
Andrew Lombardi

WebSocket
LIGHTWEIGHT CLIENT-SERVER COMMUNICATIONS

www.allitebooks.com

http://www.allitebooks.org

JAVA SCRIPT / PROGR AMMING L ANGUAGES

WebSocket

ISBN: 978-1-449-36927-9

US $24.99 CAN $28.99

“	This	book	walks	through	
a	number	of	useful	
examples,	easily	applied	
to	the	real	world,	along	
with	discussions	of	
issues	that	developers	
will	find	when	working	
with	the	WebSocket	
protocol.”

—Joseph B. Ottinger
Senior Engineer, Edifecs, Inc.

“	A	complete	introduction	
to	WebSocket	concepts	
and	implementation	
details.”

—Arun Gupta
Director of Developer Advocacy, Red Hat

Twitter: @oreillymedia
facebook.com/oreilly

Until recently, creating desktop-like applications in the browser meant
using inefficient Ajax or Comet technologies to communicate with the
server. With this practical guide, you’ll learn how to use WebSocket, a
protocol that enables the client and server to communicate with each
other on a single connection simultaneously. No more asynchronous
communication or long polling!

For developers with a good grasp of JavaScript (and perhaps Node.js),
author Andrew Lombardi provides useful hands-on examples throughout
the book to help you get up to speed with the WebSocket API. You’ll also
learn how to use WebSocket with Transport Layer Security (TLS).

 ■ Learn how to use WebSocket API events, messages, attributes,
and methods within your client application

 ■ Build bidirectional chat applications on the client and server
with WebSocket as the communication layer

 ■ Create a subprotocol over WebSocket for STOMP 1.0, the
Simple Text Oriented Messaging Protocol

 ■ Use options for older browsers that don’t natively support
WebSocket

 ■ Protect your WebSocket application against various attack
vectors with TLS and other tools

 ■ Debug applications by learning aspects of the WebSocket
lifecycle

Andrew Lombardi, owner of consulting firm Mystic Coders, has spent the past
six years giving dozens of talks at conferences all over North America and Europe
on topics ranging from backend Java development and HTML5 to building for
mobile using only JavaScript.

www.allitebooks.com

http://www.allitebooks.org

Andrew Lombardi

Boston

WebSocket

www.allitebooks.com

http://www.allitebooks.org

978-1-449-36927-9

[LSI]

WebSocket
by Andrew Lombardi

Copyright © 2015 Mystic Coders, LLC. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Simon St. Laurent and Brian MacDonald
Production Editor: Colleen Lobner
Copyeditor: Kim Cofer
Proofreader: Sharon Wilkey

Indexer: Wendy Catalano
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

September 2015: First Edition

Revision History for the First Edition
2015-09-04: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781449369279 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. WebSocket, the cover image of a sea
anemone, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.com

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781449369279
http://www.allitebooks.org

Table of Contents

Preface. ix

1. Quick Start. 1
Getting Node and npm 2

Installing on Windows 2
Installing on OS X 2
Installing on Linux 2

Hello, World! Example 3
Why WebSocket? 7
Summary 8

2. WebSocket API. 9
Initializing 9
Stock Example UI 11
WebSocket Events 12

Event: Open 13
Event: Message 14
Event: Error 15
Event: PING/PONG 15
Event: Close 15

WebSocket Methods 16
Method: Send 16
Method: Close 17

WebSocket Attributes 18
Attribute: readyState 18
Attribute: bufferedAmount 19
Attribute: protocol 19

Stock Example Server 19

iii

www.allitebooks.com

http://www.allitebooks.org

Testing for WebSocket Support 21
Summary 21

3. Bidirectional Chat. 23
Long Polling 23
Writing a Basic Chat Application 24
WebSocket Client 27
Client Identity 27
Events and Notifications 29
The Server 30
The Client 31
Summary 34

4. STOMP over WebSocket. 35
Implementing STOMP 36

Getting Connected 36
Connecting via the Server 39

Setting Up RabbitMQ 42
Connecting the Server to RabbitMQ 44

The Stock Price Daemon 47
Processing STOMP Requests 49
Client 50
Using RabbitMQ with Web-Stomp 56

STOMP Client for Web and Node.js 57
Installing the Web-Stomp Plug-in 57
Echo Client for Web-Stomp 57

Summary 59

5. WebSocket Compatibility. 61
SockJS 62

SockJS Chat Server 63
SockJS Chat Client 66

Socket.IO 66
Adobe Flash Socket 67
Connecting 67
Socket.IO Chat Server 68
Socket.IO Chat Client 69

Pusher.com 70
Channels 71
Events 72
Pusher Chat Server 73
Pusher Chat Client 76

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Don’t Forget: Pusher Is a Commercial Solution 78
Reverse Proxy 78
Summary 78

6. WebSocket Security. 79
TLS and WebSocket 79

Generating a Self-Signed Certificate 79
Installing on Windows 80
Installing on OS X 80
Installing on Linux 80
Setting up WebSocket over TLS 80
WebSocket Server over TLS Example 82

Origin-Based Security Model 83
Clickjacking 85
X-Frame-Options for Framebusting 86

Denial of Service 87
Frame Masking 87
Validating Clients 88

Setting Up Dependencies and Inits 88
Listening for Web Requests 89
WebSocket Server 91

Summary 92

7. Debugging and Tools. 95
The Handshake 95

The Server 96
The Client 97
Download and Configure ZAP 99

WebSocket Secure to the Rescue 102
Validating the Handshake 102
Inspecting Frames 103

Masked Payloads 103
Closing Connection 108
Summary 109

8. WebSocket Protocol. 111
HTTP 0.9—The Web Is Born 111
HTTP 1.0 and 1.1 111
WebSocket Open Handshake 112

Sec-WebSocket-Key and Sec-WebSocket-Accept 113
WebSocket HTTP Headers 114

WebSocket Frame 116

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

Fin Bit 117
Frame Opcodes 117
Masking 118
Length 118
Fragmentation 119

WebSocket Close Handshake 119
WebSocket Subprotocols 121
WebSocket Extensions 122
Alternate Server Implementations 123
Summary 124

Index. 125

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

For Joaquín

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Preface

The Web has grown up.

In the old days, we used to code design-rich websites using an endless mess of nested
tables. Today we can use a standards-based approach with Cascading Style Sheets
(CSS) to achieve designs not possible in the Web’s infancy. Just as CSS ushered in a
new era of ability and readability to the design aspects of a site, WebSocket can do
that for bidirectional communication with the backend.

WebSocket provides a standards-based approach to coding for full-duplex bidirec‐
tional communication that replaces the age-old hacks like Comet and long polling.
Today we have the ability to create desktop-like applications in a browser without
resorting to methods that exhaust server-side resources.

In this book, you’ll learn the simple ways to deliver on bidirectional communication
between server and client, and do so without making the IT guy cry.

Who Should Read This Book
This book is for programmers who want to create web applications that can commu‐
nicate bidirectionally between server and client and who are looking to avoid using
hacks that are prevalent on the Web today. The promise of WebSocket is a better way,
based on standards and supported by all modern browsers, with sensible fallback
options for those who need to support it. For those who haven’t considered Web‐
Socket, put down the Comet tutorial you have been reading.

This book is appropriate for novices and experienced users. I assume that you have a
programming background and are familiar with JavaScript. Experience with Node.js
is helpful, but not required. This book will also benefit those who are charged with
maintaining servers that run WebSocket code, and are responsible for ensuring the
security of the infrastructure. You need to know the potential pitfalls of integrating
WebSocket and what that means for you. The earlier chapters may be of less use to

ix

you, but the last three chapters will give you enough knowledge to know what is com‐
ing across your network.

Goals of This Book
I’ve been in the trenches, and have had to implement acceptable hacks to achieve
bidirectional communication for clients who needed the functionality. It is my hope
that I can show you a better way, one that is based on standards and proves simple to
implement. For several clients over the years, I have successfully deployed this book’s
approach to communicating with the backend by using WebSocket rather than long
polling and have achieved the goals I was after.

Navigating This Book
I often read a book by skimming and pulling out the relevant pieces to use as a refer‐
ence while coding. If you’re actually reading this preface, the following list will give
you a rough idea of each chapters’ goals:

• Chapters 1 and 2 provide a quick-start guide with instructions on dependencies
needed throughout the book, and introduces you to the JavaScript API.

• Chapter 3 presents a full example with client and server code using chat.
• In Chapter 4 you write your own implementation of a standard protocol and

layer it on top of WebSocket.
• Chapter 5 is essential for those who need to support older browsers.
• Finally, Chapters 6 through 8 dive into aspects of security, debugging, and an

overview of the protocol.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

x | Preface

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a general note.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/kinabalu/websocketsbook.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “WebSocket by Andrew Lombardi
(O’Reilly). Copyright 2015 Mystic Coders, LLC, 978-1-4493-6927-9.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Preface | xi

https://github.com/kinabalu/websocketsbook
mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/orm-websocket.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
A lot of people made this book possible, including my wonderful and patient editor
Brian MacDonald. To everyone at O’Reilly who helped make this book happen, a
deep and profound thanks.

I would also like to thank my technical reviewers for their invaluable input and
advice: Joe Ottinger and Arun Gupta. And thanks to those of you who sent in errata
on the preview of the book so we could get them solved before going to production.

Thanks to Mom and Dad, for putting a computer in front of me and opening up an
ever-expanding universe of creativity and wonder.

xii | Preface

https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com
http://bit.ly/orm-websocket
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Quick Start

The WebSocket API and protocol is defined in RFC 6455. WebSocket gives you a
bidirectional, full-duplex communications channel that operates over HTTP through
a single socket.

Existing hacks that run over HTTP (like long polling) send requests at intervals,
regardless of whether messages are available, without any knowledge of the state of
the server or client. The WebSocket API, however, is different—the server and client
have an open connection from which they can send messages back and forth. For the
security minded, WebSocket also operates over Transport Layer Security (TLS) or
Secure Sockets Layer (SSL) and is the preferred method, as you will see in Chapter 6.

This book will help you understand the WebSocket API, the protocol, and how to use
it in your web applications today.

In this book, JavaScript is used for all code examples. Node.js is used for all server
code, and for occasional client code or tests when a browser is extraneous to getting a
sense of functionality. To understand the examples, you’ll need some level of profi‐
ciency with JavaScript. If you’d like to study up on JavaScript, I recommend Douglas
Crockford’s JavaScript: The Good Parts (O’Reilly).

Node.js has been so prevalant in the past several years that the barriers to entry
for the examples in this book are remarkably low. If you’ve done any development for
the Web, chances are good that you’ve developed in JavaScript or at least understand
it. The use of Node.js and JavaScript throughout, then, is meant only to simplify the
teaching process, and should not be construed as a requirement for a WebSocket
project.

Libraries and servers are available that support WebSocket in nearly every possible
configuration. Chapter 5 covers several options for deploying a WebSocket-capable

1

http://bit.ly/ws-rfc6455

server, including fallback methods for clients that don’t offer support for this technol‐
ogy yet.

Getting Node and npm
To ensure that you can run all of the examples in the book, I strongly recommend
that you install Node.js and npm in your development environment. While you can
learn all about WebSocket without touching any code, I don’t recommend it. The fol‐
lowing sections indicate a few simple ways to get Node in your environment.

Installing on Windows
I cover only downloading and installing the precompiled binary available on Win‐
dows. If you are masochistic and would like to compile it yourself, you can follow the
instructions.

For the rest of you, download the standalone Windows executable. Then grab the lat‐
est .zip archive of npm. Unpack the npm .zip, and place the downloaded node.exe in a
directory you add to your PATH. You’ll be able to run scripts and install modules using
Node.js and npm, respectively.

Installing on OS X
Two of the easiest methods of installing Node.js and npm are via a precompiled
downloadable package, or via a package manager. My preference is to use a package
manager like Homebrew to get Node.js onto your machine. This allows for quick and
easy updating without having to redownload a package from the Web. Assuming you
have Homebrew installed, run this command:

brew install node

And if you’d rather use the available precompiled binaries, you can find the download
at the Node.js site. When you’d like to install an updated version of Node.js, down‐
load and install the latest package and it will overwrite the existing binaries.

Installing on Linux
Because there are more flavors of Linux than stars in the sky, I’ll outline only how to
compile it yourself, and how to get it via apt on Ubuntu. If you’re running another
distro and would like to use the package manager available on your particular flavor,
visit the Node.js wiki for instructions on installing.

2 | Chapter 1: Quick Start

http://bit.ly/node-win
http://bit.ly/node-win
http://bit.ly/node-windows
http://bit.ly/npm-zip
http://bit.ly/homebrew-osx
http://nodejs.org/#download
http://www.ubuntu.com
http://bit.ly/nodejs-package

Using apt to install Node.js requires a few simple steps:

sudo apt-get update
sudo apt-get install python-software-properties python g++ make
sudo add-apt-repository ppa:chris-lea/node.js
sudo apt-get update
sudo apt-get install nodejs

This installs the current stable Node.js onto your Ubuntu distro, ready to free Java‐
Script from the browser and let you write some server-side code.

If you’d like to compile it yourself, assuming Git is already installed and available on
your machine, type the following:

git clone git://github.com/joyent/node.git
cd node
git checkout v0.10.7
./configure && make && make install

Check http://nodejs.org/ for the latest version of Node.js to check
out onto your system.

Hello, World! Example
When tackling a new topic in development, I prefer to start with an example fairly
quickly. So we’ll use the battle-tested example across languages—“Hello, World!”—to
initiate a connection to a WebSocket-capable Node.js server, and receive the greeting
upon connection.

History of Hello, World!
The initial incarnation of everyone’s first application in a new language/technology
was first written in Brian Kernighan’s 1972 “A Tutorial Introduction to the Language
B.” The application was used to illustrate external variables in the language.

You’ll start by writing code that starts a WebSocket-capable server on port 8181. First,
you will use the CommonJS idiom and require the ws module and assign that class to
the WebSocketServer object. Then you’ll call the constructor with your initialization
object, which consists of the port definition, or which contains the port definition.

The WebSocket protocol is essentially a message-passing facility. To begin, you will
listen for an event called connection. Upon receiving a connection event, the pro‐
vided WebSocket object will be used to send back the “Hello, World!” greeting.

Hello, World! Example | 3

http://nodejs.org/
http://bit.ly/hello-world-wiki
http://bit.ly/hello-world-wiki

To make life a bit simpler, and because I don’t fancy reinventing the wheel, the won‐
derful WebSocket library called ws will be used. The ws library can take a lot of the
headache out of writing a WebSocket server (or client) by offering a simple, clean API
for your Node.js application.

Install it using npm:

npm install ws

Another popular option is to use the WebSocket-Node library.

All of this book’s examples will assume that the source code exists in a folder denoted
by the abbreviated chapter name, so create a directory called ch1. Now create a new
file called server.js in your editor of choice and add this code for your application:

var WebSocketServer = require('ws').Server,
 wss = new WebSocketServer({port: 8181});

wss.on('connection', function(ws) {
 console.log('client connected');
 ws.on('message', function(message) {
 console.log(message);
 });
});

Short and to the point. Next, run the server so it’s listening for the client you’re about
to code:

node server.js

Create a file for the client called client.html and place it in the same directory as the
server file. With this simple example, the client can be hosted anywhere, even run
from the file:// protocol. In later chapters, you’ll use HTTP libraries and require a
more web-centric focus for file and directory management.

In this first pass, however, you’ll use a basic HTML page to call the WebSocket server.
The structure of the HTML page is a simple form, with a text field and a button to
initiate the send. The two methods of sending your message will be submitting a form
(via Return/Enter) or clicking the Send! button. Then you’ll add an action on the
form submit and the onclick event of the button to call the sendMessage JavaScript
function. One thing to note is that the code returns false in the form’s onsubmit so
the page doesn’t refresh.

The WebSocket initialization is rather simple; you initiate a connection to a Web‐
Socket server on port 8181 on localhost. Next, because the WebSocket API is event-
based (more about this later), you define a function for the onopen event to output a
status message for a successful connection to the server. The sendMessage function
merely has to call the send function on the variable ws and grab the value inside the
message text field.

4 | Chapter 1: Quick Start

http://bit.ly/ws-library
https://github.com/Worlize/WebSocket-Node

And voila! You have your first WebSocket example.

<!DOCTYPE html>
<html lang="en">
<head>
<title>WebSocket Echo Demo</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet" href="http://bit.ly/cdn-bootstrap-css">
<link rel="stylesheet" href="http://bit.ly/cdn-bootstrap-theme">
<script src="http://bit.ly/cdn-bootstrap-jq"></script>
<script>
 var ws = new WebSocket("ws://localhost:8181");
 ws.onopen = function(e) {
 console.log('Connection to server opened');
 }

 function sendMessage() {
 ws.send($('#message').val());
 }
</script>
</head>
<body lang="en">
 <div class="vertical-center">
 <div class="container">
 <p> </p>
 <form role="form" id="chat_form" onsubmit="sendMessage(); return false;">
 <div class="form-group">
 <input class="form-control" type="text" name="message" id="message"
 placeholder="Type text to echo in here" value="" autofocus/>
 </div>
 <button type="button" id="send" class="btn btn-primary"
 onclick="sendMessage();">Send!</button>
 </form>
 </div>
 </div>
<script src="http://bit.ly/cdn-bootstrap-minjs"></script>
</body>
</html>

Throughout the book you will use the two wonderful libraries prevalent on the Web
for display and interaction:

• Bootstrap 3
• jQuery

Hello, World! Example | 5

http://getbootstrap.com
http://jquery.com

In later examples, we’ll dispense with including the script and CSS
style tags in favor of brevity. You can use the preceding HTML as a
template for future examples, and just remove the content of the
custom <script> tag and the contents between the <body> tags
while keeping the Bootstrap JavaScript include intact.

With that, open the HTML page in your favorite browser (I suggest Google Chrome
or Mozilla Firefox). Send a message and watch it show up in your server’s console
output.

If you’re using Chrome, it has an excellent facility for viewing WebSocket connections
from the frontmost page. Let’s do this now. From the hotdog menu, choose Tools →
Developer Tools (on Windows: F12, Ctrl-Shift-I; on a Mac ⌥-⌘-I).

Figure 1-1 shows the Google Chrome Developer Tools filtered for WebSocket calls.
Echo is the first app to be written in the networking space.

Figure 1-1. Chrome Developer Tools—Network tab

Select the Network tab and refresh the example HTML. In the table you should see an
entry for the HTML, and an entry for the WebSocket connection with status of “101
Switching Protocols.” If you select it, you’ll see the Request Headers and Response
Headers for this connection:

GET ws://localhost:8181/ HTTP/1.1
Pragma: no-cache
Origin: null
Host: localhost:8181
Sec-WebSocket-Key: qalODNsUoRp+2K9FJty55Q==
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_3)...

6 | Chapter 1: Quick Start

www.allitebooks.com

http://www.google.com/chrome
http://bit.ly/moz-ff-download
http://www.allitebooks.org

Upgrade: websocket
Sec-WebSocket-Extensions: x-webkit-deflate-frame
Cache-Control: no-cache
Connection: Upgrade
Sec-WebSocket-Version: 13

HTTP/1.1 101 Switching Protocols
Connection: Upgrade
Sec-WebSocket-Accept: nambQ7W9imtAIYpzsw4hNNuGD58=
Upgrade: websocket

If you’re used to seeing HTTP headers, this should look no different. We do have a
few extra headers here, including Connection: Upgrade, Sec-Websocket-Key,
Upgrade: websocket, which I’ll explain further in Chapter 8. For now, relish in your
first WebSocket example, and get ready to learn why WebSocket should be on your
radar for your next project.

Why WebSocket?
The ability today to create desktop-like applications in the browser is achieved pri‐
marily by using Comet and Ajax. To use either solution, developers have relied on
hacks in servers and clients alike to keep connections open longer and fake a long-
running connection.

While these hacks technically work, they create resource allocation issues on servers.
With existing methods, the perceived latency to the end user may be low, but the effi‐
ciency on the backend leaves a lot to be desired. Long polling makes unnecessary
requests and keeps a constant stream of opening and closing connections for your
servers to deal with. There is no facility for layering other protocols on top of Comet
or Ajax, and even if you could, the simplicity is just not there.

WebSocket gives you the ability to use an upgraded HTTP request (Chapter 8 covers
the particulars), and send data in a message-based way, similar to UDP and with all
the reliability of TCP. This means a single connection, and the ability to send data
back and forth between client and server with negligible penalty in resource utiliza‐
tion. You can also layer another protocol on top of WebSocket, and provide it in a
secure way over TLS. Later chapters dive deeper into these and other features such as
heartbeating, origin domain, and more.

One of the common pitfalls of choosing between WebSocket and long polling was the
sad state of browser support. Today, the state of browser support for WebSocket is
much brighter for the end user.

Table 1-1 shows the current state of browser support for WebSocket. For the most up-
to-date information on WebSocket support, you can reference the Can I Use website.

Why WebSocket? | 7

http://caniuse.com/websocket

Table 1-1. The state of WebSocket browser support

Browser No support Partial support Full support

IE Versions 8.0, 9.0 Version 10.0 and up

Firefox Version 27.0 and up

Chrome Version 31.0 and up

Safari Version 7 and up

Opera Version 20.0 and up

iOS Safari Versions 3.2, 4.0–4.1 Versions 4.2–4.3, 5.0–5.1 Version 6.0 and up

Opera Mini Versions 5.0–7.0

Android Browser Versions 2.1–4.3 Version 4.4

BlackBerry Browser Versions 7.0, 10.0

IE Mobile Version 10.0

As you’ll discover in Chapter 5, you can mitigate the lack of support in older brows‐
ers for native WebSocket by using framework libraries such as SockJS or Socket.IO.

Summary
This chapter introduced WebSocket and how to build a simple echo server using
Node.js. You saw how to build a simple client for testing your WebSocket server,
along with one simple way to test your WebSocket server using Chrome Developer
Tools. The next chapters explore the WebSocket API, and the protocol, and you’ll
learn how to layer other protocols on top of WebSocket to give you even more power.

8 | Chapter 1: Quick Start

CHAPTER 2

WebSocket API

This chapter exposes the details behind using the WebSocket application program‐
ming interface (API). WebSocket is an event-driven, full-duplex asynchronous com‐
munications channel for your web applications. It has the ability to give you real-time
updates that in the past you would use long polling or other hacks to achieve. The
primary benefit is reducing resource needs on both the client and (more important)
the server.

While WebSocket uses HTTP as the initial transport mechanism, the communication
doesn’t end after a response is received by the client. Using the WebSocket API, you
can be freed from the constraints of the typical HTTP request/response cycle. This
also means that as long as the connection stays open, the client and server can freely
send messages asynchronously without polling for anything new.

Throughout this chapter you’ll build a simple stock-ticker client using WebSocket as
data transport and learn about its simple API in the process. You’re going to create a
new project folder, ch2, to store all of your code for this chapter. Your client code will
be in a file named client.html, and your server code in a file named server.js.

Initializing
The constructor for WebSocket requires a URL in order to initiate a connection to
the server. By default, if no port is specified after the host, it will connect via port 80
(the HTTP port) or port 443 (the HTTPS port).

If you’re running a traditional web server on port 80 already, you’ll have to use a
server that understands and can proxy the WebSocket connection, or can pass the
connection through to your custom-written application. Chapter 5 presents one pop‐
ular option using nginx for passing through an upgraded connection to your Node.js-
based server.

9

http://nginx.org/

For now, because you’ll be running the WebSocket server locally, without a web
server proxying the connection, you can simply initialize the browser’s native Web‐
Socket object with the following code:

var ws = new WebSocket("ws://localhost:8181");

You now have a WebSocket object called ws that you can use to listen for events. The
section “WebSocket Events” on page 12 details various events available to listen for.
Table 2-1 lists the constructor parameters available with WebSocket.

Table 2-1. WebSocket constructor parameters

Parameter name Description

URL ws:// or wss:// (if using TLS)

protocol (optional) Parameter specifying subprotocols that may be used as an array or single string

The second optional parameter in the WebSocket constructor is protocols, passed in
headers as Sec-WebSocket-Protocol. This can be either a single protocol string or an
array of protocol strings. These indicate subprotocols, so a single server can imple‐
ment multiple WebSocket subprotocols. If nothing is passed, an empty string is
assumed. If subprotocols are supplied and the server does not accept any of them, the
connection will not be established. In Chapter 4 you’ll build a subprotocol for
STOMP and learn how to use that over WebSocket.

If there is an attempt to initiate a WebSocket connection while using HTTPS at the
origin website, but using the non-TLS protocol method of ws://, a SECURITY_ERR will
be thrown. In addition, you’ll receive the same error if attempting to connect to a
WebSocket server over a port to which the user agent blocks access (typically 80 and
443 are always allowed).

Following is a list of protocol types available to use with WebSocket:

Registered protocols
In the spec for WebSocket RFC 6455, section 11.5 defines the Subprotocol Name
Registry for IANA-maintained registrations.

Open protocols
In addition, you can use open protocols that are unregistered, such as Extensible
Messaging and Presence Protocol (XMPP) or Simple Text Oriented Message Pro‐
tocol (STOMP), and various others.

Custom protocols
You are free to design any protocol you like, as long as your server and client
both support it. It is recommended that you use names that contain the ASCII

10 | Chapter 2: WebSocket API

version of the domain name of the subprotocol’s originator; for example,
chat.acme.com.

Stock Example UI
The example you’ll build relies on static data to make life easier. Your server will have
a list of stock symbols with predefined values and randomize the price changes across
a spectrum of small positive/negative values.

To show a cleaner-looking UI and ease the CSS modification process, you’ll use Twit‐
ter’s Bootstrap and jQuery. Copy and paste the contents of the following code snippet
into your client.html file:

<!DOCTYPE html>
<html lang="en"><head>
<title>Stock Chart over WebSocket</title>

 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="http://bit.ly/cdn-bootstrap-css">
 <link rel="stylesheet" href="http://bit.ly/cdn-bootstrap-theme">
 <script src="http://bit.ly/cdn-bootstrap-jq"></script>
 <script language="text/javascript">
 // code from chapter goes here
 </script>
</head>
<body lang="en">
 <div class="vertical-center">
 <div class="container">

 <h1>Stock Chart over WebSocket</h1>
 <table class="table" id="stockTable">
 <thead>
 <tr>
 <th>Symbol</th>
 <th>Price</th>
 </tr>
 </thead>
 <tbody id="stockRows">
 <tr>
 <td><h3>AAPL</h3></td>
 <td id="AAPL">
 <h3>95.00</h3>
 </td>
 </tr>
 <tr>
 <td><h3>MSFT</h3></td>
 <td id="MSFT">
 <h3>50.00</h3>
 </td>

Stock Example UI | 11

http://getbootstrap.com/
http://getbootstrap.com/
http://jquery.com/

 </tr>
 <tr>
 <td><h3>AMZN</h3></td>
 <td id="AMZN">
 <h3>300.00</h3>
 </td>
 </tr>
 <tr>
 <td><h3>GOOG</h3></td>
 <td id="GOOG">
 <h3>550.00</h3>
 </td>
 </tr>
 <tr>
 <td><h3>YHOO</h3></td>
 <td id="YHOO">
 <h3>35.00</h3>
 </td>
 </tr>
 </tbody>
 </table>

 </div>
 </div>
<script src="http://bit.ly/maxcdn-bootstrap-js"></script>
</body></html>

WebSocket Events
The API for WebSocket is based around events. This section covers the four events
that your stock-ticker code can listen for. I’ll give descriptions of each, describe how
to handle situations you’ll see in the field, and build the example using what you
learn. For the example, you need to define a few bits of sample data to pass to the
server:

var stock_request = {"stocks": ["AAPL", "MSFT", "AMZN", "GOOG", "YHOO"]};

var stocks = {"AAPL": 0,
 "MSFT": 0,
 "AMZN": 0,
 "GOOG": 0,
 "YHOO": 0};

Figure 2-1 shows what your stock application looks like after you hook up the server
and client.

The first structure, stock_request, is passed after the successful connection between
client and server and asks that the server keep telling you about the updated pricing
on these specific stocks. The second structure, stocks, is a simple associative array

12 | Chapter 2: WebSocket API

that will hold the changing values passed back from the server and then used to mod‐
ify the text in the table and colors.

Figure 2-1. Stock chart over WebSocket

WebSocket fires four events, which are available from the JavaScript API and defined
by the W3C:

• open

• message

• error

• close

With JavaScript, you listen for these events to fire either with the handler on<event
name>, or the addEventListener() method. Your code will provide a callback that
will execute every time that event gets fired.

Event: Open
When the WebSocket server responds to the connection request, and the handshake
is complete, the open event fires and the connection is established. Once this happens,
the server has completed the handshake and is ready to send and receive messages
from your client application:

WebSocket Events | 13

http://www.w3.org/TR/websockets/
http://www.w3.org/TR/websockets/

// WebSocket connection established
ws.onopen = function(e) {
 console.log("Connection established");
 ws.send(JSON.stringify(stock_request));
};

From within this handler you can send messages to the server and output the status
to the screen, and the connection is ready and available for bidirectional communica‐
tion. The initial message being sent to the server over WebSocket is the
stock_request structure as a JSON string. Your server now knows what stocks you
want to get updates on and will send them back to the client in one-second intervals.

Event: Message
After you’ve established a connection to the WebSocket server, it will be available to
send messages to (you’ll look at that in “WebSocket Methods” on page 16), and
receive messages. The WebSocket API will prepare complete messages to be pro‐
cessed in the onmessage handler.

Chapter 8 covers the WebSocket protocol in more detail, including information about
frames and the data flow back and forth between the server and client. For now, the
only thing to remember is that when the server has data, the WebSocket API will call
the onmessage handler:

// UI update function
var changeStockEntry = function(symbol, originalValue, newValue) {
 var valElem = $('#' + symbol + ' span');
 valElem.html(newValue.toFixed(2));
 if(newValue < originalValue) {
 valElem.addClass('label-danger');
 valElem.removeClass('label-success');
 } else if(newValue > originalValue) {
 valElem.addClass('label-success');
 valElem.removeClass('label-danger');
 }
}

// WebSocket message handler
ws.onmessage = function(e) {
 var stocksData = JSON.parse(e.data);
 for(var symbol in stocksData) {
 if(stocksData.hasOwnProperty(symbol)) {
 changeStockEntry(symbol, stocks[symbol], stocksData[symbol]);
 stocks[symbol] = stocksData[symbol];
 }
 }
};

14 | Chapter 2: WebSocket API

You can see from this short snippet that the handler is receiving a message from the
server via an onmessage callback. When querying for data, the data attribute will
contain updated stock values. The preceding code snippet does the following:

1. Parses the JSON response within e.data
2. Iterates over the associative array
3. Ensures that the key exists in the array
4. Calls your UI update fragment
5. Assigns the new stock values to your local array

You’re passing around regular strings here, but WebSocket has full support for send‐
ing text and binary data.

Event: Error
When a failure happens for any reason at all, the handler you’ve attached to the error
event gets fired. When an error occurs, it can be assumed that the WebSocket connec‐
tion will close and a close event will fire. Because the close event happens shortly
after an error in some instances, the code and reason attributes can give you some
indication as to what happened. Here’s a sample of how to handle the error case, and
possibly reconnect to the WebSocket server as well:

ws.onerror = function(e) {
 console.log("WebSocket failure, error", e);
 handleErrors(e);
};

Event: PING/PONG
The WebSocket protocol calls out two frame types: PING and PONG. The WebSocket
JavaScript client API provides no capability to send a PING frame to the server. PING
frames are sent out by the server only, and browser implementations should send
back PONG frames in response.

Event: Close
The close event fires when the WebSocket connection closes, and the callback
onerror will be executed. You can manually trigger calling the onclose event by exe‐
cuting the close() method on a WebSocket object, which will terminate the connec‐
tion with the server. Once the connection is closed, communication between client
and server will not continue. The following example zeros out the stocks array upon
a close event being fired to show cleaning up resources:

WebSocket Events | 15

ws.onclose = function(e) {
 console.log(e.reason + " " + e.code);
 for(var symbol in stocks) {
 if(stocks.hasOwnProperty(symbol)) {
 stocks[symbol] = 0;
 }
 }
}

ws.close(1000, 'WebSocket connection closed')

As mentioned briefly in “Event: Error” on page 15, two attributes, code and reason,
are conveyed by the server and could indicate an error condition to be handled
and/or a reason for the close event (other than normal expectation). Either side may
terminate the connection via the close() method on the WebSocket object, as shown
in the preceding code. Your code can also use the boolean attribute wasClean to find
out if the termination was clean, or to see the result of an error state.

The readyState value will move from closing (2) to closed (3). Now let’s move on to
the methods available to your WebSocket object.

WebSocket Methods
The creators of WebSocket kept its methods pretty simple—there are only two:
send() and close().

Method: Send
When your connection has been established, you’re ready to start sending (and
receiving) messages to/from the WebSocket server. The client application can specify
what type of data is being passed in and will accept several, including string and
binary values. As shown earlier, the client code is sending a JSON string of listed
stocks:

ws.send(JSON.stringify(stock_request));

Of course, performing this send just anywhere won’t be appropriate. As we’ve dis‐
cussed, WebSocket is event-driven, so you need to ensure that the connection is open
and ready to receive messages. You can achieve this in two main ways.

You can perform your send from within the onopen event:

var ws = new WebSocket("ws://localhost:8181");
ws.onopen = function(e) {
 ws.send(JSON.stringify(stock_request));
}

16 | Chapter 2: WebSocket API

www.allitebooks.com

http://www.allitebooks.org

Or you can check the readyState attribute to ensure that the WebSocket object is
ready to receive messages:

function processEvent(e) {
 if(ws.readyState === WebSocket.OPEN) {
 // Socket open, send!
 ws.send(e);
 } else {
 // Show an error, queue it for sending later, etc
 }
}

Method: Close
You close the WebSocket connection or terminate an attempt at connection is done
via the close() method. After this method is called, no more data can be sent or
received from this connection. And calling it multiple times has no effect.

Here’s an example of calling the close() method without arguments:

// Close WebSocket connection
ws.close();

Optionally, you can pass a numeric code and a human-readable reason through the
close() method. This gives some indication to the server as to why the connection
was closed on the client end. The following code shows how to pass those values.
Note that if you don’t pass a code, the status 1000 is assumed, which means
CLOSE_NORMAL:

// Close the WebSocket connection with reason.
ws.close(1000, "Goodbye, World!");

Table 2-2 lists the status codes you can use in the WebSocket close() method.

Table 2-2. WebSocket close codes

Status
code

Name Description

0–999 Reserved and not used.

1000 CLOSE_NORMAL Normal closure; the connection successfully completed.

1001 CLOSE_GOING_AWAY The endpoint is going away, either because of a server failure or because the
browser is navigating away from the page that opened the connection.

1002 CLOSE_PROTOCOL_

ERROR

The endpoint is terminating the connection due to a protocol error.

WebSocket Methods | 17

Status
code

Name Description

1003 CLOSE_UNSUPPORTED The connection is being terminated because the endpoint received data of a type it
cannot accept.

1004 CLOSE_TOO_LARGE The endpoint is terminating the connection because a data frame was received
that is too large.

1005 CLOSE_NO_STATUS Reserved. Indicates that no status code was provided even though one was
expected.

1006 CLOSE_ABNORMAL Reserved. Used to indicate that a connection was closed abnormally.

1007–1999 Reserved for future use by the WebSocket standard.

2000–2999 Reserved for use by WebSocket extensions.

3000–3999 Available for use by libraries and frameworks. May not be used by applications.

4000–4999 Available for use by applications.

WebSocket Attributes
When the event for open is fired, the WebSocket object can have several possible
attributes that can be read in your client applications. This section presents the
attributes and the best practices for using them in your client code.

Attribute: readyState
The state of the WebSocket connection can be checked via the read-only WebSocket
object attribute readyState. The value of readyState will change, and it is a good
idea to check it before committing to send any data to the server.

Table 2-3 shows the values you will see reflected in the readyState attribute.

Table 2-3. readyState constants

Attribute name Attribute value Description

WebSocket.CONNECTING 0 The connection is not yet open.

WebSocket.OPEN 1 The connection is open and ready to communicate.

WebSocket.CLOSING 2 The connection is in the process of closing.

WebSocket.CLOSED 3 The connection is closed or couldn’t be opened.

18 | Chapter 2: WebSocket API

Each of these values can be checked at different points for debugging, and for under‐
standing the lifecycle of your connection to the server.

Attribute: bufferedAmount
Also included with the attributes is the amount of data buffered for sending to the
server. While this is mostly used when sending binary data, because the data size
tends to be much larger the browser will take care of properly queueing the data for
send. Because you’re dealing only with the client code at this point (the next chapter
deals with the protocol), much of the behind-the-scenes is hidden from your view.
Use of the bufferedAmount attribute can be useful for ensuring that all data is sent
before closing a connection, or performing your own throttling on the client side.

Attribute: protocol
Reflecting back to the constructor for WebSocket, the optional protocol argument
allows you to send one or many subprotocols that the client is asking for. The server
decides which protocol it chooses, and this is reflected in this attribute for the Web‐
Socket connection. The handshake when completed should contain a selection from
one that was sent by the client, or empty if none were chosen or offered.

Stock Example Server
Now that you have a working client that will connect to a WebSocket server to
retrieve stock quotes, it’s time to show what the server looks like:

var WebSocketServer = require('ws').Server,
 wss = new WebSocketServer({port: 8181});

var stocks = {
 "AAPL": 95.0,
 "MSFT": 50.0,
 "AMZN": 300.0,
 "GOOG": 550.0,
 "YHOO": 35.0
}

function randomInterval(min, max) {
 return Math.floor(Math.random()*(max-min+1)+min);
}

var stockUpdater;
var randomStockUpdater = function() {
 for (var symbol in stocks) {
 if(stocks.hasOwnProperty(symbol)) {
 var randomizedChange = randomInterval(-150, 150);
 var floatChange = randomizedChange / 100;
 stocks[symbol] += floatChange;

Stock Example Server | 19

 }
 }
 var randomMSTime = randomInterval(500, 2500);
 stockUpdater = setTimeout(function() {
 randomStockUpdater();
 }, randomMSTime)

}

randomStockUpdater();

wss.on('connection', function(ws) {
 var clientStockUpdater;
 var sendStockUpdates = function(ws) {
 if(ws.readyState == 1) {
 var stocksObj = {};

 for(var i=0; i<clientStocks.length; i++) {
 symbol = clientStocks[i];
 stocksObj[symbol] = stocks[symbol];
 }

 ws.send(JSON.stringify(stocksObj));
 }
 }
 clientStockUpdater = setInterval(function() {
 sendStockUpdates(ws);
 }, 1000);

 var clientStocks = [];

 ws.on('message', function(message) {
 var stock_request = JSON.parse(message);
 clientStocks = stock_request['stocks'];
 sendStockUpdates(ws);
 });

 ws.on('close', function() {
 if(typeof clientStockUpdater !== 'undefined') {
 clearInterval(clientStockUpdater);
 }
 });
});

After execution, the server code runs a function for a variable amount of time
(between 0.5s and 2.5s) and updates the stock prices. It does this to appear as random
as possible in a book example without requiring code to go out and retrieve real stock
prices (see Chapter 4 for that). Your frontend is expecting to receive a static list of five
stocks retrieved from the server. Simple. After receiving the connection event from
the client, the server sets up a function to run every second and sends back the list of
five stocks with randomized prices once a second. The server can accept requests for

20 | Chapter 2: WebSocket API

different stocks as long as those stock symbols and a starting price are added to the
stocks JavaScript object defined in the server.

Testing for WebSocket Support
If you’ve coded anything for the Web over the years, it should come as no surprise
that browsers do not always have support for the latest technology. Because some
older browsers don’t support the WebSocket API, it is important to check for compat‐
ibility before using it. Chapter 5 presents alternatives if the client browsers used by
your community of users don’t support the WebSocket API. For now, here is a quick
way to check whether the API is supported on the client:

if (window.WebSocket) {
 console.log("WebSocket: supported");
 // ... code here for doing WebSocket stuff
} else {
 console.log("WebSocket: unsupported");
 // ... fallback mode, or error back to user
}

Summary
This chapter went over essential details of the WebSocket API and how to use each of
them within your client application. It discussed the API’s events, messages,
attributes, and methods, and showed some sample code along the way.

In Chapter 3, you’ll write a bidirectional chat application, learning how to pass mes‐
sages back and forth with multiple connected clients.

Testing for WebSocket Support | 21

CHAPTER 3

Bidirectional Chat

Your first full-fledged example is to build a bidirectional chat using WebSocket. The
end result will be a server that accepts WebSocket connections and messages for your
“chat room” and fans the messages out to connected clients. The WebSocket protocol
itself is simple, so to write your chat application, you will manage the collection of
message data in an array and hold the socket and unique UUID for the client in
locally scoped variables.

Long Polling
Long polling is a process that keeps a connection to the server alive without having
data immediately sent back to the client. Long polling (or a long-held HTTP request)
sends a server request that is kept open until it has data, and the client will receive it
and reopen a connection soon after receiving data from the server. This, in effect,
allows for a persistent connection with the server to send data back and forth.

In practice, two common techniques are available for achieving this. In the first tech‐
nique, XMLHttpRequest is initiated and then held open, waiting for a response from
the server. Once this is received, another request is made to the server and held open,
awaiting more data. The other technique involves writing out custom script tags pos‐
sibly pointing to a different domain (cross-domain requests are not allowed with the
first method). Requests are then handled in a similar manner and reopened in the
typical long-polling fashion.

Long polling is the most common way of implementing this type of application on
the Web today. What you will see in this chapter is a much simpler and more efficient
method of implementation. In subsequent chapters you will tackle the compatibility
issue of older browsers that may not yet support WebSocket.

23

Writing a Basic Chat Application
Chapter 1 showed a basic server that accepted a WebSocket connection and sent any
received message from a connected client to the console. Let’s take another look at
that code, and add features required for implementing your bidirectional chat:

var WebSocketServer = require('ws').Server,
 wss = new WebSocketServer({port: 8181});

wss.on('connection', function(socket) {
 console.log('client connected');
 socket.on('message', function(message) {
 console.log(message);
 });
});

The WebSocketServer provided by the popular ws Node module gets initialized and
starts listening on port 8181. You can follow this by listening for a client connection
event and the subsequent message events that follow. The connection event accepts a
callback function where you pass a socket object to be used for listening to messages
after a successful connection has occurred. This works well to show off a simple con‐
nection for our purposes, and now you’re going to build on top of that by tracking the
clients that connect, and sending those messages out to all other connected clients.

The WebSocket protocol does not provide any of this functionality by default; the
responsibility for creation and tracking is yours. In later chapters, you will dive into
libraries such as Socket.IO that extend the functionality of WebSocket and provide a
richer API and backward compatibility with older browsers.

Figure 3-1 shows what the chat application looks like currently.

Building on the code from Chapter 1, import a Node module for generating a UUID.
First things first, you’ll use npm to install node-uuid:

% npm install node-uuid

var uuid = require('node-uuid');

A UUID is used to identify each client that has connected to the server and add them
to a collection. A UUID allows you to target messages from specific users, operate on
those users, and provide data targeted for those users as needed.

Universally Unique IDentifier
A UUID is a standardized identifier commonly used in building distributed systems
and can be assumed “practically unique.” Generally speaking, you won’t run into colli‐
sions, but it isn’t guaranteed. Therefore, you should be fine using this as your identi‐
fier for your simple chat application.

24 | Chapter 3: Bidirectional Chat

Figure 3-1. Your first WebSocket chat application

Next, you’ll enhance the connection to the server with identification and logging:

var clients = [];

wss.on('connection', function(ws) {
 var client_uuid = uuid.v4();
 clients.push({"id": client_uuid, "ws": ws});
 console.log('client [%s] connected', client_uuid);

Assigning the result of the uuid.v4 function to the client_uuid variable allows you
to reference it later when identifying message sends and any close event. A simple
metadata object in the form of JSON contains the client UUID along with the Web‐
Socket object.

When the server receives a message from the client, it iterates over all known connec‐
ted clients using the clients collection, and send back a JSON object containing the
message and id of the message sender. You may notice that this also sends back the
message to the client that initiated, and this simplicity is by design. On the frontend
client you don’t update the list of messages unless it is returned by the server:

ws.on('message', function(message) {
 for(var i=0; i<clients.length; i++) {
 var clientSocket = clients[i].ws;
 console.log('client [%s]: %s', clients[i].id, message);
 clientSocket.send(JSON.stringify({
 "id": client_uuid,

Writing a Basic Chat Application | 25

 "message": message
 }));
 }
});

The WebSocket server now receives message events from any of the connected cli‐
ents. After receiving the message, it iterates through the connected clients and sends a
JSON string that includes the unique identifier for the client who sent the message,
and the message itself. Every connected client will receive this JSON string and can
show this to the end user.

A server must handle error states gracefully and still continue to work. You haven’t
yet defined what to do in the case of a WebSocket close event, but there is something
missing that needs to be addressed in the message event code. The collection of con‐
nected clients needs to account for the possibility that the client has gone away, and
ensure that before you send a message, there is still an open WebSocket connection.

The new code is as follows:

ws.on('message', function(message) {
 for(var i=0; i<clients.length; i++) {
 var clientSocket = clients[i].ws;
 if(clientSocket.readyState === WebSocket.OPEN) {
 console.log('client [%s]: %s', clients[i].id, message);
 clientSocket.send(JSON.stringify({
 "id": client_uuid,
 "message": message
 }));
 }
 }
});

You now have a server that will accept connections from WebSocket clients, and will
rebroadcast received messages to all connected clients. The final thing to handle is the
close event:

ws.on('close', function() {
 for(var i=0; i<clients.length; i++) {
 if(clients[i].id == client_uuid) {
 console.log('client [%s] disconnected', client_uuid);
 clients.splice(i, 1);
 }
 }
});

The server listens for a close event, and upon receiving it for this client, iterates
through the collection and removes the client. Couple this with the check of the
readyState flag for your WebSocket object and you’ve got a server that will work
with your new client.

26 | Chapter 3: Bidirectional Chat

www.allitebooks.com

http://www.allitebooks.org

Later in this chapter you will broadcast the state of disconnected and connected cli‐
ents along with your chat messages.

WebSocket Client
The simple echo client from Chapter 1 can be used as a jumping off point for your
chat web app. All the connection handling will work as specified, and you’ll need to
listen for the onmessage event that was being ignored previously:

ws.onmessage = function(e) {
 var data = JSON.parse(e.data);
 var messages = document.getElementById('messages');
 var message = document.createElement("li");
 message.innerHTML = data.message;
 messages.appendChild(message);
}

The client receives a message from the server in the form of a JSON object. Using
JavaScript’s built-in parsing function returns an object that can be used to extract the
message field. Let’s add a simple unordered list above the form so messages can be
appended using the DOM methods shown in the function. Add the following above
the form element:

<ul id="messages">

Messages will be appended to the list using the DOM method appendChild, and
shown in every connected client. So far you have only scratched the surface of func‐
tionality that shows off the seamless messaging provided by the WebSocket protocol.
In the next section you will implement a method of identifying clients by a nickname.

Client Identity
The WebSocket specification has been left relatively simplistic in terms of implemen‐
tation and lacks some of the features seen in alternatives. In your code so far, you
have already gone a long way toward identifying each client individually. Now you
can add nickname identities to the client and server code:

var nickname = client_uuid.substr(0, 8);
clients.push({"id": client_uuid, "ws": ws, "nickname": nickname});

The server gets modified to add the field nickname to a locally stored JSON object for
this client. To uniquely identify a connected client who hasn’t identified a nickname
choice, you can use the first eight characters of the UUID and assign that to the
nickname variable. All of this will be sent back over an open WebSocket connection
between the server and all of its connected clients.

WebSocket Client | 27

You will use a convention used with Internet Relay Chat clients (IRC) and
accept /nick new_nick as the command for changing the client nickname from the
random string:

if(message.indexOf('/nick') == 0) {
 var nickname_array = message.split(' ')
 if(nickname_array.length >= 2) {
 var old_nickname = nickname;
 nickname = nickname_array[1];
 for(var i=0; i<clients.length; i++) {
 var clientSocket = clients[i].ws;
 var nickname_message = "Client " + old_nickname +
 " changed to " + nickname;
 clientSocket.send(JSON.stringify({
 "id": client_uuid,
 "nickname": nickname,
 "message": nickname_message
 }));
 }
 }
}

This code checks for the existence of the /nick command followed by a string of
characters representing a nickname. Update your nickname variable, and you can
build a notification string to send to all connected clients over the existing open con‐
nection.

The clients don’t yet know about this new field, because the JSON you originally sent
included only id and message. Add the field with the following code:

clientSocket.send(JSON.stringify({
 "id": client_uuid,
 "nickname": nickname,
 "message": message
}));

The appendLog function within the client frontend needs to be modified to support
the addition of the nickname variable:

function appendLog(nickname, message) {
 var messages = document.getElementById('messages');
 var messageElem = document.createElement("li");
 var message_text = "[" + nickname + "] - " + message;
 messageElem.innerHTML = message_text;
 messages.appendChild(messageElem);
}

Figure 3-2 shows your chat application with the addition of identity.

28 | Chapter 3: Bidirectional Chat

Figure 3-2. Identity-enabled chat

Your new function signature includes nickname along with message, and you can
preface every message now with the client nickname. At the client’s request, you can
see a nickname preceding messages rather than a random string of characters before
each message.

Events and Notifications
If you were in the middle of a conversation and another person magically appeared in
front of you and started talking, that would be odd. To alleviate this, you can add
notification of connection or disconnection and send that back to all connected
clients.

Your code has several instances where you’ve gone through the trouble of iterating
over all connected clients, checking the readyState of the socket, and sending a simi‐
lar JSON-encoded string with varying values. For good measure, you’ll extract this
into a generic function, and call it from several places in your code instead:

function wsSend(type, client_uuid, nickname, message) {
 for(var i=0; i<clients.length; i++) {
 var clientSocket = clients[i].ws;
 if(clientSocket.readyState === WebSocket.OPEN) {
 clientSocket.send(JSON.stringify({
 "type": type,
 "id": client_uuid,

Events and Notifications | 29

 "nickname": nickname,
 "message": message
 }));
 }
 }
}

With this generic function, you can send notifications to all connected clients, handle
the connection state, and encode the string as the client expects, like so:

wss.on('connection', function(ws) {
 ...
 wsSend("message", client_uuid, nickname, message);
 ...
});

Sending messages to all clients post connection is now simple. Connection messages,
disconnection messages, and any notification you need are now handled with your
new function.

The Server
Here is the complete code for the server:

var WebSocket = require('ws');
var WebSocketServer = WebSocket.Server,
 wss = new WebSocketServer({port: 8181});
var uuid = require('node-uuid');

var clients = [];

function wsSend(type, client_uuid, nickname, message) {
 for(var i=0; i<clients.length; i++) {
 var clientSocket = clients[i].ws;
 if(clientSocket.readyState === WebSocket.OPEN) {
 clientSocket.send(JSON.stringify({
 "type": type,
 "id": client_uuid,
 "nickname": nickname,
 "message": message
 }));
 }
 }
}

var clientIndex = 1;

wss.on('connection', function(ws) {
 var client_uuid = uuid.v4();
 var nickname = "AnonymousUser"+clientIndex;
 clientIndex+=1;
 clients.push({"id": client_uuid, "ws": ws, "nickname": nickname});

30 | Chapter 3: Bidirectional Chat

 console.log('client [%s] connected', client_uuid);

 var connect_message = nickname + " has connected";
 wsSend("notification", client_uuid, nickname, connect_message);

 ws.on('message', function(message) {
 if(message.indexOf('/nick') === 0) {
 var nickname_array = message.split(' ');
 if(nickname_array.length >= 2) {
 var old_nickname = nickname;
 nickname = nickname_array[1];
 var nickname_message = "Client "+old_nickname+" changed to "+nickname;
 wsSend("nick_update", client_uuid, nickname, nickname_message);
 }
 } else {
 wsSend("message", client_uuid, nickname, message);
 }
 });

 var closeSocket = function(customMessage) {
 for(var i=0; i<clients.length; i++) {
 if(clients[i].id == client_uuid) {
 var disconnect_message;
 if(customMessage) {
 disconnect_message = customMessage;
 } else {
 disconnect_message = nickname + " has disconnected";
 }
 wsSend("notification", client_uuid, nickname, disconnect_message);
 clients.splice(i, 1);
 }
 }
 }
 ws.on('close', function() {
 closeSocket();
 });

 process.on('SIGINT', function() {
 console.log("Closing things");
 closeSocket('Server has disconnected');
 process.exit();
 });
});

The Client
Here is the complete code for the client:

<!DOCTYPE html>
<html lang="en">
<head>
<title>Bi-directional WebSocket Chat Demo</title>

The Client | 31

<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet" href="http://bit.ly/cdn-bootstrap-css">
<link rel="stylesheet" href="http://bit.ly/cdn-bootstrap-theme">
<script src="http://bit.ly/cdn-bootstrap-jq"></script>

 <script>
 var ws = new WebSocket("ws://localhost:8181");
 var nickname = "";
 ws.onopen = function(e) {
 console.log('Connection to server opened');
 }
 function appendLog(type, nickname, message) {
 var messages = document.getElementById('messages');
 var messageElem = document.createElement("li");
 var preface_label;
 if(type==='notification') {
 preface_label = "*";
 } else if(type=='nick_update') {
 preface_label = "*";
 } else {
 preface_label = ""
 + nickname + "";
 }
 var message_text = "<h2>" + preface_label + " "
 + message + "</h2>";
 messageElem.innerHTML = message_text;
 messages.appendChild(messageElem);
 }

 ws.onmessage = function(e) {
 var data = JSON.parse(e.data);
 nickname = data.nickname;
 appendLog(data.type, data.nickname, data.message);
 console.log("ID: [%s] = %s", data.id, data.message);
 }
 ws.onclose = function(e) {
 appendLog("Connection closed");
 console.log("Connection closed");
 }
 function sendMessage() {
 var messageField = document.getElementById('message');
 if(ws.readyState === WebSocket.OPEN) {
 ws.send(messageField.value);
 }
 messageField.value = '';
 messageField.focus();
 }
 function disconnect() {
 ws.close();
 }
 </script>

32 | Chapter 3: Bidirectional Chat

</head>
<body lang="en">
 <div class="vertical-center">
 <div class="container">
 <ul id="messages" class="list-unstyled">

 <hr />
 <form role="form" id="chat_form" onsubmit="sendMessage(); return false;">
 <div class="form-group">
 <input class="form-control" type="text" id="message" name="message"
 placeholder="Type text to echo in here" value="" autofocus/>
 </div>
<button type="button" id="send" class="btn btn-primary"
 onclick="sendMessage();">Send Message</button>
 </form>
 </div>
 </div>
<script src="http://bit.ly/cdn-bootstrap-minjs"></script>
</body>
</html>

Figure 3-3 shows the chat application with the addition of notifications.

Figure 3-3. Notification-enabled chatbsoc

The Client | 33

Summary
In this chapter you built out a complete chat client and server using the WebSocket
protocol. You steadily built a simplistic chat application into something more robust
with only the WebSocket API as your technology of choice. Effective and optimized
experiences between internal applications, live chat, and layering other protocols over
HTTP are all possibilities that are native to WebSocket.

All of this is possible with other technology, and as you’ve probably learned before,
there’s more than one way to solve a problem. Comet and Ajax are both battle tested
to deliver similar experiences to the end user as provided by WebSocket. Using them,
however, is rife with inefficiency, latency, unnecessary requests, and unneeded con‐
nections to the server. Only WebSocket removes that overhead and gives you a socket
that is full-duplex, bidirectional, and ready to rock ‘n’ roll.

In the next chapter you’ll take a look at a popular protocol for layering on top of
WebSocket, to provide transport without the overhead of HTTP.

34 | Chapter 3: Bidirectional Chat

CHAPTER 4

STOMP over WebSocket

In previous chapters you built simple applications using the WebSocket API both on
the server side and on the client. You built a multiclient chat application with Web‐
Socket as the communication layer. Chapter 2 briefly discussed using subprotocols
with WebSocket. Now you’ll take everything learned thus far and layer another proto‐
col on top of WebSocket.

STOMP, an acronym for Simple Text Oriented Messaging Protocol, is a simple
HTTP-like protocol for interacting with any STOMP message broker. Any STOMP
client can interact with the message broker and be interoperable among languages
and platforms.

In this chapter you’ll create a client and server that communicate using the STOMP
protocol over WebSocket rather than TCP. You will learn how to connect to Rab‐
bitMQ by using the Web-Stomp plug-in, which uses WebSocket as its underlying wire
protocol.

As in previous chapters, you’ll create a new project folder for Chapter 4 examples
with the abbreviated name ch4. The examples in this chapter again use a stock ticker,
and use messaging to subscribe for stock updates. In addition, there are two examples
in this chapter, so create a subdirectory named proxy. You’ll create several files to
build a real working table of stock prices powered by STOMP over WebSocket. Here
are the files that you will use:

client.html
The frontend code base; as before, copy the template used in Chapter 1.

server.js
The WebSocket proxy that talks to RabbitMQ using AMQP while listening for
STOMP over WebSocket.

35

https://stomp.github.io/
http://www.rabbitmq.com/
http://www.rabbitmq.com/

stomp_helper.js
A convenience library you’ll build for sending and receiving STOMP requests.

daemon.js
A daemon that pulls stocks from Yahoo Finance by using YQL and pulls and
pushes messages to RabbitMQ.

Implementing STOMP
STOMP is a simple text protocol that is similar to the HTTP convention of an upper‐
case command such as CONNECT, followed by a list of header key/value pairs, and then
optional content, which in the case of STOMP is null-terminated. It is also possible
and highly recommended to pass content-length as a parameter to any commands,
and the server will use that value instead as the length of passed content.

Getting Connected
As you saw in Chapter 2, the native browser API for connecting to a WebSocket
server takes two parameters: URL and protocol. Of those two parameters, only the
URL is required, but now you will be making use of the second. If you research regis‐
tered protocols in the WebSocket Subprotocol Name Registry, you’ll find an entry for
STOMP 1.0, which uses the identifier v10.stomp. As we’ll discuss in Chapter 8, you
are not required to use a registered subprotocol with WebSocket. The subprotocol
does need to be supported by the client and the server. In your client, then, open a
connection the following way:

var ws;

var connect = function() {
 if(!ws || ws.readyState !== 1) {
 ws = new WebSocket("ws://localhost:8181", "v10.stomp");
 ws.addEventListener('message', onMessageHandler);
 ws.addEventListener('open', onOpenHandler);
 ws.addEventListener('close', onCloseHandler);
 }
}

connect();

As with the previous examples, you open a connection to a WebSocket server on port
8181. But in addition, you pass a second parameter in the constructor, which can
either be a string or an array of strings identifying requested subprotocols from the
server. Notice also that a connect function adds the event listeners for open, message,
and close by using the addEventListener method. This is the essential method of
connecting. If you need to reconnect upon a lost connection, the event handlers will
not automatically reattach if you’re using the ws.on<eventname> method.

36 | Chapter 4: STOMP over WebSocket

www.allitebooks.com

http://finance.yahoo.com
http://bit.ly/ws-protocol-reg
http://bit.ly/stomp-spec-v1
http://www.allitebooks.org

After opening the WebSocket connection, an open event is fired, and you can offi‐
cially send and receive messages from the server. If you reference the STOMP 1.0
protocol doc, the following will be shown as the method of initial connection to a
STOMP-capable server:

CONNECT
login: <username>
passcode: <passcode>

^@

For our example, you’ll use websockets as the username and rabbitmq as the pass‐
word for all authentication with the STOMP server and RabbitMQ. So within your
code, pass the following with the WebSocket send function:

var frame = "CONNECT\n"
 + "login: websockets\n";
 + "passcode: rabbitmq\n";
 + "nickname: anonymous\n";
 + "\n\n\0";
ws.send(frame);

You can see in the STOMP 1.0 protocol doc that every frame sent ends with the null
terminator ^@, or if the content-length header is passed, it will be used instead.
Because of the simplicity of WebSocket, you’re carefully mapping STOMP frames on
top of WebSocket frames in these examples. If the server accepts the connection and
authentication information, it passes back the following to the client, which includes
a session-id to be used in later calls to the server:

CONNECTED
session: <session-id>

^@

The chapter introduction mentioned stomp_helper.js, and before you get to the
server code, let’s review the library that will assist in sending and receiving STOMP-
compatible frames (Example 4-1).

Example 4-1. STOMP library code

(function(exports){
 exports.process_frame = function(data) {
 var lines = data.split("\n");
 var frame = {};
 frame['headers'] = {};
 if(lines.length>1) {
 frame['command'] = lines[0];
 var x = 1;
 while(lines[x].length>0) {
 var header_split = lines[x].split(':');

Implementing STOMP | 37

http://bit.ly/stomp-spec-v1
http://bit.ly/stomp-spec-v1
http://bit.ly/stomp-spec-1

 var key = header_split[0].trim();
 var val = header_split[1].trim();
 frame['headers'][key] = val;
 x += 1;
 }
 frame['content'] = lines
 .splice(x + 1, lines.length - x)
 .join("\n");

 frame['content'] = frame['content']
 .substring(0, frame['content'].length - 1);
 }
 return frame;
 };

 exports.send_frame = function(ws, frame) {
 var data = frame['command'] + "\n";
 var header_content = "";
 for(var key in frame['headers']) {
 if(frame['headers'].hasOwnProperty(key)) {
 header_content += key
 + ": "
 + frame['headers'][key]
 + "\n";
 }
 }
 data += header_content;
 data += "\n\n";
 data += frame['content'];
 data += "\n\0";
 ws.send(data);
 };

 exports.send_error = function(ws, message, detail) {
 headers = {};
 if(message) headers['message'] = message;
 else headers['message'] = "No error message given";

 exports.send_frame(ws, {
 "command": "ERROR",
 "headers": headers,
 "content": detail
 });
 };

})(typeof exports === 'undefined'? this['Stomp']={}: exports);

The ceremonial items preceding and following the functions in this library allow
this to be used within the browser, and on the server side with Node.js in a require
statement.

38 | Chapter 4: STOMP over WebSocket

The first function to describe is process_frame, which takes a STOMP frame as a
parameter called data and creates a JavaScript object containing everything parsed
out for use within your application. As described in Table 4-1, it splits out the
command, all the headers, and any content within the frame and returns an object
fully parsed.

Table 4-1. JavaScript object structure

Key Description

command STOMP command passed by the frame

headers A JavaScript object with key/values for the passed-in headers

content Any content sent in the frame that was null-terminated or adheres to the content-length header

Next up and equally important is the send_frame function, which accepts a Web‐
Socket object and a STOMP frame in the form of a JavaScript object exactly as you
send back from the process_frame function. The send_frame function takes each of
the values passed in, creates a valid STOMP frame, and sends it off over the passed-in
WebSocket parameter.

The remaining function is send_error, which takes the parameters shown in
Table 4-2.

Table 4-2. Parameters accepted for the send_error call

Name Description

WebSocket The active WebSocket connection

message Error message explaining what went wrong

detail Optional detail message passed in the body

You’ll be able to use the aforementioned set of functions to send and receive STOMP
frames without any string parsing within your client or server code.

Connecting via the Server
On the server side, upon receiving a connection event, your initial task to get con‐
nected is to parse what is received in the message frame (using the stomp_helper.js
library), and send back a CONNECTED command or an ERROR if it failed:

wss.on('connection', function(ws) {
 var sessionid = uuid.v4();

Implementing STOMP | 39

 ws.on('message', function(message) {
 var frame = Stomp.process_frame(message);
 var headers = frame['headers'];
 switch(frame['command']) {
 case "CONNECT":
 Stomp.send_frame(ws, {
 command: "CONNECTED",
 headers: {
 session: sessionid,
 },
 content: ""
 });
 break;
 default:
 Stomp.send_error(ws, "No valid command frame");
 break;
 }
 });
 ...
});

As you’ve seen in previous examples, the connection event is received, and work
begins. There exists an extra layer thanks to STOMP, which is handled somewhat by
your library. After assigning a sessionid to a UUID, and upon receiving a message
event from the client, you run it through the process_frame function to get a Java‐
Script object representing the received frame. To process whatever command was
sent, the program uses a case statement, and upon receiving the CONNECT command,
you send back a STOMP frame letting the client know the connection was received
and is accepted along with the sessionid for this session.

Take a quick look at Figure 4-1, which shows a completed connection event.

Looking at the screen grab, you’ll see a new header for the HTTP request and
response: Sec-WebSocket-Protocol. In Chapter 8 you can read a more in-depth dis‐
cussion about the various headers and dive deep into the protocol nitty-gritty. Here
in the stocks example, the request sent along includes the subprotocol v10.stomp. If
the server accepts this subprotocol, it will, in turn, respond with that subprotocol
name, and the client can continue sending and receiving frames to the server. If the
server does not speak v10.stomp, you will receive an error.

40 | Chapter 4: STOMP over WebSocket

Figure 4-1. Successful WebSocket connection with subprotocol

The default implementation of the ws library will accept any subprotocol that is
sent along. Let’s write some extra code to ensure that only the v10.stomp protocol
gets accepted here. To do this, you’ll write a special handler when initializing the Web
SocketServer object:

var WebSocketServer = require('ws').Server,
wss = new WebSocketServer({port: 8181,
 handleProtocols: function(protocol, cb) {
 var v10_stomp = protocol[protocol.indexOf("v10.stomp")];
 if(v10_stomp) {
 cb(true, v10_stomp);
 return;
 }
 cb(false);
}});

In Chapter 2 the overview of the WebSocket API showed that you could pass in more
than one subprotocol. In your handler code, you’ll have to unpack an array of sub‐
protocols that includes the one the client is after. Because you’re using Node.js, you
can use conventions like Array.indexOf without worrying about things like Internet
Explorer not supporting it. With the preceding code, you’ve successfully performed a
handshake accepting a new subprotocol.

As noted earlier, your first example implementing STOMP will be the stocks app.
You’ll send requests over STOMP from the client to the server, and the server will
send and receive messages with RabbitMQ while the stocks daemon spits out inter‐

Implementing STOMP | 41

mittent updates to prices. To get started, get a RabbitMQ server in place to queue
your messages for the server.

Setting Up RabbitMQ
You’ll need to get a RabbitMQ node running for your WebSocket server to proxy the
requests to. To do that, you’ll need to have Vagrant set up on your development
machine. Vagrant is a handy tool for creating portable and lightweight development
virtual machines. Installing it is as easy as grabbing the proper install binary for your
operating system on the download page for Vagrant.

Vagrant is a lightweight tool to create and configure reproducible
and portable development environments. It uses VirtualBox or
VMWare under the hood for the virtualized instances, and allows
for several providers including Puppet, Chef, Ansible, and even
simple shell scripts.

After you have Vagrant installed successfully, create a new file in your project folder
called Vagrantfile and include the following:

Vagrant.configure("2") do |config|
 config.vm.hostname = "websockets-mq"
 config.vm.box = "precise64"
 config.vm.box_url = "http://bit.ly/ubuntu-vagrant-precise-box-amd64"

 config.vm.network :forwarded_port, guest: 5672, host: 5672
 config.vm.network :forwarded_port, guest: 15672, host: 15672

 config.vm.provision "shell", path: "setup_rabbitmq.sh"

 config.vm.provider :virtualbox do |v|
 v.name = "websockets-mq"
 end
end

The configuration file will be used to create a new Vagrant instance using the image at
config.vm.box_url. It forwards ports 5672 and 15672 to the local machine, and
specifies a shell-based provisioning to be run upon vagrant up, which is included in
the following code:

#!/bin/bash

cat >> /etc/apt/sources.list <<EOT
deb http://www.rabbitmq.com/debian/ testing main
EOT

wget http://www.rabbitmq.com/rabbitmq-signing-key-public.asc
apt-key add rabbitmq-signing-key-public.asc

42 | Chapter 4: STOMP over WebSocket

http://www.vagrantup.com
http://www.vagrantup.com/downloads.html

apt-get update

apt-get install -q -y screen htop vim curl wget
apt-get install -q -y rabbitmq-server

RabbitMQ Plugins
service rabbitmq-server stop
rabbitmq-plugins enable rabbitmq_management
service rabbitmq-server start

Create our websockets user and remove guest
rabbitmqctl delete_user guest
rabbitmqctl add_user websockets rabbitmq
rabbitmqctl set_user_tags websockets administrator
rabbitmqctl set_permissions -p / websockets ".*" ".*" ".*"

rabbitmq-plugins list

The shell provisioning script does the following:

• Adds a new source for the latest RabbitMQ install
• Installs a few dependencies along with the RabbitMQ server
• Enables the rabbitmq_management plug-in
• Removes the guest user and creates your new default user rabbitmq:websockets
• Gives that user administrator privileges

Now from the command line, initialize and provision the new Vagrant instance with
the following:

vagrant up

This command reads the Vagrantfile and runs the provisioning script to install the
RabbitMQ server on an Ubuntu 12.04 amd64 instance for use in the examples. The
following code shows a printout similar to what you should see after you complete
the command. Immediately after this output, Vagrant will run the provisioning shell
script that sets up RabbitMQ:

Bringing machine 'default' up with 'virtualbox' provider...
==> default: Importing base box 'precise64'...
==> default: Matching MAC address for NAT networking...
==> default: Setting the name of the VM: websockets-mq
==> default: Clearing any previously set forwarded ports...
==> default: Clearing any previously set network interfaces...
==> default: Preparing network interfaces based on configuration...
 default: Adapter 1: nat
==> default: Forwarding ports...
 default: 5672 => 5672 (adapter 1)
 default: 15672 => 15672 (adapter 1)

Setting Up RabbitMQ | 43

 default: 22 => 2222 (adapter 1)
==> default: Booting VM...
==> default: Waiting for machine to boot. This may take a few minutes...
 default: SSH address: 127.0.0.1:2222
 default: SSH username: vagrant
 default: SSH auth method: private key

The included Vagrantfile, which provides the configuration for Vagrant, opens the
following ports:

tcp/5672
The default port for amqp

tcp/15672
The web management interface

Connecting the Server to RabbitMQ
After you have the proper dependencies installed, it’s time to circle back and get the
server talking to RabbitMQ. The connection to RabbitMQ can happen independently
of the WebSocket work. Upon execution of the server, you’ll open a connection to
RabbitMQ and perform two actions with the connection:

• Listen to the stocks.result queue for updates on pricing
• Publish stock requests at a set interval to the stocks.work queue

To do that with your server, you’ll need to talk AMQP with RabbitMQ. There are
many libraries out there for Node.js to talk AMQP, and the simplest one I’ve found is
node-amqp. Use the command npm to install the library in your project folder:

npm install amqp

Your initial actions will be upon a valid CONNECT request initiated from the client to
the server. You’ll create a connection to the running RabbitMQ instance, using the
authentication information passed in from the client.

Here’s how you’ll connect to the RabbitMQ instance you installed:

amqp = require('amqp');

var connection = amqp.createConnection(
 { host: 'localhost',
 login: 'websockets',
 password: 'rabbitmq'
});

The library being used (amqp) fires events that can be listened for using callbacks. In
the following snippet, it listens for the ready event and runs the callback function
provided. Upon ensuring the connection is ready, you start listening to the

44 | Chapter 4: STOMP over WebSocket

https://github.com/postwait/node-amqp

stocks.result queue and subscribe to receive updates to messages that get passed
back through it. These messages will contain updated pricing for stocks that have
been requested. You’ll notice that within the blocks, the stomp_helper.js library is
being used to send MESSAGE frames back to the clients that have asked for updates on
particular stocks:

connection.on('ready', function() {
 connection.queue('stocks.result', {autoDelete: false, durable: true},
 function(q) {
 q.subscribe(function(message) {
 var data;
 try {
 data = JSON.parse(message.data.toString('utf8'));
 } catch(err) {
 console.log(err);
 }
 for(var i=0; i<data.length; i++) {
 for(var client in stocks) {
 if(stocks.hasOwnProperty(client)) {
 var ws = stocks[client].ws;
 for(var symbol in stocks[client]) {
 if(stocks[client].hasOwnProperty(symbol)
 && symbol === data[i]['symbol']) {
 stocks[client][symbol] = data[i]['price'];
 var price = parseFloat(stocks[client][symbol]);
 Stomp.send_frame(ws, {
 "command": "MESSAGE",
 "headers": {
 "destination": "/queue/stocks." + symbol
 },
 content: JSON.stringify({price: price})
 });
 }
 }
 }
 }
 }
 });
 });
});

Connecting the Server to RabbitMQ | 45

The payload being received from the stocks.result message queue looks like the
following:

[
 {
 "symbol":"AAPL",
 "price":149.34
 },
 {
 "symbol":"GOOG",
 "price":593.2600000000037
 }
]

After parsing the payload, the block of code iterates over the result, and over a master
list of stocks being stored across all connected clients. In the process of iterating over
a JavaScript object, you must check to ensure that the value being passed during
the iteration is part of the object by using myObject.hasOwnProperty(myIterator
Value). It maps the updated price with the price being stored and sends a message
back to the connected client using STOMP over that specific destination.

When the client makes a request for a new stock, it gets added to the master list of
stocks. A separate block of code runs at an interval to send the master list to a
stocks.work queue, which gets picked up by the daemon.js to find the updated price
and send it back over the stocks.result queue. One of the prime reasons you do
this is that it is easier to scale and the system can process more requests if needed by
adding more daemons, without any adverse effect. The following code shows the
updater method. It creates a string array of stock symbols, and publishes that to the
stocks.work queue:

var updater = setInterval(function() {

 var st = [];
 for(var client in stocks) {
 for(var symbol in stocks[client]) {
 if(symbol !== 'ws') {
 st.push(symbol);
 }
 }
 }
 if(st.length>0) {
 connection.publish('stocks.work',
 JSON.stringify({"stocks": st}),
 {deliveryMode: 2});
 }
}, 10000);

46 | Chapter 4: STOMP over WebSocket

www.allitebooks.com

http://www.allitebooks.org

The Stock Price Daemon
The following code is for the daemon, which takes in an array of stock symbols,
and spits out a JSON object with the up-to-date values using Yahoo YQL. Create a
new file called daemon.js and insert the following snippet:

#!/usr/bin/env node

var request = require('request'),
 amqp = require('amqp');

module.exports = Stocks;

function Stocks() {
 var self = this;
}

Stocks.prototype.lookupByArray = function(stocks, cb) {
 var csv_stocks = '"' + stocks.join('","') + '"';

 var env_url = '&env=http%3A%2F%2Fdatatables.org%2Falltables.env&format=json';
 var url = 'https://query.yahooapis.com/v1/public/yql';
 var data = encodeURIComponent(
 'select * from yahoo.finance.quotes where symbol in ('
 + csv_stocks + ')');
 var data_url = url
 + '?q='
 + data
 + env_url;

 request.get({url: data_url, json: true},
 function (error, response, body) {
 var stocksResult = [];
 if (!error && response.statusCode == 200) {
 var totalReturned = body.query.count;
 for (var i = 0; i < totalReturned; ++i) {
 var stock = body.query.results.quote[i];
 var stockReturn = {
 'symbol': stock.symbol,
 'price': stock.Ask
 };

 stocksResult.push(stockReturn);
 }

 cb(stocksResult);
 } else {
 console.log(error);
 }
 });
};

Connecting the Server to RabbitMQ | 47

https://developer.yahoo.com/yql/

var main = function() {
 var connection = amqp.createConnection({
 host: 'localhost',
 login: 'websockets',
 password: 'rabbitmq'
 });

 var stocks = new Stocks();
 connection.on('ready', function() {
 connection.queue('stocks.work', {autoDelete: false, durable: true},
 function(q) {
 q.subscribe(function(message) {
 var json_data = message.data.toString('utf8');
 var data;
 console.log(json_data);
 try {
 data = JSON.parse(json_data);
 } catch(err) {
 console.log(err);
 }
 stocks.lookupByArray(data.stocks, function(stocks_ret) {
 var data_str = JSON.stringify(stocks_ret);
 connection.publish('stocks.result', data_str,
 {deliveryMode: 2});
 });

 });
 });
 });

};

if(require.main === module) {
 main();
}

This daemon can be executed using node daemon.js, and will connect to RabbitMQ
and process the work it pulls from the RabbitMQ message queue. Several conven‐
tions should be noticeable from the WebSocket STOMP server, including the method
of connection, and processing the ready event. The daemon will listen to the
stocks.work queue, however, to get a list of stocks to look up, and in the end push
the result back into the stocks.result queue. If you take a look at the Stocks.proto
type.lookupByArray function, it’s issuing a Yahoo YQL call for the stocks requested
and returning the JSON payload, as seen earlier.

48 | Chapter 4: STOMP over WebSocket

Processing STOMP Requests
Previous to diving into the server interaction with RabbitMQ, you saw how to ach‐
ieve connection with STOMP over WebSocket by using your library. Let’s continue
on and flesh out the rest of the commands necessary to interact with the frontend:

wss.on('connection', function(ws) {
 var sessionid = uuid.v4();

 stocks[sessionid] = {};
 connected_sessions.push(ws);
 stocks[sessionid]['ws'] = ws;

 ws.on('message', function(message) {
 var frame = Stomp.process_frame(message);
 var headers = frame['headers'];
 switch(frame['command']) {
 case "CONNECT":
 Stomp.send_frame(ws, {
 command: "CONNECTED",
 headers: {
 session: sessionid
 },
 content: ""
 });
 break;
 case "SUBSCRIBE":
 var subscribeSymbol = symbolFromDestination(
 frame['headers']['destination']);
 stocks[sessionid][subscribeSymbol] = 0;
 break;
 case "UNSUBSCRIBE":
 var unsubscribeSymbol = symbolFromDestination(
 frame['headers']['destination']);
 delete stocks[sessionid][unsubscribeSymbol];
 break;
 case "DISCONNECT":
 console.log("Disconnecting");
 closeSocket();
 break;
 default:
 Stomp.send_error(ws, "No valid command frame");
 break;
 }
 });

 var symbolFromDestination = function(destination) {
 return destination.substring(destination.indexOf('.') + 1,
 destination.length);
 };

 var closeSocket = function() {

Processing STOMP Requests | 49

 ws.close();
 if(stocks[sessionid] && stocks[sessionid]['ws']) {
 stocks[sessionid]['ws'] = null;
 }
 delete stocks[sessionid];
 };

 ws.on('close', function() {
 closeSocket();
 });

 process.on('SIGINT', function() {
 console.log("Closing via break");
 closeSocket();
 process.exit();
 });

As with previous examples, upon a successful connection a UUID is generated that
will act as your sessionid for passing back and forth in the STOMP frame. The
frame will get parsed and placed in the JavaScript object. From there you perform dif‐
ferent actions based on the frame command passed. You’ve already seen the code for
CONNECT, and so we’ll focus on SUBSCRIBE, UNSUBSCRIBE, and DISCONNECT.

Both subscribing and unsubscribing modify your stocks object. With subscribing,
you’re adding a new symbol to the existing list of stocks for that sessionid. Unsub‐
scribing is met by just removing that symbol from the list so it won’t be passed back
to the client. Receiving a DISCONNECT command from the client is met with closing
the WebSocket and cleaning up any references to that and the client in the stocks
object. Because this is an app to be run from the console, there is a chance of receiv‐
ing a Ctrl-C, which would break the connection. To handle this, hook into the SIGINT
event that gets fired, so you can close the socket gracefully and on your own terms.

Client
The client is a simple interface with stocks that vary in price based on data returned
from the server. The form at the top takes a stock symbol as input, and attempts to
SUBSCRIBE over STOMP to get updates from the server. While the subscribe request
is being sent, a table row gets added for the new symbol as well as a placeholder of
“Retrieving…” while waiting for data to return.

Figure 4-2 shows a working example of the stock-ticker application.

50 | Chapter 4: STOMP over WebSocket

Figure 4-2. Stocks example of STOMP over WebSocket

The markup for the example is shown in the following code. It outlines a simple form
that calls the subscribe method (which is described next), and the table containing
the stock symbols, the up-to-date pricing from the service, and a Remove button. In
addition, a status indicator of connection to the WebSocket server has been added:

<div class="vertical-center">
<div class="container">

 <div class="well">

 <form role="form" class="form-inline" id="add_form"
 onsubmit="subscribe($('#symbol').val()); return false;">
 <div class="form-group">
 <input class="form-control" type="text" id="symbol"
 name="symbol" placeholder="Stock symbol: i.e. AAPL" value=""
 autofocus />
 </div>

 <button type="submit" class="btn btn-primary">Add</button>

 </form>

 </div>

 <table class="table" id="stockTable">
 <thead>

Client | 51

 <tr>
 <th>Symbol</th>
 <th>Price</th>
 <th>Actions</th>
 </tr>
 </thead>
 <tbody id="stockRows">
 <tr id="norows">
 <td colspan="3">
 No stocks found, add one above
 </td>
 </tr>
 </tbody>
 </table>

 <div class="text-right">
 <p>
 <a id="connection" class="btn btn-danger"
 href="#" onclick="connect();">Offline
 </p>
 </div>
</div>
</div>

Several functions make up your client app, and they will be described separately in
the order they are executed. The first function is subscribe, which adds a new sym‐
bol to the interface and communicates that to the server:

var subscribe = function(symbol) {
 if(stocks.hasOwnProperty(symbol)) {
 alert('You already added the ' + symbol + ' symbol');
 return;
 }

 stocks[symbol] = 0.0;
 Stomp.send_frame(ws, {
 "command": "SUBSCRIBE",
 "headers": {
 "destination": "/queue/stocks." + symbol,
 },
 content: ""
 });
 var tbody = document.getElementById('stockRows');

 var newRow = tbody.insertRow(tbody.rows.length);
 newRow.id = symbol + '_row';

 newRow.innerHTML = '<td><h3>' + symbol + '</h3></td>' +
 '<td id="' + symbol + '">' +
 '<h3>' +
 'Retrieving..' +
 '</h3>' +

52 | Chapter 4: STOMP over WebSocket

 '</td>' +
 '<td>' +
 '<a href="#" onclick="unsubscribe(\'' + symbol +
 '\');" class="btn btn-danger">Remove</td>';

 if(!$('#norows').hasClass('hidden')) {
 $('#norows').addClass('hidden');
 }

 $('#symbol').val('');
 $('#symbol').focus();
}

The first thing to do whenever receiving user input is to perform validation, which is
done to check whether you already have that symbol in your list and return an error
if found. If all is fine, you initialize the symbol to your list of stocks and send a new
SUBSCRIBE frame to the server. The rest of the code is for the user interface, and adds
a table row with default values while waiting for a legitimate value from the server.

If a client can subscribe to a stock update, it should be able to unsubscribe as well.
This next snippet does exactly that, and is referenced in the previous code for remove:

Object.size = function(obj) {
 var size = 0, key;
 for (key in obj) {
 if (obj.hasOwnProperty(key)) size++;
 }
 return size;
};

var unsubscribe = function(symbol) {
 Stomp.send_frame(ws, {
 "command": "UNSUBSCRIBE",
 "headers": {
 "destination": "/queue/stocks." + symbol,
 },
 content: ""
 });
 $('#' + symbol + '_row').remove();

 delete stocks[symbol];

 if(Object.size(stocks) === 0) {
 $('#norows').removeClass('hidden');
 }
}

To unsubscribe, you perform the following tasks:

1. Send the UNSUBSCRIBE command in a STOMP frame with the symbol as part of
the destination.

Client | 53

2. Remove the table row in the user interface.
3. Remove the entry in the stocks object.
4. Check whether there are any more symbols in the stocks object, and if not,

unhide the #norows HTML block.

The functions in the previous two code snippets represent all the actions a user can
take with your interface: subscribe and unsubscribe. Now let’s circle back to the
connect() function, shown previously, without details about its handlers. The first is
the more elaborate form using the stomp_helper.js library for handling open events:

var onOpenHandler = function(e) {
 Stomp.send_frame(ws, {
 "command": "CONNECT",
 "headers": {
 login: "websockets",
 passcode: "rabbitmq"
 },
 content: ""
 });
}

In short, upon getting a connection to your WebSocket server, you send your
CONNECT command with authentication information over the STOMP frame. In order
to close the connection, you follow a similar path, and provide notification for the
user interface:

var online = false;

var statusChange = function(newStatus) {
 $('#connection').html((newStatus ? 'Online' : 'Offline'));
 $('#connection').addClass((newStatus ? 'btn-success' : 'btn-danger'));
 $('#connection').removeClass((newStatus ? 'btn-danger' : 'btn-success'));
 online = newStatus;
}

var switchOnlineStatus = function() {
 if(online) logoff(); else connect();
}

var logoff = function() {
 statusChange(false);

 Stomp.send_frame(ws, {
 "command": "DISCONNECT"
 }
);
 return false;
}

54 | Chapter 4: STOMP over WebSocket

The HTML code contains a status button that when clicked will run the
switchOnlineStatus function. This will either disconnect you from the server, or
reconnect you as seen earlier. The logoff function sends your DISCONNECT command
using a STOMP frame to tell the server to perform its own disconnection routines.

All of the work done on the server end to retrieve stocks through RabbitMQ is put
into action in the following code. As you’ll see, your onMessageHandler takes data
from the server and updates the frontend with the new values:

var updateStockPrice = function(symbol, originalValue, newValue) {
 var valElem = $('#' + symbol + ' span');
 valElem.html(newValue.toFixed(2));
 var lostValue = (newValue < originalValue);
 valElem.addClass((lostValue ? 'label-danger' : 'label-success'))
 valElem.removeClass((lostValue ? 'label-success' : 'label-danger'))
}

var onMessageHandler = function(e) {
 frame = Stomp.process_frame(e.data);
 switch(frame['command']) {
 case "CONNECTED":
 statusChange(true);
 break;
 case "MESSAGE":
 var destination = frame['headers']['destination'];
 var content;
 try {
 content = JSON.parse(frame['content']);
 } catch(ex) {
 console.log("exception:", ex);
 }
 var sub_stock = destination.substring(
 destination.indexOf('.') + 1, destination.length
);
 updateStockPrice(sub_stock, stocks[sub_stock], content.price);
 stocks[sub_stock] = content.price;
 break;
 }
}

When a new message event is passed, the code will process that data as a STOMP
frame. The process will be to check for either the CONNECTED or MESSAGE commands
from the frame. Commands that will be processed include the following:

CONNECTED

Call the statusChange(true) to change the button status to be “Online”

MESSAGE

Retrieve the destination header, parse the content, and update the stock price in
the interface

Client | 55

The client has active portions with the subscribe/unsubscribe/disconnect portion,
and the passive portions that cater to receiving data from the server. The MESSAGE
events being fired will be tied to a STOMP destination, and the stocks will be upda‐
ted accordingly based on the data retrieved.

You’ve successfully implemented the most basic functions available in the STOMP 1.0
protocol. The mapping between STOMP and WebSocket can be simple, and there are
a few more commands that we have left unimplemented in your node-based proxy:
BEGIN, COMMIT, ACK, and on the server side RECEIPT.

Mapping STOMP over WebSocket achieves two things: it shows you how to layer a
different protocol over WebSocket by using the subprotocol portion of the spec, and
enables talking to an AMQP server without specifically needing a server component
written. In the next section, you’ll learn how to connect to RabbitMQ with SockJS by
using the Web-Stomp plugin with RabbitMQ. You’ll learn more about using SockJS in
Chapter 5, which covers compatibility with older browsers. Several options are avail‐
able for messaging, including these popular ones:

• ActiveMQ
• ActiveMQ Apollo
• HornetQ

Using RabbitMQ with Web-Stomp
Throughout this chapter you’ve been writing a server implementation of STOMP to
effectively proxy commands to RabbitMQ by using AMQP. This hopefully has shown
how easy it can be to layer another protocol on top of WebSocket. Now to round out
the end of the chapter, you’ll learn how to set up RabbitMQ with Web-Stomp, a plug-
in that allows RabbitMQ to accept STOMP. The plug-in exposes a SockJS-compatible
bridge over HTTP, which is an alternative transport library (this is discussed in more
detail in Chapter 5). It enhances compatibility for older browsers that don’t have
native support for WebSocket.

Advanced Message Queuing Protocol
The Advanced Message Queuing Protocol (AMQP) is an open standard application
layer protocol for message-oriented middleware. The defining features of AMQP are
message orientation, queuing, routing (including point-to-point and publish-and-
subscribe), reliability, and security.

56 | Chapter 4: STOMP over WebSocket

www.allitebooks.com

http://www.rabbitmq.com/web-stomp.html
http://activemq.apache.org/
http://activemq.apache.org/apollo/
http://hornetq.jboss.org/
http://bit.ly/amqp-wiki
http://www.allitebooks.org

STOMP Client for Web and Node.js
For a more complete implementation of your work in this chapter, download the
STOMP Over WebSocket library. It provides a JavaScript client library for accessing
servers using STOMP 1.0 and 1.1 over WebSocket, and a Node.js library for doing the
same over WebSocket along with an option for TCP sockets via STOMP.

Installing the Web-Stomp Plug-in
Let’s edit that provisioning shell script used earlier in the chapter to set up RabbitMQ.
In the script, after stopping the RabbitMQ server during installation, you’ll add the
following line:

rabbitmq-plugins enable rabbitmq_web_stomp

In addition, your virtual machine needs editing, so forward port 15674, which is
opened by the previously installed plug-in to listen for SockJS requests. You’ll modify
the existing Vagrantfile and add the following line with all the other network config
options:

config.vm.network :forwarded_port, guest: 15674, host: 15674

After doing so, if the original VirtualBox instance is still running, you can run
vagrant halt or vagrant destroy, and then rerun vagrant up to re-create the
instance. If you’ve destroyed, then you’re done, and it will open the new port and turn
on the new plug-in. If you’ve halted, you can perform the following tasks:

vagrant ssh
sudo su -
rabbitmq-plugins enable rabbitmq_web_stomp

This enables a new plug-in called Web-Stomp and exposes port 15674. Rabbit has
standardized on using SockJS for all WebSocket communication, and we will discuss
that library further in Chapter 5. To continue, you’ll want to download the JavaScript
STOMP library available at stomp.js. Then you can continue changing up your client
code to use the Web-Stomp endpoint.

Echo Client for Web-Stomp
Let’s build a simple echo client that subscribes to a queue named /topic/echo and
then sends and receives messages. At the top of your HTML file, include the follow‐
ing JavaScript statements:

<script src="http://cdn.sockjs.org/sockjs-0.3.min.js"></script>
<script src="stomp.min.js"></script>

You can choose to download the minimized version as referenced in this code, or the
unminimized version if you prefer. In either case, you can download the stomp-
websocket library on GitHub.

Using RabbitMQ with Web-Stomp | 57

http://bit.ly/stomp-over-ws
http://bit.ly/stompjs
http://bit.ly/stomp-ws-releases
http://bit.ly/stomp-ws-releases

Your HTML will be nearly identical to the previous echo example, and you’ll modify
the JavaScript to suit your needs by using the RabbitMQ Web-Stomp plug-in and the
Stomp.js library:

<!DOCTYPE html>
<html><head>
 <title>Echo Server</title>
</head>
<body lang="en">
 <h1>Web Stomp Echo Server</h1>

 <ul id="messages">

 <form onsubmit="send_message(); return false;">
 <input type="text" name="message" style="width: 200px;"
 id="message" placeholder="Type text to echo in here"
 value="" autofocus />
 <input type="button" value="Send!" onclick="send_message();" />

 </form>
</body>
</html>

Your first task is to initialize the RabbitMQ SockJS endpoint, and then pass that to the
STOMP JavaScript library. The Stomp.js library allows you to use native WebSocket,
or anything that offers the same API such as SockJS. Because SockJS doesn’t offer
heartbeat support, you’ll keep it turned off. The Stomp.js library offers several oppor‐
tunities for callback and for performing whatever task you’d like on the data that
comes back. Here, you’re just outputting the data to the console:

var ws = new SockJS('http://localhost:15674/stomp');
var client = Stomp.over(ws);

client.heartbeat.outgoing = 0;
client.heartbeat.incoming = 0;

client.debug = function(str) {
 console.log(str);
}

When you connect to a RabbitMQ queue, you’ll simply offer login details, and a few
callbacks along with the host (or virtualhost in RabbitMQ terms). The append_log
function will be identical to that shown previously, but implementing the callbacks
required for connect, error, and a new send_message function is shown here:

client.connect('websockets', 'rabbitmq', connect_callback, error_callback. '/');

var connect_callback = function(x) {
 id = client.subscribe("/topic/echo", function(message) {

58 | Chapter 4: STOMP over WebSocket

 append_log(message.body);
 console.log(JSON.stringify(message.body));

 });
};

var error_callback = function(error) {
 console.log(error.headers.message);
};

In connect_callback you issue a subscribe command for the queue /topic/echo so
any messages that show up in that bin will be appended to your UI text area. The
implementation of error_callback simply outputs any error received to the console
for debugging as needed.

You now have a client that will echo messages dumped into the queue to a text area.
Next you will hook up the submission process to a new send_message function that
looks very close to the WebSocket version:

var send_message = function(data) {
 client.send("/topic/echo", {}, document.getElementById('message').value);
};

The major difference here is that rather than just sending through WebSocket, you
provide the queue (destination) and extra headers, of which you pass none in this
example.

Summary
In this chapter you created a subprotocol over WebSocket for STOMP 1.0. As the
server got built, the client evolved to support the commands needed along the wire to
support the protocol. In the end, while the client you built doesn’t fully support all of
STOMP 1.0, it allowed you to witness how easy it is to layer another protocol on top
of WebSocket and connect it to a message broker like RabbitMQ.

As you saw in Chapter 2, implementing STOMP over WebSocket is one of the “Regis‐
tered Protocols” (and also falls under an “Open Protocol”). Nothing is stopping you
from using the information in this chapter to create your own protocol for communi‐
cation, because the WebSocket spec fully supports this.

The next chapter explores the compatibility issues you face when choosing to
implement WebSocket, and how to ensure that you can start using the power of Web‐
Socket today.

Summary | 59

CHAPTER 5

WebSocket Compatibility

The technology behind WebSocket is to allow bidirectional communication between
client and server. A native WebSocket implementation minimizes server resource
usage and provides a consistent method of communicating between client and server.
As with the adoption of HTML5 in client browsers, the landscape of support is rele‐
gated to modern browsers. That means no support for any user with Internet
Explorer less than 10, and mobile browser support less than iOS Safari 6 and Chrome
for Android.

Here are just some of the versions with RFC 6455 WebSocket support:

• Internet Explorer 10
• Firefox 6
• Chrome 14
• Safari 6.0
• Opera 12.1
• iOS Safari 6.0
• Chrome for Android 27.0

This chapter outlines options for supporting older browsers that predate the Web‐
Socket RFC 6455 spec when you want to take advantage of bidirectional communica‐
tion in your application. The platforms you’ll look at solve compatibility issues with
older client browsers, and add a layer of organization for your messages.

61

http://bit.ly/ws-rfc6455
http://bit.ly/ws-rfc6455

SockJS
SockJS is a JavaScript library that provides a WebSocket-like object in the browser.
The library is compatible with many more browsers due to its conditional use of mul‐
tiple browser transports. It will use WebSocket if the option is available as a first
choice. If a native connection is not available, it can fall back to streaming, and finally
polling if that is also unavailable. This provides nearly full browser and restrictive
proxy support, as shown in Table 5-1.

Table 5-1. Supported transports

Browser WebSockets Streaming Polling

IE 6, 7 No No jsonp-polling

IE 8, 9 (cookies=no) No xdr-streaming xdr-polling

IE 8, 9 (cookies=yes) No iframe-htmlfile iframe-xhr-polling

IE 10 rfc6455 xhr-streaming xhr-polling

Chrome 6-13 hixie-76 xhr-streaming xhr-polling

Chrome 14+ hybi-10 / rfc6455 xhr-streaming xhr-polling

Firefox <10 No xhr-streaming xhr-polling

Firefox 10+ hybi-10 / rfc6455 xhr-streaming xhr-polling

Safari 5 hixie-76 xhr-streaming xhr-polling

Opera 10.70+ No iframe-eventsource iframe-xhr-polling

Konqueror No No jsonp-polling

To fully use the SockJS library, you need a server counterpart. The library has several
options for the server counterpart, with more being written all the time. Following is
a sampling of some of the server libraries available:

• SockJS-node
• SockJS-erlang
• SockJS-tornado
• SockJS-twisted
• SockJS-ruby

62 | Chapter 5: WebSocket Compatibility

• SockJS-netty
• SockJS-gevent (SockJS-gevent fork)
• SockJS-go

For our needs, we’re going to stick with an all-JavaScript solution.

SockJS Chat Server
You’re going to revisit your chat application and make changes to use the SockJS
libraries for server and client.

As mentioned, in order to fully use the SockJS client library on the browser, you
require a valid server component:

var express = require('express');
var http = require('http');
var sockjs = require('sockjs');
var uuid = require('uuid');

Your list of new libraries now includes SockJS, http from the standard Node.js
library, and Express.

Node.js has a fully developed package manager with npm. They are
usually installed together, and a simple call to npm install [pack
age] will pull down the latest revision. The install will create a
node_modules directory if it does not exist, and place the modules
inside. If you’d like to install the module globally, you can use the -
g flag. For more information, check out the docs.

These dependencies will not be available in Node.js by default, so run the following
commands to install them:

npm install sockjs
npm install express

Next, you’ll create a SockJS object and listen for the connection event. The events
used with SockJS-node are slightly different than similar ones from the WebSocket
clients:

• connection

• data (equivalent to message with WebSocket)
• close

• error

SockJS | 63

https://github.com/sockjs/sockjs-node
http://bit.ly/node-express
https://npmjs.org
https://www.npmjs.org/doc/

Express does something interesting with its library by exporting a function as the
interface to its module. This is used to create a new Express application and can be
written a couple of ways:

var app = express();

Or the much more terse:

var express = require('express')();

This creates an Express application and allows you to assign it to the variable right
away. Behind the scenes, there’s some JavaScript magic happening by assigning the
function to module.exports:

exports = module.exports = createApplication;

...

function createApplication() {
 ...
}

Now you can create your new SockJS server by initializing express, creating an
httpServer with the express application, and finally, creating a SockJS server that
listens for the connection event:

var app = express();
var httpServer = http.createServer(app);
var sockServer = sockjs.createServer();

sockServer.on('connection', function(conn) {
...
 conn.on('message', function(message) {
 if(message.indexOf('/nick') === 0) {
 var nickname_array = message.split(' ');
 if(nickname_array.length >= 2) {
 var old_nickname = nickname;
 nickname = nickname_array[1];
 var nickname_message = "Client " + old_nickname + " changed to "
 + nickname;
 wsSend("nick_update", client_uuid, nickname, nickname_message);
 }
 } else {
 wsSend("message", client_uuid, nickname, message);
 }
 });
...
}

The only change to the event handling from your previous code is listening for an
event called data instead of message. In addition, you make a slight adjustment to
your wsSend method to account for differences with the SockJS API:

64 | Chapter 5: WebSocket Compatibility

var CONNECTING = 0;
var OPEN = 1;
var CLOSING = 2;
var CLOSED = 3;

function wsSend(type, client_uuid, nickname, message) {
 for(var i=0; i<clients.length; i++) {
 var clientSocket = clients[i].connection;
 if(clientSocket.readyState === OPEN) {
 clientSocket.write(JSON.stringify({
 "type": type,
 "id": client_uuid,
 "nickname": nickname,
 "message": message
 }));
 }
 }
}

The WebSocket object you used previously had constants for the readyState prop‐
erty, but here you’ll define them in your client code (to avoid littering the code with
integers). The SockJS connection object has the same readyState property, and you
will check it against the OPEN constant, which has a value of 1. The other big change is
the method for sending data back to the client, which is .write(message) instead
of .send(message).

Now that you’ve converted everything from the WebSocket version to use the SockJS-
specific code, you’ll initialize a new app with Express and bind the prefix /chat to
your http.Server instance:

var app = express();
var httpServer = http.createServer(app);

sockServer.installHandlers(httpServer, {prefix:'/chat'});
httpServer.listen(8181, '0.0.0.0');

The HTTP server will listen on port 8181 and respond to requests listening on any IP
from the machine, as 0.0.0.0 denotes.

In the example from Chapter 3 you opened your HTML file without an HTTP server
present. With SockJS and the other alternatives in this chapter, you’ll opt for serving
the client and server from the same HTTP server. Here you set up your client.html
and style.css to be sent back upon a request to http://localhost:8181/client.html:

express.get('/client.html', function (req, res) {
 res.sendfile(__dirname + '/client.html');
});

express.get('/style.css', function (req, res) {
 res.sendfile(__dirname + '/style.css');
});

SockJS | 65

http://localhost:8181/client.html

You have now successfully converted the plain WebSocket server to one that uses the
SockJS library.

SockJS Chat Client
Let’s walk through how to convert the client to use the SockJS library. The first thing
you’ll need at the beginning of any other JavaScript will be to include the SockJS
library:

<script src="http://cdn.sockjs.org/sockjs-0.3.min.js"></script>

This library provides the SockJS object, which mimics the WebSocket library
included in most modern browsers. The initialization also changes because you are
not using the ws or wss protocol, but instead using http as the initial transport:

var sockjs = new SockJS("http://127.0.0.1:8181/chat");

For your WebSocket client code, you used the variable name ws. Here it seems more
appropriate to rename it to sockjs. Find all instances of using ws in the code from
Chapter 3, and replace them with sockjs. That is the extent of the changes required
for the client. SockJS delivers nicely on an easy migration from native WebSocket to
the SockJS library.

SockJS offers support for one or more streaming protocols for every major browser,
which all work cross-domain and support cookies. Polling transports will be used in
the event of older browsers and hosts with restrictive proxies as a viable fallback.

Next, you’ll take on changing your chat application to use the Socket.IO platform
instead.

Socket.IO
Using WebSocket directly is an easy decision when you can control the clients that are
using your system. With most organizations having to cater to a heterogeneous client
environment, another alternative is Socket.IO. The development behind Socket.IO
looks to make real-time apps possible regardless of browser.

The library is able to perform this feat by gracefully falling back to different technolo‐
gies that perform similar things. The transports used in the event that WebSocket is
not available in the client include the following:

• Adobe Flash Socket
• Ajax long polling
• Ajax multipart streaming
• Forever iframe

66 | Chapter 5: WebSocket Compatibility

http://socket.io/

• JSONP polling

Using the native WebSocket implementation would be akin to using TCP directly to
communicate. It’s certainly possible to do so, and perhaps in most cases the right
choice, but there’s no shame in using a framework to do some of the heavy lifting for
you. By default, Socket.IO will use a native WebSocket connection if browser inter‐
rogation deems it possible.

Adobe Flash Socket
One of the alternative transports provided by Socket.IO is Adobe Flash Socket. This
allows a WebSocket-like connection to be used over Adobe Flash in lieu of native
support. This has the benefit of a socket connection, with very few drawbacks. How‐
ever, one of the drawbacks is requiring another port to be open for the policy server.
By default, Socket.IO will check port 10843 and attempt to use that if available.

Connecting
Connecting to a Socket.IO server is first achieved by grabbing the client libraries. If
the client you’re using is JavaScript, the simplest method of getting this done is simply
referencing the Socket.IO server and including the socket.io.js file:

<script src="http://localhost:8181/socket.io/socket.io.js"></script>

The easiest path of serving the client library is from the Socket.IO server itself. If your
web server and Socket.IO are both being served by the same host and port, you can
omit the host and port from the call and reference it like any other file served from
the web server. To serve the Socket.IO client library on the same host and port, you’ll
have to either configure your web server to forward requests to the Socket.IO server,
or clone the socket.io-client repository and place the files whersever you’d like.

If you’d like to aggressively cache the Socket.IO client library, a further configuration
you can do is include the version number in the request like so:

<script src="/socket.io/socket.io.v1.0.js"></script>

As we discussed in Chapter 2, WebSocket uses four events, or “control frames.” With
Socket.IO, everything is a lot more open-ended in the events department. The follow‐
ing events are fired from the framework itself:

connection
The initial connection from a client that supplies a socket argument, which can
be used for future communication with the client.

message
The event that emits when the client invokes socket.send.

Socket.IO | 67

https://github.com/LearnBoost/socket.io-client

disconnect
The event that is fired whenever the client-server connection is closed.

anything
Any event except for the reserved ones listed. The data argument is the data sent,
and callback is used to send a reply.

First things first. After you include the JavaScript client library, you need to open a
connection to the server:

var socket = io.connect('http://localhost:8181');

Now that you have a Socket.IO connection, you can start listening for specific events
that will be emitted from the server. Your client application can listen for any named
event coming from the endpoint, and can also emit its own events to be listened to
and reacted to from the server-side.

Socket.IO Chat Server
Let’s again revisit the chat example. Copy your code from SockJS mostly verbatim,
and do initialization similar to the previous library:

var socketio = require('socket.io');

...

var app = express();
var httpServer = http.createServer(app);
var io = socketio.listen(server);

Because Socket.IO uses open-ended naming for events, there is no need to shoehorn
different incoming events within the same message construct. Therefore, with your
Socket.IO code you split up messages and the nickname requests into separate events:

conn.on('message', function(data) {
 wsSend("message", client_uuid, nickname, message);
});

...

conn.on('nickname', function(nick) {
 var old_nickname = nickname;
 nickname = nick.nickname;
 var nickname_message = "Client " + old_nickname + " changed to " + nickname;
 wsSend('nickname', client_uuid, nickname, nickname_message);
})

68 | Chapter 5: WebSocket Compatibility

You’ve pushed the code for parsing a nickname request to the client, and can also lis‐
ten for a separate event sent from the server for nickname-specific messages and logi‐
cally process them differently if you choose.

Socket.IO Chat Client
When the client wants to communicate with the server, it performs the same API
function, and emits a named event that the server can listen for. Due to the nature of
serving the Socket.IO HTML on the same HTTP server, you are able to reference
Socket.IO from the same domain without specifying:

<script src="/socket.io/socket.io.js"></script>

With SockJS, it closely maps the native WebSocket spec. With Socket.IO, the only
similarity is listening for events and sending events back to the server. A number of
events are fired from the Socket.IO framework, which should help keep you connec‐
ted and knowledgeable about the connection and status:

connect
Emitted when the connection with the server is successful

connecting
Emitted when the connection is being attempted with the server

disconnect
Emitted when the connection has been disconnected with the server

connect_failed
Emitted when Socket.IO has failed to establish a connection with any and all
transport mechanisms to fallback

error
Emitted when an error occurs that isn’t handled by other event types

message
Emitted when a message is received via a socket.send and callback is an
optional acknowledgment function

reconnect_failed
Emitted when Socket.IO fails to reestablish a working connection after the con‐
nection drops

reconnect
Emitted when Socket.IO successfully reconnects to the server.

reconnecting
Emitted when Socket.IO is attempting to reconnect with the server

Socket.IO | 69

anything
Any event except for the reserved ones listed. Data argument is the data sent, and
callback is used to send a reply

Also, as we discussed earlier, the socket.io-client is available if you’d like to serve
the library without using the regular mechanism.

In your new client code base, the size grows a bit to handle pushing the nickname
command parsing to the frontend, and emitting your new event nickname:

function sendMessage() {
 var messageField = document.getElementById('message');
 var message = messageField.value;
 if(message.indexOf('/nick') === 0) {
 var nickname_array = message.split(' ');
 if(nickname_array.length >= 2) {
 socket.emit('nickname', {
 nickname: nickname_array[1]
 });
 }
 } else {
 socket.send(messageField.value);
 }
 messageField.value = '';
 messageField.focus();
}

As you can see, you’ve moved the code originally in the server over to the client end,
and are using the socket.emit(channel, data) call from Socket.IO to send your
nickname change on to the server.

Everything else on the client is pretty much the same. You use Socket.IO’s method
on(channel, data) to listen for specific events (reserved or otherwise), and process
them as usual.

Now that you’ve written your first Socket.IO project, you can look through the docu‐
mentation and review the extra features it provides on top of WebSocket and what
we’ve discussed.

Let’s move on to one more project, which is of a commercial nature and in the same
camp as Socket.IO in terms of the added features and value it provides on top of the
native WebSocket implementation.

Pusher.com
The final option you will look at is a layer that sits on top of WebSocket and offers the
fallbacks you’ve seen in other solutions. The team behind Pusher has built out an
impressive list of features to use with your application should you choose to use their
service. In the same way as the other two solutions, Pusher has implemented a layer

70 | Chapter 5: WebSocket Compatibility

https://github.com/LearnBoost/socket.io-client
http://socket.io
http://socket.io

on top of WebSocket via its API along with a method of testing for acceptable fallback
methods should the others fail.

The API is able to perform the fallbacks very similarly to Socket.IO by testing for
WebSocket support, and in the event that fails, using the popular web-socket.js client,
which substitutes a Flash object for in-browser WebSocket support. If Flash is not
installed, or firewalls or proxies prevent a successful connection, the final fallback
uses HTTP-based transports.

Similar to events that are on top of Socket.IO’s transport, the Pusher API has a few
more tricks up its sleeve. It features channels as a public and private type, which
allows you to filter and control communication to the server. A special type of chan‐
nel is also available for presence, where the client can register member data to show
online status.

The major difference here is that you’re including a third party in your communica‐
tion between server and client. Your server will receive communication from client
code most likely using a simple Ajax call from HTML, and based on that will in turn
use the Pusher.com REST API to trigger events. The client will be connected to
Pusher.com hopefully over WebSocket if it’s available within the browser, or one of
the fallback methods, and receive events triggered against the app. Only with several
constraints met can a client trigger events and pass them over the network without
going through its own server API first.

Let’s go over some of the particular aspects of the Pusher.com API, because they are
quite extensive.

Channels
Using native WebSocket is a perfect way to achieve bidirectional communication with
the understanding that the clients must support the WebSocket protocol, that you can
overcome any proxy issues, and that you’ll build out any infrastructure code neces‐
sary to make life easier on the backend. You’ll get a data stream from the text or
binary message frame, and it’s up to you to parse, make sense of it, and pass it on to
whatever handler you’ve set up in your code.

The Pusher API provides a fair bit of this for you. Channels are a common program‐
ming construct and used with this API for filtering data and controlling access. A
channel comes into existence simply by having a client subscribe to it, and binding
events to it.

Pusher has libraries for a lot of the major frameworks and languages that are popular
today. We focus, as always, on JavaScript. Here you’ll see how to subscribe to a chan‐
nel called channelName. Once you have your channel variable, you can use that to
send and receive events.

Pusher.com | 71

https://github.com/gimite/web-socket-js

With most of the channel operations, you can bind to an event that will notify you of
the subscription success or failure—pusher:subscription_succeeded:

var channel = pusher.subscribe(channelName);

In this way, you’ve created a public named channel that any client connecting to the
server can subscribe to or unsubscribe from. And unsubscribing is also as simple as
they could make it. Just provide the channelName, and the API will unsubscribe you
from listening on that channel:

pusher.unsubscribe(channelName);

The API also provides for private channel subscription. Permission must be author‐
ized via an HTTP requested authentication URL. All private channels are prefixed
with private as a naming convention, as shown in the following code sample. The
authentication can happen via Ajax or JSONP:

var privateChannelName = "private-mySensitiveChannelName";
var privateChannel = pusher.subscribe(privateChannelName);

One of the most needed features when using bidirectional communication is state
management for member presence. Pusher provides for this with specialized calls for
user presence along with events to listen for to ensure completeness.

The following events are ones you can listen for to ensure that expectations were met:

pusher:subscription_succeeded

Common in all channel calls. Binding to this event lets you ensure that a sub‐
scription has succeeded.

pusher:subscription_error

Bind to this event to be notified when a subscription has failed.

pusher:member_added

This event gets triggered when a user joins a channel. This event fires only once
per unique user, even if a user has joined multiple presence channels.

pusher:member_removed

This event gets triggered when a user leaves a channel. Because a user can join
multiple channels, this event fires only when the last channel is closed.

Events
Events in Pusher are the way that messages get passed back and forth from the server
and the client. A channel, whether public or private, can hold events that pass this
data down to the client. If you’re looking to filter messages in different buckets, events
are not the way, but channels are. Events in Pusher are aptly named in the past tense
because they are notifications of things that happened on the system.

72 | Chapter 5: WebSocket Compatibility

If you have a channel called chat, you would want to be aware when new messages
were occurring so you could paint that in the GUI:

var pusher = new Pusher('APP_KEY');
var channel = pusher.subscribe('chat-websocket');
channel.bind('new-message', function(data) {
 // add any new messages to our collection
 }
);

Binding via a channel is not required. Just as easily as you bound to a channel firing
events, you can do so using the root pusher variable:

var pusher = new Pusher('APP_KEY');
pusher.bind(eventName, function(data) {
 // process eventName's data
});

Obviously, the API for Pusher and usage patterns you can have are quite vast. The
Pusher API is well designed and able to process an insane number of messages per
day and number of simultaneous connections. In the next section you’ll perform the
same exercise you did previously with Socket.IO and build out a small chat applica‐
tion using the Pusher API.

Pusher Chat Server
You’ve written a simple chat application using Socket.IO and SocksJS, and now it’s
time to take the knowledge you’ve gained from Pusher.com’s API and way of doing
things and rewrite the chat. The major difference is that sending your chat messages
from the client will be done via an API you’ve cooked up on your server. All triggered
events to Pusher.com happen via your server, and bound events on channels are
passed from Pusher.com to the client using WebSocket or the fallback.

Let’s first outline your server, including a shell of the API calls and the dependencies
you’ll need. First things first, you need to install your node dependencies using npm:

$ npm install node-uuid
$ npm install pusher
$ npm install express
$ npm install body-parser

You’ve installed and used node-uuid in several other server examples. This section is
obviously about the Pusher.com API, so you’re going to install its Node.js library. In
order to listen for and parse the body of messages as JSON, you’re using express and
body-parser.

Here’s a shell of what your server looks like:

var express = require('express');
var http = require('http');

Pusher.com | 73

var Pusher = require('pusher');
var uuid = require('node-uuid');
var bodyParser = require('body-parser');

var app = express();
app.use(bodyParser.json());

var httpServer = http.createServer(app);

var pusher = new Pusher({
 appId: 'YOUR-APP-ID',
 key: 'YOUR-APP-KEY',
 secret: 'YOUR-APP-SECRET'
});

var clients = {};
var clientIndex = 1;

function sendMessage(type, client_uuid, nickname, message) {
}

app.post("/nickname", function(req, res) {
});

app.post("/login", function(req, res) {
});

app.post("/chat", function(req, res) {
});

app.listen(8181);

app.get('/client.html', function (req, res) {
 res.sendfile(__dirname + '/client.html');
});

As you can see, you’ve required and included your dependencies, spun up express
with the body-parser, and gotten it to listen on port 8181 and serve your client tem‐
plate. Your API consists of the calls listed in Table 5-2.

Table 5-2. API calls

HTTP method Endpoint Description

POST /nickname Update the client nickname and notify all connected clients

POST /login Initial connection that assigns an anonymous nickname and a unique client ID

POST /chat Messages for the chat are passed along with the nickname and client ID

74 | Chapter 5: WebSocket Compatibility

The sendMessage call isn’t part of the API, but a convenience function used by several
of the examples. It triggers an event of type on the channel chat, which you’ve bound
when starting the server. The JSON you’re passing back for all messages includes the
client id, nickname if applicable, and message:

function sendMessage(type, client_uuid, nickname, message) {
 pusher.trigger('chat', type, {
 "id": client_uuid,
 "nickname": nickname,
 "message": message
 });
}

The first API call expected to be made by a client is to login. The client will receive a
unique identifier in the form of a uuid and a unique indexed nickname:

app.post("/login", function(req, res) {
 var client_uuid = uuid.v4();
 var nickname = "AnonymousUser" + clientIndex;
 clientIndex+=1;

 clients[client_uuid] = {
 'id': client_uuid,
 'nickname': nickname
 };

 res.status(200).send(
 JSON.stringify(clients[client_uuid])
);
});

Your clients are likely to want their own nicknames represented in the chat applica‐
tion. A call to /nickname will make the requested change and trigger an event nick
name to allow clients to show the change on the frontend:

app.post("/nickname", function(req, res) {
 var old_nick = clients[req.body.id].nickname;

 var nickname = req.body.nickname;
 clients[req.body.id].nickname = nickname;

 sendMessage('nickname',
 req.body.id,
 nickname,
 old_nick + " changed nickname to " + nickname);

 res.status(200).send('');
});

Pusher.com | 75

The simplest of them all is the chat message. You accept the client id, grab the nick
name from your existing array, and use the message passed in the JSON and trigger a
message event up to the chat Pusher.com channel:

app.post("/chat", function(req, res) {
 sendMessage('message',
 req.body.id,
 clients[req.body.id].nickname,
 req.body.message);

 res.status(200).send('');
});

Pusher Chat Client
Your server is now awaiting a client to connect. You’ll be using the same HTML tem‐
plate as in previous chapters, and using the chat HTML from Chapter 3 to make life
simpler. Let’s outline what’s necessary to get your client synced up with Pusher.com.

First, you need to include the Pusher.com library in your HTML code:

<script src="http://js.pusher.com/2.1/pusher.min.js"></script>

Within your JavaScript code, you initialize your Pusher object with the app key given
in the Pusher dashboard, and immediately subscribe to the chat channel:

var pusher = new Pusher('YOUR-APP-KEY');
var channel = pusher.subscribe('chat');
var id;

pusher.connection.bind('connected', function() {
 $.ajax({
 url: 'http://localhost:8181/login',
 type: 'POST',
 dataType: 'json',
 contentType: "application/json",
 complete: function(xhr, status) {
 if(xhr.status === 200) {
 console.log("login successful.");
 }
 },
 success: function(result) {
 appendLog('*', result.nickname + " connected");
 id = result.id;
 }
 })
});

pusher.connection.bind('disconnected', function() {
 appendLog('*', 'Connection closed');
});

76 | Chapter 5: WebSocket Compatibility

function disconnect() {
 pusher.disconnect();
}

channel.bind('message', function(data) {
 appendLog(data.nickname, data.message);
});

channel.bind('nickname', function(data) {
 appendLog('*', data.message);
});

The Pusher connection object will emit several events, and you’re concerned only
with connected and disconnected. After subscribing to the chat channel, you bind
to two specific events on that channel: message and nickname. For each of these,
you’ll show notification messages on the client frontend. When you bind to and
receive the connected event, you send your login request to the server API and
receive back your client id to be passed in subsequent messages. Figure 5-1 is an
example of the chat application using Pusher.com.

Figure 5-1. Pusher chat example

You’ve seen a concrete example of using the basics of the API available to you. The
intention is to show what is possible with alternatives to WebSocket, and Pusher is
definitely worthy of consideration as an alternative to pure WebSocket.

Pusher.com | 77

Don’t Forget: Pusher Is a Commercial Solution
Unlike WebSocket, Socket.IO, and SocksJS, this framework is a commercial service.
Evaluation of the solution and the benefits it provides have to be made by your team.
In general, the different pricing tiers are based on connections, messages, and
whether or not the connection is protected via SSL encryption. For further evalua‐
tion, review Pusher’s pricing page.

Reverse Proxy
One of the things you’ll likely also be asked to do is proxy the WebSocket connection
behind a web server. The two most common web servers are nginx and Apache. The
setup for these is rather simple, with nginx having the functionality built into the
server itself, and Apache using a module called proxy_wstunnel. Rather than go into
a ton of detail on how to configure both of these servers to proxy the connections,
here are two blog articles that discuss them:

• nginx
• apache

Summary
This chapter presented three popular ways to harness the power of bidirectional com‐
munication while dealing with a higher-level API. These solutions give you the power
of WebSocket in the event that your client is using a modern client browser, and fall
back to Flash socket or other less-optimized solutions for older clients. In addition,
the two latter frameworks add features that are not natively supported by WebSocket,
limiting the amount of code you’ll have to write to support your applications’ com‐
munication. The next chapter looks at the methods of securing your WebSocket com‐
munication.

78 | Chapter 5: WebSocket Compatibility

http://pusher.com/pricing
http://nginx.org
http://apache.org
http://bit.ly/nginx-websocket
http://bit.ly/apache-websocket

CHAPTER 6

WebSocket Security

This chapter details the WebSocket security apparatus and the various ways you can
use it to secure the data being passed over the underlying protocol. You’ll learn why it
is always a good idea to communicate over TLS (Transport Layer Security) to avoid
ineffective proxies and man-in-the-middle attacks, and ensure frame delivery. Dis‐
cussion focuses on setup of the WebSocket connection over TLS with wss:// (Web‐
Socket Secure), origin-based security, frame masking, and specific limits imposed by
browsers to ensure messages don’t get hijacked.

As with any discussion about security, the content of this chapter presents today’s
best-known data about properly securing your WebSocket communication. Security
is fickle, though, and the cat-and-mouse game played with those who seek to exploit
and those who work to block is constant and unending. Data validation and multiple
checks are even more important while using WebSocket. You’ll begin by setting up
WebSocket over TLS.

TLS and WebSocket
All of the demos so far have used the unencrypted version of WebSocket communica‐
tion with the ws:// connection string. In practice, this should happen only in the
simplest hierarchies, and all communication via WebSocket should happen over TLS.

Generating a Self-Signed Certificate
A valid TLS-based connection over WebSocket can’t be done without a valid certifi‐
cate. What I’ll go over fairly quickly here is a way to generate a self-signed certificate
using OpenSSL. The first thing you’ll need to do is ensure that if you don’t already
have OpenSSL installed, you follow the set of instructions presented next that is spe‐
cific to your platform.

79

https://www.openssl.org/

Installing on Windows
This section covers only downloading and installing the precompiled binary available
on Windows. As we discussed in Chapter 1, for the masochistic among us, you can
download the source and compile it yourself.

For the rest of us, download the standalone Windows executable. You should be able
to run OpenSSL after this via the examples following the instructions on OS X and
Linux installs.

Installing on OS X
The easiest method of installing OpenSSL on OS X is via a package manager like
Homebrew. This allows for quick and easy updating without having to redownload a
package from the Web. Assuming you have Homebrew installed:

brew install openssl

Installing on Linux
There are so many flavors of Linux that it would be impossible to illustrate how to
install on all of them. I will reiterate how to install it via apt on Ubuntu. If you’re run‐
ning another distro, you can read through the Compilation and Installation instruc‐
tions from OpenSSL.

Using apt for installation requires a few simple steps:

sudo apt-get update
sudo apt-get install openssl

Setting up WebSocket over TLS
Now that you have OpenSSL installed, you can use it for the purposes of generating a
certificate to be used for testing, or to submit to a certificate authority.

A certificate authority (CA) issues digital certificates in a public key
infrastructure (PKI). The CA is a trusted entity that certifies the
ownership of a public key as the named subject of the certificate.
The certificate can be used to validate that ownership, and encrypt
all information going over the wire.

Here’s what you’re going to do in the following block of code:

• Generate a 2048-bit key with a passphrase
• Rewrite that key removing the passphrase
• Create a certificate signing request (CSR) from that key

80 | Chapter 6: WebSocket Security

http://openssl.org/source/
http://bit.ly/openssl-win
http://bit.ly/homebrew-osx
http://www.ubuntu.com
http://bit.ly/openssl-linux
https://www.openssl.org/

• Generate a self-signed certificate from the key and CSR

The first thing to do is generate a 2048-bit key. Do this by using the openssl com‐
mand to generate the RSA key pair:

% openssl genrsa -des3 -passout pass:x -out server.pass.key 2048

Generating RSA private key, 2048 bit long modulus
...
+++........+++
e is 65537 (0x10001)

Next, you generate a private key sans passphrase for eventual creation of a CSR,
which can be used for a self-signed certificate, or to receive a certificate authorized by
a certificate authority. After generating the key, you can remove the key with the pass‐
phrase as well:

% openssl rsa -passin pass:x -in server.pass.key -out server.key
writing RSA key
% rm server.pass.key

Now that you have your private key, you can use that to create a CSR that will be used
to generate the self-signed certificate for sending secure WebSocket communication:

% openssl req -new -key server.key -out server.csr
 -subj '/C=US/ST=California/L=Los Angeles/O=Mystic Coders, LLC/
 OU=Information Technology/CN=ws.mysticcoders.com/
 emailAddress=fakeemail AT gmail DOT com/
 subjectAltName=DNS.1=endpoint.com' > server.csr

If you’re looking to get set up with a proper server certificate, the CSR file is all you
need. You will receive a certificate file from the Certificate Authority, which you can
then use. While you wait, though, let’s get the self-signed certificate for testing and
replace it later.

Use the following code to generate your certificate for use in the server code:

% openssl x509 -req -days 365 -in server.csr -signkey server.key -out server.crt
Signature ok
subject=/C=US/ST=California/L=Los Angeles/...
Getting Private key

In the directory you’ve chosen to run everything in, you should now have three files:

• server.key
• server.csr
• server.crt

If you decide to send things to a Certificate Authority for a validated certificate, you’ll
send the server.csr file along with the setup procedure to receive a key. Because you’re

TLS and WebSocket | 81

just going to use a self-signed certificate here for testing purposes, you’ll continue
with your generated certificate server.crt. Decide where you’ll keep the private key
and certificate files (in this instance you’ll place them in /etc/ssl/certs).

WebSocket Server over TLS Example
In the following code you’ll see an example of using the https module to allow the
bidirectional WebSocket communication to happen over TLS and listen on port 8080:

var fs = require('fs');

// you'll probably load configuration from config
var cfg = {
 ssl: true,
 port: 8080,
 ssl_key: '/etc/ssl/certs/server.key',
 ssl_cert: '/etc/ssl/certs/server.crt'
};

var httpsServ = require('https');
var WebSocket = require('ws');
var WebSocketServer = WebSocket.Server;

var app = null;

// dummy request processing
var processRequest = function(req, res) {
 res.writeHead(200);
 res.end("Hi!\n");
};

app = httpsServ.createServer({
 key: fs.readFileSync(cfg.ssl_key),
 cert: fs.readFileSync(cfg.ssl_cert)

}, processRequest).listen(cfg.port);

var wss = new WebSocketServer({ server: app });

wss.on('connection', function (wsConnect) {

 wsConnect.on('message', function (message) {
 console.log(message);
 });

});

82 | Chapter 6: WebSocket Security

Changing client code to use a WebSocket connection over TLS is trivial:

var ws = new WebSocket("wss://localhost:8080");

When making this connection, the web page being used to load it must also connect
over TLS. In fact, if you attempt to load an insecure WebSocket connection from a
website using the https protocol, it will throw a security error in most modern
browsers for attempting to load insecure content. Mixed content is a common attack
vector and is rightfully discouraged from being allowed. In most modern browsers,
the use of mixed content is not only actively discouraged, it is forbidden. Chrome,
Firefox, and Internet Explorer all throw security errors and will refuse to communi‐
cate over anything other than WebSocket Secure in the event the page being loaded is
also served over TLS. Safari, unfortunately, does not do the proper thing. Figure 6-1 is
an example from Chrome showing the errors in console upon attempting to connect
to an insecure WebSocket server.

Figure 6-1. Mixed content security error with Chrome

Qualys Labs has a nice chart identifying the browsers that handle mixed content
properly, and those that do not.

Now that your connection is encrypted, we’ll dive into other methods of securing the
communications channel in the next section.

Origin-Based Security Model
There has always been a race between those who seek to exploit vulnerabilities in a
transport mechanism and those who seek to protect it. The WebSocket protocol is no
exception. When XMLHttpRequest (XHR) first appeared with Internet Explorer, it was
limited to the same-origin policy (SOP) for all requests to the server. There are innu‐
merable ways that this can be exploited, but it worked well enough. As the use of
XHR evolved, though, allowing access to other domains became necessary. Cross
Origin Resource Sharing (CORS) was the result of this effort; if used properly, CORS
can minimize cross-site scripting attacks while still allowing flexibility.

CORS, or Cross-Origin Resource Sharing, is a method of access
control employed by the browser, usually for Ajax requests from a
domain outside the originating domain. For further information
about CORS, see the Mozilla docs.

Origin-Based Security Model | 83

http://bit.ly/qualys-mixed
http://bit.ly/mdn-cors

WebSocket doesn’t place any same-origin policy restriction on accessing WebSocket
servers. It also doesn’t employ CORS. What you’re left with in regards to Origin vali‐
dation is server-side verification. All of the previous examples used the simple and
fast ws library with Node.js. You’ll continue to do so and see in the initialization how
simple it is to employ an origin check to ensure connection from the browser is only
the expected Origin:

var WebSocketServer = require('ws').Server,
 wss = new WebSocketServer({
 port: 8181,
 origin: 'http://mydomain.com',
 verifyClient: function(info, callback) {
 if(info.origin === 'http://mydomain.com') {
 callback(true);
 return;
 }
 callback(false);
 }
 }),

If you write a verifyClient function for the library you’re using, you can send a call‐
back with either true or false indicating a successful validation of any information,
including the Origin header. Upon success, you will see a valid upgraded HTTP
exchange for the Origin http://mydomain.com.

The HTTP exchange that happens as a result is as follows:

GET ws://mydomain.com/ HTTP/1.1
Origin: http://mydomain.com
Host: http://mydomain.com
Sec-WebSocket-Key: zy6Dy9mSAIM7GJZNf9rI1A==
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Version: 13

HTTP/1.1 101 Switching Protocols
Connection: Upgrade
Sec-WebSocket-Accept: EDJa7WCAQQzMCYNJM42Syuo9SqQ=
Upgrade: websocket

If the Origin header doesn’t match up, the ws library will send back a 401 Unauthor‐
ized header. The connection will never complete the handshake, and no data can be
sent back and forth. If this happens, you’ll receive a response similar to the following:

HTTP/1.1 401 Unauthorized
Content-type: text/html

It should also be noted that verifying the Origin header does not constitute a secure
and authorized connection by a valid client. You could just as easily pass the proper
Origin header from a script run outside the browser. The Origin header can be spoo‐

84 | Chapter 6: WebSocket Security

https://github.com/einaros/ws
http://mydomain.com

fed with close to no effort at all outside the browser. Therefore, additional strategies
must be employed to ensure your connection is authorized.

The major benefit of requiring the Origin header is to combat WebSocket-like Cross-
Site Request Forgery (CSRF) attacks, also called Cross-Site WebSocket Hijacking
(CSWSH), from being possible as the Origin header is passed by the user agent, and
cannot be modified by JavaScript code. Implicit trust, therefore, goes to the client
browser in this instance, and the restrictions it places on web-based code.

Clickjacking
One other area of concern with WebSocket and the Web at large is termed clickjack‐
ing. The process involves framing the client-requested website and executing code in
the hidden frame without the user’s awareness.

To combat this, web developers have devised methods called framebusting to ensure
that the website their users are visiting is not being framed in any way.

A simple and naive way to bust out of a frame is as follows:

if (top.location != location) {
 top.location = self.location;
}

This tends to fail, however, due to inconsistencies in how browsers have handled
these properties with JavaScript in the past. Other problems that creep up are availa‐
bility of JavaScript on the system, or possibly in the iframe, which can be restricted in
certain browsers.

The most thorough JavaScript-based framebusting technique available, which comes
from a study by the Stanford Web Security Research on framebusting, is outlined in
the following snippet:

<style>
body { display: none; }
</style>

<script>
if(self===top) {
 documents.getElementsByTagName("body")[0].style.display = 'block';
} else {
 top.location = self.location;
}
</script>

Of all the JavaScript-based solutions, this allows you to stop the user from viewing
your page if it is being framed. The page will also remain blank if JavaScript is turned
off or any other way of exploiting the framebusting code is attempted. Because Web‐
Socket is JavaScript based, busting any frames will remove any ability for an attacker

Origin-Based Security Model | 85

http://bit.ly/cswsh-vulnerability
http://bit.ly/cswsh-vulnerability
http://bit.ly/clickjack-wiki
http://bit.ly/clickjack-wiki
http://bit.ly/framebuster-wiki
http://bit.ly/stanford-framebusting

to hijack the browser and execute code without the users’ knowledge. Next you’ll look
at a header-based approach that can be used in conjunction with the preceding script,
and a proof of concept called Waldo, which takes advantage of this attack vector.
Using the techniques mentioned here will render the Waldo code moot.

X-Frame-Options for Framebusting
The safest method of getting around clickjacking was introduced by Microsoft with
Internet Explorer 8 and involves an HTTP header option called X-Frame-Options.
The solution caught on and has become popular among all major browsers including
Safari, Firefox, Chrome, and Opera, and has been officially standardized as RFC
7034. It remains the most effective way of busting out of frames. Table 6-1 shows the
acceptable values that can be passed by the server to ensure that only acceptable poli‐
cies are being used for framing the website.

Table 6-1. X-Frame-Options acceptable values

Header value Description of behavior

DENY Prevents framing code at all

SAMEORIGIN Prevents framing by external sites

ALLOW-FROM origin Allows framing only by the specified site

Why does all this matter in regards to WebSocket communication? A proof of con‐
cept called Waldo shows how simple it can be for a compromised bit of JavaScript to
control and report data back to a WebSocket server. These are a few of the things
Waldo is able to achieve:

• Send back cookies or DOM
• Install and retrieve results of keylogger
• Execute custom JavaScript
• Use in a denial-of-service attack

Modern browsers all support WebSocket, and the only real defense against this attack
vector is anti-framing countermeasures such as X-Frame-Options and, to a lesser
extent, the other JavaScript-based frame-buster code reviewed previously.

If you’d like to test Waldo, you can find installation instructions on the website. Please
be aware that versions of supporting libraries that Waldo uses have advanced.

Here are the supported versions for compiling Waldo:

86 | Chapter 6: WebSocket Security

http://bit.ly/rfc-7034
http://bit.ly/rfc-7034
http://bit.ly/waldo-websockets

• websocketpp WebSocket library (version 0.2.x)
• Boost with version 1.47.0 (can use package manager)

After installing websocketpp and downloading waldo.zip, modify the common.mk file
with correct paths for boost and websocketpp and build. Create a simple HTML page
that includes the compromised JavaScript in a hidden frame and load the regular
website in another frame. Ensure you have the Waldo C++ app running, and control
at will. Waldo is completely relevant, as it was released based on RFC 6455 and still
works fine on the latest browsers.

For more in-depth tools that allow you to use the browser as an attack vector, includ‐
ing using WebSocket to perform these tests, check out BeEF, which comes with a
RESTful and GUI interface, and XSSChef, which installs as a compromised Google
Chrome extension.

Denial of Service
WebSocket by its very nature opens connections and keeps them open. An attack vec‐
tor that has been commonly used with HTTP-based web servers is to open hundreds
of connections and keep them open indefinitely by slowly trickling valid data back to
the web server to keep a timeout from occurring and exhausting the available threads
used on the server. The term given to the attack is Slowloris, and while more asyn‐
chronous servers such as nginx can mitigate the effect, it is not always completely
effective. Some best practices to look at to lessen this attack include the following:

• Add IP-based limitation to ensure that connections coming from a single source
are not overwhelming the number of available connections.

• Ensure that any actions being requested by a user are spawned asynchronously
on the server end to lessen the impact of connected clients.

Frame Masking
The WebSocket protocol (RFC 6455), discussed in a lot more detail in Chapter 8,
defines a 32-bit masking key that is set using the MASK bit in the WebSocket frame.
The mask is a random key chosen by the client, and it is a best practice that all clients
set the MASK bit along with passing the obligatory masking key. Each frame must
include a random masking key from the client side to be considered valid. The mask‐
ing key is then used to XOR the payload data before sending to the server, and the
payload data length will be unchanged.

You may be saying to yourself, “That’s great, but why should I care about this when
we’re talking about security?” Two words: cache poisoning. The reality of an app in

Denial of Service | 87

http://bit.ly/websocketpp
http://www.boost.org/
http://bit.ly/waldo-source-code
http://beefproject.com/
http://bit.ly/xsschef
http://bit.ly/slowloris-wiki
http://nginx.org

the wild is that you cannot control misbehaving proxy servers, and the relative new‐
ness of WebSocket unfortunately means that it can be an attack vector for the mali‐
cious.

A paper in 2011 titled “Talking to Yourself for Fun and Profit” outlined multiple
methods for fooling a proxy into serving up the attacker’s JavaScript file. Masking in
effect introduces a bit of variability that is injected into every client message, which
cannot be exploited by an attacker’s malicious JavaScript code. Data masking ensures
that cache poisoning is less likely to happen due to variability in the data packets.

The downside of masking is that it also prevents security tools from identifying pat‐
terns in the traffic. Unfortunately, because WebSocket is still a rather new protocol, a
good number of proxies, firewalls, and network and endpoint DLP (data loss preven‐
tion) software are unable to properly inspect the packets being sent across the wire.
In addition, because many tools don’t know how to properly inspect WebSocket
frames, dData can be hidden in reserved flags, buffer overflows or underflows are
possible, and malicious JavaScript code can be hidden in the mask frame as well.

Trust no one.

Validating Clients
There are many ways to validate clients attempting to connect to your WebSocket
server. Due to restrictions on the browser for connection over WebSocket, there is no
ability to pass any custom HTTP headers during the handshake. Therefore, the two
most common methods of implementing auth are using the Basic header and using
form-based auth with a set cookie. This example employs the latter method and uses
a simple username/password form, setting and reading the cookie in your WebSocket
server.

Setting Up Dependencies and Inits
Because the solution uses shared keys via a cookie, you’ll need to get some dependen‐
cies in place. The libraries you’ll use are all listed here with the npm commands:

% npm install ws
% npm install express
% npm install body-parser
% npm install cookie

You likely have the ws library installed in your environment from previous examples.
You will be using express and plug-ins for parsing form and cookie data: body-
parser and cookie. The remaining dependency is fs, which you’ll use to read your
TLS certificate files.

Back to your server code—the first thing to do is set up your imports with require:

88 | Chapter 6: WebSocket Security

http://bit.ly/cmu-talking

var fs = require('fs');
var https = require('https');
var cookie = require('cookie');
var bodyParser = require('body-parser');
var express = require('express');
var WebSocket = require('ws');

Now that you have all the necessary dependencies in place, set up the self-signed cer‐
tificate and initialize express and the HTTPS server backing it. You can use the same
self-signed cert that you set up earlier in this chapter:

var WebSocketServer = WebSocket.Server;

var credentials = {
 key: fs.readFileSync('server.key', 'utf8'),
 cert: fs.readFileSync('server.crt', 'utf8')};

var app = express();

app.use(bodyParser.json()); // for parsing application/json
app.use(bodyParser.urlencoded({ extended: true }));

var httpsServer = https.createServer(credentials, app);
httpsServer.listen(8443);

Listening for Web Requests
In order for your form-based auth to work, you will be serving up a login page and a
secured page, which will require that a cookie named credentials is found and has
the proper key within. For brevity, you will use the username/password combination
of test/test and use a predefined key that never changes. In your own code, how‐
ever, this data should be saved to a data source of your choosing that can also be
retrieved by the WebSocket server. Stub methods will be used to show where you
would insert the retrieval and storage code in whatever data source you decide to use
in your own application.

Following is the HTML for the login example, which you’ll serve from your express
server. Save this in your project directory and name it login.html:

<html>
<head>
<title>Login</title>
</head>
<body>
 <h1>Login</h1>
 <form method="POST" action="/login" name="login">
 Username: <input type="text" name="username" />
 Password: <input type="password" name="password" />
 <input type="submit" value="Login" />
 </form>

Validating Clients | 89

</body>
</html>

You will listen for GET and POST requests at the URL /login, and a GET request
for /secured, which does a check on the cookie to ensure existence and redirects if
not found:

app.get('/login', function (req, res) {
 fs.readFile('./login.html', function(err, html) {
 if(err) {
 throw err;
 }
 res.writeHeader(200, {"Content-Type": "text/html"});
 res.write(html);
 res.end();
 });
});

app.post("/login", function(req, res) {
 if(req.body !== 'undefined') {
 key = validateLogin(req.body['username'], req.body['password']);
 if(key) {
 res.cookie('credentials', key);
 res.redirect('/secured');
 return;
 }
 }
 res.sendStatus(401);
});

var validateLogin = function(username, password) {
 if(username == 'test' && password == 'test') {
 return '591a86e4-5d9d-4bc6-8b3e-6447cd671190';
 } else {
 return null;
 }
}

app.get('/secured', function(req, res) {
 cookies = cookie.parse(req.headers['cookie']);
 if(!cookies.hasOwnProperty('credentials')
 && cookies['credentials'] !== '591a86e4-5d9d-4bc6-8b3e-6447cd671190') {
 res.redirect('/login');
 } else {
 fs.readFile('./secured.html', function(err, html) {
 if(err) {
 throw err;
 }
 res.writeHeader(200, {"Content-Type": "text/html"});
 res.write(html);

90 | Chapter 6: WebSocket Security

 res.end();
 });
 }
});

As you can see, you’ve stubbed out a validateLogin method, which in this simple
implementation just checks to ensure that the username and password are both test.
After a successful validation, it passes back the key. In a production implementation,
I would opt for storing this key in a data store, which can then be retrieved and
validated with the WebSocket server end. We’re cheating a bit to not add any unnec‐
essary dependencies to this example. The HTML served up by the /secured endpoint
as follows:

<html>
<head>
<title>WebSocket Auth Example</title>
<script
src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js"></script>
<script type="text/javascript">

$(function() {
 var ws = new WebSocket("wss://localhost:8443");

 ws.onopen = function(e) {
 console.log('Connection to server opened');
 }
});
</script>
</head>
<body>
Hello, WebSocket.
</body>
</html>

Now you have all the web endpoints being served to the user, and a WebSocket client
that is connecting securely over TLS to port 8443.

WebSocket Server
You’ve handled the web end of the spectrum, and you have a WebSocket client all
loaded up and ready to send messages to your WebSocket endpoint. In the same
source file, you’ll include code to spin up a secure WebSocket server and use
verifyClient to check for your credentials cookie. The first thing you do is ensure
you are talking over a secure channel and if not, return false to the callback failing
the connection. Then, check the cookie header and call the checkAuth function,
which in production code would look up the key in a data source and validate that the
client indeed can access this service. If all goes well, return true to the callback and
allow the connection to proceed:

Validating Clients | 91

var checkAuth = function(key) {
 return key === '591a86e4-5d9d-4bc6-8b3e-6447cd671190';
}

var wss = new WebSocketServer({
 server: httpsServer,
 verifyClient: function(info, callback) {
 if(info.secure !== true) {
 callback(false);
 return;
 }
 var parsed_cookie = cookie.parse(info.req.headers['cookie']);

 if('credentials' in parsed_cookie) {
 if(checkAuth(parsed_cookie['credentials'])) {
 callback(true);
 return;
 }
 }
 callback(false);
 }

});
wss.on('connection', function(wsConnect) {
 wsConnect.on('message', function(message) {
 console.log(message);
 });
});

As you can see, this is an end-to-end solution for validating that a WebSocket con‐
nection is authorized to continue. You can add other checks as needed, depending on
the application being built. Just remember that the client browser cannot set any
headers, so cookies and the Basic header are all you are afforded. This should give
you the structure to enable you to build this out into your own applications in a
secure manner, away from prying eyes.

Summary
This chapter looked at various attack vectors and ways of securing your WebSocket
application. The primary takeaway should be to assume that the client is not a
browser, and so do not trust it.

92 | Chapter 6: WebSocket Security

Three things to remember:

• Always use TLS.
• Server code should always verify the Origin header.
• Verify the request by using a random token similar to a CSRF token for Ajax

requests.

It is even more important to use the items discussed in this chapter so the possibility
of someone hijacking the WebSocket connection for other nefarious purposes is
heavily minimized. In the next chapter we’ll review several ways of debugging
WebSocket and actively measuring the performance benefits over a regular Ajax-
based request.

Summary | 93

CHAPTER 7

Debugging and Tools

Previous chapters have gone into depth on building out solutions for using Web‐
Socket in your applications. While in the process of integrating any technology into a
new or existing project, perhaps the most vital tool is learning how to debug when
things don’t go as originally planned.

In this chapter you’ll explore several areas of the WebSocket lifecycle and review tools
that can aid in your journey across the WebSocket landscape. Let’s take one of the
previous examples for a spin, and take a look at what’s being passed around and how
you can use the tools to see what’s going on under the hood.

A typical WebSocket lifecycle consists of three main areas: the opening handshake,
sending and receiving frames, and the closing handshake. Each can present its own
challenges. Outlining all of them here would be impossible, but I’ll show some meth‐
ods of investigating should challenges arise while debugging.

The Handshake
The expected data the server receives from a valid client must include several HTTP
headers like Host, Connection, Upgrade, Sec-WebSocket-Key, Sec-WebSocket-

Version, and others that are optional to WebSocket. Proxies and security tools on
some corporate networks might modify headers before they are transmitted to the
server and could likely cause the handshake to fail. For testing purposes you can use
OWASP ZAP. ZAP was designed to assist penetration testers with finding vulnerabil‐
ities in web applications, and you can use it to intercept the handshake by using its
break functionality and remove some of the important headers before the server sees
them.

Throughout this chapter you’ll use the identity code example from Chapter 3. The
full example for server and client are reproduced in the following sections.

95

http://bit.ly/owaspzap

The Server
Here is the complete code for the server portion of the identity chat application:

var WebSocket = require('ws');
var WebSocketServer = WebSocket.Server,
 wss = new WebSocketServer({port: 8181});
var uuid = require('node-uuid');

var clients = [];

function wsSend(type, client_uuid, nickname, message) {
 for(var i=0; i<clients.length; i++) {
 var clientSocket = clients[i].ws;
 if(clientSocket.readyState === WebSocket.OPEN) {
 clientSocket.send(JSON.stringify({
 "type": type,
 "id": client_uuid,
 "nickname": nickname,
 "message": message
 }));
 }
 }
}

var clientIndex = 1;

wss.on('error', function(e) {
 console.log("error time");
});

wss.on('connection', function(ws) {
 var client_uuid = uuid.v4();
 var nickname = "AnonymousUser"+clientIndex;
 clientIndex+=1;
 clients.push({"id": client_uuid, "ws": ws, "nickname": nickname});
 console.log('client [%s] connected', client_uuid);

 var connect_message = nickname + " has connected";
 wsSend("notification", client_uuid, nickname, connect_message);

 ws.on('message', function(message) {
 if(message.indexOf('/nick') === 0) {
 var nickname_array = message.split(' ');
 if(nickname_array.length >= 2) {
 var old_nickname = nickname;
 nickname = nickname_array[1];
 var nickname_message = "Client " + old_nickname + " changed to "
 + nickname;
 wsSend("nick_update", client_uuid, nickname, nickname_message);
 }
 } else {

96 | Chapter 7: Debugging and Tools

 wsSend("message", client_uuid, nickname, message);
 }
 });

 ws.on('error', function(e) {
 console.log("error happens");
 });

 var closeSocket = function(customMessage) {
 for(var i=0; i<clients.length; i++) {
 if(clients[i].id == client_uuid) {
 var disconnect_message;
 if(customMessage) {
 disconnect_message = customMessage;
 } else {
 disconnect_message = nickname + " has disconnected";
 }
 wsSend("notification", client_uuid, nickname, disconnect_message);
 clients.splice(i, 1);
 }
 }
 }
 ws.on('close', function() {
 console.log("closing socket");
 closeSocket();
 });

 process.on('SIGINT', function() {
 console.log("Closing things");
 closeSocket('Server has disconnected');
 process.exit();
 });
});

The Client
Here is the complete code for the client portion of the identity chat application:

<!DOCTYPE html>
<html lang="en">
<head>
<title>Bi-directional WebSocket Chat Demo</title>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet" href="http://bit.ly/cdn-bootstrap-css">
<link rel="stylesheet" href="http://bit.ly/cdn-bootstrap-theme">
<script src="http://bit.ly/cdn-bootstrap-jq">
</script>

 <script>
 var ws = new WebSocket("ws://localhost:8181");

The Handshake | 97

 var nickname = "";
 ws.onopen = function(e) {
 console.log('Connection to server opened');
 }
 function appendLog(type, nickname, message) {
 var messages = document.getElementById('messages');
 var messageElem = document.createElement("li");
 var preface_label;
 if(type==='notification') {
 preface_label = "*";
 } else if(type==='nick_update') {
 preface_label = "*";
 } else {
 preface_label = "" + nickname
 + "";
 }
 var message_text = "<h2>" + preface_label + " " + message
 + "</h2>";
 messageElem.innerHTML = message_text;
 messages.appendChild(messageElem);
 }

 ws.onmessage = function(e) {
 var data = JSON.parse(e.data);
 nickname = data.nickname;
 appendLog(data.type, data.nickname, data.message);
 console.log("ID: [%s] = %s", data.id, data.message);
 }
 ws.onclose = function(e) {
 appendLog("Connection closed");
 console.log("Connection closed");
 }
 ws.onerror = function(e) {
 appendLog("Error");
 console.log("Connection error");
 }
 function sendMessage() {
 var messageField = document.getElementById('message');
 if(ws.readyState === WebSocket.OPEN) {
 ws.send(messageField.value);
 }
 messageField.value = '';
 messageField.focus();
 }
 function disconnect() {
 ws.close();
 }
 </script>

</head>
<body lang="en">
 <div class="vertical-center">

98 | Chapter 7: Debugging and Tools

 <div class="container">
 <ul id="messages" class="list-unstyled">

 <hr />
 <form role="form" id="chat_form" onsubmit="sendMessage(); return false;">
 <div class="form-group">
 <input class="form-control" type="text" id="message" name="message"
 placeholder="Type text to echo in here" value="" autofocus/>
 </div>
<button type="button" id="send" class="btn btn-primary"
 onclick="sendMessage();">Send Message</button>
 </form>
 </div>
 </div>
<script src="http://bit.ly/cdn-bootstrap-minjs"></script>
</body>
</html>

Download and Configure ZAP
The best way to follow along with the “bad proxies” test is to download ZAP and run
it for your specific platform. ZAP can act as a proxy while you browse around your
application, so you’ll need to modify the Network settings for your browser. With so
many possible iterations, it’s best to just link off to ZAP’s documentation, which talks
about a host of browsers and how to configure the proxy. The proxy by default runs
on localhost port 8080 and can be changed by getting to the Options at Tools →
Options → Local proxy.

In the ZAP client, select “Toggle break on all requests” so you can approve each
request before it gets sent out. It is here that you’ll modify your handshake and
remove some vital and required headers. When visiting the local client by opening
the client.html file, it will attempt to make several HTTP connections. Some of these
will be for external dependencies on bootstrap for the UI, and there will be one going
to http://localhost:8181 asking for an upgrading connection for WebSocket.
There will be Next buttons in the header of the UI allowing you to step through each
request. When you get to the WebSocket request, stop and let’s make some changes.

Here is a request similar to what you should see in ZAP:

GET http://localhost:8181/ HTTP/1.1
Host: localhost:8181
Connection: Upgrade
Pragma: no-cache
Cache-Control: no-cache
Upgrade: websocket
Origin: null
Sec-WebSocket-Version: 13
User-Agent: Mozilla/5.0 (Macintosh; ...

The Handshake | 99

http://bit.ly/owasp-zap
http://bit.ly/zap-proxy
http://localhost:8181

Accept-Encoding: sdch
Accept-Language: en-US,en;q=0.8,de;q=0.6
Sec-WebSocket-Key: BRUZ6wGtxKWln5gToX4MSg==
Sec-WebSocket-Extensions: permessage-deflate; client_max_window_bits

In the text area, remove all of the WebSocket-specific headers as a bad proxy or IDS
might do:

GET http://localhost:8181/ HTTP/1.1
Host: localhost:8181
Connection: Upgrade
Pragma: no-cache
Cache-Control: no-cache
Origin: null
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_3) AppleWebKit/537.36...
Accept-Encoding: sdch
Accept-Language: en-US,en;q=0.8,de;q=0.6

After allowing the request to continue without the proper headers, you will see in the
response from ZAP an HTTP 426 error code. This HTTP code indicates that an
upgrade is required and was not provided. This can be a common occurrence when
interacting with bad proxies, which we’ll discuss resolving in the section “WebSocket
Secure to the Rescue” on page 102.

Figure 7-1 shows the WebSocket handshake from within the OWASP application.

Figure 7-1. OWASP Zed attack proxy breaking WebSocket handshake

100 | Chapter 7: Debugging and Tools

Let’s look at the Chrome Developer Tools; they should tell us a similar story. You may
have to refresh the request and step through again with ZAP after navigating to the
Network tab in Chrome’s Developer Tools section. You may need to click the Filter
button and then specify WebSockets. After resubmitting, you should also see the
HTTP 426 response code being passed back to the browser.

Figure 7-2 shows the result of missing some headers in the Chrome Developer Tools.

Figure 7-2. Handshake under Chrome Developer Tools

What would happen if you didn’t remove all headers, just something that may be
important, like the Sec-WebSocket-Version? When the request comes in, remove the
header you will see for Sec-WebSocket-Version:

GET http://localhost:8181/ HTTP/1.1
Host: localhost:8181
Connection: Upgrade
Pragma: no-cache
Cache-Control: no-cache
Upgrade: websocket
Origin: null
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_3) AppleWebKit/537.36...
Accept-Encoding: sdch
Accept-Language: en-US,en;q=0.8,de;q=0.6
Sec-WebSocket-Key: BRUZ6wGtxKWln5gToX4MSg==
Sec-WebSocket-Extensions: permessage-deflate; client_max_window_bits

The Handshake | 101

After submitting this request back to the server, what will likely come back is an
HTTP 400 Bad Request. You’re missing some vital information (Sec-WebSocket-
Version), and it’s not going to let you continue. How can you ensure that there is a
better chance that your messages are going to get received and sent properly?

WebSocket Secure to the Rescue
Thanks to a few neat tools, you’re able to see what’s going on with your connection
and why things are looking a bit wonky. How do you get around things like proxies
or IDS tools mucking with your precious headers? WebSocket Secure is the answer.
As we discussed in Chapter 6, the best way to ensure that your communication will
reach its intended destination is to always use wss://. If you need help configuring it,
refer to Chapter 6 for instructions. In general, using the secure WebSocket channel
can alleviate the issues outlined in the previous section.

Validating the Handshake
Most libraries and all browsers with WebSocket RFC 6455 support will implement the
simple handshake process without fail. As we will discuss in Chapter 8, the Sec-
WebSocket-Key is a random nonce that is base64 encoded and sent in the initial
handshake from the client. In order to validate that your server is sending back the
correct value to the client, you could take the example code in Chapter 8 and write a
simple script that accepts a Sec-WebSocket-Key and spits out a proper response:

var crypto = require('crypto');

var SPEC_GUID = "258EAFA5-E914-47DA-95CA-C5AB0DC85B11";

var webSocketAccept = function(secWebsocketKey) {
 var sha1 = crypto.createHash("sha1");
 sha1.update(secWebsocketKey + SPEC_GUID, "ascii");
 return sha1.digest("base64");
}

if(process.argv.length <= 2) {
 console.log("You must provide a Sec-WebSocket-Key as the only parameter");
 process.exit(1);
}

var webSocketKey = process.argv[2];

webSocketAccept = webSocketAccept(webSocketKey);
console.log("Sec-WebSocket-Accept:", webSocketAccept);

102 | Chapter 7: Debugging and Tools

If you are seeing other values when using Wireshark or Chrome Developer Tools
(values that would obviously be rejected by the client), run this script against the key
first, and then see about fixing whatever may be in error with your server. It could
indicate something along the path of communication is inserting itself in the commu‐
nication and the protocol is doing the right thing by rejecting it.

Inspecting Frames
You will, on more than one occasion, be tasked with figuring out why a client is
receiving unexpected data coming back from your server. The first reaction to this
may be to add some debug logging to your app and ask the client to make another
attempt. If your code is in production, however, this would be ill-advised because it
could affect other users and might affect performance or availability. Another option
is to use a network sniffer to watch the communication from the server to the affected
client. Let’s use our existing chat example to see what is coming across the wire.

Masked Payloads
The best way to see each frame coming across the wire is to use our trusty tool Wire‐
shark. That’s right, kids, Wireshark isn’t just for sniffing network connections in a
café! The versatile network tool runs well on every platform and allows you to filter
and inspect the handshake along with each individual frame sent over the wire. As of
version 1.9 it runs without needing the X11 dependency as well, which is definitely a
bonus.

Getting started with Wireshark is fairly straightforward. After successfully download‐
ing and installing the tool for your specific platform, you’ll be greeted with the main
screen, which lists all network interfaces that Wireshark is ready to listen on.

Figure 7-3 shows the initial screen for the Wireshark tool.

Double-click the interface that you will be browsing for these tests, and Wireshark
will dutifully start showing you captured packets on the next screen (see Figure 7-4).
It shows each captured packet in a table with sortable columns and a filter bar at the
top for ease in viewing exactly what you’re after in the huge stream of data flowing
back and forth.

You can choose to follow a TCP, UDP, or SSL stream to see the bidirectional commu‐
nication being sent along the wire. You’ll take a look at the handshake in Figure 7-5
and you’ll see a request to the server from the client with the payload after the HTTP
header.

Inspecting Frames | 103

https://www.wireshark.org/download.html
https://www.wireshark.org/download.html

Figure 7-3. Wireshark main screen

Figure 7-4. Wireshark capture screen

104 | Chapter 7: Debugging and Tools

Figure 7-5. Wireshark frame client to server

We briefly discussed frame masking in Chapter 6, and if you’re looking at the payload
thinking it doesn’t look like the JSON that you were expecting, you are correct. To be
considered valid, all clients must mask the payload with the 32-bit masking key
passed within the frame before sending any message to a server. You may be saying to
yourself, “This sucks; how am I supposed to effectively debug what is going on with
this client with these antiquated views into my data?” Have no fear, the latest versions
of Wireshark support automatic unmasking of WebSocket requests to the server.

Figure 7-6 shows the masking key captured with Wireshark.

Here’s how to view it in Wireshark:

1. Find a frame to select that has [MASK] in the Info column.
2. Ensure that Packet Details is turned on and viewable.
3. Expand the bottommost section labeled “WebSocket.”
4. Expand the last section labeled “Unmask Payload” and behold your payload

without masking.

Inspecting Frames | 105

Figure 7-6. WebSocket masked frame shown in Wireshark

Figure 7-7 shows an example of the Wireshark UI and a sample unmasked payload
along with the masked just above it should you need it. This is incredibly powerful
for debugging the interactions with multiple clients and your server code.

Now you can see what the unmasked payload looks like for a specific message passed
from client to server without resorting to debugging to stderr/stdout or otherwise
hampering performance or availability in your application. When looking at options,
Chrome Developer Tools is also a worthy companion for our efforts, though it does
require that you are the client and can replicate the errors from your environment.
One of the reasons I have found Wireshark to be so powerful in this regard is the
ability to watch the stream without modifying or interrupting other clients in the
process.

106 | Chapter 7: Debugging and Tools

Figure 7-7. WebSocket unmasked payload shown in Wireshark

Although viewing specific unmasked payloads is interesting, other times it is most
appropriate to see the entire thread of conversation for a specific client. For this,
Wireshark is indispensable as well. While still capturing your WebSocket communi‐
cation, you can right-click or Command-click any of the WebSocket or the initial
HTTP handshake in the communication, and choose Follow → Follow TCP Stream.
At the moment of capture, it will show you the entire conversation for that specific
client.

Figure 7-8 shows the contextual menu necessary for following the TCP stream.

As you look through the conversation being shown in the Follow TCP Stream win‐
dow, browsing back to the main capture screen you should notice that the capture
appears filtered. Whenever you follow a stream, it will pick that stream and filter out
anything else so you can focus in. The next section covers how to debug and watch
for close frames by using Wireshark.

Inspecting Frames | 107

Figure 7-8. Wireshark follow TCP stream

Closing Connection
The final thing you will ever see in a WebSocket conversation is the closing frame. Say
that you add a button to your UI, allowing the client to send a close frame to the
server like so:

<button type="button" onclick="disconnect();">Disconnect</button>

You could then use some of the things you learned about watching frames in Wire‐
shark. Befitting our task would be to see the masked frame being sent by the client
and looking at the very small message with the empty payload for a close request. If
you view the frame and open the WebSocket section from within Wireshark, you
should see something similar to the following:

WebSocket
 1... = Fin: True
 .000 = Reserved: 0x00
 1000 = Opcode: Connection Close (8)
 1... = Mask: True
 .000 0000 = Payload length: 0
 Masking-Key: 4021df19

The registered status codes for a close for RFC-specific reasons are defined in Chap‐
ter 8. The preceding header indicates that a normal close occurred, and no message
was passed. If you would like to pass your own status code in the close and/or a mes‐

108 | Chapter 7: Debugging and Tools

sage, you can do so using the JavaScript API as we discussed in Chapter 2 with the
following:

ws.close(1000, 'Ended normally');

The payload would be identical to how messages are received normally including
being masked, and sent along with the headers in the frame. The opcode would adorn
the code passed in the JavaScript call, the mask would be set, and the masking key
would be used to mask the message being sent to the client. That is the final commu‐
nication you’ll receive with a WebSocket conversation, and you’ve learned how to
watch it all, and modify things as needed to test different scenarios.

Summary
This chapter covered the opening handshake, the frames, and the closing handshake
and presented tools that enable you to watch the interaction between client and
server. Following is a recap of some of the problems you can identify using these
tools.

If you receive a code other than an HTTP 200 during the opening handshake:

• A bad proxy or IDS is likely involved and removing headers. The code could
indicate that you didn’t use WebSocket Secure, which is preferred over using the
regular non-TLS connection.

• The code could also indicate that something went wrong with the Sec-
WebSocket-Key or the Sec-WebSocket-Accept that was sent in response. You can
watch for the request and response by using either OWASP, Chrome Developer
Tools, or Wireshark and run the values against the script you wrote in “Validat‐
ing the Handshake” on page 102.

If a client is complaining of errors but you have no visibility due to masking:

• Use Wireshark and follow the instructions that detail how to see the server
responses and requests made by the client so you can fully understand where
things are going wrong.

And finally, if a close is occurring:

• Use any of the listed tools to look at what is being sent by the client, or responded
to from the server, see the code and/or message, and handle accordingly.

We were able to identify some potential pitfalls along the way, and how they could be
identified using tools so they won’t end up in a days-long search during the debug‐
ging process. The tools should serve as worthy companions during the development

Summary | 109

process and during debugging when the app makes its way into production and you
need a better view into what is going on.

You may notice that the debugging-via-browser method focused exclusively on
Chrome Developer Tools. Safari offers no discernible way to debug WebSocket
frames. Firefox will show you the opening handshake and all headers associated with
the connection, but no inspection of the frame is available. According to Mozilla bug
885508, it is still open and looks like no implementation is available in the otherwise
wonderful developer tools. You have plenty of tools at your disposal, though; Chrome
along with Wireshark and OWASP ZAP can give you the introspection you need to
find out what’s going on when things go south.

The final chapter presents a deeper look at the WebSocket protocol itself.

110 | Chapter 7: Debugging and Tools

http://bit.ly/bugzilla-885508

CHAPTER 8

WebSocket Protocol

No discussion about protocols, especially ones that are initiated via an HTTP call,
would be complete without talking a bit about the history of HTTP. The inception of
WebSocket came about because of the massive popularity of Ajax and real-time
updates. With HTTP, a protocol where a client requests a resource, and the server
responds with the resource or possibly an error code if something went wrong. This
unidirectional nature has been worked around by using technologies like Comet and
long polling, but comes at a cost of computing resources on the server side. Web‐
Socket seeks to be one of the techniques that solves this problem and allows web
developers to implement bidirectional communication over the same HTTP request.

HTTP 0.9—The Web Is Born
The birth of the World Wide Web brought rise to the first versions of the Hypertext
Transfer Protocol (HTTP). The first version of HTTP was conjured up by Tim
Berners-Lee in conjunction with the Hypertext Markup Language (HTML). HTTP
0.9 was incredibly simple. A client requests content via the GET method:

GET /index.html

The simplicity of HTTP 0.9 meant that you could request only two things: plain text
or HTML. This initial version of HTTP didn’t have headers, so there was no ability to
serve any media. In essence, as a client you requested a resource from the server
using TCP, and after the server was done sending it, the connection was closed.

HTTP 1.0 and 1.1
The simplicity in 0.9 was not going to last long. With the next version of HTTP, the
complexity involved in an HTTP request/response pair grew. The later versions of
HTTP added the ability to send HTTP headers with every request. With that growing

111

number of headers to support, things such as POST (form) requests, media types,
caching, and authentication were added in HTTP 1.0. In the latest version, multi‐
homed servers with the Host header, content negotiation, persistent connections, and
chunked responses were added and are used in production servers today. The point
of all this is that as HTTP has grown in complexity, the size of headers has grown.

According to a Google whitepaper talking about SPDY, the average HTTP header is
now 800 bytes and often as large as 2 KB. Compression and other techniques are
readily available to simplify this situation. The following shows a typical HTTP
header from the popular search engine Google:

% curl -I http://www.google.com
HTTP/1.1 200 OK
Date: Wed, 20 May 2015 22:50:00 GMT
Expires: -1
Cache-Control: private, max-age=0
Content-Type: text/html; charset=ISO-8859-1
Set-Cookie: PREF=ID=68769f4bb498a69f:FF=0:T...
Set-Cookie: NID=67=D26hM_BKWVnngC-7_1-XGmBR...
P3P: CP="This is not a P3P policy! See http..."
Server: gws
X-XSS-Protection: 1; mode=block
X-Frame-Options: SAMEORIGIN
Alternate-Protocol: 80:quic,p=0
Transfer-Encoding: chunked
Accept-Ranges: none
Vary: Accept-Encoding

I took the liberty of removing the contents of the cookie header, and left how many
characters it took up in the header. All told, the header was 850 characters long, or
just under 1KB. When you’re looking to send data back and forth between server and
client and vice versa, having to send a 1KB header on top of that is unnecessary and
wasteful. As you’ll see, after the initial handshake, a WebSocket frame header is min‐
iscule in comparison and akin to opening up a TCP connection over HTTP.

The following sections contain code samples showing how to build out portions of
the server protocol. Taken together and you can build your own implementation of
an RFC-compliant WebSocket server.

WebSocket Open Handshake
One of the many benefits of the WebSocket protocol is that it begins its connection to
the server as a simple HTTP request. Browsers and clients that support WebSocket
send the server a request with specific headers that ask for a Connection: Upgrade to
use WebSocket. The Connection: Upgrade header was introduced in HTTP/1.1 to
allow the client to notify the server of alternate means of communication. It is pri‐

112 | Chapter 8: WebSocket Protocol

http://bit.ly/chromium-spdy

marily used at this point as a means of upgrading HTTP to use WebSocket and can be
used to upgrade to HTTP/2.

According to the WebSocket spec, the only indication that a connection to the Web‐
Socket server has been accepted is the header field Sec-WebSocket-Accept. The value
is a hash of a predefined GUID and the client HTTP header Sec-WebSocket-Key.

From RFC 6455

The Sec-WebSocket-Accept header field indicates whether the
server is willing to accept the connection. If present, this header
field must include a hash of the client’s nonce sent in Sec-
WebSocket-Key along with a predefined GUID. Any other value
must not be interpreted as an acceptance of the connection by the
server.

Sec-WebSocket-Key and Sec-WebSocket-Accept
The first thing the spec asks for on the client side for generating the Sec-WebSocket-
Key is a nonce, or one-time random value. If you are using a browser that supports
WebSocket, generating the Sec-WebSocket-Key will be done for you automatically by
using the JavaScript API. One of the security restrictions is that an XMLHttpRequest
will not be allowed to modify that header. As we discussed in Chapter 6, this ensures
that even if the website is compromised, you can trust that the browser will not allow
any headers to be modified.

Generating the Sec-WebSocket-Key
The following code will assume running under Node.js and possibly using WebSocket
to communicate with another service acting as the WebSocket server. You’ll use a
GUID generated using the node-uuid module, which should prove to be random
enough for your needs.

The only thing you’re required to do at this point is base64 your nonce and include it
in the HTTP headers for your WebSocket connection request. You will use the node-
uuid module required earlier to create your random string:

var uuid = require('node-uuid');

var webSocketKey = function() {
 var wsUUID = uuid.v1();
 return new Buffer(wsUUID).toString('base64');
}

WebSocket Open Handshake | 113

Responding with the Sec-WebSocket-Accept

On the server side, the first thing you’ll do is include the crypto module so you can
send back your SHA1 hash of the combined value:

var crypto = require('crypto');

RFC 6455 defines a predefined GUID, which you’ll define as a constant in your code:

var SPEC_GUID = "258EAFA5-E914-47DA-95CA-C5AB0DC85B11";

Your next task is to define a function in your JavaScript code that accepts the Sec-
WebSocket-Key as a parameter, and creates a crypto SHA1 hash object:

var webSocketAccept = function(secWebsocketKey) {
 var sha1 = crypto.createHash("sha1");

Finally, you’ll append the Sec-WebSocket-Key together with the predefined GUID,
passing that into your SHA1 hash object. The update function will update the hash
content with your combined data. You pass in ascii to identify the input encoding
for the SHA1 update:

 sha1.update(secWebsocketKey + SPEC_GUID, "ascii");
 return sha1.digest("base64");

Generating the Sec-WebSocket-Accept header is usually be the job of a server library.
It is a good idea to understand the inner workings and have a way of testing if some‐
thing should go awry.

WebSocket HTTP Headers
The WebSocket connection must be an HTTP/1.1 GET request, and include the fol‐
lowing headers:

• Host

• Upgrade: websocket

• Connection: Upgrade

• Sec-WebSocket-Key

• Sec-WebSocket-Version

If any of these are not included in the HTTP headers, the server should respond with
an HTTP error code 400 Bad Request. Here’s an example of a simple HTTP request
to upgrade for WebSocket. The arrangement of the headers is not as important as
their existence:

114 | Chapter 8: WebSocket Protocol

http://bit.ly/rfc-6455

GET ws://localhost:8181/ HTTP/1.1
Origin: http://localhost:8181
Host: localhost:8181
Sec-WebSocket-Key: zy6Dy9mSAIM7GJZNf9rI1A==
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Version: 13

Table 8-1 shows the possible headers in the opening handshake.

Table 8-1. Opening handshake headers

Header Required Value

Host Yes Header field containing the server’s authority.

Upgrade Yes websocket

Connection Yes Upgrade

Sec-

WebSocket-Key

Yes Header field with a base64-encoded value that, when decoded, is 16 bytes in length.

Sec-

WebSocket-

Version

Yes 13

Origin No Optionally, an Origin header field. This header field is sent by all browser clients. A
connection attempt lacking this header field should not be interpreted as coming from a
browser client. Sending the origin domain in the upgrade is so connections can be
restricted to prevent CSRF attacks similar to CORS for XMLHttpRequest.

Sec-

WebSocket-

Accept

Yes (server) Server sends back an acknowledgment that is described after the table and must be
present for the connection to be valid.

Sec-

WebSocket-

Protocol

No Optionally, a Sec-WebSocket-Protocol header field, with a list of values
indicating which protocols the client would like to speak, ordered by preference.

Sec-

WebSocket-

Extensions

No Optionally, a Sec-WebSocket-Extensions header field, with a list of values
indicating which extensions the client would like to speak. The interpretation of this
header field is discussed in RFC 6455 Section 9.1.

Upon receiving a valid upgrade request with all required fields, the server will decide
on the accepted protocol, and any extensions, and send back an HTTP response with
status code 101 along with the Sec-WebSocket-Accept handshake acknowledgment.

WebSocket Open Handshake | 115

The following code shows a simple response from the server accepting the Web‐
Socket request and opening the channel to communicate using WebSocket:

HTTP/1.1 101 Switching Protocols
Connection: Upgrade
Sec-WebSocket-Accept: EDJa7WCAQQzMCYNJM42Syuo9SqQ=
Upgrade: websocket

Next we’ll go over the WebSocket frame header in detail, at the bit level because the
protocol is binary and not text.

WebSocket Frame
A WebSocket message is composed of one or more frames. The frame is a binary syn‐
tax that contains the following pieces of information, each of which I will describe in
greater detail. As you may remember from Chapter 2, the specifics of the frame, frag‐
mentation, and masking are all shielded and kept in the low-level implementation
detail of the server and client side. It is definitely good to understand, though,
because debugging WebSocket with this information makes things a lot more power‐
ful than without it.

Fin bit
Is this the final frame, or is there a continuation?

Opcode
Is this a command frame or data frame?

Length
How long is the payload?

Extended length
If payload is larger than 125, we’ll use the next 2 to 8 bytes.

Mask
Is this frame masked?

Masking key
4 bytes for the masking key.

Payload data
The data to send whether binary or UTF-8 string, could be a combination of
extension data + payload data.

A WebSocket message may make up multiple frames depending on how the server
and client decide to send data back and forth. And because the communication
between client and server is bidirectional, at any time either side decides, data can be
sent back and forth as long as no close frame was previously sent by either side. The
following is a text representation of a WebSocket frame:

116 | Chapter 8: WebSocket Protocol

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-------+-+-------------+-------------------------------+
F	R	R	R	opcode	M	Payload len	Extended payload length
I	S	S	S	(4)	A	(7)	(16/64)
N	V	V	V		S		(if payload len==126/127)
	1	2	3		K		
+-+-+-+-+-------+-+-------------+ - - - - - - - - - - - - - - - +							
Extended payload length continued, if payload len == 127							
+ - - - - - - - - - - - - - - - +-------------------------------+
| |Masking-key, if MASK set to 1 |
+-------------------------------+-------------------------------+
| Masking-key (continued) | Payload Data |
+-------------------------------- - - - - - - - - - - - - - - - +
: Payload Data continued ... :
+ - +
| Payload Data continued ... |
+---+

Let’s talk about each of the header elements in greater detail.

Fin Bit
The first bit of the WebSocket header is the Fin bit. If the bit is set, this fragment is
the final bit in a message. If the bit is clear, the message is not complete with the fol‐
lowing fragment. As you’ll see in the next section, the opcode to pass is 0x00.

Frame Opcodes
Every frame has an opcode that identifies what the frame represents. These opcodes
are defined in RFC 6455. The initial values are as defined by the IANA in the Web‐
Socket registry and are currently in use; additions to this are possible with WebSocket
Extensions. The opcode is placed within the second 4-bits of the first byte of the
frame header. Table 8-2 lists the opcode definitions.

Table 8-2. Opcode definition

Opcode value Description

0x00 Continuation frame; this frame continues the payload from the previous.

0x01 Text frame; this frame includes UTF-8 text data.

0x02 Binary frame; this frame includes binary data.

0x08 Connection Close frame; this frame terminates the connection.

0x09 Ping frame; this frame is a ping.

WebSocket Frame | 117

http://bit.ly/rfc-6455
http://bit.ly/ws-registries
http://bit.ly/ws-registries

Opcode value Description

0x0a Pong frame; this frame is a pong.

0x0b-0x0f Reserved for future control frames.

Masking
By default, all WebSocket frames are to be masked from the client end, and the server
is supposed to close the connection if it receives a frame indicating otherwise. As you
discovered in “Frame Masking” on page 87, the masking introduces variation into the
frame to prevent cache poisoning. The second byte of the frame is taken up by the
length in the last 7 bits, and the first bit indicates whether the frame is masked. The
mask to apply will be the 4 bytes following the extended length of the WebSocket
frame header. All messages received by a WebSocket server must be unmasked before
further processing:

var unmask = function(mask, buffer) {
 var payload = new Buffer(buffer.length);
 for (var i=0; i<buffer.length; i++) {
 payload[i] = mask[i % 4] ^ buffer[i];
 }
 return payload;
}

Following unmasking, the server can decode UTF-8 for text-based messages (opcode
0x01) and deliver unchanged for binary messages (opcode 0x02).

Length
The payload length is defined by the last 7 bits of the second byte of the frame header.
The first byte is the opcode defined earlier. Depending on how long the payload ends
up being, it may or may not use the extended length bytes that follow the first 2
header bytes:

• For messages under 126 bytes (0–125), the length is packed in the last 7 bits of
the second byte of the frame header.

• For messages between 126 and 216, two additional bytes are used in the extended
length following the initial length. A value of 126 will be placed within the first 7
bits of the length section to indicate usage of the following 2 bytes for length.

• For messages larger than 216, it will end up using the entire 8 bytes following the
length. A value of 127 will be placed within the first 7 bits of the length section to
indicate usage of the following 8 bytes for length.

118 | Chapter 8: WebSocket Protocol

Fragmentation
In two cases, splitting a message into multiple frames could make sense.

One case is that without the ability to fragment messages, the endpoint would have to
buffer the entire message before sending so it could send back an accurate count.
With the ability to fragment, the endpoint can choose a reasonably sized buffer, and
when that is full, send another frame as a continuation until everything is complete.

The second case is multiplexing, in which it isn’t desirable to fill the pipe with data
that is being shared, and instead split up into several chunks before sending. Multi‐
plexing isn’t directly supported in the WebSocket protocol but the extension x-
google-mux can offer support. To learn more about extensions and how they relate to
the WebSocket protocol, check out “WebSocket Extensions” on page 122.

If a frame is unfragmented, the Fin bit is set and it contains an opcode other than
0x00. If fragmented, the same opcode must be used when sending each frame until
the message has been completed. In addition, the Fin bit would be 0x00 until the final
frame, which would be empty other than the Fin bit set and an opcode of 0x00 used.

If sending a fragmented message, there must be the ability to interleave control
frames when either side is accepting communication (if a large message was sent and
a control frame wasn’t able to be sent until the end, it would be fairly inefficient). The
last necessary thing to remember is that the fragmented message must be all of the
same type—no mixing and matching of binary and UTF-8 string data within a single
message.

WebSocket Close Handshake
The closing handshake for a WebSocket connection requires a frame to be sent with
the opcode of 0x08. If the client sends the close frame, it must be masked as is done in
all other cases from the client, and not masked coming back from the server. In addi‐
tion to the opcode, the close frame may contain a body that indicates a reason for
closing, in the form of a code and a message. The status code is passed in the body of
the message and is a 2-byte unsigned integer. The remainder reason string would fol‐
low, and as with WebSocket messages, would be a UTF-8 encoded string.

Table 8-3 shows the status codes available for a WebSocket close event. Each of the
registered status codes in the RFC are identified and described in the next section.

WebSocket Close Handshake | 119

Table 8-3. WebSocket registered status codes

Status
code

Meaning Description

1000 Normal closure Send this code when your application has successfully completed.

1001 Going away Send this code when either the server or client application is shutting down or closing
without expectation of continuing.

1002 Protocol error Send this code when connection is closing with a protocol error.

1003 Unsupported data Send this code when your application has received a message of an unexpected type that
it cannot handle.

1004 Reserved Do not use; this is reserved as per RFC 6455.

1005 No status rcvd Do not use; the API will use this to indicate when no valid code was received.

1006 Abnormal closure Do not use; the API will use this to indicate the connection has closed abnormally.

1007 Invalid frame
payload data

Send this code if the data in the message received was not consistent with the type of the
message (e.g., non-UTF-8).

1008 Policy violation Send this code when the message received has violated a policy. This is a generic status
code that can be returned when there are no more suitable status codes.

1009 Message too big Send this code when the message received was too large to process.

1010 Mandatory ext. Send this code if you are expecting an extension from the server but it wasn’t returned in
the WebSocket handshake.

1011 Internal error Send this code when the connection is terminated due to an unexpected condition.

1012 Service restart Send this code indicating that the service is restarted, and a client that reconnects should
do so with a randomized delay of 5–30s.

1013 Try again later Send this code when the server is overloaded and the client should either connect to a
different IP (given multiple targets), or reconnect to the same IP when user has performed
an action.

1014 Unassigned Do not use; this is unassigned but might be changed in future revisions.

1015 TLS handshake Do not use; this is sent when the TLS handshake has failed.

Unlike TCP where connections can be closed at any time without notice, the Web‐
Socket close is a handshake on both sides. The RFC also identifies the ranges and

120 | Chapter 8: WebSocket Protocol

what they mean categorically for your application. In general, you’ll be using the
defined range for the current version (1000 through 1013), and given any custom
codes necessary in your application, the unregistered range 4000–4999 is available.

If an endpoint receives a Close frame without sending one, it has to send a Close
frame as its response (echoing the status code received). In addition, no more data
can pass over a WebSocket connection that has been sent a Close frame previously.
There are certainly cases where an endpoint delays sending a Close frame until all of
its current message is sent (in the case of fragmented messages), but the likelihood
the other end would process that message is not guaranteed.

When an endpoint (client or server) has sent and received a Close frame, the Web‐
Socket connection is closed and the TCP connection must be closed. A server will
always close the connection after receiving and sending immediately, while the client
should wait for a server to close, or set up a timeout to close the underlying TCP con‐
nection in a reasonable amount of time following a Close frame.

The IANA has a registry of the WebSocket status codes to use during the closing
handshake.

Table 8-4 shows the complete range of status codes for a WebSocket close event.

Table 8-4. WebSocket close code ranges

Status range Description

0–999 This range is not used for status codes.

1000–2999 Status codes in this range are either defined by RFC 6455 or will be in future revisions.

3000–3999 This range is reserved for libraries, frameworks, and applications.

4000–4999 This range is reserved for private use, and is not registered with the IANA. Feel free to use these values in your
code between client and server with prior agreement.

WebSocket Subprotocols
The RFC for WebSocket defines subprotocols and protocol negotiation between cli‐
ent and server. In Chapter 2, you saw how to pass in one or more protocols via the
JavaScript WebSocket API. Now that we’re in the chapter dedicated to the innards of
WebSocket, you can look at how that negotiation actually happens, or doesn’t. At the
lowest level, the negotiation of which protocol to use for a WebSocket connection
happens via the HTTP header Sec-WebSocket-Protocol. This header is passed in
with the initial upgrade request sent by the client:

Sec-WebSocket-Protocol: com.acme.chat, com.acme.anotherchat

WebSocket Subprotocols | 121

In this instance, the client is telling the server that the two protocols it would like to
speak are chat or anotherchat. At this point, it is up to the server to decide which
protocol it will choose. If the server agrees with none of the protocols, it will return
null or won’t return that header. If the server agrees with a subprotocol, it will
respond with a header such as this:

Sec-WebSocket-Protocol: com.acme.anotherchat

As you may remember from Chapter 2, your JavaScript WebSocket object will have
the property protocol populated with the value chosen by the server, or none if
nothing was chosen. In this instance, the API will have the value com.acme.another‐
chat because the handshake response from the server indicates this as an acceptable
protocol to communicate with. A subprotocol doesn’t change the underlying Web‐
Socket protocol, but merely layers on top of it, providing a higher-level communica‐
tion channel on top of the existing protocol. The ability to change the definition of a
WebSocket frame is available to you, however, in the form of “WebSocket Extensions”
on page 122.

Remember from Chapter 2 that three types of subprotocols can be used with the sub‐
protocol handshake. The first are the registered protocols, identified in WebSocket
RFC 6455, section 11.5. It defines a registry with the IANA. The second are open pro‐
tocols such as XMPP or STOMP, although you can see registered protocols for these
as well. And the third, which you’ll likely use in your application, are the custom pro‐
tocols, which usually take the form of the domain name with an identifier for the sub‐
protocol name.

WebSocket Extensions
The WebSocket RFC defines Sec-WebSocket-Extensions as an optional HTTP
header to be sent by the connecting client asking if the server can support any of the
listed extensions. The client will pass one or more extensions with possible parame‐
ters via the HTTP header, and the server will respond with one or more accepted
extensions. The server can choose only from the client-passed in list.

Extensions have control to add new opcodes and data fields to the framing format.
In essence, you can completely change the entire format of a WebSocket frame with a
WebSocket extension. One of the earlier specs, draft-ietf-hybi-

thewebsocketprotocol-10, even mentioned a deflate-stream extension, which
would compress the entire WebSocket stream. The effectiveness of this is probably
the reason it no longer shows up in later specs, because WebSocket has client-to-
server frame masking, whereby the mask changes per frame, and with that, deflate
would be wholly ineffective.

122 | Chapter 8: WebSocket Protocol

http://bit.ly/websocket-protocol-reg

Here are two examples of extensions that are available in clients today:

• deflate-frame, a better method of deflate (available with Chrome, which uses x-
webkit-deflate-frame as its name) where frames are compressed at source and
extracted at destination

• x-google-mux, an early-stage extension supporting multiplexing

The one caveat, and it’s been an issue with adoption of any new technology attached
to browsers as clients, is that support must be baked into the browsers used by your
clients. The server will parse the extensions passed in by the client, and pass back the
list it will support. The order of extensions passed back must coincide with what was
passed in by the client. It must pass back only extensions that the client has indicated
that it also supports.

Alternate Server Implementations
I have chosen in this book to focus exclusively on using Node.js on the server side.
Implementations of the WebSocket protocol on the server side are widespread and
covered in nearly every language imaginable. Covering any of these other server-side
options is certainly outside the scope of this book. The following is a nonexhaustive
list of some of the RFC-compliant implementations of WebSocket in the wild today
for some of the most popular languages:

• Java API for WebSocket (JSR-356), which is included in any Java EE 7–compati‐
ble server such as Glassfish or Jetty.

• Python has several options, two of which are available at pywebsocket and at
ws4py.

• PHP has a compatible implementation with Ratchet
• Ruby has an EventMachine-based implementation, em-websocket.

These are just a few of the more popular implementations in each language. As with
any technical decision on the backend, evaluate the options for your chosen platform
and use these and the information within this book as a guidepost along the way.

Alternate Server Implementations | 123

http://bit.ly/deflate-frame
http://bit.ly/x-google-mux
http://bit.ly/py-ws
http://bit.ly/ws-4py
http://socketo.me
http://bit.ly/em-ws

Summary
This chapter has gone into a lot of detail about the WebSocket protocol—hopefully
enough for you to either use it as is, or extend it in the form of subprotocols layered
on top of the underlying WebSocket protocol. The WebSocket protocol has taken a
long road to get to where it is today, and while changes may occur in the future, it
appears to be a solid way to communicate in a more efficient and powerful manner. It
is time to do away with the historically necessary hacks of the past, and embrace the
power provided by the WebSocket protocol and its API.

124 | Chapter 8: WebSocket Protocol

Index

A
addEventListener() method, 13, 36
Adobe Flash Socket, 67
Advanced Message Queuing Protocol (AMQP),

44, 56
alternate server implementations, 123
Apache, 78
API (Application Programming Interface), 9-21

attributes, 18-19
events, 12-16
initializing, 9-11
methods, 16-18
Pusher (see Pusher.com)
stock example server, 19-21
stock example UI, 11-12
testing for support, 21

Array.indexOf, 41
attributes

bufferedAmount, 19
protocol, 19
readyState, 17, 18

B
Basic header, 88
bidirectional chat, 23-34

basic chat application, 24-27
client code, 31-34, 97-99
client identity, 27-29
events and notifications, 29-30
server code, 30-31, 96-97
WebSocket client, 27

Bootstrap (Twitter), 11
browser support (see compatibility)
browser support test, 21

bufferedAmount attribute, 19

C
cache poisoning, 87
certificate authority (CA), 80
certificate signing request (CSR), 81
channels, Pusher.com, 71-72
chat (see bidirectional chat)
chat clients

Pusher.com, 76-77
Socket.IO, 69
SockJS, 66
WebSocket, 31-34

chat servers
Pusher.com, 73-76
Socket.IO, 68
SockJS, 63-66
WebSocket, 30-31

Chrome Developer Tools, 6, 101-102, 106
Clickjacking, 85-86
clients, validating (see validating clients)
close event, 15, 26
close method, 17-18
closing handshake, 119-121
code attribute, 15, 16
compatibility, 61-78

Pusher.com, 70-78
reverse proxy, 78
Socket.IO, 66-70
SockJS, 62-66

connection/disconnection messages, 29-30
Connection: Upgrade header, 112
connect_callback function, 59
content-length header, 37

125

Cross Origin Resource Sharing (CORS), 83-84
Cross- Site Request Forgery (CSRF) attacks, 85
cross-domain requests, 23
Cross-Site WebSocket Hijacking (CSWSH), 85
custom protocols, 10

D
data masking, 87-88
debugging, 95-110

(see also tools)
closing connection, 108-109
handshake validation, 102
inspecting frames, 103-107

deflate-frame (see WebSocket extensions)
Denial of Service (DoS), 87

E
Echo server, 6
error event, 15
events, 12-16

close, 15, 26
error, 15
message, 14-15, 26
open, 13
PING/PONG, 15
Pusher.com, 72-73
Socket.IO, 67-68
SockJS, 63-65

Express library, 64-66

F
Fin bit, 117, 119
form-based auth with cookie, 88-92
fragmentation, 119
frame masking, 87-88, 103-107, 118
framebusting, 85-87
frames, 116

(see also WebSocket frame)
closing frame, 108-109
inspecting, 103-107

H
handshake, 95-102

client code, 97-99
close, 108-109, 119-121
HTTP headers, 114-116
open, 112-116

Sec-WebSocket-Key and Sec-Websocket-
Accept, 113-114

server code, 96-97
validating, 102

headers
Basic, 88
HTTP, 111, 114-116

HTTP headers, 111, 114-116
HTTP history, 111-112

I
Internet Relay Chat (IRC), 28

J
JavaScript, 1, 39

browser support test, 21
framebusting, 85-86

jQuery, 11

L
Linux

installing Node.js and npm, 2
installing OpenSSL, 80

long polling, 7-8, 23

M
masking, 87-88
masking key, 87
message event, 14-15, 26
methods

close, 17-18
send, 16-17

multiplexing, 119

N
network sniffers (see Wireshark)
nginx, 9, 78, 87
Node.js, 1-3

package manager (npm), 2-3, 24, 44, 63, 88
STOMP client for, 57

O
older browsers (see compatibility)
on<event name> handler, 13
opcodes, 117
open event, 13
open protocols, 10

126 | Index

OpenSSL installations, 80
Origin-based security model, 83-87

clickjacking, 85-86
X-Frame-Options for frame busting, 86-87

OS X
installing Node.js and npm, 2
installing OpenSSL, 80

OWASP ZAP, 95, 99-101

P
payload length, 118
PING/PONG events, 15
process_frame function (see STOMP)
protocolAttribute, 19
protocols, 10-11

(see also WebSocket protocol)
proxy_wstunnel, 78
Pusher.com, 70-78

channels, 71-72
chat client, 76-77
chat example, 77
chat server, 73-76
events, 72-73

R
RabbitMQ, 35

connecting the server to, 44-48
setting up, 42-44
stock price daemon, 47-48
with Web-Stomp, 56-59

(see also Web-Stomp)
readyState attribute, 17, 18
reason attribute, 15, 16
registered protocols, 10
reverse proxy, 78
RFC 6455, 1, 10, 61, 87, 113-114, 117
RFC 7034, 86

S
same-origin policy (SOP), 83
Sec-WebSocket-Accept, 114
Sec-WebSocket-Key, 113
security, 79-93

Denial of Service (DoS), 87
frame masking, 87-88
Origin-based security model, 83-87
TLS (Transport Layer Security), 79-83
validating clients, 88-92

send functions (see STOMP)
send method, 16-17
session-ID (see STOMP)
Slowloris, 87
Socket.IO, 24, 66-70

Adobe Flash Socket, 67
alternative transports, 66
chat client, 69-70
chat server, 68
connecting, 67-68
events, 67-68
naming in, 68-70

SockJS, 62-66
chat client, 66
chat server, 63-66
event handling, 63-65
library, 66
server libraries, 62
supported transcripts, 62

STOMP (Simple Text Oriented Messaging Pro‐
tocol), 35-59
client app, 50-56
CONNECT/DISCONNECT commands, 50,

54-56
connecting the server to RabbitMQ, 44-48
connection event, 40-41
connection via the server, 39-42
content-length header, 37
error_callback function, 59
getting connected, 36-39
implementing, 36-42
JavaScript object structure, 39
MESSAGE command, 55
needed files, 35
object structure, 39
processing STOMP requests, 49-50
process_frame function, 39
sending STOMP-compatible frames, 37
send_error function, 39
send_frame function, 39
send_message function, 59
session-id, 37
setting up Rabbit MQ, 42-44
STOMP client for Web and Node.js, 57
Stomp.js library, 58
stomp_helper.js, 37
SUBSCRIBE/UNSUBSCRIBE commands,

50-54
Web-Stomp, 56-59

Index | 127

subprotocols, 10, 35, 121-122
(see also STOMP (Simple Text Oriented

Messaging Protocol))
SUBSCRIBE/UNSUBSCRIBE commands (see

STOMP)

T
TLS (Transport Layer Security), 79-83

example, 82-83
generating a self-signed certificate, 79-82
mixed content security error, 83
WebSocket setup over, 80-83

tools
Chrome Developer Tools, 6, 101-102, 106
OWASP ZAP, 95, 99-101
Vagrant, 42-44
Wireshark, 103-107

Twitter Bootstrap, 11

U
UUID (universally unique identifier), 24-25, 50

V
Vagrant, 42-44
validating clients, 88-92

listening for Web requests, 89-91
setting up dependencies and inits, 88-89
WebSocket server, 91-92

W
Waldo, 86-87
Web-Stomp, 56-59

echo client for, 57-59
installing, 57

WebSocket
API (see API (Application Programming

Interface))

close code ranges, 121
constructor parameters, 10
events, 10
Hello World! example, 3-7
initialization, 4-5
overview, 1-3
registered status codes, 119
versus long polling, 7-8

WebSocket client, 27
WebSocket extensions, 122-123
WebSocket frame, 116-119

Fin bit, 117, 119
fragmentation, 119
length, 118
masking, 118
opcodes, 117

WebSocket open/close handshake (see hand‐
shake)

WebSocket protocol
extensions, 122-123
HTTP history, 111-112
open handshake (see handshake)
subprotocols, 121-122
Websocket frame, 116-119

WebSocket Secure, 83, 102
(see also TLS (transport layer security))

WebSocket Subprotocol Name Registry, 36
web_socket.js client, 71
Windows

installing Node.js and npm, 2
installing OpenSSL, 80

Wireshark, 103-107

X
X-Frame-Options, 86-87
x-google-mux, 123
XHR (XMLHttpRequest), 23, 83

128 | Index

About the Author
Andrew Lombardi is a veteran entrepreneur and software developer. His parents
taught him to code—while he was barely able to read—on an Apple II he still wishes
he had. He’s been running the consulting firm Mystic Coders for 15 years, coding,
speaking internationally, and offering technical guidance to companies as large as
Walmart and companies with problems as interesting as helicopter simulation. He
firmly believes that the best thing he’s done so far is being a great dad.

Colophon
The animal on the cover of WebSocket is a sea anemone (order Actiniaria).

More than 1,000 species of sea anemones are found throughout the world’s oceans.
They are particularly abundant in coastal tropical waters. These organisms tend to
remain rooted in one place, anchoring to hard surfaces such as coral reefs or rocks on
the sea floor.

Closely related to coral and jellyfish, sea anemones are invertebrates with cylindrical
bodies surrounded by tentacles. They vary in size, ranging from half an inch to six
feet in diameter, and may possess anywhere from a dozen to several hundred tenta‐
cles. They also appear in an array of vivid colors, resembling flowers such as their
namesake, the terrestrial anemone.

Despite their elegant beauty, these animals are quite predatory. Their tentacles are
dotted with stinging cells that are used to immobilize and consume small fish and
crustaceans. Accordingly, sea anemones have very few predators of their own, and
many species live for more than 50 years.

Sea anemones are frequently cited for their symbiotic relationships with clownfish,
which have a protective coating that renders them immune to the anemone’s lethal
sting. The clownfish is safe from its enemies among the anemone’s tentacles, while
the anemone enjoys food scraps from the clownfish’s meals.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from loose plates (original source unknown). The cover fonts are
URW Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading
font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Preface
	Who Should Read This Book
	Goals of This Book
	Navigating This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Quick Start
	Getting Node and npm
	Installing on Windows
	Installing on OS X
	Installing on Linux

	Hello, World! Example
	Why WebSocket?
	Summary

	Chapter 2. WebSocket API
	Initializing
	Stock Example UI
	WebSocket Events
	Event: Open
	Event: Message
	Event: Error
	Event: PING/PONG
	Event: Close

	WebSocket Methods
	Method: Send
	Method: Close

	WebSocket Attributes
	Attribute: readyState
	Attribute: bufferedAmount
	Attribute: protocol

	Stock Example Server
	Testing for WebSocket Support
	Summary

	Chapter 3. Bidirectional Chat
	Long Polling
	Writing a Basic Chat Application
	WebSocket Client
	Client Identity
	Events and Notifications
	The Server
	The Client
	Summary

	Chapter 4. STOMP over WebSocket
	Implementing STOMP
	Getting Connected
	Connecting via the Server

	Setting Up RabbitMQ
	Connecting the Server to RabbitMQ
	The Stock Price Daemon

	Processing STOMP Requests
	Client
	Using RabbitMQ with Web-Stomp
	STOMP Client for Web and Node.js
	Installing the Web-Stomp Plug-in
	Echo Client for Web-Stomp

	Summary

	Chapter 5. WebSocket Compatibility
	SockJS
	SockJS Chat Server
	SockJS Chat Client

	Socket.IO
	Adobe Flash Socket
	Connecting
	Socket.IO Chat Server
	Socket.IO Chat Client

	Pusher.com
	Channels
	Events
	Pusher Chat Server
	Pusher Chat Client
	Don’t Forget: Pusher Is a Commercial Solution

	Reverse Proxy
	Summary

	Chapter 6. WebSocket Security
	TLS and WebSocket
	Generating a Self-Signed Certificate
	Installing on Windows
	Installing on OS X
	Installing on Linux
	Setting up WebSocket over TLS
	WebSocket Server over TLS Example

	Origin-Based Security Model
	Clickjacking
	X-Frame-Options for Framebusting

	Denial of Service
	Frame Masking
	Validating Clients
	Setting Up Dependencies and Inits
	Listening for Web Requests
	WebSocket Server

	Summary

	Chapter 7. Debugging and Tools
	The Handshake
	The Server
	The Client
	Download and Configure ZAP

	WebSocket Secure to the Rescue
	Validating the Handshake
	Inspecting Frames
	Masked Payloads

	Closing Connection
	Summary

	Chapter 8. WebSocket Protocol
	HTTP 0.9—The Web Is Born
	HTTP 1.0 and 1.1
	WebSocket Open Handshake
	Sec-WebSocket-Key and Sec-WebSocket-Accept
	WebSocket HTTP Headers

	WebSocket Frame
	Fin Bit
	Frame Opcodes
	Masking
	Length
	Fragmentation

	WebSocket Close Handshake
	WebSocket Subprotocols
	WebSocket Extensions
	Alternate Server Implementations
	Summary

	Index
	About the Author

