
www.allitebooks.com

http://www.allitebooks.org

Visual Studio 2013
Cookbook

Over 50 simple but incredibly effective recipes to get
you up and running with the powerful features of Visual
Studio 2013

Jeff Martin

Richard Banks

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Visual Studio 2013 Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either expressed or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2012

Second Edition: March 2014

Production Reference: 1100314

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-196-6

www.packtpub.com

Cover Image by Dan Martin (www.danfm.net)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Jeff Martin

Richard Banks

Reviewers
Hulot

Darren Kopp

Anand Narayanaswamy

Sergiy Suchok

David Thibault

Ken Tucker

Acquisition Editor
Rebecca Youé

Content Development Editor
Ankita Shashi

Technical Editors
Kunal Anil Gaikwad

Pramod Kumavat

Siddhi Rane

Copy Editors
Janbal Dharmaraj

Alfida Paiva

Project Coordinator
Swati Kumari

Proofreaders
Simran Bhogal

Mario Cecere

Joel T. Johnson

Indexers
Hemangini Bari

Mariammal Chettiyar

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Jeff Martin is a long-time technology enthusiast and has been a contributing writer for
InfoQ (www.infoq.com) for over two years, focusing on .NET and Microsoft-based platforms.
Having experience in writing, testing, and designing software, he enjoys learning about new
technologies and explaining them to a broader audience.

Readers are encouraged to follow @VSDevTips on Twitter to receive updates on the book
as well as news for getting the most out of Visual Studio.

I would like to thank my lovely wife Carolyn for her love and understanding
during my frequent late-night writing sessions. Your support for these
projects means more to me than I can express.

I would also like to thank my brother Dan Martin for providing a great photo
for the cover of this book.

Finally, thank you to my entire production team at Packt Publishing for their
effort and assistance in producing this book.

www.allitebooks.com

http://www.allitebooks.org

Richard Banks has developed software for the last 20 years for a wide range of industries
and development platforms. Over the years he has played many roles including that of a
developer, team lead, project manager, and CIO/CTO. He is a Professional Scrum Trainer,
runs the Sydney ALT.NET user group and the Talking Shop Down Under podcast. He owns and
contributes to a few open source projects, and has spoken at Microsoft TechEd and a number
of other events and user groups around Australia. For some strange reason, he gets a real kick
out of helping development teams to improve and produce great software. If you want to get
in touch, he tweets at @rbanks54 and blogs at http://www.richard-banks.org/. He
currently works as a Principal Consultant for Readify and is a Microsoft Visual Studio ALM MVP.

It might have my name on the front cover but a book is never the work of
just one person.

I would firstly like to thank my fantastic wife, Anne, and my two wonderful
children, Hannah and Leisel, for giving me the time and space to work on
this book. Their support throughout the process has been invaluable, and
without that I would never have undertaken this book in the first place.

I’d also like to thank the staff and Packt Publishing for the opportunity and
help in bringing this together, and my tech reviewers who gave up their
spare time reading my scribble and checking if what I wrote actually made
sense instead of being just a delirium-fuelled pile of nonsense.

Thank you all!

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Hulot has been working in the IT industry for more than 20 years in different capabilities,
from software development, project management to IT marketing product development and
management. He has worked for multinational companies such as Royal Philips Electronics,
PricewaterhouseCoopers, and Microsoft. Currently, He has been working as an independent IT
consultant. He is a Computer Science lecturer at two Brazilian universities. He holds a Ph.D.
in Computer Science and Electronics from the University of Southampton, UK and a B.Sc. in
Physics from University of São Paulo, Brazil.

I would like to thank my wife Mylene Melly for her continuous support. I
would also like to thank my many colleagues over the years who have made
it possible to learn what I now know about software development and the
computer industry.

Darren Kopp is a father, husband, software engineer, and gamer. Darren started
programming when making a website for his clan in the game Tribes using ASP and
then moved on to ASP.NET when .NET 1.1 was released.

Darren started professional development work in the golf industry, developing systems
ranging from e-commerce solutions for golf shops to systems tracking swing profiles of golfers.
He then moved on to the construction industry where he developed software that integrated
payroll, human resources, service management, and project management.

Darren currently works for DevResults that provides web-based solutions to the international
development and humanitarian community.

When Darren isn’t coding or spending time with family, you can find him tweeting jokes and
playing Team Fortress 2 and Battlefield 4.

www.allitebooks.com

http://www.allitebooks.org

Anand Narayanaswamy works as an editor with InfoQ based in Trivandrum, Kerala, India.
He is an ASPInsider and was a Microsoft Most Valuable Professional (MVP) from 2002 to 2011.

Anand also worked as a chief technical editor for ASPAlliance.com and contributed several
articles and reviews for DevPro, c-sharpcorner.com, developer.com, codeguru.com,
and various other community sites.

Anand also worked as a technical editor for several popular publishers such as Sams,
Addison-Wesley Professional, Wrox, Deitel, Packt Publishing, and Manning.

He blogs at www.learnxpress.com and can be reached at www.facebook.com/anandn.
His twitter handle is @visualanand.

Sergiy Suchok graduated in 2004 with honors from the Faculty of Cybernetics,
Taras Shevchenko National University of Kyiv (Ukraine) and has since then been keen on
information technology. He is currently working in the banking sector and has a Ph.D. in
Economics. Sergiy is the co-author of more than 45 articles and participated in more than
20 scientific and practical conferences devoted to the economic and mathematical modeling.
He is a member of the New Atlantis Youth Public Organization (newatlantida.org.ua)
and devotes his leisure time to environmental protection issues, historical and patriotic
development, and popularization of a grateful attitude towards the Earth. He also writes
poetry and short stories and makes macramé.

I would like to thank my wife and my young daughter for their patience and
understanding while I reviewed this book.

David Thibault has been a .NET developer since Version 1.1. He has worked on a wide
variety of software solutions in various domains such as e-commerce, retailing, social
networking, and business management. Besides .NET, he has recently acquired an interest for
other technologies such as NodeJS and AngularJS. David currently works for Sigmund, a young
agency focusing on bringing businesses to the digital age. He lives in Quebec City, Canada,
and he loves Scotch whisky.

Ken Tucker is a Microsoft MVP who enjoys working on Windows Phone and Windows
Store apps.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book library.
Here, you can access, read, and search across Packt’s entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on Twitter,
or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Discovering Visual Studio 2013	 9

Introduction	 9
Synchronizing settings	 10
Touring the VS2013 IDE	 12
Project round-tripping	 19
Managing the editor windows	 23
Finding Visual Studio commands	 27
Searching and navigating	 29
Navigating in depth	 32

Chapter 2: Getting Started with Windows Store Applications	 37
Introduction	 37
Getting a Windows Store app developer license	 40
Creating a Windows Store app	 44
Adding a Windows Store item template to your app	 52
Using the Windows Store app simulator	 59
Defining capabilities and contracts	 66
Analyzing your App's performance	 74
Packaging your Windows Store app	 76
Validating your Windows Store app	 81

Chapter 3: Web Development – ASP.NET, HTML5, CSS, and JavaScript	 85
Introduction	 85
Getting started with Bootstrap	 86
Previewing changes across multiple browsers	 91
Creating HTML5 web pages	 94

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Taking advantage of the CSS editor improvements	 97
Understanding the JavaScript editor improvements	 102
Adding bundling and minification to JavaScript and CSS files	 107
Verifying pages with the Page Inspector tool	 111

Chapter 4: .NET Framework 4.5.1 Development	 117
Introduction	 117
Adding the Ribbon to a WPF application	 118
Creating a state machine in Visual Studio	 123
Creating a task-based WCF service	 130
Managing packages with NuGet	 134
Unit testing .NET applications	 139
Sharing class libraries across runtimes	 144
Detecting duplicate code	 147

Chapter 5: Debugging Your .NET Application	 153
Introduction	 153
Maximizing everyday debugging	 154
Debugging on remote machines and tablets	 159
Debugging code in production with IntelliTrace	 166
Debugging parallel code	 172
Visualizing concurrency	 177

Chapter 6: Asynchrony in .NET	 183
Introduction	 183
Making your code asynchronous	 184
Understanding asynchrony and the Windows Runtime	 191
Using asynchrony with web applications	 196
Working with actors and the TPL Dataflow Library	 200

Chapter 7: Unwrapping C++ Development	 205
Introduction	 205
Using XAML with C++	 206
Unit testing C++ applications	 210
Analyzing your C++ code	 217
Using a custom rule set	 219
Working with DirectX in Visual Studio 2013	 223
Creating a shader using DGSL	 227
Creating and displaying a 3D model	 232
Using the Visual Studio Graphics Diagnostics	 235

iii

Table of Contents

Chapter 8: Working with Team Foundation Server 2013	 241
Introduction	 241
Creating a new TFS project	 242
Managing your work	 246
Using local workspaces for source control	 253
Performing code reviews	 260
Getting feedback from your users	 266
Using Git for source control	 271

Chapter 9: Languages	 281
Introduction	 281
Fortifying JavaScript applications with TypeScript	 281
Integrating Python into Visual Studio	 285
Integrating Python with .NET	 289

Appendix: Visual Studio Medley	 293
Introduction	 293
Creating installer packages	 293
Submitting apps to the Windows Store	 298
Creating Visual Studio add-ins and extensions	 301
Creating your own snippets	 303

Index	 309

iv

Table of Contents

Preface
The Visual Studio 2013 Cookbook has been written to provide you with an informative tour
around Visual Studio 2013 (VS2013). Topics have been broken down into quick-to-access
segments called recipes, allowing you to easily find the material that interests you.

Some recipes will directly apply to your regular tasks while others are intended to shed some
light on overlooked corners of Visual Studio. Given its long pedigree, extensive functionality has
been added over the years, which is easy to overlook. The goal is that by reading this book,
you will become more proficient with the tool that you use most as a Windows developer.

This second edition has been revised and expanded to cover the new features of VS2013 so
that regardless of whether you are upgrading from VS2012 or are making a bigger step from
an earlier version, there will be helpful tips and discussion of this new version. For those of
you who purchased the first edition, welcome back, and to our new readers thank you for
joining us. Let's get started!

While you were gone
Since the launch of VS2012, Microsoft has released four updates referred to as 2012.1,
2012.2, and so on. Each have added functionality to the original program, and each installed
package is cumulative, meaning that only the newest one has to be installed to provide the
benefits of all previous updates.

VS2012 Update 1
First and foremost is the ability VS2012.1 provides for C++ developers to target
Windows XP clients while using the VS2012 compiler. This is a key ability if you
desire to continue compiling applications that run on Windows XP and Vista
as well as Windows 7 and 8. JavaScript programmers will appreciate the inclusion
of memory profiling and memory analysis tools. SharePoint developers will gain
load testing support and the use of SharePoint emulators. Full details are available
at http://support.microsoft.com/kb/2797915.

Preface

2

VS2012 Update 2
This update includes ASP.NET and Web Tools 2012.2, unit testing support for Windows Phone,
and broader unit testing capabilities for Windows Store apps. 2012.2 includes a host of bug
fixes and stability improvements that benefit all areas of the program, right from the debugger
to memory leaks in C++ based solutions, and several use cases that would cause the IDE to
crash. Full details are available at http://support.microsoft.com/kb/2797912.

VS2012 Update 3
2012.3 primarily provides bug patches and performance improvements. Notable for those
using VS2012 and VS2013 concurrently is 2012.3's improved compatibility with VS2013
projects. Several stability fixes were made that among other things prevent crashes in web
projects, fix a conflict between VS2012 and VS2010, and correct slowdowns when developing
mixed-mode C++ applications. Installing Update 3 provides the ability to install the Microsoft
Visual Studio Tools for Git, a popular open source version control system. Full details are
available at http://support.microsoft.com/kb/2835600.

VS2012 Update 4
Similar to 2012.3, this update is focused in bug fixes and stability enhancements. As
this release coincides with the production release of VS2013, it provides some improved
compatibility for sharing projects/solutions between VS2012 and VS2013. Full details are
available at http://support.microsoft.com/kb/2872520.

At the time of this writing, there is no reason to avoid installing the latest
update available for VS2012 whether using an Express edition or one of the
premium editions. Several meaningful improvements have been made to
the product since its original release date that benefit all users. Microsoft
provides both a web-based installer and a complete standalone ISO at
http://go.microsoft.com/fwlink/?LinkId=301713.

Choosing a version of Visual Studio 2013
Visual Studio comes in several different versions, each with different capabilities and target
audiences. In all cases, the minimum supported operating system is Microsoft Windows
7 SP1 on the desktop or Windows Server 2008 R2 SP1 on the server. The two biggest
differences of the Visual Studio line-up are between the Express and non-Express (premium)
versions. Express editions are offered by Microsoft free of charge, and target a specific type of
application development:

ff Visual Studio Express 2013 for Web: As the name implies, this is appropriate for
those seeking to build web-based applications using technologies that include
HTML5, CSS, and JavaScript.

Preface

3

ff Visual Studio Express 2013 for Windows: Probably better titled "…for Windows Store
apps", this edition targets Windows Store apps exclusively. HTML5/JavaScript, C#,
C++, and Visual Basic are all acceptable choices for app development. An emulator
is bundled for testing apps across various devices.

ff Visual Studio Express 2013 for Windows Desktop: Traditional Windows desktop
applications can be created with this edition using C#, C++, or Visual Basic.

Multiple Express editions can be installed side by side, so you feel free to
install any/all of the preceding editions as needed for your work.

The non-Express editions run from Visual Studio Professional 2013 to Visual Studio Ultimate
2013. Ultimate has the entire available functionality, whereas Professional is limited to Peek
Definition. One advantage all non-Express editions share is that all possible development
types (web, apps, and desktop) are available in a single installation. The non-Express editions
are as follows:

ff Visual Studio Professional 2013: This supports development of all application types
and includes the Peek Definition feature.

ff Visual Studio Premium 2013: In addition to the preceding edition, notable features
include project management functionality, coded UI testing for XAML Windows Store
8.1 apps, and C++ Profile Guided Optimization.

ff Visual Studio Ultimate 2013: In addition to the two preceding editions, notable
features include CodeLens, IntelliTrace, Memory Dump Analyzer, and cloud-based
load testing.

ff Visual Studio Test Professional 2013: As its name implies, this edition primarily
focuses on testing.

Visual Studio 2013 will make certain options available to you based on the underlying version
of Windows that you are running. If you are running Windows 8.1, you will only be able to
create new Windows Store applications for Windows 8.1. You will be able to open existing
Windows 8 app solutions in VS2013, but not create new ones. You are able to create new
Windows 8 apps only with VS2012, but this should be considered a special case given the
arrival of Windows 8.1. Windows Store applications cannot be developed with any version of
Visual Studio on Windows 7, Windows Server (any version), or previous versions of Windows.

Preface

4

Picking a version
If you are an independent developer, you will most likely want to download the
Express edition(s) that apply to the type of program that you are developing.
Express editions can be installed side by side, so there is no need to limit
yourself to just one. Among the paid versions, choose which one meets the
requirements of your work. If you are not price-limited, picking the Ultimate
version is the simplest route. A full comparison of the various versions is
available at http://www.visualstudio.com/products/compare-
visual-studio-products-vs.

Visual Studio 2013 Update 1 has been released and primarily consists of stability
patches and bug fixes. It should be applied to your system regardless of the edition
of VS2013 that you have selected. More information about Update 1 is available at
http://support.microsoft.com/kb/2911573. As this book goes to print, a preview
of Update 2 has been announced. This release will be delivering new features as well bug
fixes. Follow this book's Twitter feed for more news as this becomes available (@VSDevTips)
or https://twitter.com/vsdevtips.

What this book covers
Chapter 1, Discovering Visual Studio 2013, starts us off by taking a tour of the new
features found in the editor itself and covers all VS2013's key refinements, from
logging in to project navigation.

Chapter 2, Getting Started with Windows Store Applications, examines the development
process for Windows Store apps for Windows 8.1. The full process of obtaining a developer
license to building, testing, and publishing an app is covered.

Chapter 3, Web Development – ASP.NET, HTML5, CSS, and JavaScript, covers several areas of
web development and how VS2013 can assist you. Here, the multi-browser preview is covered
as well as editor enhancements that can benefit HTML5, CSS, and JavaScript programmers.

Chapter 4, .NET Framework 4.5.1 Development, focuses on developing applications that
run on .NET. Desktop application development is still a key market and shows ways VS2013
can help.

Chapter 5, Debugging Your .NET Application, profiles the various ways to debug your
.NET-based code. Code isn't always available on your development environment and this
profile shows ways to deal with separate machines, whether they are tables or in production.

Chapter 6, Asynchrony in .NET, deals with the use of asynchronous code to provide more
responsive output and how it may benefit your applications.

Preface

5

Chapter 7, Unwrapping C++ Development, tackles the elder statesman of languages severed
by VS2013. Several recipes are provided, which will benefit your C++ usage; some of the
areas covered include unit testing, XAML, and DirectX.

Chapter 8, Working with Team Foundation Server 2013, describes how Team Foundation
Server can benefit your productivity. Whether you are an independent developer or part of
a large corporate effort, you'll see how modern source control can help.

Chapter 9, Languages, takes a moment to look at some useful languages that are new to
Visual Studio: TypeScript and Python. Python has a long and successful history, and now it is
a first-class citizen on Visual Studio. We'll take a look at how Python can help .NET developers.

Appendix, Visual Studio Medley, the assortment of preceding topics doesn't cover everything
that VS2013 can do. We'll cover some ways to extend Visual Studio's abilities and how to get
your app ready for consumption by end users.

What you need for this book
To follow the recipes in this book, you will need a copy of Visual Studio 2013. Some of the
features covered in the recipes may only be available in specific editions of Visual Studio.
Whenever possible, any specific version requirements will be noted.

If you wish to follow one of these recipes and you do not have the right edition, trial versions of
the premium versions can be downloaded from the Microsoft website enabling you to see if a
particular feature would benefit your project.

For any of the recipes that deal with Windows Store applications, you will need to be using
Windows 8.1 as your operating system.

Who this book is for
If you already know your way around previous versions of Visual Studio, if you are familiar
with Microsoft development, and if you're looking to quickly get up to speed with the latest
improvements in the 2013 incarnation of Microsoft's number one development tool, then this
book is for you.

If you are an experienced developer who has used Eclipse or Xcode, you should also be able
to find this book useful for exploring the differences between your tools and the latest that
Microsoft has to offer.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Preface

6

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Open the VS2012_Web solution and run the application."

A block of code is set as follows:

<appSettings>
 <add key="vs:enableBrowserLink" value="true"/>
</appSettings>

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

<system.webServer>

 <modules runAllManagedModulesForAllRequests="true" />

</system.webServer>

Any command-line input or output is written as follows:

Get-Command *intelli*

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "The Preview Selected Items
button is a toggle button."

Keyboard shortcuts such as Ctrl or F4 are formatted as shown.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

7

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams used in
this book. The color images will help you better understand the changes in the output. You
can download this file from https://www.packtpub.com/sites/default/files/
downloads/1966EN_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded to our website, or added to any list of existing errata, under the Errata
section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

www.allitebooks.com

http://www.allitebooks.org

1
Discovering Visual

Studio 2013

In this chapter, we will cover:

ff Synchronizing settings

ff Touring the VS2013 IDE

ff Project round-tripping

ff Managing the editor windows

ff Finding Visual Studio commands

ff Searching and navigating

ff Navigating in depth

Introduction
The arrival of Visual Studio 2013 (VS2013) marks the continuation of Microsoft's desire to
produce more frequent updates to the Visual Studio platform. If you are coming to VS2013
from VS2012, you will find a more familiar appearance. Users upgrading to VS2013 from
VS2010 will find greater differences and need to spend a bit more time learning the new
interface. This chapter will provide a walk-through of the major changes and explain how
VS2013's IDE will benefit you, regardless of the languages you are programming with.

VS2013 has focused a great deal on improving the usability and the power of the editor and
surrounding windows that you use every day in your work. Before exploring specific features
that apply only to certain areas, this chapter examines how the IDE can benefit your work
regardless of whether you write C++ console applications or use JavaScript to write Windows
Store apps.

Discovering Visual Studio 2013

10

The goal of this chapter is to provide you with an overview of the IDE-related features of
VS2013. The chapter will begin by describing the integration of Microsoft accounts with the
IDE and the value that this can provide. Next comes a review of the IDE, with a focus on the
new features found in VS2013. Realizing that in the real world, circumstances can require
supporting pre-VS2013 projects, we'll look at how Visual Studio utilizes project round-tripping
to enable working with these older project types. The chapter will then wrap up with a couple
of recipes on day-to-day editing and navigation tips designed to increase your productivity.
Like any set of complex tools, an initial investment in learning the nuances can provide
lasting dividends.

Synchronizing settings
One of the first things that you will notice upon opening VS2013 is the request to log in with
a Microsoft account. You can use any existing Microsoft account that you have, including
Outlook/Hotmail, OneDrive (formerly known as SkyDrive), and Xbox Live. If you have an MSDN
account, Microsoft recommends that you use it to log in to Visual Studio. If you don't, or if you
would prefer to use a new account, you can create one at https://login.live.com/.
Microsoft groups the settings by product type, so there is one set of roaming settings linked to
all editions of Visual Studio Professional, Premium, and Ultimate. A separate set of settings is
synched across the Express editions of Visual Studio. The result is that the settings saved for
VS Express 2013 for Windows will not sync when you log in to VS2013 Professional.

In this recipe, we will look at how this synchronization works and what it will coordinate on
your behalf.

Getting ready
To explore, launch your copy of Visual Studio 2013.

How to do it…
If you are not prompted to sign in at startup, you can always sign in from within Visual Studio.
The arrow in the following screenshot indicates where the Sign in option is located:

Chapter 1

11

Currently, VS2013 will sync options from the following categories:

ff Environment : This section consists of several subitems:

�� Fonts and Colors: This includes preferences for the text used throughout
the editor

�� Color theme of IDE: This provides built-in themes including light/dark/blue

�� Keyboard: This includes user-defined keyboard shortcuts and the selected
keyboard-mapping scheme

�� Startup: This indicates what should display when VS2013 opens

ff Text Editor: A multitude of settings including tabs versus spaces, word wrap, scroll
bar placement, and so on

ff Environment Aliases: (Not shown, applies to premium versions only) Commands
defined in the command window (Ctrl + Alt + A)

The following screenshot highlights the synchronized categories:

Discovering Visual Studio 2013

12

The Options dialog box in VS2013 has a couple of usability enhancements.
First, it has its own integrated search box (once Options is opened, the hotkey
is Ctrl + E) for specifically searching within the Options dialog box. Second,
the dialog is now resizable, making it much more useful for viewing settings
that have lengthy configuration options.

How it works…
Microsoft stores a copy of your settings on their servers. A constant Internet connection is not
required to use Visual Studio, but your settings will not synchronize until you are reconnected.
If a connection is not available, you cannot login until Internet access is restored, but Visual
Studio will still be usable. Taking it one step further, VS2013 remembers if you were logged
in the last time when you closed the program, so your last known settings will be available as
they are stored locally.

There's more…
All synchronization options are configurable by navigating to Options | Environment |
Synchronized Settings, and you may opt to have any combination of the preceding
categories synched. This configuration of settings is specific to each machine and does
not transfer. By default, VS2013 will attempt to synchronize all settings if you are logged
in with a Microsoft account.

Touring the VS2013 IDE
The user interface in VS2013's IDE has several differences from VS2012 and the previous
versions of Visual Studio. Let's take a look at what is available in this recipe.

Getting ready
All you will need for this recipe is a copy of VS2013 so that you can follow along with where
different options are located. The following screenshot provides an overview of what will
be covered:

Chapter 1

13

The legend for the highlighted items in the preceding screenshot is as follows:

ff The user's account entry/selection is indicated with 1

ff The notification center is indicated with 2

ff The Feedback menu is indicated with 3

ff The scrollbar thumbnail is indicated with 4

ff CodeLens (Ultimate only) is indicated with 5

ff The editor window controls are indicated with 6

How to do it…
Over the next few pages, we are going to take a firsthand look at the new areas of the
Visual Studio IDE. You may follow along with your own project or use the sample project
where indicated.

Discovering Visual Studio 2013

14

Feedback

This screenshot shows the choices available when the Feedback menu is accessed by
clicking on the chat balloon (far left icon):

Indicated by a chat balloon, the feedback icon provides an immediate way to send feedback
to Microsoft from within VS2013. When the chat balloon is clicked, a drop-down list appears,
allowing you to select from either Send a Smile (indicating a positive commentary) or Send a
Frown (indicating negative commentary). Functionally, there is no difference in the dialog box
that appears, but the choice of a smile or frown allows you to provide context for your remarks
so that there is no ambiguity in your message. Each option allows you to include an e-mail
address so Microsoft has a way to respond, and the frown option has an additional checkbox
to indicate whether or not your comments are describing a bug.

The menu also provides the ability to report a bug and access the MSDN forums within Visual
Studio. Both options provide a quick way to accomplish these tasks so that you make a report
or seek help and get back to coding with minimal distractions.

Notifications

Between the Feedback icon and the Quick Launch field is the flag icon representing
notifications:

In the preceding screenshot, you can see that one update is pending. The notification flag is
designed to provide an unobtrusive alert when updates to VS2013 and the installed packages
are available. Notifications listed in the sidebar are color-coded with yellow and red, which are
used to indicate medium and high priorities respectively. Examples of notifications that could
appear include notices about updates to Visual Studio, updates to installed extensions or
samples, or notices alerting that the trial period is ending. Notifications may be dismissed
en masse, and once they are dismissed they do not reappear.

Chapter 1

15

User account

If you have signed in to VS2013 with a Microsoft account (see the Synchronizing settings
recipe), this area displays the graphical avatar along with your account's display name.
The following screenshot shows the difference in the display that occurs when you log in:

It also provides a way to sign in if you have not done so, or if you wish to change the active
account being used. In the preceding screenshot, the left-hand side has the text Sign in,
and a grey icon indicates that the user has yet to login. On the right-hand side, you can see
the difference when the user has logged in, as the username has replaced the Sign in text,
and the gray icon has changed to reflect the user's avatar (which in this case is a green icon
overlaid with the white initials of the user's name).

Scroll bar thumbnail

The scroll bar has expanded its usefulness in VS2013. You can now customize it to show your
overall position in a source file, and provide a tool tip that lets you examine code elsewhere in
your current file without changing your current location. The new option is called map mode,
as opposed to the historical behavior that is called bar mode (which is the traditional scrollbar
appearance and behavior). All aspects of the map mode are customizable, including whether it
appears at all, its width (narrow, medium, or wide), and the ability to show the preview tool tip.

The following screenshot shows these features in action:

Discovering Visual Studio 2013

16

The preceding screenshot shows the scroll bar configured to be in map mode. The first arrow
(marked as 1) indicates that what is being displayed in the editor is located relative to the
overall source file. The second arrow (marked as 2) is pointing to the preview tool tip that
appears when your mouse cursor hovers over the scroll bar.

The scroll bar's pull down feature remains. When it's used to split the main window, it allows
for two independent viewing panes of the same file, and each can have their own independent
vertical scroll bar. In the split view mode, both vertical scroll bars share the same options
(width, bar mode versus map mode, and so on).

The following screenshot lists all of the options available for configuring the scroll bar's
functionality. It can be accessed directly by right-clicking on the vertical scroll bar and
selecting Scroll Bar Options…. Alternatively, it is accessible in VS2013's main Options dialog
box by navigating to Tools | Options, with the scroll bar settings listed under Text Editor | All
Languages | Scroll Bars. For additional customizations, you may set the language (C++, C#,
and so on) settings for the scroll bar in the Options dialog box if desired:

Peek Definition

Visual Studio has had the Go To Definition (F12) option for several versions now. When we
right-click on a method, or move the cursor to it, selecting the Go To Definition option will
automatically bring you directly to the file with the corresponding definition. While you can
easily navigate back and forth with (Ctrl + -) and (Ctrl + Shift + -), sometimes changing the
open file is not what you would like to do. Enter Peek Definition (Alt + F12). This allows you
to select a method and look it up, but instead of switching to the appropriate file, VS2013 will
create a mini-window within your current editor. The following screenshot shows the results of
using the Peek Definition option on the ConfigureAuth() method:

Chapter 1

17

Sequential peeks can be performed, each opening via a tabbed interface. Navigation between
these tabs (represented by circles) can be done via the mouse or keyboard: peek forward (Ctrl
+ Alt + =) and peek backward (Ctrl + Alt + -). The Peek Definition window uses the same scroll
bar behavior as that of the parent editing window, and this behavior can be changed in either
window by right-clicking on the scroll bar and selecting Scroll Bar Options....

CodeLens (Visual Studio Ultimate Only)

CodeLens, also known as code information indicators, is a feature specific to VS2013
Ultimate. Activated by default, CodeLens provides real-time meta-information about the
file you open in your main editor window:

As illustrated in the preceding screenshot, shown inline with your code will be light colored
term references, and the results of executed tests for each method/function as marked by
the passing term. The references term indicates the number of places a method is used,
and can also display a pop-up window on a mouse over that shows where it has been used.
Likewise, the passing term relays the unit test results inline. While working with projects
checked out from Team Foundation Server (TFS), CodeLens will also display the most recent
author of the method in question. Clicking on that name will pop up a details window listing
the change history.

www.allitebooks.com

http://www.allitebooks.org

Discovering Visual Studio 2013

18

If you would prefer to keep your hands on the keyboard, holding down Alt will bring up hotkeys
that can be used to select among the features discussed earlier. The following screenshot
illustrates these options, with Alt + 2 opening a pop-up dialog box listing references for the
selected method and Alt + 3 listing details about unit tests. The display options for CodeLens
are labelled as Code Information Indicators in the Options dialog box and can be found
under Text Editor | All Languages | Code Information Indicators:

Code Maps (Visual Studio Ultimate Only)

VS2013 Ultimate continues the use of a code visualization tool that Microsoft calls Code
Maps to provide a representation of the open project. The following screenshot shows Code
Maps in action:

Code Maps can be created and used in VS2013 Ultimate, but VS2013 Premium and VS2013
Professional can only consume them. However, users of Premium and Professional can
interact with the maps and add comments/flags as they are reviewed. Code Maps can be
activated in an editor window via Ctrl + `, which is Ctrl plus the backquote key (typically
found sharing a key with tilde). It can also be called by right-clicking in the editor window
on a particular method or class that you want to map.

Chapter 1

19

Once generated, the map may be manipulated in several ways, including zooming and the
ability to expand to show related elements. Individual elements may be double-clicked
so that they are brought up in the code editor for closer analysis. An element may also
be right-clicked when in the Code Map for further navigation options (Go To Definition,
Show Base Types, and so on) or to be commented on. This is particularly helpful for
large or complex code bases where a map can assist in comprehension by visualizing
the relationships and adding commentary external to the source code.

The Code Map indicates your position from the active editor window on the map with a green
arrow icon. In the preceding example's screenshot, the editor is in the Vehicle class, which
is pointed to on the Code Map by the green arrow.

See also
ff The Choosing a version of Visual Studio 2013 section in the Preface

ff For an exhaustive list of differences between VS2012 and VS2013, refer to the MSDN
article at http://msdn.microsoft.com/en-us/library/bb386063.aspx.

Project round-tripping
If you would like your .NET-based projects to be compatible with the previous versions of
Visual Studio, be sure to choose a version of the .NET Framework that they support. For
example, if you would like your project to support VS2010, be sure to target .NET 4.0, as
.NET 4.5 is not compatible. Round-tripping is useful for situations where not all members of
a development team have VS2013, as well as for situations when you wish to tread lightly on
older projects.

As a friendly reminder, be sure that both versions of Visual Studio are
up-to-date while sharing projects between VS2012 and VS2013. As
noted in the While you were gone section of the Preface, this means
Update 4 should be applied to VS2012.

In this recipe, we will discuss how projects can be shared across Visual Studio versions and a
few details about how projects are handled.

Getting ready
The default .NET Framework in VS2013 is 4.5, so it is very easy to create a project that cannot
open in VS2010. If you are not using any features specific to 4.5+, it is merely a matter of
changing the project's properties to target 4.0. Keep in mind that some features will not be
supported outright, but will be gracefully ignored.

Discovering Visual Studio 2013

20

Round-tripping is useful for a number of reasons. While supporting legacy projects, it is
usually preferred to alter the existing code as little as possible. The support for older projects
means that you can use VS2013 to edit them without keeping a copy of VS2012 installed. It
also provides a way for users of VS2013 to work with fellow developers who are yet to upgrade
from VS2012.

How to do it…
The best practice is to test upgrading on a backup of your legacy project. This way, you have
an easy way to return to the status quo in the event of a failure or complication. Most projects
will simply open without any complaint, especially those from VS2012 and, to a lesser extent,
VS2010. If Visual Studio doesn't object, it is simply a manner of opening your old project in
VS2013 and getting to work. Upon making edits and checking your code (if necessary), fellow
developers running VS2010/VS2012 will have no difficulty making their own contributions.

How it works…
Visual Studio uses solution files to store details about the projects and solutions you create.
Ending with the .sln extension, these files help Visual Studio manage your project. For
example, a solution created in VS2012 has the following header at the beginning of its
SLN file:

Microsoft Visual Studio Solution File, Format Version 12.00
Visual Studio 2012

By comparison, a solution created in VS2013 has this header as follows:

Microsoft Visual Studio Solution File, Format Version 12.00
Visual Studio 2013
VisualStudioVersion = 12.0.20623.1 VSUPREVIEW
MinimumVisualStudioVersion = 10.0.40219.1

The initial blank line is intentional for both examples.

The third line (prefaced with #) indicates the "human-readable" version of Visual Studio
used to create the project. VS2013 projects add two additional lines to this header as
shown in the preceding code snippet. The fourth line shows VisualStudioVersion,
which specifies the full build version of Visual Studio used, while the fifth line lists the value
MinimumVisualStudioVersion, which indicates the minimum version of Visual Studio
that can be used to open the project.

Chapter 1

21

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

There's more…
Not every project type supports round-tripping, as some require specific changes to be made
in order to run under VS2013. Some notable project types and their exceptions are as follows.

Windows Store applications
Windows Store apps have some special requirements. Apps targeting Windows 8.1 require
VS2013 and the underlying OS to be Windows 8.1. VS2013 can work with existing Windows
8 store apps if they were created by VS2012. As previously noted, Windows 8.1 will quickly
replace Windows 8, so all new apps should target that platform.

The Model-View-Controller (MVC) framework
Visual Studio 2013 brings support for MVC 5 in addition to supporting MVC 4, while Visual
Studio 2012 only supports MVC 3 and MVC 4. Visual Studio 2010 SP1 only supports MVC
2 and MVC 3. These limitations dictate whether or not your project will upgrade. However,
there are tools and guidance on how to migrate your application to a newer version of MVC.
Upgrading an MVC 2-based application to MVC 3 can be done with the standalone upgrade
from CodePlex at http://aspnet.codeplex.com/releases/view/59008. Once this
is completed, Microsoft provides guidance on upgrading the application from MVC 3 to MVC
4 at http://www.asp.net/whitepapers/mvc4-release-notes#_Toc303253806.
Unfortunately, the upgrade from MVC 3 to MVC 4 is a manual process.

MSI setup (.vdproj)
This project type refers to Visual Studio Installer projects, which are not supported in VS2013.

Discovering Visual Studio 2013

22

Upgrading an existing project
Depending on the nature of the solution or project you are working on, Visual Studio may
require you to convert your project. You will be prompted to make a conversion decision,
as shown in the following screenshot:

If you decide not to upgrade the project, you may do so later via
Project | Upgrade Solution. As you may expect, the best practice is
to perform a trial conversion on a copy of your solution in the event
of something going wrong.

Creating a new project
Starting a new project in VS2013 remains unchanged from previous versions, but some
of the available choices have changed. If you have not previously updated VS2012, one of
the changes to notice is that VS2013 offers .NET Framework 4.5.1 as a framework that can
be targeted. Some other new choices include templates to create apps for SharePoint and
Office, as well as Python-based projects. See the Project round-tripping recipe for important
considerations while creating projects that are destined to be edited in different editions of
Visual Studio.

Chapter 1

23

Managing the editor windows
One of the advantages of using a graphical IDE is the ability to have multiple windows
open, and learning how to customize their size and layout in Visual Studio is important for
maximizing their productivity. Given the multitude of windows (editors, debugger output, and
so on) Visual Studio has open, it can be helpful to learn how to place them where you want so
that you can focus on your work without being slowed down by clutter.

Tab pinning allows you to mark individual windows so they stay open while you navigate through
the editor. Previewing documents is a useful way to navigate across several files without
cluttering your tabs with several open documents. This recipe will explore both options.

Getting ready
Open either the VS2010_Web sample solution or use a solution of your choice. Ensure that
the Solution Explorer window is open.

How to do it...
The following steps will show how the position of open windows can be positioned to your
liking. Let's get started:

1.	 In the Solution Explorer window, locate the Default.aspx.cs file in the
VS2010_Web project and double-click on it. The source file will open in the main
window area as in the previous versions of Visual Studio. However, you will now
notice that the document tab features a pin icon next to the tab name, as you
can see in the following screenshot. You'll use that pin in just a few steps:

2.	 Using the Solution Explorer window, open both the About.aspx.cs and
Global.asax.cs files by double-clicking on them. You should now have three
documents open with their tabs showing in the tab well (this refers to the row of
tabs for each open document in the editor), as shown in the following screenshot:

Discovering Visual Studio 2013

24

3.	 Click on the Default.aspx.cs tab to select it and then click on the pin. The pin will
change to point downwards indicating that the document is now pinned. Visual Studio
2013 will always keep pinned tabs visible in the tab well. These pinned tabs will
remain visible even when Visual Studio needs to start hiding unpinned tabs to save
screen display space. The pinned document tab will be moved to the left next to any
other pinned documents you may have open, as shown in the following screenshot:

4.	 Right-click on the Global.asax.cs document tab and click on the Close
All But This option to close all open documents except for the one currently
selected. This will include closing any pinned documents, which are shown
in the following screenshot:

There is a related option: Close All But Pinned. This is
useful when you would like to only keep pinned files open.

5.	 Reopen both the Default.aspx.cs and About.aspx.cs files that you closed by
double-clicking on them in Solution Explorer.

Chapter 1

25

6.	 One of the usability problems with document tabs in Visual Studio 2010 was that you
could accidentally float documents by double-clicking on a document tab.

7.	 In Visual Studio 2013, this behavior has changed. Double-click on a document tab of
your choice and notice how Visual Studio sets the focus to this tab instead of floating
it. (This is the same behavior as single-clicking on a document tab.)

8.	 Press Ctrl + Shift + F to open the Find in Files dialog box. Enter the class in the Find
what field and ensure Look in is set to Solution, then click on the Find All button.

9.	 In the Find Results 1 window, select a result from the ChangePassword.aspx file.

10.	 The file will open in the preview tab, located on the right-hand side of the tab well.

11.	 The preview tab shows the contents of the currently selected document if it is
not already open. In the Find Results 1 window, select a result from the Login.
aspx file. It will now be opened automatically in the preview tab, and the
ChangePassword.aspx document will be closed.

12.	 Assume you now want to keep the Login.aspx file open for a while. Either click on
the Keep Open icon on the tab or change the contents of the file. Any document in
the preview tab that is changed is automatically promoted to a normal tab.

Visual Studio will move the document from the preview tab area into the main tab area.
The color of the tab will also be changed from purple to blue indicating that the tab is
now a normal document tab.

How it works...
Pinning documents works much like pinning does in any other part of Visual Studio, and is
very handy for keeping the documents that you are working on regularly within easy reach,
especially when you have many documents open at once.

The preview document tab is a great way to prevent tab clutter and becomes very useful while
debugging deeply nested code. You may recall that Go To Definition as one function that uses
the preview document tab. For example, multiple source files may be opened as you trace a
program's operation across methods and classes. The preview document tab helps you cycle
quickly through these files while preventing the tab well from filling up with documents that
aren't needed for more than a few moments.

There's more...
As always, there are ways to customize the behavior of the document tabs in Visual Studio.

Discovering Visual Studio 2013

26

Single-click preview in Solution Explorer
The preview tab isn't restricted to just the Find Results window. It can also be used from
within the Solution Explorer. If you activate the Preview Selected Items button in the
Solution Explorer toolbar, then every item you click on will automatically be opened in the
preview tab. The Preview Selected Items button is a toggle button (shown in the following
screenshot). If you want to disable the behavior, you only need to click on the button to
deselect it and the preview behavior will be turned off:

Customizing tab and window behavior
Navigating to Tools | Options in Visual Studio will show the following dialog box:

There are a number of options here that let you control how the tabs behave. With Visual
Studio 2010 Productivity Power Tools, many developers found different ways to configure their
tab well to get the experience they wanted, and while not everything from the power tools
came across to the final Visual Studio 2012 product, a number of features most certainly did.
Feel free to experiment with the Tabs and Windows settings to get Visual Studio working the
way you like it most.

Chapter 1

27

Finding Visual Studio commands
The goal of the Quick Launch box is to provide a keyboard-friendly way of accessing the
extended features of Visual Studio without needing to clutter the central interface. Keyboard
shortcuts are a great way to speed up tasks, but it can be difficult to learn and remember
while first starting out, or while exploring a new area of Visual Studio. The Quick Launch
option addresses this by providing a way to locate different areas of the program, learn
keyboard shortcuts, and provide a keyboard-centric way to access commands.

Getting ready
Simply start Visual Studio 2013.

How to do it…
To try it out, start by pressing Ctrl + Q, then begin typing the topic/subject that you are looking
for, as shown in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Discovering Visual Studio 2013

28

What is important to notice is that Quick Launch can do even more than what may be obvious
at first glance. In this example, notice that open was the term entered as a search term.
Quick Launch produces a list of results to this query, grouped by the following categories:
Menus, Options, and NuGet Packages. As you can see, this list of results is more than just
commands, it also includes various areas in the Options dialog as well as NuGet Packages.

You can immediately navigate through the search results with the arrow keys on the keyboard
if the desired result is immediately available. You can access a command directly from this
list, and where available, the accompanying keyboard hotkey for a command will be listed. In
this way, you can learn new shortcuts while doing your daily work.

In the next example, jquery was entered into Quick Launch, producing a list of results that
includes context-specific File menu commands (Save and Save As), the option to switch to an
open editor window with jquery in the file name (jquery.ui.autocomplete.min.css),
or to search NuGet for packages using jquery as the search term.

The following screenshot is showing the availability of these various options:

There's more…
The Quick Launch option can go further. Let's return to the results of the open term. Note
that at the bottom, the Quick Launch option indicates that Ctrl + Q can index through
additional views. Additional presses of Ctrl + Q will toggle the list of results to show only
results from an individual category, in this case Menus, Options, or NuGet Packages. A
final press of Ctrl + Q will return to displaying all of the available results. The ability to toggle
through categories is particularly useful when your Quick Launch list is lengthy and you would
like to ignore unnecessary categories that are cluttering the list of results. Pressing Esc once
will clear the search results in Quick Launch, and pressing Esc again will return you to the
open file in your editor.

Chapter 1

29

Using the Command Window / Command Aliases

The Command Window (accessible via Ctrl +Alt +A and available on premium
editions of VS2013) allows you to keep your hands on the keyboard while
quickly accessing commands via an integrated command prompt window. As
Microsoft ships Visual Studio preloaded with command definitions, entering
an alias will display all of the currently defined commands, and the alias
cmd action (where cmd is the desired name of your alias and action defines
what should happen) will allow you to define your own. You can see from
the following screenshot that typing bl is much faster than typing Debug.
Breakpoints. Note that by default, command aliases are stored as part of
your synchronized profile:

Searching and navigating
Visual Studio provides many ways to make maneuvering through your code easier and
more efficient.

Getting ready
To best see this in action, open a project that has multiple files available for editing. This can
be the sample project or one of your own choice. Once it is open, simply open a couple of
source files.

Discovering Visual Studio 2013

30

How to do it…
Pressing Ctrl + Tab provides easy access to a couple of different ways to navigate around
Visual Studio. If Ctrl + Tab is pressed and immediately released, Visual Studio will alternate
between the two most recent files that you have opened in the editor window. This provides
a quick way to move back and forth. If Ctrl + Tab is pressed and Tab is released, a pop-up
window will appear. Continue to hold down Ctrl when it appears, and then arrow keys can be
used to maneuver around the list of all active files and windows. To make a selection, either
release Ctrl while highlighting the desired target, or while holding Ctrl, press Enter. This is
shown in the following example's screenshot, where active files currently open in Visual Studio
are shown in the right-hand side column, while open tool windows are shown in the left-hand
side column:

There's more…
If you would rather take a hybrid (mouse + keyboard) approach, the window Ctrl + Tab
produces also supports selection by mouse. Start in the same manner as done earlier in this
recipe, holding down Ctrl + Tab to bring up the window. Release Tab while holding down the
Ctrl key and then use your mouse to left-click directly on the file you would like to switch to.

Quickly searching your code
Searching a project file to find specific strings of text is a common daily task performed by
developers. Visual Studio tries to make this easy by offering specific tools to find and replace
text at various levels of your code base. Several options are available under Edit | Find and
Replace, including Quick Find, Quick Replace, Find In Files, and Replace In Files.

Chapter 1

31

The Incremental Search option (Ctrl + I) is a quick way to search within the
file you are currently editing. When activated, a Find dialog box appears in
your active editor window, allowing you to enter search terms.

The Quick Find (Ctrl + F) and Quick Replace (Ctrl + H) options share a common dialog
box. Both provide the ability to search the current code block, the current project, all open
documents, or the entire solution. If your search options include the file that's currently open,
the vertical scroll bar will highlight any matches found. This provides quick visual feedback
on the frequency of a search item:

Another feature that Quick Find and Quick Replace share is the ability to set the following
search options: match case, match whole word, and whether or not regular expressions can
be used. The use of regular expressions allows for more complex queries to be used, allowing
users to extract more detailed information from their searches.

The Find In Files (Ctrl + Shift + F) and Replace In Files (Ctrl + Shift + H) options provide a
more advanced method of conducting searches across a code base. They expand on the
functionality offered by the quick tools by allowing you to specify certain file types that should
be searched (for example, all HTML and JavaScript files) and provide the ability to display the
results of an operation in a separate window.

In the preceding example's screenshot, a simple regular expression was used to search the
entire solution using the specified file mask. The results were outputted to Find Results 1,
which is a live window. This means that you can click on a line with a particular search result
and you will go directly to that file where the match was made.

Discovering Visual Studio 2013

32

Navigating in depth
The Solution Explorer window that we were accustomed to in Visual Studio 2010 was good
for being able to understand how files were organized into the various projects of a solution,
but it didn't do much more than that. With Visual Studio 2013, Microsoft has revisited
Solution Explorer and given it an overhaul. It still contains all of the functionalities you know
from the old Solution Explorer, and it adds to that a range of new features intended to make
navigating and searching within your solution a more powerful yet simpler experience.

Getting ready
Open the same VS2010_Web solution that we have been using for the other recipes in this
chapter or choose a solution of your own.

How to do it...
1.	 We'll begin by navigating through our solution. Locate the Default.aspx page in

the VS2010_Web project and click on the arrow next to it so that its contents are
displayed. As you would expect, there is a code-behind file and a designer file:

2.	 Look at the Default.aspx.cs file. You can see that there is a small arrow next to it
just as there was for the Default.aspx page. Click on the arrow:

3.	 Visual Studio 2013 expands the file to show its contents, and in the case of a
code-behind file, these contents are the class definitions it contains. Classes have
methods and properties in them, so click on the arrow next to the _Default class
to see the methods inside it. Since the VS2010_Web project is just a shell, there is
only an empty Page_Load() method, as shown in the following screenshot:

Chapter 1

33

4.	 Now select the IService1.cs file from the VS2010_Web.Services project and
expand it to see its contents. You will see that there is both an interface definition
in this file (IService1) and a class definition (CompositeType), as shown in the
following screenshot:

5.	 Right-click on the IService1 interface and click on the Derived Types option to see
what classes implement this interface:

6.	 The Solution Explorer window will change views to show you the types that either
implement this interface or inherit from it, as shown in the following screenshot. Click
on the back button (showing the blue background) to return to the standard Solution
Explorer view:

Discovering Visual Studio 2013

34

7.	 Right-click on the IService1 interface and choose the Is Used By option to see
where the interface is currently being used. As with the Derived Types option, you will
see Solution Explorer change its context to only show the interface and where that
interface is used in the solution, including line and column numbers:

8.	 Return to the regular Solution Explorer view by clicking on the home button, shown in
the following screenshot:

9.	 At this point, you know how to navigate using Solution Explorer, and you have
already used the existing Navigate To feature in the Finding Visual Studio commands
recipe while opening a file. With the enhancements to Solution Explorer, you can
locate files in much the same way as with the Navigate To command, albeit with a
slightly different user experience. Click on the Search Solution Explorer textbox
at the top of the Solution Explorer window, or use the default shortcut key of
Ctrl + ; (Ctrl + semicolon).

10.	 Enter serv in the textbox and wait a moment for the search results to display.
The results should look similar to the following screenshot. You can not only see
the filenames that match the search term but also any matching references,
classes, and methods:

Chapter 1

35

How it works...
The Navigate To feature from Visual Studio 2010 was a fantastic addition to Visual Studio.
It had problems in large projects with many search matches as the location of a match was
embedded in the result itself, making it hard to locate the specific match you were after.
The new Solution Explorer search tool provides similar results to the Navigate To feature,
but having the location of a match represented in the tree view makes it very easy to quickly
identify the specific match you are interested in.

There's more...
It's worth mentioning a few other things about searching within your solution.

Discovering Visual Studio 2013

36

Navigation behavior
Assuming you have the Preview Tab enabled for Solution Explorer, as you navigate using
Solution Explorer to various classes and methods, you may have noticed that the document
preview tab was updating and showing exactly where the selected class, method, or property
was declared. This makes it easy to see what the code is doing without the need to specifically
open the file or scroll through a source file to see what code is actually inside a method, class,
or property.

CSS, HTML, and JavaScript files
Even though it's possible to extract the structure from CSS, HTML, and JavaScript files,
Solution Explorer doesn't show the internal structure of these files. You can navigate
to the source file, but not to any of its contents.

2
Getting Started

with Windows Store
Applications

In this chapter, we will cover:

ff Getting a Windows Store app developer license
ff Creating a Windows Store app
ff Adding a Windows Store item template to your app
ff Using the Windows Store app simulator
ff Defining capabilities and contracts
ff Analyzing your App's performance
ff Packaging your Windows Store app
ff Validating your Windows Store app

Introduction
The appearance of the Windows Runtime (WinRT) brought forth a lot of attention when it was
introduced as part of the shift in focus to Windows 8. Since the general availability of Windows
8-based systems and the OS itself, there is an opportunity to see first hand what the runtime
meant. Essentially, Microsoft felt the need to advance the state of Windows application
development by providing a new platform that recognized the rise of non-PC-based devices,
touch interfaces, and to combine that with a method to obtain safe and secure Windows
applications. WinRT abstracts away the underlying hardware, minimizes security risks, and
prevents developers from making insecure or poorly performing calls via the traditional
Windows API.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Windows Store Applications

38

What WinRT offers developers familiar with Windows-based tools is the ability to easily create
secure apps that run on Windows 8-based systems. Your users benefit from a straightforward
shopping, purchasing, and installation process. As a developer, you will benefit from easier
access to new customers and the ability to focus on building and maintaining great apps,
not payment processing. Windows Store apps can be written using several different
languages, including C#/VB, JavaScript, and C++.

Don't confuse Windows Runtime with the Windows-based operating system
named Windows RT that runs on ARM-powered Windows 8 devices. While
they are related in the sense that Windows Store apps can be built to be
consumed on WinRT devices, they are separate concepts. Windows Store
apps run on any Windows 8-based device. Of course this is subject to
minimum version requirements, for example, apps designed for Windows
8.1 would not work on Windows 8.0.

Windows 8 marks a shift in the historical presentation of Windows-based programs that used
a desktop metaphor to a tile-based interface that features bold colors and sans-serif fonts.
Programs targeting this new style are typically referred to as Windows Store apps, or apps
in short, and programs designed for the historical interface are called desktop applications.
Traditional Windows desktop application development is no way impeded by the arrival of
Windows Store apps; as a developer, store apps merely provide you with another way to serve
the needs of your users. In fact, with some types of programs such as Visual Studio, it makes
more sense to continue using the desktop style.

Whether they run on Windows 8 or Windows RT, modern Windows apps are designed to
be full screen, highly responsive, immersive, touch- and cloud-enabled applications. These
apps can expect to be deployed to a wide variety of different form factors, including laptops,
desktops, tablets, and anything else that hardware manufacturers may create in the future.
They are a radical departure from the way we have thought of applications in the past and will
require fresh thinking from developers and designers alike. Windows Store apps should follow
modern design principles of minimalism, focusing the users' attention on the information they
are interested in, and removing the distractions and visual noise that has traditionally been
associated with Windows applications.

What's in a name? Microsoft originally intended to call applications
designed for the Windows Store "Metro apps". For legal reasons Metro
has been discontinued with no solid replacement available. Generally
speaking Windows Store apps, Windows 8, and Windows RT are all terms
used to refer to apps that are running on the Windows Runtime. Programs
historically called Windows applications still exist and are supported on
Windows 8/8.1—just not Windows RT.

Chapter 2

39

With Windows Store apps, Microsoft is also ensuring that touch-enabled devices work just
as well as the standard mouse- and keyboard-based desktops and laptops. You can see this
for yourself when running Windows 8 on a traditional desktop PC as a mouse can be used to
manipulate touch-based controls. Likewise, installing the desktop-based Mozilla Firefox on
your touch-enabled device such as a Surface Pro will work equally well.

As discussed earlier, the user experience is greatly improved for Windows Store apps.
A user will no longer have to install separate utilities nor will administrator access be
required in order to use an app. Downloading programs from the Internet will no longer involve
uncertainty regarding their safety or security. The threat of malware or a messy installation
process is removed. Instead, people will purchase Windows Store apps from the Windows
Store, which can then be downloaded and run on whatever device they happen to be using at
the time. Since Microsoft verifies all apps listed in the Windows Store for safety and to ensure
they meet standard app guidelines, the users' only concern will be whether or not they like the
app and not if it will ruin their Windows installation.

It's one thing to have an app that you can download onto any device you're using but genuine
portability requires that the data be portable as well—especially when portable devices
typically have limited storage abilities. Replicating data so that it is available where and when
you want it can also be a chore. Microsoft has solved this problem by providing all Windows 8
users with SkyDrive storage space that Windows Store apps can use, making data available
anywhere, anytime. Windows 8.1 brings even tighter integration between the OS and SkyDrive,
giving users new ways to make their data accessible across their Windows-based devices
while minimizing the local storage requirements on each device. SkyDrive clients are available
for all Microsoft-based devices, including Windows, Windows Phone, and Xbox. Apple iOS-
based devices as well as those running Android are also supported via native apps for their
respective platforms. Finally, nearly all popular web browsers (Internet Explorer, Google
Chrome, Apple Safari, and Mozilla Firefox) support access to SkyDrive over the Web. What
does this mean to you as a developer? Simply that your users have an ever-growing amount
of easily accessible data available for your apps to manipulate.

For legal reasons Microsoft will soon be renaming SkyDrive to OneDrive. Since
the official switch has not occurred as of publication we will continue to use
the term SkyDrive in this book. Expect this name change to occur at some
point in 2014 but underlying functionality should remain the same.

Getting Started with Windows Store Applications

40

Now at this point, since you're a developer, what you are most likely interested in is not what's
different with the user interface but what has been changed under the hood. So, we'll begin
by getting an app developer license and then explore the creation of a Windows Store app
from start (picking an app type) to finish (getting your app published).

Getting a Windows Store app developer
license

In order for your local Windows apps to be run on your local developer machine, you will need
a developer license. Note that this license is free and different from a developer account. The
license allows you to develop and test Windows Store apps on your local developer machine.
The account is used in conjunction with distributing your app through the Windows Store.
There is no cost to obtain a license; it is merely used by Microsoft to track who is developing
Windows Store apps. Conversely, a fee is charged by Microsoft to obtain a developer account.

A developer license is required because there would be security implications if a
malicious Store app was distributed independent of Microsoft's ability to verify its safety.
Consequently, each machine or device that you intend to test your app on must have its
own developer license.

In this recipe, we will cover obtaining the developer license needed so that you can get started
with writing Windows apps. The Submitting apps to the Windows Store recipe in the Appendix,
Visual Studio Medley, will address obtaining a developer account.

Getting ready
To develop Windows Store apps for Windows 8.1, you will need Windows 8.1 and either Visual
Studio Express 2013 for Windows or Visual Studio 2013 Professional, Premium, or Ultimate.
(Any of those projects can open existing Windows Store apps for Windows 8.0, but new apps
for Windows 8.0 cannot be created).

How to do it…
Obtaining a license is easy to do with either version, and there is only a slight variation in
Visual Studio's menus between versions. A screen similar to the following screenshot will
appear whenever a developer license must be acquired or renewed:

Chapter 2

41

On the non-Express editions of Visual Studio 2013, look for the Project menu, then navigate
to Store | Acquire Developer License.... This will cause Visual Studio to contact Microsoft's
servers and retrieve a developer license. If you already have a license, it will renew it with a
reset expiration date (30 or 90 days, depending on the account type). Note that in some cases
the Project menu will not be visible; in this case, start or open a Windows App store project
for it to appear.

Getting Started with Windows Store Applications

42

For Visual Studio Express 2013, click on STORE | Acquire Developer License...:

How it works…
There is no limit to the number of licenses that you may obtain, thus making it easy to acquire
one for each development environment that you are working with. Licenses associated with
a Windows Store developer account will be valid for 90 days. Those associated with a regular
Microsoft account (Outlook, SkyDrive, and so on) are valid for 30 days.

There's more…
You may also obtain or renew a developer license at the Windows PowerShell command line.
To do this, open a PowerShell terminal.

Opening a PowerShell terminal in Windows 8.1 can be done from your Start screen.
Just start typing PowerShell and it will appear as an option. Click on it to run with
normal permissions. To run with Administrator permissions, right-click on the icon and
choose Run as administrator as shown in the following screenshot:

Chapter 2

43

Type Get-WindowsDeveloperLicense at the command prompt to show whether or not
a license is installed. PowerShell will display the expiration date/timestamp of the current
license and whether it is valid or not. If, however, a license is not installed, PowerShell will
throw an error stating, There is no developer license on this computer. This
command does not require elevated permissions. The next two commands do, and to try
them, you should open a PowerShell with Administrator permissions.

Despite its name, Show-WindowsDeveloperLicenseRegistration is actually used
to acquire or renew a developer license. When executed, it will open a GUI-based dialog
box similar to what is shown in Visual Studio and a prompt for your Microsoft account.
Depending on whether you currently have a developer license, one will be acquired or
renewed as appropriate.

In the event that you would like to remove your current developer license, this may be done
with Unregister-WindowsDeveloperLicense. PowerShell will prompt for a confirmation
before removing the license, as once it is removed, Windows Store apps under development
will no longer be executable until a new license is obtained.

Developers without constant Internet access or who want a license that
doesn't expire have the ability to obtain a nonexpiring license. This approach
requires Windows 8.1 Enterprise or Windows 8.1 Pro and that this machine be
connected to a Windows domain. For more information on this process, visit
http://msdn.microsoft.com/en-us/library/windows/apps/
hh974578.aspx#NoInternet.

Getting Started with Windows Store Applications

44

Choosing the right development technology
Developing apps for WinRT offers several choices when it comes to picking a programming
language. The .NET-based languages C# and Visual Basic, modern C++, as well as HTML5
with JavaScript are all first-class options for app development. Making the best decision
involves reviewing the skill set and preferences of you and your team in conjunction with
the project you are undertaking.

If you are already a .NET veteran, continue to build on that investment by using C# or VB.
C# is also a good choice for developers with Java programming experience. Another benefit
of the .NET approach is the availability of Portable Class Libraries, as they promote code
re-use across multiple platforms. These will be discussed in Chapter 4, .NET Framework
4.5.1 Development.

If you have a C++ background or wish to utilize DirectX, C++ is the best choice. Web
developers, especially those with little knowledge of C++ or .NET, will love the fact that
they can build desktop apps with JavaScript and HTML5. These developers will find that
the Windows Runtime APIs are exposed via the Microsoft-provided WinJS libraries.

Creating a Windows Store app
We'll begin by creating a basic Windows Store app that uses JavaScript/HTML. For this
example, we will use the Hub app template.

Getting ready
Ensure that you are running Windows 8.1 in order to have the ability to create a new
Windows Store app. You may use Visual Studio Express 2013 for Windows or one of
the premium versions of VS2013 (Professional/Premium/Ultimate).

How to do it…
There are several types of app templates available, but we will start with the Hub style
as follows:

1.	 From Visual Studio's File menu, navigate to New | Project....

2.	 A dialog of available project templates will appear. From the Installed templates
category, navigate to the JavaScript | Windows Store | Hub App template. A preview
of the app layout will appear in the details pane as shown in the following screenshot:

Chapter 2

45

3.	 Leave the name as the default and click on OK to create the app.

4.	 The project will appear in Solution Explorer and the default.js file will be open in
the document area.

5.	 Press F5 to run the application in the debug mode. Visual Studio will package and
launch the app for you and you should see the app appear displaying multiple items
around a hub-based pattern. Explore manipulating the app, and how it can process
inputs via touch or the mouse.

6.	 When you have finished exploring the app Shift + F5 is the direct command to stop
debugging, although you may find the best approach is to use Alt + Tab to switch back
to Visual Studio and stop debugging from there.

How it works…
The packaged project templates in Visual Studio make it easy to quickly start working on new
apps with the language that you prefer, while at the same time provide well-commented code.
This makes customization easier and provides insight into what Microsoft considers important
when writing Windows Store apps.

Regardless of the language used, the process described previously can be followed to create
a new project.

Getting Started with Windows Store Applications

46

There's more…
There's a lot to consider when starting your first Windows Store apps. Fortunately, Microsoft
has made it fairly easy to choose the right starting point for the type of app you want to build.
If you are making your first app, it makes sense before you begin to explore the various project
types available to see which layout best fits your design.

Choosing the right project type
Each of the Windows Store project types, regardless of language, is described briefly
here so that you can determine which template would make a good starting point for
your development efforts.

Blank App
The Blank App template is exactly what you would expect. It is an empty shell ready for you to
start coding with.

Grid App
The Grid App template is designed to show a summarized view of a data source in a grid
layout. The project template includes a sample data source so that you can quickly get a feel
of how the app works. Running the app without changes shows the grid summary page as
shown in the following screenshot:

Chapter 2

47

Note how the data is grouped into collections and how the individual items in each collection
are shown with a placeholder for an image thumbnail and a few lines of text to describe the
item. Selecting one of the items will navigate to the detail view of that item as shown in the
following screenshot:

The template also includes a collection level summary page, shown when the back
button next to the collection name is clicked or touched. This view is shown in the
following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Windows Store Applications

48

Split App
The Split App template is an alternative to the Grid App template, though it is still based
around the concept of consuming data grouped into collections.

Just like the Grid App template, the Split App template provides a ready to run app so that you
can see how it functions.

Launching the app shows a home page very similar to the Grid App template, but it has a very
different group level page where the items in the collection are displayed in a column on the
left side of the screen, and the details of the selected item are shown on the right, as shown
in the following screenshot:

Fixed Layout App
The Fixed Layout App template is only available when using JavaScript and provides a basic
app featuring a minimal splash screen and a skeleton HTML file, with all the necessary
WinJS references ready for you to start building your app. Note that this layout type has
been removed from VS2013 and is no longer available for new apps, so this will only be
encountered when working with legacy Windows 8.0 apps.

Navigation App
The Navigation App template is a minimalist template that initially includes only one page for
data. Additional pages can be added and be laid out as you see fit; Grid and Split layouts are
also available. This template includes navigator.js, which provides the navigation model
used by the app.

Chapter 2

49

Hub App
As you noticed in the recipe earlier in the chapter, the Hub App template initially provides
three pages and uses horizontal scrolling to navigate. As shown in the following screenshot,
an angle bracket is used on the header for Section 2 to indicate that more information than
can be displayed is available. Clicking on the Section 2 header will drill down to show
more items.

Class Library
The Class Library project creates a managed assembly for your app logic that is automatically
set to use the .NET Framework 4.5 Windows Store profile.

Portable Class Library
Similar to a Class Library, targeting a Portable Class Library allows your code to be contained
in a DLL (Dynamic link library) file, but with the added benefit that the resulting code can
be used unchanged across multiple platforms such as Windows 7/8, Silverlight, Windows
Phone, and Xbox 360. The functions available for each platform vary, but PCLs provide
the opportunity to easily share common logic and maximize re-use. For more information,
see the Sharing class libraries across runtimes recipe in Chapter 4, .NET Framework
4.5.1 Development.

Getting Started with Windows Store Applications

50

Xamarin offers products to add support to VS2013 for the iOS and
Android platforms. This includes support for writing PCLs. For more
information on the integration, visit http://blog.xamarin.com/
pcl-projects-and-vs2013/, and for information on PCLs, visit
http://docs.xamarin.com/guides/cross-platform/
application_fundamentals/pcl/.

Unit Test Library
The Unit Test Library project template creates a Unit Test Framework or a test assembly
based on CppUnit for unit testing your code.

Coded UI Testing
The Coded UI Testing project template allows you to test your app via the GUI rather than
underneath the hood as in the Unit Test Library.

DLL (Windows Store apps)
The DLL (Windows Store apps) template is a C++ project template for creating a DLL in
which you can write your app logic. It contains all the include files you would expect for
building a DLL for a Windows Store app as well as a skeleton DllMain function ready for
you to implement. The resulting DLL can be used by an app directly or by a Windows
Runtime Component.

Static Library (Windows Store apps)
The Static Library template is a simple skeleton project with the include files you need for
building a static library in a C++ Windows Store app. This can be used as an app directly
or by a Windows Runtime Component.

Windows Runtime Component
The Windows Runtime Component is a project template for creating code in one language
that can be shared or consumed in other languages. C#/VB/C++ can both create and
consume these components for Windows apps. JavaScript can only consume these
components. Components let you take advantage of the features of each language. For
example, code requiring high performance can be written into a C++ component and
consumed by a JavaScript app.

Chapter 2

51

DirectX App (XAML) and DirectX App
The DirectX App (XAML) and DirectX App templates are for C++ apps using the DirectX
runtime for high performance graphics and audio processing. Typically, this will be for
Windows Store game development, though they could also be used for many business apps
such as medical imaging and audio processing. At this stage, DirectX is the only choice for
Windows Store game development. XNA is not supported for Windows Store apps and XNA
applications on Windows 8 will only run as Windows desktop applications.

Technology choice impacts available project templates
Given that there are a lot of project templates available and there is also more choice in
development technologies, it is important to be clear about which project templates are
available for which technology.

The following table indicates which Windows 8.1 app types are available for each
language type:

JavaScript .NET C++
Blank App ü

Grid App ü

Split App ü

Navigation App ü

Class Library ü

Unit Test Library ü ü

Windows Runtime Component ü ü

DLL ü

Static Library ü

DirectX App/DirectX App (XAML) ü

Hub App ü ü ü

Portable Class Library ü

Coded UI Test Project ü

.NET projects and the Windows Store apps profile
When developing projects in Visual Basic or C#, you will be working with .NET Framework
4.5 using the Windows Store profile. You will not have access to all of the .NET Framework
methods and libraries that you are used to when building traditional Windows desktop or web
applications, and if you look in your project references instead of the usual references, you will
see a reference to .NET for Windows Store apps.

Getting Started with Windows Store Applications

52

This change is largely because much of the functionality .NET historically provided has now
been incorporated directly into Windows Runtime. .NET is now just a supplement to the
Windows Runtime when used for Windows apps. Additionally, the .NET Windows Store profile
removes classes and methods that aren't applicable for Windows Store apps, which results
in a dramatically smaller application footprint. This removal is one of the reasons WinRT can
offer more stability and security—it places limits on what apps can do.

Language interoperability
JavaScript Windows Store apps can call a function written in either C++ or .NET when
that function is contained in libraries or DLLs that expose Windows Metadata (WinMD).
Unfortunately, the reverse is not the case; .NET and C++ apps cannot call a function
contained in JavaScript libraries. C++ Windows Store apps can, however, call a function in
.NET WinMD files (that is created using the Windows Runtime Component project type), and
.NET code can call C++.

The good news here is that there is no longer a need to use COM Interop for any of these
cross-language calls, making language interoperability much, much simpler when developing
Windows Store apps than it is for Windows desktop applications.

Adding a Windows Store item template to
your app

Unless you're building a "Hello World" app, you're probably going to want to add more code
files and assets to your project than are provided with the standard project templates. Since
Microsoft wants Windows Store apps to not only offer great functionality, but to also meet the
Windows Store design principles, it has provided a number of ready-made item templates for
you to use as part of your development effort.

User interface item templates come with a common look and feel and subtle animations,
so your app behaves like other Windows Store apps. Contract templates provide you with
the boiler plate code and UI for building Windows 8 Contract support into your app.

In this recipe, you'll see how to use an item template to add functionality to a Windows
Store app.

Getting ready
Create a new blank Windows Store app using C# by following the steps in the previous recipe,
Creating a Windows Store app.

Chapter 2

53

How to do it...
In order to use an item template to add functionality to a Windows Store app, perform the
following steps:

1.	 Right-click on your project and navigate to Add | New Item... (The keyboard shortcut
for this is Ctrl + Shift + A).

2.	 Select Windows Store from the left-hand panel and choose the Items Page template
as shown in the following screenshot:

3.	 Leave the name of the item as the default and click on the Add button. The new item
will be added to your project ready for you to start working on.

Getting Started with Windows Store Applications

54

4.	 You may be prompted to add files to your project to resolve dependencies on the
Common namespace. Click on Yes in the dialog box to continue, as shown in the
following screenshot:

5.	 When the item page appears, the XAML will be displayed but the designer may
indicate errors since the project has not yet been compiled. Build the project to
ensure that the designer can display correctly.

6.	 Add a new class to the project named DataClass and define it as follows:

7.	 Navigate to ItemPage1.xaml.cs and change the body of the LoadState()
method to the following:

Chapter 2

55

8.	 In the App.xaml.cs file, locate the OnLaunched() method and the section where
rootFrame is defined (line 58). Change the type used in the Navigate method
from MainPage to ItemsPage1 as shown in the following screenshot:

9.	 Press F5 to debug and run the application. Your item list should now appear as
shown in the following screenshot:

Getting Started with Windows Store Applications

56

How it works...
Using an item template to add functionality to an app is generally the same as in previous
versions of Visual Studio. The additional dialog to generate the Common namespaces only
appears for the first item template you add to your project.

Legacy store apps written in C++/VB/C# for Windows 8.0 saw DataTemplate definitions
for each item they displayed located in the Common\StandardStyles.xaml file, which is
where the property names of the item-specific data bindings were found.

This has changed with Windows 8.1 as the number of support styles has increased, and now
DataTemplate definitions are located directly in the XAML file for each page. For the UI item
templates, support is provided for the various views that Windows Store apps need to support,
specifically the Full, Fill, Snapped, and Portrait states.

There's more…
Of course, you aren't limited to just the Items Page template. You can use any of the other
available templates to add functionality to your app.

Additional Windows Store item templates
The following list describes what will be added for each of the new Windows Store
item templates.

Blank Page
The Blank Page item template gives you an empty blank page, which is desirable when you
would like to customize every facet.

Basic Page
The Basic Page item template is the Blank Page item template with added layout awareness,
a title, and a back button to give you a starting point for creating your own layouts.

Split Page
The Split Page item template displays a vertical list of items on the left and the details of the
selected item on the right.

Items Page
The Items Page item template displays a flat view of an object collection.

Item Detail Page
The Item Detail Page item template shows a detailed view of a single item using a
FlipView control. It also provides navigation options for moving to the next or previous
item in the collection.

Chapter 2

57

Grouped Items Page
The Grouped Items Page item template adds a summarized view of items arranged into groups.

Hub Page
The Hub Page displays items in sections using various presentation styles for each of
those sections.

Group Detail Page
The Group Detail Page item template provides a panel for displaying the items from a single
group in a collection, and summary views of the items in the group.

Resource Directory
Resource Directory is a dictionary-based collection used to store XAML resources, which
is retrievable with a key. XAML elements that may be stored include subclasses of Style,
ControlTemplate, and Brush. By defining them in one place, they can be re-used
throughout the app to easily provide a consistent behavior and appearance.

Templated Control
Templated Control provides a blank control using the default styling that is ready to be
customized for your app.

User Control
User Control is a completely blank user control.

File Open Picker Contract
The File Open Picker Contract item template is used to expose files in your app to outside
apps. The code behind the item template includes the Activate() method; with the
FileOpenPickerActivatedEventArgs parameter, you can query to determine what to
show. You will also need to populate the FileOpenPickerUI property of this parameter to
return selections to the calling app.

Search Results Page
The Search Results Page template provides a page to be customized for your app so that a
user's search query of your app is handled in a meaningful way.

Share Target Contract
The Share Target Contract indicates that your app supports receiving items shared by
other apps.

Settings Flyout
A Flyout is Windows 8 GUI element that is accessed when swiping from the edge of a window.
The Settings Flyout template provides a blank flyout that can be customized to provide
settings for your app.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Windows Store Applications

58

Resources File
The Resources File is available for C++ based projects; this provides strings and
conditional resources.

Page Control
Page Control is a JavaScript-specific template that provides a blank page complete with
supporting HTML and CSS files.

Language impacts item template options
Just like the project templates you saw in the Creating a Windows Store app recipe, the
development technology you choose limits the Windows Store item templates available for
use. The following table indicates which items are available for each technology choice in the
Windows Store item category:

JavaScript .NET C++
Blank Page ü ü

Basic Page ü ü

Split Page ü ü

Items Page ü ü

Item Detail Page ü ü

Grouped Items Page ü ü

Hub Page ü ü

Group Detail Page ü ü

Resource Dictionary ü ü

Templated Control ü ü

User Control ü ü

File Open Picker Contract ü ü ü

Search Results Page ü ü ü

Share Target Contract ü ü ü

Settings Flyout ü ü

Resources File ü

Page Control ü

See also
ff The Creating a Windows Store app recipe

Chapter 2

59

Using the Windows Store app simulator
You may recall that one of the design goals of Windows Store apps was that they should run
equally well on a multitude of devices, including tablets and other touch-enabled devices and
they should also support a number of different views such as the Snapped and Full views.

As most developers use powerful desktops or high-end laptops for developing software,
these machines exceed the capabilities of many portable devices. They also typically lack
some of the other features found in portable devices such as GPS, or gyroscopes. To handle
the differences between developer machines and the target devices, Microsoft includes a
Windows Store app Simulator with Visual Studio that can be used to test your Windows
Store apps without the need of a second physical machine to deploy to.

This recipe will show how to use the simulator to assist in developing your own apps.

Getting ready
Create a new C# based Windows Store project using the Split App (XAML) template and name
it SplitApp. You can use the information from the Creating a Windows Store app recipe if
you need a refresher on how to do this.

How to do it…
The steps for using Windows Store app simulator are as follows:

1.	 Go to the properties page of the SplitApp project (The properties page is available
under the Project menu).

2.	 Select the Debug tab and change the target machine to Simulator as shown in the
following screenshot:

Getting Started with Windows Store Applications

60

3.	 Start debugging the app by either pressing F5 or navigating to the Debug | Start
Debugging menu option.

4.	 Visual Studio will start the Windows 8 Simulator and launch the app for you as shown
in the following screenshot:

5.	 On the right-hand side of the simulator are a number of icons that control the
simulator's behavior. By default, the simulator starts in mouse mode so that
you can navigate within the app using the keyboard and mouse.

For reference, the toolbar icon functions are, from top to bottom:
Minimize, Always on top, Mouse mode, Basic touch mode, Pinch/
Zoom touch mode, Rotation touch mode, Rotate clockwise, Rotate
counterclockwise, Change resolution, Set location, Copy screenshot,
Screenshot settings, Change network properties, and Help.

Chapter 2

61

6.	 Click on the Group Title: 3 group and then the Item Title: 3 item from the list on the
left and move the mouse over the detail section on the right. You should see the
contents of the details panel change and a scroll bar should appear as shown in the
following screenshot:

The Windows Logo works and will toggle the desktop

7.	 Switch to Basic touch mode by selecting the icon on the simulator toolbar.

8.	 As you move your mouse over the simulator, you will see that the cursor has now
changed to be a small crosshair in a circle icon. Click on the second item in the
collection to select it.

9.	 Move the mouse over the details pane and simulate an upward swipe by left-clicking
and dragging upward with your mouse to scroll the details pane.

Getting Started with Windows Store Applications

62

10.	 As you do, you should see the pointer change to a partially filled-in circle indicating
that you are touching the screen, and the contents of the pane should scroll as you
move the mouse. This is illustrated in the following screenshot:

11.	 So far so good. Now it's time to flip the simulator to the portrait mode. Click on the
Rotate clockwise (90 degrees) icon.

Chapter 2

63

12.	 The simulator should now look as it does in the following screenshot with the layout
of the content adapting as the device is rotated:

Getting Started with Windows Store Applications

64

13.	 When the simulator has focus, it will capture the keyboard and handle key
combinations such as Alt + Tab or Alt + F4. Close the simulator using Ctrl + Alt + F4.

14.	 Back in Visual Studio, open the SplitPage.xaml.cs file and locate the
ItemListView_SelectionChanged() method.

15.	 Set a breakpoint in the ItemListView_SelectionChanged() method by
either pressing F9 or clicking in the gutter to the left of the code. This method
may be found easiest by searching for it’s name in the the quick find. Once
located, set a breakpoint where shown in the following screenshot:

16.	 Start debugging the app again by pressing F5.

17.	 When the application starts, select a group to display. The breakpoint will be hit
and you could at this point step through the code to understand how it works.

How it works...
The Windows Store app simulator is actually connecting to your local machine via a
remote desktop connection, and this is why the Start screen in the simulator looks the
same as the Start screen on your Windows 8 development machine and why you are
signed in automatically.

Because it's a remote desktop connection running on the local machine, the debugger is
simply connecting to a local process running in a different session. If you open the Attach
to Process window via the Debug | Attach to Process menu, you can see the details of the
process Visual Studio has connected to. The following screenshot highlights the details of the
running SplitApp.exe executable and shows that it is in session 3, which is the Windows
Store app Simulator session:

Chapter 2

65

There's more...
There are a few more things to note about the simulator that we didn't touch on in the recipe.

Resolution and resizing
You can adjust the resolution the simulator is running at, allowing you to experience your app
at different predefined resolutions and device sizes, shown as follows:

Along with changing the resolution, you can also change the onscreen display size of the
simulator by dragging the bottom-right corner of the simulator just like a normal desktop
window. This can help if you are simulating a device on a high-resolution desktop and you
have the screen real estate to spare. It also may point out areas that are just too small for
the end user and require a rework.

Remote debugging
You may have noticed that when you set the debug option for using the simulator that there
was also an option to use a Remote Machine as the target device. Remote debugging is
much simpler under Visual Studio 2013 developing Windows Store apps than has previously
been the case for Windows desktop apps. For the Remote Machine option to work, you need
to have the Remote Debugging Monitor running on the remote machine; the firewall needs to
allow connections and you need a reasonable network connection between the two machines.

On your development machine, you simply specify the machine name of the remote machine
you are targeting and start debugging. Visual Studio connects to the remote machine,
prompts for credentials if required, deploys the app, and connects the remote debugging
monitor for you.

From that point forward, the debug experience is almost the same as if it were a local
process. As long as you have a stable network connection, you should find the experience
very straightforward.

Getting Started with Windows Store Applications

66

Location settings
The simulator lets you enter a simulated location that incorporates not only latitude and
longitude but also the altitude and an error radius so that you can test location-aware
apps on hardware that doesn't support GPS or location awareness.

If you have a location-aware device, then you can turn off the simulated values and use the
values of the device itself if desired.

Taking screenshots
When you want to take screenshots of your Windows Store apps for creating your store listing,
for example, then you can do so via the simulator. Simply click on the copy screenshot button
on the toolbar (represented by a camera icon) and the screenshot will be placed on the
clipboard and optionally in a file on your hard drive. You can control this behavior using the
screenshot settings button (represented by a gear icon below the camera icon) on the toolbar.

See also
ff The Creating a Windows Store app recipe

Defining capabilities and contracts
Windows 8 provides Windows Store apps with the ability to communicate with any other app
on the computer without prior knowledge of what those apps might be through a concept
called Contracts. A Contract is an operating system level interface that consumers or
providers of information implement. The operating system then keeps track of which apps
support which contracts and coordinates the information between apps using those contracts.

Window 8, as part of its focus on improving the trust level in the apps it runs, expects
Windows Store apps to communicate the capabilities they need. A Capability is a permission
or access right that a Windows Store app requires for it to run correctly, for example, an app
that requires Internet access or local network permissions. There is a range of capabilities
that the operating system can provide to Windows Store apps. An app that doesn't request
capabilities from the operating system will be provided minimum level access, meaning that
it will run in its isolated process space with no access to any external resources at all.

Chapter 2

67

Similarly, an app may have one or more Declarations. A Declaration is an attribute of the app
that provides extra information that the operating system can use to further integrate the app
into the standard operating system experience. For instance, an app declaring the file picker
contract is telling the operating system that it can be a source of files when the user is using
a file picker.

In this recipe, you will add a contract declaration and adjust the capabilities of a Windows
Store app.

Getting ready
Open the SplitApp project you created in the previous Using the Windows Store app
simulator recipe.

How to do it…
In order to add a contract declaration and adjust the capabilities of a Windows Store app,
perform the following steps:

1.	 Open the Package.appxmanifest file from Solution Explorer. The manifest file will
open up in the main document window as shown in the following screenshot:

Getting Started with Windows Store Applications

68

2.	 Select the Capabilities tab as shown in the following screenshot:

3.	 You should only declare the capabilities you actually need and as our app does not
require any Internet (Client) access, deselect this capability.

4.	 Select the Declarations tab.

Chapter 2

69

5.	 From the Available Declarations dropdown, select File Type Associations and then
click on the Add button as shown in the following screenshot:

Getting Started with Windows Store Applications

70

6.	 At this point, you are registering the SplitApp to handle and to be available for
opening a specified file type. So if we wanted SplitApp to handle opening JPEG
(JPG) files, we could use the settings shown in the following screenshot.

7.	 As shown in the previous screenshot, several fields are available to provide details.
Display name is used to identify the app making the declaration. Logo can be used
to specify a custom logo for this association to more easily identify your app—if left
blank the app logo will be used. Name is a lower-case identifier for a group of files
that share the same characteristics (logo, info, tip, edit flags, and so on). Edit flags
are used to regulate how files opened from an untrusted source are handled. Since
we are dealing with HTML, the previous example specifies that content should be
treated as Always unsafe. Finally, we have setup this Declaration to address HTML
files ending in .html and .htm.

Chapter 2

71

8.	 You're not going to implement a full app as part of this recipe; so, for now just
click on the Remove button next to File Type Associations in the Supported
Declarations section.

How it works…
One of the design goals for Windows Store apps is that they should be portable, meaning that
it should be easy to download them from the Windows Store and run them on any computer
the user desires without needing any special permissions. By requiring an App Manifest to be
bundled with every app, Windows itself can manage the app's installation without allowing the
user to unknowingly compromise their system's security.

The App Manifest is a critical file for any Windows Store app and you need to pay attention to
it. It contains all of the declarative information to inform Windows of the capabilities it needs
as well as the contracts that it satisfies.

There's more…
There are numerous capabilities and contracts you can declare, but instead of describing all
of the possible contracts that you can implement, let's have a look at the ones you are most
likely to consider for your apps.

Contact Picker
Let's say, your app exposes information from your company address book. The Contact Picker
contract will let other apps wanting to retrieve contact information use your app as a source of
contact details.

File Open Picker
This provides the ability to serve files to other apps. The benefit here is that it makes your
app's content available to other apps in a custom way. For example, rather than just present
a list of 3D object files, an app with this contract could provide a 3D object browser that lets
users see the actual model in action to help them pick the file they are looking for.

Getting Started with Windows Store Applications

72

Search
The Search contract, as we saw in our recipe, allows the end user to search for information
from within your program. Any program that implements the Search contract item template will
be listed as a search source when the Search charm is used. Note that in Windows 8.1, an app
using the Search contract will only show on the Search charm from within that app. For example,
as shown in the following screenshot, the Wikipedia app implements the Search contract:

File Type Associations
This declaration allows you to specify one or more file types that your app will work with.
For example, a photo app may specify types such as .jpg or .png while a music app may
specify .mp3.

Certain file types are prohibited because they are reserved or for security
reasons. For a list visit: http://msdn.microsoft.com/en-us/
library/windows/apps/hh452684.aspx.

Share Target
The Share Target contract is used when you want to share something with someone else. For
example, sharing web addresses on Twitter or Facebook, or sharing a picture with friends. The
contract definition lets you determine what type of files or data can be shared (for example,
image files, e-mail addresses, or URLs).

This contract is a little different to the previous ones you've seen. The contract is indicating that
the app is a consumer of the shared information, not a source as with the other contracts.

Capabilities
As with the contracts, not all capabilities are going to be of interest for most developers.
The following are some of the more important ones that you should be aware of.

Chapter 2

73

Internet (Client)
The Internet (Client) capability lets Windows know that your app will be making requests
to Internet-based resources but it will not be receiving any connections. It is for outbound
connections on public networks only.

Given that most Windows Store apps are expected to have some level of Internet connectivity,
this is enabled by default in the project templates.

Internet (Client & Server)
The Internet (Client & Server) capability informs Windows that your app will not only request
data but will also be serving data and can accept inbound connections. Even if you specify
this capability, you cannot accept inbound connections on critical ports. Specifying this
capability means you do not need to specify the Internet (Client) capability, and if you do,
it will have no effect.

Home or Work Networking
Windows 8 maintains the concept of network profiles for your machine and the Home and
Work networks are considered to be private networks with separate security profiles from the
public Internet. The Home or Work Networking capability allows you to make both inbound and
outbound connections on these trusted networks.

As with the Internet (Client & Server) capability, you cannot accept connections on critical ports.

Library access
Windows Store apps have limited access to the underlying filesystem and must request
access as part of their capabilities. The Music Library Access, Pictures Library Access,
and Videos Library Access capabilities must be selected in order to access files in each
of those locations.

When accessing a library, only files with extensions listed in the File Type Association
contract will be available.

For a complete list of app contracts, refer to the following MSDN article,
App contracts and extensions (Windows Store apps): http://msdn.
microsoft.com/en-us/library/windows/apps/hh464906.aspx.

See also
ff This recipe provides an introduction to using Visual Studio's tools for editing a

.appxmanifest file. You may also create and edit this manifest (which is an XML
file) directly with an editor of your choice. For more information, visit: http://msdn.
microsoft.com/en-us/library/windows/apps/br211476.aspx

Getting Started with Windows Store Applications

74

Analyzing your App's performance
Visual Studio 2013 has added additional app performance and diagnostic tools over what was
found in VS2012. The Performance and Diagnostics menu provides the following tools:

ff CPU Sampling: This tests what parts of your app are CPU intensive.
ff Energy Consumption: This runs your app to determine how much power it

consumes. It is a useful guide to maximize battery life when your app is being
run on a portable device.

ff XAML UI Responsiveness: Ensuring your app feels fast to users is critical to its
adoption. This tool helps you monitor where your app may need optimization.

Getting ready
For this example, we will continue to use the SplitApp project created in the Using the
Windows Store app simulator recipe.

How to do it…
The following are steps to analyze your app's performance:

1.	 With SplitApp open, open the Performance and Diagnostics screen. For Visual
Studio Express, this is found under the menu Debug | Performance and Diagnostics.
For the paid editions (Professional and greater), this is located under the menu Analyze
| Performance and Diagnostics. In either case, the hot key is Ctrl + Alt + F9.

2.	 On the screen that appears next, select the Energy Consumption test. Then click
on Start.

Chapter 2

75

3.	 After starting the test, your Visual Studio will start your app. Operate it as you expect
a typical user would if you would like an overall report, or focus on a specific area if
you feel something is especially draining. When you are done, close your app as usual
(Ctrl + Alt + F4).

4.	 Visual Studio will prepare a report of your app's energy usage after closing your app
as seen in the following screenshot:

How it works...
Visual Studio monitors your apps' power usage via the emulator as you operate the app.
It collects this information for your review at the conclusion of the simulator.

There's more...
Your app may use different hardware features of a device, and have different usage patterns.
You can configure specific pieces of hardware via the emulator to be active or not based on
those patterns, for example, comparing the differences in power usage between the wireless
Ethernet versus a physical hardware connection.

Getting Started with Windows Store Applications

76

Packaging your Windows Store app
For Windows 8 to correctly load and run a Windows Store app, it must be packaged in a
particular format. The information contained in the package includes the capabilities and
contracts that your app uses as well as information on the app user tile, the splash screen,
and more.

This recipe will show you what you need to do to package your Windows Store app so that it is
ready for the world to use.

Getting ready
Open the SplitApp project that you created in the Using the Windows Store app
simulator recipe.

How to do it...
Perform the following steps for packaging your Windows Store app:

1.	 Open the Package.appxmanifest file from Solution Explorer.

2.	 Examine the fields in the Application UI tab. Add a space to the Display Name field
so that it reads as Split App instead of SplitApp.

3.	 Add a useful description in the Description field. For example, A sample app
using the Split layout.

4.	 Moving to the Visual Assets tab, under the Tile section, confirm the Show name field
is set to Square 150x150 Logo as shown in the following screenshot. This setting will
make the name of the app appear on the Tile on the Windows Start screen.

Chapter 2

77

5.	 In the Packaging tab, adjust the Package Display Name to include a space so that
the package name is Split App.

6.	 Save your changes to the manifest file.

7.	 Build the solution.

8.	 In Visual Studio, right-click on the solution in Solution Explorer and select Deploy
Solution. This will deploy the Split App to your local machine ready for use.

9.	 In Solution Explorer, select the SplitApp project and then click on the Show All
Files icon as shown in the following screenshot:

10.	 Navigate to the bin\Debug folder so that you can see the output from the build. This
is the output that will be uploaded to the Windows store when you publish your app. It
should look something like the following screenshot:

Getting Started with Windows Store Applications

78

11.	 Press the Windows key to bring up the Start screen and scroll as needed to locate
your new app. (Alternatively you can start typing the app's name at the Start
screen to search for it.) You should see an icon for the Split App as shown in
the following screenshot:

12.	 Deploying locally is great, but if you want to test your app on another machine, you
will need to create a package. Right-click on the SplitApp project in Solution
Explorer and navigate to the Store | Create App Packages... option from the context
menu (Depending on your version of Visual Studio, you may have to be signed in for
this option to be available, and you may also find it directly in the main menu Store |
Create App Package...). If you choose the context menu route, it will look similar to
the following screenshot:

13.	 Select No when asked to build a package for the Windows Store and click on
Next. (Packaging for the Windows Store is discussed in the Appendix, Visual
Studio Medley.)

Chapter 2

79

14.	 For the Create App Packages dialog box, leave all settings at the default.
After you have reviewed the screen click on the Create button shown in the
following screenshot:

15.	 Wait until the package creation process completes and click on OK to dismiss the
notification dialog.

Getting Started with Windows Store Applications

80

16.	 Once the package finishes building, refresh Solution Explorer and you should
now see an AppPackages folder appear that contains the package ready for
local deployment as shown in the following screenshot:

How it works…
You may notice in the bin\Debug folder that there are a few extra files generated, namely
the resources.pri, AppxManifest.xml and SplitApp.build.appxrecipe files.
The AppxManifest.xml file is simply a renamed copy of the package.appxmanifest file.

The resources.pri file contains the app resources in a binary format and the SplitApp.
build.appxrecipe file is used for incremental builds of the package so that each time the
package is rebuilt, the package version number is automatically incremented.

Moving to the AppPackages folder, there is a file with an .appxupload extension, which is
a ZIP archive containing the app and any debug symbols, and there is a layout folder with a
name based on the app, the CPU type, and so forth. In this case, the layout folder is called
SplitApp_1.0.0.0.AnyCPU_Debug_Test.

Doing a deployment of the app to a test machine is simply a matter of copying this layout
folder to the test machine and running the Add-AppDevPackage.ps1 PowerShell script
from that folder.

There's more...
Packages need to be signed in order to be uploaded to the Windows Store. When developing
locally, Visual Studio uses a temporary certificate. However, deploying to the Windows Store
will require a certificate issued by the store.

Chapter 2

81

See also
ff The Submitting apps to the Windows Store recipe in Appendix, Visual Studio Medley

Validating your Windows Store app
Every app submitted to the Windows Store will be validated by Microsoft before being listed.
Part of that validation process involves running the app through an automatic certification tool
that Microsoft has included with Visual Studio. You should check that your app passes the
certification tool before beginning the Windows Store submission process.

Getting ready
Ensure the SplitApp project you were using in the Packaging your Windows Store app recipe
is working correctly and has been deployed.

For the certification process to work, your deployed version must be in the Release mode.

How to do it...
The following steps need to be performed in order to validate your Windows Store app:

1.	 From the Windows Start screen, launch the Windows App Cert Kit. The app will
prompt for elevation and then start a wizard as shown in the following screenshot:

Getting Started with Windows Store Applications

82

2.	 Select the Validate Windows Store App option. The tool will search for Windows
Store apps installed on your machine and list them.

3.	 Packages are listed by the Display Name listed in each app's manifest file
(manifest files have the extension .appxmanifest). Locate your app and
highlight it, and click on Next.

4.	 The Kit will then allow you to select the tests you would like to run. The default
technique to test everything is what we will use here, so click on Next.

5.	 The certification process will then proceed by running your app multiple times to test
its various characteristics.

6.	 When the certification process completes, you will be immediately prompted to save
an XML file containing the report. Choose a location to save the file to and once the
file is saved, you will see the completion dialog.

7.	 Click on the link in the dialog to view the report. Windows will prompt for a program
with which to view the report, pick an editor of your choice, or use Internet Explorer.
Scan the file for warnings and errors.

Chapter 2

83

How it works...
The certification kit runs your app in order to verify each of the rules it has. It does not perform
tests of your app's functionality, but rather validates how well the app behaves within the
context of the Windows operating system and whether the rules for listing the app in the
store are satisfied.

When your app passes the certification kit tests with no warnings or errors, it is ready for
submission to the Windows Store where Microsoft will perform additional content and
behavioral checks.

See also
ff The Submitting apps to the Windows Store recipe, in Appendix, Visual Studio Medley

ff Microsoft's official guide, App certification requirements for the Windows Store, is
available online at http://msdn.microsoft.com/library/windows/apps/
hh694083.aspx

ff Further background on the app certification process and tips for a successful
distribution are available at http://msdn.microsoft.com/en-us/library/
windows/apps/hh694079.aspx

3
Web Development –

ASP.NET, HTML5, CSS,
and JavaScript

In this chapter, we will cover:

ff Getting started with Bootstrap

ff Previewing changes across multiple browsers

ff Creating HTML5 web pages

ff Taking advantage of CSS editor improvements

ff Understanding the JavaScript editor improvements

ff Adding bundling and minification to JavaScript and CSS files

ff Verifying pages with the Page Inspector tool

Introduction
Application development based on web technologies continues at a breakneck pace with
increasingly advanced functionality being enabled by ever-improving tools. With Windows
8, languages that originated for the Web (HTML5 and JavaScript) have found a place in the
creation of Windows Store apps.

Web Development – ASP.NET, HTML5, CSS, and JavaScript

86

In addition to improving the JavaScript support that began with VS2012, VS2013 sees the
arrival of One ASP.NET, which is designed to maximize the availability of all of Microsoft's
current web technologies for use in any scenario. As a developer, you are no longer forced to
choose at the start of a project which type of framework to use, instead you may start making
your web application in the .NET language you prefer. Incorporate what you need, when you
need it, whether that means web forms, MVC, Web API, or some combination of them all.

In this chapter, we will look at different areas where VS2013 can help make your web
development tasks easier; from editor enhancements to specific tools such as Page Inspector.

Getting started with Bootstrap
Visual Studio 2013 changes the default template used for MVC-based projects to use the
open source Bootstrap framework. Bootstrap provides a dynamic design that automatically
reacts in a useful way to the resizing of browser windows, which also lends itself to easily
accommodate the wide range of phones and tablets in use today.

You may recall the default MVC template from VS2012, which is shown as follows:

Chapter 3

87

In VS2013, a One ASP.NET project using MVC with Bootstrap looks like the
following screenshot:

In this recipe, we will create a new MVC application to see Bootstrap in action.

Getting ready
You can use Visual Studio Express 2013 for Web or any of the premium versions for this recipe.

How to do it…
We'll start off creating a new project to see what is provided out of the box and then see what
options exist for customization. This is performed with the following steps:

1.	 Start up your copy of VS2013.

2.	 Create a new project by navigating to Visual C# | Web | ASP.NET Web Application,
accepting the default project name or one of your own choice.

Web Development – ASP.NET, HTML5, CSS, and JavaScript

88

3.	 On the next dialog box, choose MVC as shown in the following screenshot:

4.	 After Visual Studio finishes creating the project files, you may be prompted to select a
source control system Team Foundation Version Control or Git. For the purposes of
this recipe, we will just click on the Cancel button, but if you have a preference, feel
free to make your choice.

5.	 At this point, you can preview your application if you want to see what you are starting
with. Pressing F5 or navigating to Debug | Start Debugging will bring up the default
Bootstrap template as shown in the introduction to this recipe. If you decide to
review/debug the app, please stop debugging before continuing.

6.	 The default MVC application that we've created uses the default Bootstrap theme.
It's not a bad theme, but you will probably want to customize it a bit so that your site
doesn't remain a clone. The CSS files that define your site's theme are located in the
Content directory shown as follows:

7.	 As you may surmise from the filenames, the bootstrap.css file contains a more
human-friendly definition of the site while the bootstrap.min.css file is the
minimized version intended to reduce loading time.

8.	 Before replacing the bootstrap.css file, rename it to avoid overwriting it by
right-clicking on the file in the Solution Explorer window and clicking on the
Rename option. Feel free to use a name of your choice.

9.	 Let's get a new theme from Bootswatch to personalize our site. Navigate to
http://bootswatch.com/.

10.	 You can review the themes there and pick one that appeals to you. For this recipe,
we'll choose United. The CSS file is found at http://bootswatch.com/united/
bootstrap.css.

Chapter 3

89

11.	 Download this new theme file to the Content directory of your Visual Studio project.
(If you are using the defaults, your project will be in the Documents\Visual
Studio 2013\Projects\ directory, where Documents should be adjusted
depending on your version of Windows.)

12.	 Once downloaded, it will have to be added to your project. Right-click on the Content
directory in Solution Explorer and navigate to Add | Existing Item… as shown in the
following screenshot:

13.	 Choose your newly downloaded file, and add it to the project.

14.	 Preview the changes by pressing F5 or navigating to Debug | Start Debugging
as described in step 5:

Web Development – ASP.NET, HTML5, CSS, and JavaScript

90

15.	 Note that you will want to download the minimized version of the theme when you are
ready for a production release.

There's more…
The new templates based around MVC5 are not the only templates that ship with VS2013.

Visual Studio 2012 Templates
Depending on your particular development scenarios, you may need to create a new web
application using the older MVC4. VS2013 supports this, letting you use the new editor
features while maintaining compatibility with legacy environments. Instead of creating your
web application with the One ASP.NET approach, use a template under Web | Visual Studio
2012 as shown in the following screenshot:

All of your familiar project types from VS2012 are available, with the sole exception of the
ASP.NET MVC 3 Web Application template.

See also
ff For more information on the Bootstrap framework, and to examine the source

code, visit the project's home page at http://getbootstrap.com/. Specifically,
your customization is described at http://getbootstrap.com/getting-
started/#customizing.

ff If you would like to know more about MVC5, check out Microsoft's official tutorial at
http://www.asp.net/mvc/tutorials/mvc-5/introduction/getting-
started.

Chapter 3

91

ff See the Adding bundling and minification to JavaScript and CSS files recipe later in
this chapter.

Previewing changes across multiple
browsers

A common task faced by HTML designers is the constant workflow of editing web pages and
reviewing their changes. With the large number of web browsers in the market, it can be
tedious to keep them all in sync as changes are made. VS2013 seeks to address this with the
advent of the Browser Link feature. The Browser Link feature allows you to select any number
of browsers available on your development machine and have them refreshed after making
changes to your web pages. This feature makes it very easy to make changes to your website
and preview them across your site's supported browsers in a streamlined way.

In this recipe, we will look at how to set up Browser Link and how it can help you with
your projects.

Getting ready
You can use Visual Studio Express 2013 for the Web or any of the premium versions for this
recipe. You should also install any web browser you plan to use (Google Chrome, Mozilla
Firefox, and so on) before we start, but you can also just use Internet Explorer if you prefer.

How to do it…
We'll start this recipe by enabling support for Browser Link and then seeing it in action,
by performing following steps:

1.	 Open up a web-based project in Visual Studio.

2.	 Ensure that your project's Web.config supports Browser Link by adding the
following configuration option to system.webServer (note that it may be
present so be sure to avoid any duplication):

Web Development – ASP.NET, HTML5, CSS, and JavaScript

92

3.	 In the following snippet, you can see that the <system.webServer> element is
added, and within that a setting for modules:
<system.webServer>
 <modules runAllManagedModulesForAllRequests="true" />
</system.webServer>

This enables Browser Link for all files in your project, including the HTML-based ones.
If this is not set in your Web.config file, you will see the following error message on
your Browser Link Dashboard window:

4.	 Once this change has been made, open an HTML page in your editor. To browse with
Browser Link, you will have to open the web browsers as follows. For this example,
we will be using Firefox and Internet Explorer:

5.	 Click on Browse With..., which will open the following dialog box. While holding down
Ctrl, click on Firefox. If Internet Explorer is not selected, Ctrl click on its title as well.
The following screenshot shows the desired selections:

Chapter 3

93

6.	 After making those selections, click on the Browse button. This will open up your web
page in each browser selected.

7.	 You can verify this connection by leaving the browsers open and switching back to
Visual Studio. Then open the Browser Link Dashboard window (if it is not already
open) using the menu shown as follows:

8.	 Opening the dashboard will show that the following connections are present:

Web Development – ASP.NET, HTML5, CSS, and JavaScript

94

9.	 Returning to your main editor window, make a change, such as adding a few lines of
text. You can instantly view the changes by reloading your website across all browsers
with the hot key Ctrl + Alt + Enter or clicking on the Browse button under the Browser
Link menu as shown in step 6.

How it works…
Visual Studio is able to make this feature work by injecting a snippet of JavaScript into the web
pages served by Visual Studio's internal web server. This code is added transparently behind
the scenes, and does not affect your source in any way (it is not saved to the disk or entered
into your source control system). The following screenshot shows the code that is added:

There's more...
This doesn't apply to just HTML pages; other components of your project will work just as
well including CSS, CSHTML, and ASPX files. Browser Link is tied to running your site through
Visual Studio in the Debug mode; when switching to the Release mode, it will turn itself off.
The following code added to your project's Web.Config file under the appSettings tag can
force Browser Link to always be ON (true) or always OFF (false) depending on your needs:

<appSettings>
 <add key="vs:enableBrowserLink" value="true"/>
</appSettings>

Creating HTML5 web pages
VS2012 increased its support for the current web standards (including HTML5), and VS2013
continues this emphasis. The HTML editor used in VS2012 traced its roots to the code
originally written in the 1990s (for developers with long memories that means it originated
with Microsoft FrontPage). VS2013 is debuting a new editor for web applications built around
managed code, which Microsoft promises will offer greater extensibility going forward as well
as greater stability. Web forms-based applications (files ending with the .aspx or .ascx
extensions) will still be using the older editor, but in any case, Visual Studio will automatically
pick the correct editor transparently on your behalf.

Chapter 3

95

Let's take a look at this new editor by creating some pages following the HTML5 standard.

Getting ready
Just start up VS2013 or Visual Studio Express 2013 for the Web. We will be creating a brand
new project for this recipe.

How to do it…
This recipe will walk through editing files in the new editor. Let's get started!

1.	 Create a new ASP.NET Web Application project using C# and ensure that you are
targeting .NET Framework 4.5+. When prompted to select the template, choose the
Web Forms project template.

The following screenshot indicates the type of project to create, along with the
appropriate .NET Framework:

2.	 Open the project's Site.Master page (located at the top level of your project) and
switch to the Source view in the editor.

3.	 In the toolbar, you can change the target schema that the IDE uses to validate the
markup. By default, this will be based on the DOCTYPE tag in the page, though it can
be changed manually. Verify that the schema is currently DOCTYPE: HTML5 as shown
in the following screenshot:

Web Development – ASP.NET, HTML5, CSS, and JavaScript

96

4.	 At present, the code in the editor is valid HTML5. Visual Studio is aware of the
different standards and can assist you in writing compliant code. Edit the
DOCTYPE tag from <!DOCTYPE html> to the following code snippet:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">

The result should be like the following screenshot:

You will see that Visual Studio updates to report several errors as the Site.Master
page is not compliant with this older standard. The first one is shown in the following
screenshot, the <meta/> element in the document is now underlined in green,
indicating a validation problem:

5.	 At the bottom of the screenshot, note that a total of 6 warnings were found. What you
are seeing is how Visual Studio can help you develop your web pages according to
the standards you wish to follow. Before continuing, undo the changes and switch the
schema back to DOCTYPE: HTML5 by editing the element back to the <!DOCTYPE
html> tag. You can verify the switch was successful by noting that the errors
disappear. Visual Studio uses the DOCTYPE tag to dynamically validate the HTML
on your page.

6.	 Find the asp:LoginView tag in the source and click on it. You will see the standard
Smart Tasks helper indicator appear as follows:

Chapter 3

97

7.	 Assume you need to set the users and permissions on the website. Hover over the
Smart Tasks indicator until it expands to show an arrow. Click on the arrow to see
the available tasks. Alternatively, you can press Ctrl + . (Ctrl + Period) to achieve the
same result. From the pop-up task menu (shown in the following screenshot), select
the Administer Website option to open the standard ASP.NET website administration
page in a browser. Make any changes to the permissions you want and then close
the browser:

Feel free to explore the contents of the Smart Tasks helper and
remember that it changes based on the context. For example, the
tasks available for the asp:LoginView tag will differ from that
of the asp:ScriptManager tag.

There's more…
IntelliSense in the HTML editor will filter what it displays based on the target schema used
for validation. If you were to change the schema to HTML 4.01 as you did earlier in the recipe
and then try a HTML5-based snippet, it would not be listed as it is not applicable to HTML
4.01. When you edit the tag name of an element that has an opening and closing tag, Visual
Studio will automatically keep both tags synchronized to avoid common editing errors such as
forgetting to change the matching tag or changing the wrong tag.

These improvements and in particular the inclusion of the Smart Tasks in the Source view,
mean there are very few reasons for web developers to switch to the Design or Split views
in the editor. For most developers, this will be a cause for minor celebrations.

Taking advantage of the CSS editor
improvements

Just as in the HTML editor we looked at in the previous recipe, the CSS editor in Visual Studio
has been improved. In this recipe, we'll take a look at these improvements by tweaking the
default CSS of a web project.

Web Development – ASP.NET, HTML5, CSS, and JavaScript

98

Getting ready
Simply start Visual Studio Express 2013 for Web or any of the premium versions for this
recipe. We will create a fresh project, but if you have an existing project in mind that has
a relevant CSS file, that should work just as well.

How to do it...
There are several features that are helpful when editing CSS files, so let's take a look at what
VS2013 offers by performing following steps:

1.	 Open the sample project WebApp3, or a project of your own choice that uses
CSS files.

2.	 Open the StyleSheet1.css file.

3.	 Move your cursor to the hex color value in the background-color element of the
html style and press Ctrl + Space bar to activate the CSS color picker as shown in
the following screenshot:

4.	 Click on the down chevrons (the icon with downward facing arrows) to expand the
picker to show the full gamut of colors from which you can choose. Note that the
picker also lets you change the opacity of the color selected:

Chapter 3

99

5.	 Also to note in the preceding screenshot is the color picker highlighted at the bottom-
right corner. When building CSS for a site, sometimes you need to use a color from
a picture supplied by a designer but don't have the hex value of that color. In these
cases, you can use the color picker to select the color value. To test this out, click
on the color picker button at the bottom-right corner of the Color Chooser window
and then click anywhere on the screen where the color you need to use is currently
showing. The color of the pixel where you click will be automatically selected for you.

6.	 The Ctrl + Space bar technique works on other fields too. Navigate to the body style
and you will see that options are available for other items including font-weight or
text-decoration.

7.	 To ensure your page is even more attention grabbing, you really should shout at your
visitors. Go to the end of the body style and add a new blank line after the font-
weight attribute. Type the text, then press Ctrl + Space bar, and Visual Studio will
show you a list of style attributes that can be used. Select the text-transform
attribute from the list and press Tab, as shown in the following screenshot:

8.	 Visual Studio will now display a list of possible transforms that can be applied. Select
the uppercase transform and press Tab to add it. Add a semicolon to complete the
style attribute, and this will ensure that your web page really shouts at your visitors.

Web Development – ASP.NET, HTML5, CSS, and JavaScript

100

9.	 Locate the ul style. You should see a number of other styles indented beneath it as
shown in the following screenshot. The CSS editor has a new hierarchical indentation
feature that can be used to indicate specificity for your styles. For example, the ul
li a style is indented because it has greater specificity than the ul li style,
as shown in the following screenshot:

10.	 Let's add some finishing touches to the styles. Just below the ul li a style, add a
new style with a selector of ul li a:hover.

11.	 Add a color property to the rule using any color you wish. Then press Ctrl + K and
Ctrl + D. This will format the document and indent it according to specificity. Your
stylesheet should now look similar to the following screenshot:

Chapter 3

101

12.	 CSS files often have a large number of rules in them, grouped into areas, the rules
for the menu being a good example. You might not want to see them all the time.
The CSS editor now supports regions so you can logically group your style rules and
hide them when you don't need to see them. Head up to the comment /* List
comment */. Add a new line, /* #region List */, below it. Then move to the
end of the list-related styles and add a new line, /* #endregion */. As soon as
you close the comment, Visual Studio will show a document outlining indicator:

13.	 Collapse the region by clicking the minus icon next to the opening of the #region
comment, which will look like the following screenshot:

How it works...
IntelliSense in Visual Studio not only understands CSS 3.0 but also understands common
browser hacks such as the star (*) and underscore (_) hacks used to target various IE
specific styles. IntelliSense for style properties will still work if you start typing with a star
or underscore.

When using CSS 3.0, the editor supports vendor-specific extension attributes such as the moz
and webkit attributes for targeting specific browsers. You can see examples of this in the
bootstrap.css file that is now a part of the default template.

Web Development – ASP.NET, HTML5, CSS, and JavaScript

102

If you don't like the Hierarchical Indentation setting, you can turn it off in the
Visual Studio options. Go to Tools | Options | Text Editor | CSS | Advanced
| Formatting and deselect the Hierarchical Indentation checkbox. (Or use
Quick Launch by pressing Ctrl + Q, entering CSS, and pressing the down
arrow key to select Text Editor | CSS | Advanced.)

Understanding the JavaScript editor
improvements

As you have seen in the previous two recipes, the HTML and CSS editors have been greatly
improved in Visual Studio and you'll be pleased to know that the JavaScript editor has also
received a significant overhaul. With HTML and JavaScript being first-class choices for
developing Windows Store apps, it's not really a surprise that this happened.

Within the HTML5 specification, the marquee tag is of course not valid, but thanks to Aaron
Powell (http://www.aaron-powell.com/doing-it-wrong/marquee), we have a way
to implement a marquee tag using JavaScript and jQuery. In this recipe, we will write
a JavaScript script to emulate a marquee tag so that we can learn how the editor works.

Getting ready
Simply start Visual Studio Express 2013 for Web or any of the premium versions and you are
good to go.

How to do it...
As previously noted, JavaScript's popularity makes having a powerful editor very useful.
Let's see what VS2013 provides, with the help of following steps:

1.	 For this example, we will create a C#-based application using the One ASP.NET
application. When prompted, select the Web Forms template.

2.	 Add a new JavaScript file named marquee.js to the Scripts folder in your solution.

3.	 The original marquee tag scrolled a block element horizontally across the page. For
this to work in JavaScript, you first need to know the width of the element you will
be animating. In your empty marquee.js file, start by typing the jQuery shortcut $
character followed by a period (.) to bring up the IntelliSense options. IntelliSense
should now be showing you all the valid jQuery functions you can use along with
their method signatures as in the following screenshot:

Chapter 3

103

4.	 Enter the following JavaScript script in the marquee.js file:
$.fn.textwidth = function () {
 var calc = '' + $(this).text()
 + '';
 $('body').append(calc);
 var width = $('body').find('span:last').width();
 $('body').find('span:last').remove();
 return width;
};

5.	 At this point, you have a simple method for returning the width of the text. You can
now start writing the marquee function by adding the following JavaScript script at
the bottom of the marquee.js file:
$.fn.marquee = function () {
 var that =$(this),
 calculatedWidth = that.textwidth(),
 offset = calculatedWidth,
 width = offset;
};

6.	 Before you go any further, put your cursor on the textwidth() method call in the
line you just added and either press F12 or right-click on it and select the Go To
Definition option.

7.	 Visual Studio will navigate to where the textwidth() method definition is declared
(in this case, the preceding function). In the textwidth() method, move the cursor
onto the call to the jQuery append() method and press F12 to go to its definition.
You will be taken to the method in the jquery-1.8.2-intellisense.js file.

Web Development – ASP.NET, HTML5, CSS, and JavaScript

104

If you update your jQuery version, either manually or via
NuGet, then you will be taken to a different version of the
intellisense.js file than the one shown in the recipe.

8.	 It's time to finish off the JavaScript you were working on before. Navigate back to the
marquee.js file by pressing Ctrl + - (Ctrl and the minus key) to navigate backwards.
Complete the first part of the marquee function by ensuring the CSS used in the
animation is defined. Start by replacing the existing width = offset; statement
in the following code (note the change of the semicolon to a comma on the first line):
$.fn.marquee = function () {
 var that = $(this),
 calculatedWidth = that.textwidth(),
 offset = calculatedWidth,
 width = offset;
 css = {
 'text-indent': that.css('text-indent'),
 'overflow': that.css('overflow'),
 'white-space': that.css('white-space')
 };
 marqueeCss = {
 'text-ident': width,
 'overflow': 'hidden',
 'white-space': 'nowrap'
 };

 function go() {
 if (width == (calculatedWidth * -1)) {
 width = offset;
 }
 that.css('text-indent', width + 'px');
 width--;
 setTimeout(go, 1e1);
 };
 that.css(marqueeCss);
 width--;
 go();
};

9.	 The method ends with the addition of the go() function. The go() function is used
as the main loop of the marquee effect and adjusts the CSS of the element each
time through the loop, before using the setTimeout method to pause execution
before looping again.

Chapter 3

105

10.	 You may have noticed that, as you typed the inner go() function in the editor, the
outlining tips appeared. This feature helps with document outlining. The collapsed
go() method is shown in the following screenshot:

11.	 Now all that's left is to apply the marquee function to a web page. In the Solution
Explorer window, navigate to the About.aspx page and view the HTML source.
Move to the bottom of the HTML file and just before the closing </asp:Content>
tag, add a reference to the marquee script:
<script src="/Scripts/marquee.js"></script>

12.	 The <p> element would make a good target for your marquee script. Add another
script block directly below the reference that was added in the previous step and
enter $('p').marquee(); surrounded by the script element pair. As you type,
IntelliSense will provide information on the available methods, including your
newly-created marquee method, as shown in the following screenshot:

13.	 After making the edits to the About.aspx file, the resulting section of code should
look like the following screenshot:

14.	 Run the application and navigate to the About.aspx page to see the marquee tag
in action.

Web Development – ASP.NET, HTML5, CSS, and JavaScript

106

How it works...
When you first started typing the marquee script and IntelliSense displayed the jQuery
information, you may have been wondering where that information came from. IntelliSense
uses the contents of the _references.js file to discover information about the JavaScript
libraries for your project.

If you don't like this file or have another convention you wish to use, then you can customize
this behavior through the Visual Studio menu options under Text Editor | JavaScript |
IntelliSense | References, selecting the Implicit (Web) reference group.

There's more…
Visual Studio supports ECMAScript 5, and IntelliSense will show ECMAScript methods
whenever appropriate. For example, the trim() method will be displayed for string
variables but not for numeric variables.

If you want good page load times with JavaScript, you should be placing your scripts at the
bottom of your page, with the exception of the Modernizr library. In the About.aspx page,
you placed the scripts at the bottom of the page, but since that page is actually loaded into an
ASP.NET content control on a master page, the scripts would be rendered mid page. Not quite
what you want.

For more information on the impact of JavaScript positioning and the impact on
page load times, see the Yahoo! Best Practices for Speeding up Your Web Site
list at http://developer.yahoo.com/performance/rules.html.

A better approach might be to add a new content placeholder to the master page called,
for example, EndOfPageScripts, and place it below the <footer/> element. In
the About.aspx file, you can then add a second ASP.NET content control for the
EndOfPageScripts placeholder and place the scripts there.

The JavaScript editor does not support regions out of the box. If you would
like to use them with your JavaScript editing, there are solutions available.
In particular Mads Kristensen maintains the Web Essentials Visual Studio
extension that provides this functionality (and much more). Visual Studio
2012 users should try http://visualstudiogallery.msdn.
microsoft.com/07d54d12-7133-4e15-becb-6f451ea3bea6, while
Visual Studio 2013 users should use http://visualstudiogallery.
msdn.microsoft.com/56633663-6799-41d7-9df7-
0f2a504ca361 or visit http://vswebessentials.com/.

Chapter 3

107

See also
ff The Fortifying JavaScript applications with TypeScript recipe in Chapter 9, Languages

Adding bundling and minification to
JavaScript and CSS files

One of the common techniques for improving website performance is to reduce the number of
requests a browser needs to make in order to get the resources required for the page, and to
compress any resources that are requested to reduce bandwidth.

When it comes to both JavaScript and CSS, this generally means combining all of the files of
the same type into a single large file (bundling) and then removing unnecessary whitespace
from them and renaming variables to use the minimum amount of space possible, while still
leaving the functionality unchanged (minification).

Since version 4.5, ASP.NET supports automatic bundling and minification; in this recipe, you'll
add bundling and minification to a site and see how it impacts your development activities.

Getting ready
We're going to use the project from the previous recipe, Understanding the JavaScript editor
improvements. If you haven't already done so, complete that recipe first.

If you don't have time, the completed code from the previous recipe is located in the Chapter
3\Marquee.zip archive for you to use as your starting point.

This recipe assumes that your browser of choice has developer tools that are able to capture
network traffic. If you use Internet Explorer, you will need Internet Explorer 11 or higher, which
is what this recipe assumes you are using.

How to do it...
Bundling and minification are important steps to remember when moving your code into
production (even if just testing for production-like environments). Let's see how to do it:

1.	 Build the application and run it without the debugger by pressing Ctrl + F5 or
navigating to Debug | Start Without Debugging from the menu.

2.	 Navigate to the http://<yoursite>/About.aspx page in your browser and open
the browser's developer tools. If you are using Internet Explorer 11, you can press
F12 to open them.

Web Development – ASP.NET, HTML5, CSS, and JavaScript

108

3.	 Go to the Network tab (Ctrl + 4) and click on the Start Capturing (F5) button. In the
browser window, press Ctrl + F5 to force a complete refresh of the page. The network
trace should show that a lot of files are required to load the page as shown in the
following screenshot:

4.	 Look at all those requests! If you want a faster loading page, you need to reduce this.
Leaving the browser open, switch back to Visual Studio and in the Solution Explorer
window, find and open the Site.Master file.

5.	 In that file, at line 12, you will find the code shown in the following screenshot:

6.	 The Scripts.Render() statement is outputting a ~/bundles/modernizr file.
Look at the Solution Explorer window again. There is no bundles folder. What's
going on here? This is shown in the following screenshot:

Chapter 3

109

7.	 In Solution Explorer, expand the App_Start folder and then open the
BundleConfig file within that. The third statement of the RegisterBundles()
method defines the missing file, whose code is as follows:
bundles.Add(new ScriptBundle("~/bundles/modernizr").
 Include("~/Scripts/modernizr-*"));

8.	 In your project, you will no doubt want the bundles file for your own custom
JavaScript; so, we are going to follow the preceding example and create one now
by adding a new statement to the RegisterBundles() method as follows:
bundles.Add(new ScriptBundle("~/bundles/customjs").
 Include("~/Scripts/marquee.js"));

9.	 Go back to the Site.Master file and at the bottom of the page include a reference
to your customjs bundle, as shown in the following screenshot:

10.	 Next, go to the About.aspx page and remove the script reference for the marquee.
js file. Since the marquee function won't be present when it's called in the About.
aspx page, change the call to only happen when the page is ready, as follows:
<script>
 $(function () { $('p').marquee(); });
</script>

11.	 Now is a good time for a checkpoint. Rebuild the solution, switch over to your
browser and perform a full page refresh (that is, press Ctrl + F5 in Internet Explorer).
Assuming the network tab is still open in the developer tools, you should see the
marquee.js file being loaded and the marquee effect still working.

12.	 While you have defined the bundles, they still aren't actually being bundled or
minified. Switch back to Visual Studio, and in Solution Explorer, find and open the
Global.asax.cs file. In the Application_Start() method, add the following
highlighted line of code to enable optimizations:

Web Development – ASP.NET, HTML5, CSS, and JavaScript

110

The EnableOptimizations property forces bundling to occur.
Without this call, bundling only occurs when running the site in
Release mode. In other words, when the debug="true" attribute
of the system.web.compilation tag of the web.config file
is specified, bundling optimizations are disabled.

13.	 Rebuild the application, switch over to the browser and perform a full page
refresh again. The network trace will now show that JavaScript bundles are being
downloaded instead of individual script files and that the download size of the bundle
files is less than the download size of the original JavaScript files, as shown in the
following screenshot:

14.	 It's worth confirming that the scripts are not only bundled but also minified. Navigate
to the Debugger tab (Ctrl + 3) in the browser developer tools and select the
customjs file from the scripts' drop-down list, as shown in the following screenshot:

Chapter 3

111

15.	 Use the search box on the right-hand side to locate the marquee function as shown
in the following screenshot. In the following script you can see that, not only has the
whitespace been removed, but the variable names have also been shortened and the
code slightly optimized. Exactly what you should expect minification to do:

How it works…
Inside the ASP.NET runtime, when a browser requests a page with a bundle in it, ASP.NET
will either render the names of the individual files in the bundle or the bundle name itself,
depending on whether optimizations are turned on or not. When optimizations are on,
browsers will request bundles by their name and ASP.NET will group the individual bundled
files into a single larger file before minifying them and sending the result back to the browser.
The resulting minified file is cached by ASP.NET so that future requests do not impact
site performance.

You can create your own custom bundle types by subclassing the Bundle class. This allows
you to provide your own minification rules and bundling mechanisms, which is useful if you
want to support web technologies such as LESS, Sass, or CoffeeScript.

See also
ff The Understanding the JavaScript editor improvements recipe.

Verifying pages with the Page Inspector tool
Page Inspector is a tool included with Visual Studio built around a web browser that runs
inside Visual Studio. It provides a range of features for page inspection similar to what is
provided with the Internet Explorer developer tools, but with the ability to map elements
back to the line of code that generated them.

Web Development – ASP.NET, HTML5, CSS, and JavaScript

112

Let's have a look at what Page Inspector can really do for your debugging experience by
following this recipe.

Getting ready
Page Inspector requires Internet Explorer 9 (or higher). If you are developing on a
Windows Server operating system, you must have Internet Explorer Enhanced
Security Configuration disabled.

How to do it...
This recipe will show how mapping a web page's code to what is displayed can make
development easier as follows:

1.	 For this example, we will create a C#-based application using the One ASP.NET
application. When prompted, select the Web Forms template.

2.	 You can launch the Page Inspector tool by navigating to View | Other Windows |
Page Inspector, the Quick Launch tool by right-clicking a page and selecting the
View In Page Inspector option; by clicking the Page Inspector icon in the toolbar;
or by pressing Ctrl + K and Ctrl + G.

For this recipe, right-click on the Views\Home\Index.cshtml page and select
View in Page Inspector.

3.	 The Page Inspector window will open next to the main document area and display
the site's home page.

4.	 In the bottom half of the Page Inspector window, is a toolbar with a number of
inspection tabs and also an Inspect button. Click on that and then hover over various
elements of the web page in the top section of the inspector. As you do, you will
notice that the HTML tab adjusts to show the relevant part of the DOM, and that
the code where the text came from is shown in the document pane. In our following
example, "We suggest the following" is highlighted by both the Page Inspector
window and in the HTML code:

Chapter 3

113

5.	 Inside the Views\Shared_Layout.cshtml file, which should currently be open
in the document area, move to the bottom of the file and locate the footer element.
Highlight a section of the copyright notice, as shown, and note how the matching text
in Page Inspector is highlighted. You will also see that the HTML tab of the Page
Inspector updates to show the page's DOM and that the other Page Inspector tabs
update to reflect the details of the selected item. This bidirectional selection is very
useful, which is shown in the following screenshot:

Web Development – ASP.NET, HTML5, CSS, and JavaScript

114

6.	 With the text still highlighted, select the Trace Styles tab in the Page Inspector
screen and scroll down to the margin-top attribute. Expand the item and click
on the footer p selector. When you do so, the site.css file will be shown and
the footer p style is highlighted. This gives you a great way to trace a style
you see on a page directly back to the source file it came from, as shown in the
following screenshot:

If you can't find the style, you may have accidentally changed the
selected content on the Page Inspector screen. Try reselecting the
copyright notice and then looking at the Trace Styles tab again.

7.	 Change the margin properties of the style in the site.css file to margin: 10px
0 0 0; as this will make a noticeable change to review.

8.	 Page Inspector detects that a change has occurred and the page is updated to reflect
the change dynamically. This makes it easy to find the exact settings needed for the
layout you desire.

How it works...
When you first launched the Page Inspector tool, you didn't need to compile the web
application or launch IIS Express. Page Inspector did that for you automatically, making
the process of getting started very simple.

The mapping of the page elements and styles back to the source only works if those elements
are statically generated. In other words, they have to map back to the actual source and can't
be the result of any dynamic DOM manipulation performed via JavaScript. The mapping of
page elements to the JavaScript that created them is not supported by Page Inspector.

Chapter 3

115

There's more…
One thing you didn't look at in the recipe was the Files tab, located next to the HTML tab in
the Page Inspector window. The Files tab shows all the source files that were used in the
construction of the layout for the page, excluding CSS and JavaScript files, as shown in the
following screenshot:

Partial pages and user controls
If you right-click on a partial view or a user control in the Solution Explorer window and select
View in Page Inspector, the Page Inspector screen may not be able to determine how to
launch those pages because the routing rules aren't specific enough. When this happens,
the Page Inspector screen will prompt you for a URL to navigate to that includes the view
or control you are interested in, as shown in the following screenshot:

Enter an absolute or relative URL and then click on the Set button to define the mapping. The
next time you inspect the user control or partial page, the Page Inspector tool will remember
your mapping and launch the appropriate page for you, allowing you to inspect your element
in the context of the containing page.

Web Development – ASP.NET, HTML5, CSS, and JavaScript

116

If Page Inspector is too narrow
By default, Page Inspector is loaded in a tool window on the left of the IDE and renders the
page in a very narrow window.

You don't have to live with it this way. If you have multiple monitors, then you can undock the
Page Inspector tool and drag it over to your second monitor. You will then be able to see the
full page in Page Inspector as well as your code, and the two-way synchronization of code and
HTML will be easy to track.

Alternatively, you can move Page Inspector to the main document area, though doing so will
mean that you have to use Ctrl + Tab to switch between Page Inspector and the source files.
Of course, the final option is to simply widen the Page Inspector tool window, though doing so
reduces the size of the main document area. Regardless, if the window is too narrow for your
liking, change it. It's your Visual Studio; make it work the way you want it to.

4
.NET Framework 4.5.1

Development

In this chapter, we will cover:

ff Adding the Ribbon to a WPF application

ff Creating a state machine in Visual Studio

ff Creating a task-based WCF service

ff Managing packages with NuGet

ff Unit testing .NET applications

ff Sharing class libraries across runtimes

ff Detecting duplicate code

Introduction
In Chapter 3, Web Development – ASP.NET, HTML5, CSS, and JavaScript, we looked at
web development and how Visual Studio supports web developers. Whether it is used for
traditional desktop applications or designing apps for Windows 8.1, the .NET Framework
remains both popular and powerful.

In this chapter, we turn the spotlight on Visual Studio 2013's support for the .NET platform
for non-web applications. We will look specifically at functionality that has been added or
enhanced. This chapter will start by discussing what was included with the .NET Framework
4.5 and then move on to discuss the new features found in 4.5.1.

.NET Framework 4.5.1 Development

118

You should be aware that like its previous version, the .NET Framework 4.5, Framework 4.5.1
is an in-place upgrade of its 4.X predecessors. While 4.5 and 4.5.1 are mutually exclusive
(you can only have one of them installed), they will run side by side with earlier versions of
the framework (version 3.5 SP1 and its predecessors).

Be aware that the .NET Framework 4.5 is not supported on Windows XP,
Windows Vista, or Windows Server 2003. Extended support for Windows
XP SP3 ends in 2014. Extended support for Windows Server 2003 ends
in 2015. The .NET Framework 4.5.1 ships with VS2013 and is a part
of Windows 8.1 and Windows Server 2012R2. It is also available for
use on Windows Vista, Windows 7, and Windows Server 2008R2. Your
application's targeted audience should be a consideration when choosing
which framework to use, but most new applications should use the latest
version of the framework available.

Adding the Ribbon to a WPF application
Windows Presentation Foundation (WPF) remains the recommended choice for developing
desktop applications on the Windows platform. Visual Studio 2013 itself is a WPF application
and, even with Windows 8, there are still many applications that target the Windows Desktop.
This recipe will show how Microsoft's Ribbon control can be used in your applications.

Getting ready
You'll need some icons for this recipe. If you have your own set available, feel free to
use them. Otherwise, for this recipe we used an icon set available at PC Unleashed, via
http://pcunleashed.com/download/icon-sets/, specifically the Icons Unleashed
Vol. 1 - Computer Hardware set. Regardless of the icons that you use, make sure you have
downloaded these icons before starting this recipe; alternatively have a set of your own you
can use instead.

How to do it...
Here, we will see how to add the Ribbon control and how quickly it can be customized. Let's
get started!

1.	 Start Visual Studio and create a new WPF Application under Visual C# using the
default name.

Chapter 4

119

2.	 You need to add a reference to the Ribbon control in order to use it. Right-click on
the project in the Solution Explorer window and add a reference to the System.
Windows.Controls.Ribbon assembly. (Note that you can use the search box
for a faster search.)

3.	 The easiest way to work with the Ribbon control is to edit the XAML file directly as
there are a number of child controls that need to be added. Open the MainWindow.
xaml file and change the markup so that the base class is no longer a <Window>
control but a <RibbonWindow> control, as shown in the following screenshot:

4.	 You need to make a similar change in the code-behind file. Navigate to the
MainWindows.xaml.cs file and change the base class from Window to
RibbonWindow and add a using statement for the System.Windows.Controls.
Ribbon assembly to the file as well, as shown in the following screenshot:

.NET Framework 4.5.1 Development

120

5.	 Switch back to the designer. Add a Ribbon control to the form by adding a <Ribbon>
element inside the <Grid> element as shown. As you do so, the Ribbon will appear
in the designer window as shown in the following screenshot:

6.	 The Ribbon hosts tabs, groups, and buttons (amongst other things); so, populate the
Ribbon element by adding the following XAML code:
<RibbonTab x:Name="FirstTab" Header="Tab1">
 <RibbonGroup Header="Group 1">
 <RibbonButton Background="Azure" Label="Button 1" />
 <RibbonButton Background="AliceBlue" Label="Button 2"
 />
 </RibbonGroup>
 <RibbonGroup Header ="Group 2">
 <RibbonButton Background="Bisque" Label="Button 3" />
 <RibbonButton Background="MintCream" Label="Button 4"
 />
 </RibbonGroup>
</RibbonTab>
<RibbonTab Header="Tab2">
 <RibbonGroup Header="Group 3">
 <RibbonButton Background="Purple" Label="Button 5" />
 <RibbonButton Background="Pink" Label="Button 6" />
 </RibbonGroup>
</RibbonTab>

Chapter 4

121

7.	 Now would be a good time to run the application to verify that the Ribbon control
appears correctly and that you can switch between tab groups. The application
should look like the following screenshot. Close the running application when you
have confirmed things are working:

8.	 The Ribbon control also features a Quick Access Toolbar and an Application Menu.
Add a Quick Access Toolbar by adding the following code between the <Ribbon>
and <RibbonTab> elements:
<Grid>
<Ribbon>
 <Ribbon.QuickAccessToolBar>
 <RibbonQuickAccessToolBar>
 <RibbonQuickAccessToolBar.Items>
 <RibbonButton Background="Red" />
 <RibbonButton Background="Orange" />
 </RibbonQuickAccessToolBar.Items>
 </RibbonQuickAccessToolBar>
 </Ribbon.QuickAccessToolBar>
<RibbonTab x:Name="FirstTab" Header="Tab1">

9.	 Run the application again to confirm that the Quick Access Toolbar is appearing
correctly, as shown in the following screenshot;

10.	 At this point, it's time to add some images to those buttons. Start by adding an
Images folder to your project. (Right-click on your project, navigate to Add, and
select New Folder.)

.NET Framework 4.5.1 Development

122

11.	 From Windows Explorer, copy your icons (you should have downloaded this before
starting the recipe) into the Images folder.

12.	 In Visual Studio, click on the Show All Files icon in Solution Explorer. Select all the
files in the Images folder, right-click on them, and select Include in Project.

13.	 Hover the mouse over one of the image files in the Images folder. You will see a
preview of what each image looks like as you hover over each filename, making
it easier to identify the files you are working with. The following screenshot
demonstrates this behavior:

14.	 Edit the MainWindow.xaml file to replace each button background color with an
image. The QuickAccessToolbar element uses the SmallImageSource attribute
for images and the main RibbonTab buttons use the LargeImageSource attribute.
Make the changes for as many buttons as you like using the images you prefer.
You can avoid typing full path names by entering just the attribute name and then
dragging the image to use onto the XAML editor from Solution Explorer as shown
in the following screenshot. Just remember to change the image path so that it is a
relative path, not an absolute one:

Chapter 4

123

15.	 Now, let's run the program to see what it looks like with all of the icons added:

How it works...
While this recipe shows you how to lay out the new WPF Ribbon, it is hardly an exhaustive run
through the Ribbon control and nor is it meant to be. The recipe is to show you how Visual
Studio assists you when developing WPF applications. You should have also noticed that the
WPF designer feels better to use and is more responsive than previous versions of Visual
Studio designer (especially the 2010 edition) and that it keeps up with your XAML changes
better than before. This will make developing WPF and XAML applications in general a lot
smoother than before and it should remove some of the angst people have had with Visual
Studio's XAML designer.

Beyond the Ribbon, WPF also includes features such as asynchronous validation and the
ability to access collections on non-UI threads without needing to marshal calls. These extra
features, along with the improved binding, async language features, and general .NET 4.5
runtime enhancements should help you to deliver Windows Desktop applications that feel
more responsive for your users and don't suffer from the white screen of death anywhere
near as often.

See also
ff The Making your code asynchronous recipe in Chapter 6, Asynchrony in .NET

Creating a state machine in Visual Studio
Windows Workflow underwent a major overhaul for .NET 4.0 and was largely a ground-up
rewrite. As part of that rewrite, the workflow designer was also rebuilt; however, it was still
fairly slow, and with medium to large workflows, it was more than capable of crashing Visual
Studio, taking all your unsaved changes with it and generally annoying anyone who had to use
it for long periods of time.

.NET Framework 4.5.1 Development

124

What is a workflow? Developer Dino Esposito has said, "… a workflow-
based solution consists of making complex processes simpler to model and
implement…" Microsoft's MSDN provides in-depth information on creating
workflows, starting with a conceptual overview available at http://msdn.
microsoft.com/en-us/library/dd489465(v=vs.110).aspx.

In Visual Studio 2012 and higher, the workflow designer has been given some additional
attention to improve its stability and performance. For the workflow engine itself, Microsoft
has added much needed support for state machines. Let's have a look at how to put a state
machine together.

Getting ready
Start a premium version of Visual Studio and create a new project by navigating to
Visual Basic | Workflow | Activity Library.

How to do it...
Workflows are used to model a structured activity (typically, but not always, a business
process). We will create a simple workflow here to show what is available by performing the
following steps:

1.	 The Activity1.xaml file should be open in the designer when the project is
created, but if it isn't, open it now.

2.	 In the Toolbox, you will see the workflow activities as well as a new group called State
Machine. (If you don't see the Toolbox, you can get it by navigating to View | Toolbox
or Ctrl +Alt + X.) From within that group, drag a StateMachine activity onto the
Activity1.xaml designer, as shown in the following screenshot:

Chapter 4

125

You must drag it onto the Drop activity here text; the cursor will
change when you are on the target.

3.	 Add a second state by dragging a State activity onto the state machine you
just added in the designer. You should now have two states as shown in the
following screenshot:

4.	 Next, position your mouse near the edge of State1 as shown in the following
screenshot. A connector drag handle will appear (1). Click-and-drag it to join State1
to State2 (2). When you let go of the mouse, the transition will be given a default
name of T1 (3).

.NET Framework 4.5.1 Development

126

5.	 All state machine workflows need a final state, so drag a FinalState activity onto the
state machine and add transitions from the existing states to the final state as shown
in the following screenshot:

6.	 The default naming of states doesn't make much sense from a usability perspective,
especially if more states are added in the future. Before we rename them, notice
that the use of "breadcrumbs" can make navigating back to the StateMachine
activity easier. The following screenshot illustrates this:

7.	 Click on the headers of each state to edit their names and name them New Task, In
Progress, and Closed as shown in the following screenshot:

Chapter 4

127

8.	 To rename the state transitions, you will need to double-click on each one and
then click on the header to edit the description. Change the transition names to
Commenced, Cancelled, and Completed as shown in the following screenshot:

9.	 At the top-right corner of the New Task state is a blue warning symbol. This exists
because there are two possible transitions from New Task to other states. The
workflow engine needs a way to choose between the two transitions. Add an
argument to your workflow by clicking on the Arguments tab at the bottom
of the designer as shown in the following screenshot:

10.	 Click on the Create Argument line to create a new entry. Leave the argument name
as the default one but change the Argument type field to Boolean as shown in the
following screenshot:

.NET Framework 4.5.1 Development

128

11.	 Double-click on the Commenced transition in the designer, and in the Condition field,
enter argument1 = True as shown in the following screenshot:

Because argument1 is a Boolean, the = True comparison is
redundant. It is used here to aid readability and maintainability.

12.	 Return to the state machine view in the designer by clicking on the StateMachine
activity in the breadcrumbs, located at the top of the designer (as shown in step 6).

13.	 Set the Condition on the Cancelled transition to Not argument1, using the same
method you used in step 10.

14.	 Return again to the state machine view and note how the New Tasks state no
longer shows you the warning icon because there is now a way to choose between
the transitions. Build the application to ensure the workflow is defined correctly.
(You won't be able to run this directly without adding an executable project, but
building is sufficient to check for errors.)

How it works...
State machines are a very welcome addition to the Windows Workflow functionality and are
useful in many situations. In addition, each state has entry and exit actions that are activated
as the state machine transitions between states and can be used to customize how the
workflow behaves.

Chapter 4

129

Upon entering a state, the entry action is processed and when the action is complete the
trigger for each possible state transition is prepared. Triggers are effective event listeners
and state transitions only occur when a trigger event has been received and the condition
evaluates to true. The Workflow runtime provides a number of trigger activities, though in
many cases, you will need to create your own trigger activities specifically for your purposes.

There's more…
You can now search within workflows! If you've ever dealt with large workflows, then you'll be
well aware of the pain of not having a search feature.

Quick Find (Visual Studio's normal find function) will match on object properties, variables,
arguments, and expressions.

Find in Files will search the XAML representation of the workflow and match on anything it
finds in there. When double-clicking a search result, the designer will navigate to the activity
that matches the search result location.

Panning
Pan the designer either by dragging with the middle mouse button, or by holding down space
and dragging with the left mouse button.

Alternately, click on the panning icon at the bottom-right of the designer:

C# Workflows
In previous versions of Visual Studio, all workflow projects required expressions to be entered
using the Visual Basic syntax. With Visual Studio 2012/2013 C# workflow, projects will now
use C# expressions.

If you upgrade an existing workflow from .NET 4.0 to .NET 4.5, a compatibility flag is set on the
workflow so that any existing Visual Basic expressions will still work.

Versioning your workflows
Versioning problems have long hindered the adoption of Windows Workflow. Changing
a workflow definition could easily break long running, persisted workflows, and cause
applications to crash or data to be lost.

With Visual Studio 2012/2013, a new WorkflowIdentity class has been added for dealing
with persisted workflows. This class allows you to host multiple versions of a workflow side
by side so that your old persisted workflows can still run through to completion, while new
workflows will use the new definitions you provide.

.NET Framework 4.5.1 Development

130

In addition, Dynamic Update can be used to amend the definition of older, persisted workflows
if you want to bring them in line with your newer workflow definitions. For more information
refer to: http://msdn.microsoft.com/en-us/library/hh314052(v=vs.110).aspx

Creating a task-based WCF service
There's not a great deal of change in Visual Studio 2013 for Windows Communication
Foundation (WCF) development. However, don't misread that as there's not a lot of
improvement for WCF developers in the .NET Framework 4.5.X. It's simply that since WCF
is a technology focused on network communications, the visible changes in Visual Studio
are quite small.

WCF is Microsoft's framework designed for use in creating applications
based on service-oriented architecture. Some of the features provided
by WCF include interoperability, service metadata, data contracts, and
security. For in-depth information on using WCF, refer to http://msdn.
microsoft.com/en-us/library/dd456779(v=vs.110).aspx.

The only visible changes are in the Add Service Reference dialog box and the IntelliSense
support for WCF configurations.

In this recipe, you'll create a task-based WCF service so that you can see what has changed. A
sample WPF application will call this sample WCF service.

Getting ready
Simply start a premium version of Visual Studio and you're ready to go.

How to do it...
As you create these WCF applications, you will see how Visual Studio simplifies the process.
Let's get started:

1.	 Create a new project by navigating to Visual C# | WCF | WCF Service Application
and give it the default name.

2.	 Add to the solution another project by navigating to Visual C# | Windows | WPF
Application, also giving it the default name.

3.	 Compile the solution and start the WCF service to make sure it starts correctly and so
that you have a working service for the next few steps. Stop the application once you
are satisfied that it's working.

4.	 Back in Visual Studio, right-click on the WPF application and select
Add | Service Reference.

Chapter 4

131

5.	 Click on the Discover button. The Service1 web service should be discovered, as
shown in the following screenshot:

6.	 Click on the Advanced button in the bottom-left corner of the Add Service Reference
dialog box. Ensure that, in the options for service generation, Generate task-based
operations is selected and Allow generation of asynchronous operations is turned
ON as shown in the following screenshot:

7.	 Click on OK in this options' dialog box (Service Reference Settings) and then again
in the Add Service Reference dialog box to generate the service proxy. (In some
cases, Visual Studio may erroneously throw an error here, such as Unable to check
out the current file. If you get bit by this bug, simply restart Visual Studio and
try again.)

8.	 Go to the app.config file for the WPF application, locate the <endpoint>
configuration section, and hover the mouse over the name attribute. A tooltip will
appear to explain what this attribute is for as shown in the following screenshot.
Given the issues people historically have had with understanding the details in
WCF configuration, this IntelliSense information is very welcome:

.NET Framework 4.5.1 Development

132

9.	 Start adding a new endpoint configuration to the <client /> section by typing
<endpoint binding=. IntelliSense will kick in to show you the values that can be
placed inside the quotes. That makes editing WCF configurations much simpler than
trying to remember what all the valid values are. Select the basicHttpBinding
value as shown in the following screenshot:

10.	 Continue building the endpoint configuration by adding a
bindingConfiguration attribute. When you type the = (equals), IntelliSense
will pop up again and show you the binding configurations available as well as a
tooltip about the binding. Select the BasicHttpBinding_IService1 option
and then close the endpoint configuration element with />, as shown in the
following screenshot:

The recipe asks you to add it here so you can see the new
IntelliSense support for WCF configurations. A complete WCF
tutorial is outside the scope of this book, but once you finish
the recipe, try manually adding support for https using the
basicHttpsBinding class. For now, we will comment out
the second endpoint that we just added.

11.	 Returning to the WPF project, open the MainWindow.xaml file and change the
<Grid> element to a <StackPanel> element. Add a button and a textbox to the
<StackPanel> element as listed in the following code:
<StackPanel>
 <Button x:Name="btnAsync" Click="btnAsync_Click_1">click!
 </Button>
 <TextBlock x:Name="txtText">Not yet populated</TextBlock>
</StackPanel>

Chapter 4

133

12.	 Navigate to the code-behind file, MainWindow.xaml.cs, and add code for the
button click event handler so that it calls out to the WCF service, as follows:
async private void btnAsync_Click_1(object sender,
 RoutedEventArgs e){
 using (var client = new
 ServiceReference1.Service1Client())
 {
 var result = await client.GetDataAsync(3);
 txtText.Text = result;
 }
}

13.	 In Solution Explorer, right-click on the solution and select the Set StartUp
Projects option.

14.	 Choose Multiple startup projects and set Action to Start for both projects. Click on
OK to save the changes:

15.	 Press F5 to start debugging and when the WPF application appears, click on the
click! button to make the async call to the WCF service.

The text below the button should update to say You entered: 3, proving the call to the
service worked.

.NET Framework 4.5.1 Development

134

How it works...
As mentioned, the Add Service Reference dialog box can generate task-based proxy classes
that you can call from your code with an await keyword. This makes asynchronous calls to
services much easier to write, though you can still call the blocking, synchronous methods if
you need to. The generated code contains both the synchronous method call as well as the
task-based call.

WCF's ServiceModel Metadata Utility Tool (svcutil.exe) can also be used to generate
task-based proxies if you prefer to use the command-line tool instead of Visual Studio.

See also
ff The Making your code asynchronous recipe Chapter 6, Asynchrony in .NET

Managing packages with NuGet
Microsoft's approach to open source software and open source projects, in general, has
softened over the years from the "open source is evil" stance it took at the turn of the century
to the one where open source is now valued, embraced, and recognized as an integral part
of the development ecosystem. Microsoft is now so committed to open source that they are
developing a number of frameworks in an open manner including the ASP.NET Web Stack
(http://aspnetwebstack.codeplex.com) and providing contributions for a number of
third-party open source projects such as jQuery, Node.js, and Git.

With the amount of open source now available and the acceptance of open source as a
normal part of development, developers needed an easy way to locate and find open source
packages that could be used in their own projects; much like the package managers of other
languages such as Ruby and Python. As a result, Microsoft supported an open source project
to create a package manager for Visual Studio called the NuGet package manager. NuGet
(https://www.nuget.org/) allows developers to download packages of libraries that
will install themselves into a project, configure themselves, and then be ready for use by the
developer. The package manager also does the work of looking for new updates and applying
those updates when they are available.

In this recipe, you'll see the ways to use the NuGet package manager in Visual Studio.

Getting ready
Create a new ASP.NET Web Application under Visual C#, select the MVC 5 project template,
and give it a name of your choosing.

Chapter 4

135

How to do it…
1.	 In Solution Explorer, right-click on the references node for the project and select

Manage NuGet Packages.

2.	 The Manage NuGet Packages dialog box will appear. Under the Online grouping,
make sure nuget.org is selected on the left-hand side column and then in the search
box at the top-right corner, enter EntityFramework and wait a moment for the
results, as shown in the following screenshot:

3.	 As you can see, EntityFramework appears as the first result. Note the check mark
indicating that the package is already installed.

4.	 Now, let's add a new package. Replace the EntityFramework search text with
json.net.

5.	 The first result should be the Json.NET JSON framework. Click on the Install button.
Once the package has been installed, close the Manage NuGet Packages dialog box
using the Close button.

6.	 Close the NuGet window and then expand the References node for the project in
Solution Explorer. You should see not only the EntityFramework and Json.NET
assemblies but also assemblies for other packages that the bundler relies on.
A partial listing of the references is shown in the following screenshot:

.NET Framework 4.5.1 Development

136

7.	 Open the NuGet window again by right-clicking on the References node and selecting
Manage NuGet Packages.

8.	 Over time, the packages you have installed will become stale as the package owner
releases new and updated versions. In the NuGet package manager, select the
Updates node on the left-hand side column of the dialog box. Wait for a moment to
see if there are any available updates, as shown in the following screenshot:

9.	 In the preceding screenshot, you can see buttons labeled Update All and Update.
These give you the option of quickly updating all of the installed packages from
nuget.org or individually choosing which packages you would like to update. We
will continue and show how to do a bulk update from the Package Manager Console.

10.	 From Visual Studio's main menu, navigate to View | Other Windows and select
Package Manager Console.

11.	 The console will appear at the bottom of the screen. So, click inside it and enter the
command Update-Package and press Enter, as shown in the following screenshot:

Chapter 4

137

12.	 Since a particular package is not specified, NuGet will iterate over all installed
packages to see if any updates exist. Alternatively, you may enter a specific package to
check for updates on that single package (for example, Update-Package jquery).

13.	 NuGet will then locate and install updates for all packages automatically. Because
package installation in web projects often affects the Web.config file, you may get
prompted to reload it a number of times. Each time you do, just click on Yes.

The results of the update will be shown in the Package Manager Console, as shown
in the following screenshot (note you may receive a notice to restart Visual Studio
depending on the scope of the update):

14.	 Compile and run the application to check that everything still works as expected.

How it works...
NuGet uses a central, well-known location for storing packages located at
http://www.nuget.org. Anyone can create and upload packages to this site
and the site features a gallery allowing you to search and browse all available packages.
For many people, the NuGet site is the first port of call when looking for a package to help
them in their development efforts.

With Visual Studio 2012 Update 4 and Visual Studio 2013, Microsoft is using NuGet to deliver
their own packages via NuGet. As you may have noticed in earlier screenshots, this feed is
labeled Microsoft and .NET. This provides Microsoft with an easier way to deliver updates
and provides you with an easier way to install them on your system.

There's more…
We just scratched the surface of what NuGet can do, but it offers a couple of more useful
abilities. Let's take a look.

Automatically loading packages
If you are sharing solutions with different developers—perhaps you would like to try an open
source project or have recently changed your programming environments for example—you will
inevitably run into a situation where packages needed by your project are missing.

.NET Framework 4.5.1 Development

138

Visual Studio provides an option to automatically retrieve these packages for you, which can
be especially helpful in these situations when you want to focus on learning the code and
not be mired in troubleshooting build settings. To turn this feature ON or verify your current
settings, navigate to Tools | Library Package Manager | Package Manager Settings as
shown in the following screenshot:

Selecting both options (as shown in the preceding screenshot) will allow NuGet to download
missing packages automatically.

Using custom package locations
A lot of organizations build their own utilities, frameworks, and helpers for use in development
and share them across various projects. Managing these dependencies can become difficult
over time. Fortunately, NuGet can be configured to use local locations for packages, either
using a filesystem location or your own internal NuGet server.

If you wish to host your own NuGet server, instructions can be found at
http://github.com/NuGet/NuGetGallery/wiki/Hosting-
the-NuGet-Gallery-Locally-in-IIS. If you wish to host just your
own project-specific server via a custom feed, check out http://docs.
nuget.org/docs/creating-packages/hosting-your-own-
nuget-feeds.

To configure Visual Studio to use a local location for NuGet packages, go to Tools | Options
| Package Manager | Package Sources and add entries by filling in the Name and Source
fields and then clicking on the add button. The following screenshot shows two extra entries:
one configured to point to a local NuGet server and the other pointing to a network share:

Chapter 4

139

Unit testing .NET applications
When it comes to unit testing, Visual Studio has always been tightly tied to the MSTest
framework. The inclusion of a unit test framework inside Visual Studio has been excellent. It
has encouraged developers to improve their quality by writing tests to prove code functions as
expected. On the flip side, many developers regard MSTest as an inferior unit test framework
when compared to NUnit, XUnit, MbUnit, and other frameworks. The problem stems from the
fact that MSTest does so much more than unit testing and as a result suffers from poor speed
and bloat. Additionally, its assertion methods are fragmented across multiple classes and it
has a cumbersome approach to data-driven tests and expected exceptions. MSTest has also
been tied to the release cycle of Visual Studio, so updates have been very slow and it lags
behind when compared to the other test frameworks.

Microsoft is ending the tight coupling between Visual Studio and MSTest by making the
unit test framework pluggable. MSTest is still provided out of the box but now developers
can choose the framework that they like the most, as long as their choice of framework
implements a Visual Studio adapter.

.NET Framework 4.5.1 Development

140

Microsoft is also removing Test Impact Analysis from Visual Studio (it's still there in Microsoft
Test Manager) and replacing it with a Continuous Testing style feature instead. Continuous
Testing is an approach that has been gaining popularity because of the incredibly rapid
feedback cycle it gives developers. The idea is that each time a change is saved in the
source files, the unit tests are run to see if anything has broken. This works well with dynamic
languages such as Ruby; however, as .NET is a static language, this approach is not so simple.
In Visual Studio 2012 and 2013, instead of having all tests run whenever the source is saved,
you can have them run automatically each time the code is compiled.

This overall testing functionality is viewed and controlled by Test Explorer. In this recipe,
you will use the XUnit testing framework in a test first manner to implement a very simple
calculator and you'll see how the Continuous Testing feature works. The important part of this
recipe isn't so much the code you will write, but in seeing how Visual Studio can change your
development practices when it comes to unit testing. Let's get to it!

Getting ready
You are going to need a premium version of Visual Studio (Professional or higher) for this
recipe. Install the xUnit.net runner for Visual Studio 2012 and 2013. You can do so by
navigating to Tools | Extensions and Updates (search for xUnit) or download the .vsix
file from the Visual Studio gallery and install it manually (http://visualstudiogallery.
msdn.microsoft.com/463c5987-f82b-46c8-a97e-b1cde42b9099). In either case,
you will have to restart Visual Studio after installing it.

How to do it…
1.	 Open Visual Studio and create a new Class Library under Visual C# and name it

UnitTests.

2.	 Use NuGet to add the package xUnit.net to your project. See the Managing packages
with NuGet recipe in this chapter for a refresher on NuGet if needed.

3.	 Rename Class1.cs to CalculatorOperations.cs. You will be prompted to
rename all references to Class1. Click on Yes so that Visual Studio will rename
Class1 to CalculatorOperations in the code itself.

4.	 In the CalculatorOperations class file, add the following test method. Don't
worry if the code doesn't compile yet. In a test-driven approach, you write the tests
first to work out how your code should behave before you implement anything. Then,
you write the following implementation code to make the test(s) succeed:
using Xunit;

namespace UnitTests
{
 public class CalculatorOperations
 {

Chapter 4

141

 [Fact]
 public void Adding_1_and_2_should_give_3()
 {
 var calculator = new Calculator();
 var result = calculator.Add(1, 2);
 Assert.Equal(3, result);
 }
 }
}

5.	 You now need to add a Calculator class, but good practice dictates that we
shouldn't place it in your test assembly. Add a new C# class library to the unit test
solution and call it CalculationEngine.

6.	 Rename the Class1.cs file to the Calculator.cs file and when prompted, allow
Visual Studio to rename Class1 to Calculator.

7.	 Switch back to the UnitTests project and add a project reference to the
Calculator project. To do this, right-click on the References node for UnitTests
and select Add Reference…. Make sure Projects is selected on the right-hand side
column and then click on the checkbox for CalculationEngine, as shown in the
following screenshot:

8.	 Place the cursor on the Calculator() constructor call in the unit test and either
mouse over and click on the actions drop down or press Ctrl + . (Ctrl + Period) to
show the available actions. Select the using CalculationEngine; option to add the
required using statement to your test code.

.NET Framework 4.5.1 Development

142

9.	 Now place the cursor on the Add() method on the next line and bring up the
available tasks. Again, do this either by hovering over the code with the mouse and
then clicking on the options drop down when it appears or by pressing Ctrl + . and
selecting the only available option to generate the method stub.

10.	 Open Test Explorer by navigating to Test | Windows | Test Explorer.

11.	 Select the Run All option in the Test Explorer window to compile the code and run
the tests in the project for the first time.

12.	 The unit test should fail at this point because the method stub you generated for
the Add() method simply throws a NotImplementedException as shown in
the following screenshot:

13.	 Switch to the Calculator class file and implement the Add() method by using the
following code:
public class Calculator
{
 public object Add(int p1, int p2)
 {
 return p1+ p2;
 }
}

14.	 Press Ctrl + Shift + B to rebuild the solution. Right-clicking on the solution and
selecting Build All will have the same result.

15.	 The Test Explorer screen will now reflect a passing test as you have implemented the
method correctly.

How it works…
When using projects and unit testing frameworks supported by the test adapters, they will
take care of the discoverability aspects for you. The adapter driven approach has also allowed
Microsoft to create a unit test optimized version of MSTest that is fast and light and can be
used in standard class libraries without a problem.

Chapter 4

143

You can also mix and match your unit test frameworks. It is entirely valid to have MSTest,
xUnit, and NUnit tests in one assembly. For example, you may have a suite of older tests in
one framework and may want to transit to a new framework without reworking all those old
tests. Now you can, without any problem at all.

Out of the box, Visual Studio only supports the MSTest framework; however, adapters are
available in the Visual Studio Gallery for the major test frameworks, and the Chutzpah
test adapter adds support for both the QUnit and Jasmine JavaScript unit test frameworks.
(Chutzpah is available at http://chutzpah.codeplex.com/.)

As mentioned, MSTest no longer requires a TestSettings file for unit test
projects. TestSettings files can still be used with MSTest unit test projects;
however, if they are included, MSTest reverts to Visual Studio 2010
compatibility mode and you will have much slower execution of unit tests.

There's more…
The changes in the test runner are fairly dramatic and with it come a number of other changes
you should be aware of.

Can I restrict the unit tests that automatically execute?
In many projects, it is common to have unit tests in one test project and integration tests in
a second project. Unit tests are considered to be those tests that execute entirely in memory
and have no interactions with external systems such as the network, filesystem, screen, or
database. Integration tests are those tests that interact with external systems.

If you want to restrict the tests that run so that only unit tests run, and slower integration tests
are excluded, you will need to use the Test Explorer filter to limit the tests to run. If you have
your unit and integration tests in separate assemblies, then the FullName filter is likely to be
the filter that will help you the most.

Asynchronous tests
In .NET 4.5, MSTest now supports asynchronous tests that make use of the await keyword.
You can see this in the following code where the method signature is no longer a public
void method, but rather an async task:

[TestMethod]
async public Task Can_load_Bing_home_page()
{
 var client = new System.Net.WebClient();
 var page= await client.DownloadStringTaskAsync("http://www.bing.
com");
 StringAssert.Contains(page, "bing");
}

.NET Framework 4.5.1 Development

144

The asynchronous test ensures that the test runner will wait for the test to end before starting
the next test. It does not mean that multiple tests will be run in parallel; it is just that you can
test methods that use the async and await keywords.

Automatically trigger test execution
With Visual Studio Premium and Ultimate, the Test Explorer presents an additional feature:
automatically executing tests every time a build is made. To select this, use the icon located
on the Test Explorer as shown in the following screen:

See also
ff The Managing packages with NuGet recipe

ff The Touring the VS2013 IDE recipe of Chapter 1, Discovering Visual Studio 2013

Sharing class libraries across runtimes
There are a number of managed runtimes and profiles for .NET development, including the
.NET Framework, Silverlight, Windows Phone, and now the WinRT profile for Windows 8 (also
known as Windows Store). If you have to write code that can be shared across more than one
of these runtimes, it usually involves either the use of copy-and-paste development (never a
good idea!) or multiple versions of the same project and the use of linked files. The linked files
approach is cumbersome and error prone and often a pain to work with when Visual Studio is
telling you it can't open a file as it is already open in another project.

The solution to this is to use Portable Class Libraries. The idea here is that you can build a
class library that works across all desired runtimes by ensuring that only code that works
on all runtimes is used. Further, the compiler only builds the project once, regardless of the
number of runtimes supported, making the overall solution faster to build.

Let's look at a quick example of how a Silverlight application might talk to a .NET application
using this approach. To keep the recipe focused, we're only going to look at the connection
between the two runtimes, not building a full application.

Chapter 4

145

Getting ready
This requires a premium version of Visual Studio. Start the one that you have available and
you're ready to go.

How to do it...
1.	 Create a Silverlight Class Library project by navigating to Visual Basic | Silverlight

and giving it the default name. When you are prompted for the Silverlight version to
use, choose Silverlight 5. (Depending on your system, you may be prompted to install
the Silverlight runtime and SDK, install it if prompted.)

2.	 Right-click on the solution and add a Class Library project under Visual Basic, again
giving it the default name.

3.	 Right-click on the solution one more time and add a Portable Class Library project
under Visual Basic, once again giving it the default name.

4.	 When you are prompted to choose Target frameworks, change the selections so that
only .NET Framework 4.5 and higher and Silverlight 5 and higher are selected and
then click on the OK button as shown:

.NET Framework 4.5.1 Development

146

5.	 Right-click on the Silverlight project in Solution Explorer and select Add Reference.
In the Reference Manager dialog box, navigate to Solution | Projects and select the
checkbox next to PortableClassLibrary1. Click on OK to add the reference to
the project as shown in the following screenshot:

6.	 Likewise, right-click on the .NET class library project and add a reference to the
PortableClassLibrary1 project. You will get a warning about referencing a
project using a different .NET runtime and that you will need to compile the project
for IntelliSense to work correctly. Click on OK to dismiss the warning.

7.	 Navigate to the Class1.vb file in the PortableClassLibrary1 project and add a
method to the Class1 class as shown:
Public Class Class1
 Public Function SharedMethod() As Integer
 Return 42
 End Function
End Class

8.	 Compile the solution.

9.	 In the Class1.vb file of the ClassLibrary1 project, check that you can make a
call to the portable library using the following code:
Public Class Class1
 Public Sub CallPortableCode()
 Dim portable As New PortableClassLibrary1.Class1()
 Dim result = portable.SharedMethod()
 End Sub
End Class

10.	 Navigate to the Class1.vb file in the Silverlight project and add the same code
that you used in step 9 to check that a call to the portable library can be made from
Silverlight as well.

11.	 Compile the solution to confirm that there are no compiler errors and prove that you
can make calls from both the .NET Framework 4.5 code and Silverlight code to a
single shared, portable library.

Chapter 4

147

How it works...
The portable libraries themselves are just standard .NET class libraries with restrictions on
the framework calls that can be made from within them. The set of calls that can be made
is determined by the methods that are supported across all target runtimes selected in the
project's properties.

A good practice to follow when writing your portable libraries is to avoid adding references to
other libraries. Instead, try and design your PCLs as standalone libraries. Since most people
tend to use portable library classes for WCF contracts, data transfer objects, or calculation
libraries, this is unlikely to be too limiting.

One example of a PCL that demonstrates the advantages of PCLs is the HttpClient library
(https://www.nuget.org/packages/Microsoft.Net.Http) published by Microsoft.
This library allows an application to have a uniform way of making web calls without having to
write specific code for each platform.

There's more…
Coinciding with the release of Visual Studio 2013, Microsoft has loosened the license
restrictions on the portable class library reference assemblies. From a licensing standpoint,
this increases the utility of using PCLs across all of your target platforms for your client
software. Take advantage of PCLs to make your development process more efficient.

Xamarin offers products to add support to VS2013 for the iOS and
Android platforms. This includes support for writing PCLs. For more
information on the integration, see http://blog.xamarin.com/
pcl-projects-and-vs2013/ and for information on PCLs, check
http://docs.xamarin.com/guides/cross-platform/
application_fundamentals/pcl/.

Detecting duplicate code
Copy and paste development is generally regarded as a bad practice because bug fixes or
enhancements in one area of code have to be repeated in all the other copies of the same
code. Not only is this time consuming and tedious, but in large code bases, it's very easy to
miss a change, leading to bugs and lower overall quality.

With Visual Studio, Microsoft has provided a way to detect duplicate code so that you can take
remedial action to clean it up. Let's see how this is done.

.NET Framework 4.5.1 Development

148

Getting ready
You will need Visual Studio Premium or Ultimate for this recipe. Start it up and you're ready
to go.

How to do it...
1.	 Create a new Class Library project under Visual C# and name it OriginalLibrary.

2.	 Rename the Class1.cs file to the OriginalClass.cs file and allow Visual Studio
to rename the class itself when prompted.

3.	 Add a second C#-based Class Library project to the solution giving it the name
DuplicateLibrary.

4.	 Rename the Class1.cs file to the DuplicateClass.cs file, and as in step 2,
allow Visual Studio to rename the class itself when prompted.

5.	 In OriginalClass, add the following method:
public string StringWithSillyCheckDigit(int x, int y)
{
 if (x <= 0)
 throw new ArgumentOutOfRangeException("x", "must be
 positive");
 if (y <= 0)
 throw new ArgumentException("I don't like negatives",
 "y");
 var counter = "";
 for (int i = 0; i < x; i++)
 {
 counter += y;
 }
 var checkDigits = new List<char>() { 'a', 'b', 'c', 'd',
 'e' };
 var checkDigit = checkDigits[y % 5];
 counter += checkDigit;
 return counter;
}

6.	 Copy and paste the code you just added into DuplicateClass, renaming the
method to DuplicatedCheckDigit.

7.	 Rename the parameters in the DuplicatedCheckDigit method to p1 and p2.

Chapter 4

149

8.	 Rename i to loop and counter to outString. Your duplicated method should now
look like the following code:
public string DuplicatedCheckDigit(int p1, int p2)
{
 if (p1 <= 0)
 throw new ArgumentOutOfRangeException("p1", "must be
 positive");
 if (p2 <= 0)
 throw new ArgumentException("I don't like negatives",
 "p2");
 var outString = "";
 for (int loop = 0; loop < p1; loop++)
 {
 outString += p2;
 }
 var checkDigits = new List<char>() { 'a', 'b', 'c', 'd',
 'e' };
 var checkDigit = checkDigits[p2 % 5];
 outString += checkDigit;
 return outString;
}

9.	 From the Visual Studio menu, navigate to Analyze | Analyze Solution for Code
Clones. The Code Clone Analysis Results window will be displayed and will show
you where the duplication exists, as shown in the following screenshot:

10.	 Right-click on the Weak Match 1(2 Files) result and select Compare, as shown in the
following screenshot:

.NET Framework 4.5.1 Development

150

11.	 The two sections of duplicated code are shown in Visual Studio's new diff viewer and
you can decide what remedial action to take from there:

How it works...
This code would have been hard to find using just Find in Files and looking for variable names
or a single line of code. The clone detection algorithm in Visual Studio ignores differences in
variable names and instead looks at the structure of the code itself. It also limits searches to
duplicates that are a minimum of 10 statements long to prevent detection from taking a very
long time.

If you do want to search for smaller or specific sections of code, you can highlight code in
the editor, right-click on it, and select Find Matching Clones in Solution as shown in the
following screenshot:

Chapter 4

151

There's more…
There are a number of items that get ignored by the detection algorithm to help improve the
speed of detection and to exclude files that you are unlikely to be interested in. The following
files can be ignored or excluded:

ff Type declarations are ignored. Two classes with the same properties are not
considered to be clones, nor are classes with the same method signatures. Only the
code within the methods and properties is examined.

ff The *.designer.cs and *.designer.vb files are automatically excluded, as is
code within any InitializeComponent methods.

You can add a .codeclonesettings file to your project to exclude certain paths or file types
from the comparison. For example, if you are using T4 code generation, you may want to place
all the generated code in a subfolder and then exclude that folder from the clone detection
engine by adding an entry for it in the settings file.

A sample exclusion could be like the following code snippet. This file was named sample.
codeclonesettings and placed in the top level of the project DuplicateLibrary used in
the previous recipe. In this case, it blocks our DuplicateClass file from being examined.

<CodeCloneSettings>
 <Exclusions>
 <File>DuplicateClass.cs</File>
 </Exclusions>
</CodeCloneSettings>

It can be modified to use wildcards, and also ignore a whole directory as shown in the
following code snippet:

<CodeCloneSettings>
 <Exclusions>
 <File>ExcludeTheseFiles*.cs</File>
 </Exclusions>
</CodeCloneSettings>

5
Debugging Your .NET

Application

In this chapter, we will cover:

ff Maximizing everyday debugging

ff Debugging on remote machines and tablets

ff Debugging code in production with IntelliTrace

ff Debugging parallel code

ff Visualizing concurrency

Introduction
It's an unfortunate reality, but modern software development still requires developers to identify
and correct bugs in their code. The familiar edit-compile-test cycle is as familiar as a text editor,
and now, the rise of portable devices has added the need to measure for battery consumption
and optimization for multiple architectures. Fortunately, our development tools continue to
evolve to combat this rise in complexity, and Visual Studio continues to improve the arsenal.

Multi-threaded code and asynchronous code are probably the two most difficult areas for
most developers to work with and also the hardest to debug when you have a problem like a
race condition. A race condition occurs when multiple threads perform an operation at the
same time and the order in which they execute makes a difference to how the software runs
or how the output is generated. Race conditions often result in deadlocks, incorrect data
being used in other calculations, and random, unrepeatable crashes.

Debugging Your .NET Application

154

The other painful area to debug is the code running on other machines, including code in
production. Hooking up a remote debugger in previous versions of Visual Studio has been less
than simple, and as for debugging code in production, the experience was frustrating. In this
chapter, we're going to see how the improvements to the debugging experience that began
with Visual Studio 2012 has been expanded in Visual Studio 2013, and how it can help you
diagnose the root cause of a problem faster so you can fix it properly and not just patch over
the symptoms.

Maximizing everyday debugging
Given the frequency of debugging, any refinement to the tools used can pay immediate
dividends. Visual Studio 2013 brings the popular Edit and Continue feature into the 21st
century by supporting 64-bit code. Added to that is the new ability to see the return value of
functions in your debugger. The addition of these features combines to make debugging code
easier, allowing you to solve problems faster.

Getting ready
For this recipe, you will just need a premium version of VS2013 or you may use VS Express for
Windows Desktop. Be sure to run your choice on a machine using a 64-bit edition of Windows.
Note that Edit and Continue previously existed for 32-bit code.

How to do it…
Both features are now supported by C#/VB, but we will be using C# for our examples.
The features being demonstrated are compiler features, so feel free to use code from
one of your projects if you prefer. To see how Edit and Continue can benefit 64-bit
development, perform the following steps:

1.	 Create a new C# Console Application using the default name.

2.	 To ensure the demonstration is running with 64-bit code, we need to change the
default solution platform.

3.	 Click on the drop-down arrow next to Any CPU and select Configuration Manager…:

Chapter 5

155

4.	 When the Configuration Manager dialog opens, we can create a new Project
Platform targeting 64-bit code. To do this, click on the drop-down menu for Platform
and select <New...>:

5.	 When <New...> is selected, it will present the New Project Platform dialog box.
Select x64 as the new platform type:

6.	 Once x64 has been selected, you will return to the Configuration Manager. Verify
that x64 remains active under Platform and then click on Close to close this dialog.
The main IDE window will now indicate that x64 is active:

7.	 Now, let's add some code to demonstrate the new behavior. Replace the existing
code in your blank class file so that it looks like the following listing:
 class Program
 {
 static void Main(string[] args)
 {
 int w = 16;
 int h = 8;

Debugging Your .NET Application

156

 int area = calcArea(w, h);
 Console.WriteLine("Area: " + area);
 }

 private static int calcArea(int width, int height) {
 return width / height;
 }
 }

8.	 Let's set some breakpoints so that we are able to inspect during execution. First, add
a breakpoint to the Main method's Console line. Add a second breakpoint to the
calcArea method's return line. You can do this by either clicking on the left side of
the editor window's border or by right-clicking on the line, and selecting Breakpoint |
Insert Breakpoint:

9.	 If you are not sure where to click, use the right-click method and then practice
toggling the breakpoint by left-clicking on the breakpoint marker. Feel free to use
any method that you find most convenient.

Once the two breakpoints are added, Visual Studio will mark their location as
shown in the following screenshot (the arrow indicates where you may click to
toggle the breakpoint):

Chapter 5

157

10.	 With the breakpoint marker now set, let's debug the program. Begin debugging by
either pressing F5 or clicking on the Start button on the toolbar:

11.	 Once debugging starts, the program will quickly execute until stopped by the first
breakpoint. Let's first take a look at Edit and Continue. Visual Studio will stop at the
calcArea method's return line. Astute readers will notice an error (marked by 1 in
the following screenshot) present in the calculation as the area value returned should
be width * height. Make the correction.

12.	 Before continuing, note the variables listed in the Autos window (marked by 2 in the
following screenshot). If you don't see Autos, it can be made visible by pressing Ctrl +
D, A or through Debug | Windows | Autos while debugging.

Debugging Your .NET Application

158

13.	 After correcting the area calculation, advance the debugging step by pressing F10
twice. (Alternatively make the advancement by selecting the menu item Debug |
Step Over twice). Visual Studio will advance to the declaration for area. Note that
you were able to edit your code and continue debugging without restarting.

14.	 The Autos window will update to display the function's return value, which is 128
(the value for area has not been assigned yet):

There's more…
Programmers who write C++ already have the ability to see the return values of functions; this
just brings .NET developers into the fold. Your development experience won't have to suffer
based on the languages chosen for your projects.

The Edit and Continue functionality is also available for ASP.NET projects. New projects
created in VS2013 will have Edit and Continue enabled by default. Existing projects imported
to VS2013 will usually need this to be enabled if it hasn't been already. To do so, right-
click on your ASP.NET project in Solution Explorer and select Properties (alternatively, it is
also available via Project | <Project Name> Properties…). Navigate to the Web option
and scroll to the bottom to check the Enable Edit and Continue checkbox. The following
screenshot shows where this option is located on the properties page:

Chapter 5

159

Debugging on remote machines and tablets
For most developers, debugging an application means setting a breakpoint with F9 on a line
of code, and then pressing F5 (or Debug | Start Debugging) and stepping into and over
statements with F10 and F11.

The experience is great when you're debugging code on your local machine, but what if you
need to debug code running on a different machine and Visual Studio isn't installed on that
machine? This is where remote debugging tools come into play.

Even though many developers aren't aware of this functionality, debugging code on remote
machines with Visual Studio isn't anything new. It's just that until now, the debugging
experience has been limited and unrefined. With Visual Studio 2013, the experience is much
improved, and combined with speed improvements and an increasing range of devices that
applications need to run on, remote debugging is something every developer should know.

This recipe shows how to configure a machine for remote debugging and then debug an
application that you have deployed to that machine.

Getting ready
For this recipe, you will need a second machine to act as your remote machine. It doesn't
matter if it's a virtual or physical machine as long as your development machine and the
remote machine can communicate over a network connection.

Debugging Your .NET Application

160

The remote machine will need Remote Tools for Visual Studio 2013 installed before starting.
If you don't have the Remote Tools already installed, download them from the Microsoft
website at http://www.microsoft.com/en-us/download/details.aspx?id=40781
and then install them. Versions exist for each CPU architecture that Windows 8.1 supports:
x86, x64, and ARM. This recipe assumes that your local machine has a premium edition of
VS2013, but note Remote Tools does support Express for Windows Desktop and Express
for Windows.

Using the Remote Tools enables you to debug on a remote machine that does not have Visual
Studio installed, especially important for ARM-based devices such as the Surface RT where
there is no native version of Visual Studio available. It also saves time and the hassle of
maintaining a working development environment on each end-device you are targeting.

How to do it...
Remote debugging makes it easier to see how your application performs for end users by
minimizing the influence of your development environment. Let's see how to do it:

1.	 Create a new C# Console Application using the default name.

2.	 Open the Program.cs file and fill in the body of the Main() method as shown in the
following code snippet (there is an intentional bug in the code):
static void Main(string[] args)
{
 Console.Out.WriteLine("Press any key to begin");
 Console.ReadKey(); // Wait for keypress to start
 var charCode = 97;
 var outputBuilder = new StringBuilder();

 for (int i = 1; i < 26; i++)
 {
 outputBuilder.Append((char)(charCode + i));
 }

 var output = outputBuilder.ToString();
 Console.WriteLine(output); // should write "abcd...z"
 Console.ReadKey();
}

3.	 Run the program locally by pressing F5. When the console window appears, press any
key and you should see a string of characters appear. Press any key again to close
the program.

Chapter 5

161

4.	 You should now check if it works on the remote machine. On your remote machine,
start the Remote Debugger Configuration Wizard and ensure that the Run the
"Visual Studio Remote Debugger" service checkbox is deselected. Also ensure that
the firewall configuration is set appropriately for your network and then complete the
remaining steps of the wizard by taking the default values.

5.	 Now that you have configured it, start the Remote Debugger on your remote machine.

6.	 When the application appears, you should see a message showing the machine
name and port number that the debugger is listening on. Take a note of the machine
name as you'll be using it later on. In the following screenshot, the machine is named
WIN81VM and it is running on port 4018:

7.	 For the smoothest development and debugging experience, the remote machine
will need to run the code from your development machine via a network share.
Either add a specific share to the debug folder under the bin\debug path of your
development machine or access it via the inbuilt C$ share, for example, \\dev-
machine\C$\Users\Richard\Documents\Visual Studio 2013\Projects\
ConsoleApplication1\bin\debug (your location will vary).

Ensure that you can connect to your network share from the
remote machine. Code Access Security is not applied to .NET
4.0 applications by default, but it is for .NET 2.0 applications.
To debug a .NET 2.0 application on a remote machine via a file
share, you need to make sure that the share is a trusted location.
Use the caspol.exe utility in both the x86 and x64 versions of
the framework to modify the security settings of your machine.
CasPol.exe -m -pp off -ag 1.2 -url "file://\\
server\share*" FullTrust will set full trust permissions
on a file share.

8.	 In Visual Studio, on your development machine, open the project's properties by
right-clicking on the project in Solution Explorer and choosing Properties. Select
the Debug tab.

Debugging Your .NET Application

162

9.	 Change the Start Action to Start external program and enter the path to
the compiled application using the path that will be used by the remote
machine to start the application, for example, \\dev-machine\sharename\
ConsoleApplication1.exe.

10.	 In the Start Options, check the Use remote machine checkbox and enter the name
of the remote machine. This is the machine name you noted in step 6. Your Debug
tab should now look similar to the following screenshot:

11.	 On your development machine, press F5 to start debugging. Assuming there are no
firewall issues and your permissions are ok, Visual Studio will communicate with
the remote machine and launch the application for you automatically. Note that,
depending on the accounts used on each machine, you may be prompted for login
credentials. If that happens, enter the details of the user running the debugging
monitor on the remote machine.

12.	 If you have a problem communicating with the remote machine, check that the
firewall on the remote machine is allowing incoming connections. If it isn't, you can
either rerun the Remote Debugger Configuration Wizard to confirm the firewall
settings or manually add a rule to allow a connection on the port number that the
Remote Debugger is using (the port number is shown in step 6).

Chapter 5

163

13.	 The application is now waiting for you to press a key. Go back to your development
machine and set a breakpoint in the Main() method of Program.cs, somewhere
after the ReadKey() method. A good place would be where the outputBuilder
variable is initialized.

14.	 Switch back to the remote machine and press a key to continue program execution.

15.	 Switch back to the development machine. You should find that your breakpoint has
been hit and that the application is ready for you to continue debugging.

16.	 Step through the code in Visual Studio to get a feel of how quick the remote
debugging experience is and then continue executing down to the second Console.
ReadKey() statement. The easiest way to do this rather than looping through the
for loop 26 times is to right-click on the Console.ReadKey() statement and
select Run to Cursor.

17.	 You may notice that the output has dropped the 'a' at the start of the output string.
Is that a display problem or a bug in the code? You can check the string length to be
sure. Navigate to the Immediate Window and type ?output.Length to see how
long the output string is.

18.	 If the Immediate Window isn't visible, you can display it by pressing Ctrl + Alt + I or
choosing Debug | Windows | Immediate from the menu.

19.	 You should see the value 25 displayed. Note that this value is not from a process on
the local machine; it is from the process running on your remote machine. To verify
this, navigate to Debug | Attach to Process from the menu bar. In the Qualifier
drop-down, select the remote machine. If it does not appear, use the neighboring
Find... button. It will be suffixed by the port number that the remote debugger is
listening on. When the Available Processes list is populated, you should see that
your application is the only process on the remote machine that the debugger is
attached to (titled ConsoleRemote.exe in the following screenshot).

Debugging Your .NET Application

164

20.	 Stop debugging by either pressing Shift + F5 and clicking on the Stop button in the
debugging toolbar, or choosing Debug | Stop Debugging from the menu. This will
also terminate the process on the remote machine.

21.	 Fix the bug in the for loop by altering the loop variable to start from 0 instead of 1.
Your for loop should now look like the following code:
for (int i = 0; i < 26; i++)
{
 outputBuilder.Append((char)(charCode + i));
}

22.	 Without changing any other setting, press F5 to start debugging again. Visual Studio
will compile the application and launch it on your remote machine for you.

23.	 Run through the application again to verify that the output is now correct.

How it works...
The main thing to keep in mind when using the remote debugger is that you are looking at
data from the remote machine. The debug experience can feel so smooth and so normal that
it's easy at times to forget that a path name for a file, for example, is a path relative to the
remote machine and not your local machine.

Normally, the debugger runs using Windows authentication; however, it can be switched over
to the No Authentication mode. The No Authentication mode enables debugging scenarios for
managed and native debugging across versions of Windows that were previously not possible.
The danger of this approach is that it opens up a security hole, including allowing attackers to
launch any application they choose. Do not run the remote debugger on production machines
in this way. The remote debugger is a developer tool and should only be run when developers
require it.

There's more…
If you don't want to install the remote debugger on the remote machine, you can run it directly
from a file share; however, you won't be able to debug Windows Store apps in Windows 8 or
debug JavaScript.

Another thing to note is that when you are debugging a Windows Store app on Windows 8, you
will not need to change the Start Action of the project to start an external program. Leaving
it set to Start project and then ticking the checkbox and setting the value of the Use remote
machine field will tell Visual Studio that the project should be packaged and deployed to the
remote machine before debugging commences.

Chapter 5

165

Debugging an ASP.NET process
To debug ASP.NET websites running under IIS, you do not need to make any changes to
the project properties to configure the remote debugger. In fact, you can't. The options
aren't available.

For remote debugging, you will either need to run the remote debugger as a service or run the
application as an administrator. On your development machine, you then use the Attach to
Process dialog to connect to the ASP.NET worker process and begin the debugging session.

To configure the remote debugger as a service, rerun the Remote Debugger Configuration
Wizard and check the option to run it as a service.

Much like you did in this recipe, for the best debugging experience, you should configure
the IIS application on the remote machine to run from a network share, pointing to the web
application's source folder on your development machine.

Once the web application is running in Visual Studio, navigate to the Debug | Attach to
Process menu option. The Qualifier drop-down is the name of the debugger instance you are
connected to, and this should be the remote machine. If your target machine is not already
listed, you can use the Find button to locate available debuggers.

Once you are connected to the correct machine, locate the ASP.NET worker process (w3wp)
from the list, select Attach, and then close the window. You are now connected to the remote
debugger for the web application and can set breakpoints in your pages and step through
code just as you would expect.

Deploying directly to a remote machine
The suggestion to run the programs on the remote machine via a file share is just a tip to
make the development process simpler and to eliminate the time it takes to redeploy the
application you are trying to debug each time you make a change.

If you don't want to run the application from a file share, then you will need to deploy the
application to the remote machine and use the Attach to Process dialog to connect the
debugging session each time.

Debugging Your .NET Application

166

Missing symbols
While debugging remote processes, you may find that after you attach to a process and set a
breakpoint, it will look similar to the following screenshot:

This message appears because Visual Studio either can't load the symbol information (the
PDB file) of the executable file or the version that is running on the remote machine is not the
same as the one on your development machine. For example, you may have recompiled the
code on your development machine since you last deployed to the remote machine, causing
the two environments to no longer match.

There's a way to fix this. Follow the given steps:

1.	 Navigate to the Debug | Windows | Modules menu entry to display the Modules
window. You have to be actively running the debugger for this option to be available.

2.	 Right-click on the entry with the missing symbols, and from the options, choose Load
Symbols From | Symbol Path.

3.	 From the file selection dialog box, locate the correct symbol file (PDB file) to load.
Once you do this, the debug breakpoints will change to show filled-in red dots, as
expected, and the Modules window will indicate that symbols are loaded.

Debugging code in production with
IntelliTrace

Applications frequently seem to have the frustrating characteristic of performing very well
during the development and test cycle, only to be followed up by randomly misbehaving in
production environments for no apparent reason. This results in a frantic effort to try and
figure out what's going wrong from bug reports such as "it just stopped working" and "nothing
updated but I don't know why". Diagnosing these problems in a production environment can
be rather tricky, especially if you are in an environment where you have no production access.
This is where IntelliTrace can help.

Chapter 5

167

A traditional dump file only provides a capture of the runtime environment as a moment in
time; with IntelliTrace, a more lengthy and detailed record is made. IntelliTrace was introduced
in Visual Studio 2010 as a way for developers and testers to record what they'd just done,
leading up to a bug, and then step back through those actions to make a diagnosis of the bug
simpler. In Visual Studio 2012, this feature was extended so that system administrators can
capture IntelliTrace information from live, running production systems and send the logs to
developers for diagnosis.

With Visual Studio 2013, IntelliTrace has been expanded further. It can be used directly to
debug apps within VS2013, monitor a session in Test Manager, or it can also be used in
conjunction with Microsoft Monitoring Agent on production systems.

This recipe will show you how to gather information from a live application running in a
production environment and then diagnose and debug problems.

Getting ready
You will need a machine to use as your "production" machine. Of course, it doesn't have to
be a genuine production machine, just a second machine without Visual Studio Ultimate
installed. A virtual machine is perfectly acceptable. For this recipe, a Windows Server 2012
R2 environment was used. The recipe does require Visual Studio 2013 Ultimate on your
development machine.

Your nominated production machine will need to have .NET Framework 4.5, PowerShell,
and as you will be diagnosing a web application, Internet Information Server, installed on it.

If you are really tight for machines and can't even run a virtual
machine, then you can use your development machine as your
"production" server for the purposes of this recipe.

How to do it...
1.	 On your development machine, create a new application with the default name by

selecting Visual Basic | ASP.NET Web Application, and on the ensuing dialog, select
Web Forms as the type of project.

If you receive any errors regarding the PowerShell scripts not being able
to execute, you will need to change your Set-ExecutionPolicy via
PowerShell and restart Visual Studio. For a development environment,
this would typically mean changing the policy to RemoteSigned. For
more information, visit http://technet.microsoft.com/en-
us/library/ee176961.aspx.

Debugging Your .NET Application

168

2.	 Open the Default.aspx page and add a button to the bottom of the page (just
before closing the asp tag). Give it an ID of ClickMe, set the text attribute to
Click Me, and ensure that a button click event is created as shown in the
following code snippet:
<p>
<asp:Button ID="ClickMe" runat="server" OnClick="ClickMe_Click"
Text="Click Me" />
</p>
</asp:Content>

3.	 In the code behind file, add code for the button's click event handler as shown in the
following code snippet:
Protected Sub ClickMe_Click(sender As Object, e As EventArgs)
 Dim second As Integer = DateTime.Now.Second
 If (second Mod 2 = 0) Then
 Throw New ApplicationException("No clicky for you!")
 Else
 ClickMe.Text = "current second: " & second.ToString()
 End If
End Sub

4.	 Now, when you run the application and click on the button, an exception will be
thrown whenever the current time has an even numbered second.

5.	 Deploy your web application to your production server. Confirm that it runs and throws
exceptions randomly when the button is clicked. You will want to note the Site Name
and the Application Name that you use here. In the following screenshot, the Default
Web Site name was used and the application was installed as VS2013:

Chapter 5

169

6.	 Create a location on the production server to store the logfiles that we will be
generating. For this example, we will use C:\IntelliTraceLogs. In an actual
production environment, it is important to choose a location that is secure as
information in the IntelliTrace files can reveal potentially sensitive data from your
application. A performance consideration should also be made to use a separate
physical disk from the one hosting your application where possible.

7.	 Download the latest version of Microsoft Monitoring Agent 2013 available at
http://www.microsoft.com/en-us/download/details.aspx?id=40316
and install it on your production environment.

8.	 Open a PowerShell prompt as an Administrator and enter the following command:
Start-WebApplication-Monitoring.

9.	 You will be prompted for the name of the application to monitor, but you must also
include the site it is located on. In our example, it is Default Web Site\VS2013.
Next, you will be prompted for the mode of monitoring; enter Trace. Finally, you
will be prompted for the location where the output should be logged. Enter C:\
IntelliTraceLogs.

10.	 If you want to now verify the status of your monitor, enter
Get-WebApplicationMonitoringStatus, which will display the
information we just entered for what is being monitored. Verify that your
monitor is operational and then load your website and generate both some
successful and unsuccessful clicks.

11.	 In true production environments, logging should have minimal interference with an
application's performance. To obtain a trace file while the monitor continues to run,
you can enter CheckPoint-WebApplicationMonitoring. This will prompt for
the name of the site you want to generate a log for, and then, one will be saved to the
previously stated output directory. In this case, we can stop the monitor and review
our logs. Enter Stop-WebApplicationMonitoring –all, which will stop the
monitoring service and a final log. The file will end in .itrace and be found in
C:\IntelliTraceLogs.

Debugging Your .NET Application

170

12.	 Copy the logfile back to your development machine. Double-click on the .iTrace file
to open it in Visual Studio. Alternately, if Visual Studio is already open, you can either
press Ctrl + O or use the File | Open | File menu option to load it. Once the file
loads, you should be able to see a Web Requests section that looks a little like
the following screenshot:

13.	 In the request list, find a request with a return code of 500, select it, and then click
on the Request Details button below the list, as shown in the following screenshot:

14.	 The details of the individual request are shown along with the actions that occurred
and any exceptions that were thrown:

Chapter 5

171

15.	 Select the entry in the list where the exception is first thrown, as shown in the
previous screenshot in step 14, and click on the Debug This Event button.

16.	 The code will be displayed and the execution point will be positioned where the
exception was thrown:

17.	 You can then use the IntelliTrace debugging controls to move around the code and
diagnose what occurred by following the execution path and inspecting parameters.

Debugging Your .NET Application

172

How it works...
No recompilation of code was required for this to work. The application is untouched and the
website didn't need to be restarted. Collecting IntelliTrace data is something that your system
administrators can do on your behalf, safe in the knowledge that the application will be
unchanged, and that existing web requests will complete normally. This makes debugging and
diagnosing those tricky production problems a much more viable prospect since checkpoints
can be made periodically at intervals that minimize server disruption.

There's more…
The IntelliTrace settings used in the recipe are the detailed Trace settings. They will record
execution flow as well as events and will have some impact on production performance. The
alternative option is to use the Monitor setting, which has a minimal impact on performance
as it focuses on exceptions and performance.

Don't forget that IntelliTrace files can get very big, very quickly. Make sure that the location you
place them in has plenty of space if you want to capture data over a reasonable time period,
and more so, if you have a busy production server. Logging directly to the system drive, like we
did in the recipe, is generally not recommended since filling your system drive will bring your
server to a grinding halt.

Finding the variable values
If you haven't used it before, you might expect IntelliTrace to be equivalent to the normal
debugging experience. Unfortunately, the performance impact of recording all the data
needed to simulate the full debugging experience makes this prohibitive.

By default, variable values are not recorded by IntelliTrace unless a breakpoint has been set
or an event occurs. In the recipe, if you hovered your mouse over the second variable in the
code window during the debugging session, you would see an indication that the data was
not collected.

If you wanted to capture that information, you could configure IntelliTrace to record tracing
information and add trace statements for your code, or you could write custom IntelliTrace
events (outside the scope of this book) and add them to the IntelliTrace configuration. In
either case, it would require recompiling and redeploying code to production, so there is
an assumption that you know the level of trace information you will need ahead of time.

Debugging parallel code
With the prevalence of multi-core CPUs, we are seeing more and more applications taking
advantage of parallel processing to improve performance. .NET Framework 4.0 added a
number of features such as Task Parallel Library (TPL) and Parallel LINQ (PLINQ) to make
the development of applications that take advantage of multi-core CPUs much simpler.

Chapter 5

173

The debugging experience for threaded applications in Visual Studio has got better with each
release, and VS2013 is no exception. Let's take a look at what is available.

Getting ready
Start a premium edition Visual Studio 2013 and create a new C# console application. For this
recipe, call the application ParallelDebugging.

How to do it…
In order to debug the parallel code, perform the following steps:

1.	 Use the following code to populate the body of Program.cs. It's a pretty simple
program that starts a parallel for loop, which in turn calls a method that performs
meaningless calculations intended to keep the CPU busy.
class Program
{
 static void Main(string[] args)
 {
 Parallel.For(0, 100000, i => SlowMethod(i + 1));
 }

 private static void SlowMethod(int i)
 {
 var total = 0;
 for (int loop = 0; loop < 1000000; loop++)
 {
 total += loop;
 total /= i;
 }
 }
}

2.	 Press F5 to run the program, and after a second or two, break into the debugger
either by pressing the pause button in Visual Studio or by pressing Ctrl + Alt + Break.

3.	 You will most likely break inside SlowMethod(). When you do, you should be able to
see the current value of the variable i by hovering over the variable name as shown
in the following screenshot:

Debugging Your .NET Application

174

4.	 So far, this is standard behavior while debugging; however, you are only seeing the
value of i for a single thread. What about the value of i on all the other threads?
From the menu, navigate to Debug | Windows | Threads, and you will see all
the threads in the application, including the threads that the parallel for loop
has created.

5.	 Right-click on a different thread from the one you are currently on and select Switch
To Thread from the context menu. Now look at the values of i, loop, and total, and
you will see that they are different.

6.	 This is useful but still fairly cumbersome if you want to see the value of i across all
threads. For a more holistic view, from the menu, navigate to Debug | Windows |
Parallel Watch | Parallel Watch 1. You will see all the current threads listed and an
area in the header of the last column for adding watch expressions. Any expression
entered will be automatically evaluated across all threads for you.

7.	 Add watch expressions for i and 1000000-loop as shown in the following screenshot,
so you can see how this works (click on the <Add Watch> column header to enter
a watch):

Chapter 5

175

8.	 Stop debugging. In Visual Studio, add a second console application named Parallel2
to the current solution. In Program.cs, use the following code for the body of
the file:
class Program
{
 static void Main(string[] args)
 {
 Parallel.For(0, 100000, i => AnotherSlowMethod(i + 1));
 }

 private static void AnotherSlowMethod(int i)
 {
 var total = 0;
 var sb = new StringBuilder(1000 * i);
 for (int loop = 0; loop < 1000 * i; loop++)
 {
 sb.Append(loop);
 }
 total = sb.ToString().Length;
 }
}

9.	 Right-click on the solution in Solution Explorer, and in the context menu, select Set
Startup Projects. Select Multiple startup projects and ensure that the Action value
for both console applications is Start.

10.	 Click on OK to save the changes and then press F5 to start debugging.

11.	 Wait for a short period of time and then break into the debugger using the same
process as explained in step 2.

Debugging Your .NET Application

176

12.	 From the menu, navigate to Debug | Windows | Tasks. You will now see that you
have multiple processes, each with multiple tasks. You can also see what thread
each task is running on, as shown in the following screenshot:

13.	 From the menu, navigate to Debug | Windows | Parallel Stacks. This view was
added in Visual Studio 2010, and in Visual Studio 2012, it was extended to show
stacks for multiple processes. As shown in the following screenshot, you now have
two processes being displayed, each with a main thread and the spawned threads
created by the parallel for loops of each process:

Chapter 5

177

How it works…
Apart from the debugging improvements themselves, Microsoft has worked hard on the Task
Parallel Library, PLINQ, and other multithreading-related framework features and gained some
serious performance improvements in .NET 4.5. Since .NET 4.5 is an in-place replacement
of the .NET 4.0 runtime, it means that any of your .NET 4.0 code that uses these libraries
will automatically benefit from the performance improvements, without you making any
recompilation or code changes.

See also
ff The Visualizing concurrency recipe

ff For more information on the Task Parallel Library, refer to the MSDN documentation at
http://msdn.microsoft.com/en-us/library/dd460717(v=vs.110).aspx

ff Information on PLINQ is available at http://msdn.microsoft.com/en-us/
library/dd460688(v=vs.110).aspx

Visualizing concurrency
The Concurrency Visualizer is another tool that was added in Visual Studio 2010 to assist
with multithreaded code, and just like the other features of Visual Studio related to threading
in Visual Studio 2012, it too has been the subject of a number of improvements. With Visual
Studio 2013, it has been pulled out of the default installation but is available on the Visual
Studio Gallery.

In this recipe, we'll take a look at these improvements and see how you can understand better
what is happening inside your application when it runs.

Getting ready
You will need to use a premium version of VS2013 for this recipe. Download and
install the Concurrency Visualizer from the Visual Studio Gallery available at http://
visualstudiogallery.msdn.microsoft.com/24b56e51-fcc2-423f-b811-
f16f3fa3af7a. Once installed, reopen Visual Studio and create a new C# console
application named Concurrency.

Debugging Your .NET Application

178

How to do it...
1.	 Open the Program.cs file and add the following statements to the using

statements at the top of the file:
using System.Threading;
using System.Diagnostics.Tracing;

2.	 In the body of Program.cs, add the following code. It's fairly straightforward. You
simply build up a list of tasks you want to run and then execute them. Each task
then calls SpinWait on the thread for a period of time. It's similar to the Thread.
Sleep method, but instead of the thread yielding back to the operating system's task
scheduler, it keeps the CPU busy.
static void Main(string[] args)
{
 var taskList = new List<Task>();
 for (int i = 0; i < 10; i++)
 {
 taskList.Add(Task.Run(() =>
 {
 MyEventSource.Log.RecordAnEvent(DateTime.Now.Second);
 Thread.SpinWait(10000000);
 }));
 }
 Task.WaitAll(taskList.ToArray());
}

3.	 Next, add a custom event source as shown in the following code snippet. It will be
called whenever a new task is created in the main program's loop.
[EventSource(Guid = "EE8B671C-90FA-4D6F-A238-F779DBCA6128")]
class MyEventSource : EventSource
{
 internal static MyEventSource Log = new MyEventSource();

 [Event(1)]
 public void RecordAnEvent(int data)
 {
 WriteEvent(1, data);
 }
}

Chapter 5

179

4.	 Launch the Concurrency Visualizer, either by pressing the keyboard shortcut of Alt
+ Shift + F5, or from the menu by navigating to Analyze | Concurrency Visualizer |
Start with Current Project.

For the purpose of the recipe, if you are prompted to
configure a symbol cache, or you see a warning about
running without executive paging on an x64 machine, you
can select No in each case.
If you are prompted for elevation, then select Yes since the
collection analyzer requires administrative privileges.

5.	 When the process completes and the data collection ends, you will see a window as
shown in the following screenshot:

Debugging Your .NET Application

180

6.	 At the very top of the window is an overview area with drag handles that you can use
to limit the amount of data displayed. Move the red drag handles toward each other
so that the selected area contains the high activity area of the trace file as shown in
the following screenshot:

7.	 Navigate to the Threads view by clicking on the button just under the overview area.
You will be shown what has been happening in each thread as seen in the following
screenshot, but you can also see that your custom event isn't displaying yet. Let's
figure out the reason behind this.

8.	 Navigate to Analyze | Concurrency Visualizer | Advanced Settings and select the
Markers tab.

9.	 Click on the green plus icon to add a new marker. Enter RecordAnEvent as the
name of the marker, and in the Provider GUID field, enter the GUID you used in the
MyEventSource Event attribute. The following screenshot shows how this should
look. Click on OK to close the dialog box:

Chapter 5

181

10.	 To make this step a little easier, copy the GUID from the code and paste it into the
dialog. It'll help prevent errors while entering the GUID.

11.	 Repeat step 4 to reanalyze the application and collect updated results, including your
newly-added event marker.

12.	 When the Concurrency Visualizer opens, switch to the Threads view as
before. You should be able to find the custom event information as shown
in the following screenshot:

Debugging Your .NET Application

182

How it works...
The Concurrency Visualizer exists to help you understand what the CPU is doing when your
application runs and where performance issues may originate from. The ability to add your
own custom markers is very useful when you want to tie events that are specific to your
application to the visualizer. Apart from custom event data, the visualizer also understands
the events from the Task Parallel Library, PLINQ, synchronized data structures, and more.
This information gives you a great insight into your code and will hopefully help you isolate
performance bottlenecks and bugs.

See also
ff The Debugging parallel code recipe

ff Information on PLINQ is available at http://msdn.microsoft.com/en-us/
library/dd460688(v=vs.110).aspx

6
Asynchrony in .NET

In this chapter, we will cover:

ff Making your code asynchronous

ff Understanding asynchrony and the Windows Runtime

ff Using asynchrony with web applications

ff Working with actors and the TPL Dataflow Library

Introduction
The use of asynchronous code has become more popular as a way for programmers to deal
with latency and blocking operations. For example, an application running with the benefit
of significant local resources is still at the mercy of the response time of other systems that
it has to communicate with. Frequently, applications are waiting for the user to respond, but
they shouldn't consume all available system resources while they wait.

To deal with these and similar challenges, a multithreaded code has been used. With this
approach, the work that needs to be done is handled by multiple threads; so while one
thread is handling network communication, another may update the display. Sometimes,
this approach has its own limitations as additional threads increase complexity for the
programmer and there are practical limitations on how many threads can be effectively
created and utilized.

Whether your code is currently multithreaded or not, the use of asynchronous techniques can
be beneficial as they eliminate blocking on an executing thread. This applies whether it is the
sole main execution thread or a particular thread devoted to the task at hand.

Asynchrony in .NET

184

Microsoft realized that while most developers understand the benefits of asynchronous code
and the improvements it can bring about in their applications, the programming models
involved in asynchrony were fairly cumbersome, verbose, and in some cases quite difficult
to get right. As a result, most developers ignored asynchrony unless circumstances forced
it upon them. The extra complexity, effort, time, chance for bugs, and difficulty in debugging
meant that it simply wasn't worth it for most developers.

To ensure reading and writing asynchronous code is no longer restricted to the domain
experts among us, Visual Studio 2012 and .NET 4.5 introduced the async and await
keywords for both the C# and Visual Basic languages. These keywords make the
asynchronous code as easy to read, write, and debug as a normal synchronous code.

As you saw in Chapter 5, Debugging Your .NET Application, the debugging experience for .NET
code has been greatly improved. When this is combined with the improved language features,
the implementation cost of asynchronous code has been made much easier and so should be
considered for use to see if it is appropriate for your projects.

In this chapter, you'll be looking specifically at the async and await keywords and seeing
how Visual Studio 2013 supports them.

Making your code asynchronous
So, you've got yourself an application that might be lacking in the performance department. If
you're honest, it's probably horribly slow, and yet when you look at the performance counters
on the host machine, it doesn't seem to be doing all that much. The odds are high that your
existing code is operating slowly and blocking the execution thread, which prevents other code
from executing.

It gets even worse in web applications that come under heavy load. Every request thread that
gets blocked is a point where other requests can get queued, and before too long you've got
yourself a server that is throwing 503 Service Unavailable errors.

Time to take that synchronous code, stick an "a" on the front of it, and more efficiently take
advantage of your production system's hardware. Keep in mind that before you make all of
your code asynchronous, you should understand where it blocks and where it doesn't (refer
to Chapter 5, Debugging Your .NET Application, for some tips on getting started with this).

The overhead of using asynchronous code everywhere can actually make your
application run slower if you aren't careful (this is similar to the fact that you
cannot improve application performance solely by adding dozens of execution
threads). While techniques such as multithreading and asynchronous
programming can help in many situations, they do not represent a magical
cure-all that is appropriate in every situation.

Chapter 6

185

Getting ready
You will need an Internet connection for this recipe to work since you will be loading data from
various RSS feeds and displaying it.

So, ensure you have a working connection, then simply start one of the premium editions of
VS2013 or VS Express for Windows Desktop and you're ready to go.

How to do it...
Perform the following steps:

1.	 Create a C# Console Application named FeedReader. This application will read
the feeds from a number of sites and display them on the console. At the end of
the display, the total time required for the feeds to be fetched and displayed will
be shown.

2.	 In the program, classes from a number of different namespaces will be used.
To save some time, add the following code to the using statements at the top
of Program.cs:
using System.Diagnostics;
using System.Net;
using System.Net.Cache;
using System.Xml.Linq;

3.	 Before you implement the main method, you need to create some supporting
methods. Add a ReadFeed() private method, as shown after the Main() method.
It creates a web client to read an RSS feed with the cache setting turned off. This will
ensure that we always pull data from the Internet and not a local cached copy. The
following is the code for ReadFeed():
private static string ReadFeed(string url)
{
 var client = new WebClient()
 {
 CachePolicy = new RequestCachePolicy(RequestCacheLevel.
NoCacheNoStore)
 };
 var contents = client.DownloadString(url);
 return contents;
}

Asynchrony in .NET

186

4.	 Add a PublishedDate() method below the ReadFeed() method. It will convert
the dates in the feed, that System.DateTime doesn't handle, into dates that can
be parsed. The following is the code for PublishedDate():
public static DateTime PublishedDate(XElement item)
{
 var s = (string)item.Element("pubDate");
 s = s.Replace("EST", "-0500");
 s = s.Replace("EDT", "-0400");
 s = s.Replace("CST", "-0600");
 s = s.Replace("CDT", "-0500");
 s = s.Replace("MST", "-0700");
 s = s.Replace("MDT", "-0600");
 s = s.Replace("PST", "-0800");
 s = s.Replace("PDT", "-0700");
 DateTime d;
 if (DateTime.TryParse(s, out d)) return d;
 return DateTime.MinValue;
}

5.	 Now move back into the Main() method and create a variable for the list of feeds to
read from as follows (feel free to customize to suit your personal tastes):
static void Main(string[] args)
{
 var feedUrls = new List<string>() {
 "http://massively.joystiq.com/rss.xml",
 "http://feeds2.feedburner.com/alvinashcraft",
 "http://blogs.msdn.com/b/pfxteam/rss.aspx",
 "http://feeds.feedburner.com/ScottHanselman",
 };
}

6.	 To continue in Main(), create a Stopwatch instance so that you can start timing
how long the execution takes, and then add the code to load the data from the feeds
as follows:
var stopwatch = Stopwatch.StartNew();
var feeds = (from url in feedUrls select ReadFeed(url)).ToArray();

7.	 You need to parse the feed so that you can extract something to show on screen. Add
the following code in the Main() method:
var items = from feed in feeds
 from channel in XElement.Parse(feed).
Elements("channel")
 from item in channel.Elements("item").Take(1)
 let date = PublishedDate(item)
 orderby date descending
 select new

Chapter 6

187

 {
 Title = (string)channel.Element("title"),
 Link = (string)channel.Element("link"),
 PostTitle = (string)item.Element("title"),
 PostLink = (string)item.Element("link"),
 Date = date
 };

8.	 Complete the Main() method by adding the following code to display an item from
each feed on the console and show the total time it took to process all feeds:
foreach (var item in items)
{
 Console.WriteLine("Title: {0} [{1}]", item.Title, item.Link);
 Console.WriteLine(" Post: {0}[{1}]", item.PostTitle, item.
PostLink);
 Console.WriteLine(" Date: " + item.Date);
 Console.WriteLine("---------");
}

Console.WriteLine("Total Time: " + stopwatch.Elapsed);
Console.ReadKey(); // this line will be removed in Step 16

9.	 Compile the program and check if it runs. Don't panic if the console takes a little
while to show some text, you've got some slow code running here. When it does
eventually complete, you should see output similar to the following screenshot:

Asynchrony in .NET

188

10.	 As you can see, since each request is being made in a synchronous manner, this
does not execute very fast. This program contacts each site sequentially, waits
for a response, and then contacts the next site in the list. Even though they are
independent servers, each delayed response increases overall execution time. This
isn't very efficient, so let's introduce the await and async keywords in an effort
to improve our program's performance. First, locate the ReadFeed() method and
change the return type from string to Task<string>.

11.	 You will then need to return a Task<string> object from the method,
but you can't just cast the contents variable to that type. Fortunately, the
WebClient class includes a task-based version of DownloadString
called DownloadStringTaskAsync that returns a Task<string>
object, which is perfect for our needs. Change the code to use client.
DownloadStringTaskAsync(url) as follows:
private static Task<string> ReadFeed(string url)
{
 var client = new WebClient()
 {
 CachePolicy = new RequestCachePolicy(RequestCacheLevel.
NoCacheNoStore)
 };
 var contents = client.DownloadStringTaskAsync(url);
 return contents;
}

12.	 Navigate back up to the Main() method and you will see a problem with the
Parse() method in the LINQ statement. The root cause is that the feeds
variable is now an array of the Task<string> objects, and not string objects.

13.	 Change the code where feeds is assigned to wrap the LINQ statement in a Task.
WhenAll() call instead of using .ToArray(). The Task.WhenAll method creates
a task that waits until all of the inner tasks returned by the enclosed LINQ statement
are complete. The await keyword tells the compiler that the task should be executed
asynchronously and the result assigned to the feeds variable. The variable feeds is
defined as follows:
var feeds = await Task.WhenAll(from url in feedUrls select
ReadFeed(url));

14.	 There is still a problem. The compiler is now complaining about the await keyword
not being valid. Any method where the await keyword is used must have the async
keyword in its declaration. Go to the declaration of the Main() method and add the
async keyword as shown in the following code:
static async void Main(string[] args)

Chapter 6

189

15.	 Compile the application. You will get an error indicating that the Main method can't
be made asynchronous as it is the program entry point.

16.	 This is easy enough to work around. Retitle the Main() method to static async
Task ProcessFeedsAsync() and insert a new Main() method above it, using
the following code. Also, remove the ReadKey() method from the end of the
ProcessFeedsAsync() method so that the user is not prompted for an input
twice. The result should be like the following code:
static void Main(string[] args)
{
 Console.WriteLine("starting...");
 ProcessFeedsAsync().Wait();
 Console.WriteLine("finished...");
 Console.ReadKey();
}
static async Task ProcessFeedsAsync()

17.	 Compile and run the program. You should see an output somewhat similar to the
following screenshot and the elapsed time should be shorter than before:

Asynchrony in .NET

190

How it works...
The final version of the program written using asynchronous techniques provides better results
based on the nature of the work we are trying to accomplish (I/O dependent processing). The
primary impediment to timely execution is the wait imposed by each server's response time.
In the original program, even one slow server can impede the results as the delay cascades
through each request. The asynchronous version avoids this by making each request in a
non-blocking manner, so each request can be started without waiting for the preceding
request to complete.

The DownloadStringTaskAsync() method shows off an important convention to be
aware of in the .NET 4.5 Framework design. There is a naming convention to help you to
locate the asynchronous versions of methods, where all the methods that are asynchronous
have an "async" suffix on their names. In situations where an asynchronous method exists
from previous framework versions, the newer, task-based, asynchronous methods are named
with the "TaskAsync" suffix instead.

In step 16, the ReadKey() method was added to stop the Main() method just
so that we can see the output of the program before the window closes. The line
ProcessFeedsAsync().Wait(); calls the Wait() method so that the program will not
terminate before receiving a response from of all the asynchronous tasks that were started.
This use of Wait() is what allows an overall program flow to run as we would expect it to:
starting is printed, the feeds retrieved and displayed, and then finishing is printed when the
program has completed its work.

As you've seen, Visual Studio offers enough warnings and errors through IntelliSense to make
the conversion of synchronous code to asynchronous, reasonably straightforward, as long as
you make changes in small, incremental steps. Large scale changes of code, regardless of
what those changes may be, are always difficult and error prone, especially if you lack unit
tests or other mechanisms to verify that your changes haven't broken any functionality.

There's more…
It's possible to overdo it. Every piece of asynchronous code comes with a certain amount
of overhead. There is a CPU cost to context switching and a higher memory footprint used
for maintaining the memory state of each asynchronous task/method, and it is possible to
reduce the performance of your application when they are used inappropriately.

The design guideline for the Windows Runtime libraries in Windows 8 was that any method
that was likely to take more than 50 ms to complete was changed to be asynchronous. Before
you go and improve all the methods in your application, start by determining which of your
current methods are the slowest. Also, take into consideration what a function is trying to do.

Chapter 6

191

An initial step would be to start by improving only methods that take more than 500 ms to
complete and resolve those first, before targeting the faster methods. Using asynchronous
code for this example was ideal, since each feed is located on a separate server and obtaining
results from one server isn't dependent on another.

When determining an appropriate balance between synchronous and asynchronous code,
you should first define what your application's current performance profile is so that you can
accurately measure what effect your changes have had. Because each and every application
is different, finding the right mix can be an art. As a tip, identify the slowest areas of your
application and target them first. I/O-based methods are good candidates for consideration.
As you improve performance, keep an eye on how much time it costs you to make your code
asynchronous versus the improvement you are seeing in the overall application performance.

See also
ff Stephen Cleary has written an informative article for the MSDN magazine, Best

Practices in Asynchronous Programming, available at http://msdn.microsoft.
com/en-us/magazine/jj991977.aspx

Understanding asynchrony and the Windows
Runtime

When developing the Windows Runtime for Windows 8/8.1, Microsoft followed a design
guideline where any synchronous method that might take longer than 50 ms to complete
was to be removed and replaced with an asynchronous version. The goal behind this design
decision is to dramatically improve the chances of developers building applications that work
smoothly without blocking threads on framework calls.

In this recipe, you're going to revisit the RSS feed reader concept, just as you did in the
Making your code asynchronous recipe, though this time you're going to be creating a
Windows Store application.

There are a few differences between a Windows Store application and a console application,
which include differences in the classes available. For example, the WebClient class doesn't
exist in WinRT, so you'll be using the HttpClient class instead.

For variety, you will be writing this code using Visual Basic.

Asynchrony in .NET

192

Getting ready
Ensure you are running Windows 8.1 and then launch Visual Studio 2013. You will need either
one of the premium editions or Visual Studio Express 2013 for Windows. You will also need
an unexpired developer license, which Visual Studio will prompt for if you don't have it already.
Simply log in with your Microsoft ID and obtain a current license.

How to do it...
Perform the following steps:

1.	 Create a new project by navigating to Visual Basic | Windows Store | Blank App
(XAML) and name it FeedReaderApp.

2.	 Add a class named Post to the application using the following code. This class will
hold the details of each post from the RSS feed that we will show on screen.
Public Class Post
 Public Property Title As String
 Public Property Link As String
 Public Property PostTitle As String
 Public Property PostLink As String
 Public Property PostDate As DateTime
End Class

3.	 Open MainPage.xaml and add the following XAML to the <Grid /> element to
define the markup of how the results should appear. The layout consists of a button
to start the feed loading and a ListBox element in which the results are displayed.
You also have a TextBlock element in which you'll post the time it takes to read
the feeds.
<Grid Background="{ThemeResource
ApplicationPageBackgroundThemeBrush}">
 <Button Name="LoadFeeds" Margin="116,60,0,0"
VerticalAlignment="Top">
 Load Feeds
 </Button>
 <TextBlock Name="TimeTaken" HorizontalAlignment="Left"
Height="36" Margin="257,60,0,0" TextWrapping="Wrap"
 VerticalAlignment="Top" Width="360"
FontSize="32">
 Waiting for click...
 </TextBlock>
 <ListBox Height="450" HorizontalAlignment="Left"
Margin="116,140,0,0" Name="PostsListBox" VerticalAlignment="Top"
Width="500" >
 <ListBox.ItemTemplate>

Chapter 6

193

 <DataTemplate>
 <StackPanel Orientation="Vertical" Height="110">
 <TextBlock Text="{Binding Title}" />
 <TextBlock Text="{Binding Link}" />
 <TextBlock Text="{Binding PostTitle}" />
 <TextBlock Text="{Binding PostLink}" />
 <TextBlock Text="{Binding PostDate}" />
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
</Grid>

4.	 Next, navigate to the code behind the file MainPage.xaml.vb, and add a couple of
Imports statements that you will need later as follows:
Imports System.Net.Http
Imports System.Net.Http.Headers

5.	 Now, add some initial code to define the RSS feeds our program will use and a
collection to hold the Post objects as follows:
Public NotInheritable Class MainPage
 Inherits Page

 Public Property Posts As List(Of Post)
 Dim feedUrls As New List(Of String)

 Public Sub New()
 InitializeComponent()
 feedUrls = New List(Of String) From {
 "http://massively.joystiq.com/rss.xml",
 "http://feeds.feedburner.com/ScottHanselman",
 "http://www.nasa.gov/rss/dyn/breaking_news.rss"
 }
 Posts = New List(Of Post)
 End Sub
End Class

6.	 Add the PublishedDate() helper method to the class after the New() method
as follows:
Public Function PublishedDate(item As XElement) As DateTime
 Dim s As String = CType(item.Element("pubDate"), String)
 s = s.Replace("EST", "-0500")
 s = s.Replace("EDT", "-0400")
 s = s.Replace("CST", "-0600")

Asynchrony in .NET

194

 s = s.Replace("CDT", "-0500")
 s = s.Replace("MST", "-0700")
 s = s.Replace("MDT", "-0600")
 s = s.Replace("PST", "-0800")
 s = s.Replace("PDT", "-0700")

 Dim d As DateTime
 If DateTime.TryParse(s, d) Then
 Return d
 End If
 Return DateTime.MinValue
End Function

7.	 Add the ReadFeed() helper method below the PublishedDate() method using
the following code:
Private Async Function ReadFeed(url As String) As Task(Of String)
 Dim client As New HttpClient
 Dim cacheControl As New CacheControlHeaderValue With {
 .NoCache = True,
 .NoStore = True
 }
 client.DefaultRequestHeaders.CacheControl = cacheControl
 client.MaxResponseContentBufferSize = Integer.MaxValue
 Dim response As HttpResponseMessage = Await client.
GetAsync(url)
 Dim content As String = Await response.Content.
ReadAsStringAsync()

 Dim _posts = From channel In XElement.Parse(content).
Elements("channel")
 From item In channel.Elements("item").Take(1)
 Let _date = PublishedDate(item)
 Order By _date Descending
 Select New Post With {
 .Title = CType(channel.Element("title"), String),
 .Link = CType(channel.Element("link"), String),
 .PostTitle = CType(item.Element("title"), String),
 .PostLink = CType(item.Element("link"), String),
 .PostDate = _date
 }
 Dim post = _posts.First
 Posts.Add(post)
 Return content
End Function

Chapter 6

195

8.	 It's now time to add some functionalities to the button that loads the feeds. Write a
handler for the LoadFeeds button's click event using the following code:
Private Async Sub LoadFeeds_Click(sender As Object, e As
RoutedEventArgs) Handles LoadFeeds.Click
 Dim _stopwatch = Stopwatch.StartNew
 Await Task.WhenAll(From url In feedUrls Select ReadFeed(url))
 Dim _timespan As TimeSpan = _stopwatch.Elapsed
 TimeTaken.Text = _timespan.ToString
 PostsListBox.ItemsSource = Posts
End Sub 'End of method

9.	 Compile and run the program. When the UI appears, click on (or press if your
machine is touch-enabled) the Load Feeds button, wait a few seconds, and you
should see the results of your work appear as in the following screenshot:

Asynchrony in .NET

196

How it works...
In step 8, you added a LoadFeeds.Click event handler. The important thing to note about
this method is that it is a async method and that await is used with the Task.WhenAll
method. When the application runs and you click on the button, the click event fires the
event handler, which in turn starts the background processing that reads the feeds. While
the application is waiting for that background process to complete, control is returned to the
main application for any other work that needs to be done, ensuring that you do not block
the application while waiting for the feeds to be retrieved. When the feed retrieval completes,
execution returns to the click event handler, which then updates the UI with the results.

In step 7, the ReadFeed() method looks similar to what you used in the console application
in the Making your code asynchronous recipe; however, you will now see that you are using
the HttpClient class instead of the WebClient class as it isn't available in the Windows
Runtime. The HttpClient class also requires different code to set up the cache control
values and you have to specify the response buffer size; otherwise, you can get runtime
exceptions on long feeds.

Since this is a Windows Store app and you are coding against WinRT and the .NET Framework
4.5 Windows Store app profile, you cannot produce a synchronous version of the application.
The synchronous API calls that you might have used with a console or WPF application simply
aren't available. This makes the await and async keywords critical for Windows Store
apps. Get familiar with them, know them, and use them. Without these keywords, developing
asynchronous applications that meet modern design guidelines would be so much harder
to do and so much more fragile and difficult to debug. These two little keywords make
asynchronous programming much easier.

Using asynchrony with web applications
Internet Information Server (IIS) has limits on the number of requests and I/O threads it
can use. Blocking any of these threads means IIS is forced to wait until the thread is released
before another request can be processed. When there are no threads available to process
requests (because of blocking or a high-server load), requests start to queue up, and over
time, that queue can grow until it reaches its maximum size, at which point the dreaded 503
Service Unavailable message will be displayed to the visitors on your site. This is not
really what you want.

Historically, developers may have overlooked the benefits of using an asynchronous design
when it came to web application design. This oversight may have been due to a mindset or
limitations of the available technology. The rise of Node.js and similar asynchronous-based
technologies demonstrates that this mentality is quickly changing. Most developers want a
responsive, scalable web application that can support hundreds, if not thousands, of users
and are willing to consider new approaches if that would mean better results.

Chapter 6

197

High-server load due to a large volume of visitors is not something you can control. What is
in your control, however, is your ability to write code that doesn't block threads and allows IIS
to scale and process more requests than would have been possible otherwise. If you want
a responsive, scalable web application that supports hundreds or thousands of users per
server, you need to make the best use of the hardware you are on and you must consider
the problems that are caused by blocking threads.

Once again, you'll use the feed reader scenario, but for simplicity, you'll just make the network
calls to retrieve the RSS feeds and then display the time it took to do so.

Getting ready
Simply start a premium edition of Visual Studio or VS2013 for Web and you're ready to go.

How to do it...
Create an asynchronous web application by the following steps:

1.	 Start a new C# ASP.NET Web Application and then choose the Web Forms project
type. Keep the default project name or pick one of your own.

2.	 Add a new Web Form item to the project using the default name of WebForm1.

3.	 In WebForm1.aspx, add Async="true" to the end of the page directive. This tells
ASP.NET to allow the page life cycle events prior to the PreRender event to execute
asynchronous tasks. This insertion is shown in the following screenshot:

4.	 Further down in the page body, add an id attribute to the <div> element and a
runat="server" attribute as shown in the following code so that you can place
the timing results in it when the page executes:
<body>
 <form id="form1" runat="server">
 <div id="timeTaken" runat="server" />
 <div>
 </div>
 </form>
</body>

Asynchrony in .NET

198

5.	 Now, navigate to the WebForm1.aspx.cs code behind the file and add the following
using statements to what is already listed:
using System.Diagnostics;
using System.Threading.Tasks;
using System.Net;
using System.Net.Cache;

6.	 Next, add the supporting ReadFeed() method to read a single RSS feed:
private async static Task<string> ReadFeed(string url)
{
 var client = new WebClient()
 {
 CachePolicy = new RequestCachePolicy(RequestCacheLevel.
NoCacheNoStore)
 };
 return await client.DownloadStringTaskAsync(url);
}

7.	 Now that you have the ReadFeed() method implemented, you should implement
the Page_Init() method to read all the feed information during page startup.
Because you want the page to load asynchronously, you will need to register a
PageAsyncTask object. This lets ASP.NET know that you are performing an
asynchronous operation, which is important since page life cycle events themselves
are not asynchronous and without them the page would render before your tasks
were complete. The following code is the implementation for Page_Init():
private TimeSpan duration;

protected void Page_Init(object sender, EventArgs e)
{
 var feedUrls = new List<string>() {
	 "http://massively.joystiq.com/rss.xml",
 "http://feeds.feedburner.com/ScottHanselman",
 "http://www.nasa.gov/rss/dyn/breaking_news.rss"
 };

 RegisterAsyncTask(new PageAsyncTask(async (ct) =>
 {
 var stopwatch = Stopwatch.StartNew();
 var feeds = await Task.WhenAll(
 from url in feedUrls select ReadFeed(url));
 foreach (var feed in feeds)
 {
 Debug.WriteLine(feed.Length);
 }

Chapter 6

199

 duration = stopwatch.Elapsed;
 timeTaken.InnerText = duration.ToString();
 }));
}

8.	 Finally, add code to the Page_PreRender() method so that the duration of the
entire page lifecycle, inclusive of the RSS reading, can be seen in the debug console
in Visual Studio.
protected void Page_PreRender(object sender, EventArgs e)
{
 Debug.WriteLine("Duration: {0}", duration);
}

9.	 Press F5 to start debugging the application. After a few seconds, the page load
should complete and render a screen similar to the following screenshot:

10.	 Leaving the page open, switch back to Visual Studio, which should still be in debug
mode. Look at the contents of the Output window and the Debug messages in
particular. As shown in the following screenshot, you should see that the debug
message from the PreRender event is displayed before the four numbers, showing
the size of data pulled from the RSS feeds.

The duration shows as zero because the Page_Init method has been completed,
but PageAsyncTask you registered has not yet been executed by the time the
PreRender method is called.

Asynchrony in .NET

200

How it works...
It's important to keep in mind that with ASP.NET Web Forms, the page methods are executed
synchronously, even if you put the async keyword on the method declarations. You must use
RegisterAsyncTask, just as you needed to in the previous .NET versions.

Because of the async keyword, the registering of tasks is now simply a matter of including
a lambda in the code. You don't need to follow the old style of asynchronous programming
anymore and you don't have to write any begin and end methods for the framework to call.

You will also notice that the page itself still took a while to load. The asynchronous approach
you used allows the web server as a whole to scale and process more requests concurrently.
It doesn't magically make those slow network calls to the RSS feeds any faster, so be prepared
to think of other ways to improve your user interface to indicate to your users that something
is happening and that they are not needlessly waiting.

There's more…
When it comes to ASP.NET MVC-based applications, things are even easier. Your controller
still inherits from the AsyncController class; however, instead of having to write method
pairs for the beginning and ending of an asynchronous operation, you simply have to create a
controller method that returns a Task<T>. Take a look at the following example:

public async Task<ActionResult> Index()
{
 await LongRunningMethod();
 return View();
}

This is much better than how asynchronous controllers worked in previous versions of ASP.
NET MVC; it is now much easier.

See also
ff The Making your code asynchronous recipe at the beginning of this chapter

Working with actors and the TPL Dataflow
Library

With Visual Studio 2010 and .NET 4.0, we were given the Task Parallel Library (TPL),
which allowed us to process a known set of data or operations over multiple threads
using constructs such as the Parallel.For loop.

Chapter 6

201

Coinciding with the release of Visual Studio 2012, Microsoft has now given us the ability to
take any data we like and process it in chunks through a series of steps, where each step can
be processed independent of the others. This library is called the TPL Dataflow Library.

An interesting thing to note about this library is that it was originally included as part of .NET
Framework in the pre-release versions, but the team moved it to a NuGet distribution model
so that changes and updates to the package could be made outside of the normal .NET
life cycle. A similar approach has been taken with the Managed Extensibility Framework
(MEF) for web and Windows Store apps. This change to the distribution model shows a
willingness from Microsoft to change their practices so that they can be more responsive to
the developer's needs.

From a terminology perspective, the processing steps are called Actors because they "act" on
the data they are presented with and the series of steps performed are typically referred to as
a pipeline.

A fairly common example of this is in image processing where a set of images needs to be
converted in some way, such as adding sepia tones, ensuring all images are in portrait mode,
or doing facial recognition. Another scenario might be taking streaming data, such as sensor
feeds, and processing that to determine actions to take.

This recipe will show you how the library works. However, to keep things simple, we won't do
any fancy image processing. Instead, we'll just take some keyboard input and display it back
on the screen after having converted it to uppercase and encoded it using Base64. If you
would like to explore further after completing this recipe, you will find some references to
more information listed later in this recipe.

In order to do this, we will use an ActionBlock object and a TransformBlock object. An
ActionBlock object is a target block that calls a user-provided delegate when it receives
data, while a TransformBlock object can be both a source and a target. In this recipe, you
will use a TransformBlock object to convert characters to uppercase and encode them
before passing them to an ActionBlock object to display them on screen.

Getting ready
Simply start a premium edition of VS2013 or use VS Express for Windows Desktop and you're
ready to go.

How to do it...
Create a DataFlow powered application using the following steps:

1.	 Create a new application targeting .NET Framework 4.5 by navigating to Visual C# |
Console Application and name it DataFlow.

Asynchrony in .NET

202

2.	 Using NuGet, add the TPL Dataflow library to the project. The package name to
use for installation when using the Package Manager Console is Microsoft.Tpl.
Datalfow; otherwise, search for TPL on the Manage NuGet Packages for Solution
dialog. (Refer to the Managing packages with NuGet recipe in Chapter 4, .NET
Framework 4.5.1 Development, if you need a refresher on how to do this.)

3.	 Open Program.cs and at the top of the file, add the following using statements:
using System.Threading;
using System.Threading.Tasks;
using System.Threading.Tasks.Dataflow;

4.	 In the Main() method of Program.cs, add the following code to define the
ActionBlock. The method in the ActionBlock object displays a String on the
console and has a Sleep method call in it to simulate long running work. This gives
you a way to slow down processing and force data to be queued between steps in
the pipeline.
var slowDisplay = new ActionBlock<string>(async s =>
 {
 await Task.Run(() => Thread.Sleep(1000));
 Console.WriteLine(s);
 }
 , new ExecutionDataflowBlockOptions { MaxDegreeOfParallelism =
4 }
);

5.	 In the Main() method, continue to add the code for TransformBlock. The
TransformBlock object will take a char as input and return an uppercase Base64
encoded string. The TransformBlock object is also linked to the ActionBlock
object to create a two-step pipeline as follows:
var transformer = new TransformBlock<char, string>(c =>
{
 var upper = c.ToString().ToUpperInvariant();
 var bytes = ASCIIEncoding.ASCII.GetBytes(upper);
 var output = Convert.ToBase64String(bytes);
 return output;
});
transformer.LinkTo(slowDisplay);

6.	 Now add the following code to take input from the console and pass it to the first step
of the pipeline (the TransformBlock object in this case). You also need to close
and flush the pipeline when you hit Enter so that you can exit the program:
while (true)
{
 var key = Console.ReadKey();
 if (key.Key == ConsoleKey.Enter)

Chapter 6

203

 {
 transformer.Complete();
 Console.WriteLine("waiting for the queue to flush");
 transformer.Completion.Wait();
 slowDisplay.Complete();
 slowDisplay.Completion.Wait();
 Console.WriteLine("press any key");
 Console.ReadKey();
 break;
 }
 transformer.Post(key.KeyChar);
}

7.	 Run the program. When the console window appears, just randomly press characters,
and when you are done hit Enter. You should see an output similar to the following
screenshot. Note how the encoded strings appear in batches up to four, though this
may be one or two if you have a CPU with less than four cores.

How it works...
Let's look at what just happened. First, you defined two actors. The first being the
ActionBlock object that takes a string and displays it on screen and a second, the
TransformBlock, that takes a character as input and returns an encoded string as the
output. You then linked the TransformBlock object to the ActionBlock object to create
the pipeline for the data to flow through.

Next, you took data that was being streamed to you (the console key presses) and passed
each key press to the pipeline as soon as it arrived. This continued until the user hit Enter,
at which point the Complete() method is used to tell the actors that they should expect no
more data. Once the queues have been flushed, the user is prompted to hit a key to close the
program. (If you don't flush the queues, you will lose the data that is still in them when the
program completes—never a good thing.)

Asynchrony in .NET

204

You can watch the queue flushing process by entering a bunch of characters
and then immediately pressing Enter. Depending on the speed of your
machine, you will see the waiting for the queue to flush message scroll past
followed by the remaining characters.

Now, when you ran the program, the TransformBlock object did its work very quickly and
passed its output to the ActionBlock. The interesting thing to note is that even though
the data was queuing up to be processed by the ActionBlock object, the amount of code
you had to write to do that was zero. The TPL Dataflow Library takes care of all the difficult
plumbing code, thread management, and the communication of data between actors,
as well as determining how many actors it can run at once.

There's more…
You may also be wondering what happens in less straightforward scenarios, such as when you
want to conditionally pass data or messages to the next actor. Fortunately, the TPL Dataflow
Library is quite powerful and this recipe is just an introduction to what it offers. For example,
the LinkTo() method has a predicate parameter that you can use to filter the messages and
decide which actors should do what.

You could also batch up data for processing in the later steps by adding data to a buffer using
the BufferBlock object and only passing buffered data to subsequent pipeline steps when
the buffer is full. There are a lot of possibilities, so feel free to go and explore what the library
has to offer.

The eagle-eyed among you may also have noticed that the lambda function used by the
ActionBlock object featured the async keyword. This was done so that the action block
doesn't itself block execution of the program when performing the long-running task and
prevent any more input from being processed.

See also
ff For more information about Task Parallel Library (TPL), visit

http://msdn.microsoft.com/en-us/library/dd460717(v=vs.110).aspx

ff For more information on Dataflow, visit
http://msdn.microsoft.com/en-us/library/hh228603(v=vs.110).aspx

ff The Making your code asynchronous recipe

ff The Debugging parallel code with IntelliTrace recipe in Chapter 5, Debugging Your
.NET Application.

7
Unwrapping C++

Development

In this chapter, we will cover:

ff Using XAML with C++

ff Unit testing C++ applications

ff Analyzing your C++ code

ff Using a custom rule set

ff Working with DirectX in Visual Studio 2013

ff Creating a shader using DGSL

ff Creating and displaying a 3D model

ff Using the Visual Studio Graphics Diagnostics

Introduction
Before the rise of .NET, Java, and newer languages, C++ occupied a dominant position as
the go-to choice for development of Windows applications. As the 21st century progressed,
the use and popularity of these other languages grew, while C++ seemed to suffer somewhat
without a vocal champion. As a result, this led to C++ becoming more of a specialist language,
to the point where it is now commonly seen as the language for writing operating systems,
device drivers, game engines, and similar applications where speed is of the essence.

Unwrapping C++ Development

206

In recent years, this decline has somewhat moderated due to a renewed push in C++ support
by Microsoft, as well as renewed interest by developers who find that so-called "bare-metal"
programming may provide better performance for applications running on portable devices.
Without ignoring .NET or JavaScript, Microsoft has been improving C++ support. VS2013
demonstrates this as it includes several components of the C++11 language standard and
some long-requested pieces of the C99 standard.

As a C++ developer or someone interested in C++ with Visual Studio 2013, you will find
improved support for modern C++ through both support for language standards as well
as improved tooling in Visual Studio itself.

This chapter will cover a variety of areas to show how VS2013 can make your C++ development
more productive. We will start by looking at XAML, we'll then spend some time on some useful
diagnostic tools, and then conclude with a look at some DirectX-based features.

Using XAML with C++
User interface development with C++ for Windows applications can be a challenging
experience. When Visual Basic first appeared all those years ago, developers flocked to
it because building a user interface in it was so much more productive than building the
equivalent UI using C++, and C++ has never really caught up since.

Over recent years, with Microsoft moving away from WinForms, and the rise of declarative
interface design with XAML, building a flexible yet powerful user interface has never been
easier. The functionality offered by XAML-based UI technologies is impressive, with data
binding in particular being a genuine productivity enhancement.

Meanwhile, C++ developers have seemingly been left further and further behind. The most
common source of user interface development is typically found in game studios. Starting
with Visual Studio 2012, the power and flexibility of the XAML-based user interface design is
now available for C++ developers, making C++ a legitimate choice for business applications.

C++ can only use XAML when creating WinRT applications.
You cannot use this combination together to create
traditional Windows desktop applications.

It's not just business applications that benefit though. Developers of DirectX applications can
use XAML to render interface elements and composite them with their application's DirectX
output. For game developers, this might be things such as application menus, score displays,
and so on. Alternatively, you can have XAML-based applications with islands of DirectX in
them, allowing developers of applications with a need for 3D imaging (such as medical or
geospatial systems) to mix and match DirectX and XAML as required.

The choice and flexibility is up to you. For this recipe, you'll create a simple XAML-based
interface with data binding to see how it all fits together.

Chapter 7

207

Getting ready
Ensure that you are on a Windows 8.1 machine. Windows Store app development is not
supported on prior versions of Windows.

Start a premium version of Visual Studio 2013 or use VS Express 2013 for Windows
and you will be ready to go.

How to do it...
Create the app by following these steps:

1.	 Create a new Blank App (XAML) project by navigating to Visual C++ | Windows
Store and name it CppDataBinding.

2.	 Open the MainPage.xaml file and add the following code inside the
<Grid> element:
<Border BorderBrush="LightBlue" BorderThickness="4"
 CornerRadius="20" Margin="5">
 <StackPanel Margin="5">
 <TextBlock Text="Red level" Margin="5" />
 <Slider x:Name="redLevelSlider" Minimum="0"
 Maximum="255" Value="{Binding Path=RedValue,
 Mode=TwoWay}"
 Margin="5" Width="255" HorizontalAlignment="Left" />
 <TextBlock Text="Numeric value:" Margin="5"/>
 <TextBox x:Name="tbValueConverterDataBound"
 Text="{Binding Path=RedValue, Mode=TwoWay}"
 Margin="5" Width="150" HorizontalAlignment="Left"/>
 </StackPanel>
</Border>

3.	 For the data binding to work, you will need an object to bind to. Add a new header
file to your project and call it MyColor.h. As a note, hold off on compiling the
code until you get to step 9. Compiling it before will result in compiler errors.

4.	 Enter the following code as the content of the MyColor.h source file:
#pragma once
#include "pch.h"

using namespace Platform;
using namespace Windows::UI::Xaml::Data;

namespace CppDataBinding
{

Unwrapping C++ Development

208

 [Bindable]
 public ref class MyColor sealed : INotifyPropertyChanged
 {
 public:
 MyColor(void);
 virtual ~MyColor(void);

 virtual event PropertyChangedEventHandler^
 PropertyChanged;
 property String^ RedValue
 {
 String^ get() { return _redValue; }
 void set(String^ value)
 {
 _redValue = value;
 RaisePropertyChanged("RedValue");
 }
 }
 protected:
 void RaisePropertyChanged(String^ name);

 private:
 String^ _redValue;
 };
}

5.	 Add a new C++ file named MyColor.cpp and enter the following code as its content:
#include "pch.h"
#include "MyColor.h"

using namespace CppDataBinding;
using namespace Windows::UI::Xaml::Data;

MyColor::MyColor(void) {}
MyColor::~MyColor(void) {}

void MyColor::RaisePropertyChanged(String^ name)
{
 PropertyChanged(this, ref new
 PropertyChangedEventArgs(name));
}

Chapter 7

209

6.	 Now go to the MainPage.xaml.h file and add the MyColor.h file to the
#include list.

7.	 Still in the MainPage.xaml.h file, go to the public members of the MainPage class
and add the following line of code that is highlighted:
public:	
 MainPage();
 property MyColor^ _myColor;

8.	 Next, navigate to the code-behind file for the MainPage class (MainPage.xaml.
cpp) and add the following highlighted lines of code to the constructor:
MainPage::MainPage()
{
 InitializeComponent();
 _myColor = ref new MyColor();
 this->DataContext = _myColor;
}

9.	 Compile and run the application. You should see a screen similar to the following
screenshot. As you enter values in the text field or move the slider, the two fields
should remain in sync, as shown in the following screenshot:

How it works...
The C++ code you have been writing is C++/CX, an extension of normal C++. You can
still use normal C++ (without extensions) if you prefer, but it will mean dealing with the
IInspectable interface and writing more COM code than would otherwise be the case.

The ref keyword you used for creating an instance of the MyColor class tells the compiler
that you are using a Windows runtime object. The carat (^) symbol on variable declarations
is a reference-counting smart pointer to a Windows runtime object. It is similar to a normal
pointer but performs reference counting and automatic cleanup of resources when the last
reference is cleared.

Unwrapping C++ Development

210

Data binding in C++ kicks into action when you insert the [Bindable] attribute on a
class. When the compiler sees this, it will automatically generate code in a file called
xamltypeinfo.g.cpp that implements the appropriate binding behaviors for interacting
with the XAML markup.

In your code, you implemented the INotifyPropertyChanged interface. This was done so
that you could use the two-way binding between the data class and the UI elements on the
screen. The implementation of the interface should look familiar to anyone who has worked
with the INotifyPropertyChanged interface in either WPF or Silverlight.

There's more…
If you were compiling the code after each step of the recipe, you may have seen a few
compiler errors, some of which might have not made much sense.

If you compiled the application after step 5, you may have seen a number of errors in
the XamlTypeInfo.g.cpp file.

This occurs because of the way the compiler handles the [Bindable] attribute and the
generation of the code. The generated code not only includes the .h files from the XAML
pages in the application, but also includes generated code for any types that are bindable.
This means that if you have a bindable type but no references to it in any of the .xaml.h
files, you will have undeclared identifier errors. Adding the #include statement for the
bindable class' header file as you did in step 6 fixes this compiler error.

Unit testing C++ applications
Previously, we saw the .NET-based Unit testing .NET applications recipe in Chapter 4, .NET
Framework 4.5.1 Development, but C++ developers have not been forgotten, and Visual
Studio 2013 includes built-in support for unit testing with CppUnit.

C++ developers can choose from several types of unit test projects such as the Native Unit
Test Project, the Unit Test Library (Windows Store apps) project, and the Windows Phone
Unit Test App project. The first applies exclusively to desktop C++ development, the second
applies exclusively to Windows Store apps, and the third is for Windows Phone-based apps.

In this recipe, we'll create a simple piece of code and add some unit tests to it that take
advantage of the Native Unit Test Project.

Chapter 7

211

Getting ready
Simply start Visual Studio 2013 (Express for Windows Desktop or a premium version) and
you're ready to go. You can do this in any version of modern Windows since you're going to
be creating a Native Unit Test Project.

How to do it...
To unit test your code, perform the following steps:

1.	 Create a new Native Unit Test Project by navigating to Visual C++ | Test and
accepting the default project name.

2.	 In the Solution Explorer window, right-click on the project and select Class Wizard...
from the menu to create a new class.

3.	 Click on the Add Class... button in the dialog box to add a new class to the project.
Use the class name BankVault and click on the Finish button, as shown in the
following screenshot:

4.	 The Class Wizard will update its context to the newly-added BankVault class.
Click on the Methods tab and then click on the Add Method... button within that tab.

Unwrapping C++ Development

212

5.	 In the Add Member Function Wizard, set Function name to AddFunds and add
a parameter named amount of type int (yes, this bank vault only accepts whole
units of currency). Don't forget to click on the Add button to add the parameter.
This is shown in the following screenshot:

6.	 Click on Finish in the Add Member Function Wizard and then click on OK in the
Class Wizard window.

7.	 Open the unittest1.cpp file under the Source Files folder from Solution Explorer,
and at the top of the file, add a #include statement for the BankVault.h file:
#include "BankVault.h"

8.	 Update the body of the TestMethod1 method as follows:
TEST_METHOD(TestMethod1)
{
 // TODO: Your test code here
 auto vault = new BankVault();
 auto totalFunds = vault->AddFunds(100);
 Assert::AreEqual(100, totalFunds);
}

Chapter 7

213

9.	 From the Visual Studio menu, select Test | Run | All Tests (or press Ctrl + R, A).

10.	 The code will compile. The Test Explorer screen will then appear and show the
results of running the test, as shown in the following screenshot:

If you are using Visual Studio Premium or Ultimate, Test Explorer can
be configured to automatically run after each build. To do this, select
Test | Test Settings | Run Tests After Build, so that the unit tests will
run automatically each time the solution is built.

11.	 Switch back to the BankVault.cpp file and navigate to the BankVault destructor.
Update the code as follows:
int total = 0;

int BankVault::AddFunds(int amount)
{
 total += amount;
 return total;
}

Unwrapping C++ Development

214

12.	 Build the solution and wait for a few moments. As soon as the build completes,
Test Explorer should refresh and show the results of the unit test (if so configured
on Visual Studio Premium or Ultimate). Assuming you made the correct changes,
the code should now look like the following screenshot:

13.	 Let's add a few new methods. In the BankVault.h file, add the following lines
of code that are highlighted:
class BankVault
{
public:
 BankVault();
 ~BankVault();
 int AddFunds(int amount);
 void StageHeist();
 int CurrentFunds();
};

14.	 In the BankVault.cpp file, add the implementation for these two methods
as follows:
void BankVault::StageHeist()
{
 total = 0;
}

int BankVault::CurrentFunds()
{
 return total;
}

Chapter 7

215

15.	 Now, add another test in the unittest1.cpp file just after the TestMethod1
parameter for these new methods by adding the following code:
TEST_METHOD(RobTheBank)
{
 auto vault = new BankVault();
 auto totalFunds = vault->AddFunds(200);
 Assert::AreEqual(200, totalFunds);
 vault->StageHeist();
 totalFunds = vault->CurrentFunds();
 Assert::AreEqual(0, totalFunds);
}

16.	 Compile the solution and wait for Test Explorer to rerun the tests. You should now see
one failing test result and one passing result, as shown in the following screenshot:

17.	 There's a small mistake in your code, and clicking on the first line of the stack trace
in the error detail (indicated by the arrow in the prior screenshot) should help you
isolate the problem (the initial funds aren't as expected). Start to fix the problem by
navigating to the BankVault.h file and adding a private int variable named total:
class BankVault
{
public:
 BankVault();
 ~BankVault();

Unwrapping C++ Development

216

 int AddFunds(int amount);
 void StageHeist();
 int CurrentFunds();
private:
 int total;
};

18.	 In the BankVault.cpp file, remove the int total = 0; declaration and change
the class constructor to initialize total to zero.

19.	 Compile the code one last time. The tests will be rerun and Test Explorer will show all
tests working as expected.

How it works...
The test project you created already includes a reference to the CppUnit test framework as
well as the necessary header files to define the various Assert methods available and the
macros for creating the test methods.

You could build all of this by hand, but there's really no need to do so when the project
template has defined it for you up front.

There are a few slight differences when creating a unit test library project for a Windows Store
app. You will be referencing the WinRT libraries instead of normal libraries. You will be using
the C++/CX extensions, and you can only add references to other WinRT-based libraries.

There's more…
The option to run unit tests with code coverage is available within Test Explorer. However,
for unit test library projects of a Windows Store app, you will get no results as the diagnostic
data adapters are not supported for unit tests of Windows Store app libraries.

Coverage information is only supported for native unit test projects, and coverage analysis
will be displayed in the Code Coverage Results window.

Running a unit test in debug mode
In the .NET languages, you can right-click inside a test method in the code window and select
the option to run and debug a unit test. This isn't available for C++ unit tests.

To debug C++ unit tests, you must select them from Test Explorer and either right-click on
them and choose the Debug Selected Tests context menu option or select Test | Debug |
Selected Tests from the Visual Studio menu.

Chapter 7

217

See also
ff The Unit testing .NET applications recipe in Chapter 4, .NET Framework 4.5.1

Development

Analyzing your C++ code
Static analysis of C++ code is a feature offered by VS Express and the premium editions of
Visual Studio. Static analysis is a useful way to locate potential problems in your code and
provides a way to catch a wide range of problems early in the development cycle.

In this recipe, we will show you how to use Visual Studio's built-in static analysis tools.

Getting ready
Start Visual Studio and create a new Empty Project under Visual C++, giving it a name
of your choice.

How to do it…
For this project, perform the following steps:

1.	 Right-click on the project and select Properties.

2.	 Navigate to Configuration Properties | General, change Configuration Type to
Static Library (.lib), and click on OK.

3.	 Add a new Header File to the project and name it AnalyzeThis.h.

4.	 Enter the following code in the body of the header file:
class AnalyzeThis {

public:
 int LookHere(int param);
};

5.	 Add a new C++ File to the project and name it AnalyzeThis.cpp.

6.	 Enter the following code in the body of the file:
include "AnalyzeThis.h"

int AnalyzeThis::LookHere(int param)
{
 int x;
 int y;

Unwrapping C++ Development

218

 if (param > 0) x = param;
 if (param < 0) y = param;
 return x + y;
}

7.	 Compile the project. There should be no errors or warnings.

8.	 Right-click on the project and select Properties again. Select the Code Analysis
group and ensure that Enable Code Analysis on Build is checked. Click on OK to
close the window.

9.	 Right-click on the solution in the Solution Explorer window and select Run Code
Analysis on Solution (Alt + F11). This option is also available in the menu by
navigating to Build | Run Code Analysis on Solution.

10.	 The Code Analysis tool window will be displayed, and it will show a single warning
about the use of uninitialized memory, as shown in the following screenshot:

11.	 Click on the entry to expand it. The reasons for the analysis warning will be
shown, and the code where the warning occurs will be highlighted, as shown
in the following screenshot:

12.	 Change the code so that both x and y are initialized correctly with zero values.

13.	 Rerun the analysis. No messages should be displayed.

Chapter 7

219

How it works…
Visual Studio uses a set of predefined rules to examine your code for common mistakes and
poorly written code. In our example, the code may have compiled cleanly, but it would cause
problems in operation as the x and y variables are not initialized. Static code analysis seeks to
find these types of mistakes earlier in the development cycle rather than waiting and hoping
for them to be caught later by unit tests or the QA department.

There's more…
This recipe works with both VS Express and the premium editions. However, with the paid
editions, there is a bit more customization available. The rule set used by the analyzer can
be modified to suit your preferences. The Rule Set setting, which can be accessed by going
to Settings on the Code Analysis window (shown in the following screenshot), offers several
choices based on the level of details required or the type of application being developed:

See also
ff The Using a custom rule set recipe

Using a custom rule set
The built-in rule sets that come with Visual Studio cover a variety of usage scenarios
and provide a way to use the Code Analysis tool in your projects immediately. Of course,
depending on the complexity and needs of your project, the default rules may need to be
customized and combined, as this recipe will demonstrate.

Getting ready
We are going to continue with the project we created in the Analyzing your C++ code recipe.
You will need Visual Studio Professional or higher in order to modify rule sets.

Unwrapping C++ Development

220

How to do it…
To use a custom rule set, perform the following steps:

1.	 Open the project created in the previous recipe.

2.	 Open the AnalyzeThis.cpp file and add the following highlighted code:
include "AnalyzeThis.h"

int x = 0;

3.	 Right-click on the project (not solution) in Solution Explorer and select Properties.
The following screenshot will appear:

4.	 In the drop-down list indicated in the preceding screenshot, you may select a
different individual rule set or pick and choose a combination of rule sets to
apply to your project.

By convention, rule sets have the .ruleset extension and are stored in
the following location:
C:\Program Files (x86)\Microsoft Visual Studio 12.0\
Team Tools\Static Analysis Tools\Rule Sets

5.	 For our purposes, ensure that the Microsoft Native Recommended Rules tab is
selected, and then click on Open.

Chapter 7

221

6.	 The rule set editor will open. Go to Microsoft.VC.AmbiguousIntent or enter C6244
in the search box. The rule we will enable is C6244: Local declaration hides global,
which is shown in the following screenshot:

7.	 After enabling the rule, let's rename the rule set to reflect that we have customized
it. Open the Properties window by pressing F4 or selecting View | Properties.
Change the name of the rule set to the one of your choice, as shown in the
following screenshot:

8.	 Once changed, save your changes (Ctrl + S or by right-clicking on the filename and
selecting Save). Visual Studio will prompt for a new file name, as the built-in rule sets
are write-protected.

9.	 Verify that your new rules are being used by right-clicking on the project, choosing
Properties, and selecting your newly created rule set under Configuration Properties
| Code Analysis | General (the same process as in step 3).

Unwrapping C++ Development

222

10.	 Rebuild the solution (Ctrl + Shift + B) and then rerun the Code Analyzer (Alt + F11).
With our new rule activated, our second variable's declaration was detected,
as shown in the following screenshot:

How it works…
This recipe has shown how the existing rule sets can be combined and/or modified to suit
the needs of your project. If you are inheriting a legacy code base, this analysis can provide
a great starting point for where improvements can be made. The customization allows you
to focus on items of a particular importance or, just as easily, minimize the clutter from rules
that don't concern you. If you are starting a new project, you may opt for a rigorous approach
so that best practices are followed from the start. Finally, having the ability to save these
changes into an external file allows them to be stored with a project so that all developers
can follow the same practices.

There's more…
There are two rule sets provided for native code in Visual Studio 2013:

ff The Microsoft Native Minimum Rules rule set contains rules for basic correctness,
such as potential security holes and application crashes (invalid memory access,
buffer overruns, and so on).

ff The Microsoft Native Recommended Rules rule set is a superset of the minimum
rules and provides a more in-depth set of rules to evaluate. It also includes rule
checks for lock problems, race conditions, and other concurrency-related issues.

To get an understanding of what rules each rule set uses, go to the project's properties and
select the Code Analysis settings. Clicking on the Open button will display the rules that
are enabled for the rule set. In order to see all available rules, click on the red down arrow
in the toolbar. For Microsoft's official definitions of all available rule sets, consult the article,
Code analysis rule set reference at http://msdn.microsoft.com/en-us/library/
dd264925.aspx.

Chapter 7

223

Working with DirectX in Visual Studio 2013
C++ and DirectX are being promoted by Microsoft as the primary way to build high-performance
games in Windows 8.x with XNA left out in the cold. XNA developers can still use XNA in Windows
8.x but only for desktop applications, and not for creating Windows Store apps.

Developers looking for the spiritual (if not outright) successor to XNA are
encouraged to check out MonoGame, an open source implementation of
the XNA Framework at http://www.monogame.net/.

As a DirectX developer, you will be pleased to know that there is no longer a separate DirectX
download required for Windows 8.1. The DirectX SDK is now incorporated into the Windows
SDK, and the DirectX 11.2 runtime is built into the Windows 8.1 operating system. For older
versions of Windows, the current requirement to download a separate SDK and runtime
remains in place.

If you have used previous versions of DirectX and C++, then you will find Visual Studio 2013
somewhat different as you will be using C++/CX. Many of the DirectX calls have differences
in them, not only due to the use of ref pointers, but also in the way displays are referenced
and how restrictions are enforced by the Windows Store app sandbox. It will most likely
require some tweaking to the approaches you may have used in the past.

For this recipe, we'll use the default application template to display a rotating cube on the
screen and then alter the code to stop and start the rotation when we touch the screen,
click the mouse, or press a key.

Getting ready
Start Visual Studio 2013 in Windows 8.1 and you're ready to go. You will want to use VS
Express for Windows or one of the premium editions as we are creating a Windows Store app.

How to do it...
Create the app by performing the following steps:

1.	 Create a new DirectX App project by navigating to Visual C++ | Windows Store and
name it RotatingCube.

Unwrapping C++ Development

224

2.	 The default project template includes all of the code to display a cube, apply
shaders to it, and then rotate it. Before you go any further, ensure that the
application works by compiling and running it. You should see a screen similar
to the following screenshot:

3.	 Stop the application by pressing Alt + F4 and then switch back to Visual Studio.
Before editing, ensure debugging has stopped by pressing Shift + F5 or clicking on
the stop button on the toolbar. In the App.h file, add the following code block to the
protected event handler declarations:
void OnPointerReleased(Windows::UI::Core::CoreWindow^
 sender, Windows::UI::Core::PointerEventArgs^ args);
void OnKeyDown(Windows::UI::Core::CoreWindow^ sender,
 Windows::UI::Core::KeyEventArgs^ args);

4.	 To the private variables in that same header file, add the bool m_isRotating;
statement.

5.	 In the App.cpp file, locate the App::SetWindow method and add the following
highlighted code to register the event handlers for the user input events and to set
the m_isRotating flag:
// Start recieving touch/mouse events and keyboard events
window->PointerReleased +=
 ref new TypedEventHandler<CoreWindow^,
 PointerEventArgs^>(this, &App::OnPointerReleased);
window->KeyDown +=
 ref new TypedEventHandler<CoreWindow^,
 KeyEventArgs^>(this, &App::OnKeyDown);
m_isRotating = true;

DisplayInformation^ currentDisplayInformation =
 DisplayInformation::GetForCurrentView();

6.	 Now add the following code for the event handlers at the end of the App.cpp file.
The handlers simply toggle the m_isRotating flag to indicate whether to rotate
the cube or not:
void App::OnPointerReleased(Windows::UI::Core::CoreWindow^
 sender, Windows::UI::Core::PointerEventArgs^ args)
{
 m_isRotating = !m_isRotating;
}

Chapter 7

225

void App::OnKeyDown(Windows::UI::Core::CoreWindow^ sender,
 Windows::UI::Core::KeyEventArgs^ args)
{
 m_isRotating = !m_isRotating;
}

7.	 Locate the App::Run() method and wrap the m_main->Update(); call in
an if statement that checks the m_isRotating flag, as shown in the following
code snippet:
if (m_isRotating) {
 m_main->Update();
}

8.	 Run the application and notice that you can start and stop the rotation by pressing
any key, clicking with the mouse, or tapping on the screen.

9.	 Stop the application when you have finished testing.

10.	 The colors on the cube are determined by a combination of a vertex shader and a
pixel shader. The vertex shader uses the color assigned to each vertex in the cube's
definition, in the Sample3DSceneRenderer::CreateDeviceDependentResour
ces() method, and each pixel shader is shaded based on blending the colors of the
vertices nearest to it. Open the SamplePixelShader.hlsl file to look at the
pixel shader.

11.	 At the moment, the shader simply takes the color passed to it and sets the alpha
channel to 1.0f, making it opaque. Alter the shader to remove all traces of red from
the cube by changing the body of the main() method to the following code snippet:
float4 main(PixelShaderInput input) : SV_TARGET
{
 float3 removedRed;
 removedRed = float3(0.0f, input.color.g, input.color.b);
 return float4(removedRed, 1.0f);
}

12.	 Rebuild and run the application. The cube should now look similar to the following
screenshot, with no red color visible:

Unwrapping C++ Development

226

How it works...
The key areas to focus on in this application involve creating the drawing surface
and the handling of the user input. You saw how the user input can be handled via
the event listeners and that the PointerEventArgs class is used for both touch-
and mouse-based input.

Most of the work done while creating the rendering surface is encapsulated
in the Direct3DBase class (DeviceResources). It is in here that the
call to the D3D11CreateDevice method is made, as is the call to the
CreateSwapChainForCoreWindow method, which is needed in order
to get DirectX up and running correctly.

It is also useful to note that an application manifest is included in the project, and
that the linker has prepopulated references to the required DirectX libraries so that
you don't need to remember to add them yourself.

There's more…
The pixel and vertex shaders used in the application are written using High-Level Shading
Language (HLSL), a C++ style Domain Specific Language (DSL) for describing how the color
should be calculated for each rendered pixel in an object.

When the compiler sees an HLSL file, it compiles it into a .cso file that you can then use in
your application. You can see this in the Sample3DSceneRenderer::CreateDeviceDepe
ndentResources() method where the .cso files of the two shaders are read into memory
and then passed to the DirectX calls to create shader instances. The shaders are then used
later in the Sample3DSceneRenderer::Render() method, with the vertex shader called
before the pixel shader to ensure that the cube renders correctly.

Is managed DirectX supported?
With Windows Runtime and the improvements in how .NET languages interoperate with COM in
Windows 8, you may be wondering if DirectX development using managed languages such as
C# is possible. The answer is yes, but not without using third-party libraries. If you are interested
in using DirectX in a managed language, you may want to keep an eye on open source projects
such as SharpDX (http://sharpdx.org/). Just keep in mind that this approach is not
supported by Microsoft and that DirectX applications written in .NET will run a little slower than
native C++ applications. Regardless of this, applications built using third-party libraries should
still be able to pass the verification process and be listed in the store.

Chapter 7

227

See also
ff The Creating a Windows Store app recipe in Chapter 2, Getting Started with Windows

Store Applications

ff The Creating a shader using DGSL recipe

ff The Using the Visual Studio Graphics Diagnostics recipe

Creating a shader using DGSL
Starting with Visual Studio 2012, Microsoft has added a new mechanism for building shaders,
using a language called Directed Graph Shader Language (DGSL). This language can be
used to create very complex shaders that are still easily understandable at a high level and
are therefore more maintainable than shaders written in pure HLSL.

In this recipe, we'll create a shader that applies a texture to an object and colors it.

Getting ready
Ensure that you are running Windows 8.1 and start Visual Studio 2013, either one of the
premium versions or Express version for Windows.

How to do it…
Create a shader by performing the following steps:

1.	 Create a new DirectX App project by navigating to Visual C++ | Windows Store
and give it a name of your choice.

2.	 Right-click on the project, select Add | New Item, and then choose Graphics | Visual
Shader Graph (.dgsl). Leave the name as the default one, Shader.dgsl, and
click on Add.

Unwrapping C++ Development

228

3.	 The shader will be added to the project and the design surface will be displayed.
Open the toolbox (located on the left-hand side of the screen, or use Ctrl + W, X) to
see all of the nodes that can be used in your shader. Click on the black background
of the design surface to see the properties of the shader. In the following screenshot,
the toolbox is marked on the left (red box), and the property window is marked on the
right (red arrow):

4.	 From the Toolbox window, drag a Texture Sample node onto the design surface.

If you have trouble finding the Texture Sample node in the toolbox,
use the search box at the top of the toolbox to filter the items displayed.

5.	 In the properties for the Texture Sample node you just added, set the Filename
property to the full path (not relative path) of the SmallLogo.png file in the Assets
folder. You can do this fairly easily by selecting the image file in Solution Explorer,
copying the full path from the Properties window for the file, and then pasting that
value into the Filename property of the Texture Sample node.

6.	 Drag a Texture Coordinate node from the Toolbox window onto the design surface.

Chapter 7

229

7.	 On the side of each of the shader nodes are connectors, the small circles that
represent the input and output variables for each node. Drag the Output connector
of the Texture Coordinate node to the UV input connector of the Texture Sample
node to link the two nodes together, as shown in the following screenshot:

8.	 Next, you should color the texture based on the color of the point at which it will be
applied. To do this, drag a Multiply node onto the designer and connect the RGB
output of both the Point Color and Texture Sample nodes to the X and Y inputs of
the Multiply node.

Unwrapping C++ Development

230

9.	 Then, drag the output of the Multiply node to the RGB input of the Final Color node.
In doing so, the RGB link from the Point Color node to the Final Color node will be
removed as inputs can only have one source, as shown in the following screenshot:

10.	 In the document toolbar, click on the Preview with teapot button (shown in the
following screenshot) so that we can see the results using the classic object in 3D
rendering demos:

Chapter 7

231

11.	 In the shader designer, select the Final Color node and then hold down the Ctrl key
while you move the mouse scroll wheel forward to zoom in on the element until you
can zoom no further. You will now see a better 3D representation of what the shader
will do to a model, as shown in the following screenshot:

12.	 Press and hold Alt and then click-and-drag on the teapot to rotate it so that you have
a better idea of how the texture will be applied to the various surfaces of the teapot.

13.	 Save the Shader.dgml file by pressing Ctrl + S.

14.	 On the left side of the designer toolbar, click on the Advanced icon. It will display a
menu where you can choose to export the shader as HLSL, a compiled pixel shader
(.cso), or as a C++ header file (.h). Select the HLSL file option and save the shader
into your Documents folder. The following screenshot shows where the Export As…
command is located:

15.	 From the Visual Studio menu, select File | Open | File or press Ctrl + O, and
then open the file you just saved. You can now see the HLSL version of the
shader you created.

Unwrapping C++ Development

232

How it works...
Shaders are effectively a pipeline of instructions that affect the rendering of an object on the
screen. They can be applied to vertices, pixels, and geometries to produce varying effects.
The key to all shaders is to try and do as few operations as possible. The higher the number
of nodes in a shader, the more computationally expensive they will be, and the slower your
overall frame rate in the application will be.

In this particular recipe, the shader we built was fairly rudimentary since the intent was to
show how a shader can be built in Visual Studio. For complex shaders, such as flame or
smoke, there are parameter nodes for Time and Normalized Time that you will want to use.
For geometry shaders, you will want to consider using nodes such as World Position and
Mask Vector.

See also
ff The Creating and displaying a 3D model recipe

ff The Working with DirectX in Visual Studio 2013 recipe

Creating and displaying a 3D model
In the previous Creating a shader using DGSL recipe, you created a shader for applying a
texture to a model. It would be great if there was an easy way to create your own 3D models,
and Visual Studio provides a mechanism for doing just that. Visual Studio offers a fairly basic
3D modeling tool, and while it's nowhere near as fully featured as Maya or other specialist
modeling tools, it does come in the box. It meets the needs of the homebrew developer
or those simply wanting to "rough in" some models or tweak some properties of a model
supplied by a designer.

Getting ready
This recipe uses the shader from the previous Creating a shader using DGSL recipe.
So, if you haven't already completed that, go ahead and do so now. If you have completed
it, then open up the solution you created as you're ready to get started.

How to do it...
Create a 3D model using the following steps:

1.	 Right-click on the project and select Add | New Item.

2.	 In the dialog box, choose Graphics | 3D Scene (.fbx), and leave the name as Scene.
fbx before clicking on Add.

Chapter 7

233

3.	 Visual Studio will open the scene editor where you can create your model. Ensure
that the Toolbox and Properties panes are visible, and then add a cylinder to the
scene by double-clicking on the Cylinder node in the Toolbox window.

4.	 Select the cylinder in the designer by clicking on it. In the scene editor toolbar at the left
of the design surface, click on the scale icon. The cylinder will be overlaid with x, y, and
z drag handles (the red, green, and blue boxes) which you can use to resize the object
in any single direction, and a central drag handle (a white box) for scaling the object
evenly in all directions. Resize the cylinder to make it larger by clicking on the central
white handle and dragging it to the right, as shown in the following screenshot:

5.	 In the Properties window, locate the Effect property:

Unwrapping C++ Development

234

6.	 Click on the plus next to the Effect property to expand its details, as shown in the
preceding screenshot, and click on the ellipsis (…) on the Filename property to open
the file selection dialog box.

7.	 Browse to the Shader.dgsl file you created in the previous recipe and click on OK.

8.	 Change the value of the Name property in the shader's property group to MyShader.

9.	 In some cases, the change will not take place immediately, but it will refresh the next
time the Properties window is asked to display properties for the cylinder. You can
force this by clicking on a file in Solution Explorer and then clicking on the cylinder
again. You should also see that the scene has been updated to show the effects of
the shader on the cylinder.

10.	 A common way of looking at 3D models is to look at the wireframe. To view the
scene in wireframe mode, click on the wireframe icon on the main toolbar (not the
embedded toolbar). It's the last icon in the list, as shown in the following screenshot:

How it works...
At this point, you now have a model that is ready to be used. As mentioned in the introduction,
the modeling tool is not meant to compete with full-featured 3D modeling tools and is instead
offered only as an entry-level modeling toolkit.

Given that the packaging of models is typically application-specific, Visual Studio provides
neither an inbuilt method for packing models into a data file nor a method to load them.
The choice of how you package models depends on your application, its performance
characteristics, and any of the restrictions you need to work within. Because of this diversity,
Visual Studio provides a single, simple method for editing a model and for everything else,
it's up to you.

There's more…
There are many more features available in the model viewer than were covered in this recipe.
Most of these features are self-explanatory and deal with the basics of moving and rotating
objects within the scene, changing selection modes, and changing view modes. Advanced
functionality, such as merging objects, is contained under the Advanced menu on the left
side of the designer's toolbar.

Chapter 7

235

See also
ff The Creating a shader using DGSL recipe

Using the Visual Studio Graphics
Diagnostics

One of the hard things to do in DirectX applications is determine the cause of a visual glitch
or bug on the screen. Despite the best efforts of developers to avoid bugs, there are many
websites featuring screenshots taken by gamers of weird things happening in a game.

Visual Studio addresses some of the debugging issues for DirectX applications by including a
new Graphics Diagnostics toolset that lets you look at pixel history to determine just how a
specific pixel came to be rendered on the screen. Let's see how it works.

Getting ready
Simply start a premium version of Visual Studio 2013 on Windows 8.1 and you're ready to go.

How to do it...
For this recipe, perform the following steps:

1.	 Create a new DirectX App project by navigating to Visual C++ | Windows Store and
leave the default name as it is.

2.	 The project template includes code to display a spinning cube, so build the
application to ensure it compiles.

3.	 Start the diagnostics by pressing Alt + F5 or by choosing Debug | Graphics | Start
Diagnostics from the Visual Studio menu.

4.	 When the application starts, you should see the debugger's HUD displayed in the
top-left corner of the application.

5.	 While the application is running, press Print Screen a few times to capture some
frames from the application. The debugger HUD should update to display the
captured frame, indicating that the capture was successful.

Unwrapping C++ Development

236

6.	 Stop debugging when you are ready, and in Visual Studio, you should see something
similar to the following screenshot:

7.	 Select one of the frames you captured from the Frame List window, and in the frame
view, click on one of the pixels in the cube. If you can't see the entire frame, you can
hold Ctrl and drag with the left mouse button to pan around the frame.

8.	 The Graphics Pixel History window should have appeared when you clicked on the
pixel. If it isn't showing, in the graphics toolbar, click on the pixel history icon, as
shown in the following screenshot:

9.	 The history of that selected pixel will be shown on the screen:

Chapter 7

237

10.	 In the preceding screenshot, this selected pixel was initially blue (the background was
black), and was eventually rendered as green. Your color will most likely be different.
Click on the expansion arrow for the event when the color changes to expand it.

11.	 Expand the triangle further to show all of its component's details, as shown in the
following screenshot:

12.	 Clicking either on the Vertex Shader or Pixel Shader links will take you to the
HLSL source for the shader so that you can see the shader calculation.

13.	 You can examine how the shader values were calculated even after normal debugging
has concluded. Click on the debug icon (the play button) for one of the vertices in
the Vertex Shader link or for the Pixel Shader link to debug it using the captured
values. Step through the shader code until the debugger finishes, as shown in the
following screenshot:

Unwrapping C++ Development

238

14.	 From the Visual Studio menu, select Debug | Graphics | Event Call Stack or click on
the Event Call Stack button in the Graphics toolbar. The Graphics Event Call Stack
window will be displayed, similar to the following screenshot:

15.	 This is a normal call stack, so double-click on one of the method calls from your
application to jump to that line of code.

16.	 From the Visual Studio menu, select Debug | Graphics | Event List, or click on the
event list icon on the Graphics toolbar. A list of all DirectX operations that occurred
in rendering the frame will be shown. Clicking on any of the events will show the
operation details in the document area, allowing you to delve further into what
occurred. It will also update the Graphics Event Call Stack window to show call
stack information, when available, and the frame preview window, to show what the
frame looked like at that specific point in time, which can be very helpful in locating
overdraw problems.

How it works...
The Graphics Diagnostics toolset is the result of the work that was put into the PIX debugging
tool that shipped with the DirectX SDK. With it now being built directly into Visual Studio, the
user experience is much better for developers.

The level of detail presented by these tools is extensive and should help you track down the
root cause of many of your rendering problems.

There's more…
One thing that wasn't touched on in the recipe was the rendering pipeline. If you want to look
at the way a frame was built up, then understanding how the object meshes were used can
be very useful.

Chapter 7

239

If you select a DirectX Draw event from the Graphics Events List window, and then select
Debug | Graphics | Pipeline Stages from the menu, you will see how the frame was put
together. Clicking on one of the stages in the Graphics Pipeline Stages window will show
you the details of that stage in a document preview tab, as shown in the following screenshot:

8
Working with Team

Foundation Server 2013

In this chapter, we will cover:

ff Creating a new TFS project

ff Managing your work

ff Using local workspaces for source control

ff Performing code reviews

ff Getting feedback from your users

ff Using Git for source control

Introduction
Team Foundation Server (TFS) is a popular companion for users of Visual Studio that
provides Microsoft's approach to source control and project management. Developers working
in traditional corporate software development will frequently use TFS as a way to coordinate
their activity with that of product owners, quality assurance, and release engineers.

TFS is a separate product from VS2013, and exists in both paid and free (TFS Express)
versions. The primary difference between the two is that TFS Express is designed for smaller
developer teams and thus supports five users, while the full version has no such restrictions.
Day-to-day usage will typically involve connecting to TFS via Visual Studio or the TFS web
browser interface.

Working with Team Foundation Server 2013

242

With the advent of VS2013, Microsoft has created Visual Studio Online (VSO). One aspect
of VSO is that it provides Microsoft-hosted TFS service, which provides developers with an
area to create and store their projects without needing to take on the additional task of
administrating a server.

Regardless of the approach you take, this chapter will look at the major features and concepts
of TFS and how they can support your work in Visual Studio. The recipes in this chapter will
walk you through using these new improvements and features, so let's get started.

Creating a new TFS project
Visual Studio Online represents Microsoft's rebranding of what used to be Team Foundation
Service combined with new abilities to write code directly on the web. We are going to use VSO
to host a new development project that we can connect to via any version of VS2013. Using
VSO will let us focus on the project setup, while Microsoft can then run the server for us.

The concepts to create a new project are similar, whether you are using VSO or standalone
TFS. Since in many cases corporate users merely access a previously configured TFS
environment, this example will let all readers follow along.

Getting ready
You will want to have a Microsoft account ID available, and you can either create a new ID for
this chapter or use one of your existing IDs. You will also want to have a copy of VS2013. We
will be using Visual Studio Express for Windows Desktop, but the concepts are applicable to
all versions.

How to do it…
Perform the following steps:

1.	 Connect to Visual Studio Online (http://www.visualstudio.com/) and
create a VSO account (if you already have a Microsoft account, you will be
adding VSO capabilities).

2.	 The account URL is something you will be using as the access point to your
projects, so pick something meaningful (or at least something you won't
mind reading everyday). Your URL will ultimately have a form similar to
https://teamname.visualstudio.com.

Multiple projects can be housed at the same URL, so you may
want to avoid using a name that is project specific.

Chapter 8

243

3.	 After account creation, you can create a new project and enter the details for the
new project. Enter a project name of your choice. For the purpose of the recipe,
we are going to select Team Foundation Version Control and the Microsoft Visual
Studio Scrum 2013.2 process template, and click on Create project, as shown
in the following screenshot:

4.	 Once created, you will be able to connect to this project with Visual Studio. For easy
access, you can have VSO open your copy of VS2013 directly via the link at the
lower right of the project page, as shown in the following screenshot. However,
this recipe will continue by showing you how to connect to a TFS/VSO project
from within VS2013.

Working with Team Foundation Server 2013

244

5.	 Open your copy of VS2013. The Team Explorer window should be on the right, but
if it is not, you can open it through View | Team Explorer or Ctrl + \, Ctrl + M. Once
visible, click on Select Team Projects…, as shown in the following screenshot:

6.	 The ensuing dialog box will offer several choices. Looking at the following screenshot,
the dropdown marked with 1 indicates which TFS you are browsing. For this recipe, if
it doesn't show your VSO-based Team Foundation Server, then click on the Servers...
button (marked with 2) so that it can be added.

(This would also be where an existing self-hosted TFS address could be entered
if you are not using VSO.) Returning to the following screenshot, once a server is
selected, you will have the option to select one or more projects to access. Here,
the VSCookbook project is selected. Click on Connect once you have chosen the
appropriate server and project(s).

7.	 On a brand new TFS project, such as the one in this example, VS2013 will then
prompt you to configure your workspace. Click on the Configure your workspace
link shown in the notice area, as in the following screenshot:

Chapter 8

245

8.	 The Configure Workspace dialog area will then open. To complete the process,
click on the Map & Get button, as shown in the following screenshot:

How it works…
Visual Studio Online provides all of the functionalities of TFS with the added benefit of server
management details being handled by Microsoft. In our example, a new site and project
were created to hold your project's source code and work items. By using version control, you
will benefit from the ability to track changes to your source code and simplify maintenance.
Working with other developers on a common project is easier as everyone involved can always
obtain the most current version of the source code from a centralized location that doesn't
require e-mailing zip files around. Better still, the details of your project will not be lost if your
local developer's machine crashes.

Working with Team Foundation Server 2013

246

There's more…
The preceding recipe establishes a brand new, but empty workspace. To add a new or
existing solution, use the appropriate link in the Team Explorer window, as shown in
the following screenshot:

If you click on New..., your project will be part of your newly established VSO workspace.
If you click on Open..., you will have the extra step of opening an existing project, and
then right-clicking on that project in Solution Explorer to add it to source control.

Managing your work
Whether you work in a team or as an independent developer, the odds will be high that you
will have a list of requirements describing what you need to build. Scrum teams use product
backlogs, traditional teams use functional specifications, and other teams will have their own
variations of these. Even as an independent developer, you probably maintain at minimum a
to-do list of features to add and bugs to fix. Using TFS, this information can be stored as the
various work item types in the team project.

In this recipe, we'll show you how to manage your work using Visual Studio 2013 and TFS.

Getting ready
You will need to have access to a TFS project, like the sample one created in the Creating a
new TFS project recipe, or another one that you have access to.

Chapter 8

247

The recipe also requires that your team project be based on the Microsoft Visual Studio
Scrum 2013 process template. If your project uses a different process template, the work
item types may be different from those in the recipe.

Start Visual Studio 2013 and you're ready to go.

How to do it...
Perform the following steps:

1.	 When you first connect to TFS, you will need to set up the connection if you have
not already done so. From the Visual Studio menu, navigate to Team | Connect to
Team Foundation Server.... Use the Servers button in the connection dialog to add a
new connection for the TFS you want to connect to, and then connect to the project
collection and the specific team project you wish to use for this recipe.

2.	 If the Team Explorer tool window isn't visible, open it by navigating to View |
Team Explorer from the menu by pressing Ctrl + \, Ctrl + M, or by using the
Quick Launch tool.

3.	 When it is open, ensure you are connected to TFS by confirming that the Home hub is
displaying the correct team project name, as shown in the following screenshot:

Your Home hub may look slightly different if your team project
has a team portal or reporting is enabled.

Working with Team Foundation Server 2013

248

4.	 This recipe needs some work for you to track, so start out by creating a new work
item. Click on the Work Items entry in Team Explorer to navigate to the Work
Items hub.

5.	 Click on the New Work Item dropdown from the Work Items hub and click on
Product Backlog Item from the list, as shown in the following screenshot:

6.	 A new Work Item form will be displayed in the Visual Studio document area. Enter a
title of your choice and set the Assigned To user as yourself. You can set the value of
any of the other fields as you wish. When you are ready, click on the Save Work Item
button in the form's toolbar or press Ctrl + S to save the work item.

7.	 Right-click on the background of the Product Backlog Item form (that is, right-click
on the white space) and select the New Linked Work Item... option (Shift + Alt + L).

8.	 In Work Item Type, select Task from the list and enter a Title for the item before
clicking on OK.

9.	 The linked work item will have automatically set you to be the Assigned To person,
so just hit Ctrl + S to save the work item, or click on the Save Work Item button.

10.	 In Team Explorer, double-click on Unfinished Work under Queries | Shared Queries
| Current Spring, which will now display the outstanding work items, as shown in the
following screenshot:

Chapter 8

249

11.	 To start work, click on the Task that you created in step 9. Then change the state to
In Progress and then click on Save Work Item.

Something to remember about the states under TFS
Depending on the configuration, states are typically changed in
sequence. This means a newly created item cannot be changed
directly to Done. Saving a work item after each state change will
usually allow you to advance the choices for the state available.

12.	 If you look at the Work in Progress query, this task will now show in the results.

Working with Team Foundation Server 2013

250

13.	 Behind the scenes, the task will be moved to In Progress. Let's assume you did some
useful work (simply making a quick edit to an existing source file, and so on) so that
we can commit our changes to TFS.

14.	 Navigate to Pending Changes by clicking on the Home icon on the Team Explorer
tab and clicking on the Pending Changes tile. (Also available under View | Other
Windows | Pending Changes.)

15.	 To include this task with your commit, you can either drag it onto Team Explorer or
you can add it by ID (both methods are highlighted in the following screenshot). Once
a work item and changed source file(s) are associated, you will be able to enter a
Comment and click on Check In:

16.	 Visual Studio will prompt you when you click on Check In, as shown in the following
screenshot of the dialog box, just click on Yes:

17.	 You can verify that the item is complete by refreshing your query. You will notice that
your Task item is no longer seen, as it has been marked Done by TFS for you.

How it works...
The Team Explorer window provides an overview of the common tasks available for working
with projects stored in TFS (whether it is locally hosted or part of VSO). Pending Changes
keeps track of outstanding modifications made since the last commit. Work Items keeps
track of the work items available in TFS with those marked In Progress appearing in the
Work in Progress query.

Chapter 8

251

You can check the details of a query by selecting the query, right-clicking on it, and selecting
Edit Query. The task category doesn't need to be limited to just the Task work item type, but
can also incorporate any custom work item types you include in the task category.

If you double-click on a work item in Team Explorer that isn't already opened, it is opened by
default in the preview pane in Visual Studio to prevent window clutter.

There's more…
A couple more areas of Team Explorer are available for use to increase the effectiveness of
the tool for your development work.

Using favorites
A key part to effectiveness using Team Explorer is creating and using queries. Making a copy
of an existing query and editing it to suit your needs is a quick way to customize the tool.
Whether you use custom queries or the standard ones, drag your frequently used queries into
My Favorites or Team Favorites, as shown in the following screenshot. In the screenshot,
the Work in Progress query has already been dragged to My Favorites, but the same
customization is available for Team Favorites too.

Working with Team Foundation Server 2013

252

Shelving active work
Team Explorer generally encourages you to have only one logical task in progress at a
time. This can help you limit the amount of work in progress you have and push you towards
finishing a task completely before starting the next one. If you want to improve your personal
productivity and work smarter, not harder, then this is a good practice to follow.

Unfortunately, if you plan to only work on one task at a time, then what happens when you
need to pause what you are doing and deal with an emergency issue? If you have used
previous versions of TFS, you may be familiar with the concept of shelving and unshelving
code. Shelving takes a copy of the changes you have made, stores them on the server, and
then optionally resets your local workspace. Unshelving is just the reverse of that. Shelving
is available in all editions of VS2013. The Shelve menu is located on Pending Changes as
shown in the following screenshot:

With Visual Studio Premium or higher, you also have the added ability to suspend work.
This automatically shelves your current changes and the current state of your Visual Studio
windows when you hit the button. It then resets your workspace, clears the work items that
were in progress, and puts you back in a state ready to start another work item. To access
this, click on My Work, expand In Progress Work, and then click on the Suspend button,
as shown in the following screenshot:

Chapter 8

253

See also
ff The Using local workspaces for source control recipe

ff The Performing code reviews recipe

Using local workspaces for source control
One of the biggest complaints users have had with previous versions of TFS is the source
control management system and the server-based workspace approach. With this approach,
the server keeps track of what files it thinks you have on your development machine, and all
of the check-in and check-out operations require communication with the server.

It makes offline work very difficult, and if ever there are changes on your development
machine that the server isn't aware of, you may face problems during check-ins and "get
latest" operations. To prevent this from happening, TFS sets the read-only flag on all files that
are under source control, but this only frustrates developers more since they can't easily edit
files unless they use a tool that knows how to communicate with TFS.

While there can be valid reasons to use the historical approach, it would be best if the tools
fit your work patterns rather than adjusting your behavior to fit the tools. Local workspaces
provide that exact flexibility. TFS is still the source of truth for source control, and it is the only
place where check-ins can occur. However, the decision over which files have been changed
now occurs on your development machine, not TFS. Further, Visual Studio no longer needs to
ask TFS if it can open a file for editing or not. Also, you can use any program you want to edit
files because the read-only flag is no longer applied to files. This change also improves the
offline editing scenario and you no longer need to mess around with the "go offline" and "go
online" operations.

In this recipe, we'll make some changes to the source code so that you can see how this
newer approach to source control works.

Getting ready
As before, you will need to have access to TFS in order to follow this recipe. It would be best
if you also had a sandbox team project—a project where you can try things and change data
without worrying about it affecting your normal work.

Start Visual Studio 2013, connect to your team project, and you're ready to go.

Working with Team Foundation Server 2013

254

How to do it...
Perform the following steps:

1.	 Create a new Visual Basic-based Class Library using the default name. Ensure that
the Add to source control option is checked.

2.	 You may be prompted to choose a source control system; if so, select Team
Foundation Version Control.

3.	 If you choose a local path for your project that is not already mapped to a folder in
source control, you will be prompted for a location in TFS where it should be stored.
Select a folder in your source control tree where you want to store the project and
click on OK.

4.	 In Team Explorer, navigate to the Pending Changes tile. The files that will be added
to source control are shown in the Included Changes section. Since this is a brand
new project, all of the files are scheduled to be added. The following screenshot
shows the list of files that will be part of our check in:

Chapter 8

255

5.	 Enter a check-in Comment to describe what you are doing and then click on Check In
to submit the changes to TFS, as shown in the following screenshot. If you are asked
to confirm your check-in, click on Yes.

6.	 The files will be checked-in and a confirmation of the changes will be displayed
in Team Explorer. If you wish to look at the contents of the changeset, you can
click on the changeset number displayed in the notification, as shown in the
following screenshot:

7.	 In Solution Explorer, right-click on the class library project and select Open Folder in
File Explorer.

8.	 Right-click on Class1.vb and open the file with Notepad.

9.	 Add some comments to the body of the class (as shown below), save your changes,
and then close Notepad.

10.	 Switch back to Visual Studio and, if prompted to reload any files, select Yes to All.

Working with Team Foundation Server 2013

256

11.	 In Solution Explorer, you should now see that Class1.vb has been modified (it will
have a checkmark next to it). Navigate to Team Explorer and within that, go to the
Pending Changes tile. You should now see that Class1.vb is listed as a pending
change, as shown in the following screenshot:

12.	 Switch back to File Explorer (formerly Windows Explorer in Windows 7) and make a
copy of Class1.vb. Edit the file in Notepad and change the class name to Class2.
Alter the comments in the body of the class to differentiate it further from the original
before saving it and closing Notepad. Rename the copy to Class2.vb.

13.	 Switch back to Visual Studio and navigate to the Team Explorer | Pending Changes
tile. The new file you just added won't be listed as an included change, but it has
been detected as a change. Since it's not part of the solution, you will only see it by
looking at the Excluded Changes section and clicking on the Detected link.

Instead of including the file into source control directly, you'll want to add it to the
solution properly. To do so, navigate to Solution Explorer and click on the Show
All Files button on the toolbar.

14.	 Right-click on Class2.vb and click on Include in Project, as shown in the
following screenshot:

Chapter 8

257

15.	 Navigate to Team Explorer and the Pending Changes tile again and confirm that the
file is now included as a pending change. Add a check-in Comment and then click on
Check In to reflect the changes. As you can see in the following screenshot, the file
Class2.vb was detected and marked with [add] by Visual Studio:

16.	 In the preceding steps, we renamed the file before we committed it. Let's look at
what happens if you use Windows (File) Explorer to rename a file outside of Visual
Studio. Rename Class2.vb to a name of your choosing (our example will use
FirstClass.vb).

Working with Team Foundation Server 2013

258

17.	 Switch back to Visual Studio and navigate to the Pending Changes tile in Team
Explorer. The rename isn't detected automatically since it wasn't made in Visual
Studio. However, you may notice that there are two changes in the Detected
Changes section (1 add, 1 delete), as shown in the following screenshot:

18.	 Click on the Detected link and you will see that the rename is detected as a delete of
the old filename and an add of the new filename. You can let Visual Studio know that
this change is actually a rename by selecting both changes (Ctrl click on each item) in
the add/delete pair, right-clicking one and choosing the Promote as Rename option.
If prompted to rename all instances of Class2, click on Yes. When this is done, just
click on the Cancel button to close the Promote Candidate Changes window. The
following is the screenshot of the Promote Candidate Changes window:

19.	 Not only is the rename now listed in the Included Changes section, but the
solution file has also been updated to reflect the change and is also included
as a pending change. The Pending Changes tile should now look similar to the
following screenshot:

20.	 Check-in your changes when you are ready.

Chapter 8

259

How it works...
When using a local workspace, Visual Studio creates a hidden local folder named $tf and
stores zipped copies of the workspace version of your source files within it. Visual Studio
detects changes by comparing the contents of your local files and folders to the contents
of the $tf folder and adds any differences as pending changes.

It might be an obvious warning, but don't delete the $tf folder or any of
its contents, not even if you are short on disk space. Doing so will cause
significant problems.

You might have noticed that at no time during the recipe did you need to change the read-only
flag on any of the files, nor did you need to check-out any files for edit. In fact, the only time
Visual Studio communicated with TFS was during the check-in process. All other changes were
managed and tracked locally.

This should alleviate a lot of pain for people who have been used to older versions of TFS and
the way server-tracked workspaces operated.

You cannot check in when offline. Check-in operations are still server
based and require that you be online and connected to TFS.

The detected changes list can grow quite large over time and you may want to ignore certain
folders or files (for example, the /obj and /bin folders). You can either create .tfignore
files to specify what files and paths to ignore, or in Team Explorer, you can open the list of
detected changes and exclude files either individually, by extension, or by the folder path.
Doing so will create or alter .tfignore files for you and add them to the pending changes
list so that they can be checked-in and shared with all of the other developers on the team.

There's more…
Be aware that when using a local workspace, you will no longer have any real visibility on the
server about who has checked-out a file. The exception to this is locking files. If you lock a file,
the server is notified and can report that you have locked it.

Unshelving a shelveset now merges any shelveset changes with your local edits. Any conflicts
between the shelveset and your local version will cause a merge conflict and you will need to
resolve it in the normal manner.

Working with Team Foundation Server 2013

260

See also
ff The Managing your work recipe

Performing code reviews
When developing in a team, one of the more widely recommended practices for improving
code quality and overall consistency is to conduct code reviews. Visual Studio 2013 combines
with TFS to support the code review process and make it as efficient as possible.

In this recipe, you'll see just how this works.

Getting ready
You will need to have access to TFS in order to follow this recipe. It would be best if you use
a sandbox team project. This is a project where you can try things and change data without
worrying about it affecting your normal work.

You will also need to have two accounts you can use, one for the submitter of the code review
and one for the reviewer. If you don't personally have two accounts, that's ok. Create a test
account or get a colleague to act as your reviewer. Note that you should create this second
account before beginning the recipe.

Start Visual Studio 2013 Premium or higher and connect to your team project using the
submitter's account.

How to do it...
Perform a code review using the following steps:

1.	 Start a new C# ASP.NET Web Application project using the MVC template and
add the solution to the source control (Team Foundation). Refer to the Using local
workspaces for source control recipe if you're not sure how to do this.

2.	 Go to the Pending Changes tile in Team Explorer and check-in the code.

3.	 Open the HomeController.cs file under the Controllers folder, change the
contents of the message text for About() and Contact(), and change the name
of the About method to AboutUs.

Chapter 8

261

4.	 Open the Index.cshtml view under the Views\Home folder and alter the text of
the page to something you like. The Pending Changes tile should now look similar to
the following screenshot:

5.	 Click on the Actions drop-down menu and select Request Review, as shown in the
following screenshot:

Working with Team Foundation Server 2013

262

6.	 In the New Code Review pane, enter the name of your reviewer and press Enter.
The reviewer should be the second user account you are using in this recipe, as
mentioned in the Getting ready section. Add a subject for the code review and then
click on Submit Request, as shown in the following screenshot:

Team Explorer will then switch to the My Work display and show the code review
request as an outgoing request, as shown in the following screenshot:

7.	 Switching to your reviewer user account, open Visual Studio and connect to Team
Foundation Server.

Chapter 8

263

8.	 In Team Explorer, open the My Work tile. You should see a code review request
displayed. Note the arrow next to the review, indicating it is an incoming request
for you to look at, as shown in the following screenshot:

9.	 Double-click on the code review task to begin the review process. Team Explorer will
switch to the Code Review pane and display the details of the review and information
on the files that have been modified, as shown in the following screenshot:

10.	 Click on Accept in the top section of the Code Review window to start the review
process and dismiss the accept/reject message.

Working with Team Foundation Server 2013

264

11.	 Click on the HomeController.cs file in the code review. You will see both the
original and modified versions of the file displayed using Visual Studio's diff viewer,
as shown in the following screenshot:

12.	 Select the entire AboutUs method from the right-hand pane, right-click on the
selection, and then choose Add Comment from the context menu, as shown in
the following screenshot:

13.	 The focus switches to the comment box in the Code Review pane. Enter a comment,
as shown in the following screenshot, and then click on Save (Ctrl + Enter):

Chapter 8

265

14.	 Click on the checkbox next to the HomeController.cs file in the Code Review
pane to indicate that there are no further comments to make on that file.

15.	 Click on the Add Overall Comment link and supply a general comment on the code
review, and then click on Save (Ctrl + Enter), as shown in the following screenshot:

16.	 Make further comments on the review as you wish, and when you are done, click on
the checkbox next to Index.cshtml. When you have entered all of the comments
that you wish to make, click on the Send & Finish link, choosing the With Comments
option from the dropdown that appears.

17.	 Switch back to the submitter's user account. In Team Explorer, go to the My Work tile
and click on the refresh button (assuming you left Visual Studio running). Click on the
arrow next to the review request to see the status of the review, and if the review is
complete, double-click on it to display the Code Review hub.

18.	 Click on the HomeController.cs file in the Code Review hub and the diff
viewer will be displayed, including highlights of where comments have been
made by the reviewer.

19.	 As the submitter, you would then take action on the review comments as appropriate.
For the purpose of this recipe, you're just going to close the code review. Click on the
Close Review drop-down link and select Complete from the list of options to close
the entire code review request.

How it works...
If you noticed, the code review occurred on code that wasn't even checked-in to the source
control. Behind the scenes, asking for a code review automatically creates a shelveset for the
reviewer to look at. Unlike the Suspend & Shelve operation, requesting a code review doesn't
reset your workspace or clear any of the work items you have marked as In Progress.

You can also request reviews for changesets that have already been checked-in and other
shelvesets that have been manually created.

See also
ff The Managing your work recipe

ff The Using local workspaces for source control recipe

Working with Team Foundation Server 2013

266

Getting feedback from your users
When working on a product, one of the most valuable things you can do is get feedback from
your users as to whether the software you have built meets their requirements or not, and
what their opinions of it are. You will notice that in TFS terminology, the word "stakeholder" is
used over "user"—representing the diverse sources of feedback that exist. Besides traditional
users, several groups want their voice heard—including design, QA, and the product owner's
funding development.

Even if you have a process that defines clear acceptance criteria for requirements, and you
have a clear definition of what it means to be "done" with a piece of work, you still want
feedback from these stakeholders to determine whether there are any other points that may
have been missed when the requirement was first discussed, or if new ideas have occurred
now that they have seen the software running.

A normal feedback process involves telling your users that the software is available and
asking them to please go and try it and let you know what they think. The feedback you get
can often be patchy, verbally reported, and hard to turn into actionable items for improving
the software.

Let's take a look at how gathering feedback can be streamlined by using TFS.

Getting ready
Just make sure you have access to TFS and a team project. As before, we will be using Visual
Studio Online for our demonstration screenshots.

How to do it...
Gather feedback from people by following these steps:

1.	 Go to the Web Portal site for your team project, and in the Other Links section of the
home page, you should see a Request feedback link. Click on the link to start the
feedback-gathering process, as shown in the following screenshot:

Chapter 8

267

2.	 A dialog will appear asking you to fill in the information in three distinct sections.
Section 1 is named Select Stakeholders, and you must enter the details of the
people you want feedback from. They must be valid TFS users in order to be selected.
For this recipe, enter your own account here, as shown in the following screenshot:

3.	 In section 2, supply the details of how users should access the application. This
would typically be the details of a test site or application to install and run. For
example, enter www.packtpub.com as the address of the web application/site.

4.	 In section 3, add details for the specific feedback you want from your users. Note that
the Add feedback item link is available to add extra items for feedback, as shown in
the following screenshot:

Working with Team Foundation Server 2013

268

5.	 Click on the Send button to send the e-mail. You will receive a message similar to the
one shown in the following screenshot:

6.	 Because Visual Studio automatically installs the feedback client, you can just
click on the Start your feedback session link in the e-mail. The Feedback client
will then launch.

7.	 Click on the application link to launch the website and then click on the Next button
in the feedback client.

8.	 The feedback client is now ready to accept feedback from the users, and the specific
instructions you entered for the feedback session are shown to the recipient. The
following screenshot shows our sample question to the reviewer, and provides a
rich text editor. This allows the reviewer to clearly document their work and provide
screenshots or other options:

Chapter 8

269

9.	 In the comment section, enter some text and then click on the Screenshot button.
Select a section of the screen for your snapshot by dragging the mouse to create a
rectangle. Notice that the screenshot you take is inserted wherever the cursor is in
the comments box. Click on the Next button to continue.

Working with Team Foundation Server 2013

270

10.	 A summary of the feedback will be shown, and you can rate each item using a
five-star approach. If you are happy with the feedback you have provided, click
on Submit and Close to complete the feedback session.

11.	 Switch back to Visual Studio, and in Team Explorer, navigate to the Work
Items tile and double-click on the Feedback query to run it, as shown in the
following screenshot:

12.	 The query results will display all of the feedback responses received from your users.
Select one of the items in the list to view the specific details of the feedback along
with any images and attachments that may have been created by the feedback tool.

13.	 At this point, you can create new work items based on the feedback or close the
items, just as you would for any other work item.

Chapter 8

271

How it works...
Under the hood, all feedback requests are stored as work items in TFS. The feedback client
adds all responses as child work items that are linked to the feedback request. If your users
record feedback using audio or video, then that data will be included as an attachment to the
work item so that you can replay it when you review the responses.

Using Git for source control
Git has become a popular choice for source control as an alternative to the classical
centralized source control approach. Originating in the open source world for use in
development of the Linux kernel, it has since spread in the software development
world to be used on a variety of platforms.

While Git has been available for Windows as a standalone tool for several years, shortly after
the release of Visual Studio 2012, Microsoft formally supported Git via the second update to
VS2012. With Visual Studio 2013, Git support is built-in and readily available for use with
your projects.

The basic concept of Git is that it takes the approach of decentralized source control. Rather
than having a central server that serves as the sole repository, Git facilitates distributed
repositories. In practice, this means that each developer can have a full copy of the repository
on their local developer machine. Developers can perform their normal workflow of code
editing, compiling, and debugging, all while committing code to their local repository.
This promotes experimentation and makes it easier to roll back undesired changes.

When a developer considers their work to be complete for a particular feature or milestone,
they can then, at this point, upload their code and associated development history to a
remote Git repository as needed. This repository can be anything from a fellow developer to
a designated corporate source control server. It also facilitates multi-platform development,
as Git clients exist for Mac and Linux, so you can easily interact with developers on those
platforms who will be using your familiar Visual Studio tools.

This recipe will show how Git can be used with your projects and be a useful tool even if you
are a solo developer.

Getting ready
For this recipe, we will be using VS Express 2013 for Windows Desktop, but any of the
premium editions may also be used. The concepts are applicable to any version of Visual
Studio from Version 2012.2 or later.

Working with Team Foundation Server 2013

272

How to do it...
Activate Git with the following steps:

1.	 We will begin by creating a new C#-based Console Application. The default
name may be used, but before closing the New Project dialog box, be sure that
the checkbox for Add to source control has been checked, as shown in the
following screenshot:

2.	 After clicking on OK on the New Project dialog box, Visual Studio will then prompt you
to choose a source control system. Pick Git, as shown in the following screenshot,
and click on the OK button:

Chapter 8

273

3.	 Visual Studio will now present you with the familiar main editing screen. If it is not
already open, click on the Team Explorer tab. Alternatively, you may open it via
View | Team Explorer.

4.	 Once Team Explorer is open, click on the Settings tile, as shown in the
following screenshot:

5.	 On the next screen that appears, click on the Git Settings link, as shown in the
following screenshot:

Working with Team Foundation Server 2013

274

6.	 At this point, you will see the master settings page. Under Global Settings, you will
need to enter a username and e-mail address. This information will identify your work
and activities in every Git repository that you interact with. Complete these fields
now in order to proceed with the recipe, and note that you can always change them
later. Once they are entered, click on the Update button. The following screenshot
illustrates all of these fields:

Global Settings apply to every repository that you interact with.
Besides the name and e-mail address, you will see that you can
set the default location for where your Git repositories are stored
on your machine.
Repository settings are specific to each repository and can be
changed to suit specific needs. We won't change them now, but for
future references, observe that this is where your .gitignore
and .gitattributes files can be edited.

Chapter 8

275

7.	 After entering your name and e-mail, you will return to the previous Git settings
screen. Navigate back to the main Team Explorer page by clicking on the back
arrow or home icon on the toolbar.

8.	 Now that the required settings have been configured, let's commit our initial project
file. "Commit" is the term used in Git to describe the action of your recording changes
to the repository. On the Team Explorer page, click on the Changes tile, which will
open a screen, as shown in the following screenshot:

Working with Team Foundation Server 2013

276

9.	 There is a lot of information being displayed, so let's look at each grouping. Starting
from the top, you will see a text field requiring a description of what is about to be
committed. Git convention is that the first line in the description is a summary of
the commit, while any additional lines are used for greater detail about what is
being commited.

Included Changes is a list of all the files that will be committed. Since this is a brand
new repository, all of the files are considered new to Git. The files' status is denoted
with the text label [add] after each filename.

Excluded Changes is a list of files that Git recognizes as having changed since the
last commit, yet you do not want them to be entered into the repository.

Untracked Files are files that Git recognizes as new since your last commit. Since
we are about to make our first commit, there are no previous commits available
for comparison.

10.	 Since the current defaults are desired, enter a commit message and click on the
Commit button.

11.	 Visual Studio will indicate when the commit is complete with a brief notice and a
portion of the commit ID. Every commit made to a Git repository is assigned a unique
ID string generated by an SHA-1 hash. Rather than showing the full ID, Visual Studio
displays a portion for easy reference. Click on the Commit link to see the details of
our first commit, as shown in the following screenshot:

12.	 The Commit Details screen shows the pertinent information of the selected commit.
As you will see in the following screenshot, it lists several details about the commit
selected, such as the name and e-mail of the committer, date/timestamp, commit
message, and the files added or modified:

Chapter 8

277

Easy access to the full commit ID is provided by clicking on the
Copy Commit ID link, which will copy the full SHA-1 hash to
your system's clipboard.

13.	 The whole point of using source control is to track and manage changes to your
source code, so let's make some. First, enter text of your choice into the Main()
method of your project's C# file. Then, right-click on the project's name in Solution
Explorer and add a new Class. The default name is fine.

14.	 As you make these changes, you may notice that Solution Explorer is updating to
reflect the change in the file status. A green plus icon is appended to the Class1.
cs file to indicate the status of pending add. Since we have created this new class
in step 13 and after our first commit, Git realizes that it is new. A red checkmark
is placed in front of Program.cs to indicate a pending edit, reflecting the text you
added in step 13, as shown in the following screenshot:

Working with Team Foundation Server 2013

278

15.	 Let's now commit these changes to the repository. Click on Team Explorer. If it is
still visible, click on the back arrow to enter a new commit. Notice in the following
screenshot that Changes has updated to only show the modified files, a much
shorter list than what we saw in step 8:

16.	 Enter a commit message and click on Commit.

17.	 After Visual Studio finishes the commit, click on the Actions drop-down menu and
select View History..., as shown in the following screenshot:

18.	 Visual Studio will show a history of all the commits that have been made to your
project's repository. Notice that the first line of the commit message is shown along
with the name of the developer who made the commit. The date/timestamp is
displayed on the right-hand side. The red master icon indicates that this is the
head for the branch named master as shown in the following screenshot:

Chapter 8

279

Head is a term used in Git to refer to the most recent commit
that was made. In our simple repository, the changes have been
linear. But in many production environments, commit history
can get a bit more complex and this can be helpful in describing
what's changed and how things have changed.

19.	 Double-clicking on either of these commit messages will provide more details
about what the commit included. When the project is fresh in your mind, the details
are easy to remember and the changes are obvious. When working with multiple
contributors or when dealing with long-term projects, Git's organized recording of
changes can make new development much easier.

How it works...
Git is an advanced piece of software that provides many powerful features in exchange
for its complexity. It uses the SHA-1 algorithm to provide a checksum of the data header
being committed. Using this algorithm provides accurate tracking while continuously
ensuring the integrity of your repositories since discrepancies in checksums will alert
you to inconsistencies. They also provide a unique way to identify each commit made.

There's more...
We have only scratched the surface of what Git can do and the value it can provide in your
software development efforts. You can use these tools to clone (make a local copy) of a
remote repository into your local development environment. For example, the Bootstrap
framework described in Chapter 3, Web Development – ASP.NET, HTML5, CSS, and
JavaScript, maintains its project files in a Git repository at https://github.com/twbs/
bootstrap. This project is hosted on GitHub, which offers an alternative to TFS for
code-sharing and team collaboration.

Working with Team Foundation Server 2013

280

Git also has a multitude of features for branching and merging. Branching has many uses
and is almost a necessity when supporting existing software. For example, you can create a
development branch that lets you work on the next version of your application. Meanwhile, a
release branch can be created, which represents the copy of your code that is in production.
Exploring new concepts or making risky changes can be done in the development branch,
allowing the release branch to remain in a bug-free, buildable state.

Since the Git tools in Visual Studio do not yet offer the full functionality of the command-line
tools, an option has been provided to easily add them. As you may have noticed in steps 4 or 5,
Visual Studio offers the ability to install third-party Git command prompt tools. These provide the
full range of Git functionality on your local Windows machine. More information on the benefits
of installing these tools is available in the article, Work from the Git command prompt,
at http://msdn.microsoft.com/en-us/library/dd286572(v=vs.120).aspx.

See also
ff Git has an extensive online manual available at http://git-scm.com/

ff If you would like to use Git on your development machine, but still need to interact
with external TFS severs, consider visiting http://gittf.codeplex.com/ or
https://github.com/git-tfs/git-tfs

9
Languages

In this chapter, we will cover:

ff Fortifying JavaScript applications with TypeScript

ff Integrating Python into Visual Studio

ff Integrating Python with .NET

Introduction
Historically, Visual Studio focused on specific Microsoft-centric languages including C++, C#,
and Visual Basic. Between the Internet, mobile devices, and the ever-increasingly rapid pace
of change, new computer languages are being created in an effort to ease development and
present new solutions to problems.

In this chapter, we will look at TypeScript, Python, and IronPython, a few languages that
offer some unique capabilities when compared to the "traditional" languages offered in
Visual Studio.

Fortifying JavaScript applications with
TypeScript

JavaScript's role in web development has gone from being considered a starter language
for hobbyist programmers to being regarded as a serious tool for building both client and
server modern web applications. This change means that the size and scope of JavaScript
applications has grown tremendously, and with that growth, the costs to manage the
complexity have also increased. To address this, Microsoft has developed the open source
project TypeScript, which is a superset of JavaScript that adds static type checking.

Languages

282

As of this writing, the TypeScript project has not released version 1.0.
However, it is considered stable enough that Microsoft is using it for
portions of Visual Studio Online and the Xbox Music service.

Visual Studio 2013 adds integrated support for TypeScript projects, and users of Visual Studio
2012 can add support with a free plugin (see http://www.typescriptlang.org/). Let's
take a look at how TypeScript can benefit your web application.

Getting ready
For this specific example, we will be using Visual Studio 2013, but you should be able to follow
along with Visual Studio 2012 if you install TypeScript support.

How to do it…
Let's perform the following steps to see how TypeScript can fortify your JavaScript applications:

1.	 Open Visual Studio 2013 and create a HTML Application with TypeScript type of
project, as shown in the following screenshot:

2.	 Accept the default project name and create the project.

3.	 The default project will open with a small sample that, when executed, will produce a
web page that shows a simple clock. When you look at the source, it is pretty sparse,
as shown in the following screenshot:

Chapter 9

283

4.	 If you notice, beyond some HTML, there is not much except for a reference to a
file called app.js. Returning to Visual Studio, the most closely-related source file
is app.ts. So where did the app.js file come from? Going back to our original
explanation of TypeScript, remember that it is a superset of the JavaScript language.
This means all valid JavaScript code is also valid TypeScript code. When TypeScript is
compiled, JavaScript is generated. In this case, our file app.ts is compiled by Visual
Studio to app.js. You can find the app.js file if you look inside your project folder.
It is at the same location as your project's web config files.

How it works…
Since TypeScript ultimately compiles down to JavaScript, you may be wondering what the
advantages of using it are. First, using TypeScript allows meaningful IntelliSense support.
For example, examine the app.ts file that is part of our project. The following screenshot
shows one of the available IntelliSense menus that can appear while editing:

Languages

284

Second, TypeScript (as its name suggests) allows type checking. Consider the greeter
class and how Visual Studio is able to help by comparing the differences, as shown in the
following screenshot:

Since TypeScript is being used, Visual Studio detects an error with the assignment, as shown
in the preceding screenshot. Conversely, in the JavaScript code (shown in the following
screenshot), Visual Studio did not detect the error:

This creates a bug that is easy to overlook. In smaller applications, the lack of type checking
can usually be managed by the programmer. However, with larger applications, or unfamiliar
code bases, it becomes much more difficult. Catching the error immediately saves debugging
time later.

Visual Studio works with the TypeScript compiler (tsc.exe) to produce valid JavaScript that
works on any browser or platform that supports JavaScript. This compatibility means you can
use TypeScript in your projects without requiring your users to install something new. Since
the nature of the TypeScript language is more specific than JavaScript, you can catch errors
sooner and increase the power of IntelliSense. This allows you to keep the good parts of
JavaScript (fast and powerful design capabilities) while increasing its safety and usability in
large projects.

There's more…
You don't need to create a brand new project just to take advantage of TypeScript. It can be
easily added to your existing web projects. From within an existing web project, add a new item
(Ctrl + Shift + A), or right-click on your project name or directory within the Solution Explorer
window, and select TypeScript File, as shown in the following screenshot:

Chapter 9

285

If you would like to try TypeScript but are wondering about all of the existing JavaScript code
that would need to be converted, don't worry. Library types for many popular JavaScript
projects, including Backbone.js, Node.js, and jQuery, are available at DefinitelyTyped
(https://github.com/borisyankov/DefinitelyTyped).

Integrating Python into Visual Studio
Python was created by Guido van Rossum in the early 1990s and quickly developed a
following among developers across the world. Python is a dynamic, general-purpose language
well suited for all types of projects. Among its many features are support for multiple
paradigms (object-oriented, functional, and so on.), a rapid development cycle (thanks
to its interpretive nature), and its structured approach to syntax.

Languages

286

Microsoft has released Python Tools for Visual Studio 2013 (PTVS) so that those of us on
the Microsoft platform can easily try and use Python within Visual Studio. Whether you would
like to just sample Python, or create a new application from the ground up, you will be able to
do so while using the tools with which you are already familiar. In this recipe, we will see how
Visual Studio can become a highly-tuned Python development environment.

Getting ready
For this recipe, you will want to download and install PTVS, which is located at
http://pytools.codeplex.com/.

Next, you will want to install a version of Python for PTVS to work with. You can find the latest
versions of Python at http://python.org. There, you will find the two main releases (as of
this writing), 2.7.6 and 3.3.3. For this recipe, choose 3.3.3. The Python home page provides a
good description of the difference between the two versions.

How to do it…
Once you have installed PTVS and Python, open Visual Studio and perform the following steps:

1.	 Let's take a look at the available project types. Open the New Project dialog box (Ctrl
+ Shift + N). Under Templates | Python, you will see several Python-based options,
as shown in the following screenshot:

2.	 Create a new Python Application, as highlighted in the preceding screenshot, using
the default name.

Chapter 9

287

3.	 Once the project opens, you will see a friendly Hello World Python program.
This can be executed the same way as any other Visual Studio project.

4.	 The first new IDE addition we will look at is the Python Environments window.
This can be accessed through View | Other Windows | Python Environments.

5.	 This window is used to view the currently selected Python interpreter (in this case,
Python 3.3 is installed) and make changes to your overall Python environment. If
you have multiple versions installed, you can set the default one, as shown in the
following screenshot:

6.	 Another very helpful window is the interactive prompt. One of Python's strengths is
REPL (Read-Evaluate-Print-Loop). PTVS provides an easy way to access this from
within Visual Studio. Activate this by navigating to VIEW | Other Windows | Python
3.3 Interactive.

7.	 This window lets you enter the Python code directly, for immediate execution, as
shown in the preceding screenshot. If you need to test a command or run a quick
experiment, you can do so from within your editor. Also, because you are in VS2013,
you get the navigation scroll bar, IntelliSense, and the ability to easily cut and
paste results.

8.	 Add the following code to your original Python file:
print('Hello World')
a=20
b=80
print("Results: " + (b+a))

Languages

288

9.	 Then, run the program. You will get a TypeError. One way to solve this is through
the use of the Interactive Window. Highlight the added lines of code, right-click on
them, and choose Send to Interactive, as shown in the following screenshot:

10.	 Once sent, the Interactive Window will rerun the code, and you will see the same
error again. We can use this window to quickly work through solutions. With your
cursor at the >>> prompt, just press the up arrow key to cycle through the program's
lines. Edit the print line as follows:
print("Results: " + str(b+a))

When you add the str type, your cursor will still be in the
middle of the line, so be sure to get to the end of the statement
before pressing Enter.

11.	 The correction will produce the following code:
>>> print("Results: " + str(b+a))
Results: 100

12.	 This solved the problem, so we can now add the str type to our file and continue
with development.

Chapter 9

289

How it works…
PTVS turns Visual Studio into a real, full-fledged, developing environment for Python.
In conjunction with the Python interpreter, PTVS allows you to use Python in a familiar
setting without needing to learn new tools.

There's more…
Since PTVS integrates the full Python language, covering all of the benefits it provides
cannot be accomplished in a single recipe, or even in a single book. Some of the additional
features that PTVS supports include integration with the test runner, profiling, and remote
debugging. The previously mentioned Python Tools for Visual Studio's home page
(http://pytools.codeplex.com/) is a great source of information.

Integrating Python with .NET
We've just explored how PTVS can easily integrate Python into VS2013. Now, Will now look at
IronPython, which integrates Python with the .NET and Mono platforms.

IronPython provides the ability to write applications that use WPF and WinForms as well as
easily call the .NET code from within your Python program. Whether you want to do some
rapid prototyping or build a full application, IronPython can be a useful addition to your
developer toolbox.

Getting ready
IronPython is available for download at http://ironpython.codeplex.com/. This
recipe assumes you have installed PTVS as described in the Integrating Python into Visual
Studio recipe.

How to do it…
Once you have installed IronPython, open Visual Studio 2013 and perform the following steps:

1.	 We are going to create new project using the IronPython Windows Forms Application
template under Python.

2.	 The project will open with a Python listing in the editor window. This gives us an
application skeleton that we can easily extend. Press F5 to see what it looks like
in its starting form.

Languages

290

3.	 We are now going to add some code to show a little bit more interactivity. Edit the
MyForm class so that it matches with the following code:
class MyForm(Form):
 def __init__(self):
 # Create child controls and initialize form
 self.Text="Iron Python"
 goButton = Button()
 goButton.Text = "Go"
 goButton.Click += self.goButtonPressed
 self.label = Label()
 self.label.Text = "Ready to go!"
 self.label.Location = Point(40,40)
 self.label.Height = 25
 self.label.Width = 200
 self.Controls.Add(goButton)
 self.Controls.Add(self.label)
 pass

 def goButtonPressed(self, sender, args):
 self.label.Text = "Go button pressed"

4.	 Once entered, view the results by running the application again (press F5). The result
is shown in the following screenshot:

5.	 As mentioned in the introduction to this recipe, one of the advantages of this
integration is the ability to rapidly prototype the .NET code. We will continue this
recipe by showing how this can work with a C# DLL.

6.	 Right-click on the same project and create a new project by using the Class Library
template under Visual C#. Keep the default name as ClassLibrary1.

Chapter 9

291

7.	 Add the following method to your new class library:
public static int generate(int a, int b)
{
 Random rand = new Random((int)DateTime.Now.Ticks);
 return (rand.Next(a)+b);
}

8.	 Build the library through Build | Build ClassLibrary1. This will produce a class with
a pseudo random number for our use. Now, we will update our Python to make use
of it.

9.	 In the Python file, add the following highlighted line:
clr.AddReference('System.Drawing')
clr.AddReference('System.Windows.Forms')
clr.AddReferenceToFileAndPath(r"..\ClassLibrary1\bin\Debug\
 ClassLibrary1.dll")

10.	 Similarly, add the following highlighted import statement:
from System.Drawing import *
from System.Windows.Forms import *
from ClassLibrary1 import *

11.	 Change the method for the button press action, as shown in the following code:
def goButtonPressed(self, sender, args):
 classy = Class1()
 self.label.Text = "Random number received: " +
 str(classy.generate(10,4))

12.	 Run the application and click on the Go button. You should see something similar to
the following screenshot:

Languages

292

How it works…
By directly targeting the .NET and Mono runtimes, IronPython offers a different way to take
advantage of Python. IronPython is able to do this as it runs on a Dynamic Language Runtime
(DLR) that in turn runs on the CLR used by .NET languages. The conventional CPython
interpreter (the Python environment that is the most widely used) is written in C and typically
runs stand-alone.

In our example, we first demonstrated how IronPython lets you easily build a WinForms
application. Then, we created a proof-on-concept C# library to show how the resulting DLL
can be accessed from Python with very little cost. This gives you a lot of freedom, whether you
want to add more functionalities to your Python-based programs or test the .NET code without
needing to spend a lot of time writing routine setup code.

Visual Studio Medley

In this appendix, we will cover:

ff Creating installer packages

ff Submitting apps to the Windows Store

ff Creating Visual Studio add-ins and extensions

ff Creating your own snippets

Introduction
There are many little details that contribute to the success of a program. In this appendix, we
will look at several different topics that don't fit into a specific category but remain useful and
could be the missing ingredient your project needs. The first two recipes deal with some ways
of getting your application ready for distribution to your end-users. The remaining two provide
some ways to improve your productivity with the Visual Studio IDE.

Creating installer packages
The release of Visual Studio 2012 marked the removal of the popular Visual Studio
Installer project type. Just like 2012, Visual Studio 2013 offers a version of the third-party
InstallShield. In this case: InstallShield Limited Edition.

The need for an installer depends on the type of application you are working on. If you are
creating a Windows Store app, then you don't need an installer, as the new deployment model
makes installers obsolete. If you are creating a web application, then Microsoft would suggest
you to either use the XCopy or the MSDeploy web deployment technology. When it comes to
traditional desktop applications, you may want to use InstallShield. You can always fall back
to using the WiX (Windows Installer XML) toolset (http://wixtoolset.org/) for
creating projects.

Visual Studio Medley

294

In this recipe, we will use InstallShield to create an installer package for a simple application.

Getting ready
The recipe assumes you haven't yet installed InstallShield Limited Edition. If you have,
then some of the early steps in this recipe will be different.

Simply start Visual Studio 2013 (Professional or higher), and you're ready to go.

How to do it…
Create an installer using the following steps:

1.	 Create a new Visual C# | WPF Application project and name it Simple WPF
Application.

2.	 Go to the project properties page by right-clicking on the project in Solution Explorer
and selecting Properties. In the Application tab, set the icon for the application to
either an icon of your choice or the icon located at C:\Program Files (x86)\
Microsoft Visual Studio 12.0\Common7\IDE\ItemTemplates\CSharp\
General\1033\Icon\Icon.ico.

3.	 Build the solution to make sure it compiles properly. If you have already installed
InstallShield Limited Edition, you can jump down to step 7.

4.	 Right-click on the solution and add a new project using the Other Project Types |
Setup and Deployment | Enable InstallShield Limited Edition template.

5.	 A browser window will appear with instructions on how to enable InstallShield
in Visual Studio 2013. Click on the link to redirect to the InstallShield website,
register your details, and download the file as directed. When the download
completes, save your solution, close Visual Studio 2013, and then run the
InstallShield setup executable.

6.	 Restart Visual Studio 2013 and open the solution you created in Step 1.

7.	 Right-click on the solution in Solution Explorer and choose Add | New Project...
from the context menu. In the Add New Project dialog, choose Other Project Types
| Setup and Deployment | InstallShield Limited Edition Project, give it the default
name, and then click on OK.

8.	 If this is the first time you have used InstallShield after installation, you will be asked
whether you wish to evaluate the software or register it. Choose to register and
activate the product using the serial number you should have received in your e-mail.

9.	 The InstallShield project assistant will appear in the document window, as shown in
the following screenshot:

Appendix

295

10.	 Click on the right arrow (the "next" button) at the bottom of the project assistant
window to advance to the Application Information page. Enter a company web
address, such as www.company.com.

11.	 Advance through the project assistant until you get to the Application Files page.
Select the My Product Name node from the tree and then click on Add Project
Outputs, as shown in the following screenshot:

Visual Studio Medley

296

12.	 In the Visual Studio Output Selector dialog, select the Primary output item and click
on OK.

13.	 Click on the next button to go to the Application Shortcuts page. Click on the New...
button to add a shortcut to your application. Choose [Program FilesFolder] | My
Company Name | My Product Name | Simple WPF Application.Primary output
from the dialog and click on Open.

14.	 The shortcut is named Built by default. That's not very useful, so click on the shortcut
name to edit it and rename it to Simple WPF Application.

15.	 Right-click on the Setup1 project in Solution Explorer and select Install from the
menu. If prompted to build out-of-date projects, click on Yes.

Appendix

297

16.	 Follow the steps through the setup wizard to install the program. Verify that the
program is installed correctly by looking for the application in your Start menu
or Start page, as shown in the following screenshot:

17.	 Remove the program from your system by right-clicking on the Setup1 project (from
within Visual Studio) and selecting Uninstall.

How it works...
InstallShield reduces the complexity of creating installers by providing a set of sensible
default configuration options and an easy-to-use user interface. It also understands exactly
how the Windows installer system works and warns when there are problems in how you
have configured the installation process. For example, if you recall the warning outputs from
the Creating installer packages recipe when the package was built, you would have seen a
warning about the .NET Framework and how it would be a good idea if this framework was
included with the setup kit to ensure people who don't have .NET already installed won't have
extra setup dependencies.

A license for the limited edition is provided free of charge with Visual Studio 2013 and will be
sufficient for basic installation purposes. If you need a heavily-customized installation process,
then you should investigate the more advanced versions of InstallShield, or competing
offerings such as Nullsoft Scriptable Install System (NSIS), or the previously mentioned WiX.

See also
ff Microsoft has developed ClickOnce, which can also be used to deploy Windows-

based applications. More information is available at http://msdn.microsoft.
com/en-us/library/t71a733d.aspx.

ff Developers writing applications in C++ should also review the ClickOnce information
at http://msdn.microsoft.com/en-us/library/ms235287.aspx.

ff Nullsoft Scriptable Install System (NSIS):
http://nsis.sourceforge.net/Main_Page.

Visual Studio Medley

298

Submitting apps to the Windows Store
While existing legacy desktop style applications can be distributed using the traditional
methods (as described in the Creating installer packages recipe), the only way to distribute
Windows Store apps will be via the Windows Store, and they must pass a certification process
for that to happen.

Certification is the process by which Microsoft ensures that apps available in the Windows
Store will meet certain performance and quality standards. As a developer, the Store makes
it easy for customers to obtain and install your app. In this recipe, we'll look at how the
certification process works. Since apps for Windows 8 can only be maintained at this point,
we'll focus on creating a new app for Windows 8.1.

Getting ready
To start, you will need either VS Express for Windows or one of the premium editions of Visual
Studio 2013 and Windows 8.1.

How to do it...
Perform the following steps:

1.	 Start a new project by navigating to Visual C# | Windows Store | Blank App (XAML).

2.	 From the menu, navigate to Project | Store and select Open Developer Account....

A Developer Account is different from a Developer License.
The account is used to publish apps to the Windows Store.
The license is used on your local computer for testing
and developing apps. Microsoft has recently modified the
Developer Account so that the same account can be used for
both Windows Store apps and Windows Phone development.

3.	 A browser window will open and you can apply for a developer account using the
process as outlined on the page. Windows Store accounts may require a payment
of a small license fee, so have a credit card handy when you perform this step.

4.	 Once you have an account, switch back to Visual Studio, and from the menu, choose
Project | Store | Reserve app name....

5.	 Again, a browser window will open, and you will be directed to the Windows Store to
register the name for your application. Follow the process as described on that page.

6.	 From the Visual Studio menu, select Project | Store | Edit App Manifest and use the
information from the app name reservation to populate the appropriate fields. Take
particular note of the fields on the packaging tab.

Appendix

299

7.	 Alternatively, you can select the Project | Store | Associate App with the
Store... menu entry and follow the steps of the wizard to automatically populate
the packaging tab with the appropriate values. This option will let you choose from
a reserved app name as well as reserve a new name if needed.

8.	 At this point, you are ready to write your application.

Current Microsoft guidelines will allow an app name to
be reserved for a year. If your app is not submitted by
this deadline, the reservation will expire.

9.	 Verify your application using the Windows App Certification Kit. Refer to the
Validating your Windows Store app recipe in Chapter 2, Getting Started with Windows
Store Applications, to do this.

10.	 Package your application for uploading to the Store by choosing Project | Store |
Create App Packages....

11.	 Next, upload the resulting package to the store by selecting Project | Store | Upload
App Packages... from the menu and following the steps presented in the ensuing
upload wizard.

12.	 Once the upload completes, you can monitor the progress of your package through
the approval process using the tools provided by the Store.

Visual Studio Medley

300

How it works...
The Store submenu is only available when running Visual Studio in Windows 8 and when you
have opened the solution for a Windows Store app. When you upload a package to the store,
there are a number of basic sanity checks to verify if your package is acceptable and meets
the requirements of the Windows Store. These checks include running the certification toolkit
on your app and verifying the manifest information against the information you supplied when
you registered the app name. Using Visual Studio's Associate app with the Store wizard is
an easy way to make sure you don't have any typographical errors in your manifest. It also
improves the chances of a successful first-time submission.

There's more…
Earning money with Windows Store apps is not limited solely to upfront purchase revenues. You
may also distribute your app using a trial mode that encourages a try-before-you-buy approach.
Apps may include the ability to support in-app purchases and in-app advertising using your
choice of ad platforms, and it may implement a custom transaction system if you so desire.

For in-app purchases and trial versions of your product, Microsoft bundles
supporting functionality in the Windows.ApplicationModel.Store
namespace to make it easier for you to build applications with these features.
A sample app is available using these features here: http://code.
msdn.microsoft.com/windowsapps/Licensing-API-Sample-
19712f1a

If you want to confirm what the requirements are for App certification, refer to the Microsoft
documentation on the subject at http://msdn.microsoft.com/en-us/library/
windows/apps/hh694083.aspx.

Sideloading
The Windows Store makes public distribution of applications very easy, but certain line-of-
business or custom apps will not want to take this approach. Sideloading is the process
by which developers can bypass Store restrictions and avoid public distribution for the
corporate/enterprise market. For information on this approach, refer to http://technet.
microsoft.com/en-us/library/hh852635.aspx.

See also
ff The Packaging your Windows Store app recipe in Chapter 2, Getting Started with

Windows Store Applications
ff The Validating your Windows Store app recipe in Chapter 2, Getting Started with

Windows Store Applications

Appendix

301

Creating Visual Studio add-ins and
extensions

When Microsoft released Visual Studio 2010, they changed the approach to extensibility
by introducing the VSIX format. The number of extensions in the Visual Studio gallery is a
testament to how successful this change has been.

So, what do you do if you want to make your own add-ins and extensions in Visual Studio?
This recipe will walk you through that process, though the magic that happens inside the
add-in or extension is up to you.

Getting ready
To create extensions, you will need the Visual Studio 2013 SDK (http://www.microsoft.
com/en-us/download/details.aspx?id=40758) and the Professional or higher version
of Visual Studio, which you can download from Microsoft.

Once the SDK is installed, start Visual Studio 2013 and you're ready to go.

How to do it...
Perform the following steps:

1.	 Start a new project by navigating to Other Project Types | Extensibility | Visual
Studio Add-in and the default name.

2.	 The Add-in Wizard will be launched. Click on Next on the first page.

3.	 Choose the language you want to develop in. For the recipe, choose Create an Add-in
using Visual C# and click on Next.

4.	 Click on Next to choose the default Application Host (which will default to Microsoft
Visual Studio 2013).

5.	 Provide a name and description for the add-in if you are feeling creative, otherwise
just click on Next.

6.	 Click on Next to use the defaults for the add-in options, click on Next again to skip
'Help About' Information, and finally click on Finish. The wizard will generate an
application skeleton including all of the references necessary for building Visual
Studio 2013 add-ins. At this point, you can add the details of your add-in, but for this
recipe, we will continue without it.

7.	 Pressing F5 will start a new instance of Visual Studio in the debug mode (it may take
a while to start) where you can use the add-in manager (Tools | Add-in Manager…)
to enable your add-in and check its functionality. For this recipe, leave the add-in as
it is.

Visual Studio Medley

302

8.	 Add a new project to your solution by right-clicking on the solution in the Solution
Explorer and add a new project using the Editor Viewport Adornment template by
navigating to Visual C# | Extensibility, leaving the name as the default. If this option
isn't available, check if you have installed the Visual Studio SDK correctly.

The VSIX file is not in the same location as the template used
in step 1. You will find the VSIX in AppendixVSAddin1\
ViewportAdornment1\source.extension.vsixmanifest,
while the add-in project file is located in AppendixVSAddin1\
AppendixVSAddin1\ if you are using the default names.

9.	 Open the source.extension.vsixmanifest file and populate the Author field
with your name.

10.	 Set the new extension project as the default startup project (by right-clicking on the
project in the Solution Explorer and clicking on Set as StartUp Project) and press
F5 to start debugging. A new instance of Visual Studio will be launched using the
experimental hive. The experimental hive is a separate set of Visual Studio settings
you can use when testing extensions that won't affect your normal development
settings. (You will notice that you are prompted to set your settings, just as you did
the first time you launched Visual Studio 2013 after installing it.)

Because a debugger is attached, starting the experimental instance
of Visual Studio may take longer than you are used to. It will have
Experimental Instance in the title bar to help distinguish it from
your regular instance of Visual Studio.

11.	 When Visual Studio has finished loading, it will automatically instantiate the
extension, making it active and available. From the Visual Studio menu, select File
| New | File..., then select General | Text File and click on Open. You should see
a purple box at the top-right corner of the editor surface, as shown in the following
screenshot, proving that the extension is working as expected.

12.	 Close the experimental instance of Visual Studio.

Appendix

303

How it works...
There's a big difference between add-ins and extensions in Visual Studio. Add-ins are the old
way of extending Visual Studio and are fairly complex to build, whereas Extensions are the
preferred approach from Visual Studio 2010 onwards and are much easier to implement.

An add-in needs to implement an extensibility interface, and while this means your add-in
can work with Visual Studio versions prior to 2010, it is limited to functionality exposed by
the DTE interfaces, and as a developer you need to deal with a number of COM interfaces.
An extension, on the other hand, needs to implement a Managed Extensibility Framework
(MEF) contract and is not restricted in the API's it can access or in the way it is implemented.

There's more…
There is a lot more flexibility in building extensions over add-ins and this also applies to the
update and distribution mechanism. However, if you really need to get to the internals of
Visual Studio, or if you need to support Visual Studio 2008 or earlier, then you will need to
look at the add-in approach.

The Extension Manager complements the NuGet package system described in the Managing
packages with NuGet recipe in Chapter 4, .NET Framework 4.5.1 Development. The difference
is that Extension Manager focuses on enhancements to Visual Studio, while NuGet is used to
obtain libraries that you will be distributing with your application.

When you complete the recipe, if you want to remove every trace
of your add-in from Visual Studio remove the .addin file from
Documents\Visual Studio 2013\Addins.

Creating your own snippets
Visual Studio snippets are a great way to quickly write repetitive chunks of code using the
same basic structure and can save you a lot of time and typing. Snippets have been extended
to work on more than just standard code files, and should be considered whenever you find
yourself writing similar code over and over. Using snippets can save time and reduce the
possibility of bugs: write the code correctly once and then re-use.

Visual Studio Medley

304

For example, you may want to generate a class signature that inherits from a specific base
class you use in your application, or you may have a certain attribute that needs to be placed
above method calls to enable logging, or you may have specific IDs you want to use in HTML
elements to ensure CSS styles can be consistently applied to your web pages. Unfortunately,
out of the box Visual Studio still doesn't have a built-in way of authoring snippets. Therefore,
you will need to write some XML. Fortunately, it only takes a few minutes to create a snippet,
and the time you can save once it exists makes it worth doing.

This recipe will show you how to create your own snippets and make them available inside
Visual Studio.

Getting ready
Simply start Visual Studio 2013 and you're ready to go.

How to do it...
Create your own snippet using the following steps:

1.	 From the menu, choose File | New | File..., select XML File, and click on Open.

2.	 Populate the file using the following XML code:
<?xml version="1.0" encoding="utf-8"?>
<CodeSnippets
xmlns="http://schemas.microsoft.com/VisualStudio/2005/
CodeSnippet">
 <CodeSnippet Format="1.0.0.">
 <Header>
 <Title>Wrap text in a span</Title>
 <Shortcut>spanned</Shortcut>
 <SnippetTypes>
 <SnippetType>Expansion</SnippetType>
 <SnippetType>SurroundsWith</SnippetType>
 </SnippetTypes>
 </Header>
 <Snippet>
 <Declarations>
 <Literal>
 <ID>id</ID>
 <Default>elementId</Default>

Appendix

305

 </Literal>
 </Declarations>
 <Code Language="HTML">
 <![CDATA[$selected$ is now in a
span!]]>
 </Code>
 </Snippet>
 </CodeSnippet>
</CodeSnippets>

3.	 Save the file as spanned text.snippet in your Documents folder.

4.	 From the menu, select Tools | Code Snippets Manager.... The shortcut is Ctrl + K,
Ctrl + B.

If you are using Virtual Studio Express for Windows and cannot
locate the Code Snippets Manager... on your menu, enable
Expert Settings via Tools | Settings | Expert Settings.

5.	 Click on the Import... button. Select the file you saved in step 3 and click on OK.

6.	 Leave the location as My HTML Snippets, as suggested, and click on Finish.
The snippet file will automatically be copied to the appropriate location in
Documents\Visual Studio 2013\Code Snippets.

Visual Studio Medley

306

7.	 In the Code Snippets Manager, change the Language to HTML and expand the
My HTML Snippets location, as seen in the following screenshot, to confirm your
snippet has been loaded. After confirming this, click on OK to close the dialog.

8.	 From the menu, select File | New | File..., then select General | HTML Page,
and click on Open.

9.	 In the content of the body tag, enter <p>this is some text</p>.

10.	 Select the words is some, right-click on the selection, choose Surround With...,
then My HTML Snippets | Wrap text in a span, and hit Enter.

Appendix

307

11.	 The snippet will be expanded and the contents of the id attribute for the span will be
selected. Enter the text myId to replace the highlighted elementId placeholder and
hit Enter. The cursor will move to the end of the closing span tag.

How it works...
The Header section is where the display title of the snippet is given, a shortcut name (in this
case spanned), a human-friendly description, and what type of snippet is being defined. Our
example is in the Expansion and SurroundsWith categories. This means our snippet can
be used with the selected text (SurroundsWith) or at the cursor's current position in the
editor (Expansion).

The Snippet section is where the bulk of the work is done. Visual Studio automatically
scanned the code body of the snippet for an identifier placeholder of id so that it could
populate it with the default value and prompt you for your own value.

By declaring the snippet as a SurroundsWith snippet, the selected text is passed to the
$selected$ placeholder in the body. Since Expansion is also supported, if you enter the
snippet on a blank line, Visual Studio will still just generate the following text:

 is now in a span!

There's more…
There is a Snippet Designer project on CodePlex (http://snippetdesigner.codeplex.
com/) that offers a GUI tool to make creating snippets much easier. It also enables you to
select a section of code and export that as a snippet so that you have an easy starting point
for making your own custom snippets.

Remember that snippets are more than just a simple text entry/replacement mechanism,
and it's worth spending a little time looking through the full schema reference for snippets
on MSDN at http://msdn.microsoft.com/en-us/library/ms171418(v=vs.120).
aspx to get a better idea of what they can do for you.

Index
Symbols
3D model

creating 232-234
displaying 232-234
working 234

.NET
Python integrating with 289-291

.NET applications
asynchronous tests 143
tests, executing automatically 144
unit testing 139-142
unit test, restricting 143

A
ActionBlock object 201
App Manifest 71
app performance

analyzing 74, 75
apps

submitting, to Windows Store 298, 299
ASP.NET process

debugging 165
ASP.NET Web Stack 134
asynchronous code

writing 184-190
asynchronous web application

creating 197
asynchrony

using, with web applications 196-200

B
Backbone.js 285
bar mode 15
Basic Page item template 56

Blank App template 46
Blank Page item template 56
Bootstrap

about 86
used, for creating MVC application 87

Browser Link
about 91
using 91-94
working 94

bundling
about 107
adding, to CSS files 107-111
adding, to JavaScript files 107-111

C
C++

XAML, using with 206-210
capabilities

about 72
Home or Work Networking capability 73
Internet (Client) capability 73
Internet (Client & Server) capability 73
Library Access 73

Capability 66
C++ applications

unit testing 210-216
C++ code

analyzing 217-219
Chutzpah test adapter 143

URL 143
class libraries

sharing, across runtimes 144-147
Class Library project 49
ClickOnce 297

310

code debugging, in production environment
IntelliTrace, used 166-171

Coded UI Testing project template 50
CodeLens, VS2013 IDE 17
Code Maps, VS2013 IDE 18
code reviews, TFS

performing 260-265
COM Interop 52
Command Window 29
Complete() method 203
concurrency

visualizing 177-181
Concurrency Visualizer

about 177
launching 179
working 182

Contact Picker contract 71
Contract 66
contracts

Contact Picker 71
File Open Picker 71
File Type Associations 72
Search 72
Share Target 72

CppUnit test framework 216
CPU Sampling 74
CSS editor

features 98
features, implementing 98-101
working 101

C++ unit tests
debugging 216

custom rule set
using 219-222

custom snippets
creating 303-306
working 307

C# workflows 129

D
DataFlow powered application

creating 201-203
debugging

ASP.NET process 165
code, in production environment 166
maximizing 154-158

on remote machines 159-164
parallel code 172

Declaration 67
Developer Account 298
development technologies, for project

templates 51
development technology

selecting 44
Directed Graph Shader Language (DGSL)

about 227
used, for creating shader 227-232

DirectX
working with, in Visual Studio 2013 223-226

DirectX App template 51
DLL template 50
Domain Specific Language (DSL) 226
DownloadStringTaskAsync() method 190
duplicate code

detecting 147-150
Dynamic Language Runtime (DLR) 292

E
Edit and Continue functionality 157, 158
Energy Consumption 74
existing project

upgrading 22

F
feedback process, TFS

about 266
feedback, obtaining from users 266-270

Feedback, VS2013 IDE 14
File Open Picker 71
File Open Picker Contract item template 57
File Type Association contract 73
File Type Associations 72
Find in Files 129
Fixed Layout App template 48
FlipView control 56

G
Git

about 279
online manual 280
using, for source control 271-278

311

working 279
go() function 104
Graphics Diagnostics toolset 235

working 238
Grid App template 46, 47
Group Detail Page item template 57
Grouped Items Page item template 57

H
High-Level Shading Language (HLSL) 226
Home or Work Networking capability 73
HTML5 web pages

creating 94-97
Hub App template 49
Hub Page 57
Hub style 44

I
installer packages

creating 293
creating, InstallShield used 294-297

InstallShield 293
used, for creating installer packages 294
working 297

IntelliTrace
about 166
settings 172
used, for code debugging in production

environment 167
variable values, finding 172

Internet (Client) capability 73
Internet (Client & Server) capability 73
Internet Information Server (IIS) 196
IronPython

about 289
downloading 289

Item Detail Page item template 56
Items Page item template 56
item template

adding, to Windows Store app 52-56
item templates, Windows Store. See Windows

Store item templates

J
JavaScript applications

fortifying, TypeScript used 281-284
JavaScript editor

about 102
features, implementing 102-106

jQuery 285

L
languages impacts, item template options 58
Library access capability 73
LinkTo() method 204
LoadState() method 54

M
Managed Extensibility Framework (MEF) 201,

303
map mode 15
Microsoft Native Minimum Rules rule set 222
Microsoft Native Recommended Rules rule

set 222
Microsoft Visual Studio Scrum 2013 process

template 247
minification

about 107
adding, to CSS files 107-111
adding, to JavaScript files 107-111

Model-View-Controller (MVC) framework 21
MonoGame

URL 223
MSDeploy 293
MSI setup (.vdproj) 21
MVC application

creating, Bootstrap used 87-90

N
Navigation App template 48
New() method 193
Node.js 285
Notifications, VS2013 IDE 14

312

NuGet
about 134
URL 137
used, for managing packages 134-137

Nullsoft Scriptable Install System (NSIS) 297

O
OnLaunched() method 55

P
packages

custom package locations, using 138
loading automatically 137
managing, NuGet used 134-137

packaging
Windows Store app 76

Page Control 58
Page_Init() method 198
Page Inspector

about 111, 112
in, narrow window 116
pages, verifying with 112-114
partial pages 115
user controls 115
working 114

Page_PreRender() method 199
pages

verifying, with Page Inspector tool 111
panning 129
parallel code

debugging 173-176
ParallelDebugging 173

working 177
Parallel LINQ (PLINQ) 172
Peek Definition, VS2013 IDE 16, 17
Portable Class Library 44, 49
ProcessFeedsAsync() method 189
project

creating 22
round-tripping, in VS2013 19, 20

project types
Model-View-Controller (MVC) framework 21
MSI setup (.vdproj) 21
Windows Store applications 21

PublishedDate() helper method 193
PublishedDate() method 186, 194

Python
integrating, into Visual Studio 285-288
integrating, with .NET 289-291
URL 286

Python Tools for Visual Studio 2013 (PTVS)
286

downloading 286
installing 286
working 289

Q
Quick Find 129
Quick Launch box 27

R
ReadFeed() helper method 194
ReadFeed() method 185, 196, 198
ReadKey() method 190
remote debugging

missing symbols 166
performing 159-164
remote machine, deploying to 165
working 164

remote machine
about 65
deploying to 165

Remote Tools for Visual Studio 2013 160
REPL (Read-Evaluate-Print-Loop) 287
Resource Directory 57
Resources File 58
Ribbon control

adding, to WPF application 118-123

S
Scroll bar thumbnail, VS2013 IDE 15, 16
Search contract 72
Search Results Page item template 57
ServiceModel Metadata Utility Tool 134
Settings Flyout template 57
shader

creating, DGSL used 227-231
working 232

Share Target contract 57, 72
SharpDX

URL 226

313

sideloading 300
SlowMethod() 173
Smart Tasks helper indicator 96
Snippet Designer project 307
Solution Explorer window

about 23
CSS file, navigating to 36
HTML file, navigating to 36
JavaScript file, navigating to 36
managing 23-25
navigating in 32-35
navigation behavior 36
preview tab 26

source control
Git, using for 271-278
local workspaces, using for 253-258

Split App template 48
Split Page item template 56
state machine

creating, in Visual Studio 123-128
working 128, 129

Static Library template 50
svcutil.exe 134

T
task-based WCF service

creating 130-133
working 134

Task Parallel Library (TPL) 172, 200
Task.WhenAll method 188
Team Explorer tool 247

active work, shelving 252
favorites, using 251
working 250

Team Foundation Server. See TFS
Templated Control 57
textwidth() method 103
TFS

about 17, 241
code reviews, performing 260-265
feedback, obtaining from users 266-270
Git, used for source control 271-279
local workspaces, using for source control

253-259
work, managing 246-250

TFS project
creating 242-245

TPL Dataflow Library
about 201, 204
working with 201

TransformBlock object 201
trim() method 106
TypeScript

used, for fortifying JavaScript 281-283
working 283, 284

U
unit test

running, in debug mode 216
unit testing

C++ applications 210
Unit Test Library project template

about 50
Coded UI Testing project template 50

User account, VS2013 IDE 15
User Control 57

V
validating

Windows Store app 81, 82
Visual Studio

Python, integrating into 285-288
state machine, creating 123-129

Visual Studio 2012
apps, submitting to Windows Store 298, 299
installer packages, creating 293-296
templates 90

Visual Studio 2013 SDK 301
Visual Studio 2013 (VS2013)

about 9, 10
code, searching 30, 31
commands, searching 27-29
DirectX, working with 223-226
existing project, upgrading 22
navigating in 29, 30
new project, creating 22
project round-tripping 19, 20
Solution Explorer window, managing 23-25
searching in 29, 30

314

synchronization settings 10-12
tab and window, customizing 26

Visual Studio add-ins
creating 301, 302
working 303

Visual Studio Express 2013
CSS editor 98

Visual Studio extensions
creating 301, 302
working 303

Visual Studio Graphics Diagnostics
using 235-238

Visual Studio Installer project type 293
Visual Studio Online (VSO) 242

about 242
used, for managing work 246

Visual Studio snippets 303
VS2013 IDE

about 12, 13
CodeLens 17
Code Maps 18, 19
Feedback 14
Notifications 14
Peek Definition 16, 17
Scroll bar thumbnail 15, 16
User account 15

W
web applications

asynchrony, using with 196-200
Windows Metadata (WinMD) 52
Windows Presentation Foundation (WPF) 118
Windows Runtime

asynchronous method, using 191-195
Windows Runtime Component 50
Windows Runtime (WinRT) 37
Windows Store

apps, submitting to 298, 299
Windows Store app

about 21, 300
capabilities, adjusting 68
Class Library project 49
contract declaration, adding 67-70
creating 44, 45

DirectX App template 51
DirectX App (XAML) template 51
DLL template 50
item template, adding 52-56
language interoperability 52
.NET projects 51
packaging 76-80
Portable Class Library 49
project type, selecting 46
Static Library template 50
Unit Test Library project 50
validating 81, 82
Windows Runtime Component 50
working 45, 300

Windows Store app developer license
obtaining 40-42
renewing, at Windows PowerShell command

line 42, 43
Windows Store app simulator

location settings 66
remote debugging 65
resizing 65
resolution, adjusting 65
screenshots, capturing 66
using 59-64
working 64

Windows Store item templates
Basic Page 56
Blank Page 56
File Open Picker Contract 57
Group Detail Page 57
Grouped Items Page 57
Hub Page 57
Item Detail Page 56
Items Page 56
Page Control 58
Resource Directory 57
Resources File 58
Search Results Page 57
Settings Flyout template 57
Share Target Contract 57
Split Page 56
Templated Control 57
User Control 57

315

Windows Store project types
Blank App template 46
Fixed Layout App template 48
Grid App template 46
Hub App template 49
Navigation App template 48
Split App template 48

Windows Workflow 123
WiX (Windows Installer XML) toolset

URL 293
work

managing, VSO used 246-250

workflows
versioning 129

WPF application
Ribbon, adding to 118-123

X
XAML

using, with C++ 206-210
XAML UI Responsiveness 74
XCopy 293

Thank you for buying
Visual Studio 2013 Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.PacktPub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Visual Studio 2012 Cookbook
ISBN: 978-1-84968-652-5 Paperback: 272 pages

50 simple but incredibly effective recipes to immediately
get you working with the exciting features of Visual
Studio 2012

1.	 Take advantage of all of the new features of Visual
Studio 2012, no matter what your programming
language specialty is!

2.	 Get to grips with Windows 8 Store App
development, .NET 4.5, asynchronous coding
and new team development changes.

3.	 A concise and practical First Look Cookbook
to immediately get you coding with Visual
Studio 2012.

Visual Studio 2013 and .NET
4.5 Expert Cookbook
ISBN: 978-1-84968-972-4 Paperback: 400 pages

Over 40 recipes for successfully mixing the powerful
capabilities of Visual Studio 2013 with .NET 4.5

1.	 Provides step-by-step instructions, helping you to
learn the various components and technologies of
.NET development with Visual Studio 2013.

2.	 Filled with examples that clearly illustrate how to
integrate with the technologies and frameworks of
your choice.

3.	 Helps you keep pace with the fast growing
IT industry and gain expertise on upcoming
technologies, common forms of debugging and
software testing.

Please check www.PacktPub.com for information on our titles

Software Testing using
Visual Studio 2012
ISBN: 978-1-84968-954-0 Paperback: 444 pages

Learn different testing techniques and features of
Visual Studio 2012 with detailed explanations and
real-time samples

1.	 Using Test Manager and managing test cases and
test scenarios.

2.	 Exploratory testing using Visual Studio 2012.

3.	 Learn unit testing features and coded user
interface testing.

4.	 Advancement in web performance testing and
recording of user scenarios.

Reporting with Visual Studio
and Crystal Reports
ISBN: 978-1-78217-802-6 Paperback: 148 pages

Create a reporting application from scratch using Visual
Studio and Crystal Reports

1.	 A step-by-step guide that goes beyond theory,
letting you get hands-on experience.

2.	 Utilize a dataset and table adapter as data
sources for your report.

3.	 Learn how to add reports to forms and pass
parameters dynamically.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Discovering Visual Studio 2013

	Introduction
	Synchronizing settings
	Touring the VS2013 IDE
	Project round-tripping
	Managing the editor windows
	Finding Visual Studio commands
	Searching and navigating
	Navigating in depth

	Chapter 2
: Getting Started with Windows Store Applications
	Introduction
	Getting a Windows Store app developer license
	Creating a Windows Store app
	Adding a Windows Store item template to your app
	Using the Windows Store app simulator
	Defining capabilities and contracts
	Analyzing your App's performance
	Packaging your Windows Store app
	Validating your Windows Store app

	Chapter 3
: Web Development – ASP.NET, HTML5, CSS, and JavaScript
	Introduction
	Getting started with Bootstrap
	Previewing changes across multiple browsers
	Creating HTML5 web pages
	Taking advantage of the CSS editor improvements
	Understanding the JavaScript editor improvements
	Adding bundling and minification to JavaScript and CSS files
	Verifying pages with the Page Inspector tool

	Chapter 4
: .NET Framework 4.5.1 Development
	Introduction
	Adding the Ribbon to a WPF application
	Creating a state machine in Visual Studio
	Creating a task-based WCF service
	Managing packages with NuGet
	Unit testing .NET applications
	Sharing class libraries across runtimes
	Detecting duplicate code

	Chapter 5
: Debugging Your .NET Application
	Introduction
	Maximizing everyday debugging
	Debugging on remote machines and tablets
	Debugging code in production with IntelliTrace
	Debugging parallel code
	Visualizing concurrency

	Chapter 6
: Asynchrony in .NET
	Introduction
	Making your code asynchronous
	Understanding asynchrony and the Windows Runtime
	Using asynchrony with web applications
	Working with actors and the TPL Dataflow Library

	Chapter 7
: Unwrapping C++ Development
	Introduction
	Using XAML with C++
	Unit testing C++ applications
	Analyzing your C++ code
	Using a custom rule set
	Working with DirectX in Visual Studio 2013
	Creating a shader using DGSL
	Creating and displaying a 3D model
	Using the Visual Studio Graphics Diagnostics

	Chapter 8
: Working with Team Foundation Server 2013
	Introduction
	Creating a new TFS project
	Managing your work
	Using local workspaces for source control
	Performing code reviews
	Getting feedback from your users
	Using Git for source control

	Chapter 9
: Languages
	Introduction
	Fortifying JavaScript applications with TypeScript
	Integrating Python into Visual Studio
	Integrating Python with .NET

	Appendix:
Visual Studio Medley
	Introduction
	Creating installer packages
	Submitting apps to the Windows Store
	Creating Visual Studio add-ins and extensions
	Creating your own snippets

	Index

