
www.allitebooks.com

http://www.allitebooks.org

Visual Studio 2013
and .NET 4.5 Expert
Cookbook

Over 30 recipes to successfully mix the powerful
capabilities of Visual Studio 2013 with .NET 4.5

Abhishek Sur

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Visual Studio 2013 and .NET 4.5 Expert
Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2013

Second edition: September 2014

Production reference: 1190914

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-972-4

www.packtpub.com

Cover image by Abhishek Pandey (abhishek.pandey1210@gmail.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Abhishek Sur

Reviewers
Carlos Hulot

Darren Kopp

Sergey Kosivchenko

André Matos

Anand Narayanaswamy

Acquisition Editor
Kevin Colaco

Content Development Editor
Dayan Hyames

Project Coordinator
Venitha Cutinho

Technical Editors
Manan Badani

Shashank Desai

Dennis John

Copy Editors
Roshni Banerjee

Gladson Monteiro

Adithi Shetty

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexer
Hemangini Bari

Graphics
Sheetal Aute

Ronak Dhruv

Abhinash Sahu

Production Coordinator
Kyle Albuquerque

Cover Work
Kyle Albuquerque

www.allitebooks.com

http://www.allitebooks.org

About the Author

Abhishek Sur has been a Microsoft MVP since 2011. He is currently working as a Product
Head with Insync Tech-Fin Solutions Pvt Ltd. He has profound theoretical insight and years of
hands-on experience in different .NET products and languages. Over the years, he has helped
developers throughout the world with his experience and knowledge. He owns a Microsoft
User Group in Kolkata named Kolkata Geeks and regularly organizes events and seminars in
various places to spread .NET awareness. A renowned public speaker, voracious reader, and
technology buff, Abhishek's main interest lies in exploring the new realms of .NET technology
and coming up with priceless write-ups on the unexplored domains of .NET. He is associated
with Microsoft's Insider list on WPF and C# and stays in touch with Product Group teams.
He holds a Master's degree in Computer Application along with various other certificates to
his credit.

Abhishek is a freelance content producer, developer, and site administrator. His website
www.abhisheksur.com guides both budding and experienced developers in understanding
the details of languages and latest technologies. He has a huge fan following on social
networks. You can reach him at books@abhisheksur.com, get online updates from his
Facebook account, or follow him on Twitter @abhi2434.

www.allitebooks.com

www.abhisheksur.com
http://www.allitebooks.org

About the Reviewers

Carlos Hulot has been working in the IT industry for more than 20 years in different
capabilities, from software development and project management, to IT marketing / product
development and management. He has worked for multinational companies such as Royal
Philips Electronics, PricewaterhouseCoopers, and Microsoft. Currently, he is working as an
independent IT consultant. Carlos is a Computer Science lecturer at two Brazilian universities
and holds a PhD in Computer Science and Electronics from University of Southampton, UK,
and a BSc degree in Physics from University of São Paulo, Brazil.

I would like to thank my wife, Mylene Melly, for her continuous support. I
would also like to thank my many colleagues over the years that have made
it possible for me to learn what I know now about software development and
the computer industry.

Darren Kopp is a father, husband, software engineer, and gamer. He started programming
when creating a website for his clan in the game Tribes using ASP and then moved on to
ASP.NET when .NET 1.1 was released.

Darren started professional development work with the golf industry, developing systems
ranging from e-commerce solutions for golf shops to systems that tracked the swing profiles
of golfers. He then moved on to the construction industry where he developed software that
integrated payroll, human resources, service management, and project management.

Darren currently works for DevResults, which provide web-based solutions to the international
development and humanitarian communities. When he isn't coding or spending time with
his family, you can find him on Twitter making jokes and playing Team Fortress 2 and
Battlefield 4.

www.allitebooks.com

http://www.allitebooks.org

Sergey Kosivchenko is a 23-year-old software developer in the field of automation
of business processes in manufacturing with about 5 years of experience. C#, WPF,
and Entity Framework are some of the main tools used by Sergey to implement solutions.
He spends most of his free time gaining new knowledge about software development
and computer technologies.

For over 10 years, Sergey has been working in a company that develops web- and client-side
applications and has now become one of the leaders in software development in the Southern
Federal District of Russian Federation.

André Matos is a senior software engineer who discovered his passion for technology when
he was a teenager. He got his first computer when he was 16, discovered the Internet a year
later, and decided that he must know more about technology. He finished his MSc back in
2012 from a Portuguese university, Instituto Superior de Engenharia de Lisboa, specializing in
Geographic Information Systems (GIS) and spatial data exploration.

André, now 27 years old, has experience in several technologies and platforms, starting his
professional career back in 2008 with a mission to build a website for maps in Portugal to
compete against Google Maps. There, he fell in love with JavaScript and GIS. He built the
website and a GIS platform to support it and it was a huge success in Portugal.

Nowadays, André works for British Sky Broadcasting. His task is to build a video-on-demand
service, which will run on multiple platforms. He is responsible for the backend infrastructure
and service availability.

Apart from the frontend technologies, André is an open source enthusiast with several open
source projects hosted on his GitHub repo (http://github.com/apdmatos), and has
contributed to other projects, such as jQuery, Ninject, and Underscore.

www.allitebooks.com

http://github.com/apdmatos
http://www.allitebooks.org

Anand Narayanaswamy, an ASPInsider, works as a freelance writer based in Trivandrum,
Kerala, India. He was a Microsoft Most Valuable Professional (MVP) from 2002 to 2011 and
had worked as a Chief Technical Editor for www.ASPAlliance.com for a period of 5 years.

Anand has also worked as a technical editor for several popular publishers, such as Sams,
Addison-Wesley Professional, Wrox, Deitel, Packt Publishing, and Manning. His technical
editing skills helped the authors of Sams Teach Yourself the C# Language in 21 Days,
Sams; Core C# and .NET: The Complete and Comprehensive Developer's Guide to C# 2.0
and .NET 2.0, Prentice Hall; Professional ADO.NET 2 Programming with SQL Server 2005,
Oracle and MySQL, Wrox; ASP.NET 2.0 Web Parts in Action: Building Dynamic Web Portals,
Wrox, and Internet and World Wide Web (4th Edition), Deitel, to fine-tune the content.

He also contributed articles to the Microsoft Knowledge Base, and sites such as
www.c-sharpcorner.com, www.developer.com, and www.codeguru.com,
and delivered podcast shows.

Anand runs his own blog at LearnXpress (www.learnxpress.com) and provides blog script
installation services. He also hosts a video channel at http://tv.learnxpress.com,
where you can watch free videos related to Windows, social media, and other related
technologies. He is the author and publisher of free LearnXpress study guides that can be
downloaded in PDF format directly from his blog.

Anand can be reached at visualanand@gmail.com and will smile if you follow him on
Twitter @visualanand.

www.allitebooks.com

www.ASPAlliance.com
www.c-sharpcorner.com
www.developer.com
www.codeguru.com
http://tv.learnxpress.com
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter or the Packt Enterprise Facebook page.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: A Guide to Debugging with Visual Studio	 7

Introduction	 7
Debugging source code using breakpoints	 9
Using DataTips during debugging	 18
Debugging a multithreaded program	 24
Exploring the Command and Immediate windows	 28
Making use of IntelliTrace in Visual Studio	 31
Debugging a .NET program using the framework library source	 35
Debugging a process that is already deployed	 37

Chapter 2: Enhancements to WCF 4.5	 41
Introduction	 41
Understanding Windows Communication Foundation (WCF) by creating
a basic application	 44
Hosting a WCF service in different hosting environments	 56
Streaming data over a network using a WCF service	 61
Writing a REST-based WCF service	 67
Creating a WCF service using the Open Data Protocol standards	 78
Extending a WCF service (service extensibility)	 92

Chapter 3: Building a Touch-sensitive Device Application Using
Windows Phone 8	 101

Introduction	 101
Building your first Windows Phone 8 application following the
MVVM pattern	 103
Working with Launchers and Choosers in Windows Phone	 114
Working with relational databases and persistent storage	 126
Working with notifications in Windows Phone	 143

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Chapter 4: Working with Team Foundation Server	 157
Introduction	 157
Configuring TFS for project hosting and management	 160
Working with branching and merging in Team Foundation Server	 170
Creating TFS-scheduled jobs	 174

Chapter 5: Testing Applications Using Visual Studio 2013	 179
Introduction	 179
Understanding Visual Studio unit test projects	 181
Working with the Microsoft Fakes framework in Visual Studio	 191
Understanding how Coded UI testing works in Visual Studio	 198

Chapter 6: Extending the Visual Studio IDE	 211
Introduction	 211
Working with T4 templates in Visual Studio	 212
Working with Managed Extensibility Framework to write editor extensions	 223
Creating Visual Studio Package for tool windows and editor menus	 236

Chapter 7: Understanding Cloud Computing with Windows Azure	 243
Introduction	 243
Working with various storage options in Windows Azure	 245
Creating, updating, and deploying a cloud service in Windows Azure	 259
Working with SQL Azure	 266
Working with HDInsight (Hadoop) for Big Data processing	 272
Working with Mobile Services in Windows Azure	 277

Index	 287

Preface
The world is changing and the software industry is no exception. The software that exists
today will be obsolete very soon. Introduction of new devices requires newer software. The
changes are gradually reflected not only in the devices, but also in every sphere of the
software industry—starting from natural language processing, embedded technology, micro-
chip level programming, and so on. The hardware revolution asks for language enhancements
to support better hardware. A high number of releases of software changes has always been
common news for any developer. As a developer, it is very hard to know everything when a
new release occurs. Learning continuously and gaining knowledge is the only way to survive in
this dynamic software industry.

This book focuses on giving you expert advice on how to deal with changes in the software
industry. It provides you with easy steps to deal with complex software problems. It gives you
as many details as possible, and covers most of the technological domains in the world of
.NET. This book is written in the form of recipes with step-by-step tutorials on every topic, where
the developer accompanies the author in this wonderful journey into the known and hitherto
unknown realms of .NET. This book presents you, as a developer, with easy steps to solve
complex problems and thereby gives you the most relevant associated information that you
would require. There is a special section (There's more…) for each recipe, which focuses on
giving you extra knowledge on things that you might have missed. By the time you come to the
end of this journey, you will enjoy the confidence that a clear understanding of .NET gives you.

This is a practical handbook that effectively utilizes the time spent while reading the book
for the knowledge gained. This book is suitable for people who require solutions to problems
in quick time, while providing a clear understanding of the topics with relevant sample code
blocks. The examples given in this book are simple, easy to understand, and they map the
user to port the same code with a few changes in the production environment. If you want
to utilize your busy schedule to explore some of the ongoing technologies in the market, this
book is for you.

2

Preface

What this book covers
Chapter 1, A Guide to Debugging with Visual Studio, focuses on giving you a basic
understanding of the different environments set up inside Visual Studio and deals with all
the necessary tools present inside Visual Studio to help in debugging a source. This chapter
clarifies the debugging procedures in detail, followed by quick and easy sample code to help
find bugs.

Chapter 2, Enhancements to WCF 4.5, deals with the Service Oriented Architecture using
WCF. This chapter gives you knowledge on common problems that a developer needs to know
and provides you with sample recipes to deal with them. It also gives a clear understanding
on all the new features that come along with new releases.

Chapter 3, Building a Touch-sensitive Device Application Using Windows Phone 8, provides a
quick introduction on device application development with the Windows Phone environment.
This chapter provides simple solutions to some of the common problems when developing a
Windows Phone application.

Chapter 4, Working with Team Foundation Server, deals with the source control functionality
using Visual Studio ALM. The chapter provides detailed, step-by-step recipes to deal with
development issues using a Team Foundation Server with the configuration and easy
implementation of a successful TFS.

Chapter 5, Testing Applications Using Visual Studio 2013, provides a deeper insight on testing
a full-fledged application. This chapter provides all the relevant information that you need to
know about testing inside Visual Studio, enabling you to write tests quickly in easy steps, and
a clear understanding of what is going on under the hood.

Chapter 6, Extending the Visual Studio IDE, focuses on presenting interesting facts related
to adding more functionalities in Visual Studio. The need to customize Visual Studio itself
is sometimes necessary to allow a developer to customize the tools inside the integrated
environment. This chapter provides you with points that will help in dealing with extensions
on the Visual Studio IDE in easy steps.

Chapter 7, Understanding Cloud Computing with Windows Azure, demonstrates the Microsoft
implementation of cloud computing, enabling you to quickly adapt Azure in your own solution
in easy steps. This chapter gives recipes to help a developer port their existing on-premise
applications to the cloud.

3

Preface

What you need for this book
The basic software requirements for this book are as follows:

ff Microsoft .NET Framework 4.5 and higher

ff Microsoft Visual Studio 2013

ff Windows 8 operating system

ff A Windows Phone to deploy Windows Phone apps

ff Latest web browsers

ff An account on Windows Azure

Who this book is for
The purpose of this book is to give you ready-made steps in the form of recipes to develop
common tasks that, as a developer, you might often be required to access. This book utilizes
its chapters skillfully to provide as much information as it can and also in as much detail
as necessary to kick-start the operation. This book also delivers in-depth analysis of some
advanced sections of the subject to get you to an expert's level. If you are a beginner in the
development environment and want to gain expertise on the ongoing technologies in the
market, this book is ideal for you. Even for architects and project managers, this book is a
guide to enriching your existing knowledge.

This book uses C# and Visual Studio 2013 with Windows 8 (as the operating system) in
the examples. Even though you do not require any knowledge of Visual Studio to start,
you are expected to have some basic theoretical and practical overall experience on the
subjects to understand the recipes. The book bridges the gap between a beginner and an
advanced developer.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: "The program will pause
during the first Run method."

4

Preface

A block of code is set as follows:

static void Main()
{
 Thread.CurrentThread.Name = "Main Thread";
 Thread t1 = new Thread(new ThreadStart(Run));
 t1.Name = "Thread 1";
 Thread t2 = new Thread(new ThreadStart(Run));
 t2.Name = "Thread 2";
 t1.Start();
 t2.Start();
 Run();
}
static void Run()
{
 Console.WriteLine("hello {0}!", Thread.CurrentThread.Name);
 Thread.Sleep(1000);
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

 // Type 'Abhishek' in 'txtInput' text box
 uITxtInputEdit.Text = this.ReverseStringTestParams.
UITxtInputEditText;

Any command-line input or output is written as follows:

ALTER DATABASE MyDatabase MODIFY (EDITION='BUSINESS', MAXSIZE=100GB)

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "You can declare a local
variable using the Watch window and use it in the conditions."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

5

Preface

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

6

Preface

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
A Guide to Debugging

with Visual Studio

In this chapter, we will cover the following recipes:

ff Debugging source code using breakpoints

ff Using DataTips during debugging

ff Debugging a multithreaded program

ff Exploring the Command and Immediate windows

ff Making use of IntelliTrace in Visual Studio

ff Debugging a .NET program using the framework library source

ff Debugging a process that is already deployed

Introduction
Being one of the best IDEs available, it may often seem that our knowledge about Visual
Studio falls short when some special circumstances appear. Visual Studio provides hundreds
of tools inside it and also some tools as extensions to help programmers develop software
in the best possible ways. It incorporates features such as refactoring, code analysis, clone
code finder, and so on to let a developer write better code and have the best experience while
inside the IDE. Visual Studio has been so popular that it is not constrained to just software
development; some people use it to edit documents and images, or even to publish content.
It is so user friendly and easy to use that anyone can work on it at a basic level.

A Guide to Debugging with Visual Studio

8

Debugging is the most important part of any application development process. People like to
start debugging a program while developing code. Debugging is a process that lets you have
a quick look at the current state of a program by walking through your code step by step and
letting you identify what exactly is happening while the program is running. Developers expect an
IDE to give them as much information as possible during a certain state of the program. Visual
Studio has taken every step to improve the debugging experience of the IDE and make small
tools to let developers find better ways to quickly find the possible problems in code (if any).

After opening the IDE, it is often the case that people start typing some code. But, it is unlikely
that developers will always finish writing the code before they start debugging. After some part
of the development is done, they tend to start debugging it to have a better understanding of
the logic and functionalities. Some people start debugging even before they have written a
single line of code. So debugging is not just identifying bugs, it is determining the merits and
demerits of the code as well. Debugging inside Visual Studio is perhaps the best selling point
of the IDE.

Visual Studio separates the environment layout completely while debugging. After writing your
code, when you press F5 on the keyboard or go to Debug | Start Debugging, Visual Studio
adjusts the whole layout of the window and creates an environment that is best suited for
debugging; for instance, when you are in the debug mode, generally the Solution Explorer,
Toolbox, the Properties window, and so on get hidden. Instead, windows such as IntelliTrace,
Autos, Locals, Watch, and Call Stack automatically open inside the IDE and get docked/
adjusted to the layout inside the IDE. The IDE is smart enough to store the layout information
of all the opened windows inside it when the debugging session is closed by the user for
a particular project. Therefore, when you start debugging again, the IDE provides you an
environment that is exactly adjusted to the left-hand side when the previous debug session
is closed.

In this chapter, we will try to demonstrate some of the important debugging tools available in
the IDE. Let's start with a simple class that consists of a few properties and methods:

public class TestClass
{
 public int Start { get; set; }
 public int End { get; set; }

 public TestClass(int start, int end)
 {
 this.Start = start;
 this.End = end;
 }
 public int GetSum(int start, int end)
 {
 var sum = 0;
 for (var i = start; i <= end; i++)
 sum += i;
 return sum;

Chapter 1

9

 }

 public string GetMessage()
 {
 var sum = this.GetSum(this.Start, this.End);
 return string.Format("Sum of all numbers between {0} and {1}
is {2}", this.Start, this.End, sum);
 }
 public void PrintMessage()
 {
 var message = this.GetMessage();
 Console.WriteLine(message);
 Console.ReadKey(true);
 }

 }
 class Program
 {
 static void Main(string[] args)
 {
 var tclass = new TestClass(20, 30);
 tclass.PrintMessage();
 }
 }
}

The dummy code that we are using here has a TestClass, which takes two arguments and
stores data in the data members Start and End. GetSum is a method that sums up all the
integers between Start and End. The GetMessage returns a message after calling Sum with
Start and End, and finally PrintMessage prints the message on the console.

The program creates an object of TestClass and calls PrintMessage with 20, 30. If you
run the program, it shows 275 on the console.

Debugging source code using breakpoints
Breakpoints are used to notify the debugger to pause execution of the program at a certain
line. The debugger stores the information of the line number and source code file inside the
PDB file (known as the program database). The program built in the debug mode will have
more information in the PDB file than the one in the release mode. Visual Studio reads the
PDB file and pauses/resumes debugging based on the Halt statement it finds during the
execution of the program.

www.allitebooks.com

http://www.allitebooks.org

A Guide to Debugging with Visual Studio

10

How to do it...
Now let's create our first source code and try out debugging for the first time:

1.	 Click on the left-hand sidebar of the code or press F9 on the keyboard being on the
line where you want to pause execution of the program. The whole line will be colored
in a dark red border (in general) with a red circle on the sidebar.

2.	 Press F5 on the keyboard to start the program in the debug mode.

3.	 As soon as the program gets started, it will break at the point where the breakpoint is
hit. Let's suppose we put a breakpoint on the first line of the Main method where the
TestClass is instantiated:

In the preceding screenshot, the red dot on the left-hand sidebar shows the
breakpoint. The yellow block indicates the hit of the breakpoint. When you put the
breakpoint on a line, the line is turned red by the IDE, and the current line is marked
using a yellow block as shown with a small arrow on the left-hand side pane.

4.	 Press F10 to skip the line and move to the next line.

5.	 Press F11 to initiate the PrintMessage method. Press F11 a couple more times to
move to the actual calculation.

6.	 Inspect each and every line of the code to identify your bug (if any).

7.	 To continue executing the program, press F5 again; the program will continue
executing the rest of the code until it either finds another breakpoint on the code
during its execution path or the program finishes execution.

How it works...
The debugger is a tool attached with the Visual Studio IDE that works in the background and
inspects execution of the program. It holds a database of all the debug-related information
and stores it in a program database file. The Visual Studio debugger stores the checksum
of the file associated with the debugger, its full path, the line number, and the number of
characters of the file. When we create a breakpoint in the file, the information gets stored on
the PDB file or sometimes in the memory, and this will get evaluated when the program is
running under the debug mode.

Chapter 1

11

The debugger cannot work in certain situations when the debug information related to the
file is invalid (when file checksum fails) or does not exist. For instance, say you have compiled
the executable in a different source other than the one you are debugging with. In this case,
Visual Studio is capable of determining whether the source code and the process running are
the same.

There's more...
Now let's look at how to take advantage of breakpoints in the Visual Studio IDE.

Changing the execution step while debugging
The Visual Studio debugger is very smart and capable of doing a lot of things. You can change
the execution path directly inside the debugger by not executing a certain line of the code or
executing a certain line more than once.

While you are at the breakpoint, you can right-click on any line inside the IDE and select Set
Next Statement or use Ctrl + Shift + F10 to move the debugger to that line, as shown in the
following screenshot:

You can also drag the cursor of the current line using the mouse to move the cursor to any
line in the code.

If you choose Run to Cursor from the right-click menu instead of Set Next Statement,
the debugger will execute the lines in between and stop at the line that you select. If the
line you select does not belong to the following execution of code, it will finish execution
in regular course.

A Guide to Debugging with Visual Studio

12

Labeling a breakpoint
When working with a large project, there are situations when you need to label your
breakpoints for better management and categorization such that you can enable/disable a
certain group of breakpoints depending on your requirements. Let's put some breakpoints on
the code and start debugging using F5 from the keyboard. The program will stop at the line
where the first breakpoint is set, as shown in the following screenshot. Navigate to Debug |
Windows | Breakpoints or press Ctrl + D + B.

A window will appear that will show all the breakpoints you have set in the code. In the
preceding screenshot, you can see TestClassLabel. Now, let us right-click either on the
breakpoint in the code or in the Tool window and select Edit labels, as shown in the
following screenshot:

Chapter 1

13

The command will pop up the Edit breakpoint labels dialog box, which lists all the labels and
allows you to create a new label. Initially, it will be blank, but as you create more labels, the list
will fill up. Once you have created the labels, you can choose any of the labels associated with
the current breakpoint. You can also choose multiple breakpoints to select a label. Once you
have selected the label for all the breakpoints individually, you can search in the Search box
of the Breakpoints tool window to filter breakpoints from the list.

It is important to note that labels play a very important role in naming a breakpoint. When
dealing with large projects, it will be really easy to manage breakpoints with labels to identify
exactly which breakpoint it shows. The label is an alias to a breakpoint.

The breakpoint window also allows you to enable/disable an existing breakpoint. For instance,
you can uncheck a breakpoint to disable the breakpoint in the actual code. Even though the
breakpoint exists in the code, it is marked as disabled, and hence the program will not halt at
that point.

The preceding screenshot shows how to disable a breakpoint from the right-click menu. It can
also be accessed using Ctrl + F9.

Adding a condition in breakpoints
Breakpoints can hold conditions and often come in handy when used in the iteration of a list
or numeric value. Putting a halt inside an iteration means redundant breakpoints, and when
the problem arises on a certain index of the loop, it is very hard to catch the exact value of
the index. Conditions can help in putting a break only when a certain precondition is met. The
conditional break allows placing an expression based on the current context and breaks only
when the condition is met.

A Guide to Debugging with Visual Studio

14

Right-click on the breakpoint either in the tool window or on the sidebar pane where the red
breakpoint icon is shown and select a condition, as shown in the following screenshot:

You can declare a local variable using the Watch window and use it in the conditions. The IDE
validates the condition and stores it in the PDB file. The textbox that appears is also capable
of showing the IntelliSense menu inside it to enhance condition writing.

The two radio buttons indicate what needs to be considered from the condition. If the
condition returns a Boolean value, we choose the option Is true; otherwise, we choose
Has changed, where the condition can be anything.

Note that after choosing a condition, the red breakpoint icon will show a plus symbol,
which indicates that it is conditional.

Exporting breakpoints
Visual Studio allows you to import/export breakpoints. If many developers are working on the
same code, you can share the breakpoints that you have created in one project with others or
save it. So, if you have breakpoints organized with labels, everything is exported to a file that
can be used later, as shown:

Chapter 1

15

The file is actually an XML file, which produces XML content of all the breakpoints. A breakpoint,
once exported, can be imported back again by choosing the Import Breakpoint button on the
Breakpoint tool window.

Remember, breakpoints are created inside a .suo (Solution User Option)
file, but the actual program halts are written inside the PDB file. Thus, while
running the program from inside vshost, if PDB is not found, the file cannot
hit the breakpoints even though the breakpoints exist on the IDE.

Breakpoint hit counters
A breakpoint hit counter is used to determine how many times a breakpoint has been hit
on a particular line. Sometimes, it is needed to halt a program only when a certain number
of breakpoints have already been hit. Consider a situation where you are iterating with a
large number of loops. In these cases, we can configure the breakpoint to stop only when the
number of hits it encounters reaches a threshold, as shown in the following screenshot:

A Guide to Debugging with Visual Studio

16

In the preceding screenshot, you can see the breakpoint hit count box, which is opened by
right-clicking on the breakpoint and selecting Hit Count. The default setting is Break always
but we can configure it to hit on a counter or a multiple of a counter, or even greater than
equal to a counter.

Adding tracepoints while debugging
As a default, when a breakpoint is hit, it will halt the execution of the program and pause
it until we run the program again. But when the application is pretty large, you may want to
continue the program and either run a macro when the breakpoint is hit or invoke a trace
method. The breakpoint in such cases is called a tracepoint. To open the tracepoint window,
right-click on a breakpoint and select When Hit.

Chapter 1

17

Notice that we print the function name, thread ID, and thread name when the breakpoint
is hit. The tracepoints can print items on the output window based on the options listed on
the window. Keywords such as $ADDRESS, $CALLER, and so on specified on the window
provide macros that evaluate the specific context. After you place a tracepoint, the breakpoint
identifier in the left-hand side of the screen will appear as a red diamond instead of a circle.

If you choose Continue execution, it means the macro that we selected will be executed
without stopping the code execution.

Filtering breakpoints
Breakpoint filters allow you to specify any additional criteria of the breakpoint. With filters
applied, you can specify the breakpoint to hit only for a specific machine, or a specific process
or a thread. This is often required if you are executing your program several times with a
different process ID each time and want to debug only on a certain process ID.

In the preceding screenshot, we filter the breakpoints based on the name of the computer
and the process ID. The search box allows you to type in text and, based on the input, the
window will filter all the breakpoints that match the labels of the searched string.

The information about the breakpoint is stored inside the .suo files in the
IDE, but the implementation is produced when MSBuild builds the project.
While debugging an application, if the source code isn't available but PDB
is, the IDE opens the code disassembly to break.

A Guide to Debugging with Visual Studio

18

Using DataTips during debugging
In this recipe, we will see how to work with DataTips during debugging. DataTips are
individual data elements that can be seen on the editor when the program is debugged.
They are advanced tooltip messages that can inspect objects and variables running in
the current context.

How to do it...
Let's now see how to use DataTips with the following simple steps:

1.	 Place a breakpoint in the program and run it.

2.	 Hover over an object instance in the code or a variable to open a tooltip associated
with the object.

3.	 A tooltip is a tree of members that can be expanded over the editor. You can toggle one
object directly using the toggle button on the right-hand side of each object/value.

4.	 The pinned objects are placed on the screen and can be dragged inside the
editor or you can even add comments on the toggled DataTips, as shown in the
following screenshot:

5.	 While debugging, the value changes to a contextual value while the last value is
restored when the debug session is over. You can view the last value by hovering over
the left-hand gutter, which leaves behind a blue-colored anchor pin.

How it works...
DataTips actually use the data type information about an object to display each value. Each
object has a type associated with it. The debugger analyzes the type information about the
object and recursively loads all the object information in the form of a hierarchical structure in
the same way as we programmatically do using reflection APIs.

The IDE stores the DataTip information in persistent storage but not the data that represents
the state of a program.

Chapter 1

19

There's more...
Let's now explore some of the additional options that are available on DataTips for the IDE.

Importing/Exporting DataTips
DataTips can be imported or exported just like breakpoints. From the main menu, go to
Debug | Export DataTips. It will show you a dialog box to store the DataTips in a file as shown
in the following screenshot. Once the DataTips are stored in the file, you can open it to see
its content. It's a SOAP-based XML file with all the information that is required to reload the
DataTips again to a certain point. For instance, your comments or watched items will be kept
intact in an XML file using tags such as Comments or WatchItem#. You can add any item as
watch using the right-click context menu. The following screenshot shows the XML output on
the right-hand side:

Once the file has been exported, Visual Studio can import the file in another Visual Studio IDE
or in the same one and load the same environment of the DataTips when needed.

DataTips are really helpful for debugging and testing a large project.

Clearing DataTips
DataTips can be cleared either by dismissing each individual DataTip or using the Debug
menu. You have the following two options:

ff Clear All DataTips: This clears DataTips from all over the solution

ff Clear All DataTips pinned to [FileName]: This clears DataTips associated
only to the current file

www.allitebooks.com

http://www.allitebooks.org

A Guide to Debugging with Visual Studio

20

Working with debugger visualizers
While debugging complex objects, the debugger is associated with a number of visualizers
that help in displaying complex structures in better ways.

The visualizer creates a dialog box that appears on the Visual Studio IDE when an appropriate
data type is loaded on the debugger. For instance, for a string instance, we generally have
three visualizers associated. The Text Visualizer shows the string in the text format in a new
window, as shown in the following screenshot. If the string content is XML, you can see the
content in the associated XML visualizer and the HTML visualizer.

The debugger visualizer is associated with the data type of a class and is shown
corresponding to either its loaded DataTips or in Watch windows. We can use a number of
visualizers for a certain data type. We will see how to create a custom debugger visualizer
later in this book.

Inspecting different Watch windows
Watch windows are places where you investigate objects just like DataTips. It is an alternative
to DataTips. There are various types of Watch windows.

Autos
When the debugger hits a breakpoint, the Autos window shows all the objects and
variables that are used in producing the current statement or items in context. Visual Studio
automatically identifies the variables for you and shows them in this window. References are
also listed inside Autos implicitly, as shown in the following screenshot:

Chapter 1

21

You can open the Autos windows using Ctrl + D + A.

Locals
Locals are variables that are local to the current context and thread of execution. You can view
and modify the value of a variable in the break mode using Locals, as shown in the following
screenshot. The Locals window updates its value when the program is in the break mode.

A Guide to Debugging with Visual Studio

22

Watch windows
Watch windows are customized windows that show objects and variables based on what
users customize. While in the break mode, you can right-click on any variable and select
Add to watch to add the selected object in the Watch window. You can also drag-and-drop
expressions in the Watch window. Notably, there are actually four Watch windows available in
Visual Studio to separate variables from one another, and to ensure that you can group similar
objects in a Watch window when dealing with a large number of variables at the same time.

Generally, when you right-click and select Add to watch, an object will always be added to the
Watch 1 window, but you can drag the expression from Watch 1 to any of the Watch windows.

In the following screenshot, you can see four Watch windows; each of them capable of
showing variables in sync. The Watch windows show a grid with the Name, Value, and Type
of each expression. You can directly type the value of a variable inside the Watch windows
to change the value of the watched variable. Watch windows are also capable of showing
calculated values.

Like all other windows, Watch windows also show a tree when a complex object is loaded
onto it. For instance, an object of a class in the preceding screenshot shows its properties
inside a tree.

Creating an object ID
You can create an object ID of an object or variable from inside a Watch window as well. An
object ID is an aliasing mechanism to edit the value of a variable using an identifier. Objects
with object IDs can be accessed directly in all debugging tools (immediate window, command
window, watch window, and so on). Right-click on any object in the Watch window and select
Make Object ID, as shown in the following screenshot:

Chapter 1

23

Once the object ID is created, Visual Studio puts a n# number corresponding to the variable
that can be tracked easily by calling it later.

Working with the Error List window
Another important tool window that is most often required by any debugging session is the
Error List window. After you build your project, this window appears automatically to show
any errors, warnings, or information that you need to know. You can move the cursor to the
exact location with details when we double-click on any record from the error list. The error
list displays a description of the message, the file where the error occurred, column number,
line number, and the project name.

You can toggle errors, warnings, and even messages. It also provides you with a search box to
search in case the error list is pretty long, as shown in the following screenshot:

The Error List window also allows you to filter errors on Open Documents, Current Project,
and even Current Document.

A Guide to Debugging with Visual Studio

24

Debugging a multithreaded program
Multithreaded programming is one of the primary needs in modern day programming. In this
recipe, let's take a look at how to debug a multithreaded program.

Getting ready
To test a multithreaded program, let's consider the following code:

static void Main()
{
 Thread.CurrentThread.Name = "Main Thread";
 Thread t1 = new Thread(new ThreadStart(Run));
 t1.Name = "Thread 1";
 Thread t2 = new Thread(new ThreadStart(Run));
 t2.Name = "Thread 2";
 t1.Start();
 t2.Start();
 Run();
}
static void Run()
{
 Console.WriteLine("hello {0}!", Thread.CurrentThread.Name);
 Thread.Sleep(1000);
}

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Here, we created two threads in parallel, each of them calling the Run method. We have given
each thread a name to identify it in the editor.

How to do it...
Now, let's try debugging the concurrent program using Visual Studio with the following
simple steps:

1.	 Place a breakpoint in the Run method and run the program by pressing F5.

2.	 The program will pause during the first Run method.

3.	 Open the Threads tool window by navigating to Debug | Windows | Threads or
using Ctrl + Alt + H, as shown in the following screenshot:

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 1

25

You can see in the preceding screenshot that the threads are listed in the window
with their respective thread names and other information.

How it works...
A Threads window lists all the information about all the threads running in the current process.
Other than a few default columns, you can add columns into the grid using Columns.

When we first run the program, the first call to the Run method is made. In the Threads
window, it will show the current thread being executed using a yellow arrow sign. If you press
F5 again, the previous thread goes into a sleep, wait, or join mode. This means that the
thread execution is either finished or the thread is in the sleep mode.

In our case, since we did not invoke a join or wait statement, the thread must have been
destroyed after the complete execution, but as the process is still running, the thread
object will still show up in the window until it is disposed. Obviously, the thread running is a
background thread (IsBackground = False).

Note that you can also expand the thread location for any thread to get the call stack that
is currently being executed. The call stack will remain open automatically during debugging,
and double-clicking on the Thread pane will change the context of the current stack.

There's more...
Now let's discuss some of the other options that are available in the IDE that can help in our
multithreaded programs. Let's explore them one by one.

A Guide to Debugging with Visual Studio

26

How to Flag Just My Code
When running the sample code, there are two types of threads that are created inside the
process. We created three threads from the user code, but you can find a few other threads
that run with the user threads as well, for example, the Finalizer thread, which is set at the
highest priority, Jitter, and so on. These threads should always be set aside.

It is sometimes important to identify the threads created by the user.

In the previous screenshot, you can select Flag Just My Code to flag threads that are created
by the user code.

Debugging parallel programs
Another important technique is to debug parallel programs. Parallel programs are concurrent
programs that may or may not induce a thread inside it. So, you cannot always handle a
parallel program simply by using threads. The Visual Studio IDE comes with a number of
additional tools that help in debugging parallel programs.

Let's consider the following code:

class Program
{
 static void Main(string[] args)
 {
 Task task_a = Task.Factory. StartNew(() => DoSomeWork(10000));
 Task task_b = Task.Factory.StartNew(() => DoSomeWork(5000));
 Task task_c = Task.Factory.StartNew(() => DoSomeWork(1000));

 Task.WaitAll(task_a, task_b, task_c);
 }

 static void DoSomeWork(int time)
 {
 Task.Delay(time);
 }
}

This is similar to the previously used code but using parallel asynchrony.

Similar to the Thread window, the parallel execution programs have Parallel Stacks and
Parallel Tasks windows. Open them by navigating to Debug | Windows. Place a break point
on Task.Delay and run the program, as shown in the following screenshot:

Chapter 1

27

The Parallel Tasks window shows the different tasks that have been created for the program
and the current status of each of the tasks. In the same way, Parallel Stacks shows the
graphical view of all the task creations and how they are related to each other.

What are PDB files and what do they contain?
A debugger needs additional information about the project to work internally. The metadata
information needs to be stored separately outside the actual executable such that the
debugger can preload certain extent of the information prior to the execution of code; for
instance, in Visual Studio, when you initiate a method or start debugging, the debugger
automatically opens the appropriate files from the filesystem. This information is not available
to the debugger inside the executable itself, but in a new type of file that coexists with the
executable called program database files (PDB files). The basic schema of PDB files is:

ff Addresses of all the methods that comprise the executable

ff Name of the global variables and their addresses

ff Source file names, checksum to determine the exact file content, line numbers,
and so on

ff Parameters, names of local variables, and the offset of them on the stack

A Guide to Debugging with Visual Studio

28

Each PDB file is identified by a globally unique identifier (GUID). This GUID is stored in the
header information of the file and it identifies the actual executable.

Executable

Code

Program Database

IDETestProject.exe IDETestProject.pdb

PDB Path

GUID

GUID

Symbols

In the preceding figure, it is clear that the executable has the information about the source code
file path and a GUID to uniquely identify itself. The PDB file holds this information as well. When
the debugger loads the executable, it gets the PDB file path and loads the symbols from the file,
if they are found. If the PDB files are not found, the debugger does not have any connection with
the line the executable executes and the debug info on the same in the source file. Hence, the
debugger cannot give you the flexibility of a line-by-line execution of a program.

The PDB files are generally much more important to the debugger than the source code itself.
The PDB file loads the symbols into the vshost debugging environment and links the source
code blocks with symbols. You can also maintain symbol servers to store the PDB files so that
it is available to you while debugging.

See also
ff You can learn more about parallel application debugging from

http://bit.ly/debugparallel

Exploring the Command and Immediate
windows

The Command window in the Visual Studio IDE is a special window that is useful to invoke
commands inside Visual Studio; either those that are available through menu commands or
that are hidden inside the IDE. You can use the Command window to edit, test, build, and
debug applications. Instead of using the mouse to search commands, seasoned users of
Visual Studio can save a considerable amount of time by using the Command window.

http://bit.ly/debugparallel

Chapter 1

29

How to do it...
Being the most important part of the debugging tool, let's inspect how to use the Command
and Immediate windows in the following steps:

1.	 To display the Command window, select Other Windows in the View menu and select
Command Window, or simply press Ctrl + Alt + A on the keyboard.

2.	 When you are in the Command window, you will see a > symbol placed before every
input. This is called a prompt.

3.	 The Command and Immediate windows are very powerful. Almost every commonly
used command that you can invoke from the IDE is available as a command from these
windows. Let's start operating the Command window by using Build.Compile.

The very first thing that you will notice is the lntelliSense menu that pops up as you
start typing. When you press enter to run the command, the project will be compiled.
This is the same as pressing F6. Similarly, you can use Debug.Start to start
debugging the application.

The Command and Immediate windows can help with things that are hard to
find and not just the items that you can easily find inside the IDE. Type Debug.
ListMemory when you are in a breakpoint. You will see the list of memory used
with the current line. You can explore the Build and Debug menus to find out more
interesting commands such as these.

4.	 Let's look at some of the shortcuts available for the Command or Immediate windows:

�� ?: This gives you the value of a variable (you can also use Debug.Print to
do the same)

�� ??: This sends the variable to the Watch window

�� Locals: This shows the Locals window

�� Autos: This shows the Autos window

�� GotoLn: This sets the cursor to a specific line

�� bp: This places a breakpoint to the current line

Similar to the Command window, the Immediate window lets you test the code without
having to run it. The Intermediate window is used to evaluate, execute statements, or print
variable values.

To open the Immediate window, navigate to Debug | Windows and select Immediate.

You can move back to the Immediate window by typing immed
and to the Command window by typing the cmd command.

www.allitebooks.com

http://www.allitebooks.org

A Guide to Debugging with Visual Studio

30

How it works…
Visual Studio is a huge environment with a lot of API support exposed from within it. Each
of these sets of API commands are exposed through the Command window such that you
can easily execute them by writing the command directly being within the IDE. Some of the
commands that you can invoke through the Command window are still available to the IDE
itself as visual tools, but there are a number of other commands that are not often used and
are hidden from the normal users. They can be invoked only using commands. The Command
window lets the user invoke commands on Visual Studio either in the debugging mode or in
the normal mode. It would be good to specify some of the commands that are not available
in the normal mode, for instance, Debug.BuildSolution or anything associated with the
Debug interface. Some of the commands such as Build.AttachtoProcess or anything
associated with the build interface are available only in the normal mode.

Immediate windows are generally used while debugging. It is the most popular tool to evaluate
expressions at runtime, create variables on the fly, and/or print values.

Some of the commonly used commands in the Visual Studio IDE are associated with a
command alias. For instance, if you use ?, it is equivalent to Debug.Print, the ?? command
is equivalent to Debug.QuickWatch, addproj is equivalent to File.AddNewProject,
tabify is used to invoke Edit.TabifySelection, and so on. You can use interfaces in
the Command window, such as Debug, File, Edit, View, Tools, and Window, each of which
provides a lot of the associated commands.

There's more…
Now let's consider some of the other items that you need to know.

The differences between the Command and Immediate windows
Even though both the Command and Immediate windows can be used interchangeably
while debugging an application, there is one basic difference between the use cases of
these windows.

The Command window is used to execute commands or aliases directly from being within the
IDE. You can execute almost all the commands that are either available in menus of the IDE or
hidden somewhere. The Command window can load dlls or packages into the IDE as well.

The Immediate window, on the other hand, is solely used during debugging and is useful
to execute statements, print values of a contextual variable, or even evaluate expressions.
Generally, the Immediate window is quite capable of executing large expressions while being
in the debugging mode in the same way as it does inside Watch windows.

Chapter 1

31

See also…
ff You can see http://bit.ly/commandalias to get a list of all the command

aliases available

Making use of IntelliTrace in Visual Studio
IntelliTrace is another great feature of the Visual Studio IDE. IntelliTrace debugging is
sometimes called historical debugging. It operates in the background and records each and
every thing you do during debugging. IntelliTrace traces all the information for all the events
that occur during debugging and you can get information for all those tasks when required.

How to do it…
Let's demonstrate how to use IntelliTrace while debugging inside Visual Studio:

1.	 Once the debugger has started, open IntelliTrace in the Debug menu if you don't see
it opened already.

2.	 After running a couple of steps in the code, you can see the debugger IntelliTrace logs
in the IntelliTrace tool window.

3.	 Open each window to inspect each event status.

http://bit.ly/commandalias

A Guide to Debugging with Visual Studio

32

4.	 Each of the blocks contain Call Stack information and a Locals set, as shown
in the preceding screenshot. The command opens its respective tool window
with appropriate data. The editor also gets highlighted when a particular event is
highlighted in IntelliTrace.

5.	 You can filter IntelliTrace logs by choosing the appropriate categories and threads.

How it works…
IntelliTrace traces each of the events that go on with the program during debugging and
produces trace files of the .itrace extension. Debugging more will increase the size of the
file. The IntelliTrace files are by default stored in your hard drive. To see where these files are
stored, navigate to Tools | Options | IntelliTrace | Advanced, or simply type IntelliTrace
and navigate to IntelliTrace | Advanced, as shown in the following screenshot:

In this dialog box, you can configure how much IntelliTrace debug information needs to be
stored. You can uncheck the option to stop storing the IntelliTrace debugger information.

You can go to the filesystem and select the Store IntelliTrace in this directory option to
choose the TraceDebugging directory.

There's more…
Now let's look into some of the other interesting features of IntelliTrace that we may
have missed.

Saving an IntelliTrace file
An IntelliTrace file can be saved directly to the hard drive (.itrace) by choosing the Save
button from the tool window. When you choose the Save button, it prompts the location where
you want to save the content. Once you save the content, you can double-click and reopen the
content in Visual Studio to get the entire report of the debugging session.

Chapter 1

33

In the report, it produces a neat graph of the complete execution of the application with all
the modules that are loaded, the entire system info, exceptions occurred during execution
(if any), test data (if any), and the threads. It also lists the web requests that are made from
the application, as shown in the following screenshot:

The IntelliTrace logs are so elaborate that the IDE can produce the same environment when
you double-click on the any of the threads (or in particular, the main thread).

Reducing the size of trace files
As we can see, IntelliTrace files are considerable in size; we can filter them to log trace
information only to the modules specific to our requirement. Go to Tools | Options and then
IntelliTrace | Modules, or directly type IntelliTrace in the IDE search box and type
IntelliTrace to open the following screen:

A Guide to Debugging with Visual Studio

34

To capture data, you can choose either the modules you want except the listed modules or the
reverse based on the radio button you choose. Generally, we bother only about our own code.
Let's select the first radio button and then select the Add button. Specify the filename that you
need to omit the IntelliTrace information from and select OK.

To test our application, we will create a new dll and write the name of the dll in the Add a
Pattern dialog box. Now, when you debug the code, the detailed information for the calls to
the dll will be missing.

Working with Debugger Canvas
Debugger Canvas is another interesting tool for advanced debugging. It is actually built on top
of IntelliTrace and helps in getting all the information about debugging in one single instance.

To work with Debugger Canvas, you need to install it from the following location:
http://bit.ly/debuggercanvas.

Once you install Debugger Canvas to the IDE, you can open a new canvas by navigating to
Debug | Debugger Canvas | Create New Canvas. Now let's put a breakpoint in the code
and run the program.

You can see that the code is now shown inside Debugger Canvas on the IDE. On choosing
Step Into from the menu or pressing F11, it produces another box with the code where the
cursor is moved to. There are navigation keys to move back and forth between these windows.

Debugger Canvas is helpful at times when you want to see the entire call stack of the code
and easily move back from one call stack to another easily. Debugger Canvas also has an
option in the right-hand side corner of each canvas element, which shows the locals of the
current execution block as seen in the preceding screenshot.

http://bit.ly/debuggercanvas

Chapter 1

35

Debugging a .NET program using the
framework library source

The .NET library source code has already been released. This gives you a chance to locate
and debug the actual source code that has been used to build the library that you are using.
This is very useful as the code that has been downloaded from the server will contain a lot of
comments, which will help you with the internals of the library that we are using.

How to do it…
Source code debugging is another technique for .NET library debugging. Let's take a look at
how you can use Visual Studio to step into Microsoft Source for the .NET library:

1.	 To debug your code with the .NET library source code, you first need to go to
Tools | Options and then navigate to Debugging | General.

2.	 Turn off Enable Just My Code.

3.	 Turn on Enable source server support, as shown in the following screenshot:

A Guide to Debugging with Visual Studio

36

4.	 Now, in the Symbols tab of the window, you need to specify the cache server location
where it can get the program debug information.

5.	 Set the symbol file location to http://referencesource.microsoft.com/
symbols.

6.	 Set the cache location where the symbols will get downloaded as soon as you use it
during debugging. You need to make sure that the location is accessible from your
user account.

7.	 You can select a list of options for which the reference server will be connected to
the symbols. For best results, we should select the modules that you need to load
symbols to.

8.	 You can also load all the symbols once at this time and use them during debugging.

9.	 You can now start debugging.

How it works…
Microsoft actually maintains a number of servers that hold static files. These files are available
based on the checksum. Once the symbols are loaded onto your machine, the reference
server can be used to download the appropriate source file directly while you are debugging
your application and press Step Into to a method that is defined in the .NET class library. As
we already know, a program database (PDB) file holds all the information about line numbers,
location, and even the checksum of the file. Visual Studio invokes a request to a file by sending
this information available in the symbol files and downloads the appropriate file.

Let's start our sample application and place a breakpoint in the first line of the code. Now run
the project until the breakpoint is hit. Open Call Stack, right-click on MSCorlib, and select
Load Symbols. This will download the symbols of MScorlib, which will take a considerable
amount of time. Once the symbols are downloaded, you can start debugging your application.

You can see that when the download is complete, the Call Stack frames turn dark because all
the line numbers are now available. Now you can press F11 to step into the library code, say,
for instance, Console.WriteLine.

Chapter 1

37

You will be prompted with a license agreement when you choose Call Stack for the first time.
You can even use Call Stack to move back and forth to different call statements.

You cannot evaluate some of the variables and values while debugging as
.NET bits that are shipped with the .NET framework are built in the optimized
mode. Putting a break just above the line can show the content of the code.
Don't expect the source of all .NET dlls to be available. Most of the dlls are
already made available and as time goes, it will increase the numbers. If you
see that Load Symbols is disabled or the PDB isn't loading, then you should
consider that the dll is not available.

Debugging a process that is already
deployed

It is sometimes necessary to debug a process that is already running. This is necessary when
building a Windows service or an application that cannot have a user interface or an entry
point assigned to it. The debugging process helps the IDE to debug a running process from
inside the IDE if the appropriate debug symbols are there within the IDE.

Getting ready
To debug a running process, you need to first run the program. You can either run the program
on the current machine by going to the bin folder of the project and double-clicking on the
.exe file, or you can host it in another computer on the network.

You should remember that when you want to debug your application from
a remote machine, you need to have MSVSMON.exe or Microsoft Visual
Studio Remote Debugging Monitor running.

A Guide to Debugging with Visual Studio

38

How to do it…
Let's now take a look at debugging an already deployed process in the following simple steps:

1.	 To debug a process, you need to open the exact code that built the project to create
the process.

2.	 Once you open the code, go to Debug | Attach to Process, where an IDE window will
pop up, as shown in the following screenshot:

3.	 The Attach to Process dialog box allows you to either select a process from the
list on your machine, or select a process running on the remote machine by either
choosing the PC using the Browse button in the Qualifier or typing the IP address of
the machine.

4.	 Once you select the machine, choose the process that you want to debug.

5.	 You can choose Show process from all users or Show process from all sessions to
get a list of processes that are run by other users in other sessions too.

6.	 Once you find the process that you want to debug, select it and click on Attach.

7.	 If everything is fine, the process will get attached with the source code.

Chapter 1

39

How it works…
To clarify how the Attach to Process feature works, you need to first understand how the
debugger works inside Visual Studio. Visual Studio Debugger is a module running inside
Visual Studio, which can inspect each IL instruction that is being executed by the process and
matches the source code in the project. This mapping is done using a special file that holds
information of each and every instruction, the file info, its checksum, and so on, called the
PDB file. When the process gets executed, the actual mapping instruction set is also read
from the PDB file by the debugger, and when it finds any halt or break or even an exception in
the process, it automatically pauses the process inside Visual Studio and opens the source
code corresponding to the IL statement just encountered. Visual Studio Debugger is also
capable of displaying the local information and other related debugging information in the
exact source code line.

In the case of remote debugging, one must run the Remote Debugging Monitor called
MSVSMon.exe on the same machine where the remote process is running. This file comes
free with your Visual Studio installation and you can run it directly from the Visual Studio
command prompt. The remote debugging needs an exception of MSVSMon against the firewall.

To debug a process, it can be deployed in the debug mode;
otherwise, the release mode process can also be attached with
reduced debugging functionalities.

You must also run as an administrator or the same user who is running the process.
Sometimes, it can ask for the user ID and password when logging in to a remote machine.

There's more…
Working with a debugger for a running process is very interesting and useful. Let's look at
some of the other interesting debugging techniques that you might apply to improve the
debugging experiences of a program.

Calling a debugger using code
For users who want to debug by writing, the .NET class library opens up some interesting
debugger APIs that you can invoke from your source code to call the debugger manually.

From the very beginning, there is a DEBUG preprocessor variable that determines whether the
project is built in the debug mode.

You can write the following:

#IF DEBUG
/// The code runs only in debug mode
#ENDIF

www.allitebooks.com

http://www.allitebooks.org

A Guide to Debugging with Visual Studio

40

The preprocessor directives are actually evaluated during compile time, which means the code
inside #IF DEBUG will only be compiled in the assembly when the symbol is included.

There are other options such as Debug.Assert, Debug.Fail, Debug.Print, and so on.
All of them only work in the debug mode. In the release mode, these APIs won't get compiled.

You can also call the debugger attached with the process, if any, using Debugger.Break(),
which will break the debugger in the current line. You can check Debugger.IsAttached to
find whether the debugger is attached to the current process, as shown in the
following screenshot:

We can also load and attach a process directly to the debugger using code by referencing the
EnvDTE packages. We will discuss them later in this book.

When you start debugging your code, Visual Studio launches the actual
process and one in .vshost in its filename. Visual Studio enhances the
experience of debugging by enabling partial trust debugging and improved
F5 experience using the vshost file. These files act specially in the
background to attach the actual process with predefined AppDomain to
experience flawless debugging. The .vshost files are solely used by the
IDE and shouldn't be shipped in an actual project.

Visual Studio needs Terminal Services to run inside Visual Studio as it communicates with the
process even when it is in the same machine using Terminal Services to maintain a seamless
experience on both the normal and remote debugging of a process.

2
Enhancements to

WCF 4.5

In this chapter, we will cover the following recipes:

ff Understanding Windows Communication Foundation (WCF) by creating
a basic application

ff Hosting a WCF service in different hosting environments

ff Streaming data over a network using a WCF service

ff Writing a REST-based WCF service

ff Creating a WCF service using the Open Data Protocol standards

ff Extending a WCF service (service extensibility)

Introduction
In today's world, enterprise applications are the key to any enterprise. We are in the age
of devices. People use one or multiple devices to be connected with the external world.
Business processes need shared services, which can be consumed by these devices.
Basically, an application can either consume data directly from the database tier or use
loosely coupling models and get data from a hosted service. Most enterprises prefer to
have a loose coupling on data so that their apps are maintained and also to sustain a clear
separation of the application and business logic. Most of the big giants expose their data
using standard compliant web-based services and the clients use them to consume data.
Some of the services are also hosted behind the secure socket layer and require a secure
encrypted connection between the host and the client to perform a data transfer.

Enhancements to WCF 4.5

42

Modern enterprises rely on standardized data points so heavily that many of them are now
sharing public content through a common gateway enterprise in a format that is globally
supported such that third-party clients can connect to their endpoint and consume their data
services to represent information. The hype of ATOM, RSS, or other syndication standards is
one of the reasons to support the most standard format. An enterprise exposes shared data
in the form of RSS feeds, which can be consumed by a number of RSS-feed readers such that
the data easily reaches the common mass.

Service-oriented architecture is a design principle that people follow to outline well-defined
services that can be consumed by the external world using a common set of contracts,
and each of the services can be individually modified independent of each other. They also
need to provide a message-based communication approach based on open standards. As a
technology giant, Microsoft has also implemented the SOA design principle and provided an
easy way of implementation. Microsoft has named it Windows Communication Foundation
(WCF). WCF makes it very easy to create and consume service-oriented business processes
similar to point-to-point architectures. It is an architecture that has been moving forward
in the .NET environment to address service-oriented architecture by providing a standard
way to write services. WCF combines the existing technologies, such as TCP, named pipes,
web services, sockets, and MSMQ and creates an easy way to implement a standard SOA
representation. WCF has been widely accepted as a standard format to write web services
with the support of multiple protocols and endpoints.

Simple Object Access Protocol (SOAP) is one of the preferred SOA
models, where communication between the two parties is made
using an XML representation of data. SOAP is an extensible message
standard supported by W3C, which generally runs on the HTTP protocol
under the request-response model, and communicates between
two endpoints using standard messages with a predefined header
information for each envelope.

Each service provides a WSDL that defines the definition of the public interfaces including the
metadata, such as protocol bindings and message formats. Generally, WSDL is defined in an
XML format such that it is clearly understood and can be used by devices on different platforms
to invoke functionalities of the service. WSDL is similar to Interface definition language (IDL)
for web services. The definition of WSDL is that it is typically used during design time to build
proxy classes, which will be later used to send and receive responses from the server. The main
advantage of the WSDL standard is that it is platform independent and easy to implement. Let's
look into the architecture of WCF, as shown in the following figure:

Chapter 2

43

Transport Protocols

ASMX
.NET

Remoting WSE
Enterprise
Services

MSMQ

WCF provides a unified
programming model to

produce multiple channels for
each protocol

Send data to the user

It is important to note that all distributed technologies are based on the same concept.
However, each of them provides specific services unique to the product. For instance, ASMX
is a traditional web service that provides a standard SOAP-based communication protocol.
Remoting is used to provide remote access of two .NET-based applications. As a programmer,
you are forced to learn each of these technologies one by one to make use of them. WCF
provides a unified solution to all the distributed technologies. It provides a single programming
model to leverage the features of any of the preceding distributed technologies. This means
you can write one service once and expose different endpoints just by configuring WCF,
and everything will work in the same way as it did for specific technologies.

In WCF, the three most important things that you need to remember (popularly termed as the
ABCs of WCF) are as follows:

ff Address (where): This represents a unique network URL that specifies the service
and where messages can be sent. Generally, it is made up of the protocol, IP address
of the network terminal, and service location.

ff Binding (how): This represents how the client should communicate with the service.
WCF supports a number of binding protocols that you can use to define the service,
for example, BasicHttpBinding, WSHttpBinding, MsmqIntegrationBinding,
NetTcpBinding, NetNamedPipeBinding, and so on.

ff Contract (what): This defines what the messages should contain. The contract is
generally a set of interfaces that the client needs to take care of to request the service.

Now, let's create the simplest WCF service to get a basic idea of how it works.

Enhancements to WCF 4.5

44

Understanding Windows Communication
Foundation (WCF) by creating a basic
application

WCF is easy and simple. A large number of APIs are built inside .NET, which provides an easy
way to implement a WCF service. Visual Studio provides the appropriate tools to create proxy
classes automatically when a service reference is taken into a project such that the user
only needs to configure the service with a proper endpoint address and the service will start
working. In this recipe, we are going to look at the internal details and the API that you need
to consider to create and connect services. We are not going to use the tools of Visual Studio
to build this service. We will later explain how to make use of Visual Studio to quickly create
services in other recipes.

Getting ready
Building a service with Visual Studio is very easy and automatic but if we consider not using it,
we will have to manually perform a lot of plumbing to ensure that everything works correctly.
We will use a class library to define our WCF service and host the service in the server; we will
then consume the same from the client in this recipe later such that after going through the
recipe, you will have a clear idea of what happens underneath.

How to do it...
Now let's create an application using Visual Studio to demonstrate components:

1.	 Open Visual Studio and create a console application. We will name it
SampleFirstServiceServer. This console project will be used to host
a WCF Service.

2.	 Add a reference System.ServiceModel.dll file to the project. This .dll
extension references all the important APIs that need to work with WCF.

3.	 Create an interface to define a method contract. We will define the most simple
contract that takes a string and returns a string, and name it MyFirstMethod:
[ServiceContract]
 public interface IFirstWCF
 {
 [OperationContract]
 string MyFirstMethod(string inputText);
 }

Chapter 2

45

4.	 Here, you can see that the contract has been annotated using the
ServiceContract attribute. WCF internally uses attributes to find the contract of
a service when it is called upon. The ServiceContract attribute defines the main
type of contract that the service understands.

5.	 The MyFirstMethod contract has been annotated using OperationContract,
which defines the contract to a particular operation. Hence, the interface forms a
major contract between the client and the server.

6.	 Now, let's implement the interface into a concrete type as follows:
public class FirstSimpleWCF : IFirstWCF
{
 public string MyFirstMethod(string inputText)
 {
 Console.WriteLine("Message Received : {0}",
 inputText);
 Console.WriteLine(OperationContext.Current.RequestContext
 .RequestMessage.ToString());
 return string.Format("Message from server {0}",
 inputText);
 }
}

In the preceding code, we defined the body of MyFirstMethod. The method actually
prints the message received by it and returns the same text with some extra content
from the server.

It is important to note that the contextual Request object
is available from OperationContext.Current.
RequestContext. This object holds the entire message
body that has been received by the server. The object also
shows the header content, if any.

7.	 Here, RequestMessage will print the entire body of the XML content received by the
server, which is parsed to call this method.

8.	 Now as our service is ready, we need to host it in our Console Application. WCF
services generally need to be hosted somewhere. You have options to host a WCF
service in a Console Application, a Windows Service, IIS, Windows Activation Service,
and so on.

Enhancements to WCF 4.5

46

9.	 To host a service inside a Console Application, we are going to use the ServiceHost
class present in the ServiceModel namespace. This class takes a URL and hosts
the service on it such that any request received at the endpoint will be handled
automatically by the server.
public static void Main()
{
 BasicHttpBinding binding = new BasicHttpBinding();

 Uri serviceUri = new Uri("http://localhost:8000");
 ServiceHost host = new ServiceHost(typeof(FirstSimpleWCF),
serviceUri);
 host.AddServiceEndpoint(typeof(IFirstWCF), binding,
 "OperationService");
 host.Open();

 Console.WriteLine("Service is hosted to the Server");
 Console.ReadLine();

 host.Close();
}

10.	 As already mentioned, we have to maintain the ABCs of any WCF service. Here,
the address is specified using serviceUri such that we will host our service
at port 8000.

11.	 We also need to specify the binding for the service. Here, we use
BasicHttpBinding (which is the same as traditional ASMX services). We add this
endpoint to ServiceHost, which points to the actual implementation of the service.
The AddServiceEndpoint option connects a binding with the service endpoint.
We call our service endpoint OperationService.

12.	 Finally, we will call Open to start hosting the service.

13.	 If you start the service, you will see the message Service is hosted on the server,
and that port 8000 is available for the service.

Remember that if you are using Visual Studio to run the
service, it will require administrative permission to open a port
from the console. Please restart Visual Studio using the Run
as administrator link on the right-hand side of the screen, and
then click on the context menu to run the console service host.

14.	 As the service is already hosted on the server, we now need a way to call the
service from the client machines. Let's create another Console Application and
call it SampleFirstWCFClient.

Chapter 2

47

15.	 We will create a similar interface such as IFirstWCF in the Client Application too.
The name of ServiceContract and OperationContract should be the same,
as shown in the following code:
[ServiceContract]
public interface IFirstWCF
{
 [OperationContract]
 string MyFirstMethod(string inputText);
}

Here, both the contracts are matched using a common contract document. By the
way, the mapping of the interface is only needed to correctly map the data during
serialization/deserialization of the objects.

It is also worth mentioning that the serialization is not restricted to
exactly match the property names in the classes. You can simply use
the DataContract and DataMember attributes to assign the exact
element names of data with your programmable objects. For example,
say OperationContract looks like this:

string MyFirstMethod(Message Input);
[DataContract(Name="ServerMessage",
Namespace="http://schemas.com")]
public class Message
{
 [DataMember(Name="Message")]
 public string Text { get; set; }
}

In the preceding code, the ServerMessage element will be mapped
to Message, and Message is mapped to Text on the client side.
The DataContract and DataMember attributes are used during
serialization/deserialization of a WCF communication.

16.	 We will then use this contract to pass data to the server and client. To connect
to the service, we are going to use the ChannelFactory class as shown in the
following code:
static void Main(string[] args)
{
 Console.WriteLine("Press Enter to call Server");
 string enteredString = Console.ReadLine();
 BasicHttpBinding binding = new BasicHttpBinding();
 ChannelFactory<IFirstWCF> factory = new
 ChannelFactory<IFirstWCF>(binding,
new EndpointAddress("http://localhost:8000/OperationService"));

 IFirstWCF proxy = factory.CreateChannel();

Enhancements to WCF 4.5

48

 string methodFromServer = proxy.MyFirstMethod(enteredString);

 Console.WriteLine(methodFromServer);

 Console.ReadLine();
}

17.	 Here, the ChannelFactory class binds the client with the server using a service
endpoint and a contract used to connect the service. The CreateChannel method
automatically creates a proxy class that can be used to proxy data to the server.

18.	 If you run the client and post a message to the server, the server will return the same
message to the client.

How it works...
The preceding example covers the basics of calling methods on a service via WCF, showing
both the client and server code. According to the basic configuration, the service contains
three main components: the address that states where the service is hosted, the binding that
states how the messages need to be sent and received, and the contract that states what
needs to be transferred.

In the entire process of hosting from the server side to client side, there are two main classes
that I have used to initiate the whole service:

ff ServiceHost (inside the server)

ff ChannelFactory (inside the client)

A ServiceHost class is instantiated based on the type of service that you have implemented
to host your service. This class maps the actual service contract with the binding and address.
When the object of ServiceHost is available, you can do anything with the ABCs of the
service. In the previous recipe, we used the ServiceHost class to configure our service to
handle BasicHttpBinding, which means the transfer format will be XML- and SOAP-based.
When a client calls the service, the ServiceHost class parses the messages, creates the
context, and calls the service. It is important to note that on every call to the service, the
ServiceHost class creates an object of FirstSimpleWCF and removes it from memory
whenever the service completes execution. If you want your service object to be reused, you
can add a ServiceBehavior option for this. For instance:

[ServiceBehavior(InstanceContextMode=InstanceContextMode.Single)]
public class FirstSimpleWCF : IFirstWCF
{
}

Chapter 2

49

This ServiceBehavior option indicates that the instance of the service needs to be created
only once and the object stays in the memory of ServiceHost until the whole service gets
disposed. If there is a single service object, it is important to note that for every call to the
service, ServiceHost creates a new execution context to handle the request. The execution
context may use SynchronizationContext or IO threads or simply threads to support
scalability. The object locking and synchronization on WCF is handled automatically.

The ServiceHost class is also capable of handling the metadata of the service from
the configuration file. If you have specified a configuration section under <system.
serviceModel> inside app.config, the ServiceHost class will automatically load
the configuration and configure itself.

www.allitebooks.com

http://www.allitebooks.org

Enhancements to WCF 4.5

50

If you look at the whole ServiceHost object in the watch window, you will see that the
object exposes a number of properties. It creates an object of ServiceDescription, which
maintains the ABCs and different configuration elements of the service. The ServiceHost
class also maintains a runtime socket listener that listens to the port created for the service
as specified by BaseAddress for any incoming requests. When it receives any requests, it
parses the whole message and calls the service object. If you specify the service object to be
singleton, it places the initial object in the SingletonInstance property and reuses it every
time the service is called. A special XML parser is also built in the ServiceHost class to
parse incoming requests and deserialize it into objects.

Just like ServiceHost, for the client side we have instantiated an object of
ChannelFactory. Even though the ServiceHost and ChannelFactory classes look
almost similar, there is a basic difference between the two. The ChannelFactory class
only maps with the contract but not with the actual implementation of the service. It then
creates a proxy class that is used to call the service through Listener. The data we pass
through the public interface is automatically serialized and sent through the channel. Just
like ServiceHost, a ChannelFactory class reads the contracts defined inside the
configuration and configures itself.

The ChannelFactory class only exposes the endpoint of the service with ABCs configured,
and the credentials, if any, that are required to call the service.

One important thing to remember is that the proxy class, which is used to communicate
between the client and the server, is based on the contract specified between the server and
the client. The server side can contain more than one contract, but WCF does not force you to
implement all of them when using the client.

Chapter 2

51

To understand this, let's create another method inside the server interface with its
implementation as shown in the following code:

[ServiceContract]
public interface IFirstWCF
{
 [OperationContract]
 string MyFirstMethod(string inputText);
 [OperationContract]
 string MySecondMethod(string inputText);
}

On the server side, we have a service method called MySecondMethod that we get without
changing the ServiceContract service on the client side. Now, if you run the same
application again, you will see that even though the client side IFirstWCF does not contain a
definition of MySecondMethod, it can still call the existing interface MyFirstMethod from it.
This is because the ChannelFactory class automatically serializes the request made from
it to an XML request object and sends the request through the socket. It does not send the
actual object to the server.

In the case of BasicHttpBinding, SOAP messages are transferred. The SOAP message
contains a well-defined envelope with a header and body of the message inside it. On the
server side, as we have printed out RequestMessage, we can see the actual structure of
the envelope, which the channelFactory proxy object creates and sends through the
channel. The following screenshot shows how the actual envelope is laid out when Hi is
sent to the server using the proxy object. The proxy object creates a well-defined contract
and sends it to the specified address. The Action option specifies the actual contract name
(IFirstWCF/MyFirstMethod).

There's more...
Now that we know the basics of WCF, let's evaluate a few more things that are
worth remembering.

Enhancements to WCF 4.5

52

Understanding IMetadataExchange endpoint and adding it to the
application
If you like your service endpoint to be discoverable to the external world, the
MetadataExchange endpoint is useful. WCF uses the IMetadataExchange interface
to return metadata about the service. The metadata can be a Web Services Definition
Language (WSDL) document that describes all the methods and data types associated
with the service.

A service with proper metadata can be discoverable and there are a number of tools
that can automatically create contracts and types associated with the service using the
metadata endpoint.

Let's now add a mex endpoint for the service such that the service can be discoverable from
the outside:

BasicHttpBinding binding = new BasicHttpBinding();

Uri serviceUri = new Uri("http://localhost:8000");
ServiceHost host = new ServiceHost(typeof(FirstSimpleWCF),
 serviceUri);
host.AddServiceEndpoint(typeof(IFirstWCF), binding,
 "OperationService");

ServiceMetadataBehavior smb = new ServiceMetadataBehavior();
smb.HttpGetEnabled = true;
host.Description.Behaviors.Add(smb);
Binding mexBinding = MetadataExchangeBindings.CreateMexHttpBinding();
host.AddServiceEndpoint(typeof(IMetadataExchange), mexBinding,
 "mex");
host.Open();

Console.WriteLine("Service is hosted to the Server");
Console.ReadLine();

host.Close();

Here, MetadataExchangeBindings.CreateMexHttpBinding is an API to get a binding
contract for the IMetadataExchange interface. When ServiceEndpoint is added to
IMetadataExchange, the service provides a WSDL, which the tools can use to discover types.

After you run this code and open the server-side console, you can open a web browser
and type http://localhost:8000/?wsdl to get the WSDL for the application. The
HttpGetEnabled method needs to be enabled to ensure that the browser can request
the WSDL using the GET request.

Chapter 2

53

By the way, you need not define the endpoint configuration in code; the configuration can also
be done using the configuration file (app.config/web.config). Let's see how the previous
configuration can be defined in configuration files so that it can be modified easily without
recompiling the project:

 <system.serviceModel>
 <services>
 <service
 name="Microsoft.ServiceModel.Samples.CalculatorService">
 <host>
 <baseAddresses>
 <add baseAddress="http://localhost:8000/"/>
 </baseAddresses>
 </host>
 <endpoint address=""
 binding="basicHttpBinding"
 contract="IFirstWCF" />
 <endpoint address="mex"
 binding="mexHttpBinding"
 contract="IMetadataExchange" />
 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior>
 <serviceMetadata httpGetEnabled="True"/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>

The previous XML can be placed in the configuration file and can be used later when defining
ServiceHost in code.

Using DataContract in a service
In the simplest WCF service that we have created in this recipe, we didn't use many of the
complex data types. But in real-world scenarios, people generally need complex data types
to be transferred between the client and the server. The WCF proxy classes automatically
serialize the complex types into XML and post them to the server. Similarly, when received,
it desterilizes the content into the appropriate type.

Enhancements to WCF 4.5

54

To define a complex data type, we need to use the DataContractAttribute class to
annotate the type, and each member that needs to be serialized during the transfer should
be annotated using DataMemberAttribute:

 [ServiceContract]
 public interface IFirstWCF
 {
 [OperationContract]
 string MyFirstMethod(string inputText);
 [OperationContract]
 Data MySecondMethod(Data inputText);
 }
 [DataContract]
 public class Data
 {
 [DataMember]
 public string Message { get; set; }
 }

In the preceding IFirstWCF service, we used a complex data type called Data, passed
it into MySecondMethod, and got back the same from the server. We then implemented
MySecondMethod in the class and hosted the service. Once the service is hosted, you can
check the WSDL for it. You can see that DataContract is now defined with ComplexType.
You can get the type of the object from http://localhost/?xsd=xsd2 if you have
followed this procedure.

The XSD defines the schema of the message body that needs to be sent to the server to
call MySecondMethod.

Now, if you run the client without changing the string request and response for the
MySecondMethod interface, it will throw an error as the formatter cannot deserialize
the string request to complex data (Data), which the server is expecting.

Chapter 2

55

Now, we need to define the complex data type that reads the XSD, which is exposed through
the WCF metadata. We need to make sure ComplexType is named Data and has a member
called Message in it. The complex types can also be mapped to different element schemas
using the properties in the DataContract and DataMember attributes.

Once we define the handwritten data type properly, you will see that the service runs smoothly.

Visual Studio's Add Service Reference creates the proxy classes
properly on the client side; so if you are too lazy to create the proxy,
you can use that option.

Using the svcutil tool to generate proxy classes
It would be cumbersome if the client needed to write all the complex types and proxy classes
by hand. Think about a real-world business service. It could have hundreds of interfaces
and thousands of complex types associated with it. Writing each of them manually would
require a lot of effort from the client just to start using the service. Microsoft has built a tool
called svcutil, which is shipped with Visual Studio. This tool creates a proxy by reading the
metadata about the service that is passed into it. The tool uses a configuration file to get the
configuration about the service. Let's define a configuration for the client as shown in the
following code:

 <system.serviceModel>
 <bindings>
 <basicHttpBinding>
 <binding name="BasicHttpBinding_IFirstWCF" />
 </basicHttpBinding>
 </bindings>
 <client>
 <endpoint address="http://localhost:8000/OperationService"
 binding="basicHttpBinding"
 bindingConfiguration="BasicHttpBinding_IFirstWCF"
 contract="IFirstWCF"
 name="BasicHttpBinding_IFirstWCF" />
 </client>
 </system.serviceModel>

Enhancements to WCF 4.5

56

The client configuration defines the address, binding, and contract of the service. Let's try
creating a file for the service that we have created. Open the Visual Studio 2012 developer
console and run the following code:

svcutil /language:cs /out:generateProxy.cs /config:app.config http://
localhost:8000

If everything is fine and the app.config file is placed in the current directory, the
generateProxy.cs file will be created from the service, which acts as a service proxy
client. The following console shows the messages when the utility successfully creates
the generateProxy.cs file. Similarly, you can also use the svcutil tool to generate
classes for VB.NET.

See also
ff Refer to the walkthrough on creating and consuming WCF services

at http://bit.ly/createwcf

ff Refer to the WCF tutorial at http://bit.ly/wcftutorial

Hosting a WCF service in different hosting
environments

Hosting a service is an important part of any service. Coming from web services, WCF exposes
more relevant APIs to handle different kinds of hosting environments. A WCF service can be
hosted virtually anywhere, starting from a simple Console Application, a Windows Service, IIS,
or even other hosting services such as Windows Activation Service. After the service is hosted
on an environment, the service endpoint for a particular service gets exposed. When the host
process runs, WCF will be available using the configured endpoints.

http://bit.ly/createwcf
http://bit.ly/wcftutorial

Chapter 2

57

ServiceHost

Windows Process

App Domains

Any .NET application runs using a Windows process. Inside a process, you can host multiple
.NET application domains. Each application domain logically separates the execution
environment from another. WCF requires ServiceHost to host a worker process inside the
application domain. Similarly, each application domain can host multiple worker processes.
Each application represents service host-to-host multiple endpoints. In addition to that, WCF
relies on the security and configuration features provided by an application domain. WCF, by
default, uses the default identity of the process but you can impersonate the users too. Some
of the hosting processes provide additional features. For instance, IIS provides automatic
process recycling, resource throttling, logging, health indicators, and so on. Now, let's try out
the different hosting environments in this recipe one by one to understand them further.

Getting ready
There are a number of ways to host a WCF service; one of them is in IIS. The latest version
of IIS supports a number of endpoints, which can be used by the WCF service to host itself
inside the IIS. As I have already mentioned, IIS gives you an edge while publishing your service
inside it. Let's try IIS 7 to host our service.

IIS requires a physical file with a .svc extension to host the service properly. In our previous
example, we already showed you how to host a service inside a console application using
ServiceHost. The ServiceHost class is the class that creates the hosting environment
for a service. If you are using IIS, you do not need to create an instance of ServiceHost
because IIS automatically creates it for you. Let's create a web application and add a .svc
file inside it.

Enhancements to WCF 4.5

58

How to do it...
Now let's create a WCF application to be hosted on different platforms:

1.	 Start a web application and add a .svc file to the project.

2.	 The SVC file template produces a ServiceHost server tag, which identifies that
the IIS needs to create an object of ServiceHost and point to the appropriate
service contract:
<%@ ServiceHost Language="C#" Debug="true"
 Service="SVCHostingProject.MySample"
 CodeBehind="MySample.svc.cs" %>

Here, the markup for the .svc file provides the ServiceHost implementation,
which loads the service using the ServiceHost class automatically created by the
ASP.NET pipeline inside IIS.

3.	 After the service has been implemented, we need to configure the ServiceModel
element of web.config with all the bindings that the service needs to support:
 <system.serviceModel>
 <services>
 <service name="SVCHostingProject.MySample">
 <endpoint name="basicHttpBinding"
 address=""
 binding="basicHttpBinding"
 contract="SVCHostingProject.IMySample" />
 <endpoint name="mexHttpBinding"
 contract="IMetadataExchange"
 binding="mexHttpBinding"
 address="mex" />
 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior name="">
 <serviceMetadata httpGetEnabled="true"
httpsGetEnabled="true" />
 <serviceDebug includeExceptionDetailInFaults="
false" />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 <serviceHostingEnvironment aspNetCompatibilityEnabled="tru
e"
 multipleSiteBindingsEnabled="true" />
 </system.serviceModel>

Chapter 2

59

The preceding configuration provided two endpoints for the service; one with
BasicHttpBinding, which is the default binding for any web application, and the
mex binding, which is the metadata exchange for the service. Please note that we
have left the Address attribute blank for the endpoint. As WCF can be hosted inside
a virtual directory, the address is automatically handled by the IIS itself and there is
no need for an address definition in configuration.

4.	 Hosting a configuration also includes a special option to specify whether the service
requires the ASP.NET compatibility mode. For instance, the service needing HTTP
hosting may need the ASP.NET compatibility mode in configuration. To specify the
ASP.NET compatibility mode for the service, we need to annotate the class with the
AspNetCompatibilityRequirements attribute as follows:
[AspNetCompatibilityRequirements(RequirementsMode=
AspNetCompatibilityRequirementsMode.Required)]
public class MySample : IMySample
{

}

Marking the class with the ASPNETCompatibilityRequirements attribute will
indicate that the class can run on ASP.NET compatibility.

5.	 Finally, you can publish this website inside IIS by pointing the published directory to a
virtual directory.

6.	 If you are hosting inside ConsoleApplication/Windows Application/
Windows Service, the only requirement that the application needs to make is to
create an instance of the ServiceHost object.

7.	 The ServiceHost class automatically creates hosting environments taking reference
from the service configuration for the process automatically, and hosts the service
inside it:
ServiceHost host = new ServiceHost(typeof(MySample), new
 Uri("http://localhost:8080/MySample"));
host.Open();

Creating the host and opening it will host the service automatically inside the current
application domain, and the ServiceHost class is capable of handling requests
from the external environments. For any hosting environments, the host needs to be
opened to start using the WCF service.

www.allitebooks.com

http://www.allitebooks.org

Enhancements to WCF 4.5

60

How it works...
The ServiceHost class is the primary type built inside the framework that hosts a WCF
service. A WCF service is a contract-based model that is externally exposed using different types
of endpoints supported by WCF. The ServiceHost class generally creates a SocketListener
object inside it at a low-level to handle the requests from the external world. The call to open
from ServiceHost is important as it opens up Listener on the port and the address
specified for the service, and when any request is made to the address, it automatically
spawns a new thread to handle the request.

The ServiceHost class automatically parses the incoming requests and dynamically creates
the objects from the requests and calls the service logic. The ServiceHost class needs to
call the close method when we want to release the service from memory.

There's more...
Let's consider a few more options for hosting.

What is Windows Process Activation Services (WAS)?
Hosting a WCF Service inside IIS is one of the most popular and well-accepted solutions
worldwide. In IIS 5 or IIS 6, the solution of hosting a WCF service is strictly tied only to HTTP
bindings. Even though WCF is very capable of hosting itself in other types of bindings that
support a lower-level of interaction, there is no way to implement this in the previous version
of IIS.

The WAS service enables hosting a service with any type of binding. IIS 7 implements a
model called WAS, which takes on creating worker processes and providing generalized
process activation and management.

Another important point to note is that even though WAS is a part of IIS 7, it can also be installed
and configured separately. It is shipped with Windows Vista and Windows Server 2008.

When the first request comes for a service that is hosted on IIS 7, the listener adapter calls
WAS to activate the worker process including the managed application domain for the specific
application it is running on. As it does not matter whether the request is coming from ASP.
NET or any other channel, once the process is activated for the current request, IIS handles
the request automatically and retrieves the response and sends it back to the same channel.
To start ServiceHost inside the application domain, the protocol handler calls the static
method EnsureServiceAvailable, which will check and enable all service endpoints
and transports.

Chapter 2

61

To configure WAS for IIS, we need to edit the applicationHost.config file and add
protocols for each binding element that needs to be supported:

<bindings>
<binding protocol="https" bindingInformation="*:443:" />
<binding protocol="http" bindingInformation="*:80:" />
<binding protocol="net.tcp" bindingInformation="808:*" />
<binding protocol="net.pipe" bindingInformation="*" />
<binding protocol="net.msmq" bindingInformation="localhost" />
<binding protocol="msmq.formatname" bindingInformation="localhost" />
</bindings>

You can also add the protocol bindings for a particular website using the
appcmd.exe command.

See also
ff Refer to the hosting WCF service at http://bit.ly/wcfhosting

Streaming data over a network using a WCF
service

WCF is an easy way to implement a distributed application and also provides built-in functions
to handle complex problems. Streaming is one of the most important problems we always
need to consider while working over a network in distributed applications. Applications
deployed over a cloud sometimes need download or upload capabilities. Downloading a large
file over a network using a buffered read technique such as a SOAP-based response can really
be a bottleneck to the system. Reading a very large file from the memory can terminate the
server process with OutofMemoryException.

WCF allows you to send byte streams through the communication channel, or even allows you
to implement a service that might take the stream start location from the service call and
send the stream from a certain location. It allows you to use normal HttpBinding to support
streams that have download or upload capabilities in the connected client-server architecture.
Hence, there will be no timeouts to send or receive large files. In this recipe, I will show you
how to use streaming to ensure your files are downloaded or uploaded correctly.

http://bit.ly/wcfhosting

Enhancements to WCF 4.5

62

How to do it...
Let's create a streamed WCF application, which allows you to download/upload a stream
resource to clients:

1.	 Create a service application and name it WCFCommunicateService.

2.	 The first thing that you need to do in order to create a service is ServiceContract.
So once you create a service library, you need to delete the existing Service1 and
IService1 files from the solution and add a new interface.

3.	 Create two methods inside the ServiceContract file; one for FileDownload and
another for FileUpload. Let's see what the service definition looks like:
[ServiceContract]
public interface IFileTransferLibrary
{

 [OperationContract]
 void UploadFile(ResponseFile request);

 [OperationContract]
 ResponseFile DownloadFile(RequestFile request);
}

4.	 The contract defines the methods that are exposed outside. The ServiceContract
attribute defines the interface that will have members available outside. The
OperationContract attribute identifies the exposed members. In the preceding
contract, IFileTransferLibrary has two methods: UploadFile, which
takes an object of ResponseFile, and DownloadFile, which returns an
object of ResponseFile. In the following code, you will see that we have used
MessageContract instead of DataContract. The DataContract attribute is used
to specify XML representation for the data that is transferred over the network, while
MessageContract follows the SOAP standard to communicate data and therefore,
this type of service can be accessed by any client that follows SOAP standards:
[MessageContract]
public class ResponseFile : IDisposable
{
 [MessageHeader]
 public string FileName;

 [MessageHeader]
 public long Length;

 [MessageBodyMember]

Chapter 2

63

 public System.IO.Stream FileByteStream;

 [MessageHeader]
 public long byteStart = 0;

 public void Dispose()
 {
 if (FileByteStream != null)
 {
 FileByteStream.Close();
 FileByteStream = null;
 }
 }
}

[MessageContract]
public class RequestFile
{
 [MessageBodyMember]
 public string FileName;

 [MessageHeaderMember]
 public long byteStart = 0;
}

The RequestFile and ResponseFile files are attributed with MessageContract
instead of DataContract for the complex types. It is important to note that as
we are going to send data using streaming, we need to break all of the data into a
sequence of packages. The DataContract attribute sends the whole object at a
time and is not capable of producing packet information about the data that is sent
over the network. The MessageContract attribute on the other hand sends them
as small messages and is capable of producing the packet data for the streams. Also,
note that we have used a disposable pattern to ensure that the file gets closed when
the client gets disconnected.

5.	 The MessageBodyMember attribute is added to the message body of the envelope it
sends over the network. There can be only one body element for the whole message.
The body holds the data that needs to be streamed. For every request, we have
placed byteStart, which indicates where the download/upload should start from.

Enhancements to WCF 4.5

64

6.	 To download a file, we need to first open the file and return the Stream as the result.
Let's see what the code will look like:
public ResponseFile DownloadFile(RequestFile request)
{
 ResponseFile result = new ResponseFile();

 FileStream stream =
 this.GetFileStream(Path.GetFullPath(request.FileName));
 stream.Seek(request.byteStart, SeekOrigin.Begin);
 result.FileName = request.FileName;
 result.Length = stream.Length;
 result.FileByteStream = stream;
 return result;

}
private FileStream GetFileStream(string filePath)
{
 FileInfo fileInfo = new FileInfo(filePath);

 if (!fileInfo.Exists)
 throw new FileNotFoundException("File not found");

 return new FileStream(filePath, FileMode.Open,
 FileAccess.Read);
}

You can see that we keep the Stream open for the file and seek the byte location
from where the Stream needs to start. We set FileByteStream for the current
Stream and let the response return to the client.

7.	 Similarly, in the case of UploadFile, we need to write the file to disk at a certain
position as follows:
public void UploadFile(ResponseFile request)
{

 string filePath = Path.GetFullPath(request.FileName);

 int chunkSize = 2048;
 byte[] buffer = new byte[chunkSize];

 using (FileStream stream = new FileStream(filePath,
 FileMode.Append, FileAccess.Write))
 {
 do
 {

Chapter 2

65

 int readbyte =
 request.FileByteStream.Read(buffer, 0, chunkSize);
 if (readbyte == 0) break;

 stream.Write(buffer, 0, readbyte);
 } while (true);
 }

8.	 In the UploadFile method, we are actually using Stream to extract data from the
client side. We are reading from FileByteStream and writing the bytes back to
the server disk location. We should also remember that we need to close the stream
after the write operation is completed. In the previous code, we are using a Using
block to automatically call the Dispose method, releasing/closing Stream.

9.	 Let's now configure the service endpoint to support streaming:
 <bindings>
 <basicHttpBinding>
 <binding name="FileTransferServicesBinding"
 transferMode="Streamed"
 messageEncoding="Mtom"
 sendTimeout="01:05:00"
 maxReceivedMessageSize="10067108864">
 </binding>
 </basicHttpBinding>
 </bindings>

Here, we have specified the transferMode binding called Streamed and the
messageEncoding property called Mtom. The streamed transferMode ensures
that the server sends the message response in streams and encoded to Mtom.

10.	 Finally, host the service using ServiceHost. We create a console application and
use ServiceHost to host the service.
using (ServiceHost host = new ServiceHost(typeof(FileTransferLibra
ry)))
{
 host.Open();
 Console.WriteLine("Service Started!");
}

11.	 Now let's create the client application to download/upload files to the server. A client
is actually a consumer of the service. The client can add a reference to the services
and can produce the discovery files that will help you access the streamed services.
It will also allow you to produce progress behavior for the file.

12.	 Add a service reference to the client so that you can call it. The service reference will
automatically create the discovery files.

Enhancements to WCF 4.5

66

13.	 Use server methods directly to store or send stream or data:
public void StartDownloading()
{
 Stream inputStream;
 try
 {
 string filePath = System.IO.Path.Combine("Download", this.
FileName);
 string fileName = this.FileName;
 long startlength = 0;
 FileInfo finfo = new FileInfo(filePath);
 if (finfo.Exists)
 startlength = finfo.Length; // If File exists
 we need to send the Start length to the server
 long length = this.Client.DownloadFile(ref
 fileName, ref startlength, out inputStream);
 using (FileStream writeStream = new System.
IO.FileStream(filePath, FileMode.OpenOrCreate,
 FileAccess.Write))
 {
 int chunkSize = 2048;
 byte[] buffer = new byte[chunkSize];
 do
 {
 int bytesRead = inputStream.Read(buffer, 0,
 chunkSize);
 if (bytesRead == 0) break;
 writeStream.Write(buffer, 0, bytesRead);
 this.ProgressValue = (int)(writeStream.Position *
100 / length);
 }
 while (true);
 }
 }
 catch
 {
//Log file errors here. Generally when file not found //or
 edited or Channel is faulted.
 }
 finally
 {
 if(inputStream != null)
 inputStream.Dispose();
 }
}

Chapter 2

67

14.	 The code allows you to save the file to the disk. You can easily stop this operation by
killing the thread that is downloading the file. The operation will be stopped and the
file will remain in the disk until it is downloaded. When you resume, the process is
called again. As in the function, we check the size of the file and send it back to the
server. This will ensure that the server will start sending the file from a specific point.

How it works...
WCF communicates between two communication channels using sockets. Sockets are
low-level implementations of communicating between two machines where one remains a
SocketListener, which is stated here as the server side where the WCF service is hosted;
another one is the socket client, which is used to connect to SocketListener and send/
receive data. The sockets work at the TCP level and send serialized raw data between two
communication channels.

WCF is a framework implemented on top of the socket API, which lets a programmer create
contracts and based on it, the WCF API will understand how to serialize and communicate
between the sockets.

Sockets support streaming internally. One can easily implement logic such that after sending
a fixed set of bytes from one socket, it waits for acknowledgment from the other socket before
the next set of bytes are sent. WCF implements this feature inside its API. It allows breaking
the whole stream into a number of data packets that are defined as MessageContract and
can be sent through a channel.

Writing a REST-based WCF service
The term Representational State Transfer (REST) was coined by Roy Fielding and is a design
pattern for a networked system. In this pattern, the client invokes a web request using a URL,
so the basic idea of a REST pattern is to generate a unique URI to represent data.

In Wikipedia, REST is quoted as:

"Representational State Transfer is intended to evoke an image of how a well-
designed Web application behaves: a network of web pages (a virtual state-
machine), where the user progresses through an application by selecting links
(state transitions), resulting in the next page (representing the next state of the
application) being transferred to the user and rendered for their use."

Enhancements to WCF 4.5

68

This means REST is intended for web applications where the browser invokes each request by
specifying a unique URI, as shown in the following figure:

Interoperate with service using XML

JAVA PHP ASP

GET POST PUT DELETE

REST-based service

In the preceding figure, it is clear that any technology can easily call a REST-based service
using basic HTTP requests.

There are a few basic thoughts behind the implementation of REST-based services. Let's look
into them:

ff Web is very simple and successful

ff Web standards are fixed over time

ff Web services should follow the standards of the Web

REST uses web verbs to communicate to services. Verbs such as GET, POST, DELETE, and
PUT are major verbs for REST-based applications. If you consider Hi-REST for your application,
you should be strict in choosing these verbs. The norms are as follows:

ff GET: This is used to retrieve data

ff POST: This is used to append data to the server

ff PUT: This is used to insert and update data in the server

ff DELETE: This is used to delete data from the server

REST services have a number of major advantages, which people are always inclined toward
in order to implement:

ff Less overhead on messages (no envelope required to warp every call).

ff Very standardized. REST uses normal HTTP verbs to communicate with the server.

ff REST is more user-friendly than others. It communicates using hierarchy with data
where the URL defines what exactly the result is all about.

Chapter 2

69

ff The XML doesn't always need to be a medium of transport. You can also make use of
JSON objects to communicate.

ff REST uses predefined HTTP verbs.

ff REST can take part in search engine optimizations as it is representational. The URL
is the representation of data.

The features of REST-based services are never-ending. It is very popular nowadays not only
because it is interoperable, but because it is easily consumed by the existing toolsets that
support standard HTTP verbs.

How to do it...
Let's now create a REST-based WCF service using the following steps:

1.	 First, launch Visual Studio and use WCF Service Application to create a project. We
will call it ContactService.

2.	 Delete the default files that have been created automatically from the project
template (IService1.cs and Service1.svc), and add a new WCF Service to the
solution. We will call it ContactCRUD.svc.

3.	 The project now includes two files with their template implementations. As we are
going to implement a service that deals with contacts, we need to implement the
IContactCRUD interface:
[ServiceContract]
public interface IContactCRUD
{
 [WebGet(UriTemplate = "contact/{roll}")]
 [OperationContract]
 Contact GetContact(string roll);

 [WebInvoke(Method = "POST", UriTemplate = "contacts")]
 [OperationContract]
 bool SaveContact(Contact currentContact);

 [WebInvoke(Method = "DELETE", UriTemplate = "contact/{roll}")]
 [OperationContract]
 bool RemoveContact(string roll);

 [WebInvoke(Method = "PUT", UriTemplate = "contact")]
 [OperationContract]
 bool UpdateContacts(Contact contact);

 [WebGet(UriTemplate = "contacts")]

Enhancements to WCF 4.5

70

 [OperationContract]
 List<Contact> GetAllContacts();
}

[DataContract]
public class Contact
{
 [DataMember]
 public int Roll { get; set; }

 [DataMember]
 public string Name { get; set; }

 [DataMember]
 public string Address { get; set; }

 [DataMember]
 public int Age { get; set; }
}

In the preceding code, we have specified the WebInvoke method to define the REST
configuration for each interface. The WebGet method is used only for GET requests,
while you can employ other methods easily using WebInvoke. Each of the attributes
takes UriTemplate, which defines the routing URL that points to the service.

It is also worth mentioning that you can specify the request/response
format for a particular interface as well. If you do not specify anything,
it will take XML as a medium of transport. You can also specify JSON on
either WebInvoke or WebGet as follows:

[WebGet(UriTemplate = "contacts", RequestFormat=
WebMessageFormat.Json, ResponseFormat=
WebMessageFormat.Json)]

4.	 The implementation of the class is very simple as well. We will create an in-memory
list of contacts, which operates on the list such that the GetContact method will
get an individual contact object from the list, the SaveContact method will put the
contact on the list, the DeleteContact method will remove that particular contact
from the list, and the UpdateContact method will update a contact element.

5.	 REST-based services require webHttpBinding as the binding. Let's consider
configuring the service as shown in the following code:
 <system.serviceModel>
 <services>

Chapter 2

71

 <service name="ContactService.ContactCRUD"
behaviorConfiguration="httpBehavior">
 <endpoint address="" binding="webHttpBinding"
 contract="ContactService.IContactCRUD"
 behaviorConfiguration="httpEndpointBehavior">
 <identity>
 <dns value="localhost"/>
 </identity>
 </endpoint>
 <endpoint address="mex" binding="mexHttpBinding"
contract="IMetadataExchange"/>
 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior name="httpBehavior">
 <serviceMetadata httpGetEnabled="True"/>
 <serviceDebug includeExceptionDetailInFaults="False"/>
 </behavior>
 </serviceBehaviors>
 <endpointBehaviors>
 <behavior name="httpEndpointBehavior">
 <webHttp />
 </behavior>
 </endpointBehaviors>
 </behaviors>
 <serviceHostingEnvironment aspNetCompatibilityEnabled="true"
multipleSiteBindingsEnabled="true" />
 </system.serviceModel>

Here, the service is configured with webHttpBinding and a contract pointing to
ContactService.IContactCrud. The service is getting hosted at port 8080.
Remember to specify httpGetEnabled=true to ensure that the application can
invoke the GET request, which is required for REST-based services.

6.	 As our service is completed, let's try to examine it for each of the methods that we
have specified for the service. Let's add Testpage on the project to invoke the
requests. We are going to use Jquery ajax to request the service.

By the way, you can also use any tool that can handle HTTP
requests such as PostMan (a Chrome plugin) or Fiddler (from
Telerik), but we are going to create a web page assuming you
haven't used any of these tools before.

Enhancements to WCF 4.5

72

7.	 Let's add a jQuery library to the solution inside a JS folder and add a few buttons to
handle each of these service interfaces. Our service is hosted as ContactCRUD.svc
in IIS and we can call this URL to communicate with the service. Let's create a small
UI with one table and a few textboxes to take values for the contact class. We created
a few buttons and a table on the screen to show the data from the service, as shown
in the following screenshot:

In the previous UI that we built, we placed a number of buttons, each of which
pointed to a certain web service interface. We are going to call each service
through these buttons and update the server. For instance, GetContacts will call
GetService to get all contacts from the server, while UpdateContact calls the
PUT service to update the existing contact information on the server.

8.	 The first service that we are going to look at is the GET service for GetContact and
GetContact (by roll), as shown in the following code:
function returnContacts() {
 $.ajax({
 type: "GET",
 url: "ContactCRUD.svc/Contacts", success: function
(data) {
 updateTable(data);
 },
 error: function (msg) {
 alert(msg);
 }
 });
}
function returnContact() {
 var roll = $("#roll").val();
 $.ajax({
 type: "GET",
 url: "ContactCRUD.svc/contact/" + roll,
 success: function (data) {
 updateTable(data);

Chapter 2

73

 },
 error: function (msg) {
 alert(msg);
 }
 });
}
function updateTable(data) {
 $("#output").find("tr:gt(0)").remove();
 $(data).find('Contact').each(function () {
 var roll = $(this).find('Roll').text();
 var name = $(this).find('Name').text();
 var age = $(this).find('Age').text();
 var address = $(this).find('Address').text();
 $('<tr></tr>').html('<th>' + roll + '</th><td>' +
name + '</td><td>' + age + '</td><td>' + address +
'</td>').appendTo('#output');
 });
}

In the preceding code, we made a GET request to the server. The first one is the
request for all contacts without any parameters while the second one is for contacts
with parameters. The $.ajax function is an API to call the server side. The AJAX
requests receive an XML response, which is then appended to the table with the ID
output using the updateTable function.

9.	 In the case of the POST request, the data needs to be sent inside the body of the
AJAX object. jQuery provides a data property, which can be used to set the data that
needs to be posted to the service:
function postContact() {
 var postObj = "<Contact><Address>" + $("#address").val() + "</
Address><Age>" + $("#age").val() +
"</Age><Name>" + $("#name").val() + "</Name><Roll>" +
$("#roll").val() + "</Roll></Contact>";
 $.ajax({
 type: "POST",
 url: "ContactCRUD.svc/contacts",
 contentType: "application/xml; charset=utf-8",
 data: postObj,
 success: function (data) {
 returnContacts();
 $(":text").val('');
 },
 error: function (msg) {
 alert(msg);
 }
 });
}

Enhancements to WCF 4.5

74

In the preceding code, we are posting an XML contact element to the service. The
contentType method here is essential to let the service know that the data that
sent is actually XML content.

10.	 Similar to POST, the PUT request also sends data inside the body of an AJAX call. The
PUT request is used to update data on the server:
function putContact() {
 var postObj = "<Contact><Address>" + $("#address").val() + "</
Address><Age>" + $("#age").val() +
"</Age><Name>" + $("#name").val() + "</Name><Roll>" +
$("#roll").val() + "</Roll></Contact>";
 $.ajax({
 type: "PUT",
 url: "ContactCRUD.svc/contact",
 contentType: "application/xml; charset=utf-8",
 data: postObj,
 success: function (data) {
 returnContacts();
 },
 error: function (msg) {
 alert(msg);
 }
 });
}

Similar to the POST request, the PUT request also posts data into the body, while the
type specified as PUT and the service URL are changed.

11.	 The DELETE statement is used to delete content from the server:
function deleteContact() {
 var roll = $("#roll").val();
 $.ajax({
 type: "DELETE",
 url: "ContactCRUD.svc/contact/" + roll,
 success: function (data) {
 returnContacts();
 },
 error: function (msg) {
 alert(msg);
 }
 });
}

The preceding AJAX call invokes a DELETE statement on the server. The DELETE
statement works in a similar way to the GET request, where the URL itself identifies
the data.

Chapter 2

75

How it works...
REST is a new design pattern that has been put forward in the SOA architectures and has
been widely used by enterprises because it uses the very old W3C HTTP request standards to
manipulate data. Some leading social media giants, such as Twitter and Facebook, use REST
to work with its services.

Internally, REST uses the routing API. The data that is passed using the REST URI is parsed
by the .NET routing API, which then calls the appropriate function on the server. The main
advantage of REST is that it is representational and data is in human-readable format.

A WCF Service method can be made REST-based by specifying an attribute WebInvoke to it.
The WebInvoke attribute specifies the following properties:

ff BodyStyle: This specifies the body style of messages that are sent to and from the
service. The BodyStyle property can be bare (which means the body is not wrapped
inside anything) or wrapped (WrappedRequest or WrappedResponse).

ff Method: This specifies the HTTP method that is used to send the request for the
WCF interface. The WebGet service can be used to specify GET requests for a service
as well.

ff RequestFormat: You are free to specify either the XML or JSON format of the
request using this property.

ff ResponseFormat: You can use this property to specify the response format of the
WCF service.

ff UriTemplate: This specifies the routing URL that needs to be parsed from the
request URL to call a method.

Once the WCF service is configured properly, the REST methods for the server are enabled
based on the configuration you have specified.

There's more...
Let's take this further with some additional topics.

Working with WebSockets in WCF
With the introduction of HTML5, WebSocket is one of the burning features that WCF needed
badly. WCF 4.5 introduced WebSocket, which enables the browser sockets to communicate
directly with the server WCF services, including the implementation of two-way communication
channels directly from the browser.

Enhancements to WCF 4.5

76

Ever since web services came into being, developers have always tried to leverage their time to
implement message formats in a way that makes the application run faster. The implementation
of REST and JSON can be seen speeding up as we are trying to reduce the size of the data that
is sent over the network, but we are still moving and parsing text to make it in a standard format,
which is the slowest data transfer mechanism. Binary data gives the best output. However,
as we communicate using the HTTP protocol, there is always an overhead while working over
the Web.

Performance is not the only issue; HTTP is tied to the request/response cycle too. Even for
asynchronous AJAX-based services, the request has to wait for a certain interval until the
server can process the initial request and return the response. The browser then needs
to parse the response body to generate the document object. This is a slower approach
of communication.

A far better arrangement would be for a client to submit its request in a "fire and forget" kind
of arrangement and then the service calls the client back with some data.

WebSockets addresses all these issues and also goes through the process of standardization. It
uses TCP to communicate, giving you the benefit of a faster protocol as it works at a lower level
than HTTP without additional HTTP header information. WebSockets also supports sending both
binary and text formats. The best part of WebSockets is the two-way communication between
the browser and the server.

To use WebSockets, the service needs to be configured with NetHttpBinding. Let's create
DuplexContract for the WebSocket as follows:

[ServiceContract(CallbackContract=typeof(IDuplexCallbackContract))
]
public interface IDuplexContract
{
 [OperationContract]
 string GreetMeDuplex(string name);
}

[ServiceContract]
public interface IDuplexCallbackContract
{
 [OperationContract]
 void GreetingMe(string message);
}

Chapter 2

77

In the preceding code, we implemented two contracts: one is the original duplex contract
and the other is used as a callback. Here, the notion of execution is that the client calls
GreetMeDuplex with a name and GreetMe from IDuplexCallbackContract will
automatically call the client with a message.

The service implementation is as follows:

[ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Reentrant)]
public class WebSocketSampleService : IRegularContract,
IDuplexContract
{
 public string GreetMeDuplex(string name)
 {
 OperationContext.Current.
 GetCallbackChannel<IDuplexCallbackContract>().
GreetintMe("Hello "
+ name + " by WebSockets");
 return "Hello " + name;
 }
}

So in the implementation, we call the callback with a message and return the name. The
callback will call the client itself directly with the message and also return a string response
from the service.

To configure a WebSocket endpoint, we specify the endpoint binding as netHttpBinding
as follows:

<service name="WebSocketSampleService">
<endpoint address="http://localhost:8083"
 binding="netHttpBinding"
 contract="Contracts.IDuplexContract"/>
</service>
<bindings>
 <netHttpBinding>
 <binding name="TextOverWebSockets" messageEncoding="Text"/>
 </netHttpBinding>
</bindings>

By specifying messageEncoding, we indicate that the service only supports text formats
here. You can also set binary message encoding when required.

Enhancements to WCF 4.5

78

Finally, to consume the WebSocket service, we just add a reference to the service on a
Console Application and call the service as follows:

WebSockets.IDuplexContract duplexProxy;
duplexProxy = new WebSockets.DuplexContractClient(
 callbackContext,
 "DuplexContract");
Console.WriteLine("Calling the duplex contract:");
Console.WriteLine(duplexProxy.GreetMeDuplex("ido"));

// Or use a DuplexChannelFactory
DuplexChannelFactory<WebSockets.IDuplexContract> dchf =
 new DuplexChannelFactory<WebSockets.IDuplexContract>(
 callbackContext,
 new NetHttpBinding(),
 new EndpointAddress("http://localhost:8083/"));
duplexProxy = dchf.CreateChannel();
Console.WriteLine("Calling the duplex contract using text encoded
messages:");
Console.WriteLine(duplexProxy.GreetMeDuplex("ido"));

In this way, callbackContext automatically gets called from the duplex WebSocket. Most
of the modern browsers are capable of invoking a call, and WebSockets can directly call this
service from it.

See also
ff Refer to the REST and WCF services at http://bit.ly/wcfrestful

Creating a WCF service using the Open Data
Protocol standards

The current trend of the software industry is moving towards Open Data Protocols. One of
the most interesting and popular data protocols that have sprung into existence recently is
Open Data Protocol or OData. OData is a web-based protocol used to query and/or update
data. OData uses standard web technologies, such as HTTP, Atom Publishing Protocol, XML,
and JSON to communicate and provide access to the information present on the server to the
external world.

http://bit.ly/wcfrestful

Chapter 2

79

Even though OData is not the only way to enable representational-relational data from the
server, it brings a standardization on how the data should be represented using a unique
URI, which allows the data to be filtered, queried, manipulated, and so on. OData can be
thought of as a tap from the ecosystem that exposes the dataset or a tap into the ecosystem
of developers who can build applications very easily, as the way in which OData API works is
easily understood by them.

In the Microsoft .NET platform, the ODATA services are encapsulated in WCF Data Services
(which was formerly known as ADO.NET data services). These services are easy to use and
come in handy for developers in the Microsoft world. .NET also provides a superior client
library that makes it very easy to create tools that can consume the OData services.

Getting ready
Before we try to expose an OData service, it is important to create a database with some tables
that might be useful to expose. Let's create three tables inside our SQL Server database:

In the preceding screenshot, we created three tables. We created the relationships between
the three tables so that we can generate the relationship inside our mode.

How to do it...
Now, let's create an OData service from Visual Studio:

1.	 Launch Visual Studio and create an ASP.NET web application. Create the web
application to host the WCF data service.

Enhancements to WCF 4.5

80

2.	 Add an ADO.NET data model to the project and point it to the database that
is created. We are going to use the Entity Framework to communicate with the
database. Once it is successfully created, the entity data model will look like
the following screenshot:

3.	 Now add a new WCF Data Service to the web application; we will call it
EmployeeDataService.

4.	 After the WCF Data Service is added to the solution, replace the /*Todo: put
your data source class name here */ path with ODataDbEntities,
which is the database context created from the Entity Framework.

5.	 Generally, OData services are restrictive in nature. If you do not set a proper
permission to objects, either read or write, the objects are not exposed to the
external world. Let's now configure the service with a set of rules as follows:
public static void InitializeService(DataServiceConfiguration
config)
{

Chapter 2

81

 config.SetEntitySetAccessRule("*", EntitySetRights.AllRead);

 //Set paging
 config.SetEntitySetPageSize("*", 25);

 config.DataServiceBehavior.MaxProtocolVersion =
DataServiceProtocolVersion.V3;
}

The preceding specification defines that the service exposes all the entities for Read
with a custom pagination of 25 items per page.

6.	 The OData framework doesn't mean exposing everything from the database out on
the Web. It means exposing specific entities with as much or as little granularity as
you like. The OData framework provides you with support on intercepting queries,
making custom behaviors, making custom service operations, and so on. For every
request, the OData framework calls OnStartProcessingRequest, which you can
intercept to add various cache headers:
protected override void OnStartProcessingRequest(ProcessRequestAr
gs args)
{
 base.OnStartProcessingRequest(args);
 HttpContext context = HttpContext.Current;
 HttpCachePolicy c = HttpContext.Current.Response.Cache;
 c.SetCacheability(HttpCacheability.ServerAndPrivate);
 c.SetExpires(HttpContext.Current.Timestamp.AddSeconds(60));
 c.VaryByHeaders["Accept"] = true;
 c.VaryByHeaders["Accept-Charset"] = true;
 c.VaryByHeaders["Accept-Encoding"] = true;
 c.VaryByParams["*"] = true;
}

In the preceding code, we have added the HttpCache header on every request that
passes through the OData handler.

7.	 You can also use built-in interceptors such as QueryInterceptor or
ChangeInterceptor to ensure that the OData service hooks itself to the custom
logic specified on those methods before the object is returned:
[QueryInterceptor("Emp")]
public Expression<Func<Emp, bool>> OnQueryEmployee()
{
 //ToDo : Write your custom logic here.

 return e => true;

}

Enhancements to WCF 4.5

82

[ChangeInterceptor("Emp")]
public void OnChangeEmployee(Emp emp, UpdateOperations operation)
{
 if (operation == UpdateOperations.Add)
 {
 throw new DataServiceException(401, "We do not allow to
add new employees");
 }
}

8.	 In the preceding code, you can see that the OnQueryEmployee function is called
when Emp is called from the client. You can write your own custom logic to filter
data. The OnChangeEmployee function is called whenever any client tries to make
changes to the data on the server. WCF Data Service will automatically hook itself
onto the method and pass the Emp object with the operation.

9.	 Finally, the service can be hosted on IIS and the service URL can be called to get a
reference for the service.

How it works...
WCF Data Service is a new implementation of Microsoft to support Open Data Protocol
standards. It provides an easy way to expose objects based on the REST-based design
principle. It uses its runtime serializers to convert data objects into standard formats of data
such that they can be consumed by applications that support Open Data Protocol standards.
The support for standard AtomPub APIs included in the services makes it even better.

From the programming perspective, there is not much to write to expose items. The API is
made simple enough and a large set of APIs is used automatically to generate the standard
API formats and sent as a response.

There's more...
As we have already seen how to create OData services, let's consider some things that we
haven't covered yet.

Chapter 2

83

Consuming OData services
Consuming OData services is easy. Let's take an example of an online OData service to
show how we can consume it. We take the reference of the NuGet public API, which lists
the packages that are supported by NuGet. NuGet is a free, open source public developer
package management system. It helps a developer integrate a number of online .NET projects
inside it by using its library hosted on the cloud. Now, let's connect to the OData service
hosted by NuGet and take a reference to find the packages available on it. To connect to
the NuGet package service, we add a reference of the following link to our project using the
service reference at http://packages.nuget.org/v1/FeedService.svc/, as shown
in the following screenshot:

Enhancements to WCF 4.5

84

Here, when you add a reference to the NuGet PackageOData service, it will show you a
public service that has a public interface called packages. The public API is freely available
to everyone to keep a track of all the packages that are available with NuGet. We call the
Namespace service NugetPackageOData.

After taking a reference from the public NuGet package API, let's create a new WPF
application and a UI. The UI has a TextBox class, a ListBox class, and a Button class
such that when the button is clicked, the query text from the Textbox class is searched on
the NugetPackage service and the list is shown in the List section on the screen.

<DockPanel LastChildFill="True">
 <Grid DockPanel.Dock="Top">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="80" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="100" />
 </Grid.ColumnDefinitions>
 <TextBlock Grid.Column="0" Text="Query:"
 Margin="5" />
 <TextBox Name="txtQuery" Grid.Column="1"
 Margin="5" />
 <Button Name="btnQuery" Grid.Column="2"
 Content="Query"
 Margin="5"
 Click="btnQuery_Click" />
 </Grid>
 <Separator Margin="5" />
 <ListBox Name="lstPackages" ItemsSource="{Binding}">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="3*" />
 <ColumnDefinition Width="0.5*" />
 <ColumnDefinition Width="1.5*" />
 <ColumnDefinition Width="2*" />
 <ColumnDefinition Width="1*" />
 </Grid.ColumnDefinitions>
 <TextBlock Text="{Binding Id}"
Grid.Column="0" />
 <TextBlock Text="{Binding Version}"
Grid.Column="1" />

Chapter 2

85

 <TextBlock Text="{Binding Authors}" Grid.
Column="2" />
 <TextBlock Text="{Binding Dependencies}"
Grid.Column="3" />
 <TextBlock Text="{Binding Created}"
Grid.Column="4" />
 </Grid>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
 </DockPanel>

In the preceding XAML, we create DockPanel, which hosts one grid and one list. The grid
shows the top-panel to query the package and the list shows a list of packages returned by
the service. We create an appropriate DataTemplate binding to ensure that the service
package contract is maintained.

In the preceding code, we create an object of the NugetOData packager client and call its
package API to get all the public APIs. We use the query sent from the textbox to load only the
items that contain the key in their title:

IEnumerable<V1FeedPackage> QueryNuGetPackage(string query)
{
 var client = new FeedContext_x0060_1(this.clientUri);
 var returnedPackages = client.Packages.Where(e =>
e.Title.ToUpper().Contains(query.ToUpper()));

 return returnedPackages;
}

private void btnQuery_Click(object sender, RoutedEventArgs e)
{
 if (string.IsNullOrWhiteSpace(txtQuery.Text))
 return;

 this.lstPackages.DataContext = this.QueryNuGetPackage(txtQuery.
Text);
}

The preceding code gets all the packages that are returned from the package OData public
API and filters the returned data by the query text.

Enhancements to WCF 4.5

86

Securing the OData application behind a valid authentication
Authentication is an important consideration when dealing with OData services. The OData
services exposes data using REST-based URLs and is available to the external world. In some
cases, these data blocks need to be secured behind valid credentials. If we need to map
using a Windows account, the IIS manager provides an ASP.NET Windows authentication
automatically just by configuring the website, as shown in the following screenshot:

Double-click on the authentication icon of IIS to load the authentication, disable Anonymous
Authentication for the website, and enable the Basic Authentication option. After the
application is configured, the Authentication tab will look like the following screenshot:

Chapter 2

87

Once the Basic Authentication option is set for the site, the site will require the user to
specify the Windows authentication credentials to log in.

On the other hand, if the service requires authenticating using custom credentials, you need
to disable the Basic Authentication option and re-enable Anonymous Authentication. The
web application can specify a custom HTTP module to pull the username and password from
the request headers and perform the validation. Let's add an IHttpModule to the web
application to initiate an authentication for the service.

Let's define BasicAuthenticationModule, which will ensure the following aspects:

ff The service is called in the SSL for authentication

ff The service has an Authorization header block on its request header

ff The AuthorizationHeader provides a base64 representation of a valid user's
credentials as follows:

public class BasicAuthModule : IHttpModule
{
 public void Init(HttpApplication app)
 {
 app.AuthenticateRequest += new
EventHandler(app_AuthenticateRequest);
 }
 void app_AuthenticateRequest(object sender, EventArgs
e)
 {
 HttpApplication app = (HttpApplication)sender;
 if (!app.Request.IsSecureConnection)
 {
 BasicAuthModule.GenerateAutenticationFailedResponse(a
pp,
403, 4, "Please connect the service using HTTPS");
 app.CompleteRequest();
 }
 else if (!app.Request.Headers.AllKeys.
Contains("Authorization"))
 {
 BasicAuthModule.GenerateAutenticationFailedResponse(a
pp,
401, 1,
 "Please provide Authorization headers with
your request.");
 app.CompleteRequest();
 }
 else if (!BasicAuthProvider.Authenticate(app.Context))
 {

Enhancements to WCF 4.5

88

 BasicAuthModule.GenerateAutenticationFailedResponse(a
pp,
401, 1, "Logon failed.");
 app.CompleteRequest();
 }
 }
 private static void GenerateAutenticationFailedResponse(HttpAp
plication app,
int code, int subCode, string description)
 {
 HttpResponse response = app.Context.Response;
 response.StatusCode = code;
 response.SubStatusCode = subCode;
 response.StatusDescription = description;
 response.AppendHeader("WWW-Authenticate", "Basic");
 }
 public void Dispose()
 {
 }
}

The preceding code defines HttpModule, which will be called automatically when a request
needs authentication. The module checks whether the service is called using SSL and it
also checks for the authorization header component. If everything is correct, it validates the
user ID and password sent through the authorization header parsing the values using the
BasicAuthProvider class.

The BasicAuthProvider class is like an AuthenticationProvider class, whose job is
to validate the user ID and password that is sent in the authorization header block and return
the credentials whether they are valid or not, as shown in the following code:

public class BasicAuthProvider
{
 public static bool Authenticate(HttpContext context)
 {
 string authHeader =
context.Request.Headers["Authorization"];
 IPrincipal principal;
 if (TryGetPrincipal(authHeader, out principal))
 {
 HttpContext.Current.User = principal;
 return true;
 }
 return false;
 }
}

Chapter 2

89

The idea of authenticating the BasicAuthProvider class is to acquire the value of the
authorization header and generate an IPrincipal object when authorization succeeds.
The authentication calls the TryGetPrincipal object to authenticate the user and
generate the Principal object, as shown in the following code:

 private static bool TryGetPrincipal(string authHeader, out
IPrincipal principal)
 {
 string user;
 string password;
 if (TryParseAuthorizationHeader(authHeader, out user, out
password))
 {
 return TryAuthenticate(user, password, out principal);
 }
 principal = null;
 return false;
 }

In the preceding code, we try to parse the authorization header string that is passed by the
client, and get the user ID and password from the Base64 encoded string in the authorization
header block. The logic of parsing can be anything and depending on that, the client needs to
send it.

private static bool TryParseAuthorizationHeader(string authHeader,
out string user, out string password)
 {
 user = "";
 password = "";
 if (string.IsNullOrEmpty(authHeader) ||
!authHeader.StartsWith("Basic"))
 {
 return false;
 }
 string base64EncodedCreds = authHeader.Substring(6);
 string[] creds =
Encoding.ASCII.GetString(Convert.FromBase64String(base64EncodedCre
ds)).Split(new char[] { ':' });
 if (creds.Length != 2 || string.IsNullOrEmpty(creds[0]) ||
string.IsNullOrEmpty(creds[1]))
 {
 return false;
 }
 user = creds[0];
 password = creds[1];
 return true;
 }

Enhancements to WCF 4.5

90

In the preceding code, we parsed the string inside the authorization header. Note that,
in our case, the authorization header starts with the basic, and the username and password
are split using :. The entire string is also Base64 encoded to ensure that we do not pass
illegal characters.

private static bool TryAuthenticate(string user, string password,
out IPrincipal principal)
 {

 //Todo : Authenticate from database and generate the User
Identity here.
 if (user.ToLower().Equals("admin") && password.
Equals("myadminaccount"))
 {
 principal = new GenericPrincipal(
 new GenericIdentity(user), new string[] { "Users"
});
 return true;
 }
 else
 {
 principal = null;
 return false;
 }
 }

The TryAuthenticate function gets the user ID and password and returns a
genericPrincipal object. The principal object is transferred into the context, which can
be used later on when generating the output. Using this block, you can use any authentication
technique to validate the user ID and password and specify respective permissions to the
user. If you are using the ASP.NET membership and roles, the GenericPrincipal function
constructor will allow you to specify roles for the identity.

principal = new GenericPrincipal(new GenericIdentity(user), Roles.
GetRolesForUser(user));

The preceding code generates the principle for the membership API.

Now, to configure the application to use the authentication module, we add the module to
Web.config of the site as follows:

<system.webServer>
 <modules runAllManagedModulesForAllRequests="true">
 <add name="BasicAuthModule" type="WCFDataServiceApplication.
BasicAuthModule"/>
 </modules>
 </system.webServer>

Chapter 2

91

The OData service itself supports query interceptors that let you allow/disallow an object to be
sent to the client. Based on the interceptor, you can also filter your data.

The QueryInterceptor attribute intercepts any requests made by the client and you can
set your logic to ensure whether the query is successful or not, as shown in the following code:

[QueryInterceptor("Emp")]
public Expression<Func<Emp, bool>> OnQueryEmployee()
{
 var user = HttpContext.Current.User;
 if (user.IsInRole("Administrators"))
 return e => true;
 else
 return e => false;
}
[ChangeInterceptor("Emp")]
public void OnChangeEmployee(Emp emp, UpdateOperations operation)
{
 if (operation == UpdateOperations.Add || operation ==
UpdateOperations.Change)
 {
 var user = HttpContext.Current.User;
 if (!user.IsInRole("Administrators"))
 throw new DataServiceException(401, "User do not have
permission to change employee credentials");
 }
}

In the preceding code, the QueryInterceptor attribute is used to ensure that CurrentUser
is validated when the emp table is fetched. The OData environment will automatically call the
OnQueryEmployee method and check whether the administrator role is set for the current
user before letting it retrieve the employee information.

The ChangeInterceptor attribute is called when any DML operation is performed
on the data. When the client requests to add or change or even delete this method,
OnChangeEmployee gets called and it checks whether the user is in the administrator
role; otherwise, it throws an exception down the pipeline.

Consuming the OData service
We have seen how to consume the OData service. If the service needs to pass request
headers to be authenticated, you can pass it inside the SendingRequest event handler,
as shown in the following code:

Uri serviceRootUri = new Uri(
 "https://localhost:8000/WCFDataServiceApplication/");
WCFDataServiceClient client =
 new WCFDataServiceClient(serviceRootUri);

Enhancements to WCF 4.5

92

client.SendingRequest += (o, requestEventArgs) =>
{
 var creds = username + ":" + password;
 var encodedCreds =
 Convert.ToBase64String(Encoding.ASCII.
GetBytes(creds));
 requestEventArgs.RequestHeaders.Add(
 "Authorization", "Basic " + encodedCreds);
};
var res = client.Emp.FirstOrDefault();

In the preceding code, the WCFDataServiceClient service is called. The SendingRequest
event is handled to intercept the user ID and password for every call to the service to get
the employee's information or any other objects. Please note the specific format of the
authorization header.

See also
ff Refer to WCF OData with ASP.NET at http://bit.ly/wcfodata

Extending a WCF service (service
extensibility)

Extensibility is one of the most important concerns for any programming world. While
developing a framework, a good architect always creates hooks, which lets the user explore
these hooks and modify the way the framework behaves. WCF, being a powerful and simple
tool to create services, also has a lot of hooks on its runtime, which will enable developers
to write their own code and modify the way WCF behaves in certain scenarios. There are a
great number of hooks available as interfaces in WCF, which allow you to change either the
description or runtime of the WCF service.

The description of a service means all the things that are needed to start a service under the
WCF environment. It includes:

ff All aspects that WCF needs to start a service

ff Endpoints (address, binding, and contract)

ff Local behaviors

After ServiceHost is opened, we cannot change the description of the service until it is closed
and restarted. When the ServiceHost service is opened, the WCF runtime is initialized and all
the socket listeners are started. In this situation, the ServiceDescription service is frozen
and any attempt to change the service description will be ignored.

http://bit.ly/wcfodata

Chapter 2

93

There are a number of extensibility options available in WCF, which allow hooking and
changing the default operation of the service. The options are as follows:

ff Extending behaviors

ff Extending serialization

ff Extending metadata

ff Extending security

ff Extending channel system

ff Extending the service host

Getting ready
Let's create a service and host the service in a Console Application as follows:

[ServiceContract]
 public interface ISecureTestService
 {
 [OperationContract]
 string MyDummyOperation(string name, string password);
 }

 public class MySecureTestService : ISecureTestService
 {
 public string MyDummyOperation(string name, string
 password)
 {
 return "Doing inside dummy service";
 }
 }

In the preceding code, we just defined a ServiceContract service and an operation called
MyDummyOperation. We also defined the ServiceHost service to host our service directly
inside our Console Application, as shown in the following code:

static void Main(string[] args)
{
 ServiceHost host = new ServiceHost(typeof(MySecureTestService));
 host.Open();
 Console.WriteLine("Secure service is running");
 Console.ReadKey(true);
}

Enhancements to WCF 4.5

94

Also, we configured the service with address and contract as follows:

<services>
 <service name="ServiceExtensibility.MySecureTestService"
behaviorConfiguration="Metadata">
 <host>
 <baseAddresses>
 <add baseAddress="http://localhost:8140/Service"/>
 <add baseAddress="https://localhost:8883/Service"/>
 </baseAddresses>
 </host>
 <endpoint address=""
 binding="basicHttpBinding"
 contract="ServiceExtensibility.ISecureTestService"/>
 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior name="Metadata">
 <serviceMetadata httpGetEnabled="true" />
 </behavior>
 </serviceBehaviors>
 </behaviors>

This is a simple service where we host our service in more than one scheme at different ports
on the same machine. We also got httpGet enabled for metadata.

If we try to override the default behaviors of the WCF, we have four options to change the
default behaviors of the service. They are as follows:

ff Service behavior

ff Endpoint behavior

ff Contract behavior

ff Operation behavior

In this recipe, let's look at how we can change each of these behaviors of the service.

Chapter 2

95

How to do it...
Now, let's take steps to extend the WCF service with various schemes:

1.	 Let's say we want our MyDummyOperation to only be called using the HTTPS
scheme, and when we call the service using HTTP, the operation fails. To do this,
we create a class and implement it from IServiceBehavior as follows:
class RequireHttpsBehavior : Attribute, IServiceBehavior
{
 public void AddBindingParameters(ServiceDescription
serviceDescription, ServiceHostBase serviceHostBase,
System.Collections.ObjectModel.Collection<ServiceEndpoint>
endpoints,
System.ServiceModel.Channels.BindingParameterCollection
bindingParameters)
 {
 }

 public void ApplyDispatchBehavior(ServiceDescription
serviceDescription, ServiceHostBase serviceHostBase)
 {
 }

 public void Validate(ServiceDescription
serviceDescription, ServiceHostBase serviceHostBase)
 {
 foreach (var endpoint in
serviceDescription.Endpoints)
 {
 if (endpoint.Binding.Scheme !=
Uri.UriSchemeHttps)
 throw new InvalidOperationException("This
service requires HTTPS");
 }
 }
}

In the preceding code, inside the Validate method, we check all the endpoints
associated with the service and we throw an InvalidOperationException
when we find an endpoint other than the HTTPS scheme.

Enhancements to WCF 4.5

96

2.	 We then add the ServiceBehavior service either in the form of an attribute on the
ServiceContract class (for that we need to inherit from the Attribute class), or
we can directly add an object of this behavior in the ServiceHost object.
host.Description.Behaviors.Add(new RequireHttpsBehavior());

Now if I run the project, it will give an exception saying the service requires HTTPS.

3.	 The EndpointBehavior service can also be tweaked using the interface
IEndpointBehavior as follows:
class LoggingEndpointBehavior : IEndpointBehavior
{

 public void AddBindingParameters(ServiceEndpoint
endpoint, System.ServiceModel.Channels.BindingParameterCollection
bindingParameters)
 {
 }

 public void ApplyClientBehavior(ServiceEndpoint
endpoint, System.ServiceModel.Dispatcher.ClientRuntime
clientRuntime)
 {
 clientRuntime.ClientMessageInspectors.Add(new
LoggingInspector());
 }

 public void ApplyDispatchBehavior(ServiceEndpoint
endpoint, System.ServiceModel.Dispatcher.EndpointDispatcher
endpointDispatcher)
 {

 }

 public void Validate(ServiceEndpoint endpoint)
 {
 }
}

4.	 Here, we have added EndpointBehavior such that it logs messages on the screen.
We have added the LoggingInspector class, which inspects any requests and
logs the data in the console.

5.	 To intercept ContractBehavior, we need to implement the IContractBehavior
class. Let's define a contract behavior such that we use BinaryEncoder for the
service rather than the textual encoders:
class BinaryEncoderContractBehavior : Attribute,
IContractBehavior

Chapter 2

97

 {
 public void AddBindingParameters(ContractDescription
contractDescription, ServiceEndpoint endpoint,
System.ServiceModel.Channels.BindingParameterCollection
bindingParameters)
 {
 if (endpoint.Binding.CreateBindingElements().
Find<MessageEncod
ingBindingElement>() == null)
 {
 bindingParameters.Add(new
BinaryMessageEncodingBindingElement());
 }
 }

6.	 Here, we are changing the binding encoder to binary. We use
BinaryMessageEncodingBindingElement as the binding for the contract
such that when messages are sent or received, it uses the binary encoding
rather than the text encoding. Remember, we generally use this tweak when
we create CustomBinding for an operation. Before adding an encoder to
the binding, it is also important to check whether there is already any binding
associated. The ContractBehavior service can be added as an attribute to
the ServiceContract class.

7.	 Operation behaviors are used to tweak values for an application. The WebGet or
WebInvoke methods are operation behaviors that specify the actual URITemplate
for the operation, and tweak the request to connect to an operation. Let's define an
operation that will change the negative value to a positive value:
 class NonNegativeOperationBehavior : Attribute,
IOperationBehavior
 {
 public void
ApplyDispatchBehavior(OperationDescription
operationDescription,
System.ServiceModel.Dispatcher.DispatchOperation
dispatchOperation)
 {
 var originalInvoker =
dispatchOperation.Invoker;
 dispatchOperation.Invoker = new
NoNegativeInvoker(originalInvoker);
 }

 public void Validate(OperationDescription
operationDescription)
 {

Enhancements to WCF 4.5

98

 if (operationDescription.Messages.Count < 2 ||
operationDescription.Messages[1].Body.ReturnValue.Type !=
typeof(double))
 {
 throw new InvalidOperationException("This
behavior can only be applied on operation which returns
double");
 }
 }
 }

Here, we have checked whether the operation that was invoked returns
a double value. We check ReturnValue of the second message on
OperationDescription as WCF returns two messages for an operation.
We also create a new OperationInvoker to manipulate the value received
when the operation is invoked.

8.	 To write the invoker, we pass the OriginalInvoker class as a wrapper, so that we
return OriginalInvoker in places where we do not need to tweak, and we also do
not need to rewrite the whole invoker as follows:
class NoNegativeInvoker : IOperationInvoker
{
 public NoNegativeInvoker(IOperationInvoker originalInvoker)
 {
 this.OriginalInvoker = originalInvoker;
 }

 public IOperationInvoker OriginalInvoker { get; set; }

 public object[] AllocateInputs()
 {
 return OriginalInvoker.AllocateInputs();
 }

 public object Invoke(object instance, object[] inputs, out
object[] outputs)
 {
 var result= OriginalInvoker.Invoke(instance, inputs, out
outputs);
 result = Math.Abs((double)result);
 return result;
 }

 public IAsyncResult InvokeBegin(object instance, object[]
inputs, AsyncCallback callback, object state)
 {

Chapter 2

99

 return OriginalInvoker.InvokeBegin(instance, inputs,
callback, state);
 }

 public object InvokeEnd(object instance, out object[] outputs,
IAsyncResult result)
 {
 var oresult= OriginalInvoker.InvokeEnd(instance, out
outputs, result);
 oresult = Math.Abs((double)oresult);
 return oresult;
 }

 public bool IsSynchronous
 {
 get { return OriginalInvoker.IsSynchronous; }
 }
}

In NoNegativeInvoker, we store OriginalInvoker as a property as it is
passed in its constructor, and we return the values from OriginalInvoker
wherever required. To tweak the behavior, we get the results of the invoke from
OriginalInvoker and change it to an absolute value. We also need to do the
same thing to InvokeEnd for async operations.

9.	 After adding NonNegativeOperationBehavior as an attribute for an operation
that returns a double value, we ensure that it does not generate a negative value.

How it works…
The behaviors are one of the primary key elements for WCF programming. While defining
a service endpoint, you can configure it so that the service behavior calls your own code
rather than already predefined behaviors associated with the WCF API. In this recipe, we
have covered how you can use interface hooks to define your own ServiceBehavior,
EndPointBehavior, ContractBehavior, and OperationBehavior classes. As we go
down the line, the WCF supports a lot of other enhancements, such as runtime extensibility,
ServiceModel extensibility, WCF channel extensibility, and serialization extensibility.

3
Building a

Touch-sensitive Device
Application Using
Windows Phone 8

In this chapter, we will cover the following recipes:

ff Building your first Windows Phone 8 application following the MVVM pattern

ff Working with Launchers and Choosers in Windows Phone

ff Working with relational databases and persistent storage

ff Working with notifications in Windows Phone

Introduction
Windows Phones are the newest smart device that has come to the market and host the
Windows operating system from Microsoft. The new operating system that was introduced to
the market significantly differs from the previous Windows mobile operating system. Microsoft
has shifted gears on producing a consumer-oriented phone rather than an enterprise mobile
environment. The operating system is stylish and focused on the consumer. It was built
keeping a few principles in mind:

ff Simple and light, with focus on completing primary tasks quickly

ff Distinct typography (Segoe WP) for all its UI

ff Smart and predefined animation for the UI

Building a Touch-sensitive Device Application Using Windows Phone 8

102

ff Focus on content, not chrome (the whole screen is available to the application
for use)

ff Honesty in design

Unlike the previous Windows Phone operating system, Windows Phone 8 is built on the
same core on which Windows PC is now running. The shared core indicates that the
Windows core system includes the same Windows OS, including NT Kernel, NT filesystem,
and networking stack. Above the core, there is a Mobile Core specific to mobile devices,
which includes components such as Multimedia, Core CLR, and IE Trident, as shown in
the following screenshot:

Windows Phone 8

Windows Phone Shell

Apps (Phone, Maps, Email etc.)

Platform Services

Connection Manager

More...

Mobile Core

Windows Core System

IE Trident Core CLR

Multimedia DirectX

NTFS NT Kernel

Networking Security

In the preceding screenshot, the Windows Phone architecture has been depicted. The
Windows Core System is shared between the desktop and mobile devices. The Mobile Core is
specific to mobile devices that run Windows Phone Shell, all the apps, and platform services
such as background downloader/uploader and scheduler.

It is important to note that even though both Windows 8 and
Windows Phone 8 share the same core and most of the APIs, the
implementation of APIs is different from one another. The Windows
8 APIs are considered WinRT, while Windows Phone 8 APIs are
considered Windows Phone Runtime (WinPRT).

Chapter 3

103

Building your first Windows Phone 8
application following the MVVM pattern

Windows Phone applications are generally created using either HTML5 or Silverlight. Most of
the people still use the Silverlight approach as it has a full flavor of backend languages such as
C# and also the JavaScript library is still in its infancy. With Silverlight or XAML, the architecture
that always comes into the developer's mind is MVVM. Like all XAML-based development,
Windows 8 Silverlight apps also inherently support MVVM models and hence, people tend to
adopt it more often when developing Windows Phone apps. In this recipe, we are going to take
a quick look at how you can use the MVVM pattern to implement an application.

Getting ready
Before starting to develop an application, you first need to set up your machine with the
appropriate SDK, which lets you develop a Windows Phone application and also gives you an
emulator to debug the application without a device. The SDK for Windows Phone 8 apps can
be downloaded from Windows Phone Dev Center at http://dev.windowsphone.com.
The Windows Phone SDK includes the following:

ff Microsoft Visual Studio 2012 Express for Windows Phone

ff Microsoft Blend 2012 Express for Windows Phone

ff The Windows Phone Device Emulator

ff Project templates, reference assemblies, and headers/libraries

ff A Windows 8 PC to run Visual Studio 2012 for Windows Phone

After everything has been set up for application development, you can open Visual Studio
and create a Windows Phone app. When you create the project, it will first ask the target
platform; choose Windows Phone 8 as the default and select OK. You need to name and
create the project.

How to do it...
Now that the template is created, let's follow these steps to demonstrate how we can start
creating an application:

1.	 By default, the project template that is loaded will display a split view with the Visual
Studio Designer on the left-hand side and an XAML markup on the right-hand side.
The MainPage.xaml file should already be loaded with a lot of initial adjustments
to support Windows Phone with factors. Microsoft makes sure that they give the best
layout to the developer to start with. So the important thing that you need to look
at is defining the content inside the ContentPanel property, which represents the
workspace area of the page.

http://dev.windowsphone.com

Building a Touch-sensitive Device Application Using Windows Phone 8

104

The Visual Studio template for Windows Phone 8 already gives you
a lot of hints on how to start writing your first app. The comments
indicate where to start and how the project template behaves on
the code edits in XAML.

2.	 Now let's define some XAML designs for the page. We will create a small page and
use MVVM to connect to the data. For simplicity, we use dummy data to show on
screen. Let's create a login screen for the application to start with.

3.	 Add a new page, call it Login.xaml, and add the following code in ContentPanel
defined inside the page:
<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0"
VerticalAlignment="Center">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

 <TextBlock Text="UserId" Grid.Row="0"
Grid.Column="0" HorizontalAlignment="Right"
VerticalAlignment="Center"/>
 <TextBox Text="{Binding UserId, Mode=TwoWay}"
Grid.Row="0" Grid.Column="1" InputScope="Text"/>
 <TextBlock Text="Password" Grid.Row="1"
Grid.Column="0" HorizontalAlignment="Right"
VerticalAlignment="Center"/>
 <PasswordBox x:Name="txtPassword" Grid.Row="1"
Grid.Column="1" PasswordChanged="txtPassword_PasswordChanged"/>
 <Button Command="{Binding LoginCommand}"
Content="Login" Grid.Row="2" Grid.Column="0" />
 <Button Command="{Binding ClearCommand}"
Content="Clear" Grid.Row="2" Grid.Column="1" />
 </Grid>

Chapter 3

105

In the preceding UI Design, we added a TextBox and a PasswordBox inside
ContentPanel. Each TextBox has an InputScope property, which you can
define to specify the behavior of the input. We define it as Text, which specifies
that the TextBox can have any textual data. The PasswordBox takes any input
from the user, but shows asterisks (*) instead of the actual data. The actual data
is stored in an encrypted format inside the control and can only be recovered
using its Password property.

4.	 We are going to follow the MVVM pattern to design the application. We create a folder
named Model in the solution and put a LoginDataContext class in it. This class is
used to generate and validate the login of the UI.

5.	 Inherit the class from INotifyPropertyChanged, which indicates that the
properties can act by binding with the corresponding DependencyProperty
that exists in the control, thereby interacting to and fro with the UI.

6.	 We create properties for UserName, Password, and Status, as shown in the
following code:
 private string userid;
 public string UserId
 {
 get { return userid; }
 set
 {
 UserId = value;
 this.OnPropertyChanged("UserId");
 }
 }

 private string password;
 public string Password
 {
 get { return password; }
 set { password = value; this.
OnPropertyChanged("Password"); }
 }
 public bool Status { get; set; }

You can see in the preceding code that the property setter invokes an
OnPropertyChanged event. This ensures that the update on the properties
is reflected in the UI control:
public ICommand LoginCommand
 {
 get
 {
 return new RelayCommand((e) =>

Building a Touch-sensitive Device Application Using Windows Phone 8

106

 {
 this.Status = this.UserId == "Abhishek"
&& this.Password == "winphone";

 if (this.Status)
 {
 var rootframe =
App.Current.RootVisual as PhoneApplicationFrame;
 rootframe.Navigate(new Uri(string.
Format("/FirstPhoneApp;component/MainPage.xaml?
name={0}", this.UserId), UriKind.Relative));
 }
 });
 }
 }
 public ICommand ClearCommand
 {
 get
 {
 return new RelayCommand((e) =>
 {
 this.UserId = this.Password =
string.Empty;
 });
 }
 }

We also define two more properties of type ICommand. The UI button control
implements the command pattern and uses an ICommand interface to invoke a
command. The RelayCommand used on the code is an implementation of the
ICommand interface, which could be used to invoke some action.

7.	 Now let's bind the Text property of the TextBox in XAML with the UserId
property, and make it a TwoWay binding. The binder automatically subscribes
to the PropertyChanged event. When the UserId property is set and the
PropertyChanged event is invoked, the UI automatically receives the invoke
request of code, which updates the text in the UI.

8.	 Similarly, we add two buttons and name them Login and Clear and bind them with
the properties LoginCommand and ClearCommand, as shown in the following code:
<Button Command="{Binding LoginCommand}" Content="Login" Grid.
Row="2" Grid.Column="0" />
<Button Command="{Binding ClearCommand}" Content="Clear" Grid.
Row="2" Grid.Column="1" />

In the preceding XAML, we defined the two buttons and specified a command for
each of them.

Chapter 3

107

9.	 We create another page so that when the login is successful, we can navigate the
Login page to somewhere else. Let's make use of the existing MainPage.xaml file
as follows:
<StackPanel x:Name="TitlePanel" Grid.Row="0"
Margin="12,17,0,28">
 <TextBlock Text="MY APPLICATION"
x:Name="txtApplicationDescription" Style="{StaticResource
PhoneTextNormalStyle}" Margin="12,0"/>
 <TextBlock Text="Enter Details" Margin="9,-
7,0,0" Style="{StaticResource PhoneTextTitle1Style}"/>
 </StackPanel>

We add the preceding XAML to show the message that is passed from the
Login screen.

10.	 We create another class and named it MainDataContext. We define a property that
will hold the data to be displayed on the screen.

11.	 We go to Login.xaml.cs created as a code-behind of Login.xaml, create an
instance of LoginDataContext, and assign it to DataContext of the page. We
assign this inside the InitializeComponent method of the class, as shown in
the following code:
this.DataContext = new LoginDataContext();

12.	 Now, go to Properties in the Solution Explorer pane, open the WMAppManifest file,
and specify Login.xaml as the Navigation page. Once this is done, if you run the
application now in any of the emulators available with Visual Studio, you will see
what is shown in the following screenshot:

Building a Touch-sensitive Device Application Using Windows Phone 8

108

You can enter data in the UserId and Password fields and click on Login,
but nothing happens.

13.	 Put a breakpoint on LoginCommand and press Login again with the credentials,
and you will see that the Password property is never set to anything and evaluates to
null. Note that, PasswordBox in XAML does not support binding to its properties. To
deal with this, we define a PasswordChanged event on PasswordBox and specify
the following code:
private void txtPassword_PasswordChanged(object sender,
RoutedEventArgs e)
 {
 this.logindataContext.Password = txtPassword.Password;
 }

The preceding code will ensure that the password goes properly to the ViewModel.

14.	 Finally, clicking on Login, you will see Status is set to true.

15.	 However, our idea is to the page from the Login screen to MainPage.xaml. To do
this, we change the LoginCommand property to navigate the page, as shown in the
following code:
if (this.Status)
{
 var rootframe = App.Current.RootVisual as
PhoneApplicationFrame;
 rootframe.Navigate(new Uri(string.Format("/
FirstPhoneApp;component/MainPage.xaml?
name={0}", this.UserId), UriKind.Relative));
}

Each WPF app contains an ApplicationFrame class that is used to show the UI.
The application frame can use the navigate method to navigate from one page to
another. The navigate method uses NavigationService to redirect the page
to the URL provided. Here in the code, after authentication, we pass UserId as
querystring to MainPage.

16.	 We design the MainPage.xaml file to include a pivot control. A pivot control is just
like traditional tab controls, but looks awesome in a phone environment. Let's add
the following code:
<phone:Pivot>
 <phone:PivotItem Header="Main">
 <StackPanel Orientation="Vertical">
 <TextBlock Text="Choose your
avatar" />
 <Image x:Name="imgSelection"
Source="{Binding AvatarImage}"/>

Chapter 3

109

 <Button x:Name="btnChoosePhoto"
ClickMode="Release" Content="Choose Photo"
Command="{Binding ChoosePhoto}" />
 </StackPanel>
 </phone:PivotItem>
 <phone:PivotItem Header="Task">
 <StackPanel>
 <phone:LongListSelector
ItemsSource="{Binding LongList}" />
 </StackPanel>
 </phone:PivotItem>
 </phone:Pivot>

17.	 The phone tag is referred to a namespace that has been added automatically in the
header where the Pivot class exists. In the previously defined Pivot class, there
are two PivotItem with headers Main and Task. When Main is selected, it allows
you to choose a photo from MediaLibrary and the image is displayed on Image
Control. The ChoosePhoto command defined inside MainDataContext sets the
image to its source, as shown in the following code:
public ICommand ChoosePhoto
{
 get
 {
 return new RelayCommand((e) =>
 {
 PhotoChooserTask pTask = new PhotoChooserTask();
 pTask.Completed += pTask_Completed;
 pTask.Show();

 });
 }
}
void pTask_Completed(object sender, PhotoResult e)
{
 if (e.TaskResult == TaskResult.OK)
 {
 var bitmap = new BitmapImage();
 bitmap.SetSource(e.ChosenPhoto);
 this.AvatarImage = bitmap;
 }
}

In the preceding code, the RelayCommand that is invoked when the button is clicked
uses PhotoChooserTask to select an image from MediaLibrary and that image
is shown on the AvatarImage property bound to the image source.

Building a Touch-sensitive Device Application Using Windows Phone 8

110

18.	 On the other hand, the other PivotItem shows LongList where the ItemsSource
is bound to a long list of strings, as shown in the following code:
public List<string> LongList
 {
 get
 {
 this.longList = this.longList ??
this.LoadList();
 return this.longList;
 }
 }

The long list can be anything, a long list that is needed to be shown in the
ListBox class.

How it works...
Windows Phone, being an XAML-based technology, uses Silverlight to generate UI and controls
supporting the Model-View-ViewModel (MVVM) pattern. Each of the controls present in
the Windows Phone environment implements a number of DependencyProperties. The
DependencyProperty is a special type of property that supports DataBinding. When
bound to another CLR object, these properties try to find the INotifyPropertyChanged
interface and subscribe to the PropertyChanged event. When the data is modified in the
controls, the actual bound object gets modified automatically by the dependency property
system, and vice versa.

Similar to normal DependencyProperties, there is a Command property that allows you to call
a method. Just like the normal property, Command implements the ICommand interface and has
a return type Action that maps to Command. The RelayCommand here is an implementation of
ICommand interfaces, which can be bound to the Command property of Button.

There's more...
Now let's talk about some other options, or possibly some pieces of general information that
are relevant to this task.

Using ApplicationBar on the app
Just like any of the modern smartphones, Windows Phones also provides a standard way of
communicating with the environment. Each application can have a standard set of icons at the
bottom of the application, which enable the user to perform some actions on the application.
The ApplicationBar class is present at the bottom of any application across the operating
system and hence, people tend to expect commands to be placed on ApplicationBar rather
than on the application itself, as shown in the following screenshot. The ApplicationBar
class accepts 72 pixels of height, which cannot be modified by code.

Chapter 3

111

When an application is open, the application bar is shown at the bottom of the screen. The
preceding screenshot shows how the ApplicationBar class is laid out with two buttons,
login and clear. Each ApplicationBar class can also associate a number of menu items
for additional commands. The menu could be opened by clicking on the … button in the
left-hand side of ApplicationBar.

The page of Windows Phone allows you to define one application bar. There is a property
called ApplicationBar on PhoneApplicationPage that lets you define the
ApplicationBar class of that particular page, as shown in the following screenshot:

 <phone:PhoneApplicationPage.ApplicationBar>
 <shell:ApplicationBar>
 <shell:ApplicationBarIconButton
Click="ApplicationBarIconButton_Click" Text="Login"
IconUri="/Assets/next.png"/>
 <shell:ApplicationBarIconButton Click="ApplicationBarIconB
uttonSave_Click" Text="clear"
IconUri="/Assets/delete.png"/>
 <shell:ApplicationBar.MenuItems>
 <shell:ApplicationBarMenuItem Click="about_Click"
Text="about" />
 </shell:ApplicationBar.MenuItems>
 </shell:ApplicationBar>
 </phone:PhoneApplicationPage.ApplicationBar>

In the preceding code, we defined two ApplicationBarIconButton classes. Each of them
defines the Command items placed on the ApplicationBar class. The ApplicationBar.
MenuItems method allows us to add menu items to the application. There can be a
maximum of four application bar buttons and four menus per page. The ApplicationBar
button also follows a special type of icon. There are a number of these icons added with the
SDK, which could be used for the application. They can be found at DriveName\Program
Files\Microsoft SDKs \Windows Phone\v8.0\Icons.

There are separate folders for both dark and light themes. It should be noted that
ApplicationBar buttons do not allow command bindings.

Building a Touch-sensitive Device Application Using Windows Phone 8

112

Tombstoning
When dealing with Windows Phone applications, there are some special things to consider.
When a user navigates out of the application, the application is transferred to a dormant
state, where all the pages and state of the pages are still in memory but their execution
is totally stopped. When the user navigates back to the application again, the state of the
application is resumed and the application is again activated. Sometimes, it might also be
possible that the app gets tombstoned after the user navigates away from the app. In this
case, the app is not preserved in memory, but some information of the app is stored. Once
the user comes back to the app, the application needs to be restored, and the application
needs to resume in such a way that the user gets the same state as he or she left it. In the
following figure, you can see the entire process:

Application doesn’t
consume CPU or
Memory

Not Running

Running actively
with CPU and
Memory

Activated
Notified for
Suspension, waits
for 5 seconds
before suspending

Suspending

Consumes no CPU
but only memory

Suspended
Do not consumees
any process space/
memory

Terminated

There are four states defined, the first one is the Not Running state where there is no
existence of the process in memory. The Activated state is when the app is tapped by the
user. When the user moves out of the app, it goes from Suspending to Suspended. It can
be reactivated or it will be terminated after a certain time automatically.

Let's look at the Login screen, where you might sometimes tombstone the login page while
entering the user ID and password. To deal with storing the user state data before tombstoning,
we use PhoneApplicationPage. The idea is to serialize the whole DataModel once the user
navigates away from the page and retrieves the page state again when it navigates back.

Let's annotate the UserId and Password of the LoginDataContext with DataMember
and LoginDataContext with DataContract, as shown in the following code:

[DataContract]
 public class LoginDataContext : PropertyBase
 {
 private string userid;
 [DataMember]
 public string UserId
 {
 get { return userid; }
 set
 {

Chapter 3

113

 UserId = value;
 this.OnPropertyChanged("UserId");
 }
 }

 private string password;
 [DataMember]
 public string Password
 {
 get { return password; }
 set { password = value; this.
OnPropertyChanged("Password"); }
 }
}

The DataMember property will indicate that the properties are capable of serializing. As the
user types into these properties, the properties get filled with data so that when the user
navigates away, the model will always have the latest data present.

In LoginPage, we define a property called _isNewPageInstance and set it to false,
and in constructor, we set it to true. This will indicate that only when the page is instantiated,
_isNewPageInstance is set to true.

Now, when the user navigates away from the page, OnNavigatedFrom gets called. If the user
navigates from the page, we save ViewModel into State as shown in the following code:

protected override void OnNavigatedFrom(NavigationEventArgs e)
{
 base.OnNavigatedFrom(e);

 if (e.NavigationMode != System.Windows.Navigation.NavigationMode.
Back)
 {
 // Save the ViewModel variable in the page''s State
dictionary.
 State[""ViewModel""] = logindataContext;
 }
}

Once DataModel is saved in the State object, it is persistent and can be retrieved later on
when the application is resumed as follows:

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 base.OnNavigatedTo(e);
 if (_isNewPageInstance)
 {

Building a Touch-sensitive Device Application Using Windows Phone 8

114

 if (this.logindataContext == null)
 {
 if (State.Count > 0)
 {
 this.logindataContext = (LoginDataContext)
State[""ViewModel""];
 }
 else
 {
 this.logindataContext = new LoginDataContext();
 }
 }
 DataContext = this.logindataContext;
 }
 _isNewPageInstance = false;
}

When the application is resumed from tombstoning, it calls OnNavigatedTo and retrieves
DataModel back from the state.

Working with Launchers and Choosers in
Windows Phone

When creating an application for a phone, keep in mind that the application needs to interact
with the phone environment. For instance, if you are building a contact list, you might
sometimes import data from an existing contact list in the phone or you might also want to
send an SMS or directly call a contact. These operations are interacting with the actual phone
operating system from the application.

You can use Launchers and Choosers in your Windows Phone application to enable a user to
perform common tasks on the phone environment. The Launcher and Chooser APIs invoke
distinct built-in applications that replace the currently running application and when the
actual operation is performed, the built-in application is again replaced by the application
running on background with a callback, thus giving a seamless experience to the end users.

Getting ready
In this recipe, we are going to add a basic Launchers and Choosers task. Let's create a new
project and add some buttons for some basic-level Launchers and Choosers.

Chapter 3

115

To use launchers and choosers, we need to follow some basic steps:

1.	 Create an instance of the task.

2.	 Set the parameters and callback (if any).

3.	 Call the show method to invoke the task.

Let's create an UI to try some of the Launchers and Choosers. We use panorama to show the
two tabs for launchers and choosers, as shown in the following screenshot:

The preceding screenshot shows how the UI is laid out once we are complete with the XAML
design. Let's now take a look at how the XAML looks:

<phone:Panorama Title="Launchers And Choosers">
 <phone:PanoramaItem Header="launchers">
 <StackPanel Orientation="Vertical">
 <Button Content="Make a Call" x:Name="btnCall"
Click="btnCall_Click" />
 <Button Content="Send an SMS" x:Name="btnSMS"
Click="btnSMS_Click"/>
 <Button Content="Compose Email" x:Name="btnEmail"
Click="btnEmail_Click" />
 <Button Content="Launch Search" x:Name="btnSearch"
Click="btnSearch_Click" />
 <Button Content="Share Link" x:Name="btnLink"
Click="btnLink_Click" />
 <Button Content="Share Status" x:Name="btnStatus"
Click="btnStatus_Click" />
 </StackPanel>
 </phone:PanoramaItem>
 <phone:PanoramaItem Header="choosers">
 <StackPanel Orientation="Vertical">

Building a Touch-sensitive Device Application Using Windows Phone 8

116

 <Button Content="Capture a photo" x:Name="btnCapturePhoto"
Click="btnCapturePhoto_Click" />
 <Button Content="Choose a Photo" x:Name="btnPhoto"
Click="btnPhoto_Click" />
 <Button Content="Choose a Phone Number"
x:Name="btnPhone" Click="btnPhone_Click" />
 <Button Content="Save a Contact" x:Name="btnContact"
Click="btnContact_Click" />
 <Button Content="Save a ringtone" x:Name="btnringtone"
Click="btnringtone_Click" />

 <Button Content="Save Email Address" x:Name="btnsaveEmail"
Click="btnsaveEmail_Click" />
 </StackPanel>
 </phone:PanoramaItem>
</phone:Panorama>

We used the panorama control to define the two interfaces for Launchers and Choosers.
Now let's write code for these buttons.

How to do it...
Working with Launchers and Choosers is pretty straightforward. We need to just call the
appropriate class to invoke it. The steps are as follows:

1.	 Let's try some Launchers. To make a call, we need to use PhoneCallTask:
PhoneCallTask pcall = new PhoneCallTask();
pcall.DisplayName = "Abhishek";
pcall.PhoneNumber = "9999999999";
pcall.Show();

In the preceding code, "Abhishek" is called to his number.

2.	 We use SmsComposeTask to create an SMS:
SmsComposeTask stask = new SmsComposeTask();
stask.Body = "This is test sms";
stask.To = "99999999";
stask.Show();

There could be the To and Body properties for an SMS.

Chapter 3

117

3.	 To send an e-mail, we use EmailComposeTask:
EmailComposeTask etask = new EmailComposeTask();
etask.Body = "This is test Email";
etask.Subject = "This is test subject";
etask.To = "contact@abhisheksur.com";
etask.Cc = "abhi2434@gmail.com";
etask.Bcc = "abhi2434@hotmail.com";
etask.Show();

In the case of e-mails, you can use comma-separated entries of e-mail ID and send
the e-mail from your configured e-mail client in Windows Phone.

4.	 To search a text in the built-in Bing search, we use SearchTask:
SearchTask stask = new SearchTask();
stask.SearchQuery = "abhishek";
stask.Show();

5.	 To share a status, we can use ShareStatusTask:
ShareStatusTask stask = new ShareStatusTask();
stask.Status = "This is a status sent from Windows Phone";
stask.Show();

6.	 To share a link, we can use ShareLinkTask:
ShareLinkTask sLink = new ShareLinkTask();
sLink.LinkUri = new Uri("http://www.abhisheksur.com");
sLink.Message = "See my website";
sLink.Title = "Abhisheks new Website";
sLink.Show();

Here, the link would be shared with the configured social media channels configured
on the phone.

7.	 In case of Choosers, the task will return a callback; when the task is finished,
the Completed event gets fired. To capture an image from a camera, we
use CameraCaptureTask or we use PhotoChooserTask to choose from
MediaLibrary, as shown in the following code:
CameraCaptureTask cTask = new CameraCaptureTask();
cTask.Completed += (s, evt) =>
{
 if (evt.Error == null && evt.TaskResult ==
TaskResult.OK)
 {

Building a Touch-sensitive Device Application Using Windows Phone 8

118

 BitmapImage bmpImage = new BitmapImage();
 bmpImage.SetSource(evt.ChosenPhoto);
 image.Source = bmpImage;
 }
};
cTask.Show();

For CameraCapture/PhotoChooserTask, we need to add the
ID_CAP_MEDIALIB_PHOTO and ID_CAP_ISV_CAMERA capabilities.

8.	 For phone number selection task, we can use PhoneNumberChooserTask,
as shown in the following code:
PhoneNumberChooserTask task = new PhoneNumberChooserTask();
task.Completed += (s, evt) =>
{
 if (evt.Error == null && evt.TaskResult ==
TaskResult.OK)
 {
 MessageBox.Show(evt.PhoneNumber + " phone number
selected!");
 }
};
task.Show();

This task requires the ID_CAP_CONTACTS capabilities. When the Chooser finishes its
execution, the Completed event returns PhoneNumber.

9.	 We can save RingTone to the Windows Phone environment using
SaveRingtoneTask, as shown in the following code:
SaveRingtoneTask ringtonetask = new SaveRingtoneTask();
ringtonetask.Source = new Uri("appdata:/Assets/Ring-BlackIce.
wma");
ringtonetask.DisplayName = "My custom ringtone";
ringtonetask.Completed += (s, evt) =>
{
 if (evt.TaskResult == TaskResult.OK)
 MessageBox.Show("Ringtone saved");
};
ringtonetask.Show();

The ringtone source could be either appdata:/ or isostore:/.

Chapter 3

119

10.	 To save an e-mail to the contact, we can use SaveEmailAddressTask as shown in
the following code:

SaveEmailAddressTask eaddr = new SaveEmailAddressTask();
eaddr.Email = "contact@abhisheksur.com";
eaddr.Completed += (s, evt) =>
{
 if (evt.TaskResult == TaskResult.OK)
 MessageBox.Show("Email address saved");
};
eaddr.Show();

The SaveEmailAddressTask function requires the ID_CAP_CONTACTS capabilities.

How it works...
Launchers and Choosers are special names used to communicate with the built-in
applications present in the Windows Phone applications. The Windows Phone API provides a
range of these Launchers and Choosers so that the application developer can use specialized
classes to invoke the properties present on the phone.

For each task, there is an associated ApplicationId class. The Launcher and Chooser
classes use this ApplicationId class to call the specific application of the phone with
the configuration sent from the application.

You should also remember that Launchers are separate application launched from the
application, so there is every chance that the actual application will get suspended or even
terminated during the process. So, before using Launcher and Choosers, tombstoning
could also be required.

There's more...
After looking at some of the basic Launchers and Choosers, there is always a notion of
something more. Here are some of the items that are worth mentioning.

Building a Touch-sensitive Device Application Using Windows Phone 8

120

Adding Windows Phone toolkit to the solution
To add a NuGet Package, we go to the Library Package Manager option in the TOOLS tab and
choose Manage NuGet Packages for Solution, as shown in the following screenshot:

Once you are in NuGet Package Manager, select Online from the left-hand side of the
window and search for Windows Phone Toolkit. Add it to the solution.

Finally after the package is installed, add the following namespace
to PhoneApplicationPage:

xmlns:toolkit="clr-
namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone.
Controls.Toolkit"

Creating alarms and reminders
Notifications are one of the most important and primary requirements of any phone. People
schedule reminders and alarms on their phone, which lets the phone respond automatically
when the certain specified time is reached. As an application developer, you can also schedule
a notification to the user so that even though the application is closed, you can still provide
the message to the user. When the user gets notified by the environment, a small music file is
played and a pop-up message is shown.

There are two types of notifications available:

ff Alarm: This is a notification to the user at a scheduled time

ff Reminder: This is a notification that also allows you to specify a URI of a page,
which could be opened by clicking on the reminder UI

Chapter 3

121

There is a limit of defining 50 alarms/reminders within a single application. To demonstrate,
let's create a page:

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>

 <RadioButton x:Name="rbAlarm" GroupName="type"
Content="Alarm" Grid.Column="0" Checked="RadioButton_Checked" />
 <RadioButton x:Name="rbReminder" GroupName="type"
Content="Reminder" Grid.Column="1" Checked="RadioButton_Checked"
/>

 <TextBlock Text="Name" Grid.Row="1" Grid.Column="0"
/>
 <TextBox x:Name="txtName" Grid.Row="1"
Grid.Column="1" />
 <TextBlock Text="Title" Grid.Row="2" Grid.Column="0"
/>
 <TextBox x:Name="txtTitle" Grid.Row="2"
Grid.Column="1" />
 <TextBlock Text="Content" Grid.Row="3"
Grid.Column="0" />
 <TextBox x:Name="txtContent" Grid.Row="3"
Grid.Column="1" AcceptsReturn="True" />
 <TextBlock Text="Begin Time" Grid.Row="4"
Grid.Column="0" />
 <StackPanel Orientation="Horizontal" Grid.Row="4"
Grid.Column="1" >
 <toolkit:DatePicker x:Name="dtBegindate" />
 <toolkit:TimePicker x:Name="dtBegintime"/>
 </StackPanel>

Building a Touch-sensitive Device Application Using Windows Phone 8

122

 <TextBlock Text="Expiration" Grid.Row="5"
Grid.Column="0" />
 <StackPanel Orientation="Horizontal" Grid.Row="5"
Grid.Column="1" >
 <toolkit:DatePicker x:Name="dtExpdate" />
 <toolkit:TimePicker x:Name="dtExptime"/>
 </StackPanel>
 </Grid>

In the preceding code, we added three textboxes, which represent Title, Content,
and Name of a notification entry. Both the reminder and alarm represents a
ScheduledNotification entry where the alarm cannot have Title and NavigationUri
to open the application. We also added two RadioButton controls that control whether the
added notification is of the type alarm or reminder. There are also two date entries that we
have added two DatePicker controls for and two TimePicker respectively, which allows
you to take BeginTime and Expiration of the notification. These controls are not a part
of general Windows Phone development environment. We added the Windows Phone toolkit
to get them as mentioned in the previous topic.

After the toolkit is added to the MainPage.xaml file, we can add DatePicker and
TimePicker to the page.

To perform an action on the controls, we will add two ApplicationBar commands—one to
add the notification and another to cancel it.

Let's add the code at the bottom of the MainPage.xaml file below the grid:

<phone:PhoneApplicationPage.ApplicationBar>
 <shell:ApplicationBar>
 <shell:ApplicationBarIconButton
x:Name=""btnAddNotification"" Click=""btnAddNotification_Click""
Text=""Add""
 IconUri=""/Assets/edit.
png""/>
 <shell:ApplicationBarIconButton x:Name=""btnCancel""
Click=""btnCancel_Click"" Text=""Cancel""
 IconUri=""/Assets/cancel.
png""/>
 </shell:ApplicationBar>
 </phone:PhoneApplicationPage.ApplicationBar>

As we already mentioned, you can add icons that come with the Windows Phone SDK.
The icons edit.png and cancel.png have been added from the location DriveName\
Program Files\Microsoft SDKs \Windows Phone\v8.0\Icons.

Chapter 3

123

Now, let's jump back to the code. We create two functions, one of which adds a reminder and
another adds an alarm mentioned in the following code:

private void AddReminder()
 {
 Reminder reminder = new Reminder(txtName.Text);
 reminder.Content = this.txtContent.Text;
 reminder.Title = this.txtTitle.Text;

 DateTime bdate = this.dtBegindate.Value.Value;
 DateTime beginDateTime = bdate +
this.dtBegintime.Value.Value.TimeOfDay;
 reminder.BeginTime = beginDateTime;

 DateTime edate = this.dtExpdate.Value.Value;
 DateTime exDateTime = edate + this.dtExptime.Value.Value.
TimeOfDay;
 reminder.ExpirationTime = exDateTime;

 reminder.RecurrenceType = RecurrenceInterval.Daily;
 reminder.NavigationUri = new Uri("/MainPage.xaml",
UriKind.Relative);

 ScheduledActionService.Add(reminder);
 }

 private void AddAlarm()
 {
 Alarm alarm = new Alarm(txtName.Text);
 alarm.Content = this.txtContent.Text;

 DateTime bdate = this.dtBegindate.Value.Value;
 DateTime beginDateTime = bdate + this.dtBegintime.Value.
Value.TimeOfDay;
 alarm.BeginTime = beginDateTime;

 DateTime edate = this.dtExpdate.Value.Value;
 DateTime exDateTime = edate +
this.dtExptime.Value.Value.TimeOfDay;
 alarm.ExpirationTime = exDateTime;

 alarm.RecurrenceType = RecurrenceInterval.Daily;

 ScheduledActionService.Add(alarm);
 }

Building a Touch-sensitive Device Application Using Windows Phone 8

124

In the preceding code, we can see that both the alarm and reminder are of a similar structure.
Both of them are of the type ScheduledAction, while the alarm does not allow you to
specify NavigationUri and Title. Now when btnAddNotification_Click is called,
depending on whether rbAlarm is checked or not, we add a reminder or an alarm as follows:

private void btnAddNotification_Click(object sender, EventArgs e)
 {
 if (this.rbAlarm.IsChecked.Value)
 {
 this.AddAlarm();
 }
 else if(this.rbReminder.IsChecked.Value)
 {
 this.AddReminder();
 }
 }

In the preceding code, the action is performed based on the selection of RadioButton.

Working with the calendar in Windows Phone
Appointments are some of the most important things that we need while working on a
Windows Phone. Even reminders/alarms are important even though appointments can
interact with the calendar present on the Windows Phone. To search or access references
of other calendar data, we can use the Appointment object and search entries. Let's add
the UI to show the appointments:

<ListBox x:Name="lstAppointments" ItemsSource="{Binding}" Grid.
Row="1">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <TextBlock Margin="5,0,0,0" Text="{Binding
Subject}" TextWrapping="Wrap" Grid.Column="0" />
 <TextBlock Margin="5,0,0,0" Text="{Binding
Details}" TextWrapping="Wrap" Grid.Column="1"/>
 </Grid>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>

Chapter 3

125

The ListBox class contains two TextBlock showing Subject and Details of an
appointment entry. To show you the appointments on the ListBox class, we need a
command that invokes the appointment search task as follows:

<phone:PhoneApplicationPage.ApplicationBar>
 <shell:ApplicationBar>
 <shell:ApplicationBarIconButton Text="Search"
IconUri="/Assets/feature.search.png"
Click="SearchAppointment_Click" />
 <shell:ApplicationBarIconButton Text="Add"
IconUri="/Assets/add.png" Click="AddAppointment_Click" />
 </shell:ApplicationBar>
 </phone:PhoneApplicationPage.ApplicationBar>

We add two Appbar buttons, where the first one searches the appointments and the second
one adds an appointment.

To search an appointment, we need to make use of the appointments API available in
Windows Phone. To invoke the search operation, we use the following code:

private void RefreshAppointments()
 {
 Appointments appointment = new Appointments();
 appointment.SearchCompleted +=
appointment_SearchCompleted;
 DateTime starttime = DateTime.Now;
 DateTime endtime = starttime.AddDays(10);

 int max = 50;

 appointment.SearchAsync(starttime, endtime, max,
null);
 }

 void appointment_SearchCompleted(object sender,
AppointmentsSearchEventArgs e)
 {
 lstAppointments.DataContext = e.Results;
 }

The SearchAsync method takes three arguments: startTime, endTime, and the maximum
number of appointments to enumerate all the appointments between times. If we call
RefreshAppointments when the Search button is clicked, we see all the appointments
between the time specified.

Building a Touch-sensitive Device Application Using Windows Phone 8

126

To test an appointment, if you don't have one, you can add an appointment on the Windows
Phone environment using SaveAppointmentTask. On the AddAppointment button, we
place the following code to add a sample appointment to the calendar:

var saveAppontmentTask = new SaveAppointmentTask();

saveAppontmentTask.StartTime = DateTime.Now.AddHours(1);
saveAppontmentTask.EndTime = DateTime.Now.AddHours(2);
saveAppontmentTask.Subject = "Sample Appointment Demo entry";
saveAppontmentTask.Location = "www.packtpub.com";
saveAppontmentTask.Details = "Sample save appointment entry for
Windows Phone";
saveAppontmentTask.IsAllDayEvent = false;
saveAppontmentTask.Reminder = Reminder.FifteenMinutes;
saveAppontmentTask.AppointmentStatus = AppointmentStatus.Busy;

saveAppontmentTask.Show();

Each appointment has StartTime, EndTime, Subject, and Location (which takes Uri
and Details). An appointment can also be AllDayEvent and automatically add a reminder
before a stipulated time. As you can see, SaveAppointmentTask is a launcher; hence, you
cannot silently add an appointment for the time being.

An appointment needs the ID_CAP_APPOINTMENTS capability.

See also
ff Check out more about Launchers at http://bit.ly/Launchers

ff Check out more about Choosers at http://bit.ly/Choosers

Working with relational databases and
persistent storage

Persistent storage is one of the most important areas that every application developer needs
to know. Even though the architecture of the Windows Phone environment is in general built
to have connected applications, many times there could be a case where there is a need
to store data in persistent storage areas so that it can be fetched later for use. Windows
Phone persistent storage exists in the form of the IsolatedStorage classes, where the
application can store data on a Sandboxed environment where the other application does not
have access to. Windows Phone provides a separate filesystem structure for each application,
where the application can store and retrieve files and data from.

http://bit.ly/Launchers
http://bit.ly/Choosers

Chapter 3

127

To store data in persistent storage, we use the following code:

public async void SaveToStore(string fileName, string data)
 {
 IsolatedStorageFile store =
IsolatedStorageFile.GetUserStoreForApplication();
 using (StreamWriter sw = new StreamWriter(new
IsolatedStorageFileStream(fileName, FileMode.Append, store)))
 {
 await sw.WriteAsync(data);
 sw.Close();
 }
 }

Here, we first get the reference of the user store using IsolatedStorageFile.
GetUserStoreForApplication. The store is specific to the application that calls the
store. Later on, we use a normal StreamWriter to write data to the file opened using
IsolatedStorageFileStream.

We can also use StreamReader in a similar way to read from
IsolatedStorageFileStream, as shown in the following code:

Public async Task<string> ReadFromStore(string fileName)
{
 IsolatedStorageFile store = IsolatedStorageFile.
GetUserStoreForApplication();
 if (!store.FileExists(fileName))
 {
 IsolatedStorageFileStream dataFile =
store.CreateFile(fileName);
 dataFile.Close();
 }

 using (StreamReader reader = new StreamReader(new
IsolatedStorageFileStream(fileName, FileMode.Open, store)))
 {
 string rawData = await reader.ReadToEndAsync();
 reader.Close();

 return rawData;
 }
}

Building a Touch-sensitive Device Application Using Windows Phone 8

128

Here, we first check whether the file exists before opening the FileStream class again and
then read from it. We can also use miscellaneous functions like the following ones:

 store.DeleteFile(fileName);
store.MoveFile(sourcefile, destinationfile)
store.CopyFile(sourcefile, destinationfile)
store.CreateDirectory(dirName)

We can also use many functions to perform normal file operations on the allotted filesystem
for the application. We can also use store.Remove() to remove the whole filesystem for
the application.

In addition to the file store for the application, there is also a separate concept of storage
where the data is stored in relational databases. Windows Phone supports Entity Framework
(EF), which can be used to store data in a relational database structure.

The LINQ to SQL object model is primarily made up of the System.Data.Linq.DataContext
object, which acts as a proxy for the local database stored in IsolatedStorage for the
application. It is a bridge between the object data and the relational data, as shown in the
following figure:

APP
Data Context

LINQ to SQL RUNTIME Isolated
Storage

(Database)

As shown in the preceding figure, the app stores Data Context, which bridges the data from
relational database stored in Isolated Storage for the application using LINQ to SQL RUNTIME.

When considering local databases in Windows Phone, here are some points that we need
to consider:

ff Database files will be stored in an isolated storage container

ff Databases are application specific and cannot be shared across applications

ff LINQ is used to query database as TSQL is not supported

ff A connection string must be used in the format "Data Source='isostore:/
DirectoryName/databaseName.sdf;Password='securepassword'"

ff A database is encrypted using AES – 128 and password is hashed using SHA-256

ff Encrypting the whole database can have performance penalty and a lot of automatic
optimizations are not being performed

Chapter 3

129

Getting ready
In this recipe, we are going to perform the CRUD operation on a database. We will cover the
following topics:

ff Creating a local database

ff Creating table, indexes, associations, and so on

ff Adding data to tables

ff Fetching data from tables

ff Deleting data from tables

ff Deleting a local database

As I have already told you, the application fetches data from databases using LINQ to SQL;
there are a few concepts that are worth notifying before continuing further. In LINQ to SQL
data models, classes represent tables and properties represent fields. Hence, you can think
of indexes that can be applied on tables, that is, classes and association or foreign-key
relationship that can be applied on a field, that is, property. The object model is annotated
with a number of properties that define the schema of the database structure. Let's take a
quick pick on these attributes:

ff TableAttribute: This designates a class to be an entity with an associated
database table

ff ColumnAttribute: This associates a class with a column of a table
ff IndexAttribute: This adds an index on a table. Each index covers one or

more columns
ff AssociationAttribute: This designates a property to represent an association

In addition to these attributes, there is DataContext that acts as a proxy for the
whole database. The DataContext class opens a connection to the database using
ConnectionString, which is main object to save/submit data modifications on entities.

How to do it...
Now let's build the database in object models:

1.	 Create a Windows Phone project and add a folder called Model. We will use this
folder to create our model classes.

2.	 Create a class Department with the following definition:
[Table]
 public class Department
 {
 public Department()

Building a Touch-sensitive Device Application Using Windows Phone 8

130

 {
 }

 [Column(DbType = "INT NOT NULL IDENTITY", IsDbGenerated =
true, IsPrimaryKey = true)]
 public int Id { get; set; }

 [Column]
 public string Name { get; set; }

 [Column(IsVersion = true)]
 private Binary _version;
}

You might have already noticed that the Department class is annotated with a
Table attribute. This attribute indicates that the class is a part of the database table.
We define two properties: Id and Name. The Id property is an autogenerated column
of INT type, while Name is a string. There is also a version field of binary type. The
version field is useful while updating entries.

3.	 Next, let's define an Employee class that has an individual department as the
foreign key:
[Table]
[Index(Columns="EName", IsUnique=true,
Name="employee_EName")]
public class Employee
{
 [Column(IsPrimaryKey = true, IsDbGenerated = true,
CanBeNull = false, DbType = "INT NOT NULL Identity",
AutoSync = AutoSync.OnInsert)]
 public int EmpId { get; set; }

 [Column(CanBeNull=false, DbType="NVarchar(100) NOT
NULL")]
 public string EName { get; set; }

 [Column(CanBeNull= false)]
 public int Age { get; set; }

 [Column(IsVersion=true)]
 public Binary Version { get; set; }

 // Internal column for the associated department ID
value
 [Column]
 internal int _departmentId;

Chapter 3

131

 private EntityRef<Department> _department;
 [Association(Storage = "_department", ThisKey =
"_departmentId", OtherKey = "Id", IsForeignKey = true)]
 public Department Department
 {
 get { return _department.Entity; }
 set
 {
 _department.Entity = value;
 if (value != null)
 _departmentId = value.Id;
 }
 }
}

In the preceding entity definition, we kept EmpId as a primary key. The EName and
Age columns are the two specified columns, each of which are not null. We have
also defined an internal column to store departmentId.

The EntityRef class is used to fetch actual object from the column using the
association specified for a particular entity. We defined departmentId as a
foreign key, which maps the entity reference of the department table.

In the preceding class, we have also added an extra index for the Employee entity so
that when the Employee table is searched using the EName column, the query will
use the index to improve search performance.

In the case of using the Where clause, the order by, or
join the appropriate index on the columns can improve
performance tremendously. The index attribute is used
internally by the database engine, where it optimizes it
by reindexing at an interval. If you are using an encrypted
database with a password, these optimizations will not
perform correctly.

4.	 As we have shown how to use EntityRef to refer to the actual object from a foreign
key reference, it is also a good idea to define a property that enumerates all the
employees present in a particular department, as shown in the following code:
public Department()
{
 _employees = new EntitySet<Employee>(
 new Action<Employee>(this.attach_Employee),
 new Action<Employee>(this.detach_Employee)
);
}

Building a Touch-sensitive Device Application Using Windows Phone 8

132

private EntitySet<Employee> _employees;
[Association(Storage = "_employees", OtherKey =
"_departmentId", ThisKey = "Id")]
public EntitySet<Employee> Employees
{
 get { return this._employees; }
 set { this._employees.Assign(value); }
}

private void attach_Employee(Employee emp)
{
 emp.Department = this;
}

private void detach_Employee(Employee emp)
{
 emp.Department = null;
}

The EntitySet class enumerates all the foreign key reference objects into the key
table. In the preceding context, we create an object of EntitySet<Employee>,
which automatically fetches all the objects associated with that particular
department. The EntitySet class also takes two callbacks to attach or detach
an employee from a particular department.

5.	 Once the entities are created, we need to create the DataContext object to proxy
the actual database to the entities, as shown in the following code:
public class EmployeeDataContext : DataContext
{
 public EmployeeDataContext(string connectionString)
 : base(connectionString) { }

 public Table<Employee> Employees;

 public Table<Department> Departments;
}

Here, EmployeeDataContext inherits from DataContext and passes
ConnectionString to it. As we have defined two tables, we can specify the
references of them on EmployeeDataContext to access them individually.

Chapter 3

133

6.	 After the Object model is ready, let's use it to create a database for the application.
Open the App.xaml.cs file and add the following line at the beginning of the
App class:
public const string ConnectionString = "Data
Source=isostore:/Employeedb.sdf";

The ConnectionString property must have a location reference of the
IsolatedStore location. We could also add a password to encrypt the
whole database.

7.	 Now, go to the bottom of its constructor and add the following lines of code:
string DbConnectionString = ConnectionString;
using (EmployeeDataContext db = new EmployeeDataContext(DbConnecti
onString))
{
 if (!db.DatabaseExists())
 {
 db.CreateDatabase();
 db.Departments.InsertOnSubmit(new Department { Name
= "Accounts" });
 db.Departments.InsertOnSubmit(new Department { Name
= "Sales" });
 db.Departments.InsertOnSubmit(new Department { Name
= "Transfer" });

 db.SubmitChanges();
 }
}

Here, we defined the filename of the database using the ConnectionString
property and created the Employee database if it doesn't exist. While creating
a database, sometimes we need to pre-populate some data so we added some
departments during its creating. The SubmitChanges method commits the
changes made to the database.

Building a Touch-sensitive Device Application Using Windows Phone 8

134

8.	 Now, let's define an UI for the Employees database, as shown in the
following screenshot:

There are a few buttons with TextBoxes and ListPicker on the UI to create an
employee type. We are going to create this UI for our application.

9.	 Before we do so, we added the Windows Phone toolkit from the NuGet Package
Manager and added the namespace for the toolkit to MainPage.xaml:
 xmlns:toolkit="clr-
namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone
.Controls.Toolkit"

10.	 Once the toolkit is added, we add two TextBox methods and a ListPicker
method to create an Employee type as follows:
<TextBlock Text="Employee Name" Grid.Row="0"
Grid.Column="0" />
<TextBox x:Name="txtName" Grid.Row="0" Grid.Column="1" />
<TextBlock Text="Age" Grid.Row="1" Grid.Column="0" />
<TextBox x:Name="txtAge" InputScope="Digits" Grid.Row="1"
Grid.Column="1" />
<TextBlock Text="Department" Grid.Row="2" Grid.Column="0"
/>

Chapter 3

135

<toolkit:ListPicker x:Name="lstDepartment" Grid.Row="2"
Grid.Column="1">
 <toolkit:ListPicker.ItemTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding Name}" />
 </DataTemplate>
 </toolkit:ListPicker.ItemTemplate>
</toolkit:ListPicker>
<StackPanel Orientation="Vertical" Grid.Row="3"
Grid.ColumnSpan="2">
 <Button Content="1-> Add Employee" x:Name="btnAddEmployee"
Click="btnAddEmployee_Click" />
 <Button Content="2-> Select Employees"
x:Name="btnSelectEmployees"
Click="btnSelectEmployees_Click"/>
 <Button Content="3-> Update Employee"
x:Name="btnUpdateEmployee" Click="btnUpdateEmployee_Click"/>
 <Button Content="4-> Delete Employee"
x:Name="btnDeleteEmployee" Click="btnDeleteEmployee_Click"
/>
</StackPanel>

In the preceding XAML, we added four buttons each for Add, Select, Update,
and Delete; hence, the UI is capable of utilizing all the CRUD operations.

11.	 Now, we add some code for the buttons:
private void AddEmployee()
{
 using (EmployeeDataContext context = new
EmployeeDataContext(App.ConnectionString))
 {
 var department = this.lstDepartment.SelectedItem as
Department;
 var contextualDepartment =
context.Departments.FirstOrDefault(e => e.Id ==
department.Id);
 Employee emp = new Employee
 {
 EName = this.txtName.Text,
 Age = Convert.ToInt32(this.txtAge.Text),
 Department = contextualDepartment
 };

 context.Employees.InsertOnSubmit(emp);

Building a Touch-sensitive Device Application Using Windows Phone 8

136

 context.SubmitChanges();
 }
}

Database activity holds the UI thread when SubmitChanges is
called. Be sure to use Async/await when using it in an actual
application to avoid sudden crash of your application.

The preceding code creates a new employee and adds it to the database. It is worth
noting that as we are not holding the DataContext class, the department created
on another DataContext cannot be as a type of the current context. For this reason,
we need to fetch the department again for each operation.

12.	 Similarly, you can select all the existing employees using the following code:
private IList<Employee> GetEmployees()
{
 using (EmployeeDataContext context = new
EmployeeDataContext(App.ConnectionString))
 {
 var query = from e in context.Employees select e;
 return query.ToList();
 }
}

The LINQ query is used to fetch data from the DataContext class. You should
always remember, that the query is of the IQueryable type; hence, until we actually
fetch either using ToList or looping through the IEnumerator interface, the actual
data isn't been retrieved.

13.	 We can also delete an employee using the Delete method:
private void DeleteEmployee()
{
 using (EmployeeDataContext context = new
EmployeeDataContext(App.ConnectionString))
 {
 IQueryable<Employee> empQuery = from e in
context.Employees where e.EName == this.txtName.Text select e;
 Employee empToDelete = empQuery.FirstOrDefault();
 if (empToDelete != null)
 {

Chapter 3

137

 context.Employees.DeleteOnSubmit(empToDelete);
 }

 context.SubmitChanges();
 }
}

The DeleteOnSubmit method requires a call SubmitChanges to update the
changes to persistent storage. If we are doing a batch operation, it is recommended to
do all the batch statements and finally call SubmitChanges to improve performance.

14.	 Similar to these, you can also implement the Update operation yourself by changing
the object in memory and apply SubmitChanges again.

15.	 Finally, if you need to delete the entire database, you can call DeleteDatabase on
DataContext and the entire database with all existing data would be deleted.

How it works...
The Windows Phone does not inherently support SQL databases, even then you can use
SQLite (http://bit.ly/WPSqlLite) if you want, but it has an in-built API to make use of
relational databases using LINQ to SQL. The LINQ to SQL classes automatically convert the
calls to the databases to generic data calls and fetches the data from the database. The LINQ
to SQL classes need models to be created on the application end and the data to be retrieved
and added only by the application. In the case of Windows Phone databases, the database
is virtually a file stored in the IsolatedStorage namespace for that particular application,
and hence the sharing of database is not possible.

There's more...
In addition to the exciting way of creating and altering data to and from persistent storage, there
are also some additional features that we can use to make full use of the storage capabilities.

Encrypting data before storing it in the filesystem
Encryption is an important concern for data security. When dealing with sensitive information
and storing data to the application storage, it is sometimes required to encrypt the data to
enhance the security of the data used by the application. However, encrypting the data will
not increase the security if the decryption key resides within the phone itself. No matter how
you hide the key, it is always exposed. Data Protection API (DPAPI) solves the problem by
providing an explicit key using the device credentials and the user to encrypt and decrypt
data. This method improves security as the data protection key is different for every device
and it becomes virtually impossible to get encrypted data for an external hacker.

http://bit.ly/WPSqlLite

Building a Touch-sensitive Device Application Using Windows Phone 8

138

Windows Phone API provides a class called ProtectData that provides you with access to
DPAPI through the Protect and Unprotect methods. You can use the Protect method to
encrypt data while Unprotect will decrypt data, as shown in the following code:

public string EncryptData(string data)
 {
 byte[] databytes = Encoding.UTF8.GetBytes(data);
 byte[] protecteddatabytes = ProtectedData.
Protect(databytes, null);

 string protectedData = Encoding.UTF8.
GetString(protecteddatabytes, 0,
protecteddatabytes.Length);

 return protectedData;
 }

 public string DecryptData(string protectedData)
 {
 byte[] protecteddatabytes =
Encoding.UTF8.GetBytes(protectedData);
 byte[] databytes = ProtectedData.
Unprotect(protecteddatabytes, null);

 string data = Encoding.UTF8.GetString(databytes, 0,
databytes.Length);

 return data;
 }

It is very easy to use DPAPI to protect and unprotect data. The only thing you need to do is
to convert the data to a byte array and pass it to the ProtectedData class to perform the
encryption. The preceding methods encrypt or decrypt a string passed to it.

When dealing with complex objects, you can use serializer to get the data in a format
supported to protect and unprotect. For instance, if you need to protect DataModel, you can
use DataContractJsonSerializer to serialize the Model class and get the string:

public string EncryptSerializeData(object target)
{
 var serializer = new DataContractJsonSerializer(target.GetType());
 MemoryStream memStream = new MemoryStream();
 serializer.WriteObject(memStream, target);
 string jsondata = Encoding.UTF8.GetString(memStream.GetBuffer(),
0,
(int)memStream.Length);

 return this.EncryptData(jsondata);
}

Chapter 3

139

Here, the DataContractJsonSerializer class is used to serialize the target object to the
JSON notation and then EncryptData is used to protect the object data completely.

Working with the settings file in Windows Phone applications
To store the general settings of the application, it is often not required to use relational
databases or even IsolatedFiles. The IsolatedStorageSetting class provides an
easy way to store settings of the application key/value pair for easy storage and retrieval of
data. Let's take a look at how to store data in IsolatedStorageSettings:

public class PersistantStorageSettings
{
 IsolatedStorageSettings settings;

 public PersistantStorageSettings()
 {
 settings = IsolatedStorageSettings.ApplicationSettings;
 }

 public bool AddOrUpdateValue(string key, object value)
 {
 bool valueChanged = false;
 if (settings.Contains(key))
 {
 if (settings[key] != value)
 {
 settings[key] = value;
 valueChanged = true;
 }
 }
 else
 {
 settings.Add(key, value);
 valueChanged = true;
 }
 return valueChanged;
 }
 public T GetValueOrDefault<T>(string key)
 {
 T value;
 if (settings.Contains(key))
 value = (T)settings[key];
 else
 value = default(T);

Building a Touch-sensitive Device Application Using Windows Phone 8

140

 return value;
 }
 public void Save()
 {
 settings.Save();
 }

}

The IsolatedStorageSettings class provides an API to store and retrieve a key/value
data for an easy access to settings. Here, AddOrUpdateValue is used to store a value for
a particular key and GetValueOrDefault is used to get a value or the default value of the
type. The Save method is used to save data to the settings.

To define settings, you can inherit a class from the type and define properties like this:

public string Settings1
{
 get
 {
 return base.GetValueOrDefault<string>("settings1");
 }
 set
 {
 if (base.AddOrUpdateValue("settings1", value))
 base.Save();
 }
}

Now by setting a value for the settings1 property, we virtually store the data in the
IsolatedStorageSettings key and vice versa. Also, you should always remember
that the settings key is unique to the application.

Reading a file from an SD card in the Windows Phone application
Windows Phone devices, being smart devices, support additional SD cards to be added to
it. You can add them as a RemovableStorage media to the device, and later use the files
present on the SD card and open it using an application in the device that is capable of
opening it.

To add a file type extension, we first add the ID_CAP_REMOVABLE_STORAGE capability to the
WMAppManifest.xml file and save it. Once it is saved, you can open it in the XML editor and
specify FileTypeAssociation:

<FileTypeAssociation TaskID="_default" Name="GPX"
NavUriFragment="fileToken=%s">
 <Logos>

Chapter 3

141

 <Logo Size="small" IsRelative="true">Assets/Route_Mapper_
Logo33x33.png</Logo>
 <Logo Size="medium" IsRelative="true">Assets/Route_Mapper_
Logo69x69.png</Logo>
 <Logo Size="large" IsRelative="true">Assets/Route_Mapper_
Logo176x176.png</Logo>
 </Logos>
 <SupportedFileTypes>
 <FileType ContentType="application/gpx">.gpx</FileType>
 </SupportedFileTypes>
</FileTypeAssociation>

As a file association is required to read a specific file type from an SD card, your app
automatically gets registered by the type of files that are not present in the SD card. To handle
this situation, we can add a custom Uri mapper to pass the file association's token to the
correct page, as shown in the following code:

class CustomURIMapper : UriMapperBase
 {
 private string tempUri;
 public override Uri MapUri(Uri uri)
 {
 tempUri = uri.ToString();

 if (tempUri.Contains("/FileTypeAssociation"))
 {
 // Get the file ID (after "fileToken=").
 int fileIDIndex = tempUri.IndexOf("fileToken=") +
10;
 string fileID = tempUri.Substring(fileIDIndex);
 // Map the file association launch to route page.
 return new Uri("/RoutePage.xaml?fileToken=" + fileID,
UriKind.Relative);
 }
 // Otherwise perform normal launch.
 return uri;
 }
 }

In this example, when a file association launches the app, the Uri mapper automatically
routes the token to the RoutePage.xaml file of the application. To add customURiMapper
to the application, let's add the line to the InitializePhoneApplication of App.xaml:

RootFrame.UriMapper = new CustomURIMapper();

Building a Touch-sensitive Device Application Using Windows Phone 8

142

When the application is invoked, the parameters of the URI can be accessed by
QueryString of NavigationContext as follows:

protected override async void OnNavigatedTo(System.Windows.Navigation.
NavigationEventArgs e)
{
 // Route is from a file association.
 if(NavigationContext.QueryString.ContainsKey("fileToken"))
 {
 _fileToken = NavigationContext.QueryString["fileToken"];
 await ProcessExternalGPXFile(_fileToken);
 }
 // Route is from the SD card.
 else if (NavigationContext.QueryString.ContainsKey("sdFilePath"))
 {
 _sdFilePath = NavigationContext.QueryString["sdFilePath"];
 await ProcessSDGPXFile(_sdFilePath);
 }
}

In the preceding code, sdFilePath determines the path of the file present on the SD card.
Finally, we use the following code to process the file:

private async Task ProcessSDGPXFile(string _sdFilePath)
{
 // Connect to the current SD card.
 ExternalStorageDevice sdCard = (await ExternalStorage.
GetExternalStorageDevicesAsync()).FirstOrDefault();

 // If the SD card is present, get the route from the SD card.
 if (sdCard != null)
 {
 try
 {
 // Get the route (.GPX file) from the SD card.
 ExternalStorageFile file = await
sdCard.GetFileAsync(_sdFilePath);

 // Create a stream for the route.
 Stream s = await file.OpenForReadAsync();

 // Read the route data.
 ReadGPXFile(s);
 }
 catch (FileNotFoundException)

Chapter 3

143

 {
 // The route is not present on the SD card.
 MessageBox.Show("That route is missing on your SD card.");
 }
 }
 else
 {
 // No SD card is present.
 MessageBox.Show("The SD card is mssing. Insert an SD card
that has a Routes folder containing at least one .GPX file and try
again.");
 }
}

Here the ExternalStorageDevice API is used to get the file stored on the SD card. The
OpenForReadAsync method opens the file if present and returns a FileStream class.
The stream can be used to read the data present on the file.

See also
ff Information on creating a local database app can be found

at http://bit.ly/MVVMWphone

Working with notifications in Windows Phone
The push notification is in-built on most of the modern smart phones. A Windows Phone, being
no exception, also implements a number of notification techniques that can be used to bring
notifications to the client app from an external source. The server can push notifications to the
device and when the device receives the notification, an event occurs.

Push notifications are of three types:

ff Toast notification: This notification is launched at the top of the screen with a
custom message such as an e-mail alert. The notification will be displayed for 10
seconds unless the user dismisses the alert. If user clicks on the alert, then the
application that sends the notification will be launched.

ff Tile notification: This notification is used to display dynamic representation of an
application state. We can control the image, text, and badge count of the notification.

ff Raw notification: This notification can be used only when the application is running
in the foreground. The notification is not delivered or even gets discarded when the
application is not running.

http://bit.ly/MVVMWphone

Building a Touch-sensitive Device Application Using Windows Phone 8

144

These are the mediums by which the web server can send push notifications to the
applications running on the Windows Phone platform:

Windows Phone

Push client/servernegotiation

Push client
service

Push enabled
application

Push URL request/response

Push notification to device

MPNS

Cloud Service

Push URL to Cloud Service

HTTP Post to URI
with payload

4

13

6

2

5

There are a number of steps to set up push notifications and a number of external hosts are
involved to enable the push notifications to the clients. For a push notification, there should
be a server that a developer can handle. In the preceding figure, we depict how a push
notification is received by a Windows Phone. The steps are as follows:

1.	 The application invokes PushURIRequest on the PushClient service.

2.	 The PushClient service goes to Microsoft Push Notification Service (MPNS),
which is hosted on live servers to negotiate the device so that it receives
push notifications.

3.	 When the response is received from Pushclient, the application receives a signal
that it has enabled push notifications and an URI through which the push notification
needs to be sent from the server.

4.	 The application sends PushUri to the external server managed by the developer in
the cloud.

5.	 When server needs to push a message, it uses the URI to post the message to the
MPNS server.

6.	 Finally, when the MPNS receives the push notification, it sends the message directly
to the phone.

Chapter 3

145

Getting ready
As per the preceding architecture, to implement a full-fledged push notification, we need to
create the following applications:

ff A Windows Phone application that initiates the push notification channel

ff An ASP.NET application that communicates with the live server

How to do it...
Let's create a new application that can enable the web server to use the push notifications:

1.	 Create a new application and name it PushClientSample.

2.	 Add a button to the MainPage.xaml file to create a push notification channel:
<Button Content="Bind Channel" x:Name="btnBind" Click="btnBind_
Click" />

We name it BindChannel.

3.	 In the preceding code, we create pushChannel using HttpNotificationChannel
and open it:
private void btnBind_Click(object sender, RoutedEventArgs e)
{
 string channelName = "PushClientSampleChannel";

 HttpNotificationChannel pushChannel =
HttpNotificationChannel.Find(channelName);
 if (pushChannel == null)
 {
 pushChannel = new HttpNotificationChannel(channelName);
 pushChannel.ChannelUriUpdated += new EventHandler<Notifica
tionChannelUriEventArgs>(PushChannel_
ChannelUriUpdated);
 pushChannel.ErrorOccurred += new EventHandler<Notification
ChannelErrorEventArgs>(PushChannel
_ErrorOccurred);
 pushChannel.ShellToastNotificationReceived += new
EventHandler<NotificationEventArgs>(PushChannel_ShellToast
NotificationReceived);
 pushChannel.Open();
 pushChannel.BindToShellToast();
 }
 else
 {

Building a Touch-sensitive Device Application Using Windows Phone 8

146

 pushChannel.ChannelUriUpdated += new EventHandler<Notifica
tionChannelUriEventArgs>(PushChannel_
ChannelUriUpdated);
 pushChannel.ErrorOccurred += new EventHandler<Notification
ChannelErrorEventArgs>(PushChannel
_ErrorOccurred);
 pushChannel.ShellToastNotificationReceived += new
EventHandler<NotificationEventArgs>(PushChannel_ShellToast
NotificationReceived);
 System.Diagnostics.Debug.WriteLine(pushChannel.ChannelUri.
ToString());
 MessageBox.Show(String.Format("Channel Uri is {0}",
pushChannel.ChannelUri.ToString()));
 }
}

We named our push notification channel PushClientSampleChannel. We first try
to find out whether the notification is already registered. Then, we call Find to invoke
a web request to the MPNS service to see whether the application is registered for
the push notification or not. If it is found, it is used up; otherwise, it is registered using
the Open command of the Channel object.

The ChannelUriUpdated event is called when the server updates the URI. This
method is used to get the actual URI to which the push messages need to be
sent out.

4.	 When the ChannelUriUpdated event is raised, we need to send the URI to the
application server using the Internet. For simplicity, we enter the URI in the debugger
output window, as shown in the following screenshot:

Copy the URI to a safe location, as it is required for the server application to
send notifications.

Chapter 3

147

5.	 Now, create an ASP.NET application and name it PushServerSample. In
ToastRequest.aspx, we add one label, two TextBoxes, and one button:

The following code shows how to create an ASP.NET application:

<div>
 Server URI :

 <asp:Label runat="server" ID="lblSubscription" />

 Title :

 <asp:TextBox runat="server" ID="txtTitle" />

 Message :

 <asp:TextBox runat="server" ID="txtMessage" />

 <asp:Button runat="server" Text="Send Toast
Notification" OnClick="ButtonSendToast_Click" />
 </div>

6.	 To deal with the push notification, we create a class called PushNotifier and
add a static method SendPushNotification:
public static void SendPushNotification(string
subscriptionUri, string requestMsg, string type)
 {
 HttpWebRequest sendNotificationRequest =
(HttpWebRequest)WebRequest.Create(subscriptionUri);
 sendNotificationRequest.Method = "POST";

 byte[] notificationMessage =
Encoding.Default.GetBytes(requestMsg);

 sendNotificationRequest.ContentLength =
notificationMessage.Length;
 sendNotificationRequest.ContentType =
"text/xml";
 sendNotificationRequest.Headers.Add("X-
WindowsPhone-Target", type);

Building a Touch-sensitive Device Application Using Windows Phone 8

148

 sendNotificationRequest.Headers.Add("X-
NotificationClass", "2");

 using (Stream requestStream =
sendNotificationRequest.GetRequestStream())
 {
 requestStream.Write(notificationMessage, 0,
notificationMessage.Length);
 }

 // Send the notification and get the response.
 HttpWebResponse response = (HttpWebResponse)
sendNotificationRequest.GetResponse();
 string notificationStatus =
response.Headers["X-NotificationStatus"];
 string notificationChannelStatus =
response.Headers["X-SubscriptionStatus"];
 string deviceConnectionStatus =
response.Headers["X-DeviceConnectionStatus"];
 }

Here in the preceding code, we send the message to the Microsoft Live server using
the URL where the application got registered.

7.	 Hence, using ButtonSendToast_Click, we call the toastMessage method with
URI for the application:
protected void ButtonSendToast_Click(object sender, EventArgs e)
{
 try
 {
 string subscriptionUri =
this.lblSubscription.Text.ToString();
 string toastMessage = "<?xml version=\"1.0\"
encoding=\"utf-8\"?>" +
 "<wp:Notification
xmlns:wp=\"WPNotification\">" +
 "<wp:Toast>" +
 "<wp:Text1>" +
this.txtTitle.Text.ToString() + "</wp:Text1>" +
 "<wp:Text2>" +
this.txtMessage.Text.ToString() + "</wp:Text2>" +
 "<wp:Param>/Page2.
xaml?NavigatedFrom=Toast
Notification</wp:Param>" +
 "</wp:Toast> " +
 "</wp:Notification>";

Chapter 3

149

 PushNotifier.SendPushNotification(subscriptionUri,
toastMessage, "toast");
 }
 catch
 {
 }

}

In the preceding code, a new HttpWebRequest class is invoked with a specific
formatted toast message. Once the message is received by the MPNS, it forwards
the message to the actual device and a response is returned back.

8.	 Finally, if you click on the Send Toast Notification button, the phone will receive the
toast notification. It is to be noted that if the application is running on the phone, it
will receive a ShellToastNotificationReceived event. If you handle the event
handler, it will show the collection that it receives in a message box, as shown in the
following screenshot:

It is to be noted that the ShellToastNotification event gets raised
automatically by the channel, and a collection of all messages are received as
parameter. In the following code, we filter out the message from the Toast event:

private void PushChannel_ShellToastNotificationReceived(object
sender,
NotificationEventArgs e)
{
 StringBuilder message = new StringBuilder();
 string relativeUri = string.Empty;

 message.AppendFormat("Received Toast {0}:\n",
DateTime.Now.ToShortTimeString());

 // Parse out the information that was part of the
message.
 foreach (string key in e.Collection.Keys)
 {

Building a Touch-sensitive Device Application Using Windows Phone 8

150

 message.AppendFormat("{0}: {1}\n", key,
e.Collection[key]);

 if (string.Compare(
 key,
 "wp:Param",
 System.Globalization.CultureInfo.InvariantCulture,
 System.Globalization.CompareOptions.IgnoreCase) == 0)
 {
 relativeUri = e.Collection[key];
 }
 }

 // Display a dialog of all the fields in the toast.
 Dispatcher.BeginInvoke(() =>
MessageBox.Show(message.ToString()));
}

9.	 If the application isn't running, the environment will show the Toast message using
a red strip on the top of the phone screen. The message will have the icon of the
application on which it is associated as shown in the following screenshot), and it
will remain for 10 seconds if user doesn't click on it. You can click on the message
to open up the application.

10.	 Similar to the Toast notification, the Windows Phone environment also allows you to
send tile notifications so that when that notification is received, the tile that is used to
show the application is modified. For the tile notification, let's add a new page to the
web project and call it TileRequest.aspx. Each tile can have a number of settings,
as shown in the following screenshot:

Chapter 3

151

The preceding screenshot is taken from the web form created using ASP.NET. Here
is the sample ASP.NET design that creates the preceding UI:
<div>
 Server URI :

 <asp:Label runat="server" ID="lblSubscription" />

 Front Title :

 <asp:TextBox runat="server" ID="txtTitle" />

 Front Background Image :

 <asp:TextBox runat="server" ID="txtBackgroundImage"
/>

 Front Badge Counter :

 <asp:TextBox runat="server" ID="txtBadgeCounter" />

 Back Title :

 <asp:TextBox runat="server" ID="txtBackTitle" />

 Back Background Image :

 <asp:TextBox runat="server" ID="txtBackgroundBackImage" />

 Back Content :

 <asp:TextBox runat="server" ID="txtBackContent" />

 <asp:Button ID="btnTile" runat="server" Text="Send
Tile Notification" OnClick="ButtonSendTile_Click" />
 </div>

In this case, we have front- and back-side configuration for the tiles as the tiles flip to
show more content.

11.	 To create the actual tile in the phone, you need to create two images of 176 x 175
pixels—one with a red background, named red.jpg, and another with a blue
background, named blue.jpg—and place the images on the Content application.
The notification will only be shown when the application is pinned to home screen.

Building a Touch-sensitive Device Application Using Windows Phone 8

152

12.	 Finally, after the application is deployed and the Send Tile Notification button
is clicked, the web application sends a tile request using the push notification,
as shown in the following code:
try
 {
 string subscriptionUri =
this.lblSubscription.Text.ToString();
 string tileMessage = "<?xml version=\"1.0\"
encoding=\"utf-8\"?>" +
 "<wp:Notification
xmlns:wp=\"WPNotification\">" +
 "<wp:Tile>" +
 "<wp:BackgroundImage>" +
txtBackgroundBackImage.Text + "</wp:BackgroundImage>" +
 "<wp:Count>" + txtBadgeCounter.Text + "</
wp:Count>" +
 "<wp:Title>" + txtTitle.Text +
"</wp:Title>" +
 "<wp:BackBackgroundImage>" +
txtBackgroundBackImage.Text + "</wp:BackBackgroundImage>" +
 "<wp:BackTitle>" +
txtBackTitle.Text + "</wp:BackTitle>" +
 "<wp:BackContent>" +
txtBackContent.Text + "</wp:BackContent>" +
 "</wp:Tile> " +
 "</wp:Notification>";
 PushNotifier.SendPushNotification(subscriptionUri,
tileMessage,"tile");
 }
 catch
 {
 }

The device receives the notification and displays it as a tile, as shown in the
following screenshot:

The tile automatically flips to show more content in the blue background.

Chapter 3

153

How it works...
Each Windows Phone device is well equipped to handle push notifications. The MPNS
authenticates the device with the live services using live ID authentication, which is needed
for every device. Once the device is authenticated, it can receive a push notification by
subscribing a channel for the application. Once the channel is established, the MPNS
responds to a unique URL that could be used to receive push notifications.

Now if a third-party application is hosted to that particular URL in cloud requests and it
sends a predefined formatted XML document, the MPNS forwards the message as a push
notification to the device using either tile or toast notifications.

There's more...
In addition to the normal toast and tile notifications, there are a number of additional options
that may be worth noting. Some of them will be discussed next.

Learning about other tile formats
In addition to normal tiles, there are also a number of XML formats supported by Windows
Phones. Based on the configuration and the size of the tile set by the user while pinning,
the tile notification can differ a lot. The tile formats are as follows:

ff Flip tile template: This template flips from front to back, as shown in the
following screenshot:

Building a Touch-sensitive Device Application Using Windows Phone 8

154

The preceding tile demonstrates the property of the schema that sits on the tile
based on the different size of the tile configured. To use this template, you need
to send a notification after the following schema:
<wp:Notification xmlns:wp="WPNotification" Version="2.0">
 <wp:Tile Id="[Tile ID]" Template="FlipTile">
 <wp:SmallBackgroundImage [Action="Clear"]>[small Tile
size URI]</wp:SmallBackgroundImage>
 <wp:WideBackgroundImage Action="Clear">[front of wide
Tile size URI]</wp:WideBackgroundImage>
 <wp:WideBackBackgroundImage Action="Clear">[back of
wide Tile size URI]</wp:WideBackBackgroundImage>
 <wp:WideBackContent Action="Clear">[back of wide Tile
size content]</wp:WideBackContent>
 <wp:BackgroundImage Action="Clear">[front of medium
Tile size URI]</wp:BackgroundImage>
 <wp:Count Action="Clear">[count]</wp:Count>
 <wp:Title Action="Clear">[title]</wp:Title>
 <wp:BackBackgroundImage Action="Clear">[back of medium
Tile size URI]</wp:BackBackgroundImage>
 <wp:BackTitle Action="Clear">[back of Tile
title]</wp:BackTitle>
 <wp:BackContent Action="Clear">[back of medium Tile
size content]</wp:BackContent>
 </wp:Tile>
</wp:Notification>

The template is mostly used for common notification formats.

ff Cycle tile template: This kind of template is used when it is required to cycle
between one to nine images:

Here, the tile continuously changes after an interval. To send a tile notification,
we need to send it using the following format:

<wp:Notification xmlns:wp="WPNotification" Version="2.0">
 <wp:Tile Id="[Tile ID]" Template="CycleTile">

Chapter 3

155

 <wp:SmallBackgroundImage [Action="Clear"]>[small Tile
size URI]</wp:SmallBackgroundImage>
 <wp:CycleImage1 Action="Clear">[photo 1
URI]</wp:CycleImage1>
 <wp:CycleImage2 Action="Clear">[photo 2
URI]</wp:CycleImage2>
 <wp:CycleImage3 Action="Clear">[photo 3
URI]</wp:CycleImage3>
 <wp:CycleImage4 Action="Clear">[photo 4
URI]</wp:CycleImage4>
 <wp:CycleImage5 Action="Clear">[photo 5
URI]</wp:CycleImage5>
 <wp:CycleImage6 Action="Clear">[photo 6
URI]</wp:CycleImage6>
 <wp:CycleImage7 Action="Clear">[photo 7
URI]</wp:CycleImage7>
 <wp:CycleImage8 Action="Clear">[photo 8
URI]</wp:CycleImage8>
 <wp:CycleImage9 Action="Clear">[photo 9
URI]</wp:CycleImage9>
 <wp:Count Action="Clear">[count]</wp:Count>
 <wp:Title Action="Clear">[title]</wp:Title>
 </wp:Tile>
</wp:Notification>

ff Iconic tile template: This template displays a small image in the center of the tile
and incorporates Windows Phone Design principles:

Building a Touch-sensitive Device Application Using Windows Phone 8

156

The iconic tile template is sometimes preferred because it has an icon in the middle
of the tile and hence promotes branding:
<wp:Notification xmlns:wp="WPNotification" Version="2.0">
 <wp:Tile Id="[Tile ID]" Template="IconicTile">
 <wp:SmallIconImage [Action="Clear"]>[small Tile size
URI]</wp:SmallIconImage>
 <wp:IconImage Action="Clear">[medium/wide Tile size
URI]</wp:IconImage>
 <wp:WideContent1 Action="Clear">[1st row of
content]</wp:WideContent1>
 <wp:WideContent2 Action="Clear">[2nd row of
content]</wp:WideContent2>
 <wp:WideContent3 Action="Clear">[3rd row of
content]</wp:WideContent3>
 <wp:Count Action="Clear">[count]</wp:Count>
 <wp:Title Action="Clear">[title]</wp:Title>
 <wp:BackgroundColor Action="Clear">[hex ARGB format
color]</wp:BackgroundColor>
 </wp:Tile>
</wp:Notification>

This template can be used to create an Iconic tile notification.

See also
ff To learn more about push notifications, visit http://bit.ly/PushWPhone

http://bit.ly/PushWPhone

4
Working with Team
Foundation Server

In this chapter, we will cover the following recipes:

ff Configuring TFS for project hosting and management

ff Working with branching and merging in Team Foundation Server

ff Creating TFS scheduled jobs

Introduction
Team Foundation Server (TFS) is one of the most important components required for any
small or big project. Once a project is defined, the optimal utilization of time and management
of the team for successful delivery of the project is one of the primary concerns for any
development team. This is called Application Lifecycle management (ALM). To solve
issues at different stages of application life cycle, we employ a number of tools and other
components, such as product backlogs, source control, and work item management. Visual
Studio Team Foundation Server comes with a complete toolset for Microsoft Application
Lifecycle Management solution. It provides Agile development practices and can be used
either locally or in a cloud to provide tools that can effectively manage the software projects.

Working with Team Foundation Server

158

Installing TFS
After you have successfully downloaded the latest bits of the TFS installer (you can download
TFS at http://bit.ly/tfsbitdownload), you can start installing it. You can either
install it on a client or a server operating system, but if it is server operating system, you can
additionally add a SharePoint portal and SQL Server reporting. We use the basic configuration
for standard server installation, but there are options, such as Standard Single Server, which
is used for single server installation with all standard features. Also, there is an advanced
installation option that allows you to choose components that you need (you can read more
about TFS Installation at http://bit.ly/benjamintfsinstall). The wizard will install
and configure Install SQL Server (IIS), where all the configurations and source codes will be
saved. It will create websites for server-side portal and administration, and finally you will see
what is shown in the following screenshot:

The preceding screenshot shows that everything was successfully installed. After finishing
the basic installation of TFS, you can install the build server component on a server.
The Build server will automate the builds of your software projects, as shown in the
following screenshot:

http://bit.ly/tfsbitdownload
http://bit.ly/benjamintfsinstall

Chapter 4

159

The Build service will automatically create a default collection for which the Build service will
work. We can configure the Build service to create a build in the server itself upon updating
the source for a project.

TFS has a SharePoint portal as well, which lets the TFS have a website referred to as a team
project portal for each team project. This portal will help the team members share the process
guidance, project documents, templates, and reports. The SharePoint portal is generally used
to share documents and information.

Even though it is not necessary, sometimes to administrate team projects you might also
need Team Explorer. Team Explorer provides a unique functionality to create projects for
development teams.

To install Team Explorer, go to the Team Explorer folder of your setup
directory and run vs_TeamExplorer.exe.

Working with Team Foundation Server

160

Configuring TFS for project hosting and
management

Configuring the TFS is one of the most important tasks for good utilization of development
resources. After installing the TFS in your system, you can open Team Foundation Server
Administration Console to configure the server so as to add collection, projects, and users.
Let's try to configure the most important sections of the TFS administration console and host
an application inside it using Team Explorer.

Getting ready
Open the TFS administration console from the path C:\Program Files\Microsoft
Team Foundation Server 12.0\Tools\TfsMgmt.exe if you have already installed it
on your machine. The left-hand section of the following window shows the different types of
subsections supported and the right-hand side will load the current section for configuration:

Chapter 4

161

In the preceding screenshot, you can see that the default collection is already created for you.
A project collection is a unit of the whole project or application. The users can be assigned to
the project collection and each project collection can share a common set of configurations.
A project collection holds a number of projects inside it, each of which can have their own
solution. It should be worth noting that TFS creates a separate database in the SQL Server
physically for each project collection.

Some important keywords you need to understand are as follows:

ff Team project collection: Each project collection has a separate instance of physical
database, which can hold multiple team projects. Generally, we create a team project
collection for a big project, which has multiple projects inside it. Each team project
collection is totally separate and isolated from one other.

ff Team project: This is an individual team project that shares a common set of users,
even if individual team project permission is given to individual users. A team project
is a logical separation of code. A team project can have multiple solutions.

ff Solution: This is an individual collection of projects that forms an individual solution.
Visual Studio opens projects on the basis of the solution.

ff Project: This is a unit that outputs a .dll file or an executable file.

How to do it...
To start configuring, it is important to check the existing configuration settings, such as e-mail
alerts, console membership, and reporting server, when you click on the Application Tier
node. Once things are done, let's follow these steps and create a new project collection:

1.	 Select Team Project Collections from the left-hand navigation section and choose
Create Collection to create a new project collection.

2.	 A wizard will open; provide a name and a description for the TFS and then click
on Next.

3.	 Supply the Data Tier information, choose your SQL database instance where the
database needs to be created for the new project collection, and click on Next.

4.	 Finally, click on Create. Your project collection should be ready.

5.	 After the project collection is created, we need to add users to the collection.

6.	 By selecting the Project Collection option created, you can select Group
Membership to add members to the collection. As TFS uses Windows
authentication, you need to have users to be mapped with the domain.

Working with Team Foundation Server

162

7.	 There are a number of groups that are already added by default to your Windows
user database, as shown in the following screenshot:

You can either add a user to the specific group to have specific role, or you can create
a new one that suits your needs.

You can also use the web portal to do the same task. Enter http://
localhost:8080/tfs/MyCollection/_admin/_security/#_a=members
and you will see the following screenshot, which can be used in the same way:

Chapter 4

163

The web portal can also be accessed from outside if it is open to the external world
and is backed up with a public IP address.

8.	 Based on group selection, you can choose Administer Security to apply security
settings to the groups.

9.	 Once everything is set up, you can start collecting source in the project using Visual
Studio Team Explorer.

10.	 Open Team Explorer, click on the Sign up link, and use http://localhost:8080/
tfs as your URL (if you didn't choose anything else while installing). Once it is
correctly set up, you can connect to the project. You can also protect your TFS
behind HTTPS, which requires you to install Microsoft Certificate service and add an
additional certificate to the server. You can get more information at http://bit.
ly/tfshttps.

http://bit.ly/tfshttps
http://bit.ly/tfshttps

Working with Team Foundation Server

164

In the following screenshot, we opened Source Control Explorer; you can see the
workspace is mapped to the location D:\TeamProject. Once it is mapped, you can
start adding your source code.

11.	 Once you're on the Team Explorer - Home tab, you will be provided with are a number
of different options. You can check the Pending Changes button to view all the
changes that were not updated on the server. There are Check In and Checkout
buttons that will allow you to hold a file for changes and update it to the server.

12.	 Now, let's add a new team project. Select the New Team Project option in the File
tab and name it MyProject.

13.	 Select the appropriate template that you want to use for your application
development process. For the time being, we implement Scrum.

14.	 Now, select Team Foundation Server and then select Finish. The project will be
created and loaded.

15.	 You can now add a new file. Select Add Items to Folder from the toolbar of the
Source Control Explorer pane and add the file or folder associated with your project.

16.	 Once the file is added, it will show a + sign corresponding to the file. You can now
check In the file(s) to upload the file on the server.

17.	 Right-click on the project and select Check in pending changes. You need to add a
comment and then select Check in in the Team Explorer.

18.	 The file will be updated on the server.

Chapter 4

165

How it works...
TFS tightly integrates itself with Visual Studio and Visual Studio Team Explorer to deal with
projects. The projects can be bound to a TFS project in such a way that any updates that have
been made to the server can be easily transferred to the other clients notifying new updates
before they start editing the content.

There are a number of components that are used internally to run the TFS. The following
diagram shows the partial architecture of the TFS system:

Client Computer
Client

Application
Client Object

Model

Application Tier

Team Foundation Web
Services

Server Object Model

Server Application

Data Tier

Data

The Application Tier is the main section that connects the Team Foundation Server and the
Client Computer. The main engine exposes a number of web services that lets the clients
send/receive data. The Client Computer holds the Client Object Model for communication
and the Client Application itself. The Application Tier, apart from being connected to the
client application, is also connected to the Server Application that is used for administration.
The Data Tier represents the actual repository of data. In case of the TFS system, the data is
stored in the SQL Server databases.

There's more...
TFS is a vast topic to be considered in a single section. There are lots of other configuration
options that we can explore.

Working with Team Foundation Server

166

How to add a work item to the TFS
TFS can not only be used as a repository of code, but it also allows you with tools for project
management. A project is a collection of small individual task items known as work items that
can be assigned to a person, and once the item is done, the user can update the item as closed.

In Visual Studio, you can add Work Items, which can further be added to the current sprint for
the Scrum, as shown in the following screenshot:

The Assigned To option will indicate the user who is responsible for the work. A description
can be added and finally when the user clicks on Save work item, the user will be notified
either using an e-mail notification (if it is configured) or when the user opens Visual Studio
and queries its outstanding items.

Chapter 4

167

How to add an e-mail notification to the TFS
A notification is another important thing for any team system. TFS allows you to configure it in
such a way that every member is well informed of any changes that are made to the system.
There is an option to set rules, which can trigger the appropriate e-mail notification, as shown
in the following screenshot:

Before we do anything, we need to enable Email Notification by providing appropriate SMTP
credentials. Open TFS Administration Console, select Application Tier, and then open the
Email Alerts section to fill your SMTP details.

Now open the web portal using http://localhost:8080/tfs and go to the Alerts
section. Add an alert to the work item so that when there is any work item change on the
current project, the TFS service will notify a particular e-mail address.

Working with Team Foundation Server

168

The following screenshot shows how the Alert filters can be added to/removed from the query
for the alert. Once alerts are set up, the TFS service will use the provided SMTP configuration
to automatically notify the users.

Configuring Agile iterations to a TFS project
TFS can have different project methodologies or processes. By the way, it structures the work
items and their relationship (workflow). It already comes with a couple of already defined
processes, such as Agile, CMM, and Scrum, which can further be customized as well. Agile
is a continuous development process. Every release has a set of iterations. Iterations are
divided into weekly sprints where each sprint is individually tracked and backlogs are created.
As TFS supports the Scrum methodology of product development, you will see an Iterations
tab inside the web project when the template is selected for project collection. You can set the
dates for the appropriate iterations and apply Scrum.

Go to the web portal using http://localhost:8080/tfs and select the project that you
want to apply iterations to. Navigate to the Iterations tab and set the dates for every release.
Remember this option is only available when the Agile project template is chosen while adding
a project collection.

In the following screenshot, you can see that Sprint is set up on a weekly basis and iterations
are named properly. When adding a work item to a particular sprint, choose a particular
iteration properly.

Chapter 4

169

In the following screenshot, you can see the sprints that are listed in a TreeView, and you can
choose the appropriate sprint or iteration for a particular work item:

Working with Team Foundation Server

170

Working with branching and merging in
Team Foundation Server

Team development is not as simple as we think. If the project is small and has a very small
team to work with, it can be configured as a simple deployment. However, in more advanced
scenarios where the project is considerably big, there are teams specific to certain aspects
of work and are working together on the same code - base.

For instance, the development team works on the core functionalities, the engineering team
works on user logical issues and bugs, the quality assurance team works on testing the product,
and finally the release team checks the features and releases. Not only this, the environment
that these people use is quite different. The codebase that the development team uses is
different from the codebase of the engineering team. Also, the development, staging, and
production environments work in parallel. For such scenarios and requirements, TFS needs
to maintain multiple codebases for the same solution, where the most recent will be with the
developer teams while most stable ones will be with the quality assurance and production team.
Branching allows you to branch one solution into another such that multiple projects can be
maintained, and finally the required branch can be merged again with all the changes.

By branching, we mean creating a separate stream of source code that is capable of
maintaining its own source controlling and strongly holding the links to the existing files
in such a way that when there is a significant change in branch, it can be merged into the
original source without any difficulty.

Before we start with the steps on creating branching and merging, let's discuss some
techniques of code sharing. In the previous screenshot, you can see the main stream creates
two branches: one for development and another for release, where both of them are merged
to the main branch using the merging option. The techniques of code sharing are as follows:

ff File linking: This is a Visual Studio feature where multiple projects share a single file.
This kind of file sharing is best suited to small projects with limited number of shared
files. In this mode of file sharing, each file is maintained with multiple links such that
changes made to the individual file will automatically reflect to all other files (this
resembles file sharing in Visual Source Safe.) With file linking, there's only one version
of the linked source file to maintain. Changes made to the linked file are immediately
received by all projects linking to the file. The disadvantage of file linking is that
changes to the linked file should be coordinated with all the dependent project teams.
Even carefully coordinated changes might break changes in dependent projects.

Chapter 4

171

ff Binary sharing: This means when the common source code is shared using the
compiled assembly in form of Dynamic Link Libraries (.dll), teams that own the
common code have full ownership and control. In theory, this means that the control,
versioning, and quality of the product are probably better. Also, branching and merging
complexities are avoided as teams reusing the common code don't have access to
the common source code; they're dependent on the owners to add new features and
resolve bugs in the common shared code. The assemblies for the common code can
be shared by copying them to a well-known file that can be referenced by dependent
projects. Signed assemblies may need to be added to Global Assembly Cache (GAC).
Alternatively, the assemblies can be copied from the common code team project to a
bin folder under the dependent project's main branch.

ff Source code sharing: With source code sharing, Visual Studio has access to all
the source code and can compile all the dependent assemblies together with the
application. In Visual studio, the project reference is taken when source code is
shared. With very large and complex projects, the compilation time can significantly
increase due to source code sharing. Branching allows source code sharing in which
a copy of the source code is created for each set of teams. It could be a development
team, quality assurance team, implementation team, and so on—each developing on
their own source. Finally, the changes made are merged to a main production stream.

How to do it...
To create branching inside a Visual Studio project, perform the following steps:

1.	 Open Visual Studio and select Source Control Explorer.

2.	 Right-click on the project folder, select the Branching & Merging option, and then
select Branch.

3.	 A new dialog will pop up. Provide the appropriate location for Branch and click on OK,
as shown in the following screenshot:

Working with Team Foundation Server

172

4.	 The branch will be created, acquiring the latest version of the existing source.

In the following screenshot, MyProject has been branched out as MyProject-Branch.
Here, both the projects will be under the source control and in both the projects
people can work in parallel.

5.	 These branches can be merged later on when required by right-clicking on the
Branch folder and selecting the Merge option from the Branching & Merging tab.

6.	 For merge, you need to choose the target and source, in such a way that individual
files from source are merged to the target. You also need to note that the merging
can have conflicts and sometimes TFS can ask to resolve these conflicts before the
actual merging takes place.

How it works...
Branching is a process where a separate stream is maintained individually in a separate
branch. The TFS System manages a backlink on every file it branches and separately
maintains its own source control. The backlink is a unique identifier in the SQL Server tables,
which identifies where the actual branch is created from so it can easily merge the source to
the actual file later on during the merge operation.

There's more…
Visual Studio provides various tools to show the branching architecture of the TFS system.
Here are some of the visualizers that might help.

Inspecting a visualizer to check TFS branching
There are a number of visualizers related to branching and merging that help to clearly
inspect the TFS system.

Branch visualization
The branch visualization shows a diagrammatic view of the entire project branch. You can
navigate to Source Control Explorer, click on the project that has been branched, and
right-click on the View Hierarchy option in the Branching and Merging tab.

Chapter 4

173

The following screenshot shows how the main Agent project is branched out to Agent-Dev
and Agent-Practice. From this, you can quickly understand the branch hierarchy.

Agent Branch Hierarchy

Agent

Agent-Dev Agent-Practice

Changeset visualization
In Visual Studio, you can also see the changeset history for each branch to determine the
merges to a changeset. Right-click on the project and then select Track Changeset. Once the
changeset history is open, you can select the branches that you want to view changeset for
and click on Visualize. This will visualize the changesets in different streams.

The following screenshot shows how a changeset is merged to different versions of streams.
For a large project, it will be easier to understand the actual branching and merging using
these visualizers.

Working with Team Foundation Server

174

See also
ff Refer to the ALM Rangers guide at http://vsarbranchingguide.codeplex.com/

ff Learn more about branching and merging at http://bit.ly/branchmerge

Creating TFS-scheduled jobs
As TFS runs in the background, there is always a requirement to run scheduled jobs that
perform a batch operation silently in the background. The TFS Background Job Agent is
used to run certain tasks that can be hooked into the TFS system and that run automatically
when scheduled.

Getting ready
Before getting started, create a library class and name it ScheduledJobs. We need to
add a reference to the following files:

ff Microsoft.TeamFoundation.Framework.Server.dll located at C:\Program
Files\Microsoft Team Foundation Server 12.0\Application Tier\
Web Services\Bin

ff Microsoft.TeamFoundation.Common.dll located at C:\Program
Files (x86)\Microsoft Visual Studio 12.0\Common7\IDE\
ReferenceAssemblies\v2.0

ff Microsoft.VisualStudio.Services.WebApi.dll located at C:\Program
Files(x86)\Microsoft Visual Studio 12.0\Common7\IDE\Reference
Assemblies\v4.5

Once the setup is ready, let's write the scheduler logic first and later hook it into the TFS system.

We also create a new .NET 4.5 library class called TFS.ScheduledJobs and add a reference
to the following files:

ff Microsoft.TeamFoundation.Framework.Server.dll located at C:\Program
Files\Microsoft Team Foundation Server 12.0\Application Tier\
Web Services\bin

ff Microsoft. TeamFoundation.Common.dll located at C:\Program
Files (x86)\Microsoft Visual Studio 12.0\Common7\IDE\
ReferenceAssemblies\v2.0

ff Microsoft.VisualStudio.Services.WebApi.dll located at C:\Program
Files (x86)\ Microsoft Visual Studio 12.0\Common7\IDE\
ReferenceAssemblies\v4.5

We will be writing the ScheduledJob logic inside the library class and will later hook it to
the main job project to run it.

http://vsarbranchingguide.codeplex.com/
http://bit.ly/branchmerge

Chapter 4

175

How to do it...
Now let's create ScheduledJob inside TFS using these simple steps:

1.	 Create a new class called IdCheckJob and make it inherit variables from
ITeamFoundationJobExtension. Then implement the interface. This
should now give you the following code:
using System;
using Microsoft.TeamFoundation.Framework.Server;
namespace TFS.ScheduledJobs
{
 public class IdCheckJob : ITeamFoundationJobExtension
 {
 public TeamFoundationJobExecutionResult Run(TeamFounda
tionRequestContext requestContext, TeamFoundationJobDefinition
jobDefinition, DateTime queueTime, out 	 string
resultMessage)
 {
 throw new NotImplementedException();
 }
 }
}

2.	 Now let's implement the Run method, as shown in the following code. The idea is to
check every work item and then check which work items have been updated:
try
{
 TfsTeamProjectCollection tfsServer = new TfsTeamProjectCollectio
n(GetTFSUri(requestContext));
 WorkItemStore workItemStore = tfsServer.
GetService<WorkItemStore>();
List<WorkItem> changedWorkItems = new List<WorkItem>();
 foreach (WorkItem workItem in workItemStore.Query("SELECT * FROM
WorkItems"))
 {
 if (!workItem.Title.StartsWith("#" + workItem.Id + " - "))
 {
 workItem.Title = "#" + workItem.Id + " - " + workItem.Title;
 changedWorkItems.Add(workItem);
 }
 }
 if (changedWorkItems.Count > 0)
 {
 workItemStore.BatchSave(changedWorkItems.ToArray());
 resultMessage = changedWorkItems.Count + " work item titles
updated.";

Working with Team Foundation Server

176

 }
 else
 {
 resultMessage = "no work item titles to update.";
 }
 return TeamFoundationJobExecutionResult.Succeeded;
}
catch (Exception ex)
{
 resultMessage = "Job Failed: " + ex.ToString();
 EventLog.WriteEntry("TFS Service",
resultMessage,EventLogEntryType.Error);
 return TeamFoundationJobExecutionResult.Failed;
}

The code selects the updated work items and updates the database with a message.

You can see that the resultMessage variable is also updated so that we can see
the job history.

3.	 Now compile the project and place the .dll and .pdb files in C:\Program
Files\Microsoft Team Foundation Server 12.0\Application Tier\
TFSJobAgent\Plugins.

4.	 Once the file has been successfully placed, we need to register the TFS job. To
register the job, we simply write a console application and run the following code:
var tfsUri = new Uri("http://localhost:8080/tfs");
var config = TfsConfigurationServerFactory.
GetConfigurationServer(tfsUri);
var jobService = config.GetService<ITeamFoundationJobService>();
var jobDefinition = new TeamFoundationJobDefinition("Check
WorkItem Job", "TFS.ScheduledJobs.IdCheckJob");
jobDefinition.EnabledState = TeamFoundationJobEnabledState.
Enabled;
jobDefinition.Schedule.Add(new TeamFoundationJobSchedule(DateTime.
Now,300));
jobService.UpdateJob(jobDefinition);

The code will retrieve the job that has been added as a plugin to the TFS job agent
and we call UpdateJob to service the plugin.

Chapter 4

177

5.	 Once the job is registered, you can verify it using the following SQL statement:
select * from Tfs_Configuration.dbo.tbl_JobDefinition where
JobName = 'Check WorkItem Job'

If you see an entry that exists in the database, this means the job is running.

6.	 You can copy JobId from the data and select JobHistory to verify how the
scheduled job is working, as shown in the following code:
select * from Tfs_Configuration.dbo.tbl_JobHistory WITH (NOLOCK)
where JobId = '62FDDA25-4938-4BF7-A7C3- 6A9BF527A20C

For instance, in my case it gives the appropriate results.

7.	 Finally, when you want to stop the scheduled job, you can easily write a console
application again to delete the job. Let's take a look at the following code:

var tfsUri = new Uri("http://localhost:8080/tfs");
var config = TfsConfigurationServerFactory.GetConfigurationServer(
tfsUri);
var jobService = config.GetService<ITeamFoundationJobService>();
jobService.DeleteJob(new Guid("62FDDA25-4938-4BF7-A7C3-
6A9BF527A20C"));

Here, you can see that I used the Guid to identify the job rather than using the name. The
DeleteJob method will de-register the job from the TFS job agent.

How it works…
TFS is hosted using IIS. There is a specific TFS job agent associated with the TFS, which runs
periodically in the background to perform some batch operations. The TFS provides a plugin
model to integrate your own scheduled tasks so that when the jobs are being dispatched,
it can also run the user code automatically.

Until and unless the job has been deregistered, the TFS automatically picks it up and performs
the tasks assigned to it.

See also
ff To learn more about the TFS Background Job Agent,

visit http://bit.ly/tfsbackgroundjob

http://bit.ly/tfsbackgroundjob

5
Testing Applications
Using Visual Studio

2013

In this chapter, we will cover the following recipes:

ff Understanding Visual Studio unit test projects

ff Working with the Microsoft Fakes framework in Visual Studio

ff Understanding how Coded UI testing works in Visual Studio

Introduction
Testing is one of the most important parts of any development process cycle. Starting from
the classic Waterfall Software Development Life Cycle (SDLC) model to the modern
Agile-based SDLC, testing forms one of the most important sections of any development
process. After the development phase is complete, the application is sent for testing. Every
application, irrespective of its volume or size, is thoroughly tested before it is released for
production. Testing software is so important that no software can ever be successful without
going through this phase. Large enterprises keep separate teams that dedicatedly test
applications and frameworks before finalizing the release. The purpose of these testing teams
is to find out hidden flaws/bugs in the software, which might have been produced because
of some wrong or illegal input that has not been taken care of by the developers during the
phase of development. Most of these bugs come from the validation of code blocks or even
logical bugs. The main motive of the testing team is to produce test cases and a bug report,
which is then sent back to the development team for rectification.

Testing Applications Using Visual Studio 2013

180

As we already know, Team Foundation Server (TFS) supports a number of critical and
important features, which makes communication between the development and testing
teams easy and quicker than ever before using Visual Studio 2013.

When we talk about testing, the most important and common form of testing that comes to
mind is unit testing. Unit testing is a method by which the developers test their source code
by factoring the smallest portion of the program called units, which can be individually tested,
and calling these units from outside using various logical test cases or a range of values. This
method finally asserts the expected output with the actual output from the program. In most
cases, unit tests are written by the White Box testers during the development process.

White Box testing is done by testing the internal structure
and working of an application.

Visual Studio 2013 comes with lot of advanced tools and techniques that can be used from
inside the IDE to help developers easily write and run test cases on the code that they have
been working on. Some of the interesting tools include:

ff Test Explorer: This lists all the unit tests that can be run from inside the IDE with
logical grouping of tests based on the status of the test case. Test Explorer can also
include third-party frameworks that have an adapter for the Test Explorer.

ff Microsoft Unit Test Framework: This is a general purpose test framework that is
installed with the Visual Studio IDE to write unit tests.

ff Code Coverage Tools: This tool helps to find the amount of code that the unit test
covers from a single command in the Test Explorer.

ff Microsoft Fakes Isolation Framework: This allows you to create classes and
methods that can generate fake dependencies between various modules of the
code that are in the testing phase.

It is worth noting that unit testing is a part of Visual Studio Test
Framework defined inside the Microsoft.VisualStudio.
QualityTools.UnitTestingFramework.dll
assembly, which is not a part of the .NET framework but a part
of the Visual Studio IDE. You can work with the unit testing
capabilities of Visual Studio using any version of Visual Studio
except the Express edition.

In this chapter, we are going to cover some of the interesting and useful ways to define tests
for our code.

Chapter 5

181

Understanding Visual Studio unit test
projects

Writing a test project inside the Visual Studio IDE has never been easier than that in Visual
Studio 2013. A lot of tools inside the IDE makes it very easy to work on unit testing for an
existing project and write superior test cases for the application. Microsoft has invested
special efforts to make testing inside Visual Studio 2013 seamless for a developer who is
already aware of how to write code inside Visual Studio. For instance, rather than running the
project in the debugging mode, Visual Studio also provides shortcuts to build a project and
run tests on it simultaneously. Now, let's see how to test an application inside Visual Studio in
simple terms.

Getting ready
Before writing the actual test projects, let's first define a class that we need to test. For simplicity,
let's consider a simple class called Salary, which will get the salary of an employee based on
certain logic around his age. To implement, let's Open Visual Studio 2013 and create a library
class and name it UnitTestingSample. Get rid of the default class produced and add a new
class file called Salary. The implementation will look like what is shown in the following code:

public class Salary
{
 public const string ARGUMENTLESSTHAN20 = "Cannot calculate salary
of a person below age 20";
 public const string ARGUMENTGREATERTHAN85 = "You are too old to be
valid for pension";
 string name;
 int age;

 public Salary(string name, int age)
 {
 this.name = name;
 this.age = age;
 }

 // For simplicity we define salary by age.
 public float GetSalary()
 {
 int baseSalary = 20000;
 int ageSeed = this.age - 20;

Testing Applications Using Visual Studio 2013

182

 if (ageSeed < 20)
 throw new ArgumentOutOfRangeException(ARGUMENTLESSTHAN20);
 if (this.age > 85)
 throw new ArgumentOutOfRangeException(ARGUMENTGREATERTH
AN85);
 float pensionFraction = 1.0f;
 if (this.age > 60) //retired
 {
 ageSeed = 40; //(60 - 20)
 pensionFraction = 0.5f;
 }
 float actualSalary = (baseSalary * ageSeed) * pensionFraction;
 return actualSalary;
 }
}

The preceding class takes two arguments in its constructor, which will be stored as the name
and age of an employee using a constructor. The GetSalary method is a method that will
invoke logic to determine the salary of a person based on the following:

ff The salary cannot be determined if the age of a person is less than 20 or greater
than 85

ff Salary equals age multiplied by base salary, which is taken to be 20,000 when the
age is less than 60

ff Salary equals 50 percent of the final salary at age 60 as pension

How to do it...
Now, let's create a project and see how to test an application:

1.	 To test the previous method, let's add a new Unit Test Project to the solution
and call it UnitTestingSample.Tests.

2.	 Remove the default class generated from the template and add a new unit test class
to the project. We will call it SalaryTests.

3.	 Add a reference to UnitTestingSample using the Add Reference dialog box to test
the project.

Chapter 5

183

4.	 Add a new method to test the GetSalary method. The test method should always be
named according to the NameofMethod_WhatToTest_ExpectedResult logic. For
the first TestMethod, we are going to pass ValidValues and expect a valid result:
[TestClass]
public class SalaryTests
{
 [TestMethod]
 public void GetSalary_ValidValues()
 {
 //arrange
 int age = 50;
 float expected = (20000 * (age - 20)) * 1;
 Salary osalary = new Salary("John", age);

 //act
 float actual = osalary.GetSalary();

 //assert
 Assert.AreEqual(expected, actual, string.Format("Expected
{0} not equals actual {1}", expected, actual));
 }
}

In the preceding TestMethod, we use 50 as the age of the employee John so that
we receive the value based on the logic as expected. Notice that we defined the
name of the method based on the nomenclature defined to write test methods.

We divide any TestMethod into the following three sections:
ff Arrange: This section defines the prerequisites to call

the method
ff Act: Here, the method is actually called and the result

is stored
ff Assert: In this section, we write various assert

statements on the expected and actual

We also need to annotate the method with TestMethod, and the actual class that
defines the Test class with the TestClass attribute.

5.	 Build the project and open Test Explorer. Test Explorer will identify the TestMethod
automatically and list them inside Visual Studio.

6.	 Run the TestMethod that states GetSalary_ValidValues and you should see
the test pass.

Testing Applications Using Visual Studio 2013

184

7.	 Now, to check whether the test actually ran before giving the result using
TestExplore, add a value with the expected result and rerun the test again;
the test will eventually fail. When the test fails, the assert failure message is
shown to indicate failure, as shown in the following screenshot:

In the preceding screenshot, the Test Explorer lists the tests that have intentionally
failed by changing the value of expected. When you click on any of the failed tests, the
Explorer lists the assert failure message returned with a complete listing of the actual
and expected values. You can fix the problem easily by clicking on the test result, which
will directly point you to the code, or using StackTrace to find the trace results.

8.	 Let's add another method to test what will happen when we pass an age less than 15:
[TestMethod]
[ExpectedException(typeof(ArgumentOutOfRangeException))]
public void GetSalary_WhenAgeLessThanTwenty__
ShouldThrowException()
{
 //arrange
 int age = 15;
 Salary osalary = new Salary("John", age);

 //act

Chapter 5

185

 float actual = osalary.GetSalary();

 //assert
}

When the value for the age is less than 20, we get an exception from the method,
which indicates that the salary cannot be returned for a person below age 20.
To assert an exception, we have used the ExpectedException attribute and
annotated it with a method. This attribute indicates that the method should throw
an exception when the test runs.

9.	 Run the test again to ensure that it passes.

10.	 The method can throw ArgumentOutOfRangeException for cases where the
age is less than 20 or greater than 85. Let's test the second case where the age is
greater than 85:

[TestMethod]
public void GetSalary_WhenGreaterThanEightyFive_
ShouldThrowException()
{
 //arrange
 int age = 90;
 Salary osalary = new Salary("John", age);

 //act
 try
 {
 float actual = osalary.GetSalary();
 }
 catch (ArgumentOutOfRangeException e)
 {
 //assert
 StringAssert.Contains(e.Message, Salary.
ARGUMENTGREATERTHAN85);
 return;
 }
 Assert.Fail("No exception was thrown");
}

In the preceding code, we have used the try/catch blocks to determine the
argument. The StringAssert.Contains method will compare the message that is
received by the argument exception with the expected string to indicate whether the
assertion is passed. In the preceding code, we place Assert.Fail in the final step
to indicate that we don't have an exception. Finally, run the tests again and ensure
everything is passed.

Testing Applications Using Visual Studio 2013

186

How it works...
The Visual Studio IDE has built-in unit testing. Visual Studio is capable of determining
TestClass and TestMethod automatically when tests are run. It automatically browses
the entire project hierarchy and finds all the classes that are annotated with the TestClass
attribute. It also lists the names of all the methods defined inside them and annotated with
the TestMethod attribute inside the Test Explorer of Visual Studio. The Test Explorer can be
used to run the test methods directly within it, which will call the tests, run them, and show
the asserted result on the screen.

The IDE determines the failure or success based on the assert statements. An assert
statement determines the validity of the statement when Visual Studio runs the method. The
method produces an exception when an assert statement fails logically, which is captured by
the IDE and the results are shown on the screen. In other words, if you call the TestMethod
from outside, it will produce AssertFailedException if the expected and actual value
differs. This exception is handled by Visual Studio to show a failure inside the IDE.

There are a number of APIs available for the Assert method, which are useful in various ways:

ff Assert.AreEquals: This fails when two values differ

ff Assert.AreSame: This fails when two objects point to different locations

ff Assert.Fail: This fails irrespective of any logic

ff Assert.IsTrue/Assert.IsFalse: This determines the failure based on a true or
false condition

ff Assert.IsNull/Assert.IsNotNull: This fails when an object points to null

Similar to Assert, there are a number of other classes that are used to test values, such as
StringAssert and CollectionAssert, which work specially on a set of types.

There's more...
As you've already got the basic idea of unit testing, let's help you further understand the
additional features.

Testing private types and members
Sometimes, it becomes essential to test a private type or a private member of a type.
Let's create a new UnitTest class on the same project and call it SalaryPrivateTests.
The unit testing API provides two classes to handle private types and members:

ff PrivateObject

ff PrivateType

Chapter 5

187

The PrivateObject class is used to invoke private members of a type. To test this feature,
let's test the validity of the Salary class constructor as follows:

[TestMethod]
public void TestPrivateMembers()
{
 //arrange
 string name = "Abhishek";
 int age = 30;
 Salary osalary = new Salary(name, age);

 //act
 PrivateObject pObj = new PrivateObject(osalary);

 //asset
 Assert.AreEqual<int>(age, Convert.ToInt32(pObj.GetField("age")));
 Assert.AreEqual<string>(name, pObj.GetFieldOrProperty("name") as
string);
}

In the preceding code, the instance of PrivateObject is used to get the private data
members defined in the Salary class using GetField or GetFieldOrProperty to
determine the validity of the constructor. The PrivateObject class provides methods
such as GetField, GetProperty, SetField, and SetProperty to handle private fields,
properties, or methods. You can call a Private method using the Invoke method from the
PrivateObject instance.

The PrivateObject class is used to test instance members of a private type. When
there is a need to test a private static member, we need to use PrivateType instead of
PrivateObject. Let's add a simple static method to the Salary class, which takes an
object of the salary and returns the name associated with the object:

static string GetName(Salary oSalary)
{
 return oSalary.name;
}

The preceding code takes an object of the Salary class and retrieves the name associated
with it. To test this method, we need to create an instance of the PrivateType class
as follows:

[TestMethod]
public void GetName_StaticMethodTest()
{
 //arrange
 string name = "Abhishek";

Testing Applications Using Visual Studio 2013

188

 int age = 30;
 Salary osalary = new Salary(name, age);

 //act
 PrivateType pType = new PrivateType(typeof(Salary));
 string returnValue = pType.InvokeStatic("GetName", osalary) as
string;

 //assert
 Assert.AreEqual(name, returnValue);
}

In the preceding code, the PrivateType class allows you to call the private static member
GetName and get the result of the method. Similarly, using the object of PrivateType, we
can call the static field, properties, and so on using GetField and GetProperty.

Using code coverage results
From Test Explorer, Visual Studio 2013 allows you to analyze a project to ensure that all the
lines of the project are tested. The Code Coverage window allows you to get an estimate on
how much code has already been tested by the test cases defined in the unit testing project.

Let's say we comment out all the tests other than the GetSalary_ValidValues method
from the project and rerun them. You will see that the tests have been passed to the Test
Explorer. Once the tests have been passed, right-click on the test entry in the Test Explorer
and select Analyze Code coverage for Selected Tests. The project will be analyzed and the
result will be displayed inside the IDE.

In the following screenshot, how much code has been covered by the selected test has been
shown. The GetSalary method listed on the Code Coverage Results window shows 50%. If
you choose Show code coverage coloring form the Result pane, it will annotate all the lines
that have been tested.

Chapter 5

189

If you uncomment all the test cases for the project and run the code coverage, you will see
that a lot more lines of the GetSalary method are colored in blue, which indicates that the
lines are covered by test cases.

Dealing with test-driven development in Visual Studio
Test-driven development is a new way of developing code, where the test cases are written
before the actual code is written. Visual Studio IDE helps in developing the actual code from
the test cases easily. To create a test-driven method, let's create a unit testing project in Visual
Studio and name it TDDSample.Tests.

Get rid of the default test file and create a new unit test class on the project. Create a test
case and name it BasicDivideTest:

[TestMethod]
public void BasicDivideTest()
{
 //arrange
 Calculator ocalc = new Calculator();
 double expected = 4d;
 //act
 double actual = ocalc.Divide(20d, 5d);

 //assert
 Assert.AreEqual(expected, actual);
}

Testing Applications Using Visual Studio 2013

190

In the preceding code, we created an instance of the Calculator class that does not exist
and call its Divide method with two double arguments. Now, we need to generate the class
and the method automatically.

Let's add a new project to the solution and call it TDDSample. Right-click on Calculator in the
code and select the New Type option from Generate, as shown in the following screenshot:

The new type pops up a new window, where you need to choose the correct project to
autogenerate the Calculator class. Once the class is generated, you can again right-click
on the Divide method and generate it inside the calculator class in a similar way.

Next, when we run the test from Test Explorer, it fails as the method throws
NotImplementedException by default. If you select the test entry from Test Explorer,
you will be navigated to the actual method. Let's now write the code that will ensure that
the test passes:

public double Divide(double p1, double p2)
{
 return p1 / p2;
}

If we run the test again, it will pass because the result returned by the Divide method is
valid for the test case.

Now, let's validate our test using a range of values:

[TestMethod]
public void RangeDivideTest()
{
 //arrange
 Calculator ocalc = new Calculator();

 //act
 for(double p1 = -100d; p1 < 100d; p1 ++)
 for (double p2 = -100d; p2 < 100d; p2++)
 {
 double expected = p1 / p2;
 AssertRange(ocalc, p1, p2, expected);
 }

Chapter 5

191

}

private void AssertRange(Calculator ocalc, double p1, double p2,
double expected)
{
 double actual = ocalc.Divide(p1, p2);

 //Assert
 Assert.AreEqual(expected, actual);
 Assert.IsFalse(Double.IsInfinity(actual));
}

In the preceding code, we try to test a range of values for p1 and p2 from -100 to +100. The
test will fail because when the value of p2 is 0, the result will be returned as infinity. A check
of Double.IsInfinity will ensure that the assert statement fails.

Let's add a code snippet to fix the problem:

public double Divide(double p1, double p2)
{
 if (p2 == 0 || p1 == 0)
 return 0;

 return p1 / p2;
}

Here, we validated p1 and p2 to return 0. Hence, the code will run.

See also
ff Refer to creating and running unit tests in a managed environment at

http://bit.ly/TestRuntime

Working with the Microsoft Fakes
framework in Visual Studio

Isolation of the dependencies in code by mocking or faking objects is one of the common
norms when developing unit tests or creating a Test-driven development. People write
mocking objects that can be used to redirect calls to some dependent objects in order to
independently test modules. There are also a number of frameworks that generate mocking
objects automatically based on the existing dependencies without having to use any
handwritten objects. The Visual Studio 2013 Ultimate edition comes with a new Microsoft
Fakes framework that takes mocking to a new level.

http://bit.ly/TestRuntime

Testing Applications Using Visual Studio 2013

192

If you have used Microsoft Moles before, you will find that the Fakes framework has a very
similar workflow. Moles was originally designed for Microsoft Pex, which is another great unit
testing tool by Microsoft Research. Moles became popular because it could virtually create
mocks on anything and was so simple that there was hardly any overhead on using it. Moles
provided a type safe detour framework with very clear semantics. For example, any .NET method
in Moles is represented by a delegate. Microsoft replaces Moles in Visual Studio 2013 with the
Microsoft Fakes framework, with the working principles defined almost the same as it.

Microsoft Fakes uses stubs and shims to replace other parts of the dependencies while testing
a unit. These are small pieces of code that are used in tests. Thus, replacing unnecessary
dependencies using stubs and shims ensures that you find an appropriate cause of a test
failure. Stubs and shims are helpful to test parts of the code that are still to be implemented.

ff Stubs: This replaces the call of one class with another class implementing a common
interface. To use stubs, the design of the test method should always use an interface
to call an object rather than calling the class directly. Typically, we use stubs for the
components that are defined inside the same assembly.

ff Shims: This modifies the compiled code of the application at runtime replacing the
original calls to some API with a shim code defined inside the test providers. Shims
are slow and require runtime to rewrite the code during compilation.

In this recipe, we are going to create tests for the code that has external dependencies either
from the .NET class library or from inside our own code.

Getting ready
Before going ahead, it would be a good idea to create code that can be tested using the
Microsoft Fakes framework. The following static method checks whether the current date
is December 21, 2012, and based on this, it will throw an exception:

public static void DoomsDay()
{
 if(DateTime.Now.Equals(new DateTime(2012, 12, 21)))
 throw new Exception("Time's Up !!!! World will end now");

 //Other code
}

Chapter 5

193

You can see that it is as a static method but it has the DateTime.Now static property
tied to it, which makes it very hard to test the method and generate an exception. As the
DateTime.Now property is defined inside the .NET framework and will evaluate DoomsDay
only when the system date reaches that particular day, it will become mandatory to replace
the call with some fake calls:

public static void DeleteTemporaryData(string dirLocation)
{
 Directory.Delete(dirLocation, true);
}

Similar to the preceding code, DeleteTemporaryData will delete the entire directory that
has been passed recursively.

We will create an interface ILogger to implement the Logger utility. To test the stubs,
we will call the interface to create an external dependency:

public string GetEventName(ILogger logger)
{
 if (logger.IsLoggerEnabled)
 logger.Log("GetEventName method is called");

 return "Sample Event";
}

Here, the ILogger interface has one Boolean property IsLoggerEnabled and a Log
method to write the log entry from the logger.

How to do it...
Let's take a look at how we can create a Fakes project solution in the following steps:

1.	 Add a new unit test project to the solution and name it MSFakesSample.Tests.

2.	 Get rid of the default file and create a test unit.

Testing Applications Using Visual Studio 2013

194

3.	 Add a reference to the class library that we need to test the test project. To enable
Fakes types for an assembly, go to the Solution Explorer pane, open References,
right-click on the assembly that you want to Fake, and select Add Fakes Assembly.
This will automatically create a Fake assembly with all the additional features to call
it just like a normal one. It is necessary to create a Fake assembly for System.dll.
We can right-click on the normal assembly to create its Fake, as shown in the
following screenshot:

4.	 Once the Fake assembly is created, let's test the DoomsDay method we created
earlier. As a test case, we need to generate an exception, which is only intended
for December 21, 2012. We use shims to define a Fake implementation of
DateTime.Now inside ShimsContext:
[TestMethod]
[ExpectedException(typeof(Exception))]
public void DoomsDay_Test_Shims()
{
 using (ShimsContext.Create())
 {
 ShimDateTime.NowGet = () => new DateTime(2012, 12, 21);
 DiagonizeShims.DoomsDay();
 }
}

In the preceding unit test, the Fakes assembly for the project automatically creates
intercepts that can redefine the existing APIs. Here, inside ShimsContext we
redefine the Get method of the property. Now using Delegate, which returns a
valid date, a call to the DoomsDay method generates the expected exception.

Chapter 5

195

5.	 Notice that DateTime.Now is defined in mscorlib.dll, which has been faked
using the Fakes framework. You can also specify BehaveAsNotImplemented to
ensure that an API throws NotImplementedException when it is called:
[TestMethod]
[ExpectedException(typeof(ShimNotImplementedException))]
public void DeleteDirectory_BehaveNotImplemented()
{
 using (ShimsContext.Create())
 {
 ShimDirectory.BehaveAsNotImplemented();
 DiagonizeShims.DeleteTemporaryData(Environment.
GetFolderPath(Environment.SpecialFolder.ApplicationData));
 }
}

In the preceding code, DeleteTemporaryData generates
ShimNotImplementedException because we defined the Fakes
implementation of the Directory class to BehaveAsNotImplemented.
Remember that the shims implementation will only work on the calls
inside ShimsContext.

6.	 Unlike shims, stubs on the other hand are used to fake virtual types, such as
interfaces, abstract classes, and virtual methods. Stubs cannot be used in a
nonvirtual context, such as private, sealed, or static types. To write a unit test
for the GetEventName method, we use a stub for the ILogger interface so
that it does not actually log data, rather it calls the custom test logger stubs:
[TestMethod]
public void GetEventName_Test()
{
 //Arrange
 var sLogger = new StubILogger
 {
 IsLoggerEnabledGet = () => true
 };
 var sut = new DiagonizeStubs();
 //Act
 var result = sut.GetEventName(sLogger);

 //Assert
 Assert.IsFalse(string.IsNullOrEmpty(result));
}

Testing Applications Using Visual Studio 2013

196

In the preceding code, the test will call StubILogger, which is a fake implementation
of the ILogger interface and is used instead of the actual Logger class. The
StubILogger variable exposes properties that enable the tester to assign a delegate
for the Get and Set methods of the properties and other methods associated with the
interface. Here, we have changed the default implementation of the Get method of
IsLoggerEnabled to return the true value.

7.	 Stubs can also be associated with an observer. An observer allows you to record calls
on stubs. The Fakes framework ships its own observer, which allows you to record every
call and argument made in the stub just like any other standard isolation framework.
Thus, we can rewrite the preceding test with an observer like the following one:
[TestMethod]
public void GetEventName_Test_Fakes()
{
 //arrange
 var stubLogger = new StubILogger { IsLoggerEnabledGet = () =>
true };
 var diagonizeStub = new DiagonizeStubs();
 var observer = new StubObserver();
 stubLogger.InstanceObserver = observer;

 //act
 diagonizeStub.GetEventName(stubLogger);
 var calls = observer.GetCalls();

 //assert
 Assert.IsNotNull(calls);
 Assert.AreEqual(2, calls.Length);
}

Here, we have created an instance of StubObserver, which is assigned to
InstanceObserver for the logger implementation. If you remember the actual
definition of GetEventName, it first checks the value of IsLoggerEnabled
before calling Log. The preceding code will observe two calls: one to the
IsLoggerEnabledGet method and another to the LogString method.

8.	 Finally, if we run all the tests, they will pass. This indicates that the stubs and shims
actually injected Fake code to isolate dependencies in the application.

Chapter 5

197

How it works...
The Microsoft Fakes framework provides a superior technique to isolate a portion of the
code from external sources. Shims and stubs are important picks to implement the level
of isolation. Shims are used mainly to test the untestable code that comes with calls from
third-party components with a lot of statics and privates. Shims rewrite the code completely
during compilation to replace the actual calls during testing, and hence it requires a long
time to load. Stubs, on the other hand, are recommended for virtual types, which are much
faster with minimum or no code replacement during compile time.

In the following diagram of the component, the test uses the component that has the
dependency of some external files (System.dll) and some other components defined in
the assembly. When an isolation technique is taken, the component replaces the calls to
the external components with shim methods and other internal calls, using stubs.

Stubs for ILogger
and other

components
System.dll

Other
Components

ILogger
Shim Methods

My Tests

My Component

My Tests

My Component

Shim replaces all the calls to a method inside its context with a new implementation, if
provided. For instance, if you take a closer look at the implementation of ShimDateTime.
NowGet in the preceding assembly using .NET Reflector, you will find that ShimRunTime
replaces DateTime. The NowGet property with the delegate that we have passed data to
the TestMethod is shown in the following code:

public static FakesDelegates.Func<DateTime> NowGet
{
 [ShimMethod("get_Now", 24)]
 set
 {
 ShimRuntime.SetShimPublicStatic((Delegate) value,
typeof(DateTime), get_Now", typeof(DateTime), new Type[0]);
 }
}

Testing Applications Using Visual Studio 2013

198

In the preceding implementation of NowGet, you can see that the delegate we passed to the
property is replaced with the actual get_Now method of the DateTime object only within
the current context. On the other hand, calling the BehaveAsNotImplemented() method
injects NotImplementedException inside the actual definition of the methods that are
defined in the Directory class present inside the context. Thus, shims ensure that calls to
any API are properly replaced to call a Fake assembly rather than the actual API call.

Unlike shims, stubs implement interfaces inside the Fake assembly. It ensures that all the
methods (even the Get and Set methods of property) expose a matching property of the
delegate type to enable the test environment to replace the default content when required.
Shims also make calls to the observer to ensure that all the calls to the methods and
properties are logged on the observer. If we see the implementation of StubILogger,
we can also see that there are delegates defined for each of the three methods as follows:

 public FakesDelegates.Func<bool> IsLoggerEnabledGet;
 public FakesDelegates.Action<bool> IsLoggerEnabledSetBoolean;
 public FakesDelegates.Action<string> LogString;

The delegates passed to these methods will be called when the actual methods are called
from the test environment.

See also
ff Refer to the isolating code testing using the Microsoft Fakes section at

http://bit.ly/MSFakesTest

Understanding how Coded UI testing works
in Visual Studio

Visual Studio offers a Coded UI Test builder to record interactions with the application so that
the tester can generate UI test cases automatically, and rerun the tests later on the projects to
ensure everything is working as expected.

Coded UI Test refers to the black box testing that is performed by the application testers after
the application development is finished. These tests include the testing functionalities of the
controls to ensure that the whole application including the user interface is working correctly.
Coded UI Tests are very useful when there are some validations or other logic in the user
interface needed to be tested.

In this recipe, we are going to create a small application and try to test its functionalities using
Coded UI Tests.

http://bit.ly/MSFakesTest

Chapter 5

199

Getting ready
Let's create a small WPF application project. We will call it CodedUITestSample. Once the
project is created, it will display a blank window with the designer. Drag a TextBox, Button,
and TextBlock class onto the designer. We will add logic to reverse the characters present
in the TextBox class, which means that whatever we write in the TextBox class will be
reversed and shown in the TextBlock class. We will name the TextBox class txtInput,
the TextBlock class tbReverseText, and the Button class btnReverse.

Reversing a string is very easy. It will take a few milliseconds to calculate. We will use a simple
method to reverse an input string, as shown in the following code:

private string ReverseString(string input)
{
 char[] charArray = input.ToCharArray();
 Array.Reverse(charArray);
 return new string(charArray);
}

The code looks very simple and it won't take long to get a visual clue of something the code is
working on. So, to create a visual illusion or rather to make the application do something, let's
go to the designer again and drag progressbar and Button. We will call the progressbar
class pbProgress and the Button class btnAgain.

Now, let's double-click on the Reverse button to create its handler method. We will add the
following code to reverse a string:

private void btnReverse_click(object sender, RoutedEventArgs e)
{
 string reverse = this.ReverseString(this.txtInput.Text);

 string isPalindromeString = string.Empty;
 if (this.txtInput.Text.Equals(reverse))
 isPalindromeString += ", and it is a palindrome";
 var msg = string.Format("The reverse is : {0}{1}", reverse,
isPalindromeString);
 this.Progress();
 this.tbReversedText.Text = msg;
 this.btnAgain.Visibility = System.Windows.Visibility.Visible;
}

The ReverseString method is called to get the reverse of a string and produces a message.
In addition to reversing a string, the btnReverse_click method will also check whether the
string input is a palindrome (which means the reverse of the input is the same), and adds a
message to it.

Testing Applications Using Visual Studio 2013

200

We also added a progressbar class to indicate the progress of the reverse. But Array.
Reverse works instantaneously and it wouldn't take much time to show the progress of the
method. Let's add some code to simulate the progress of the progress bar. To do this, we will
add the following delegate:

private delegate void ProgressBarDelegate(DependencyProperty dp,
Object value);

The delegate will be used to point to SetValue of the progressbar class. Let's add a code
snippet to show the progress of the ProgressBar class:

private void Progress()
{
 this.pbProgress.Visibility = System.Windows.Visibility.Visible;
 double progress = 0;

 ProgressBarDelegate updatePbDelegate = new
ProgressBarDelegate(pbProgress.SetValue);

 do
 {
 progress++;
 Dispatcher.Invoke(updatePbDelegate, DispatcherPriority.
Background,
 new object[] { ProgressBar.ValueProperty, progress });
 pbProgress.Value = progress;
 Task.Delay(100);
 }
 while (pbProgress.Value != pbProgress.Maximum);
 this.pbProgress.Visibility = System.Windows.Visibility.Collapsed;
}

In the preceding code, the updatePbDelegate delegate points to the SetValue method of
the progressbar class and the value gets updated in the background using Dispatcher.
Invoke. In the preceding code, the progressbar class iterates by one and halts it by 100
milliseconds with each iteration until finally it reaches the maximum value. Once it is reached,
progressbar is set to invisible again. Hence, we call this method before showing the
message on btnReverse to ensure that the progress is shown on the screen when the
Reverse button is clicked.

Chapter 5

201

We again return to the designer and double-click on btnAgain to write code for it. In this
method, we turn off the visibility of pbProgress and btnAgain and clear txtInput and
tbReverse.Text.

We finally run the application to ensure everything is working.

How to do it...
Now, as our sample application is ready, it is a good time to start testing the program using
Coded UI Tests:

1.	 Add a new project to the solution, select Coded UI Test, and name the project
CodedUITestSample.Tests.

2.	 Once the project is added to the solution, you will be prompted with the following
pop-up window:

In the pop-up window, the program asks to either click on Record actions, edit UI
map or add assertions or Use an existing recording. An existing action recording is
used to load a recording from a file already created. As our application is brand new,
we choose the first option to start creating the recording from scratch.

Testing Applications Using Visual Studio 2013

202

3.	 After the application gets ready, it will automatically be minimized and you will see a
small tool window on the right-hand side of the screen to start the recording.

The preceding screenshot shows the tool window, which is shown when Coded UI
Test is added. Visual Studio does a good job showing a tooltip that indicates the
functionalities of the toolbar buttons. The Record button in red is used to start
recording the UI test.

4.	 Before you start the recording, let's go to the bin directory of the project and open
the application (you can find the project by default at My Documents\Visual
Studio 2013\Projects\CodedUITestSample\CodedUITestSample\bin\
debug), and create a desktop shortcut before you begin recording.

5.	 Open the file from the desktop and click on the Record button of Visual Studio.

6.	 After the recording has been started, we type Abhishek in the window and click on
Reverse. The progress bar appears to show the message. We click on Try again and
type madam and then click on Reverse again. Finally, we close the application.

Chapter 5

203

7.	 After the recording is finished, we click on Generate Code to save the recording as
code in a Visual Studio test project.

The Generate Code option takes a little while and finally asks the method name for
the code as shown in the preceding code. We name it ReverseStringTest and
click on the Add and Generate button to generate the code for the test.

8.	 Once Visual Studio is open, you will see two files. One that represents the
CodedUITest1 and calls recording, and the other one is UIMap.uitest. The UIMap
file holds information about the recording, and the CodedUITest1 file represents
the Test method, which calls the recording.

9.	 Double-click on the UIMap file to see the UI actions. On the right-hand side of the
screen, the explorer shows all the controls that have been identified by the recording.
If you open the application from the desktop again, right-click on any of the node on
the right-hand side, and select Locate the UI control. The application will mark the
control on the application window in a blue border.

Testing Applications Using Visual Studio 2013

204

10.	 On the left-hand side, the actions are listed. The header shows a few contextual
toolbar buttons, as shown in the following screenshot:

The buttons will help you to modify the UI test actions or perform actions on
UI Control Map.

11.	 As we would like to edit the code inside ReverseStringTest, it is important
to move the actions from the designer file inside UITests to the UIMap.cs file.
We can right-click on the method and select Move code to UIMap.cs.

12.	 If you run the test now from Test Explorer, the test will fail (remember to start the
application before calling the test). This is because the test will not pause until
Try Again becomes visible.

13.	 Let's open the UIMap.cs file and navigate to the ReverseStringTest method.
You will see all the actions that the method will perform once the test runs. We will
add a few lines to it to indicate that our test will always pass when it should:
public void ReverseStringTest()
{
 #region Variable Declarations
 WpfEdit uITxtInputEdit = this.UIMainWindowWindow.
UITxtInputEdit;
 WpfButton uIReverseButton = this.UIMainWindowWindow.
UIReverseButton;
 WpfButton uITryAgainButton = this.UIMainWindowWindow.
UITryAgainButton;
 WpfButton uICloseButton = this.UIMainWindowWindow.
UIMainWindowTitleBar.UICloseButton;

Chapter 5

205

 #endregion

 // Type 'Abhishek' in 'txtInput' text box
 uITxtInputEdit.Text = this.ReverseStringTestParams.
UITxtInputEditText;

 // Click 'Reverse' button
 Mouse.Click(uIReverseButton, new Point(30, 13));

 uITryAgainButton.WaitForControlExist(5000);

 // Click 'Try Again' button
 Mouse.Click(uITryAgainButton, new Point(184, 10));

 uITxtInputEdit.WaitForControlPropertyEqual("Text", "");

 // Type 'madam' in 'txtInput' text box
 uITxtInputEdit.Text = this.ReverseStringTestParams.
UITxtInputEditText1;

 uIReverseButton.WaitForControlEnabled();

 // Click 'Reverse' button
 Mouse.Click(uIReverseButton, new Point(37, 10));

 // Click 'Close' button
 Mouse.Click(uICloseButton, new Point(29, 9));
}

Here, we have added the highlighted lines. The first line will wait for the Try again
button to appear before it is clicked. We have specified a time-out value of 5 seconds,
hence if the Try Again button does not appear for 5 seconds, the test will fail.

Secondly, the test will wait to ensure that the Text property of txtInput is empty
before writing the next string.

Finally, the Reverse button will be checked to be enabled before it is clicked.

14.	 Now, if you go to the CodedUITest.cs file, navigate to the TestMethod, and run
the test, the test will pass.

15.	 To add an assertion to the test, we right-click on UIMap and select Edit with Coded
UI Test Builder. A small Test builder window will appear.

Testing Applications Using Visual Studio 2013

206

16.	 Drag the round crosshair to the control to add an assertion. For instance, let's type
madam in the application window and drag the crosshair to the label, and add an
assertion to detect the reverse. We will choose Add Assertion on DisplayText of the
UI element, and add a comparator Contains to it, as shown in the following screenshot:

In the preceding screenshot, we have added an assertion using the Add Assertion
button and checked a string.

17.	 We will click on the Generate method and call it AssertReverse. We add similar
assertion methods to check other assertions.

18.	 Finally, we will add the assertion inside the ReverseStringTest method to test the
reverse of the code appropriately. For instance, we include a reverse assertion to the
test by adding the following lines:
//Checks whether the label contains reverse string
string reverseString = this.ReverseString(this.
ReverseStringTestParams.UITxtInputEditText);
StringAssert.Contains(uIThereverseiskehsihbAText.DisplayText,
reverseString);

We add these lines just before the Click operation.

19.	 We will also place a palindrome check for the next observation:
reverseString = this.ReverseString(this.ReverseStringTestParams.
UITxtInputEditText1);
 bool isPalindrome = this.ReverseStringTestParams.
UITxtInputEditText1.Equals(reverseString);

 if (isPalindrome)

Chapter 5

207

 Assert.IsTrue(uITxtInputEdit.Text.
Equals(reverseString));

 StringAssert.Contains(uIThereverseiskehsihbAText.
DisplayText, "palindrome");

The preceding code checks the content of the label that contains a palindrome,
and also the input of the reverse of the string passed is a palindrome.

20.	 Finally, if you run the TestMethod, all validations will be observed and the test
will pass.

How it works...
To test a user interface, Coded UI Tests plays a vital role. Coded UI Test projects can record
user input, which is converted to TestMethod to run the tests whenever it is required. The
application automatically runs the tests using an operating system and the SendKeys or
MouseClick operation. It hooks the position of the pointer using the pointer location and
clicks on the exact same location of the window.

The window is identified by the HWND handle to run the test appropriately. Each Coded UI Test
has a few files associated with it, which are as follows:

ff UIMap.uitest: This is an XML file that represents the structure of the recording.
Visual Studio provides a good designer to work with the XML, which is created during
recording. The uitest file contains all the information about the controls and
properties. This file shouldn't be edited manually.

ff UIMap.designer.cs: This contains autogenerated code for the recording. This file
is recreated every time the test changes.

ff UIMap.cs: This is a partial class that contains customized code to extend the
functionalities of the UIMap class.

ff CodedUITest.cs: This is the main file that comprises the TestMethod. It calls the
Recorded method created on UIMap and runs when the test runs. It is the starting
point of the test and should contain at least one TestMethod.

There's more...
As we move forward on Coded UI Tests, we may require more options to fetch our needs. Let's
discuss some of the additional options that we have.

How to drive a test using predefined data
It is sometimes required to test an application with different kinds of data. The test can
be configured in such a way that it gets data from a certain data source and runs the tests
continuously using data one after another.

Testing Applications Using Visual Studio 2013

208

Let's create a CSV file to store data for our test inputs. In the application we built, the first
input is reversed, and the second input is reversed and checked whether it is a palindrome or
not. Let's say we create a data source with the following data and save it as a CSV file:

Input1,Input2
Hello,madam
Father,dad
Mother,mom
Store,refer
God,devoted

There are two columns for the CSV file and we will place a string in the first column and a
palindrome in the second column. Notice that the last row contains a word that is not a
palindrome, so any test using this data source will fail.

Now open CodedUITest and create another method. We will call it
CodedUITestMethod2_DataDriven. This method is not marked only as TestMethod,
rather we will be using the DataSource attribute in addition to the TestMethod:

[DataSource("Microsoft.VisualStudio.TestTools.DataSource.CSV",
 "|DataDirectory|\\DataDrivenTest.csv", "DataDrivenTest#csv",
 DataAccessMethod.Sequential),
DeploymentItem("DataDrivenTest.csv"), TestMethod]
public void CodedUITestMethod2_DataDriven()
{

 this.UIMap.ReverseStringTestParams.UITxtInputEditText =
TestContext.DataRow["Input1"].ToString();
 this.UIMap.ReverseStringTestParams.UITxtInputEditText1 =
TestContext.DataRow["Input2"].ToString();
 this.UIMap.ReverseStringTest();
}

The DataSource attribute takes a CSV file called DataDrivenTest.csv
with Sequential access. The DeploymentItem attribute specifies the files
and directories that are to be used by the method. We specify the filename.
We can also use the whole path here to define the custom URL of the file. By
default the file is searched in the bin folder.

The REverseStringTestParams function contains the two inputs that are used by the
TestMethod. So before calling the ReverseStringTest method, we will change the value
of Params using the contextual parameter Textcontext. The DataRow method will contain
values from DataSource.

Chapter 5

209

When you run the test from Test Explorer and then run the application, you will see that the
application automatically gets values from the CSV file and the test runs.

You can also use Excel, Test Case in Team, Foundation Server XML, or SQL Server to get the
data source.

For more information, you can refer to http://bit.ly/XRirt7.

How to analyze UI tests
When running Coded UI Tests, the application logs a screenshot with some additional items
in the TestResults folder of the test. If you check the contents of the folder, you will see
that there are a few folders that take screenshots of all the times the application is executed.
These screenshots are available from Test Explorer when running the test.

When a test fails in Test Explorer, there is a link that says Output can be clicked to see the
detailed logs available for that particular test. You will see a screenshot being taken before
the test runs.

These logs can be presented in some other format to identify debugging issues. To do this,
we need to change QTAgent32.exe.config. This is the file that sets the configuration
of the Coded UI Logs. The default location of the file is C:\Program Files (x86)\
Microsoft Visual Studio 12.0\Common7\IDE.

http://bit.ly/XRirt7

Testing Applications Using Visual Studio 2013

210

You can change the value of EqtTraceLevel of the file to include more verbose logging.
If you set EqtTraceLevel = 1 or higher, it will produce HTML logfiles too.

If you set EqtTraceLevel = 3 or higher, screenshots will be taken for each action of
the test.

Here, the EqtTraceLevel is set to 2 and hence the application will produce HTML logs.
If you run the project again, it will show HTML logs for each test.

In the preceding case, the word devoted has failed, which is seen in the HTML logs of the
test output.

See also
ff To learn more about working with Coded UI Tests in Visual Studio, refer to

http://bit.ly/CodedUITest

http://bit.ly/CodedUITest

6
Extending the

Visual Studio IDE

In this chapter, we will cover the following recipes:

ff Working with T4 templates in Visual Studio

ff Working with Managed Extensibility Framework to write editor extensions

ff Creating Visual Studio Package for tool windows and editor menus

Introduction
Visual Studio 2013 being the day-to-day tool for many developers gives rich user experiences
such that it eases the development and debugging process. We have discussed a lot of
functionalities in Visual Studio that enhance the power of the tool and also come in handy
while working with code. Some of the features might help in sharing code from the tool itself
while some are entirely regarding team activities. However, even though there are so many
features prebuilt with the system, the community has always supported more features for
advanced users. Visual Studio 2013 provides a wide ecosystem of extensibility so that people
who want to customize the feel of Visual Studio can implement an environment of their own,
rather than using the existing default environment supported by Visual Studio.

Extending the Visual Studio IDE

212

In this chapter, we are going to cover some of the extensibility points that can be used to
enhance Visual Studio and also to enhance or customize the overall experience of the IDE
best suited for a particular individual or organization.

Visual Studio Extensibility requires you to install the Visual Studio SDK.
The SDK provides a wide range of tools, project templates, and reference
assemblies that are required to build extensions in Visual Studio 2013.
If you haven't installed the SDK yet, try installing it from http://www.
microsoft.com/en-in/download/details.aspx?id=40758.

The following are the different ways to build extensions in Visual Studio:

ff For a new programming language or a new project system, you can use Visual Studio
Package to create an entire package and install it in the client machine

ff For applications that require Visual Studio to be integrated, you can use the Visual
Studio Isolated Shell extensions

ff For editor and other components, you can use the Managed Extensibility
Framework (MEF) components to plug in your components to Visual Studio

ff You can use T4 templating in Visual Studio to help/enhance the code generation in
Visual Studio

Working with T4 templates in Visual Studio
Visual Studio supports a number of extension techniques that help in customizing an
application or application parts. It is an integrated IDE that provides various ways of tooling,
which may often be required by the application developer while creating and/or debugging an
application. Many of the features that exist in Visual Studio are merely related to working with
Visual Studio or its debugging capabilities. With the versatility of Visual Studio, people use it to
develop tools that require two to three lines of .NET code for an application that could spread
over one hundred thousand lines of code or even more. People write so much code inside the
IDE that many of the IDE features are solely related to writing code in Visual Studio. However,
when working with big projects, there are some parts of code that could be automatically
generated with a fixed set of data. We often need to rely on external tools that can generate
files with source code or write our own. These extensions help in writing iterative code,
generating a class from XML/JSON or other data formats, or even writing database-driven
classes. Code generation is an important part of day-to-day coding as a large portion of the
application may be autogenerated. To customize the code generation process of generating
code inside Visual Studio, you have the following two options:

ff Write your own customized tool using ResXFileCodeGenerator and install it
in Visual Studio

ff Use T4 templates

http://www.microsoft.com/en-in/download/details.aspx?id=40758
http://www.microsoft.com/en-in/download/details.aspx?id=40758

Chapter 6

213

We are going to cover T4 templates in this section and create some classes on the fly. Let's
take a look at the benefits of T4 templates:

ff T4 templates are raw text files (with a .tt extension) that can be directly included
inside Visual Studio Solutions

ff TextTemplatingFileGenerator parses the file automatically
ff They can work on several project files at a time
ff Changes in T4 templates automatically recreates/updates the generated code
ff Visual Studio automatically lists the generated file inside the T4 template file
ff They can be written in any .NET language (VB.NET or C#)

In this recipe, we are going to create a T4 template inside the Visual Studio IDE and generate
some runtime code based on a static XML file.

Getting ready
Although it is worth noting that T4 templates are very easy to write and pretty straightforward,
the only catch is to identify the code generation blocks and logic around the generated code.
We use a combination of <# and #> inside a .tt file to add logic around a generated file,
and directly write the text content to get them printed in the file.

Let's add a console application, for the time being, and a FirstTemplate.tt file to the
solution. Once the file is added, it will display a warning message, Running the text template
can potentially harm your computer….. At any time the .tt file is saved again, this generation
process is executed and the same message is displayed. You can get rid of this warning by
clicking on the Don't show this message checkbox.

How to do it...
In this recipe, we are going to create a number of classes dynamically from the database by
logging in to the SQL Server and getting the schema details such that every table is mapped
with a model class.

1.	 Remove all the content from the file and add the following content in place of the first
and second lines of the code:
<#@ template debug="false" hostspecific="false" language="C#" #>
<#@ output extension=".cs" #>

The first line of the preceding code defines the template header. The template header
defines whether the template is created as hostspecific. When hostspecific
turns true, you can query through the solution and files. The hostspecific
flag defines the language that has been used to write the logic. The output defines
the output file. The extension=".cs" value denotes whether the file that will be
generated by the system has a .cs extension.

Extending the Visual Studio IDE

214

2.	 As you already know that we can directly write content to the file, let's add some text
using it:
// This file is autogenerated from the T4 template
// Generated on <# Write(DateTime.Now.ToString()); #>

If you save the file now, you will see the generated file that contains the comments
with the date of creation.

3.	 The Write and WriteLine methods can be used inside <# -- #> to write the
code in the file. Here, the Write method is used to write the content directly in the
generated file. You can use PushIndent and PopIndent to indent your code and
use the Error and Warning methods to indicate an error or a warning message
when compiling:
<# PushIndent("	 "); #>
//The file is created by Abhishek Sur
<# PopIndent(); #>
<# Warning("The application automatically includes all the T4
generated classes."); #>

In the preceding code, a PushIndent method is invoked, which places tabstop in the
editor, such that any line created after that will be tabbed accordingly. The PopIndent
method helps in clearing the indent. Just to show a use case scenario, we added a
warning message that will display a message in the Error window of the project.

4.	 Let's now create a database connection and class files for each table where the
column names will act as properties:
CREATE DATABASE Test
GO

Create Table Country
(
 CountryId NVARCHAR(50) PRIMARY KEY,
 CountryName NVARCHAR(100),
 Capital NVARCHAR(100)
)
GO
CREATE TAble States
(
 StateId NVARCHAR(50) PRIMARY KEY,
 CountryId NVARCHAR(50),
 StateName NVARCHAR(100)
)

Chapter 6

215

5.	 Here, we created a Test database with two tables, a country, and states. To create
Table objects that map with those tables, we create a connection to the database
and search sys.tables for tables that will be later mapped with a class, and
sys.columns is used to search the columns present on the table to map the
properties. To do such thing, we write the following code:
<#@ template debug="false" hostspecific="true" language="C#" #>
<#@ assembly name="System.Core" #>
<#@ assembly name="System.Data" #>
<#@ import namespace="System.Data.SqlClient" #>
<#@ output extension=".cs" #>
// This file is autogenerated from the T4 template
// Generated on <# WriteLine(DateTime.Now.ToString()); #>
<# PushIndent("	 "); #>
//The file is created by Abhishek Sur
<# PopIndent(); #>
<# Warning("The application automatically includes all the T4
generated classes."); #>

<#
string connectionstring = "data source=192.168.1.201;Database=Test
;User ID=sa;Password=p@ssword;Trusted_Connection=False;Encrypt=Tru
e;Connection Timeout=30;";
var strcommandText = "select name, object_id from sys.tables where
type = 'U' and name not like 'sys%'";
SqlConnection scon = new SqlConnection(connectionstring);
scon.Open();
SqlCommand scmd = new SqlCommand(strcommandText, scon);
var reader = scmd.ExecuteReader();
while(reader.Read())
{
PushIndent("	 ");
string name = reader.GetString(0);
int objectid = reader.GetInt32(1);
WriteLine("public class " + name);
WriteLine("{");
PushIndent("	 ");

 string propCmd = "select name from sys.columns where object_id
= " + objectid.ToString();
 SqlConnection pscon = new SqlConnection(connectionstring);
 pscon.Open();
 SqlCommand pscmd = new SqlCommand(propCmd, pscon);

Extending the Visual Studio IDE

216

 var preader = pscmd.ExecuteReader();

 while(preader.Read())
 {
 string pname = preader.GetString(0);
 WriteLine("public string " + pname + " { get; set; }");
 }

 preader.Dispose();

 pscmd.Dispose();
PopIndent();
WriteLine("}");
PopIndent();
}
#>

In the preceding code, we imported the System.Core and System.Data assemblies.
The assembly instructions on the header will load the assembly. The import statement
imports the System.Data.SqlClient namespace. The following screenshot shows
how the classes Country and States are created using the preceding template:

Chapter 6

217

6.	 We then open a new connection to query the sys.tables database where the
type is U, which indicates the tables in the database, and we neglect the system
tables by omitting the tables that start with sys. We then open DataReader using
ExecuteReader to recursively call the sys.tables and sys.columns databases
to search for the properties and classes. When you save the .tt file, Visual Studio
will create two classes, Country and States, as shown in the following code:
// This file is autogenerated from the T4 template
// Generated on 2/10/2014 1:14:36 AM
 //The file is created by Abhishek Sur

 public class Country
 {
 public string CountryId { get; set; }
 public string CountryName { get; set; }
 public string Capital { get; set; }
 }
 public class States
 {
 public string StateId { get; set; }
 public string CountryId { get; set; }
 public string StateName { get; set; }
 }

Now, you can use the preceding code to create the table objects directly within
your project without rewriting the same schema repeatedly.

7.	 You can now go ahead and change the class definitions according to your
requirements, such as adding a constructor to the class, adding additional
methods, and creating base classes.

How it works...
The architecture of a T4 template is very simple. Every line of code that you write in a T4
template automatically inherits from a Template class, which has a TransformText
method that allows you to convert the text into a valid output file.

Every T4 environment maintains a StringBuilder object, which acts as a writer to write
lines in the output files. The <# -- #> combination is used to invoke the Write operation
in the T4 template. The StringBuilder object can be referenced anywhere using
this.GenerationEnvironment inside the T4 template file. The GenerationEnvironment
property will allow you to get the content already written in the output file using the tool.
When you save the .tt file, Visual Studio automatically calls the TransformText method,
which writes the output data to the file.

In the preceding recipe, we made a connection to the database to get the schema and
created the classes that could map the schema using normal ADO.NET classes.

Extending the Visual Studio IDE

218

There's more...
Even though we understand the basics of T4 templates, let's consider some more complex
scenarios that we generally come across while creating templates.

Creating multiple output files using T4 templates
T4 templates generally support a single output file, so whatever you write in the templates is
copied into a single output file. This makes the T4 templating system unusable as most of the
time we may be required to create multiple files and add them to the solution.

As I have already explained that you can use GenerationEnvironment to get a reference to
the already written text on the buffer, you can use a normal file writer object to write the files
to the location:

<#@ template debug="false" hostspecific="true" language="C#" #>
<#@ import namespace="System.IO" #>
<#@ output extension=".txt" #>
<#
string templateDirectory = Path.GetDirectoryName(Host.TemplateFile);
string outputFilePath = Path.Combine(templateDirectory, "1.txt");
Write("This goes to file1");
File.WriteAllText(outputFilePath, this.GenerationEnvironment.
ToString());

this.GenerationEnvironment.Clear();

outputFilePath = Path.Combine(templateDirectory, "2.txt");
Write("This goes to file2");
File.WriteAllText(outputFilePath, this.GenerationEnvironment.
ToString());
#>

The preceding code uses Host.TemplateFile to get the directory location path, where the
template file exists and write files directly in the same folder. The File.WriteAllText method
writes all the output text to the output files 1.txt and 2.txt. Once all the file content is written,
we need to remove the content by calling Clear on the StringBuilder object.

To use the Host object, you need to make the hostspecific flag in
the Template header true.

After saving the preceding code, if you look at the Solution Explorer pane, as shown in the
following screenshot, you will see that two files 1.txt and 2.txt have been created, but the
problem is that they are not included in the solution:

Chapter 6

219

Now to include the file in the solution, we need to use multiple template files so that we
can pass a parameter to a template file to write the content repeatedly. Thus, the files are
generated from another template each time with a new filename.

Let's create a template file, name it FileManager.tt, and add the following code to it:

<#@ template debug="false" hostspecific="true" language="C#" #>
<#@ import namespace="System.IO" #>
<#@ output extension=".txt" #>
<#+
void CreateFile(string fileName)
{
 string templateDirectory = Path.GetDirectoryName(Host.
TemplateFile);
 string outputFilePath = Path.Combine(templateDirectory, fileName);
 File.WriteAllText(outputFilePath, this.GenerationEnvironment.
ToString());
 this.GenerationEnvironment.Clear();
}
#>

The preceding code looks exactly the same as before. We just created a file with the
helper method. The CreateFile function takes a filename as the input, writes the
GenerationEnvironment property buffer to the file, and clears the content after
writing it.

It is worth noting that <# -- #> is used to write content directly to the
output file or <#= -- #> to write a single line, while <#+ -- #> is used
to list the helper methods. These short keywords can be ignored using
\ (backslash). Thus, if you want to write <# as the content, you can do so
by using the \<# or \#> syntaxes.

Extending the Visual Studio IDE

220

Now to include the file in the project, we need to use the EnvDTE objects for the host project.
Let's add the EnvDTE assembly and other Visual Studio Interop assemblies, as shown in
the following code:

<#@ assembly name="System.Xml" #>
<#@ assembly name="EnvDTE" #>
<#@ assembly name="Microsoft.VisualStudio.OLE.Interop" #>
<#@ assembly name="Microsoft.VisualStudio.Shell" #>
<#@ assembly name="Microsoft.VisualStudio.Shell.Interop" #>
<#@ assembly name="Microsoft.VisualStudio.Shell.Interop.8.0" #>
<#@ import namespace="System.Collections.Generic" #>
<#@ import namespace="System.Diagnostics" #>
<#@ import namespace="System.IO" #>
<#@ import namespace="System.Text" #>
<#@ import namespace="System.Xml" #>
<#@ import namespace="Microsoft.VisualStudio.Shell" #>
<#@ import namespace="Microsoft.VisualStudio.Shell.Interop" #>
<#@ import namespace="Microsoft.VisualStudio.TextTempating" #>

The following assemblies and imports are added to FileManager.tt. Then, we add two
lines at the end of the CreateFile method, as shown in the following code:

void CreateFile(string fileName)
{
 string templateDirectory = Path.GetDirectoryName(Host.
TemplateFile);
 string outputFilePath = Path.Combine(templateDirectory, fileName);
 File.WriteAllText(outputFilePath, this.GenerationEnvironment.
ToString());
 this.GenerationEnvironment.Clear();
 EnvDTE.ProjectItem templateProjectItem = __
getTemplateProjectItem();
 templateProjectItem.ProjectItems.AddFromFile(outputFilePath);
}

Here, we create the ProjectItem object for the currently created file and write the following
file inside the project:

IServiceProvider hostServiceProvider = (IServiceProvider)Host;
EnvDTE.DTE dte = (EnvDTE.DTE)hostServiceProvider.
GetService(typeof(EnvDTE.DTE));

The hostService method is used to get the ItempContext DTE service and add the
file to the project. We have used the article from http://www.codeproject.com/
Articles/16515/Creating-a-Custom-Tool-to-Generate-Multiple-Files
for reference.

http://www.codeproject.com/Articles/16515/Creating-a-Custom-Tool-to-Generate-Multiple-Files
http://www.codeproject.com/Articles/16515/Creating-a-Custom-Tool-to-Generate-Multiple-Files

Chapter 6

221

The __getTemplateProjectItem() method is a method that creates the DTE
ProjectItem object for a particular project and returns the object reference. Once the
ProjectItem object is created, we can use a AddFromFile method to add the item
to the project.

Now to test the file, let's add a new template and include the preceding file in the project:

<#@ template debug="false" hostspecific="true" language="C#" #>
<#@ output extension=".txt" #>
<#@ include file="FileManager.tt" #>

<#
 Write("File1");
 CreateFile("1.txt");
 Write("File2");
 CreateFile("2.txt");
#>

The preceding code creates two files and adds them to the project. This can be verified from
the following screenshot:

In the preceding screenshot, you can see the files that are already added to the Solution
Explorer pane and even listed inside the template file.

The __ getTemplateProjectItem() method can be found inside the
source code FileManager.tt in the MyT4Templating project source.

Extending the Visual Studio IDE

222

Optimizing code generation using T4 templates and its easy
syntaxes
As you are already habituated with T4 templates, let me show you another example
to demonstrate the power of the templating code generation. Let's take a look at the
following code:

<#
 var logVariants = new []
 {
 new { Variant = "Bright" , Color = "White" },
 new { Variant = "Normal" , Color = "Gray" },
 new { Variant = "Url" , Color = "Cyan" },
 };
#>
 using System;

 static partial class MyLogClass
 {
<#
 foreach (var logVariant in logVariants)
 {
#>
 static void Write<#=logVariant.Variant#>Line (string message)
 {
 var color = Console.ForegroundColor;
 Console.ForegroundColor = ConsoleColor.<#=logVariant.
Color#>;
 try
 {
 Console.WriteLine (message ?? "");
 }
 finally
 {
 Console.ForegroundColor = color;
 }
 }

<#
 }
#>

}

Chapter 6

223

You can see that the template generates a Variant method directly inside the code. The
variants are created as an array while the methods are created on the fly such that each
method will have a separate color to write on the console.

The important thing to understand here is how the code is laid out. You can see that rather
than using the template methods Write or WriteLine, we can directly write content to the
file outside the <# and #> tags such that the data is written directly to the file.

See also
ff You can read more about T4 templates from the official blog at http://bit.ly/

msdnt4. Visual Studio does not provide features such as Syntax Highlighting and
IntelliSense for T4 editors.

ff You can install the Devart T4 editor from http://bit.ly/t4editor.

Working with Managed Extensibility
Framework to write editor extensions

Visual Studio uses Managed Extensibility Framework (MEF) to extend most of the code instead
of writing VSPackage. MEF is an extensibility framework built inside the framework to support
the plugin function of the application. The plugin model has been used by the IDE itself to
ensure that we can hook in some of the code inside the IDE as an MEF component so that
when the IDE loads up, it can compose elements directly as extensions.

Before we get started with MEF, let's try to understand what it is and how it works.

MEF is a framework that is built on top of the reflection API that addresses one special kind of
requirement, which most of the current developers are into. Modularizing an application is one
of the biggest concerns for any software giant. When we try to implement a pluggable model, we
generally look for some sort of a plugin-based modularization for our respective application and
ultimately end up doing in the same way we did before. Finally, this does not solve the problem
as someone else might end up doing the same thing in a different manner and eventually we
may face a "my plugins cannot go into your application" kind of a situation. Hence, we need
some sort of standardization to address this situation such that every plugin-based application
can work together. MEF addresses this situation by giving you a sleek way to define your
modules as plugins and your application as a standard host for any plugins.

MEF allows defining imports and exports for classes such that it can allow you to plug-in
classes to import the host automatically. Visual Studio has defined a number of imports as
hooks inside the IDE, while you need to write their corresponding exports inside the plugin
to hook into it.

http://bit.ly/msdnt4
http://bit.ly/msdnt4
http://bit.ly/t4editor

Extending the Visual Studio IDE

224

You can read a lot more about MEF from the posts at http://bit.ly/mefch6 and
http://bit.ly/meftipch6.

In this recipe, we will create an editor extension using MEF to plug in our code inside Visual
Studio Editor.

The Visual Studio Editor UI is built using Windows Presentation Foundation (WPF), which
provides a rich visual experience and consistent programming model that separates the
presentation layer with the business logic.

Getting ready
There are a number of editor extension points that you can use to extend the editor. A few of
them are as follows:

ff Content types

ff Classification types and formats

ff Margins and scrollbars

ff Tags

ff Adornments

ff Mouse processors

ff Drop handlers

ff Options

ff IntelliSense

These extensions can be handled using MEF. In this recipe, we will be extending the editor
using the MEF endpoint to show how this works inside the IDE. To do this, you need to install
the Visual Studio SDK from http://bit.ly/vssdk.

Once the SDK is installed, Open Visual Studio and click on Extensibility. There are a number
of project templates that you will see, as shown in the following screenshot:

http://bit.ly/mefch6
http://bit.ly/meftipch6
http://bit.ly/vssdk

Chapter 6

225

In the preceding screenshot, you can see C# Item Template, Project Template packages,
The Visual Studio Package, and some of the editor extensions too. The Editor Classifier,
Editor Margins, Editor Text Adornment, and Editor Viewport Adornment extensions are the
project types that are associated with MEF extensibility.

In this recipe, we are going to create a statement completion extension, which is triggered
when certain characters are typed inside the IDE like the one you see in IntelliSense. This
recipe will show you how to implement a statement completion for a hardcoded set of strings
appearing in the IntelliSense menu.

How to do it...
Now, let's build an editor classifier using MEF to see how it behaves inside the IDE:

1.	 Create a project with Editor Classifier and name it StatementCompletionAdorner.

2.	 Open the VSIX manifest file and check whether the Microsoft.VisualStudio.
MEF component is added as a content type in the Asset section. Add your name as
the publisher, and then save and close the file. Delete all the existing files created
and add the following references:

�� Microsoft.VisualStudio.Editor

�� Microsoft.VisualStudio.Language.IntelliSense

�� Microsoft.VisualStiudio.Shell.12.0

Extending the Visual Studio IDE

226

�� Microsoft.VisualStudio.Shell.Immutable.10.0

�� Microsoft.VisualStudio.OLE.Interop

�� Microsoft.VisualStudio.TextManager.Interop

Once the references are added, we can start creating the project. You can find the
files in the C:\Program Files (x86)\Microsoft Visual Studio 12.0\
VSSDK\VisualStudioIntegration\Common\Assemblies\v4.0\ folder.

3.	 Now to create the completion IntelliSense editor, we need to implement the following
four components:

�� CompletionSource: This class is responsible for collecting the identifiers
that you type into the IDE and creating the content for the Completion
window. We use a static source for our completion texts for the time being.

�� CompletionSourceProvider: This is an MEF component that instantiates
the Source class.

�� CommandHandler: This is the main command completion handler, which
is implemented from IOleCommandTarget and can trigger, commit, or
dismiss the process.

�� CommandHandlerProvider: This is an MEF component that instantiates
the CommandHandler interface.

So, basically, there are two classes: one to create the identifier component and one
to handle keystrokes over the CompletionSource class.

4.	 Now, let's add the CompletionSource class to the project. This class should
implement the IComletionSource interface. The AugmentCompletionSession
method allows you to create completionSets and add a ITrackingSpan element
directly in the current caret's position, as shown in the following code:
private CompletionSourceProvider sourceProvider;
 private ITextBuffer txtBuffer;
 private List<Completion> lstCompletion;
public CompletionSource(CompletionSourceProvider sourceProvider,
ITextBuffer textBuffer)
{
 this.sourceProvider = sourceProvider;
 this.txtBuffer = textBuffer;
}
void ICompletionSource.AugmentCompletionSession(ICompletionSession
session, IList<CompletionSet> completionSets)
{
 List<string> elList = new List<string> { ".NET", ".COM",
"Microsoft", "PacktPub", "Visual Studio", "Managed Extensibility
Framework",

Chapter 6

227

 "Windows Presentation Foundation", "Packt
Publications"}; lstCompletion = new List<Completion>();
 foreach (string el in elList)
 lstCompletion.Add(new Completion(el, el, el, null, null));

 completionSets.Add(new CompletionSet(
 "Tokens",
 "Tokens",
 FindTokenSpanAtPosition(session.
GetTriggerPoint(txtBuffer), session),
 lstCompletion,
 null));
}
private ITrackingSpan FindTokenSpanAtPosition(ITrackingPoint
point, ICompletionSession session)
{
 SnapshotPoint currentPoint = (session.TextView.Caret.Position.
BufferPosition) - 1;
 ITextStructureNavigator navigator = sourceProvider.
NavigatorService.GetTextStructureNavigator(txtBuffer);
 TextExtent extent = navigator.GetExtentOfWord(currentPoint);
 return currentPoint.Snapshot.CreateTrackingSpan(extent.Span,
SpanTrackingMode.EdgeInclusive);
}

In the preceding code, we can see that we implemented the
AugmentCompletionSession method of the interface ICompletionSource,
so that we can handle the tokens. We have used a standalone token list and added
it to the CompletionSource class. Once the CompletionSet class is created,
we add that to completionSets passed into the method just next to the caret's
position. The FindTokenSpanAtPosition method will create a TextExtent
class just next to the caret to show a menu of options to the user.

5.	 The CompletionHandler class, on the other hand, helps in adding the handler,
which will run when the CompletionSource class is picked or dismissed by the
user. Let's now add a class called CompletionCommandHandler and implement
it from IOleCommandTarget. The two methods that need to be implemented are
QueryStatus and Exec respectively, where the Exec method is the method that
actually processes the request. Let's see what the Exec method looks like:
public int Exec(ref Guid pguidCmdGroup, uint nCmdID, uint
nCmdexecopt, IntPtr pvaIn, IntPtr pvaOut)
{
 if (VsShellUtilities.IsInAutomationFunction(handlerProvider.
ServiceProvider))
 {

Extending the Visual Studio IDE

228

 return nextCommandHandler.Exec(ref pguidCmdGroup, nCmdID,
nCmdexecopt, pvaIn, pvaOut);
 }

 uint commandID = nCmdID;
 char typedChar = char.MinValue;
 if (pguidCmdGroup == VSConstants.VSStd2K && nCmdID == (uint)
VSConstants.VSStd2KCmdID.TYPECHAR)
 {
 typedChar = (char)(ushort)Marshal.GetObjectForNativeVarian
t(pvaIn);
 }
 if (nCmdID == (uint)VSConstants.VSStd2KCmdID.RETURN
 || nCmdID == (uint)VSConstants.VSStd2KCmdID.TAB
 || (char.IsWhiteSpace(typedChar) || char.
IsPunctuation(typedChar)))
 {
 if (completionSession != null && !completionSession.
IsDismissed)
 {
 if (completionSession.SelectedCompletionSet.
SelectionStatus.IsSelected)
 {
 completionSession.Commit();
 return VSConstants.S_OK;
 }
 else
 {
 completionSession.Dismiss();
 }
 }
 }

 int retVal = nextCommandHandler.Exec(ref pguidCmdGroup,
nCmdID, nCmdexecopt, pvaIn, pvaOut);
 bool handled = false;
 if (!typedChar.Equals(char.MinValue) && char.
IsLetterOrDigit(typedChar))
 {
 if (completionSession == null || completionSession.
IsDismissed)
 {
 this.TriggerCompletion();
 completionSession.Filter();
 }
 else
 {

Chapter 6

229

 completionSession.Filter();
 }
 handled = true;
 }
 else if (commandID == (uint)VSConstants.VSStd2KCmdID.BACKSPACE
 || commandID == (uint)VSConstants.VSStd2KCmdID.DELETE)
 {
 if (completionSession != null && !completionSession.
IsDismissed)
 completionSession.Filter();
 handled = true;
 }
 if (handled) return VSConstants.S_OK;
 return retVal;
}

The preceding code first checks the input to be a character before handling it. Once
it ensures that it has received a character, it checks whether it is due to a return key
hit, a Tab press, a white space, or a punctuation mark. If this is the case, it will treat
as a Commit operation. It commits the selectedStatus class and statements.
On the other hand, if the command is Backspace or Delete, it will redo the filter.
The commit on completionSession inserts the text into the buffer, and ultimately
when closing the IntelliSense menu, it will pick the element. The Dismiss operation,
on the other hand, will unpick the element and dismiss the IntelliSense menu or the
presenter to be destroyed.

6.	 The TriggerCompletion method creates a dismissal on the current IntelliSense
menu for the current caret's position, which is invoked when something outside the
range is typed in:
private bool TriggerCompletion()
{
 //the caret must be in a non-projection location
 SnapshotPoint? caretPoint =
 txtView.Caret.Position.Point.GetPoint(
 textBuffer => (!textBuffer.ContentType.
IsOfType("projection")), PositionAffinity.Predecessor);
 if (!caretPoint.HasValue)
 {
 return false;
 }

 completionSession = handlerProvider.CompletionBroker.
CreateCompletionSession
 (txtView,

Extending the Visual Studio IDE

230

 caretPoint.Value.Snapshot.CreateTrackingPoint(caretPoint.
Value.Position, PointTrackingMode.Positive),
 true);

 //subscribe to the Dismissed event on the session
 completionSession.Dismissed += this.OnSessionDismissed;
 completionSession.Start();

 return true;
}

The preceding code retrieves currentCompletionSession and calls its Start
method, which will invoke the completion and ultimately the dismissal of the menu.

7.	 To implement the providers, we first export the ICompletionSourceProvider
class that we need to be created as an MEF composable component, as shown in the
following code:
[Export(typeof(ICompletionSourceProvider))]
[ContentType("plaintext")]
[Name("token completion")]
public class CompletionSourceProvider : ICompletionSourceProvider
{
 [Import]
 internal ITextStructureNavigatorSelectorService
NavigatorService { get; set; }
 public ICompletionSource TryCreateCompletionSource(ITextBuffer
textBuffer)
 {
 return new CompletionSource(this, textBuffer);
 }
}

In the preceding code, the CompletionSourceProvider class is implemented from
ICompeletionSource. The Export attribute on the header exports the component
to the corresponding import defined inside Visual Studio. You might have also noticed
that the ICompletionSource class has a TryCreateCompletionSource method,
which needs to return the CompletionSource object. The ContentType property is
defined as plain text, thus the completion will work on text files.

8.	 Similar to ICompletionSourceProvider, there is another export that we
need to implement, which can connect CompletionHandler. Let's create a
CompletionHandlerProvider class and type in the following content:
[Export(typeof(IVsTextViewCreationListener))]
[Name("token completion handler")]

Chapter 6

231

[ContentType("plaintext")]
[TextViewRole(PredefinedTextViewRoles.Editable)]
public class CompletionHandlerProvider :
IVsTextViewCreationListener
{
 [Import]
 internal IVsEditorAdaptersFactoryService AdapterService =
null;
 [Import]
 internal ICompletionBroker CompletionBroker { get; set; }
 [Import]
 internal SVsServiceProvider ServiceProvider { get; set; }
 public void VsTextViewCreated(IVsTextView textViewAdapter)
 {
 ITextView textView = AdapterService.GetWpfTextView(textVie
wAdapter);
 if (textView == null)
 return;

 Func<CompletionCommandHandler> createCommandHandler =
delegate() { return new CompletionCommandHandler(textViewAdapter,
textView, this); };
 textView.Properties.GetOrCreateSingletonProperty(createCom
mandHandler);
 }
}

9.	 The preceding code implements IVsTextViewCreationListener, which will
allow you to listen to the keystrokes pressed in the IDE. The VSTextViewCreated
method will be called whenever the TextViewCompletionSource class is created.
We add a delegate to textView such that the handler gets called whenever a key
is pressed. Here, the export will be mapped to the appropriate import inside Visual
Studio and your code will be called.

10.	 Now, let's compile the code and see if there are any problems. When everything is
successful, you can run the code to open Visual Studio Experimental Instance (We
intentionally selected the black theme here). Open a text file and type M; it will list
Microsoft and Managed Extensibility Framework. You can start typing to filter the
content or press Enter, Tab, Space bar, or any punctuation to select the content.

Extending the Visual Studio IDE

232

In the following screenshot, you can see that when we first pressed M, it opens
the IntelliSense menu in the text file, where we can either choose the option or
continue typing:

How it works...
Visual Studio Editor is built using WPF such that the model and the UI remain separated. It
also extensively uses MEF to control plugins or extensions to it. The various interfaces that are
built into it allows the developer to export their respective logic in the form of classes, such
that it seamlessly plugs in to the IDE.

The preceding code adds a key listener to the PlainText content type IDE editor, so
whenever something is typed in, certain words pop up in the menu, which could be either
picked in or continued typing in.

The ICompletionSource interface works on data blocks where you provide the dictionary
of texts as CompletionSet, and the IOleCommandTarget interface provides the
command to target for. The objects are exported using ICompletionSourceProvider and
IVsTextViewCreationListener. The listener allows you to hook the handler, which needs
to be executed when a certain key is pressed on the editor.

There's more...
Building Editor Extension is a vast topic. There are a lot of hooks that you could use to
implement extensions to Visual Studio. Let's look at some more examples in this section.

Creating a SmartTag extender using MEF
Smart tags are a common way of providing additional options for text inside the IDE. There
are a lot of endpoints that can handle the smart tags so that you can define some additional
options to the text. Some classes that are worth noting to define a smart tag are ITagger,
SmartTags, TagProvider, and SmartTagActions. Let's create a project and name
it SmartTaggingText.

Chapter 6

233

Create a class and implement it from SmartTag. We add a constructor to pass ActionSet.
It is important to note that SmartTagType is factoid when a blue line appears and ephemeral
when a red line appears on the IDE:

public class SmartTagText : SmartTag
{
 public SmartTagText(ReadOnlyCollection<SmartTagActionSet>
actionSets) :
 base(SmartTagType.Factoid, actionSets) { }
}

We defined SmartTag as Factoid so it will allow us to open the smart tag even though the
word is not complete.

Let's create another class and implement it from ITagger, as shown in the following code:

public class SmartTaggerText : ITagger<SmartTagText>
 {
public IEnumerable<ITagSpan<SmartTagText>> GetTags(NormalizedSnapshotS
panCollection spans)
 {
 ITextSnapshot snapshot = buffer.CurrentSnapshot;
 if (snapshot.Length == 0)
 yield break;
 ITextStructureNavigator navigator = provider.
NavigatorService.GetTextStructureNavigator(buffer);

 foreach (var span in spans)
 {
 ITextCaret caret = view.Caret;
 SnapshotPoint point;

 if (caret.Position.BufferPosition > 0)
 point = caret.Position.BufferPosition - 1;
 else
 yield break;

 TextExtent extent = navigator.GetExtentOfWord(point);
 if (extent.IsSignificant)
 yield return new TagSpan<SmartTagText>(extent.
Span, new SmartTagText(GetSmartTagActions(extent.Span)));
 else yield break;
 }
 }

 private ReadOnlyCollection<SmartTagActionSet>
GetSmartTagActions(SnapshotSpan span)
 {

Extending the Visual Studio IDE

234

 List<SmartTagActionSet> actionSetList = new
List<SmartTagActionSet>();
 List<ISmartTagAction> actionList = new
List<ISmartTagAction>();

 ITrackingSpan trackingSpan = span.Snapshot.
CreateTrackingSpan(span, SpanTrackingMode.EdgeInclusive);
 actionList.Add(new UpperCaseSmartTagAction(trackingSpan));
 actionList.Add(new LowerCaseSmartTagAction(trackingSpan));
 SmartTagActionSet actionSet = new
SmartTagActionSet(actionList.AsReadOnly());
 actionSetList.Add(actionSet);
 return actionSetList.AsReadOnly();
 }
}

In the preceding code, we have created Smart Tags. The GetTags function will be automatically
called when the blue arrow for the smart tag is hit on the editor and the menu is opened. We
created SmartTags for the current text using GetSmartTagAction. Based on the current text,
we can also create actions here.

The actions are classes derived from ISmartTagAction, which have an Invoke method.
The Invoke method is called when an action is chosen from the list:

public class LowerCaseSmartTagAction : ISmartTagAction
 {
public LowerCaseSmartTagAction(ITrackingSpan span)
 {
 this.span = span;
 tsnapshot = span.TextBuffer.CurrentSnapshot;
 lower = span.GetText(tsnapshot).ToLower();
 display = "Convert to lower case";
 }
public void Invoke()
 {
 span.TextBuffer.Replace(span.GetSpan(tsnapshot), lower);
 }
}

Here, the text that has been passed to SmartTagAction is changed to lowercase. Finally,
to hook SmartTag to the IDE, we need a provider. The IViewTaggerProvider interface
allows you to export the type to the IDE as SmartTagger. Let's see the following code:

[Export(typeof(IViewTaggerProvider))]
 [ContentType("plaintext")]
 [Order(Before = "default")]

Chapter 6

235

 [TagType(typeof(SmartTag))]
 public class SmartTaggerProviderText : IViewTaggerProvider
 {
 [Import(typeof(ITextStructureNavigatorSelectorService))]
 internal ITextStructureNavigatorSelectorService
NavigatorService { get; set; }

 public ITagger<T> CreateTagger<T>(ITextView textView,
ITextBuffer buffer) where T : ITag
 {
 if (buffer == null || textView == null)
 {
 return null;
 }

 //make sure we are tagging only the top buffer
 if (buffer == textView.TextBuffer)
 {
 return new SmartTaggerText(buffer, textView, this) as
ITagger<T>;
 }
 else return null;
 }
 }

In the preceding code, the CreateTagger method checks whether the TextBuffer class
has data and based on CreateTagger creates an object of SmartTaggerText with the
buffer value. The object is exported to the IViewTaggerProvider import and defined within
the IDE. Thus, we do not need to handle anything manually.

When you run the project and type something in the text editor on the experimental instance
of Visual Studio, a blue line appears on the first character. When it is clicked, you will see the
tagger, as shown in the following code:

The tagger allows you to change the case of the underlying text.

Extending the Visual Studio IDE

236

Creating Visual Studio Package for tool
windows and editor menus

Sometimes when the requirements are too high and not related to the editor itself, there is
also an option to create a Visual Studio Package for the project. The Visual Studio Package
project creates a basic VSPackage. The template has the written code ready to implement a
MenuItem class or a tool window.

As we already know that the editor is built using WPF, we also need to know
the basics of WPF to implement the tool window inside the IDE.

Getting ready
Open Visual Studio and create a project from Visual Studio Package. Visual Studio Package
is a complete installation of Visual Studio, which is signed with a valid key. We name the
project VSPackageSample.

Once you select the project type, you will be provided with a wizard, as shown in the
following screenshot:

Chapter 6

237

As we know, the Visual Studio Package is a complete install for Visual Studio, so it needs a
singing assembly. We choose Generate a new key file to sign the assembly to move forward.
You can even select a key for yourself using the Use the following key file option, as shown in
the following screenshot:

The next screenshot asks for the company name and basic package configuration. You can
pick the icon here for the project and also provide a detailed description.

Extending the Visual Studio IDE

238

Here, we also need to choose what type of extensions we want to include.

There are three options. One is Menu Command, which will add a menu to the tools menu
and can be invoked to call a method you specify. You can also choose Tool Window to open
a window and Custom Editor to edit something inside the IDE. The tool window is a WPF
control, while the custom editor is Windows Forms Control.

How to do it...
Now, let's create a VSPackage extension to implement such an editor:

1.	 After you finish the wizard, the entire project is created. There are a number of files to
work on. The very entry point of the project is the VSPackageSamplePackage.cs
file. Open the file and you will see a class that inherits from the Package class.

2.	 In the Package Members section, you will see how the menu and the command
are initialized:
// Add our command handlers for menu (commands must exist in the
.vsct file)
OleMenuCommandService mcs = GetService(typeof(IMenuCommandServi
ce)) as OleMenuCommandService;
if (null != mcs)
{
 // Create the command for the menu item.
 CommandID menuCommandID = new CommandID(GuidList.
guidVSPackageSampleCmdSet, (int)PkgCmdIDList.cmdidMyCommand);
 MenuCommand menuItem = new MenuCommand(MenuItemCallback,
menuCommandID);
 mcs.AddCommand(menuItem);
 // Create the command for the tool window
 CommandID toolwndCommandID = new CommandID(GuidList.
guidVSPackageSampleCmdSet, (int)PkgCmdIDList.cmdidMyTool);
 MenuCommand menuToolWin = new MenuCommand(ShowToolWindow,
toolwndCommandID);
 mcs.AddCommand(menuToolWin);
}

Chapter 6

239

In the preceding code, a MenuCommand class is created for menuItem and
ToolWindow. Both are added to the OleMenuCommandService class. The
MenuCommandService class lets you define the menu for the commands.

3.	 When the menu is clicked, ShellMessage is invoked to show MessageBox on the
IDE. The menu will appear in the Tools menu. The MenuItemCallback class uses
uiShell.ShowMessageBox to show the message:
Microsoft.VisualStudio.ErrorHandler.ThrowOnFailure(uiShell.
ShowMessageBox(
 0,
 ref clsid,
 "VSPackageSample",
 string.Format(CultureInfo.CurrentCulture,
"Inside {0}.MenuItemCallback()", this.ToString()),
 string.Empty,
 0,
 OLEMSGBUTTON.OLEMSGBUTTON_OK,
 OLEMSGDEFBUTTON.OLEMSGDEFBUTTON_FIRST,
 OLEMSGICON.OLEMSGICON_INFO,
 0, // false
 out result));

You can write your custom code to invoke selection of the menu.

4.	 On the contrary, ToolWindow opens up the MyControl.xaml file. You can design
ToolWindow using XAML and show the content directly inside Visual Studio:
ToolWindowPane window = this.FindToolWindow(typeof(MyToolWindow),
0, true);
 if ((null == window) || (null == window.Frame))
 {
 throw new NotSupportedException(Resources.
CanNotCreateWindow);
 }
 IVsWindowFrame windowFrame = (IVsWindowFrame)window.
Frame;
 Microsoft.VisualStudio.ErrorHandler.
ThrowOnFailure(windowFrame.Show());

The window frame is created and the control gets loaded inside the frame to ensure
there is a consistent feel to the IDE.

Extending the Visual Studio IDE

240

5.	 Open the MyControl.xaml file and you will see a button placed inside the IDE,
so that when the control is invoked, MessageBox will be shown. You can open
ToolWindow by navigating to View | OtherWindow | CommandExplorer.

The window currently does nothing. It has a button, which can be clicked to open
a MessageBox.

6.	 There are some additional files such as EditorFactory. This is the main
editor class that handles the instance creation and destruction of the editor. The
EditorFactory class is registered to the extension and automatically called
whenever any component of the editor is called.

7.	 Finally, when your package is built successfully, you can double-click on the vsix file
on the debug screen to run and install the extension to Visual Studio.

How it works...
The VS Package is the main packager for Visual Studio extensions. Visual Studio packager
allows you to add UI elements to the IDE to provide a better experience for the user. You can
deploy any package, either distributing manually or through the Visual Studio gallery, such
that developers can download and use the extension that you have created.

The main criterion for the package to execute is written inside the VSPackageSamplePackage
file. Here, the ProvideToolWindow function registers the extension tool window for the
package. The EditorFactory class is registered for additional extension components and the
VSPackageSamplePackage class itself creates the menu items.

Chapter 6

241

After you compile the project, a VSIX file gets created. This file is nothing but a zipped archive
with all the deployable components. Rename the file to a .zip extension, and you will see the
following content:

The pkgdef file is the package definition file, which stores all the metadata associated with
the extension. The extension.manifest file is the manifest file for the extension. The
manifest file includes the name of the extension, details, description, and so on. The main
code is compiled as a .dll file, which represents the actual extension.

The Visual Studio extensions can be deployed and/or uploaded directly to the Visual Studio
gallery at http://visualstudiogallery.msdn.microsoft.com/.

http://visualstudiogallery.msdn.microsoft.com/

7
Understanding Cloud

Computing with
Windows Azure

In this chapter, we will cover the following topics:

ff Working with various storage options in Windows Azure

ff Creating, updating, and deploying a cloud service in Windows Azure

ff Working with SQL Azure

ff Working with HDInsight (Hadoop) for Big Data processing

ff Working with Mobile Services in Windows Azure

Introduction
Cloud computing is now one of the major metaphors for the Internet after Web 2.0 was
deprecated. A cloud means the server, and when it is combined with computing, it means
real-time computing on the server, scalability of infrastructure on the fly, adding a new
infrastructure without changing the environment or without investing in new infrastructures,
and training new personnel or licensing new software. Cloud computing encompasses
a subscription-based pay per use service that in real time is capable of extending the
existing capabilities.

Understanding Cloud Computing with Windows Azure

244

Cloud computing comprises four service models:

ff Software as a Service (SaaS): In this type of environment, a single piece of
software is delivered to a thousand clients through web browsers in a multi-tenant
architecture. From a customer's point of view, this means no upfront investment in
servers or software licensing. On the contrary, the provider also needs minimum
investment as there is one more application to maintain with almost no additional
cost as such.

ff Platform as a Service (PaaS): Another variant of SaaS is PaaS or Platform as a
Service, which provides the basic computing platform and a solution stack as a
service. In the case of Platform as a Service, the consumer creates software using
tools and libraries from the provider. The provider here gives partial access to the
platform using a portal, which the consumer needs to maintain.

ff Infrastructure as a Service (IaaS): In the case of IaaS or Infrastructure as a Service,
the whole machine is provided as a service. The virtual machines are created on the
cloud, and the consumer needs to access it and configure everything on their own.
The provider, on the other hand, creates a virtual machine and gives the user access
to it with no maintenance on their side whatsoever.

ff Network as a Service (NaaS): A variant of a service model called NaaS provides
network/transport connectivity services between two intercloud networks. NaaS
bridges two or more networks in a unified network as a whole; for example, NaaS
services could be a Virtual Private Network (VPN), which bridges two geographically
separate locations into a single local area network without compromising on security.

Cloud computing could be implemented using any of the preceding models; each of these
differs with regards to the overall structure of the cloud, but each of them follows some basic
characteristics and principles. They are as follows:

ff Agility: This provides an agile-based infrastructure and resources.

ff Application Programming Interface (API): This provides access to APIs to maintain,
scale, and interact with the cloud environment.

ff Elasticity and flexibility of the system: The main importance of cloud computing
is scalability of the Web. Cloud provides a flexible system to deploy and maintain
software with the support of elasticity that is based on the traffic.

ff Measurable service: This is the payment per use.

ff Individual use of resources: A user can use a resource anytime he or she desires.
These resources include server space or server time, and they can be accessed
without the need for human intervention from a client.

Chapter 7

245

Working with various storage options in
Windows Azure

A number of components of the Windows Azure platform are exposed using Internet protocols.
There are a number of storage components exposed with Windows Azure Platform. Hence,
these components need to be secured behind a valid authentication. Windows Azure Storage
Service manages the storage of blobs, queues, and tables. Each storage account has an
account name and an access key that are used to authenticate to access the storage service.

The storage service supports Hash-based Message Authentication (HMAC) in which the
storage operation request is hashed with the access key such that upon receiving the request,
the storage service validates it and either accepts or denies it. The Windows Azure storage
client library provides several classes that support various ways to create HMAC, which hides
the complexity of creating and using messages.

The Windows Azure SDK provides a compute and storage emulator. It points to the
localhost (127.0.0.1) service and hence uses a hardcoded account name and access
key. This hardcoded value will be treated differently to ensure that a proper local emulator
gets connected.

There are three types of storages supported by Storage Service:

ff Blobs: These are used to store the static content of the Web. The static content could
be images, videos, audios, and so on, or anything that does not change over time.

ff Queues: These are special objects that support the FIFO algorithm and can handle
objects in a sequence. The queue-based object gets objects from one point, while the
objects are inserted at the other end. A Queue supports 8 KB of data to be put
as messages.

ff Tables: These provide NoSQL data objects where data is stored in a key/value pair.
These Tables support transaction and locking on data without SQL support.

The storage emulator has a hardcoded account name and access keys. The storage service
uses different subdomains to indicate each storage accounts, while the storage emulator uses
different ports to differentiate the different subdomains. The different ports are as follows:

ff Blobs: 127.0.0.1:10000/devstoreaccount1

ff Queues: 127.0.0.1:10001/devstoreaccount1

ff Tables: 127.0.0.1:10002/devstoreaccount1

In this recipe, we'll create Blobs, Queues, and Tables inside the project so that at a later stage
we can use them in real environments.

Understanding Cloud Computing with Windows Azure

246

Getting ready
Open Visual Studio, create a Windows Azure project, and add a worker role to it. We name it
MyWorkerRole, as shown in the following screenshot:

After adding the MyWorkerRole project to the Azure project, Visual Studio creates two nodes
in the Solution Explorer window. There is a cloud project that stores all the configurations about
the cloud projects. Here, it is named StorageAccountExample, which is same as the project
name we specified while creating a cloud solution, and another is the WorkerRole project we
created. As we are going to create different storage classes, let's create some classes in the
MyWorkerRole project to demonstrate the working principles of the storage objects.

How to do it...
Now, let's consider creating a storage-based cloud service, which can have a front-facing
web application and a connecting background service such that both can seamlessly talk
to each other.

1.	 Add a new class to the MyWorkerRole project and name it BlobExample.

2.	 Add the following constructor to create a Blob connection:
private CloudBlobContainer cloudBlobContainer;

public BlobExample(string containerName)
{
 CloudStorageAccount cloudStorageAccount =
CloudStorageAccount.DevelopmentStorageAccount;
 CloudBlobClient cloudBlobClient = cloudStorageAccount.
CreateCloudBlobClient();
 cloudBlobContainer = cloudBlobClient.GetContainerReference(co
ntainerName);
}

Chapter 7

247

In the preceding code, we created CloudStorageAccount in connection to the
Development account. If you want to switch to production, you can put it inside the
configuration, use CloudStorageAccount.Parse, and send the connection string.
We then create CloudBlobClient. The clientBlobClient method is used to
create a connection between the Blob account and the storage. Using the client,
you can get a reference to the Blob account.

3.	 Now, add the following method:
private void CreateBlob(String blobName)
 {
 using (MemoryStream stream = new
 MemoryStream())
 {
 StreamWriter writer = new
 StreamWriter(stream);
 writer.WriteLine(blobName);
 writer.Flush();

 CloudBlockBlob cloudBlockBlob =
cloudBlobContainer.GetBlockBlobReference(blobName);

 //Write data to the stream and upload it to
 the storage blob
 cloudBlockBlob.UploadFromStream(stream);

 writer.Dispose();
 }
 this.TakeSnapshot(blobName);
 }

The UploadFromStream method takes a stream as an argument and uploads the
data into the stream. Once the stream source is specified, in our case it is only the
Blob name, it uploads the data to the Blob storage.

4.	 The TakeSnapshot method is used to take a backup of the Blob. As an Azure
account does not charge for storage, it charges for uploads and downloads;
you can take as many backups of data as required:
private DateTimeOffset TakeSnapshot(string blobName)
 {
 CloudBlockBlob cloudBlockBlob = cloudBlobContainer.Get
BlockBlobReference(blobName);
 CloudBlockBlob snapshot = cloudBlockBlob.
CreateSnapshot(); //Backs up the blob
 return (DateTimeOffset)snapshot.SnapshotTime;
 }

Understanding Cloud Computing with Windows Azure

248

5.	 Now to create Blobs based on a URL, you can call the CreateBlob method as many
times to create specified Blobs:
private void CreateBlobs()
 {
 cloudBlobContainer.CreateIfNotExists();
 CreateBlob("Abhishek/FirstBlob");
 CreateBlob("Abhishek/SecondBlob");
 }

Here, two Blobs are created inside the Abhishek directory of the Blob container. The
data stored inside the Blobs would be the path of the Blob name.

6.	 To traverse the Blob directories inside the container, you can pass a directoryname
string and all the Blobs inside the directory would be listed using the following code:
private void TraverseDirectoryTree(String directoryName)
{
 CloudBlobDirectory cloudBlobDirectory =
cloudBlobContainer.GetDirectoryReference(directoryName);
 IEnumerable<IListBlobItem> blobItems = cloudBlobDirectory.
ListBlobs();
 foreach (CloudBlobDirectory cloudBlobDirectoryItem in
blobItems.OfType<CloudBlobDirectory>())
 {
 Uri uri = cloudBlobDirectoryItem.Uri;
 Trace.WriteLine(uri.ToString());
 IEnumerable<CloudBlockBlob> leafBlobs =
cloudBlobDirectoryItem.ListBlobs().OfType<CloudBlockBlob>()
;
 foreach (CloudBlockBlob leafBlockBlob in leafBlobs)
 {
 Uri leafUri = leafBlockBlob.Uri;
 Trace.WriteLine(leafUri.ToString());
 }
 }
}

The preceding code writes the URLs in a debugger. The GetDirectoryReference
method gets the reference of a directory under the Blob container and ListBlobs
on it gets all the items present in the directory. It is worth noting that the Blob inside a
directory can also represent CloudBlobDirectory. Hence, a nested loop is required.

7.	 Similar to Blob, let's create another class for Tables; we'll name it TableExample.
cs. Now, add the following code:
private CloudTableClient cloudTableClient;
 public TableExample()
 {

Chapter 7

249

 CloudStorageAccount cloudStorageAccount =
CloudStorageAccount.Parse(CloudConfigurationManager.GetSetting("St
orageConnectionString"));
 cloudTableClient = cloudStorageAccount.
CreateCloudTableClient();
 }

8.	 To create a Table, we either call Create or CreateIfNotExists on the
CloudTable reference using the following code:
public void CreateTable(string tableName)
{
 CloudTable table = cloudTableClient.
GetTableReference(tableName);
 table.CreateIfNotExists();
}

9.	 Similar to this, DeleteIfExists could be called to delete the table if it exists,
as follows:
public void DeleteTable(string tableName)
{
 CloudTable table =
cloudTableClient.GetTableReference(tableName);
 table.DeleteIfExists();
}

10.	 To list all the tables in a client, we use the following code:
public void ListTables(string tablePrefix)
{
 var listTable = cloudTableClient.ListTables(tablePrefix);
 foreach (var table in listTable)
 Trace.WriteLine(table.Name);

11.	 Now, to add an entry to the table, we can either use TableEntity or create a
class and inherit from TableEntity to add additional columns. There are two
fixed columns for each TableEntity, PartitionKey, and RowKey object.
PartitionKey is used to group rows and RowKey represents the unique identifier
for each partition. Let's take a look at the following code:
public class TableData : TableEntity
 {
 public TableData(string partition, string row)
 {
 this.PartitionKey = partition;
 this.RowKey = row;
 }

 public int Age { get; set; }

Understanding Cloud Computing with Windows Azure

250

 }
public void AddEntryToTable(string tableName, TableData
 customData)
 {
 CloudTable table = cloudTableClient.
GetTableReference(tableName);
 table.CreateIfNotExists();
 var insertOperation =
 TableOperation.Insert(customData);
 table.Execute(insertOperation);
 }

Here, AddEntryToTable takes a reference of TableData. The TableData class
inherits from TableEntity and adds a new property called Age. We use a constructor
to specify PartitionKey and RowKey because these values need not be left blank.
When TableOperation.Insert gets executed, the data object is embedded into a
TableOperation object, which could later be executed on CloudTable.

12.	 We can also use the following BatchOperation method instead of a single
operation to ensure all the entries on the Batch are executed at a time:
public void AddEntryToTable(string tableName)
{
 CloudTable table = cloudTableClient.
GetTableReference(tableName);
 table.CreateIfNotExists();
 TableBatchOperation batch = new TableBatchOperation();
 batch.Add(TableOperation.Insert(new TableEntity {
RowKey = "Abhishek", PartitionKey = "Kolkata" }));
 batch.Add(TableOperation.Insert(new TableEntity {
RowKey = "Abhijit", PartitionKey = "Kolkata" }));
 table.ExecuteBatch(batch);
}

Here, in the preceding code, the TableOperation objects are added to
TableBatchOperation, and all of them are executed using the ExecuteBatch
method API.

13.	 Let's add the following code:
public void UpdateEntryToTable(string tableName, TableData
 customData)
{
 CloudTable table =
 cloudTableClient.GetTableReference(tableName);
 table.CreateIfNotExists();
 var replaceOperation =
 TableOperation.Replace(customData);
 table.Execute(replaceOperation);
}

Chapter 7

251

The Replace method automatically compares the TableEntity object using the
PartitionKey and RowKey attributes and determines which object needs to be
replaced. Similarly, to delete an entry, you can use the Delete method and pass the
reference of the TableEntity object.

14.	 You can also query a Table using either PartitionKey and RowKey or anything.
To query a Table, we use LINQ, as follows:
public void QueryTable(string tableName, string partitionKey,
string rowKey)
{
 CloudTable table = cloudTableClient.
GetTableReference(tableName);
 TableQuery<TableData> tableQuery = new
TableQuery<TableData>().Where(TableQuery.CombineFilters(
 TableQuery.GenerateFilterCondition("PartitionKey",
 QueryComparisons.Equal, partitionKey),
 TableOperators.And,
 TableQuery.GenerateFilterCondition("RowKey",
 QueryComparisons.Equals, rowKey)));

 foreach (TableData data in table.ExecuteQuery(tableQuery))
 Trace.WriteLine(data.ToString());
}

The preceding code creates a filter for a specific PartitionKey and RowKey
combination such that it gives you an entry that is unique in the Table.

15.	 Similar to Blobs and Tables, Queues follow the same type of development approach.
The only difference with Queues is that a Queue follows FIFO logic and, hence,
the message that goes in first will come out first. Let's take a look at how to work
on Queues:
private CloudQueueClient cloudQueueClient;
 public QueueExample()
 {
 CloudStorageAccount cloudStorageAccount =
CloudStorageAccount.DevelopmentStorageAccount;
 cloudQueueClient =
cloudStorageAccount.CreateCloudQueueClient();
 }

16.	 To create a Queue, we use the following code:
public void CreateQueue(string queueName)
{
 CloudQueue cloudQueue = cloudQueueClient.
GetQueueReference(queueName);
 cloudQueue.CreateIfNotExists();
}

Understanding Cloud Computing with Windows Azure

252

The GetQueueReference method gets a reference of the Queue present in the
cloud, which is the main repository for Queue messages. The CreateIfNotExists
method will create the Queue if it is not present.

17.	 To add a message to the Queue, we use the following code:
public void Enqueue(string queueName, string message)
{
 CloudQueue cloudQueue =
cloudQueueClient.GetQueueReference(queueName);
 CloudQueueMessage cmessage = new
CloudQueueMessage(message);

 cloudQueue.AddMessage(cmessage);
}

Here, CloudQueueMessage can take a message as an argument, and you can use
the AddMessage method to add that message to the Queue.

18.	 To dequeue a message, you can use the following code:
public void Dequeue(string queueName)
{
 CloudQueue cloudQueue =
cloudQueueClient.GetQueueReference(queueName);
 CloudQueueMessage cmessage = cloudQueue.PeekMessage();
//Gets message without removing it

 Trace.WriteLine(cmessage.AsString);

 cmessage = cloudQueue.GetMessage(); //Gets message and
makes it invisible for 30 sec
 cloudQueue.DeleteMessage(cmessage); //deletes the
 message
}

In the preceding code, we can either use PeekMessage, which will get the message
without altering or removing the first item from the queue, or you can use GetMessage,
which will get the message and make the same message invisible on the Queue for
30 seconds. In between, if the process invokes DeleteMesssage on the message,
the Queue message will be removed. So Dequeue is a two-step process to call
GetMessage with DeleteMessage.

19.	 The UpdateMessage method can be performed when the message is available:
public void UpdateMessage(string queueName, string message)
{
 CloudQueue cloudQueue = cloudQueueClient.
GetQueueReference(queueName);
 CloudQueueMessage cmessage = cloudQueue.GetMessage();
 cmessage.SetMessageContent(message);

Chapter 7

253

 cloudQueue.UpdateMessage(cmessage, TimeSpan.FromSeconds(0d),
MessageUpdateFields.Content |
MessageUpdateFields.Visibility);
}

The preceding code invokes GetMessage, which will get the first message from the
Queue and make it invisible. The SetMessageContent method will change the
content and finally UpdateMessage will update the message in the Queue after a
specified time. In the preceding code, the message gets updated on the Queue and
immediately becomes visible to the Queue.

20.	 Blobs, Tables, and Queues form the basic storage units of Azure storage, and based
on the requirement of the situation, any type of storage could be used.

How it works...
In the Azure environment, three types of Azure storages are found: Blobs, Tables, and Queues.
Each of these forms a REST-based URI approach to store and retrieve data, as shown in the
following figure:

HTTP

Application

Compute Storage

Fabric

Blobs Tables Queues

In the main Azure Storage, storage components are exposed as HTTP objects over a network.
Blobs are used to store large unstructured data, which does not change over time. Tables are
used to store key/value pair objects with a special capability of performing a query over the
data based on keys and Queue, which mainly stores messages following the FIFO algorithm.

Understanding Cloud Computing with Windows Azure

254

When dealing with Azure Storage, the following three components are present:

ff Account: This is mapped to a client.

ff Container: This is mapped to the reference container for Blob, Tables, or Queues.
One account can hold a number of containers, each of which is named with
an identifier.

ff Objects: These are the main storage blocks that are placed inside a container.

Account can point to a CloudStorageAccount reference object. Here, you can either use
CloudStorageAccount.DevelopmentStorageAccount to point the client to a local
emulator, or you can parse a connection string from the portal and add it back here.

To find the actual connectionstring from the portal, open the Azure portal
(https://manage.windowsazure.com); navigate to NEW | STORAGE |
QUICK CREATE; and enter the unique URL, LOCATION, and SUBSCRIPTION,
as shown in the following screenshot:

Here, we created a storage account called abhishekbook.core.windows.net. When you
create the service, it will create the storage client for you where you can store data. Once the
storage account has been created, you will find the storage links from the dashboard, as
shown in the following screenshot:

https://manage.windowsazure.com

Chapter 7

255

Each of the links points to the development storage account. Now, let's specify
StorageAccountName and a key to ConnectionString to create a valid connection.

The name of the account would be abhishekbook, and there will be two access keys
that can be accessed via the Manage Access Key button when Storage is clicked on the
left-hand pane.

Now, go to properties of the Worker Role project and select Settings to add a new settings
key. You can go to the alias in the connection string to access the window to configure the
keys for the connection; you can name it StorageConnectionString. You can directly
connect to the Azure portal to get the entire connectionstring from the superior tool of
Visual Studio, as shown in the following screenshot:

Once you get the connection, you can access the connection using the following code:

CloudStorageAccount cloudStorageAccount =
CloudStorageAccount.Parse(CloudConfigurationManager.GetSetting("St
orageConnectionString"));

Understanding Cloud Computing with Windows Azure

256

The first step for any client is to connect to an appropriate storage account. Once the storage
account object is created, we need to set up a client with an appropriate storage type. The
client can be created using CreateCloudBlobClient, CreateCloudTableClient, or
CreateCloudQueueClient.

The client can access the container that can be accessed with a unique identifier. In the steps
defined earlier, each storage is accessed by following these simple steps. Once the container
is retrieved, individual methods are used to manipulate the data inside it.

There's more...
Above simple storage usages, there are a number of additional things that are worth noticing.
The following sections present some of them.

Combining Blobs and Queues for Big Data sequential processing
A Queue can store up to 8 KB of messages. This limitation is very small when dealing with
real-world scenarios. It is often required to access a large storage file from another process.
A Queue is used to communicate with two processes, but if you need to send data that is larger
than the maximum size of the Queue, it makes it impossible to use such a data structure.

In addition to a queue, a Blob storage is used to communicate large data between the
processes. The data is stored inside a Blob instead of a Queue, and the URL that uniquely
identifies the Blob is stored in the queue. We access the data through the Queues sequentially
getting the blob URL and fetching the data from the Blob storage.

Say, for instance, we want to process large files on a service. To deal with large files, we will
create a Blob storage, as follows:

public void UploadFileForProcessing(string path, string fileName)
{
 CloudStorageAccount storageAccount = CloudStorageAccount.
Parse(ConfigurationManager.ConnectionStrings["
StorageConnectionString"].ConnectionString);
 CloudBlobClient blobClient = storageAccount.
CreateCloudBlobClient();
 CloudBlobContainer container = blobClient.GetContainerReference("la
rgeDatafolder");
 container.CreateIfNotExists();
 container.SetPermissions(new BlobContainerPermissions {
PublicAccess = BlobContainerPublicAccessType.Blob });

 CloudBlockBlob blockBlob = container.GetBlockBlobReference(fileNa
me);

 //Create the Queue reference
 CloudQueueClient queueClient = storageAccount.
CreateCloudQueueClient();

Chapter 7

257

 CloudQueue queue = queueClient.GetQueueReference("fileProcessingQu
eue");
 queue.CreateIfNotExists();

 using (var fileStream = System.IO.File.OpenRead(path))
 {
 blockBlob.UploadFromStream(fileStream);
 //Once upload finished, add the message to the Queue
 CloudQueueMessage newBlobAddress = new
CloudQueueMessage(blockBlog.Uri);
 queue.AddMessage(newBlobAddress);
 }
}

Here, the Queue fileProcessingQueue is used to send a message between two processes.
Once the message has been added to the Queue, the other process will receive it via the
GetMessage method from the Queue and process the Blob from its URL, as follows:

public void ProcessFileFromQueue(string downloadfilePath)
{
 CloudStorageAccount storageAccount =
CloudStorageAccount.Parse(ConfigurationManager.ConnectionStrings["
StorageConnectionString"].ConnectionString);

 //Create the Queue reference
 CloudQueueClient queueClient = storageAccount.
CreateCloudQueueClient();
 CloudQueue queue = queueClient.GetQueueReference("fileProcessingQu
eue");
 queue.CreateIfNotExists();

 CloudQueueMessage blobAddress = queue.GetMessage();
 if(blobAddress != null)
 {
 CloudBlobClient blobClient = storageAccount.
CreateCloudBlobClient();
 CloudBlobContainer container = blobClient.GetContainerReference
("largeDatafolder");

 CloudBlockBlob blockBlob = container.GetBlockBlobReference(blob
Address.AsString);
 using (var fileStream = System.IO.File.
OpenWrite(downloadfilePath))
 {
 blockBlob.DownloadToStream(fileStream);
 }
 queue.DeleteMessage(blobAddress);
 }
}

Understanding Cloud Computing with Windows Azure

258

The preceding code downloads the files one by one from the Blob storage, which is
uploaded by another process and notified using a request that comes from the Queue. Being
the medium for exchanging information, the Queue cannot hold the whole file; instead,
the requested URL could be sent through Queue, and the process that is subscribed
to the same Queue can access it in real time. Thus, the files sent from a process using
UploadFileForProcessing are eventually sent to another process shown in the
ProcessFileFromQueue method.

Choosing the best Azure Storage based on the type of use
As we move forward, you might think about which Azure Storage to use when there are a
number of storage types available in Windows Azure. The storage types are as follows:

ff Blobs

ff Tables

ff Queues

ff Azure Drive

ff SQL Azure

Windows Azure Blobs support two types of Blobs: one that supports blocks for streamed
access and another that supports a page for random read-write access. The maximum size
of a block Blob is 200 GB and the maximum size of a page blob is 1 TB. The primary use of
block Blobs is to have streaming content on websites, while the primary use of page blobs is
to store VHDs.

The Table gives a structured NoSql data to store a collection of entities where each entity has
a primary key of PartitionKey and RowKey as well as a Timestamp property. The Table
does not support indexes as of now. However, it supports the transaction when the input is in
batches.

Queues store messages up to 8 KB of message size and return messages based on FIFO.
The messages in Queue remain there until they get deleted or remain there for a maximum
of 7 days.

The Azure drive allows an instance to be mounted as an NTFS drive, a VHD stored as a page
Blob. Once mounted, VHD has full access to perform the read/write function.

Chapter 7

259

SQL Azure is a relational database with full transactional capabilities of SQL Server running
on Windows Azure data centers. The Azure database in the portal initially has a maximum
size of 50 GB, but it can be subsequently changed using an alternate database statement up
to 150 GB or even up to 500 GB as per the latest news. The following command changes the
maximum size of the database to 100 GB:

ALTER DATABASE MyDatabase MODIFY (EDITION='BUSINESS', MAXSIZE=100GB)

Refer to the following list:

ff We choose Blobs if we want to have large data content streamed on websites (block
Blob) or perform random read/write access to a large file (page Blob)

ff We choose Azure Tables if we need a cost-effective, highly scalable storage of entities
that accept the limitations of a query

ff We choose SQL Azure if we want relational databases

ff We choose Queues when we need to implement disconnected communication
between processes

ff We choose Azure Drive if we need NTFS Access to a durable disk

See also
ff Refer to the Azure Storage documentation at http://bit.ly/azurestoragech7

Creating, updating, and deploying a cloud
service in Windows Azure

When you create an application and run it in Windows Azure, the configuration file along with
the code that constitutes the package together is called a Windows Azure cloud service. With
a cloud service, you can host a multi-tier application in a single host and combine one or more
cloud services together with the Web role and/or worker roles, each with its own application
files and configurations with the support of autoscaling. A cloud infrastructure maintains the
services for you by maintaining virtual copies of the software, patching operating systems
and attempting to recover hardware failures. A cloud service is recommended to have at least
two instances running to qualify Windows Azure Level Agreement that states 99.95 percent
guaranteed connectivity.

Cloud service roles that constitute application and configuration files are of two types:

ff Web role: This is a frontend application hosted in IIS

ff Worker role: This is a long-running service that runs in the background without any
frontend interactions

http://bit.ly/azurestoragech7

Understanding Cloud Computing with Windows Azure

260

There are three types of files present in each package. They are as follows:

ff Service definition file (.csdef): This file defines the service model and the number
of roles

ff Service configuration file (.cscfg): This file provides configuration settings for the
cloud service as well as individual roles, including the number of instances per role

ff Service package (.cspkg): This is a zipped archive with the application code and
service definition file

Now, let's create a service with one Web role and one worker role and host them into a cloud.

Getting ready
Open Visual Studio and create a Windows Cloud Service application; we name it
CloudServiceSample. On the next screen that is presented, we add WebRole and
WorkerRole. The project adds two projects in addition to the Service Configuration project
in the Solution Explorer window. WebRole is actually a WebForms application (if you have
chosen WebForm from a template), and WorkerRole represents a mere Windows service.

If you run the project, WebRole pops up a new Internet Explorer, and the default template is
good enough for our deployment.

After you compile, you will get two files: one that is produced with a .cspkg extension, which
represents a zipped archive holding the whole package with application files and service
definition files, and the other is a .cscfg file for configurations.

How to do it...
Let's deploy the small project that comes with the template and configure it to the Azure portal
using the following steps:

1.	 Open the Windows Azure portal (https://manage.windowsazure.com/).
2.	 Create a new CLOUD SERVICE, as shown in the following screenshot, and name it

as something you want:

https://manage.windowsazure.com/

Chapter 7

261

3.	 The myazurecloudservice name would have already been assigned to you, but
change this name to something that suits you.

4.	 Once the service is created and ready, we need to upload the created package to the
service. When you open the service, you will see there are two options to upload the
package. The production environment will automatically put the URL to production,
while staging is used for testing purposes with a temporary URL.

5.	 Let's upload the package file here. To upload, select the Upload option at the bottom
of the page on the Staging tab.

6.	 Select DEPLOYMENT LABEL for the application and choose the PACKAGE file and
the CONFIGURATION file from the app.publish folder where the package has been
created from Visual Studio:

If the Start deployment option is checked, it means the application will be
automatically deployed after it is uploaded.

7.	 Let's choose these settings; after the application is uploaded, you will see the
application is listed on the websites section as a deployed website. The dashboard
allows you to configure different options of the website.

Understanding Cloud Computing with Windows Azure

262

8.	 To configure the IIS Server, you can use the Configuration option on the website.
The Configuration option allows you to handle the .NET Framework version for the
website, the platform type, the application settings, connection strings, default pages,
HTTP handler mappings, and so on. All the things that you may have been doing in IIS
would be available through this tab.

9.	 On the other hand, the Scaling tab, as shown in the following screenshot, allows you
to scale the application's performance. With scaling, you can increase the number of
parallel instances that the same website will run on, the size of the machine where it
is deployed, and so on.

Here, you can see the capacity is configured to run on a small instance machine with
one core and 1.75 GB of memory and scaled to three instances.

10.	 You can also link resources to automatically add firewall settings or other features
that are required to access the resources from Windows Azure websites.

Chapter 7

263

How it works...
An Azure service application runs IIS over a cloud environment as a distributed application.
The application developed in Visual Studio can be deployed to the cloud server without
changing any code. Everything that is required to configure the application could be done
inside Visual Studio, and finally, it can be deployed to the server using a management portal.

In the preceding recipe, we tried to deploy a website to the staging environment, and the
same technique can be used to deploy the application to production.

There's more...
Deploying data into Windows Azure is very important. There are a few more things that can be
worth noting.

Using DataMarkets for your applications
Windows Azure runs in cloud platforms. The main advantage of deploying applications to the
cloud is to enable data and services to be consumed by external applications. The Windows
Azure Marketplace is a global online market where ISVs and data publishers can publish the
data and make money.

Start a web browser and enter http://datamarket.azure.com. Sign in using a live
account, and you can then browse the datasets available. Once you are in the portal, you can
access any dataset available in the marketplace. Some of the data is free, while some is paid.
The free dataset could be accessed without the use of credit cards.

If you go to your account using the My Account link, there are some additional tabs that you
might look at. The MY DATA tab in the following screenshot shows all the data services that
this account is subscribed to. The account key is used by a third-party application to access
your subscription. It is important to note that the account key is sensitive, and you shouldn't
give the same key to multiple vendors.

http://datamarket.azure.com

Understanding Cloud Computing with Windows Azure

264

There is a remove link to remove the account keys once they are not in use. To subscribe to
a data service, you need to simply go to the service and subscribe. There is also an option
to autorefill a service after the subscribed value is over. For example, the STATS Sports
Database service gives access to 50 Transaction/month for $12.00, as shown in the
following screenshot:

You can navigate to the MY DATA tab in the My Account link to enable the autorefill option
after the number of transactions are already consumed. For paid subscriptions, there is a
small link that says Enable Auto refill, which will enable you to select the autorefill option for
the dataset.

Now, to use the dataset, you can go to MY DATA and select Use. The dataset can also support
downloading in CSV or Power Pivot formats.

Finally, to publish the dataset to the marketplace, you need to register for data publishing.
You can use the Publish link to register for publishing. This is a paid enrollment, so you might
need to put your credit card information while registering. Once you are registered, you will see
the following Publisher home page:

Chapter 7

265

On this page, you can either add a dataset or add an app service. When selecting Add DataSet,
you will be redirected to Add DataSource. There are two ways to add a data source:

ff Connecting to SQL Server or the SQL Azure database

ff Connecting to an existing web service

Choosing Connecting to an existing web service allows us to connect to the data source and
the type of service and finally connect to the service.

It is worth mentioning that web service is a better way to expose data rather than going for
full database sharing. You can also use a SQL database and provide a SQL connection to
the marketplace.

Once the service gets connected, the deployed database tables/dataset can be configured
from the Publisher page. You can configure the data-offering credentials from the page for
a particular dataset and finally select Publish.

Once it is successfully published, people will start finding the dataset to the Windows
Azure marketplace.

Understanding Cloud Computing with Windows Azure

266

Working with SQL Azure
SQL Azure adds relational databases to the Windows Azure platform. It is essentially an SQL
Server running on Azure servers. Microsoft keeps the management of the SQL Server to
themselves at the physical level. SQL Azure helps in provisioning and deploying relational
database solutions to the cloud with the automatic benefit of scalability, availability, security,
replication, and so on. This brings all the benefits of cloud computing to SQL Server.

SQL Azure supports the SQL relational database model in contrast to Table storage, which
provides a NoSQL-styled database. SQL Azure is highly available. With high availability, it
means it is fault tolerant, replicated, and has an automatic failover. This means when data is
written to the database, the same data is replicated into multiple storages such that during
disaster recovery, the data could be easily recovered. SQL Azure automatically handles
high availability thus, when one instance of the database is not available, SQL Azure will
automatically put another instance online rather than making the database server go down.
Microsoft guarantees that there is less than 43 minutes of downtime per month for the
database, which means they are 99.9 percent available.

Client Layer � Client Apps
� Management Studio

Table Data Stream+SSL

SQL Azure

� Provisioning
� Billing
� Connection Routing

� SQL Server
� Management services

Service Layer

Platform Layer

Infrastructure Layers

SQL Azure communicates with the Azure service following the preceding architecture. Client
apps communicate the SQL Azure via Table Data Stream using the SSL communication
channel and connects it to the service layer. The service layer consumes the data and passes
it to the platform layer, which has the actual SQL Server instance. This is like communicating
with a web service using SSL. The service layer redirects the data to the SQL Server with the
support of provisioning. The service also deals with billing of data and connection routing.

Chapter 7

267

The platform layer communicates with the cloud infrastructure for physical storage. The
infrastructure also allows the database to be distributed over the cloud environment so that
it becomes easier to handle instances over large number of servers, and Microsoft also does
not need to handle each individual server manually.

SQL Azure does not support Windows authentication, but supports SQL's username and
password to communicate between machines. However, it has a security firewall, which
allows you to access SQL Servers only from a fixed number of machines. SQL Azure uses port
number 1433 to communicate data. Thus, when the service layer receives a request to log
in, the layer maintains a table of all the clients that have access to that particular instance
which have been called for. For instance, if SQL Azure is accessed from Windows Azure, the IP
address of 0.0.0.0 needs to be allowed to the SQL Azure instance to prevent the firewall from
passing through the login process from Windows Azure.

Getting ready
To get started with SQL Azure, lets open https://manage.windowsazure.com, go to
NEW | DATA SERVICES | SQL DATABASE, select QUICK CREATE, and enter
MyAzureDatabase in the DATABASE NAME field for the time being. Then, click on
CREATE SQL DATABASE, as shown in the following screenshot:

Once the database has been created, you can select the database from the list to open
the dashboard. The dashboard not only allows you to monitor and scale like other services,
but also allows you to configure the database.

https://manage.windowsazure.com

Understanding Cloud Computing with Windows Azure

268

You can add the allowed IP addresses as I mentioned before. The portal will automatically
suggest the IP address of the system you are browsing with. Click on DashBoard and select
Manage IP Addresses. You will see the following screen:

Now this IP firewall is applied to the server that you might have created before. For instance, if
you go to the dashboard of your service, you can click on the Reset Administrator Password
option that you might have created before:

Each database service instance allows 150 databases inside it and gives a unique URL to
access the service and databases inside it. The database server can be thought as a service
that runs as an instance on your machine where SQL server is installed.

Once the configuration is done, open Management Studio and enter the unique URL for the
database server that is created and use its username and password. Your server name would
be xxxx.database.windows.net, and the port that it need to access is 1433.

In addition to this, the portal also supports a management studio inside the web browser,
which allows you to to access the database, create tables, and everything that you might be
doing in the SQL Server management studio.

Chapter 7

269

In the dashboard section, you can click on Design your SQL Database to access the
management studio. The various connection strings to access the database server is also
available at the hyperlink, View SQL Database connection strings for ADO.NET, ODBC, PHP,
and JDBC, as shown in the following screenshot. You can use them to access the database
server from the applications.

In the following section, let's implement an OData service using SQL Azure.

How to do it...
OData is a web protocol to query and update data using HTTM, ATOM publishing protocol,
and/or JSON. The OData protocol is released under Open Specification Promise. OData
provides generic CRUD interfaces to access data on the server using normal HTTP protocols.
SQL Azure supports SQL databases to be exposed over OData. The entire security model will
act behind the scene, and even you can allow read-only access to OData to be safe. Now, let's
create an OData service through steps that will use SQL Azure tables and host it over HTTP:

1.	 Open Management Studio and connect to the database with appropriate credentials.

2.	 Open the Security node and create new login credentials. Logging in will execute the
CREATE LOGIN statement on the master database, as follows:
CREATE LOGIN odataLogin
 WITH PASSWORD = '0D@t@l0g1n'
GO

The preceding code creates a login for the database service.

3.	 Once this is done, we need to create a user that will use the same login credentials.
To do that, we open the MyAzureDatabase node, and under the Security node, we
add a new user. This will open up the script pane, where we add the following code:
CREATE User odatalogin
 FOR LOGIN odatalogin
 WITH DEFAULT_SCHEMA = MyAzureDatabase
GO

This will add the odatalogin user with odatalogin and default database access
to the database.

Understanding Cloud Computing with Windows Azure

270

4.	 We also need to provide a role to the user so that it can access certain privileges
of the database. As we wanted to use read-only data access, we need to add the
db_datareader role to the user:
EXEC sp_addrolemember N'db_datareader', N'odatalogin'
GO

5.	 Now, we open Visual Studio and create a cloud service application and select an ASP.
NET web role. As you already know, a web role is just an ASP.NET web application.
Name it MyODataService and select Web Forms.

6.	 Add the ADO.NET Entity data model and use the Generate From Database option.
Select the connection to the Azure database using the odatalogin user with an
appropriate password and click on Next.

7.	 From the listed tables, select the tables that you need to add. We created two tables,
Customers and Orders, to test our OData service.

8.	 Add a new item to the solution and select WCF Data service. Name it
MyAzureData.svc.

9.	 In InitializeService of the WCF data service, we add the following lines:
config.DataServiceBehavior.MaxProtocolVersion =
 DataServiceProtocolVersion.V3;

config.SetEntitySetAccessRule("*", EntitySetRights.All);

config.SetServiceOperationAccessRule("*",
 ServiceOperationRights.All);

The preceding lines will set access to all the tables, and as we are using the user
who has only read-only access to the database, the server data will be safe from
external updates.

10.	 Finally, package the service and deploy it to Windows Azure. You can access the
service using the yourserver/MyAzureData.svc/{tableName} link.

How it works...
OData uses open data specification published by Open Data Protocol, which is a REST-based
protocol standard that enables accessing database objects and updating the database
objects using open standards such as HTTP and using common standard formats of data
such as JSON or XML. In the preceding application, we created an OData service application,
consuming the SQL Azure database. We configured the SQL Azure database, put a service
layer over it, and provided easy access to the objects inside the SQL Azure database. We can
host the service either in Azure or any other server as standalone and consume the data from
the service.

The WCF service automatically enumerates the entity objects from the database and provides
the formatted data to the consumer.

Chapter 7

271

There's more...
SQL Azure provides a number of important features that are worth noting. Let's take a look at
some more advantages of using SQL Azure.

Running transactional queries from the portal
Even though it is recommended that you access the SQL server through the management
portal, there is also an option to run the management tools directly from the browser itself.
The Windows Azure management portal gives an option to design the database schema or
relationships. To open the database in the online management portal, go to the database
and use the Design your SQL Database link, as shown in the following screenshot:

Once you open the portal, you need to feed in the appropriate username and password of
the database instance to open the management portal for the database. When you open the
portal, it gives a summary of the database portal, as shown in the following screenshot:

Understanding Cloud Computing with Windows Azure

272

One can select New Query to start writing a query in the query window, and the query will be
listed on the left-hand side pane.

You can also use the Design tab at the bottom-left corner of the screen to open the designer
for Tables. This option is absent for Azure databases when they use Management Studio.
The portal can even list the estimated and actual execution plans while running a query on
the database.

See also
ff Refer to the MSDN documentation of SQL Azure at http://bit.ly/

sqlazurechdoc

Working with HDInsight (Hadoop) for Big
Data processing

SQL Azure provides a relational database technology to the Windows Azure platform. However,
sometimes the data becomes so vast that it could not be handled using a relational database.
Even sometimes, the data that needs to be analyzed is not relational at all. Hadoop is a new
technology that has been introduced recently to help in analyzing Big Data problems.

Hadoop is an Apache-based open source project. This technology stores data in Hadoop
Distributed File System (HDFS) and then lets the developers create MapReduce jobs to
analyze that data. The main advantages of a Hadoop filesystem is that it stores data in
multiple servers, and then allows to run chunks of MapReduce jobs, letting Big Data be
processed in parallel.

HDInsight is the name of the Windows Azure Apache Hadoop-based service. HDInsight lets
HDFS to store data in clusters and distribute it across multiple virtual machines. It also spreads
the MapReduce job across VMs. HDInsight uses Windows Azure Storage Vault to store data in
Blobs. The use of ASV allows you to save money, as you can delete your HDInsight cluster when
not in use and still have data in the cloud in the form of Blob storage.

Getting ready
To get ready to use HDInsight, let's understand a few basic concepts:

ff Pig: This is a high-level platform for processing data in Hadoop clusters. Pig consists
of a data-flow language called Pig Latin, which supports queries over large datasets.
The Pig Latin program consists of a dataset transformation series that is converted to
a MapReduce program series under the covers.

http://bit.ly/sqlazurechdoc
http://bit.ly/sqlazurechdoc

Chapter 7

273

ff Hive: This is a Hadoop query engine built for data warehouse summarization queries.
Hive is used for analysis and gives a SQL-like interface and a relational data model.
Hive uses a language called HiveQL, a dialect for SQL. Just like Pig, Hive is also an
abstraction on top of MapReduce.

ff Sqoop: This transfers data from Hadoop to relational, structured data storages such
as SQL as efficiently as possible.

To run this sample, you need to install Azure PowerShell as well.

How to do it...
Now let's try to see how you can leverage the Azure portal to create a Hadoop job to count the
number of occurrences of the words with parallel nodes running on files:

1.	 Open the Windows Azure management portal and create a storage account. Take a
note of the credentials to access it.

2.	 Create an HDInsight data service with four nodes and a password to access the service.
You also need to specify a storage account information that you have just created.

3.	 This will create an HDInsight node with four clusters. The storage account once
selected cannot be changed later, and if the storage account is removed, the clusters
would no longer be available for use.

4.	 Once the HDInsight nodes are created, it will be time to run some sample code
to demonstrate MapReduce algorithms. Let's try to run the MapReduce job
on WordCount.

Understanding Cloud Computing with Windows Azure

274

5.	 Open Windows Azure PowerShell and run the following command:
$subscriptionName = "<YourSubscriptionName>"

$clusterName = "<YourHDInsightClusterName>"

6.	 The following command creates a MapReduce job description. The hadoop-
examples.jar file comes with an HDInsight cluster distribution and can be used
for testing MapReduce on the clusters:
$wordCountJobDefinition = New-AzureHDInsightMapReduceJobDefiniti
on -JarFile "wasb:///example/jars/hadoop-examples.jar" -ClassName
"wordcount" -Arguments "wasb:///example/data/gutenberg/davinci.
txt", "wasb:///example/data/WordCountOutput"

7.	 Once the MapReduce job is created from the hadoop-examples.jar file, you can
start running the job. To submit the job, run the following command:
Select-AzureSubscription $subscriptionName

$wordCountJob = Start-AzureHDInsightJob -Cluster $clusterName
-JobDefinition $wordCountJobDefinition

Here, you can see that in addition to SubscriptionName, you also need to pass in
Clustername where the MapReduce operation needs to run.

8.	 You can ask the portal to check the completion of a MapReduce job using the
Wait-AzureHDInsightJob command, as follows:
Wait-AzureHDInsightJob -Job $wordCountJob -WaitTimeoutInSeconds
3600

This command will wait with a timeout of 60 minutes. To see the job output, you can
use the following command:

Get-AzureHDInsightJobOutput -Cluster $clusterName -JobId
$wordCountJob.JobId –StandardError

9.	 When the job is finished, Windows Azure stores the result in the Blob storage. So,
to retrieve the storage, you need a container name for the reference. Let's create
another variable for $containerName.

10.	 We run the following command to create the Windows Azure context object:
Select-AzureSubscription $subscriptionName

$storageAccountKey = Get-AzureStorageKey $storageAccountName | %{
$_.Primary }

$storageContext = New-AzureStorageContext –StorageAccountName
$storageAccountName –StorageAccountKey $storageAccountKey

The Select-AzureSubscription command is used to set the default subscription
for the entire command.

Chapter 7

275

11.	 Once the context is set up, you can download the job result from the Blob storage.
We can use Get-AzureStorageBlobContent and pass in the container name to
get the Blob content, as follows:
Get-AzureStorageBlobContent -Container $ContainerName -Blob
example/data/WordCountOutput/part-r-00000 -Context $storageContext
-Force

The default filename for the MapReduce job is part-r-00000, and in this example,
the file gets downloaded to the c:\example\data\WordCountOutput folder.

12.	 Finally, to print the MapReduce job, you can run the following command in the
PowerShell window:
cat ./example/data/WordCountOutput/part-r-00000 | findstr "there"

The preceding command will list all the words that have the word there in it with the
count of number of occurrences of each word.

How it works...
Hadoop is a technology that allows you to process Big Data into multiple machines
simultaneously and thereby solve the problem of Big Data. The Hadoop for WordCount
parses the document in parts in different clusters and provides a key value collection where
the key specifies the word and the value specifies the total number of occurrences.

Input1

MAP

REDUCE

Output1

Input2 Input3 Input4

MAP MAP MAP

REDUCE

Output2

In the preceding diagram, you can see the input divided into four parts, and each of them
is sent to an individual cluster to invoke mapping. Following the WordCount example, the
mapper takes each line from the input text and breaks it into words; it then breaks each word
into a KeyValue pair and follows it up by 1. The reducer then sums up the individual counters
for each word and emits a single KeyValue pair containing the word, followed by the sum
of occurrences.

Understanding Cloud Computing with Windows Azure

276

Let's see what the WordCount Java code looks like:

public class WordCount {

 public static class TokenizerMapper
 extends Mapper<Object, Text, Text, IntWritable>{

 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();

 public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
 StringTokenizer st = new StringTokenizer(value.toString());
 while (st.hasMoreTokens()) {
 word.set(st.nextToken());
 context.write(word, one);
 }
 }
 }

 public static class IntSumReducer
 extends Reducer<Text,IntWritable,Text,IntWritable> {
 private IntWritable result = new IntWritable();

 public void reduce(Text key, Iterable<IntWritable> values,
 Context context
) throws IOException, InterruptedException {
 int sum = 0;
 for (IntWritable val : values) {
 sum += val.get();
 }
 result.set(sum);
 context.write(key, result);
 }
 }

 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 String[] otherArgs = new GenericOptionsParser(conf, args).
getRemainingArgs();
 if (otherArgs.length != 2) {
 System.err.println("Usage: wordcount argument mismatch");
 System.exit(2);
 }
 Job job = new Job(conf, "word count");
 job.setJarByClass(WordCount.class);
 job.setMapperClass(TokenizerMapper.class);
 job.setCombinerClass(IntSumReducer.class);
 job.setReducerClass(IntSumReducer.class);
 job.setOutputKeyClass(Text.class);

Chapter 7

277

 job.setOutputValueClass(IntWritable.class);
 FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
 FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
 System.exit(job.waitForCompletion(true) ? 0 : 1);
 }
}

In the preceding code, you can see that there are two methods: one is map and another
is reduce. The map method breaks each word into a set and initializes the output with 1,
while the reduce method sums up all the similar words and increases the counter. From
the Main page, the job is created and the classes are set. Finally, the job result is sent to
the output path.

The New-AzureHDInsightMapReduceJobDefinition method takes a classname and
runs the class from the .jar file with the arguments specified:

$wordCountJobDefinition = New-AzureHDInsightMapReduceJobDefiniti
on -JarFile "wasb:///example/jars/hadoop-examples.jar" -ClassName
"wordcount" -Arguments "wasb:///example/data/gutenberg/davinci.txt",
"wasb:///example/data/WordCountOutput"

The preceding code calls the WordCount class with the argument davinci.txt and the
output file to be written to WordCountOutput.

See also
ff Refer to the HDInsight tutorials at http://bit.ly/hdinsightch7

Working with Mobile Services in Windows
Azure

With the growing number of mobile developments around the world, there is a constant
need for a server system to closely interact with the mobile environment. The server needs
to handle scalability and allow advanced features such as Push Technology and Scheduling
to the server. Windows Azure Mobile Services are a solution to this problem. Windows Azure
Mobile Services provide some benefits that include the following:

ff Stores data in a SQL Server database

ff Secures and supports multiple authentication modes (Live authentication and
Facebook authentication)

ff Provides the Push messaging service

ff Provides the ability to schedule recurring jobs

From an application developer's point of view, Mobile services provide a complete solution to
all the problems that need to be handled as a server for an app.

http://bit.ly/hdinsightch7

Understanding Cloud Computing with Windows Azure

278

Getting ready
Open the management portal and create a Mobile Service.

We name it mymobileserviceapp. Once the service is ready and in the running state,
you can configure it to provide authentication, push notification, scheduling, and so on.

How to do it...
Now let's create a Mobile Service and use it for the server-side app for devices.

1.	 Open Mobile Service and navigate to Identity.

2.	 Enter the details of the client ID and client secret for various settings that you want
to enable.

Chapter 7

279

3.	 Now, create a table and select the option to provide permission to access for only
authenticated users.

The table then created will only be accessed by an authenticated user from the app.

Understanding Cloud Computing with Windows Azure

280

4.	 Now, once you navigate to the dashboard, download the Windows 8 App for C# with
the ToDoItems table included.

If you open the project, you will see that MobileServiceClient is already
referenced for the current Mobile Service and configured appropriately.

5.	 Now, to authenticate the application using credentials, we use the following code:
var user = await App.MobileService.LoginAsync(MobileServiceAuthent
icationProvider.Facebook);

The preceding code will authenticate the service using the Facebook authentication
for the current device. Now, if you call it OnNavigatedTo of the main page, the
application will authenticate on startup.

6.	 To add a schedule update script to the application, go to the Scheduler tab of the
Mobile Service and add a scheduler job. Let's name it getupdateavailablescript:

Chapter 7

281

7.	 Here, getTable gets a table called Updates and inserts a date into the table. After
every scheduled time is elapsed, data is inserted into the Updates table with the
current date and time. Note that the Updates table has a column date. You can use
a scheduler to push data to the clients at an interval.

8.	 Open the Windows store app and add a push notification to the application. The
application opens up with a Register name dialog. Register the app name here and
finish the wizard. The app is now registered for notifications.

9.	 To send the push notification, we use the following code:
function sendNotifications(uri) {
 console.log("Uri: ", uri);
 push.wns.sendToastText01(uri, {
 text1: "Sample toast from sample insert"
 }, {
 success: function (pushResponse) {
 console.log("Sent push:", pushResponse);
 }
 });
}

The preceding code sends the push notification with the Sample toast from
sample insert text to the app.

How it works...
Mobile Services act as a backbone for any mobile app. Windows Azure built Mobile Services
to ensure the scalability of Azure is easily available to mobile apps. The server supports
scheduling and allows access to push notification services; it also allows the app to use an
existing technology to easily add features that might be commonly needed for an app to run.

Mobile Services handle authentication and security so that only authenticated users can
access the service.

Understanding Cloud Computing with Windows Azure

282

There's more...
Mobile applications have been widely becoming popular nowadays. With the increase in app
development, Mobile Services are widely been favored as they are pluggable and support
ready code for various mobile platforms. Let's look at some other things that might be worth
noting about Mobile Services.

Calling a custom API from Mobile Services
Mobile Services support the addition of a custom API such that mobile devices can call the
API to get the data or run specified batch requests. A custom API gives the ability to send a
single POST request and sets a defined task.

We open the Windows Azure management portal and add a new API with the name
MyCustomAPI. As we require POST messages to be accessed by this API, we set POST
PERMISSION to Everyone to avoid security of the application:

Chapter 7

283

Once the custom API is created, you need to add some code to it so that when the API is
called from the client, the server is updated:

exports.post = function(request, response) {
 var mssql = request.service.mssql;
 var sql = "insert into Updates (data) values (GetDate())"
 mssql.query(sql, {
 success: function(results) {
 if(results.length == 1)
 response.send(200, results[0]);
 }
 })
};

Here, the preceding code inserts a new row to the table Updates when it is called from the
client. To call the API from the client application, we use the following code:

var result = await App.MobileService.InvokeApiAsync<MarkAllResult>("m
ycustomapi",
 System.Net.Http.HttpMethod.Post, null);
 message = result.Count + " rows updated.";

Here, the Mobile Service calls the mycustomapi method created on the server to run the
Post script and get the result from the query.

Uploading big files to Mobile Services
Uploading and saving large files on transactional databases is not a good practice. Windows
Azure supports Blob storage to store data files that are big enough to store in transactional
databases. Mobile Service supports relational databases, but occasionally, with a trick. You
can also store files that are large in size to Blob storage and reference them using the URL
rather than actual data being stored in the database. To configure this, create a storage
account and update the credentials to the app settings of Mobile Service:

Understanding Cloud Computing with Windows Azure

284

Once the storage account name and access key is added to the app settings of Mobile
Services, then by taking the credentials from the Blob storage account, let's try to add some
data to the Blob storage:

private async void InsertData(MyDeviceTable deviceTable)
{
 string errorString = string.Empty;

if (media != null)
{
 deviceTable.ContainerName = "myimages";
 deviceTable.ResourceName = media.Name;
}

await deviceTable.InsertAsync(deviceTable);

if (!string.IsNullOrEmpty(deviceTable.SasQueryString))
{
 // Get the new image as a stream.
 using (var fileStream = await media.OpenStreamForReadAsync())
 {

 StorageCredentials cred = new StorageCredentials(deviceTable.
SasQueryString);
 var imageUri = new Uri(deviceTable.ImageUri);

 // Instantiate a Blob store container based on the information
in the returned item.
 CloudBlobContainer container = new CloudBlobContainer(
 new Uri(string.Format("https://{0}/{1}",
 imageUri.Host, todoItem.ContainerName)), cred);

 // Upload the new image as a BLOB from the stream.
 CloudBlockBlob blobFromSASCredential =
 container.GetBlockBlobReference(deviceTable.ResourceName);
 await blobFromSASCredential.UploadFromStreamAsync(fileStream.
AsInputStream());
 }
}

// Add the new item to the collection.
items.Add(deviceTable);

}

Chapter 7

285

Here, when the insert operation on the Table is performed, it generates a SAS request that
waits for the application to upload the data to the Blob storage. Here, you can see during
the insertion of data to a deviceTable storage on the cloud. The large data file is being
uploaded to the server using SAS credentials. Now, to enable the service to receive SAS
credentials from the server such that the appropriate Blob storage container is used,
we change the code of the insert statement of MyDeviceTable on the Azure portal to
support the SASString response:

var azure = require('azure');
var qs = require('querystring');
var appSettings = require('mobileservice-config').appSettings;

function insert(item, user, request) {
 // Get storage account settings from app settings.
 var accountName = appSettings.STORAGE_ACCOUNT_NAME;
 var accountKey = appSettings.STORAGE_ACCOUNT_ACCESS_KEY;
 var host = accountName + '.blob.core.windows.net';

if ((typeof item.containerName !== "undefined") &&
 (item.containerName !== null)) {
 item.containerName = item.containerName.toLowerCase();

 var blobService = azure.createBlobService(accountName,
 accountKey, host);
 blobService.createContainerIfNotExists(item.containerName, {
 publicAccessLevel: 'blob'
 }, function(error) {
 if (!error) {
 var sharedAccessPolicy = {
 AccessPolicy: {
 Permissions:
azure.Constants.BlobConstants.SharedAccessPermissions.WRITE,
 Expiry: new Date(new Date().getTime() + 5 * 60 *
1000)
 }
 };

 // Generate the upload URL with SAS for the new image.
 var sasQueryUrl =
 blobService.generateSharedAccessSignature(item.
containerName,
 item.resourceName, sharedAccessPolicy);

 // Set the query string.

Understanding Cloud Computing with Windows Azure

286

 item.sasQueryString = qs.stringify(sasQueryUrl.
queryString);

 item.imageUri = sasQueryUrl.baseUrl +
sasQueryUrl.path;

 } else {
 console.error(error);
 }
 request.execute();
 });
} else {
 request.execute();
}

}

The preceding code modifies the insert operation on mydevicetable such that it provides
a window of 5 minutes to upload large data to the secured Blob storage. It generates the
SASString URI for the Blob container, which is later used by the client to upload the files.

Index
Symbols
__getTemplateProjectItem() method 221
.NET program

debugging, framework library
source used 35, 36

URL, for symbol file location 36
.suo (Solution User Option) file 15

A
Activated state 112
Agile iterations

configuring, to TFS project 168, 169
alarm 120
ALM Rangers guide

reference link 174
APIs, Assert method

Assert.AreEquals 186
Assert.AreSame 186
Assert.Fail 186
Assert.IsNull/Assert.IsNotNull 186
Assert.IsTrue/Assert.IsFalse 186

ApplicationBar
using, on Windows Phone app 110, 111

Application Lifecycle management (ALM) 157
Application Tier 165
AssociationAttribute 129
Attach to Process feature 39
Autos window 20, 21
Azure Storage

selecting 258, 259
URL, for documentation 259

Azure Storage components
account 254
container 254
objects 254

B
BasicAuthenticationModule

defining 87
BasicAuthProvider class 88
binary sharing 171
Blobs

about 245, 253
combining, with Queues 256-258

branching
about 170, 172
creating 170
creating, in Visual Studio project 171, 172
reference link 174

branch visualization 172
breakpoint hit counter 15
breakpoints

condition, adding 13, 14
exporting 14, 15
filtering 17
labeling 12, 13
used, for debugging source code 9-11

C
changeset visualization 173
ChannelFactory class 50, 51
Choosers, Windows Phone

about 114
URL 126
using 114-116
working with 116-119

Client Application 165
Client Computer 165
Client Object Model 165

288

cloud computing
about 243
agility 244
Application Programming Interface (API) 244
elasticity 244
flexibility 244
implementing 244
individual use of resources 244
Infrastructure as a Service (IaaS) 244
measurable service 244
Network as a Service (NaaS) 244
Platform as a Service (PaaS) 244
principles 244
Software as a Service (SaaS) 244

cloud service
creating 259
web role 259
worker role 259

code coverage results
using 188

Code Coverage tools 180
Coded UI Test

about 198
analyzing 209, 210
CodedUITest.cs 207
driving, predefined data used 207-209
reference link 210
UIMap.cs 207
UIMap.designer.cs 207
UIMap.uitest 207
working, in Visual Studio 198-207

CodedUITest.cs file 207
code generation

optimizing, T4 templates used 222, 223
code sharing techniques

binary sharing 171
file linking 170
source code sharing 171

ColumnAttribute 129
CommandHandler 226
CommandHandlerProvider 226
Command property 110
Command window

about 28
differences, with Immediate window 30

exploring 28-30
shortcuts 29

CompletionSource 226
CompletionSourceProvider 226
ConnectionString property 133
Core CLR 102
CreateFile function 219
custom API

about 282
calling, from Mobile Services 282, 283

cycle tile template 154

D
data

streaming over network,
WCF service used 61-67

Data Context 128
DataContract

about 53
using, in WCF service 53-55

DataContractJsonSerializer class 139
Data Protection API (DPAPI) 137
Data Tier 165
DataTips

about 18
clearing 19
exporting 19
importing 19
using 18
working 18

debugger
about 10
calling, code used 39, 40

Debugger Canvas
about 34
URL 34
working with 34

debugger visualizers
working with 20

debugging
about 8
DataTips, using 18
execution step, changing 11
source code, with breakpoints 9-11
tracepoints, adding 16, 17

289

DeleteOnSubmit method 137
DependencyProperty 110
deployed process

debugging 37-39
Devart T4 editor

reference link 223
Dynamic Link Libraries (.dll) 171

E
EditorFactory class 240
e-mail notification

adding, to TFS 167
encryption 137
Entity Framework (EF) 128
EntityRef class 131
Error List window

working with 23
Export attribute 230

F
file linking 170
files

uploading, to Mobile Services 283-286
flip tile template 153, 154
framework library source

used, for debugging .NET program 35, 36

G
GetSalary method 182
GetTags function 234
Global Assembly Cache (GAC) 171
globally unique identifier (GUID) 28

H
Hadoop. See also HDInsight

about 272
advantages 272

Hadoop Distributed File System. See HDFS
Hash-based Message Authentication. See

HMAC
HDFS 272

HDInsight
about 272
URL 277
working with, for Big Data 272-277

Hive 273
HMAC 245
hostService method 220

I
iconic tile template 155, 156
IE Trident 102
IMetadataExchange endpoint

about 52
adding 52, 53

Immediate window
about 29
exploring 29, 30
shortcuts 29

IndexAttribute 129
Infrastructure as a Service (IaaS) 244
Install SQL Server (IIS)

configuring 158
IntelliTrace

about 31
file size reducing 33, 34
saving 32, 33
using, in Visual Studio 31, 32

Interface definition language (IDL) 42
Isolated Storage 128
IsolatedStorageSetting class 139
isolating code testing, using Microsoft Fakes

reference link 198

L
Launchers, Windows Phone

about 114
URL 126
using 114
working with 116-119

LINQ to SQL object model 128
LINQ to SQL RUNTIME 128
local database app

reference link 143
Locals window 21

290

M
Managed Extensibility Framework (MEF)

about 212, 223
editor extension points 224
reference link 224
used, for building editor classifier 225, 226
used, for creating SmartTag

extender 232-235
working with 223-232

merging
creating 170
reference link 174

Microsoft Fakes framework
shims 192
stubs 192
working with, in Visual Studio 191-198

Microsoft Fakes Isolation Framework 180
Microsoft Push Notification Service

(MPNS) 144
Microsoft Unit Test Framework 180
Microsoft Visual Studio Remote

Debugging Monitor 37
Mobile Services. See Windows Azure

Mobile Services
Model-View-ViewModel

pattern. See MVVM pattern
Multimedia 102
multiple output files

creating, T4 templates used 218-220
multithreaded program

about 24
debugging 24, 25
Flag Just My Code, selecting 26
parallel programs, debugging 26

MVVM pattern
about 110
using, in building Windows Phone 8

application 103-110

N
Network as a Service (NaaS) 244
notifications

working with, in Windows Phone 143-153
Not Running state 112

O
object ID

creating 22
OData 78
OData application

securing, behind valid authentication 86-91
OData protocol 269
OData services

consuming 83-85, 91
creating, from Visual Studio 79

Open Data Protocols
about 78
used, for creating WCF service 78-82

P
parallel application debugging

reference link 28
parallel programs

debugging 26
PDB files

about 27, 28
identifying 28
schema 27

persistent storage
about 126
working with 127-137

Pig 272
pkgdef file 241
Platform as a Service (PaaS) 244
predefined data

used, for driving Coded UI Test 208
PrivateObject class 187
PrivateType class 187
project 161
ProvideToolWindow function 240
push notifications

about 143
raw notification 143
tile notification 143
toast notification 143
URL 156

291

Q
Queues

about 245, 253
combining, with Blobs 256-258

R
raw notification 143
relational databases

about 126
working with 126-137

reminder 120
Representational State Transfer (REST)

about 67
advantages 68

Request object 45
REST-based WCF service

writing 67-75
REST service

reference link 78

S
Select-AzureSubscription command 274
Server Application 165
service configuration file (.cscfg) 260
service definition file (.csdef) 260
service extensibility 92
ServiceHost class 48-50
service package (.cspkg) 260
shims 192
Simple Object Access Protocol (SOAP) 42
SmartTag extender

creating, MEF used 232-235
Software as a Service (SaaS) 244
solution 161
source code

debugging, breakpoints used 9-11
source code sharing 171
SQL Azure

about 266
cloud computing, benefits 266
transactional queries, running from

portal 271, 272
URL, for MSDN documentation 272
working with 266-270

SQLite
URL 137

Sqoop 273
storage account

creating 254, 255
Storage Service, Windows Azure

about 245
Blobs 245
Queues 245
Tables 245

stubs 192
SubmitChanges method 133
Suspended state 112
Suspending state 112
svcutil tool

about 55
used, for generating proxy classes 55, 56

T
T4 templates

reference link 223
used, for creating multiple

output files 218-220
used, for optimizing code

generation 222, 223
working with 212-217

TableAttribute 129
Table Data Stream 266
Tables 245, 253
Team Foundation Server. See TFS
team project 161
team project collection 161
Terminal Services 40
test-driven development

dealing with, in Visual Studio 189-191
Test Explorer 180
TFS

about 157-180
branching 170
merging 170

TFS Background Job Agent
reference link 177

TFS branching
checking, by inspecting visualizer 172

TFS scheduled jobs
creating 174-177

292

TFS
Agile iterations, configuring 168, 169
configuring 158, 159
configuring, for project hosting and

management 160-164
download link 158
e-mail notification, adding 167
installing 158, 159
reference link, for security 163
working 165
work item, adding 166

TFS system
partial architecture 165

tile formats
about 153
cycle tile template 154
flip tile template 153
iconic tile template 155

tile notification 143
toast notification 143
tombstoning 112
tracepoints

adding, while debugging 16, 17
TriggerCompletion method 229

U
UIMap.cs file 207
UIMap.designer.cs file 207
UIMap.uitest file 207

V
Virtual Private Network (VPN) 244
visualizer

inspecting 172
Visual Studio

Coded UI Test, working 198-207
IntelliTrace, using 31, 32
Microsoft Fakes framework,

working with 191-198
T4 templates, working with 212-217
test-driven development,

dealing with 189-191
Visual Studio extensions

URL 241
Visual Studio Isolated Shell extensions 212

Visual Studio Package
creating, for tool windows and

editor menus 236-240
working 240

Visual Studio SDK
URL 224

Visual Studio unit test projects
about 181
code coverage results, using 188
private types and members, testing 186, 187
writing 181-186

VSPackage. See Visual Studio Package

W
WAS

about 60
configuring, for IIS 61

Watch windows
about 20, 22
Autos window 20, 21
Locals window 21
object ID, creating 22, 23
types 20

Waterfall Software Development Life Cycle
(SDLC) model 179

WCF
about 42, 44
address 43
application, creating 44-48
architecture 42, 43
binding 43
contract 43
extensibility options 93
WebSocket, working with 75

WCF OData with ASP.NET
reference link 92

WCF service
creating, Open Data Protocols used 78-82
DataContract, using 53-55
extending 92-99
hosting, in different environments 56-59
IMetadataExchange endpoint, adding 52, 53
reference link 78
reference link, for hosting 61
used, for streaming data 61-67

293

WebInvoke attribute
BodyStyle property 75
Method property 75
RequestFormat property 75
ResponseFormat property 75
UriTemplate property 75

web role, cloud service 259
Web Services Definition Language (WSDL)

document 52
WebSocket

about 75
endpoint, configuring 77
using 76
working with 76-78

web verbs, REST
DELETE 68
GET 68
POST 68
PUT 68

Windows Azure
cloud service, creating 259, 260
cloud service, deploying 260-262
DataMarkets, using 263-265
storage options, working with 245-252
Storage Service 245

Windows Azure Mobile Services
about 277
benefits 277
creating 278-281
custom API, calling from 282, 283
files, uploading 283-286
working 281

Windows Azure portal
URL 260

Windows Communication
Foundation. See WCF

Windows Core System 102
Windows Phone

about 101
alarms, creating 120-124
calendar, working with 124-126
Choosers 114
Launchers 114
notifications, working with 143-153
push notifications 143
reminders, creating 120-124

Windows Phone 8 application
ApplicationBar, using 110, 111
building, MVVM pattern used 103-110
tombstoning 112, 113
working 110

Windows Phone application
data, encrypting before storing

in filesystem 137, 138
file, reading from SD card 140-143
settings file, working with 139, 140

Windows Phone Runtime (WinPRT) 102
Windows Phone SDK

about 103
download link 103

Windows Phone toolkit
adding, to solution 120

Windows Presentation Foundation (WPF) 224
Windows Process Activation

Services. See WAS
WinRT 102
worker role, cloud service 259
work item

adding, to TFS 166

Thank you for buying
Visual Studio 2013 and .NET 4.5 Expert

Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website: www.PacktPub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to books
published on enterprise software – software created by major vendors, including (but not limited to)
IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer information relevant
to a range of users of this software, including administrators, developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Reporting with Visual Studio
and Crystal Reports
ISBN: 978-1-78217-802-6 Paperback: 148 pages

Create a reporting application from scratch using Visual
Studio and Crystal Reports

1.	 A step-by-step guide that goes beyond theory,
letting you get hands-on experience.

2.	 Utilize a dataset and table adapter as data
sources for your report.

3.	 Learn how to add reports to forms and pass
parameters dynamically.

Visual Studio 2012 Cookbook
ISBN: 9781-84968-652-5 Paperback: 272 pages

50 simple but incredibly effective recipes to immediately
get you working with the exciting features of Visual
Studio 2012

1.	 Take advantage of all of the new features
of Visual Studio 2012, no matter what your
programming language specialty is!

2.	 Get to grips with Windows 8 Store App
development, .NET 4.5, asynchronous coding,
and new team development changes in this
book and e-book.

3.	 A concise and practical First Look Cookbook
to immediately get you coding with Visual
Studio 2012.

Please check www.PacktPub.com for information on our titles

Software Testing using
Visual Studio 2012
ISBN: 978-1-84968-954-0 Paperback: 444 pages

Learn different testing techniques and features
of Visual Studio 2012 with detailed explanations and
real-time samples

1.	 Using Test Manager and managing test cases
and test scenarios.

2.	 Exploratory testing using Visual Studio 2012.

3.	 Learn unit testing features and coded user
interface testing.

4.	 Advancement in web performance testing
and recording of user scenarios.

.NET Framework 4.5 Expert
Programming Cookbook
ISBN: 978-1-84968-742-3 Paperback: 276 pages

Over 50 engaging recipes for learning advanced
concepts of .NET Framework 4.5

1.	 Explores the advanced features of core .NET
concepts in step-by-step detail.

2.	 Understand great ways to enhance your website
by securing against cross-site scripting attacks,
enabling third-party authentications, and
embedding maps.

3.	 Covers interesting real-world projects with ASP.NET,
Silverlight, ADO.NET, and Entity Framework.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: A Guide to Debugging with Visual Studio
	Introduction
	Debugging source code using breakpoints
	Using DataTips during debugging
	Debugging a multithreaded program
	Exploring the Command and Immediate windows
	Making use of IntelliTrace in Visual Studio
	Debugging a .NET program using the framework library source
	Debugging a process that is already deployed

	Chapter 2: Enhancements to
WCF 4.5
	Introduction
	Understanding Windows Communication Foundation (WCF) by creating a basic application
	Hosting a WCF service in different hosting environments
	Streaming data over a network using a WCF service
	Writing a REST-based WCF service
	Creating a WCF service using the Open Data Protocol standards
	Extending a WCF service (service extensibility)

	Chapter 3: Building a Touch Sensitive Device Application Using Windows Phone 8
	Introduction
	Building your first Windows Phone 8 application following the MVVM pattern
	Working with Launchers and Choosers in a Windows Phone
	Working with relational databases and persistent storage
	Working with notifications in a Windows Phone

	Chapter 4: Working with Team Foundation Server
	Introduction
	Configuring TFS Server for project hosting and management
	Working with branching and merging in Team Foundation Server
	Creating TFS scheduled jobs

	Chapter 5: Testing Applications Using Visual Studio 2013
	Introduction
	Understanding Visual Studio unit test projects
	Working with the Microsoft Fakes framework in Visual Studio
	Understanding how Coded UI testing works in Visual Studio

	Chapter 6: Extending the
Visual Studio IDE
	Introduction
	Working with T4 templates in Visual Studio
	Working with Managed Extensibility Framework to write editor extensions
	Creating Visual Studio Package for tool windows and editor menus

	Chapter 7: Understanding Cloud Computing with Windows Azure
	Introduction
	Working with various storage options in Windows Azure
	Creating, updating, and deploying a cloud service in Windows Azure
	Working with SQL Azure
	Working with HDInsight (Hadoop) for Big Data processing
	Working with Mobile Services in Windows Azure

	Index

