions).

These validation checks have been left off because of the next (and biggest) error, which is that the diagram
doesn’t show any of the alternate courses! (This happens surprisingly often, but the alternate courses represent
a huge proportion of the system functionality, so they must be given the same amount of attention as the basic
course.)

Finally, the diagram is missing entity objects. Two should be on there: Search Criteria and Catalog.

Figure 5-31 shows the corrected robustness diagram. We’ve also done a small amount of additional tidying-up in
the corrected version: see if you can spot what else we’ve fixed.

CHAPTER 5 ■ ROBUSTNESS ANALYSIS 139

Figure 5-31. The corrected robustness diagram from Exercise 5-4

7745ch05final.qxd 12/14/06 11:24 AM Page 139

More Practice
This section provides a list of modeling questions that you can use to test your knowledge of
robustness analysis.

1. Which of the following is not accomplished during robustness analysis?

a) Object discovery

b) Disambiguation of use case text

c) Modeling the problem domain

d) Validation of requirements by doing conceptual design

2. Which of the following is probably not a boundary class?

a) Login screen

b) Account table

c) Mailbox

d) Error dialog

3. Arrows on a robustness diagram can represent

a) Data flow

b) Control flow

c) Communication associations

d) All of the above

4. Which of the following is probably not a controller?

a) Validate password

b) Transaction manager

c) Line item

d) Display error message

5. Performing robustness analysis as an intermediate step between writing use cases
and drawing sequence diagrams adds an additional modeling step and an additional
required diagram to a software process, as opposed to drawing sequence diagrams
immediately after writing use cases. Does adding this additional step make the
process more or less efficient? Give at least three reasons to support your answer.

6. Robustness diagrams and collaboration diagrams (also called communication dia-
grams in UML2) both show objects collaborating. Does this mean that a robustness
diagram and a collaboration diagram are the same, or are they different? Explain.

CHAPTER 5 ■ ROBUSTNESS ANALYSIS140

7745ch05final.qxd 12/14/06 11:24 AM Page 140

7. List four things accomplished during robustness analysis that help to close the gap
between “what” (requirements analysis) and “how” (detailed design). Explain the ben-
efits of each.

8. Attack or defend the following statement:

It’s impossible to completely understand your requirements without doing some
exploratory design.

If you agree with the statement, list three benefits of doing this exploratory design
as a “conceptual design” modeling step, as opposed to doing all exploratory design
in code.

Summary
In this chapter, we moved from analysis to design, using one of the industry’s most useful and
yet best-kept secrets: robustness analysis.

The activity diagram in Figure 5-32 shows where we are (the tasks we discussed in this
chapter are shown in red). This brings us to Milestone 2 (Preliminary Design Review), which
we cover in the next chapter.

CHAPTER 5 ■ ROBUSTNESS ANALYSIS 141

7745ch05final.qxd 12/14/06 11:24 AM Page 141

CHAPTER 5 ■ ROBUSTNESS ANALYSIS142

Figure 5-32. Analysis and Preliminary Design Checkpoint 2

7745ch05final.qxd 12/14/06 11:24 AM Page 142

Preliminary Design Review

The Preliminary Design Review (PDR) session helps you to make sure that the robustness
diagrams, the domain model, and the use case text all match each other. This review is the
“gateway” between the preliminary design and detailed design stages, for each package of
use cases.

In this chapter, we provide an overview of the PDR, and then we show an example
review for the Internet Bookstore.

143

C H A P T E R 6

7745ch06final.qxd 12/14/06 11:25 AM Page 143

Preliminary Design Review in Theory
In this section, we look at the key elements of the PDR, including our top 10 PDR guidelines.

Why Do a PDR At All?
Why bother reviewing your model after robustness analysis? Here’s a hypothetical conversa-
tion that we hope will shed some light on the subject.

Q: I’ve drawn a robustness diagram for each use case, and as a result I think the use
cases are in pretty good shape. Can I start designing now?

A: There’s just one quick review step first: the Preliminary Design Review (PDR). This
review session helps you to make sure that the robustness diagrams, the domain model,
and the use case text all match each other.

Q: Who should be involved in the PDR session?

A: The same group of people you had at the requirements review: customer representa-
tives, the development team, and any managers who are closely involved in the project.
The customer is quite closely involved in the proceedings, but this review is the last stage
in the process where the customer has direct input. After this, it’s detailed design—the job
of the senior developers.

■Note Of course, the customer may still comment on work in progress, screenshots, and so forth, but you
wouldn’t want a nontechnical (or worse, semitechnical) customer to be commenting on or driving the design.

Q: But what if the customer wants to add new requirements later on?

A: That’s a different issue. All we’re saying is that the customer doesn’t have input into
the design and coding (i.e., the remaining steps following the PDR and leading up to
delivery).

Q: If the customer does want to add new requirements, how does this affect the
process?

A: Then you’re back to step 1 of the process (modifying use cases and the domain
model, as needed), at least for the new requirements. Handling the analysis and design
effort in a sea of changing requirements is a complex subject with many pitfalls, so
we’ve written a separate book about that.1

144 CHAPTER 6 ■ PRELIMINARY DESIGN REVIEW

1. Doug Rosenberg, Matt Stephens, and Mark Collins-Cope, Agile Development with ICONIX Process
(Berkeley, CA: Apress, 2005).

7745ch06final.qxd 12/14/06 11:25 AM Page 144

Q: So what else needs to be achieved during the PDR?

A: It’s a good opportunity to make sure your entity classes have been populated with
attributes, that the screens in your system all have names, and that you can trace the data
flow between the screens and the entity classes.

Q: If we’re on the verge of doing a detailed design, shouldn’t we also be thinking about
the technical architecture (TA)?

A: Yes, the TA should also be reviewed during this session. You need to make sure that the
burgeoning new design is going to work with your chosen architecture.

Top 10 PDR Guidelines
The principles discussed in this chapter can be summed up as a list of guidelines. Our top 10
list follows.

10. For each use case, make sure the use case text matches the robustness diagram,
using the highlighter test.

9. Make sure that all the entities on all robustness diagrams appear within the updated
domain model.

8. Make sure that you can trace data flow between entity classes and screens.

7. Don’t forget the alternate courses, and don’t forget to write behavior for each of them
when you find them.

6. Make sure each use case covers both sides of the dialogue between user and system.

5. Make sure you haven’t violated the syntax rules for robustness analysis.

4. Make sure that this review includes both nontechnical (customer, marketing team,
etc.) and technical folks (programmers).

3. Make sure your use cases are in the context of the object model and in the context
of the GUI.

2. Make sure your robustness diagrams (and the corresponding use case text) don’t
attempt to show the same level of detail that will be shown on the sequence diagrams
(i.e., don’t try to do detailed design yet).

1. Follow our “six easy steps” to a better preliminary design (see Chapter 6).

Let’s look at each of these top 10 items in more detail.

10. Use the Highlighter Test to Match the Use Case Text with the Diagram
Sometimes people think they should show only the basic course of action on a robustness
diagram, or that they should do a separate diagram for each alternate course. But it’s best to
show the entire use case (basic and all alternates) on a single robustness diagram.

If the diagram becomes too big (or if you find that the alternates have their own subalter-
nates), consider splitting up the use case.

CHAPTER 6 ■ PRELIMINARY DESIGN REVIEW 145

7745ch06final.qxd 12/14/06 11:25 AM Page 145

■Tip Many people like to use a different color for the alternates to make the diagram easier to follow.

A 59-cent highlighter proves to be an invaluable tool for verifying that your use case text
matches your diagram. Simply highlight a sentence of your use case, highlight the correspon-
ding section of your robustness diagram, and continue until all the text is highlighted. You
should also see the entire robustness diagram highlighted.

If you find a mismatch between the text and the diagram (and trust us, you will), then
you have more work to do.

9. Make Sure That All the Entities Appear Within the Updated Domain Model
Since object discovery is one of the primary purposes of robustness analysis, it makes little
sense to discover new objects on our robustness diagrams and not add them back into the
class model (which is evolving from the domain model).

The safest way to avoid forgetting to add them to the class model is to actually add the
new classes on the class model, stereotype them as entities, and then drag them onto the
robustness diagram.

8. Make Sure That You Can Trace Data Flow Between Entity Classes and Screens
Your use case very likely involves users specifying information by using the screens of the
system. This data needs to find its way into the entity classes, which hold the values entered
as attributes. Of course, this also works the other way: values from the entity classes will be
displayed on the screens.

One of your tasks before coding is to determine the set of attributes that each of your
classes needs. So, as you’re tracing data flow between screens and entity classes, populate
the class model with any missing attributes that are needed.

7. Don’t Forget the Alternate Courses, and Don’t Forget to Specify Their Behavior
You’re probably tired of hearing us say this by now, but we wouldn’t keep repeating it if it
wasn’t important. Forgetting about alternate courses (aka “Whoops, it crashed!”) is one of
the main failure modes in software development.

■Note Alternate courses are not necessarily error paths but can include infrequent/atypical usage paths.

For each alternate course, make sure that the system behavior in response to the con-
dition that triggers it is fully detailed. Identifying that an alternate course can happen is
necessary, but not sufficient to complete your use case. In addition to simply listing the
alternate courses, it’s critical that you detail the exact behavior (of the user and system) of
how the alternate course is handled.

Since alternate courses generally account for more than half the complexity of a piece
of software, it should be obvious why you need to specify the behavior for the alternates. If
you don’t, your classes will be missing all the operations that handle the alternate courses.

CHAPTER 6 ■ PRELIMINARY DESIGN REVIEW146

7745ch06final.qxd 12/14/06 11:25 AM Page 146

6. Make Sure Each Use Case Covers Both Sides of the User/System Dialogue
One of the most common errors we’ve seen among people learning to write use cases for
the first time is that they simply write down all the steps that the user follows and then
announce that they’ve completed their use cases (inevitably faster than anyone else in the
training class).

This flawed process ignores a fundamentally important point: in most cases, the goal
is to fully understand and specify the software behavior of the system. If you write only
the user actions and ignore the system behavior, you’re just not going to make very much
progress toward the goal of specifying the software behavior.

■Tip Always keep in mind that a use case is a dialogue between the user(s) and system, and you need to
write about both sides of that dialogue.

5. Make Sure You Haven’t Violated the Syntax Rules for Robustness Analysis
Refer back to Figures 5-8 and 5-9 for the full rules of robustness analysis. In particular, during
the review make sure that

• Actors are only linked to boundary objects.

• There’s no noun-noun communication between boundary/entity, boundary/boundary,
or entity/entity objects without controllers in between. The controllers represent the
system behavior, so it would be a very bad thing to leave them out.

The robustness analysis syntax rules might seem a little bit irksome at times, but bashing
your use case’s preliminary design into shape so that it fits these rules seriously prepares your
use case for detailed design. Coding should be a breeze if you get this stage right.

Think about it: if a use case is proving troublesome to turn it into a valid robustness dia-
gram, then turning it into a valid working design (and valid working, maintainable code)
will be ten times as troublesome! The robustness diagram provides a handy early warning
system that the use case text needs more work (i.e., is vague, ambiguous, incomplete, etc.).

As you saw in Chapter 5, automated tools support for ICONIX Process is continuing to
improve. Validating the robustness diagram syntax rules is now as easy as pulling down a menu.

■Tip As you’ll see later, you can automatically generate unit test stubs for each controller as well.

4. Include Both Nontechnical and Technical People in the Review
Your use cases after robustness analysis should be treated as “mini-contracts” between the
clients and the programmers. As such, they need to be understandable by the end users and
clients, but unambiguous enough to be clearly understood by the programmers. It’s during
PDR that you finalize those contracts.

CHAPTER 6 ■ PRELIMINARY DESIGN REVIEW 147

7745ch06final.qxd 12/14/06 11:25 AM Page 147

To put it another way, each use case must reach the magic abstraction level—not vague
and ambiguous, but not geek-speak—where everybody understands what the use case
means, very clearly. (What a concept!)

3. Make Sure Your Use Cases Are in the Context of Both the Object Model and the GUI
The magic abstraction level we just described is readily achieved by putting the use case in the
context of the object model and of the GUI. In practical terms, this means that you’ve named
your screens and your domain classes. Resolving name ambiguity in usage of domain objects
and screens solves a great many problems.

The use cases at this level also need to be in the context of the (evolving) technical architec-
ture of the system, but they shouldn’t cross the line into detailed design, because you’ll quickly
lose the attention of the nontechnical clients if they do. (Hint: If you notice all of the nontechni-
cal folks looking glassy-eyed in the review meeting, consider whether they might have entered
the state of hypnotic stupor while trying to follow a use case that discusses the details of object
instantiation via the factory pattern. Also check to see if somebody spiked the coffee.)

2. Don’t Drift into Detailed Design Territory
Remember that the robustness diagram represents an idealized, conceptual design, not the
“real software design.” In practical terms, this means that decisions related to allocating
behavior among classes should not be made on robustness diagrams. These decisions are
best deferred until you draw the sequence diagrams.

ICONIX Process takes a two-pass approach to get to detailed design. In the first pass,
you intentionally ignore “who’s doing what” and focus on identifying objects, naming
screens, and unambiguously describing behavior. Once you’ve done this correctly (and
you’ve verified it during the PDR), you’re ready to take on the behavior allocation problem
(i.e., how the methods are distributed among the classes) during detailed design.

1. Follow Our “Six Easy Steps” to a Better Preliminary Design
To achieve the purpose of the PDR (as described at the start of this chapter), it helps to carry
out some key checks on the preliminary design diagrams and the use case text. For each
robustness diagram that you’re reviewing2

• Make sure the diagram matches the use case text.

• Make sure the diagram follows the rules of robustness analysis.

• Check that the diagram focuses on the logical flow of the use case.

• Make sure the diagram shows all alternate courses of action for the use case.

• Watch out for “design-pattern-itis” in the diagram.

• Check that the diagram isn’t trying to be a detailed design.

We’ll illustrate these steps in the review conversation in the next section.

CHAPTER 6 ■ PRELIMINARY DESIGN REVIEW148

2. These steps are described in more detail in Chapter 6 of Applying Use Case Driven Object Modeling
with UML by Doug Rosenberg and Kendall Scott (Addison-Wesley, 2001).

7745ch06final.qxd 12/14/06 11:25 AM Page 148

Preliminary Design Review in Practice:
Internet Bookstore
In this section, we illustrate the theory from the first part of this chapter, using an example
from our Internet Bookstore project. The result is actually a continuation of the robustness
diagram we developed step by step in Chapter 5.

PDR for the “Write Customer Review” Robustness Diagram
For this example PDR session, we’ll follow the reviewer/analyst conversation as it unfolds.
We left the robustness diagram in Figure 5-15, so it’s worth flipping back to that version of the
diagram as you walk through this example session.

The Customer Review Object Isn’t a Container for the “Enter Review” Text
A common theme for the topics in this review is that the diagram didn’t go into sufficient
detail, or it skipped over vital details that were mentioned in the use case text.

Reviewer: Looking at the robustness diagram (see excerpt in Figure 6-1), I’d expect the
Customer Review object to be the container for the “enter Review” text that’s entered
on the screen, but it’s not connected.

Analyst: We could draw a line between the “Write Review page” boundary and the
Customer Review entity . . .

Reviewer: It’s tempting, but it would violate the rules of robustness analysis. Remember,
noun-noun communication is a major no-no.

■Note Such a strict and seemingly restrictive rule exists for a very good reason: if you’re drawing a line
between two nouns on the diagram, then there’s almost certainly some behavior (aka verbs) not being
accounted for.

Analyst: Come to think of it, I don’t think we’re showing the behavior for two user actions:
assigning a rating and typing in the review text.

CHAPTER 6 ■ PRELIMINARY DESIGN REVIEW 149

Figure 6-1. “enter Review” should be a controller

Customer

Write Review page Customer Review

enter Review
and click Send

7745ch06final.qxd 12/14/06 11:25 AM Page 149

Reviewer: We should add controllers to handle both of these behaviors and use them to
link “Write Review page” with the Customer Review entity. Problem solved! (The “click
Send” label also needs to move, but we’ll cover that in the next segment; Figure 6-2 shows
the updated excerpt.)

Label Positioning Makes for Ambiguous Paths
Fixing one problem sometimes leads to the identification of another. After taking a thoughtful
look at the two new controllers added in Figure 6-2, our reviewer spots another potential
source of trouble.

CHAPTER 6 ■ PRELIMINARY DESIGN REVIEW150

“BUT WE’RE MODELING WEB PAGE INTERACTIONS . . .”

A common reaction to this advice (showing the user inputting text or other data into the UI as a controller) is
that if it’s implemented in the form of a web page, then you’ll never actually write code to handle these
events—it’s all done in the browser.

The simple answer to this is that you’re not actually designing at this stage. What you’re primarily inter-
ested in with this diagram is showing everything from the use case text in picture form. Going to this level of
detail might seem like a drag at first, but it’s amazing how much hidden functionality gets uncovered this
way. These details would have otherwise been left uncovered until after the software had been designed and
coding had begun.

In extreme cases, the details might not have been discovered until after the software shipped, the user
did something unexpected, and the program crashed because the excruciating details hadn’t been properly
analyzed during robustness analysis. So, the lesson to learn from this is, if it’s in the use case text, put it
on the diagram!

Figure 6-2. Label text is “promoted” to be a controller, and a second controller is identified.

Customer
Write Review page Customer Review

Enter review text

Assign review
rating

click Send

7745ch06final.qxd 12/14/06 11:25 AM Page 150

Reviewer: In the robustness diagram (see excerpt in Figure 6-3), you’ve labeled the mes-
sage between the actor (Customer) and the “Write Review page” boundary object.

Analyst: Seems harmless to me. You need to know what action the Customer performed
on the boundary object.

Reviewer: Sure, but this is more to do with where the label goes. The problem is that if
you have multiple actions going into one boundary object, then it quickly becomes
ambiguous as to where each action goes after the boundary object.

Analyst: So because we’ve got three controllers coming out of “Write Review page,” we
don’t know which one is for the “click Send” action?

Reviewer: Exactly. It makes the diagram much clearer if, instead, you label the message
between the boundary object and the controller. If you put the user’s action (“click
Send”) there instead, then there’s no confusion about which controller handles which
user action. (Figure 6-4 shows the updated excerpt from the robustness diagram.)

CHAPTER 6 ■ PRELIMINARY DESIGN REVIEW 151

Figure 6-3. The Customer clicked Send . . . but which way next?

Customer Write Review page

Enter review text

Assign review
rating

DisplayConfirmation page

click Send

7745ch06final.qxd 12/14/06 11:25 AM Page 151

Display Controllers Need More Detailed Names
Sometimes when you’re adding controllers left, right, and center, it’s tempting to leave detail
out of the diagram. But this can result in ambiguity that comes back to bite you later, during
the detailed design. In the next example, the reviewer discovers that some detail has been sub-
tly left out of the diagram.

Reviewer: You’ve used a single boundary object (“Review Rejected page”) to show the
results of the two alternate-course validation controllers (“Is Review Rating in allowed
range?” and “Is Book Review length OK?”). However, each one has its own Display con-
troller. (See excerpt in Figure 6-5.)

Analyst: But I thought we’re meant to show separate Display controllers like that?

Reviewer: Absolutely. But they’re just a tad ambiguous. The problem is that a specific
message would be constructed to tell the user why the review was rejected, such as
“The review needs to be at least ten characters long, but yours contained only five
characters.”

Analyst: Let me guess, we’re not stating explicitly what gets displayed differently on the
“Review Rejected page” for each controller.

Reviewer: You’ve got it. To correct this, let’s rename each Display controller to something
more specific. (See Figure 6-6.)

CHAPTER 6 ■ PRELIMINARY DESIGN REVIEW152

Figure 6-4. Improved label positioning eliminates ambiguity in the diagram.

Customer Write Review page

Enter review text

Assign review
rating

DisplayConfirmation page

Customer
clicked Send

7745ch06final.qxd 12/14/06 11:25 AM Page 152

CHAPTER 6 ■ PRELIMINARY DESIGN REVIEW 153

Figure 6-5. Insufficient detail on what gets displayed to the user

Figure 6-6. Disambiguated Display controllers

7745ch06final.qxd 12/14/06 11:25 AM Page 153

The Use Case Text Is Missing Some Detail
During the PDR, you should be equally focused on the use case text as on the robustness
diagrams. In the final example from this review, the reviewer notices some missing detail in
the use case description.

Reviewer: OK, this is really starting to look like a diagram that you could easily produce
a detailed design from. Just one last thing, though. The diagram invokes another use case
called Moderate Customer Reviews. In the use case, it matches up with this text:

The system then displays a confirmation screen, and the review is sent to a Moderator,

ready to be added.

But the text is missing some of the details of what actually happens. At the moment, we’re
taking it as read that the newly submitted review will somehow find its way to the Moder-
ator, who will then check the Customer’s Review before it’s published on the site. As I
mentioned, the Moderator’s actions are handled by a separate use case, Moderate Cus-
tomer Reviews. But what we haven’t modeled (or described) is how the Review makes its
way to the second use case.

Analyst: We could update the use case text like this:

The system then displays a confirmation screen, and the Customer Review is queued

for moderation (this will be handled by the Moderate Customer Reviews use case).

Reviewer: It’s better, but don’t forget that we need to tie the use cases to the objects.
Simply saying that “the review is queued for moderation” doesn’t quite do that, as it
doesn’t provide any sort of link to the object that will track the incoming Customer
Reviews.

Analyst: (Pondering) “The object that will track the incoming Customer Reviews”? Hmm, it
sounds as if we’ve just identified a new domain object—an object that queues up the
incoming Customer Reviews.

Reviewer: Let’s call it “Pending Reviews Queue.”

Analyst: OK, so here’s the updated use case text (the updated text is shown in red):

The system then displays a confirmation screen and the Customer Review is added to
the Pending Reviews Queue for moderation (this will be handled by the Moderate

Customer Reviews use case).

Reviewer: This also suggests that the Book ID needs to be an attribute of the Customer
Review, which in turn suggests that Book should probably also be on the diagram some-
where. Now we can add our new Pending Reviews Queue object to the diagram.

Analyst: Wow, all that new detail discovered, just by tying the use case text more closely
with the model!

CHAPTER 6 ■ PRELIMINARY DESIGN REVIEW154

7745ch06final.qxd 12/14/06 11:25 AM Page 154

■Tip If you leave the behavior implied on the robustness diagram and in the use case, it never gets
done on the sequence diagram, and (if you’re allocating operations to classes by working through the use
cases) it just sort of falls through the cracks to be dealt with in coding-land. The more stuff that falls
through those cracks, the less useful the models are, and the less the team will “model like they mean it.”

The Finished “Write Customer Review” Robustness Diagram
Figure 6-7 shows the finished version of the robustness diagram. As you can see, it’s now
possible to read the use case on the left of the diagram and walk your way through the dia-
gram at the same time. (A common convention is to start the use case at the top-left of the
diagram and finish at the bottom-right, although this is by no means essential.) Nothing in
the use case has been assumed or left to chance, and the text is nicely tied to the domain
object model. We’ve done the groundwork, so this diagram is now something that we can
design from very easily.

Astute readers will have noticed that this diagram has now become what we commonly
call “very big.” In fact, it’s pretty much at the upper limit of use case size (remember the two-
paragraph rule from Chapter 3). If the use case was any longer, or the diagram any more
complex, we’d seriously think about splitting it into two or more smaller use cases (and hence,
two or more smaller robustness diagrams).

In Chapter 8, we’ll return to the Write Customer Review use case and show the next step:
drawing the sequence diagram.

CHAPTER 6 ■ PRELIMINARY DESIGN REVIEW 155

7745ch06final.qxd 12/14/06 11:25 AM Page 155

CHAPTER 6 ■ PRELIMINARY DESIGN REVIEW156

Figure 6-7. The completed, fully disambiguated robustness diagram

7745ch06final.qxd 12/14/06 11:25 AM Page 156

Summary
In this chapter, we covered the Preliminary Design Review (PDR) milestone. This step involves
making sure that the diagrams and the use case text match each other and that both are com-
plete and correctly represent the desired system behavior.

Once the PDR is complete, you’re ready to move on to the detailed design, which we
cover in Chapter 8. The technical architecture (TA) is also a vital step. The formulation of
the TA begins during robustness analysis, but it really kicks into high gear just prior to the
detailed design. We cover the TA in Chapter 7.

Figure 6-8 shows where we are (the milestone covered in this chapter is shown in red).

CHAPTER 6 ■ PRELIMINARY DESIGN REVIEW 157

7745ch06final.qxd 12/14/06 11:25 AM Page 157

CHAPTER 6 ■ PRELIMINARY DESIGN REVIEW158

Figure 6-8. Analysis and Preliminary Design

7745ch06final.qxd 12/14/06 11:25 AM Page 158

Technical Architecture

The purpose of technical architecture (TA) is to get an overall feel for the system that you’re
going to be developing. Will it be a web-based system? Or a rich-client system in VB .NET or
Java Swing? Does it need to use a specific application framework (e.g., a company-standard
framework)?

There’s no standard notation or format for documenting the TA; the depth and format of
the technical architecture—and the conventions for creating it—vary widely from company
to company, so we don’t dwell in this area for too long. In this chapter, we follow a practical
example of TA in action, for the Internet Bookstore.

■Note What we describe in this chapter isn’t by any means a “standard ICONIX method” for creating an
architecture, but it provides us with an opportunity to discuss the server-side framework (Spring Framework)
that we’ll use to design and build the Internet Bookstore example.

159

C H A P T E R 7

7745ch07final.qxd 12/13/06 8:37 PM Page 159

The 10,000-Foot View
You should start thinking seriously about TA during robustness analysis (see Chapter 5). TA
should be reflected to a degree on the robustness diagrams, but it must be finalized once
you’ve finished robustness analysis, and it really needs to be nailed down before you begin
the detailed design (see Chapter 8).

■Note Although TA precedes robustness analysis in the process, we’ve left the discussion of TA until now
so as not to introduce too many different topics all at once.

What Is Technical Architecture?
Technical architecture (also referred to as system architecture and software architecture) gen-
erally describes the system you’re intending to build in terms of structure. The architecture is
built to satisfy the business and service-level requirements of the system you’re going to build.
The architecture includes (but isn’t limited to) the system topology (the server nodes, physi-
cal location on the network, choice of application server[s], etc.).

A good TA will be based on some thorough analysis of the “numbers” involved—that is,
the number of people who will be using the system at any time, whether there are peak usage
hours (and what those peaks are likely to be), the number of transactions per minute, failover
criteria, and so on. These numbers will play a huge role in deciding such factors as what sort
of application server (or web server) should be used, how many licenses to buy, and which
server- and client-side technologies the project should use. These are not decisions for the
fainthearted!

Documented architectures range in depth and formality from several volumes of detailed
specs (with every “i” dotted and “t” crossed) to a bunch of e-mails and Visio diagrams. The
ideal level lies somewhere between the two extremes, though of course the needs will vary
depending on the nature and size of the project.

What Are the Duties of a Technical Architect?
In addition to simply creating the right architecture to solve the problem posed by the require-
ments, the architect must also document the architecture in an expressive and unambiguous
written format, and make sure the latest version is available to everyone on the project. The
technical architect must also truly believe in the TA he or she has created, and be prepared to
evangelize it and communicate its intent to all the project stakeholders. This is an important
point, because an architect who doesn’t follow the courage of his or her convictions will end
up with a disjointed system, where individual teams or team members head off in different
directions and do slightly different things. For example, one team will use WebWork for their
presentation tier, another team will use Velocity, another JSP, and so on. Nothing will quite fit
together properly, and it will never quite be clear whether the requirements have been fully
met. If one part of the system meets the failover requirements, but another part has been
designed slightly differently, has the requirement been met?

160 CHAPTER 7 ■ TECHNICAL ARCHITECTURE

7745ch07final.qxd 12/13/06 8:37 PM Page 160

This means that the architect needs leadership skills. The architect must be prepared to
resolve disputes and help the team to reach a compromise if needed. There may also be team
leaders involved, and a project manager, and so on, but ultimately it’s the architect who binds
the whole thing together and sees the project through to completion. (And don’t get us started
on nontechnical architects who write a big, quasi-academic architecture document and then
swan off onto a different project!)

■Tip A list of the duties of a chief software architect can be found at the Carnegie Mellon Software Engi-
neering Institute website: www.sei.cmu.edu/activities/architecture/arch_duties.html.

Technical Architecture in Theory
In this section, we take a brief look at what TA is. After that, we’ll dive into the TA for the
Internet Bookstore project.

Top 10 Technical Architecture Guidelines
The principles discussed in this chapter can be summed up as a list of guidelines. Our top 10
list follows.

10. Separate functional, data, and system architecture.

Architectures generally cover three broad areas:

• The deployment model (network and application servers, and how they fit
together; system topology; web browsers supported; etc.)

• The package/component model (separation of concerns to different strata/
components)

• The data model

9. Understand why you’re creating an architecture.

Before you even think about the system’s architecture, it’s important to understand
precisely why an architecture is even needed.

8. Base the architecture objectively on the requirements.

It’s tempting to base the architecture on the latest technology or whatever happens to
be the “flavor of the month,” rather than listening to what the requirements are trying
to tell you and making an objective decision based on what’s needed. Budget consider-
ations are also important. If you decide that, technically speaking, the best application
server for the project is “BankBreaker 8.0 Service Pack 12,” is the budget available to
handle this? Are there cheaper (and more robust) alternatives that match the require-
ments just as well?

CHAPTER 7 ■ TECHNICAL ARCHITECTURE 161

7745ch07final.qxd 12/13/06 8:37 PM Page 161

7. Consider factors such as scalability, security, and availability.

6. Consider internationalization and localization.

5. Pose hard questions to all the people involved.

Questions regarding such issues as security, auditing, portability, and scalability need
to be answered now, not six months into the project.

4. If you don’t get the answers you need, ask again—and keep on asking!

3. Consider testability.

Our co-author on Agile Development with ICONIX Process (Apress, 2005), Mark Collins-
Cope, described a trading system he’d been working on. According to the spec, orders
should time out after between 1 and 30 days. To test this, the team couldn’t really wait
around (a tad boring), so they built functionality to enable the UI to set the date and
time, specifically for testing. This is just one example of how testing must be consid-
ered even in the early stages when you’re thinking about the architecture.

2. Explore which external systems you’ll need to interface with.

Scour the requirements for anything relating to synchronous or asynchronous external
system interaction. For synchronous systems, think about external system availability.
Is it a requirement that your system be able to operate without the other system?

1. Have the courage to believe that your architecture is right and the strength to push its
adoption throughout the project.

Building software is a complex process. It’s all too easy to end up with a big plate of
spaghetti, tangled and amorphous, rather than an elegant haute cuisine plate of pris-
tine perfection (see the next section on layering for the “lasagna model”). You would
think that those involved would pull together to achieve the latter instead of the for-
mer. But people are people, and if they’re simply left to it, each individual or group will
form its own “micro-project” with its own direction, set of goals, and set of standards—
even its own “mini-architecture.” The technical architect (actually, the chief architect)
must communicate his or her documented architecture and make sure everyone
understands it, not just at the beginning of the project but throughout.

Architectural Layering

■Note Our thanks to Mark Collins-Cope, our co-author on Agile Development with ICONIX Process (Apress,
2005), for providing most of this section’s content.

Architectural layering is a visual metaphor whereby the software that makes up a system is
divided into bands (layers) in an architectural diagram. Many such diagrams have been used,
and by way of introduction we show two of these.

CHAPTER 7 ■ TECHNICAL ARCHITECTURE162

7745ch07final.qxd 12/13/06 8:37 PM Page 162

Figure 7-1 presents a view of a strictly layered architecture.

Figure 7-2 shows a type of ad hoc architecture diagram that is not uncommon in modern
technical documentation.

Some common themes run through these diagrams:

• It’s possible to identify a number of layers in the construction of pieces of software.

• Some layers sit on top of others (although there may be some question as to what one
layer being above another actually means).

• We may broadly categorize layers as being either horizontal (applicable across many, if
not all, business domains) or vertical (applicable across a subset or only one domain).

CHAPTER 7 ■ TECHNICAL ARCHITECTURE 163

Figure 7-1. Layered architecture example

Client Program

Network Layer

SQL Layer

DBMS Layer

Figure 7-2. Typical ad hoc architectural layering diagram

Business Objects

Application Framework

Platform

Application 1 Application 2

7745ch07final.qxd 12/13/06 8:37 PM Page 163

Turning to UML class diagrams (a younger notation), we notice that common conven-
tion usually places subclasses, which are more specialized, below their parents, which are
more general purpose (see Figure 7-3). This convention is the exact opposite of the architec-
tural convention “highest is most specific” and the cause of an undoubtedly confusing visual
metaphor mismatch. This mismatch is discussed further in the article “The Topsy Turvy
World of UML.”1

Technical Architecture in Practice:
Internet Bookstore
In this section, we show an example of a TA for the Internet Bookstore. This project uses
Spring Framework, so we’ll also use this opportunity to introduce the basic concepts behind
Spring. We describe these concepts in more detail during detailed design (Chapter 8), during
CDR (Chapter 9), and when we begin coding (Chapter 10).

About Spring Framework
During TA, one of the really big design decisions is (for web-based systems) which web frame-
work to use, if any, and of course which programming language to code the solution in. Even
the basic assumption that this is to be a web-based system shouldn’t be taken for granted. Of
course, in many projects, this decision will already have been made at a sales or management
level before the software designers get involved, but (in theory at least) it should be an entirely
design-driven decision, led by the technical needs as uncovered by the requirements. (Oh, for
an ideal world . . .)

CHAPTER 7 ■ TECHNICAL ARCHITECTURE164

Figure 7-3. Class diagrams and architectural views

1. Hubert Matthews and Mark Collins-Cope, “The Topsy Turvy World of UML,” ObjectiveView Issue 4,
available at www.softwarereality.com/ObjectiveView.jsp, 2000.

7745ch07final.qxd 12/13/06 8:37 PM Page 164

So, we know that we need to design a web-based system from our use cases. For this
example, we’ll implement the Internet Bookstore using Java, and we’ll use Spring Framework,2

a popular lightweight J2EE container. More specifically, we’ll use the part of Spring Framework
called Spring Web MVC. As the name suggests, this part of Spring allows you to create a web
application using a Model-View-Controller (MVC) architecture. For the front-end (the “View”
part of the MVC), we’ll use JavaServer Pages (JSP),3 augmented with Sun’s standard JSP Tag
Library (JSTL).4 For the back-end data store connected to our model, we’ll use Spring’s JDBC
support to implement our Data Access Objects (DAOs).

Because this is a “quick ’n easy” demo application, we’ll use HSQL5 for the database.
HSQL is a “personal” database, not suited for large-scale multiuser web applications, but it’s
certainly well suited for quick and painless prototype development work.

■Tip HSQL includes an in-memory persistence mode, which (because it doesn’t access the hard disk)
is very fast and ideal for unit testing.

We’ll also show how to use EA to generate Spring-ready Java code from the domain
objects and controllers in our UML model.

Although some familiarity with Spring Framework will help you to follow the Internet
Bookstore example, it isn’t essential. In fact, one of the qualities of Spring is that it allows you
to program using so-called Plain Old Java Objects (or POJOs), which have absolutely no
dependency on the container framework. POJOs are just straightforward JavaBeans with the
usual “getters and setters.” In Chapter 9, we show how to generate these directly from your
static model. Using Spring, dependencies between JavaBeans can be set up by wiring the
beans together using simple XML files.

We’ll describe more about Spring Framework (or at least the parts of it that we need) as
we go along. We’ll also return to it when we create the detailed design in Chapter 9 and when
we begin programming from the detailed design in Chapter 10. The next section introduces
the basic concepts underlying Spring.

Anatomy of Spring Framework
To follow along with the Internet Bookstore example, it isn’t essential for you to know how
Spring works. However, this section should help to explain why we’re designing and coding
things in the way that we are. Although this book isn’t really about Spring, you’ll gain a good
understanding of Spring and the way it’s used for building web applications using JSP, JSTL,
and JDBC.

CHAPTER 7 ■ TECHNICAL ARCHITECTURE 165

2. See www.springframework.org.

3. See http://java.sun.com/products/jsp.

4. See http://java.sun.com/products/jsp/jstl.

5. See http://hsqldb.sourceforge.net.

7745ch07final.qxd 12/13/06 8:37 PM Page 165

What Exactly Is Spring Framework?
Spring Framework is many things. It’s generally viewed as a lightweight J2EE application
framework, although it isn’t necessarily limited to J2EE. In fact it also has a rich-client sub-
project (Spring Rich Client), which makes use of its elegant design to create Java Swing
client-side applications. However, Spring is mostly used on the server.

The definition is further complicated because Spring allows different frameworks to be
“plugged in” to handle object-relational mapping (ORM), views/templating, and so forth.
On the ORM side of things, Spring has support for JDBC, Hibernate, Java Data Objects (JDO),
and iBATIS. On the view side, Spring has support for a number of templating/web content
solutions including JSP, Velocity, and Struts.

Spring’s JDBC support is particularly nice because it provides you with “ultimate” control
over how your objects are persisted to (and read from) the database, while eliminating the
swathes of repetitive boilerplate code that JDBC-based programs normally suffer from.

To make use of Spring’s J2EE features, you need to run it inside a J2EE server. At the very
least, to use its web MVC features, you need to run it in a Java servlet/JSP container such as
Tomcat or Resin. For the Internet Bookstore we’ll use Tomcat.6

In the next few sections, we take a quick look at some of what Spring Framework has to
offer, with particular emphasis on how we’ll use it for the Internet Bookstore.

Inversion of Control/Dependency Injection
The most compelling aspect of Spring is its use of the Inversion of Control (IoC) design pat-
tern. In short, IoC allows a class to be written as a “pure” JavaBean with its own properties, but
without any dependencies on the framework that it’s running in.

Compare this with EJB, for example, where an entity bean must implement the
EntityBean interface, and therefore must include methods such as ejbActivate() and
ejbRemove(), and must have a matching remote interface which extends EJBObject, and so
on. As a result, EJBs are tightly coupled with the server technology. An EJB can be nothing but
an EJB—that’s no life for a young Java class to look forward to. To top it all, if the entity bean
needs to access a resource (such as a database connection or another entity bean), it must
take it upon itself to go looking for the resource. This often results in repetitive, brittle code
in which semantics leak between classes, and (as the program increases in size) it’s increas-
ingly difficult to make changes or test individual functions in isolation.

Using the IoC design pattern, objects (or “beans”) don’t actively go looking for data.
Instead, dependent objects are handed to the bean via the framework. It’s best to illustrate this
idea with a quick example, so here goes.

■Note You should find it useful to get an idea of how we’ll be using Spring’s IoC mechanism in our design
to bind the classes together. See the section “A (Very) Brief Example of IoC” in Appendix B.

CHAPTER 7 ■ TECHNICAL ARCHITECTURE166

6. See http://jakarta.apache.org/tomcat.

7745ch07final.qxd 12/13/06 8:37 PM Page 166

Spring Web MVC
Spring’s web framework centers around a Java servlet called DispatcherServlet. As the name
suggests, this servlet dispatches requests to controllers and provides some additional func-
tionality that web applications can make good use of.

So as you might expect, the Internet Bookstore’s design will be based around Spring’s
DispatcherServlet. When a request is received from the customer’s web browser, it is first
“picked up” by the web server (in our case, Tomcat). Tomcat passes the request to
DispatcherServlet, which then hands the request on to one of the Internet Bookstore’s
controller classes.

The “MVC” part of Spring Web MVC refers to the Model-View-Controller design pattern.
This is a well-known design pattern that fits in very nicely with the boundary, entity, and con-
troller classes used by ICONIX Process, and it is almost a ubiquitous design pattern for both
rich-client and web-based thin client GUI applications (i.e., it isn’t limited to Spring). The
premise behind MVC is that the application is divided into three distinct areas:

• Model: This is an object representation of the data, usually read in from a database.
Sitting “behind” the model is all the detailed plumbing code for mapping objects to
tables, rows, columns, and relationships in the database.

• View: This is the boundary between the computer and the user. In a web application,
the view typically refers to both the web page and the template (e.g., JSP or Velocity file)
that creates the web page.

• Controller: Controllers are the “glue” between the view and the model. When a request
is received, the controller fetches (or updates) the data from the model, decides which
view to show the user, and hands the requisite data to the view. Typically an MVC appli-
cation has lots of fine-grained controllers (using ICONIX Process, these are mapped
directly from the controllers on the robustness diagrams). The controllers might actu-
ally contain both application logic and business logic; in a highly structured design,
these may be separated into different layers.

■Note If you design your domain logic into separate layers, be careful not to fall into the trap of turning
your domain classes into “data-only” containers without any behavior of their own. During the development
of the Internet Bookstore example over the next few chapters, we demonstrate what can happen if your
domain classes become data-only containers, and we discuss ways of avoiding this trap.

One of Spring’s great strengths is the way in which it separates the view from the rest of
the MVC framework. Essentially, this means that you can choose which view technology you
want to use (e.g., Tiles, Velocity, XSLT, and even Acrobat or Excel files).

For the Internet Bookstore, the view will be handled by JSP coupled with JSTL. In the next
section, we look at Spring’s support for JSP.

CHAPTER 7 ■ TECHNICAL ARCHITECTURE 167

7745ch07final.qxd 12/13/06 8:37 PM Page 167

Controllers
A controller is an intrinsic part of the MVC design pattern. Controllers are where the applica-
tion processing logic goes. In Spring, a Controller object interprets user input and transforms
the result into a model that will be shown to the user in the view.

■Note Controllers and controllers: As Spring makes use of Controller classes, this might cause
confusion when we’re also talking about the controllers on our robustness diagrams. As luck would have
it, Spring Controller classes are almost always mapped directly from controllers on the robustness
diagrams. Where we need to distinguish between the two, we’ll refer to them as Spring Controllers
(capital “C”) and UML controllers (lowercase “c”).

To carry data between the view and the controller, Spring uses Command objects, so we’ll
introduce those next. See Appendix B for more details about Spring Controllers.

Command Objects
You’ll see much discussion in the next few chapters about Command objects, especially when
we get to the design review stage.

In a web application, a Command object contains data that has been read in from the
browser’s request parameters. For example, a page that handles a user login form might have
a Command object called UserLoginCommand with two properties, username and password. The
HTML login form would, in turn, have two matching field names called, as you might expect,
username and password. The UserLoginCommand would be passed into a
UserLoginFormController to process the form login and to determine which page the user
should be presented with next.

In Spring, Command objects don’t have to implement a special interface or extend a “Spring-
only” superclass. Instead, any old POJO will do, as long as its property names match up with
the names used in the request parameters.

■Tip Though you may not find this tip in the Spring literature, we’ve found that after putting all the work
into creating a domain model, creating additional, separate Command classes is quite counterintuitive. The
Command classes often end up being thin wrappers around your domain classes, which seems like rather
a waste to us. Instead, try to use your domain classes where you would normally create an additional
Command class. We show an example of this in the next chapter, with the CustomerReview domain class.

Views
The view is the JSP page that will generate the HTML that the user sees. Controllers in Spring
generally return a ModelAndView object, which tells Spring what view to send back to the
browser and what model data to populate it with.

CHAPTER 7 ■ TECHNICAL ARCHITECTURE168

7745ch07final.qxd 12/13/06 8:37 PM Page 168

■Note We’ll explain this mechanism in more detail when we start coding the Internet Bookstore in
Chapter 10. Also see Appendix B for more about creating and configuring JSP views using Spring. For
now, we’re just introducing what you’ll need in order to draw the sequence diagrams in the next chapter.

DAO and JDBC Support
One of the reasons we chose Spring for the Internet Bookstore example is that it allows you
to create a persistent object model using straightforward JavaBeans, with simple get and set
methods for each property. These JavaBeans are our domain classes; there is (for the most
part) a direct mapping between these and the classes in the domain model.

Spring also provides excellent DAO support. It allows you to define DAOs as simple inter-
faces (with methods such as findBooksByTitle()). At runtime, these DAOs are mapped onto
concrete classes that utilize the object persistence technology of your choice (e.g., JDBC, JDO,
or Hibernate).

■Note See Appendix B for more details about Spring’s JDBC support and how we’ve used it for the
Internet Bookstore example.

Is a DAO a Collection?
When you’re domain modeling, it’s useful to include a Collection object to represent many
instances of the same domain class. For example, a Book domain class might be associated
with a BookCollection. The BookCollection is analogous to a database table, whereas the
Book is analogous to a row in the table.

Often this representation carries over perfectly well into the detailed static model. How-
ever, on other occasions, the analogy might not quite fit the implementation and design
details. For example, with DAOs, a DAO class is really a source of Collections (where a
Collection in this case is actually derived from the java.util.Collection interface, meaning
that it’s a cluster of objects). In other words, the DAO isn’t a Collection itself, but it’s a source
of Collections. The DAO will return different Collection objects (collections of Books) of dif-
ferent sizes and containing different subsets of Books depending on the DAO method called.

Even in this case, it’s useful when at the domain modeling stage to think in terms of Book
and BookCollection. Figure 7-5 shows the transition from the initial, analysis-level domain
model to the implementation-focused static model.

CHAPTER 7 ■ TECHNICAL ARCHITECTURE 169

7745ch07final.qxd 12/13/06 8:37 PM Page 169

CHAPTER 7 ■ TECHNICAL ARCHITECTURE170

ALL IN A DAO’S WORK

A Data Access Object (DAO) provides an abstraction from the underlying database. A DAO class includes
“finder” methods that access the database and return instances of domain classes.

DAOs aren’t specific to Spring; they’re found in many other frameworks and languages. For example,
they’re common in the Visual Basic and VB .NET worlds.

It’s useful to think of a DAO as being the database table and a domain object as being a row in the table
(see Figure 7-4). Note that the mapping between the DAO and the table isn’t necessarily 1:1 (although it
often is). For example, if DAO A uses Table A, which in turn contains a reference to Table B, but no other DAOs
use Table B, then it might make sense simply to access Table B from DAO A. However, most of the time it’s
useful to think of a DAO as being directly analogous to a database table. See Figure 7-5 for an example of
a group of related domain objects transitioning into a set of classes in the detailed design.

Figure 7-4. A domain object is to a DAO as a row is to a table.

DAO

+ findById() : Object
+ findByCategory() : Collection

Domain
Object

Table

«column» id:
«column» category:

row

0..*

read data
from...

0..*

7745ch07final.qxd 12/13/06 8:37 PM Page 170

Spring AOP
Aspect-oriented programming (AOP) is turning out to be an interesting (if controversial)
extension to object-oriented programming (OOP). AOP allows you to define cross-cutting
concerns through your code (e.g., to precede all methods starting with “write” with some code
that first authenticates the user). AOP is typically used for logging, user authorization and
authentication, and transactions.

CHAPTER 7 ■ TECHNICAL ARCHITECTURE 171

Figure 7-5. Transition from domain model to static model

7745ch07final.qxd 12/13/06 8:37 PM Page 171

AOP is controversial because some people feel that it provides the programmer with too
much power to create impossible-to-debug code; it’s potentially a return to the spaghetti-code
wild-west days of the GOTO statement. Of course, in the right hands, AOP can be an extremely
powerful and useful tool that can help to reduce the number of lines of code.

Spring provides its own AOP solution, making it particularly useful for all three typical
uses we just mentioned. In our Internet Bookstore example, we don’t actually make use of AOP
(it was tempting, but we wanted to keep the example under control!), so if you’re unfamiliar
with AOP then don’t panic. We just mention it here because we believe that in the near future,
AOP might become much more important for use case–driven development.

Spring Framework Summary
In this section, we described the features of Spring Framework that are relevant for designing
the Internet Bookstore. We didn’t want the sequence diagrams to be generic or high-level dia-
grams that don’t truly reflect the implementation details. For this reason, we’ve had to delve
some way into the underlying framework that we’ll be building on.

Note that Spring Framework is a huge product. It includes lots of features not covered
here, as we’ve mainly just covered the areas relevant to the Internet Bookstore example.
For more about Spring, check out their spring-reference.pdf document (available from
www.springframework.org/documentation). We can also recommend the book Spring Live
by Matt Raible (SourceBeat, 2005).7

Also note that Spring isn’t the only “lightweight” framework of its kind, although it cer-
tainly seems to be the most popular of the current new breed of J2EE frameworks. It also
represents a trend in the J2EE world—a change in direction away from heavyweight EJBs
towards IoC-based frameworks, which are generally much easier to develop with. As such,
the principles we describe in the Internet Bookstore example should be applicable to most
other Java or .NET-based web frameworks.

The Internet Bookstore Architecture
Now that we know which language and platform we’re targeting, let’s briefly map out our
architecture. We’ll need this so that our sequence diagrams make sense when we draw them
in the next chapter.

Layered Architecture
Let’s start by attempting to separate the Internet Bookstore architecture into different layers.
Figure 7-6 shows the first attempt. Note that it’s an ad hoc “lines and boxes” diagram, not fol-
lowing an official notation.

CHAPTER 7 ■ TECHNICAL ARCHITECTURE172

7. Available in traditional pulped-tree format or as an e-book subscription from www.sourcebeat.com.

7745ch07final.qxd 12/13/06 8:37 PM Page 172

It’s a start, but Figure 7-6 raises a few issues:

• The diagram appears to be mixing two aspects of architecture: the deployment model
and the package/component model. We should separate these out into two diagrams.

• Tomcat runs on the application server (middle tier), not the presentation layer. How-
ever, what the diagram is attempting to show is that, as this is an MVC architecture,
we’re using JSP to create the presentation layer (the “view”). The reason for the mix-up
is again because we’re attempting to show two separate things in the same diagram.

CHAPTER 7 ■ TECHNICAL ARCHITECTURE 173

Figure 7-6. Internet Bookstore architecture

HSQLDB
Database

Data Access

DAOs
(Interfaces)

Domain Model
(Beans/POJOs)

Application
Logic

Input
Validators

Presentation
Layer

Tomcat (Web/JSP Server)

Bookstore
JSPs

Bookstore
Controllers

JDBC DAO
Implementations

Spring
Dispatcher
Servlet

7745ch07final.qxd 12/13/06 8:37 PM Page 173

• Spring’s DispatcherServlet almost certainly should be on the application server
middle tier; the presentation tier should be the web browser. Again, this comes back
to the issue of what the diagram is attempting to show. What question is the diagram
attempting to answer? Is it a) What is the deployment architecture of the Internet
Bookstore? or b) What are the components that make up the Internet Bookstore?

• It isn’t clear from the diagram what the input validators are doing. You’ll know from the
previous section that these are an artifact of Spring Framework, which requires us to
separate out the validation code into separate classes.

• It isn’t clear what the arrows represent. They actually represent dependencies so, for
example, the Bookstore Controllers use (or “depend on”) the Data Access Objects
(DAOs).

Let’s take another attempt and separate the diagram into two separate diagrams (see
Figures 7-7 and 7-8).

CHAPTER 7 ■ TECHNICAL ARCHITECTURE174

Figure 7-7. Internet Bookstore package/component architecture

Model

DAOs
(Interfaces)

Controllers

View
Spring
Dispatcher
Servlet

Bookstore
JSPs

Bookstore
Controllers

JDBC DAO
Implementations

Arrows show dependencies between components.

Domain Model
(Beans/POJOs)

Input
Validators

7745ch07final.qxd 12/13/06 8:37 PM Page 174

In Figure 7-7, we’ve removed the data layer entirely, as this is more relevant to the deploy-
ment diagram. We’ve also renamed each of the layers, to make it more obvious that this is a
classically mapped-out MVC architecture. While this move wasn’t essential, it always helps to
utilize well-known terminology to make the architecture more expressive. The people who
need to refer to this diagram will (we would hope) already know what MVC is all about, so we
can use that to our advantage.

■Exercise Later in this book, during the review stages, you’ll find that we have issues with domain
classes that contain no behavior, just data. The root of the problem can be seen in Figure 7-7. What should
have changed here, at the architectural level, to encourage a more “behavior-rich” set of domain classes?
(Check the code review for the Write Customer Review use case in Chapter 11 for the answer.)

It was debatable whether Spring’s DispatcherServlet should remain in the view layer.
It isn’t strictly speaking the view, because it handles incoming requests from the web browser
and then delegates to the JSP to create the actual view. It’s more of a request/response router,
or go-between. From that perspective, it probably doesn’t even need to be on this diagram at
all, except that it does help to show visually where in the component/layer hierarchy the
Spring Web component is involved.

■Caution If you’re unsure whether something belongs on one diagram or another, don’t dwell on it, just
put it somewhere and move on. Teams often get stuck for days on these sorts of fine details. But trust us,
99% of the time, it just doesn’t matter. Will it affect the eventual design? Probably not. Getting stuck on such
issues typifies analysis paralysis, which we introduced in the Introduction and which we spend a large part
of this book describing how to avoid. For more about making your models minimal yet sufficient, see this
book’s companion volume, Agile Development with ICONIX Process (Apress, 2005).

The controller layer contains the “guts” of the Internet Bookstore application. It’s respon-
sible for validating and processing the user’s input (via browser requests and form
submissions) and deciding which page should be sent back to the user next.

The data access layer provides a façade over the database (or whatever the persistence
mechanism may be). The DAOs are “clean” interfaces, designed to hide away the details of the
code behind them. A DAO is roughly equivalent to an EJB Home, in that it’s used to find beans
(domain objects) and persist changes.

Figure 7-8 shows the deployment model, using a nonstandard notation so as to model the
layered architecture.

CHAPTER 7 ■ TECHNICAL ARCHITECTURE 175

7745ch07final.qxd 12/13/06 8:37 PM Page 175

We could also show this using a “proper” UML deployment diagram—see Figure 7-9.8

The result of this layered approach is that the domain classes have absolutely no depend-
encies on the database being used. Even the DAO interfaces can remain unchanged if we swap
in a different database. In fact, each layer is only dependent on the layer directly beneath it.

The interaction with the user’s web browser is handled by the web server (Tomcat), which
contains the DispatcherServlet and the JSPs for the Internet Bookstore. (As you’ll see later, the
Internet Bookstore page URLs don’t end in .jsp, though, because the user doesn’t request the
JSP pages directly. Instead, a suitable JSP is resolved by the Internet Bookstore Controllers and
handed back to the DispatcherServlet, which then invokes the JSP and sends the resultant
HTML page back to the browser.)

This is, of course, a very simple architecture, because we have only one application server
(Tomcat), which is also our web server. For persistence, our database is HSQLDB (often
referred to for historical reasons as HSQL).

CHAPTER 7 ■ TECHNICAL ARCHITECTURE176

Figure 7-8. Internet Bookstore deployment architecture using nonstandard notation

Web/
Application
Server

Spring
Dispatcher Servlet

Bookstore Controllers

Web BrowserPresentation
Layer

Bookstore JSPs

Data Access Components

HSQLDB
Database

8. We show another example of a deployment diagram in Appendix B, in Figure B-13.

7745ch07final.qxd 12/13/06 8:37 PM Page 176

CHAPTER 7 ■ TECHNICAL ARCHITECTURE 177

Figure 7-9. Internet Bookstore deployment architecture using a UML deployment diagram

Presentation Layer

Web/Application Server

Database

Web Browser

Spring Dispatcher
Servlet

Bookstore JSPs

Bookstore Controllers

Data Access Components

HSQLDB

7745ch07final.qxd 12/13/06 8:37 PM Page 177

Flow of Events
Figure 7-10 shows, at a broad level, what happens to a browser request when it “hits” the web
server.

Let’s walk through the sequence of events shown in Figure 7-10. First, the user requests
a page from the web server (in our development example this is Tomcat, but it could be any
JSP-compliant web server). Assume the request’s URL is something like this:

http://localhost/bookstore/bookDetails.jsp?bookid=101

The “bookstore” part of the URL tells Tomcat that this is the Bookstore web application,
so without further ado, the incoming request is handed to the Bookstore, which is configured
to use Spring’s DispatcherServlet. This servlet uses the Internet Bookstore application’s XML
config to determine which controller to map the request to. Spring also dissects the request
and creates “command” objects to represent any parameters that were part of the request (in
our example, “bookid” would go into a property in a Command object). The Command object is also
handed to the controller.

The Controller that receives the request hands the book ID value to the appropriate
DAO, which finds the book in the database and returns a Book domain object (a simple Java-
Bean). The Controller returns a ModelAndView object, which—as the name suggests—gives
Spring two things: the view (JSP page) to use and the objects (model) to populate the JSP page
with. This JSP page is then processed, and the resultant HTML page is handed back to the
browser.

CHAPTER 7 ■ TECHNICAL ARCHITECTURE178

Figure 7-10. Life cycle of a typical Internet Bookstore browser request

Browser Dispatcher
Servlet

Bookstore
Controller

DAOs

Spring/
JDBC

Database
(HSQL)

Bookstore
Application

Context
(XML Config)

JSP Page
(View)

Model
(JavaBeans)

build response
using a...

contact MotherShip
for instructions

send
request

map request
to a...

return
ModelAndView

use

query

create

7745ch07final.qxd 12/13/06 8:37 PM Page 178

If that seems like a lot of stuff to remember, don’t worry. To follow along with the sequence
diagrams, the key parts that you’ll need to know are as follows:

1. When a browser request is received, Spring dissects the request, populates Command
objects (similar to Struts actions) to hold the request parameters, and hands the
request to a Controller object.

2. The Controller object does whatever it wants to process the request and returns
a ModelAndView object that tells Spring which JSP page to process and send back to
the browser.

3. The domain objects are stored in JavaBeans (or POJOs).

4. The Controller objects use DAOs to fetch and save domain objects to and from the
database.

Testability
One of the advantages of the IoC architecture is that individual classes are very easy to test.
Each class can be instantiated individually and tested outside of the application server. For
example, you could write some JUnit tests that run inside your IDE or that are executed by an
automated Ant build script. Being able to test your application logic without deploying to an
application server and restarting the whole framework is a major time-saver.

Because we’re keeping all of the application logic code out of the view, the JSPs them-
selves should be very straightforward. So testing of the JSPs should mostly be a case of “visual
testing”—stepping manually through the use cases’ basic and alternate courses. As long as
we’ve done our job well, once created, the JSPs shouldn’t need to change very much. If you
desperately want to unit-test the view components, though, web testing frameworks such as
HttpUnit are available.

Note, however, that testability isn’t just about unit testing; it’s also about testing for non-
functional requirements such as scalability and failover.

Web Security
To keep the example under control, we’re just going to use “pretend” user authentication/
authorization. We’ll use a class called CustomerSession that gets stored in the servlet’s
HttpSession attributes (i.e., each customer/user gets his or her own CustomerSession object).
CustomerSession consists simply of a “get” method to get the customer’s name and a static
factory method to get new CustomerSessions.

Spring Framework doesn’t actually offer its own security framework. However, a number
of open-source security frameworks exist. One that’s particularly worth a look is Acegi Security
(www.acegisecurity.org), which is designed specifically for Spring applications.

Security frameworks like Acegi handle a lot of the user security details for you. The deci-
sion of how security is handled should be made as early as possible in the project (ideally
before the sequence diagrams are drawn), as it’s one of those fundamental details that affects
everything. You definitely don’t want security to be “bolted on” to a project late in the day.

CHAPTER 7 ■ TECHNICAL ARCHITECTURE 179

7745ch07final.qxd 12/13/06 8:37 PM Page 179

Top 10 Technical Architecture Errors
(the “Don’ts”)
The following list could be thought of as the flip side of the top 10 “do’s” that we described at
the start of this chapter. These are some common errors that we’ve seen in real projects.

10. Picking an architecture without considering the cost of the hardware or new hardware.

9. Using the old legacy architecture because “that’s the way it’s always been done.”

8. Not considering scalability.

Think about the numbers. How many users will typically be using the system at any
time? Are there periods of peak usage? How many transactions per minute must the
system handle? These are all questions that affect the TA (and therefore pretty much
the whole project), so they need to be thought through and answered up-front.

7. Not considering security.

By “security,” we mean authentication and authorization of the people using the sys-
tem (the users). All too often, security is bolted on to a system near the end of its life
cycle. This typically results in a system riddled with security flaws.

AOP is promising to make it a little easier to apply security to projects where it wasn’t
initially a first-rate concern. But getting it right first time is still the best way. The secu-
rity should run through a system like the writing in a stick of Brighton rock.9 It’s the
only way to make sure your product is watertight.

6. Picking a new technology (language, platform, framework) because that’s the way the
market is heading, and not really knowing about the technology.

“We must use this technology because everyone in the papers is talking about it!”
In particular, XML-HELL comes to mind. Commonly, this TA error means picking an
architecture that uses a platform you and your team have no prior experience with.
By definition, the fashionable new technology is new. As we discussed earlier, however,
an effective architect really needs to have an in-depth knowledge and prior experience
with the technology he or she is evaluating and mixing into the design.10

5. Failing to formulate the TA objectively based on the project’s requirements.

4. Spending too long on the architecture before delving into design.

Architectural paralysis can be as dangerous and project-stopping as analysis paralysis.
Because the architecture is so important, it’s tempting to spend six or more months
thinking about it and debating it with your colleagues. Eventually someone might
remember that there’s also a system to be written.

CHAPTER 7 ■ TECHNICAL ARCHITECTURE180

9. See http://en.wikipedia.org/wiki/Rock_(confectionery).

10. The article “Software Fashion” equates designers who automatically buy into the latest technology
with “fashion victims”: www.softwarereality.com/soapbox/softwarefashion.jsp

7745ch07final.qxd 12/13/06 8:37 PM Page 180

3. Forgetting to think about how the system will be tested.

2. Defining the TA before understanding what the users need to do.

1. Failing to do an architecture at all.

Summary
In this chapter, we took a brief look at technical architecture (TA). We dug deeper than what
might be considered "architecture-level", in order to introduce Spring Framework, and to
walk through the way in which we'll use it for the Internet Bookstore.

TA varies immensely from project to project (and from organization to organization), and
it isn’t the core focus of ICONIX Process, so we’ve touched on the subject only briefly in this
chapter.

Figure 7-11 shows where TA sits in the preliminary design stage of the process.
In the next chapter, we look at detailed design and flesh out the Internet Bookstore using

sequence diagrams.

CHAPTER 7 ■ TECHNICAL ARCHITECTURE 181

7745ch07final.qxd 12/13/06 8:37 PM Page 181

CHAPTER 7 ■ TECHNICAL ARCHITECTURE182

Figure 7-11. Technical architecture and the preliminary design stage

7745ch07final.qxd 12/13/06 8:37 PM Page 182

Design and Coding

P A R T 3

7745ch08final.qxd 12/13/06 8:38 PM Page 183

7745ch08final.qxd 12/13/06 8:38 PM Page 184

Sequence Diagrams

Once you’ve finished robustness analysis, and you’ve held a preliminary design review, it’s
time to begin the detailed design effort. By this time, your use case text should be complete,
correct, detailed, and explicit. In short, your use cases should be in a state where you can
create a detailed design from them.

All the steps in the process so far have been preparing the use cases for the detailed
design activity. Having completed robustness analysis and the PDR, you should now have
discovered pretty much all of the domain classes that you’re going to need. You also need
to have the technical architecture (TA) nailed down by this stage.

The 10,000-Foot View
Before we leap into the details of sequence diagramming, let’s take a step back (or up) and
look at the bigger picture of object-oriented design (OOD).

185

C H A P T E R 8

7745ch08final.qxd 12/13/06 8:38 PM Page 185

Sequence Diagrams and Detailed OOD
If you figure that preliminary design is all about discovery of classes (aka object discovery),
then detailed design is, by contrast, about allocating behavior (aka behavior allocation)—that
is, allocating the software functions you’ve identified into the set of classes you discovered
during preliminary design.

When you draw sequence diagrams, you’re taking another sweep through the prelimi-
nary design, adding in detail.

With preliminary design, you made some informal first guesses at how the classes will
interact with each other. Now it’s time to make those statements very precise, to turn them
into a detailed design that works within the TA that you’ve defined.

You use sequence diagrams to drive the detailed design. But note that we advocate draw-
ing your sequence diagrams in a minimal, quite specific format (which we describe fully in
this chapter). There’s a direct link between each use case, its robustness diagram, and the
sequence diagrams. Just as you drew one robustness diagram per use case, you’ll also draw
one sequence diagram per use case.

Sequence Diagram Notation
Before we dive into the best practices for drawing sequence diagrams from your use cases,
it helps to understand the stuff that a sequence diagram is composed of (see Figure 8-1).

186 CHAPTER 8 ■ SEQUENCE DIAGRAMS

Figure 8-1. Sequence diagram notation

7745ch08final.qxd 12/13/06 8:38 PM Page 186

The objects across the top of the diagram (Customer, Search Page, etc.) are interacting
with each other by passing messages back and forth. The vertical dotted lines (or object life-
lines) represent time, so the process shown in the diagram begins with the topmost message
(Customer calling onSearch() on Search Page).

An actor (the Customer in Figure 8-1) is the user whose interaction with the system
you’ve described in each of the use cases. (See the “system boundary” diagram in Figure 3-2.)
You should recognize the boundary object and entity object icons from robustness diagram-
ming in Chapter 5. (In Figure 8-1, the boundary objects are Search Page and Search Results
Page; the entity object is Catalog.)

However, notice that there are no controller objects on the sequence diagram
(although there could be). This is because when you draw the sequence diagrams, the
controllers (the verbs) are turned into messages on the boundary and entity objects (the
nouns). Sometimes you’ll find real controller classes, such as a “manager” or a “dispatcher”
class, and sometimes a framework might tempt you to litter your design with dozens of tiny
“controller classes,” but as a general rule of thumb, 80% or so of the controllers from the
robustness diagrams can be implemented as one or more operations on the entity and
boundary classes. (More about this important aspect of sequence diagramming later.)

The focus of control represents the time that a particular method/function has control.
It starts with the arrow going into the function and finishes when the function returns.

■Note You normally don’t need to draw a return arrow, except in special circumstances (e.g., to show an
asynchronous return value). That’s because parameters can be passed back as arguments to the operation.

As you’ll see in item 5 in the next section, the focus of control is best switched off, as it
tends to be something of a distraction from what you’re trying to achieve at this stage in the
process.

Sequence Diagramming in Theory
In this section, we demonstrate how to use sequence diagrams as a mechanism for exploring
and filling in the detailed OO design for each use case. We illustrate this theory with examples
from the Internet Bookstore project. And we begin, as usual, with our top 10 guidelines list.

Top 10 Sequence Diagramming Guidelines

10. Understand why you’re drawing a sequence diagram, to get the most out of it.

9. Draw a sequence diagram for every use case, with both basic and alternate courses on
the same diagram.

8. Start your sequence diagram from the boundary classes, entity classes, actors, and use
case text that result from robustness analysis.

CHAPTER 8 ■ SEQUENCE DIAGRAMS 187

7745ch08final.qxd 12/13/06 8:38 PM Page 187

7. Use the sequence diagram to show how the behavior of the use case (i.e., all the con-
trollers from the robustness diagram) is accomplished by the objects.

6. Make sure your use case text maps to the messages being passed on the sequence
diagram. Try to line up the text and message arrows.

5. Don’t spend too much time worrying about focus of control.

4. Assign operations to classes while drawing messages. Most visual modeling tools
support this capability.

3. Review your class diagrams frequently while you’re assigning operations to classes,
to make sure all the operations are on the appropriate classes.

2. Prefactor your design on sequence diagrams before coding.

1. Clean up the static model before proceeding to the CDR.

Let’s look at each of these top 10 guidelines in more detail.

10. Understand Why You’re Drawing a Sequence Diagram
When drawing sequence diagrams, you’re meticulously exploring the ins and outs of the
detailed design for each use case, in microscopic detail. This means exploring not just the
basic course, but also all the alternate courses of action in each use case. (We can’t stress
this point strongly enough!)

It’s surprising how many design issues can be caught at this stage, saving time on refac-
toring your design later, so it pays to design and explore every facet of each use case, not just
the sunny-day scenario.

Sequence diagramming has three primary goals in ICONIX Process:

• Allocate behavior to your classes: You identified these classes during robustness analy-
sis. During sequence diagramming, the controllers (also discovered during robustness
analysis) are turned into operations on the classes. However, you don’t necessarily end
up with a 1:1 correlation between the controllers and the operations. Often, a controller
turns into two or more operations. (Check the examples later in this chapter to see how
this happens.) And as we mentioned earlier, occasionally a controller may also be
turned into a controller class.

• Show in detail how your classes interact with each other over the lifetime of the use
case: When sequence diagramming, you should be exploring how the system will
accomplish the behavior described in your use cases. You do this by thinking about
and then depicting how your objects (runtime instances of a class) will interact with
each other at runtime.

• Finalize the distribution of operations among classes: Having performed robustness
analysis, you should by now have identified at least three-quarters of the attributes
(the data) on your classes, but very few, if any, of the operations (the behavior). By
now you’ve probably gathered that we advocate a two-pass approach to the design.
The first pass (preliminary design) is driven by thinking about attributes while deliber-
ately ignoring “who’s doing what to whom.” Then the second pass (the subject of this

CHAPTER 8 ■ SEQUENCE DIAGRAMS188

7745ch08final.qxd 12/13/06 8:38 PM Page 188

chapter) focuses all your attention on that exact question. That’s because during pre-
liminary design, the information just wasn’t there to allocate operations without
guessing. However, now that you’re at the detailed design stage, you should have
everything in place to correctly allocate the behavior among your classes.

■Note Objects interact by sending messages to each other. In the Ruby programming language, the
message paradigm is used literally, and all object interactions are considered to be messages. However,
in other languages such as Java or C++, the messages you draw on sequence diagrams equate to
method or function calls. To complicate things a little, in UML each message is also called an operation
once it’s assigned to a class.

■Note Messages, methods, functions, operations, verbs, and controllers—these are all basically different
versions of the same thing: the behavior that you allocate to a class (via sequence diagramming) and even-
tually implement and test.

9. Do a Sequence Diagram for Every Use Case
It’s pretty simple to make sure you’ve covered everything in your design, if you stick to these
two simple rules:

• Write a use case for every scenario you’re going to build in your current release (include
basic and alternate courses in each use case).

• Draw a sequence diagram for each use case and use the sequence diagram to put the
operations on the classes.

CHAPTER 8 ■ SEQUENCE DIAGRAMS 189

DON’T TRY TO DRAW FLOWCHARTS ON SEQUENCE DIAGRAMS
(FOCUS ON BEHAVIOR ALLOCATION INSTEAD)

UML 2.0 allows you to draw full-blown flowcharts on your sequence diagrams. However, even though the
notation supports it, we consider the practice of drawing flowcharts on sequence diagrams to be inadvisable,
because it puts emphasis on the wrong part of the problem.

In large part this is because drawing flowcharts simply misses the point of what you should be
thinking about when you draw a sequence diagram. If you’re trying to drive a software design from use
cases, it’s vitally important to get the allocation of operations to classes correct. This allocation of operations
to classes tends to be a make-or-break design issue.

In ICONIX Process, the primary purpose of the sequence diagram is to make this behavior allocation
visible so that you get it right. If your mind is on drawing a flowchart, it’s not going to be focused on this
critically important set of behavior allocation decisions.

7745ch08final.qxd 12/13/06 8:38 PM Page 189

Simple but effective. You’ve then allocated all the software behavior you need, and pre-
sumably nothing you don’t need, into your classes.

■Tip When you’re starting a sequence diagram, the very first thing you should do is paste the text of the
use case into a Note on the left margin.

One question that we often get asked is, “Should I have a separate sequence diagram for
each alternative course of action?” This question is frequently posed by people who have
enormous use case templates and ten-page use cases.

Our preference is to keep the use case short (see the two-paragraph rule in Chapter 3),
and thus be able to show the entire use case (sunny- and rainy-day scenarios) on a single
sequence diagram. It’s too easy to lose track of one or two alternate courses of action if you
split up the use case and sequence diagrams. And losing track of alternate courses of action
tends to be problematic.

8. Start from Where You Left Off with Robustness Analysis
You identified which objects will be collaborating together on the sequence diagram when
you drew your robustness diagram. If your use case has a GUI, the boundary objects will rep-
resent screens and other UI elements. Entity classes from the domain model will collaborate
with the GUI objects.

In many cases, controllers from the robustness diagram will not actually be “real con-
troller objects” on a sequence diagram, although in some cases they will be. In the remaining
cases, controllers will map to messages between objects on the sequence diagram.

Keep in mind that your sequence diagram shows the design at a much more concrete
and detailed view than the idealized conceptual design shown on a robustness diagram. So
your sequence diagram may show additional helper infrastructure objects, details of persist-
ence storage mechanisms, and so forth.

7. Show How the Use Case’s Behavior Is Accomplished by the Objects
Controllers on a robustness diagram generally map to “logical” software functions. Each
logical function may be realized by one or more messages between objects that will be
shown on the sequence diagram. As you draw messages, you are actually allocating oper-
ations to classes, so the sequence diagram is “about” allocating behavior among
collaborating objects.

CHAPTER 8 ■ SEQUENCE DIAGRAMS190

EXAMPLE SEQUENCE DIAGRAM: DISPLAYING THE BOOK DETAILS PAGE

Our Write Customer Review use case example (which we’ll return to shortly) gets quite involved at the design
stage, as it uses lots of different parts of Spring Framework, JSP, and our own controller logic. So it makes
sense to ease you into sequence diagramming (and Spring Framework) with a simple example first.

We’ll start out with a very small use case, Show Book Details. The use case text is as follows:

7745ch08final.qxd 12/13/06 8:38 PM Page 190

CHAPTER 8 ■ SEQUENCE DIAGRAMS 191

BASIC COURSE:
The Customer types in the URL for the bookstore’s home page, which the system displays. Then the Customer
clicks a link to view a Book. The system retrieves the Book details and displays the Book Details screen.
ALTERNATE COURSES:

Book not found: The system displays a Book Details Not Found screen.

We weren’t kidding when we said this is a simple use case! Really, this barely qualifies as a use case
(remember the two-paragraph rule from Chapter 3). However, it suffices for our purpose, which is to illustrate
how we get from the use case to a finished sequence diagram.

We showed the robustness diagram for this use case back in Figure 5-11. The accompanying sequence
diagram is shown in Figure 8-2 (the part of the diagram that handles the alternate course is shown in red).

The processing in this diagram is quite detail-rich, so we’ve lumped it into Appendix B (in the section
titled “‘Show Book Details’ Use Case”). If you’re interested in the Spring plumbing, please do take a look
there before moving on.

Later in this chapter, we walk through a step-by-step example of drawing a sequence diagram directly
from its matching robustness diagram. As you’ll see, when done properly, it’s really a mechanical process
allowing us to focus on the design details.

Figure 8-2. Sequence diagram for the Show Book Details use case

7745ch08final.qxd 12/13/06 8:38 PM Page 191

■Exercise The Book class in Figure 8-2 doesn’t appear to do a huge amount, except exist. This doesn’t
seem especially domain-oriented, as domain classes are meant to contain both data and behavior. Looking
at Figure 8-2, how could the design be improved to give Book a more prominent role?

■Note Although the design shown in Figure 8-2 seems fine on the surface—and (we regret to say) a lot of
web-based applications are created this way—it actually violates a key principle of the ICONIX approach,
namely that the domain class should be the central point of responsibility for operations relating to
that domain class. For example, all of the responsibilities related to a Book Review ought to be located in
the Book Review domain class, even if that class delegates some of those responsibilities to helper classes.

Violating this principle often results in several superfluous one-line classes and no obvious starting point
if you’re trying to track something down in the code. We review this diagram in Chapter 9 to hammer the
design into shape.

6. Map Your Use Case Text to the Messages on the Sequence Diagram
The use case text that appears on the left margin of the sequence diagram is really a contract
between clients and programmers. It should unambiguously specify the runtime behavior
requirements that satisfy the customer’s needs. Since we have this contract, it makes sense
to use the sequence diagram to show graphically how the design meets the behavior require-
ments. In fact, reading your sequence diagram should give you a visual trace from the design
back to the requirements.

Whenever possible, try to make the message arrows and the use case text line up visu-
ally. This makes it much easier to review the diagrams and verify that the design meets the
requirements.

5. Don’t Spend Too Much Time Worrying About Focus of Control
Focus of control refers to the little rectangles that magically appear on the object lifelines
when using a visual modeling tool. They indicate which object “has the focus,” or is cur-
rently in control (see Figure 8-1).

In theory, this is a very useful thing to display on a sequence diagram. But in practice,
with many visual modeling tools, it can be really annoying to try to get the focus-of-control
rectangles to behave the way you want them to. Once again, this can become a distraction
from the real purpose of the sequence diagram, which is (repeat after us) allocation of
behavior among collaborating objects.

If focus of control starts to become a distraction, the easiest thing to do is just switch
it off. You might find that your diagrams are cleaner and more readable without this extra
detail anyway.

■Tip Using EA, simply right-click the diagram and choose Suppress Focus of Control.

CHAPTER 8 ■ SEQUENCE DIAGRAMS192

7745ch08final.qxd 12/13/06 8:38 PM Page 192

CHAPTER 8 ■ SEQUENCE DIAGRAMS 193

ARE SEQUENCE DIAGRAMS DIFFICULT TO DRAW?

Many people find sequence diagrams rather tortuous to draw for the following reasons:

• Sequence diagrams can be difficult to draw and edit in some CASE tools (especially if the focus
of control is visible).

• The diagrams are densely packed with information, which can make them as difficult to read
as to draw, unless they’re carefully organized.

• The people who draw sequence diagrams often don’t really know why they’re drawing them or what
they’re supposed to be getting out of the diagram.

To make matters worse, this is the time when you’re also making the really hard design decisions—
when you are presented with a bunch of analysis documents and are expected to somehow magically
transform them into a detailed design that captures every last nuance of the business analyst’s (often
abstractly worded) requirements.

One issue we have with many approaches to UML is that there’s generally a lack of emphasis on pre-
liminary design, so developers must take a giant leap of faith between analysis and design, assuming (or
praying) that the resultant design will somehow match up with the use cases. This is why many people find
sequence diagrams so difficult to draw: they’re trying to answer too many questions (i.e., juggle too many
dust-bunnies) all at once.

ICONIX Process, however, is specifically geared toward laying the groundwork for sequence diagram-
ming, so if you’ve performed robustness analysis properly, drawing the sequence diagrams should
be significantly easier.

To answer the three issues we just listed:

• Sequence diagrams are difficult to draw using a CASE tool: This tends to be the case when
someone doesn’t really understand what it is he is trying to draw, so he spends most of his time
struggling with the sequence diagram notation, wondering why the sequence diagram editor won’t
allow him to just draw whatever he wants. We’ve observed in practice that this frustration happens
most often when the use case the person is trying to nail down with a sequence diagram is
vague and ambiguous, and he has to keep changing it around as he’s in the middle of drawing the
sequence diagram. The CASE tool often takes the blame for this frustration. At any rate, as you
already know, we’re strong advocates of completely and thoroughly disambiguating the behavior
requirements (see Chapter 5) before starting detailed design.

• Sequence diagrams are densely packed with information: You do need to show lots of detail
on each sequence diagram, because it’s describing in detail how the use case behavior is going
to be implemented. If necessary, you can split the diagram onto more than one page, if it makes it
easier to draw; but even better, learn to keep your use cases short by factoring them on the use
case diagrams using invokes and precedes.

• Sequence diagram authors are unclear on their purpose and goals: Having a clear idea of what
you’re trying to achieve when you draw a diagram definitely makes life easier. See “Understand Why
You’re Drawing a Sequence Diagram” earlier in this chapter.

Separating the “what” from the “how” (see Figure 5-1) is an essential task in software develop-
ment, as is having a clear transition between them.

7745ch08final.qxd 12/13/06 8:38 PM Page 193

4. Assign Operations to Classes While Drawing Messages
Generally speaking, there are two ways to label messages on a sequence diagram:

• By simply typing a label on the arrow

• By using an explicit command such as a right-click or button-press near the arrowhead

The second option directly adds an operation to the class of the target. It’s important to
use the sequence diagram to drive the allocation of operations to classes. So, if that’s your
intent when drawing a message, make sure to use the second option.

3. Review Your Class Diagrams Frequently While You’re Assigning Operations to Classes
Since you’re now actively assigning operations to classes, and since it’s very easy to make
mistakes while drawing sequence diagrams, you should continually cross-check your
sequence diagram and your class diagram to make sure that when you assign an operation
to a class, you’ve done it in a way that makes sense.

An excellent reference that can help you to make good design decisions is Rebecca
Wirfs-Brock’s book Object Design: Roles, Responsibilities, and Collaborations (Addison-
Wesley, 2002). This book teaches a very useful technique called Responsibility-Driven
Design (we describe this technique in a little more detail later in this book).

2. Prefactor Your Design on Sequence Diagrams
Prefactoring your design on sequence diagrams saves massive amounts of refactoring after
code. Many times, the need for code-level refactoring is the result of the programmer making
suboptimal behavior allocation decisions. Refactoring techniques such as “Move Method,”
“Replace Method with Method Object,” and (deep breath) “Consolidate Duplicate Conditional
Fragments”1 involve moving methods around among classes. The sequence diagram should
be used as a tool to help you to prefactor your design and make these behavior allocation deci-
sions correctly, before going to all the trouble of coding and unit testing.

If you use a sequence diagram for this purpose, you’ll find that you spend a lot less time
using refactoring techniques to fix the mistakes that you avoided making in the first place.
The lost art of getting the design right the first time can still be practiced (and quite success-
fully) using sequence diagrams. And you don’t even have to be a Druid to do it.2

1. Clean Up the Static Model Before Proceeding to the CDR
Take a long, hard look at your static model, with a view toward tidying up the design, resolv-
ing real-world design issues, identifying useful design patterns that can be factored in to
improve the design, and so on. This should at least be done as a final step before proceeding
to the CDR, but you can get started thinking at this level in the design even before drawing
your sequence diagrams.

After you complete preliminary design, the class model should have fewer holes in it
than it did before robustness analysis. Chances are that some additional classes have been
discovered that were missing from the original domain model, and many of the classes

CHAPTER 8 ■ SEQUENCE DIAGRAMS194

1. See Refactoring: Improving the Design of Existing Code by Martin Fowler (Addison-Wesley, 2000).

2. See our next book, Prefactoring the Druid Way. No goats required.

7745ch08final.qxd 12/13/06 8:38 PM Page 194

should be populated with attributes. However, even when you consider that the system
behavior will be allocated to the classes as message arrows are drawn on the sequence
diagrams, in most cases the class model will require additional work to complete it to the
point that it’s ready to code from.

Here are a few examples of the sorts of things that you may still need to deal with:

• Using infrastructure/scaffolding classes

• Using design patterns

• Meshing the design with application frameworks

• Completing parameter lists on operations

• Etc.

So, plan on finalizing your class model during detailed design along with doing your
sequence diagrams. It’s often a good idea to do a lot of this finalizing before the sequence dia-
gram is drawn, so that the sequence diagram simply represents the way the code is going to
work. An alternative strategy is to draw the sequence diagram at a slightly simplified level
and then finalize the class model in the coding environment.

■Tip New tools, such as MDG Integration from Sparx Systems (www.sparxsystems.com), make the
synchronization task between model and code orders of magnitude easier than it used to be.

Now that we’ve described the notation you use to draw sequence diagrams, and we’ve
examined the top 10 guidelines of sequence diagramming, we’ll walk through the steps
involved in drawing a sequence diagram effectively.

How to Draw a Sequence Diagram: Four Essential Steps
We’ve distilled the process of drawing a sequence diagram to four essential steps, which we
describe in this section. We illustrate these steps by drawing the sequence diagram for the
Write Customer Review use case.

The first three steps are completely mechanical in nature. This means they can be auto-
mated, which can be very useful in achieving momentum as you get serious about your
design. The fourth step, deciding which methods go on which classes, is really what sequence
diagramming is all about.

Figure 8-3 shows the four steps you perform when drawing sequence diagrams the
ICONIX way. Next, we describe the four steps in more detail. To illustrate the steps, we
return to the Write Customer Review use case we disambiguated using robustness analysis
in Chapter 5.

■Note In Chapter 12, we extend these steps to show how to systematically build a suite of test cases
at the same time as your sequence diagrams (see Figure 12-2).

CHAPTER 8 ■ SEQUENCE DIAGRAMS 195

7745ch08final.qxd 12/13/06 8:38 PM Page 195

CHAPTER 8 ■ SEQUENCE DIAGRAMS196

IF THE STEPS ARE MECHANICAL, WHY NOT AUTOMATE THEM?

In fact, we’ve turned the first three steps of our process for drawing a sequence diagram into an executable
script that automatically generates a skeleton of a sequence diagram. We originally did this some years ago
for Rational Rose, and if you use Rose, you can download a copy of this script here: www.iconixsw.com/
RoseScripts.html. More recently, we’ve created an upgraded version for the EA tool from Sparx Systems.
The upgraded version also generates test cases for each controller on the robustness diagram (see
Figure 12-7) and is available as an add-in on Doug’s CD “Enterprise Architect for Power Users.” (More
information can be found at www.iconixsw.com/EA/PowerUsers.html.)

Scripts and add-ins such as this have proven to be very useful in achieving momentum as you get seri-
ous about your design. You get an immediate payback in time savings from the work you invested in your
robustness diagrams, which can help to get some buy-in to the process from your team.

Figure 8-3. Building a sequence diagram in four essential steps

7745ch08final.qxd 12/13/06 8:38 PM Page 196

Step 1: Copy the Use Case Text Straight into the Diagram
After all the preparatory steps that you’ve gone through so far, the use case text should be
remarkably fit and healthy. Having put all that effort into writing disambiguated use cases
that you can design from, it makes sense to place the use case text directly on the design
diagram so that, as you’re doing the design, the required system behavior is right there on
the diagram too. The initial version of the Write Customer Review sequence diagram, with
just this first step completed, is shown in Figure 8-4.

Remember that each use case is, essentially, a mini-contract that should have gotten
sign-off from the project stakeholders. And because each use case is quite fine-grained (two
paragraphs at most), it’s a small capsule of discrete, self-contained functionality. Having the
text there on the screen helps you to keep the sequence diagram focused on just the steps
described in those two paragraphs.

Also remember that the robustness diagram you drew was an object picture of the
given use case, and the process of drawing the robustness diagram caused you to rewrite
the use case so that it uses the domain object names literally in the text. As a result, when
you’re designing, you should be able to look at the use case text and (when you get really
good at it) visualize the named objects interacting with each other. For example, the text
“The system places the Book Review on the Reviews Pending Queue” strongly suggests that
there will be a BookReview class, a ReviewsPendingQueue class, and a message between the
two probably called addToQueue(bookReview).

■Note Because you’re designing directly from the use case text, then it follows that if you didn’t analyze
the use case in detail and write down all its alternate courses, you shouldn’t be doing detailed design yet.
Designing from an incomplete use case means that you won’t discover all of the necessary methods for
your objects.

CHAPTER 8 ■ SEQUENCE DIAGRAMS 197

7745ch08final.qxd 12/13/06 8:38 PM Page 197

CHAPTER 8 ■ SEQUENCE DIAGRAMS198

Figure 8-4. Building a sequence diagram, step 1

BASIC COURSE:

On the Book Detail page for

the book currently being

viewed, the Customer clicks

the Write Review button. The

system checks the Customer

Session to make sure the

Customer is logged in, and

then displays the Write Review

page. The Customer types in a

Book Review, gives it a Book

Rating out of 5 stars, and

clicks the Send button. The

system ensures that the Book

Review isn't too long or short,

and that the Book Rating is

within 1-5 stars. The system

then displays a confirmation

page, and the review is added

to the Pending Reviews Queue

for moderation (this will be

handled by the Moderate

Customer Reviews use case).

ALTERNATE COURSES:

User not logged in: The user is

first taken to the Login page,

and then to the Write Review

page once they've logged in.

The user enters a review which

is too long (text > 1MB): The

system rejects the review, and

responds with a message

explaining why the review was

rejected.

The review is too short (< 10

characters): The system rejects

the review.

7745ch08final.qxd 12/13/06 8:38 PM Page 198

Step 2: Copy the Entity Objects from the Robustness Diagram
Assuming you updated your static model during robustness analysis, the entity objects should
now each have an equivalent class on one of the class diagrams (see Figure 8-5). (And if you
haven’t updated your static model yet, be sure to do it now.) The updated Write Customer
Review sequence diagram is shown in Figure 8-6.

Until now, the entity objects have been little more than simple bags of data with lots of
attributes but no behavior (read: no personality). This will change during sequence diagram-
ming. Now that they’re on the diagram, you’ll soon start to allocate operations to them—in
effect, assigning their classes with behavior. But first you need to get the remaining “nouns”
(the boundary objects and actors) onto the diagram.

CHAPTER 8 ■ SEQUENCE DIAGRAMS 199

Figure 8-5. How your entity objects evolve into full-fledged classes

7745ch08final.qxd 12/13/06 8:38 PM Page 199

Step 3: Copy the Boundary Objects and Actors from the Robustness Diagram
See Figure 8-7. The boundary objects and actors are the remaining “nouns” (see Chapter 5).
There can be more than one actor on the sequence diagram, although typically there’s only
one, and it usually goes on the left of the diagram. The updated Write Customer Review
sequence diagram is shown in Figure 8-8.

You win the ripest piece of fruit in the fruit bowl if you wondered why we’re adding the
boundary objects and actors from the robustness diagram and not from the domain model. In
fact, the boundary objects and actors were never added to the domain model, as they’re part
of the solution space (the “how”). By contrast, the entity objects that we’ve added were on the
domain model, as they’re part of the problem space (the “what”).

Depending on the type of GUI you’re creating, the boundary classes usually turn into JSP
or ASP pages. So you have the option to treat the boundary classes as “not real classes,” and

CHAPTER 8 ■ SEQUENCE DIAGRAMS200

Figure 8-6. Building a sequence diagram, step 2

Customer
Review

Customer
Session

Book Pending Reviews
Queue

BASIC COURSE:

On the Book Detail page for

the book currently being

viewed, the Customer clicks

the Write Review button. The

system checks the Customer

Session to make sure the

Customer is logged in, and

then displays the Write Review

page. The Customer types in a

Book Review, gives it a Book

Rating out of 5 stars, and

clicks the Send button. The

system ensures that the Book

Review isn't too long or short,

and that the Book Rating is

within 1-5 stars. The system

then displays a confirmation

page, and the review is added

to the Pending Reviews

Queue for moderation (this will

be handled by the Moderate

Customer Reviews use case).

ALTERNATE COURSES:

User not logged in: The user is

first taken to the Login page,

and then to the Write Review

page once they've logged in.

The user enters a review which

is too long (text > 1MB): The

system rejects the review, and

responds with a message

explaining why the review was

rejected.

The review is too short (< 10

characters): The system rejects

the review.

7745ch08final.qxd 12/13/06 8:38 PM Page 200

not allocate behavior to them. How GUIs are treated varies widely if you’re doing JSP, ASP.NET,
HTML, or a desktop application (for example). So during sequence diagramming, it’s better to
focus on allocating behavior into the domain/entity classes (see step 4).

■Note We’re not saying that you should never add attributes or operations to your view/boundary classes,
but as a general rule, these classes (or pages) tend not to do any of their own processing. Your own experi-
ences may vary depending on the GUI or web-application toolkit that you’re using.

■Tip It helps to maintain a pure domain model diagram, containing only the entity classes (but not showing
any attributes or operations). But at some point (right about now, in fact, during detailed design), you’ll need
to draw some more detailed class diagrams that show both solution space classes and problem space
classes. As you’ll end up with some very large detailed class diagrams, you should split them up—for exam-
ple, have one diagram per use case package. (Refer to Chapter 3 for a discussion of use case packages.)

■Tip And another thing: These detailed class diagrams should use the same elements as on the sequence
diagrams, so when you assign a message on the sequence diagram (the dynamic model), an operation is
automatically added to the appropriate class in the static model.

CHAPTER 8 ■ SEQUENCE DIAGRAMS 201

Figure 8-7. How your boundary objects evolve into view classes or view pages (e.g., JSP pages)

Robustness
Analysis

Sequence
Diagramming

Boundary Object

'View' Class
or ASP/JSP

Discover lots of these...

Put the 'view' classes
in context with the rest
of the design...

Added to the 'solution
space' class diagram,
the Boundary Object
becomes...

7745ch08final.qxd 12/13/06 8:38 PM Page 201

Once you’ve finished these steps, you’re over the hump of getting your design started, and
it’s time to move on to the real work.

Step 4: Assign Operations to Your Classes
This step is where the real decision-making takes place (see Figure 8-9). Up until now, every-
thing has been rather mechanical and aimed at prepping the sequence diagram so that the
highly skilled surgeon (that’s you) can come in and amaze everyone with his or her precise

CHAPTER 8 ■ SEQUENCE DIAGRAMS202

Figure 8-8. Building a sequence diagram, step 3

7745ch08final.qxd 12/13/06 8:38 PM Page 202

and scrupulous design work. A surgeon must make some high-pressure decisions during an
operation (we should know, we’ve seen reruns of Dr. Kildare), and similarly, when you’re
designing software, you’re faced with difficult decisions that mostly shouldn’t be put off until
later. You’ve done all the preparatory work leading up to this point, and this next step is the
crux, the essence of detailed design.

Unfortunately, as you may have gathered, this step is also pretty hard (at least until you
get the hang of it). Every decision, large and small, really counts. Experience and talent are
required to do a good job at detailed design.

What you’ve done with this process so far is to clear the way so that, during detailed
design, there are no distractions—all you need to think about is the design itself. But you still
need to do the actual thinking, of course. On the bright side, the more you do it, the better
you’ll become. As your experience grows, you’ll find it becomes easier to make good design
decisions.

The best place to get started with behavior allocation is to convert the controllers from
the robustness diagram.

Converting the Controllers from Your Robustness Diagram

To allocate operations/methods to your classes, you need to convert the controllers from
the robustness diagram into messages on your sequence diagram. It’s possible to do this
systematically. Step through each controller on the robustness diagram. For each one, draw
the corresponding message(s) on the sequence diagram, and then check the controller off
(rather like a checklist) and move on to the next controller.

■Tip Remember that when you step through each controller on the robustness diagram, each message
should automatically be turned into an operation (or several operations) on the appropriate class(es). on the
appropriate class. Make your CASE tool work harder, so that you can work smarter!

CHAPTER 8 ■ SEQUENCE DIAGRAMS 203

Figure 8-9. How your controllers evolve into operations on your domain classes

Robustness
Analysis

Sequence
Diagramming

Controller

Domain
Class

Discover lots of these...

Assign each controller as
one or more operations on...

7745ch08final.qxd 12/13/06 8:38 PM Page 203

Remember that you’ve already checked the robustness diagram against the use case text.
So by using the robustness diagram as a checklist for your sequence diagram, you’re providing
a level of assurance that you are designing precisely what the user needs—in other words,
you’re ensuring that your design matches up with the requirements.

Although we recommend turning each controller into an operation, every now and then
it makes sense to turn a controller into a full-fledged control class. How often this happens
depends on whether you’re building a real-time embedded system and whether the frame-
work you’re using more-or-less demands that you have lots of itty-bitty controller classes all
over the place.

■Tip Have both the sequence diagram and any relevant class diagrams at hand. You should be flipping
between the sequence and class diagrams frequently while you assign operations and think about the
design. It’s a two-way process: sometimes you make a change to the class diagram and then feed the
change back into the sequence diagram, and vice versa.

During this stage in the design, it pays to have a catalog of well-established design pat-
terns to fall back on. The “classic set” of patterns can be found in the book Design Patterns:
Elements of Reusable Object-Oriented Software by Erich Gamma, Richard Helm, Ralph John-
son, and John Vlissides (Addison-Wesley, 1995). If you’re developing enterprise software, we
can also recommend Patterns of Enterprise Application Architecture by Martin Fowler
(Addison-Wesley, 2002). Although the book’s title suggests that it’s about architecture, the
patterns it describes are really design patterns for the enterprise.

However, it’s also important to not become too obsessed with design patterns. Always
try to remember that they’re there for guidance—a starting point for when doing your own
detailed designs. We’ve seen the unfortunate results of many projects that have become too
complex for their own good, because of a tendency to overapply design patterns. As
Groucho Marx once said, “I like my cigar, too, but I take it out of my mouth once in a while!”

Deciding Which Controllers to Assign to Which Classes

This is the big one, of course. To decide which controllers go on which classes, you must
answer two questions:

• What are the classes?

• Which classes are responsible for which operations?

The second question has as its roots Rebecca Wirfs-Brock’s Responsibility-Driven Design
(RDD). A responsibility is a combination of things: knowledge or data (the attributes), behav-
ior (the operations), and the major decisions made at runtime that affect others.

Usually, you’ll find that the decision of which responsibilities to put in which classes is
clear-cut. For example, it should be obvious that a BookReview will be responsible for validat-
ing its own data. Sometimes, however, the decision isn’t quite so clear-cut. Responsibilities
can be hazy or too complex to be comfortably managed by a single class. In Object Design:

CHAPTER 8 ■ SEQUENCE DIAGRAMS204

7745ch08final.qxd 12/13/06 8:38 PM Page 204

Roles, Responsibilities and Collaborations, Wirfs-Brock describes how complex responsibilities
should be allocated:3

An object has three options for fulfilling any responsibility. It can either:

* Do all the work itself

* Ask others for help doing portions of the work (collaborate with others)

* Delegate the entire request to a helper object

When you’re faced with a complex job, ask whether an object is up to this responsibility

or whether it is taking on too much. A responsibility that is too complex to be imple-

mented by a single object essentially introduces a new sub design problem. You need to

design a set of objects that will collaborate to implement this complex responsibility.

These objects will have roles and responsibilities that contribute to the implementation

of the larger responsibility.

As we described earlier, assigning responsibilities to each class involves giving your class
some personality, but it’s also possible for a class to become overallocated and end up with
perhaps a little too much personality. Dan Rawsthorne (a former ICONIX instructor) once
summarized the responsibility-driven thought process to Doug as follows:

If you think of your objects (or classes) as people, then the set of behaviors (operations)

that they are responsible for gives them a sort of personality. We want to watch out for

schizophrenic objects (that is, objects with split or multiple personalities) because an

object should be focused on a cohesive, related set of behaviors.

A class with a split personality—or multiple personalities—is a class that has more than
one responsibility. A clear sign of such a troubled class is if it contains discordant attributes—
that is, attributes that don’t seem to fit in with their peers. If you discover discordant attrib-
utes, use aggregation (see Chapter 2) to move them into separate, more appropriate classes.
Most likely, these new classes will need to collaborate with each other.

Four Criteria of a Good Class

While you are making behavior allocation decisions, you are making decisions that affect the
quality of the classes in your design. Grady Booch’s Object-Oriented Analysis and Design with
Applications (Addison-Wesley, 1994) introduces the Halbert/O’Brien criteria of reusability,
applicability, complexity, and implementation knowledge.

If you follow the RDD thought process, you’ll generally wind up with a set of behaviors
that are all applicable (i.e., not schizoid), don’t depend on implementation details of another

CHAPTER 8 ■ SEQUENCE DIAGRAMS 205

3. Rebecca Wirfs-Brock and Alan McKean, Object Design: Roles, Responsibilities and Collaborations
(New York: Addison-Wesley, 2003), p. 132

7745ch08final.qxd 12/13/06 8:38 PM Page 205

class, aren’t overly complex for any single class, and result in a reusable piece of code that
maps nicely to a problem-domain abstraction.

Following a responsibility-driven thought process (done correctly) results in classes that
meet the Halbert/O’Brien quality criteria. Or, to go back another 15 years or so: maximize
cohesion, minimize coupling.

Continuing the Internet Bookstore Example
To illustrate the theory step by step, let’s return to our Internet Bookstore example and the
Write Customer Review use case. So far we’ve added the entities, actor, and boundary objects
to our sequence diagram (see Figure 8-8). The next step, as described in the previous section,
is to walk systematically through the controllers on the robustness diagram and apply them
to the sequence diagram.

Referring back to the robustness diagram in Figure 6-7, you can see that the Customer
clicks the Write Review button on the Book Detail page. The system then performs a check
to see if the Customer is logged in. On the robustness diagram, this is represented as the
“Is user logged in?” controller. This controller checks the Customer Session entity. On the
sequence diagram, then, we’d have an isUserLoggedIn() method on a class called
CustomerSession.

As we now need to be thinking in terms of the implementation details, we need to
establish where the CustomerSession instance is found. In our Spring/JSP example, the
CustomerSession would be an object contained in the HTTP Session layer (i.e., naturally
associated with the current user session). When the user browses to the bookstore website,
a new CustomerSession object is created and added as an attribute to HttpSession. This is
then used to track the user’s state (currently just whether the user is logged in). To make this
explicit, we should show HttpSession on the sequence diagram, so that we can see exactly
where CustomerSession is found.

Figure 8-10 shows the (nearly) completed sequence diagram. Notice that it’s possible
to read through the use case text on the left and simultaneously walk through the sequence
diagram, tracing the text to the messages on the diagram.

■Exercise In Figure 8-10, the “User not logged in” alternate course describes (at a high level) the
process of logging in before proceeding with the current use case. Should the sequence diagram invoke
a separate Login use case, and if so, how would this be represented on the sequence diagram? We dis-
cuss the answer in the CDR in Chapter 9.

As it turns out, a couple of objects weren’t used at all. Review Rejected Screen wasn’t
used, although we originally (in the use case text) described the system taking the user to a
separate screen to show that the review was rejected. However, on drawing the sequence dia-
gram, it seemed like it would be much nicer to take the user back to the Write Review Screen
and show the validation errors there, so that the user can simply correct the errors and resub-
mit the review. We should update the use case text at the earliest opportunity (this means
right now) to reflect this, so that the use case doesn’t fall out of sync with the design (and thus
lose its usefulness).

CHAPTER 8 ■ SEQUENCE DIAGRAMS206

7745ch08final.qxd 12/13/06 8:38 PM Page 206

CHAPTER 8 ■ SEQUENCE DIAGRAMS 207

Figure 8-10. Building a sequence diagram, beginning of step 4 (pure OO version of the completed
sequence diagram)

7745ch08final.qxd 12/13/06 8:38 PM Page 207

■Caution You don’t need to go back and redraw the robustness diagram 17 more times once you’re
in the middle of sequence diagramming. You know the robustness diagrams aren’t going to be perfect, and
that’s OK—it isn’t important to make your preliminary design diagrams look like you clairvoyantly knew
what the detailed design would look like (doing this would, in fact, cause analysis paralysis). It’s only impor-
tant that the preliminary design gets you properly started with detailed design.

Additionally, Book wasn’t used at all so, after double, triple-checking to make sure we had-
n’t missed a critical detail, we removed it. We discuss the reasons why Book fell off the diagram
when we get to the CDR (see Chapter 9).

■Note Figure 8-10 raises some other issues, which we’ll also address during the CDR. In fact, most of
these issues would have been caught using a design-driven testing (DDT) approach, which we describe
in Chapter 12.

This version of the diagram follows a pure OO design. It’s a “wouldn’t it be great if . . .”
diagram reflecting the OO design principles we’ve discussed. As it’s quite high level, it could
be transferred to a target platform other than Spring Framework without much (or indeed
any) modification. In other words, so far we haven’t tied the design in very closely with the
nitty-gritty implementation details of our target framework—and we’ll need to do that
before we begin coding.

Because we’re reusing a third-party web framework rather than designing our own, the
design is dictated to an extent by the framework’s creators. For example, in Figure 8-10 we
show the validation taking place as a method on the entity class being validated. However,
the approach in Spring Framework is to separate validation into a separate class. This isn’t
pure OO, as it breaks encapsulation and we potentially end up with lots of tiny “controller
classes,” each of which implements a single function. Having said that, there are practical,
ground-based reasons why Spring does it this way.4

So, we need to explore the implementation details and fill in these details on the
sequence diagram before we can really code from it. To complete the final step in our four
essential steps, we need to add in more detail taking into account the framework and the tech-
nology being targeted.

Figure 8-11 shows the finished diagram. This is now something that we can code from
directly (after the CDR, of course!).

The processing in this diagram is quite detail-rich, so we’ve moved the description into
Appendix B (in the section titled “‘Write Customer Review’ Use Case”). If you’re interested in
the Spring details, please do take a look there before moving on.

CHAPTER 8 ■ SEQUENCE DIAGRAMS208

4. Spring is actually one of the better frameworks for not imposing too many design constraints. For
example, Struts (a popular MVC web framework) contains a much more rigid design, in which your
classes must extend specific Struts classes. Because Java doesn’t allow multiple inheritance, this can
be a limiting factor.

7745ch08final.qxd 12/13/06 8:38 PM Page 208

CHAPTER 8 ■ SEQUENCE DIAGRAMS 209

Figure 8-11. Building a sequence diagram, completing step 4 (the completed sequence diagram)

7745ch08final.qxd 12/13/06 8:38 PM Page 209

■Exercise WriteCustomerReviewCommand seems quite redundant, as it’s simply there to hold data
that gets set in the CustomerReview domain class anyway. What could be done to improve this part of the
design? We reveal the answer during the CDR in the next chapter.

■Exercise The Book class in Figure 8-11 doesn’t seem to do a huge amount. How could this design be
improved to give Book a more prominent role? (Remember, we had the same problem with the Show Book
Details sequence diagram in Figure 8-2.) Again, we reveal the answer during the CDR in the next chapter.

Now that we’ve completed the sequence diagram, it’s time to bring the static model up to
date. After walking through the theory, we show the updated static model for the Internet
Bookstore.

Updating Your Class Diagrams As You Go Along
As you’ve probably gathered by now, you need to keep updating and refining your static model
(the class diagrams) as you go along (see Figure 8-12).

CHAPTER 8 ■ SEQUENCE DIAGRAMS210

Figure 8-12. Updating your static model, again

7745ch08final.qxd 12/13/06 8:38 PM Page 210

Synchronizing the Static and Dynamic Parts of the Model
CASE tools take much of the burden out of keeping the static and dynamic models in sync
by putting operations on classes as you draw message arrows on sequence diagrams. But we
do recommend that, with each message arrow you draw on the sequence diagram, you take
a peek at the class diagram to make sure it’s updated correctly.

It’s a good habit to check that the operations are added to the correct class each time you
draw a message, and if you spot any missing attributes, add them as soon as you notice they’re
missing. Seeing each class evolve should also cause you to think about the class structure, and
evolve the class design. You might spot an opportunity for generalization, for example; you
may see a possible use of a design pattern; or you could find that a class has gained too many
responsibilities and needs to be split in two using aggregation.

As you’re adding implementation details to the sequence diagrams, don’t be surprised if
you start to see lots of new classes appear on the static model that were never there on the
domain model during analysis. That’s because you’re now identifying the solution space
classes. By contrast, the domain model shows classes only from the problem space.

The two spaces are now converging during detailed design. By updating the static
model as you work through the sequence diagrams, you’re now converging the problem
space with the solution space.

So, as you add in more functionality from the use cases, you’ll also come up with scaffold-
ing and other types of infrastructure (e.g., “helper” classes).

Adding getters and setters to your class diagrams can be time-consuming and doesn’t
give you much in return, except a busy-looking class diagram. Our advice is to avoid adding
them to your model. For now, just add the attributes as private fields and utilize encapsula-
tion. As you only ever allow access to attributes via getters and setters, adding them is kind
of redundant. When you generate code, you should be able to generate get and set methods
from attributes anyhow. Pretty much all modern IDEs and diagramming tools are scriptable
or have this sort of automation built in.

Although we suggested that you avoid adding too much design detail during domain
modeling (since there just wasn’t enough supporting information available at that time), now
that you’re at the detailed design stage, this really is the time to go wild (so to speak) and think
the design through in fine detail. You and your team are shaping up the design—collabora-
tively, we hope—and getting it ready for coding.

In the next section, we illustrate how to synchronize the static and dynamic parts of the
model for the Internet Bookstore.

Internet Bookstore: Updating the Static Model
In this section, we show three different versions of the static model updated from the
sequence diagrams (review the previous version in Figure 5-19 to see how the static model
has evolved so far). Figure 8-13 shows the static model updated from the pure OO sequence
diagram shown in Figure 8-10.

Book and BookCollection are on the static model because they also appeared on the
domain model; however, neither class has operations yet because we haven’t drawn any
sequence diagrams that allocate behavior to them.

CHAPTER 8 ■ SEQUENCE DIAGRAMS 211

7745ch08final.qxd 12/13/06 8:38 PM Page 211

CustomerSession used to have a loggedIn attribute (see the domain model diagram in
Figure 5-19), but after sequence diagramming, this has turned into a method,
isUserLoggedIn(), without an attribute to back it (i.e., it’s a “live” or calculated value that
is rechecked each time the method is called).

Figure 8-13 reveals some commonality between some of the classes. Each of the bound-
ary classes has its own display() method. So it would make sense to move this up to a new
parent class. Figure 8-14 shows the result of this prefactoring (it’s much quicker to do this
sort of thing now, while we’re looking at the bigger picture, before we have source code
dependent on the class we’re prefactoring).

CHAPTER 8 ■ SEQUENCE DIAGRAMS212

Figure 8-13. Internet Bookstore static model based on the pure OO sequence diagram in
Figure 8-10

«boundary»

BookDetailScreen

+ display() : void

«boundary»

WriteReviewScreen

+ display() : void
+ showValidationErrors(List) : void

«entity»

CustomerReview

- rating: int
- reviewText: String

+ setRating(int) : void
+ setReviewText(String) : void
+ validate(List) : void

«boundary»

ConfirmationScreen

+ display() : void

«entity»

CustomerSession

+ isUserLoggedIn() : boolean

«entity»

PendingReviewsQueue

+ add(CustomerReview) : void

«boundary»

LoginScreen

+ display() : void

«entity»

Book

+ synopsis: String
+ title: String

«entity»

BookCollection

«boundary»

HomePage

+ display() : void

7745ch08final.qxd 12/13/06 8:38 PM Page 212

In Figure 8-14, we created a new abstract class called View, which contains the common
display() method. The boundary classes only need to override this method if they’re doing
something special. In this case, WriteReviewScreen overrides it because it needs to display the
validation errors set via showValidationErrors().

CHAPTER 8 ■ SEQUENCE DIAGRAMS 213

Figure 8-14. Prefactored Internet Bookstore static model, still pure OO

«boundary»

BookDetailScreen
«boundary»

WriteReviewScreen

+ display() : void
+ showValidationErrors(List) : void

«entity»

CustomerReview

- rating: int
- reviewText: String

+ setRating(int) : void
+ setReviewText(String) : void
+ validate(List) : void

«boundary»

ConfirmationScreen

«entity»

CustomerSession

+ isUserLoggedIn() : boolean

«entity»

PendingReviewsQueue

+ add(CustomerReview) : void

«boundary»

LoginScreen

«boundary»

View

+ display() : void

Overriding display()
method to show
validation errors.

«entity»

BookCollection

«boundary»

HomePage

«entity»

Book

- synopsis: String
- title: String

7745ch08final.qxd 12/13/06 8:38 PM Page 213

We don’t want to go any further without grounding the design in the reality of the target
platform. What we especially want to avoid is designing our own framework (which we’re
starting to risk doing by creating a common View class), instead of just wrapping the design
around the predesigned target framework. So let’s correct that now: Figure 8-17 shows a much
more detailed version of the static model, derived from the detailed, nitty-gritty version of the
sequence diagram, taking into account the real-world constraints (and benefits!) of Spring
Framework.

CHAPTER 8 ■ SEQUENCE DIAGRAMS214

MULTIPLICITY

Multiplicity refers to the numbers that you often see on the lines between classes on class diagrams. For
example, Figure 8-15 shows an excerpt from a class diagram showing multiplicity, and Figure 8-16 shows
how the same diagram might be described in text form.

The level of detail shown in Figure 8-15 would probably be more appropriate for a relational data model
than a class diagram. On relational data models (usually shown using entity-relationship [ER] diagrams),
showing the precise multiplicity for each relationship is of paramount importance. However, for class dia-
grams it’s much less important—optional, even. One possible exception to this is if you want to use
multiplicity to indicate validation rules (e.g., a Dispatch must have at least one Order before it completes).

You might also want to use multiplicity to indicate whether a variable will be a single object reference
or a list of object references, in which case, just showing 1 or * (respectively) would be sufficient. For exam-
ple, in Figure 8-15, the Warehouse class can have many Dispatch items, so this would be represented in
Java with a List (or some other Collection class):

private List<Dispatch> dispatches = new ArrayList<Dispatch>();

On the other hand, a Dispatch references only one Order, so this would be represented by a single
object reference:

private Order order;

Figure 8-15. Example class diagram notation for associations

Warehouse Dispatch Order

1..* 0..* 0..*

completes

1

Figure 8-16. The same diagram in text form

7745ch08final.qxd 12/13/06 8:38 PM Page 214

Figure 8-17 has been updated to show the details from the sequence diagrams for both
the Show Book Details and Write Customer Review use cases.

CHAPTER 8 ■ SEQUENCE DIAGRAMS 215

Figure 8-17. Internet Bookstore static model after drawing sequence diagrams for two use cases

7745ch08final.qxd 12/13/06 8:38 PM Page 215

What’s changed in Figure 8-17?

• We’ve introduced a couple of Spring classes (DispatcherServlet and ModelAndView)
and a class from the Java Servlet API (HttpSession), and we’ve shown which of our
own classes relate to them.

• The aggregation relationships now show their multiplicity (see the previous sidebar).

• We’ve filled in the properties that were identified in the use case, plus any supplemen-
tary specs (screen mock-ups, passive-voice functional specifications, etc.).

• Our Screen classes have been replaced with (mostly) Spring Controller classes. Which
brings us to the next point . . .

• Some of the methods that originated from controllers on the robustness diagrams
have escaped and turned into their own Controller classes. While we wouldn’t nor-
mally recommend this, Spring requires that each form has its own Controller class.
This class handles the details of extracting postvalidated data, processing it, and
then telling the framework which JSP page to send back to the user.

• We’ve introduced a Command class (WriteCustomerReviewCommand), which represents the
data extracted from the user’s form post.

■Note In the next chapter, we revisit this part of the design and look at how to make it more “domain
oriented” while lessening our reliance on separate Command and Controller classes and still fitting into
the Spring design mold.

• We’ve got DAOs. BookDao, CustomerReviewDao—you name it, we’ve got it. Remember
that a DAO (e.g., BookDao) is analogous to a database table, whereas a domain class
(e.g., Book) is analogous to a row in a database table. A BookDao is a source of Books,
so it’s similar to an EJB Home object.

• BookCollection has disappeared. Instead we have BookDao, as mentioned in the
previous point. In fact, BookDao will actually return collections of Books—though
we haven’t shown this yet, as we haven’t drawn these Collection operations on any
of the sequence diagrams.

• Because Spring has its own validation framework that we want to take advantage of,
we’ve separated the CustomerReview validation into its own separate class,
CustomerReviewValidator. (Note that although this separation of concerns seems like
a good idea on the surface, it turns out to be not that good an idea after all. We discuss
the reasons why in Chapter 11.)

CHAPTER 8 ■ SEQUENCE DIAGRAMS216

7745ch08final.qxd 12/13/06 8:38 PM Page 216

Although it contains a lot of detail, Figure 8-17 contains purely the detail we’ve uncovered
during domain modeling, robustness analysis, and sequence diagramming, and nothing
more. There are no leaps of logic, leaps of faith, or leaps of any kind. The operations on each
class are taken directly from the messages we drew on the sequence diagrams. The relation-
ships between each class are also derived from the relationships in the domain model and
from the operations. The attributes on each class are derived from the detail in the use cases
and any supplementary specs that the use cases reference (e.g., screen mock-ups, data mod-
els, etc.).

It’s tempting to add detail to the class diagram because you think it might be needed, but
(as we hope we’ve demonstrated) it’s better fill in the detail while drawing the sequence dia-
grams. If, after you’ve fleshed out the static model using the sequence diagrams, the static
model still appears to be missing some detail, then you should revisit the sequence diagrams
(and possibly even the robustness diagrams and use cases), as it’s likely that something has
been missed. Always trust your gut instinct, but use it as an indication that you need to revisit
your previous diagrams, not that you need to second-guess yourself and add detail arbitrarily
to the static model.

We’ve now finished the detailed design for the two use cases we’re implementing. The
next stage before coding will be the CDR, a “sanity check” involving senior technical staff to
make sure the design is shipshape before the use cases are implemented.

Sequence Diagramming in Practice
The following exercises, taken from the detailed design activities for the Internet Bookstore,
are designed to test your ability to spot the most common mistakes that people make during
sequence diagramming.

Exercises
Each of the diagrams in Figures 8-18 to 8-20 contains one or more typical modeling errors. For
each diagram, try to figure out the errors and then draw the corrected diagram. The answers
are in the next section.

CHAPTER 8 ■ SEQUENCE DIAGRAMS 217

7745ch08final.qxd 12/13/06 8:38 PM Page 217

Exercise 8-1

Figure 8-18 shows an excerpt from a sequence diagram for the Add External Books to Catalog use case (which
you also encountered in the exercises in Chapter 5). It shows quite a few examples of a common behavior allo-
cation error. (Hint: Which objects are the messages pointing to?) Try to explain why the behavior allocation in the
diagram is wrong, and then draw the corrected diagram.

CHAPTER 8 ■ SEQUENCE DIAGRAMS218

Figure 8-18. Excerpt from a sequence diagram showing several behavior allocation errors

SellerAdd External Books to
Catalog:

BASIC COURSE:
The system displays
the Add External Book
page. The Seller types
in the External Book
details (title, ISBN,
price etc) and clicks
the Add Book button.

The system checks
that each field has a
value, and that the
price is numeric, isn't a
negative value or >
$1,000. The system
also checks that
there's a matching
ISBN in the Bookstore
database.

The system then
creates the External
Book in the database.

. . .

Add External
Book page

External
Book

Bookstore
Database

display

submit form

checkFieldsHaveValues

checkPriceIsNumeric

checkPriceIsInRange

doesISBNExist

book= create

save(book)

7745ch08final.qxd 12/13/06 8:38 PM Page 218

Exercise 8-2

Figure 8-19 shows an excerpt from a sequence diagram for the Create New Book use case (this use case is
intended for Bookstore staff, so that they can add new Book titles to their online Catalog). There are a couple of
problems with this diagram excerpt (one of which is repeated many times in the diagram). See if you can find
them both.

CHAPTER 8 ■ SEQUENCE DIAGRAMS 219

Figure 8-19. Excerpt from a sequence diagram showing a couple of pretty major problems

Catalog
Administrator

Create
New Book

page

Book

BookDAO

enter book details and click Create

create a Book object

fill in details from form

tell Book to save itself to the DB

make JDBC call to database

confirmation message
redisplay page with

7745ch08final.qxd 12/13/06 8:38 PM Page 219

Exercise 8-3

Figure 8-20 shows an excerpt from a sequence diagram for the Edit Shopping Cart use case. The problems with
this diagram are partly related to the diagram showing too much detail in some aspects, but also (ironically per-
haps) the diagram displays too little detail where it should be showing more of the design’s “plumbing.” There are
also a couple of issues to do with the use case’s scope (i.e., where it starts and finishes). In total, you should find
six errors on this diagram. Good luck!

CHAPTER 8 ■ SEQUENCE DIAGRAMS220

Figure 8-20. Excerpt from a sequence diagram showing both too much and too little detail

The system displays

the Checkout page;

the user clicks on

Edit Shopping Cart.

The system displays

the Edit Shopping

Cart page.

The user picks a

Line Item from the

Edit Shopping Cart

page.

The user modifies

the quantity of the

Line Item, then

clicks Submit.

The system validates

the entry and

redisplays the Edit

Shopping Cart page

with the totals

updated and a

confirmation

message.

The user clicks

Checkout; the

system takes the

user to the Checkout

page.

User Checkout page Edit Shopping

Cart page

Shopping Cart Line Item

display

click Edit

Shopping Cart

display

load(customerID)

fetchList

return list of Line Items

submit modified Line Item qty

validate

display

display page

click Checkout

display page

7745ch08final.qxd 12/13/06 8:38 PM Page 220

Exercise Solutions
Following are the solutions to the exercises.

Exercise 8-1 Solution: Non-OO Behavior Allocation

Figure 8-21 highlights the parts of the sequence diagram where the messages were allocated incorrectly. The
highlighted messages are really the responsibility of ExternalBook. In the current design, the validation check-
ing goes on in the boundary object, and only after that’s all done is the ExternalBook object created. Its only
purpose in life is to be passed into BookstoreDatabase for saving.

Note that two of the methods haven’t been highlighted: checkFieldsHaveValues and
checkPriceIsNumeric. These are legitimately a part of the boundary object, as they’re checking that the
incoming data is both present and in the correct format. checkPriceIsInRange, on the other hand, is “genuine”
data validation, so it belongs on ExternalBook.

On BookstoreDatabase (over on the right of Figure 8-21), two more methods have been highlighted:
doesISBNExist and save(book). In this case, it’s the caller that’s wrong—both methods should be called
by ExternalBook.

Figure 8-22 shows the corrected diagram.

CHAPTER 8 ■ SEQUENCE DIAGRAMS 221

7745ch08final.qxd 12/13/06 8:38 PM Page 221

CHAPTER 8 ■ SEQUENCE DIAGRAMS222

Figure 8-21. The sequence diagram excerpt from Exercise 8-1, with the errors highlighted

7745ch08final.qxd 12/13/06 8:38 PM Page 222

Exercise 8-2 Solution: Flowcharting

Figure 8-23 highlights the parts of the sequence diagram that have gone wrong. The main issue is that the
sequence diagram is being used as a flowchart, instead of for its primary purpose in life: to allocate behavior to
classes.

Flowcharting on sequence diagrams isn’t necessarily an evil thing in and of itself, and it is almost certainly better
than not doing the sequence diagram at all. But we consider it to be (at best) a weak usage of a sequence diagram
because it doesn’t leverage the ability to assign operations to classes while drawing message arrows. Since, in our
opinion, this activity is pretty much the fundamental place where “real OOD” happens, we’ve flagged it as an error.
We think you can (and should) do better than just using the sequence diagram as a flowchart.

CHAPTER 8 ■ SEQUENCE DIAGRAMS 223

Figure 8-22. The corrected sequence diagram excerpt for Exercise 8-1

Seller
Add External Books
to Catalog:

BASIC COURSE:
The system displays
the Add External
Book page. The Seller
types in the External
Book details (title,
ISBN, price etc) and
clicks the Add Book
button.

The system checks
that each field has a
value, and that the
price is numeric, isn't
a negative value or >
$1,000.

The system also
checks that there's a
matching ISBN in the
Bookstore database.

The system then
creates the External
Book in the
database.

. . .

Add External
Book page

External
Book

Bookstore
Database

display

click Add
Book button

checkFieldsHaveValues

checkPriceIsNumeric

book= create

validate

checkPriceIsInRange

doesISBNExist

save

save(this)

7745ch08final.qxd 12/13/06 8:38 PM Page 223

The second issue is that there’s no validation performed on the incoming form data—and therefore no error han-
dling code for rejecting bad data. Either the validation steps were left out of the use case or the designer didn’t
draw the sequence diagram directly from the use case text.

Figure 8-24 shows the corrected diagram. The corrected version includes the alternate course (shown in red) for
when the form validation fails.

CHAPTER 8 ■ SEQUENCE DIAGRAMS224

Figure 8-23. The sequence diagram excerpt from Exercise 8-2, with the errors highlighted

7745ch08final.qxd 12/13/06 8:38 PM Page 224

CHAPTER 8 ■ SEQUENCE DIAGRAMS 225

Figure 8-24. The corrected sequence diagram excerpt for Exercise 8-2

7745ch08final.qxd 12/13/06 8:38 PM Page 225

Exercise 8-3 Solution: Plumbing

Figure 8-25 highlights the parts of the sequence diagram that have gone wrong.

CHAPTER 8 ■ SEQUENCE DIAGRAMS226

Figure 8-25. The sequence diagram excerpt from Exercise 8-3, with the errors highlighted

7745ch08final.qxd 12/13/06 8:38 PM Page 226

The use case starts and finishes at the wrong stages, suggesting a problem with the overall scope of the use case.
It’s a use case about editing the Shopping Cart, but it contains details about interacting with the Checkout page
(i.e., the use case lacks focus). Luckily in this example, the problem is easy to fix, but normally you’d expect to
catch this kind of scope issue during robustness analysis or the PDR at the latest. If you encounter a sequence
diagram where the use case’s scope is still wrong, you should take a look at the process and work out what’s
gone wrong.

The next issue is more a matter of personal taste than an egregious error. The sequence diagram is showing the
focus of control (the rectangles that indicate the “lifetime” of each message). Note that this isn’t necessarily an
error, as some people do prefer to show these, but for the purposes of behavior allocation, our preference is to
not show them, as they clutter the diagram and make it more difficult to draw, without giving a whole lot back
in return.

On to the next issue, which is definitely a modeling error. In the load(customerID) message, you’d be for-
given for wondering where the customerID sprang from. Any time you see a leap of logic on a sequence
diagram, where it isn’t clear where something came from, then it’s probable that a part of the design has been
missed. In this case, the diagram is missing the CustomerAccount object, which should have been populated
when the session began. This can then be retrieved from CustomerSession. These design details all need to
be shown on the diagram, as it’s essential “plumbing” work. (In this example, it would be reasonable to put
a note on the diagram stating that CustomerSession and CustomerAccount are set up during the Login use
case, so that the diagram remains focused on the use case that we’re currently designing.) In fact, it would also
make sense to retrieve the ShoppingCart from the CustomerAccount, instead of telling the ShoppingCart
to “go find itself” based on the customer’s ID.

Next up is the fetchList method, which ShoppingCart calls on LineItem. A quick check of the class diagram
(assuming this is being automatically updated as you allocate messages on the sequence diagram) quickly reveals
that fetchList() just doesn’t belong on the LineItem class, as it returns a list of LineItems. Instead, it would
make more sense for this method to be on ShoppingCart itself, but to be called from the EditShoppingCart
boundary object.

Still on LineItem, the “return list of Line Items” arrow isn’t needed. Normally, you don’t need to draw an arrow
to show return values, as the method returning is implied by the arrow that initially calls the method.

Finally, there shouldn’t be a display method going from the ShoppingCart entity, as the boundary object is
already in control, and the very next thing it does is display the page anyway.

Figure 8-26 shows the corrected diagram.

■Exercise Figure 8-26 still lacks some detail around populating the LineItems list component—
for example, where does the Edit Shopping Cart page get the names and quantities from for each Line Item
in the list? Try redrawing the diagram with this additional detail added.

CHAPTER 8 ■ SEQUENCE DIAGRAMS 227

7745ch08final.qxd 12/13/06 8:38 PM Page 227

More Practice
This section provides a list of modeling questions that you can use to test your knowledge of
sequence diagramming. If you can’t answer a question, review the relevant sections in this
chapter until you can answer it.

CHAPTER 8 ■ SEQUENCE DIAGRAMS228

Figure 8-26. The corrected sequence diagram excerpt for Exercise 8-3

From the Checkout

page, the user clicks on

Edit Shopping Cart.

The system displays

the Edit Shopping Cart

page.

The user clicks on a

Line Item in the list of

items in his Shopping

Cart, then modifies the

quantity of the Line

Item, and clicks

Update.

The system checks that

the quantities entered

are valid, and redisplays

the Edit Shopping Cart

page with the totals

updated and a

confirmation message.

. . .

User Edit Shopping

Cart page

Shopping Cart

Line Item

Customer

Session

Customer

Account

click link

displayPage

customer= getCustomerAccount

cart= getShoppingCart

lineItems= fetchList

{for each LineItem in

the ShoppingCart }

*new

populate

LineItems

Component

display page

submit modified

LineItem qty

updateList

checkQuantities

createConfirmationMessage

display page

7745ch08final.qxd 12/13/06 8:38 PM Page 228

1. The primary purpose of a sequence diagram should be

a) To show detailed flow of control for a use case

b) To specify real-time, finite-state behavior

c) To help make an optimal allocation of functions to classes within the context of a
use case

d) To separate out alternate courses of action

2. A sequence diagram should always be

a) Cross-checked against a class diagram with operations shown on the classes

b) Reviewed to make sure all behavior specified in the use case is accounted for by
messages between objects

c) Reviewed against a GUI prototype or storyboard to make sure all possible user
actions are accounted for

d) All of the above

3. Readability of a sequence diagram is best accomplished by

a) Using detailed use case templates showing pre- and postconditions

b) Drawing it to the same level of detail as a robustness diagram

c) Following the two-paragraph rule and keeping the use cases short

d) Showing branching and conditional logic on the diagram

4. Which of the following statements is not true?

a) It’s preferable to show all alternate course of actions on a single diagram rather
than produce a separate diagram for each alternate.

b) It’s OK to turn off “focus of control” if it gets in your way.

c) Sequence diagrams show essentially the same information as collaboration
diagrams, in a different format.

d) You should always rewrite your use case text when drawing a sequence diagram.

5. What things should you consider when drawing a message between objects on a
sequence diagram? List at least four criteria, and explain why you should consider
each of them.

6. The allocation of behavior can be effectively accomplished by following a
responsibility-driven thought process. Explain the premise of Responsibility-Driven
Design (RDD). (Hint: A good book on RDD was written by Rebecca Wirfs-Brock.)

7. Is it a good idea to draw flowchart-level sequence diagrams that focus on branching
and conditional logic? Why or why not?

CHAPTER 8 ■ SEQUENCE DIAGRAMS 229

7745ch08final.qxd 12/13/06 8:38 PM Page 229

8. How should the level of abstraction of the use case text that appears on the margin of
the sequence diagram compare to the abstraction level of the diagram? (Hint: The dia-
gram should show an object/message detailed design view.)

Discuss the pros and cons of each of the following possibilities:

a) Use case text should match the diagram’s abstraction level.

b) Use case text should remain at the abstract, technology-free, implementation-
independent requirements level as in the first-draft use cases.

c) Use case text should remain at the robustness diagram abstraction level (concep-
tual design), while the sequence diagram should show additional design detail.

Summary
In this chapter we covered detailed design, the second step in the two-step design process
(the first step was preliminary design). Figure 8-27 shows where we are; the items covered in
this chapter are shown in red.

Once you’ve drawn all the sequence diagrams for the use cases you’re working on in the
current release and updated your static model, then you can safely say that you’ve finished
this stage in the process.

By now, you’re almost ready to begin coding. There’s just one last stop before code: the
Critical Design Review (CDR), which we cover in the next chapter. It’s an essential step, as it
forms something of a reality check for your design.

CHAPTER 8 ■ SEQUENCE DIAGRAMS230

7745ch08final.qxd 12/13/06 8:38 PM Page 230

Figure 8-27. Activities during the detailed design stage

CHAPTER 8 ■ SEQUENCE DIAGRAMS 231

7745ch08final.qxd 12/13/06 8:38 PM Page 231

7745ch08final.qxd 12/13/06 8:38 PM Page 232

Critical Design Review

Your project should now be in much better shape than many other projects normally are by
this stage. By now, you’ve used robustness analysis to disambiguate the use case text and dis-
cover any missing domain classes, you’ve held a Preliminary Design Review (PDR) to make
sure the use cases match up with what the customer really wants, and you’ve carefully crafted
a detailed design for the use cases you’re implementing in this release.

So, you’re nearly ready to begin coding—there’s just one quick (but vital) milestone to
check off the list first: the Critical Design Review (CDR).

233

C H A P T E R 9

7745ch09final.qxd 12/13/06 8:40 PM Page 233

The 10,000-Foot View
Why bother reviewing the design again? Here’s a hypothetical conversation that we hope will
shed some light on the subject.

Q: What’s a CDR and why am I spending time on it when I could be writing code?

A: The CDR helps you to achieve three important goals, before you begin coding:

• Ensure that the “how” of detailed design matches up with the “what” specified in
your requirements. In other words, for each use case, you need to match up the use
case with its sequence diagram.

• Review the quality of your design. So you’ll want to have at least one design expert
in the room.

• Check for continuity of messages. You need to check the direction of the message
arrows on your sequence diagrams, and make sure you can always tell which
object is in control. Sometimes you’ll see leaps between objects that don’t involve a
message between them. These leaps of logic need to be ironed out.

■Note See the section “Using the Class Diagrams to Find Errors on the Sequence Diagrams” later in this
chapter for an example problem caused by leaps of logic.

Q: Who should be involved in the CDR?

A: This might surprise you, but the customer should not be involved in the CDR—just the
designers and developers. It’s a technical review session, so it should be populated by
technically minded people.

The customer (plus key users, etc.) has a lot to contribute to the functional requirements,
use cases and so forth, but unless the customer really is a technically minded design
expert who can contribute to a design review, it’s preferable that he or she not attend the
CDR. Picture yourself having to explain to a nontechnical customer, for the fiftieth time,
what a Façade pattern is and why you’re not using it in this particular design!

Q: But isn’t it supposed to be better if the customer is closely involved in the project?

A: Absolutely—just not to the point of silliness. Remember that by this stage, the cus-
tomer has signed off on the use cases twice. And—assuming you’re following an agile
process with small, frequent releases—the customer will get to give lots of feedback on
the evolving feature set and on the UI during development. Also, keep in mind that it is
possible for a customer to micromanage a software project. Your programmers might not
actually enjoy this too much, unless of course you’ve negotiated an “optional-scope con-
tract”1 whereupon the scope of what you deliver is optional, and customers are promised
they can change their mind about the requirements during coding “for free.”

234 CHAPTER 9 ■ CRITICAL DESIGN REVIEW

1. See “Optional-Scope Contracts” on page 260 of Extreme Programming Refactored: The Case Against XP
(Apress, 2003).

7745ch09final.qxd 12/13/06 8:40 PM Page 234

Q: When is the right time to begin the CDR?

A: You need to have completed all of the sequence diagrams for the use cases that you’re
planning to implement in the current release. You should also have updated the class dia-
grams so that all of the operations that you assigned during sequence diagramming are
reflected in the static model. Having to update the diagrams during the review would be
too much of a distraction, so it’s important to make sure all of that work is finished before
the review begins.

Critical Design Review in Theory
In this section, we cover the key elements of CDR, structured as usual around our top 10
guidelines.

Top 10 Critical Design Review Guidelines
The principles discussed in this chapter can be summed up as a list of guidelines. Our top 10
list follows.

10. Make sure the sequence diagram matches the use case text.

9. Make sure (yes, again) that each sequence diagram accounts for both basic and alter-
nate courses of action.

8. Make sure that operations have been allocated to classes appropriately.

7. Review the classes on your class diagrams to make sure they all have an appropriate
set of attributes and operations.

6. If your design reflects the use of patterns or other detailed implementation constructs,
make sure that these details are reflected on the sequence diagram.

5. Trace your functional (and nonfunctional) requirements to your use cases and classes
to ensure you have covered them all.

4. Make sure your programmers “sanity check” the design and are confident they can
build it and that it will work as intended.

3. Make sure all your attributes are typed correctly, and that return values and parameter
lists on your operations are complete and correct.

2. Generate the code headers for your classes, and inspect them closely.

1. Review the test plan for your release.

Let’s walk through these top 10 CDR practices in more detail.

CHAPTER 9 ■ CRITICAL DESIGN REVIEW 235

7745ch09final.qxd 12/13/06 8:40 PM Page 235

10. Make Sure the Sequence Diagram Matches the Use Case Text
You need to be able to trace from the behavior requirements (on the left margin) across to see
how those requirements will be implemented by messages being sent between objects.

The sequence diagram should provide a visual requirements trace at a glance. That is,
the disambiguated behavior requirements should be clearly visible on the left margin of the
diagram, and directly to the right of each sentence should be the objects/messages that will
implement those behavior requirements. So it should be trivially simple to see back to the
requirements while looking at the detailed design.

During reviews, the “highlighter test” works exceptionally well (again). Highlight a sen-
tence of use case text on the margin, and then highlight the messages that show the design for
that bit of required behavior. Then just “lather, rinse, repeat” the process until the whole use
case has been checked.

9. Cover Both Basic and Alternate Courses of Action
Don’t make the mistake of saying YAGNI2 about those pesky rainy-day scenarios. They’re too
important.

8. Make Sure That Operations Have Been Allocated to Classes Appropriately
Follow the principles of Responsibility-Driven Design (RDD; see Chapter 8), and make sure
each of your classes has a cohesive, focused set of operations. With automated tools, you can
usually distinguish between operations on classes and messages that have just been labeled
on the sequence diagram by looking for parentheses “()” following the operation name on the
message arrow.

7. Review the Attributes and Operations on Your Classes
You need to review the classes on your class diagrams to ensure they all have an appropriate
set of attributes and operations. The easiest way to do this is to continuously bounce back
and forth between the sequence diagram and a detailed class diagram that shows all the
attributes and operations for the classes. It’s easy to make mistakes on sequence diagrams,
so after you draw each arrow, take a peek at the class diagram and make sure you’ve put the
operation where you intended it to go.

■Tip Look for classes without attributes and for classes with “schizophrenic personalities” (i.e., unrelated
sets of operations).

Sometimes you’ll find that you’ve overloaded a class with too many responsibilities, or
you may find that, once all the behavior allocation is done, some classes end up rather impov-
erished, with no responsibilities (as in the Book example later in this chapter).

CHAPTER 9 ■ CRITICAL DESIGN REVIEW236

2. YAGNI stands for You Aren’t Gonna Need It, a much-loved saying among Extreme Programmers.

7745ch09final.qxd 12/13/06 8:40 PM Page 236

You’ll notice a responsibility-driven theme in the Internet Bookstore review later on. The
thought process behind assigning responsibilities to classes is summed up nicely by Rebecca
Wirfs-Brock in her book Designing Object-Oriented Software:3

Responsibilities are meant to convey a sense of the purpose of an object and its place in

the system. The responsibilities of an object are all the services it provides for all the con-

tracts it supports.When we assign responsibilities to a class we are stating that each and

every instance of that class will have those responsibilities, whether there is just one

instance or many.

6. Make Sure the Chosen Design Patterns (Etc.) Are in Your Sequence Diagrams
While there are some exceptions, the general guideline here is that the sequence diagram should
show the “real design” as you intend to code it. Magic is not permissible on sequence diagrams.

5. Trace Your Requirements to Your Use Cases and Classes
Trace your functional (and nonfunctional) requirements to your use cases and classes to make
sure you have covered them all. Adjust your formality level to what’s appropriate for your proj-
ect and organization, but if you’re going to trace requirements to the design, this is the best
time to do it. Tools like EA make it easy with the built-in traceability matrix.

4. Make Sure Your Programmers “Sanity Check” the Design
It doesn’t do anybody any good to have your analysts attempt to dictate a design that’s ineffi-
cient or otherwise problematic to build. Programmers need to be involved in detailed
design.

3. Check for Correctness (Return Values, Typos, Etc.)
Make sure all your attributes are typed correctly, and that return values and parameter lists on
your operations are complete and correct. You’re going to hit the Generate Code button real
soon now, so you’d best have all your ducks lined up before you do.

2. Generate the Code Headers for Your Classes, and Inspect Them Closely
See, we told you that you were about to generate code. Once you’ve done so, inspect the code
headers carefully.

1. Review the Test Plan for Your Release
The key here is that you’re generating a list of unit tests at the logical software function level—
that is, as defined by the controllers on your robustness diagrams. Each of these logical func-
tions might explode to more than one message on a sequence diagram, and you’ll probably

CHAPTER 9 ■ CRITICAL DESIGN REVIEW 237

3. Rebecca Wirfs-Brock, Brian Wilkerson, and Laura Wiener, Designing Object-Oriented Software (Upper
Saddle River, NJ: Prentice-Hall, 1990), p. 62.

7745ch09final.qxd 12/13/06 8:40 PM Page 237

want to unit test each of these as well, but generating skeleton tests from the robustness dia-
gram will make sure you test the logical result of each of these functions as well.

■Tip Remember that you can generate (stub) test cases for the controllers on your robustness diagrams
automatically using EA with the ICONIX Process add-in. You can then collect these into a test plan, and also
generate the class/method skeletons for your unit tests.

In the second part of this chapter, we illustrate some of these points by following a CDR
session for the Internet Bookstore.

Using the Class Diagrams to Find Errors on the
Sequence Diagrams
A technique that works really well during the CDR is, as the title of this section suggests,
using the class diagrams to find errors on the sequence diagrams. Basically, this involves the
reviewer zooming in on various classes in the class diagram and looking for methods on the
wrong classes, or other anomalies, and then finding the guilty sequence diagrams.

In a recent training workshop, Doug found a Queue class that had only an Add method.
Nobody was removing anything from the queue, ever! Doug found the sequence diagram that
was supposed to use the items from the queue and discovered that the message arrows were
drawn backward—the Pull Item from Queue method had been put on the wrong class. The
Queue was on the sequence diagram (as it should have been) because the diagramming tool
put it there automatically, but somehow they still managed to draw the arrow backward.

You can find most sequence diagram errors by looking at the class diagram.

Critical Design Review in Practice:
Internet Bookstore
In this section, we walk through an example CDR for the Show Book Details and Write Cus-
tomer Review use cases. To make things a bit more interesting, we’ve structured the review
as a typical conversation between the reviewer and one of the designers.

CDR for the “Show Book Details” Use Case
The sequence diagram for the Show Book Details use case raises some important questions
about the role of encapsulation and RDD in designing modern web applications. For the
original sequence diagram, refer back to Figure 8-2, and for the class diagram, refer to
Figure 8-17.

Book Is Devoid of All Responsibilities
In the following conversation, our astute reviewer uncovers a flaw in the design. The flaw is
indicated by a class that does no work. Listen in as the details unfold.

CHAPTER 9 ■ CRITICAL DESIGN REVIEW238

7745ch09final.qxd 12/13/06 8:40 PM Page 238

Reviewer: I’ve had this nagging feeling at the back of my mind about this design. I couldn’t
put my finger on it for a while, but then it struck me while I was gargling Beethoven’s Fifth
during my shower this morning. In short, the use case is all about finding a book and dis-
playing its details—but the Book class isn’t at the center of the design. It’s just kinda hang-
ing off the right edge of the diagram on its own.

Designer: Well, the Book is a domain class, so it contains all the data you’d associate with
a book: title, description, and so on.

Reviewer: But it has no behavior. It will end up with lots of getters and setters, but no
actual responsibilities.

Designer: It’s a flexible, loosely coupled design, though. We have all these other classes
to handle individual aspects of Book’s behavior. We have a validator class,
BookDetailsController, BookDetailsCommand . . .

Reviewer: That’s exactly the thing that’s been nagging away at the back of my mind! All
the behavior that should be in Book will be spread about in other classes, making for a
rather amorphous design with no obvious starting point. What you’re talking about
amounts to functional decomposition. Distribution of responsibilities among classes
has been taken so far that you now have lots of tiny, single-method classes. In effect,
each class is being used just like a function.

■Note Back in the days of the Roman Empire, the old “OO-decomposition vs. functional decomposition”
debates used to rage fast and furious on the object design forums. The matter has long since been settled:
RDD good, functional decomposition bad.

Designer: But it’s more maintainable this way . . .

Reviewer: You’d think so, but it often turns out to be less maintainable, because there’s no
single point in the design to go to if you want to find out, say, what a Book does. It makes it
time-consuming and problematic to track things down. If you make a change that affects
Book, you have to change five or six (or more) classes instead of just one, and sometimes it
isn’t entirely clear whether you’ve tracked down all the classes that need to change.

Designer: So, what you’re saying is, Book should be the main focal element in the design
for all Book-related behaviors and responsibilities?

Reviewer: You’ve got it. Obviously, you have to take into account the design limitations
imposed on you by the framework that you’re using. Will Spring allow you to make such a
profound change in the design?

Designer: It’s a change in design philosophy. So yes, it’s quite profound as changes go.
Luckily Spring is quite flexible, so you can do whatever you want with it, up to a point.

Reviewer: That’s good to hear. What this design is missing is good, old-fashioned OO
encapsulation (coupled with RDD).

CHAPTER 9 ■ CRITICAL DESIGN REVIEW 239

7745ch09final.qxd 12/13/06 8:40 PM Page 239

■Note Centralization of responsibility for books in the Book class means that if something changes about
books (and over time you have to assume it will), you ought to be able to find it pretty quickly by looking at
the Book class, instead of searching through dozens of itty-bitty one-method classes. In other words, all the
responsibilities of doing things related to books ought to be encapsulated in the Book class.

Reviewer: Let’s take a look at which responsibilities have “leaked out” of Book, and try to
stuff them back in.

Designer: Well, there’s BookDetailsCommand. This shows up only in the sequence diagram
as an argument in the handle(..) method on BookDetailsController (see Figure 8-2) and
in the class diagram (see Figure 8-17). It’s simply there as a placeholder for the book ID
handed in via a URL, like this:

http://pretendbookstore.com/bookdetails.jsp?id=123

Designer: BookDetailsCommand gets populated with the ID (123) and handed into the
controller. But when we code it, it will look like this (peeking ahead to the source code
for a second):

public class BookDetailsCommand {

private int id;

public BookDetailsCommand() {
}

public void setId(int id) {
this.id = id;

}

public int getId() {
return id;

}

}

Reviewer: That’s the entire class?

Designer: Uh, yep.

Reviewer: OK, so the way to fix this is to start with Book. It already has an ID attribute, so
we can put that to good use. The Command class would be Book itself, initially populated
only with an ID (read in from the URL). Then you call a method on Book that tells it to go
find itself in the database and populate all its other attributes. load() would be a good
name for the new method. Then we can get rid of BookDetailsCommand altogether! (The
relevant section from the updated sequence diagram is shown in Figure 9-1.)

CHAPTER 9 ■ CRITICAL DESIGN REVIEW240

7745ch09final.qxd 12/13/06 8:40 PM Page 240

■Note The first operation, getCommandClass(), is how Spring “knows” to create a Book for the
Command class. Because the incoming URL has a parameter called id, Spring will look for a property on
the Command class (i.e., Book) called setId.

CHAPTER 9 ■ CRITICAL DESIGN REVIEW 241

Figure 9-1. Excerpt from the updated Show Book Details sequence diagram

7745ch09final.qxd 12/13/06 8:40 PM Page 241

Designer: I see what you’re getting at. So Book is now much more at the center of the
design, logically speaking. If you want to do something with a book, you go to the
Book class.

Reviewer: That’s right. Of course, Book can still delegate to other classes, but it’s safe to
regard it as the start of the journey.

CHAPTER 9 ■ CRITICAL DESIGN REVIEW242

SWARMS OF TINY CLASSES

In the Java and C# universes, one (particularly prevalent) school of design encourages you to separate the
“real” functionality (the operations) out of the domain classes and put them in separate support classes (val-
idators, DAOs, Controllers, etc.). There has, however, been much discussion on the Spring message forum
about this particular approach.

The problem is that it’s possible to “overnormalize” the design and end up with hundreds of tiny classes
flying around. Also, as we hope we’ve reinforced over the last few chapters, just because the official design
blueprints for a language or framework recommend that you follow a particular design, that doesn’t mean
you have to follow that design. It’s important to look at how the design will work for your application—how
maintainable it will be.

Remember the rules of OO design and encapsulation: a class consists of both data (the attributes/
properties) and behavior (the operations/methods). It’s a noticeable modern design trend to separate these
out so that you get separate classes to handle different aspects of a domain class’s behavior. While it does
make the design more flexible, it isn’t necessarily a good thing because (for example) a book is no longer
a cohesive, self-contained Book class; it’s splintered out into a BookDetailsValidator, a BookDao, a
JdbcBookDao, a BookDetailsController, and so on, with each class often containing just one short
method.

This type of design is typified by an anemic domain model—that is, a design where the domain classes
are all data and no behavior.

The following quote from object guru Martin Fowler sums up the situation extremely well: 4

The basic symptom of an Anemic Domain Model is that at first blush it looks like

the real thing. There are objects, many named after the nouns in the domain space,

and these objects are connected with the rich relationships and structure that true

domain models have. The catch comes when you look at the behavior, and you real-

ize that there is very little behavior on these objects. Indeed often these models come

with design rules that say that you are not to put any domain logic in the domain

objects. Instead there are a set of service objects which capture all the domain logic.

These services live on top of the domain model and use the domain model for data.

4. See www.martinfowler.com/bliki/AnemicDomainModel.html.

7745ch09final.qxd 12/13/06 8:40 PM Page 242

The Updated Diagram Doesn’t Go into Enough Detail
Sequence diagrams need to be detailed. You’re well past the point at which you can gloss over
poorly thought-out functionality. It’s time to spell out the hard details.

Reviewer: I feel like we’re making some progress here now. But the sequence diagram we
just updated (see Figure 9-1) still tells only half the story. What happens when the load()
method is called on Book? Presumably the book’s DAO is called? That seems like a whole
lot of stuff that’s just left to the reader’s imagination, so to speak.

Designer: Yeah, I just thought I’d summarize that on the diagram, as it’s a lot of detail
to draw in.

Reviewer: Well, let’s try drawing it in anyway, and see where it takes us.

Designer: OK, so when load() is called, Book needs to call the equivalent load() method
on BookDao. Hang on, that means that Book needs to be handed an instance of BookDao.

Reviewer: So we’ll need to draw a setBookDao() line from BookDetailsController to Book,
before the load(). Anything else?

Designer: The next thing is . . . wait a minute. At the moment, BookDao has only a
findById() method, which returns a new Book. That’s no good—we want it to populate
our own Book object. So we’ll need to change the way that the DAO operates.

Reviewer: For example, instead of doing this . . . (See Figure 9-2.)

Reviewer: . . . we’re doing this. (See Figure 9-3.)

Designer: If you want to load a Book, it’s implicit that you have to first set its ID. So we
could make that explicit by combining the setId() and load() methods.

CHAPTER 9 ■ CRITICAL DESIGN REVIEW 243

The fundamental horror of this anti-pattern is that it’s so contrary to the basic idea

of object-oriented design; which is to combine data and process together. The ane-

mic domain model is really just a procedural style design, exactly the kind of thing

that object bigots like me (and Eric5) have been fighting since our early days in

Smalltalk. What’s worse, many people think that anemic objects are real objects,

and thus completely miss the point of what object-oriented design is all about.

For the Internet Bookstore, we’ve tried to reach a compromise: using aggregation to link all the itty-bitty
classes that Spring wants to see to the Book domain class, and having Book delegate behavior into these
helper classes. We can thus still easily understand our design (all the “bookish” behavior is in the Book
class), while following the “Spring rules” of using validators, DAOs, and so forth.

While some separation can be useful in order to satisfy certain design patterns, a balance needs to be
achieved between monolithic, thousand-line classes at one extreme and swarms of tiny classes at the other.

5. Eric Evans is the author of Domain-Driven Design: Tackling Complexity in the Heart of Software
(Addison-Wesley, 2003).

7745ch09final.qxd 12/13/06 8:40 PM Page 243

Reviewer: You’re right. That would also make it impossible for the calling code to acciden-
tally call load() without first setting the ID. Same goes for setting the Book DAO.

Designer: Yep. So the method call would now be this (see Figure 9-4):

book.load(id, bookDao);

CHAPTER 9 ■ CRITICAL DESIGN REVIEW244

Figure 9-2. Not very domain-oriented or responsibility-driven

Book

BookDaoObjectWhichWantsBook

etc.
(populate Book with
fields from database)

book= findById(id)

new

setId(id)

Figure 9-3. Both domain-oriented and responsibility-driven, but it needs tightening up

7745ch09final.qxd 12/13/06 8:40 PM Page 244

Designer: If we’re taking this approach throughout the design, we could get rid of the
findByID() method altogether, which means we don’t have to test for it, and so on.

Reviewer: It’s a good thing we decided to design the system in detail before we began cod-
ing, then! (The finished, updated sequence diagram is shown in Figure 9-7.)

CDR for the “Write Customer Review” Use Case
As it turns out, several questions are raised by the sequence diagram for the Write Customer
Review use case. These questions lead to some further issues that need to be tightened up
before we move to code. We cover these questions in the next few sections, and then we show
the updated diagrams.

For the sequence diagram that’s being reviewed here, refer back to Figure 8-11, and for
the class diagram, refer back to Figure 8-17.

Should the Sequence Diagram Be Invoking a Login Use Case?
In the next part of the review, a question arises about whether it’s OK to invoke a use case from
a sequence diagram—and what that actually even means, in practice.

Reviewer: Let’s look at the first alternate course, “User not logged in.” Rather than saying
“take user to Login JSP” and drawing a message arrow to the Dispatcher servlet (at the
bottom of Figure 8-11), it would make more sense to invoke a separate Login use case.

CHAPTER 9 ■ CRITICAL DESIGN REVIEW 245

Figure 9-4. Narrowing the number of possible defects

7745ch09final.qxd 12/13/06 8:40 PM Page 245

■Tip To show a use case being invoked, simply add a note to the sequence diagram with text such as
“Invoke Login use case and then restart sequence diagram.” Or if your modeling tool supports it, drag the
use case directly onto the sequence diagram.

Designer: I guess that would make more sense. It might be a bit unclear what’s invoking
the use case, so the note could read “CustomerSession invokes the Login use case . . .”
I think the diagram should still show the login check, but then invoke a separate use case
to handle the case where the user needs to log in.

Reviewer: Actually, invoking a use case isn’t the same thing as making a software function
call at all. It just means you jump from one scenario into another.

Designer: Uh-huh.

Reviewer: Hey, while we’re at it, we could even separate out the login check as well as the
actual login.

Designer: Well, remember that the user doesn’t have to be logged in for all the use cases
in the Internet Bookstore. You can search for books, view book details, that sort of thing.
It’s only when you want to update stuff—write a review, buy a book, or whatever—that
you need to be logged in.

Reviewer: So you’re saying we should keep the login check in each diagram where it’s
performed, but separate the actual login part into a separate use case? OK, let’s run
with that.

Why Is “Book” Unused on the Sequence Diagram?
If you find an object sitting all on its own on the sequence diagram, without any messages
being passed to it, it’s likely that you’ve discovered a part of the design that hasn’t been thought
through in sufficient detail. Questioning the object’s existence can uncover all manner of
design questions, as our reviewer and designer now find out.

Reviewer: Over on the right of the sequence diagram (see Figure 8-11), you create a new
Book instance, and then (near the center of the diagram) you pass the new instance into
WriteCustomerReviewCommand. However, Book itself isn’t used at all. You can determine this
by the simple observation that no message arrows point at Book.

Designer: Yikes, you’re right. So, we could fix it by simply removing Book from the dia-
gram. But it makes me wonder why Book appeared on there at all if it isn’t even used.

Reviewer: This has happened because the use case text and the robustness diagram don’t
match. The use case doesn’t mention that “the system sets the book ID on the review” . . .
therefore, the sequence diagram doesn’t have a setBookId() method on it. This would
have been caught if we’d done the “highlighter test” on the robustness diagram.

CHAPTER 9 ■ CRITICAL DESIGN REVIEW246

7745ch09final.qxd 12/13/06 8:40 PM Page 246

Designer: Here’s the thing, though: I’m still not sure if we even need Book at all here. From
an implementation standpoint, the book ID would be passed in via the URL, something
like this: (Jumps up and starts scribbling on the whiteboard)

www.pretendbookstore.com/review.jsp?bookID=1234

Reviewer: So you’re saying that you would never have to actually get Book to retrieve its
ID, because you’ve already got it?

Designer: Exactly.

Reviewer: Except that now we’re missing a validation step: checking that the ID really
exists in the database. But perhaps more important, the fact that we’re talking about
removing Book raises an alarm bell, kind of. It suggests to me that we’re not following a
responsibility-driven approach to the design—that is, designing around the domain
classes.

Designer: (Thinks for a minute) How about this? We could use Book to validate whether
the ID exists in the database. We’d do something like create a Book instance, set its ID
from the incoming request, and then call a method on it called doesBookIDExist() to
make sure it’s in the database.

Reviewer: That’s the sort of thing. Or we could call a load() method, which throws a
NotFoundException if the book ID doesn’t exist.

Designer: OK, that would also make it more consistent with the Show Book Details use
case, I guess.

Reviewer: In fact, you’re right, we already solved this problem. We can reuse the design
from the previous use case. (See Figure 9-4.)

WriteCustomerReviewCommand Seems Redundant
It’s easy to simply accept design decisions that are pushed on you by your application frame-
work. But holding a CDR, in which reviewers question the design from different angles, can
often result in an improved design.

Reviewer: Looking at the class diagram (see excerpt in Figure 9-5), it seems like
WriteCustomerReviewCommand is just a wrapper class around the CustomerReview entity.
Is the Command class really needed?

Designer: It’s part of the Spring design. When you get an input from a form, the form data
must be encapsulated in a command object, hence WriteCustomerReviewCommand. The
command object gets populated from the form fields, then validated, and then passed
into the controller. The controller then transfers the data from the command class to the
domain object, which we then save to the database.

Reviewer: So we need to keep a command class of some sort; fair enough. But could you
use CustomerReview itself as the command class?

Designer: Let me take a look at the design. Actually, yes, that could simplify things and
still fit within the Spring “design way.”

CHAPTER 9 ■ CRITICAL DESIGN REVIEW 247

7745ch09final.qxd 12/13/06 8:40 PM Page 247

Reviewer: One other thing while we’re looking at this particular diagram: At this stage of
the design process, we really should have identified the multiplicity for all these kinds of
relationships and added them onto the diagram.

The updated class diagram excerpt is shown in Figure 9-6. As you can see, simply elimi-
nating that strange “wrapper” class makes the design much cleaner, reducing the number of
dependencies between classes.

■Exercise If you compare Figure 9-6 with the domain model shown back in Figure 2-7, there’s an error
to do with aggregation. Can you spot what it is? (We revisit the error during the Code Review and Model
Update in Chapter 11; see the fixed diagram in Figure 11-9.)

CHAPTER 9 ■ CRITICAL DESIGN REVIEW248

Figure 9-5. Command class for WriteCustomerReviewController, pre-prefactoring

WriteCustomerReviewController

+ doSubmitAction(WriteCustomerReviewCommand) : void
+ formBackingObject(HttpServletRequest) : WriteCustomerReviewCommand

CustomerReview

+ book: Book
+ customer: Customer
+ id: int
+ rating: int
+ review: String

WriteCustomerReviewCommand

+ book: Book
+ customer: Customer
+ customerReview: CustomerReview

+ getRating() : int
+ getReview() : String
+ getTitle() : String

Book

+ id: int
+ synopsis: String
+ title: String

Customer

+ email: String
+ firstName: String
+ id: int
+ lastName: String

getRating(), getTitle() and
getReview() are wrapper
methods around the
CustomerReview properties.

7745ch09final.qxd 12/13/06 8:40 PM Page 248

SEARCHING FOR A STABLE SET OF ABSTRACTIONS

In the old days, before refactoring replaced up-front design, it used to be a goal of a development team to min-
imize the amount of code breakage and rewriting that happened over time, as these activities were deemed
quite costly. This perception of costliness has changed (hey, change is free!), but perhaps not the reality.

If you’re trying to minimize code breakage and resultant refactoring, you want to try really hard to iden-
tify the most stable set of abstractions you can find, and then organize your code around those abstractions
that will change the least as your system evolves over time. This leads to a resilient architecture that doesn’t
break when small changes happen.

Which abstractions should you choose? The use cases? The requirements? The feature set of the pro-
gram? The feature set of the framework? The data model? The answer is . . . none of the above. You really
want to base the key abstractions in the code on true statements about the problem domain, because
the problem domain winds up being the most stable.

Consider the Internet Bookstore example. You want to sell books on the Internet and give people the
ability to view details of the books, and to read and write reviews of the books. Visitors need to be able to
search a book catalog to find the book they want. So a catalog has books, and the books have details, which
include reviews.

CHAPTER 9 ■ CRITICAL DESIGN REVIEW 249

Figure 9-6. Command class for WriteCustomerReviewController, after prefactoring and with
multiplicity added in for good measure

WriteCustomerReviewController

+ doSubmitAction(CustomerReview) : void
+ formBackingObject(HttpServletRequest) : CustomerReview

CustomerReview

+ book: Book
+ customer: Customer
+ id: int
+ rating: int
+ review: String

Book

+ id: int
+ synopsis: String
+ title: String

Customer

+ email: String
+ firstName: String
+ id: int
+ lastName: String

1

0..*

1

0..*

7745ch09final.qxd 12/13/06 8:40 PM Page 249

Is the Save Method on CustomerReviewDao or JdbcCustomerReviewDao?
A CDR can also help to ensure that the team truly understands the design that they’re
proposing.

Reviewer: Hmm, I’m not sure if your sequence diagram matches the class diagram.
The sequence diagram shows WriteCustomerReviewController calling the “save”
method on JdbcCustomerReviewDao. But on the class diagram, the method is actually
on CustomerReviewDao.

Designer: Yep, CustomerReviewDao is the interface, but the method is actually imple-
mented in JdbcCustomerReviewDao. It seemed sort of redundant to show the same
method twice on the class diagram. You can infer from looking at the diagram that if
it’s defined in the interface, then the nonabstract implementing class must also have it.
A bit too subtle, perhaps?

Reviewer: Depends on your audience. Think about it: if you have to take the time to
explain the method’s absence, then would its inclusion have really been redundant?

Designer: I guess I had been wondering if the sequence diagram should have
CustomerReviewDao on it instead of the concrete JDBC class. Do we want the sequence
diagram to be showing the JDBC implementation, or a slightly more generic version that
would work if we switched to some other persistence/ORM toolkit (which is where the
DAO approach with all its interfaces and abstractions finally comes in handy)?

Reviewer: Well, we’re designing a solution here, not an abstract framework. So let’s keep
the concrete class, JdbcCustomerReviewDao, on the sequence diagram.

CHAPTER 9 ■ CRITICAL DESIGN REVIEW250

You can add a new use case to your design, you can change the database from SQL Server to Oracle,
a new release of Spring Framework can come out that changes how the MVC paradigm works, and the
requirement to rate books between one and five stars can expand to six stars. But you’re still selling books
on the Internet, and users are still searching catalogs, viewing book details, and writing reviews.

So if you organize the behavior of the software around these abstractions, your architecture will prove
resilient to change. How do you accomplish this? Follow a responsibility-driven approach and allocate behav-
ior into the domain classes.

7745ch09final.qxd 12/13/06 8:40 PM Page 250

The Entity Classes Don’t Have Any Attributes
Finally, the CDR is an effective technique for discovering areas in the analysis space that
haven’t been fully explored.

Reviewer: Looking at the class diagram (see Figure 8-17), we have Book, Customer, and
CustomerReview, but all three classes are totally empty. What gives?

Designer: I was driving the methods and fields from the actions on the sequence diagram
and from the use case text. The situation didn’t come up where I “identified” that they
needed any attributes (or operations for that matter), so I left them off.

Reviewer: If you know that a class needs an attribute, add it to the class diagram! It’s your
last chance to do so before coding. You identified the attributes—book ID, title, and so
on—partly in the use case text, and also (if there were any) in the page specs and proto-
types. These are all added to the domain model as it gets fleshed out and transforms into
the detailed static model.

■Tip You should identify attributes and add them to their classes during robustness analysis. You then
put the functions where the data lives (one of the essential thought processes of OOD) as you draw the
sequence diagrams. You’ll also find that your understanding of the domain model is increased greatly by
going through the exercise of putting attributes on the classes.

You can also identify attributes from functional requirements. If the project is using an existing data
model, you should use this to identify which fields go in your entity classes. Another good source is your
GUI prototype/storyboard. Fields on screens often imply attributes on entity classes.

CHAPTER 9 ■ CRITICAL DESIGN REVIEW 251

7745ch09final.qxd 12/13/06 8:40 PM Page 251

The Updated Bookstore Diagrams
Figure 9-7 shows the sequence diagram for the Show Book Details use case, and Figure 9-8
shows the sequence diagram for the Write Customer Review use case, which have both been
updated following the CDR.

■Exercise If you’ve been paying close attention to the details of the Spring “command” mechanism,
you’ll notice a flaw in the sequence diagram in Figure 9-7. (Fairly major hint: Look at Book its ID.) See if you
can spot the flaw. We’ll let slip another hint when we look at the source code for BookDetailsController
in Chapter 10, and then we’ll revisit and fix the error during the Code Review and Model Update in
Chapter 11.

CHAPTER 9 ■ CRITICAL DESIGN REVIEW252

Figure 9-7. Updated sequence diagram for the Show Book Details use case

7745ch09final.qxd 12/13/06 8:40 PM Page 252

CHAPTER 9 ■ CRITICAL DESIGN REVIEW 253

Figure 9-8. Updated sequence diagram for the Write Customer Review use case

7745ch09final.qxd 12/13/06 8:40 PM Page 253

While you update the sequence diagram, you should also update the static model. The
finished class diagram is shown in Figure 9-9.

CHAPTER 9 ■ CRITICAL DESIGN REVIEW254

Figure 9-9. Updated static model following the CDR

7745ch09final.qxd 12/13/06 8:40 PM Page 254

■Exercise As we mentioned earlier in this chapter (for Figure 9-6), Figure 9-9 shows an aggregation
error if you compare it with the domain model diagram (see Figure 2-7). If you couldn’t find the error earlier
on, try again here. (We revisit the error during the Code Review and Model Update in Chapter 11.)

The changes to this diagram aren’t as severe as the changes to the sequence diagrams.
However, a couple of things have changed (see the original in Figure 8-17).
WriteCustomerReviewCommand, of course, has disappeared; instead, CustomerReview itself is
being used as the command class. The Book, Customer, and CustomerReview entities now have
attributes (meaning that when you’re coding, you won’t need to guess what they are). BookDao
has a new method, doesBookIdExist(int), which came straight from the sequence diagram.
And following the Show Book Details CDR, BookDetailsCommand has disappeared altogether.
We’ve also moved some of the classes around to tidy up the layout.

■Caution It’s useful to tidy up class diagrams so that the layout is clearer. But try not to spend hours
tinkering with the layout until it’s so tidy and symmetrical it could be mistaken for a map of midtown Man-
hattan. Class diagrams just aren’t meant to be about that—they’re about showing a structural overview of
the code you’re about to write.

Notice how the Customer entity doesn’t have a CustomerDao. This is because we’re skimping
somewhat on the security concerns for this example, but in a real-world project you’d expect
to see a CustomerDao, which CustomerSession uses to lookup the “real” customer IDs.

Summary
In this chapter, we looked at the Critical Design Review (CDR), an important milestone that
takes place between detailed design and implementation. As we discussed at the start of this
chapter, the CDR involves three main goals:

• Matching the use case text with its sequence diagram

• Checking for continuity of messages

• Reviewing for good design

If you’ve gone through the detailed design for each use case and reviewed it for these
three criteria, then your design really should be fighting-fit now and easily ready for coding.

In the next chapter, we delve into implementation. If you have your detailed design right
(as verified by the CDR milestone), then implementation should be a relatively short and
straightforward process. For this reason, we focus mainly on coding the Internet Bookstore
example, so that you can see how the code is driven directly from the sequence diagrams and
detailed class diagrams.

Figure 9-10 shows where we are (the areas covered in this chapter are shown in red).

CHAPTER 9 ■ CRITICAL DESIGN REVIEW 255

7745ch09final.qxd 12/13/06 8:40 PM Page 255

CHAPTER 9 ■ CRITICAL DESIGN REVIEW256

Figure 9-10. Review activities during the detailed design stage

7745ch09final.qxd 12/13/06 8:40 PM Page 256

Implementation: Getting from
Detailed Design to Code

If you’ve gone through all the effort to create a nice, detailed design, it pays to have a good
idea about how to translate that detailed design into source code (and unit tests, of course;
see Chapter 12). In this chapter, we walk through two of the use cases for the Internet Book-
store and show a systematic method of taking them from sequence diagrams to source code.

257

C H A P T E R 1 0

7745ch10final.qxd 12/13/06 8:44 PM Page 257

The 10,000-Foot View
Assuming you’ve done a good job with your analysis and design, you can expect coding to be
a nice, straightforward process. But you must continue to keep a close eye on your users’
requirements and, of course, on the design itself. However, if any part of the design turns out
to be wrong once you’ve begun coding, don’t hesitate to correct it.

The effort you’ve put into the design should make your life a lot easier, but it isn’t
sacrosanct.

Programmer-Driven Design
Hopefully the design wasn’t handed down to the programmers like an ironclad contract. That
sort of arrangement is highly dysfunctional and should be avoided if at all possible. The pro-
grammers should have been heavily involved in the design process (better still, they should be
driving the design). The programmers will have the greatest insight into the implementation
details and the issues that they’re likely to face.

Spring Framework
We’re targeting Spring Framework for the Internet Bookstore. In this chapter, we show how to
implement the Internet Bookstore use cases that we’ve been following from their inception.

Remember that the process we’ve described so far can be applied equally well to any
object-oriented language. The purpose of this chapter is to provide an example of how to
make that last little leap from the detailed design to the source code, to show how it all fits
together. Specifically, we’ll use Spring Web MVC using JSP for the HTML templating and
Spring’s JDBC support for data access.

■Note To keep the example from getting too bogged down in Spring-specific details, we’ve moved some
of the heavier explanations into Appendix B.

Implementation in Theory: Getting from
Design to Code
Before you begin coding from your design, you need to make sure that you have a sequence
diagram for each use case for which you’re going to deliver code in the current release, and
you need to make sure you’ve completed the Critical Design Review (CDR; see Chapter 9).

258 CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE

7745ch10final.qxd 12/13/06 8:44 PM Page 258

Top 10 Implementation Guidelines
The principles discussed in this chapter can be summed up as a list of guidelines. Our top 10
guidelines list follows.

10. Be sure to drive the code directly from the design.

9. If coding reveals the design to be wrong in some way, change it. But also review
the process.

8. Hold regular code inspections.

7. Always question the framework’s design choices.

6. Don’t let framework issues take over from business issues.

5. If the code starts to get out of control, hit the brakes and revisit the design.

4. Keep the design and the code in sync.

3. Focus on unit testing while implementing the code.

2. Don’t overcomment your code (it makes your code less maintainable and more
difficult to read).

1. Remember to implement the alternate courses as well as the basic courses.

Let’s look at each guideline in turn.

10. Be Sure to Drive the Code Directly from the Design
You’ve spent the time producing a highly focused, unambiguous, clean, crisp design. Make
sure you use it! (However, see the next guideline.)

■Tip Try to automate the process, and generate source code, SQL, XML, and so forth directly from the
design diagrams whenever possible.

■Note You shouldn’t attempt to generate SQL from the domain model, which is not a data model. But you
can draw out the database schema on a separate diagram and then generate SQL, Data Definition Language
(DDL), and so forth from it.

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE 259

7745ch10final.qxd 12/13/06 8:44 PM Page 259

9. If Coding Reveals the Design to Be Wrong in Some Way, Change It
As soon as you realize that something has gone wrong, there’s no point continuing on the
basis that it might get better once you bury the problem under several thousand more lines
of code. Instead, fix the design immediately and bring the code and the design back in sync.

But it’s also important to review the design process that led up to the error. Check the
milestones listed at the end of each chapter in this book. Were the use cases fully disam-
biguated? Is there a tight enough link between the use case text and the object model?
And so on.

8. Hold Regular Code Inspections
Give each programmer the space needed to concentrate and write error-free code. But do
make sure that everyone in the team is keeping to the design and following the same coding
conventions. The code inspection can be a part of the Code Review and Model Update that
we illustrate in Chapter 11.

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE260

INTERNET BOOKSTORE: GENERATING THE ENTITY CLASSES

All of the entity classes that we need are now nicely filled out with details (attributes and operations) in our
Enterprise Architect (EA)1 model. As luck would have it, EA has some useful code generation features, so it’s
possible to generate quite a bit of the source code directly from the model. Note that other CASE tools such
as Together,2 Rational XDE,3 and so on also offer code generation features. It’s also possible to use a “dedi-
cated” code generator such as the open-source XDoclet4 or the commercial JGenerator5 to do a lot of the
grunt work for you.

For each entity class, we need to generate several classes to be used by Spring: the “plain” entity class
itself (a very simple JavaBean consisting mainly of getters and setters; although recall from the review chap-
ters that this was something of a bone of contention between the reviewer and the designer!), a Data Access
Object (DAO, actually an interface), and an implementation of the DAO. The implementation class will use a
specific persistence framework (e.g., JDO or Hibernate), which will “plug into” the Spring framework. You can
also model your database schema in UML (using classes with a stereotype of <<table>>) and generate the
SQL that creates the database tables.

This is all fairly mechanical stuff—exactly the sort of thing that computers are designed to be good
at—so the more of this that can be automated, the better.

1. See www.sparxsystems.com.au and also www.iconixsw.com.

2. See www.borland.com/together.

3. See www-306.ibm.com/software/awdtools/developer/rosexde.

4. XDoclet is a code generation engine that operates by placing tags in your Java code. Visit http://
xdoclet.sourceforge.net/xdoclet for more information.

5. JGenerator is an enterprise software automation tool from Javelin Software. Visit www.javelinsoft.
com/jgenerator for more information.

7745ch10final.qxd 12/13/06 8:44 PM Page 260

7. Always Question the Framework’s Design Choices
If people didn’t question the design choices made by the creators of their target platform, we
would all still be writing horribly slow, fine-grained entity beans that cause expensive network
traffic for every single method call. If a particular design decision that the framework forces
upon you is questionable, look for better ways of approaching the problem, and if necessary
choose a different framework.

Speaking of frameworks . . .

6. Don’t Let Framework Issues Take Over from Business Issues
The moment that framework design issues start to drive the shape of the finished product
instead of the customer’s business requirements, something has gone wrong. It gives a whole
different meaning to the term “inversion of control.”

In fact, we often question the wisdom of using a framework at all. The framework is ulti-
mately there to save you from having to write the same “plumbing” code over and over—in
other words, it’s there to save time and effort. If the framework you’ve chosen for your project
demands that you jump through crazy design-pattern hoops, fill out reams of XML forms in
triplicate, and sacrifice a stray cat on the second Tuesday of every month, it’s time to hit the
panic button and think about alternatives.

5. If the Code Starts to Get out of Control, Hit the Brakes and Revisit the Design
Actually, if you’ve followed all the steps we’ve suggested up until now, and the code is still get-
ting out of control, you probably have some serious issues to address. Like, for example, are
the programmers ignoring the design completely?

Once you’ve done detailed sequence and class diagrams, programming should mostly
involve filling in the algorithmic details for relatively small methods that reside within highly
cohesive classes. Pretty much the whole point of everything you’ve done up to this point is to
prevent the code from getting out of control, so if you find that it is, pause, take a giant step
backward, take a couple of deep breaths, and address the underlying issues on your project.
Try to answer this question: What went wrong?

a) Your team didn’t do a good design (and you didn’t correct it in the design review).

b) Your programmers ignored the good design and “went cowboy.”

c) Your programmers didn’t participate in the design process.

d) b + c.

e) All of the above.

4. Keep the Design and the Code in Sync
Some development processes actually advise you to let the code “escape” from the design and
take its own course, and only to update the design when its obsolescence starts to “hurt.”6 Pre-
sumably this means when you discover that half your team has written to completely the
wrong set of interfaces because the design model was out of date . . .

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE 261

6. Scott W. Ambler, Agile Modeling: Effective Practices for eXtreme Programming and the Unified Process
(Hoboken, NJ: John Wiley & Sons, 2002), p. 66.

7745ch10final.qxd 12/13/06 8:44 PM Page 261

We much prefer to keep the design and the code in sync. If you’ve kept the design lean
and concentrated on keeping it grounded in reality, then keeping the design model in sync
with the developing code really shouldn’t take very long—and it shouldn’t need to be done all
that often.

3. Focus on Unit Testing While Implementing the Code
It’s a good idea to write the unit tests as you write the code. That way, you can verify that your
code works as expected and fix any bugs as they’re introduced, instead of having to try and
track them down later.

■Tip The tests can also be used to ensure that all of the use case scenarios have been implemented.
We demonstrate a technique for doing this in Chapter 12.

2. Don’t Overcomment Your Code
Overcommenting your code makes it less maintainable and more difficult to read. If the code
is well designed and you follow a decent naming convention, it should be possible to see what
the code is doing just by reading it (now there’s a concept!).

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE262

7. See www.iconixsw.com/EA/MDGLinkIntegration.html. At the time of this writing, Sparx Systems is about
to release an Eclipse version of this plug-in for Java developers. It will be released before this book
goes to press.

MDG INTEGRATION FOR ECLIPSE AND FOR VISUAL STUDIO 2005

If you’re using Eclipse or Microsoft Visual Studio 2005, an amazing way of keeping the design model and the
code in sync is to use Sparx Systems’ MDG Integration plug-in.7 The plug-in allows you to edit and navigate
your UML model from inside the IDE, and generate code from your detailed design.

The plug-in will also reverse-engineer your code to synchronize it with the design. You can change your
UML model and push those changes into the IDE, or you can edit the code in the IDE and push the changes
back into your model. You can also use the UML model to browse instantly to an operation on a class by
double-clicking the operation in the UML browser.

As you can probably imagine, we see tools like this as being key components in the implementation
and Code Review and Model Update stages of your project, because it’s now possible to right-click a class
to synchronize model and code. The tool syncs up one class/method at a time, incrementally. There just isn’t
any excuse for letting the model and code get out of sync anymore!

7745ch10final.qxd 12/13/06 8:44 PM Page 262

For example, a block of code with a comment above it like this:

// Wait for the request data to become available:
. . .

could be moved out to a separate method called waitForRequestData(), and the comment
could be deleted.

You shouldn’t need comments that narrate what the code is doing step by step; the most
useful comments generally explain the intent behind the code. But even then, often the very
fact that you need to add a comment may be a warning sign that the design itself needs to be
less obtuse.

■Tip Where comments in code are needed to describe the intent behind the code, consider that as long
as you’ve followed the process described in this book, it should be very easy to determine which use case
scenario is being implemented by comparing the code with the static model and the use case text, so quite
often, no comment is required.

1. Remember to Implement the Alternate Courses As Well As the Basic Courses
This point carries over from the detailed design. Recall from Chapter 8 that it’s vital to include
the alternate courses on your sequence diagrams, so that all the bases are covered. Once you
begin coding from the design, you’ll quickly thank yourself for having done this work, as there
shouldn’t now be any nasty surprises lurking in the design—no “Oh my gosh, we didn’t take
into account what happens if the user cancels at this point!” leading to additional (unsched-
uled and undesigned) development work.

Similarly, having spent the time identifying and then designing the alternate courses, you
do need to make sure you remember to implement them all. The use case scenarios form a
handy checklist for making sure that none of the alternate courses have been missed.

Implementation in Practice: Internet Bookstore
Without further ado, let’s leap into the Internet Bookstore implementation, starting with the
database tables that we’ll be using.

Creating the Database
We’ve created a very straightforward database to develop and test against. Figure 10-1 shows
the database tables and the relationships between them.

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE 263

7745ch10final.qxd 12/13/06 8:44 PM Page 263

And then to create the database, we use some SQL along the lines of the following:

CREATE TABLE Books (
id INTEGER NOT NULL IDENTITY PRIMARY KEY,
title VARCHAR(255),
synopsis VARCHAR(255)

);
CREATE INDEX books_title ON Books(title);

-- and so on . . .

It’s also useful to create some test data, which we’ll put in another SQL script. As you can
see, our bookstore has something for everyone, as long as everyone is a Harry Potter fan:8

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE264

Figure 10-1. Database tables for the Internet Bookstore

customerID

1

0..*

bookID

1

Books

*PK «column» id: INTEGER
«column» title: VARCHAR(255)
«column» synopsis: VARCHAR(255)

+ «PK» PK_Books(INTEGER)

CustomerReviews

*PK «column» id: INTEGER
* «column» bookID: INTEGER
* «column» customerID: INTEGER

«column» title: VARCHAR(255)
«column» review: VARCHAR(255)
«column» rating: VARCHAR(255)

+ «PK» PK_CustomerReviews(INTEGER)

Customers

*PK «column» id: INTEGER
«column» firstName: VARCHAR(50)
«column» lastName: VARCHAR(50)
«column» email: VARCHAR(50)
«column» password: VARCHAR(50)

+ «PK» PK_Customers(INTEGER)

0..*

8. Avid Harry Potter fans will instantly notice that this is “Philosopher’s Stone” in the UK and “Sorcerer’s
Stone” in the United States.

7745ch10final.qxd 12/13/06 8:44 PM Page 264

// Insert bookstore data:

INSERT INTO Books (id, title, synopsis)
VALUES

(101, 'Harry Potter and the Philosopher's Stone',
'Harry discovers that he is a wizard.'

);

INSERT INTO Books (id, title, synopsis)
VALUES

(102, 'Harry Potter and the Chamber of Secrets',
'Harry and chums attempt to solve the mystery of the Chamber of Secrets.'

);

-- etc . . .

■Note If you’re following along with the Spring technical details, at this juncture you might want to refer
to the “Folder Structure” section in Appendix B, and then the “Java Package Hierarchy” section, also in
Appendix B.

Preparing the Style Sheet
The Internet Bookstore project uses one style sheet, bookstore.css, which looks like this:

body {
font-family : Verdana, Arial, Geneva, Helvetica, sans-serif;
background-color : white;
font-size : 10pt;

}

.navbar {
background-color : #CCCCFF;
border : 1px solid;
padding : 5px;

}

.error {
color: #FF0000;
font-size: 12pt;

}

We’re sure you’ve seen a style sheet before, but we’re showing you this particular one
because of the .error style. It’s been said that in any good movie, if the director is going to
show a murder, then he or she must introduce the murder weapon at least two scenes earlier.
So we’re kind of doing that here: you’ll see the .error style get used shortly.

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE 265

7745ch10final.qxd 12/13/06 8:44 PM Page 265

Mapping Domain (Entity) Classes to Real Classes
As the domain model evolved and turned into the more detailed static model, the entity
classes (i.e., the classes from the domain model) were padded out with attributes (mostly
during robustness analysis) and operations (mostly during detailed design). Depending on
your target platform, you may or may not be able to map entity classes directly to imple-
mentation classes. However, Spring Framework positively thrives on the concept of “pure”
domain classes.

■Note We discussed this issue in the sidebar “Swarms of Tiny Classes” in Chapter 9.

We’ll look at three of the completed entity classes here: Book, Customer, and
CustomerReview.

Figure 10-2 shows part of the static model that contains these three entity classes (the
full static model is in Figure 9-10). Note that each of these classes corresponds well to a row
in the database tables shown earlier—not to the entire table.

■Note Considering that it represents incoming book reviews, CustomerReview is still somewhat lacking
in personality—that is to say, it exhibits no behavior whatsoever. As we’ve discussed, moving the validation
logic into CustomerReview (where it really does belong) would go a long way toward fixing this problem.
We’ll revisit this part of the design in Chapter 11.

In Figure 10-2, we’ve suppressed the getters and setters for each of the properties, but
when we generate the Java code from these classes, the get and set methods will be generated
for us.

Here’s Book.java, generated directly from the static model:

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE266

Figure 10-2. The three entity classes from the static model

Book

+ id: int
+ title: String
+ synopsis: int

+ load(int, BookDao) : void

CustomerReview

+ id: int
+ bookId: int
+ customerId: int
+ review: String
+ rating: int

Customer

+ id: int
+ firstName: String
+ lastName: String
+ email: String

7745ch10final.qxd 12/13/06 8:44 PM Page 266

package com.iconixsw.bookstore.domain;

import java.io.*;

public class Book implements Serializable {

private int id;
private String title;
private String synopsis;

public Book() {
}

public int getId() { return id; }
public void setId(int id) { this.id = id; }

public String getTitle() { return title; }
public void setTitle(String title) { this.title = title; }

public String getSynopsis() { return synopsis; }
public void setSynopsis(String synopsis) {

this.synopsis = synopsis;
}

public void load(int id, BookDao bookDao) {
}

}

There are several points to keep in mind with this code:

• The load method has been generated as an empty method, leaving us to fill in the gap,
which we’ll do shortly.

• Book doesn’t extend any particular class, because (unlike other enterprise application
frameworks), Spring doesn’t force us to use its own class hierarchy—at least not for
entity classes. This is the essence of Spring’s “lightweight framework” approach:
your entity classes are very simple “beans” that can be instantiated independently of
Spring if needed (e.g., for unit testing).

Customer and CustomerReview are, at this stage at least, a similarly not-too-interesting
sea of getters and setters, so we’ll spare you those and press on to the more interesting stuff.

As the project builds up a head of steam and additional use cases are implemented,
we would also add new properties and operations to these entity classes; for example, Book
might also get an author (or authorCollection) property and some “business-level” book
handling behavior. However, we only add these properties and methods as and when we
encounter them in the use cases. It’s important not to add code prospectively, just in case
it will be needed later. Luckily, you’ll be able to see exactly what needs to be added because
you’ll have mapped out the use cases and the design beforehand.

Now that we have the preliminaries out of the way, let’s take a look at the first of our two
use cases and turn it into working source code.

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE 267

7745ch10final.qxd 12/13/06 8:44 PM Page 267

Implementing the “Show Book Details” Use Case
We’ll start with the simpler of the two use cases, Show Book Details. To refresh your memory,
here’s the basic course:

The Customer types in the URL for the bookstore’s home page, which the system dis-

plays. Then the Customer clicks a link to view a Book. The system retrieves the Book

details, and displays them on the Book Details page.

The completed sequence diagram for this use case is shown in Figure 9-7.
So, the first page we need to implement is the bookstore’s home page. According to the

class diagram in Figure 9-9, we need a HomeController class that tells Spring to display
home.jsp.

HomeController
HomeController is about as simple a controller as it’s possible to get. It’s simply there to
return the main (“home”) view page, so it doesn’t do a huge amount. Figure 10-3 shows
HomeController from the static model (ModelAndView is shown in red because it’s an “exter-
nal” class—part of the Spring framework).

We need to define homeController in bookstore-servlet.xml, like this:

<bean id="homeController"
class="com.iconixsw.bookstore.web.HomeController"/>

This declaration is saying that we want a single instance of the class HomeController, and
if it’s to be referred to by other beans in the XML configuration, it shall be referred to using the
ID homeController.

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE268

Figure 10-3. HomeController from the static model

7745ch10final.qxd 12/13/06 8:44 PM Page 268

Next, here’s the class in its entirety:

package com.iconixsw.bookstore.web;

// import statements omitted . . .

public class HomeController implements Controller {

public ModelAndView handleRequest(
HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException
{

return new ModelAndView("home");
}

}

It really is about as simple as the archetypal “Hello World” Java program. All it does
is return a new ModelAndView object, primed with the word “home.” This tells Spring’s
DispatcherServlet, in effect, to forward the request to home.jsp, which will then be displayed
to the user.

The Home Page: home.jsp
Here’s home.jsp, which will be the first page that the user sees when visiting the website:

<%@ include file="include/IncludeTop.jsp" %>

<h2>Welcome to our streamlined Internet Bookstore.</h2>

<p>
We offer a comprehensive range of books, from Harry Potter to Harry Potter.

</p>
<p>
You can search for books; or alternatively browse
using our bestseller list below, or 'drill down' through our
list of categories.

</p>

<lu>

Harry Potter and the Philosopher's Stone

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE 269

7745ch10final.qxd 12/13/06 8:44 PM Page 269

Harry Potter and the Chamber of Secrets

<!-- etc . . . -->
</lu>

</body>
</html>

The first line of home.jsp invokes the IncludeTop.jsp file, which gives us the consistent
top section of the page. Then there’s some introductory blurb and a link to a search page
(search.jsp, which we haven’t implemented for this example).

The bulk of the page consists of a list of links to “book details” pages for each of the
books in our catalog. Each link points to bookdetails.htm (a “virtual” page that will map to
BookDetailsController) and includes an ID parameter that will map to the command object
(Book). (Quick reminder: During the CDR in Chapter 9, we dropped the BookDetailsCommand
class altogether, deciding instead to use Book itself as the command object.)

■Note The book list shown in home.jsp is hard-wired, partly because that was what we specified in
the Show Book Details use case, but also because (given the use cases that we’re implementing) it isn’t
yet time to implement the dynamic functionality we’d need to create an automatically updated selection
of books (e.g., a list of top 10 bestsellers).

Later, when it’s time to implement the Search for Books use case, for example, we could return to this
page and turn it into a dynamic list retrieved from the database—something more like what you’d see on
the front page of Amazon.com or BarnesAndNoble.com.

We have enough in place to try building the project (what there is of it so far) and deploy-
ing the resultant Web Archive (WAR) file to Tomcat. We won’t go into the details of the build, as
you can get this information from a multitude of Spring books,9 as well as the Spring website
itself.

Figure 10-4 shows the screenshot for the working home page.

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE270

9. See www.springframework.com/books for a good list of Spring books. We can also highly recommend
Matt Raible’s book Spring Live (SourceBeat, 2005). See www.sourcebeat.com for more information.

7745ch10final.qxd 12/13/06 8:44 PM Page 270

Here’s the sequence of events that led to the home page being displayed (see Appendix B
for the details of how all this is configured in Spring):

1. The browser request http://<domain>/bookstore/ went to the bookstore web
application’s default page, index.jsp.

2. index.jsp forwarded the request to the home page, a virtual page called home.htm.

3. This request was picked up by DispatcherServlet, which handed the request to
HomeController.

4. HomeController (the equivalent of a “Hello World” Controller) simply returned
a ModelAndView object pointing to home.jsp, and home.jsp was then invoked and the
result was displayed in the browser (see Figure 10-4).

Clicking one of the book links in home.jsp will take the user to the Book Details page for
that book. Of course, we still don’t have a Book Details page, so our first use case isn’t yet com-
plete. Let’s fix that next.

Checking the sequence diagram for Show Book Details (excerpt shown in Figure 10-6),
and the static model (excerpt shown in Figure 10-5), after the user has clicked a Book Details
link, DispatcherServlet (via various helper classes which it calls behind the scenes) creates
a new Book object and then passes the request and the new Book to BookDetailsController,
via BookDetailsController’s handle(..) method.

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE 271

Figure 10-4. The Internet Bookstore’s home page

7745ch10final.qxd 12/13/06 8:44 PM Page 271

BookDetailsController
Figure 10-5 shows BookDetailsController from the static model.

Figure 10-5 shows that BookDetailsController has a handle() method that returns a
ModelAndView. So in our code, we’ll need to construct a ModelAndView object. In fact, checking
the sequence diagram (detail shown in Figure 10-6), we need to create a ModelAndView point-
ing to the “bookdetails” view, and—for the alternate course—an alternative ModelAndView
pointing to the “booknotfound” view.

Figure 10-6 shows us pretty much exactly what we need to implement in the handle()
method, so coding it is almost entirely a mechanical process.

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE272

Figure 10-5. BookDetailsController from the static model

PROGRAMMER == DESIGNER == PROGRAMMER

Of course, we’re not trying to push programmers out of a job here—the point is really that detailed design
involves thinking like a programmer, just as programming involves thinking like a designer. So detailed
design is as much a part of the programmer’s job as cutting code is.

However, the big benefit when following this approach is that you’ll have separated out the “designing”
issues from the “coding” issues to a large extent, and reviewed the design before coding. So, coding itself
becomes, in effect, a design review stage: you’re validating the design one last time by actually coding it.
(As you’ll see in Chapter 12, you can also write unit tests following a Design-Driven Testing approach as
another form of design validation.)

7745ch10final.qxd 12/13/06 8:44 PM Page 272

So, coding from the sequence diagram, here’s BookDetailsController (the code for the
alternate course is shown in red):

package com.iconixsw.bookstore.web;

// import all and sundry . . .

public class BookDetailsController extends AbstractCommandController {

public BookDetailsController() {
setCommandClass(Book.class);

}

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE 273

Figure 10-6. Detail from the Show Book Details sequence diagram focused on
BookDetailsController

7745ch10final.qxd 12/13/06 8:44 PM Page 273

protected ModelAndView handle(
HttpServletRequest request,
HttpServletResponse response,
Object command,
BindException errors) throws Exception {

Book book = (Book) command;
try {

book.load(book.getId(), bookDao);
}
catch (NotFoundException e) {

return new ModelAndView("booknotfound");
}
return new ModelAndView("bookdetails", "book", book);

}

public void setBookDao(BookDao bookDao) {
this.bookDao = bookDao;

}
private BookDao bookDao;

}

This extends the Spring class AbstractCommandController, indicating that we want to read
command objects from the HTTP request (in this case, the book ID parameter). In the construc-
tor, we set the bean class (Book) that will be populated.

In the handle(..) method, we cast the incoming command to a Book (which it’s safe to do
because the command type was set in the constructor). Next, we tell Book to go find itself in
the database and load its data.

■Exercise In the book.load(..) line, the fact that we have to tell the Book its ID by getting it via
book.getId() is a warning sign: the code is trying to tell us that something isn’t quite right. There’s a fairly
major clue in the sequence diagram in Figure 10-6 that points to the root cause of the problem—see if you
can deduce what it is. The answer will be unveiled during the Code Review and Model Update in Chapter 11.

handle(..) finishes by returning a new ModelAndView object, which it populates as follows:

• The view is “bookdetails,” indicating that the view page will be bookdetails.jsp.

• The model is called “book,” indicating that the JSP page will be able to refer to an object
called “book,” and its value will be the Book that we retrieved.

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE274

7745ch10final.qxd 12/13/06 8:44 PM Page 274

In BookDetailsController, there’s a property called bookDao. Notice that there’s no getter
for this property, as it’s used only internally by this class. Also notice that we don’t go off and
find the value of bookDao anywhere. Instead, we make use of Spring’s bean wiring feature to set
this automatically for us. (Of course nothing’s ever completely free, as we still need to tell
Spring to do this for us, as you’ll see in a moment.)

To add BookDetailsController into the Spring framework and wire it up with the other
beans, we need to define it as a bean in bookstore-servlet.xml:

<bean id="bookDetailsController"
class="com.iconixsw.bookstore.web.BookDetailsController">

<property name="bookDao">
<ref bean="bookDao" />

</property>
</bean>

In this XML fragment, we’ve given the bean an ID, bookDetailsController (following
the Java object naming convention of lowercase first letter followed by “name case” or
“camel case” for the remaining bunched-up words), and we’ve given it a class,
BookDetailsController, in the package com.iconixsw.bookstore.web.

Because we want the controller’s bookDao property to be “autopopulated” by Spring, we
define it in the XML. bookDao refers to another bean (also called bookDao), which we define in
bookstore-servlet.xml as follows:

<bean id="bookDao"
class="com.iconixsw.bookstore.dao.jdbc.JdbcBookDao"
lazy-init="true">

<property name="dataSource">
<ref local="dataSource"/>

</property>
</bean>

This in turn has a dataSource property that refers to a bean, also called dataSource, which
configures the JDBC database connection.

Earlier, we showed the empty Book.load() method, which was generated for us. We can now
populate this method (compare this code with the sequence diagram excerpt in Figure 10-6):

public void load(int id, BookDao bookDao) throws NotFoundException {
setId(id);
bookDao.load(this);

}

What else needs to be implemented for this use case? Checking the sequence diagram
excerpt in Figure 10-6, we also need BookDao (the interface) and JdbcBookDao (the concrete
class). Figure 10-7 shows an excerpt from the static model focused on BookDao.

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE 275

7745ch10final.qxd 12/13/06 8:44 PM Page 275

JdbcBookDao is used in both the Show Book Details and Write Customer Review sequence
diagrams. The Java code for the DAO interface is pretty straightforward, as it currently defines
only one method:

package com.iconixsw.bookstore.dao;

import com.iconixsw.bookstore.domain.Book;
import org.springframework.dao.DataAccessException;

public interface BookDao {
public void load(Book book) throws DataAccessException;

}

We won’t go into the details of the JDBC implementation as it’s code-heavy and doesn’t
add a huge amount to the discussion, but if you’re interested, the complete example can be
downloaded from the book’s web page.

So, that’s basically it for this use case. There’s more explanation than code here, so it might
seem more complex than it really is. All that’s left is bookdetails.jsp (the view), which is the
fun part.

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE276

Figure 10-7. BookDao from the static model

Book

+ id: int
+ synopsis: int
+ title: String

+ load(int, BookDao) : void

JdbcBookDao

+ load(Book) : void

«interface»
BookDao

+ load(Book) : void

1

0..*

7745ch10final.qxd 12/13/06 8:44 PM Page 276

The View: bookdetails.jsp
Here’s bookdetails.jsp in all its brevity:

<%@ include file="include/IncludeTop.jsp" %>

<h2><c:out value="${book.title}"/></h2>
<p><c:out value="${book.synopsis}"/></p>

<p>
<a href="writecustomerreview.htm?bookid=<c:out value="${book.id}"/>">
Write a review of this book

</p>

</body>
</html>

Let’s look at the first three lines in bookdetails.jsp:

• The first line invokes IncludeTop.jsp, which gives us the top half of the page.

• The second line displays a heading with the book’s title. The c:out tag is part of JSTL;
c:out allows us to output the value of bean properties. The “book” bean (referred to in
${book.title}) was returned by BookDetailsController in the ModelAndView object,
effectively making it available in the JSP page.

• The third line displays a synopsis of the book. Then we see a link to the page for writing
a review of the book, which we cover in the next use case.

Figure 10-8 shows the screenshot for the Book Details page.

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE 277

7745ch10final.qxd 12/13/06 8:44 PM Page 277

Implementing the “Write Customer Review” Use Case
In this section, we walk through the Write Customer Review use case in much the same way
we just did for Show Book Details. To refresh your memory, here’s the basic course for this
use case:

On the Book Detail screen for the book currently being viewed, the Customer clicks the

Write Review button. The system checks the Customer Session to make sure the Cus-

tomer is logged in, and then it displays the Write Review screen. The Customer types in a

Book Review, gives it a Book Rating out of five stars, and clicks the Send button. The sys-

tem ensures that the Book Review isn’t too long or short, and that the Book Rating is

within one and five stars. The system then displays a confirmation screen, and the

review is added to the Pending Reviews Queue for moderation (this will be handled by

the Moderate Customer Reviews use case).

The fully reviewed, ready-to-code sequence diagram for this use case is shown in
Figure 9-8. As you walk through the code, it’s useful to simultaneously step through the
sequence diagram and compare the two.

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE278

Figure 10-8. The Book Details page

7745ch10final.qxd 12/13/06 8:44 PM Page 278

WriteCustomerReviewController
Scanning through the sequence diagram from left to right, top to bottom, the first class we
need to implement is WriteCustomerReviewController. Figure 10-9 shows part of the static
model for this class.

■Note Peeking ahead slightly, check Figure 11-9 for an updated version of part of this diagram.

The operations assigned to the classes in Figure 10-9 have been derived by stepping
mechanically through the relevant parts of the sequence diagram and turning the messages
into operations on the class diagram. These in turn, of course, turn into Java methods.

If you recall from Chapters 8 and 9, there’s quite a hefty sequence diagram for this use
case. So we’ll walk through it in several smaller segments, writing the code as we go along.

Figure 10-10 shows the first excerpt from the Write Customer Review sequence diagram,
focused on the main “form controller” class, WriteCustomerReviewController. This class’s
purpose in life is to process the user’s form containing their book review. To achieve this, the
controller must first turn the form data into a domain-level object representation (i.e., a
CustomerReview object), and then it must save the new object to the database. Let’s walk
through the design to achieve this, and turn it into code.

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE 279

Figure 10-9. Part of the static model for WriteCustomerReviewController

WriteCustomerReviewController

+ doSubmitAction(CustomerReview) : void
+ formBackingObject(HttpServletRequest) : CustomerReview

CustomerSession

+ getCustomerSession(HttpServletRequest) : CustomerSession

Book

+ load(int, BookDao) : void

CustomerReview

+ setBook(Book) : void
+ setCustomer(Customer) : void

JdbcBookDao

+ load(book) : void

JdbcCustomerReviewDao

+ save(CustomerReview) : void

CustomerReviewValidator

+ supports(Class) : boolean
+ validate(Object, Errors) : void

0..*

1

7745ch10final.qxd 12/13/06 8:44 PM Page 279

Figure 10-10 makes it pretty clear what needs to be done. We need to add a method called
formBackingObject()to WriteCustomerReviewController. This method will turn the user’s
incoming review form into a CustomerReview object.

But the class begins with a constructor that defines its command class, CustomerReview:

package com.iconixsw.bookstore.web;

// heaps of imports . . .

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE280

Figure 10-10. Excerpt from the Write Customer Review sequence diagram focused on
WriteCustomerReviewController.formBackingObject()

7745ch10final.qxd 12/13/06 8:44 PM Page 280

public class WriteCustomerReviewController extends SimpleFormController {

public WriteCustomerReviewController() {
setCommandClass(CustomerReview.class);

}

■Exercise The sequence diagram in Figure 10-10 is missing some detail that appears in the code
excerpt. See if you can figure out what’s missing. The answer can be found in the Code Review and Model
Update in Chapter 11.

Next, here’s the bulk of the new method, formBackingObject(), which essentially needs to
return an object representation of the user’s submitted form:

protected Object formBackingObject(
HttpServletRequest request)
throws Exception

{
CustomerSession customerSession =

CustomerSession.getCustomerSession(request);
if (!customerSession.isLoggedIn()) {

return null;
}
Customer customer = customerSession.getCustomer();

int bookId = RequestUtils.
getRequiredIntParameter(request, "bookid");

Book book = new Book();
try {

book.load(bookId, bookDao);
}
catch (NotFoundException e) {

book = null;
}

. . .

}
}

formBackingObject() is passed in the HTTP request, from which we extract the book ID.
As in the previous use case, we then call book.load() to tell it to go find itself in the database.
If it isn’t found (the alternate course, shown in red), then we simply set book to null.

Figure 10-11 shows the second excerpt from the Write Customer Review sequence
diagram.

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE 281

7745ch10final.qxd 12/13/06 8:44 PM Page 281

Here’s the code to implement this part of the sequence diagram, finishing off the
formBackingObject() method. Note that the “command” variable has been renamed as “review”
in the code. This should be addressed in the following Code Review and Model Update:

. . .

CustomerReview review = new CustomerReview();
review.setBook(book);
review.setCustomer(customer);
return review;

}

■Exercise formBackingObject has turned into quite a large method. What could be done to it in order
to make the code more maintainable? We refactor this part of the code and update the design during the
Code Review and Model Update in Chapter 11.

Figure 10-12 shows our third and final excerpt from the Write Customer Review sequence
diagram.

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE282

Figure 10-11. Excerpt from the Write Customer Review sequence diagram finishing off
WriteCustomerReviewController. formBackingObject()

WriteCustomerReviewController

Customer
Review

command= new

setBook(book)

setCustomer(customer)

7745ch10final.qxd 12/13/06 8:44 PM Page 282

And here’s the doSubmitAction() method in its entirety:

protected void doSubmitAction(Object command) throws Exception {
CustomerReview review = (CustomerReview) command;
customerReviewDao.save(review);

}

As the name suggests, doSubmitAction() is called when the form is submitted and it’s time
to do something about it. The method is called with a command object (the CustomerReview),
which we already populated in the formBackingObject() method. Because Spring passes it in
as an Object, we must first cast it to a CustomerReview before we can save it.

■Exercise As you may recall from the responsibility-driven discussions in Chapter 9, the functions should
go where the data lives. So, looking at doSubmitAction(), what should be done to make our code follow
this rule of thumb? (You can find the answer in the Code Review and Model Update in Chapter 11.)

But how does this class get its reference to the customerReviewDao—and the bookDao, for
that matter? These are set automatically by Spring, via its IoC mechanism. To tell Spring that
we want these to be set, they’re added to the WriteCustomerReviewController bean definition
in bookstore-servlet.xml as follows:

<bean id="writeCustomerReviewController"
class="com.iconixsw.bookstore.web.WriteCustomerReviewController">

<property name="formView">
<value>writecustomerreview</value>

</property>

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE 283

Figure 10-12. Excerpt from the Write Customer Review sequence diagram focusing on
WriteCustomerReviewController. doSubmitAction()

WriteCustomerReviewControllerDispatcher
Servlet

Jdbc
CustomerReview

Dao

("review" is the form's
command object)

doSubmitAction(command)

save(review)

7745ch10final.qxd 12/13/06 8:44 PM Page 283

<property name="bookDao">
<ref bean="bookDao" />

</property>

<property name="customerReviewDao">
<ref bean="customerReviewDao" />

</property>
</bean>

(We’ve already added the bookDao bean, and we’ll add customerReviewDao in the next section.)
Then in the WriteCustomerReviewController class itself, there are a couple of property set-

ters, which Spring then knows to call for us when the object is first initialized:

public void setBookDao(BookDao bookDao) {
this.bookDao = bookDao;

}

public void setCustomerReviewDao(
CustomerReviewDao customerReviewDao)

{
this.customerReviewDao = customerReviewDao;

}

private BookDao bookDao;
private CustomerReviewDao customerReviewDao;

Next, let’s move on to the new DAO, CustomerReviewDao.

CustomerReviewDao
Figure 10-13 shows the portion of the static model for CustomerReviewDao and its implement-
ing class, JdbcCustomerReviewDao. The diagram also shows the entity class that is the main
product of this DAO, CustomerReview.

The static model gives us the structure, but we also need to know in what context the class
will be used so that we can figure out what to put in it. For this purpose, Figure 10-14 shows a
detail from the Write Customer Review sequence diagram that deals with CustomerReviewDao
(or more specifically, JdbcCustomerReviewDao).

You can see from Figure 10-14 that there isn’t very much interaction with
CustomerReviewDao. The only point of contact is when a CustomerReview object needs to
be saved, and when it calls a method on itself (addToPendingReviewsQueue()).

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE284

7745ch10final.qxd 12/13/06 8:44 PM Page 284

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE 285

Figure 10-13. Part of the static model for CustomerReviewDao

CustomerReview

- bookId: int
- customerId: int
- id: int
- rating: int
- review: String

JdbcCustomerReviewDao

+ addToPendingReviewsQueue(CustomerReview) : void
+ save(CustomerReview) : void

«interface»

CustomerReviewDao

+ addToPendingReviewsQueue(CustomerReview) : void
+ save(CustomerReview) : void

0..*

1

Figure 10-14. Detail from the Write Customer Review sequence diagram focused on
JdbcCustomerReviewDao

Jdbc
CustomerReview

Dao

WriteCustomerReviewController

save(review)

addToPendingReviewsQueue
(review)

7745ch10final.qxd 12/13/06 8:44 PM Page 285

Here’s the CustomerReviewDao Java interface, generated directly from the class diagram:

package com.iconixsw.bookstore.dao;

import com.iconixsw.bookstore.domain.*;
import java.util.*;
import org.springframework.dao.DataAccessException;

public interface CustomerReviewDao {

public void save(CustomerReview review)
throws DataAccessException;

}

This DAO interface defines one method: save(). As the name suggests, save() writes
a CustomerReview object to the database. It hardly seems worth defining a class for just one
method, but the interface (and implementing JDBC class) will have new methods added
to it as new use cases are implemented.

We won’t cover the JdbcCustomerReviewDao implementation here, as it’s quite code-heavy.
However, if you’re interested, you can download the full source code from the book’s web page.10

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE286

ADDING TO CUSTOMERREVIEWDAO

Later, depending on the use case being implemented, we would expect to add such methods as the
following:

public CustomerReview findById(int reviewId)
throws DataAccessException;

public Collection findByCustomerId(int customerId)
throws DataAccessException;

public Collection findByBookId(int bookId)
throws DataAccessException;

The findById method would look up, populate, and return a single CustomerReview instance for
a specific review ID.

The findByCustomerId method, on the other hand, would return a Collection of
CustomerReview objects belonging to a single Customer, and findByBookId would return
a Collection of CustomerReview objects that were written for one particular Book.

10. See www.iconixprocess.com.

7745ch10final.qxd 12/13/06 8:44 PM Page 286

Finally, we need to tell Spring that the CustomerReviewDao bean will actually be a
JdbcCustomerReviewDao. We do this via bookstore-servlet.xml:

<bean id="customerReviewDao"
class="com.iconixsw.bookstore.dao.jdbc.JdbcCustomerReviewDao"
lazy-init="true">

<property name="dataSource">
<ref local="dataSource"/>

</property>

</bean>

CustomerSession
CustomerSession’s purpose in life is to track the login state (and actual Customer object) for an
individual Customer. Actually, for the purposes of this example, CustomerSession is just a pre-
tend class. It does a rattlingly good impersonation of a complete customer authentication
system, as long as your name is Billy Bob and you’re always expecting to be logged in.

You can see what methods need to be implemented on CustomerSession by checking the
sequence diagram “detail” in Figure 10-15.

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE 287

Figure 10-15. Detail from the Write Customer Review sequence diagram focused on
CustomerSession

WriteCustomerReviewController CustomerSession

Static method.
If CustomerSession doesn't exist, create
new and add to HttpSession

customerSession= getCustomerSession(request)

isLoggedIn

customer= getCustomer

7745ch10final.qxd 12/13/06 8:44 PM Page 287

Three operations need to be written. Here’s CustomerSession with the first method,
getCustomerSession(request), added:

package com.iconixsw.bookstore.web;

import com.iconixsw.bookstore.domain.*;
import javax.servlet.http.*;

public class CustomerSession {

public static CustomerSession getCustomerSession(
HttpServletRequest request) {

CustomerSession customerSession =
(CustomerSession) request.getSession().
getAttribute("CustomerSession");

if (customerSession == null) {
// Create new CustomerSession and
// add it to the HttpSession:
customerSession = new CustomerSession();
request.getSession().setAttribute(

"CustomerSession",
customerSession);

}
return customerSession;

}
}

The other two methods, isLoggedIn() and getCustomer(), use a customer field, so we
need to add that as well:

private Customer customer;

public boolean isLoggedIn() {
return customer != null;

}

public Customer getCustomer() {
return customer;

}

For the isLoggedIn() check, because this is a fake implementation, we just check to make
sure that customer isn’t null (i.e., it has been initialized).

Finally, just to reinforce the fact that this is a fake implementation, we need a way of
creating a pretend customer out of thin air. To achieve that, there’s a “bonus” method called
makeFakeCustomer(). We call this method in the constructor to ensure that the customer is
always initialized:

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE288

7745ch10final.qxd 12/13/06 8:44 PM Page 288

public CustomerSession() {
makeFakeCustomer();

}

private void makeFakeCustomer() {
customer = new Customer();
customer.setId(1);
customer.setFirstName("Billy Bob");
customer.setLastName("Dupree");
customer.setEmail("billybob@rednecks.xyz");

}

Of course, this method always returns the exact same customer, our old friend Billy Bob.
However, it’s (just about) good enough for early development and testing purposes.

■Note If you’re wondering just who the heck Billy Bob is, we encourage you to peek ahead to Chapter 13
to find out.

CustomerReviewValidator
Next, let’s create the class that handles the validation of the incoming customer review form.
The validate() method checks to see if the review text is empty. This is one of the alternate
courses, so that part of the code is shown here in red.

package com.iconixsw.bookstore.domain.logic;

// import statements omitted . . .

public class CustomerReviewValidator implements Validator {

public boolean supports(Class commandClass) {
return commandClass.isAssignableFrom(CustomerReview.class);

}

public void validate(Object command, Errors errors) {
ValidationUtils.rejectIfEmptyOrWhitespace(

errors,
"review",
"required",
"Review text is required");

}

}

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE 289

7745ch10final.qxd 12/13/06 8:44 PM Page 289

This class was written to fit into Spring’s validation framework. We’re handed an Errors
object, to which—assuming we find any validation errors in the form—we add one or more
error messages that will then be displayed to the user, next to the offending form fields.

■Exercise This implementation is missing some vital details that were specified in the use case text
(see the finished use case next to its robustness diagram in Figure 6-7). We revisit this part of the code in
the Code Review and Model Update in Chapter 11, but why not see if you can identify what’s missing first?
And, for some extra bonus points: Any guesses about why the detail might have been left out?

We also need to wire up this validator class to WriteCustomerReviewController, so that
the validator is run automatically before the form gets processed via the doSubmitAction()
method. To do that, we add a property to the writeCustomerReviewController bean in
bookstore-servlet.xml:

<property name="validator">
<bean
class="com.iconixsw.bookstore.domain.logic.CustomerReviewValidator" />

</property>

■Exercise Looking at the code for CustomerReviewValidator, what could be done to make it follow
a more responsibility-driven design? You can find the answer in the Code Review and Model Update in
Chapter 11.

The View: writecustomerreview.jsp
The JSP page, writecustomerreview.jsp, is the “view” in our MVC setup—that is, it creates the
web page that the user sees, and it includes server-side tags that Spring uses to read in the
user’s form data and populate the objects we’ve designed thus far.

Let’s walk through this JSP page piece by piece:

<%@ include file="include/IncludeTop.jsp" %>

<h2>
<c:out value="${command.book.title}"/>

</h2>

<h3>
Hello <c:out value="${command.customer.firstName}"/>,
please enter your review for this book.

</h3>

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE290

7745ch10final.qxd 12/13/06 8:44 PM Page 290

The <h2> line provides a heading with the book’s title, retrieved via the <c:out> JSTL tag
and using the lookup text command.book.title. “command” refers to the name of the main
object (a CustomerReview) that we populated the view with. command.book.title is the short-
hand equivalent of this Java code:

command.getBook().getTitle();

The next part of the page (and the bulk of it) is the form itself. This allows the user to enter
the three form fields (a title for their review, the review text, and a rating):

<form action="<c:url value="writecustomerreview.htm"/>" method="post">

<input type="hidden" name="bookid"
value="<c:out value="${command.book.id}"/>" />

<table>
<tr>

<td>Title</td>
<td>

<spring:bind path="command.title">
<input type="text"

name="title"
value="${status.value}" />

<c:out value="${status.errorMessage}" />

</spring:bind>

</td>
</tr>

<tr>
<td>Your Review</td>
<td>

<spring:bind path="command.review">
<textarea name="review" cols="50" rows="10">

<c:out value="${status.value}"/>
</textarea>

<c:out value="${status.errorMessage}" />

</spring:bind>
</td>

</tr>

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE 291

7745ch10final.qxd 12/13/06 8:44 PM Page 291

<tr>
<td>Rating (1-5)</td>
<td>

<spring:bind path="command.rating">
<input type="text" name="rating"

value="<c:out value="${status.value}"/>" />

<c:out value="${status.errorMessage}" />

</spring:bind>

</td>
</tr>

</table>

<input type="submit" value="Save Review" />
</form>

Notice that next to each form field is a tag for showing an error message (we’ve shown
these in red as they’re part of the alternate courses). These tags show the validation failure
messages, if any. Each message is shown next to the field that failed validation. We didn’t have
to do any additional work to match these up—one of the benefits of using Spring’s form vali-
dation framework.

Finally, we close off the page including a link back to the Book Details page, which would
invoke the Show Book Details use case:

<p>
<a href="bookdetails.htm?bookid=<c:out value="${command.book.id}"/>">

View book details

</p>

</body>
</html>

Figure 10-16 shows the screenshot for the Write Customer Review page.
In the screenshot, Billy Bob has submitted his review but forgot to type in an actual

review, so our alternate course validation failed as you’d expect, and the errant input field has
an error message immediately beneath it in red text. (For those who were waiting with bated
breath for the CSS “murder weapon” we introduced earlier in this chapter, that was it. We hope
the wait wasn’t too suspenseful.)

Notice that the Rating field allows only the values 1–5, but its initial value is 0. The default
should really be one of the allowed values; we return to this in Chapter 12 when we cover testing.

■Exercise The validator didn’t catch the 0 rating and highlight it on the form. We also cover this in
Chapter 12. But in the meantime, looking at the sequence diagram in Figure 9-8, what could be done to
catch this in the validation code? (The answer is in the Code Review and Model Update in Chapter 11.)

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE292

7745ch10final.qxd 12/13/06 8:44 PM Page 292

■Exercise An obvious improvement in Figure 10-16 would be to use a drop-down list for the rating
instead of a text field. Try modifying the Write Customer Review use case description to make this a specific
part of the behavior description.

That about wraps up the implementation. There are a couple more pages to implement
(e.g., the “success” view), but they’re pretty much the same as the pages we’ve already done,
so we won’t retread old ground.

We do still need to make sure the alternate courses are all taken into account. A bullet-
proof way to do this is with test cases generated directly from the controllers on the robustness
diagrams, which we cover in Chapter 12.

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE 293

Figure 10-16. The Write Customer Review page

7745ch10final.qxd 12/13/06 8:44 PM Page 293

More Practice
This section provides a list of questions that you can use to test your knowledge of use
case–driven programming and delivery. If you get stuck, search back through this chapter
to extract the answers.

1. Using ICONIX Process, what are the main design artifacts that you drive the source
code from?

a) Robustness diagrams and class diagrams

b) Sequence diagrams and class diagrams

c) Sequence diagrams and activity diagrams

d) Robustness diagrams and sequence diagrams

2. Which of the following methods belong on an entity class? For those that should be
allocated to other classes, briefly explain where (if anywhere) that the entity class
would be involved in the design.

a) A property (e.g., book title)

b) A method containing validation logic

c) JDBC code to write the entity’s data to a database table

d) A SOAP interface query to retrieve data to go in the entity class

3. Explain why it’s good practice to implement the trickiest parts of the system first and
to avoid putting the difficult parts off until the end. Try to quantify your answer.

4. Describe the differences among a CustomerReviewDao class, a CustomerReview entity,
and a CustomerReviews database table.

5. If a DAO method takes a Book argument and returns a BookReviewCollection, should
the method go on a BookDao or a BookReviewDao? Explain why.

6. If you’re implementing an alternate course in which the customer’s login details can’t
be found, what is the preferable way to implement it?

a) Make the DAO return null so that the form handler can deduce that it should dis-
play a “not found” message.

b) Make the form handler throw an exception so that the web application container
redirects to an error page.

c) Make the DAO throw an exception so that the form handler can display a “not
found” message.

d) Make the form handler set a null Customer bean in the JSP page so that the JSP
page logic displays a “not found” message.

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE294

7745ch10final.qxd 12/13/06 8:44 PM Page 294

7. Describe why a system written in the following style would quickly become unmain-
tainable. After deciphering what the code is meant to do, refactor it so that it’s more
maintainable. (Hint: You’ll need to decide which classes to reallocate the behavior to.)

public class ShoppingCartHelper extends AdhocUtilThings {
public ShoppingCartHelper() {

init();
}
public void doAction(Cart c, Book b) {

if (available(b)) c.add(b);
else throw new UnavailableException(b);

}
}

8. Which of the following statements is not true? Explain why the statement is incorrect.

a) An entity must have a 1:1 mapping with a row in a database table.

b) A DAO can return both individual entity objects and collections of objects.

c) An entity can contain references to other entities.

d) An entity class can delegate to other “helper” classes as needed.

Summary
In this chapter, we took the sequence diagrams for two of the use cases plus the static model,
and turned it all into working source code for the Internet Bookstore. Figure 10-17 shows
where we are; the items covered in this chapter are shown in red.

Because the use case text is fully disambiguated and written in the context of the domain
model, it’s possible to walk through the use case text and match it up directly with the class
and property names in the Java code.

What we haven’t yet done is written any unit tests for the Internet Bookstore—an
important step. Normally, you would expect to write the tests as you write the code. We’ve
kept the unit testing step separate so that we’re not explaining too many things at once, but
in Chapter 12, you’ll see how the unit tests can be driven directly from the controllers on the
robustness diagrams.

In the next chapter, we perform a review of the code that’s been written thus far and bring
the model up to date in any places where the code and the model might have diverged.

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE 295

7745ch10final.qxd 12/13/06 8:44 PM Page 295

CHAPTER 10 ■ IMPLEMENTATION: GETTING FROM DETAILED DESIGN TO CODE296

Figure 10-17. Coding activities during the implementation stage

7745ch10final.qxd 12/13/06 8:44 PM Page 296

Code Review and
Model Update

During coding, it’s likely that you’ll have made a few changes to the design, so the code will
now be slightly out of sync with the design diagrams. A depressingly common reaction at this
stage is to deem the design documentation obsolete, throw it away, and continue all subse-
quent development work without doing any more design work.

However, ICONIX Process (with some major tools assistance from the folks at Sparx
Systems) provides an easy technique for rescuing all that design work you did and keeping
it current so that it forms the basis of the design work for the remainder of the project.

297

C H A P T E R 1 1

7745ch11final.qxd 12/13/06 8:45 PM Page 297

The 10,000-Foot View
Why bother reviewing the code and syncing it up with the design? Here’s a hypothetical con-
versation that we hope will shed some light on the subject.

Q: You mean I have to review the code, too? Why? Isn’t working code enough?

A: The purpose of the Code Review and Model Update milestone is to bring the code and
the model back into sync, ready to begin work on the next set of use cases. So, when you
start developing the use cases for the next release, you can build on the design work that’s
already done. You’ll continue to update and refine the static model, and reuse the objects
that are in your domain model.

Q: What does the review involve?

A: As the name suggests, there are two parts to this review: checking the code and giving it
a good shaking-up if needed, and comparing the code with the detailed design diagrams.
Wherever they’ve diverged, either the code is brought back in line with the design, or the
design diagrams are updated to be in sync with the code.

Q: How often should this review take place?

A: You’ll need to tailor the timing of the Code Review and Model Update to fit your proj-
ect. But the review should ideally take place at least at the end of each release (either to
QA or to the end users), in preparation for the next release. Depending on the size of the
release, you could also hold a review session after implementing a few use cases.

Q: I read in an agile development book that I should “update only when it hurts.” Isn’t
all this updating going to take forever?

A: Updating only when it hurts is analogous to visiting the dentist only when you have
a toothache. It might be a little late by then (unless you like root canal surgery). It might
seem quite time-consuming to have to bring everything back into sync like this. But if
you don’t leave too much time between reviews, then it doesn’t take very long at all. It’s
a good way to keep everyone in the team on the same page, so to speak. Keep the
process fine-grained, and you’ll catch design or integration issues early, before they
become a problem.

Code Review and Model Update in Theory
Before we get started on the Internet Bookstore example, let’s pause for a minute to examine
why code reviews are even necessary—especially after doing all that up-front analysis and
design work. But first, the usual top 10 guidelines.

298 CHAPTER 11 ■ CODE REVIEW AND MODEL UPDATE

7745ch11final.qxd 12/13/06 8:45 PM Page 298

Top 10 Code Review and Model Update Guidelines
The principles discussed in this chapter can be summed up as a list of guidelines. Our top 10
list follows.

10. Prepare for the review, and make sure all participants have read the relevant review
material prior to the meeting.

9. Create a high-level list of items to review, based on the use cases.

8. If necessary, break down each item in the list into a smaller checklist.

7. Review code at several different levels.

6. Gather data during the review, and use it to accumulate boilerplate checklists for
future reviews.

5. Follow up the review with a list of action points e-mailed to all people involved.

4. Try to focus on error detection during the review, not error correction.

3. Use an integrated code/model browser that hot-links your modeling tool to your code
editor.

2. Keep it “just formal enough” with checklists and follow-up action lists, but don’t overdo
the bureaucracy.

1. Remember that it’s also a Model Update session, not just a Code Review.

Let’s look at these guidelines in more detail.

10. Prepare for the Review, and Make Sure All Participants Have Read the Relevant
Review Material Prior to the Meeting
Alternatively, don’t bother preparing and have a disorganized, time-wasting meeting. Or try it
the XP way: remove all the chairs from the meeting room and give the meeting a catchy name
like “early morning stand-up meeting.”

9. Create a High-Level List of Items to Review, Based on the Use Cases
The high-level list of items to review should be based on the use case titles. Although it’s possi-
ble to create a checklist of specific classes and methods, it’s better to drive the list from the use
cases, as this provides for a more structured review, which is more likely to catch behavior-
related defects or missing functionality.

8. Break Down Each List Item into a Smaller Checklist (If Necessary)
Because the high-level checklist is essentially a list of use case titles, it’s possible to drive the
fine-grained list from the controllers on the robustness diagrams.

Note that for some projects, it may not be necessary to break the list into this level of
detail; the high-level checklist (based on use cases) might be sufficient to start identifying
classes and methods to review.

CHAPTER 11 ■ CODE REVIEW AND MODEL UPDATE 299

7745ch11final.qxd 12/13/06 8:45 PM Page 299

7. Review Code at Several Different Levels
Review the code for the usual code-level stuff: adherence to coding conventions, design style,
naming, and so forth. But also compare the code with the design by walking through the
sequence diagrams. In the same way that it should be possible to trace the path of a use case
through a sequence diagram, it should also be possible to trace the path of a sequence dia-
gram through the code.1

As you review the code, walk through the behavior descriptions in the use case text and
compare the scenario text with the code. Sometimes this helps to catch missing functionality
that might have been lost during the detailed design stage.

If it proves difficult to match up the method names with the actions in the use case text,
then the code hasn’t truly been written in the context of the design—or to flip the problem
around, perhaps the use case and the design don’t match. Either way, the problem needs to be
corrected so that there’s a direct correlation between the code and the use case text. If neces-
sary, break the code into smaller methods, and use descriptive names that allow the code to be
traced back to the use cases.

6. Use Data Gathered During the Review to Accumulate Boilerplate Checklists for
Future Reviews
During code reviews, you tend to notice the same old issues again and again. Turning these
into a checklist can save a lot of time, and it can help to make sure specific problems aren’t
missed. Over time, add to the list of checklists; in particular, look for insidious problems that
might otherwise be overlooked, and make them explicit by adding them to the checklist.

If these checklists are in circulation around the company, then programmers can learn
to avoid the same old issues in the first place, saving even more time!

5. Follow Up the Review with a List of Action Points E-mailed to All People Involved
Alternatively, have the meeting, assign action items, and never follow up to make sure the
action items get done.

■Tip Have a follow-up meeting to ensure that all the action points actually did get “actioned.”

4. Try to Focus on Error Detection During the Review, Not Error Correction
It’s OK to make small updates to the model during the review, as it’s a good way to make sure
everyone is in agreement. However, if code needs to be updated or major design changes are
required, that should be done separately and a follow-up review meeting scheduled.

CHAPTER 11 ■ CODE REVIEW AND MODEL UPDATE300

1. Note that if you’re doing aspect-oriented programming (AOP), your code may very well be organized
in exactly this manner. See the sidebar “Use Cases and Aspects” in Chapter 3.

7745ch11final.qxd 12/13/06 8:45 PM Page 300

3. Use an Integrated Code/Model Browser That Hot-Links Your Modeling Tool to Your
Code Editor
This saves time and means that, when the programmer is updating the code later, none of the
changes are forgotten about. See the sidebar “Using the UML Model to Browse the Java Code”
at the end of this chapter.

2. Keep It “Just Formal Enough” with Checklists and Follow-up Action Lists
The approach described in this chapter is halfway between an informal code review and
a formal code inspection. The key is to keep it “just formal enough” without overdoing the
bureaucracy.

Some paperwork is necessary to ensure that individual items don’t get forgotten. But, like
the rest of the analysis and design process, too much documentation and too many process
hoops can lead to analysis paralysis—or to review and update paralysis, in this case. Learn to
recognize when the review has had its positive effect, and when it’s time to move on.

1. Remember That It’s Also a Model Update Session, Not Just a Code Review
The present state-of-the-art in development tools makes it trivially easy (at last!) to keep
the model and the code in sync. It borders on the criminal to not take advantage of these
capabilities.

CHAPTER 11 ■ CODE REVIEW AND MODEL UPDATE 301

2. Douglas Adams fans will recognize the similarity between a “wrongly done” code review and a violent
game of Brockian Ultra-Cricket.

THERE’S A RIGHT WAY AND A WRONG WAY TO CONDUCT A CODE REVIEW

Preparing for the code review is important, and it involves tossing various weighty objects (baseball bats, golf
clubs, skis—anything you can get a good swing with2) into the middle of the room, and then running for
cover while the reviewer and the programmer dive for the nearest makeshift weapon in order to defend their
criticisms and their code, respectively.

Well, OK, that’s what happens when a code review goes wrong and is taken to its logical conclusion.
The ideal code review isn’t so much a fight to the death as a discussion between a programmer and an
impartial observer about the code’s adherence to the design. It’s a review of the code rather than a personal
performance review. In fact, as soon as a programmer’s individual abilities are brought into question (even
subtly), that programmer will go on the defensive, and the effectiveness of the review will be dramatically
reduced.

7745ch11final.qxd 12/13/06 8:45 PM Page 301

Why Are Code Reviews Necessary After All That Design Work?
If you perform all of the up-front analysis, up-front design modeling, and the appropriate
reviews at each milestone, and you drive the code directly from the design, then the code
really should be in very good shape. It should be highly cohesive, well factored, and closely
tied to the use cases. As we discuss in Chapter 12, it will also be tied closely to the unit tests,
which in turn are tied closely to the domain model and the use cases. So, given all that, why
bother doing a review? Is it a failing of the process? Or a failure of the designers and program-
mers to do their job properly? Or none of the above?

We think it’s none of the above. Code reviews are still important, even after you do a good
job at design. Some reasons spring to mind:

• The people on your team are human (at least, we hope so); they make mistakes.

• The people on your team might well make their best effort to follow the process, but
software projects are big, complex beasts, and—even with a cookbook methodology—
it isn’t always entirely clear what the correct next step should be.

• If the team is adopting a new process for the first time, it’s likely that they will not follow
the process at first, at least not completely. It takes time to adapt, to learn the subtleties
and ins and outs of a new way of working. There might not even be complete buy-in to
the new process, until people start to see the benefits. So in the meantime, to some

CHAPTER 11 ■ CODE REVIEW AND MODEL UPDATE302

CODE REVIEW VS. CODE INSPECTION

The code review as described in this chapter involves checking the code base for adherence to the design
and then either bringing the code back into line or updating the design. The review technique we propose
here is more precisely a combined review of the model and the code. In fact, although we informally call this
step the “Code Review” milestone, it has much in common with more formal code inspections.

Some differences between a code review and a code inspection are as follows.

Code Inspection Code Review

A code inspection involves creating a checklist A code review is more ad hoc. It typically
to focus the reviewer’s attention. involves printing out some code and exam-

ining it for adherence to coding standards,
scanning for possible bugs and so on.

A code inspection finishes with a formal list A code review finishes with an informal list of
of points to fix, usually in the form of defects to-do items, written on a sticky note or in a
entered into a defect tracking system. follow-up e-mail.

Data is gathered during a code inspection. The In a code review, gathering of metrics is less
data gathered can be useful for identifying common.
common types of errors, which can then be
focused on in future inspections.

The Code Review and Model Update milestone described in this chapter is really a combination of all
the preceding attributes.

7745ch11final.qxd 12/13/06 8:45 PM Page 302

degree the design will be suboptimal and the code might not have much in common
with the design. To address this, the first few iterations of the design/code/review life
cycle should be kept quite short, so that these disparities between code and design can
be addressed quickly, before they become too great.

• Although many software projects have key similarities that you can exploit to create
a repeatable process, each project has its own variations, meaning that you sometimes
need to improvise, adapt the process, or just do whatever you think is best. But (to
make a long story short) that might not always turn out to have been the right choice.
So although it will generally be in very good shape, the design might still need to be
revisited once you have working code to use as a baseline.

• An up-front design addresses the majority of design errors, but not all. In this chapter,
we try to highlight the sorts of things that up-front design isn’t really “designed” to catch
and that you need to keep in mind both when coding and when performing the code
review.

• Sometimes it’s only when you begin coding that you realize there was a better way of
doing something, or the technology you’re using already provides a prebuilt solution for
a particular function. This is why early prototyping is an essential part of the project life
cycle, especially when you’re working with unfamiliar technology. Another good
approach is to write the unit tests while you’re drawing the sequence diagrams. It’s a
good way of getting into the “coding frame of mind” before actually turning the detailed
design into code.

With these guidelines in mind, in the next section let’s see how our entirely fictional
reviewer handles the Internet Bookstore code review. Note that we intentionally left a couple
of design errors in our example to illustrate the sorts of mistakes that would typically be
caught at this stage of the process.

Code Review and Model Update in Practice
Now it’s time to put this theory into practice, and attack the Internet Bookstore code that was
written in Chapter 10. As it turns out, we followed the design process quite closely and there
isn’t a huge amount of tidying up or bulletproofing that we need to do, but there is some.

For the Internet Bookstore code review, we’ll follow the reviewer/programmer conversa-
tion as it unfolds. They begin with a list of the use cases and walk through them one by one.
For each use case, the reviewer looks through the controllers on the robustness diagram and
uses that as the fine-grained review checklist.

■Note During the review you’ll see an occasional “Action Item”—this is a point list that the reviewer
makes during the session. The list should be e-mailed to all participants and then followed up on, either after
an agreed period of time or in a follow-up review session.

CHAPTER 11 ■ CODE REVIEW AND MODEL UPDATE 303

7745ch11final.qxd 12/13/06 8:45 PM Page 303

Code Review and Model Update Checklist
It’s important to go into a review with a prepared checklist. This checklist is essentially just
a list of the use cases and their basic and alternate courses (it’s very easy to prepare).

For this review, the reviewer will look at two use cases (you can probably guess which
two):

• Show Book Details

• Write Customer Review

The reviewer and the programmer will walk through both of these use cases, and for each
one trace it to the code, via the controllers on the preliminary design and the detailed design.

■Tip If any code doesn’t obviously trace back to the use cases using the reverse of this process, it’s a
surefire sign that the code and the requirements aren’t tied closely enough together.

“Show Book Details” Use Case
The review begins with Show Book Details. *Checking the robustness diagram (see
Figure 5-11), this use case has these controllers (logical software functions):

• Display links

• Retrieve List of Books

• Retrieve Book Details

• Display Book Details page

• Display Book Details Not Found page

The code for the first three functions all looks fine, so the review kicks into action with the
“Display Book Details page” controller.

“Display Book Details Page” Controller

Reviewer: Here’s the use case text:

BASIC COURSE:

The Customer types in the URL for the bookstore’s home page. The system displays a

list of books from the Catalog on the home page, in the form of clickable links. The

Customer clicks a link on the home page, and the system retrieves the book details

for the selected book and displays them on the Book Details page.

CHAPTER 11 ■ CODE REVIEW AND MODEL UPDATE304

7745ch11final.qxd 12/13/06 8:45 PM Page 304

ALTERNATE COURSES:

Book not found: The system displays a Book Details Not Found page.

Programmer: We can trace the Display Book Details page controller via the sequence
diagram to the BookDetailsController class. (See Figure 9-7.)

Reviewer: (Pausing to get his bearings) OK, so let’s take a look at the handle() method in
BookDetailsController. If I recall, this handles an incoming browser request to show the
details of a Book, given its ID. (The code that returns the Book Details view is shown in red.)

protected ModelAndView handle(
HttpServletRequest request,
HttpServletResponse response,
Object command,
BindException errors) throws Exception {

Book book = (Book) command;
try {

book.load(book.getId(), bookDao);
}
catch (NotFoundException e) {

return new ModelAndView("booknotfound”);
}
return new ModelAndView("bookdetails”, "book”, book);

}

Reviewer: (Scratches his head) Hmm, well . . . I think maybe I have a problem with the way
that the book is being loaded. It seems odd that you’re having to pass the book’s ID in to
itself, when it obviously already knows the ID.

Programmer: Yep. It’s strange—when I looked on the sequence diagram (see excerpt in
Figure 11-1), it didn’t seem to be an issue. But in the code it looks odd.

Reviewer: Here’s the problem: the design is wrong!

■Tip Usually, you can pick up a fairly major warning sign that something is wrong from looking at the
sequence diagram. From there, tracking down what’s wrong is rather like following a trail of breadcrumbs
(as we demonstrate in this review segment).

Reviewer: (Glues on Poirot moustache) Clue number 1: The load() message passes in an
ID and a bookDao, but on the diagram there’s not even a hint as to where these come from.
It’s a dead giveaway that something in that area of the design hasn’t been thought through
to the required level of detail.

CHAPTER 11 ■ CODE REVIEW AND MODEL UPDATE 305

7745ch11final.qxd 12/13/06 8:45 PM Page 305

Programmer: But that doesn’t explain what’s actually wrong with the design—just that
something might not be right.

Reviewer: Well, then, let’s follow the breadcrumbs. We need to find out where the ID and
the bookDao come from. Clue number 2: You’re setting the ID on the Book. But the Book is
our Spring “command” object, and the ID should be set automatically for us because it’s
passed in via the web request. But—and this is clue number 3—this isn’t shown on the
diagram. We also need to show the bookDao being set. And finally, clue number 4: It isn’t
actually the DispatcherServlet class that creates the Command object.

Programmer: I know, it’s actually ServletRequestDataBinder, one of Spring’s helper
classes. But we’ve generally used DispatcherServlet to mean “some Spring class or
other”—it’s a black box.

Reviewer: Sometimes it’s probably OK to do that. But in this case, glossing over the details
like that means that you missed a detail.

CHAPTER 11 ■ CODE REVIEW AND MODEL UPDATE306

Figure 11-1. The design is missing a crucial detail.

BookDetailsController

Book

Dispatcher
Servlet

command= new Book()

ModelAndView= handle (request,
response, book, errors)

load(id, bookDao)

setId(id)

7745ch11final.qxd 12/13/06 8:45 PM Page 306

■Note ServletRequestDataBinder performs data binding from servlet request parameters to Java-
Beans. For example, if the request includes a parameter called id that needs to be mapped to a Book
JavaBean, the data binder will look for a property called Book.setId(), and pass in the parameter’s value.
In our example, ServletRequestDataBinder is actually used by BaseCommandController, an abstract
Spring class that our BookDetailsController extends (see Figure B-2 in Appendix B).

■Action Item Update the sequence diagram to show the “command” Book ID being set where it’s really
being set, and then revise the design so that the ID doesn’t have to be passed into the load() method.

Time-warp forward to the follow-up meeting . . .

Programmer: Here’s the corrected diagram (see Figure 11-2). In the diagram, I’m showing
a lot more of the behind-the-scenes Spring detail to get to the bottom of the design error.
So I’ve shown all the Spring classes and methods in red. BookDetailsController is our
class, but it extends an abstract Spring class.

Reviewer: That gives a much better idea of what’s really going on. It’s good to map out
your framework’s detail like this for at least one use case, to gain an understanding of
what’s going on behind the scenes (but you definitely wouldn’t want to repeat all this
detail for every single use case).

■Tip Modern UML tools can reverse-engineer source code into sequence diagrams, which can provide an
overview of what the code’s doing where. However, often it’s more useful to just draw the diagrams manu-
ally, as it engages the gray matter and gets you thinking about the design—by far the best way to learn how
something works.

Programmer: And here’s the corrected source code, in BookDetailsController.handle():

book.load(bookDao);

Then in Book, I’ve changed the load(id, bookDao) method so that it no longer takes the
redundant ID:

public void load(BookDao bookDao) throws NotFoundException {
bookDao.load(this);

}

CHAPTER 11 ■ CODE REVIEW AND MODEL UPDATE 307

7745ch11final.qxd 12/13/06 8:45 PM Page 307

Display “Book Details Not Found Page” Controller

Reviewer: Let’s take a look at the “Book Details Not Found page” controller next.

Programmer: OK, here it is on the robustness diagram. (See excerpt in Figure 11-3.)

Reviewer: In the use case text on the left of the diagram, the alternate course is labeled
“Book Not Found,” so we need to make sure that there’s a matching piece of code that
obviously implements the same alternate course. And ideally, it needs to be easy to find,
without too much digging and scrutinizing of the code.

CHAPTER 11 ■ CODE REVIEW AND MODEL UPDATE308

Figure 11-2. The design was missing a crucial detail: the fact that the Book ID was being set for us

7745ch11final.qxd 12/13/06 8:45 PM Page 308

Programmer: The code you’re looking for is in the same handle() method that we just
looked at (the alternate course is shown in red):

try {
book.load(bookDao);

}
catch (NotFoundException e) {

return new ModelAndView("booknotfound”);
}

Reviewer: Looks good to me. The fact that you’re being forced to catch a
NotFoundException is a good thing, as it shows that the alternate course is being handled
correctly.

“Write Customer Review” Use Case
The team now moves on to the second use case, Write Customer Review. Checking the robust-
ness diagram (see Figure 6-7), this use case has these logical functions (controllers):

• Is user logged in?

• Display Write Review page

• Enter review text

• Assign Review Rating

• Set Book ID on Customer Review

CHAPTER 11 ■ CODE REVIEW AND MODEL UPDATE 309

Figure 11-3. The constellation of . . . No, hang on—it’s part of the Show Book Details robustness
diagram.

7745ch11final.qxd 12/13/06 8:45 PM Page 309

• Display Confirmation page

• The “validation” controllers “Is Book Review length OK?” and “Is Review Rating in
allowed range?”

• Add Customer Review to Pending Reviews Queue

• Display “review exceeds max length” message

• Display “rating outside allowed range” message

Next, we show the highlights of the review session walking through these behavior
fragments.

Finding a Starting Point
Reviewer: We may as well start at the top-left of the robustness diagram and work our way
through the controllers.

Programmer: A lot of these first controllers have been implemented as methods on the
WriteCustomerReviewController class, so that seems like a good place to start.

Reviewer: WriteCustomerReviewController has a constructor that defines its command
class (CustomerReview). But on the detailed design, I can’t see anything that shows this.
(See the sequence diagram in Figure 10-10 and the code excerpt immediately following it.)

Programmer: Setting the command class is a function of the framework that we’re using,
and it didn’t really figure in the design as it was being driven from the use cases.

■Tip Usually, leaps of logic in the design are exposed during sequence diagramming because you’re
designing at a very low level by that stage (especially if you’re writing the unit test skeletons at the same
time). However, constructor detail is commonly missed. Just something to be aware of.

■Action Item Update the sequence diagram to show the constructor detail for
WriteCustomerReviewController.

The “Validation” Controllers, Part 1 (in Which CustomerReview Is Deemed Irresponsible)
Reviewer: Before we really get into this controller, there’s a fairly major issue that I have
with this part of the design.

Programmer: (Putting down his chocolate-chip cookie) Mmph?

CHAPTER 11 ■ CODE REVIEW AND MODEL UPDATE310

7745ch11final.qxd 12/13/06 8:45 PM Page 310

Reviewer: We were discussing earlier about RDD, and how each domain class needs to be
the logical starting point if you’re hunting down the behaviors and responsibilities for that
class. Well, the “validation” controllers are a really obvious candidate for being the respon-
sibilities of the domain class.

Programmer: So instead of having a separate CustomerReviewValidator class, you’d put
the validation code in the CustomerReview domain class itself?

Reviewer: That’s exactly right. But we didn’t actually make that change prior to coding.
The result is that we now have a separate CustomerReviewValidator class that validates the
data contained in CustomerReview.

Programmer: Yeah, to be honest, I shrugged off the issue because I couldn’t see what the
problem was. It’s just one extra class, after all.

Reviewer: You’re right, it isn’t much of a problem at the moment. But it’s storing up trou-
ble for later. Remember, this is only the beginning of the Internet Bookstore project; there
are still lots of use cases and heaps of domain classes to implement. If each one of those
has its own validator class, that’s twice the number of classes, with no central point of
control for each one.

■Note The root cause of the “swarms of tiny classes” problem can be traced all the way back to the tech-
nical architecture. For example, see the “layers” diagram in Figure 7-7. In that diagram, the input validators
are shown on the Controllers layer, whereas the domain classes are shown separately, in the Model layer.
Really, these should be jammed tightly together, as the validation logic should live in the same class as the
data it’s validating.

Programmer: So, I guess what you’re building up to is, we should fix the design now
before we implement any more use cases.

Reviewer: Sounds like a plan. But before we get started, looking at the sequence diagram
(see excerpt in Figure 11-4; the original is in Figure 8-11), the detail for
CustomerReviewValidator hasn’t exactly been fleshed out.

Programmer: Yes, I think we just took it as having been “predesigned” by Spring, so we
didn’t go into detail.

■Tip “We didn’t go into detail” really means “We didn’t think it through in detail.” The golden rule is, if the
detail is in the use case, make absolutely sure that it also appears in the sequence diagram. Otherwise, as
you can see happening in this review, it will just come back to haunt you!

CHAPTER 11 ■ CODE REVIEW AND MODEL UPDATE 311

7745ch11final.qxd 12/13/06 8:45 PM Page 311

Reviewer: A telltale sign is that the alternate course message “add validation errors to
Errors list” is a bit vague. I think if we had included the detail, it would have looked some-
thing like this. (Brings up sequence diagram on projector and clicks away; see Figure 11-5.)

Reviewer: Now that gives us something we can work with.

■Exercise The sequence diagram in Figure 11-5, though better, is still not quite complete. See if you can
identify what’s missing. (Hint: Compare the diagram with the use case text.) The answer is revealed in the
next review segment.

CHAPTER 11 ■ CODE REVIEW AND MODEL UPDATE312

Figure 11-4. Detail (or lack thereof) from the Write Customer Review sequence diagram

7745ch11final.qxd 12/13/06 8:45 PM Page 312

Programmer: OK, to recap, we’re looking for a way to avoid having to create a separate
Validator class for every single domain class. Actually, our revamped sequence diagram
gives me an idea. Before validating, Spring always calls the supports(commandClass)
method. So what we could do is create a single BookstoreValidator class that supports all
of our domain classes. Then when the validate() method is called, it just calls a vali-
date() method on the respective domain class.

Reviewer: Wow, that’s a mouthful. Can you sketch it out for me?

Programmer: Sure. (See Figure 11-6.)

CHAPTER 11 ■ CODE REVIEW AND MODEL UPDATE 313

Figure 11-5. Detail from the Write Customer Review sequence diagram, now with detail (though
still not complete)

7745ch11final.qxd 12/13/06 8:45 PM Page 313

Programmer: (Walking through the diagram) Spring checks to see if BookstoreValidator
supports this command class, which in this case is CustomerReview. The validator does a
check to see if the command class has a validate() method. One way would be to use
Java’s reflection API, like this:

public boolean supports(Class commandClass) {
return commandClass.getMethod(

"validate”, new Class[]{}) != null;
}

Reviewer: (Drinking from a can of fizzy soda, which suddenly bubbles out of his nose)
Sorry. Well, it might be a bit more OO if you define an interface for domain object valida-
tors. Alternatively, as we don’t have a common BookstoreDomainObject interface, we could
create one of those and define a validate() method on it, and thus make it a requirement
that every one of our domain classes has a validate() method.

■Action Item Replace CustomerReviewValidator with a more generic BookstoreValidator,
and move the domain-specific validation code into CustomerReview. Also, create a common
BookstoreDomainObject interface.

CHAPTER 11 ■ CODE REVIEW AND MODEL UPDATE314

Figure 11-6. Proposed design with a single BookstoreValidator class

7745ch11final.qxd 12/13/06 8:45 PM Page 314

Time-warp forward to the follow-up meeting . . .

Programmer: Right, we now have a new interface that I’ve called DomainObject
(BookstoreDomainObject seemed a bit too specific, as we could maybe reuse this on
other projects):

public interface DomainObject {
public void validate(Errors errors);

}

And CustomerReviewValidator has been replaced with a new, more generic validator class:

public class BookstoreValidator implements Validator {
public boolean supports(Class commandClass) {

return commandClass.isAssignableFrom(DomainObject.class);
}

public void validate(Object command, Errors errors) {
DomainObject domainObj = (DomainObject) command;
domainObj.validate(errors);

}
}

Reviewer: Actually, to be consistent, you could do the same with BookstoreValidator;
perhaps call it DomainObjectValidator.

Programmer: Good point—will do. And then, perhaps most important, the validation
code has been moved into CustomerReview: (Cheers of elation from Doug and Matt.)

public class CustomerReview implements DomainObject, Serializable {

. . .

public void validate(Errors errors) {
ValidationUtils.rejectIfEmptyOrWhitespace(

errors, // list of errors to show the user
"review”, // the field to validate
"required”, // it’s required
"Review text is required”); // text to add to the errors list

}
}

And finally, to tie it all together, in bookstore-servlet.xml I’ve changed the
WriteCustomerReviewController bean’s validator to be BookstoreValidator instead of
CustomerReviewValidator:

CHAPTER 11 ■ CODE REVIEW AND MODEL UPDATE 315

7745ch11final.qxd 12/13/06 8:45 PM Page 315

<bean id=”writeCustomerReviewController”
class=”com.iconixsw.bookstore.web.WriteCustomerReviewController”>

. . .

<property name=”validator”>
<bean class=
"com.iconixsw.bookstore.domain.BookstoreValidator” />

</property>
</bean>

Programmer: I’ve also gotten rid of the “logic” package beneath domain, since we’re now
putting all of the logic directly into the domain classes.

Reviewer: Good idea. It’s a useful warning sign, that if you feel the need to create an
entire, separate logic package (let alone a separate class), something’s probably gone
wrong in the design.

The “Validation” Controllers, Part 2 (in Which Our Intrepid Programmer Discovers That He’s
Forgotten to Code an Alternate Course of Action)

Programmer: Still looking at validation for Write Customer Review . . . there are a couple
of validation controllers on the robustness diagram: one of them checks the review
length, and the other checks that the review rating is within the allowed range. (The vali-
date() logic is now in CustomerReview, as just shown.)

Reviewer: Hmm, something doesn’t quite seem right here. Let’s compare the validation
code with the relevant part of the use case text:

The Customer types in a Book Review, gives it a Book Rating out of five stars, and

clicks the Send button. The system ensures that the Book ID exists in the database,
the Book Review isn’t too long or short, and that the Book Rating is within one and
five stars.

Programmer: Well let’s see, looking through the code, we check to see if the review text is
empty, and . . . whoops, I see what you mean.

Reviewer: Yep, we also need to check that the text isn’t too long, that the Book ID exists,
and that the Book Rating is within one and five stars.

Programmer: That’s actually quite a bit of missing functionality right there. I’m surprised
I missed it, when it’s right there in the use case text.

Reviewer: The reason you missed it is because the sequence diagram didn’t have indi-
vidual methods for each validation check (see Figure 11-4). Instead, there was a single
“blanket” validation method that was meant to contain all of the validation checks. So
the problem can actually be traced back to our interpretation of the robustness dia-
gram, which contained the validation controllers.

CHAPTER 11 ■ CODE REVIEW AND MODEL UPDATE316

7745ch11final.qxd 12/13/06 8:45 PM Page 316

■Tip Each controller must turn into a method (sometimes several methods) on the sequence diagram.
If a controller is missed, the result is that some functionality will almost inevitably be missed in the code.
In some cases, your controllers might be “real control classes,” which really doesn’t change much because
those classes have methods, too.

Being more coarse-grained on the robustness diagram is OK, but you need to “get atomic” on the
sequence diagram. In the example, the programmer got atomic on the robustness diagram but reverted
to “molecular” on the sequence diagram.

■Tip The “missing functionality” error would also have been caught if we’d written test cases based on the
controllers (remember that these can be generated automatically) and then written unit tests based on the
test cases. We revisit this example in Chapter 12 to show how this is done.

Programmer: So the sequence diagram should have looked like this . . . (Grabs the mouse
and edits the sequence diagram; see Figure 11-7.)

CHAPTER 11 ■ CODE REVIEW AND MODEL UPDATE 317

Figure 11-7. The corrected sequence diagram

7745ch11final.qxd 12/13/06 8:45 PM Page 317

Reviewer: I see you’ve also added in a checkTitleLength() message; nice catch. Checking
the title length wasn’t in the use case text, but it probably should have been. We should
add it in now.

■Action Item Code the missing validation steps in CustomerReview according to the revised sequence
diagram. Also, update the use case text to mention validating the review title length.

Time-warp forward to the follow-up meeting . . .

Programmer: Here’s the corrected source code:

public class CustomerReview implements DomainObject, Serializable {

public void validate(Errors errors) {
checkBookExists(errors);
checkTitleLength(errors);
checkReviewLength(errors);
checkRating(review, errors);

}

Reviewer: OK, so you’re calling four separate validation methods: checkBookExists,
checkTitleLength, checkReviewLength, and checkRating. For each one, you pass in the
Errors object that we cumulatively add the errors to.

Programmer: Yep. Here’s the first of the new validation methods:

private void checkBookExists(Errors errors) {
if (book == null) {

errors.rejectValue("book”,
"BookNotFound”,
"The selected book could not be found.”);

}
}

If the Book was set to null previously by WriteCustomerReviewController, then that
basically means it wasn’t found (see the alternate course coded up in Chapter 10).
So we can, in effect, reject the Book ID that was passed in from the browser, using
errors.rejectValue().

Reviewer: Looks good so far.

Programmer: Now here’s the next method, checkReviewLength(). It’s remarkably similar
to checkTitleLength(), so I’ve skipped over that one for brevity:

CHAPTER 11 ■ CODE REVIEW AND MODEL UPDATE318

7745ch11final.qxd 12/13/06 8:45 PM Page 318

private void checkReviewLength(Errors errors) {

ValidationUtils.rejectIfEmptyOrWhitespace(
errors,
"review”,
"required”,
"Review text is required”);

if (review != null && review.length() > 10000) {
errors.rejectValue("review”,

"too_long”,
"The review you entered is " +
"a novel in itself; please try " +
"to shorten it”);

}
}

Programmer: There’s a bit more to this method, as it’s doing two checks on the review.
The first check is unchanged from the previous version—it’s using a convenience method
in ValidationUtils to add an error to the list if the review text is empty. Then after that we
do a manual check to make sure the review text isn’t too long.

Reviewer: You might want to move the 10,000 literal into a constant. Actually, I notice you
didn’t include some of this detail in the sequence diagram, but we’ve broken the back of
this now, so let’s move on.

Programmer: OK. Here’s the last of the four new methods, checkRating(), which makes
sure that the rating is between one and five:

private void checkRating(Errors errors) {
if (rating < 1 || rating > 5) {

errors.rejectValue("rating”,
"outofrange”,

"The rating must be between 1 and 5”);
}

}
}

Reviewer: Good! Without this, the user would have been able to enter 0, or indeed any
old value.

■Note Validation code is a prime candidate for effective unit testing. We describe in Chapter 12 how to
drive the unit tests from the (validation) controllers on your robustness diagrams.

CHAPTER 11 ■ CODE REVIEW AND MODEL UPDATE 319

7745ch11final.qxd 12/13/06 8:45 PM Page 319

Figure 11-8 shows a screenshot with our new CustomerReview validation logic in action.

The formBackingObject() Method Is Too Complex
Reviewer: On WriteCustomerReviewController, the formBackingObject() method seems
to do an awful lot. (See the implementation in and around Figures 10-10 and 10-11.)

Programmer: You’re thinking maybe it should be divided up into smaller methods?

Reviewer: You’d be “coding by intention,” which is a good thing. In other words, each
method name would describe (succinctly!) in real-world terms what it does. Among
other things, making this change will reduce the need for comments in your code. So,
yep, dividing the code into smaller, well-named methods will make this class much
easier to follow.

■Action Item Divide the WriteCustomerReviewController.formBackingObject() method into
smaller methods to make the class easier to read.

CHAPTER 11 ■ CODE REVIEW AND MODEL UPDATE320

Figure 11-8. Updated screenshot showing one of the new validation checks

7745ch11final.qxd 12/13/06 8:45 PM Page 320

Time-warp forward to the follow-up meeting . . .

Programmer: I’ve separated out the code into separate methods. So this is what form-
BackingObject() looks like now:

protected Object formBackingObject(
HttpServletRequest request) throws Exception {

Customer customer = findCustomer(request);
if (customer == null) {

return null;
}
Book book = findBook(request);
return newBlankReview(book, customer);

}

Then we have individual methods, like so:

private Customer findCustomer(HttpServletRequest request) {
. . .

private Book findBook(HttpServletRequest request) {
. . .

private CustomerReview newBlankReview(Book book,
Customer customer) {

. . .

Reviewer: That’s much easier to follow. It’s virtually self-commenting.

CustomerReview Doesn’t Have a save() Method
Reviewer: One of the prefactorings we made prior to coding was to add a load()
method onto Book, because if you wanted to know how to load a Book instance, you’d
naturally go to the Book class first. However, an obvious one that we missed was, simi-
larly, to move save() onto CustomerReview. Currently, your form handler class has to call
the DAO directly and pass it the CustomerReview. (See the doSubmitAction() method just
after Figure 10-12.)

Programmer: That’s easily fixed. I can just do the same thing I did for Book: add save()
onto CustomerReview and make it delegate to CustomerReviewDao.

■Action Item Move the save() method onto CustomerReview, and make doSubmitAction() call that
instead of calling the DAO directly.

(This solution is skipped over because it’s basically the same as for Book.load().)

CHAPTER 11 ■ CODE REVIEW AND MODEL UPDATE 321

7745ch11final.qxd 12/13/06 8:45 PM Page 321

But Isn’t a Book Meant to “Have” Reviews?
Reviewer: Wait a minute—something about the aggregation of some of these domain
classes has been nagging away at me. I know this is a bit late in the day, but looking back
at the class diagram excerpt for WriteCustomerReviewController (see Figure 9-6), I’m sure
that on the original domain model (see Figure 2-7), the aggregation for Book and
CustomerReview (or Reader Review, as it was back then) was the other way around.

Programmer: You mean that essentially a Book “has” CustomerReviews?

Reviewer: Essentially, yes. But CustomerReview suddenly now “has” a reference to its
parent Book. The relationship has flipped around.

Programmer: The question is, which direction makes more sense? I know that from
a design standpoint—at least for the Write Customer Review use case that we’re imple-
menting—it will be easier if the CustomerReview knows what its parent Book is.

Reviewer: You have to look at the bigger picture, though. If you go to an online bookstore,
you zero in on a particular book and see a list of its reviews. You don’t go to a review first
and then find out which book it belongs to. So from a real-world perspective—which the
domain model is meant to represent—it makes more sense for the Book to have a list of
CustomerReviews. I bet that design-wise, in the majority of cases, it will also work out
much easier that way around.

Programmer: Similarly, I suppose the Customer class would also have a list of
CustomerReviews that they’ve written. So that one would need to be switched around
as well.

■Action Item Reverse the relationship between Book and CustomerReview, so that a Book “has”
reviews. Do the same for Customer and CustomerReview.

Time-warp forward to the follow-up meeting . . .

Programmer: Here’s the updated class diagram (see excerpt in Figure 11-9).

Reviewer: OK, we’ve walked through all of the controllers in both of the use cases. You’ve
got some action items to bring the code in line with the design, and we’ve updated the
design where it needed to be brought in line with the code. Nice work!

CHAPTER 11 ■ CODE REVIEW AND MODEL UPDATE322

7745ch11final.qxd 12/13/06 8:45 PM Page 322

CHAPTER 11 ■ CODE REVIEW AND MODEL UPDATE 323

Figure 11-9. Aggregation relationships flipped around

WriteCustomerReviewController

+ doSubmitAction(CustomerReview) : void
+ formBackingObject(HttpServletRequest) : CustomerReview

CustomerReview

+ book: Book
+ customer: Customer
+ id: int
+ rating: int
+ review: String

Book

+ id: int
+ synopsis: String
+ title: String

Customer

+ email: String
+ firstName: String
+ id: int
+ lastName: String

0..*
1

0..*

1

1

ACTION LIST FOLLOWING THE REVIEW SESSION

From: Wilbert R. Shufflehammer, III (Reviewer)
To: Bim (Programmer), Ben (Programmer)
Subject: Action list following the Code Review and Model Update

1. Update the sequence diagram to show the “command” Book ID being set where it’s really being set;
then revise the design so that the ID doesn’t have to be passed into the load() method. [Bim]

2. Update the sequence diagram to show the constructor detail for
WriteCustomerReviewController. [Ben]

3. Replace CustomerReviewValidator with a more generic BookstoreValidator, and move the
domain-specific validation code into CustomerReview. Also create a common
BookstoreDomainObject interface. [Ben]

4. Code the missing validation steps in CustomerReview according to the revised sequence diagram.
Also, update the use case text to mention validating the review title length. [Ben]

5. Divide the WriteCustomerReviewController.formBackingObject() method into smaller
methods to make the class easier to read. [Bim]

7745ch11final.qxd 12/13/06 8:45 PM Page 323

Future Iterations
In future iterations, we’ll want to add to the code base with new use cases. For example,
CustomerReviewDao currently only saves CustomerReview objects to the database; there’s no
code there to retrieve the objects that were saved. The reason for this is simply that, so far,
we haven’t identified any need to retrieve saved CustomerReview objects.

Obviously, that will change when we get to the appropriate use case. For example, the
Moderate Pending Reviews use case (in which a Review Moderator reads submitted book
reviews and either publishes or rejects them) would need to be able to retrieve reviews.
Similarly, if our client suddenly decided that the bookstore should allow users to edit their
reviews, we’d create an Edit Customer Review use case that would need to be able to
retrieve saved CustomerReview objects. Similarly, users would want to see the reviews that
have been submitted when looking at the Book Details page.

It’s because we’re expecting to add new functionality that the Code Review and Model
Update effort is so important. It makes it much easier to fit new design diagrams into the
current design when the model is nicely in sync with the code.

CHAPTER 11 ■ CODE REVIEW AND MODEL UPDATE324

6. Move the save() method onto CustomerReview, and make doSubmitAction() call that instead
of calling the DAO directly.

7. Reverse the relationship between Book and CustomerReview, so that a Book “has” reviews. Also do
the same for Customer and CustomerReview.

All items to be completed by the follow-up meeting this Wednesday.

USING THE UML MODEL TO BROWSE THE JAVA CODE

Historically, the separation between modeling and code has always been one of the most serious impedi-
ments to programmer acceptance of UML. When the model and the code live in separate universes
(tools/environments), the model inevitably falls out of date and is perceived by the developers as an “artifact”
that grows increasingly less useful over time, as changes are made in the coding environment.

What’s been needed is a bridge between the modeling environment and the development
environment—in other words, an extension of the IDE to include the UML model. Figure 11-10 shows an
example of this “more integrated” IDE: Eclipse extended with the Sparx MDG Integration plug-in.

As you can see, the UML model for the Internet Bookstore has been “attached” to the project in Eclipse.
We can now use the model to browse the code! Click on an operation on a class in the UML browser, and the
source code is displayed in the editing window. Keeping the model and the code synchronized is easily
accomplished by right-clicking a class and choosing “Synchronize model and code”. New methods can be
created in the IDE and “pushed back” into the UML model, or created within the model and “pushed forward”
into code.

7745ch11final.qxd 12/13/06 8:45 PM Page 324

Summary
In this chapter, we conducted a Code Review and Model Update for the Internet Bookstore.
The result was that the code was made more robust and bulletproof, and the model was
updated to bring it in line with the code.

Figure 11-11 shows where we are. The activity covered in this chapter is shown in red.
In addition, by comparing the code with the behavioral descriptions in the use cases,

some missing functionality was uncovered. The cause was discovered to be that one of the
sequence diagrams didn’t go into enough detail. So the diagram was updated and the addi-
tional functionality was added into the code. This approach of comparing the code with the
use case text was possible because the code was closely tied to the domain model, a result of
the robustness analysis step. All that disambiguation really paid off!

If the review results in code needing to be updated (which is likely), it’s important to have
some unit tests in place first. And to ensure effective test coverage, those unit tests should be
driven from the controllers on your robustness diagrams. We cover the test-driven aspect of
model-driven development in the next chapter.

CHAPTER 11 ■ CODE REVIEW AND MODEL UPDATE 325

Figure 11-10. EA integrated into Eclipse, with the Internet Bookstore project synchronized

7745ch11final.qxd 12/13/06 8:45 PM Page 325

CHAPTER 11 ■ CODE REVIEW AND MODEL UPDATE326

Figure 11-11. Code Review and Model Update activities during the implementation stage

7745ch11final.qxd 12/13/06 8:45 PM Page 326

Testing and
Requirements
Traceability

P A R T 4

7745ch12final.qxd 12/13/06 8:46 PM Page 327

7745ch12final.qxd 12/13/06 8:46 PM Page 328

Design-Driven Testing

It’s easy to look at a program module and say, “There, that’s finished,” but this sense of com-
pletion can be deceptive. How do you know for sure that the code completes all the use case
scenarios—not just the basic courses, but the alternate courses, too?

Design-Driven Testing (DDT) provides a bulletproof method for producing test cases for
you to verify that all the specified scenarios are complete. You can also use this process to
write executable unit tests from these test cases.

Testing is a process that should begin long before coding. Beginning testing the prod-
uct after it’s purportedly “finished” is marginally better than a poke in the eye, but the
testing process should begin long before you even start coding. Preparation for testing
begins during the analysis stage, by identifying test cases using your robustness diagrams.
It’s possible to eliminate a lot more bugs—before they even exist—by testing early. Testing
kicks in shortly after preliminary design, and then writing of unit test code takes place dur-
ing implementation.

Make sure that your tests are tied closely to the requirements. That isn’t to say that every
test should be traced back to a requirement, but there should at least be a test to “prove” that

329

C H A P T E R 1 2

7745ch12final.qxd 12/13/06 8:46 PM Page 329

each requirement has been implemented correctly. The process we describe in this chapter is
one method for doing just that: driving the unit tests from your use cases.

■Mind the Gap! We should warn you in advance, there’s a chapter split later on, in which Test-Driven
Development (TDD) aficionados should find some useful advice on combining TDD with the up-front design
approach described in this book. The rest of us may find that part of the chapter somewhat mind-bending
(and also not an essential part of the process as such), so that section can be safely skipped over for non-
TDD afficionados. We’ll clearly signpost the chapter split when we reach it.

Design-Driven Testing in Theory
We start this chapter by looking at the premise and basic theories of DDT. We provide a few
examples along the way, and the hands-on stuff will follow in the “Design-Driven Testing in
Practice” section later. But it definitely helps to take in some theory first. So—no passing notes
there at the back—let’s put our academic hats on. First up is our top 10 list.

Top 10 Design-Driven Testing Guidelines
The principles discussed in this chapter can be summed up as a list of guidelines. Our top 10
list follows.

10. Adopt a “testing mind-set” wherein every bug found is a victory and not a defeat.

If you find (and fix) the bug in testing, the users won’t find it in the released product.

9. Understand the different kinds of testing, and when and why you’d use each one.

Get to know the different types of testing that we describe later in this chapter (see the
“V” model in Figure 12-1) and apply each test at the right time. And, just as important,
use the deliverables you create along the way to prepare for each test in advance.

8. When unit testing, create one or more tests for each controller on each robustness
diagram.

Also create one or more unit tests for each operation on each class within the design.
Sometimes these are the same (a controller is implemented as a single operation on a
class), and sometimes a controller is realized as multiple (atomic) operations.

7. For real-time systems, use the elements on state diagrams as the basis for test cases.

For example, test the response to various events that trigger state changes. During this
kind of testing, you monitor changes that take place in an object’s attributes in order to
test the interactions among that object’s methods. You can use the elements on state
diagrams as the basis for test cases.

330 CHAPTER 12 ■ DESIGN-DRIVEN TESTING

7745ch12final.qxd 12/13/06 8:46 PM Page 330

6. Do requirement-level verification, checking that each requirement you have identified
is accounted for.

5. Use a traceability matrix to assist in requirement verification.

4. Do scenario-level acceptance testing for each use case.

3. Expand threads in your test scenarios to cover a complete path through the appropri-
ate part of the basic course plus each alternate course in your scenario testing.

2. Use a testing framework such as JUnit to store and organize your unit tests.

1. Keep your unit tests fine-grained.

Different Kinds of Testing
You should look at testing as a full member of the iterative and incremental development life
cycle, not just as something you occasionally do after you’ve cranked out a bunch of code. The
reason for this is simple: tests prove that a product is fit for its specified purpose. But if the
tests themselves aren’t closely aligned with the specification, then they’re not proving a huge
amount except that running a test suite causes the office lava lamp to light up green.1

Let’s run through that again: tests by themselves don’t prove a huge amount. They prove
that some part of your program passes some tests, but that’s about it. The tests themselves
need to be very closely tied in with the requirements, at a microscopic level. If the tests are
closely aligned with the requirements, then passing the tests proves (to a degree) that your
software is fit for its specified purpose. If the tests aren’t closely aligned with the requirements,
then passing the tests is, by itself, pretty meaningless.

A key to testing is to understand the different kinds of tests, and in particular when in the
software life cycle each kind of test should be used.

Figure 12-1 shows which tests should be performed for each stage in ICONIX Process.
So, to test that the preliminary design has been implemented satisfactorily and to spec,

you perform integration testing, and so on.
Preparation for each type of test can begin well in advance. For example, as soon as the

business case (essentially the contract between you and the customer) has been signed off,
QA can begin speccing out the release tests based on the contents of the business case. Simi-
larly, as soon as each use case is written, your software testers can begin writing the system
tests for that use case. (Having said that, we advise that they wait until the preliminary design
for that use case is finished, as this will undoubtedly have an impact on the use case being
analyzed.)

Many of the higher-level tests may be written in the form of unit tests. For example, as
you’ll see later in this chapter, it’s desirable to drive the unit test classes and methods directly
from the controllers on the preliminary design (which in turn are driven directly by the use
cases).

CHAPTER 12 ■ DESIGN-DRIVEN TESTING 331

1. We wish we were kidding, but now your team can set up their own eXtreme Feedback Device (XFD;
aka red/green lava lamp) to provide a highly visual indication of their own build/unit test status:
www.pragmaticprogrammer.com/pa/pa.html.

7745ch12final.qxd 12/13/06 8:46 PM Page 331

Table 12-1 describes the different kinds of tests shown in Figure 12-1.2

Table 12-1. Different Kinds of Tests and When to Apply Them

Test When (and Why) You Should Do It

Unit testing Begin unit testing before integration/
The testing of individual software components. system testing.
Stubs may be used to simulate inputs and outputs of a Unit testing is executed on every build
component so that it can operate in stand-alone mode. of the software throughout the develop-

ment phase (including the bug-fixing
phase after the software has been
released to system test).

CHAPTER 12 ■ DESIGN-DRIVEN TESTING332

Figure 12-1. “V” model of software testing applied to ICONIX Process

2. The definitions in Table 12-1 are adapted from the British Computer Society Specialist Interest Group
in Software Testing (BCS SIGIST). Thanks to Philip Nortey for contributing heavily to this section.

7745ch12final.qxd 12/13/06 8:46 PM Page 332

Test When (and Why) You Should Do It

Integration testing This is done after unit testing.
Testing performed to expose faults in the interfaces and
in the interaction between integrated components.
Unlike with compatibility testing (see the next test
type), the classes are a part of the overall system being
designed.

Compatibility testing This is not quite the same as integration
Testing that the system interoperates correctly with testing, although both take place at
other, “external” systems with which it is required to roughly the same time.
communicate.

System testing This is done after integration testing.
Functional and behavioral test case design. Test case System testing tends to be developer
selection that is based on an analysis of the specifica- focused. Its purpose is to prove that the
tion of the component without reference to its internal system that was specified has been
workings. delivered.
Functional testing consists mainly of use case and
business process path tests, but also includes testing
of the functional requirements.

Acceptance testing Acceptance testing operates along the
Formal testing conducted by (or on behalf of) the cus- same lines as system testing, but the
tomer, to determine whether the system meets the emphasis is different.
requirements specified in the contract. Acceptance testing is carried out to prove

that the system delivers what was
actually requested.

Beta testing This is done before acceptance testing to
Testing performed by end users who aren’t otherwise exercise the software in an environment
involved with the development effort. that is as close as possible to the produc-

tion environment.

Release testing This is done at the point at which the
Verifies that the finished product accurately reflects the software is to be delivered to the customer
business case. (or at the end of a deliverable milestone

within the project), to ensure that the
product has been created to spec and ful-
fills the goals described in the original
contract.

In addition, some kinds of testing go on throughout the development process or aren’t
based on a specific deliverable. Table 12-2 shows the more common ones.

Table 12-2. More Kinds of Testing and When to Do Them

Test When You Should Do It

Nonfunctional requirements testing This testing should be done throughout
Testing of those requirements that do not relate to the software life cycle (even at the unit
functionality (i.e., performance, usability, etc.) test level) where possible. “Nonfunctional

requirements testing” is really an
umbrella term for performance, stress,
volume, and compatibility testing.

Continued

CHAPTER 12 ■ DESIGN-DRIVEN TESTING 333

7745ch12final.qxd 12/13/06 8:46 PM Page 333

Table 12-2. Continued

Test When You Should Do It

Performance testing This testing can (and should) be done at
Testing conducted to evaluate the compliance of a every opportunity, but it is usually
system or component with specified performance executed after system testing.
requirements

Regression testing This testing is executed after the code has
Retesting of a previously tested program following been released to system test. Note that
modification to ensure that faults have not been intro- unit testing is a form of regression testing
duced or uncovered as a result of the changes made if it is done properly.

Stress testing This testing is executed after
Testing conducted to evaluate a system or component performance testing.
at or beyond the limits of its specified requirements

Volume testing This testing is executed after system
Testing where the system is subjected to large volumes testing.
of data

■Tip For more in-depth information on software testing and QA, we recommend two of Boris Beizer’s
books on the subject: Software System Testing and Quality Assurance (Van Nostrand Reinhold, 1984) and
Software Testing Techniques (Van Nostrand Reinhold, 1990). They’re both “golden oldies,” but the techniques
they describe and the states of mind that they get you into are still very relevant in today’s agile software
world, glued together as it mostly is by JUnit assert statements.

Driving Test Cases from Robustness Diagrams
With ICONIX Process, you invest effort in writing use cases, and you identify the objects that
participate in a use case and the functions that those objects perform, on robustness diagrams
(the functions are shown as controllers). Since you’ve made this investment in identifying the
logical software functions, it would be nice to get some return on that investment in terms of
a suite of test cases that remind you to test all the functionality of the use case.

Figure 12-2 shows an overview of DDT, in which the test cases are created directly from
the controllers on the robustness diagrams.

As Figure 12-2 shows, you can automatically transform a robustness diagram into both a
skeleton sequence diagram and a test case diagram using a simple script. Test skeleton code
can subsequently be generated for unit testing frameworks like JUnit or NUnit.

Now we’ll provide a more detailed explanation, which we’ll illustrate step by step with an
example. Since you’ve already identified the logical functions within a use case as controllers,
it seems natural that all of these functions would need to be tested. Working from the robust-
ness diagram, you can create a test case diagram showing a test case for each controller.

How do you do this? Easy! Copy all of the controllers from the robustness diagram onto a
new diagram, and then link a test case to each one using <<realize>> connectors. We’ll run
through an example of this in just a moment.

CHAPTER 12 ■ DESIGN-DRIVEN TESTING334

7745ch12final.qxd 12/13/06 8:46 PM Page 334

■Note The EA tool has a test case element that is a stereotyped use case.

Each test case can contain multiple test scenarios. To identify the test scenarios for each
controller/test case, follow these steps:

1. Reread the use case text to remind yourself of the context in which the controller is
used.

2. For each test case, create a test scenario for each use case scenario (the basic and
alternate courses).

3. Name each test scenario after its use case scenario of origin. For example, for the con-
troller Retrieve Book Details, the alternate scenario called Book Not Found would lead
to a test scenario called, you guessed it, Book Not Found, in a test case called Retrieve
Book Details Test.

CHAPTER 12 ■ DESIGN-DRIVEN TESTING 335

Figure 12-2. Overview of DDT

7745ch12final.qxd 12/13/06 8:46 PM Page 335

Using the Agile ICONIX/EA Add-in
We should stress that ICONIX Process works equally well with any OO programming language,
platform, CASE tool, and so on. However, the Enterprise Architect (EA) tool has an especially
neat add-in that automates much of the “transitional” work when moving between diagrams
in ICONIX Process. For example, the add-in will automatically create a set of robustness dia-
grams from a use case diagram (see Figure 12-3), and (a serious time-saver) the add-in will
populate a sequence diagram using the boundary, entity, and controller objects on your
robustness diagram.

For testing purposes, the add-in automatically creates a test case diagram from the con-
trollers on your robustness diagrams (see Figure 12-4). From these controllers, it’s then
possible to write executable unit tests for each of the test cases.

The test case diagram in Figure 12-4 is based on the robustness diagram in Figure 5-10.
Notice that each test case is linked to a controller. In other words, there’s one test case per
controller. The relationship between the test case and the controller is “realizes” (the same
relationship that’s used to show classes implementing/realizing an interface).

CHAPTER 12 ■ DESIGN-DRIVEN TESTING336

Figure 12-3. Using the Agile ICONIX/EA add-in to generate diagrams

7745ch12final.qxd 12/13/06 8:46 PM Page 336

■Exercise The diagram in Figure 12-4 would quickly become quite difficult to work with. Any ideas why?
We reveal the answer in a Note later in this chapter.

You can right-click each test case and add individual scenarios (see Figure 12-5).

CHAPTER 12 ■ DESIGN-DRIVEN TESTING 337

Figure 12-4. Generating test cases in EA

7745ch12final.qxd 12/13/06 8:46 PM Page 337

Driving Unit Tests from the Test Cases
To recap, you need to model the test cases on the controllers from your robustness diagrams—
that is, each controller gets exactly one test case. And for each test case, create one or more
test scenarios.

Once you’ve created your test cases and allocated test scenarios to each one, it’s time to
create the unit test skeletons.

Here are some guidelines for driving unit tests from test cases:

• For each test case, create one unit test class. For example, if the test case is called Retrieve
Book Details Test, then you’d create a JUnit test class called RetrieveBookDetailsTest.

• For each test scenario, create one test method in your unit test class. For example,
if the test case is called Book Not Found, you’d create a test method called
testBookNotFound().

• Write unit tests from the point of view of the object calling the controller.

• If you discover new alternate courses while thinking up test case scenarios—
which is likely—don’t hesitate to add them to the use case!

We’ll walk through some examples of creating unit tests from the test cases in just
a moment.

CHAPTER 12 ■ DESIGN-DRIVEN TESTING338

Figure 12-5. Adding test case scenarios in EA

7745ch12final.qxd 12/13/06 8:46 PM Page 338

A Quick Introduction to JUnit
For the code examples later in this chapter, we’ll use JUnit (www.junit.org), a popular Java-
based unit testing framework. JUnit is part of the xUnit family; other members include
cppUnit for C++, nUnit (www.nunit.org) for C#/.NET, and DUnit for Borland Delphi. Although
the flavor of the source code can differ somewhat depending on the language/implementa-
tion, the principles discussed in this chapter are basically the same, whichever unit testing
framework you use.

With JUnit, you write test cases where each test case is a single Java class. Within this
class, individual test methods follow the naming convention testXYZ, where XYZ is the name
of your test. This naming convention allows JUnit to automatically detect and run your test
methods, without them having to be “declared” somewhere (e.g., in an external XML file).
Using JUnit 4.0, test methods may also be identified using Java 5 assertions (see the sidebar
"JUnit: The Next Generation" later in this chapter).

■Tip Using the approach described in this chapter, you can map test cases directly to JUnit test classes,
and you can map test scenarios directly to individual test methods.

Within a test method, you write Java code that calls methods in the classes being tested
and asserts that the result is precisely what was expected. For the assertion part, JUnit pro-
vides a number of different assert methods (e.g., to assert that a value is true, or that a value
is non-null, or that two values are equal).

Your test class can consist of any number of test methods, although it’s generally a
good idea to keep the number below five or so. If the number of test methods in a class
grows, consider dividing them into separate test cases. Similarly, it’s a good idea to limit
each test method to a single assert statement. This keeps the test scenario focused on test-
ing a single thing. If you find the need to add more than one assert, it’s likely that you’re
really looking at more than one test scenario squeezed into a single test method, so don’t
hesitate to separate them out.

Here’s an example of a unit test class:

package test.com.iconixsw.bookstore.web;

import junit.framework.*;

public class AddToShoppingCartTest extends TestCase {

public AddToShoppingCartTest (String testName) {
super(testName);

}

public void testShoppingCartEmpty() throws Exception {
ShoppingCart cart = new ShoppingCart();
assertEquals("Cart should be empty", 0, cart.getNumItems());

}

CHAPTER 12 ■ DESIGN-DRIVEN TESTING 339

7745ch12final.qxd 12/13/06 8:46 PM Page 339

public void testItemAdded() throws Exception {
ShoppingCart cart = new ShoppingCart();
LineItem item = new LineItem();
cart.addItem(item);
assertEquals("Cart should contain 1 item",

1, cart.getNumItems());
}

}

The AddToShoppingCartTest test case contains two test methods. The first method is
a quick sanity check to make sure that if a new ShoppingCart is created, it starts out empty.
This test would make more sense if you’re dealing with DAOs that might use object caching,
in which case it might not be such a crazy notion that an object is “initially” not empty.

The second test method checks that if an item is added to the cart, then the cart contains
exactly one item. In both cases we’re using assertEquals(), which takes three arguments:

• A handy description that gets displayed if the test condition fails

• A value representing what the expected value should be

• The result of the code being tested, which should, of course, resolve to the same value
as the second argument

■Exercise The test methods contain some duplicate code. What could be done to fix this? We actually
reveal the answer in the next paragraph, which makes a nice change.

Both test methods set up a ShoppingCart object. In fact, given that the test case is all
about adding items to a ShoppingCart, it would make sense for each test to use the same
setup code. Luckily, JUnit provides a setUp() method for just this purpose. To demonstrate
this, here’s a new version of AddToShoppingCartTest that uses setUp() to eliminate the dupli-
cated code. The new code is shown in red:

package test.com.iconixsw.bookstore.web;

import junit.framework.*;

public class AddToShoppingCartTest extends TestCase {

private ShoppingCart cart;

public AddToShoppingCartTest (String testName) {
super(testName);

}

CHAPTER 12 ■ DESIGN-DRIVEN TESTING340

7745ch12final.qxd 12/13/06 8:46 PM Page 340

public void setUp() {
cart = new ShoppingCart();

}

public void testShoppingCartEmpty() throws Exception {
assertEquals("Cart should be empty", 0, cart.getNumItems());

}

public void testItemAdded() throws Exception {
LineItem item = new LineItem();
cart.addItem(item);
assertEquals("Cart should contain 1 item",

1, cart.getNumItems());
}

}

The setUp() method is run automatically, immediately before each test method is called.
It’s worth stressing that point: it isn’t run just once for the whole test case. Instead, it’s run once
for each individual test method. So for each test method, you’re guaranteed a nice, fresh
instance of ShoppingCart (or whatever you put in your own setUp() method, naturally).

There’s also a tearDown() method that does the reverse of setUp() and is useful for closing
external resources like database connections or input/output streams. As you’d expect,
tearDown() is called immediately after each individual test method.

CHAPTER 12 ■ DESIGN-DRIVEN TESTING 341

JUNIT: THE NEXT GENERATION

At the time of this book going to press, the next generation of JUnit, version 4.0, is gradually beginning to see
increased industry adoption (its reliance on the new language features in Java 5 may have slowed its adop-
tion). Written by Kent Beck and Erich Gamma, it’s backward-compatible with current versions of JUnit, so all
your existing tests should still run, but it boasts lots of new features and refinements, making it more like
NUnit with extensive support for annotations. Its new features include the following:

• Test classes do not have to extend junit.framework.TestCase.

• Test methods do not have to be prefixed with test. Instead, a test method can be tagged with the
@Test annotation.

• Similarly, @Before and @After annotations provide the equivalent of setUp() and tearDown().
The benefit of the new approach is that, should you really need to, you can have more than one
@Before and @After method in each test class.

• One-time setup and teardown for each test class can be done using the @BeforeClass and
@AfterClass annotations.

• Tests can have a timeout value (passed in as a parameter in the @Test annotation).

7745ch12final.qxd 12/13/06 8:46 PM Page 341

For most of the rest of this chapter, we’ll run through lots of examples to show how to
drive unit test code directly from the test cases, which in turn are driven from the controllers
on your robustness diagrams, which in turn are driven from the use cases. Our aim is to give
you a detailed understanding of how to tie the tests closely to the requirements, at a micro-
scopic level (the proposition that we opened this chapter with).

Writing Effective Unit Tests
Before we get started on the examples, it’s worth outlining some best practices for writing
good unit tests. Entire books have been devoted to unit testing, but effective unit testing tech-
niques from a design-driven perspective can be summed up quite succinctly. So here goes:

• Keep unit tests fine-grained. Generally, you should cover a single test case with each
unit test class and a different permutation or assertion of the test case (i.e., the individ-
ual test scenarios) in each test method. Which leads us to the next item . . .

• Make sure that each test method tests exactly one thing. Let’s say you want to test the
ability to add items to a Shopping Cart. You might have a test method that first adds an
item, then asserts that the number of items in the cart is 1, and then (to really prove it
was added successfully) asserts that if you retrieve the item, it’s the same item that was
added.

But gosh, that’s actually testing two separate things (the clue is that there are two asser-
tions). First, it’s testing that an item was definitely added; second, it’s testing that
retrieving an item returns the item you expect it to. Two separate test scenarios, mean-
ing two separate test methods.

Your first test method would be called testAddItem(), and the second test method
would be called testCorrectItemRetrieved().

• Tie the unit tests closely to the classes and methods you’re testing.

• Tie the unit tests closely to the objects in the preliminary design (and therefore also
to your use cases). Hopefully, you can see the connection between this point and the
last point. If the unit test code is tied closely both to the preliminary design and to the
classes and methods in the “real” production code, it ensures cohesion between the
two. If it becomes troublesome to tie the unit tests at both ends, then it’s a sign that
the detailed design/source code might not have been driven 100% from the prelimi-
nary design. If this turns out to be the case, correct the design as soon as possible,
and review the process step by step to work out where you might have gone wrong.

• Treat unit test code with the same reverence and care that you do production code.
The unit test code is “designed” and needs to be maintained as much as the code that
it’s testing. The unit test design is driven as much from the preliminary design as the
“real” detailed design is, and just as much care needs to be taken keeping the test
code in trim. In particular . . .

CHAPTER 12 ■ DESIGN-DRIVEN TESTING342

7745ch12final.qxd 12/13/06 8:46 PM Page 342

• Avoid duplication in tests. As you’re driving unit tests from your test cases (which are
in turn driven from the controllers), each unit test class will consist of a lot of quite
similar test methods, testing the different scenarios that pass through each controller.
Whenever you see duplicated code, separate it out into shared methods or classes as
soon as you see it.

• Make sure your tests always run at 100% success. Neglecting to fix an ailing test is an
easy trap to fall into, especially in a team environment without individual code owner-
ship, where a failing test is always somebody else’s problem. If a test is failing, fix it
immediately. This is especially true if you’re following a test-driven methodology, in
which you first write a failing test, and then write some code to make it pass. If you
surge ahead writing a series of failing tests, then it becomes tempting to just turn a
blind eye and concentrate on the code instead of fixing the tests.

• Use mock objects when you need to, but don’t get too hung up on them. We provide
an example of mock objects in the next section. They basically provide “stub” func-
tionality for a real class that will be implemented later, or they act as a nonfunctional
stand-in so as to avoid accessing external resources (e.g., a database), which slow
down the tests and make test configuration more complex.

We’ll probably get hammered by the test-driven crowd for suggesting this but, while
mock objects do have their uses, it’s possible to overuse them. Their purpose is to
lessen the code’s dependency on external classes or resources (such as databases).
However, every time you change the behavior of your code, you’ll also have to fix the
mock object tests. JUnit tests are pretty solid; you’re testing the end behavior that
doesn’t change much. However, with mock objects, you’re testing the flow of a method
call, hence it is a lot more fragile. If you add one extra method call, or refactor the
method internals, then you also have to change the mock-based tests.

In the next section, we walk through an example for the Internet Bookstore, going all the
way from the robustness diagram to the JUnit tests.

Design-Driven Testing in Practice
In this section, we illustrate the theory from the first part of this chapter, using our Internet
Bookstore project. We revisit the detailed design as we left it in Chapter 9, and this time,
instead of moving straight to code, we first create some test cases directly from the robust-
ness diagrams, and match these up with the detailed design. We then use the test cases to
verify that

• The detailed design matches up with the use cases.

• The code matches the detailed design and does what it’s meant to.

CHAPTER 12 ■ DESIGN-DRIVEN TESTING 343

7745ch12final.qxd 12/13/06 8:46 PM Page 343

Unit Tests for the Internet Bookstore
To write the unit tests for the Internet Bookstore, we’ll take the controllers from the robustness
diagrams for the Show Book Details and Write Customer Review use cases, generate test cases
for them, and then write unit tests based on the test cases.

You should do this step just prior to writing the code, so that as you’re coding, you have
a decent set of unit tests to compile and test against. Starting to write or generate the tests is
also a good way of getting yourself into the coding frame of mind, which is useful when you’re
doing the detailed design modeling.

Figure 12-6 shows the test case diagram. This was generated from the robustness diagram
for Show Book Details shown back in Figure 5-10.

CHAPTER 12 ■ DESIGN-DRIVEN TESTING344

Figure 12-6. Generated test cases for the Show Book Details use case

7745ch12final.qxd 12/13/06 8:46 PM Page 344

The Display Book not Found Page controller and test case are both shown in red because
they’re the alternate course.

■Note We’ve renamed the Display controllers to be more descriptive, so that they can be differentiated
(see the original version in Figure 12-4).

If some of the controllers have the same name (e.g., Display), the resultant test case diagram might
be quite difficult (or impossible) to decipher. Wherever you have controllers with the same name on the
same diagram, you should rename the controllers so that you can tell them apart. In the case of Dis-
play controllers, just add the name of the boundary object being displayed (e.g., Display Book Details Page
and Display Book Details Page Test).

To recap, each controller from the robustness diagram gets its own test case, and in each
test case we create one or more test scenarios. For each test case, we create a unit test class,
and for each test scenario, we create a unit test method.

We’ll walk through this process once for each of the test cases (in the order shown in
Figure 12-6) until it’s crystal clear.

Testing the Display Home Page Controller
In this section, we’ll create the test scenarios for the Display Home Page controller, the sim-
plest of the bunch, and then write its JUnit test class.

Here’s the portion of the use case text that relates to this controller:

The Customer types in the URL for the bookstore’s home page. The system displays a list

of books from the Catalog on the home page, in the form of clickable links.

If you recall from Chapter 10, the list of books is actually just a hard-wired list, so there’s
no dynamic cleverness going on here. As a result, the test case for this particular controller is
amazingly simple. In fact, we need to add only one test scenario to the test case, because—just
this once—there’s very little that can go wrong. To add a test scenario in EA, double-click the
test case, and in the Properties dialog that pops up, click the Scenario tab (see Figure 12-7).

There’s only actually the one test scenario for this test case, so you’d only expect to see
one test method in the unit test class.

CHAPTER 12 ■ DESIGN-DRIVEN TESTING 345

7745ch12final.qxd 12/13/06 8:46 PM Page 345

Here’s the JUnit test skeleton for this test case:

package test.com.iconixsw.bookstore.web;

import junit.framework.*;

public class DisplayHomePageTest extends TestCase {

public DisplayHomePageTest(String testName) {
super(testName);

}

public void testDisplayHomePage() throws Exception {
}

}

The test extends TestCase, a JUnit class. In JUnit, any method whose name starts with test
is automatically recognized as a test method. So in this case we have just one test method,
testDisplayHomePage(), which is derived from the test scenario shown in Figure 12-7. If the test
case had, say, three test scenarios, then you’d see three test methods instead of just the one.

CHAPTER 12 ■ DESIGN-DRIVEN TESTING346

Figure 12-7. Adding a test scenario for the Display Home Page test case

7745ch12final.qxd 12/13/06 8:46 PM Page 346

So far it’s all been quite easy—mechanical, even. However, at this stage it’s difficult to say
exactly what should go in the testDisplayHomePage() method. This is why it’s now a good idea
to go ahead and draw the sequence diagram for this use case. Figure 12-8 shows an excerpt
from the Show Book Details sequence diagram that’s relevant to this test case (see the full
sequence diagram in Figure 9-8).

You need to write the tests from the point of view of whatever object is calling the con-
troller that you’re testing. In this case, HomeController is being tested, and the object calling
it is a boundary object, DispatcherServlet (a Spring class). The unit test must verify that the
result from handleRequest() is what’s expected, given the values being passed in.

With that in mind, here’s the test method:

public void testDisplayHomePage() throws Exception {
HomeController homeController = new HomeController();
ModelAndView modelAndView =

homeController.handleRequest(null, null);

assertEquals("Should be viewing home.jsp",
"home",
modelAndView.getViewName());

}

The test code first creates a new instance of HomeController, and then it calls the
handleRequest() method. Because HomeController doesn’t actually use the request or
response, we can get away with just passing in null for those (in fact, that’s a good habit to get
into with tests, as the test explicitly shows that you’re not expecting the request or response to
be used).

Having retrieved the ModelAndView from homeController, the test then asserts that the
view returned will indeed take us to home.jsp. (Recall from Chapter 10 that the web applica-
tion is configured such that .jsp gets added to any view name, so if home is returned, it will
become home.jsp.)

CHAPTER 12 ■ DESIGN-DRIVEN TESTING 347

Figure 12-8. Extract from the Display Home Page sequence diagram

7745ch12final.qxd 12/13/06 8:46 PM Page 347

Now that you have your test, it’s good practice to try and make it fail—this proves that the
test will work if it ever encounters a real failure condition in the future. You can do this by first
writing a blank(-ish) handleRequest() method:

package com.iconixsw.bookstore.web;
// import . . .

public class HomeController implements Controller {

public ModelAndView handleRequest(
HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

return new ModelAndView("");
}

}

This version of HomeController returns a blank view name.3 If you run the unit test against
it, you’ll get the following:

.F
Time: 0.015
There was 1 failure:
1) testDisplayHomePage

(test.com.iconixsw.bookstore.web.DisplayHomePageTest)

junit.framework.ComparisonFailure:
Should be viewing home.jsp. expected:<home> but was:<>

at test.com.iconixsw.bookstore.web.
DisplayHomePageTest.testDisplayHomePage
(DisplayHomePageTest.java:17)

FAILURES!!!
Tests run: 1, Failures: 1, Errors: 0

CHAPTER 12 ■ DESIGN-DRIVEN TESTING348

3. Strictly speaking, in the TDD world you would start without a handleRequest() method at all,
prove that the test class doesn’t compile, then add handleRequest() but make it return null in order
to prove that you do indeed get a NullPointerException in your test method, then you would write the
version that returns a blank ModelAndView and makes the test fail “properly,” and finally you would
write the working version and make the test pass. But we draw the line at seeing the test fail once, as
we want each class to take less than a decade to write, plus we want to keep the page count of this
book beneath 1,000!

7745ch12final.qxd 12/13/06 8:46 PM Page 348

Good, so that’s proved that the test mechanism is working. We can now implement
handleRequest() “properly”:

public ModelAndView handleRequest(
HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

return new ModelAndView("home");
}

And running the test we should now get this:

.
Time: 0.016

OK (1 test)

The one thing about the test method is that it’s creating a resource in the test method
itself, which is a bad habit to get into. The resource should be created in the setUp() method,
which gets called prior to each test method being called.

The refactored code then looks like this:

package test.com.iconixsw.bookstore.web;

// import statements omitted

public class DisplayHomePageTest extends TestCase {

private HomeController homeController;

public DisplayHomePageTest(String testName) {
super(testName);

}

public void setUp() throws Exception {
homeController = new HomeController();

}

public void tearDown() throws Exception {
homeController = null;

}

public void testDisplayHomePage() throws Exception {
ModelAndView modelAndView = homeController.handleRequest(null, null);
assertEquals("Should be viewing home.jsp.",

"home",
modelAndView.getViewName());

}
}

CHAPTER 12 ■ DESIGN-DRIVEN TESTING 349

7745ch12final.qxd 12/13/06 8:46 PM Page 349

We’ve turned homeController into a private variable and moved the line of code that cre-
ates it into the setUp() method. Notice that we’ve also added a tearDown() method (which gets
called automatically after each test method) to set the homeController back to null. This isn’t
strictly speaking necessary but, even in the Java world, cleaning up after yourself is a mighty
good habit to get into. Get into the habit now, and avoid spending days hunting down horri-
ble, insidious memory leaks in the future.

A quick rerun of the test shows that none of its assertions has been broken, so that’s
about it for the first controller. We’ll walk through the same process for the other controllers
in the Show Book Details use case (even though it may get a bit repetitive), because ensuring
proper test coverage for your controllers is an incredibly important part of the whole process,
and it is worth repeating over and over until it totally clicks into place.

But just before we move onto the next controller/test case, let’s do a quick bit of
housekeeping.

Running the Tests from a Test Suite
We haven’t yet shown how to run all the tests in one try. That’s easy enough with JUnit. There’s
a GUI tool that can be launched from the command line, but there’s also a text-based test run-
ner that we’re using for these examples.

It’s possible to group all the unit test classes together into a single test suite and run that:

package test.com.iconixsw.bookstore;

import test.com.iconixsw.bookstore.web.*;
import junit.framework.*;

public class BookstoreTestSuite {

public static Test suite() {
TestSuite suite = new TestSuite();
suite.addTestSuite(DisplayHomePageTest.class);
// add more tests here . . .

return suite;
}

public static void main(String[] args) {
junit.textui.TestRunner.run(suite());

}

}

If you run the BookstoreTestSuite from the command line, the main method will call
suite(), which will gather together all of the individual test cases (currently just the one,
DisplayHomePageTest) and return them collected together in a single object. These will then
be passed to the JUnit TestRunner, which produces the “OK” and “Failures!!!” text output
that you see in this chapter’s examples.

CHAPTER 12 ■ DESIGN-DRIVEN TESTING350

7745ch12final.qxd 12/13/06 8:46 PM Page 350

As you write more test classes, you add them one by one to the test suite so that they
can all be run together. It’s a great way of ensuring that you haven’t broken existing function-
ality when you add new controller logic. If your tests run quickly enough, it means you can
run all the tests every time you change something or add something new—meaning complete
end-to-end test coverage in a matter of seconds, all driven from the controllers on your
robustness diagrams.

■Exercise If you have some tests that just have to take a long time (e.g., testing some long-running SQL
statements), what could be done to handle this without losing the benefits of quick-running tests? We dis-
cuss some test strategies to handle this situation later in the chapter.

Now let’s move on to the next controller for the Show Book Details use case.

CHAPTER 12 ■ DESIGN-DRIVEN TESTING 351

HERE’S THE CHAPTER SPLIT WE WARNED YOU ABOUT!

The remainder of this “Design-Driven Testing in Practice” section is mostly of interest to developers who are
currently practicing Test-Driven Development (TDD) as espoused by Kent Beck and his hard-working disci-
ples. The rest of us can sit down for a few minutes and have a nice, relaxing cup of tea. A safe place to rejoin
the chapter would be the Top 10 Design-Driven Testing Errors, on page 369.

The story told in the remainder of this chapter is true. Only the test case names have been
changed to protect the innocent.

If you’re not currently a “test-infected” TDD developer, the remainder of this section is . . . a lot of hard
work. In fact, it might seem like a mind-boggling amount of hard work. However, it’s a lot less work than
practicing TDD without the benefit of an up-front analysis model and a set of use cases that describe alter-
nate courses of action and itemize software behavior as controllers. If you are a TDD developer, we hope
you’ll agree that we can save you quite a bit of work without sacrificing the integrity of the functional testing
that you’re doing.

So, as the Internet Bookstore narrative continues, you’ll notice that we suggest techniques for running
your unit tests at a lightning-fast pace, so that they can be run repeatedly with each change or addition to
the code. This will make perfect sense to keen TDDers, who essentially evolve the design as they write the
unit tests and the code. But if you’ve followed the design process described in this book, rerunning the tests
every few minutes becomes significantly less important. ICONIX Process makes a serious attempt to get as
much of the refactoring done before coding as possible, and so therefore may also allow a more minimalist
approach to testing than what you’ll be reading about in the remainder of this section.

Having said that, we’ve kept the advice in the chapter because it can still be important if you’re com-
bining TDD with a use case–driven up-front design approach. The key here is to apply and adapt the process
according to the needs (and agile philosophy) of your own project.

We’ll make a few suggestions for more minimalist (“test smarter, not harder”) alternatives as the
chapter proceeds.

7745ch12final.qxd 12/13/06 8:46 PM Page 351

Testing the Retrieve Book Details Controller
In this section, we create the test scenarios for the Retrieve Book Details controller, and then
write (and run!) its JUnit test class.

What do we want this particular unit test to do? If we match the Retrieve Book Details
controller to the following use case text:

The Customer clicks a link on the home page . . . and the system retrieves the book details

for the selected book . . .

then this suggests that the test should assert that books are being retrieved correctly from the
database.

To add test case scenarios in EA, double-click the test case and then, when the Properties
dialog pops up, click the Scenario tab. You can then add basic and alternate scenarios to the
test case. Figure 12-9 shows the two test scenarios that we’ll add for the Retrieve Book Details
controller/test case.

CHAPTER 12 ■ DESIGN-DRIVEN TESTING352

Figure 12-9. Test scenarios for the Retrieve Book Details test case

7745ch12final.qxd 12/13/06 8:46 PM Page 352

Now that you’ve added the test scenarios and further updated the use case and robust-
ness diagram if needed, you draw the sequence diagram. The sequence diagram for Show
Book Details is shown back in Figure 9-8. The next stage, then, is to create the unit test skele-
ton for this test case, using the scenarios you’ve just added (see Figure 12-9).

Here’s the test class skeleton for the Retrieve Book Details controller/test case. The actual
test methods (derived from the test case scenarios) are in red:

package test.com.iconixsw.bookstore.dao;

import junit.framework.*;

/**
* Test case for the Retrieve Book Details controller.
*/
public class RetrieveBookDetailsTest extends TestCase {

public RetrieveBookDetailsTest(String testName) {
super(testName);

}

public void setUp() throws Exception {
}

public void tearDown() throws Exception {
}

public void testBookIdFound() {
}

public void testBookIdNotFound() {
}

}

The two empty test methods, testBookIdFound() and testBookIdNotFound(), are derived
directly from the two test scenarios shown in Figure 12-9.

As we discussed at the start of this section, we want to test that the Book ID is found (or
not found) correctly in the database. However, a golden rule for unit tests is that they need
to be able to run really quickly. If the unit tests don’t run really quickly, then people won’t
bother to run them at all while they’re programming. For this reason, it’s good practice to
try to avoid writing tests that create connections to external resources (e.g., databases).
Connecting to databases (even locally) and running queries or updates can make unit tests
run disproportionately slowly, especially when the same setup or teardown code is iterated
over hundreds of times.

CHAPTER 12 ■ DESIGN-DRIVEN TESTING 353

7745ch12final.qxd 12/13/06 8:46 PM Page 353

■Tip Sometimes you do need some longer-running tests that connect to databases or run lengthy
processes (e.g., testing a system’s ability to import and parse large files). It’s useful to set up a separate test
suite for these, and schedule the tests to run automatically overnight or (even better) on a build/test PC that
runs hourly.

But if you can’t include database code in your speedy tests, how do you actually test
anything? One answer is to use so-called mock objects.4 For example, we could replace our
JDBC-specific DAO classes with “mock” versions, whose sole purpose in life is to provide
the same unit test data, over and over, albeit very quickly.

You shouldn’t go crazy and rewrite the entire JDBC data access layer in one attempt;
instead, just add the “mock” code that you need, one method at a time, as and when you find
that you need it. In other words, use mock objects sparingly!

Let’s add some code to the test class to retrieve a Book given an ID, and to assert that it’s
been received:

private BookDao bookDao;

public void testBookIdFound() {
Book book = bookDao.findById(1);
assertNotNull("ID 1 should be found", book);

}

If you try to run the unit test now, you’ll get a NullPointerException, as the BookDao hasn’t
been initialized. A good place to do that is in the setUp() method:

public void setUp() throws Exception {
bookDao = new MockBookDao();

}

Obviously this won’t compile, as there isn’t yet a MockBookDao class. This is a good time to
add it:

package com.iconixsw.bookstore.dao.mock;

// import statements omitted . . .

public class MockBookDao implements BookDao {

private HashMap booksById;

public MockBookDao() {
initData();

}

CHAPTER 12 ■ DESIGN-DRIVEN TESTING354

4. As we discussed in the “Writing Effective Unit Tests” section of this chapter, mock objects are overused
in the test-driven world, but in certain very specific cases they do prove useful.

7745ch12final.qxd 12/13/06 8:46 PM Page 354

public List findAll() throws DataAccessException {
return (List) booksById.values();

}

public Book findById(int bookId) throws DataAccessException {
return (Book) booksById.get(new Integer(bookId));

}

private void initData() {
Book favWidgets = new Book();
favWidgets.setId(1);
favWidgets.setTitle("My Favorite Widgets");

Book uncommon = new Book();
uncommon.setId(2);
uncommon.setTitle("The Uncommon Event");

booksById = new HashMap();
booksById.put(new Integer(1), favWidgets);
booksById.put(new Integer(2), uncommon);

}

}

BookDao does the simplest thing possible (this isn’t production code after all; it’s just a
development tool purely for internal use), which is to create a couple of Book objects and stick
them into a HashMap keyed by the book ID. The data never gets saved out to disk; it’s all done
in-memory.

Now that we have a compiling test, we should run this through JUnit. But we really want
to see the test fail first, to prove that the test works. So to do that, just briefly change the
initData() method as follows:

Book favWidgets = new Book();
favWidgets.setId(5);
favWidgets.setTitle("My Favorite Widgets");

We’ve simply changed the 1 to a 5, so that the mock DAO doesn’t return a book with an
ID of 1. Running this test now, we get the following results:

.F
Time: 0
There was 1 failure:
1) testBookIdFound

(test.com.iconixsw.bookstore.dao.RetrieveBookDetailsTest)

CHAPTER 12 ■ DESIGN-DRIVEN TESTING 355

7745ch12final.qxd 12/13/06 8:46 PM Page 355

junit.framework.AssertionFailedError:
ID 1 should be found
at test.com.iconixsw.bookstore.dao.

RetrieveBookDetailsTest.
testBookIdFound(RetrieveBookDetailsTest.java:29)

FAILURES!!!
Tests run: 1, Failures: 1, Errors: 0

It seems strange to cheer and holler when you see a test fail, but it should make you feel
good about the test because you now know for sure that, if there’s a time when it really should
fail, then it will do its job properly.

Now if we change the value back to 1 and rerun the test, here’s the result:

.
Time: 0

OK (1 test)

Currently, we’re only testing “one way”—that is, that a Book was found. We also need to
test the alternate course:

public void testBookIdNotFound() {
Book book = bookDao.findById(-1);
assertNull("ID -1 should not be found", book);

}

What’s wrong with this picture so far? You win a pork pie if you noticed that currently this
test class isn’t actually testing any of our real code. Test cases for data-retrieval controllers tend
to end up like this, because they’re not doing very much in the way of serious code logic, and
because we don’t want to test the actual data access (at least not in these particular unit tests),
that doesn’t leave very much left to test.

However—and this is the thing—it’s the controllers linked to the data-retrieval controllers
that will get the benefit of all this mock-object effort. For those controllers, we’re not inter-
ested in testing the database access; we want to test the controllers themselves, so it doesn’t
matter whether the data came from a mock object, or a real database, or even from a pork pie.

The result of this effort is that we now effectively have a very simple, controlled, in-
memory data source (with its own unit tests!), which the other controllers will be able to use.
And, to top it all, our tests should now run blazingly fast and have zero configuration because
they don’t have to hit a real database.

Let’s move on to the next controller.

CHAPTER 12 ■ DESIGN-DRIVEN TESTING356

7745ch12final.qxd 12/13/06 8:46 PM Page 356

Testing the Display Book Details Controller
The use case text that relates to this test case is as follows:

. . . the system retrieves the book details for the selected book and displays them on the

View Book Details page.

That should be a nice, bite-sized piece of work to write a test case for. Figure 12-10 shows
the test scenarios added into EA for this test case.

There are three test scenarios: “Page displayed,” “Book details found,” and “Book details
not found.” However, one of these isn’t quite right.

Impostor alert: We’ve added a “Book details not found” test scenario, which seems like
a good idea. However, checking back to the test cases shown in Figure 12-6, there’s already a
separate alternate course (and accompanying test case) for the case where the book details
aren’t found.

CHAPTER 12 ■ DESIGN-DRIVEN TESTING 357

Figure 12-10. Test scenarios for the Display Book Details controller/test case

7745ch12final.qxd 12/13/06 8:46 PM Page 357

■Tip When you’re adding “alternate” test scenarios, always check that you’re not just duplicating an alter-
nate course in the use case itself.

So for this test case, there are really only two test scenarios: “Page displayed” and “Book
details found.” Both of these are “basic path” test scenarios, which makes sense, because the
test case itself is for one of the controllers in the use case’s basic course.

Let’s pause to get our bearings. Figure 12-11 shows an excerpt from the Show Book Details
sequence diagram.

Remember that you should write the test from the point of view of the object that is call-
ing the controller. The calling object is usually a boundary object, though it may also be
another controller. We only want the calls going into the controller being tested. As you can
see from Figure 12-11, this means testing two methods: handle() and checkBookFound().

Here’s the test class skeleton for the Display Book Details controller/test case (the test
methods are shown in red):

package test.com.iconixsw.bookstore.web;

import junit.framework.*;

/**
* Test case for the Display Book Details Page controller.
*/
public class DisplayBookDetailsPageTest extends TestCase {

CHAPTER 12 ■ DESIGN-DRIVEN TESTING358

Figure 12-11. Excerpt from the Show Book Details sequence diagram

BookDetailsControllerDispatcher
Servlet

ModelAndView= handle(request, response, command, errors)

boolean=
checkBookFound(book)

7745ch12final.qxd 12/13/06 8:46 PM Page 358

public DisplayBookDetailsPageTest(String testName) {
super(testName);

}

public void setUp() throws Exception {
}

public void tearDown() throws Exception {
}

public void testPageDisplayed()throws Exception {
}

public void testBookDetailsFound()throws Exception {
}

}

Checking Figure 12-11, we’ll want to create a BookDetailsController object to push and
prod, and it would make sense to put this in setUp() so that the same setup code can be
shared by both the test methods:

public void setUp() throws Exception {
bookDetailsController = new BookDetailsController();
bookDetailsController.setBookDao(new MockBookDao());

}
private BookDetailsController bookDetailsController;

In setUp(), we’re now creating a new BookDetailsController and telling it to use the
MockBookDao class that we created earlier.

setBookDao() is a simple setter method on BookDetailsController:

public void setBookDao(BookDao bookDao) {
this.bookDao = bookDao;

}
private BookDao bookDao;

The following code shows the beginnings of the first of the two test methods,
testPageDisplayed():

public void testPageDisplayed() throws Exception {
Book command = new Book();
command.setId(1);
ModelAndView modelAndView =

bookDetailsController.handle(null, null, command, null);

// assert...
}

CHAPTER 12 ■ DESIGN-DRIVEN TESTING 359

7745ch12final.qxd 12/13/06 8:46 PM Page 359

We can now add the handle() method to BookDetailsController:

protected ModelAndView handle(
HttpServletRequest request,
HttpServletResponse response,
Object command,
BindException errors) throws Exception {

return null;
}

Initially it just returns null, because we want to be able to run the test first and see it fail
cataclysmically. (Well, perhaps not completely cataclysmically, but a simple “test failed” would
be nice.)

Unfortunately, the testPageDisplayed() test code won’t compile as it stands, because the
handle() method on BookDetailsController is, rather annoyingly, protected—not public (it
overrides a Spring method). So we would need to make the overriding method public (in Java,
it’s legal to increase an overriding method’s visibility). But another problem is that the
handle() method accepts several objects that are difficult to create outside their respective
APIs without a lot of boilerplate code. This is one of those wrinkles in the fabric of the other-
wise perfect space-time continuum that surfaces to taunt us from time to time.

One solution is to pass null values into the method, but the method is now starting to
look and behave less and less like it should in the real world, all for the purposes of testing.

For now, because we can, we’ll leave handle() unaltered and with protected visibility, and
instead add a separate, public method to BookDetailsController so that the test can call it.
We’ll prefix the method with “test” so that later we’ll know that it is for a unit test:

public ModelAndView testHandle(Book command)
throws Exception {

return handle(null, null, command, null);
}

The new method simply delegates to the real handle() method. handle() doesn’t actually
use the request, response, or errors parameter, so we can pass in null for these. In fact, the
only parameter that really matters is Book. Now we can rewrite the test method to use this new
method:

ModelAndView modelAndView =
bookDetailsController.testHandle(command);

Checking the sequence diagram in Figure 12-11, we can see that the second method,
checkBookFound(), is actually a private method called by handle(), so we don’t need to write
a specific test method for it.5 Instead, the output from checkBookFound() will contribute to the
eventual output of handle(), which we do need to test.

Now we can compile the test, run it against BookDetailsController (with its empty
handle() method that returns null), and watch it fail. Hurrah—sort of.

CHAPTER 12 ■ DESIGN-DRIVEN TESTING360

5. If you wanted to really embrace the micro-grained, test-driven spirit of things, you could make check-
BookFound() public and write an additional test method for it; it probably wouldn’t do any harm.

7745ch12final.qxd 12/13/06 8:46 PM Page 360

The next step is, one would hope, to write the real code for the handle() method. Except
we haven’t added any assert statements into the two test methods yet, so currently we’re not
testing for anything. Best to be good test-driven citizens and do that first. It’s quite a weighty
ream of code with lots of duplication, so brace yourself. We’ll turn it into something a bit more
compact later.

public class DisplayBookDetailsPageTest extends TestCase {

public DisplayBookDetailsPageTest(String testName) {
super(testName);

}

public void setUp() throws Exception {
bookDetailsController = new BookDetailsController();
bookDetailsController.setBookDao(new MockBookDao());

}
private BookDetailsController bookDetailsController;

public void tearDown() throws Exception {
bookDetailsController = null;

}

public void testPageDisplayed() throws Exception {
Book command = new Book();
command.setId(1);
ModelAndView modelAndView =

BookDetailsController.testHandle(command);

assertEquals("The bookdetails page should be displayed",
"bookdetails",
modelAndView.getViewName());

}

public void testBookDetailsFound() throws Exception {
BookDetailsCommand command = new BookDetailsCommand();
command.setId(1);
ModelAndView modelAndView =

bookDetailsController.testHandle(command);

Map model = modelAndView.getModel();
Book book = (Book) model.get("book");
assertEquals("The book should have been found",

1,
book.getId());

}
}

CHAPTER 12 ■ DESIGN-DRIVEN TESTING 361

7745ch12final.qxd 12/13/06 8:46 PM Page 361

As you can see, each test method initially does more or less the same thing: it sets up
a Book command object, assigns it an ID, and then passes it to the BookDetailsController
and gets a ModelAndView object back. The two methods, testPageDisplayed() and
testBookDetailsFound(), each assigns an ID of 1, an existing Book ID (because these two
methods are testing the basic course).

It seems like it would make sense to move this code into setUp() so that it gets called just
prior to each test method. Each test method then starts by calling
bookDetailsController.testHandle(), so that the resultant ModelAndView can be pushed and
prodded by the test method. Note that bookDetailsController.testHandle() itself doesn’t go
in setUp(), as strictly speaking it isn’t really setup code—it’s part of the actual test. By putting
the code in setUp(), we would effectively be saying to anyone who reads the code, “This is test
setup code, not test code,” which is a tad misleading. So instead, we’ve moved it into a sepa-
rate method so it can be shared by both test methods.

Here’s the resultant test code (the refactored code is shown in red):

private Book command;

public void setUp() throws Exception {
command = new Book();
command.setId(1);

}

public void testPageDisplayed() throws Exception {
ModelAndView modelAndView = callTestHandle();
assertEquals("The bookdetails page should be displayed.",

"bookdetails",
modelAndView.getViewName());

}

public void testBookDetailsFound() throws Exception {
ModelAndView modelAndView = callTestHandle();
Map model = modelAndView.getModel();
Book book = (Book) model.get("book");
assertEquals("The book should have been found.",

1,
book.getId());

}

private ModelAndView callTestHandle() {
return bookDetailsController.testHandle(command);

}

CHAPTER 12 ■ DESIGN-DRIVEN TESTING362

7745ch12final.qxd 12/13/06 8:46 PM Page 362

Running this test class, we get red lights everywhere (aka test failures) because the
handle() method is still returning null; we’ll fix that in a second.

So, to round off this test case, now we can safely add the real code into the handle()
method on BookDetailsController:

protected ModelAndView handle(
HttpServletRequest request,
HttpServletResponse response,
Object command,
BindException errors) throws Exception {

Book book = (Book) command;
book.load(bookDao);
return new ModelAndView("bookdetails", "book", book);

}

Running this code through the voracious unit tester, we get green lights, meaning the
tests pass. But you’d be right to feel uneasy, because this code doesn’t handle the possibility
that the book might not have been found. So, somewhat fortuitously, let’s move on to the next
test case.

Testing the Display Book Not Found Page Controller
In the final test case, we test the alternate course in which a book ID is passed in that doesn’t
exist. The use case text that relates to this test case is as follows:

ALTERNATE COURSES:

Book not found: The system displays a Book Details Not Found page.

Figure 12-12 shows the test scenarios added into EA for this test case.
There are two test scenarios: “Book Not Found page displayed” and “Book details not

found.” Both of these are categorized as Alternate test scenarios, which makes sense because
this is a test case for a controller on an alternate course in the use case.

Figure 12-13 shows an excerpt from the sequence diagram that covers the design for this
alternate course. (See the full sequence diagram in Figure 9-7.)

CHAPTER 12 ■ DESIGN-DRIVEN TESTING 363

7745ch12final.qxd 12/13/06 8:46 PM Page 363

CHAPTER 12 ■ DESIGN-DRIVEN TESTING364

Figure 12-12. Test scenarios for the Display Book Not Found controller/test case

Figure 12-13. Excerpt from the Show Book Details sequence diagram for the alternate course

7745ch12final.qxd 12/13/06 8:46 PM Page 364

As you’ve probably gathered by now, writing the skeleton code for the unit test class
(assuming it isn’t being generated automatically for you) is a simple matter of walking through
the test scenarios for this test case and adding a test method for each scenario. The test meth-
ods are shown in red in the following code:

public class DisplayBookNotFoundPageTest extends TestCase {

public DisplayBookNotFoundPageTest(String testName) {
super(testName);

}

public void setUp() throws Exception {
}

public void tearDown() throws Exception {
}

public void testBookNotFoundPageDisplayed() throws Exception {
}

public void testBookDetailsNotFound() throws Exception {
}

}

The setup code for this class will be identical to the setup code for the previous test
case, DisplayBookDetailsPageTest. In fact, the code that goes into each of the test methods
is also very similar; we could even make use of that callTestHandle() method. In fact, it
appears to make sense that DisplayBookNotFoundPageTest should be a subclass of
DisplayBookDetailsPageTest. Of course, we would need to make callTestHandle() pro-
tected so that the methods in the subclass can call it directly. Another, slight complication
is that this test case is testing for invalid book IDs (whereas DisplayBookDetailsPageTest
was testing for valid IDs, so the callTestHandle() method was simply using the ID 1 each
time). In order to reuse callTestHandle(), then, we’ll need to modify it to take an argument,
so that we can pass in a different book ID.

CHAPTER 12 ■ DESIGN-DRIVEN TESTING 365

7745ch12final.qxd 12/13/06 8:46 PM Page 365

Figure 12-14 shows how the two classes should fit together (TestCase is shown in red as
it’s an external JUnit class).

CHAPTER 12 ■ DESIGN-DRIVEN TESTING366

WHY BOTHER DESIGNING THE UNIT TESTS?

You might wonder why we’re spending time on the design of the unit test classes instead of the “real” pro-
duction code. Surely the unit tests are “second-class citizens”?

We’ve noticed a tendency for programmers to write unit tests in an ad hoc fashion, paying virtually zero
attention to their design (the thought process seems to be, “Hey, they’re not part of the main code base, so
why waste our time on them?”). The result is that once the project contains more than a few small unit tests,
it becomes just as difficult to maintain or extend the tests as with “proper” functional source code.

The result also is that the test classes tend to become monolithic, thousand-line beasts. You may also
find that there will be less and less correlation between the test, the code that it’s testing, and what the test’s
assertion was originally meant to be proving. It becomes very difficult to match up a test failure with the root
cause of the failure. A bit like the “fog of war,” you end up with the “fog of test failure.” Rather than the failed
test naturally pointing to the point of failure, you instead have to debug it, spend a while trawling through
poorly designed test code, and then trace it through the code being tested, eventually tracking down the root
cause of the failure.

But just being aware that some attention must be paid to the test design goes a long, long way toward
alleviating this problem. And that’s why you need to keep an eye on the unit test code, and keep its design
nice and clean!

Figure 12-14. Class diagram for the two Book Details test cases (first attempt)

7745ch12final.qxd 12/13/06 8:46 PM Page 366

However, the problem with this design is that when DisplayBookNotFoundPageTest is run,
the tests from the parent test class will also be run. It isn’t a big problem, but it’s a bit messy. In
effect, we’re saying that DisplayBookNotFoundPageTest is-a DisplayBookDetailsTest, which
really it isn’t. Also, using an inheritance relationship in this way could limit the code’s extensi-
bility: what if you find that some other test cases could also share the helper method, but are
otherwise unrelated (i.e., where an is-a relationship really wouldn’t make any sense)? Similarly,
you might want DisplayBookNotFoundPageTest to share some functionality in some other
abstract parent class, but Java doesn’t support multiple inheritance (thank goodness!).

So this design still isn’t quite right. Whatever to do?
You could take the “postmodernistic” approach6 and avoid inheritance in favor of aggre-

gation. In other words, you could move the common code into a separate helper class shared
by both test cases (see Figure 12-15).

CHAPTER 12 ■ DESIGN-DRIVEN TESTING 367

6. Shortly after the “Gang of Four” book was published, inheritance was all the rage—everyone who was
anyone was doing it. However, it didn’t take long for people to encounter the sorts of problems we’ve
described here. So nowadays, aggregation (and copious use of interfaces) is generally seen as a neater,
less problematic approach.

Figure 12-15. Class diagram for the two Book Details test cases

7745ch12final.qxd 12/13/06 8:46 PM Page 367

Here’s our sleek, postmodernistic test helper class:

public class ShowBookTestHelper {

public ModelAndView callTestHandle(int bookId) throws Exception {
BookDetailsController bookDetailsController =

new BookDetailsController();
bookDetailsController.setBookDao(new MockBookDao());

Book command = new Book();
command.setId(bookId);
return bookDetailsController.testHandle(command);

}

And finally, here’s the new version of DisplayBookNotFoundPageTest, refactored to use the
new shared helper class (the code that uses the helper class is shown in red):

public class DisplayBookNotFoundPageTest extends TestCase {

public DisplayBookNotFoundPageTest(String testName) {
super(testName);

}

public void setUp() throws Exception {
helper = new ShowBookTestHelper();

}
private ShowBookTestHelper helper;

public void testBookNotFoundPageDisplayed() throws Exception {
ModelAndView modelAndView = helper.callTestHandle(-1);
assertEquals("The booknotfound page should be displayed",

"booknotfound",
modelAndView.getViewName());

}

public void testBookDetailsNotFound() throws Exception {
ModelAndView modelAndView = helper.callTestHandle(-1);
Map model = modelAndView.getModel();
Book book = (Book) model.get("book");
assertNull("The book should not have been found", book);

}
}

DisplayBookDetailsPageTest will also look quite similar to this class after refactoring it
to use ShowBookTestHelper. If you’re interested, you can download the finished code from this
book’s website.

That about wraps it up for the testing element of the use case–driven process. We’ll finish
this chapter with our top 10 list of Design-Driven Testing errors.

CHAPTER 12 ■ DESIGN-DRIVEN TESTING368

7745ch12final.qxd 12/13/06 8:46 PM Page 368

■Note Non-TDDers who opted to skip over this more mind-bending part of the chapter for the much safer
option of a nice cup of tea may safely rejoin the chapter here.

Top 10 Design-Driven Testing Errors (the “Don’ts”)
To break with tradition, we’re presenting a top 10 list of the things you shouldn’t do when
Design-Driven Testing, in addition to the top 10 “do’s” from the start of the chapter.

10. Go overboard with mock objects.

While mock objects do have limited usefulness to “grease the skids” of your testing
process, they suffer from a law of diminishing returns. It’s all too easy to end up with
code that does this sort of thing:

Unit test: Assert that the mock object returns 3.0

Mock object: Return 3.0

Of course, that isn’t testing for anything—your unit tests and your mock objects are
just giving each other mutual kisses and cuddles. While you may get a warm feeling
because you have 1,000+ mock objects returning the values that your tests are expect-
ing, it doesn’t do much for the quality of your software.

9. Duplicate alternate course scenarios in the alternate test scenarios for basic course
controllers.

(Pause for a moment to reread that last line.) When you’re brainstorming test case sce-
narios, it’s easy to think up rainy-day scenarios that were already thought of when you
were brainstorming alternate scenarios for your use cases. It’s important to make sure
you don’t duplicate these scenarios. Make sure the rainy-day test scenarios go into the
appropriate alternate course test case.

8. Forget to tie the tests closely to the requirements.

7. Leave testing until after the code has been written.

If there’s one thing we have in common with the XP crowd, it’s that we firmly believe
that testing should begin before you start writing the code. In fact, you should begin
thinking about testing and preparing the way, long before that. Retrospective test-
ing (i.e., sitting down and testing the code after it’s been written) is better than no
testing at all, but it’s possible to eliminate a lot more bugs, before they even exist,
by testing early.

6. Confuse testing with designing.

Well, OK, this one is a bit tongue-in-cheek. But hopefully in the course of this book,
we’ve brought home to you the importance of designing before you begin coding and
testing. It is possible to design your code by writing unit tests (the basic premise of

CHAPTER 12 ■ DESIGN-DRIVEN TESTING 369

7745ch12final.qxd 12/13/06 8:46 PM Page 369

Test-Driven Development [TDD]), but we feel that it’s much more efficient and more
“bulletproof” to design using the process we’ve described, and then write the tests to
validate and further hone the design.

5. Ignore problem hot spots.

When you find patches of buggy code, find out why they’re there, and try to fix the
problems at the source. Remember that the probability of finding a bug in a given
piece of code increases with the number of bugs already found in that piece of code.

■Tip When fixing a bug, always start by writing a test that will fail if the bug reoccurs.

4. Use brute force testing instead of identifying and then targeting “test hot spots” from
your preliminary design.

3. Use the wrong kind of testing for the wrong situation.

2. Forget to do any testing at all.

1. Test so thoroughly that you never release the product.

More Practice
This section provides a list of questions that you can use to test your knowledge of DDT.

1. Which of the following would you use to specify your system tests?

a) Robustness diagrams

b) Use cases

c) Sequence diagrams

d) Conceptual design

2. What’s the main difference between integration testing and compatibility testing?

a) Integration testing exposes faults in the interaction between “internal” classes,
whereas compatibility testing checks that the system interoperates correctly with
other, “external” systems and components.

b) Integration testing checks that the system interoperates correctly with other,
“external” systems and components, whereas compatibility testing exposes faults
in the interaction between “internal” classes.

c) Integration testing proves that the system that was specified has been delivered,
whereas compatibility testing proves that the system delivers what was actually
requested.

d) Integration testing proves that the system delivers what was actually requested,
whereas compatibility testing proves that the system that was specified has been
delivered.

CHAPTER 12 ■ DESIGN-DRIVEN TESTING370

7745ch12final.qxd 12/13/06 8:46 PM Page 370

3. Unit tests are derived from, and check the processing logic contained in, which of the
following?

a) Controllers

b) Boundary classes

c) Entity classes

d) Use cases

4. What’s the maximum number of test methods you should have in each unit test class?
What can happen if the test class (or the individual test methods) grows too large?

5. Which of the following statements is true?

a) You should tie the boundary classes in the preliminary design to the setup meth-
ods in the unit test classes.

b) You should tie the controller method names closely to the unit test class names.

c) You should keep your unit test methods coarse-grained.

d) You should tie the unit tests closely to the classes and methods you’re testing.

6. Describe when mock objects are beneficial, and also describe the “point of diminish-
ing returns” when they cease to be useful.

7. Why is aggregation a preferable design strategy to generalization when creating test
classes?

8. For each use case, should the alternate courses be tested in the same test class as the
basic course? Explain your answer.

Summary
In this chapter, we covered the various forms of use case–driven testing and described when
you would want to use each of them. We also ran through an example of Design-Driven Test-
ing (DDT) for the Internet Bookstore and wrote some unit tests to cover the Show Book Details
use case.

Figure 12-16 shows where we are. The activities covered in this chapter are shown in red.
If you want to further explore the possibilities of combining use case–driven development

with Test-Driven Development (TDD), we provide an in-depth discussion and detailed exam-
ple in Agile Development with ICONIX Process (Apress, 2005).

One of the key points in this chapter is that tests don’t prove a huge amount if they aren’t
tied microscopically closely in with the requirements (though not so closely that the require-
ments are the tests—that would be silly!). In the next and final chapter, we talk about
requirements and show how they fit into the overall process.

CHAPTER 12 ■ DESIGN-DRIVEN TESTING 371

7745ch12final.qxd 12/13/06 8:46 PM Page 371

CHAPTER 12 ■ DESIGN-DRIVEN TESTING372

Figure 12-16. Testing activities during the implementation stage

7745ch12final.qxd 12/13/06 8:46 PM Page 372

Addressing Requirements

We’ve held off on discussing requirements until the end of the book for a couple of reasons.
First off, there seems to be a lot of confusion about the differences between requirements, use
cases, and behavior (operations). Since we talked about use cases in Chapter 3, allocating
behavior in Chapter 8, and a whole series of techniques driven by use cases and operations
in the subsequent chapters, it’s easier to talk about requirements in terms of how they contrast
with those items.

The requirements process described in this chapter isn’t a core part of ICONIX Process
as such, so that’s another reason this chapter is at the end. It’s not a core part of the process
simply because different organizations have different strategies for handling requirements.
In some companies, the requirements are just handed down from on high, and for political or
other reasons, there’s no ability to change the requirements elicitation process. In fact, some-
times it seems as if there are as many ways of addressing requirements as there are software
development projects. But we believe that if you take the ideas in this chapter to heart, you’ll
find your customers will be more satisfied with what you deliver.

373

C H A P T E R 1 3

7745ch13final.qxd 12/13/06 8:48 PM Page 373

Requirements Gathering in Theory
In this section we describe the theory behind requirements gathering in a use case–driven
project. First up are our top 10 requirements gathering guidelines.

Top 10 Requirements Gathering Guidelines
The principles discussed in this chapter can be summed up as a list of guidelines. Our top 10
list follows.

10. Use a modeling tool that supports linkage and traceability between requirements and
use cases.

9. Link requirements to use cases by dragging and dropping.

8. Avoid dysfunctional requirements by separating functional details from your behav-
ioral specification.

7. Write at least one test case for each requirement.

6. Treat requirements as first-class citizens in the model.

5. Distinguish between different types of requirements.

4. Avoid the “big monolithic document” syndrome.

3. Create estimates from the use case scenarios, not from the functional requirements.

2. Don’t be afraid of examples when writing functional requirements.

1. Don’t make your requirements a technical fashion statement.

Let’s look at each of these items in more detail.

10. Use a Modeling Tool That Supports Linkage and Traceability
As irrational as it sounds, there was a time when visual modeling tools didn’t have built-in
support for allocation and traceability “out of the box” (at least not without purchasing six
additional software modules at a cost of eleventy-million dollars, and then hiring a team of
consultants to manage the interfaces between the tools). These days, however, matters have
improved, and we can adopt a much more rational process.

For example, Enterprise Architect (EA) provides support for drag-and-drop allocation of
requirements and automatic generation of a requirements traceability matrix. We show an
example of that later in this chapter.

9. Link Requirements to Use Cases by Dragging and Dropping
We show an example of this in the second part of this chapter, but in a nutshell you can link
any element in your model back to a requirement by dragging the requirement onto the ele-
ment. Naturally, we recommend doing this with use cases (i.e., drag the requirement onto
the use case), as you can then automatically generate and display a traceability matrix to see
how all of your behavioral requirements link back to the customer’s original high-level
requirements.

374 CHAPTER 13 ■ ADDRESSING REQUIREMENTS

7745ch13final.qxd 12/13/06 8:48 PM Page 374

8. Avoid Dysfunctional Requirements
A recent trend we’ve seen that’s a bit disturbing involves mixing the functional requirement
statements in with use case text. We’re not sure whose advice has led so many different organi-
zations to this style of writing use cases, but it certainly seems to be in fashion as we’re writing
this chapter. We’ve seen it often enough during recent Jumpstart classes that we decided to
invent a new term to describe it: we call it intermangling of requirements and scenario text.

In other words, the (passive voice) requirements statements become intermixed and
mangled up—intermangled—with the (active voice) scenario text. So you can’t quite tell if
you’re reading a use case or a requirements document. You’re just not sure: Is it a functional
requirement? Is it a nonfunctional requirement? Is it a behavioral requirement . . . what is it that
I’m reading here? The use cases are rendered . . . well, useless, actually.

We believe it’s much better to separate out the active voice (use case) stuff from the pas-
sive voice (requirement) stuff. When they’re all intermangled together, they aren’t really very
useful in our experience. So we’ve begun referring to this style of requirements spec as dys-
functional requirements. They’re dysfunctional because of their schizophrenic nature. The
specification is unsure if it’s a list of functional requirements or a list of use case steps; it has
a split personality.

One of the reasons that intermangled requirements and use cases are dysfunctional is
that you can’t disambiguate the use cases and put them in the context of the object model
when they’re intermangled with the functional requirements. All the use case text has to be
active voice text that describes how the users interact with the system as the program is run-
ning. So you have to disintermangle them before you can disambiguate them. It’s quite
important, actually.

■Note We hope you’ve gotten a real-world feeling about ICONIX Process from this book. Doug spends up
to 20 weeks a year (sometimes more) out in the field, applying this process on real projects, with more than
half of the projects being new developments from existing clients. Having done this for over a decade, we
have a pretty good idea of what works and what doesn’t.

CHAPTER 13 ■ ADDRESSING REQUIREMENTS 375

DISINTERMANGLING DYSFUNCTIONAL REQUIREMENTS FROM THE SCENARIO TEXT

As previously mentioned, dysfunctional requirements are functional requirements that appear in the use case
scenario text (which, as you know by now, should contain only behavioral requirements). Here’s an example,
with the dysfunctional text in red. (Please, don’t try this at home.)

BASIC COURSE:
The user clicks the Advanced Search button on the hub page.
The system displays the Advanced Search page.
[REQUIREMENT] On this page, there are two search fields: Search by Title, Search by Author; and search
options:
[REQUIREMENT] Order results by sales rank;
[REQUIREMENT] Order results alphabetically by Title;
[REQUIREMENT] Order results alphabetically by Author;

7745ch13final.qxd 12/13/06 8:48 PM Page 375

7. Write at Least One Test Case for Each Requirement
Make sure that your tests are tied closely to the requirements. That isn’t to say that every test
should be traced back to a requirement, but there should at least be a test to “prove” that each
requirement has been implemented correctly.

In Chapter 12, we describe several techniques for tying your requirements closely to your
test cases.

6. Treat Requirements As First-Class Citizens in the Model
Give each requirement a short, catchy name, just as you would a use case or a class.

5. Distinguish Between Different Types of Requirements
Requirements specs tend to be a mixture of high- and low-level requirements, of busi-
ness requirements and technical notes—whatever the driving force is that has pushed

CHAPTER 13 ■ ADDRESSING REQUIREMENTS376

[REQUIREMENT] Order results by date.
The user enters a book title and clicks the Submit button.
[REQUIREMENT] The search results should be fine-tuned to be displayed to the user in no more than five
seconds.
The system displays the Search Results Page.

(We also slipped a nonfunctional requirement in there to show how easy it is to fall into the trap!)
The text in red is important and it needs to be specified someplace, but the use case just isn’t that

place. One of the purposes of robustness analysis, in addition to disambiguation, is to remove the interman-
gled requirements from the use case text and put them somewhere more appropriate (i.e., in separate
requirement elements that are linked to the use cases).

If that doesn’t seem to make sense, perhaps this will help:

We remove dysfunctionality from the requirements by disintermangling them from

the scenario text and then disambiguating them, in preparation for prefactoring the

design.

Hopefully that clears things up a little . . .

■Note Intermangling has a dangerous cousin that we might call vicious intermangling. A classic
example of vicious intermangling is to repeat the functional requirements inline within each and every
use case that has anything to do with satisfying the requirement. We once met someone in Phoenix
who, when we pointed out repeated inline instances of functional requirements (each with a unique
number!) within the use cases, replied, “Oh, definitely. Some of these are repeated 70 or 80 times.”
Whereupon we asked him how he knew whether he had 80 distinct requirements or a single require-
ment repeated 80 times. We wish we were making this stuff up.

7745ch13final.qxd 12/13/06 8:48 PM Page 376

the project into existence. But it’s worth separating the requirements into different sec-
tions delineated by the types of requirements (e.g., functional, data, performance,
capacity, and test requirements).

4. Avoid the “Big Monolithic Document” Syndrome
Treat the functional spec as a collection of short, highly focused, interlinked documents linked
back to from the use cases, instead of one big impenetrable 200-page tome.

3. Don’t Create Estimates Directly from the Functional Requirements
Break the requirements down into use cases first (see Chapter 3), and then create estimates
from the use cases. Even better, draw the robustness diagrams (see Chapter 5) and create
estimates from the list of controllers.

2. Don’t Be Afraid of Examples When Writing Functional Requirements
When writing functional requirements specs, use examples copiously throughout, as a brief,
concrete example often illustrates a point much more succinctly than a normative explana-
tion. Also remember to keep the examples interesting, to hold the reader’s attention.

1. Don’t Make Your Requirements a Technical Fashion Statement
In this age of trendy open source web frameworks and fashionable coding methodologies,
it’s easy to drive the project from such “requirements” as “Must use EJB 3.0,” “Must use AOP,”
“Must use Spring Framework,” and so forth. Similarly, projects can end up being delayed
because the developers wanted to spend longer “improving the design” before releasing to
the customer.

Projects that are driven by technical requirements like these are out of step with the real-
world forces that drive the business world. The number 1 business motivator is, of course,
profit—not design patterns. As soon as the developers take over, and design patterns become
more important than the business’ profit, the project has lost touch with reality.

■Tip When gathering requirements, ask the right questions of the right people (project stakeholders, end
users), and keep on asking until you get the specific answers that the project needs.

Why Bother Tracking Requirements?
You may wonder whether the approach described in this chapter is overkill or whether only,
say, big aerospace companies need to trace requirements to any level of detail. We can see how
you might think that.

We’ll try to shed some light on the topic by telling you a true story about a training work-
shop that found Doug at a major corporation in Chicago with a small team (about five
developers) and a really tight deadline. In fact, the code was being written in parallel with the
modeling workshop, that’s how tight the deadline was:

CHAPTER 13 ■ ADDRESSING REQUIREMENTS 377

7745ch13final.qxd 12/13/06 8:48 PM Page 377

The project had about 30 named requirements. We had allocated them to the use cases

during analysis, and we were in the process of verifying that our sequence diagrams met

those requirements. Suddenly, as we were tracing the first requirement, the lead engineer

got, well, red in the face with embarrassment and said, “I just coded this last night, and

I completely forgot about that exception condition.”

It can happen to you, too.

Requirements Allocation and Traceability in Theory

■Note Our thanks to Jeff Kantor for contributing this section.

When you look forward in the life cycle, you perform allocation of requirements to use cases,
classes, operations, states, and so forth. When you look backward, as you would in a verifica-
tion/validation phase of the project, the term traceability comes into play. The two terms are
different perspectives on the same relationship, but you traverse the relationship from each
perspective under different circumstances.

When you move from analysis to design, you perform allocation in order to assign
requirements to the design elements that will satisfy them. When you test and integrate
code, your concern is with traceability, to determine which requirements led to each piece
of code, and to provide criteria for testing that code. Thus allocation/traceability is a con-
cern across the entire life cycle, not just from system requirements to software require-
ments, but also from software requirements to preliminary design, from preliminary design
to detailed design, and from detailed design to implementation, testing, and integration.

You need to address several aspects of the allocation/traceability problem before you start
serious coding.

• Data capture has to do with finding efficient ways to capture the analytical elements of
each phase of the life cycle (requirements, functional analysis, functional allocation,
hardware/software design, code, test, documentation, data) and the allocation/trace-
ability relationships among these elements. You also need to consider how you will
manage this information over several iterations of the life cycle phase activities, and
how you will manage updates and changes to the elements and relationships.

• Data analysis and reduction encompasses ensuring that all the allocation/trace point-
ers are valid, that all requirements are allocated, and that all requirements trace. This
aspect also presents management questions as iterative and incremental development
occurs. In addition, you need to be aware of the impact that changes have on elements
throughout the system, and work to ensure that the results leave your design consistent
with the users’ needs.

• Data reporting involves the ability to report efficiently on the results of data capture
and data analysis/reduction. This typically takes the form of large tables that should be
included in ongoing project documentation.

CHAPTER 13 ■ ADDRESSING REQUIREMENTS378

7745ch13final.qxd 12/13/06 8:48 PM Page 378

Requirements Gathering in Practice
In this section, we dispense with the Internet Bookstore example, and instead reintroduce
everyone’s favorite redneck, Billy Bob (a character from Doug’s first book on ICONIX Process,
coauthored by Kendall Scott). We’ll use the requirements from the original Billy Bob example
to illustrate how to organize your functional requirements in EA.

■Note The remainder of this chapter focuses on requirements management using EA. Non-EA users
should still find this section helpful, if only because it illustrates just how easy requirements management
and traceability have become these days, using the right tools.

Organizing Requirements in EA: BillyBob 2.0
In Doug’s first book on ICONIX Process,1 he and coauthor Kendall Scott introduced to us the
infamous Billy Bob. In the original example, Billy Bob was driving down the road at 80 miles
an hour while drinking beer, scratching, and tossing the empty beer cans out the window of
his pickup truck. From these actions, a set of behavioral requirements was identified: “Drive
Pickup Truck,” “Drink Beer,” and “Toss Can Out of the Window.”

As this seems to be the storytelling chapter, and since we’re pretty close to the end of the
book, here’s one more. Doug was teaching a class in Oak Ridge, Tennessee, a few years back
and one of the students came up at a break and introduced himself as being from Mississippi
(or was it Alabama?). At any rate, he proceeded to confess that the Billy Bob story was the only
part of the book he had actually understood, and then explained that Doug and Kendall had it
all wrong, as follows:

You throw the cans into the back of the pickup, but you throw the bottles out of the win-

dow because they make a much more satisfying noise when they hit the signs.

You just can’t make this kind of stuff up, folks. But at any rate, we can use Doug’s student’s
explanation to explore the further adventures of Billy Bob. We can define the requirements for
BillyBob 2.0 as follows:

1. Billy Bob shall throw his cans into the back of the pickup.

2. Billy Bob shall recycle his beer cans so he can buy an additional six-pack.

3. Billy shall throw only the bottles out the window.

4. (Performance requirement) The bottles must hit the signs with an accuracy ratio of at
least 63.5%.

We’ll return to these requirements later in this chapter and give a practical demo of how
they can be organized and linked to use cases in EA.

CHAPTER 13 ■ ADDRESSING REQUIREMENTS 379

1. Doug Rosenberg and Kendall Scott, Use Case Driven Object Modeling with UML: A Practical Approach
(New York: Addison-Wesley, 1999).

7745ch13final.qxd 12/13/06 8:48 PM Page 379

Figure 13-2 shows the updated domain model, with the domain objects that we’ve identi-
fied from the new requirements (the new 2.0 objects are shown in red). The behavior of the
system will be distributed across these objects.

Figure 13-2 shows the use cases we can identify from our new requirements, as well as the
declarations we can make about how these use cases are related.

■Exercise Can you spot an additional <<precedes>> relationship that’s missing from Figure 13-2?

Here’s a possible use case for Drink Beer (adapted from Doug’s first book with Kendall,
now with our new requirements added):

BASIC COURSE:

Billy Bob removes one hand from the steering wheel and grabs a can of beer from the six-

pack on the seat next to him. He drains it in one prolonged gulp, and then invokes the

Toss Cans in back of Pickup Truck use case.

ALTERNATE COURSE:

Bottle instead of Can: The Toss Bottles out of Window at Signs use case is invoked instead.

CHAPTER 13 ■ ADDRESSING REQUIREMENTS380

Figure 13-1. Domain objects associated with Billy Bob

7745ch13final.qxd 12/13/06 8:48 PM Page 380

Here’s the basic course for the Toss Cans in back of Pickup Truck use case:

Keeping his eyes on the road at all times, Billy Bob tosses the drained Can over his shoul-

der into the back of the Pickup Truck.

■Exercise Should Drained Can be a separate domain object, or should it be an attribute of Beer Can?

And finally, here’s the Toss Bottles out of Window at Signs use case:

BASIC COURSE:

Keeping his eyes on the road at all times, Billy Bob tosses the drained Bottle out the win-

dow, at an approaching sign; the system makes the Bottle hit the sign with a satisfying

noise.

ALTERNATE COURSE:

Bottle misses sign: Satisfying noise not heard.

CHAPTER 13 ■ ADDRESSING REQUIREMENTS 381

Figure 13-2. Billy Bob’s refactored behavior

Billy Bob

Toss Cans in

back of Pickup

Truck

Drink Beer

Drive Pickup

Truck

Take Cans to

Recycle Center

Toss Bottles

out of Window

at Signs

«precedes»

«invokes»

«precedes»

«invokes»

7745ch13final.qxd 12/13/06 8:48 PM Page 381

Using a Visual Modeling Tool to Support Requirements
In this section, we describe EA’s support for allocating and tracing requirements.

■Note This section is rather EA-specific, but if you’re using a different modeling tool, we think you’ll still
pick up some good ideas about how you can link your functional requirements to your use cases.

Figure 13-3 shows the Require tab that will appear on your use case and class specifica-
tions within EA. We’ve linked two requirements to it by dragging the requirements directly
onto the use case (as you’ll see in the next section, these are external requirements). In the
screenshot, a new Testing requirement is being added directly to the use case.

EA has a number of built-in features to help you manage requirements. These features
include the ability to

• Define requirement elements (“external” requirements)

• Link requirements to model elements that implement that requirement

• Link requirements together into a hierarchy

• Report on requirements and move requirements into and out of model element
responsibilities

CHAPTER 13 ■ ADDRESSING REQUIREMENTS382

Figure 13-3. Require tab within EA

7745ch13final.qxd 12/13/06 8:48 PM Page 382

■Tip If you’re starting out with a set of requirements in an external document, it’s possible to import these
requirements into EA from a comma-separated value (CSV) file.

Internal and External Requirements
EA supports two basic types of requirements: internal and external. Internal means “internal
to a UML element” (such as a use case or class), whereas external means “independent of any
specific UML element.”

Most commonly, you’ll want to associate internal requirements (aka responsibilities) with
use cases. You can double-click a use case to open its Properties dialog, and then click its
Require tab and enter a list of requirements that are then inherently “part of” the use case
(see Figure 13-3).

Alternatively, you can create external Requirement elements and place them on diagrams.
These are custom UML elements, so they can be connected to each other and to other UML
elements.

It’s possible to turn internal requirements into external requirements. For example, you
might begin by adding requirements directly into a use case, but then later discover that you
want to associate the same requirements with other use cases. The “simplest thing that can
possibly work” would be to recreate a carbon copy of the requirements in the other use cases,
but we don’t want to do that, as duplication of anything (except fat royalty checks) is bad. So,
let’s walk through the process of turning internal requirements into external requirements.
Along the way, we’ll discuss some of the ways in which requirements can be organized in EA.

In Figure 13-3, we defined a use case called Toss Bottles out of Window at Signs, and within
it we’ve defined a new internal requirement (requirement 5). To turn this requirement into an
external requirement (i.e., to “unshackle” it from a specific use case), click the Move External
button on the Require tab. This pops up a dialog (see Figure 13-4), from which you can select
a package to move the requirement to.

CHAPTER 13 ■ ADDRESSING REQUIREMENTS 383

Figure 13-4. Choosing where to put the newly “externalized” requirement

7745ch13final.qxd 12/13/06 8:48 PM Page 383

Once you have a sizeable batch of external requirements, you can create a new diagram
to place the requirements on and organize them a bit more. The diagram we’ll create is an
extended class diagram, the reason being that this diagram type allows custom elements
(such as Requirement elements) to be placed on it. To place the Requirement elements onto
a diagram, drag them over from the Project View (see Figure 13-5).

If you recall from earlier in this chapter, there’s a hierarchical aspect to these require-
ments: requirement 5 was derived from 4, and 4 was derived from 3. It would be useful to
show this “tree” relationship graphically, so let’s do that next.

CHAPTER 13 ■ ADDRESSING REQUIREMENTS384

Figure 13-5. Placing the external requirements on a new diagram

7745ch13final.qxd 12/13/06 8:48 PM Page 384

Tree of Requirements
Requirements can be linked to show construction of a complete requirements “tree” using
aggregation (see Figure 13-6).

■Caution For some projects, creating a requirements tree might be overkill, but the capability is there if
you need it. However, it’s more important to allocate the requirements to the use cases and classes than it is
to organize them into pretty tree structures.

CHAPTER 13 ■ ADDRESSING REQUIREMENTS 385

Figure 13-6. Structuring the requirements into a tree hierarchy

7745ch13final.qxd 12/13/06 8:48 PM Page 385

Once the links are established, the Hierarchy window will display the complete require-
ment implementation/composition detail (see Figure 13-7).

Linking Requirements to Use Cases
If you create your requirements as internal requirements inside a use case and then turn
them into external requirements, they’ll already be linked automatically to the original use
case. However, you might also want to approach the problem from the other direction: start
by defining some external requirements and then link ’em up to your use cases (as we did for
the first four requirements we showed earlier).

In fact, use cases aren’t the only model elements that you can link external require-
ments to. Pretty much any model element can be linked up to a requirement: classes, inter-
faces, components, and so forth. In EA, you link requirements to model elements using the
Realization relationship (see Figure 13-8).

CHAPTER 13 ■ ADDRESSING REQUIREMENTS386

Figure 13-7. Structuring the requirements into a tree hierarchy

7745ch13final.qxd 12/13/06 8:48 PM Page 386

As you can see in Figure 13-8, a model element is marked as “realizing” a requirement.
Once this link exists, EA will display the requirement in the element’s Require tab, in the
requirement hierarchy window, and in the dependency and implementation reports, as well
as in the standard RTF output.

■Tip A quick method of generating a Realization link is to drag a Requirement element from the Project
Browser over an element in a diagram that is to be the implementing element. EA will interpret this as a
request to create the realization link and do so automatically. To confirm this, perform the action, and then
go to the Require tab page of the target element. There should now be an external relationship to the
requirement that was dragged over the target.

External requirements have their own properties and are reported on separately in the
RTF documentation.

CHAPTER 13 ■ ADDRESSING REQUIREMENTS 387

Figure 13-8. Linking an external requirement to a use case

7745ch13final.qxd 12/13/06 8:48 PM Page 387

Pain-Free Requirements Traceability
EA has a rather nifty tool called the Relationship Matrix. It’s a spreadsheet-like display of rela-
tionships between model elements. You select a source package and a target package, the
relationship type and direction, and then EA will display all the relationships between source
and target elements by highlighting a grid square.2

You can also use the Relationship Matrix to create and manage the relationships between
requirements (see Figure 13-9). This is a convenient way of quickly building up complex rela-
tionships and hierarchies. Choose View ➤ Relationship Matrix from the main menu to access
this window.

A point to note when using requirements and the Relationship Matrix is that multiple
elements can be selected and realized to a Requirement element (or any other element) by
dragging the mouse across a set of cells or Ctrl-clicking individual cells. When you right-click

CHAPTER 13 ■ ADDRESSING REQUIREMENTS388

2. This brings a nice, satisfying closure to the allocation/traceability discussion we had at the beginning
of the chapter. Allocate the requirements to the use cases by dragging them, and the tool produces the
traceability matrix automatically. Can it get any easier? Life is good. (Thank you, Geoff Sparks.)

Figure 13-9. EA’s Relationship Matrix feature

7745ch13final.qxd 12/13/06 8:48 PM Page 388

one highlighted cell and select Create New Relationship, the relationships are set up for all
selected cells. This can be very useful when a requirement has impact on a number of ele-
ments within a diagram.

More Practice
This section provides a list of questions that you can use to test your knowledge of require-
ments analysis and traceability in a use case–driven project.

1. Describe the differences between a functional requirement and a data requirement.

2. Which of the following is a behavioral requirement?

a) The user must be allowed to select from the following three invoice types: . . .

b) The speed limit of the road along which Billy Bob is driving is 65 mph.

c) If more than 3,000 users connect simultaneously, the system should respond by
redirecting excess users to a “busy” page.

d) The user selects one item from the list of available invoice types and clicks
Submit . . .

3. Which of the following statements is true?

a) A use case describes the laws that govern a function’s behavior.

b) Requirements describe the individual actions that occur within a use case.

c) Functions are the individual actions that occur within a use case.

d) A use case describes the laws that govern a requirement’s functions.

4. If you turn an internal requirement into an external requirement, how does that
change its relationship with a use case?

5. Disintermangle the following use case scenario so that the nonbehavioral require-
ments are separated out:

On the Maintain Seller Catalog page, the user clicks Add New Catalog. The user should

only be allowed to do this if she is already logged in. The system displays the Add New

Catalog page, showing a Catalog Name field, a book search field, and a list of recently

accessed Books. The system shows the user’s login name so that if she is a different user,

she logs out. The user enters a Book’s ISBN and clicks Add; the system updates the Cata-

log to show the new Book. Then the user repeats this for as many Books as she wants to

add. She shouldn’t be allowed to enter more than 20 Books in one Catalog, or to enter 0

Books. Finally, the user clicks the Save button; the system saves the new Catalog and

takes the user back to the Maintain Seller Catalog page.

6. Describe the differences between data capture and data analysis and reduction.

CHAPTER 13 ■ ADDRESSING REQUIREMENTS 389

7745ch13final.qxd 12/13/06 8:48 PM Page 389

Summary
In this chapter, we looked at how requirements fit into the development process. We distin-
guished between different types of requirements. We also demonstrated how to use Enterprise
Architect to help support the requirements effort.

We’re about at the end of the book, so we’d like to leave you with this final thought: all
humans are fallible, and one of the best ways to reduce error rates is to focus on one thing
at a time. “One thing at a time” is one of the central themes that’s woven throughout ICONIX
Process. Even if you take nothing else from this book, we think you’ll be more successful if you
try to at least keep that simple fact in mind.

Figures 13-10 and 13-11 show (in red) the items that were covered in this chapter.

CHAPTER 13 ■ ADDRESSING REQUIREMENTS390

Figure 13-10. Requirements Analysis Checkpoint 3

7745ch13final.qxd 12/13/06 8:48 PM Page 390

CHAPTER 13 ■ ADDRESSING REQUIREMENTS 391

Figure 13-11. Design Checkpoint 2

7745ch13final.qxd 12/13/06 8:48 PM Page 391

7745ch13final.qxd 12/13/06 8:48 PM Page 392

Appendixes

P A R T 5

7745appACMP2.qxd 12/6/06 9:17 PM Page 393

7745appACMP2.qxd 12/6/06 9:17 PM Page 394

What’s New in UML 2.0

In this appendix, we look at what’s new in UML 2.0, with a keen eye on how (if at all) it affects
ICONIX Process. We step outside the “core UML subset” that we’ve defined in this book and
look at all the new diagram types in UML 2.0.

Overview of Changes in UML 2.0
The main “theme” for the UML 2.0 update appears to be increased support for precision in
diagrams, improving UML’s suitability for modeling real-time embedded systems.

UML 2.0 now consists of the following diagram types (some of these are subdivided into
more types of diagrams, which we cover later in this appendix):

• Use case diagrams

• Package diagrams

• Structure diagrams

• Object diagrams

• Composite structure diagrams

• Communication diagrams

• Activity and state machine diagrams

• Interaction and interaction overview diagrams

• Timing diagrams

• Component and deployment diagrams

There’s still no sign of robustness diagrams, as you can see, so we’ll have to make do with
UML’s extension mechanism (UML profiles and stereotype icons) for now. Luckily, support for
UML extensions in tools such as EA is pretty advanced these days.

Similarly, there’s no sign of test case diagrams, although the test case notation we describe
in Chapter 12 is supported in EA and can also be modeled in other tools using UML extensions.
(At the time of this writing, EA is the only tool that can actually generate test cases automatically
from your robustness diagrams.)

395

A P P E N D I X A

7745appACMP2.qxd 12/6/06 9:17 PM Page 395

Of the new diagram set, the main ICONIX diagrams remain unchanged: use case dia-
grams, structure diagrams (aka class diagrams), and—although there’s some additional
notation—sequence diagrams (one of the four types of interaction diagrams) also remain
largely unchanged. In fact, there haven’t been major changes to use cases, packages, class
diagrams, or object diagrams in UML 2.0. So, you might say that the UML 2.0 extensions
don’t really affect ICONIX Process at all. To borrow a phrase, YAGNI (You Aren’t Gonna Need
It) applies to a lot of the new stuff in UML 2.0 for the majority of projects that we’ve seen. Of
course, if you do need this stuff, by all means use it.

A number of new modeling constructs can be shown on composite diagrams. These
include parts, ports, exposed and required interfaces, connectors, assemblies, and
collaborations.

Communication diagrams used to be called collaboration diagrams.1 They still show the
interactions between elements at runtime in much the same manner as a sequence diagram.

Activity diagrams are used to model the behavior of a system and the way in which these
behaviors are related in an overall flow of the system, while state machine diagrams illustrate
how an element can move between states classifying its behavior, according to transition trig-
gers, constraining guards, and so on.

UML 2.0 has four different kinds of interaction diagrams: timing diagrams, sequence
diagrams, interaction overview diagrams, and communication diagrams.

A timing diagram defines the behavior of different objects within a time scale. It provides
a visual representation of objects changing state and interacting over time. Timing diagrams
are typically used for defining hardware-driven or embedded software components.

A component diagram illustrates the pieces of software, embedded controllers, and so
forth that will make up a system. In UML 2.0, components can be linked by assembly connec-
tors. As before, a deployment diagram shows how and where the system will be deployed.
Physical machines and processors are reflected as nodes, and the internal construction can
be depicted by embedding nodes or artifacts.

UML profiles provide a generic extension mechanism for building UML models in partic-
ular domains. A profile is a collection of stereotypes and tagged values that together describe
some particular modeling problem and facilitate modeling constructs in that domain.

Let’s go through these changes in more detail.

Composite Structure Diagrams
A composite structure diagram reflects the internal collaboration of classes, interfaces, or
components to describe some functionality.

Composite structure diagrams are similar to class diagrams, except that they model a
specific usage of the structure. Class diagrams model a static view of class structures, includ-
ing their attributes and behaviors. Composite structure diagrams are used to express runtime
architectures, usage patterns, and the participating elements’ relationships, which might not
be reflected by static diagrams.

396 APPENDIX A ■ WHAT’S NEW IN UML 2.0

1. Actually, they were originally called “object diagrams” in Booch method, then they were renamed to
“collaboration diagrams” in UML 1, and they have now become “communication diagrams, a flavor of
interaction diagrams” in UML 2. This explains why Doug refuses to join any standards committees.
There are better things to do in life than to rename diagrams 12 times. Sequence diagrams, by the way,
were originally called “object interaction diagrams” in the Jacobson Objectory method. If you’re not
confused yet, you win another pork pie.

7745appACMP2.qxd 12/6/06 9:17 PM Page 396

In UML 2.0, the changes to composite structure diagrams center on parts and ports, inter-
faces, connectors and assemblies, and collaborations.

Parts and Ports
In a composite structure diagram, classes are accessed as parts, or runtime instances fulfilling
a particular role. These parts can have multiplicity, if the role filled by the class requires multi-
ple instances. When parts need to communicate with entities outside of their enclosing class,
they will usually do this through a port. The port defines an interface that communicating
parts are required to implement.

There is extensive flexibility and an ensuing complexity that comes with modeling com-
posite structures. To optimize your modeling, consider building collaborations that represent
reusable patterns.

Figure A-1 shows an example of a composite structure diagram.

Interfaces
An interface is a specification of behavior that implementers agree to meet. It is a contract.
By implementing an interface, classes are guaranteed to support a required behavior,
which allows the system to treat nonrelated elements in the same way, through the com-
mon interface.

An interface cannot be instantiated (i.e., you cannot create an object from an interface).
You must create a class that “implements” the interface specification and place operations
in the class body for each of the interface operations. You can then instantiate the class.

Interfaces may be drawn as a stereotyped class, with operations shown. They may also
be drawn as a circle with no explicit operations detailed (see Figure A-2).

APPENDIX A ■ WHAT’S NEW IN UML 2.0 397

Figure A-1. Composite structure diagram

Install

Backup Device

Computer

Software

7745appACMP2.qxd 12/6/06 9:17 PM Page 397

Assembly Connectors
An assembly connector bridges a component’s required interface with the provided interface of
another component (see Figure A-3).

The UML 2.0 specification states the following:

An assembly connector is a connector between two components that defines that one

component provides the services that another component requires. An assembly connec-

tor is a connector that is defined from a required interface or port to a provided interface

or port.

Collaborations
A collaboration defines a set of cooperating roles and their connectors (see Figure A-4).

Collaborations are used to collectively illustrate a specific functionality. A collaboration
should specify only the roles and attributes needed to accomplish a specific task or function.
A collaboration often implements a pattern to apply to various situations, and it is drawn as
a dashed oval that surrounds the elements that are collaborating.

APPENDIX A ■ WHAT’S NEW IN UML 2.0398

Figure A-2. Interface notation

«interface»
Interface1

Interface2

Figure A-3. Assembly connector

Component1 Component2

Figure A-4. Collaboration

Collaboration

7745appACMP2.qxd 12/6/06 9:17 PM Page 398

Activity and State Diagrams
Activity diagrams are used to model the behaviors of a system and the way in which these
behaviors are related in an overall flow of the system.

Activity diagrams are similar to flowcharts, but they allow the specification of concurrent
parallel processing paths. Activities on an activity diagram can be partitioned into regions,
which are usually called swimlanes because of their visual appearance (regions separated by
solid lines on the diagram).

New Activity Diagram Elements for Communication Actions
UML 2.0 adds some new elements to activity diagrams that are primarily useful for defin-
ing real-time systems, very precise business processes, and detailed execution logic (see
Figure A-5). These include action pins and new special symbols for certain types of com-
munication actions.

An action pin is used to define the data flow into and out of an action. An input pin pro-
vides values to the action, whereas an output pin contains the results from that action. Action
pins can be further characterized as defining exception parameters, streams, or states. Associ-
ating a state with a pin defines the state of input or output values.

UML 2.0 includes symbols for accept event, accept time event, and send signal actions.
The call behavior and call operation actions are used to reference other activities and class
methods within an activity diagram.

Expansion Regions
UML 2.0 also provides a construct called an expansion region, which is used to denote pro-
cessing that occurs in parallel (see Figure A-6). These are shown by a segmented box appear-
ing on the top and bottom of the activity symbol. According to The Unified Modeling
Language Reference Manual, Second Edition,2

APPENDIX A ■ WHAT’S NEW IN UML 2.0 399

Figure A-5. New activity diagram elements

Action
ActionPin

Accept

Event

Accept

Event

Timer

Send

Signal

2. James Rumbaugh, Ivar Jacobsen, and Grady Booch, The Unified Modeling Language Reference
Manual, Second Edition (New York: Addison-Wesley, 2004).

7745appACMP2.qxd 12/6/06 9:17 PM Page 399

An expansion region is the expansion of computation containing a multiple value into

a set of computations executed in parallel.

Each input to the expansion region receives a collection value, shown by the segmented
box icon. One execution of the expansion region is performed for each element of the collec-
tions. For each output position in the expansion region, the output values from all of the
executions are assembled into a single collection value. An expansion region represents a
“forall” construct.

APPENDIX A ■ WHAT’S NEW IN UML 2.0400

Figure A-6. Activity diagram expansion regions

FFTparallel ExpansionNode RootComplex

nxtoddnxteven

«Complex»
S:Array

«Complex»
V:Array

Slower,Supper = cut(s)

nxteven = Lower
+ Upper

Nxtodd = (lower -
upper) * root

S = Shuffle(sneve, Snodd)

«Complex»
S':Array

7745appACMP2.qxd 12/6/06 9:17 PM Page 400

New State Diagram Elements
Continuing with the theme of enhancing real-time modeling capability, UML 2.0 extends state
diagrams with entry and exit connection points (see Figure A-7) and junctions. An entry point
connection is shown by a small circle on the boundary of a substate machine symbol. A transi-
tion can be connected from a state to the entry point connection. An exit point connection is
shown in a similar manner by a small circle containing an “X”. A transition can be connected
from the exit point connection to another state.

The Unified Modeling Language Reference Manual, Second Edition defines a junction as
“a pseudostate that is part of a single overall transition step in a state machine,” and further
states that a junction state “makes it possible to build a single overall transition from a series
of transition fragments” and that it is “a dummy state to structure transitions and not a state
that can be active for any finite time.” Junction states are drawn as small filled circles on a
state diagram.

Sequence and Interaction Overview Diagrams
An interaction is a generalization for a type of interaction diagram. UML 2.0 has four kinds
of interaction diagrams: timing diagrams, sequence diagrams, interaction overview diagrams,
and communication diagrams. We discuss timing diagrams later in this appendix.

Sequence Diagrams
You know by now that sequence diagrams are a rather important building block in ICONIX
Process. The basic notation for sequence diagrams hasn’t changed in UML 2.0; however, some
new elements have been introduced, including fragments, gates, states, and message end-
points. These new elements collectively make it easier to draw structured control constructs
on sequence diagrams (see Figure A-8).

APPENDIX A ■ WHAT’S NEW IN UML 2.0 401

Figure A-7. State diagram entry/exit points

Processing
Request

Viewing Add to Cart

Start

End

Adding

7745appACMP2.qxd 12/6/06 9:17 PM Page 401

Complex flow of control on a sequence diagram can be shown using combined frag-
ments. A combined fragment has a keyword and one or more subfragments, which are called
interaction operands. Examples of fragments are LOOP, CONDITIONAL, and PARALLEL.
Guard conditions and loop conditions may be shown within fragments.

It’s a philosophical question as to whether drawing flowcharts on sequence diagrams is
a good idea or not. (Hint: We vote no.) But if you don’t want to draw your flowcharts using
activity diagrams, you can now draw them on sequence diagrams.

Interaction Overview Diagrams
Interaction overview diagrams are used to visualize the cooperation between other interaction
diagrams to illustrate a control flow serving an encompassing purpose (see Figure A-9).

Since interaction overview diagrams are a variant of activity diagrams, most of the dia-
gram notation is similar, as is the process in constructing the diagram. Decision points, forks,
joins, start points, and end points are the same. The diagram appears very similar to an activ-
ity diagram and is conceptualized the same way: as the flow moves into an interaction, that
respective interaction’s process must be followed before the interaction overview’s flow can
advance.

Instead of activity elements, however, rectangular elements are used. There are two types
of these elements: interaction elements and interaction occurrence elements. Interaction ele-
ments display an inline interaction diagram, which can be a sequence diagram, communi-
cation diagram, timing diagram, or interaction overview diagrams. Interaction occurrence

APPENDIX A ■ WHAT’S NEW IN UML 2.0402

Figure A-8. New sequence diagram elements

Customer Book Search
Page

Book Details
Page

loop Book Search

enter search details

View results in separate window

[for each matching Book found]

7745appACMP2.qxd 12/6/06 9:17 PM Page 402

elements are references to an existing interaction diagram. They are visually represented by
a frame, with “ref” in the frame’s title space. The diagram name is indicated in the frame
contents.

■Note If you’ve been craving a notation that lets you do functional decomposition in UML (like you used to
do it on DFDs 15 years ago), the interaction overview diagram makes a strong candidate.

APPENDIX A ■ WHAT’S NEW IN UML 2.0 403

Figure A-9. Interaction overview diagram

Request Item

ref
Search For Item

ref
Checkout

ref
Create Record

ref
Cancel Sale Sale Finalized?

Yes

No

Item found

Item not found

7745appACMP2.qxd 12/6/06 9:17 PM Page 403

Timing Diagrams
As with many of the UML 2.0 extensions, timing diagrams came from the world of electri-
cal engineering and are most useful if you are modeling real-time, embedded systems (e.g.,
embedded software such as that used in a fuel injection system, a microwave controller,
etc.). They can also be used for specifying time-driven business processes, although this
would be a less typical usage.

Timing Diagram Basics
A timing diagram defines the behavior of different objects within a time scale (see Figure A-10).
It provides a visual representation of objects changing state and interacting over time.

The UML 2.0 specification states the following:

Timing diagrams are used to show interactions when a primary purpose of the diagram

is to reason about time. Timing diagrams focus on conditions changing within and

among Lifelines along a linear time axis. Timing diagrams describe behavior of both

individual classifiers and interactions of classifiers, focusing attention on time of occur-

rence of events causing changes in the modeled conditions of the Lifelines.

The UML 2.0 specification also states,

The primary purpose of the timing diagram is to show the change in state or condition

of a lifeline (representing a Classifier Instance or Classifier Role) over linear time. The

most common usage is to show the change in state of an object over time in response to

accepted events or stimuli. The received events are annotated as shown when it is desir-

able to show the event causing the change in condition or state.

A timing diagram can have either a state lifeline or a value lifeline.

APPENDIX A ■ WHAT’S NEW IN UML 2.0404

Figure A-10. Timing diagram showing a state lifeline

T
im

eL
in

e1

State 1

State 2

State 3

State 4

{Time Constraint}

{Duration Constraint}

Event

0 10 20 30 40 50 60 70 80 90 100

7745appACMP2.qxd 12/6/06 9:17 PM Page 404

State Lifeline
The diagram in Figure A-10 shows an example of a state lifeline. The scale along the bottom
indicates the passage of time, and the possible states are represented as the vertical scale. The
stepped lifeline shows the state changes that occur over time.

Value Lifeline
The diagram in Figure A-11 shows an example timing diagram with both a state lifeline and
a value lifeline. (The top two items, User and AC System, are state lifelines, and the bottom
item, User Accepted, is a value lifeline.)

The scale along the bottom again indicates the passage of time, but for the value lifeline
the possible states are represented as named sections of the lifeline. Where two named states
transition, the value lifeline narrows to a single point.

Messages Between Lifelines
Multiple lifelines can be shown on the same timing diagram. The lifelines stack vertically
with each lifeline in a separate compartment on the diagram. Messages can be drawn
across compartments, thereby linking events on different lifelines (see the diagonal arrows
in Figure A-11).

APPENDIX A ■ WHAT’S NEW IN UML 2.0 405

Figure A-11. Timing diagram showing two state lifelines and a value lifeline

U
se

r Wait Access

Wait Card

Idle
Start

Code

{d..d*3}

A
C

S
ys

te
m

No Card

Has Card

U
se

r
A

cc
ep

te
d

Idle

{d..d*3}

Wait Card Wait Access Idle

0 10 20 30 40 50 60 70 80 90 100

7745appACMP2.qxd 12/6/06 9:17 PM Page 405

Component and Deployment Diagrams
Finally, we look at the differences in component diagrams and deployment diagrams in
UML 2.0.

Component Diagrams
A component diagram illustrates the pieces of software, embedded controllers, and so forth
that will make up a system (see Figure A-12). A component diagram has a higher level of
abstraction than a class diagram—usually a component is implemented by multiple classes
(or objects) at runtime. Components are building blocks and often encompass a large portion
of a system.

In UML 2.0, components can have ports. A port is shown as a small rectangle on the
boundary of the component rectangle. Interfaces may be connected to the ports.

There are two types of interfaces: provided and required. A provided interface is repre-
sented by a small circle on the end of a short line, which is sometimes referred to as a
“lollipop” symbol. A required interface is shown similarly to a provided interface, but with
an open semicircle at the end of the lollipop stick.

APPENDIX A ■ WHAT’S NEW IN UML 2.0406

Figure A-12. Component diagram

Product
Warehouse

Order
Manager

Payment

Customer
Management

System

Account
Manager

Account
Details

Customer Details

Item
Code

7745appACMP2.qxd 12/6/06 9:18 PM Page 406

Deployment Diagrams
A deployment diagram shows how and where the system will be deployed (see Figure A-13).
Physical machines and processors are reflected as nodes, and the internal construction can
be depicted by embedding nodes or artifacts. Artifacts model physical entities such as files,
scripts, database tables, web pages, JAR files, and the like, while nodes model computational
resources such as computers and disk drives.

The allocation of artifacts to nodes is guided by the use of deployment specifications,
each of which contains a specification of a deployment location within a node and an execu-
tion location. A deployment specification is shown as a rectangle with a stereotype of
<<deployment spec>>. Parameter values can be listed within the symbol. A dashed arrow is
drawn from the specification to the artifact whose deployment it describes.

What’s Still Missing in UML
UML 2.0 represents a step forward in some ways, but in certain other ways, we get the impres-
sion that it’s just marching in place.

In particular, there is still no standard notation in the UML for defining user interfaces or
“screen flows” (or “page flows” if you’re creating a web-based system). Also surprising is that

APPENDIX A ■ WHAT’S NEW IN UML 2.0 407

Figure A-13. Deployment diagram

firewall

local network

primary server workstation

1
«tcp-ip»

1

1

«ethernet»
1

1

«ethernet»
1

7745appACMP2.qxd 12/6/06 9:18 PM Page 407

there is still no dedicated diagram for showing data models (whether as an entity-relationship
diagram or, well, as anything else for that matter).

These two omissions are surprising because the majority of IT projects involve creating
both a system with a user interface and a system with a back-end database of some sort.
There are plenty of diagram types out there to fill these gaps, but they really should be part
of the UML itself. Here’s hoping that the next revision of the UML standardizes on these
much-needed diagram types.

APPENDIX A ■ WHAT’S NEW IN UML 2.0408

7745appACMP2.qxd 12/6/06 9:18 PM Page 408

Spring Bin

At several points throughout this book, we wanted to describe more about what we were
doing with Spring Framework, but doing so would have detracted from the flow of the main
discussion (i.e., use case–driven object modeling). So, if you thrive on the technical details,
we’ve put the Spring-based implementation notes in this appendix and referred to it in the
text.

Note that none of this material is vital if your main goal here is to learn about use case–
driven object modeling, though. We guess that’s why this material is in an appendix . . .

Spring in More Detail
In Chapter 7, we introduced Spring from a technical architect’s perspective. In this section, we
expand on some of the technical discussions from that chapter.

A (Very) Brief Example of IoC
We introduced Inversion of Control (IoC) and its cousin, Dependency Injection (DI), in
Chapter 7. To illustrate IoC, here’s a straightforward Java bean with one property, propertyA:

package com.iconixsw.example;

public class MyBean {

private YourBean propertyA;

public String getPropertyA() {
return propertyA;

}

public void setPropertyA(YourBean propertyA) {
this.propertyA = propertyA;

}

Our property, propertyA, is of type YourBean.

409

A P P E N D I X B

7745appBCMP2.qxd 12/6/06 9:29 PM Page 409

Here’s the YourBean class that MyBean refers to via its propertyA property:

package com.iconixsw.example;
public class YourBean {

private String title = "Ethel the Aardvark Goes Quantity Surveying";

public String getTitle() {
return title;

}
}

YourBean simply defines one read-only property called title, which always returns “Ethel
the Aardvark Goes Quantity Surveying” (a vastly underrated page-turner). To wire these two
beans together, you’d define them in some Spring-friendly XML as follows:

<bean name="myBean" class="com.iconixsw.example.MyBean">
<property name="propertyA ">

<ref bean="yourBean" />
</property>

</bean>

<bean name="yourBean" class="com.iconixsw.example.YourBean" />

410 APPENDIX B ■ SPRING BIN

JAVA NAMING CONVENTIONS: A 30-SECOND CRASH COURSE

If you’re unfamiliar with Java, be aware that it uses some special conventions:

• Variables (references to an object) start with a lowercase letter (e.g., propertyA, customerReview).

• Classes start with an uppercase letter (e.g., YourBean, CustomerReview).

• Variables (i.e., attributes) are typically private, meaning they can be accessed only within the class that
they belong to.

• To access (and write to) a variable from outside its class, you add a get method and a set method (e.g.,
getPropertyA(), setBook()).

• Once a variable has get and set methods, it’s known as a property.

• And (to finish our ultra-packed crash course) Java classes are organized into packages, where a pack-
age is basically a folder. Packages can contain classes and other packages. Package naming is kind of
a weird thing, but it makes sense: so that different Java libraries can coexist in the same program
space, packages universally follow the reverse URL convention. In our case, the company domain is
iconixsw.com. So the package name for all our classes always begins with com.iconixsw. And the
product name is “Bookstore,” so all the classes in this product go under com.iconixsw.bookstore
(note the lowercase “bookstore”). There will most likely also be subpackages—for example, DAO
classes could go into com.iconixsw.bookstore.dao. And so on . . .

7745appBCMP2.qxd 12/6/06 9:30 PM Page 410

This XML fragment defines an instance of the MyBean class called myBean, and an instance
of the YourBean class called yourBean. By default, each bean declared in a Spring XML file is a
singleton (i.e., only one instance of it can exist). It’s possible to override this for each bean, but
most of the time it makes life much easier to know that there’s only one instance of each class
flying around.

■Note But aren’t Singletons unfashionable these days? True, the Singleton design pattern has come
under heavy scrutiny because it imposes some questionable constraints on your software design.1 The
Singleton design pattern ensures that only one instance of a class can exist by making the constructor pri-
vate and having a static factory method that always returns the same instance of the class.

While they do work, Singletons are notoriously difficult to test. It’s impossible for a unit test class to
create and dispose of the same Singleton class, because only the Singleton itself controls its life cycle. On
the other hand, simply specifying that there should be only one instance of a class (i.e., making it a “single-
ton,” lowercase “s”) is fairly harmless, and in a server environment it is useful. As long as the class still has
a public constructor and can be tested, then there’s no harm in it being a singleton.

When Spring initializes our one instance of MyBean, it populates the propertyA property
with a reference to yourBean (the one instance of the YourBean class). You could therefore add
some code to MyBean that actually does something with yourBean:

public class MyBean {
. . .

public void doSomething() {
System.out.println(

"The title of our one mysterious bean is: "
+ propertyA.getTitle()

);
}

}

Notice that you don’t need to actively go and find an instance of YourBean, and you don’t
need to explicitly set a value for propertyA—you’ve “wired up” myBean to yourBean in the XML,
so you know that Spring will initialize myBean’s propertyA with yourBean.

That’s the essence of IoC: “bean wiring” is fundamentally how the different components
in Spring work with each other. In fact, if you use Spring primarily for its IoC features, it’s pos-
sible to use it in a stand-alone Java program; it doesn’t have to be part of a J2EE server.
However, we are, of course, using it as part of a web application, so in the next section we’ll
introduce Spring’s web features.

APPENDIX B ■ SPRING BIN 411

1. For example, see www.softwarereality.com/design/singleton.jsp.

7745appBCMP2.qxd 12/6/06 9:30 PM Page 411

■Note The “flavor” of IoC that we just described is known as Dependency Injection. More specifically it’s
actually Method Injection (also known as Setter Injection), because the framework “injects” the values into
the bean via their set methods. Another form of Dependency Injection (which is also supported by Spring) is
Constructor Injection, in which the values are passed into the bean’s constructor. For the Internet Bookstore,
we only use Method Injection.

Models,Views, and Controllers
In Chapter 7, we introduced Spring Web MVC and described the concepts of controllers, com-
mand objects, views, and DAOs.

For the Internet Bookstore, the view is handled by JavaServer Pages (JSP) coupled with the
Java Standard Tag Library (JSTL). In the next section, we look at Spring’s support for JSP.

Controllers
Controller support in Spring is both flexible and extensive. However, it’s all based ultimately
around a single interface, as follows:

public interface Controller {

/**
* Process the request and return a ModelAndView object
* which the DispatcherServlet will render.
*/
ModelAndView handleRequest(HttpServletRequest request,

HttpServletResponse response)
throws Exception;

}

The Controller interface defines a single method, handleRequest, which accepts a request
and response, and returns an appropriate model and view. The request and response objects
are both part of the J2EE Servlet API. In fact, this method should look familiar to most server-
side Java programmers—the main difference between this and the HttpServlet interface is the
ModelAndView class it returns. In many ways, this fixes a major flaw in the original Servlet API,
by decoupling the model and view from the controller. As a result, your choice of view tech-
nology can vary from controller to controller.

Views
The view is the JSP page that will generate the HTML that the user sees. Controllers in Spring
generally return a ModelAndView object, which tells Spring which view to send back to the
browser and what model data to populate it with.

APPENDIX B ■ SPRING BIN412

7745appBCMP2.qxd 12/6/06 9:30 PM Page 412

Let’s say you have a “book details” page that shows the details for a specific book (identi-
fied by its ID). You’d have a BookDetailsController class that finds the Book matching the ID,
and then returns a ModelAndView:

Book book = [find book from somewhere . . .]
return new ModelAndView("bookdetails", "book", book);

The first line of code goes off and finds the Book, most likely via a BookDao class (see the
next section). The second line tells Spring to map the view to a JSP file called bookdetails.jsp
(the .jsp part gets added by Spring, depending on how you’ve configured your web applica-
tion). The second argument passed into the new ModelAndView, book, indicates that the model
for the view will consist of a variable called book, and the third argument is the book object
itself. The book variable will then be accessible from the bookdetails.jsp page.

DAO and JDBC Support
For the Internet Bookstore, we’ve used Spring’s support for creating “raw” JDBC DAO imple-
mentations. The advantage of this approach is that we can write our own SQL to query and
write to the database, and map the result set to our JavaBeans (i.e., our domain objects). A
potential disadvantage, however, is that code using JDBC directly tends to become quite ver-
bose and repetitive (with lots of similar code for creating and discarding database
connections, handling update transactions, etc.).

Luckily, Spring provides some useful JDBC support classes that handle most of this
tedious plumbing for you. This means that your JDBC DAOs can focus on the SQL, and on the
mapping between the result set and the domain objects.

Figure B-1 shows an example DAO and how it fits in with the overall design.
In Figure B-1, the BookDao is used by BookDetailsController’s handle() method to find

Book objects. The DAO’s concrete implementation, JdbcBookDao, is actually mapped to
BookDetailsController via the XML configuration shown earlier, and it is automatically set
via the setBookDao() method when the controller object is created (another example of IoC

in action).

■Note Our final implementation may or may not need findById() and findByTitle() methods—we’ll
find out when we draw the sequence diagrams (see Chapter 8).

APPENDIX B ■ SPRING BIN 413

7745appBCMP2.qxd 12/6/06 9:30 PM Page 413

Internet Bookstore Design: Spring Details
This section provides additional Spring details for the Internet Bookstore design described in
Chapter 8.

“Show Book Details” Use Case
Here we describe the sequence of events shown in the sequence diagram for the Show Book
Details use case, shown in Figure 8-2 (see Chapter 8).

First, the Customer clicks the link for a Book, and the browser sends an HTTP request to
Spring’s DispatcherServlet (running in Tomcat). This request would be something like the
following:

http://localhost/bookstore/bookdetails.htm?bookid=101

APPENDIX B ■ SPRING BIN414

Figure B-1. Example Internet Bookstore DAO (the external Spring class is shown in red)

7745appBCMP2.qxd 12/6/06 9:30 PM Page 414

The request tells Tomcat to hand the request to the “bookstore” web application. The
bookstore web application is configured to use Spring’s DispatcherServlet. Because of the
bookdetails.htm part of the URL, Spring hands the request to BookDetailsController via the
handle(request, response, command, errors) method.

■Note The handle(..) method is actually a concrete implementation of an abstract method defined in
AbstractCommandController, which our own BookDetailsController extends (see Figure B-2).

Spring also extracts the bookid parameter and puts it in a Command object, which is also
passed into the handle(..) method. (We haven’t shown the details of Spring extracting the
request parameters and so forth, because this is already implemented in the Spring code, plus
it takes place for every request that comes in. Showing this on all of our sequence diagrams
would become redundant very quickly.)

Next, BookDetailsController uses its BookDao to get an instance of Book for whatever book
has the ID 101 (“Ethel the Aardvark Goes Quantity Surveying,” perhaps). Still following the
basic course, the Book instance is returned, so BookDetailsController then creates a new
ModelAndView object with the parameter bookdetails (a String literal) and the new Book object.
The handle(..) method then exits, returning the ModelAndView. The bookdetails parameter
tells Spring to find a page that matches the name bookdetails.jsp and invoke this so that the
book details are displayed to the user. Spring also hands bookdetails.jsp the Book (because
we passed it into the ModelAndView). Still with us? Good!

■Note ModelAndView is a Spring class (notated by the fact that it’s shown in red in Figure B-2). It’s the
object returned by the Controller to indicate to the DispatcherServlet which view (JSP page) to use
and what data to feed the view with. So it literally is the model and view (or, at least, references to the model
and view).

Our one alternate course (shown in red in Figure 8-2) handles the case where the book
details weren’t found (e.g., the user might have fiddled with the URL and changed it to a non-
existent book ID, or it might simply be an old link and the book no longer exists [shudder]).
To handle this alternate course, BookDetailsController creates a new ModelAndView object,
but instead of passing it “bookdetails”, it passes it “booknotfound”. This will tell Spring to find
a matching “booknotfound” page, which as you’d expect tells the user that the book ID wasn’t
found.

APPENDIX B ■ SPRING BIN 415

7745appBCMP2.qxd 12/6/06 9:30 PM Page 415

“Write Customer Review” Use Case
Here we describe the sequence of events shown in the sequence diagram for the Write
Customer Review use case shown in Figure 8-11.

In Figure 8-11, the Customer clicks the Write Review button (or link), which has the effect
of making a request to Spring’s DispatcherServlet running in Tomcat. DispatcherServlet
uses the application’s XML configuration to work out which Controller to hand the request
to (we haven’t shown this detail in the sequence diagram as it’s a feature of Spring, already
implemented). The servlet then calls the formBackingObject() method on
WriteCustomerReviewController. This method runs some checks to make sure the Customer
is logged in, and then it creates and populates the WriteCustomerReviewCommand object. Note
that if the Customer/user isn’t logged in, he or she is redirected to the Login page. (We
haven’t shown the details for this as it would have complicated an already complex sequence
diagram, but you get the general idea.)

APPENDIX B ■ SPRING BIN416

Figure B-2. BookDetailsController class hierarchy

7745appBCMP2.qxd 12/6/06 9:30 PM Page 416

WriteCustomerReviewController calls a static factory method on CustomerSession, which
in turn attempts to get a CustomerSession instance from the servlet’s HttpSession. If the
instance doesn’t exist, it creates a new one and adds it to the session.

To model this, we’ve simply added a note in Figure 8-11. Note, however, that this lack of
detail causes a problem later and is picked up on during the example Code Review and Model
Update in Chapter 11.

At this stage, we’re also updating the static model as we go along. So, for example, we’ve
decided that WriteCustomerReviewController will extend the Spring class
SimpleFormController. We’ll show the completed class diagram near the end of the chapter.

Still following Figure 8-11, the Write Customer Review page is now being displayed to the
Customer. The Customer fills in the review details and clicks the Submit button (or the button
might be titled Save Review, since we don’t want our customer to willingly submit to any-
thing). The form is submitted, picked up by Spring’s DispatcherServlet, validated, and finally
handed to WriteCustomerReviewController via the doSubmitAction() method. This method
passes in the WriteCustomerReviewCommand object that was created earlier by the
formBackingObject() method (effectively providing state between the HTTP GET request,
which created the form, and this POST request, which submitted the form).

Note that the form validation process is handled automatically for us by Spring. The
CustomerReviewValidator is actually wired up to our form controller in the XML config. In the
sequence diagram we gloss over this slightly, because this side of things is already imple-
mented for us in the Spring code.

After that, it’s smooth sailing: the form controller calls the CustomerReviewDao to save the
CustomerReview domain object, and the DAO in turn adds it to the Pending Reviews Queue in
the database.

■Note It’s debatable whether the form controller should do this by calling a ReviewsQueueDao object—is
it a function of the form controller or the CustomerReviewsDao to handle the application logic? In this case,
it seems to simplify things if the DAO handles it. This way, if some other part of the system were to save a
CustomerReview via the DAO, the logic of adding it to the queue would be already encapsulated in the DAO,
not in a UI form handler elsewhere.

Internet Bookstore Implementation: Spring Details
This section ties in closely with the Internet Bookstore implementation described in Chap-
ter 10. Here we describe the way in which the Internet Bookstore code and supporting files are
organized.

First, we’ll look at the overall folder structure. Then in the next section, we’ll examine the
package hierarchy that we’ll use to organize our Java classes.

APPENDIX B ■ SPRING BIN 417

7745appBCMP2.qxd 12/6/06 9:30 PM Page 417

Folder Structure
At the very top level we have an InternetBookstore folder. Let’s put this in D:\Dev:

D:\Dev\InternetBookstore
.classes
db
dist
lib
src
war

Beneath D:\Dev\InternetBookstore we have .classes, db, and so on. This is a pretty stan-
dard folder structure for Spring web applications: the .classes folder is the target folder where
the compiled classes will go; db contains the HSQLDB database; dist is where the built release
archives will go, ready to be deployed to the application server; lib contains various library
files needed for compilation; and war (which stands for “web archive”) contains all the bits and
pieces that go into making the web application (JSP files, CSS file, XML config, etc.).

Most important, however, is src, where we’ll spend most of our time, as this folder will
contain the Java source code that we’ve derived from all of our analysis and design efforts
leading up to this point.

We’ll delve into some of these folders in more detail in the next couple of sections.

Contents of the war\WEB-INF Folder
WEB-INF contains two rather important files, web.xml and bookstore-servlet.xml. These are
central to the way that our Internet Bookstore application will be configured to work within
Spring, so (even though digging around in XML files takes us slightly outside the scope of this
book) it’s worth visiting them briefly here.

web.xml
The web.xml file is used by Tomcat, and it defines the Internet Bookstore web application. In
particular, it defines a servlet called bookstore, which (due to a naming convention, as we’ll
see in a moment) will lead Spring to bookstore-servlet.xml.

Here’s what web.xml looks like:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC
"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

APPENDIX B ■ SPRING BIN418

7745appBCMP2.qxd 12/6/06 9:30 PM Page 418

<servlet>
<servlet-name>bookstore</servlet-name>
<servlet-class>

org.springframework.web.servlet.DispatcherServlet
</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>bookstore</servlet-name>
<url-pattern>*.htm</url-pattern>

</servlet-mapping>

<welcome-file-list>
<welcome-file>index.jsp</welcome-file>

</welcome-file-list>

</web-app>

The <servlet> tag and its contents define the bookstore servlet. The class for the
bookstore servlet isn’t actually one of our classes—it’s Spring’s DispatcherServlet.
DispatcherServlet will use the servlet name to determine where to get its configuration from;
basically it appends -servlet.xml to the name, in this case giving us bookstore-servlet.xml.

The <servlet-mapping> tag tells Tomcat that any browser requests whose page ends in
.htm should be handed over to the bookstore servlet (in other words, to DispatcherServlet).
This is an important point: our application doesn’t actually contain any files ending in .htm.
These are “virtual” files, used purely for mapping browser requests to Controllers. The actual
mapping is done in bookstore-servlet.xml, which we’ll get to in just a moment.

The third and final part of web.xml is the <welcome-file-list> tag. This simply tells Tom-
cat that if a request doesn’t specify a filename, then it should default to index.jsp.

bookstore-servlet.xml
The main purpose of bookstore-servlet.xml is to collectively define all the various beans
(Java classes) needed in order to make the bookstore servlet hang together. So for the most
part, it consists almost entirely of <bean> tags. We return to it periodically in Chapter 10 and
add more configuration to it as we create the new classes (aka beans).

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dtd">

<!--
- Application context definition for "bookstore" DispatcherServlet.
-->

APPENDIX B ■ SPRING BIN 419

7745appBCMP2.qxd 12/6/06 9:30 PM Page 419

<beans>
<bean id="dataSource"

class="org.springframework.jdbc.datasource.DriverManagerDataSource">
<property name="driverClassName">

<value>org.hsqldb.jdbcDriver</value>
</property>
<property name="url">

<value>jdbc:hsqldb:file:D:\Dev\TravelBookstore\db\data\test</value>
</property>
<property name="username">

<value>matt</value>
</property>
<property name="password">

<value>pass</value>
</property>

</bean>

<bean id="viewResolver" class=
"org.springframework.web.servlet.view.InternalResourceViewResolver">

<property name="viewClass">
<value>org.springframework.web.servlet.view.JstlView</value>

</property>
<property name="prefix">

<value>/WEB-INF/jsp/</value>
</property>
<property name="suffix">

<value>.jsp</value>
</property>

</bean>

<bean id="homeController"
class="com.iconixsw.bookstore.web.HomeController"/>

<bean id="urlMapping"
class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">

<property name="mappings">
<props>

<prop key="/home.htm">homeController</prop>
</props>

</property>
</bean>

</beans>

The first bean, dataSource, defines the JDBC data source: the DataSource class that will
manage the whole database connecting thing for us, the driver class, a URL pointing to our
local HSQLDB file, and the database username and password.

APPENDIX B ■ SPRING BIN420

7745appBCMP2.qxd 12/6/06 9:30 PM Page 420

The second bean, viewResolver, overrides the default Spring InternalResourceView class.
Instead, we want to use the JstlView class, which allows us to put JSTL tags in our JSP pages.
viewResolver also defines a couple of other properties, prefix and suffix:

• prefix is given the value /WEB-INF/jsp/, meaning that the view files (our JSP pages) will
be kept in the WEB-INF/jsp folder.

• suffix is given the value .jsp, meaning that all the view files will end in .jsp.

For example, if a view is identified as “home,” then the actual view file will be /WEB-INF/
jsp/home.jsp.

The third bean, homeController, is (at last!) one of our classes, and was identified during
the design for the Show Book Details use case. The declaration is saying that we want a single
instance of the class HomeController, and if it’s to be referred to by other beans in the XML
configuration, it will be referred to using the ID homeController. HomeController is simply
there to return the main (“home”) view page, so it doesn’t do a huge amount.

The fourth bean, urlMapping, uses one of the Spring classes to map HTTP requests to
Controllers. Currently there’s only one mapping set up: we’re telling the HandlerMapping class
that if a request arrives for a virtual page called home.htm, then the request should be handed
to a bean called homeController. Hey, and as luck would have it, we’ve just defined a bean
called homeController.

Back to the remaining folders.

Contents of the war\WEB-INF\jsp and
war\WEB-INF\jsp\include Folders
WEB-INF\jsp contains the JSP files (the “view”). Because the JSP files are located beneath
WEB-INF, they can’t be accessed directly by the user’s web browser. Instead they are invoked in
a controlled fashion by Spring, which sends the output from the JSP back to the browser.

WEB-INF\jsp\include currently just contains one file, IncludeTop.jsp. This is “included”
by each one of our JSP files, and it contains the standard stuff that goes at the top of each page,
to avoid repetition.

Here’s what IncludeTop.jsp looks like:

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jstl/fmt" %>
<%@ taglib prefix="spring" uri="http://www.springframework.org/tags" %>

<html>
<head>

<title>ICONIX Internet Bookstore</title>
<meta content="text/html; charset=windows-1252" http-equiv="Content-Type" />
<link rel="stylesheet" href="elements/bookstore.css" />

APPENDIX B ■ SPRING BIN 421

7745appBCMP2.qxd 12/6/06 9:30 PM Page 421

<META HTTP-EQUIV="Cache-Control" CONTENT="max-age=0">
<META HTTP-EQUIV="Cache-Control" CONTENT="no-cache">
<meta http-equiv="expires" content="0">
<META HTTP-EQUIV="Expires" CONTENT="Tue, 01 Jan 1980 1:00:00 GMT">
<META HTTP-EQUIV="Pragma" CONTENT="no-cache">

</head>

<body bgcolor="white">
<h1>ICONIX Internet Bookstore</h1>

<div class="navbar">
Home |
Search

</div>

It’s worth stepping through this file, as it contains a bunch of interesting stuff. The first
line, a JSP tag, simply states that this will be an HTML file. The next two lines import the JSTL
tag libraries, and the line after them imports Spring’s tag libraries.

■Note JSTL stands for JSP Standard Tag Library, and it provides core functionality common to many web
applications. Common tasks such as iteration (for/while loops), conditionals (if...then...else), XML
manipulation, and internationalization are included and can be dropped into your JSP page as simple tags.
You can find out more about JSTL at http://java.sun.com/products/jsp/jstl.

Next, the top part of the page is begun, with familiar HTML tags such as <html>, <head>,
and <body>.

You’ll notice that there are five lines that begin with <META HTTP-EQUIV=. These collectively
tell the web browser not to cache any of these pages, but always to request the latest version
from the server.

Because this is all defined in a shared include file, all of our pages will have the same title,
heading, navigation bar, cache settings, and so on.

Java Package Hierarchy
All of the classes we’ve identified in our design need to be organized into Java packages.

Each package is a folder in the local file system. The choice of package structure is pretty
much up to you, though it makes sense to follow whatever conventions are used by the frame-
work that you’re coding to.

For the Internet Bookstore, the package hierarchy looks like this (located directly beneath
the src folder):

APPENDIX B ■ SPRING BIN422

7745appBCMP2.qxd 12/6/06 9:30 PM Page 422

com
iconixsw

bookstore
dao

jdbc
domain

logic
web

Packages are referred to in Java using dot notation so, for example, the full name for the
dao package is com.iconixsw.bookstore.dao. The physical folder structure for this package
(at least in the Windows file system) would be com\iconixsw\bookstore\dao.

As we described in the “Java Naming Conventions: A 30-Second Crash Course” sidebar
earlier in this appendix, package names follow a reverse URL convention, so the company’s
domain name is iconixsw.com and the application name is bookstore, hence
com.iconixsw.bookstore.

Here’s a quick rundown of each of the packages beneath bookstore:

• The dao package contains the DAO interfaces (the “home objects” for retrieving domain
objects from the data source).

• The dao.jdbc subpackage contains a concrete implementation of the DAO interfaces
for HSQLDB via JDBC. The DAO design pattern makes it relatively easy to migrate your
application to some other database with relatively little rework.

• The domain package contains the domain classes, which in our design are doubling as
Controller classes. Form validators go in the domain.logic subpackage.

• The web package contains all of the Controller classes.

Now that we’ve set up our package structure and basic configuration, we can start to cre-
ate the “real” implementation (see Chapter 10).

APPENDIX B ■ SPRING BIN 423

7745appBCMP2.qxd 12/6/06 9:30 PM Page 423

7745appBCMP2.qxd 12/6/06 9:30 PM Page 424

■A
AbstractCommandController class, 274
acceptance testing, 333
Acegi Security, 179
actors

adding a Customer actor to a robustness
diagram, 117

as external to the system, 54
as fulfilling several roles, 54
modeling external systems as, 35
placing on use case diagrams, 32
representing nonhuman external systems, 54
roles of, in use case diagrams, 53

Add External Books to Catalog use case, 128,
218

adding operations to domain objects, 4
addToPendingReviewsQueue(), 284
AddToShoppingCartTest test case, 340
advices, 74
aggregation (has-a) relationship, 24, 27, 33
algorithms, differentiating from use cases, 76
alternate courses

displaying in a different color on robustness
diagrams, 110

Login use case, example robustness diagram,
110

modeling in a robustness diagram, 122
analysis and preliminary design phase, 3, 9
analysis paralysis, 175
anemic domain model, 242
architectural layering

architectural diagrams, examples of, 162
definition of, 162
horizontal vs. vertical layers, 163
UML class diagrams, 164

architectural paralysis, 180
arrows

as communication associations on
robustness diagrams, 108

showing data flow or control flow, 108
aspect-oriented programming (AOP), 74

defining cross-cutting concerns through
code, 171

as extending object-oriented programming
(OOP), 171

problems with, 172
assert methods, in JUnit, 339
assertEquals(), arguments used, 340
attributes, discordant, 205
avoiding dysfunctional requirements, 6

■B
Beck, Kent, 351
behavioral requirements, 3–4, 7
Beizer, Boris, 334
beta testing, 333
BillyBob 2.0, requirements for, 379
Book class

distribution of responsibilities in, 238
as an unused object on a sequence diagram,

246
Book.java, code example, 266
BookDao, 243, 255
bookdetails.jsp, 274, 277
BookDetailsCommand, 240
BookDetailsController, 240, 243, 272–273, 275,

305, 359–360, 362
bookstore-servlet.xml, 287, 290, 315, 419–421
bookstore.css, 265
boundary objects, 8, 187

definition of, 103
disambiguated nomenclature of, 108
referencing by name in use cases, 52, 61
treating as nouns, 103

building a project glossary, 7

■C
callTestHandle(), 365
Carnegie Mellon Software Engineering Institute,

161
CASE tools, 57, 105, 193, 203, 260
CDR guidelines, 15
checkBookFound(), 358
checkRating(), 319
checkReviewLength(), 318
checkTitleLength(), 318
class attributes, relationship to database tables,

29
class diagrams, 4

adding getters and setters to, 211
conventions of, 164
domain model and, 24, 28–29
finishing the updating of, 127
keeping static and dynamic models in sync,

211
tidying up for a clearer layout, 255
updating and refining, 210
using to find errors on sequence diagrams,

238
class notation, types of, 27
classes

allocating behavior to, 188
assigning operations to, 125
distribution of responsibilities among, 239

Index

425

7745idxfinal.qxd 12/13/06 8:50 PM Page 425

organizing around key abstractions in the
problem domain, 28

relationship to use cases, 51
searching for classes without attributes, 236
subclasses and superclasses, 37

cleaning up the static model, 14
Code Review and Model Update

accumulating boilerplate checklists for
future reviews, 299–300

avoiding review and update paralysis, 299,
301

breaking down list items into a smaller
checklist, 299

catching design or integration issues early,
298

code review vs. code inspection, 302
comparing the code with the design

diagrams, 298
conducting a productive code review, 301
creating a high-level list of review items (use

case titles), 299
emailing action points to all participants,

299–300
focusing on error detection, not error

correction, 299–300
frequency of, 298
guidelines, 299
keeping the review just formal enough, 299,

301
not forgetting the Model Update session,

299, 301
preparing for, 299
purpose of, 298
quickly addressing disparities between code

and design, 303
reusing objects in the domain model, 298
reviewing code at different levels, 299–300
syncing code with design, 297
updating and refining the static model, 298
using an integrated code/model browser,

299, 301
value of up-front design, 303
why code reviews are necessary, 302–303

Code Review and Model Update guidelines, 18
coding and testing, 4, 15
collaboration diagrams

function of, 109
not confusing with robustness diagrams,

107–108
purpose of, 107

Command objects, definition of, 168
commenting code, 259, 262
compatibility testing, 333
Constructor Injection, 412
Controller interface, 412
controller objects

lack of, on sequence diagrams, 187
using sparingly, 108

controllers, 3, 11, 412
creating test cases for, 109
definition of, 103
ensuring proper test coverage for, 350
as logical software functions, 11

as methods on the boundary and entity
classes, 109

names of, 120
as real control objects, 11
renaming those with the same name on a

diagram, 345
running test cases for data-retrieval

controllers, 356
Show Book Details use case, 351
treating as verbs, 103

Create New Book use case, 219
Create New Customer Account use case, 128
Critical Design Review (CDR), 4, 15

allocating operations to classes
appropriately, 235–236

centralizing responsibility in a class, 240
checking for continuity of messages, 234
checking for entity classes without

attributes, 251
checking that operations are complete and

correct, 235, 237
coupling object-oriented encapsulation with

RDD, 239
covering both basic and alternate courses of

action, 235–236
determining if the sequence diagram

matches the class diagram, 250
discovering unexplored areas in the analysis

space, 251
distribution of responsibilities in the Book

class, 238
ensuring that the sequence diagram matches

the use case text, 234–236
generating and inspecting the code headers

for classes, 235, 237
generating skeleton tests from the

robustness diagram, 238
guidelines, 235
having all patterns reflected on the sequence

diagram, 235, 237
identifying a stable set of abstractions, 249
identifying attributes from functional

requirements, 251
ironing out leaps of logic between objects,

234
limiting to designers and developers, not

customers, 234
minimizing code breakage and refactoring,

249
performing a sanity check on the design,

235, 237
primary goals, 234
reviewing the attributes and operations on

classes, 235–236
reviewing the quality of the design, 234
reviewing the test plan for the release, 235,

237
searching for classes without attributes, 236
setting the starting time for, 235
Show Book Details use case, 238
tracing functional requirements to use cases

and classes, 235, 237

■INDEX426

7745idxfinal.qxd 12/13/06 8:50 PM Page 426

using class diagrams to find errors on
sequence diagrams, 238

Write Customer Review use case, 245
cross-cutting concerns

extension use cases, 74
infrastructure use cases, 74
peer use cases, 74

CustomerReview, 247, 311
CustomerReviewValidator class, 311
CustomerSession class, 179, 287

■D
Data Access Objects (DAOs), 165, 169–170, 175
data analysis and reduction, definition of, 378
data capture, definition of, 378
Data Definition Language (DDL), 259
data model, 161
data reporting, definition of, 378
database tables, relationship to class attributes,

29
Dependency Injection (DI), 409, 412
deployment model, 161, 173, 175
design as building the system right, 9
Design-Driven Testing (DDT)

acceptance testing, 333
adding a tearDown() method, 350
AddToShoppingCartTest test case, 340
adopting a testing mind-set, 330
aligning tests closely to requirements, 331
avoiding duplicating alternate course

scenarios, 369
avoiding duplication in tests, 343
beginning testing before coding, 369
beta testing, 333
compatibility testing, 333
covering basic and alternate courses in

scenario testing, 331
creating a resource in the test method itself,

349
creating unit tests for each controller on a

robustness diagram, 330
DDT errors, list of, 369
different types of testing, 330
discovering alternate courses during, 338
doing requirement-level verification, 331
doing scenario-level acceptance testing, 331
driving unit tests from test cases, 338
driving unit tests from use cases, 330
ensuring that each test method tests exactly

one thing, 342
finding and fixing buggy code, 370
function of, 329
generating test skeleton code for unit testing,

334
guidelines, 330
identifying and targeting “test hot spots”, 370
identifying test cases using robustness

diagrams, 329, 334
identifying the test scenarios for each

controller/test case, 335
integration testing, 333
keeping unit tests fine-grained, 331, 342
linking one test case to each controller, 336

mapping test cases directly to JUnit test
classes, 339

mock objects, testing with, 354
neglecting to fix a failing test, 343
nonfunctional requirements testing, 333
not writing tests that connect to external

resources, 353
performance testing, 334
practice questions to test your knowledge,

370–371
preparing for, during the analysis stage, 329
programmers’ attitudes toward, 331
proving a test by trying to make it fail, 348
regression testing, 334
release testing, 333
running tests from a test suite, 350
stress testing, 334
system testing, 333
testing paralysis, 370
transforming a robustness diagram into a

test case diagram, 334
treating unit test code with reverence, 342
tying closely to requirements, 329
tying unit tests to the preliminary design

objects, 342
understanding the tests required at each life

cycle stage, 331
unit test skeletons, guidelines for creating,

338
unit testing, 332
using “realize” connectors, 334
using a testing framework, 331
using a traceability matrix, 331
using mock objects sparingly, 343, 369
using the Agile ICONIX/EA add-in to

generate diagrams, 336
volume testing, 334
why bother with designing unit tests, 366
writing effective unit tests, 342–343
writing tests from the calling object’s point of

view, 338, 347, 358
writing tests to validate and hone the design,

369
detailed design phase, 3, 12, 186
discordant attributes, 205
DispatcherServlet, 167, 174–176, 178, 269, 271,

306, 347, 415–416, 419
Display Book Not Found page controller, 345
Display controllers

initialization behavior and, 111
necessity for, on robustness diagrams, 111

DisplayBookDetailsPageTest, 365
doesBookIDExist(), 247
domain classes, 7, 24, 27, 30

candidates for the Internet Bookstore, 33
referencing by name in use cases, 52, 59

domain model, 11
assumed to be incomplete, 28
class diagrams and, 24, 28–29
creating before use cases, 29
definition of, 24
deliberate simplicity of, 29
disambiguating, 29

■INDEX 427

Find it faster at http://superindex.apress.com
/

7745idxfinal.qxd 12/13/06 8:50 PM Page 427

domain classes and, 24, 30
feeding updated information and changes

back into, 51
identifying attributes to be added to classes,

125
not mistaking for a data model, 28
refining and updating throughout a project,

23
relationship to use cases, 25
removing UI elements from, 32
showing aggregation and generalization

relationships, 24, 27
updating after identifying a new domain

object, 122
updating incrementally while drawing

robustness diagrams, 125
using as a project glossary, 24, 26, 29
when to update, 51

domain model diagrams
creating, 33, 35
ensuring coverage of the problem domain,

85
showing generalization and aggregation

relationships, 86
using a link class, 86

domain modeling, 3
creating the initial model in two hours, 28
definition of, 7
distinguishing domain models from data

models, 7
exercises and solutions for spotting

modeling errors, 39–42, 44–45
focusing on real-world objects within the

problem domain, 26
guidelines, 7, 26
identifying and eliminating duplicate terms,

32
practice questions in modeling, 45–46
static and dynamic parts of, 25

DomainObject interface, 315
doSubmitAction(), 283, 290
dot notation, 423
drawing a robustness diagram, 3, 11
driving test cases from the analysis model, 20
DUnit, 339
dynamic workflows, 2
dysfunctional requirements, definition of, 375

■E
Edit Customer Review use case, 324
Edit Shopping Cart use case, 220
Enterprise Architect (EA), 57, 89, 105, 112, 238,

260
adding a test case scenario in, 345, 352
built-in features for managing requirements,

382
creating a requirements tree, 385
creating an extended class diagram, 384
custom UML elements, 383
dragging elements from the Project View, 384
dragging requirements onto the use case,

382
external requirements, definition of, 383

generating a requirements traceability
matrix automatically, 374

Hierarchy window, 386
importing requirements from a comma-

separated value (CSV) file, 383
internal requirements, definition of, 383
linking any model element to a requirement,

386
Move External button, 383
opening the Properties dialog, 383
organizing functional requirements in, 379
Relationship Matrix, using, 388
Require tab, 382–383
requirements for BillyBob 2.0, 379
supporting requirements using a visual

modeling tool, 382
turning internal requirements into external

ones, 383
use cases and domain model for BillyBob

2.0, 380
using the Agile ICONIX/EA add-in to

generate diagrams, 336
using to generate Spring-ready Java code,

165
Enterprise JavaBeans (EJB), disadvantages of,

166
entity objects, 187

definition of, 103
treating as nouns, 103

entity-relationship (ER) diagrams, 214
Errors object, 290
extended class diagrams, creating, 384
“extends” association, 64, 66, 69
external requirements, in Enterprise Architect

(EA), 383
external systems, modeling as actors, 35

■F
facilitator/moderator, benefits of, 88
findByCustomerId(), 286
findById(), 243, 286
flowcharts, not drawing on sequence diagrams,

189
focus of control, 187–188, 192
formBackingObject(), 280–283, 320–321
Fowler, Martin, 242
functional requirements, 3

■G
generalization (is-a) relationship, 24, 27

notation for, 37
getCommandClass(), 241
getCustomer(), 288
getCustomerSession(), 288
GUI prototypes, 51, 56, 87

■H
handle(), 272, 305, 358
handleRequest(), 347–348
Hibernate, 166, 260
Hierarchy window, 386
home.jsp, 269, 271

■INDEX428

7745idxfinal.qxd 12/13/06 8:50 PM Page 428

HomeController, 268, 347–348
HSQL database, 176

use of, in-memory persistence mode, 165
HttpServlet interface, 412
HttpUnit, 179

■I
iBATIS, 166
ICONIX Process

acceptance testing, 333
adding operations to the domain objects, 4
allocating behavior to classes, 188
analysis and preliminary design phase, 3, 9
analysis as building the right system, 9
avoiding dysfunctional requirements, 6
behavioral requirements, 3–4, 7
beta testing, 333
boundary classes, 8
CDR guidelines, 15
class diagram, 4
cleaning up the static model, 14
Code Review and Model Update guidelines,

18
coding and testing, 4, 15
compatibility testing, 333
completing refactoring before coding, 351
controllers, 3, 11
Critical Design Review (CDR), 4, 15
depicting how objects interact, 188
design as building the system right, 9
detailed design phase, 3, 12
domain modeling, 3, 7, 11
drawing a robustness diagram, 3, 11
driving test cases from the analysis model, 20
dynamic workflows, 2
entities, 4
extensions to, 19
finalizing the distribution of operations

among classes, 188
functional requirements, 3
implementation (coding) guidelines, 17
implementation phase, 4, 15
improving by ongoing iteration and

refinement, 35
initial domain model as normally

incomplete, 106
integration and scenario testing, 4, 18, 333
as an intensely feedback-driven process, 96
interaction scenarios, 19
iterative nature of, 2
Model-View-Controller (MVC) architecture,

167
naming the logical software functions

(controllers), 3
nonfunctional requirements testing, 333
organizing use cases into packages, 9
overview of, 2
performance testing, 334
performing a Code Review and Model

Update, 4
persona, definition of, 19
prefactoring designs, 14
Preliminary Design Review (PDR), 3, 12

preliminary design steps, 9
preventing entropy (code rot), 18
regression testing, 334
release testing, 333
requirements definition phase, 4
requirements gathering guidelines, 6
Requirements Review, 3, 8
robustness analysis, 3, 11
as a scenario-based approach, 7
screen mockups, 8
sequence diagramming, 3, 14, 188
showing generalization and aggregation

relationships, 9
static model, 4
static workflows, 2
storyboarding the GUI, 3, 7
stress testing, 334
suitability to agile projects, 2
syncing code with design, 297
system testing, 333
Test-Driven Development (TDD), 19
types of tests and when to apply them, 332
UML 2.0 extensions and, 396
understanding the tests required at each life

cycle stage, 331
unit testing, 17, 332
updating the domain model, 3
use case modeling guidelines, 8
volume testing, 334

implementation, 4, 15
coding as a design review stage, 272
correcting wrong coding, 258
driving the code directly from the design, 259
fixing design problems immediately, 259–260
following the same coding conventions, 260
guidelines, 17, 259
holding regular code inspections, 259–260
including alternate courses on sequence

diagrams, 259, 263
keeping the design and code in sync, 259,

261
not leting framework issues drive business

issues, 259, 261
overcommenting code, 259, 262
practice questions in programming and

delivery, 294–295
preventing code from getting out of control,

259, 261
programmer-driven design, 258
questioning a framework’s design choices,

259, 261
Show Book Details use case, 268
Write Customer Review use case, 278
writing code and unit tests at the same time,

259, 262, 329
“includes” association, 64, 69
initData(), changing, 355
integration and scenario testing, 4, 18, 333
interaction scenarios, 19
intermangling, definition of, 375
internal requirements, in Enterprise Architect

(EA), 383

■INDEX 429

Find it faster at http://superindex.apress.com
/

7745idxfinal.qxd 12/13/06 8:50 PM Page 429

Internet Bookstore
accounting for alternate courses of action, 93
action list following the Code Review and

Model Update, 322
actors, 53
Add External Books to Catalog use case, 128
adding a MockBookDao class, 354
adding a tearDown() method, 350
adding assert statements into the test

methods, 361
adding individual tests to the test suite, 351
adding new properties and operations to

entity classes, 267
adding save() onto CustomerReview, 321
addToPendingReviewsQueue(), 284
analyzing basic and alternate courses, 72–73
anemic domain model, 242
avoiding overly abstract use case text, 93
Book class, 238, 266
Book Details Not Found page controller, 308
Book Not Found page displayed test

scenario, 363
Book.java, code example, 266
BookDao, 243, 255, 275
bookdetails.htm, 270
bookdetails.jsp, 274, 277
BookDetailsCommand, 240, 255
BookDetailsController, 240, 243, 270,

272–273, 275, 305, 360, 362
bookstore-servlet.xml, 275, 283, 287, 290,

315, 419–421
bookstore.css, 265
boundary classes and display(), 212
bridging the modeling and development

environments, 324
browser request, flow of events, 178–179
callTestHandle(), 365
candidate domain classes, 33
catching a NotFoundException, 309
changing statements from passive to active

voice, 95
checkBookFound(), 358, 360
checkRating(), 319
checkReviewLength(), 318
checkTitleLength(), 318
cheering a failing test, 356
clarifying relationships between domain

classes, 38
code generation and CASE tools, 260
Command classes, 216
completed sequence diagram, 208
constructor detail as commonly missed, 310
Controller classes, 216
controller layer, 175
Create New Customer Account use case, 128
creating a BookDetailsController object, 359
creating a first domain model diagram, 33
creating a persistent object model using

JavaBeans, 169
creating a resource in the test method itself,

349
creating a second domain model diagram, 35

creating a single BookstoreValidator class,
313

creating the database, 263
Customer class, 266
CustomerDao, 255
CustomerReview, 216, 247, 255, 266, 279, 284,

311
CustomerReviewDao class, 284
CustomerReviewValidator class, 311
CustomerSession class, 179, 206, 287
Data Access Objects (DAOs), 165, 169–170,

175, 216, 413
dataSource property, 275
defining and separating architectural layers,

172, 174–176
delegating behavior into helper classes, 243
deployment model, 175
determining if the sequence diagram

matches the class diagram, 250
direct mapping between JavaBeans and

domain classes, 169
discovering additional domain objects, 35
DispatcherServlet, 167, 174–176, 178, 216,

271, 306, 347
Display Book Details controller, test class

skeleton, 358
DisplayBookDetailsPageTest, 365
DisplayBookNotFoundPageTest, refactored,

368
dividing code into smaller, well-named

methods, 320
doesBookIDExist(), 247
domain classes and database dependencies,

176
DomainObject interface, 315
doSubmitAction(), 283, 290
Edit Customer Review use case, 324
ensuring proper test coverage for controllers,

350
entity classes and database tables, 266
.error style, 265
Errors object, 290
examining the handle() method, 305
expecting to add new functionality, 324
exposing leaps of logic in the design, 310
extracting domain classes from high-level

requirements, 30–33
filling in implementation details on

sequence diagrams, 208
findByCustomerId(), 286
findById(), 243, 286
forgetting to code an alternate course of

action, 316
formBackingObject(), 280–283, 320–321
generating the entity classes for Spring, 260
getCommandClass(), 241
getCustomer(), 288
getCustomerSession(), 288
getting “atomic” on the sequence diagram,

317
handle(), 272, 358
handleRequest(), 347–348

■INDEX430

7745idxfinal.qxd 12/13/06 8:50 PM Page 430

handling an unused object on a sequence
diagram, 246

handling the “validation” controllers, 311
home.jsp, 269, 271
HomeController class, 268, 271
how the home page is displayed, 271
HSQL database, 165, 176
identifying a stable set of abstractions, 249
implementing the home page (home.jsp),

268
IncludeTop.jsp, 270, 277, 421
index.jsp, 271
initData(), changing, 355
insufficiently detailed sequence diagram,

243
invoking a use case from a sequence

diagram, 245
isLoggedIn(), 288
isUserLoggedIn(), 206, 212
Java package hierarchy, 422–423
Java Standard Tag Library (JSTL), 412, 422
JavaServer Pages (JSP), 165, 179, 412
JdbcBookDao class, 275
JdbcCustomerReviewDao class, 284
JSP Tag Library (JSTL), 165
load(), 240, 243
Login use case, 105, 122
Login use case, example robustness diagram,

110
mapping browser requests to Controllers,

419
mapping entity classes to implementation

classes, 266
minimizing code breakage and refactoring,

249
Model-View-Controller (MVC) architecture,

165, 167
ModelAndView object, 178, 216, 272
Moderate Customer Reviews use case, 122
Moderate Pending Reviews use case, 324
moving the validation code into

CustomerReview, 315
naming participating domain objects, 92
not creating a Validator class for every

domain class, 313
not generating SQL from the domain model,

259
organizing use cases into packages, 61
overall folder structure, 418
picking up warning signs from sequence

diagrams, 305
prefix and suffix properties, 421
preparing the style sheet, 265
problems with a single “blanket” validation

method, 316
proving a test by trying to make it fail, 348
removing out-of-scope information, 90
Retrieve Book Details controller, test class

skeleton, 353
reversing the relationship between Book and

CustomerReview, 322
reviewing the Show Book Details use case,

304

reviewing the Write Customer Review use
case, 309

root cause of the “swarms of tiny classes”
problem, 311

running test cases for data-retrieval
controllers, 356

running the BookstoreTestSuite from the
command line, 350

save(), 286
Search for Books use case, 131
setBookDao(), 243, 359
setUp(), 354
Show Book Details sequence diagram, 347
Show Book Details use case, 268, 292, 344,

414–415
Show Book Details use case, CDR example,

238
Show Book Details use case, robustness

diagram, 115, 126
Show Book Details use case, updated

sequence diagram, 252
ShowBookTestHelper, 368
showing HttpSession on the sequence

diagram, 206
showValidationErrors(), 213
Spring Framework, 165
Spring Web MVC, 165, 167
testability, 179
testBookDetailsFound(), 362
testBookIdFound(), 353
testBookIdNotFound(), 353
testDisplayHomePage(), 346
testing HomeController, 347–348
testing that a book was not found, 356
testing the Display Book Details controller,

357
testing the Display Book Not Found page

controller, 363
testing the Display Home Page controller,

345
testing the Retrieve Book Details controller,

352
testing to retrieve a book using its ID, 354
testPageDisplayed(), 359–360, 362
tracing individual requirements to use cases,

96
tracking the source of the book’s ID, 305
turning controllers into methods on

sequence diagrams, 317
UML model for, 324
updated static model, 126, 210–211
user authentication/authorization, 179
using a Code Review and Model Update

checklist, 304
using Java for, 165
using Java’s reflection API, 314
validate(), 289, 313
validation controllers, 133
view (presentation) layer, 173, 175
view page (bookdetails.jsp), 274, 277
web security, 179
WEB-INF folder, 418, 421
web.xml, 418–419

■INDEX 431

Find it faster at http://superindex.apress.com
/

7745idxfinal.qxd 12/13/06 8:50 PM Page 431

when the use case text and robustness
diagram don’t match, 246

why bother with designing unit tests, 366
Write Customer Review use case, 278, 344,

416–417
Write Customer Review use case, CDR

example, 245
Write Customer Review use case, reviewing

the controllers, 309
Write Customer Review use case, robustness

diagram, 117
Write Customer Review use case, updated

sequence diagram, 252
Write Reader Review use case, 70–71
writecustomerreview.jsp, 290
WriteCustomerReviewCommand, 247, 255
WriteCustomerReviewController class, 279,

284, 290, 310
WriteReviewScreen class, 213
writing tests from the calling object’s point of

view, 338, 347, 358
writing unit tests prior to coding, 344

Inversion of Control (IoC)
Dependency Injection (DI), 409, 412
design pattern, 166, 283
Java bean example with one property, 409
wiring beans together, 411

“invokes” association, 63, 69
isLoggedIn(), 288

■J
J2EE Servlet API, 412
Java

classes, 410
dot notation, 423
naming conventions, 410
object naming conventions, 275
packages and subpackages, naming

conventions, 410
property, 410
reverse URL convention, 410, 423
variables, 410

Java Data Objects (JDO), 166
Java Standard Tag Library (JSTL), 412, 422
Java Swing, 166
JavaBeans, 165
JavaServer Pages (JSP), 165–166, 412

testing, 179
JDBC, 166, 258
JdbcBookDao class, 275
JDO, 260
JGenerator, 260
JSP Tag Library (JSTL), 165
Jumpstart training workshops, 88
JUnit, 18, 331, 334

adding individual tests to the test suite, 351
AddToShoppingCartTest test case, 340
assert methods, 339
assertEquals(), arguments used, 340
introduction to, 339
limiting each test method to a single assert

statement, 339

mapping test cases directly to Java test
classes, 339

naming convention followed, 339
new features in version 4.0, 341
operation of, 339
running tests from a test suite, 350
setUp(), 340–341
suite(), 350
tearDown(), 341
test skeleton, 346
testDisplayHomePage(), 346
TestRunner, 350
unit test class, code example, 339
website of, 339

■L
link class, 86
linking use cases to objects, 11
load(), 240, 243
Login use case, 105, 110, 122

■M
manager classes, 108
MDG Integration, 195, 262
messages

differentiating among programming
languages, 189

labeling on sequence diagrams, 188, 194
passing, 187

Method Injection, 412
Microsoft Visual Studio 2005, 262
miscommunication in IT projects, 23
mock objects

testing with, 354
using sparingly, 343, 354, 369

MockBookDao class, 354
Model-View-Controller (MVC) architecture,

165, 167
ModelAndView object, 168, 178, 412, 415
modeling aggregation and generalization

relationships, 28
Moderate Customer Reviews use case, 122
Moderate Pending Reviews use case, 324
multiplicity, using, 214

■N
naming the logical software functions

(controllers), 3
nonfunctional requirements testing, 333
NotFoundException, 309
NullPointerException, 354
NUnit, 334, 339

■O
object discovery, 106
object instances, 59
object lifelines, 187
object model, use cases and, 25
object-oriented design (OOD), sequence

diagrams and, 185
object-relational mapping (ORM), 166

■INDEX432

7745idxfinal.qxd 12/13/06 8:50 PM Page 432

objects
classification of, 101
definition of, 25

operation, UML definition of, 189
organizing use cases into packages, 9, 85–86

■P
package/component model, 161, 173
packages, 410, 422

definition of, 61
performance testing, 334
performing a Code Review and Model Update, 4
persona, definition of, 19
Plain Old Java Objects (POJOs), 165
pointcuts, 74
“precedes” association, 63, 66, 69, 91
prefactoring designs, 14
preliminary design, 51

robustness analysis and, 102
Preliminary Design Review (PDR), 3, 12
preliminary design steps, 9
preventing entropy (code rot), 18
problem domain, 26, 249
problem space, describing, 29
problem space classes, 201
project glossary, 24, 26
project requirements, ongoing changeability of,

28
Properties dialog, Enterprise Architect (EA), 383
property (in Java), 410

■R
Rational Rose, 57, 196
Rational XDE, 260
real-time systems

using elements on state diagrams to build
test cases, 330

Realization relationship, 386
refactoring, 351
regression testing, 334
Relationship Matrix, 388
release testing, 333
requirements gathering

allocation and traceability as a life cycle
concern, 378

avoiding dysfunctional (intermangled)
requirements, 374–375

avoiding the “big monolithic document”
syndrome, 374, 377

creating estimates from use cases or
controllers list, 374, 377

data analysis and reduction, definition of,
378

data capture and data reporting, definitions
of, 378

different corporate strategies for handling,
373

distinguishing between types of requirement
specs, 374, 376

drag-and-drop linking of elements back to
requirements, 374

driving requirements from business needs,
not design patterns, 374, 377

giving each requirement a short, catchy
name, 374, 376

guidelines, 6, 374
intermangling of requirements and scenario

text, 375–376
practice questions in, 389
removing dysfunctionality from

requirements, 376
separating active-voice use cases from

passive-voice requirements, 375
traceability of requirements, 378
using examples when writing functional

requirements, 374, 377
using modeling tools supporting linkage and

traceability, 374
why requirements tracking is vital, 377
writing at least one test case for each

requirement, 374, 376
Requirements Review, 3, 8

accounting for alternate courses of action, 93
achieving basic agreement among all

stakeholders, 88
actively describing user interactions and

system responses, 95
allocating functional requirements to use

cases, 89
avoiding overly abstract use case text, 93
avoiding passive-voice functional

requirements in use cases, 85–86
benefits of a facilitator/moderator, 88
changing statements from passive to active

voice, 95
as a collaborative review among project

stakeholders, 83
creating clear illustrations of user and

system behavior, 87
decomposing a system along usage scenario

boundaries, 93
describing basic and alternate courses in

active voice, 86
eight steps to a better use case, 88–89
guidelines, 8, 85
keeping use case terminology concise and

consistent, 92
linking the GUI model to the narrative

behavior descriptions, 87
making the sign-off process collaborative, 84
naming mock-up screens, 87
naming participating domain objects, 92
organizing use cases into packages, 85–86
performing collaboratively with the right

people, 88
placing use cases in the user interface

context, 87
rationale for, 84
referring use case text to the appropriate

domain objects, 87
removing out-of-scope information, 90
tracing individual requirements to use cases,

96
use case diagram, purpose of, 87

■INDEX 433

Find it faster at http://superindex.apress.com
/

7745idxfinal.qxd 12/13/06 8:50 PM Page 433

using storyboards and GUI prototypes, 87
writing coherent, specific, and unambiguous

use case text, 95
writing use cases in the context of the object

model, 87
requirements tree, creating, 385
Resin, 166
Responsibility-Driven Design (RDD), 194, 204,

247
reverse URL convention, 410, 423
robustness analysis

adding a Customer actor to the robustness
diagram, 117

boundary objects, 103
bridging the gap from analysis to design, 101
controllers, 103
creating a new, blank robustness diagram,

117
enforcing a noun-verb-noun pattern in use

case text, 104
entity objects, 103
exercises and solutions for fixing modeling

errors, 128, 131–133, 136–137, 139
guidelines, 11, 104–105
linking use cases to objects, 101
as the middle ground between analysis and

design, 102
modeling the alternate courses, 122
performing for a use case, 114
practice questions in modeling, 140–141
as preliminary design, 102
rules for noun–verb interaction, 103
technical architecture (TA), 102, 160
using to disambiguate use case text, 102
walking through the Write Customer Review

use case, 117
robustness diagrams

adding a Customer actor, 117
adding missing entity classes to the domain

model, 104, 106
arrows as communication associations on,

108
avoiding drawing individual UI elements,

118, 136
boundary objects, 103
CASE tools, 105
catching rule violations, 112–114
controllers, 103–104, 108
creating a new, blank diagram, 117
definition of, 101–102
disambiguated nomenclature of boundary

objects, 108
discovering hidden functionality and

missing domain classes, 137
doing a preliminary sketch on paper, 102
enforcing a noun-verb-noun pattern in use

case text, 104
entity objects, 103
expecting to rewrite (disambiguate) the use

case, 104, 107
generating skeleton tests from, 238
GUI, 107
learning to draw the use case text, 117

main purposes of, 108
making a boundary object for each screen,

104, 108
manager classes, 108
modeling alternate courses, 122
morphing of objects into the detailed design,

105, 109
naming screens unambiguously, 104
not allocating operations to classes, 133
not confusing with a collaboration diagram,

107–108
not including sections of use case text, 136
not redrawing endlessly, 208
not specifying validation checks in detail,

139
not worrying about arrow directions, 104,

108
object discovery, 106
object messages as verbs, 104
as an object picture of a use case, 101, 105,

109
objects as nouns, 104
page names as nouns, 116
pasting the use case text onto, 104–105
performing the highlighter test, 122, 136
as a preliminary conceptual design of a use

case, 105, 109
problems arising from ambiguous use case

text, 136
reading like an activity diagram or a

flowchart, 103
representing the flow of action between two

objects, 103
requirement for matching use case text

precisely, 101
rules for noun–verb interaction, 103
Show Book Details use case, 115, 126
showing invoked use cases, 104, 109
showing valid and invalid relationships, 113
software functions, 107
taking entity classes from the domain model,

104, 106
technical architecture (TA) and, 160
three class stereotypes, 103
time requirements of, 102
using controller classes sparingly, 108
working through a use case one sentence at

a time, 105, 107, 114
Write Customer Review use case, 117

■S
save(), 286
screen mock-ups, 8, 51, 56
Search for Books use case, 131
sequence diagrams

actor, 187
adding implementation details to, 211
allocating behavior among collaborating

objects, 192
allocating behavior to classes, 188
assigning operations to classes, 188, 194, 202
behavior allocation error, 218

■INDEX434

7745idxfinal.qxd 12/13/06 8:50 PM Page 434

boundary and entity classes becoming
object instances, 109

boundary object, 187
cleaning up the static model before the CDR,

188, 194
completed example of, 208
controller classes, 187–188
controllers becoming messages, 109
converging the problem space and solution

space, 211
converting controllers from robustness

diagrams, 203
copying boundary objects and actors from

robustness diagrams, 200
copying entity objects from robustness

diagrams, 199
copying use case text directly onto a

diagram, 197
depicting how objects interact with each

other, 188
determining which controllers go on which

classes, 204
difficulty in drawing, 193
direct link to use cases, 186
discordant attributes, 205
drawing notation, 186
drawing one diagram for every use case, 58,

187, 189
entity object, 187
exercises and solutions for fixing errors,

217–218, 220–221, 223–224, 227
expanding upon the robustness diagram,

187, 190
filling in the implementation details before

coding, 208
finalizing the distribution of operations

among classes, 188
fixing leaps of logic in, 227
focus of control, 187–188, 192
four criteria of a good class, 205
four essential steps for drawing, 195
getting “atomic” on, 317
guidelines, 14, 187
invoking a use case from, 245
keeping the static and dynamic models in

sync, 211
lack of controller objects on, 187
mapping use case text to messages, 188, 192
not drawing flowcharts on, 189
as noun-verb-noun in nature, 104
object lifelines, 187
object-oriented design (OOD), 185
overallocating a class, 205
overapplying design patterns, 204
passing messages, 187
pasting the entire use case text onto, 190
practice questions in modeling, 228–230
prefactoring designs, 188, 194
putting the functions where the data lives,

251
real design vs. conceptual design, 109
reviewing frequently, 188, 194
Show Book Details, 347, 353, 358, 363

showing basic and alternate courses on the
same diagram, 187, 189

showing how objects accomplish use case
behavior, 188, 190

turning a controller into a control class, 204
turning controllers into operations on

classes, 188
understanding the primary goals of, 187–188
use cases and, 59
using CASE tools, 193
using incorrectly as just a flowchart, 223
using to drive the detailed design, 186

ServletRequestDataBinder class, 306
setBookDao(), 243, 359
setUp(), 354
Show Book Details use case, 89, 91, 190–191,

238, 252, 268, 292, 344, 414–415
ShowBookTestHelper, 368
showing generalization and aggregation

relationships, 9
singletons, 411
software architecture. See technical architecture

(TA)
software functions, 107
solution space classes, 201, 211
Sparx Systems, 112, 195–196, 297

MDG Integration plug-in, 262
Spring Framework, 20

AbstractCommandController class, 274
Acegi Security, 179
anatomy of, 165
aspect-oriented programming (AOP) and,

172
choosing a view technology, 167
Command classes and domain classes, 168
Command objects, definition of, 168
Constructor Injection, 412
Controller classes, 216
Controller interface, 412
controller, definition of, 167
creating a persistent object model using

JavaBeans, 169
DAO and JDBC Support, 413
Data Access Objects (DAOs), 165, 169–170,

175
definition of, 165
Dependency Injection (DI), 409, 412
differentiating Spring and UML controllers,

168
direct mapping between JavaBeans and

domain classes, 169
DispatcherServlet, 167, 174–176, 178, 269,

415–416, 419
Enterprise JavaBeans (EJB), disadvantages of,

166
Errors object, 290
form validation, 417
Hibernate, 166
HttpServlet interface, 412
iBATIS, 166
Inversion of Control (IoC), 166, 283, 409, 411
J2EE Servlet API, 412
Java Data Objects (JDO), 166

■INDEX 435

Find it faster at http://superindex.apress.com
/

7745idxfinal.qxd 12/13/06 8:50 PM Page 435

Java Swing, 166
JavaBeans, 165
JavaServer Pages (JSP), 166
JDBC, 166, 258
lack of a security framework, 179
learning more about, 172
lightweight framework approach, 267
as a lightweight J2EE application framework,

166
mapping entity classes to implementation

classes, 266
Method Injection, 412
model, definition of, 167
Model-View-Controller (MVC) architecture,

165, 167
ModelAndView object, 168, 178, 412, 415
object-relational mapping (ORM), 166
Plain Old Java Objects (POJOs), 165
Resin, 166
running in a Java servlet/JSP container, 166
separating the view from the MVC

framework, 167
ServletRequestDataBinder class, 306
Show Book Details use case, 414–415
singletons and the Singleton design pattern,

411
Spring Rich Client, 166
Spring Web MVC, 165, 167, 258
Struts, 166
Tomcat server, 166–167
using XML files for JavaBean dependencies,

165
Velocity, 166
view, 167–168, 412
wiring beans together, 410–411
Write Customer Review use case, 416–417
YourBean class, code example, 410

Spring Rich Client, 166
Spring Web MVC, 165, 167

Controller interface, 412
DAO and JDBC Support, 413
HttpServlet interface, 412
J2EE Servlet API, 412
ModelAndView class, 412, 415
view, 412

SQL and the domain model, 259
state diagram, 108
static model, 4
static workflows, 2
stereotypes

assigning to a UML element, 63
“extends” association, 64, 66, 69
“includes” association, 64, 69
“invokes” association, 63, 69
“precedes” association, 63, 66, 69, 91
table of common use case relationships,

67–68
storyboards, 3, 7, 51, 56
stress testing, 334
Struts, 166
stubs, using to simulate component

inputs/outputs, 332
subject matter experts, 29

subtyping
definition of, 37
subclasses and superclasses, 37

Sun Microsystems
Java, 165
JavaBeans, 165
JSP Tag Library (JSTL), 165
Plain Old Java Objects (POJOs), 165

system architecture. See technical
architecture (TA)

system testing, 333
system topology, 160

■T
tearDown(), 350
technical architect

Carnegie Mellon Software Engineering
Institute, 161

duties of, 160
leadership skills required, 161
pushing for TA adoption, 162
role in documenting and communicating

system architecture, 160
technical architecture (TA)

analysis paralysis, 175
analyzing usage and transaction

requirements, 160
architectural paralysis, 180
basing the architecture on objective

requirements, 161
business-level system requirements, 160
common errors to avoid, 180–181
communicating and disseminating, 160
completing before detailed design, 160
considering the system’s scalability, security,

and availability, 162
data model, 161
definition of, 160
deployment model, 161, 173, 175
documenting, 159–160
domain classes containing no behavior, 175
examining the maintainability of a design,

242
guidelines, 161
HttpUnit, 179
identifying a stable set of abstractions, 249
interfacing with external systems, 162
internationalization and localization factors,

162
making models minimal yet sufficient, 175
minimizing code breakage and refactoring,

249
overnormalizing a design, 242
package/component model, 161, 173
planning ahead for testing, 162
purpose of, 159
scalability, 180
separating functional, data, and system

architecture, 161
service-level system requirements, 160
testing application logic, 179
understanding the purpose of, 161
writing JUnit tests, 179

■INDEX436

7745idxfinal.qxd 12/13/06 8:50 PM Page 436

terminology, ambiguous, 29
Test-Driven Development (TDD), 19, 330

Beck, Kent, 351
testBookDetailsFound(), 362
testBookIdFound(), 353
testBookIdNotFound(), 353
testing

aligning closely to requirements, 331
beginning as the code is being written, 329
discovering alternate courses during, 338
driving unit tests from use cases, 330
identifying test cases using robustness

diagrams, 329, 334
identifying the test scenarios for each

controller/test case, 335
linking one test case to each controller, 336
not writing tests connecting to external

resources, 353
preparing for, during the analysis stage, 329
programmers’ attitudes toward, 331
proving a test by trying to make it fail, 348
tying closely to requirements, 329
unit test skeletons, guidelines for creating,

338
testPageDisplayed(), 359–360, 362
TestRunner (JUnit), 350
Together, 260
Tomcat server, 166–167, 173, 270
traceability, 96, 374, 378–379, 388–389

■U
UML

assigning a stereotype to a UML element, 63
custom elements, 383
model for the Internet Bookstore, 324
operation, definition of, 189
package mechanism, 61
stereotypes, 63–64
synchronizing model and code, 262
syntax, 39
tools that reverse-engineer code into

sequence diagrams, 307
understanding the generalization and

extends concepts in use cases, 66
UML 2.0

action pins, 399
activity diagrams, 396, 399
artifacts, 396, 407
assembly connectors, definition of, 398
class diagrams, 396
collaborations, definition of, 398
combined fragments, 402
communication diagrams, 396
component diagrams, 396, 406
composite structure diagrams, 396
deployment diagrams, 407
diagram types, list of, 395
entry and exit point connections, 401
expansion regions, definition of, 399
extension mechanisms, 395
functional decomposition, 403
ICONIX diagrams remaining unchanged, 396

increased support for precision in diagrams,
395

input and output pins, 399
interaction diagrams, 396, 401–402
interaction elements and operands

(subfragments), 402
interaction, definition of, 401
interfaces, definition of, 397
junction states, definition of, 401
linking components by assembly

connectors, 396
new modeling constructs on composite

diagrams, 396
new state diagram elements, 401
nodes, 396, 407
omissions in, 407
overview of changes in, 395
parts and ports, definitions of, 397
profiles, definition of, 396
provided and required interfaces, 406
robustness diagrams, lack of, 395
sequence diagrams, 401
state lifeline, 405
state machine diagrams, 396
stereotyped class, 397
swimlanes, 399
test case diagrams, lack of, 395
timing diagrams, definition of, 396, 404
value lifeline, 405

unit testing
avoiding duplication in tests, 343
creating tests for each controller on each

robustness diagram, 330
driving from use cases, 330
driving unit test classes and methods from

controllers, 331
driving unit tests from test cases, 338
ensuring that each test method tests exactly

one thing, 342
generating test skeleton code for, 334
guidelines, 17
keeping unit tests fine-grained, 342
neglecting to fix a failing test, 343
running unit tests quickly, 353
treating unit test code with reverence, 342
tying unit tests to the preliminary design

objects, 342
using mock objects sparingly, 343, 369
why bother with designing unit tests, 366
writing effective unit tests, 342–343

use case diagrams
actor, role of, 53
definition of, 53
placing actors on, 32

use cases
actively describing user interactions and

system responses, 95
allocating functional requirements to, 89
analyzing basic and alternate courses, 50, 53,

72
answering the three magic questions, 52, 72
aspect-oriented programming (AOP), 74
avoiding analysis paralysis, 63

■INDEX 437

Find it faster at http://superindex.apress.com
/

7745idxfinal.qxd 12/13/06 8:50 PM Page 437

avoiding overly abstract text in, 93
avoiding passive-voice functional

requirements, 85–86
avoiding vagueness and ambiguity, 60
capturing user actions and associated

system responses, 50
creating after the domain model, 29
describing both sides of the user/system

dialogue, 51, 55
describing system usage in an object model

context, 51, 59
describing system validation, 71
differentiating from algorithms, 76
disambiguating, 11
driving the design from, 51
eight steps for improving, 88–89
enforcing a noun-verb-noun pattern in use

case text, 104
errors in first-draft use case text, 108
exercises and solutions for fixing errors,

77–79
“extends” association, 64, 66, 69
factoring out commonality to avoid

duplication, 67
following the two-paragraph rule, 51–52
as fragments of a user guide, 67
function of, 49
functional requirements and specifications,

50
grounding in reality, 25
guidelines for writing, 51
identifying a first-pass list for

implementation, 3
importance of linking to objects, 59
“includes” association, 64, 69
“invokes” association, 63, 69
keeping terminology concise and consistent,

92
linking to objects, 11
modeling guidelines, 8
nouns as object instances, 59
organizing into packages, 61, 85–86
organizing with actors and use case

diagrams, 51, 53
pasting use case text onto robustness

diagrams, 104–105
placing in the user interface context, 87
practice questions in modeling, 80–81
“precedes” association, 63, 66, 69, 91
referencing boundary classes by name, 52, 61
referencing domain classes by name, 25, 52,

59
referencing to the domain model, 71
referring text to the appropriate domain

objects, 87
relationship of actors to responsibilities, 54
removing ambiguity from, 107
removing preconditions and postconditions,

91
robustness diagram as an object picture of,

101, 105, 109

as a runtime behavior specification, 51, 58
sequence diagrams, 59
similarity to end-user documentation, 58
state diagram, 108
sunny day vs. rainy day scenarios, 53, 72
table of common stereotypes and

relationships, 68
templates and their misuse, 74–76
terseness of, 70
understanding the generalization and

extends concepts, 66
use case diagram, purpose of, 87
using an event/response flow, 51, 55
using robustness analysis to disambiguate

use case text, 102
using storyboards, GUI prototypes, and

screen mock-ups, 51, 56
validating the behavior requirements of, 109
verbs as messages between objects, 59
Write Reader Review scenario, 70–71
writing coherent, specific, and unambiguous

text, 95
writing first-draft use cases, 3
writing from the user’s perspective, 54
writing in the active voice, 51, 54
writing using a noun-verb-noun sentence

structure, 52, 59
writing within the domain model context,

50, 102
writing within the object model context, 25,

87
user authentication/authorization, 179

■V
validate(), 289, 313
validation controllers, 133
Velocity, 166
view, 412
Visual Studio 2005, 262
volume testing, 334

■W
Web Archive (WAR), 270
web security, 179
web.xml, 418–419
Wirfs-Brock, Rebecca, 237
Write Customer Review use case, 175, 195, 206,

245, 252, 278, 344, 416–417
Write Reader Review use case, 70–71
writecustomerreview.jsp, 290
WriteCustomerReviewCommand, 247
WriteCustomerReviewController class, 279, 290,

310

■X
XDoclet, 260
XML, 180

Spring XML file, 411
using with JavaBeans, 165

xUnit, 339

■INDEX438

7745idxfinal.qxd 12/13/06 8:50 PM Page 438

	Use Case Driven Object Modeling with UML: Theory and Practice
	Table of Content
	Chapter 1 Introduction to ICONIX Process
	PART 1 Requirements Definition
	Chapter 2 Domain Modeling
	Chapter 3 Use Case Modeling
	Chapter 4 Requirements Review

	PART 2 Analysis, Conceptual Design, and Technical Architecture
	Chapter 5 Robustness Analysis
	Chapter 6 Preliminary Design Review.
	Chapter 7 Technical Architecture

	PART 3 Design and Coding
	Chapter 8 Sequence Diagrams
	Chapter 9 Critical Design Review
	Chapter 10 Implementation: Getting from Detailed Design to Code.
	Chapter 11 Code Review and Model Update.

	PART 4 Testing and Requirements Traceability
	Chapter 12 Design-Driven Testing
	Chapter 13 Addressing Requirements.

	PART 5 Appendixes
	Appendix A What’s New in UML 2.0
	Appendix B Spring Bin

	Index

	BOOK

