WEBBOTS, SPIDERS,
ano SCREEN SCRAPERS

http://www.allitebooks.org

Webbots, Spiders, and Screen Scrapers
acmeen acxarens | DY Michael Schrenk

Publisher: No Starch

Pub Date: March 15, 2007

Print ISBN-10: 1-593-27120-4
Print ISBN-13: 978-1-59-327120-6
Pages: 328

Table of Contents Index

Overview

The Internet is bigger and better than what a mere browser allows. Webbots, Spiders, and
Screen Scrapers is for programmers and businesspeople who want to take full advantage of
the vast resources available on the Web. There's no reason to let browsers limit your online

experience-especially when you can easily automate online tasks to suit your individual
needs.

Learn how to write webbots and spiders that do all this and more:

. Programmatically download entire websites
. Effectively parse data from web pages

. Manage cookies

. Decode encrypted files

. Automate form submissions

. Send and receive email

. Send SMS alerts to your cell phone

. Unlock password-protected websites

. Automatically bid in online auctions

. Exchange data with FTP and NNTP servers

Sample projects using standard code libraries reinforce these new skills. You'll learn how to
create your own webbots and spiders that track online prices, aggregate different data
sources into a single web page, and archive the online data you just can't live without. You'll
learn inside information from an experienced webbot developer on how and when to write
stealthy webbots that mimic human behavior, tips for developing fault-tolerant designs, and
various methods for launching and scheduling webbots. You'll also get advice on how to write
webbots and spiders that respect website owner property rights, plus techniques for shielding
websites from unwanted robots.

As a bonus, visit the author's website to test your webbots on sample target pages, and to
download the scripts and code libraries used in the book.

Iwww . al litebooks.con]

http://www.allitebooks.org

Some tasks are just too tedious-or too important!- to leave to humans. Once you've
automated your online life, you'll never let a browser limit the way you use the Internet again.

b

Iwww . al litebooks.con]

http://www.allitebooks.org

Webbots, Spiders, and Screen Scrapers
~semeensemnrens | DY Michael Schrenk

Publisher: No Starch

Pub Date: March 15, 2007

Print ISBN-10: 1-593-27120-4
Print ISBN-13: 978-1-59-327120-6
Pages: 328

Table of Contents Index

Dedication

ACKNOWLEDGMENTS

Introduction

FUNDAMENTAL CONCEPTS AND TECHNIQUES
WHAT'S IN IT FOR YOU?

Uncovering the Internet's True Potential
What's in It for Developers?

What's in It for Business Leaders?

Final Thoughts

IDEAS FOR WEBBOT PROJECTS
Inspiration from Browser Limitations

A Few Crazy ldeas to Get You Started
Final Thoughts

DOWNLOADING WEB PAGES

Think About Files, Not Web Pages
Downloading Files with PHP's Built-in Functions
Introducing PHP/CURL

Installing PHP/CURL

LIB_http

Final Thoughts

PARSING TECHNIQUES

Parsing Poorly Written HTML

Standard Parse Routines

Using LIB_parse

Useful PHP Functions

Final Thoughts

AUTOMATING FORM SUBMISSION
Reverse Engineering Form Interfaces
Form Handlers, Data Fields, Methods, and Event Triggers
Unpredictable Forms

Analyzing a Form

Final Thoughts

MANAGING LARGE AMOUNTS OF DATA
Organizing Data

Making Data Smaller

Thumbnailing Images

Final Thoughts

PROJECTS

PRICE-MONITORING WEBBOTS

The Target

Iwvww.allitebooks.conl

http://www.allitebooks.org

Designing the Parsing Script

Initialization and Downloading the Target
Further Exploration

IMAGE-CAPTURING WEBBOTS

Example Image-Capturing Webbot
Creating the Image-Capturing Webbot
Further Exploration

Final Thoughts

LINK-VERIFICATION WEBBOTS

Creating the Link-Verification Webbot
Running the Webbot

Further Exploration

ANONYMOUS BROWSING WEBBOTS
Anonymity with Proxies

The Anonymizer Project

Final Thoughts

SEARCH-RANKING WEBBOTS

Description of a Search Result Page
What the Search-Ranking Webbot Does
Running the Search-Ranking Webbot
How the Search-Ranking Webbot Works
The Search-Ranking Webbot Script

Final Thoughts

Further Exploration

AGGREGATION WEBBOTS

Choosing Data Sources for Webbots
Example Aggregation Webbot

Adding Filtering to Your Aggregation Webbot
Further Exploration

FTP WEBBOTS

Example FTP Webbot

PHP and FTP

Further Exploration

NNTP NEWS WEBBOTS

NNTP Use and History

Webbots and Newsgroups

Further Exploration

WEBBOTS THAT READ EMAIL

The POP3 Protocol

Executing POP3 Commands with a Webbot
Further Exploration

WEBBOTS THAT SEND EMAIL

Email, Webbots, and Spam

Sending Mail with SMTP and PHP

Writing a Webbot That Sends Email Notifications
Further Exploration

CONVERTING A WEBSITE INTO A FUNCTION
Writing a Function Interface

Final Thoughts

ADVANCED TECHNICAL CONSIDERATIONS
SPIDERS

Iwvww.allitebooks.conl

http://www.allitebooks.org

How Spiders Work

Example Spider

LIB_simple_spider

Experimenting with the Spider

Adding the Payload

Further Exploration

PROCUREMENT WEBBOTS AND SNIPERS
Procurement Webbot Theory

Sniper Theory

Testing Your Own Webbots and Snipers
Further Exploration

Final Thoughts

WEBBOTS AND CRYPTOGRAPHY
Designing Webbots That Use Encryption
A Quick Overview of Web Encryption
Local Certificates

Final Thoughts

AUTHENTICATION

What Is Authentication?

Example Scripts and Practice Pages
Basic Authentication

Session Authentication

Final Thoughts

ADVANCED COOKIE MANAGEMENT

How Cookies Work

PHP/CURL and Cookies

How Cookies Challenge Webbot Design
Further Exploration

SCHEDULING WEBBOTS AND SPIDERS
The Windows Task Scheduler

Complex Schedules
Non-Calendar-Based Triggers

Final Thoughts

LARGER CONSIDERATIONS

DESIGNING STEALTHY WEBBOTS AND SPIDERS
Why Design a Stealthy Webbot?

Stealth Means Simulating Human Patterns
Final Thoughts

WRITING FAULT-TOLERANT WEBBOTS
Types of Webbot Fault Tolerance

Error Handlers

DESIGNING WEBBOT-FRIENDLY WEBSITES
Optimizing Web Pages for Search Engine Spiders
Web Design Techniques That Hinder Search Engine Spiders
Designing Data-Only Interfaces

KILLING SPIDERS

Asking Nicely

Building Speed Bumps

Setting Traps

Final Thoughts

KEEPING WEBBOTS OUT OF TROUBLE

Iwvww.allitebooks.conl

http://www.allitebooks.org

It's All About Respect

Copyright

Trespass to Chattels

Internet Law

Final Thoughts

PHP/CURL REFERENCE

Creating a Minimal PHP/CURL Session
Initiating PHP/CURL Sessions
Setting PHP/CURL Options
Executing the PHP/CURL Command
Closing PHP/CURL Sessions
STATUS CODES

HTTP Codes

NNTP Codes

SMS EMAIL ADDRESSES

Colophon

Index

Iwvww.allitebooks.conl

http://www.allitebooks.org

4 »
WEBBOTS, SPIDERS, AND SCREEN SCRAPERS. Copyright © 2007 by Michael Schrenk.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any
information storage or retrieval system, without the prior written permission of the copyright
owner and the publisher.

':} Printed on recycled paper in the United States of America
1110090807123456789

ISBN-10: 1-59327-120-4

ISBN-13: 978-1-59327-120-6

Publisher: William Pollock

Production Editor: Christina Samuell

Cover and Interior Design: Octopod Studios

Developmental Editors: Tyler Ortman and William Pollock
Technical Reviewer: Peter Maclntyre

Copyeditor: Megan Dunchak

Compositors: Megan Dunchak, Riley Hoffman, and Christina Samuell
Proofreader: Stephanie Provines

Indexer: Nancy Guenther

For information on book distributors or translations, please contact No Starch Press, Inc.
directly:

No Starch Press, Inc.

555 De Haro Street, Suite 250, San Francisco, CA 94107

phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com
Library of Congress Cataloging-in-Publication Data

Code View:

Schrenk, M chael.
Webbots, spiders, and screen scrapers : a guide to devel oping internet agents
with PHP/ CURL / M chael Schrenk.
p. cm

Iwww . al litebooks.con]

mailto:info@nostarch.com.html
http://www.nostarch.com/
http://www.allitebooks.org

| ncl udes i ndex.
| SBN-13: 978-1-59327-120-6
| SBN-10: 1-59327-120-4

1. Wb search engines. 2. Internet programm ng. 3. Internet searching. 4.
Intelligent agents (Conputer software) |. Title.
TK5105. 884. S37 2007
025. 04--dc22
2006026680

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press,
Inc. Other product and company names mentioned herein may be the trademarks of their
respective owners. Rather than use a trademark symbol with every occurrence of a
trademarked name, we are using the names only in an editorial fashion and to the benefit of
the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an "As Is" basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch
Press, Inc. shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in it.

Iwww . al litebooks.con]

http://www.allitebooks.org

Webbots, Spiders, and Screen Scrapers

Table of ContentsNot Availablein This —— Reduce|Text zoom |Increase |Previous |Next
|:| Index Errata Format mi view

Dedication
In loving memory
Charlotte Schrenk

1897-1982

Webbots, Spiders, and Screen Scrapers

Table of Content§ Not Availablein This —— Reduce|Text zoom |Increase |Previous |Next
I:I Index Errata Format mi view
Top of Page
URL http://safari.informit.com/9781593271206/ldedication
1)

Iwvww.allitebooks.conl

file:///9781593271206
file:///9781593271206?tocview=true
file:///9781593271206/index
http://www.oreilly.com/catalog/1593271204/errata/
file:///9781593271206/Ipreface
file:///9781593271206/Ipreface
file:///9781593271206/Iacknowledgments
file:///9781593271206/Iacknowledgments
file:///9781593271206
file:///9781593271206?tocview=true
file:///9781593271206/index
http://www.oreilly.com/catalog/1593271204/errata/
file:///9781593271206/Ipreface
file:///9781593271206/Ipreface
file:///9781593271206/Iacknowledgments
file:///9781593271206/Iacknowledgments
file:///9781593271206/Idedication
http://www.allitebooks.org

ACKNOWLEDGMENTS

I needed support and inspiration from family, friends, and colleagues to write this book.
Unfortunately, | did not always acknowledge their contributions when they offered them. Here
is a delayed thanks to all of those who helped me.

Thanks to Donna, my wife, who convinced me that | could actually do this, and to my kids,
Ava and Gordon, who have always supported my crazy schemes, even though they know it
means fewer coffees and chess matches together.

Andy King encouraged me to find a publisher for this project, and Daniel Stenberg, founder of
the cURL project, helped me organize my thoughts when this book was barely an outline.

No Starch Press exhibited saint-like patience while | split my time between writing webbots
and writing about webbots. Special thanks to Bill, who trusted the concept, Tyler, who edited
most of the manuscript, and Christina, who kept me on task. Peter Maclntyre was
instrumental in checking for technical errors, and Megan's copyediting improved the book
throughout.

Anamika Mishra assisted with the book's website and consistently covered for me when | was
busy writing or too tired to code.

Laurie Curtis helped me explore what it might be like to finish a book.

Finally, a tip of the hat goes to Mark, Randy, Megan, Karen, Terri, Susan, Dennis, Dan, and
Matt, who were thoughtful enough to ask about my book's progress before inquiring about the
status of their projects.

Introduction

My introduction to the World Wide Web was also the beginning of my relationship with the
browser. The first browser | used was Mosaic, pioneered by Eric Bina and Marc Andreessen.
Andreessen later co-founded Netscape.

Shortly after | discovered the World Wide Web, | began to associate the wonders of the
Internet with the simplicity of the browser. By just clicking a hyperlink, | could enjoy the art
treasures of the Louvre; if | followed another link, 1 could peruse a fan site for The Brady

Bunch.! The browser was more than a software application that facilitated use of the World
Wide Web: It was the World Wide Web. It was the new television. And just as television
tamed distant video signals with simple channel and volume knobs, browsers demystified the
complexities of the Internet with hyperlinks, bookmarks, and back buttons.

0| stumbled across a fan site for The Brady Bunch during my first World Wide Web experience.

Old-School Client-Server Technology

My big moment of discovery came when | learned that | didn't need a browser to view web
pages. | realized that Telnet, a program used since the early '80s to communicate with
networked computers, could also download web pages, as shown in The official website of

Webbots, Spiders, and Screen Scrapers.

Viewing a web page with Telnet

B Telnet schrenk. com :JEi "l

telnet schrenk.com BOU
GET /index.php HTTP/1.1
Host: schrenk com
CArrlage IeLlurin

L b e bt L

HTTEP,S/1.1 200K
Date: Sat, 18 Aug 2007 22:18:42 GHMT

Server: Apache/2.0.58 (FreeBSD) mod ss12.0.58
X-FPowered-By: FPHP/4.4 .4
Content-Type: text/html; charset=I50-B25%9-1

=

Suddenly, the World Wide Web was something | could understand without a browser. It was a
familiar client-server architecture where simple clients worked on tasks found on remote
servers. The difference here was that the clients were browsers and the servers dished up
web pages.

The only revolutionary thing was that, unlike previous client-server client applications,
browsers were easy for anyone to use and soon gained mass acceptance. The Internet's

audience shifted from physicists and computer programmers to the public. Unfortunately, the
general public didn't understand client-server technology, so the dependency on browsers
spread further. They didn't understand that there were other ways to use the World Wide
Web.

As a programmer, | realized that if I could use Telnet to download web pages, | could also
write programs to do the same. | could write my own browser if I desired, or I could write
automated agents (webbots, spiders, and screen scrapers) to solve problems that browsers
couldn’t.

The Problem with Browsers

The basic problem with browsers is that they're manual tools. Your browser only downloads
and renders websites: You still need to decide if the web page is relevant, if you've already
seen the information it contains, or if you need to follow a link to another web page. What's
worse, your browser can't think for itself. It can't notify you when something important
happens online, and it certainly won't anticipate your actions, automatically complete forms,
make purchases, or download files for you. To do these things, you'll need the automation
and intelligence only available with a webbot, or a web robot.

What to Expect from This Book

This book identifies the limitations of typical web browsers and explores how you can use
webbots to capitalize on these limitations. You'll learn how to design and write webbots
through sample scripts and example projects. Moreover, you'll find answers to larger design
questions like these:

. Where do ideas for webbot projects come from?
. How can | have fun with webbots and stay out of trouble?
. Is it possible to write stealthy webbots that run without detection?

. What is the trick to writing robust, fault-tolerant webbots that won't break as Internet
content changes?

Learn from My Mistakes

I've written webbots, spiders, and screen scrapers for nearly 10 years, and in the process I've
made most of the mistakes someone can make. Because webbots are capable of making
unconventional demands on websites, system administrators can confuse webbots' requests
with attempts to hack into their systems. Thankfully, none of my mistakes has ever led to a
courtroom, but they have resulted in intimidating phone calls, scary emails, and very
awkward moments. Happily, | can say that I've learned from these situations, and it's been a
very long time since I've been across the desk from an angry system administrator. You can
spare yourself a lot of grief by reading my stories and learning from my mistakes.

Master Webbot Techniques

You will learn about the technology needed to write a wide assortment of webbots. Some
technical skills you'll master include these:

Programmatically downloading websites
Decoding encrypted websites
Unlocking authenticated web pages
Managing cookies
Parsing data

. Writing spiders

Managing the large amounts of data that webbots generate

Leverage Existing Scripts

This book uses several code libraries that make it easy for you to write webbots, spiders, and
screen scrapers. The functions and declarations in these libraries provide the basis for most of
the example scripts used in this book. You'll save time by using these libraries because they
do the underlying work, leaving the upper-level planning and development to you. All of these
libraries are available for download at this book's website.

About the Website

This book's website (http://www.schrenk.com/nostarch/webbots) is an additional resource for
you to use. To the extent that it's possible, all the example projects in this book use web
pages on the companion site as targets, or resources for your webbots to download and take
action on. These targets provided a consistent (unchanging) environment for you to hone
your webbot writing skills. A controlled learning environment is important because, regardless
of our best efforts, webbots can fail when their target websites change. Knowing that your
targets are unchanging makes the task of debugging a little easier.

The companion website also has links to other sites of interest, white papers, book updates,
and an area where you can communicate with other webbot developers (see The official

website of Webbots, Spiders, and Screen Scrapers). From the website, you will also be able to
access all of the example code libraries used in this book.

The official website of Webbots, Spiders, and Screen Scrapers

http://www.schrenk.com/nostarch/webbots

= Edc Yew Hfory EBockmaks Yahool Jools Bep
Oficial Website of the book

WEBBOTS, SPIDERS, a0 SCREEN SCRAPERS

| @ Omicial Website: Wabbots. Sphers, and Screen Scrapers . by Michasl Schraok - Wazia FireTex h‘mﬁl

ALTHONT. BB HAEL SChTnEne, Pirae 15 EwT NS Srancy Press

Ea) e ST Hasl page adiliesses winliliel asmis pdines W R Ciilail alare

Download le scripis
WERBOTS, SPIDERS, s s
ave BCRATIN SCRAPERE

T

Got addresses of test "targets”

Read webbot news

Check out book updates

Banter with the community, contribute code

Contact the suthor

Discover the untapped power of the Internes

Tha nbaamiet 1= bapaor amd Betian 1hm vl & mere oseo 3l ows. Webbols, Spidas = and Sorean SCapa s & (e dovelopers anid
MIEmess g s looking t2 uwilsch the cempebbem mbvamtages of noptrad fienal sofine apeaches. The beok frsl outlines the

Sedporepone s OF Do oeset e, i Bhel e plows D Bese deliciencies caiphe @ lomad w Bl aesigin ool oks phigsnein of Tosk sjisois
dr Bl s,

Wirite wabbots, as though you had years of axpernense
by il e i Do i i B i i iy o Beloiot 5 1l i) iy ool i it oy il oo, vt oo il il i, oo el G aadias, il | sl

sncnptiamn. SanyHs projects ralrfares these new skills so fhat rasders cam craats mara sophiststed webbots and spidars o track
willne [ices, oreme sEHwTEE bewsng smisen ents. bidon auciions n thelr clesng ments, al more,

hittp:Mweanew schrenk_comino starchiwebbots

About the Code

Most of the scripts in this book are straight PHP. However, sometimes PHP and HTML are
intermixed in the same script—and in many cases, on the same line. In those situations, a
bold typeface differentiates PHP scripts from HTML, as shown in Listing 1.

You may use any of the scripts in this book for your own personal use, as long as you agree
not to redistribute them. If you use any script in this book, you also consent to bear full
responsibility for its use and execution and agree not to sell or create derivative products,
under any circumstances. However, if you do improve any of these scripts or develop entirely
new (related) scripts, you are encouraged to share them with the webbot community via the
book's website.

<h1>Codi ng Conventions for Enbedded PHP</hl>
<t abl e border="0" cell paddi ng="1" cell spaci ng="0">
<tr>
<t h>Nanme</t h>
<t h>Addr ess</t h>
</tr>

<? for ($x=0; $x<sizeof ($person_array); $x++)
{ ?>
<tr>
<td><? echo person_array[$x][' NAMVE']| ?></t d>
<t d><? echo person_array[$x] [' ADDRESS' | ?></td>
</[tr>

<? } ?>
</tabl e>

Listing 1-1: Bold typeface differentiates PHP from HTML script
The other thing you should know about the example scripts is that they are teaching aids. The

scripts may not reflect the most efficient programming method, because their primary goal is
readability.

Note: The code libraries used by this book are governed by the W3C Software Notice and License
(http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231) and are available for
download from the book's website. The website is also where the software is maintained. If you
make meaningful contributions to this code, please go to the website to see how your
improvements may be part of the next distribution. The software examples depicted in this book
are protected by this book's copyright.

Requirements

Knowing HTML and the basics of how the Internet works will be necessary for using this book.
If you are a beginning programmer with even nominal computer network experience, you'll be
fine. It is important to recognize, however, that this book will not teach you how to program
or how TCP/IP, the protocol of the Internet, works.

Hardware
You don't need elaborate hardware to start writing webbots. If you have a secondhand 33
MHz Pentium computer, you have the minimum requirement to play with all the examples in

this book. Any of the following hardware is appropriate for using the examples and
information in this book:

. A personal computer that uses a Windows 95, Windows XP, or Windows Vista operating
system

. Any reasonably modern Linux-, Unix-, or FreeBSD-based computer

. A Macintosh running OS X (or later)

It will also prove useful to have ample storage. This is particularly true if your plan is to write
spiders, self-directed webbots, which can consume all available resources (especially hard
drives) if they are allowed to download too many files.

Software

In an effort to be as relevant as possible, the software examples in this book use PHP,[] cURL,
0 and MySQL.[] All of these software technologies are available as free downloads from their

http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

respective websites. In addition to being free, these software packages are wonderfully
portable and function well on a variety of computers and operating systems.

0 see http://www.php.net.
0 see http://curl.haxx.se.

U see http://www.mysql.com.

Note: If you're going to follow the script examples in this book, you will need a basic knowledge of
PHP. This book assumes you know how to program.

Internet Access

A connection to the Internet is very handy, but not entirely necessary. If you lack a network
connection, you can create your own local intranet (one or more webservers on a private

network) by loading Apache[] onto your computer, and if that's not possible, you can design
programs that use local files as targets. However, neither of these options is as fun as writing
webbots that use a live Internet connection. In addition, if you lack an Internet connection,
you will not have access to the online resources, which add a lot of value to your learning
experience.

O see http://www.apache.org.

A Disclaimer (This Is Important)

As with anything you develop, you must take responsibility for your own actions. From a
technology standpoint, there is little to distinguish a beneficial webbot from one that does
destructive things. The main difference is the intent of the developer (and how well you
debug your scripts). Therefore, it's up to you to do constructive things with the information in
this book and not violate copyright law, disrupt networks, or do anything else that would be
troublesome or illegal. And if you do, don't call me.

Please reference KEEPING WEBBOTS OUT OF TROUBLE for insight into how to write webbots
ethically. KEEPING WEBBOTS OUT OF TROUBLE will help you do this, but it won't provide
legal advice. If you have questions, talk to a lawyer before you experiment.

http://www.php.net/
http://curl.haxx.se/
http://www.mysql.com/
http://www.apache.org/

FUNDAMENTAL CONCEPTS AND TECHNIQUES

While most web development books explain how to create websites, this book
teaches developers how to combine, adapt, and automate existing websites to
fit their specific needs. FUNDAMENTAL CONCEPTS AND TECHNIQUES introduces

the concept of web automation and explores elementary techniques to harness
the resources of the Web.

WHAT'S IN IT FOR YOU?

This chapter explores why it is fun to write webbots and why webbot
development is a rewarding career with expanding possibilities.

IDEAS FOR WEBBOT PROJECTS

We've been led to believe that the only way to use a website is with a
browser. If, however, you examine what you want to do, as opposed
to what a browser allows you to do, you'll look at your favorite web
resources in a whole new way. This chapter discusses existing as well
as potential webbots.

DOWNLOADING WEB PAGES

This chapter introduces PHP/CURL, the free library that makes it easy
to download web pages—even when the targeted web pages use
advanced techniques like forwarding, encryption, authentication, and
cookies.

PARSING TECHNIQUES

Downloaded web pages aren't of any use until your webbot can
separate the data you need from the data you don't need.

AUTOMATING FORM SUBMISSION

To truly automate web agents, your application needs the ability to
automatically upload data to online forms.

MANAGING LARGE AMOUNTS OF DATA

Spiders in particular can generate huge amounts of data. That's why
it's important for you to know how to effectively store and reduce the
size of web pages, text, and images.

You may already have experience from other areas of computer science that
you can apply to these activities. However, even if these concepts are familiar to
you, developing webbots may force you to view these skills in a different
context, so the following chapters are still worth reading. If you don't already
have experience in these areas, the next six chapters will provide the basics for
designing and developing webbots. You'll use this groundwork in the other
projects and advanced considerations discussed later.

WHAT'S IN IT FOR YOU?

Whether you're a software developer looking for new skills or a business leader looking for a
competitive advantage, this chapter is where you will discover how webbots create
opportunities.

Uncovering the Internet's True Potential

Webbots present a virtually untapped resource for software developers and business leaders.
This is because the public has yet to realize that most of the Internet's potential lies outside
the capability of the existing browser/website paradigm. For example, in today's world, people
are satisfied with pointing a browser at a website and using whatever information or services
they find there. With webbots, the focus of the Internet will shift from what's available on
individual websites toward what people actually want to accomplish. To this end, webbots will
use as many online resources as required to satisfy their individual needs.

To be successful with webbots, you need to stop thinking like other Internet users. Namely,
you need to stop thinking about the Internet in terms of a browser viewing one website at a
time. This will be difficult, because we've all become dependent on browsers. While you can
do a wide variety of things with a browser, you also pay a price for that versatility—browsers
need to be sufficiently generic to be useful in a wide variety of circumstances. As a result,
browsers can do general things well, but they lack the ability to do specific things

exceptionally well.O Webbots, on the other hand, can be programmed for specific tasks and
can perform those tasks with perfection. Additionally, webbots have the ability to automate
anything you do online or notify you when something needs to be done.

0 For example, they can't act on your behalf, filter content for relevance, or perform tasks automatically.

FUNDAMENTAL CONCEPTS AND TECHNIQUES

While most web development books explain how to create websites, this book
teaches developers how to combine, adapt, and automate existing websites to
fit their specific needs. FUNDAMENTAL CONCEPTS AND TECHNIQUES introduces

the concept of web automation and explores elementary techniques to harness
the resources of the Web.

WHAT'S IN IT FOR YOU?

This chapter explores why it is fun to write webbots and why webbot
development is a rewarding career with expanding possibilities.

IDEAS FOR WEBBOT PROJECTS

We've been led to believe that the only way to use a website is with a
browser. If, however, you examine what you want to do, as opposed
to what a browser allows you to do, you'll look at your favorite web
resources in a whole new way. This chapter discusses existing as well
as potential webbots.

DOWNLOADING WEB PAGES

This chapter introduces PHP/CURL, the free library that makes it easy
to download web pages—even when the targeted web pages use
advanced techniques like forwarding, encryption, authentication, and
cookies.

PARSING TECHNIQUES

Downloaded web pages aren't of any use until your webbot can
separate the data you need from the data you don't need.

AUTOMATING FORM SUBMISSION

To truly automate web agents, your application needs the ability to
automatically upload data to online forms.

MANAGING LARGE AMOUNTS OF DATA

Spiders in particular can generate huge amounts of data. That's why
it's important for you to know how to effectively store and reduce the
size of web pages, text, and images.

Iwww . al litebooks.con]

http://www.allitebooks.org

You may already have experience from other areas of computer science that
you can apply to these activities. However, even if these concepts are familiar to
you, developing webbots may force you to view these skills in a different
context, so the following chapters are still worth reading. If you don't already
have experience in these areas, the next six chapters will provide the basics for
designing and developing webbots. You'll use this groundwork in the other
projects and advanced considerations discussed later.

WHAT'S IN IT FOR YOU?

Whether you're a software developer looking for new skills or a business leader looking for a
competitive advantage, this chapter is where you will discover how webbots create
opportunities.

Uncovering the Internet's True Potential

Webbots present a virtually untapped resource for software developers and business leaders.
This is because the public has yet to realize that most of the Internet's potential lies outside
the capability of the existing browser/website paradigm. For example, in today's world, people
are satisfied with pointing a browser at a website and using whatever information or services
they find there. With webbots, the focus of the Internet will shift from what's available on
individual websites toward what people actually want to accomplish. To this end, webbots will
use as many online resources as required to satisfy their individual needs.

To be successful with webbots, you need to stop thinking like other Internet users. Namely,
you need to stop thinking about the Internet in terms of a browser viewing one website at a
time. This will be difficult, because we've all become dependent on browsers. While you can
do a wide variety of things with a browser, you also pay a price for that versatility—browsers
need to be sufficiently generic to be useful in a wide variety of circumstances. As a result,
browsers can do general things well, but they lack the ability to do specific things

exceptionally well.O Webbots, on the other hand, can be programmed for specific tasks and
can perform those tasks with perfection. Additionally, webbots have the ability to automate
anything you do online or notify you when something needs to be done.

0 For example, they can't act on your behalf, filter content for relevance, or perform tasks automatically.

FUNDAMENTAL CONCEPTS AND TECHNIQUES

While most web development books explain how to create websites, this book
teaches developers how to combine, adapt, and automate existing websites to
fit their specific needs. FUNDAMENTAL CONCEPTS AND TECHNIQUES introduces

the concept of web automation and explores elementary techniques to harness
the resources of the Web.

WHAT'S IN IT FOR YOU?

This chapter explores why it is fun to write webbots and why webbot
development is a rewarding career with expanding possibilities.

IDEAS FOR WEBBOT PROJECTS

We've been led to believe that the only way to use a website is with a
browser. If, however, you examine what you want to do, as opposed
to what a browser allows you to do, you'll look at your favorite web
resources in a whole new way. This chapter discusses existing as well
as potential webbots.

DOWNLOADING WEB PAGES

This chapter introduces PHP/CURL, the free library that makes it easy
to download web pages—even when the targeted web pages use
advanced techniques like forwarding, encryption, authentication, and
cookies.

PARSING TECHNIQUES

Downloaded web pages aren't of any use until your webbot can
separate the data you need from the data you don't need.

AUTOMATING FORM SUBMISSION

To truly automate web agents, your application needs the ability to
automatically upload data to online forms.

MANAGING LARGE AMOUNTS OF DATA

Spiders in particular can generate huge amounts of data. That's why
it's important for you to know how to effectively store and reduce the
size of web pages, text, and images.

You may already have experience from other areas of computer science that
you can apply to these activities. However, even if these concepts are familiar to
you, developing webbots may force you to view these skills in a different
context, so the following chapters are still worth reading. If you don't already
have experience in these areas, the next six chapters will provide the basics for
designing and developing webbots. You'll use this groundwork in the other
projects and advanced considerations discussed later.

WHAT'S IN IT FOR YOU?

Whether you're a software developer looking for new skills or a business leader looking for a
competitive advantage, this chapter is where you will discover how webbots create
opportunities.

Uncovering the Internet's True Potential

Webbots present a virtually untapped resource for software developers and business leaders.
This is because the public has yet to realize that most of the Internet's potential lies outside
the capability of the existing browser/website paradigm. For example, in today's world, people
are satisfied with pointing a browser at a website and using whatever information or services
they find there. With webbots, the focus of the Internet will shift from what's available on
individual websites toward what people actually want to accomplish. To this end, webbots will
use as many online resources as required to satisfy their individual needs.

To be successful with webbots, you need to stop thinking like other Internet users. Namely,
you need to stop thinking about the Internet in terms of a browser viewing one website at a
time. This will be difficult, because we've all become dependent on browsers. While you can
do a wide variety of things with a browser, you also pay a price for that versatility—browsers
need to be sufficiently generic to be useful in a wide variety of circumstances. As a result,
browsers can do general things well, but they lack the ability to do specific things

exceptionally well.O Webbots, on the other hand, can be programmed for specific tasks and
can perform those tasks with perfection. Additionally, webbots have the ability to automate
anything you do online or notify you when something needs to be done.

0 For example, they can't act on your behalf, filter content for relevance, or perform tasks automatically.

What's in It for Developers?

Your ability to write a webbot can distinguish you from a pack of lesser developers. Web
developers—who've gone from designing the new economy of the late 1990s to falling victim
to it during the dot-com crash of 2001—know that today's job market is very competitive.
Even today's most talented developers can have trouble finding meaningful work. Knowing
how to write webbots will expand your ability as a developer and make you more valuable to
your employer or potential employers.

A webbot writer differentiates his or her skill set from that of someone whose knowledge of
Internet technology extends only to creating websites. By designing webbots, you
demonstrate that you have a thorough understanding of network technology and a variety of
network protocols, as well as the ability to use existing technology in new and creative ways.

Webbot Developers Are in Demand

There are many growth opportunities for webbot developers. You can demonstrate this for
yourself by looking at your website's file access logs and recording all the non-browsers that
have visited your website. If you compare current server logs to those from a year ago, you
should notice a healthy increase in traffic from nontraditional web clients or webbots.
Someone has to write these automated agents, and as the demand for webbots increases, so
does the demand for webbot developers.

Hard statistics on the growth of webbot use are hard to come by, since many webbots defy
detection and masquerade as traditional web browsers. In fact, the value that webbots bring
to businesses forces most webbot projects underground. | can't talk about most of the
webbots I've developed because they create competitive advantages for clients, and they'd
rather keep those techniques secret. Regardless of the actual numbers, it's a fact that
webbots and spiders comprise a large amount of today's Internet traffic and that many
developers are required to both maintain existing webbots and develop new ones.

Webbots Are Fun to Write

In addition to solving serious business problems, webbots are also fun to write. This should be
welcome news to seasoned developers who no longer experience the thrill of solving a
problem or using a technology for the first time. Without a little fun, it's easy for developers
to get bored and conclude that software is simply a sequence of instructions that do the same
thing every time a program runs. While predictability makes software dependable, it also
makes it tiresome to write. This is especially true for computer programmers who specialize in
a specific industry and lack diversity in tasks. At some point in their careers, nearly all of the
programmers | know have become very tired of what they do, in spite of the fact that they
still like to write computer programs.

Webbots, however, are almost like games, in that they can pleasantly surprise their
developers with their unpredictability. This is because webbots operate on data that changes
frequently, and they respond slightly differently every time they run. As a result, webbots
become impulsive and lifelike. Unlike other software, webbots feel organic! Once you write a
webbot that does something wonderfully unexpected, you'll have a hard time describing the
experience to those writing traditional software applications.

Webbots Facilitate ""Constructive Hacking"

By its strict definition, hacking is the process of creatively using technology for a purpose
other than the one originally intended. By using web pages, news groups, email, or other
online technology in unintended ways, you join the ranks of innovators that combine and alter
existing technology to create totally new and useful tools. You'll also broaden the possibilities
for using the Internet.

Unfortunately, hacking also has a dark side, popularized by stories of people breaking into
systems, stealing private data, and rendering online services unusable. While some people do
write destructive webbots, | don't condone that type of behavior here. In fact, KEEPING

WEBBOTS OUT OF TROUBLE is dedicated to this very subject.

What's in It for Business Leaders?

Few businesses gain a competitive advantage simply by using the Internet. Today, businesses
need a unique online strategy to gain a competitive advantage. Unfortunately, most
businesses limit their online strategy to a website—which, barring some visual design
differences, essentially functions like all the other websites within the industry.

Customize the Internet for Your Business

Most of the webbot projects I've developed are for business leaders who've become frustrated
with the Internet as it is. They want added automation and decision-making capability on the
websites they use to run their businesses. Essentially, they want webbots that customize
other people's websites (and the data those sites contain) for the specific way they do
business. Progressive businesses use webbots to improve their online experience, optimizing
how they buy things, how they gather facts, how they're notified when things change, and
how to enforce business rules when making online purchases.

Businesses that use webbots aren't limited to envisioning the Internet as a set of websites
that are accessed by browsers. Instead, they see the Internet as a stockpile of varied
resources that they can customize (using webbots) to serve their specific needs.

There has always been a lag between when people figure out how to do something manually
and when they figure out how to automate the process. Just as chainsaws replaced axes and
as sewing machines superseded needles and thimbles, it is only natural to assume that new
(automated) methods for interacting with the Internet will follow the methods we use today.
The companies that develop these processes will be the first to enjoy the competitive
advantage created by their vision.

Capitalize on the Public's Inexperience with Webbots

Most people have very little experience using the Internet with anything other than a
browser, and even if people have used other Internet clients like email or news readers, they
have never thought about how their online experience could be improved through
automation. For most, it just hasn't been an issue.

For businesspeople, blind allegiance to browsers is a double-edged sword. In one respect, it's
good that people aren't familiar with the benefits that webbots provide—this provides
opportunities for you to develop webbot projects that offer competitive advantages. On the
other hand, if your supervisors are used to the Internet as seen through a browser alone, you
may have a hard time selling your webbot projects to management.

Accomplish a Lot with a Small Investment

Webbots can achieve amazing results without elaborate setups. I've used obsolete computers
with slow, dial-up connections to run webbots that create completely new revenue channels
for businesses. Webbots can even be designed to work with existing office equipment like
phones, fax machines, and printers.

Final Thoughts

One of the nice things about webbots is that you can create a large effect without making
something difficult for customers to use. In fact, customers don't even need to know that a
webbot is involved. For example, your webbots can deliver services through traditional-
looking websites. While you know that you're doing something radically innovative, the end
users don't realize what's going on behind the scenes—and they don't really need to know
about the hordes of hidden webbots and spiders combing the Internet for the data and
services they need. All they know is that they are getting an improved Internet experience.
And in the end, that's all that matters.

IDEAS FOR WEBBOT PROJECTS

It's often more difficult to find applications for new technology than it is to learn the
technology itself. Therefore, this chapter focuses on encouraging you to generate ideas for
things that you can do with webbots. We'll explore how webbots capitalize on browser
limitations, and we'll see a few examples of what people are currently doing with webbots.
We'll wrap up by throwing out some wild ideas that might help you expand your expectations
of what can be done online.

Inspiration from Browser Limitations

A useful method for generating ideas for webbot projects is to study what cannot be done by
simply pointing a browser at a typical website. You know that browsers, used in traditional
ways, cannot automate your Internet experience. For example, they have these limitations:

Browsers cannot aggregate and filter information for relevance
Browsers cannot interpret what they find online

Browsers cannot act on your behalf

However, a browser may leverage the power of a webbot to do many things that it could not
do alone. Let's look at some real-life examples of how browser limitations were leveraged into
actual webbot projects.

Webbots That Aggregate and Filter Information for Relevance

TrackRates.com (http://www.trackrates.com, shown in TrackRates.com) is a website that

deploys an army of webbots to aggregate and filter hotel room prices from travel websites. By
identifying room prices for specific hotels for specific dates, it determines the actual market
value for rooms up to three months into the future. This information helps hotel managers
intelligently price rooms by specifically knowing what the competition is charging for similar
rooms. TrackRates.com also reveals market trends by performing statistical analysis on room
prices, and it tries to determine periods of high demand by indicating dates on which hotels
have booked all of their rooms.

TrackRates.com

http://trackrates.com/
http://www.trackrates.com/
http://trackrates.com/
http://trackrates.com/

|'® TrackRates. com - Mozilla Firefox
Fia Edt ke Heloey Epdkmads vahool Took Help

Badh T FRonwa * Redoad Sn HOoma |] e e Crackrat s, comns

Fricing Analysis Tools to Help Hotel Managers Price Rooms

[

: _ Wlarmbar Lagin
Hatel Maime vIBW FiEiHIcE s e e |
I:IGA'.I:I"" '-l B 8% 1 L ARElSIs Or
Pasawond |
Ballys '-l 3 B 1l 1L i [ERa
Flemingz 'r| BE .BE 13 4 Mol 5k [

M= Goand .-| B 1% 187
S — | {30 130 4

T L

m_

12 123 172 657457 WE T L
140 106 &0 TERIBO 142 142 i3 ¢ tBO BT ET o
i3 M dETdTidEa W1 M1 ks wota bzt taa s fa e
HE Terdazd63 M5 @0 e dE 46 £5 1§ =
IFyou're underpricing your T TEadIeds0 0 v Ttttz
rooms by as little as $1.00Mmight CHTINE hawane oroesy s nastiones Sanf adcian frends B vnur s
yvou're lasing up to $36 000N ear - '
for every 100 rooms you
manage Flug ¥nudch ok

nsf athers within your

I wrote TrackRates.com to help hotel managers analyze local markets and provide facts for
setting room prices. Without the TrackRates.com webbot, hotel managers either need to

guess what their rooms are worth, rely on less current information about their local hotel
market, or go through the arduous task of manually collecting this data.

Webbots That Interpret What They Find Online

WebSiteOptimization.com (http://www.websiteoptimization.com) uses a webbot to help web

developers create websites that use resources effectively. This webbot accepts a web page's
URL (as shown in TrackRates.com) and analyzes how each graphic, CSS, and JavaScript file is

used by the web page. In the interest of full disclosure, | should mention that | wrote the
back end for this web page analyzer.

A website-analyzing webbot

http://trackrates.com/
http://trackrates.com/
http://websiteoptimization.com/
http://www.websiteoptimization.com/

II Web Page Analyzer - free website optimzatsen tool website speed test check webstie performance repo...
Be Edt l§ew Hgtory Bookmads Yool Toos Help

" WebSiteOptimization.com

.-"- Highes traflic amd speed guaranteed,™

Home: Sitemap Publications Services Abowt Mawslatiar: |sne =mal
Contact Jon L
home = saryices = analyze About the Book
About the suthor
Web Page Analyzer - 0.961 - Tabla of Contants
from Website Optimization Prass B
Pre=s Kit
Free Website Perfermance Tool and Errata
Web Page Speed Analysis Buy at Amazon US
Buy at Amazon CA
Tr"" our free webs 2ibs ‘:'.I}Eﬂd teat b i|'|'||:ll'l:I|.'I: [ST] E-l.l'gl' at Amazon DE

Earformands, Enbar & URL Below Do calilate pags sige,
compesition, and dowrload tima. The saipt calocuates the size
of Individua 2lemsnts and sums up 2ach tyoe of web page By at Afnazon UK
COMpenEnt. Based on these page chargeferisdcs the saipt
then offers adwce on how 1o Improve page load tme, The
Mt heorporates best practices from HCL reszarch amd web
sife Gptimizatisn technlques NG 65 recrmmeandackns,

Buy at Amazon FR

Erber URL to
dizgrose:

The WebSiteOptimization.com webbot analyzes the data it collects and offers suggestions for

optimizing website performance. Without this tool, developers would have to manually parse
through their HTML code to determine which files are required by web pages, how much
bandwidth they are using, and how the organization of the web page affects its performance.

Webbots That Act on Your Behalf

Pokerbots, webbots that play online poker, are a response to the recent growth in online
gambling sites, particularly gaming sites with live poker rooms. While the action in these
pokers sites is live, not all the players are. Some online poker players are webbots, like Poker
Robot, shown in An example pokerbot.

Webbots designed to play online poker not only know the rules of Texas hold ‘em but use
predetermined business rules to expertly read how others play. They use this information to
hold, fold, or bet appropriately. Reportedly, these automated players can very effectively pick
the pockets of new and inexperienced poker players. Some collusion webbots even allow one
virtual player to play multiple hands at the same table, while making it look like a separate
person is playing each hand. Imagine playing against a group of people who not only know
each other's cards, but hold, fold, and bet against you as a team!

Obviously, such webbots that play expert poker (and cheat) provide a tremendous advantage.

Nobody knows exactly how prevalent pokerbots are, but they have created a market for anti-
pokerbot software like Poker BodyGuard, distributed by StopPokerCheaters.com.

An example pokerbot

Iwvww.allitebooks.conl

http://websiteoptimization.com/
http://stoppokercheaters.com/
http://www.allitebooks.org

22 lanuary Bhoord | By | Cortact | Domrlosd [Fog | Mews | Fress Relesses | Tell 5 Frsnd

Haccarat Robot Poker Robot

fark pamanon Rokint

Slatkjack Bxlenk

Latest Mews: Poker Robot now plays 5 tables at onoe!
Crafns
The screenshots below ara talcen from a typical sessian

playeg fus random $LOEE tabies. Poker Rabot mads RRL1.92
prafik in spprasimately 3 hours 40 minotes - thet's oeer £160
Rudette Robal profit per houe or ower 54,000 profit pec day!

Dthezr REFources

Pal Gow Foker BEnhok

Paker Babink

lime Gaming Links

] C
Poker Eobot automatically plays and wins online Poker D:H "-EH:"!

oo | for you. Allyou need to do is open and fend an
— acohunt, Mo eHperience required. vYou don't even need
::.-HLWJ T ks thie mlles of The gaameal m
MEWSSURST Human Fakar plavars hava twa I'|"IE|j|:l" flaws, D3 is amation, -—L—I—.
B E] teniinet] Part of the key to gaod Pakar is keeping yaur ematians in Py ot
B Plucks | chack, [na live gama you can gve away ‘tels' or get upset
3 et and siart playing pooiy. This Is oftan caled 'steaming’ ar Qoing
w ‘an bt Gread and aver-confidance when the cards are going
YOUr w3y Can be Just a5 bad, Computars don't have this
prablemn, giving them a naturd advantaga sinca thayp wil Py it
always play ther 'best’ gamea. The other majar flaw is lack of
patiance. Paopla play toa many hards befora the flop,
throwing monsy away with hands that should have been
falded. Poker Robot waits for only the very best hands!
Do

IDEAS FOR WEBBOT PROJECTS

It's often more difficult to find applications for new technology than it is to learn the
technology itself. Therefore, this chapter focuses on encouraging you to generate ideas for
things that you can do with webbots. We'll explore how webbots capitalize on browser
limitations, and we'll see a few examples of what people are currently doing with webbots.
We'll wrap up by throwing out some wild ideas that might help you expand your expectations
of what can be done online.

Inspiration from Browser Limitations

A useful method for generating ideas for webbot projects is to study what cannot be done by
simply pointing a browser at a typical website. You know that browsers, used in traditional
ways, cannot automate your Internet experience. For example, they have these limitations:

Browsers cannot aggregate and filter information for relevance
Browsers cannot interpret what they find online

Browsers cannot act on your behalf

However, a browser may leverage the power of a webbot to do many things that it could not
do alone. Let's look at some real-life examples of how browser limitations were leveraged into
actual webbot projects.

Webbots That Aggregate and Filter Information for Relevance

TrackRates.com (http://www.trackrates.com, shown in TrackRates.com) is a website that

deploys an army of webbots to aggregate and filter hotel room prices from travel websites. By
identifying room prices for specific hotels for specific dates, it determines the actual market
value for rooms up to three months into the future. This information helps hotel managers
intelligently price rooms by specifically knowing what the competition is charging for similar
rooms. TrackRates.com also reveals market trends by performing statistical analysis on room
prices, and it tries to determine periods of high demand by indicating dates on which hotels
have booked all of their rooms.

TrackRates.com

http://trackrates.com/
http://www.trackrates.com/
http://trackrates.com/
http://trackrates.com/

|'® TrackRates. com - Mozilla Firefox
Fia Edt ke Heloey Epdkmads vahool Took Help

Badh T FRonwa * Redoad Sn HOoma |] e e Crackrat s, comns

Fricing Analysis Tools to Help Hotel Managers Price Rooms

[

: _ Wlarmbar Lagin
Hatel Maime vIBW FiEiHIcE s e e |
I:IGA'.I:I"" '-l B 8% 1 L ARElSIs Or
Pasawond |
Ballys '-l 3 B 1l 1L i [ERa
Flemingz 'r| BE .BE 13 4 Mol 5k [

M= Goand .-| B 1% 187
S — | {30 130 4

T L

m_

12 123 172 657457 WE T L
140 106 &0 TERIBO 142 142 i3 ¢ tBO BT ET o
i3 M dETdTidEa W1 M1 ks wota bzt taa s fa e
HE Terdazd63 M5 @0 e dE 46 £5 1§ =
IFyou're underpricing your T TEadIeds0 0 v Ttttz
rooms by as little as $1.00Mmight CHTINE hawane oroesy s nastiones Sanf adcian frends B vnur s
yvou're lasing up to $36 000N ear - '
for every 100 rooms you
manage Flug ¥nudch ok

nsf athers within your

I wrote TrackRates.com to help hotel managers analyze local markets and provide facts for
setting room prices. Without the TrackRates.com webbot, hotel managers either need to

guess what their rooms are worth, rely on less current information about their local hotel
market, or go through the arduous task of manually collecting this data.

Webbots That Interpret What They Find Online

WebSiteOptimization.com (http://www.websiteoptimization.com) uses a webbot to help web

developers create websites that use resources effectively. This webbot accepts a web page's
URL (as shown in TrackRates.com) and analyzes how each graphic, CSS, and JavaScript file is

used by the web page. In the interest of full disclosure, | should mention that | wrote the
back end for this web page analyzer.

A website-analyzing webbot

http://trackrates.com/
http://trackrates.com/
http://websiteoptimization.com/
http://www.websiteoptimization.com/

II Web Page Analyzer - free website optimzatsen tool website speed test check webstie performance repo...
Be Edt l§ew Hgtory Bookmads Yool Toos Help

" WebSiteOptimization.com

.-"- Highes traflic amd speed guaranteed,™

Home: Sitemap Publications Services Abowt Mawslatiar: |sne =mal
Contact Jon L
home = saryices = analyze About the Book
About the suthor
Web Page Analyzer - 0.961 - Tabla of Contants
from Website Optimization Prass B
Pre=s Kit
Free Website Perfermance Tool and Errata
Web Page Speed Analysis Buy at Amazon US
Buy at Amazon CA
Tr"" our free webs 2ibs ‘:'.I}Eﬂd teat b i|'|'||:ll'l:I|.'I: [ST] E-l.l'gl' at Amazon DE

Earformands, Enbar & URL Below Do calilate pags sige,
compesition, and dowrload tima. The saipt calocuates the size
of Individua 2lemsnts and sums up 2ach tyoe of web page By at Afnazon UK
COMpenEnt. Based on these page chargeferisdcs the saipt
then offers adwce on how 1o Improve page load tme, The
Mt heorporates best practices from HCL reszarch amd web
sife Gptimizatisn technlques NG 65 recrmmeandackns,

Buy at Amazon FR

Erber URL to
dizgrose:

The WebSiteOptimization.com webbot analyzes the data it collects and offers suggestions for

optimizing website performance. Without this tool, developers would have to manually parse
through their HTML code to determine which files are required by web pages, how much
bandwidth they are using, and how the organization of the web page affects its performance.

Webbots That Act on Your Behalf

Pokerbots, webbots that play online poker, are a response to the recent growth in online
gambling sites, particularly gaming sites with live poker rooms. While the action in these
pokers sites is live, not all the players are. Some online poker players are webbots, like Poker
Robot, shown in An example pokerbot.

Webbots designed to play online poker not only know the rules of Texas hold ‘em but use
predetermined business rules to expertly read how others play. They use this information to
hold, fold, or bet appropriately. Reportedly, these automated players can very effectively pick
the pockets of new and inexperienced poker players. Some collusion webbots even allow one
virtual player to play multiple hands at the same table, while making it look like a separate
person is playing each hand. Imagine playing against a group of people who not only know
each other's cards, but hold, fold, and bet against you as a team!

Obviously, such webbots that play expert poker (and cheat) provide a tremendous advantage.

Nobody knows exactly how prevalent pokerbots are, but they have created a market for anti-
pokerbot software like Poker BodyGuard, distributed by StopPokerCheaters.com.

An example pokerbot

http://websiteoptimization.com/
http://stoppokercheaters.com/

22 lanuary Bhoord | By | Cortact | Domrlosd [Fog | Mews | Fress Relesses | Tell 5 Frsnd

Haccarat Robot Poker Robot

fark pamanon Rokint

Slatkjack Bxlenk

Latest Mews: Poker Robot now plays 5 tables at onoe!
Crafns
The screenshots below ara talcen from a typical sessian

playeg fus random $LOEE tabies. Poker Rabot mads RRL1.92
prafik in spprasimately 3 hours 40 minotes - thet's oeer £160
Rudette Robal profit per houe or ower 54,000 profit pec day!

Dthezr REFources

Pal Gow Foker BEnhok

Paker Babink

lime Gaming Links

= C
Poker Eobot automatically plays and wins online Poker D:H "-EH:"!
for you. &l you need to do is open and fund an

el 4| acohunt, Mo eHperience required. vYou don't even need
413 :-:m:ﬂ" ti ki Hhe miles of the goaane)
HEWSSURST Human Pakar playars hawa twa major flaws, Ona s amation, -
B E] teniinet] Part of the key to gaod Pakar is keeping yaur ematians in Py ot
[+ = } i chack, [na live gama you can @ve away tels’ or get upset
3 et and siart playing pooiy. This Is oftan caled 'steaming’ ar Qoing
w ‘an bt Gread and aver-confidance when the cards are going
YOUr w3y Can be Just a5 bad, Computars don't have this
prablemn, giving them a naturd advantaga sinca thayp wil Py it
always play ther 'best’ gamea. The other majar flaw is lack of
patiance. Paopla play toa many hards befora the flop,
throwing monsy away with hands that should have been
falded. Poker Robot waits for only the very best hands!
Do

A Few Crazy ldeas to Get You Started

One of the goals of this book is to encourage you to write new and experimental webbots of
your own design. A way to jumpstart this process is to brainstorm and generate some ideas
for potential projects. I've taken this opportunity to list a few ideas to get you started. These
ideas are not here necessarily because they have commercial value. Instead, they should act
as inspiration for your own webbots and what you want to accomplish online.

When designing a webbot, remember that the more specifically you can define the task, the
more useful your webbot will be. What can you do with a webbot? Let's look at a few
scenarios.

Help Out a Busy Executive

Suppose you're a busy executive type and you like to start your day reading your online
industry publication. Time is limited, however, and you only let yourself read industry news
until you've finished your first cup of coffee. Therefore, you don't want to be bothered with
stories that you've read before or that you know are not relevant to your business. You ask
your developer to create a specialized webbot that consolidates articles from your favorite
industry news sources and only displays links to stories that it has not shown you before.

The webbot could ignore articles that contain certain key phrases you previously entered in an

exclusion listH and highlight articles that contain references to you or your competitors. With
such an application, you could quickly scan what's happening in your industry and only spend
time reading relevant articles. You might even have more time to enjoy your coffee.

0 An exclusion list is a list of keywords or phrases that are ignored by a webbot.

Save Money by Automating Tasks

It's possible to design a webbot that automatically buys inventory for a store, given a
predetermined set of buying criteria. For example, assume you own a store that sells used

travel gear. Some of your sources for inventory are online auction websites.l Say you are
interested in bidding on under-priced Tumi suitcases during the closing minute of their
auctions. If you don't use a webbot of some sort, you will have to use a web browser to check
each auction site periodically.

0 some online auctions actually provide tools to help you write webbots that manage auctions. If you're
interested in automating online auctions, check out eBay's Developers Program (http://developer.ebay.

com).

Without a webbot, it can be expensive to use the Internet in a business setting, because
repetitive tasks (like procuring inventory) are time consuming without automation.
Additionally, the more mundane the task, the greater the opportunity for human error.
Checking online auctions for products to resell could easily consume one or two hours a day—
up to 25 percent of a 40-hour work week. At that rate, someone with an annual salary of
$80,000 would cost a company $20,000 a year to procure inventory (without a webbot). That
cost does not include the cost of opportunities lost while the employee manually surfs auction
sites. In scenarios like this, it's easy to see how product acquisition with a webbot saves a lot
of money—even for a small business with small requirements. Additionally, a webbot may

http://developer.ebay.com/
http://developer.ebay.com/

uncover bargains missed by someone manually searching the auction site.

Protect Intellectual Property

You can write a webbot to protect your online intellectual property. For example, suppose you
spent many hours writing a JavaScript program. It has commercial value, and you license the
script for others to use for a fee. You've been selling the program for a few months and have
learned that some people are downloading and using your program without paying for it. You
write a webbot to find websites that are using your JavaScript program without your
permission. This webbot searches the Internet and makes a list of URLs that reference your
JavaScript file. In a separate step, the webbot does a whois lookup on the domain to

determine the owner from the domain registrar.[] If the domain is not one of your registered
users, the webbot compiles contact information from the domain registrar so you can contact
the parties who are using unlicensed copies of your code.

0 whois is a service that returns information about the owner of a website. You can do the equivalent of a
whois from a shell script or from an online service.

Monitor Opportunities

You can also write webbots that alert you when particular opportunities arise. For example,

let's say that you have an interest in acquiring a Jack Russell Terrier.l Instead of devoting
part of each day to searching for your new dog, you decide to write a webbot to search for
you and notify you when it finds a dog meeting your requirements. Your webbot performs a
daily search of the websites of local animal shelters and dog rescue organizations. It parses
the contents of the sites, looking for your dog. When the webbot finds a Jack Russell Terrier,
it sends you an email notification describing the dog and its location. The webbot also records
this specific dog in its database, so it doesn't send additional notifications for the same dog in
the future. This is a fairly common webbot task, which could be modified to automatically
discover job listings, sports scores, or any other timely information.

iy actually met my dog online.

Verify Access Rights on a Website

Webbots may prevent the potentially nightmarish situation that exists for any web developer
who mistakenly gives one user access to another user's data. To avoid this situation, you
could commission a webbot to verify that all users receive the correct access to your site. This
webbot logs in to the site with every viable username and password. While acting on each
user's behalf, the webbot accesses every available page and compares those pages to a list of
appropriate pages for each user. If the webbot finds a user is inadvertently able to access
something he or she shouldn't, that account is temporarily suspended until the problem is
fixed. Every morning before you arrive at your office, the webbot emails a report of any
irregularities it found the night before.

Create an Online Clipping Service

Suppose you're very vain, and you'd like a webbot to send an email to your mother every

time a major news service mentions your name. However, since you're not vain enough to
check all the main news websites on a regular basis, you write a webbot that accomplishes
the task for you. This webbot accesses a collection of websites, including CNN, Forbes, and
Fortune. You design your webbot to look only for articles that mention your name, and you

employ an exclusion list to ignore all articles that contain words or phrases like shakedown,
corruption, or money laundering. When the webbot finds an appropriate article, it
automatically sends your mother an email with a link to the article. Your webbot also blind
copies you on all emails it sends so you know what she's talking about when she calls.

Plot Unauthorized Wi-Fi Networks

You could write a webbot that aids in maintaining network security on a large corporate
campus. For example, suppose that you recently discovered that you have a problem with
employees attaching unauthorized wireless access points to your network. Since these
unauthorized access points occur inside your firewalls and proxies, you recognize that these
unauthorized Wi-Fi networks pose a security risk that you need to control. Therefore, in
addition to a new security policy, you decide to create a webbot that automatically finds and
records the location of all wireless networks on your corporate campus.

You notice that your mail room uses a small metal cart to deliver mail. Because this cart
reaches every corner of the corporate campus on a daily basis, you seek and obtain
permission to attach a small laptop computer with a webbot and Global Positioning System
(GPS) card to the cart. As your webbot hitches a ride through the campus, it looks for open
wireless network connections. When it finds a wireless network, it uses the open network to
send its GPS location to a special website. This website logs the GPS coordinates, IP address,
and date of uplink in a database. If you did your homework correctly, in a few days your
webbot should create a map of all open Wi-Fi networks, authorized and unauthorized, in your
entire corporate campus.

Track Web Technologies

You could write webbots that use web page headers, the information that servers send to
browsers so they may correctly render websites, to maintain a list of web technologies used
by major corporations. Headers typically indicate the type of webserver (and often the
operating system) that websites use, as shown in A web page header showing server

technology.
A web page header showing server technology

@ Shell -0 x|

|

Your webbot starts by accessing the headers of each website from a list that you keep in a
database. It then parses web technology information from the header. Finally, the webbot
stores that information in a database that is used by a graphing program to plot how server

technology choices change over time.

Allow Incompatible Systems to Communicate

In addition to creating human-readable output, you could design a webbot that only talks to
other computers. For example, let's say that you want to synchronize two databases, one on
a local private network and one that's behind a public website. In this case, synchronization
(ensuring that both databases contain the same information) is difficult because the systems
use different technologies with incompatible synchronization techniques. Given the
circumstances, you could write a webbot that runs on your private network and, for example,
analyzes the public database through a password-protected web service every morning. The
webbot uses the Internet as a common protocol between these databases, analyzes data on
both systems, and exchanges the appropriate data to synchronize the two databases.

Final Thoughts

Studying browser limitations is one way to uncover ideas for new webbot designs. You've
seen some real-world examples of webbots in use and read some descriptions of conceptual
webbot designs. But, enough with theory—let's head to the lab!

The next four chapters describe the basics of webbot development: downloading pages,
parsing data, emulating form submission, and managing large amounts of data. Once you
master these concepts, you can move on to actual webbot projects.

Iwww . al litebooks.con]

http://www.allitebooks.org

DOWNLOADING WEB PAGES

The most important thing a webbot does is move web pages from the Internet to your
computer. Once the web page is on your computer, your webbot can parse and manipulate it.

This chapter will show you how to write simple PHP scripts that download web pages. More
importantly, you'll learn PHP's limitations and how to overcome them with PHP/CURL, a
special binding of the cURL library that facilitates many advanced network features. cURL is
used widely by many computer languages as a means to access network files with a number
of protocols and options.

Note: While web pages are the most common targets for webbots and spiders, the Web is not the
only source of information for your webbots. Later chapters will explore methods for extracting
data from newsgroups, email, and FTP servers, as well.

Prior to discovering PHP, | wrote webbots in a variety of languages, including Visual Basic,
Java, and Tcl/Tk. But due to its simple syntax, in-depth string parsing capabilities, networking
functions, and portability, PHP proved ideal for webbot development. However, PHP is
primarily a server language, and its chief purpose is to help webservers interpret incoming
requests and send the appropriate web pages in response. Since webbots don't serve pages
(they request them), this book supplements PHP built-in functions with PHP/CURL and a
variety of libraries, developed specifically to help you learn to write webbots and spiders.

Think About Files, Not Web Pages

To most people, the Web appears as a collection of web pages. But in reality, the Web is
collection of files that form those web pages. These files may exist on servers anywhere in the
world, and they only create web pages when they are viewed together. Because browsers
simplify the process of downloading and rendering the individual files that make up web
pages, you need to know the nuts and bolts of how web pages are put together before you
write your first webbot.

When your browser requests a file, as shown in When a browser requests a web page, it first
receives an index file., the webserver that fields the request sends your browser a default or

index file, which maps the location of all the files that the web page needs and tells how to
render the text and images that comprise that web page.

When a browser requests a web page, it first receives an index file.

Wab page requested

=i
Briowrser Wabservar
[ndex file refurned

As a rule, this index file also contains references to the other files required to render the

complete web page,[] as shown in Downloading files, as they are referenced by the index file.

These may include images, JavaScript, style sheets, or complex media files like Flash,
QuickTime, or Windows Media files. The browser downloads each file separately, as it is
referenced by the index file.

0 some very simple websites consist of only one file.

Downloading files, as they are referenced by the index file

Wabsarwar

Browser

- Wehsarvar

Wabsarver

Wabsarvar

For example, if you request a web page with references to eight items your single web page
actually executes nine separate file downloads (one for the web page and one for each file
referenced by the web page). Usually, each file resides on the same server, but they could
just as easily exist on separate domains, as shown in Downloading files, as they are
referenced by the index file.

DOWNLOADING WEB PAGES

The most important thing a webbot does is move web pages from the Internet to your
computer. Once the web page is on your computer, your webbot can parse and manipulate it.

This chapter will show you how to write simple PHP scripts that download web pages. More
importantly, you'll learn PHP's limitations and how to overcome them with PHP/CURL, a
special binding of the cURL library that facilitates many advanced network features. cURL is
used widely by many computer languages as a means to access network files with a number
of protocols and options.

Note: While web pages are the most common targets for webbots and spiders, the Web is not the
only source of information for your webbots. Later chapters will explore methods for extracting
data from newsgroups, email, and FTP servers, as well.

Prior to discovering PHP, | wrote webbots in a variety of languages, including Visual Basic,
Java, and Tcl/Tk. But due to its simple syntax, in-depth string parsing capabilities, networking
functions, and portability, PHP proved ideal for webbot development. However, PHP is
primarily a server language, and its chief purpose is to help webservers interpret incoming
requests and send the appropriate web pages in response. Since webbots don't serve pages
(they request them), this book supplements PHP built-in functions with PHP/CURL and a
variety of libraries, developed specifically to help you learn to write webbots and spiders.

Think About Files, Not Web Pages

To most people, the Web appears as a collection of web pages. But in reality, the Web is
collection of files that form those web pages. These files may exist on servers anywhere in the
world, and they only create web pages when they are viewed together. Because browsers
simplify the process of downloading and rendering the individual files that make up web
pages, you need to know the nuts and bolts of how web pages are put together before you
write your first webbot.

When your browser requests a file, as shown in When a browser requests a web page, it first
receives an index file., the webserver that fields the request sends your browser a default or

index file, which maps the location of all the files that the web page needs and tells how to
render the text and images that comprise that web page.

When a browser requests a web page, it first receives an index file.

Wab page requested

=i
Briowrser Wabservar
[ndex file refurned

As a rule, this index file also contains references to the other files required to render the

complete web page,[] as shown in Downloading files, as they are referenced by the index file.

These may include images, JavaScript, style sheets, or complex media files like Flash,
QuickTime, or Windows Media files. The browser downloads each file separately, as it is
referenced by the index file.

0 some very simple websites consist of only one file.

Downloading files, as they are referenced by the index file

Wabsarwar

Browser

- Wehsarvar

Wabsarver

Wabsarvar

For example, if you request a web page with references to eight items your single web page
actually executes nine separate file downloads (one for the web page and one for each file
referenced by the web page). Usually, each file resides on the same server, but they could
just as easily exist on separate domains, as shown in Downloading files, as they are
referenced by the index file.

Downloading Files with PHP's Built-in Functions

Before you can appreciate PHP/CURL, you'll need to familiarize yourself with PHP's built-in
functions for downloading files from the Internet.

Downloading Files with fopen() and fgets()

PHP includes two simple built-in functions for downloading files from a network—f open() and
fgets(). The fopen() function does two things. First, it creates a network socket, which

represents the link between your webbot and the network resource you want to retrieve.
Second, it implements the HTTP protocol, which defines how data is transferred. With those
tasks completed, f get s() leverages the networking ability of your computer's operating

system to pull the file from the Internet.
Creating Your First Webbot Script

Let's use PHP's built-in functions to create your first webbot, which downloads a "Hello,
world!" web page from this book's companion website. The short script is shown in Listing 3-1.

Define the file you want to downl oad
$t ar get "http://ww. schrenk. com nost arch/ webbot s/ hell o_worl d. htm ";
$file_handl e = fopen($target, "r");

Fetch the file
while (!feof ($file_handle))

echo fgets($file_handle, 4096);
fclose($fil e_handle);

Listing 3-1: Downloading a file from the Web with f open() and f get s()

As shown in Listing 3-1, f open() establishes a network connection to the target, or file you

want to download. It references this connection with a file handle, or network link called
$fil e_handl e. The script then uses f open() to fetch and echo the file in 4,096-byte chunks

until it has downloaded and displayed the entire file. Finally, the script executes an f cl ose()
to tell PHP that it's finished with the network handle.

Before we can execute the example in Listing 3-1, we need to examine the two ways to
execute a webbot: You can run a webbot either in a browser or in a command shell.l

0 See SCHEDULING WEBBOTS AND SPIDERS for more information on executing webbots as scheduled
events.

Executing Webbots in Command Shells

If you have a choice, it is usually better to execute webbots from a shell or command line.
Webbots generally don't care about web page formatting, so they will display exactly what is
returned from a webserver. Browsers, in contrast, will interpret HTML tags as instructions for
rendering the web page. For example, Running a webbot script in a shell shows what Listing 3-

1 looks like when executed in a shell.

e LlETLING_: il
[

'E HTHL FUE AANPCASRTE HTHLE: 4.8 Tranms ik ismal-~EH">

sttt b Hellao, woeld?< it lal

To run a webbot script in a browser, simply load the script on a webserver and execute it by
loading its URL into the browser's location bar as you would any other web page. Contrast
Running a webbot script in a shell with Browser "rendering” the output of a webbot, where
the same script is run within a browser. The HTML tags are gone, as well as all of the
structure of the returned file; the only things displayed are two lines of text. Running a

webbot in a browser only shows a partial picture and often hides important information that a
webbot needs.

Note: To display HTML tags within a browser, surround the output with <xnp> and </ xnp> tags.

Browser "rendering" the output of a webbot

|'@ Hollo_would) - Mozilla Firefox 1= |
Bl BdC WeW Hehory Boolmerks Took Helo

Congratulations! Fyou can read this,
oLl SUCCESSTuly dovmloadod s il

Browser buffering is another complication you might run into if you try to execute a webbot in
a browser. Buffering is useful when you're viewing web pages because it allows a browser to
wait until it has collected enough of a web page before it starts rendering or displaying the
web page. However, browser buffering is troublesome for webbots because they frequently
run for extended periods of time—much longer than it would take to download a typical web
page. During prolonged webbot execution, status messages written by the webbot may not be
displayed by the browser while it is buffering the display.

I have one webbot that runs continuously; in fact, it once ran for seven months before
stopping during a power outage. This webbot could never run effectively in a browser because
browsers are designed to render web pages with files of finite length. Browsers assume short
download periods and may buffer an entire web page before displaying anything—therefore,
never displaying the output of your webbot.

Note: Browsers can still be very useful for creating interfaces that set up or control the actions of
a webbot. They can also be useful for displaying the results of a webbot's work.

Downloading Files with file()

An alternative to f open() and fget s() is the function fil e(), which downloads formatted
files and places them into an array. This function differs from f open() in two important ways:
One way is that, unlike f open(), it does not require you to create a file handle, because it

creates all the network preparations for you. The other difference is that it returns the
downloaded file as an array, with each line of the downloaded file in a separate array
element. The script in Listing 3-2 downloads the same web page used in Listing 3-1, but it
uses the fil e() command.

<?
/1 Downl oad the target file
$target = "http://ww. schrenk. com nost arch/ webbots/hello_world. htm";

$downl oaded _page_array = file($target);

/'l Echo contents of file
for($xx=0; $xx<count ($downl oaded_page_array); Sxx++)

echo $downl oaded_page_array[$xx] ;
?>

Listing 3-2: Downloading files with fi | e()

The fil e() function is particularly useful for downloading comma-separated value (CSV) files,
in which each line of text represents a row of data with columnar formatting (as in an Excel
spreadsheet). Loading files line-by-line into an array, however, is not particularly useful when
downloading HTML files because the data in a web page is not defined by rows or columns; in
a CSV file, however, rows and columns have specific meaning.

Introducing PHP/CURL

While PHP is capable when it comes to simple file downloads, most real-life applications
require additional functionality to handle advanced issues such as form submission,
authentication, redirection, and so on. These functions are difficult to facilitate with PHP's
built-in functions alone. Therefore, most of this book's examples use PHP/CURL to download
files.

The open source cURL project is the product of Swedish developer Daniel Stenberg and a
team of developers. The cURL library is available for use with nearly any computer language
you can think of. When cURL is used with PHP, it's known as PHP/CURL.

The name cURL is either a blend of the words client and URL or an acronym for the words
client URL Request Library—you decide. cURL does everything that PHP's built-in networking
functions do and a lot more. PHP/CURL REFERENCE expands on cURL's features, but here's a

quick overview of the things PHP/CURL can do for you, a webbot developer.

Multiple Transfer Protocols

Unlike the built-in PHP network functions, cURL supports multiple transfer protocols, including
FTP, FTPS, HTTP, HTTPS, Gopher, Telnet, and LDAP. Of these protocols, the most important is
probably HTTPS, which allows webbots to download from encrypted websites that employ the
Secure Sockets Layer (SSL) protocol.

Form Submission

CcURL provides easy ways for a webbot to emulate browser form submission to a server. cURL
supports all of the standard methods, or form submission protocols, as you'll learn in
AUTOMATING FORM SUBMISSION.

Basic Authentication

cURL allows webbots to enter password-protected websites that use basic authentication.
You've encountered authentication if you've seen this familiar gray box, shown in A basic

authentication prompt, asking for your username and password. PHP/CURL makes it easy to
write webbots that enter and use password-protected websites.

A basic authentication prompt

| hiithe tic atian Requiied E
v Erber usernane snd passsord For "Super Secnet Srea® b bt pe ffocs ot
25 sy name:
|
Pazzrord;

[U Passssord Managar b ramasmber this pasesced.

o | | Canedl

Cookies

Without cURL, it is difficult for webbots to read and write cookies, those small bits of data that
websites use to create session variables that track your movement. Websites also use cookies
to manage shopping carts and authenticate users. cURL makes it easy for your webbot to
interpret the cookies that webservers send it; it also simplifies the process of showing
webservers all the cookies your webbot has written. AUTHENTICATION and ADVANCED

COOKIE MANAGEMENT have much more to say on the subject of webbots and cookies.

Redirection

Redirection occurs when a web browser looks for a file in one place, but the server tells it that
the file has moved and that it should download it from another location. For example, the
website www.company.com may use redirection to force browsers to go to www.company.
com/spring_sale when a seasonal promotion is in place. Browsers handle redirections
automatically, and cURL allows webbots to have the same functionality.

Agent Name Spoofing

Every time a webserver receives a file request, it stores the requesting agent's name in a log
file called an access log file. This log file stores the time of access, the IP address of the
requester, and the agent name, which identifies the type of program that requested the file.
Generally, agent names identify the browser that the web surfer was using to view the
website.

Some agent names that a server log file may record are shown in Listing 3-3. The first four
names are browsers; the last is the Google spider.

Code View:

Mozilla/5.0 (Wndows; U, Wndows NT 5.1; rv:1.7.6) Gecko/20050225 Firefox/1.0.1
Mozilla/4.0 (conpatible; MSIE 5.0; Wndows 2000) Opera 6.03 [en]

Mozilla/5.0 (conpatible; Konqueror/3.1-rc3; i686 Linux; 20020515)

Mozilla/4.0 (conpatible; MSIE 7.0b; Wndows NT 5.1)

Googl ebot /2.1 (+http://ww. googl e. conf bot. htnl)

Listing 3-3: Agent names as seen in a file access log

A webbot using cURL can assume any appropriate (or inappropriate) agent name. For
example, sometimes it is advantageous to identify your webbots, as Google does. Other
times, it is better to make your webbot look like a browser. If you write webbots that use the
LI B_htt p library (described later), your webbot's agent name will be Test Webbot. If you

download a file from a webserver with PHP's f open() or fil e() functions, your agent name
will be the version of PHP installed on your computer.

Referer Management

cURL allows webbot developers to change the referer, which is the reference that servers use

http://www.company.com/
http://www.company.com/spring_sale
http://www.company.com/spring_sale

to detect which link the web surfer clicked. Sometimes webservers use the referer to verify
that file requests are coming from the correct place. For example, a website might enforce a
rule that prevents downloading of images unless the referring web page is also on the same
webserver. This prohibits people from bandwidth stealing, or writing web pages using images
on someone else's server. cURL allows a webbot to set the referer to an arbitrary value.

Socket Management

CURL also gives webbots the ability to recognize when a webserver isn't going to respond to a
file request. This ability is vital because, without it, your webbot might hang (forever) waiting
for a server response that will never happen. With cURL, you can specify how long a webbot
will wait for a response from a server before it gives up and moves on.

Iwww . al litebooks.con]

http://www.allitebooks.org

Installing PHP/CURL

Since PHP/CURL is tightly integrated with PHP, installation should be unnecessary, or at
worst, easy. You probably already have PHP/CURL on your computer; you just need to enable
it in php.ini, the PHP configuration file. If you're using Linux, FreeBSD, OS X, or another Unix-
based operating system, you may have to recompile your copy of Apache/PHP to enjoy the
benefits of PHP/CURL. Installing PHP/CURL is similar to installing any other PHP library. If you
need help, you should reference the PHP website (http://www.php.net) for the instructions for

your particular operating system and PHP version.

http://www.php.net/

LIB_http

Since PHP/CURL is very flexible and has many configurations, it is often handy to use it within a
wrapper function, which simplifies the complexities of a code library into something easier to
understand. For your convenience, this book uses a library called LI B_ht t p, which provides

wrapper functions to the PHP/CURL features you'll use most. The remainder of this chapter
describes the basic functions of the LI B_htt p library.

LI B_http is a collection of PHP/CURL routines that simplify downloading files. It contains

defaults and abstractions that facilitate downloading files, managing cookies, and completing
online forms. The name of the library refers to the HTTP protocol used by the library. Some of
the reasons for using this library will not be evident until we cover its more advanced features.
Even simple file downloads, however, are made easier and more robust with LI B_ht t p because

of PHP/CURL. The most recent version of LI B_ht t p is available at this book's website.

Familiarizing Yourself with the Default Values

To simplify its use, LI B_htt p sets a series of default conditions for you, as described below:

. Your webbot's agent name is Test Webbot.
. Your webbot will time out if a file transfer doesn't complete within 25 seconds.
Your webbot will store cookies in the file c:\ cookie.txt.

Your webbot will automatically follow a maximum of four redirections, as directed by
servers in HTTP headers.

. Your webbot will, if asked, tell the remote server that you do not have a local
authentication certificate. (This is only important if you access a website employing SSL
encryption, which is used to protect confidential information on e-commerce websites.)

These defaults are set at the beginning of the file. Feel free to change any of these settings to
meet your specific needs.

Using LIB_http

The LI B_htt p library provides a set of wrapper functions that simplify complicated PHP/CURL
interfaces. Each of these interfaces calls a common routine, htt p(), which performs the
specified task, using the values passed to it by the wrapper interfaces. All functions in LI B_http

share a similar format: A target and referring URL are passed, and an array is returned,
containing the contents of the requested file, transfer status, and error conditions.

While LI B_htt p has many functions, we'll restrict our discussion to simply fetching files from
the Internet using HTTP. The remaining features are described as needed throughout the book.

http _get()

The function htt p_get () downloads files with the GET method; it has many advantages over
PHP's built-in functions for downloading files from the Internet. Not only is the interface simple,

but this function offers all the previously described advantages of using PHP/CURL. The script in
Listing 3-4 shows how files are downloaded with http_get () .

Usage: http_get()
array http_get (string target _url, string referring_url)

Listing 3-4: Using http_get ()

These are the inputs for the script in Listing 3-4:

target _url is the fully formed URL of the desired file
referring_url is the fully formed URL of the referer

These are the outputs for the script in Listing 3-4:

$array[' FILE'] contains the contents of the requested file
$array[' STATUS'] contains status information regarding the file transfer
$array[' ERROR] contains a textual description of any errors

http_get_withheader()

When a web agent requests a file from the Web, the server returns the file contents, as
discussed in the previous section, along with the HTTP header, which describes various
properties related to a web page. Browsers and webbots rely on the HTTP header to determine
what to do with the contents of the downloaded file.

The data that is included in the HTTP header varies from application to application, but it may
define cookies, the size of the downloaded file, redirections, encryption details, or
authentication directives. Since the information in the HTTP header is critical to properly using a
network file, LI B_htt p configures cURL to automatically handle the more common header

directives. Listing 3-5 shows how this function is used.

Usage: http_get_w t hheader ()

array http_get _withheader (string target _url, string referring_url)
Listing 3-5: Using htt p_get ()

These are the inputs for the script in Listing 3-5:

target url is the fully formed URL of the desired file
referring_url is the fully formed URL of the referer

These are the outputs for the script in Listing 3-5:

$array[' FILE'] contains the contents of the requested file, including the HTTP header
$array[' STATUS'] contains status information about the file transfer
$array[' ERROR] contains a textual description of any errors

The example in Listing 3-6 uses the http_get _w t hheader () function to download a file and
display the contents of the returned array.

Include http library
i nclude("LIB_http. php");

Define the target and referer web pages
$target = "http://ww. schrenk. conf publications. php";
$ref = "http://ww. schrenk. cont';

Request the header
$return_array = http_get_ wi thheader ($target, $ref);

Display the header
echo "FI LE CONTENTS \n";
var _dunp($return_array[' FILE]);

echo "ERRORS \n";
var _dunp($return_array[' ERROR]);

echo "STATUS \n";

var _dunp($return_array[' STATUS']);

Listing 3-6: Using http_get _wi t hheader ()

The script in Listing 3-6 downloads the page and displays the requested page, any errors, and a
variety of status information related to the fetch and download.

Listing 3-7 shows what is produced when the script in Listing 3-6 is executed, with the array
that includes the page header, error conditions, and status. Notice that the contents of the
returned file are limited to only the HTTP header, because we requested only the header and
not the entire page. Also, notice that the first line in a HTTP header is the HTTP code, which
indicates the status of the request. An HTTP code of 200 tells us that the request was

successful. The HTTP code also appears in the status array element.l]
0a complete list of HTTP codes can be found in STATUS CODES.

Code View:

FI LE CONTENTS

string(215) "HTTP/ 1.1 200 K

Date: Sat, 08 Cct 2008 16:38:51 GMI

Server: Apache/2.0.53 (FreeBSD) nod_ssl/2.0.53 OpenSSL/0.9.7g PHP/ 4.4.0
X- Power ed-By: PHP/ 4.4.0

Content - Type: text/htm; charset=I SO 8859-1

ERRORS
string(0) ""

STATUS

array(20) {
["url"]=>
string(39) "http://ww.schrenk. conl publications. php"
["content type"]=>
string(29) "text/htm; charset=I SO 8859-1"
["http_code"]=>

i nt (200)

["header _size"]=>

i nt(215)

["request _size"]=>

i nt (200)
[“filetinme"]=>

int(-1)

["ssl _verify result"]=>
int(0)
["redirect_count"]=>
int(0)

["total _time"]=>

fl oat (0.683)

["namel ookup_tine"]=>
fl oat (0. 005)

["connect time"]=>

fl oat (0.101)
["pretransfer_tinme"]=>
float (0.101)
["size_upload"] =>

fl oat (0)
["size downl oad"] =>

fl oat (0)
["speed_downl oad"] =>

fl oat (0)

["speed_upl oad"] =>

fl oat (0)

["downl oad_content | ength"]=>
fl oat (0)

["upl oad_content | ength"] =>
fl oat (0)

["starttransfer_tinme"]=>
fl oat (0.683)

["redirect _tinme"]=>

f1 oat (0)

Listing 3-7: File contents, errors, and the download status array returned by LI B _http

The information returned in $array[' STATUS'] is extraordinarily useful for learning how the
fetch was conducted. Included in this array are values for download speed, access times, and
file sizes—all valuable when writing diagnostic webbots that monitor the performance of a
website.

Learning More About HTTP Headers

When a Content-Type line appears in an HTTP header, it defines the MIME, or the media type of
file sent from the server. The MIME type tells the web agent what to do with the file. For
example, the Content-Type in the previous example was text/html, which indicates that the file
is a web page. Knowing if the file they just downloaded was an image or an HTML file helps
browsers know if they should display the file as text or render an image. For example, the HTTP
header information for a JPEG image is shown in Listing 3-8.

HTTP/ 1.1 200 OK

Date: Mbon, 23 Mar 2009 00: 06: 13 GMI

Server: Apache/1.3.12 (Unix) mod_throttle/3.1.2 tontat/1.0 PHP/ 4.0.3pl1
Last-Mdified: Wed, 23 Jul 2008 18:03:29 GVI

ETag: "74db-9063- 3d3eebf 1"

Accept - Ranges: bytes

Cont ent - Lengt h: 36963

Cont ent - Type: inmge/|jpeg

Listing 3-8: An HTTP header for an image file request

Examining LIB_http's Source Code
Most webbots in this book will use the library LI B_htt p to download pages from the Internet. If
you plan to explore any of the webbot examples that appear later in this book, you should

obtain a copy of this library; the latest version is available for download at this book's website.
We'll explore some of the defaults and functions of LI B_ht t p here.

LIB_http Defaults

At the very beginning of the library is a set of defaults, as shown in Listing 3-9.

Code View:

defi ne("WEBBOT_NAME", "Test Wbbot"); # How your webbot will appear in server
| ogs

define(" CURL_TI MEQUT", 25); # Time (seconds) to wait for network
response

define("COOKIE_FILE", "c:\cookie.txt"); # Location of cookie file

Listing 3-9: LI B_ht t p defaults
LIB_http Functions
The functions shown in Listing 3-10 are available within LI B_ht t p. All of these functions return

the array defined earlier, containing downloaded files, error messages, and the status of the file
transfer.

Code View:

http_get($target, $ref) # Sinple get request (W o header)
http_get _wi t hheader ($t arget, $ref) # Sinple get request (w header)
http_get form($target, $ref, $data_array) # Form (met hod ="GET", W o
header)

http_get _formw t hheader ($target, $ref, $data_array) # Form (nmethod ="GET", w header)
http_post forn($target, $ref, $data_array) # Form (et hod ="POST", w o
header)

http_post _w t hheader ($target, $ref, $data_array) # Form (et hod ="POST", w
header)

htt p_header ($t arget, $ref) # Only returns header

Listing 3-10: LI B_htt p functions

Final Thoughts

Some of these functions use an additional input parameter, $dat a_arr ay, when form data is
passed from the webbot to the webserver. These functions are listed below:

http_get form))
http_get formw t hheader ()
http_post_forn()

http_post_form w t hheader ()

If you don't understand what all these functions do now, don't worry. Their use will become
familiar to you as you go through the examples that appear later in this book. Now might be a
good time to thumb through PHP/CURL REFERENCE, which details the features of cURL that

webbot developers are most apt to need.

PARSING TECHNIQUES

Parsing is the process of segregating what's desired or useful from what is not. In the case of
webbots, parsing involves detecting and separating image names and addresses, key

phrases, hyper-references, and other information of interest to your webbot. For example, if
you are writing a spider that follows links on web pages, you will have to separate these links
from the rest of the HTML. Similarly, if you write a webbot to download all the images from a
web page, you will have to write parsing routines that identify all the references to image files.

Parsing Poorly Written HTML

One of the problems you'll encounter when parsing web pages is poorly written HTML. A large
amount of HTML is machine generated and shows little regard for human readability, and
hand-written HTML often disregards standards by ignoring closing tags or misusing quotes
around values. Browsers may correctly render web pages that have substandard HTML, but
poorly written HTML interferes with your webbot's ability to parse web pages.

Fortunately, a software library known as HTMLTidy[] will clean up poorly written web pages.
PHP includes HTMLTIidy in its standard distributions, so you should have no problem getting it
running on your computer. Installing HTMLTidy (also known as just Tidy) should be similar to

installing cURL. Complete installation instructions are available at the PHP website.

0 see http://tidy.sourceforge.net.
0 see http://www.php.net.

The parse functions (described next) rely on Tidy to put unparsed source code into a known
state, with known delimiters and known closing tags of known case.

Note: If you do not have HTMLTidy installed on your computer, the parsing described in this book
may not work correctly.

http://tidy.sourceforge.net/
http://www.php.net/

PARSING TECHNIQUES

Parsing is the process of segregating what's desired or useful from what is not. In the case of
webbots, parsing involves detecting and separating image names and addresses, key

phrases, hyper-references, and other information of interest to your webbot. For example, if
you are writing a spider that follows links on web pages, you will have to separate these links
from the rest of the HTML. Similarly, if you write a webbot to download all the images from a
web page, you will have to write parsing routines that identify all the references to image files.

Parsing Poorly Written HTML

One of the problems you'll encounter when parsing web pages is poorly written HTML. A large
amount of HTML is machine generated and shows little regard for human readability, and
hand-written HTML often disregards standards by ignoring closing tags or misusing quotes
around values. Browsers may correctly render web pages that have substandard HTML, but
poorly written HTML interferes with your webbot's ability to parse web pages.

Fortunately, a software library known as HTMLTidy[] will clean up poorly written web pages.
PHP includes HTMLTIidy in its standard distributions, so you should have no problem getting it
running on your computer. Installing HTMLTidy (also known as just Tidy) should be similar to

installing cURL. Complete installation instructions are available at the PHP website.

0 see http://tidy.sourceforge.net.
0 see http://www.php.net.

The parse functions (described next) rely on Tidy to put unparsed source code into a known
state, with known delimiters and known closing tags of known case.

Note: If you do not have HTMLTidy installed on your computer, the parsing described in this book
may not work correctly.

Iwww . al litebooks.con]

http://tidy.sourceforge.net/
http://www.php.net/
http://www.allitebooks.org

Standard Parse Routines

I have simplified parsing by identifying a few useful functions and placing them into a library
called LI B_par se. These functions (or a combination of them) provide everything needed for
99 percent of your parsing tasks. Whether or not you use the functions in LI B_par se, | highly
suggest that you standardize your parsing routines. Standardized parse functions make your
scripts easier to read and faster to write—and perhaps just as importantly, when you limit
your parsing options to a few simple solutions, you're forced to consider simpler approaches
to parsing problems. The latest version of LI B_par se is available from this book's website.

1 b

Using LIB_parse

The parsing library used in this book, LI B_par se, provides easy-to-read parsing functions that
should meet most parsing tasks your webbots will encounter. Primarily, LI B_par se contains

wrapper functions that provide simple interfaces to otherwise complicated routines. To use
the examples in this book, you should download the latest version of this library from the
book's website.

One of the things you may notice about LI B_par se is the lack of regular expressions.

Although regular expressions are the mainstay for parsing text, you won't find many of them
here. Regular expressions can be difficult to read and understand, especially for beginners.
The built-in PHP string manipulation functions are easier to understand and usually more
efficient than regular expressions.

The following is a description of the functions in LI B_par se and the parsing problems they
solve. These functions are also described completely within the comments of LI B_par se.

Splitting a String at a Delimiter: split_string()

The simplest parsing function returns a string that contains everything before or after a
delimiter term. This simple function can also be used to return the text between two terms.
The function provided for that task is split_string(), shown in Listing 4-1.

Code View:

/*
string split_string (string unparsed, string delimter, BEFORE AFTER,

| NCL/ EXCL)
Wher e

unparsed is the string to parse

delimter defines boundary between substring you want and substring you
don't want

BEFORE i ndi cates that you want what is before the delimter

AFTER i ndicates that you want what is after the deliniter

I NCL i ndicates that you want to include the delimter in the parsed text

EXCL indicates that you don't want to include the delinmter in the parsed text

*/

Listing 4-1: Using split_string()

Simply pass split_string() the string you want to split, the delimiter where you want the
split to occur, whether you want the portion of the string that is before or after the delimiter,
and whether or not you want the delimiter to be included in the returned string. Examples
using split_string() are shown in Listing 4-2.

i ncl ude(" LI B_parse. php");
$string = "The quick brown fox";

Parse what's before the delinmiter, including the delimter
$parsed text = split_string($string, "quick", BEFORE, |NCL);
/| $parsed_text = "The quick"

Parse what's after the delimter, but don't include the delimter
$parsed text = split_string($string, "quick", AFTER, EXCL);
/] $parsed_text = "brown fox"

Listing 4-2: Examples of split_string() usage
Parsing Text Between Delimiters: return__between()

Sometimes it is useful to parse text between two delimiters. For example, to parse a web
page's title, you'd want to parse the text between the <title>and </titl e> tags. Your

webbots can use the ret urn_bet ween() function in LI B_par se to do this.

The ret urn_bet ween() function uses a start delimiter and an end delimiter to define a
particular part of a string your webbot needs to parse, as shown in Listing 4-3.

/-k
string return_between (string unparsed, string
start, string end,

| NCL/ EXCL)
Wher e

unparsed is the string to parse
start identifies the starting delimter
endidentifies the ending deliniter

I NCL indicates that you want to include the
delimters in the parsed text

EXCL indicates that you don't want to
include delinmters in the parsed text
*/

Listing 4-3: Using r et ur n_bet ween()
The script in Listing 4-4 uses r et ur n_bet ween() to parse the HTML title of a web page.

Code View:

Include libraries
i ncl ude("LI B _parse. php");
i nclude("LIB_http.php");

Downl oad a web page
$web_page = http_get($target="http://ww. nostarch.com', $referer="");

Parse the title of the web page, inclusive of the title tags
$title_incl = return_between($web_page[' FILE], "<title>", "</title>", INCL);

Parse the title of the web page, exclusive of the title tags
$title_excl = return_between($web_page[' FILE], "<title>", "</title>", EXCL);

Display the parsed text

echo "title incl = ".$title incl;
echo "\ n";
echo "title excl = ".$title_excl;

Listing 4-4: Using r et ur n_bet ween() to find the title of a web page

When Listing 4-4 is run in a shell, the results should look like Examples of using
return_between(), with and without returned delimiters.

Examples of using r et ur n_bet ween() , with and without returned delimiters

&3 Shall =[5

rphp LIETING_4_4
incl = <Citle’] h Frece Home FPage<-CLiClex

= Home F:Ig'l':

Parsing a Data Set into an Array: parse_array()

Sometimes the things your webbot needs to parse, like links, appear more than once in a web
page. In these cases, a single parsed result isn't as useful as an array of results. Such a
parsed array could contain all the links, meta tags, or references to images in a web page.
The parse_array() function does essentially the same thing as the ret ur n_bet ween()
function, but it returns an array of all items that match the parse description or all
occurrences of data between two delimiting strings. This function, for example, makes it
extremely easy to extract all the links and images from a web page.

The parse_array() function , shown in Listing 4-5, is most useful when your webbots need to

parse the content of reoccurring tags. For example, returning an array of everything between
every occurrence of <i ng and > returns information about all the images in a web page.

Alternately, returning an array of everything between <scri pt and </ scri pt > will parse all

inline JavaScript. Notice that in each of these cases, the opening tag is not completely
defined. This is because <i ng and <scri pt are sufficient to describe the tag, and additional

parameters (that we don't need to define in the parse) may be present in the downloaded
page.

This simple parse is also useful for parsing tables, meta tags, formatted text, video, or any
other parts of web pages defined between reoccurring HTML tags.

/*
array return_array (string unparsed, string

beg, string end)

\Wher e
unparsed is the string to parse
begis a reoccurring beginning delimter
end is a reoccurring ending delimter

array contains every occurrence of what's found
bet ween begi nni ng and end.

*/

Listing 4-5: Using parse_array/()

The script in Listing 4-6 uses the parse_array() function to parse and display all the meta

tags on the FBI website. Meta tags are primarily used to define a web page's content to a
search engine.

The following code, which uses parse_array() to gather the meta tags from a web page,
could be incorporated with the project in SEARCH-RANKING WEBBOTS to determine how

adjustments in your meta tags affect your ranking in search engines. To parse all the meta
tags, the function must be told to return all instances that occur between <net a and >. Again,

notice that the script only uses enough of each delimiter to uniquely identify where a meta
tag starts and ends. Remember that the definitions you apply for start and stop variables
must apply for each data set you want to parse.

i ncl ude("LI B _parse. php"); # Include parse library
i nclude("LIB_http.php"); # Include cURL library

$web_page = http_get($target="http://ww.fbi.gov", $referer="");
$nmeta_tag_array = parse_array($web _page[' FILE'], "<neta", ">");

for($xx=0; $xx<count($nmeta_tag_array); $xx++)

echo $meta_tag_array[$xx]."\n";

Listing 4-6: Using parse_array() to parse all the meta tags from http://www.fbi.gov

When the script in Listing 4-6 runs, the result should look like Using parse_array() to parse
the meta tags from the FBI website.

Using parse_array() to parse the meta tags from the FBI website

L4 Gl
riuLiun" content="Lke QOfficial Website of the Federal Huresu of

imwlﬁ
Lmeta

E’IBE Ae—A3
2R -A1 11
'|:nnrrn1- Federal Huresan H lnur tagation, FHL, F.H. L., The
- - Huellew. Intelligence., Terrorizsm. Eunntwlrexxnji.u HuunLe
- Esgpionage. Ceime. Mozt Wanted. "
. Honey Launderi ‘whlic Co
nhn:r H ft:m# Llu m%, Forens

Parsing Attribute Values: get _attribute()

Once your webbot has parsed tags from a web page, it is often important to parse attribute
values from those tags. For example, if you're writing a spider that harvests links from web
pages, you will need to parse all the link tags, but you will also need to parse the specific
hr ef attribute of the link tag. For these reasons, LI B_par se includes the get _attri bute()

function.

The get _attri bute() function provides an interface that allows webbot developers to parse
specific attribute values from HTML tags. Its usage is shown in Listing 4-7.

/*
string get _attribute(string tag, string

attribute)
Wher e

tag is the HTM. tag that contains the
attri bute you want to parse

attribute is the nane of the specific attribute
in the HTM. tag

*/

Listing 4-7: Using get _attri bute()

This parse is particularly useful when you need to get a specific attribute from a previously
parsed array of tags. For example, Listing 4-8 shows how to parse all the images from http://

www.schrenk.com, using get _attri bute() to get the src attribute from an array of <i ng>
tags.

i ncl ude(" LI B_parse. php"); # include parse library
i nclude("LIB_http.php"); # include curl library

/'l Downl oad the web page

http://www.schrenk.com/
http://www.schrenk.com/

$web_page = http_get($target="http://ww. schrenk. con', $referer="");

/'l Parse the inmage tags
$neta_tag_array = parse_array($web_page[' FILE'], "<img", ">");

/'l Echo the inmage source attribute fromeach image tag

for($xx=0; $xx<count($nmeta_tag_array); $xx++)
{
$nanme = get _attribute($neta_tag array[$xx], S$attribute="src");
echo $nane ."\n";

}

Listing 4-8: Parsing the sr c attributes from image tags

Results of running Listing 4-8, showing parsed image names shows the output of Listing 4-8.

Results of running Listing 4-8, showing parsed image names

&Y Shell -5

Eamewarner gt
s Lf
Ilamaw.gif

muer. gLl

medteonic.gif
er_gif
L L.git
acer.gif
w.if
B if

Removing Unwanted Text: remove()

Up to this point, parsing meant extracting desired text from a larger string. Sometimes,
however, parsing means manipulating text. For example, since webbots usually lack
JavaScript interpreters, it's often best to delete JavaScript from downloaded files. In other
cases, your webbots may need to remove all images or email addresses from a web page. For
these reasons, LI B_par se includes the r enove() function. The renove() function is an easy-
to-use interface for removing unwanted text from a web page. Its usage is shown in Listing 4-
9.

/*

string renove(string web page
, string open_tag

, string close_tag

)

Wher e

web page

is the contents of the web page you want to affect
open_t ag

defines the beginning of the text that you want to renove
close_tag

defines the end of the text you want to renove

*/

Listing 4-9: Using r enove()

By adjusting the input parameters, the r enove() function can remove a variety of text from
web pages, as shown in Listing 4-10.

$uncommrent ed_page = renove($web_page, "<!--", "-->");
$l i nks_renoved = renove($web_page, "<a", "");
$i mages_renoved = renove($web_page, "<ing", " >");
$j avascri pt _renoved = renove($web_page, "<script", "</script>");

Listing 4-10: Using renove()

Useful PHP Functions

In addition to the previously described parsing functions in LI B_par se, PHP also contains a
multitude of built-in parsing functions. The following is a brief sample of the most valuable
built-in PHP parsing functions, along with examples of how they are used.

Detecting Whether a String Is Within Another String

You can use the stristr() function to tell your webbot whether or not a string contains

another string. The PHP community commonly uses the term haystack to refer to the entire
unparsed text and the term needle to refer to the substring within the larger string. The
function stri str() looks for an occurrence of needle in haystack. If found, stristr()

returns a substring of haystack from the occurrence of needle to the end of the larger string.
In normal use, you're not always concerned about the actual returned text. Generally, the
fact that something was returned is used as an indication that you found the existence of
needle in the haystack.

The stristr() function is handy if you want to detect whether or not a specific word is

mentioned in a web page. For example, if you want to know if a web page mentions dogs,
you can execute the script shown in Listing 4-11.

i f(stristr($web_page, "dogs"))

echo "This is a web page that nentions dogs.";
el se

echo "This web page does not nention dogs";

Listing 4-11: Using stri str() to see if a string contains another string

In this example, we're not specifically interested in what the stri str () function returns, but
whether is returns anything at all. If something is returned, we know that the web page
contained the word dogs.

The stristr() function is not case sensitive. If you need a case-sensitive version of stri str
(),usestrstr().

Replacing a Portion of a String with Another String

The PHP built-in function str_repl ace() puts a new string in place of all occurrences of a
substring within a string, as shown in Listing 4-12.

$org string = "I wish | had a Cat.";
$result_string = str_replace("Cat", "Dog", $org_string);
$result_string contains "I wish | had a Dog."

Listing 4-12: Using str_repl ace() to replace all occurrences of Cat with Dog

The str_repal ce() function is also useful when a webbot needs to remove a character or set

of characters from a string. You do this by instructing str_repl ace() to replace text with a
null string, as shown in Listing 4-13.

$result = str_replace("$","","$100.00"); /'l Rermove the dollar sign
$result contains 100. 00

Listing 4-13: Using str_repl ace() to remove leading dollar signs

Parsing Unformatted Text

The script in Listing 4-14 uses a variety of built-in functions, along with a few functions from
LI B _http and LI B_par se, to create a string that contains unformatted text from a website.

The result is the contents of the web page without any HTML formatting.

Code View:
i ncl ude("LI B _parse. php"); # Include parse library
i ncl ude("LIB_http.php"); # Include cURL library

/1 Downl oad the page
$web_page = http_get($target="http://ww. cnn.coni', $referer="");

/'l Rempove all JavaScri pt

$nof ormat = renove($web_page[' FILE], "<script", "</script>");
/1l Strip out all HITM. formatting

$unformatted = strip_tags($only text);

/'l Rempbve unwant ed white space

$nof ormat = str_replace("\t", "", $nofornmat); /'l Rempbve tabs
$nof ormat = str_replace(" ", "", $noformat); // Renobve non-breaki ng spaces
$nof ormat = str_replace("\n", "", $nofornmat); /'l Renove line feeds

echo $nof or mat ;

Listing 4-14: Parsing the content from the HTML used on http://www.cnn.com

Measuring the Similarity of Strings
Sometimes it is convenient to calculate the similarity of two strings without necessarily
parsing them. PHP's si m | ar _t ext () function returns a value that represents the percentage

of similarity between two strings. The syntax for using si mi | ar _text () is shown in Listing 4-
15.

$simlarity percentage = simlar_text($stringl, $string2);

Listing 4-15: Example of using PHP's si mi | ar _t ext () function

You may use si m | ar _text () to determine if a new version of a web page is significantly
different than a cached version.

Iwww . al litebooks.con]

http://www.cnn.com/
http://www.allitebooks.org

Final Thoughts

As demonstrated, a wide variety of parsing tasks can be performed with the standardized
parsing routines in LI B_par se, along with a few of PHP's built-in functions. Here are a few

more suggestions that may help you in your parsing projects.

Note: You'll get plenty of parsing experience as you explore the projects in this book. The projects
also introduce a few advanced parsing techniques. In PRICE-MONITORING WEBBOTS, we'll cover

advanced methods for parsing data in tables. In SEARCH-RANKING WEBBOTS, you'll learn about
the insertion parse, which makes it easier to parse and debug difficult-to-parse web pages.

Don't Trust a Poorly Coded Web Page

While the scripts in LI B_par se attempt to handle most situations, there is no guarantee that
you will be able to parse poorly coded or nonsensical web pages. Even the use of Tidy will not
always provide proper results. For example, code like this:

<inmg src="w dth="523"" alt >

may drive your parsing routines crazy. If you're having trouble debugging a parsing routine,

check to see if the page has errors. If you don't check for errors, you may waste many hours
trying to parse unparseable web pages.

Parse in Small Steps

When you are writing a script that depends on several levels of parsing, avoid the temptation
to write your parsing script in one pass. Since succeeding sections of your code will depend on
earlier parses, write and debug your scripts one parse at a time.

Don't Render Parsed Text While Debugging

If you are viewing the results of your parse in a browser, remember that the browser will
attempt to render your output as a web page. If the results of your parse contain tags,
display your parses within <xnp> and </ xnp> tags. These tags will tell the browser not to

render the results of your parse as HTML. Failure to analyze the unformatted results of your
parse may cause you to miss things that are inside tags.D

0 DOWNLOADING WEB PAGES describes additional methods for viewing text downloaded from websites.

Use Regular Expressions Sparingly

The use of regular expressions is a parsing language in itself, and most modern programming

languages support aspects of regular expressions. In the right hands, regular expressions are
also useful for parsing and substituting text; however, they are famous for their sharp
learning curve and cryptic syntax. | avoid regular expressions whenever possible.

The regular expression engine used by PHP is not as efficient as engines used in other
languages, and it is certainly less efficient than PHP's built-in functions for parsing HTML. For
those reasons, my preference is to limit regular expression use to instances in which there are
few alternatives; in those cases, | use wrapper functions to take advantage of the
functionality of regular expressions while shielding the developer from their complexities.

1)

AUTOMATING FORM SUBMISSION

You learned how to download files from the Internet in DOWNLOADING WEB PAGES. In this

chapter, you'll learn how to fill out forms and upload information to websites. When your
webbots have the ability to exchange information with target websites, as opposed to just
asking for information, they become capable of acting on your behalf. Interactive webbots can
do these kinds of things:

. Transfer funds between your online bank accounts when an account balance drops
below a predetermined limit

. Buy items in online auctions when an item and its price meet preset criteria
. Autonomously upload files to a photo sharing website

. Advise a distributor to refill a vending machine when product inventory is low

Webbots send data to webservers by mimicking what people do as they fill out standard HTML
forms on websites. This process is called form emulation. Form emulation is not an easy task,
since there are many ways to submit form information. In addition, it's important to submit
forms exactly as the webserver expects them to be filled out, or else the server will generate
errors in its log files. People using browsers don't have to worry about the format of the data
they submit in a form. Webbot designers, however, must reverse engineer the form interface
to learn about the data format the server is expecting. When the form interface is properly
debugged, the form data from a webbot appears exactly as if it were submitted by a person
using a browser.

If done poorly, form emulation can get webbot designers into trouble. This is especially true if
you are creating an application that delivers a competitive advantage for a client and you
want to conceal the fact that you are using a webbot. A number of things could happen if your
webbot gets into trouble, ranging from leaking (to your competitors) that you're gaining an
advantage through the use of a webbot to having your website privileges revoked by the
owner of the target website.

The first rule of form emulation is staying legal: Represent yourself truthfully, and don't
violate a website's user agreement. The second rule is to send form data to the server exactly
as the server expects to receive it. If your emulated form data deviates from the format that
IS expected, you may generate suspicious-looking errors in the server's log. In either case,

the server's administrator will easily figure out that you are using a webbot. Even though your
webbot is legitimate, the server log files your webbot creates may not resemble browser
activity. They may indicate to the website's administrator that you are a hacker and lead to a
blocked IP address or termination of your account. It is best to be both stealthy and legal. For
these reasons, you may want to read Chapters 24 and 28 before you venture out on your own.

Reverse Engineering Form Interfaces

Webbot developers need to look at online forms differently than people using the same forms
in a browser. Typically, when people use browsers to fill out online forms, performing some
task like paying a bill or checking an account balance, they see various fields that need to be
selected or otherwise completed.

Webbot designers, in contrast, need to view HTML forms as interfaces or specifications that
tell a webbot how a server expects to see form data after it is submitted. A webbot designer
needs to have the same perspective on forms as the server that receives the form. For
example, a person filling out the form in A simple form with various form elements would
complete a variety of form elements—text boxes, text areas, select lists, radio controls,
checkboxes, or hidden elements—that are identified by text labels.

A simple form with various form elements

| & simplo Form - Mozilla Firafox = % |
El= Edt ‘Ye=s Hgtory Bookmarks Yshoo! Joods: HeElp

Simple Form
Email suppartE schrenk.carn

Thia i3 a cezc mesgage
Messans

Slatus graduatzd v
ender @ OF
Wolurtear [+

| send

While a human associates the text labels shown in A simple form with various form elements

with the form elements, a webbot designer knows that the text labels and types of form
elements are immaterial. All the form needs to do is send the correct name/data pairs that
represent these data fields to the correct server page, with the expected protocol. This isn't
nearly as complicated as it sounds, but before we can go further, it's important that you
understand the various parts of HTML forms.

AUTOMATING FORM SUBMISSION

You learned how to download files from the Internet in DOWNLOADING WEB PAGES. In this

chapter, you'll learn how to fill out forms and upload information to websites. When your
webbots have the ability to exchange information with target websites, as opposed to just
asking for information, they become capable of acting on your behalf. Interactive webbots can
do these kinds of things:

. Transfer funds between your online bank accounts when an account balance drops
below a predetermined limit

. Buy items in online auctions when an item and its price meet preset criteria
. Autonomously upload files to a photo sharing website

. Advise a distributor to refill a vending machine when product inventory is low

Webbots send data to webservers by mimicking what people do as they fill out standard HTML
forms on websites. This process is called form emulation. Form emulation is not an easy task,
since there are many ways to submit form information. In addition, it's important to submit
forms exactly as the webserver expects them to be filled out, or else the server will generate
errors in its log files. People using browsers don't have to worry about the format of the data
they submit in a form. Webbot designers, however, must reverse engineer the form interface
to learn about the data format the server is expecting. When the form interface is properly
debugged, the form data from a webbot appears exactly as if it were submitted by a person
using a browser.

If done poorly, form emulation can get webbot designers into trouble. This is especially true if
you are creating an application that delivers a competitive advantage for a client and you
want to conceal the fact that you are using a webbot. A number of things could happen if your
webbot gets into trouble, ranging from leaking (to your competitors) that you're gaining an
advantage through the use of a webbot to having your website privileges revoked by the
owner of the target website.

The first rule of form emulation is staying legal: Represent yourself truthfully, and don't
violate a website's user agreement. The second rule is to send form data to the server exactly
as the server expects to receive it. If your emulated form data deviates from the format that
IS expected, you may generate suspicious-looking errors in the server's log. In either case,

the server's administrator will easily figure out that you are using a webbot. Even though your
webbot is legitimate, the server log files your webbot creates may not resemble browser
activity. They may indicate to the website's administrator that you are a hacker and lead to a
blocked IP address or termination of your account. It is best to be both stealthy and legal. For
these reasons, you may want to read Chapters 24 and 28 before you venture out on your own.

Reverse Engineering Form Interfaces

Webbot developers need to look at online forms differently than people using the same forms
in a browser. Typically, when people use browsers to fill out online forms, performing some
task like paying a bill or checking an account balance, they see various fields that need to be
selected or otherwise completed.

Webbot designers, in contrast, need to view HTML forms as interfaces or specifications that
tell a webbot how a server expects to see form data after it is submitted. A webbot designer
needs to have the same perspective on forms as the server that receives the form. For
example, a person filling out the form in A simple form with various form elements would
complete a variety of form elements—text boxes, text areas, select lists, radio controls,
checkboxes, or hidden elements—that are identified by text labels.

A simple form with various form elements

| & simplo Form - Mozilla Firafox = % |
El= Edt ‘Ye=s Hgtory Bookmarks Yshoo! Joods: HeElp

Simple Form
Email suppartE schrenk.carn

Thia i3 a cezc mesgage
Messans

Slatus graduatzd v
ender @ OF
Wolurtear [+

| send

While a human associates the text labels shown in A simple form with various form elements

with the form elements, a webbot designer knows that the text labels and types of form
elements are immaterial. All the form needs to do is send the correct name/data pairs that
represent these data fields to the correct server page, with the expected protocol. This isn't
nearly as complicated as it sounds, but before we can go further, it's important that you
understand the various parts of HTML forms.

{1)
Form Handlers, Data Fields, Methods, and Event Triggers

Web-based forms have four main parts, as shown in Parts of a form:

. A form handler
One or more data fields
. A method
One or more event triggers
I'll examine each of these parts in detail and then show how a webbot emulates a form.

Parts of a form

Form hundlerl Farm mathod

<form name="fml" action="form_handler” method="get"“:
<input types"textbox" name="email":
<input type="submit":
</form: :
Dt fild(s)
Evant tigger I

Figure 5-2: Parts of o form

Form Handlers

The act i on attribute in the <f or n> tag defines the web page that interprets the data entered

into the form. We'll refer to this page as the form handler. If there is no defined action, the
form handler is the same as the page that contains the form. The examples in Variations in

Form-Handler Descriptions compare the location of form handlers in a variety of conditions.

Table Variations in Form-Handler Descriptions

act i on Attribute Meaning

<form The script called search.php will accept and
narr!e:" ny For nt interpret the form data. This script shares the
acti on="sear ch. php" same server and directory as the page that

> served the form.

<form
name="nyFor n
action="../cgi/search. php

A script called search.php handles this form
and is in the cgi directory, which is parallel to
the current directory.

>

<form
name="nyFor nt
action="/search. php"

The script called search.php, in the home
directory of the server that served the page,
handles this form.

>

<form The contents of this form are sent to the
name="nyFor n¥ specified page at http://www.schrenk.com.
acti on="ww. schrenk. conf sear ch. php"

>

<f or m name="nyFor m' > There isn't an action (or form handler)

specified in the <f or n> tag. In these cases,
the same page that delivered the form is also
the page that interprets the completed form.

Servers have no use for the form's name, which is the variable that identifies the form. This
variable is only used by JavaScript, which associates the form name with its form elements.
Since servers don't use the form's name, webbots (and their designers) have no use for it
either.

Data Fields

Form input tags define data fields and the name, value, and user interface used to input the
value. The user interface (or widget) can be a text box, text area, select list, radio control,
checkbox, or hidden element. Remember that while there are many types of interfaces, they
are completely meaningless to the webbot that emulates the form and the server that handles
the form. From a webbot's perspective, there is no difference between data entered via a text
box or a select list. The input tag's name and its value are the only things that matter.

Every data field must have a name.l These names become form data variables, or containers
for their data values. In Listing 5-1, a variable called sessi on_i d is set to 0001, and the value

for sear ch is whatever was in the text box labeled Search when the user clicked the submit

button. Again, from a webbot designer's perspective, it doesn't matter what type of data
elements define the data fields (hidden, select, radio, text box, etc.). It is important that the
data has the correct name and that the value is within a range expected by the form handler.

U The HTML value of any form element is only its stating or default value. The user may change the final
element with JavaScript or by editing the form before it is sent to the form handler.

<f or m net hod="GET" >
<i nput type="hi dden"
<i nput type="text"
<i nput type="submt">
</fornme

name="session_i d" val ue="0001">
name="search" val ue="">

http://www.schrenk.com/

Listing 5-1: Data fields in a HTML form

Methods

The form's method describes the protocol used to send the form data to the form handler.
The most common methods for form data transfers are GET and PCOST.

The GET Method

You are already familiar with the GET method, because it is identical to the protocol you used
to request web pages in previous chapters. With the GET protocol, the URL of a web page is

combined with data from form elements. The address of the page and the data are separated
by a ? character, and individual data variables are separated by & characters, as shown in

Listing 5-2. The portion of the URL that follows the ? character is known as a query string.

URL http://ww. schrenk. com sear ch. php?t er mehel | o&sort =up

Listing 5-2: Data values passed in a URL (GET method)

Since CGET form variables may be combined with the URL, the web page that accepts the form

will not be able to tell the difference between the form submitted in Listing 5-3 and the form
emulation technigues shown in Listings 5-4 and 5-5. In either case, the variables t er mand

sort will be submitted to the web page http://www.schrenk.com/search with the GET protocol.
[l

0 1n forms where no form method is defined, like the form shown in Listing 5-3, the default form method
is CET.

<form nane="frnl" action="http://ww. schrenk. conf search. php">
<i nput type="text" nanme="term' val ue="hell 0">
<i nput type="text" nanme="sort" val ue="up">
<i nput type="submt">

</fornp

Listing 5-3: A GET method performed by a form submission

Alternatively, you could use LI B_htt p to emulate the form, as in Listing 5-4.
Code View:

i ncl ude("LIB_http.php");

$action = "http://ww. schrenk. com sear ch. php"; [/ Address of form handler
$met hod="GET"; /[l GET net hod

$ref =""; /|l Referer variable
$data_array['term] = "hello"; /1 Define term
$data_array['sort'] = "up"; /| Define sort

$response = http(S$target=%action, $ref, $nethod, $data_array, EXCL_HEAD);

http://www.schrenk.com/search

Listing 5-4: Using LI B_ht t p to emulate the form in Listing 5-3 with data passed in an array

Conversely, since the GET method places form information in the URL's query string, you
could also emulate the form with a script like Listing 5-5.

Code View:

i nclude("LIB_http.php");

$action = "http://ww. schrenk. com sear ch. php?t er mehel | o&sort =up"”;

$met hod=""GET";

$ref =""

$response = http(S$target=%action, $ref, $nmethod, $data_array="", EXCL_HEAD);

Listing 5-5: Emulating the form in Listing 5-3 by combining the URL with the form data

The reason we might choose Listing 5-4 over Listing 5-5 is that the code is cleaner when form
data is treated as array elements, especially when many form values are passed to the form
handler. Passing form variables to the form's handler with an array is also more symmetrical,
meaning that the procedure is nearly identical to the one required to pass values to a form
handler expecting the POST method.

The POST Method

While the GET method tacks on form data at the end of the URL, the POST method sends data
in a separate file. The POST method has these advantages over the GET method:

POST methods can send more data to servers than GET methods can. The maximum
length of a GET method is typically around 250 characters. POST methods, in contrast,
can easily upload several megabytes of information during a single form upload.

Since URL fetch requests are sent in HTTP headers, and since headers are never
encrypted, sensitive data should always be transferred with POST methods. POST

methods don't transfer form data in headers, and thus, they may be encrypted.
Obviously, this is only important for web pages using encryption.

GET method requests are always visible on the location bar of the browser. POST
requests only show the actual URL in the location bar.

Regardless of the advantages of POST over CGET, you must match your method to the method

of form you are emulating. Keep in mind that methods may also be combined in the same
form. For example, forms with POST methods may also use form handlers that contains query

strings.

To submit a form using the POST method with LI B_ht t p, simply specify the POST protocol, as

shown in Listing 5-6.
Code View:

i nclude("LIB_http.php");

$action = "http://ww. schrenk. com sear ch. php"; [Address of form handl er
$met hod="PCST "; /1 POST met hod

$ref =""; /!l Referer variable
$data_array['term] = "hello"; /1l Define term
$data_array['sort'] = "up"; /1 Define sort

$response = http(S$target=%action, $ref, $nethod, $data_array, EXCL_HEAD);

Listing 5-6: Using LI B_ht t p to emulate a form with the POST method

Regardless of the number of data elements, the process is the same. Some form handlers,
however, access the form elements as an array, so it's always a good idea to match the order
of the data elements that is defined in the HTML form.

Event Triggers

A submit button typically acts as the event trigger, which causes the form data to be sent to
the form handler using the defined form method. While the submit button is the most
common event trigger, it is not the only way to submit a form. It is very common for web
developers to employ JavaScript to verify the contents of the form before it is submitted to
the server. In fact, any JavaScript event like onCl i ck or onMbuseQut can submit a form, as

can any other type of human-generated JavaScript event. Sometimes, JavaScript may also
change the value of a form variable before the form is submitted. The use of JavaScript as an
event trigger causes many difficulties for webbot designers, but these issues are remedied by
the use of special tools, as you'll soon see.

Unpredictable Forms

You may not be able to tell exactly what the form requires by looking at the source HTML.
There are three primary reasons for this: the use of JavaScript, the readability of machine
generated HTML, and the presence of cookies.

JavaScript Can Change a Form Just Before Submission

Forms often use JavaScript to manipulate data before sending it to the form handler. These
manipulations are usually the result of checking the validity of data entered into the form data
field. Since these manipulations happen dynamically, it is nearly impossible to predict what
will happen unless you actually run the JavaScript and see what it does—or unless you have a
JavaScript parser in your head.

Form HTML Is Often Unreadable by Humans

You cannot expect to look at the source HTML for a web page and determine, with any
precision, what the form does. Regardless of the fact that all browsers have a View Source
option, it is important to remember that HTML is rendered by machines and does not have to
be readable by people—and it frequently isn't. It is also important to remember that much of
the HTML served on web pages is dynamically generated by scripts. For these reasons, you
should never expect HTML pages to be easy to read, and you should never count on being
able to accurately analyze a form by looking at a script.

Cookies Aren't Included in the Form, but Can Affect Operation

While cookies are not evident in a form, they can often play an important role, since they may
contain session variables or other important data that isn't readily visible but is required to
process a form. You'll learn more about webbots that use cookies in AUTHENTICATION and

ADVANCED COOKIE MANAGEMENT.

Analyzing a Form

Since it is so hard to accurately analyze an HTML form by hand, and since the importance of
submitting a form correctly is critical, you may prefer to use a tool to analyze the format of
forms. This book's website has a form handler that provides this service. The form analyzer
works by substituting the form's original form handler with the URL of the form analyzer.
When the analyzer receives form data, it creates a web page that describes the method, data
variables, and cookies sent by the form exactly as they are seen by the original form handler,
even if the web page uses JavaScript.

To use the emulator, you must first create a copy of the web page that contains the form you
want to analyze, and place that copy on your hard drive. Then you must replace the form
handler on the web page with a form handler that will analyze the form structure. For
example, if the form you want to analyze has a <f or n> tag like the one in Listing 5-7, you
must substitute the original form handler with the address of my form analyzer, as shown in
Listing 5-8.

<form
met hod=" POST"
action="https://panel.schrenk. com keywords/search/"

Listing 5-7: Original form handler

<form
met hod=" POST"
action="http://ww. schrenk. conf nost ar ch/ webbot s/ f orm anal yzer. php"

Listing 5-8: Substituting the original form handler with a handler that analyzes the form

To analyze the form, save your changes to your hard drive and load the modified web page
into a browser. Once you fill out the form (by hand) and submit it, the form analyzer will
provide an analysis similar to the one in Using a form analyzer.

This simple diagnosis isn't perfect—use it at your own risk. However, it does allow a webbot
developer to verify the form method, agent name, and GET and POST variables as they are
presented to the actual form handler. For example, in this particular exercise, it is evident
that the form handler expects a POST method with the variables sessi oni d, emai | , nessage,
st at us, gender, and vol .

Forms with a session ID point out the importance of downloading and analyzing the form
before emulating it. In this typical case, the session ID is assigned by the server and cannot
be predicted. The webbot can accurately use session IDs only by first downloading and
parsing the web page containing the form.

Using a form analyzer

HTTE Request Diagmestic Page - Moziia Flietex

B E& Yew Hgoy Eodnabs fahool Tods Hep i
Webbot Diagnostic Page
This web page 1= a tool b0 dagnose webbot functionaity by examining what the webbot 22nds to webaervers,
Yarable Value sent to server
HITF Feguest Method POST
Your IP address JELPE. 3R, 199
Servel Port an
Refarar Hull
dgant Hams Wozilla<5.0 [Windows: U: Windows BT 5.1: en-UB8: re:1.8.1.1]
k20061204 Firefos-2, 0,0, 1
EF=t Variable= Hull
Poot VWariables AEEaY
tmpmaignid! AATgTI4 L. flegpt=1£)
femsilt v ipporcR achesnl, com' FlERpte=18)
'nieasege’ Thi= i= & Cesr Te=S=mge [length=221
'mrataa’ =r ! in school! flamgtked)
‘gender' =r 'H' [lemyth=1]
'wol!' => 'on' {Jeagth=3]
Cronkles coxpkie[CSET_BY THIS _PRGE'] = This 1s a disgnostic cokie
This web page aEe 5405 & dagnosic coskie, which shauld Be visble The Se00nd ome o0 aeeess this page.
Dior r

If you were to write a script that emulates the form submitted and analyzed in Using a form
analyzer, it would look something like Listing 5-9.

i ncl ude("LIB_http.php");

Initiate addresses
$acti on="http://ww. schrenk. conf nost ar ch/ webbot s/ f or m anal yzer. php";
$r ef e nn ;

Set subni ssion net hod
$met hod=" POST" ;

Set form data and val ues
$data_array[' sessionid'] = "sdf g73453845";

$data_array['emnil'] = "sal es@chrenk.cont;
$data_array[' nessage'] = "This is a test nessage";
$data_array['status'] = "in school";

$data_array[' gender'] = "M;

$data_array['vol'] = "on";

$response = http(S$target=%action, $ref, $nethod, $data_array, EXCL_HEAD);

Listing 5-9: Using LI B_ht t p to emulate the form analysis in Using a form analyzer

After you write a form-emulation script, it's a good idea to use the analyzer to verify that the
form method and variables match the original form you are attempting to emulate. If you're
feeling ambitious, you could improve on this simple form analyzer by designing one that
accepts both the submitted and emulated forms and compares them for you.

The script in Listing 5-10 is similar to the one running at http://www .schrenk.com/nostarch/
webbots/form_analyzer.php. This script is for reference only. You can download the latest
copy from this book's website. Note that the PHP sections of this script appear in bold.

Code View:

<?
set cooki e("SET BY THI S PAGE", "This is a diagnostic cookie.");
?>
<head>

<title>HTTP Request Di agnostic Page</title>

<style type="text/css">

p { color: black; font-weight: bold; font-size: 110% font-famly: arial}
.title { color: black; font-weight: bold; font-size: 110% font-fanily:

ari al}

.text {font-weight: normal; font-size: 90%}

TD { color: black; font-size: 100% font-famly: courier; vertical-align:

top; }

.colum_title { color: black; font-size: 100% background-col or: eeeeee;

font-weight: bold; font-fanily: arial}
</ styl e>

</ head>

<p class="title">Wbbot D agnostic Page</ p>
<p class="text">This web page is a tool to diagnose webbot functionality by
exam ni ng what the webbot sends to webservers.
<t abl e border="1" cellspaci ng="0" cell paddi ng="3" wi dt h="800">
<tr class="colum_title">
<th w dt h="25% >Vari abl e</t h>
<th w dt h="75% >Val ue sent to server</th>
</tr>
<tr>
<t d>HTTP Request Met hod</td><td><?echo $_SERVER "REQUEST_METHOD']; ?></td>
</tr>
<tr>
<td>Your | P Address</td><td><?echo $ SERVER]"REMOTE_ADDR']; ?></td>
</[tr>
<tr>
<td>Server Port</td><td><?echo $_SERVER]"SERVER PORT"]; ?></td>
</tr>
<tr>
<td>Referer</td>
<t d><?
i f(isset($ _SERVER[' HTTP_REFERER]))
echo $ SERVER] ' HTTP_REFERER] ;
el se
echo "Nul |
";
?>
</td>
</[tr>
<tr>
<t d>Agent Nane</td>
<t d><?
i f (i sset($_SERVER]' HTTP_USER AGENT']))
echo $ SERVER[' HTTP_USER AGENT'];
el se

echo "Nul |
";
?>

http://www .schrenk.com/nostarch/webbots/form_analyzer.php
http://www .schrenk.com/nostarch/webbots/form_analyzer.php

</td>
</[tr>

<tr>
<td>Get Vari abl es</td>
<t d><?
i f(count ($_CET)>0)
var _dunp($_CET);
el se
echo "Nul I ";
?>
</td>
</tr>
<tr>
<t d>Post Vari abl es</td>
<t d><?
i f (count ($_POST) >0)
var _dunp($_POST) ;
el se
echo "Nul I ";
?>
</td>
</tr>
<tr>
<t d>Cooki es</ t d>
<t d><?
i f(count ($_COXI E) >0)
var _dunp($_COXI E)
el se
echo "Nul I ";
?>
</td>
</tr>
</t abl e>
<p class="text">This web page al so sets a diagnostic cookie, which should be
visible the second tinme you access this page.

Listing 5-10: A simple form analyzer

Final Thoughts

Years of experience have taught me a few tricks for emulating forms. While it's not hard to
write a webbot that submits a form, it is often difficult to do it right the first time. Moreover,
as you read earlier, there are many reasons to submit a form correctly the first time. | highly
suggest reading Chapters 24, 25, and 28 before creating webbots that emulate forms. These
chapters provide additional insight into potential problems and perils that you're likely to
encounter when writing webbots that submit data to webservers.

Don't Blow Your Cover

If you're using a webbot to create a competitive advantage for a client, you don't want that
fact to be widely known—especially to the people that run the targeted site.

There are two ways a webbot can blow its cover while submitting a form:

. It emulates the form but not the browser.

. It generates an error either because it poorly analyzed the form or poorly executed the
emulation. Either error may create a condition that isn't possible when the form is
submitted by a browser, creating a questionable entry in a server activity log.

Note: This topic is covered in more detail in DESIGNING STEALTHY WEBBOTS AND SPIDERS.

Correctly Emulate Browsers

Emulating a browser is easy, but you should verify that you're doing it correctly. Your webbot
can look like any browser you desire if you properly declare the name of your web agent. If
you're using the LI B_ht t p library, the constant WEBBOT _NAME defines how your webbot
identifies itself, and furthermore, how servers log your web agent's name in their log files. In
some cases, webservers verify that you are using a particular web browser (most commonly
Internet Explorer) before allowing you to submit a form.

If you plan to emulate a browser as well as the form, you should verify that the name of your
webbot is set to something that looks like a browser (as shown in Listing 5-11). Obviously, if
you don't change the default value for your webbot's name in the LI B_htt p library, you'll tell

everyone who looks at the server logs that you're using a test webbot.

Define how your webbot will appear in server |ogs
def i ne("WEBBOT_NAME", "Internet Explorer");

Listing 5-11: Setting the name of your webbot to Internet Explorer in LI B_http

Strange user agent names will often be noticed by webmasters, since they routinely analyze
logs to see which browsers people use to access their sites to ensure that they don't run into
browser compatibility problems.

Avoid Form Errors

Even more serious than using the wrong agent name is submitting a form that couldn't
possibly be sent from the form the webserver provides on its website. These mistakes are
logged in the server's error log and are subject to careful scrutiny. Situations that could cause
server errors include the following:

. Using the wrong form protocol

. Submitting the form to the wrong action (form handler)

. Submitting form variables in the wrong order

. Ignoring an expected variable that the form handler needs

. Adding an extra variable that the form handler doesn't expect

. Emulating a form that is no longer available on the website

Using the wrong method can have several undesirable outcomes. If your webbot sends too
much data with a GET method when the form specifies a POST method, you risk the danger of

losing some of your data. (Most webservers restrict the length of a GET method.[]) Another

danger of using the wrong form method is that many form handlers expect variables to be
members of either a $_CGET or $_POST array, which is a keyed name/value array similar to the

$dat a_array used in LI B_htt p. If you're sending the form a POST variable called ' nane' , and
the server is expecting $_CGET[' nane'] , your webbot will generate an entry in the server's
error log because it didn't send the variable the server was looking for.

0 servers routinely restrict the length of a GET request to help protect the server from extremely long

requests, which are commonly used by hackers attempting to compromise servers with buffer overflow
exploits.

Also, remember that protocols aren’'t limited to the form method. If the form handler expects
an SSL-encrypted https protocol, and you deliver the emulated form to an unencrypted http
address, the form handler won't understand you because you'll be sending data to the wrong
server port. In addition, you're potentially sending sensitive data over an unencrypted
connection.

The final thing to verify is that you are sending your emulated form to a web page that exists

on the target server. Sometimes mistakes like this are the result of sloppy programming, but

this can also occur when a webmaster updates the site (and form handler). For this reason, a

proactive webbot designer verifies that the form handler hasn't changed since the webbot was
written.

MANAGING LARGE AMOUNTS OF DATA

You will soon find that your webbots are capable of collecting massive amounts of data. The
amount of data a simple automated webbot or spider can collect, even if it runs only once a
day for several months, is colossal. Since none of us have unlimited storage, managing the
quality and volume of the data our programs collect and store becomes very important. In
this chapter, | will describe methods to organize the data that your webbots collect and then
investigate ways to reduce the size of what you save.

Organizing Data

Organizing the resources that your webbots download requires planning. Whether you employ
a well-defined file structure or a relational database, the result should meet the needs of the
particular problem your application attempts to solve. For example, if the data is primarily
text, is accessed by many people, or is in need of sort or search capability, then you may
prefer to store information in a relational database, which addresses these needs. If, on the
other hand, you are storing many images, PDFs, or Word documents, you may favor storing
files in a structured filesystem. You may even create a hybrid system where a database
references media files stored in structured directories.

Naming Conventions

While there is no "correct" way to organize data, there are many bad ways to store the data
webbots generate. Most mistakes arise from assigning non-descriptive or confusing names to
the data your webbots collect. For this reason, your designs must incorporate naming
conventions that uniquely identify files, directories, and database properties. Define names
for things early, during your planning stages, as opposed to naming things as you go along.
Always name in a way that allows your data structure to grow. For example, a real estate
webbot that refers to properties as houses may be difficult to maintain if your application later
expands to include raw land, offices, or businesses. Updating names for your data can
become tedious, since your code and documentation will reference those names many times.

Your naming convention can enforce any rules you like, but you should consider the following
guidelines:

. You need to enforce any naming standards with an iron fist, or they will cease to be
standards.

. It's often better to assign names based on the type of thing an object is, rather than
what is actually is. For example, in the previous real estate example, it may have been
better to name the database table that describes houses properties, so when the scope

of the project expands,[] it can handle a variety of real estate. With this method, if
your project grows, you could add another column to the table to describe the type of
property. It is always easier to expand data tables than to rename columns.

a Projects always expand in scope.

. Consider who (or what) will be using your data organization. For example, a directory
called Saturday_January_23 might be easy for a person to read, but a directory called
0123 might be a better choice if a computer accesses its contents. Sequential numbers

are easier for computer programs to interpret.

Define the format of your names. People will often use compound words and separate
the word with underscores for readability, as in name_first. Other times, people
separate compound words with case, as in nhameFirst; this is commonly referred to as
CamelCase. These format definitions should include things like case, language, and
parts of speech. For example, if you decide to separate terms with underscores, you
shouldn't use CamelCase to name other terms later. It's very common for developers
to use different standards to help identify differences between functions, data
variables, and objects.

If you give members of a certain group labels that are all the same part of speech,
don't occasionally throw in a label with another grammatical form. For example, if you
have a group of directories named with nouns, don't name another directory in the
same group with a verb—and if you do, chances are it probably doesn't belong in that
group of things in the first place.

If you are naming files in a directory, you may want to give the files names that will
later facilitate easy grouping or sorting. For example, if you are using a filename that
defines a date, filenames with the format year_month_day will make more sense when
sorted than filenames with the format month_day_year. This is because year, month,
and day is a sequential progression from largest to smallest and will accurately reflect
order when sorted.

Storing Data in Structured Files

To successfully store files in a structured series of directories, you need to find out what the
files have in common. In most cases, the problem you're trying to solve and the means for
retrieving the data will dictate the common factors among your files. Figuratively, you need to
look for the lowest common denominator for all your files. Example of a structured filesystem
primarily based on dates shows a file structure for storing data retrieved by a webbot that

runs once a day. Its common theme is time.

Example of a structured filesystem primarily based on dates

-0 x|
Fie Edit View Favorites Tods Help | "
Dok -) - (T [Dseaeh [podens | [FE-
Folders ¥ | _Mame = | Type |
- ntuiigt=tiningiri=nine L) 2004 Fi Frold=r
- “"' f 32005 Fiie Folder
® 5 2005 32006 Fike Foldar
5 O 2006 2007 File Foldar
= 53 ot [2008 File Foldar
B a2
E Iy oL
M = o2
[o P
B 27 Graphica
) Driginal_image=s
1 Thumbnails
1= Lezs |
Bl IC) soipte
L) C55
) HTML
) lave_smipt
Iy o4
E oS
=y o
Hiaor
Iy 0o
M 310
W i1
EH I 12 BT | | i_ll

With the structure defined in Example of a structured filesystem primarily based on dates,
you could easily locate thumbnail images created by the webbot on February 3, 2006 because
the folders comply with the following specification:

drive:\project\year\nont h\ day\ cat egory\ subcat egory\files

Therefore, the path would look like this:

c:\ Spider_files\2006\02\03\ G aphi cs\ Thunbnai | s\

People may easily decipher this structure, and so will programs, which need to determine the
correct file path programmatically. A geographically themed example of a structured

filesystem shows another file structure, primarily based on geography.

A geographically themed example of a structured filesystem

LT

File Bdit View Faworiles Toole Help
.;_jsan: - -.q;. - T |J'.“'5=earch [Fokders |1
Felders ¥ | Hame = | Eize | Type
= L-_.] PRICING d CICOMPORENTS File: Foiie
= I-:I CAMAD A __1=5SEMBLIES Rl Folder
= 1) METED
B I usa
[k- DR THCEHTE A _I
= ASSEMELIES
L) COMPOMENTS
B () NORTHEAST
= :| NORTHWEST
B (2 SOUTHCEMTRAL
R) SOUTHERST
B () SOUTHWEST =l 4 I |

b

Ensure that all files have a unique path and that either a person or a computer can easily
make sense of these paths.

File structures, like the ones shown in the previous figures, are commonly created by
webbots. You'll see how to write webbots that create file structures in IMAGE-CAPTURING

WEBBOTS.

Storing Text in a Database

While many applications call for file structures similar to the ones shown in Example of a
structured filesystem primarily based on dates or A geographically themed example of a
structured filesystem, the majority of projects you're likely to encounter will require that data
is stored in a database. A database has many advantages over a file structure. The primary
advantage is the ability to query or make requests from the database with a query language
called Structured Query Language or SQL (pronounced SEE-quill). SQL allows programs to
sort, extract, update, combine, insert, and manipulate data in nearly any imaginable way.

It is not within the scope of this book to teach SQL, but this book does include the LI B_nysqdl

library, which simplifies using SQL with the open source database called MySQL[] (pronounced
my-esk-kew-el).

0 More information about MySQL is available at http://www.mysqgl.com and http://www.php.net.

LIB_mysql

LI B_nysql consists of a few server configurations and three functions, which should handle
most of your database needs. These functions act as abstractions or simplifications of the
actual interface to the program. Abstractions are important because they allow access to a
wide variety of database functions with a common interface and error-reporting method. They
also allow you to use a database other than MySQL by creating a similar library for a new
database. For example, if you choose to use another database someday, you could write
abstractions with the same function names used in LI B_nysql . In this way, you can make the

code in this book work with Oracle, SQL Server, or any other database without modifying any
scripts.

http://www.mysql.com/
http://www.php.net/

The source code for LI B_nysql is available from this book's website. There are other fine

database abstractions available from projects like PEAR and PECL; however, the examples in
this book use LI B_nysql .

Listing 6-1 shows the configuration area of LI B_nmysqgl . You should configure this area for your
specific MySQL installation before you use it.

Code View:

MySQ. Constants (scope = gl obal)

define(" MYSQL_ADDRESS", "l ocal host"); // Define |IP address of your MySQ. Server
define(" MYSQL_USERNAME", ""); /'l Define your MySQ. username

define(" MYSQL_PASSWORD', ""); /1 Define your MySQ. password

def i ne(" DATABASE", ""); /| Define your default database

Listing 6-1: LI B_mysql server configurations

As shown in Listing 6-1, the configuration section provides an opportunity to define where
your MySQL server resides and the credentials needed to access it. The configuration section
also defines a constant, " DATABASE" , which you may use to define the default database for
your project.

There are three functions in LI B_nysqgl that facilitate the following:

Inserting data into the database
Updating data already in the database

Executing a raw SQL query

Each function uses a similar interface, and each provides error reporting if you request an
erroneous query.

The insert() Function

The i nsert () function in LI B_nysqgl simplifies the process of inserting a new entry into a

database by passing the new data in a keyed array. For example, if you have a table like the
one in Example table people before the insert(), you can insert another row of data with the

script in Listing 6-2, making it look like the table in Example table people after executing the
insert() in Listing 6-2.

Example table peopl e before the i nsert ()

¥ M AME CITY STATE ZIP
1 | Kelly Garrett Culver City | CaA 20232
2 Sabring Duncan Anahaim CA Q2812

$data_array[' NAME'] = "Jill Monroe";
$data_array['CTY'] = "lrvine";
$data_array[' STATE'] = "CA";
$data_array[' ZI P'] = "55410";

i nsert (DATABASE, $tabl e="people", $data_array);

Listing 6-2: Example of using i nsert ()

Example table peopl e after executing the i nsert () in Listing 6-2

ID | MAME CITY STATE | ZIP

1 | Kelly Garrett Culver City | CA 0232
Sabring Duncan | Anaheim CA 92812

3 | Jill Monroe Irvine CA 55410

The update() Function

Alternately, you can use updat e() to update the record you just inserted with the script in
Listing 6-3, which changes the ZIP code for the record.

$data_array['NAVE'] = "Jill Monroe";
$data_array[' A TY'] = "lrvine";
$data_array[' STATE'] = "CA";
$data_array[' ZI P'] = "92604";

updat e(DATABASE, $t abl e="peopl e", $data_array, $key colum="ID", $id="3");

Listing 6-3: Example script for updating data in a table

Running the script in Listing 6-3 changes values in the table, as shown in Example table
people after updating ZIP codes with the script in Listing 6-3.

Example table peopl e after updating ZIP codes with the script in Listing 6-3

ID | MAME CITY STATE | ZIP

1 | Kelly Garrett Culver City | CA 20232
2 | Sabrino Duncan | Anahaim CA 92812
3 | il Monroe Irvine CA 2604

The exe_sql() Function

For database functions other than inserting or updating records, LI B_nysql provides the
exe_sql () function, which executes a SQL query against the database. This function is
particularly useful for extracting data with complex queries or for deleting records, altering

tables, or anything else you can do with SQL. Example Usage Scenarios for the
LIB_mysqgl _exe_ sql() Function shows various uses for this function.

Table Example Usage Scenarios for the LI B_nysgl _exe_sqgl () Function

Instruction Result
$array = exe_sql (DATABASE, "select * $array[1]['ID]="1";
from people"); $Sarray[1][' NAME | ="Kel ly Garrett";

Sarray[1][" A TY] ="Cul ver Cty";

Sarray[1][STATE | ="CA";

Sarray[1][' ZI P'] ="90232";

Sarray[2]['ID]="2";

$array[2] [' NAME'] =" Sabri na Duncan";

$array[2]["' A TY'] =" Anahei ni';

$array[2] [' STATE'] ="CA";

Sarray[2][' ZI P']="92812";

$array[3]['ID]="3";

Sarray[3][" NAME' [="Ji |l Monroe";

Sarray[3]['CTY']="Irvine";

Sarray[3] [STATE] ="CA";

Sarray[3][ZI P | =" 92604";

$array = exe_sql (DATABASE, "select * from |$array['ID]="2";
peopl e where ID="2"");

$array[' NAME'] =" Sabri na Duncan";

$array[' CI TY' | =" Anahei i ;

$array[' STATE] ="CA";

$array[' ZI P] ="92604";

Li st ($nane) = exe_sql (DATABASE, "sel ect $name = "Sabrina Duncan";
NAMVE from peopl e where I1D="2"");
exe_sql (DATABASE, "del ete from peopl e Deletes row 3 from table

where ID="2"");

Please note that if exe_sql () is fetching data from the database, it will always return an

array of data. If the query returns multiple rows of data, you'll get a multidimensional array.
Otherwise, a single-dimensional array is returned.

Storing Images in a Database

It is usually better to store images in a file structure and then refer to the paths of the images
in the database, but occasionally you may find the need to store images as blobs, or large
unstructured pieces of data, directly in a database. These occasions may arise when you don't
have the requisite system permissions to create a file. For example, many web administrators
do not allow their webservers to create files, as a security measure. To store an image in a
database, set the typecasting or variable type for the image to blob or large blob and insert
the data, as shown in Listing 6-4.

$data_array[' IMAGE ID] = 6;

$data_array[' | MAGE'] = base64_encode(file_get contents($file_path));
i nsert (DATABASE, $table, $data_ array);

Listing 6-4: Storing an image directly in a database record

When you store a binary file, like an image, in a database, you should base64-encode the
data first. Since the database assumes text or numeric data, this precaution ensures that no
bit combinations will cause internal errors in the database. If you don't do this, you take the
risk that some odd bit combination in the image will be interpreted as an unintended database
command or special character.

Since images are—or should be—base64 encoded, you need to decode the images before you
can reuse them. The script in Listing 6-5 shows how to display an image stored in a database
record.

<!— Display an inmage stored in a database where the inage IDis 6 —>

Listing 6-5: HTML that displays an image stored in a database
Listing 6-6 shows the code to extract, decode, and present the image.

<?
CGet needed database |ibrary
i ncl ude("LIB_nysql . php");

Convert the variable on the URL to a new vari abl e
$image id=$ GET['ing_id];

CGet the base64-encoded i nage fromthe database
$sgl = "select IMAGE fromtable where IMMGE ID="".$image_id."""
list($inmg) = exe_sql (DATABASE, $sql);

Decode the image and send it as a file to the requester
header (" Content -type: inage/jpeg");

echo base64_decode($i ng);

exit;

?>

Listing 6-6: Script to query, decode, and create an image from an image record in a database

When an image tag is used in this fashion, the image sr ¢ attribute is actually a function that

pulls the image from the database before is sends it to the waiting web agent. This function
knows which image to send because it is referenced in the query of the sr ¢ attribute. In this

case, that record is i ng_i d, which corresponds with the table column | MAGE_| D. The program
show_image.php actually creates a new image file each time it is executed.

Database or File?

Your decision to store information in a database or as files in a directory structure is largely
dependent on your application, but because of the advantages that SQL brings to data

storage, | often use databases. The one common exception to this rule is images files, which
(as previously mentioned) are usually more efficiently stored as files in a directory.
Nevertheless, when files are stored in local directories, it is often convenient to identify the
physical address of the file you saved in a database.

MANAGING LARGE AMOUNTS OF DATA

You will soon find that your webbots are capable of collecting massive amounts of data. The
amount of data a simple automated webbot or spider can collect, even if it runs only once a
day for several months, is colossal. Since none of us have unlimited storage, managing the
quality and volume of the data our programs collect and store becomes very important. In
this chapter, | will describe methods to organize the data that your webbots collect and then
investigate ways to reduce the size of what you save.

Organizing Data

Organizing the resources that your webbots download requires planning. Whether you employ
a well-defined file structure or a relational database, the result should meet the needs of the
particular problem your application attempts to solve. For example, if the data is primarily
text, is accessed by many people, or is in need of sort or search capability, then you may
prefer to store information in a relational database, which addresses these needs. If, on the
other hand, you are storing many images, PDFs, or Word documents, you may favor storing
files in a structured filesystem. You may even create a hybrid system where a database
references media files stored in structured directories.

Naming Conventions

While there is no "correct" way to organize data, there are many bad ways to store the data
webbots generate. Most mistakes arise from assigning non-descriptive or confusing names to
the data your webbots collect. For this reason, your designs must incorporate naming
conventions that uniquely identify files, directories, and database properties. Define names
for things early, during your planning stages, as opposed to naming things as you go along.
Always name in a way that allows your data structure to grow. For example, a real estate
webbot that refers to properties as houses may be difficult to maintain if your application later
expands to include raw land, offices, or businesses. Updating names for your data can
become tedious, since your code and documentation will reference those names many times.

Your naming convention can enforce any rules you like, but you should consider the following
guidelines:

. You need to enforce any naming standards with an iron fist, or they will cease to be
standards.

. It's often better to assign names based on the type of thing an object is, rather than
what is actually is. For example, in the previous real estate example, it may have been
better to name the database table that describes houses properties, so when the scope

of the project expands,[] it can handle a variety of real estate. With this method, if
your project grows, you could add another column to the table to describe the type of
property. It is always easier to expand data tables than to rename columns.

a Projects always expand in scope.

. Consider who (or what) will be using your data organization. For example, a directory
called Saturday_January_23 might be easy for a person to read, but a directory called
0123 might be a better choice if a computer accesses its contents. Sequential numbers

are easier for computer programs to interpret.

Define the format of your names. People will often use compound words and separate
the word with underscores for readability, as in name_first. Other times, people
separate compound words with case, as in nhameFirst; this is commonly referred to as
CamelCase. These format definitions should include things like case, language, and
parts of speech. For example, if you decide to separate terms with underscores, you
shouldn't use CamelCase to name other terms later. It's very common for developers
to use different standards to help identify differences between functions, data
variables, and objects.

If you give members of a certain group labels that are all the same part of speech,
don't occasionally throw in a label with another grammatical form. For example, if you
have a group of directories named with nouns, don't name another directory in the
same group with a verb—and if you do, chances are it probably doesn't belong in that
group of things in the first place.

If you are naming files in a directory, you may want to give the files names that will
later facilitate easy grouping or sorting. For example, if you are using a filename that
defines a date, filenames with the format year_month_day will make more sense when
sorted than filenames with the format month_day_year. This is because year, month,
and day is a sequential progression from largest to smallest and will accurately reflect
order when sorted.

Storing Data in Structured Files

To successfully store files in a structured series of directories, you need to find out what the
files have in common. In most cases, the problem you're trying to solve and the means for
retrieving the data will dictate the common factors among your files. Figuratively, you need to
look for the lowest common denominator for all your files. Example of a structured filesystem
primarily based on dates shows a file structure for storing data retrieved by a webbot that

runs once a day. Its common theme is time.

Example of a structured filesystem primarily based on dates

-0 x|
Fie Edit View Favorites Tods Help | "
Dok -) - (T [Dseaeh [podens | [FE-
Folders ¥ | _Mame = | Type |
- ntuiigt=tiningiri=nine L) 2004 Fi Frold=r
- “"' f 32005 Fiie Folder
® 5 2005 32006 Fike Foldar
5 O 2006 2007 File Foldar
= 53 ot [2008 File Foldar
B a2
E Iy oL
M = o2
[o P
B 27 Graphica
) Driginal_image=s
1 Thumbnails
1= Lezs |
Bl IC) soipte
L) C55
) HTML
) lave_smipt
Iy o4
E oS
=y o
Hiaor
Iy 0o
M 310
W i1
EH I 12 BT | | i_ll

With the structure defined in Example of a structured filesystem primarily based on dates,

you could easily locate thumbnail images created by the webbot on February 3, 2006 because
the folders comply with the following specification:

drive:\project\year\nont h\ day\ cat egory\ subcat egory\files

Therefore, the path would look like this:

c:\ Spider_files\2006\02\03\ G aphi cs\ Thunbnai | s\

People may easily decipher this structure, and so will programs, which need to determine the
correct file path programmatically. A geographically themed example of a structured

filesystem shows another file structure, primarily based on geography.

A geographically themed example of a structured filesystem

LT

File Bdit View Faworiles Toole Help
.;_jsan: - -.q;. - T |J'.“'5=earch [Fokders |1
Felders ¥ | Hame = | Eize | Type
= L-_.] PRICING d CICOMPORENTS File: Foiie
= I-:I CAMAD A __1=5SEMBLIES Rl Folder
= 1) METED
B I usa
[k- DR THCEHTE A _I
= ASSEMELIES
L) COMPOMENTS
B () NORTHEAST
= :| NORTHWEST
B (2 SOUTHCEMTRAL
R) SOUTHERST
B () SOUTHWEST =l 4 I |

b

Ensure that all files have a unique path and that either a person or a computer can easily
make sense of these paths.

File structures, like the ones shown in the previous figures, are commonly created by
webbots. You'll see how to write webbots that create file structures in IMAGE-CAPTURING

WEBBOTS.

Storing Text in a Database

While many applications call for file structures similar to the ones shown in Example of a
structured filesystem primarily based on dates or A geographically themed example of a
structured filesystem, the majority of projects you're likely to encounter will require that data
is stored in a database. A database has many advantages over a file structure. The primary
advantage is the ability to query or make requests from the database with a query language
called Structured Query Language or SQL (pronounced SEE-quill). SQL allows programs to
sort, extract, update, combine, insert, and manipulate data in nearly any imaginable way.

It is not within the scope of this book to teach SQL, but this book does include the LI B_nysqdl

library, which simplifies using SQL with the open source database called MySQL[] (pronounced
my-esk-kew-el).

0 More information about MySQL is available at http://www.mysqgl.com and http://www.php.net.

LIB_mysql

LI B_nysql consists of a few server configurations and three functions, which should handle
most of your database needs. These functions act as abstractions or simplifications of the
actual interface to the program. Abstractions are important because they allow access to a
wide variety of database functions with a common interface and error-reporting method. They
also allow you to use a database other than MySQL by creating a similar library for a new
database. For example, if you choose to use another database someday, you could write
abstractions with the same function names used in LI B_nysql . In this way, you can make the

code in this book work with Oracle, SQL Server, or any other database without modifying any
scripts.

http://www.mysql.com/
http://www.php.net/

The source code for LI B_nysql is available from this book's website. There are other fine

database abstractions available from projects like PEAR and PECL; however, the examples in
this book use LI B_nysql .

Listing 6-1 shows the configuration area of LI B_nmysqgl . You should configure this area for your
specific MySQL installation before you use it.

Code View:

MySQ. Constants (scope = gl obal)

define(" MYSQL_ADDRESS", "l ocal host"); // Define |IP address of your MySQ. Server
define(" MYSQL_USERNAME", ""); /'l Define your MySQ. username

define(" MYSQL_PASSWORD', ""); /1 Define your MySQ. password

def i ne(" DATABASE", ""); /| Define your default database

Listing 6-1: LI B_mysql server configurations

As shown in Listing 6-1, the configuration section provides an opportunity to define where
your MySQL server resides and the credentials needed to access it. The configuration section
also defines a constant, " DATABASE" , which you may use to define the default database for
your project.

There are three functions in LI B_nysqgl that facilitate the following:

Inserting data into the database
Updating data already in the database

Executing a raw SQL query

Each function uses a similar interface, and each provides error reporting if you request an
erroneous query.

The insert() Function

The i nsert () function in LI B_nysqgl simplifies the process of inserting a new entry into a

database by passing the new data in a keyed array. For example, if you have a table like the
one in Example table people before the insert(), you can insert another row of data with the

script in Listing 6-2, making it look like the table in Example table people after executing the
insert() in Listing 6-2.

Example table peopl e before the i nsert ()

¥ M AME CITY STATE ZIP
1 | Kelly Garrett Culver City | CaA 20232
2 Sabring Duncan Anahaim CA Q2812

$data_array[' NAME'] = "Jill Monroe";
$data_array['CTY'] = "lrvine";
$data_array[' STATE'] = "CA";
$data_array[' ZI P'] = "55410";

i nsert (DATABASE, $tabl e="people", $data_array);

Listing 6-2: Example of using i nsert ()

Example table peopl e after executing the i nsert () in Listing 6-2

ID | MAME CITY STATE | ZIP

1 | Kelly Garrett Culver City | CA 0232
Sabring Duncan | Anaheim CA 92812

3 | Jill Monroe Irvine CA 55410

The update() Function

Alternately, you can use updat e() to update the record you just inserted with the script in
Listing 6-3, which changes the ZIP code for the record.

$data_array['NAVE'] = "Jill Monroe";
$data_array[' A TY'] = "lrvine";
$data_array[' STATE'] = "CA";
$data_array[' ZI P'] = "92604";

updat e(DATABASE, $t abl e="peopl e", $data_array, $key colum="ID", $id="3");

Listing 6-3: Example script for updating data in a table

Running the script in Listing 6-3 changes values in the table, as shown in Example table
people after updating ZIP codes with the script in Listing 6-3.

Example table peopl e after updating ZIP codes with the script in Listing 6-3

ID | MAME CITY STATE | ZIP

1 | Kelly Garrett Culver City | CA 20232
2 | Sabrino Duncan | Anahaim CA 92812
3 | il Monroe Irvine CA 2604

The exe_sql() Function

For database functions other than inserting or updating records, LI B_nysql provides the
exe_sql () function, which executes a SQL query against the database. This function is
particularly useful for extracting data with complex queries or for deleting records, altering

tables, or anything else you can do with SQL. Example Usage Scenarios for the
LIB_mysqgl _exe_ sql() Function shows various uses for this function.

Table Example Usage Scenarios for the LI B_nysgl _exe_sqgl () Function

Instruction Result
$array = exe_sql (DATABASE, "select * $array[1]['ID]="1";
from people"); $Sarray[1][' NAME | ="Kel ly Garrett";

Sarray[1][" A TY] ="Cul ver Cty";

Sarray[1][STATE | ="CA";

Sarray[1][' ZI P'] ="90232";

Sarray[2]['ID]="2";

$array[2] [' NAME'] =" Sabri na Duncan";

$array[2]["' A TY'] =" Anahei ni';

$array[2] [' STATE'] ="CA";

Sarray[2][' ZI P']="92812";

$array[3]['ID]="3";

Sarray[3][" NAME' [="Ji |l Monroe";

Sarray[3]['CTY']="Irvine";

Sarray[3] [STATE] ="CA";

Sarray[3][ZI P | =" 92604";

$array = exe_sql (DATABASE, "select * from |$array['ID]="2";
peopl e where ID="2"");

$array[' NAME'] =" Sabri na Duncan";

$array[' CI TY' | =" Anahei i ;

$array[' STATE] ="CA";

$array[' ZI P] ="92604";

Li st ($nane) = exe_sql (DATABASE, "sel ect $name = "Sabrina Duncan";
NAMVE from peopl e where I1D="2"");
exe_sql (DATABASE, "del ete from peopl e Deletes row 3 from table

where ID="2"");

Please note that if exe_sql () is fetching data from the database, it will always return an

array of data. If the query returns multiple rows of data, you'll get a multidimensional array.
Otherwise, a single-dimensional array is returned.

Storing Images in a Database

It is usually better to store images in a file structure and then refer to the paths of the images
in the database, but occasionally you may find the need to store images as blobs, or large
unstructured pieces of data, directly in a database. These occasions may arise when you don't
have the requisite system permissions to create a file. For example, many web administrators
do not allow their webservers to create files, as a security measure. To store an image in a
database, set the typecasting or variable type for the image to blob or large blob and insert
the data, as shown in Listing 6-4.

$data_array[' IMAGE ID] = 6;

$data_array[' | MAGE'] = base64_encode(file_get contents($file_path));
i nsert (DATABASE, $table, $data_ array);

Listing 6-4: Storing an image directly in a database record

When you store a binary file, like an image, in a database, you should base64-encode the
data first. Since the database assumes text or numeric data, this precaution ensures that no
bit combinations will cause internal errors in the database. If you don't do this, you take the
risk that some odd bit combination in the image will be interpreted as an unintended database
command or special character.

Since images are—or should be—base64 encoded, you need to decode the images before you
can reuse them. The script in Listing 6-5 shows how to display an image stored in a database
record.

<!— Display an inmage stored in a database where the inage IDis 6 —>

Listing 6-5: HTML that displays an image stored in a database
Listing 6-6 shows the code to extract, decode, and present the image.

<?
CGet needed database |ibrary
i ncl ude("LIB_nysql . php");

Convert the variable on the URL to a new vari abl e
$image id=$ GET['ing_id];

CGet the base64-encoded i nage fromthe database
$sgl = "select IMAGE fromtable where IMMGE ID="".$image_id."""
list($inmg) = exe_sql (DATABASE, $sql);

Decode the image and send it as a file to the requester
header (" Content -type: inage/jpeg");

echo base64_decode($i ng);

exit;

?>

Listing 6-6: Script to query, decode, and create an image from an image record in a database

When an image tag is used in this fashion, the image sr ¢ attribute is actually a function that

pulls the image from the database before is sends it to the waiting web agent. This function
knows which image to send because it is referenced in the query of the sr ¢ attribute. In this

case, that record is i ng_i d, which corresponds with the table column | MAGE_| D. The program
show_image.php actually creates a new image file each time it is executed.

Database or File?

Your decision to store information in a database or as files in a directory structure is largely
dependent on your application, but because of the advantages that SQL brings to data

storage, | often use databases. The one common exception to this rule is images files, which
(as previously mentioned) are usually more efficiently stored as files in a directory.
Nevertheless, when files are stored in local directories, it is often convenient to identify the
physical address of the file you saved in a database.

Making Data Smaller

Now that you know how to store data, you'll want to efficiently store the data in ways that
reduce the amount of disk spaced required, while facilitating easy retrieval and manipulation of
that data. The following section explores methods for reducing the size of the data your
webbots collect in these ways:

. Storing references to data
. Compressing data
. Removing unneeded formatting

. Thumbnailing or creating smaller representations of larger graphic files

Storing References to Image Files

Since your webbot and the image files it discovers share the same network, it is possible to
store a network reference to the image instead of making a physical copy of it. For example,
instead of downloading and storing the image north_beach.jpg from www.schrenk.com, you

might store a reference to its URL, http://www.schrenk.com/north_beach.jpg, in a database.

Now, instead of retrieving the file from your data structure, you could retrieve the actual file
from its original location. While you can apply this technique to images, this technique is not
limited to image files but also applies to HTML, JavaScript, Style Sheets, or any other
networked file.

There are three main advantages to recording references to images instead of storing copies of
the images. The most obvious advantage is that the reference to an image will usually
consume much less space than a copy of the image file. Another advantage is that if the
original image on the website changes, you will still have access to the most current version of
that image—provided that the network address of the image hasn't also changed. A less
obvious advantage to storing the network address of an image is that you may shield yourself
from potential copyright issues when you make a copy of someone else's intellectual property.

The disadvantage of storing a reference to an image instead of the actual images is that there
is no guarantee that it still references an image that's available online. When the remote image
changes, your reference will be obsolete. Given the short-lived nature of online media, images
can change or disappear without warning.

Compressing Data

From a webbot's perspective, compression can happen either when a webserver delivers pages
or when your webbot compresses pages before it stores them for later use. Compression on
inbound files will save bandwidth; the second method can save space on your hard drives. If
you're ambitious, you can use both forms of compression.

Compressing Inbound Files

Many webservers automatically compress files before they serve pages to browsers. Managing
your incoming data is just as important as managing the data on your hard drive.

http://www.schrenk.com/
http://www.schrenk.com/north_beach.jpg

Servers configured to serve compressed web pages will look for signals from the web client
indicating that it can accept compressed pages. Like browsers, your webbots can also tell
servers that they can accept compressed data by including the lines shown in Listing 6-7 in
your PHP and cURL routines.

$header[] = "Accept-Encodi ng: conpress, gzip";
curl _setopt($curl _session, CURLOPT_HTTPHEADER, $header);

Listing 6-7: Requesting compressed files from a webserver

Servers equipped to send compressed web pages won't send compressed files if they decide
that the web agent cannot decompress the pages. Servers default to uncompressed pages if
there's any doubt of the agent's ability to decompress compressed files. Over the years, | have
found that some servers look for specific agent names—in addition to header directions—
before deciding to compress outgoing data. For this reason, you won't always gain the
advantage of inbound compression if your webbot's agent name is something nonstandard like
Test Webbot. For that reason, when inbound file compression is important, it's best if your

webbot emulates a common browser.l
U For more information on agent name spoofing, please review DOWNLOADING WEB PAGES.

Since the webserver is the final arbiter of an agent's ability to handle compressed data—and
since it always defaults on the side of safety (no compressions)—you're never guaranteed to
receive a compressed file, even if one is requested. If you are requesting compression from a
server, it is incumbent on your webbot to detect whether or not a web page was compressed.
To detect compression, look at the returned header to see if the web page is compressed and,
if so, what form of compression was used (as shown in Listing 6-8).

Code View:

if (stristr($http_header, "zip")) /1 Assumes that header is in $http_header
$conpressed = TRUE;

Listing 6-8: Analyzing the HTTP header to detect inbound file compression

If the data was compressed by the server, you can decompress the files with the function
gzunconpress() in PHP, as shown in Listing 6-9.

$unconpressed file = gzunconpress($conpressed file);

Listing 6-9: Decompressing a compressed file
Compressing Files on Your Hard Drive

PHP provides a variety of built-in functions for compressing data. Listing 6-10 demonstrates
these functions. This script downloads the default HTML file from http://www.schrenk.com,
compresses the file, and shows the difference between the compressed and uncompressed
files. The PHP sections of this script appear in bold.

http://www.schrenk.com/

Code View:

Denonstration of PHP file conpression

Include cURL library
i ncl ude("LIB_http.php");

Get web page

$t ar get = "http://ww. schrenk. conf;

$r ef ="";

$net hod = "CGET";

$dat a_array =",

$web_page = http_get($target, $ref, $nethod, $data_array, EXCL_HEAD);

Cet sizes of conpressed and unconpressed versions of web page

$unconpressed_si ze strlen($web_page[' FILE]);

$conpressed_si ze strl en(gzconpress($web_page[' FILE], $conpression_value = 9));
$nof or mat _si ze strlien(strip_tags($web_page[' FILE]1));

Report the sizes of conpressed and unconpressed versions of web page
?>
<t abl e border="1">
<tr>
<t h col span="3">Conpression report for <? echo $target?></th>
</[tr>
<tr>
<t h>Unconpr essed</t h>
<t h>Conpr essed</t h>
</tr>
<tr>
<td align="right"><?echo $unconpressed_si ze?> bytes</td>
<td align="right"><?echo $conpressed_si ze?> bytes</td>
</[tr>
</tabl e>

Listing 6-10: Compressing a downloaded file

Running the script from Listing 6-10 in a browser provides the results shown in The script from
Listing 6-10, showing the value of compressing files.

Before you start compressing everything your webbot finds, you should be aware of the
disadvantages of file compression. In this example, compression resulted in files roughly 20
percent of the original size. While this is impressive, the biggest drawback to compression is
that you can't do much with a compressed file. You can't perform searches, sorts, or
comparisons on the contents of a compressed file. Nor can you modify the contents of a file
while it's compressed. Furthermore, while text files (like HTML files) compress effectively,
many media files like JPG, GIF, WMF, or MOV are already compressed and will not compress
much further. If your webbot application needs to analyze or manipulate downloaded files, file
compression may not be for you.

The script from Listing 6-10, showing the value of compressing files

'@ Mozitta Firafox .]| < |

.EhEl:ﬁ:IiuwHﬂ:urr Eootmerks Yahoo! Took Help

Compression report for http: fiwww. schrenk.com
Uncompressed | Compressed
16787 bytes|| 4234 bytes

Removing Formatting

Removing unneeded HTML formatting instructions is much more useful for reducing the size of
a downloaded file than compressing it, since it still facilitates access to the useful information
in the file. Formatting instructions like <di v cl ass="font _a"> are of little use to a webbot
because they only control format and not content, and because they can be removed without
harming your data. Removing formatting reduces the size of downloaded HTML files while still
leaving the option of manipulating the data later. Fortunately, PHP provides strip _tags (), a
built-in function that automatically strips HTML tags from a document. For example, if | add
the lines shown in Listing 6-11 to the previous script, we can see the affect of stripping the
HTML formatting.

$nof ormat = strip_tags($web_page[' FILE]); /1 Renove HTM tags
$nof ormat _si ze = strl en($nof ormat); /1 Get size of new string
Listing 6-11: Removing HTML formatting using the stri p_t ags() function

If you run the program in Listing 6-10 again and modify the output to also show the size of the
unformatted file, you will see that the unformatted web page is nearly as compact as the
compressed version. The results are shown in Comparison of uncompressed, compressed, and

unformatted file sizes.

Comparison of uncompressed, compressed, and unformatted file sizes

(@ omiie Frelon .= 5

-Ekl Edic %=« Hstory Eockmerks Yshoo! Jook Help

Compression repert for http fiwww.schrenk.com
Uncompre ssed ||: ompressead |F1:rrrnat Removed
TATAT bytes| 4280 bytes| B85 bytes

Unlike the compressed data, the unformatted data can still be sorted, modified, and searched.
You can make the file even smaller by removing excessive spaces, line feeds, and other white
space with a simple PHP function called tri n() , without reducing your ability to manipulate
the data later. As an added benefit, unformatted pages may be easier to manipulate, since
parsing routines won't confuse HTML for the content you're acting on. Remember that
removing the HTML tags removes all links, JavaScript, image references, and CSS information.
If any of that is important, you should extract it before removing a page's formatting.

Thumbnailing Images

The most effective method of decreasing the size of an image is to create smaller versions, or
thumbnails, of the original. You may easily create thumbnails with the LI B_t hunbnai | library,

which you can download from this book's website. To use this library, you will have to verify

that your configuration uses the gd (revision 2.0 or higher) graphics module.l The script in
Listing 6-12 demonstrates how to use LI B_t hunbnai | to create a miniature version of a

larger image. The PHP sections of this script appear in bold.

0 if the gd module is not installed in your configuration, please reference http://www.php.net/manual/en/
ref.image.php for further instructions.

Code View:

Denmonstration of LIB_ thunbnail. php
Include libraries

i nclude("LIB_http.php");

i ncl ude("LI B _thunbnail . php");

Get inage fromthe Internet

$t ar get = "http://ww. schrenk. com nort h_beach. j pg";

$ref ="";

$net hod = "CET";

$dat a_array ="";

$i mage = http_get ($target, $ref, $nmethod, $data_array, EXCL_HEAD);

Store captured inmage file to local hard drive
$handl e = fopen("test.jpg", "wW');

f puts($handl e, $image[' FILE]);

fcl ose($handl e);

Create thunbnail inmage frominmage that was just stored locally
$org file = "test.jpg";
$new file_name = "thunbnail.jpg";

Set the maxi mum wi dt h and hei ght of the thunbnail ed i mage
$max_wi dth = 90;
$max_hei ght = 90;

Create the thunbnail ed i mage

create_thunbnail ($org_file, $new file_name, $max_w dth, $nax_hei ght);
2>

Ful | - si ze i mage

<ing src="test.jpg">

<p>

Thunbnai | i mage

<inmg src="thunbnail.jpg">

http://www.php.net/manual/en/ref.image.php
http://www.php.net/manual/en/ref.image.php

Listing 6-12: Demonstration of how LI B_t hunbnai | may create a thumbnailed image

The script in Listing 6-12 fetches an image from the Internet, writes a copy of the original to
a local file, defines the maximum dimensions of the thumbnail, creates the thumbnail, and
finally displays both the original image and the thumbnail image.

The product of running the script in Listing 6-12 is shown in Output of Listing 6-12, making
thumbnails with LIB_thumbnail.

The thumbnailed image shown in Output of Listing 6-12, making thumbnails with
LIB_thumbnail consumes roughly 30 percent as much space as the original file. If the original
file was larger or the specification for the thumbnailed image was smaller, the savings would
be even greater.

Output of Listing 6-12, making thumbnails with LI B_t hunbnai |

| & Wozilta Firefox][5<

Fl= Edt ‘=« Hsglory Oookmerks Yshoo!l Tools Help

Full-size image

Final Thoughts

When storing information, you need to consider what is being stored and how that
information will be used later. Furthermore, if the data isn't going to be used later, you need
to ask yourself why you need to save it.

Sometimes it is easier to parse text before the HTML tags are removed. This is especially true
with regard to data in tables, where rows and columns are parsed.

While unformatted pages are stripped of presentation, colors, and images, the remaining text
is enough to represent the original file. Without the HTML, it is actually easier to characterize,
manipulate, or search for the presence of keywords.

Before you continue, this is a good time to download LI B _nysql, LI B_http, and
LI B_t hunbnai | from this book's website. You will need all of these libraries to program later
examples in this book.

PROJECTS

This section expands on the concepts you learned in the previous section with
simple yet demonstrative projects. Any of these projects, with further
development, could be transformed from a simple webbot concept into a
potentially marketable product.

PRICE-MONITORING WEBBOTS

The first project describes webbots that collect and analyze online
prices from a mock store that exists on this book's website. The
prices change periodically, creating an opportunity for your webbots
to analyze and make purchase decisions based on the price of items.

Since this example store is solely for your experimentation, you'll gain
confidence in testing your webbot on web pages that serve no
commercial purpose and haven't changed since this book's
publication. This environment also affords the freedom to make
mistakes without obsessing over the crumbs your webbots leave
behind in an actual online store’'s server log file.

IMAGE-CAPTURING WEBBOTS

The image-capturing webbot leverages your knowledge of
downloading and parsing web pages to create an application that
copies all the images (and their directory structure) to your local hard
drive. In addition to creating a useful tool, you'll also learn how to
convert relative addresses into fully resolved URLs, a technique that
is vital for later spidering projects.

LINK-VERIFICATION WEBBOTS

Here you will have the opportunity to write a webbot that
automatically verifies that all the links on a web page point to valid
web pages. I'll conclude the chapter with ideas for expanding this
concept into a variety of useful tools and products.

ANONYMOUS BROWSING WEBBOTS

In this chapter, I'll introduce the concept of using a webbot as a
proxy, or intermediary agent that intercepts and modifies information
flowing between a user and the Internet. The result of this project is a
simple proxy webbot that allows users to surf the Internet
anonymously.

SEARCH-RANKING WEBBOTS

This project describes a simple webbot that determines how highly a
search engine ranks a website, given a set of search criteria. You'll
also find a host of ideas about how you can modify this concept to
provide a variety of other services.

AGGREGATION WEBBOTS

Aggregation is a technique that gathers the contents of multiple web
pages in a single location. This project introduces techniques that
make it easy to exploit the availability of RSS news services.

FTP WEBBOTS

Webbots that use FTP are able to move the information they collect to
an FTP server for storage or use by other applications. In this
chapter, we’'ll explore methods for navigating on, uploading to, and
downloading from FTP servers.

NNTP NEWS WEBBOTS

While often overlooked in favor of newer, web-based sources, NNTP is
still a viable protocol with an active user base. In this chapter, I'll
describe methods by which you can interface your webbots to news
servers, which use NNTP.

WEBBOTS THAT READ EMAIL

Here you will learn how to write webbots that read and delete
messages from any POP3 mail server. The ability to read email allows
a webbot to interpret instructions sent by email or apply a variety of
email filters.

WEBBOTS THAT SEND EMAIL

In this chapter, you'll learn various methods that allow your webbots
to send email messages and notifications. You will also learn how to
leverage what you learned in the previous chapter to create "smart
email addresses” that can determine how to forward messages based
on their content—without modifying anything on the mail server.

CONVERTING A WEBSITE INTO A FUNCTION

This project describes how you can use form emulation and parsing
techniques to transform any preexisting online application into a
function you can call from any PHP program.

PRICE-MONITORING WEBBOTS

In this chapter, we'll look at a strategic application of webbots—monitoring online prices.
There are many reasons one would do this. For example, a webbot might monitor prices for
these purposes:

. Notifying someone (via email or text message[]) when a price drops below a preset
threshold

0 \WEBBOTS THAT SEND EMAIL describes how webbots send email and text messages.

. Predicting price trends by performing statistical analysis on price histories

. Establishing your company's prices by studying what the competition charges for
similar items

Regardless of your reasons to monitor prices, the one thing that all of these strategies have in
common is that they all download web pages containing prices and then identify and parse
the data.

In this chapter, | will describe methods for monitoring online prices on e-commerce websites.
Additionally, | will explain how to parse data from tables and prepare you for the webbot
strategies revealed in PROCUREMENT WEBBOTS AND SNIPERS.

The Target

The practice store, available at this book's website,[] will be the target for our price-
monitoring webbot. A screenshot of the store is shown in The e-commerce website that is

monitored by the price-monitoring webbot.
U The URL for this store is found at http://www.schrenk.com/nostarch/webbots.

The e-commerce website that is monitored by the price-monitoring webbot

http://www.schrenk.com/nostarch/webbots

W e T T T

Fl= Edt Wew Hgrory Bocknads yshoal Inds Heb £
Metro Atmospheric Products
Thiz Week's Awclion Products Far Sale
R TER ID# ogin Gonditon \Welght Frice Qusntiy Amount
Bloormingion FO0100 Edinz Fresh 100 18,00 | a0
Stat Dale F 11 B hfis Frash 100 S 300 | I0.00
£00B-08-06

F I H mir] FIF 1 100 & 1 S0 LA

End Diahe: EE—
*008-08-12 f 13 Hopking Frash 100 E20.00 1| g20. 00
Highest Bid: Mo Bds Yal : 04 Galcler Walley Frash 100 §21.00 o
Total No. of Bide: ko Bigs et FOO105 Minneapalis Figsh 1.00 $22.00 30.00
|_Ploca bid now | POO108 StPaul Fragh .00 £22.00 | 3000
Last Wook's Auclien Wirmss POOTOT Carlerbiry Dim Fresh 00 2400 | ano0
To b= announcad P08 SHOFEY Frech 100 2R 00 | L0
] 09 &pp re=h 100§ | | AIRn]
= | I racsh (MRS [A £40 0
F lormi I i 1100 & ali] 3000
ufine Theahs Frash 100 621 75 1000
4 Me e o 100 $22.75 1000
F 3 Eapan rg=h 0.00 £23.00 3000
F G LI ity WP Cofman L Freeh .00 2415 | 0.0
FOE [} I I 1 | NI N L | IR
]) Her I] [Ny = =l | 000
PO MER Intzmralional Lrpord Frazh .00 £17 2R | 3000
F I fhinniglonka I i LD &TH | =10 LE
F lall i I rash 100 52000 | 10 00
1 Hiawata Light Ral rash 1.00 §24.00 | 1000

[Calcusta Tatal Amaunt | 969 30|

Dore

This practice store provides a controlled environment that is ideal for this exercise. For
example, by targeting the example store you can do the following:

. Experiment with price-monitoring webbots without the possibility of interfering with an
actual business

. Control the content of this target, so you don't run the risk of someone modifying the

web page, which could break the example scripts[]

U The example scripts are resistant to most changes in the target store.

The prices change on a daily basis, so you can also use it to practice writing webbots that
track and graph prices over time.

PROJECTS

This section expands on the concepts you learned in the previous section with
simple yet demonstrative projects. Any of these projects, with further
development, could be transformed from a simple webbot concept into a
potentially marketable product.

PRICE-MONITORING WEBBOTS

The first project describes webbots that collect and analyze online
prices from a mock store that exists on this book's website. The
prices change periodically, creating an opportunity for your webbots
to analyze and make purchase decisions based on the price of items.

Since this example store is solely for your experimentation, you'll gain
confidence in testing your webbot on web pages that serve no
commercial purpose and haven't changed since this book's
publication. This environment also affords the freedom to make
mistakes without obsessing over the crumbs your webbots leave
behind in an actual online store’'s server log file.

IMAGE-CAPTURING WEBBOTS

The image-capturing webbot leverages your knowledge of
downloading and parsing web pages to create an application that
copies all the images (and their directory structure) to your local hard
drive. In addition to creating a useful tool, you'll also learn how to
convert relative addresses into fully resolved URLs, a technique that
is vital for later spidering projects.

LINK-VERIFICATION WEBBOTS

Here you will have the opportunity to write a webbot that
automatically verifies that all the links on a web page point to valid
web pages. I'll conclude the chapter with ideas for expanding this
concept into a variety of useful tools and products.

ANONYMOUS BROWSING WEBBOTS

In this chapter, I'll introduce the concept of using a webbot as a
proxy, or intermediary agent that intercepts and modifies information
flowing between a user and the Internet. The result of this project is a
simple proxy webbot that allows users to surf the Internet
anonymously.

SEARCH-RANKING WEBBOTS

This project describes a simple webbot that determines how highly a
search engine ranks a website, given a set of search criteria. You'll
also find a host of ideas about how you can modify this concept to
provide a variety of other services.

AGGREGATION WEBBOTS

Aggregation is a technique that gathers the contents of multiple web
pages in a single location. This project introduces techniques that
make it easy to exploit the availability of RSS news services.

FTP WEBBOTS

Webbots that use FTP are able to move the information they collect to
an FTP server for storage or use by other applications. In this
chapter, we’'ll explore methods for navigating on, uploading to, and
downloading from FTP servers.

NNTP NEWS WEBBOTS

While often overlooked in favor of newer, web-based sources, NNTP is
still a viable protocol with an active user base. In this chapter, I'll
describe methods by which you can interface your webbots to news
servers, which use NNTP.

WEBBOTS THAT READ EMAIL

Here you will learn how to write webbots that read and delete
messages from any POP3 mail server. The ability to read email allows
a webbot to interpret instructions sent by email or apply a variety of
email filters.

WEBBOTS THAT SEND EMAIL

In this chapter, you'll learn various methods that allow your webbots
to send email messages and notifications. You will also learn how to
leverage what you learned in the previous chapter to create "smart
email addresses” that can determine how to forward messages based
on their content—without modifying anything on the mail server.

CONVERTING A WEBSITE INTO A FUNCTION

This project describes how you can use form emulation and parsing
techniques to transform any preexisting online application into a
function you can call from any PHP program.

PRICE-MONITORING WEBBOTS

In this chapter, we'll look at a strategic application of webbots—monitoring online prices.
There are many reasons one would do this. For example, a webbot might monitor prices for
these purposes:

. Notifying someone (via email or text message[]) when a price drops below a preset
threshold

0 \WEBBOTS THAT SEND EMAIL describes how webbots send email and text messages.

. Predicting price trends by performing statistical analysis on price histories

. Establishing your company's prices by studying what the competition charges for
similar items

Regardless of your reasons to monitor prices, the one thing that all of these strategies have in
common is that they all download web pages containing prices and then identify and parse
the data.

In this chapter, | will describe methods for monitoring online prices on e-commerce websites.
Additionally, | will explain how to parse data from tables and prepare you for the webbot
strategies revealed in PROCUREMENT WEBBOTS AND SNIPERS.

The Target

The practice store, available at this book's website,[] will be the target for our price-
monitoring webbot. A screenshot of the store is shown in The e-commerce website that is

monitored by the price-monitoring webbot.
U The URL for this store is found at http://www.schrenk.com/nostarch/webbots.

The e-commerce website that is monitored by the price-monitoring webbot

http://www.schrenk.com/nostarch/webbots

W e T T T

Fl= Edt Wew Hgrory Bocknads yshoal Inds Heb £
Metro Atmospheric Products
Thiz Week's Awclion Products Far Sale
R TER ID# ogin Gonditon \Welght Frice Qusntiy Amount
Bloormingion FO0100 Edinz Fresh 100 18,00 | a0
Stat Dale F 11 B hfis Frash 100 S 300 | I0.00
£00B-08-06

F I H mir] FIF 1 100 & 1 S0 LA

End Diahe: EE—
*008-08-12 f 13 Hopking Frash 100 E20.00 1| g20. 00
Highest Bid: Mo Bds Yal : 04 Galcler Walley Frash 100 §21.00 o
Total No. of Bide: ko Bigs et FOO105 Minneapalis Figsh 1.00 $22.00 30.00
|_Ploca bid now | POO108 StPaul Fragh .00 £22.00 | 3000
Last Wook's Auclien Wirmss POOTOT Carlerbiry Dim Fresh 00 2400 | ano0
To b= announcad P08 SHOFEY Frech 100 2R 00 | L0
] 09 &pp re=h 100§ | | AIRn]
= | I racsh (MRS [A £40 0
F lormi I i 1100 & ali] 3000
ufine Theahs Frash 100 621 75 1000
4 Me e o 100 $22.75 1000
F 3 Eapan rg=h 0.00 £23.00 3000
F G LI ity WP Cofman L Freeh .00 2415 | 0.0
FOE [} I I 1 | NI N L | IR
]) Her I] [Ny = =l | 000
PO MER Intzmralional Lrpord Frazh .00 £17 2R | 3000
F I fhinniglonka I i LD &TH | =10 LE
F lall i I rash 100 52000 | 10 00
1 Hiawata Light Ral rash 1.00 §24.00 | 1000

[Calcusta Tatal Amaunt | 969 30|

Dore

This practice store provides a controlled environment that is ideal for this exercise. For
example, by targeting the example store you can do the following:

. Experiment with price-monitoring webbots without the possibility of interfering with an
actual business

. Control the content of this target, so you don't run the risk of someone modifying the

web page, which could break the example scripts[]

U The example scripts are resistant to most changes in the target store.

The prices change on a daily basis, so you can also use it to practice writing webbots that
track and graph prices over time.

PROJECTS

This section expands on the concepts you learned in the previous section with
simple yet demonstrative projects. Any of these projects, with further
development, could be transformed from a simple webbot concept into a
potentially marketable product.

PRICE-MONITORING WEBBOTS

The first project describes webbots that collect and analyze online
prices from a mock store that exists on this book's website. The
prices change periodically, creating an opportunity for your webbots
to analyze and make purchase decisions based on the price of items.

Since this example store is solely for your experimentation, you'll gain
confidence in testing your webbot on web pages that serve no
commercial purpose and haven't changed since this book's
publication. This environment also affords the freedom to make
mistakes without obsessing over the crumbs your webbots leave
behind in an actual online store’'s server log file.

IMAGE-CAPTURING WEBBOTS

The image-capturing webbot leverages your knowledge of
downloading and parsing web pages to create an application that
copies all the images (and their directory structure) to your local hard
drive. In addition to creating a useful tool, you'll also learn how to
convert relative addresses into fully resolved URLs, a technique that
is vital for later spidering projects.

LINK-VERIFICATION WEBBOTS

Here you will have the opportunity to write a webbot that
automatically verifies that all the links on a web page point to valid
web pages. I'll conclude the chapter with ideas for expanding this
concept into a variety of useful tools and products.

ANONYMOUS BROWSING WEBBOTS

In this chapter, I'll introduce the concept of using a webbot as a
proxy, or intermediary agent that intercepts and modifies information
flowing between a user and the Internet. The result of this project is a
simple proxy webbot that allows users to surf the Internet
anonymously.

SEARCH-RANKING WEBBOTS

This project describes a simple webbot that determines how highly a
search engine ranks a website, given a set of search criteria. You'll
also find a host of ideas about how you can modify this concept to
provide a variety of other services.

AGGREGATION WEBBOTS

Aggregation is a technique that gathers the contents of multiple web
pages in a single location. This project introduces techniques that
make it easy to exploit the availability of RSS news services.

FTP WEBBOTS

Webbots that use FTP are able to move the information they collect to
an FTP server for storage or use by other applications. In this
chapter, we’'ll explore methods for navigating on, uploading to, and
downloading from FTP servers.

NNTP NEWS WEBBOTS

While often overlooked in favor of newer, web-based sources, NNTP is
still a viable protocol with an active user base. In this chapter, I'll
describe methods by which you can interface your webbots to news
servers, which use NNTP.

WEBBOTS THAT READ EMAIL

Here you will learn how to write webbots that read and delete
messages from any POP3 mail server. The ability to read email allows
a webbot to interpret instructions sent by email or apply a variety of
email filters.

WEBBOTS THAT SEND EMAIL

In this chapter, you'll learn various methods that allow your webbots
to send email messages and notifications. You will also learn how to
leverage what you learned in the previous chapter to create "smart
email addresses” that can determine how to forward messages based
on their content—without modifying anything on the mail server.

CONVERTING A WEBSITE INTO A FUNCTION

This project describes how you can use form emulation and parsing
techniques to transform any preexisting online application into a
function you can call from any PHP program.

PRICE-MONITORING WEBBOTS

In this chapter, we'll look at a strategic application of webbots—monitoring online prices.
There are many reasons one would do this. For example, a webbot might monitor prices for
these purposes:

. Notifying someone (via email or text message[]) when a price drops below a preset
threshold

0 \WEBBOTS THAT SEND EMAIL describes how webbots send email and text messages.

. Predicting price trends by performing statistical analysis on price histories

. Establishing your company's prices by studying what the competition charges for
similar items

Regardless of your reasons to monitor prices, the one thing that all of these strategies have in
common is that they all download web pages containing prices and then identify and parse
the data.

In this chapter, | will describe methods for monitoring online prices on e-commerce websites.
Additionally, | will explain how to parse data from tables and prepare you for the webbot
strategies revealed in PROCUREMENT WEBBOTS AND SNIPERS.

The Target

The practice store, available at this book's website,[] will be the target for our price-
monitoring webbot. A screenshot of the store is shown in The e-commerce website that is

monitored by the price-monitoring webbot.
U The URL for this store is found at http://www.schrenk.com/nostarch/webbots.

The e-commerce website that is monitored by the price-monitoring webbot

http://www.schrenk.com/nostarch/webbots

W e T T T

Fl= Edt Wew Hgrory Bocknads yshoal Inds Heb £
Metro Atmospheric Products
Thiz Week's Awclion Products Far Sale
R TER ID# ogin Gonditon \Welght Frice Qusntiy Amount
Bloormingion FO0100 Edinz Fresh 100 18,00 | a0
Stat Dale F 11 B hfis Frash 100 S 300 | I0.00
£00B-08-06

F I H mir] FIF 1 100 & 1 S0 LA

End Diahe: EE—
*008-08-12 f 13 Hopking Frash 100 E20.00 1| g20. 00
Highest Bid: Mo Bds Yal : 04 Galcler Walley Frash 100 §21.00 o
Total No. of Bide: ko Bigs et FOO105 Minneapalis Figsh 1.00 $22.00 30.00
|_Ploca bid now | POO108 StPaul Fragh .00 £22.00 | 3000
Last Wook's Auclien Wirmss POOTOT Carlerbiry Dim Fresh 00 2400 | ano0
To b= announcad P08 SHOFEY Frech 100 2R 00 | L0
] 09 &pp re=h 100§ | | AIRn]
= | I racsh (MRS [A £40 0
F lormi I i 1100 & ali] 3000
ufine Theahs Frash 100 621 75 1000
4 Me e o 100 $22.75 1000
F 3 Eapan rg=h 0.00 £23.00 3000
F G LI ity WP Cofman L Freeh .00 2415 | 0.0
FOE [} I I 1 | NI N L | IR
]) Her I] [Ny = =l | 000
PO MER Intzmralional Lrpord Frazh .00 £17 2R | 3000
F I fhinniglonka I i LD &TH | =10 LE
F lall i I rash 100 52000 | 10 00
1 Hiawata Light Ral rash 1.00 §24.00 | 1000

[Calcusta Tatal Amaunt | 969 30|

Dore

This practice store provides a controlled environment that is ideal for this exercise. For
example, by targeting the example store you can do the following:

. Experiment with price-monitoring webbots without the possibility of interfering with an
actual business

. Control the content of this target, so you don't run the risk of someone modifying the

web page, which could break the example scripts[]

U The example scripts are resistant to most changes in the target store.

The prices change on a daily basis, so you can also use it to practice writing webbots that
track and graph prices over time.

Designing the Parsing Script

Our webbot's objective is to download the target web page, parse the price variables, and
place the data into an array for processing. The price-monitoring webbot is largely an exercise
in parsing data that appears in tables, since useful online data usually appears as such. When
tables aren't used, <di v> tags are generally applied and can be parsed in a similar manner.

While we know that the test target for this example won't change, we don't know that about
targets in the wild. Therefore, we don't want to be too specific when telling our parsing
routines where to look for pricing information. In this example, the parsing script won't look
for data in specific locations; instead, it will look for the desired data relative to easy-to-find
text that tells us where the desired information is located. If the position of the pricing
information on the target web page changes, our parsing script will still find it.

Let's look at a script that downloads the target web page, parses the prices, and displays the
data it parsed. This script is available in its entirety from this book's website. The script is
broken into sections here; however, iterative loops are simplified for clarity.

Initialization and Downloading the Target

The example script initializes by including the LI B_http and LI B_par se libraries you read

about earlier. It also creates an array where the parsed data is stored, and it sets the product
counter to zero, as shown in Listing 7-1.

Initialization

i ncl ude("LIB_http.php");
i ncl ude(" LI B_parse. php");
$product _array=array();
$product _count =0;

Downl oad the target (practice store) web page
$target = "http://ww. schrenk. com webbot s/ exanpl e_store";
$web_page = http get(S$target, "");

Listing 7-1: Initializing the price-monitoring webbot

After initialization, the script proceeds to download the target web page with the get _http()
function described in DOWNLOADING WEB PAGES.

After downloading the web page, the script parses all the page's tables into an array, as shown
in Listing 7-2.

Parse all the tables on the web page into an array
$table_array = parse_array($web_page[' FILE], "<table", "</table>");

Listing 7-2: Parsing the tables into an array

The script does this because the product pricing data is in a table. Once we neatly separate all
the tables, we can look for the table with the product data. Notice that the script uses <t abl e,

not <t abl e>, as the leading indicator for a table. It does this because <t abl e will always be
appropriate, no matter how many table formatting attributes are used.

Next, the script looks for the first landmark, or text that identifies the table where the product
data exists. Since the landmark represents text that identifies the desired data, that text must
be exclusive to our task. For example, by examining the page's source code we can see that
we cannot use the word origin as a landmark because it appears in both the description of this
week's auction and the list of products for sale. The example script uses the words Products for
Sale, because that phrase only exists in the heading of the product table and is not likely to
exist elsewhere if the web page is updated. The script looks at each table until it finds the one
that contains the landmark text, Products for Sale, as shown in Listing 7-3.

Code View:

Look for the table that contains the product information
for ($xx=0; $xx<count ($table_array); S$xx++)
{
$tabl e | andmark = "Products For Sale";
if(stristr($table_array[$xx], $table_|andmark)) /1l Process this table

{
echo "FOUND: Product table\n";

Listing 7-3: Examining each table for the existence of the landmark text

Once the table containing the product pricing data is found, that table is parsed into an array
of table rows, as shown in Listing 7-4.

Parse table into an array of table rows
$product _row_array = parse_array($tabl e_array[$xx], "<tr", "</tr>");

Listing 7-4: Parsing the table into an array of table rows

Then, once an array of table rows from the product data table is available, the script looks for
the product table heading row. The heading row is useful for two reasons: It tells the webbot
where the data begins within the table, and it provides the column positions for the desired
data. This is important because in the future, the order of the data columns could change (as
part of a web page update, for example). If the webbot uses column names to identify data,
the webbot will still parse data correctly if the order changes, as long as the column names
remain the same.

Here again, the script relies on a landmark to find the table heading row. This time, the
landmark is the word Condition, as shown in Listing 7-5. Once the landmark identifies the table
heading, the positions of the desired table columns are recorded for later use.

Code View:

for($tabl e_row=0; $table_rowcount($product_row array); $table_rowt+)
{
Detect the beginning of the desired data (heading row)
$headi ng_| andmark = "Condition";
if((stristr($product_row_ array[$table_row], $headi ng_I andmark)))

{
echo "FOUND: Tabl e headi ng row n";

Get the position of the desired headi ngs
$table_cell _array = parse_array($product _row array[$table_row], "<td", "</td>");
f or ($headi ng_cel | =0; $headi ng_cel | <count ($tabl e_cel | _array); $headi ng_cel | ++)
{
if(stristr(strip_tags(trin($table_cell _array[$heading cell])), "I1D#"))
$i d_col um=$headi ng_cel | ;
if(stristr(strip_tags(trin($table_cell _array[$heading_cell])),
"Product nane"))
$nanme_col um=$headi ng_cel | ;
if(stristr(strip_tags(trin($table_cell_array[$heading_cell])), "Price"))
$pri ce_col um=$headi ng_cel | ;
}
echo "FOUND: id_col um=$id_col um\n";
echo "FOUND: price_col um=$price_col um\n";
echo "FOUND: nane_col um=$nane_col unm\ n";

Save the heading row for |ater use

$headi ng_row = $tabl e_row,

}

Listing 7-5: Detecting the table heading and recording the positions of desired columns

As the script loops through the table containing the desired data, it must also identify where
the pricing data ends. A landmark is used again to identify the end of the desired data. The
script looks for the landmark Calculate, from the form's submit button, to identify when it has
reached the end of the data. Once found, it breaks the loop, as shown in Listing 7-6.

Detect the end of the desired data table

$endi ng_| andmark = "Cal cul ate”;

if((stristr($product_row array[$table_row], $ending_ | andmark)))
{
echo " PARSI NG COWLETE!\ n";
br eak;

}

Listing 7-6: Detecting the end of the table

If the script finds the headers but doesn't find the end of the table, it assumes that the rest of
the table rows contain data. It parses these table rows, using the column position data gleaned
earlier, as shown in Listing 7-7.

Code View:

Parse product and price data
i f(isset($headi ng_row) && $headi ng_r ow<$t abl e_r ow)
{
$table_cell __array = parse_array($product _row array[$table_row], "<td", "</td>");
$product _array[$product _count]['ID] =
strip_tags(trim$table_cell_array[$id_colum]));
$product _array[$product _count][' NAME'] =
strip_tags(trim $table cell _array[$nane_colum]));
$product _array[$product _count][' PRICE'] =
strip_tags(trim $table cell _array[$price_colum]));
$product _count ++;
echo" PROCESSED: |tem #$product _count\n";

}

Listing 7-7: Assigning parsed data to an array

Once the prices are parsed into an array, the webbot script can do anything it wants with the
data. In this case, it simply displays what it collected, as shown in Listing 7-8.

Display the collected data

for ($xx=0; $xx<count ($product_array); $xx++)

{

echo "$xx. ";

echo "ID: ".$product _array[$xx]['ID].", ";

echo "NAME: ".S$product _array[$xx]['NAME'].", ";
echo "PRICE: ".$product _array[$xx]['PRICE']."\n";
}

Listing 7-8: Displaying the parsed product pricing data

As shown in The price-monitoring webbot, as run in a shell, the webbot indicates when it finds

landmarks and prices. This not only tells the operator how the webbot is running, but also
provides important diagnostic information, making both debugging and maintenance easier.

Since prices are almost always in HTML tables, you will usually parse price information in a
manner that is similar to that shown here. Occasionally, pricing information may be contained
in other tags, (like <di v> tags, for example), but this is less likely. When you encounter <di v>

tags, you can easily parse the data they contain into arrays using similar methods.

The price-monitoring webbot, as run in a shell

i Imim
[tem
| Ciiim
[EBm

: FPAALAL,
: PEELAZ.
i PUML S,
! PEALA,
: FEMALEL . IRAME
1 PAALAG., HAME
AL . INARE
AA1L AR, WAME
FEELEaT . HAME
FHHL1HE, HAMES
FHALLE . MAME:
FUAL1d,. WAMRE: T
FAAL14, HAME:
PEALLG . MAME:
PUdiik, NAME:
FAALLT. MAME:
PUHLAH . HAHE:
PAALLY ., HAME:
« MAME: Mainnetonko.
HOME: Aall ofF 0 i

|:.-|:.‘ P
, WAME: Hiswaths Light Rail.

Further Exploration

Now you know how to parse pricing information from a web page—what you do with this

information is up to you. If you are so inclined, you can expand your experience with some of
the following suggestions.

. Since the prices in the example store change on a daily basis, monitor the daily price
changes for a month and save your parsed results in a database.

. Develop scripts that graph price fluctuations.

. Read about sending email with webbots in WEBBOTS THAT SEND EMAIL, and develop
scripts that notify you when prices hit preset high or low thresholds.

While this chapter covers monitoring prices online, you can use similar parsing techniques to
monitor and parse other types of data found in HTML tables. Consider using the techniques
you learned here to monitor things like baseball scores, stock prices, weather forecasts,

census data, banner ad rotation statistics,[] and more.

U you can use webbots to perform a variety of diagnostic functions. For example, a webbot may
repeatedly download a web page to gather metrics on how banner ads are rotated.

IMAGE-CAPTURING WEBBOTS

In this chapter, I'll describe a webbot that identifies and downloads all of the images on a web
page. This webbot also stores images in a directory structure similar to the directory structure
on the target website. This project will show how a seemingly simple webbot can be made
more complex by addressing these common problems:

Finding the page base, or the address that defines the address from which all relative
addresses are referenced

Dealing with changes to the page base, caused by page redirection
Converting relative addresses into fully resolved URLs
Replicating complex directory structures

Properly downloading image files with binary formats

In SPIDERS, you'll expand on these concepts to develop a spider that downloads images from
an entire website, not just one page.

Example Image-Capturing Webbot

Our image-capturing webbot downloads a target web page (in this case, the Viking Mission
web page on the NASA website) and parses all references to images on the page. The webbot
downloads each image, echoes the image's name and size to the console, and stores the file
on the local hard drive. The image-capturing bot, when executed from a shell shows what the

webbot's output looks like when executed from a shell.

The image-capturing bot, when executed from a shell

& Shell ===

':-".'i.l'u'.'.E:-: html

erl-gif size:

size: 2432
_A_BA. gif
1L_A_gif
A_gif
A.gif
i
Lgif zize

gize s

On this website, like many others, several unique images share the same filename but have
different file paths. For example, the image /templates/logo.gif may represent a different
graphic than /templates/affiliate/logo.gif. To solve this problem, the webbot re-creates a local
copy of the directory structure that exists on the target web page. Re-creating a file structure
for stored images shows the directory structure the webbot created when it saved these
images it downloaded from the NASA example.

IMAGE-CAPTURING WEBBOTS

In this chapter, I'll describe a webbot that identifies and downloads all of the images on a web
page. This webbot also stores images in a directory structure similar to the directory structure
on the target website. This project will show how a seemingly simple webbot can be made
more complex by addressing these common problems:

Finding the page base, or the address that defines the address from which all relative
addresses are referenced

Dealing with changes to the page base, caused by page redirection
Converting relative addresses into fully resolved URLs
Replicating complex directory structures

Properly downloading image files with binary formats

In SPIDERS, you'll expand on these concepts to develop a spider that downloads images from
an entire website, not just one page.

Example Image-Capturing Webbot

Our image-capturing webbot downloads a target web page (in this case, the Viking Mission
web page on the NASA website) and parses all references to images on the page. The webbot
downloads each image, echoes the image's name and size to the console, and stores the file
on the local hard drive. The image-capturing bot, when executed from a shell shows what the

webbot's output looks like when executed from a shell.

The image-capturing bot, when executed from a shell

& Shell ===

':-".'i.l'u'.'.E:-: html

erl-gif size:

size: 2432
_A_BA. gif
1L_A_gif
A_gif
A.gif
i
Lgif zize

gize s

On this website, like many others, several unique images share the same filename but have
different file paths. For example, the image /templates/logo.gif may represent a different
graphic than /templates/affiliate/logo.gif. To solve this problem, the webbot re-creates a local
copy of the directory structure that exists on the target web page. Re-creating a file structure
for stored images shows the directory structure the webbot created when it saved these
images it downloaded from the NASA example.

Creating the Image-Capturing Webbot

This example webbot relies on a library called LI B_downl oad_i mages, which is available from

this book's website. This library contains the following functions:

. downl oad_binary file(), which safely downloads image files
. nkpat h(), which makes directory structures on your hard drive

. downl oad_i mages_f or _page(), which downloads all the images on a page

Re-creating a file structure for stored images

Il'-j C:'\Program Files\ipache Software FoundationApacha 2. #ihtdocsibookisavad_images _wew. naca. govhimis

Fl= Edt Yen Feysodes Tools Help

ﬂaade - -3 J,.-':h:tch i Folders || [F35]-

Cdnetidreader - | [Bred toscest |l 7 @ Testtompa | PR setting |
Polde e L
=1 D) sevesd_srages_sime nass o #
= | mibssion_pees
= 10 whing
B) images
=) conmon
L corkent
7 templsbeimeges
O T e e S TR
1) =ke - _
e o T
i (23 booth_chouments s e
i () business)
B |7} cescadestane
) Dazlet_Frharaa Lazsabman_RIGHT ... 1s40man_#4ngl ... 1455cenan_LEFT_fA.
B |) deder_sechangs
) darris_tats
B | _J) Duszensrgllisgn
i () Explora MM y
B I M _Excharge.can
w2 Fip
B) rremntory
i () manheim_TIT 12EnEn Ybing La... L43d6dmain_dking or... 1S0907main_ramcomk..
) Me=athslons~sthalogy
L) meta_gaarth_opt
L me=pacs
B [Matibizaid
) Mew Foldsr ! i
) .
) rna-2006-09-03 s
=) rna_z | 1SOBLAnan_ving-tra. .. 1508z4nain_vkng_6... 152313man_paliss. ..

[ral S P P

v 118 e _frontpsg. ..
_mars 100pg

P

|€

For clarity, | will break down this library into highlights and accompanying explanations.

The first script (Listing 8-1) shows the main webbot used in The image-capturing bot, when

executed from a shell and Re-creating a file structure for stored images.

i ncl ude(" LI B_downl oad_i mages. php");

$target="http://wwmv. nasa. gov/ m ssi on_pages/ vi ki ng/ i ndex. htm ";
downl oad_i mages_for_page($target);

Listing 8-1: Executing the image-capturing webbot

This short webbot script loads the LI B_downl oad_i nages library, defines a target web page, and
calls the downl oad_i mages_for _page() function, which gets the images and stores them in a
complementary directory structure on the local drive.

Note: Please be aware that the scripts in this chapter, which are available at http://www .schrenk.
com/nostarch/webbots, are created for demonstration purposes only. Although they should work in

most cases, they aren't production ready. You may find long or complicated directory structures, odd
filenames, or unusual file formats that will cause these scripts to crash.

Binary-Safe Download Routine

Our image-grabbing webbot uses the function downl oad_bi nary_fil e(), which is designed to

download binary files, like images. Other binary files you may encounter could include
executable files, compressed files, or system files. Up to this point, the only file downloads
discussed have been ASCII (text) files, like web pages. The distinction between downloading
binary and ASCII files is important because they have different formats and can cause confusion
when downloaded. For example, random byte combinations in binary files may be
misinterpreted as end-of-file markers in ASCII file downloads. If you download a binary file with
a script designed for ASCII files, you stand a good chance of downloading a partial or corrupt
file.

Even though PHP has its own, built-in binary-safe download functions, this webbot uses a
custom download script that leverages PHP/cURL functionality to download images from SSL
sites (when the protocol is HTTPS), follow HTTP file redirections, and send referer information to
the server.

Sending proper referer information is crucial because many websites will stop other websites
from "borrowing" images. Borrowing images from other websites (without hosting the images
on your server) is bad etiquette and is commonly called hijacking. If your webbot doesn't
include a proper referer value, its activity could be confused with a website that is hijacking
images. Listing 8-2 shows the file download script used by this webbot.

Code View:

function downl oad_binary file($file, $referer)

{
Open a PHP/ CURL session

$s = curl _init();

Configure the cURL comand

curl _setopt ($s, CURLOPT_URL, $file); /'l Define target site
curl _setopt($s, CURLOPT_RETURNTRANSFER, TRUE); /!l Return file contents in
a string

curl _setopt ($s, CURLOPT_BI NARYTRANSFER, TRUE); /! 1ndicate binary transfer

http://www .schrenk.com/nostarch/webbots
http://www .schrenk.com/nostarch/webbots

curl _setopt ($s, CURLOPT_REFERER, $referer); /1 Referer value

curl _setopt($s, CURLOPT_SSL_VERI FYPEER, FALSE); // No certificate

curl _setopt($s, CURLOPT_FOLLON.OCATI ON, TRUE); /1 Follow redirects

curl _setopt($s, CURLOPT_MAXREDI RS, 4); [/ Limt redirections to four

Execute the cURL command (send contents of target web page to string)
$downl oaded_page = curl _exec($s);

C ose PHP/ CURL session and return the file
curl _cl ose($s);
return $downl oaded_page;

}

Listing 8-2: A binary-safe file download routine, optimized for webbot use

Directory Structure

The script that creates directories (shown in Re-creating a file structure for stored images) is
derived from a user-contributed routine found on the PHP website (http://www.php.net). Users
commonly submit scripts like this one when they find something they want to share with the
PHP community. In this case, it's a function that expands on nkdi r () by creating complete
directory structures with multiple directories at once. | modified the function slightly for our
purposes. This function, shown in Listing 8-3, creates any file path that doesn't already exist on
the hard drive and, if needed, it will create multiple directories for a single file path. For
example, if the image’'s file path is images/templates/November, this function will create all
three directories—images, templates, and November—to satisfy the entire file path.

functi on nkpat h($pat h)
{

Make sure that the slashes are all single and | ean the correct way
$pat h=preg_replace('/(\/){2,}| (\\\){1,}/"," /", $path);

Make an array of all the directories in path
$di r s=expl ode("/", $pat h);

Verify that each directory in path exists and create if necessary

$pat h="";
foreach ($dirs as $el enent)
{
$pat h. =$el enent . "/ ";
if(lis_dir($path)) /'l Directory verified here
nkdi r ($pat h) ; I/l Created if it doesn't exist
}
}

Listing 8-3: Re-creating file paths for downloaded images
This script in Listing 8-3 places all the path directories into an array and attempts to re-create

that array, one directory at a time, on the local filesystem. Only nonexistent directories are
created.

The Main Script

http://www.php.net/

The main function for this webbot, downl oad_i mages_f or _page(), is broken down into

highlights and explained below. As mentioned earlier, this function—and the entire
LI B_downl oad_i mages library—is available at this book's website.

Initialization and Target Validation

Since $t ar get is used later for resolving the web address of the images, the $t ar get value

must be validated after the web page is downloaded. This is important because the server may
redirect the webbot to an updated web page. That updated URL is the actual URL for the target
page and the one that all relative files are referenced from in the next step. The script in Listing
8-4 verifies that the $t ar get is the actual URL that was downloaded and not the product of a

redirection.

functi on downl oad i nages_for_page($target)

{

echo "target = $target\n";

Downl oad t he web page

$web_page = http_get ($target, Sreferer="");

Update the target in case there was a redirection

$target = $web_page[' STATUS J['url'];

Listing 8-4: Downloading the target web page and responding to page redirection
Defining the Page Base

Much like the <base> HTML tag, the webbot uses $page_base to define the directory address of

the target web page. This address becomes the reference for all images with relative addresses.
For example, if $t ar get is http://www.schrenk.com/april/index.php, then $page_base becomes

http://www.schrenk.com/april.

This task, which is shown in Listing 8-5, is performed by the function get _base_page_addr ess
() and is actually in LI B_resol ve_addr ess and included by LI B_downl oad_i mages.

Strip filenane off target for use as page base
$page_base=get base page_ address($target);

Listing 8-5: Creating the page base for the target web page

As an example, if the webbot finds an image with the relative address 14/logo.qgif, and the page
base is http://www.schrenk.com/april, the webbot will use the page base to derive the fully

resolved address for the image. In this case, the fully resolved address is http://www.schrenk.
com/april/14/logo.gif. In contrast, if the image's file path is /march/14/logo.qgif, the address will
resolve to http://www.schrenk.com/march/14/logo.gif.

Creating a Root Directory for Imported File Structure

Since this webbot may download images from a number of domains, it creates a directory
structure for each (see Listing 8-6). The root directory of each imported file structure is based
on the page base.

http://www.schrenk.com/april/index.php
http://www.schrenk.com/april
http://www.schrenk.com/april
http://www.schrenk.com/april/14/logo.gif
http://www.schrenk.com/april/14/logo.gif
http://www.schrenk.com/march/14/logo.gif

Code View:

ldentify the directory where i mages are to be saved
$save_inage_directory = "saved_i nages_".str_replace("http://", "", $page_base);

Listing 8-6: Creating a root directory for the imported file structure
Parsing Image Tags from the Downloaded Web Page

The webbot uses techniques described in PARSING TECHNIQUES to parse the image tags from

the target web page and put them into an array for easy processing. This is shown in Listing 8-
7. The webbot stops if the target web page contains no images.

Parse the inmage tags
$ing_tag _array = parse_array($web_page[' FILE], "<ing", ">");
i f(count ($ing_tag_array)==0)

{

echo "No inages found at $target\n";

exit;

}
Listing 8-7: Parsing the image tags
The Image-Processing Loop
The webbot employs a loop, where each image tag is individually processed. For each image
tag, the webbot parses the image file source and creates a fully resolved URL (see Listing 8-8).
Creating a fully resolved URL is important because the webbot cannot download an image
without its complete URL: the HTTP protocol identifier, the domain, the image's file path, and

the image's filename.

Code View:
$i mage _path = get _attribute($ing tag array[$xx], SPattribute="src");

echo " inmage: ".$inmage_path;
$image_url = resol ve_address($i nage_pat h, $page_base);

Listing 8-8: Parsing the image source and creating a fully resolved URL
Creating the Local Directory Structure

The webbot verifies that the file path exists in the local file structure. If the directory doesn't
exist, the webbot creates the directory path, as shown in Listing 8-9.

Code View:

i f(get _base_donai n_addr ess($page_base) == get _base_donai n_addr ess($i nage_url))
{

Make image storage directory for inmage, if one doesn't exist
$directory = substr($image_path, 0, strrpos($image_path, "/"));

cl earstatcache(); // Clear cache to get accurate directory status
if(lis_dir($save_image_directory."/".$directory)) /[l See if dir exists

nkpat h($save i mage directory."/". $directory); /Il Create if it
doesn't

Listing 8-9: Creating the local directory structure for each image file
Downloading and Saving the File

Once the path is verified or created, the image is downloaded (using its fully resolved URL) and
stored in the local file structure (see Listing 8-10).

Code View:

Downl oad the inmage and report inage size
$this image file = downl oad binary file($imge url, 3$referer=$target);
echo " size: ".strlen($this_inmage file);

Save the inmage

$fp = fopen($save_ i nage_directory."/".$i mage_path, "w');
fputs($fp, $this_ image file);

fcl ose($fp);

echo "\ n";

Listing 8-10: Downloading and storing images

The webbot repeats this process for each image parsed from the target web page.

Further Exploration
You can point this webbot at any web page, and it will generate a copy of each image that

page uses, arranged in a directory structure that resembles the original. You can also develop
other useful webbots based on this design. If you want to test your skills, consider the

following challenges.

. Write a similar webbot that detects hijacked images.

Improve the efficiency of the script by reworking it so that it doesn't download an
image it has downloaded previously.

Modify this webbot to create local backup copies of web pages.
. Adjust the webbot to cache movies or audio files instead of images.

Modify the bot to monitor when images change on a web page.

Final Thoughts

If you attempt to run this webbot on a remote server, remember that your webbot must have
write privileges on that server, or it won't be able to create file structures or download images.

4 »

LINK-VERIFICATION WEBBOTS

This webbot project solves a problem shared by all web developers—detecting broken links on

web pages. Verifying links on a web page isn't a difficult thing to do, and the associated script
is short.

Link-verification bot flow chart shows the simplicity of this webbot.

Creating the Link-Verification Webbot

For clarity, I'll break down the creation of the link-verification webbot into manageable
sections, which I'll explain along the way. The code and libraries used in this chapter are
available for download at this book's website.

Initializing the Webbot and Downloading the Target

Before validating links on a web page, your webbot needs to load the required libraries and
initialize a few key variables. In addition to LI B_http and LI B_par se, this webbot introduces

two new libraries: LI B_resol ve_addresses and LI B_htt p_codes. I'll explain these additions
as | use them.

Link-verification bot flow chart

Inihialize webbaot and
download target

Parse links

Az all inks
variflads

Verlflcation
oo
F Create fully Finish

resclved LRLs

|

Downlood
linked poge

Display
page resulfs

The webbot downloads the target web page with the http_get () function, which was
described in DOWNLOADING WEB PAGES.

Code View:

Include libraries

i nclude("LIB_http.php");

i ncl ude(" LI B_parse. php");

i ncl ude("LIB_resol ve_addresses. php");
i ncl ude("LIB_http_codes. php");

ldentify the target web page and the page base
$target = "http://ww. schrenk. com nost arch/ webbot s/ page_wi t h_broken_I i nks. php";
$page_base = "http://wwmv. schrenk. conf nost arch/ webbot s/ ";

Downl oad the web page

Listing 9-1: Initializing the bot and downloading the target web page

Setting the Page Base

In addition to defining the $t ar get , which points to a diagnostic page on the book's website,
Listing 9-1 also defines a variable called $page_base. A page base defines the domain and

server directory of the target page, which tells the webbot where to find web pages
referenced with relative links.

Relative links are references to other files—relative to where the reference is made. For
example, consider the relative links in Examples of Relative Links.

Table Examples of Relative Links

Link References a File Located In . . .

 Same directory as web page

 The page's parent directory (up one level)

 |The page's parent's parent directory (up 2 levels)
 The server's root directory

Your webbot would fail if it tried to download any of these links as is, since your webbot's
reference point is the computer it runs on, and not the computer where the links where
found. The page base, however, gives your webbot the same reference as the target page.
You might think of it this way: The page base is to a webbot as the <base> tag is to a

browser. The page base sets the reference for everything referred to on the target web page.

Parsing the Links
You can easily parse all the links and place them into an array with the script in Listing 9-2.
Code View:

Parse the links
$link _array = parse_array($downl oaded page[' FILE'], $beg_tag="<a", $close tag=">");

Listing 9-2: Parsing the links from the downloaded page

The code in Listing 9-2 uses parse_array() to put everything between every occurrence of

<a and > into an array.[] The function parse_array() is not case sensitive, so it doesn't
matter if the target web page uses <a>, <A> or a combination of both tags to define links.

o Parsing functions are explained in PARSING TECHNIQUES.

Running a Verification Loop

You gain a great deal of convenience when the parsed links are available in an array. The
array allows your script to verify the links iteratively through one set of verification
instructions, as shown in Listing 9-3. The PHP sections of this script appear in bold.

Listing 9-3 also includes some HTML formatting to create a nice-looking report, which you'll
see later. Notice that the contents of the verification loop have been removed for clarity. I'll
explain what happens in this loop next.

Status of |inks on <?echo $target ?>

<t abl e border="1" cell paddi ng="1" cell spaci ng="0">
<tr bgcol or ="#e0e0e0" >
<t h>URL</t h>
<t h>HTTP CODE</t h>
<t h>MESSAGE</ t h>
<t h>DOWNLOAD TI ME (seconds) </t h>
</[tr>

<?

for($xx=0; $xx<count($link_array); $xx++)
{
/'l Verification and display go here
}

Listing 9-3: The verification loop

Generating Fully Resolved URLs

Since the contents of the $l i nk_array elements are actually complete anchor tags, we need
to parse the value of the hr ef attribute out of the tags before we can download and test the
pages they reference.

The value of the hr ef attribute is extracted from the anchor tag with the function
get _attribute(), as shown in Listing 9-4.

// Parse the HITP attribute fromlink
$link = get_attribute($tag=$link_array[$xx], $attribute="href");

Listing 9-4: Parsing the referenced address from the anchor tag

Once you have the hr ef address, you need to combine the previously defined $page_base

with the relative address to create a fully resolved URL, which your webbot can use to
download pages. A fully resolved URL is any URL that describes not only the file to download,
but also the server and directory where that file is located and the protocol required to access
it. Examples of Fully Resolved URLs (for links on) shows the fully resolved addresses for the

links in Examples of Relative Links, assuming the links are on a page in the directory, http://
www.schrenk.com/nostarch/webbots.

Table Examples of Fully Resolved URLs (for links on http://www.schrenk.com/

nostarch/book)
Link Fully Resolved URL
 http://www.schrenk.com/nostarch/webbots/

linked_page.html

 http://www.schrenk.com/nostarch/linked_page.html

http://www.schrenk.com/nostarch/webbots
http://www.schrenk.com/nostarch/webbots
http://www.schrenk.com/nostarch/book
http://www.schrenk.com/nostarch/book
http://www.schrenk.com/nostarch/webbots/linked_page.html
http://www.schrenk.com/nostarch/webbots/linked_page.html
http://www.schrenk.com/nostarch/linked_page.html

 |http://www.schrenk.com/linked_page.html

 http://www.schrenk.com/linked_page.html

Fully resolved URLs are made with the r esol ve_addr ess() function (see Listing 9-5), which
is in the LI B_resol ve_addr esses library. This library is a set of routines that converts all
possible methods of referencing web pages in HTML into fully resolved URLSs.

[l Create a fully resolved URL
$fully resolved |ink address = resol ve_address($link, $page base);

Listing 9-5: Creating fully resolved addresses with r esol ve_addr ess()

Downloading the Linked Page

The webbot verifies the status of each page referenced by the links on the target page by
downloading each page and examining its status. It downloads the pages with http_get (),

just as you downloaded the target web page earlier (see Listing 9-6).

/1 Downl oad the page referenced by the |ink and eval uate
$downl oaded_|ink = http_get($fully_resolved_|link_address, $target);

Listing 9-6: Downloading a page referenced by a link

Notice that the second parameter in htt p_get () is set to the address of the target web page.

This sets the page's referer variable to the target page. When executed, the effect is the
same as telling the server that someone requested the page by clicking a link from the target
web page.

Displaying the Page Status

Once the linked page is downloaded, the webbot relies on the STATUS element of the

downloaded array to analyze the HTTP code, which is provided by PHP/CURL. (For your future
projects, keep in mind that PHP/CURL also provides total download time and other diagnostics
that we're not using in this project.)

HTTP status codes are standardized, three-digit numbers that indicate the status of a page

fetch.l This webbot uses these codes to determine if a link is broken or valid. These codes
are divided into ranges that define the type of errors or status, as shown in HTTP Code

Ranges and Related Categories.

U The official reference for HTTP codes is available on the World Wide Web Consortium's website (http://
www.w3.org/Protocols/rfc2616/rfc2616-sec10.html).

Table HTTP Code Ranges and Related Categories

HTTP Code Range |Category Meaning

100-199 Informational |Not generally used

http://www.schrenk.com/linked_page.html
http://www.schrenk.com/linked_page.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

200-299 Successful Your page request was successful

300-399 Redirection The page you're looking for has moved or has been
removed

400-499 Client error Your web client made a incorrect or illogical page
request

500-599 Server error |A server error occurred, generally associated with a bad
form submission

The $st at us_code_array was created when the LI B_htt p_codes library was imported. When
you use the HTTP code as an index into $st at us_code_array, it returns a human-readable
status message, as shown in Listing 9-7. (PHP script is in bold.)

Code View:

<tr>

<td align="Ileft"><?echo $downl oaded_|ink["' STATUS]['url"']?></td>

<td align="right"><?echo $downl oaded_| i nk[' STATUS][’ htt p_code'] ?></td>

<td align="Ileft"><?echo $status_code_array[$downl oaded_I i nk[' STATUS']
["http_code']] ?></td>

<td align="right"><?echo $downl oaded_| i nk[' STATUS']['total _tinme']?></td>
</[tr>

Listing 9-7: Displaying the status of linked web pages

As an added feature, the webbot displays the amount of time (in seconds) required to
download pages referenced by the links on the target web page. This period is automatically
measured and recorded by PHP/CURL when the page is downloaded. The period required to
download the page is available in the array element: $downl oaded_| i nk[' STATUS']

["total time'].

LINK-VERIFICATION WEBBOTS

This webbot project solves a problem shared by all web developers—detecting broken links on

web pages. Verifying links on a web page isn't a difficult thing to do, and the associated script
is short.

Link-verification bot flow chart shows the simplicity of this webbot.

Creating the Link-Verification Webbot

For clarity, I'll break down the creation of the link-verification webbot into manageable
sections, which I'll explain along the way. The code and libraries used in this chapter are
available for download at this book's website.

Initializing the Webbot and Downloading the Target

Before validating links on a web page, your webbot needs to load the required libraries and
initialize a few key variables. In addition to LI B_http and LI B_par se, this webbot introduces

two new libraries: LI B_resol ve_addresses and LI B_htt p_codes. I'll explain these additions
as | use them.

Link-verification bot flow chart

Inihialize webbaot and
download target

Parse links

Az all inks
variflads

Verlflcation
oo
F Create fully Finish

resclved LRLs

|

Downlood
linked poge

Display
page resulfs

The webbot downloads the target web page with the http_get () function, which was
described in DOWNLOADING WEB PAGES.

Code View:

Include libraries

i nclude("LIB_http.php");

i ncl ude(" LI B_parse. php");

i ncl ude("LIB_resol ve_addresses. php");
i ncl ude("LIB_http_codes. php");

ldentify the target web page and the page base
$target = "http://ww. schrenk. com nost arch/ webbot s/ page_wi t h_broken_I i nks. php";
$page_base = "http://wwmv. schrenk. conf nost arch/ webbot s/ ";

Downl oad the web page

Listing 9-1: Initializing the bot and downloading the target web page

Setting the Page Base

In addition to defining the $t ar get , which points to a diagnostic page on the book's website,
Listing 9-1 also defines a variable called $page_base. A page base defines the domain and

server directory of the target page, which tells the webbot where to find web pages
referenced with relative links.

Relative links are references to other files—relative to where the reference is made. For
example, consider the relative links in Examples of Relative Links.

Table Examples of Relative Links

Link References a File Located In . . .

 Same directory as web page

 The page's parent directory (up one level)

 |The page's parent's parent directory (up 2 levels)
 The server's root directory

Your webbot would fail if it tried to download any of these links as is, since your webbot's
reference point is the computer it runs on, and not the computer where the links where
found. The page base, however, gives your webbot the same reference as the target page.
You might think of it this way: The page base is to a webbot as the <base> tag is to a

browser. The page base sets the reference for everything referred to on the target web page.

Parsing the Links
You can easily parse all the links and place them into an array with the script in Listing 9-2.
Code View:

Parse the links
$link _array = parse_array($downl oaded page[' FILE'], $beg_tag="<a", $close tag=">");

Listing 9-2: Parsing the links from the downloaded page

The code in Listing 9-2 uses parse_array() to put everything between every occurrence of

<a and > into an array.[] The function parse_array() is not case sensitive, so it doesn't
matter if the target web page uses <a>, <A> or a combination of both tags to define links.

o Parsing functions are explained in PARSING TECHNIQUES.

Running a Verification Loop

You gain a great deal of convenience when the parsed links are available in an array. The
array allows your script to verify the links iteratively through one set of verification
instructions, as shown in Listing 9-3. The PHP sections of this script appear in bold.

Listing 9-3 also includes some HTML formatting to create a nice-looking report, which you'll
see later. Notice that the contents of the verification loop have been removed for clarity. I'll
explain what happens in this loop next.

Status of |inks on <?echo $target ?>

<t abl e border="1" cell paddi ng="1" cell spaci ng="0">
<tr bgcol or ="#e0e0e0" >
<t h>URL</t h>
<t h>HTTP CODE</t h>
<t h>MESSAGE</ t h>
<t h>DOWNLOAD TI ME (seconds) </t h>
</[tr>

<?

for($xx=0; $xx<count($link_array); $xx++)
{
/'l Verification and display go here
}

Listing 9-3: The verification loop

Generating Fully Resolved URLs

Since the contents of the $l i nk_array elements are actually complete anchor tags, we need
to parse the value of the hr ef attribute out of the tags before we can download and test the
pages they reference.

The value of the hr ef attribute is extracted from the anchor tag with the function
get _attribute(), as shown in Listing 9-4.

// Parse the HITP attribute fromlink
$link = get_attribute($tag=$link_array[$xx], $attribute="href");

Listing 9-4: Parsing the referenced address from the anchor tag

Once you have the hr ef address, you need to combine the previously defined $page_base

with the relative address to create a fully resolved URL, which your webbot can use to
download pages. A fully resolved URL is any URL that describes not only the file to download,
but also the server and directory where that file is located and the protocol required to access
it. Examples of Fully Resolved URLs (for links on) shows the fully resolved addresses for the

links in Examples of Relative Links, assuming the links are on a page in the directory, http://
www.schrenk.com/nostarch/webbots.

Table Examples of Fully Resolved URLs (for links on http://www.schrenk.com/

nostarch/book)
Link Fully Resolved URL
 http://www.schrenk.com/nostarch/webbots/

linked_page.html

 http://www.schrenk.com/nostarch/linked_page.html

http://www.schrenk.com/nostarch/webbots
http://www.schrenk.com/nostarch/webbots
http://www.schrenk.com/nostarch/book
http://www.schrenk.com/nostarch/book
http://www.schrenk.com/nostarch/webbots/linked_page.html
http://www.schrenk.com/nostarch/webbots/linked_page.html
http://www.schrenk.com/nostarch/linked_page.html

 |http://www.schrenk.com/linked_page.html

 http://www.schrenk.com/linked_page.html

Fully resolved URLs are made with the r esol ve_addr ess() function (see Listing 9-5), which
is in the LI B_resol ve_addr esses library. This library is a set of routines that converts all
possible methods of referencing web pages in HTML into fully resolved URLSs.

[l Create a fully resolved URL
$fully resolved |ink address = resol ve_address($link, $page base);

Listing 9-5: Creating fully resolved addresses with r esol ve_addr ess()

Downloading the Linked Page

The webbot verifies the status of each page referenced by the links on the target page by
downloading each page and examining its status. It downloads the pages with http_get (),

just as you downloaded the target web page earlier (see Listing 9-6).

/1 Downl oad the page referenced by the |ink and eval uate
$downl oaded_|ink = http_get($fully_resolved_|link_address, $target);

Listing 9-6: Downloading a page referenced by a link

Notice that the second parameter in htt p_get () is set to the address of the target web page.

This sets the page's referer variable to the target page. When executed, the effect is the
same as telling the server that someone requested the page by clicking a link from the target
web page.

Displaying the Page Status

Once the linked page is downloaded, the webbot relies on the STATUS element of the

downloaded array to analyze the HTTP code, which is provided by PHP/CURL. (For your future
projects, keep in mind that PHP/CURL also provides total download time and other diagnostics
that we're not using in this project.)

HTTP status codes are standardized, three-digit numbers that indicate the status of a page

fetch.l This webbot uses these codes to determine if a link is broken or valid. These codes
are divided into ranges that define the type of errors or status, as shown in HTTP Code

Ranges and Related Categories.

U The official reference for HTTP codes is available on the World Wide Web Consortium's website (http://
www.w3.org/Protocols/rfc2616/rfc2616-sec10.html).

Table HTTP Code Ranges and Related Categories

HTTP Code Range |Category Meaning

100-199 Informational |Not generally used

http://www.schrenk.com/linked_page.html
http://www.schrenk.com/linked_page.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

200-299 Successful Your page request was successful

300-399 Redirection The page you're looking for has moved or has been
removed

400-499 Client error Your web client made a incorrect or illogical page
request

500-599 Server error |A server error occurred, generally associated with a bad
form submission

The $st at us_code_array was created when the LI B_htt p_codes library was imported. When
you use the HTTP code as an index into $st at us_code_array, it returns a human-readable
status message, as shown in Listing 9-7. (PHP script is in bold.)

Code View:

<tr>

<td align="Ileft"><?echo $downl oaded_|ink["' STATUS]['url"']?></td>

<td align="right"><?echo $downl oaded_| i nk[' STATUS][’ htt p_code'] ?></td>

<td align="Ileft"><?echo $status_code_array[$downl oaded_I i nk[' STATUS']
["http_code']] ?></td>

<td align="right"><?echo $downl oaded_| i nk[' STATUS']['total _tinme']?></td>
</[tr>

Listing 9-7: Displaying the status of linked web pages

As an added feature, the webbot displays the amount of time (in seconds) required to
download pages referenced by the links on the target web page. This period is automatically
measured and recorded by PHP/CURL when the page is downloaded. The period required to
download the page is available in the array element: $downl oaded_| i nk[' STATUS']

["total time'].

Running the Webbot

Since the output of this webbot contains formatted HTML, it is appropriate to run this webbot
within a browser, as shown in Running the link-verification webbot.

Running the link-verification webbot

| @ liozilia Firalox Jokd|
Ela Edt e Hglor Booknats fahoo! Jook Help -‘“‘.-l
Status of links on http www, schrenk.cominostarchiwebbotsipage_with_broken_links.ghp
HTTP DOWMLOAD TIME
Ii URL CODE MESSAGE |7 i nds)
1 |hip:iwanee schrenke c omenostarc hiwebbotsfead schrenk com A0 1404 Mot Found 0812
2 |hitp:dheonner schrenkc com 200200 K O E4
2 |hp: e schrenkccominostarchivabbotshelo_weorld.hitml 200200 QK 0265
_4 FOIp: eedeat SCHTENLC C iUTIo S Lare dvaa D botsidl sanostic. phg AL L0 ot Feasund _ Qove
_5 Fip:edtevet o Com 200200 QK _ 0350
.]] e B0 L
| NCpe e Schrank commosiarchiwabbotsS0 _smar_pagea php = I'an'I'I'IE-I'tEn:I 10
T|hitp:Aworiwr schrenls c ominostanchbweb botsfmsa echrank comnowhere ﬂlle|=‘lEli'l fot Found (RYEE
m=ll

This webbot counts and identifies all the links on the target website. It also indicates the HTTP
code and diagnostic message describing the status of the fetch used to download the page
and displays the actual amount of time it took the page to load.

Let's take this time to look at some of the libraries used by this webbot.
LIB_ http codes

The following script creates an indexed array of HTTP error codes and their definitions. To use

the array, simply include the library, insert your HTTP code value into the array, and echo as
shown in Listing 9-8.

i ncl ude(LI B_http_codes. php);

echo $status_code_array[$YOUR_HTTP_CODE] [' M5G]

Listing 9-8: Decoding an HTTP code with LI B_htt p_codes

LI B_htt p_codes is essentially a group of array declarations, with the first element being the

HTTP code and the second element, [' M5G], being the status message text. Like the others,
this library is also available for download from this book's website.

LIB_ resolve addresses

The library that creates fully resolved addresses, LI B _resol ve_addr esses, is also available
for download at the book's website.

Note: Before you download and examine this library, be warned that creating fully resolved URLs
is a lot like making sausage—while you might enjoy how sausage tastes, you probably wouldn't
like watching those lips and ears go into the grinder. Simply put, the act of converting relative
links into fully resolved URLs involves awkward, asymmetrical code with numerous exceptions to
rules and many special cases. This library is extraordinarily useful, but it isn't made up of pretty
code.

If you don't need to see how this conversion is done, there's no reason to look. If, on the
other hand, you're intrigued by this description, feel free to download the library from the
book's website and see for yourself. More importantly, if you find a cleaner solution, please
upload it to the book’s website to share it with the community.

Further Exploration

You can expand this basic webbot to do a variety of very useful things. Here is a short list of
ideas to get you started on advanced designs.

Create a web page with a form that allows people to enter and test the links of any
web page.

Schedule a link-verification bot to run periodically to ensure that links on web pages

remain current. (For information on scheduling webbots, read SCHEDULING WEBBOTS
AND SPIDERS.)

Modify the webbot to send email notifications when it finds dead links. (More
information on webbots that send email is available in WEBBOTS THAT SEND EMAIL.)

Encase the webbot in a spider to check the links on an entire website.

Convert this webbot into a function that is called directly from PHP. (This idea is
explored in CONVERTING A WEBSITE INTO A FUNCTION.)

ANONYMOUS BROWSING WEBBOTS

The Internet is a public place, and as in any other community, web surfers leave telltale clues
of where they've been and what they've done. While many people feel anonymous online, the
fact is that server logs, cookies, and browser caches leave little doubt to what happens on the
Internet. While total online anonymity is nearly impossible, you can cloak your activity
through a specialized webbot called a proxybot, or simply a proxy. This chapter investigates
applications for proxies and later explores a webbot proxy project that provides anonymous
web browsing.

Anonymity with Proxies

A proxy is a special type of webbot that serves as an intermediary between webservers and
clients. Proxies have many uses including banning people from browsing prohibited websites,
blocking banner advertisements, and inhibiting suspect scripts from running on browsers.

One of the more popular proxies is Squid, a web proxy that, among other things, saves

bandwidth on large networks by caching frequently downloaded images.[] Squid, along with
most other proxies, also converts private network IP addresses into a single public address
through a process called Network Address Translation (NAT).

0 |nformation about Squid, a popular open source web proxy cache, is available at http://www.squid-
cache.org. In addition to caching frequently downloaded images, Squid also caches DNS lookups, failed
requests, and many other Internet objects.

A side effect of proxy use is that proxies create a potentially anonymous browsing
environment because individual network addresses are pooled into a single network address.
Since only the proxied network address is visible to web servers, the identities of the
individual surfers remain unknown. Anonymity is the focus of this chapter, but before we start
that discussion, a quick review of the liabilities of browsing in a non-proxied environment is in
order.

Non-proxied Environments

In non-proxied network environments, web clients are totally exposed to the servers they
access. This is important in terms of privacy because servers maintain records of requesting
IP addresses, the files accessed, and the times they were accessed, as depicted in Browsing

in a non-proxied network environment.

Browsing in a non-proxied network environment

http://www.squid-cache.org/
http://www.squid-cache.org/

-"'-'_'_‘_'—.____\-"\-
Webaite &
'\-\-.______'_'_'_'_,_,-'
LG FILE

IF addrass, Files
downloadsd,

and aceess mes

T e
Websie B

'\"-______'_'_'_'_,_F‘.

L FILE
IF address, files

-
B

Wb purker

ﬂl'!:l L= Dalut— 5 |1I'I1E'L

"-\-____\—'_'_,_,_,-P'

Wi:-l:hd-lh- C

L3S FILE
IF address_ Files
downloaded,

and acoess imes

“-H_____'___ﬂ-'-"

Additionally, webservers may store small records of browsing activity on clients' hard drives in

the form of cookies.l By reading cookies on a user's successive visits to the same Internet
domain, webservers determine a variety of information, including previously defined browsing
preferences, authentication criteria, and browsing history for that user within that domain.

0 AUTHENTICATION and ADVANCED COOKIE MANAGEMENT describe cookies and their application to
webbots in detail.

Your Online Exposure

You may think that you only expose your identity online when you formally register a
username and password with a website, or that your identity is only known at sites where
you've registered. However, a variety of tricks are available to monitor Internet activity, even
when you don't have administration rights to a website. For example, you can learn a lot
about the users of community forums, news servers, or even MySpace by uploading a single-
pixel image, usually a transparent GIF file, to one of those services. While the single-pixel
image is essentially invisible, everybody who accesses a web page containing one also
downloads this seemingly innocuous little image. If things are set up correctly, each web
surfer who downloads a page containing one of these single-pixel images leaves a record in a
server log file, unknowingly recording his or her IP address and file access time. Here are
some of the things you can learn from these log files:

. IP addresses of the web surfers accessing the page
. Frequency that someone with a specific IP address (or domain of origin) visits the page
. Time of day that web surfer visited the web page

. Total traffic the web page receives

. Indications of when traffic to the web page is heavy or light

Once you have a visitor's IP address, you could also identify his or her ISP by performing a
reverse DNS lookup, which converts an IP address into its domain of origin. Many times, a
reverse DNS lookup only reveals someone's ISP, like EarthLink or AOL. And since so many
people (from all over the world) use these ISPs, that information isn't very useful. Other
times, however, the domain name will give you the name of a specific corporation or

organization that downloaded the web page.[]

015 the late 1990s, Amazon.com used a similar technique, combined with purchase data, to determine
the reading lists of large corporations. For a short while, Amazon.com actually published these lists on its
website. For obvious reasons, this feature was short-lived.

You can also configure the server that hosts the single-pixel image to write a cookie on the
hard drive of the web surfer. With this cookie, you can determine when an individual user
gains access to web pages. If you place your single-pixel image on many web pages that are
visited by a specific Internet user, you can track much of that user's browsing activity.

If you think these threats to one's privacy are too theoretical, consider what happens on a
larger scale with online advertising companies like MySpace, Google, DoubleClick, and
SpecificClick. Given the large number of web pages on which these companies’
advertisements appear, they are capable of tracking a very large percentage of your online
activity. Just consider how many of the websites you visit have advertisements. Then look at
your browser's cookie records (usually available in the privacy settings of your browser, as
shown in Viewing advertisers' cookies) to see how many of these media companies have left

cookies on your computer.

Viewing advertisers' cookies

| & Cookies I7El
Search: doubisdick] L Claar

T et Frlcaning oabd e reshoh por sesnd
e k= Hame

L] doubbedick.net i}
L) ed deublarhc . ebidssEaradebott_ad.d bl ok nes |
Mare; id

Content ! SO000=Med 7 F
Domain: doubedick, net
Path: |
S=nd Forl B bypa of conrmct ion
Evpirit! Thursdey, Moeember 12, 2008 §; 3% 02 P1

[Earverva o | [e |

Armed with what you know now, are you wondering why advertising companies write cookies
to your hard drive? Are you questioning why the cookie in Viewing advertisers' cookies
doesn't expire for nearly three years? | hope that this information freaks you out just a little
and whets your appetite to learn more about writing anonymizing webbot proxies.

Proxied Environments

Typically, in corporate settings, proxies sit between a private network and the Internet, and
all traffic that moves between the two is forced through the proxy. In the process, the proxy
replaces each individual's identity with its own, and thereby "hides" the web surfer from the

http://amazon.com/
http://amazon.com/

webserver's log files, as shown in Hiding behind a proxy.

Hiding behind a proxy

A mm e o [Waksli & :
L3
i’ Private Netwark "
! 1 Lz FILE
' : Provey's IP address,
i : filas dewnloadad,
i ! and oocess fimes
1
: i ~—— —
i |
i |
: 1
1
! L& FILE
i web surfer | —— | PROXY - Proxy’s IP address,
' filas downloadad,
: . and access fimes
' '
1 I l"'-________._-""
1 1
' '
1 1 .
! ! [Wakslta C -
: :
i | LOG FILE
' : Provey's IP address,
: ! filas cewenloadad,
"-..‘ - and oocess fimes
'*--.__________.--‘I

Since the web surfer in Hiding behind a proxy is the only proxy user, no anonymity is achieved

—the proxy is synonymous with the person using it. Ambiguity, and eventually anonymity, is
achieved as more people use the same proxy, as in Achieving anonymity through numbers.

Achieving anonymity through numbers

o Wehsihe & y
AR T T T T m e e e e e e e "'1.‘

Private Network

LG FILE

Prowy's [P addrass,
Files dewnloadad
and occess fimes

—

LG FILE
Proxy's [P addrass,

\ files dewnlondad,

Wiabs surfar
A

PROXY

and oocess fimes

Wiabs surfar
i

e

1
1
1
1
1
1
1
1
' o Wiahslhe C y
1
1
1
1
1
1
1
1
I

LG FILE

Prowy's [P addrass,
files downloodad,

A K and occess fimes

o N A N R A A R R A A A A R oy
1

The log files recorded by the webservers become ambiguous as more people use the proxy
because the proxy's identity no longer represents a single web surfer. As the number of
people using the proxy increases, the identity of individual users decreases. While anonymity
is not generally an objective for proxies of this type, it is a side effect of operation, and the
focus of this chapter's project.

ANONYMOUS BROWSING WEBBOTS

The Internet is a public place, and as in any other community, web surfers leave telltale clues
of where they've been and what they've done. While many people feel anonymous online, the
fact is that server logs, cookies, and browser caches leave little doubt to what happens on the
Internet. While total online anonymity is nearly impossible, you can cloak your activity
through a specialized webbot called a proxybot, or simply a proxy. This chapter investigates
applications for proxies and later explores a webbot proxy project that provides anonymous
web browsing.

Anonymity with Proxies

A proxy is a special type of webbot that serves as an intermediary between webservers and
clients. Proxies have many uses including banning people from browsing prohibited websites,
blocking banner advertisements, and inhibiting suspect scripts from running on browsers.

One of the more popular proxies is Squid, a web proxy that, among other things, saves

bandwidth on large networks by caching frequently downloaded images.[] Squid, along with
most other proxies, also converts private network IP addresses into a single public address
through a process called Network Address Translation (NAT).

0 |nformation about Squid, a popular open source web proxy cache, is available at http://www.squid-
cache.org. In addition to caching frequently downloaded images, Squid also caches DNS lookups, failed
requests, and many other Internet objects.

A side effect of proxy use is that proxies create a potentially anonymous browsing
environment because individual network addresses are pooled into a single network address.
Since only the proxied network address is visible to web servers, the identities of the
individual surfers remain unknown. Anonymity is the focus of this chapter, but before we start
that discussion, a quick review of the liabilities of browsing in a non-proxied environment is in
order.

Non-proxied Environments

In non-proxied network environments, web clients are totally exposed to the servers they
access. This is important in terms of privacy because servers maintain records of requesting
IP addresses, the files accessed, and the times they were accessed, as depicted in Browsing

in a non-proxied network environment.

Browsing in a non-proxied network environment

http://www.squid-cache.org/
http://www.squid-cache.org/

-"'-'_'_‘_'—.____\-"\-
Webaite &
'\-\-.______'_'_'_'_,_,-'
LG FILE

IF addrass, Files
downloadsd,

and aceess mes

T e
Websie B

'\"-______'_'_'_'_,_F‘.

L FILE
IF address, files

-
B

Wb purker

ﬂl'!:l L= Dalut— 5 |1I'I1E'L

"-\-____\—'_'_,_,_,-P'

Wi:-l:hd-lh- C

L3S FILE
IF address_ Files
downloaded,

and acoess imes

“-H_____'___ﬂ-'-"

Additionally, webservers may store small records of browsing activity on clients' hard drives in

the form of cookies.l By reading cookies on a user's successive visits to the same Internet
domain, webservers determine a variety of information, includi