
www.allitebooks.com

http://www.allitebooks.org

main.html

Webbots, Spiders, and Screen Scrapers
by Michael Schrenk

Publisher: No Starch
Pub Date: March 15, 2007
Print ISBN-10: 1-593-27120-4
Print ISBN-13: 978-1-59-327120-6
Pages: 328

Table of Contents | Index

Overview

The Internet is bigger and better than what a mere browser allows. Webbots, Spiders, and
Screen Scrapers is for programmers and businesspeople who want to take full advantage of
the vast resources available on the Web. There's no reason to let browsers limit your online
experience-especially when you can easily automate online tasks to suit your individual
needs.

Learn how to write webbots and spiders that do all this and more:

● Programmatically download entire websites

● Effectively parse data from web pages

● Manage cookies

● Decode encrypted files

● Automate form submissions

● Send and receive email

● Send SMS alerts to your cell phone

● Unlock password-protected websites

● Automatically bid in online auctions

● Exchange data with FTP and NNTP servers

Sample projects using standard code libraries reinforce these new skills. You'll learn how to
create your own webbots and spiders that track online prices, aggregate different data
sources into a single web page, and archive the online data you just can't live without. You'll
learn inside information from an experienced webbot developer on how and when to write
stealthy webbots that mimic human behavior, tips for developing fault-tolerant designs, and
various methods for launching and scheduling webbots. You'll also get advice on how to write
webbots and spiders that respect website owner property rights, plus techniques for shielding
websites from unwanted robots.

As a bonus, visit the author's website to test your webbots on sample target pages, and to
download the scripts and code libraries used in the book.

file:///D|/!!/final/main.html (1 von 2) [29.03.2008 23:21:53]
www.allitebooks.com

http://www.allitebooks.org

main.html

Some tasks are just too tedious-or too important!- to leave to humans. Once you've
automated your online life, you'll never let a browser limit the way you use the Internet again.

file:///D|/!!/final/main.html (2 von 2) [29.03.2008 23:21:53]
www.allitebooks.com

http://www.allitebooks.org

toc.html

Webbots, Spiders, and Screen Scrapers
by Michael Schrenk

Publisher: No Starch
Pub Date: March 15, 2007
Print ISBN-10: 1-593-27120-4
Print ISBN-13: 978-1-59-327120-6
Pages: 328

Table of Contents | Index

Dedication
ACKNOWLEDGMENTS
Introduction
FUNDAMENTAL CONCEPTS AND TECHNIQUES
WHAT'S IN IT FOR YOU?
Uncovering the Internet's True Potential
What's in It for Developers?
What's in It for Business Leaders?
Final Thoughts
IDEAS FOR WEBBOT PROJECTS
Inspiration from Browser Limitations
A Few Crazy Ideas to Get You Started
Final Thoughts
DOWNLOADING WEB PAGES
Think About Files, Not Web Pages
Downloading Files with PHP's Built-in Functions
Introducing PHP/CURL
Installing PHP/CURL
LIB_http
Final Thoughts
PARSING TECHNIQUES
Parsing Poorly Written HTML
Standard Parse Routines
Using LIB_parse
Useful PHP Functions
Final Thoughts
AUTOMATING FORM SUBMISSION
Reverse Engineering Form Interfaces
Form Handlers, Data Fields, Methods, and Event Triggers
Unpredictable Forms
Analyzing a Form
Final Thoughts
MANAGING LARGE AMOUNTS OF DATA
Organizing Data
Making Data Smaller
Thumbnailing Images
Final Thoughts
PROJECTS
PRICE-MONITORING WEBBOTS
The Target

file:///D|/!!/final/toc.html (1 von 4) [29.03.2008 23:21:54]
www.allitebooks.com

http://www.allitebooks.org

toc.html

Designing the Parsing Script
Initialization and Downloading the Target
Further Exploration
IMAGE-CAPTURING WEBBOTS
Example Image-Capturing Webbot
Creating the Image-Capturing Webbot
Further Exploration
Final Thoughts
LINK-VERIFICATION WEBBOTS
Creating the Link-Verification Webbot
Running the Webbot
Further Exploration
ANONYMOUS BROWSING WEBBOTS
Anonymity with Proxies
The Anonymizer Project
Final Thoughts
SEARCH-RANKING WEBBOTS
Description of a Search Result Page
What the Search-Ranking Webbot Does
Running the Search-Ranking Webbot
How the Search-Ranking Webbot Works
The Search-Ranking Webbot Script
Final Thoughts
Further Exploration
AGGREGATION WEBBOTS
Choosing Data Sources for Webbots
Example Aggregation Webbot
Adding Filtering to Your Aggregation Webbot
Further Exploration
FTP WEBBOTS
Example FTP Webbot
PHP and FTP
Further Exploration
NNTP NEWS WEBBOTS
NNTP Use and History
Webbots and Newsgroups
Further Exploration
WEBBOTS THAT READ EMAIL
The POP3 Protocol
Executing POP3 Commands with a Webbot
Further Exploration
WEBBOTS THAT SEND EMAIL
Email, Webbots, and Spam
Sending Mail with SMTP and PHP
Writing a Webbot That Sends Email Notifications
Further Exploration
CONVERTING A WEBSITE INTO A FUNCTION
Writing a Function Interface
Final Thoughts
ADVANCED TECHNICAL CONSIDERATIONS
SPIDERS

file:///D|/!!/final/toc.html (2 von 4) [29.03.2008 23:21:54]
www.allitebooks.com

http://www.allitebooks.org

toc.html

How Spiders Work
Example Spider
LIB_simple_spider
Experimenting with the Spider
Adding the Payload
Further Exploration
PROCUREMENT WEBBOTS AND SNIPERS
Procurement Webbot Theory
Sniper Theory
Testing Your Own Webbots and Snipers
Further Exploration
Final Thoughts
WEBBOTS AND CRYPTOGRAPHY
Designing Webbots That Use Encryption
A Quick Overview of Web Encryption
Local Certificates
Final Thoughts
AUTHENTICATION
What Is Authentication?
Example Scripts and Practice Pages
Basic Authentication
Session Authentication
Final Thoughts
ADVANCED COOKIE MANAGEMENT
How Cookies Work
PHP/CURL and Cookies
How Cookies Challenge Webbot Design
Further Exploration
SCHEDULING WEBBOTS AND SPIDERS
The Windows Task Scheduler
Complex Schedules
Non-Calendar-Based Triggers
Final Thoughts
LARGER CONSIDERATIONS
DESIGNING STEALTHY WEBBOTS AND SPIDERS
Why Design a Stealthy Webbot?
Stealth Means Simulating Human Patterns
Final Thoughts
WRITING FAULT-TOLERANT WEBBOTS
Types of Webbot Fault Tolerance
Error Handlers
DESIGNING WEBBOT-FRIENDLY WEBSITES
Optimizing Web Pages for Search Engine Spiders
Web Design Techniques That Hinder Search Engine Spiders
Designing Data-Only Interfaces
KILLING SPIDERS
Asking Nicely
Building Speed Bumps
Setting Traps
Final Thoughts
KEEPING WEBBOTS OUT OF TROUBLE

file:///D|/!!/final/toc.html (3 von 4) [29.03.2008 23:21:54]
www.allitebooks.com

http://www.allitebooks.org

toc.html

It's All About Respect
Copyright
Trespass to Chattels
Internet Law
Final Thoughts
PHP/CURL REFERENCE
Creating a Minimal PHP/CURL Session
Initiating PHP/CURL Sessions
Setting PHP/CURL Options
Executing the PHP/CURL Command
Closing PHP/CURL Sessions
STATUS CODES
HTTP Codes
NNTP Codes
SMS EMAIL ADDRESSES
Colophon
Index

file:///D|/!!/final/toc.html (4 von 4) [29.03.2008 23:21:54]
www.allitebooks.com

http://www.allitebooks.org

Ipreface.html

WEBBOTS, SPIDERS, AND SCREEN SCRAPERS. Copyright © 2007 by Michael Schrenk.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any
information storage or retrieval system, without the prior written permission of the copyright
owner and the publisher.

 Printed on recycled paper in the United States of America

11 10 09 08 07 1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-120-4

ISBN-13: 978-1-59327-120-6

Publisher: William Pollock

Production Editor: Christina Samuell

Cover and Interior Design: Octopod Studios

Developmental Editors: Tyler Ortman and William Pollock

Technical Reviewer: Peter MacIntyre

Copyeditor: Megan Dunchak

Compositors: Megan Dunchak, Riley Hoffman, and Christina Samuell

Proofreader: Stephanie Provines

Indexer: Nancy Guenther

For information on book distributors or translations, please contact No Starch Press, Inc.
directly:

No Starch Press, Inc.

555 De Haro Street, Suite 250, San Francisco, CA 94107

phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Code View:

Schrenk, Michael.
 Webbots, spiders, and screen scrapers : a guide to developing internet agents
with PHP/CURL / Michael Schrenk.
 p. cm.

file:///D|/!!/final/Ipreface.html (1 von 2) [29.03.2008 23:21:55]
www.allitebooks.com

mailto:info@nostarch.com.html
http://www.nostarch.com/
http://www.allitebooks.org

Ipreface.html

 Includes index.
 ISBN-13: 978-1-59327-120-6
 ISBN-10: 1-59327-120-4
 1. Web search engines. 2. Internet programming. 3. Internet searching. 4.
Intelligent agents (Computer software) I. Title.
 TK5105.884.S37 2007
 025.04--dc22
 2006026680

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press,
Inc. Other product and company names mentioned herein may be the trademarks of their
respective owners. Rather than use a trademark symbol with every occurrence of a
trademarked name, we are using the names only in an editorial fashion and to the benefit of
the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an "As Is" basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch
Press, Inc. shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in it.

file:///D|/!!/final/Ipreface.html (2 von 2) [29.03.2008 23:21:55]
www.allitebooks.com

http://www.allitebooks.org

Idedication.html

Webbots, Spiders, and Screen Scrapers
Table of Contents
 • Index • Errata

Not Available in This
Format Html view Reduce Text zoom Increase Previous Next

Dedication

In loving memory

Charlotte Schrenk

1897–1982

Webbots, Spiders, and Screen Scrapers
Table of Contents
 • Index • Errata

Not Available in This
Format Html view Reduce Text zoom Increase Previous Next

Top of Page

URL http://safari.informit.com/9781593271206/Idedication

file:///D|/!!/final/Idedication.html [29.03.2008 23:22:12]
www.allitebooks.com

file:///9781593271206
file:///9781593271206?tocview=true
file:///9781593271206/index
http://www.oreilly.com/catalog/1593271204/errata/
file:///9781593271206/Ipreface
file:///9781593271206/Ipreface
file:///9781593271206/Iacknowledgments
file:///9781593271206/Iacknowledgments
file:///9781593271206
file:///9781593271206?tocview=true
file:///9781593271206/index
http://www.oreilly.com/catalog/1593271204/errata/
file:///9781593271206/Ipreface
file:///9781593271206/Ipreface
file:///9781593271206/Iacknowledgments
file:///9781593271206/Iacknowledgments
file:///9781593271206/Idedication
http://www.allitebooks.org

Iacknowledgments.html

ACKNOWLEDGMENTS

I needed support and inspiration from family, friends, and colleagues to write this book.
Unfortunately, I did not always acknowledge their contributions when they offered them. Here
is a delayed thanks to all of those who helped me.

Thanks to Donna, my wife, who convinced me that I could actually do this, and to my kids,
Ava and Gordon, who have always supported my crazy schemes, even though they know it
means fewer coffees and chess matches together.

Andy King encouraged me to find a publisher for this project, and Daniel Stenberg, founder of
the cURL project, helped me organize my thoughts when this book was barely an outline.

No Starch Press exhibited saint-like patience while I split my time between writing webbots
and writing about webbots. Special thanks to Bill, who trusted the concept, Tyler, who edited
most of the manuscript, and Christina, who kept me on task. Peter MacIntyre was
instrumental in checking for technical errors, and Megan's copyediting improved the book
throughout.

Anamika Mishra assisted with the book's website and consistently covered for me when I was
busy writing or too tired to code.

Laurie Curtis helped me explore what it might be like to finish a book.

Finally, a tip of the hat goes to Mark, Randy, Megan, Karen, Terri, Susan, Dennis, Dan, and
Matt, who were thoughtful enough to ask about my book's progress before inquiring about the
status of their projects.

file:///D|/!!/final/Iacknowledgments.html [29.03.2008 23:22:13]

Iintroduction.html

Introduction

My introduction to the World Wide Web was also the beginning of my relationship with the
browser. The first browser I used was Mosaic, pioneered by Eric Bina and Marc Andreessen.
Andreessen later co-founded Netscape.

Shortly after I discovered the World Wide Web, I began to associate the wonders of the
Internet with the simplicity of the browser. By just clicking a hyperlink, I could enjoy the art
treasures of the Louvre; if I followed another link, I could peruse a fan site for The Brady
Bunch.[] The browser was more than a software application that facilitated use of the World
Wide Web: It was the World Wide Web. It was the new television. And just as television
tamed distant video signals with simple channel and volume knobs, browsers demystified the
complexities of the Internet with hyperlinks, bookmarks, and back buttons.

[] I stumbled across a fan site for The Brady Bunch during my first World Wide Web experience.

Old-School Client-Server Technology

My big moment of discovery came when I learned that I didn't need a browser to view web
pages. I realized that Telnet, a program used since the early '80s to communicate with
networked computers, could also download web pages, as shown in The official website of
Webbots, Spiders, and Screen Scrapers.

Viewing a web page with Telnet

Suddenly, the World Wide Web was something I could understand without a browser. It was a
familiar client-server architecture where simple clients worked on tasks found on remote
servers. The difference here was that the clients were browsers and the servers dished up
web pages.

The only revolutionary thing was that, unlike previous client-server client applications,
browsers were easy for anyone to use and soon gained mass acceptance. The Internet's

file:///D|/!!/final/Iintroduction.html (1 von 6) [29.03.2008 23:22:14]

Iintroduction.html

audience shifted from physicists and computer programmers to the public. Unfortunately, the
general public didn't understand client-server technology, so the dependency on browsers
spread further. They didn't understand that there were other ways to use the World Wide
Web.

As a programmer, I realized that if I could use Telnet to download web pages, I could also
write programs to do the same. I could write my own browser if I desired, or I could write
automated agents (webbots, spiders, and screen scrapers) to solve problems that browsers
couldn't.

The Problem with Browsers

The basic problem with browsers is that they're manual tools. Your browser only downloads
and renders websites: You still need to decide if the web page is relevant, if you've already
seen the information it contains, or if you need to follow a link to another web page. What's
worse, your browser can't think for itself. It can't notify you when something important
happens online, and it certainly won't anticipate your actions, automatically complete forms,
make purchases, or download files for you. To do these things, you'll need the automation
and intelligence only available with a webbot, or a web robot.

What to Expect from This Book

This book identifies the limitations of typical web browsers and explores how you can use
webbots to capitalize on these limitations. You'll learn how to design and write webbots
through sample scripts and example projects. Moreover, you'll find answers to larger design
questions like these:

● Where do ideas for webbot projects come from?

● How can I have fun with webbots and stay out of trouble?

● Is it possible to write stealthy webbots that run without detection?

● What is the trick to writing robust, fault-tolerant webbots that won't break as Internet
content changes?

Learn from My Mistakes

I've written webbots, spiders, and screen scrapers for nearly 10 years, and in the process I've
made most of the mistakes someone can make. Because webbots are capable of making
unconventional demands on websites, system administrators can confuse webbots' requests
with attempts to hack into their systems. Thankfully, none of my mistakes has ever led to a
courtroom, but they have resulted in intimidating phone calls, scary emails, and very
awkward moments. Happily, I can say that I've learned from these situations, and it's been a
very long time since I've been across the desk from an angry system administrator. You can
spare yourself a lot of grief by reading my stories and learning from my mistakes.

Master Webbot Techniques

You will learn about the technology needed to write a wide assortment of webbots. Some
technical skills you'll master include these:

file:///D|/!!/final/Iintroduction.html (2 von 6) [29.03.2008 23:22:14]

Iintroduction.html

● Programmatically downloading websites

● Decoding encrypted websites

● Unlocking authenticated web pages

● Managing cookies

● Parsing data

● Writing spiders

● Managing the large amounts of data that webbots generate

Leverage Existing Scripts

This book uses several code libraries that make it easy for you to write webbots, spiders, and
screen scrapers. The functions and declarations in these libraries provide the basis for most of
the example scripts used in this book. You'll save time by using these libraries because they
do the underlying work, leaving the upper-level planning and development to you. All of these
libraries are available for download at this book's website.

About the Website

This book's website (http://www.schrenk.com/nostarch/webbots) is an additional resource for
you to use. To the extent that it's possible, all the example projects in this book use web
pages on the companion site as targets, or resources for your webbots to download and take
action on. These targets provided a consistent (unchanging) environment for you to hone
your webbot writing skills. A controlled learning environment is important because, regardless
of our best efforts, webbots can fail when their target websites change. Knowing that your
targets are unchanging makes the task of debugging a little easier.

The companion website also has links to other sites of interest, white papers, book updates,
and an area where you can communicate with other webbot developers (see The official
website of Webbots, Spiders, and Screen Scrapers). From the website, you will also be able to
access all of the example code libraries used in this book.

The official website of Webbots, Spiders, and Screen Scrapers

file:///D|/!!/final/Iintroduction.html (3 von 6) [29.03.2008 23:22:14]

http://www.schrenk.com/nostarch/webbots

Iintroduction.html

About the Code

Most of the scripts in this book are straight PHP. However, sometimes PHP and HTML are
intermixed in the same script—and in many cases, on the same line. In those situations, a
bold typeface differentiates PHP scripts from HTML, as shown in Listing 1.

You may use any of the scripts in this book for your own personal use, as long as you agree
not to redistribute them. If you use any script in this book, you also consent to bear full
responsibility for its use and execution and agree not to sell or create derivative products,
under any circumstances. However, if you do improve any of these scripts or develop entirely
new (related) scripts, you are encouraged to share them with the webbot community via the
book's website.

<h1>Coding Conventions for Embedded PHP</h1>
<table border="0" cellpadding="1" cellspacing="0">
<tr>
<th>Name</th>
 <th>Address</th>
 </tr>

<? for ($x=0; $x<sizeof($person_array); $x++)
 { ?>
 <tr>
 <td><? echo person_array[$x]['NAME']?></td>
 <td><? echo person_array[$x]['ADDRESS']?></td>
 </tr>

file:///D|/!!/final/Iintroduction.html (4 von 6) [29.03.2008 23:22:14]

Iintroduction.html

<? } ?>
</table>

Listing 1-1: Bold typeface differentiates PHP from HTML script

The other thing you should know about the example scripts is that they are teaching aids. The
scripts may not reflect the most efficient programming method, because their primary goal is
readability.

Note: The code libraries used by this book are governed by the W3C Software Notice and License
(http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231) and are available for
download from the book's website. The website is also where the software is maintained. If you
make meaningful contributions to this code, please go to the website to see how your
improvements may be part of the next distribution. The software examples depicted in this book
are protected by this book's copyright.

Requirements

Knowing HTML and the basics of how the Internet works will be necessary for using this book.
If you are a beginning programmer with even nominal computer network experience, you'll be
fine. It is important to recognize, however, that this book will not teach you how to program
or how TCP/IP, the protocol of the Internet, works.

Hardware

You don't need elaborate hardware to start writing webbots. If you have a secondhand 33
MHz Pentium computer, you have the minimum requirement to play with all the examples in
this book. Any of the following hardware is appropriate for using the examples and
information in this book:

● A personal computer that uses a Windows 95, Windows XP, or Windows Vista operating
system

● Any reasonably modern Linux-, Unix-, or FreeBSD-based computer

● A Macintosh running OS X (or later)

It will also prove useful to have ample storage. This is particularly true if your plan is to write
spiders, self-directed webbots, which can consume all available resources (especially hard
drives) if they are allowed to download too many files.

Software

In an effort to be as relevant as possible, the software examples in this book use PHP,[] cURL,
[] and MySQL.[] All of these software technologies are available as free downloads from their

file:///D|/!!/final/Iintroduction.html (5 von 6) [29.03.2008 23:22:14]

http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

Iintroduction.html

respective websites. In addition to being free, these software packages are wonderfully
portable and function well on a variety of computers and operating systems.

[] See http://www.php.net.

[] See http://curl.haxx.se.

[] See http://www.mysql.com.

Note: If you're going to follow the script examples in this book, you will need a basic knowledge of
PHP. This book assumes you know how to program.

Internet Access

A connection to the Internet is very handy, but not entirely necessary. If you lack a network
connection, you can create your own local intranet (one or more webservers on a private
network) by loading Apache[] onto your computer, and if that's not possible, you can design
programs that use local files as targets. However, neither of these options is as fun as writing
webbots that use a live Internet connection. In addition, if you lack an Internet connection,
you will not have access to the online resources, which add a lot of value to your learning
experience.

[] See http://www.apache.org.

A Disclaimer (This Is Important)

As with anything you develop, you must take responsibility for your own actions. From a
technology standpoint, there is little to distinguish a beneficial webbot from one that does
destructive things. The main difference is the intent of the developer (and how well you
debug your scripts). Therefore, it's up to you to do constructive things with the information in
this book and not violate copyright law, disrupt networks, or do anything else that would be
troublesome or illegal. And if you do, don't call me.

Please reference KEEPING WEBBOTS OUT OF TROUBLE for insight into how to write webbots
ethically. KEEPING WEBBOTS OUT OF TROUBLE will help you do this, but it won't provide
legal advice. If you have questions, talk to a lawyer before you experiment.

file:///D|/!!/final/Iintroduction.html (6 von 6) [29.03.2008 23:22:14]

http://www.php.net/
http://curl.haxx.se/
http://www.mysql.com/
http://www.apache.org/

Ifundamental_Concepts_and_techniques.html

FUNDAMENTAL CONCEPTS AND TECHNIQUES

While most web development books explain how to create websites, this book
teaches developers how to combine, adapt, and automate existing websites to
fit their specific needs. FUNDAMENTAL CONCEPTS AND TECHNIQUES introduces
the concept of web automation and explores elementary techniques to harness
the resources of the Web.

WHAT'S IN IT FOR YOU?

This chapter explores why it is fun to write webbots and why webbot
development is a rewarding career with expanding possibilities.

IDEAS FOR WEBBOT PROJECTS

We've been led to believe that the only way to use a website is with a
browser. If, however, you examine what you want to do, as opposed
to what a browser allows you to do, you'll look at your favorite web
resources in a whole new way. This chapter discusses existing as well
as potential webbots.

DOWNLOADING WEB PAGES

This chapter introduces PHP/CURL, the free library that makes it easy
to download web pages—even when the targeted web pages use
advanced techniques like forwarding, encryption, authentication, and
cookies.

PARSING TECHNIQUES

Downloaded web pages aren't of any use until your webbot can
separate the data you need from the data you don't need.

AUTOMATING FORM SUBMISSION

To truly automate web agents, your application needs the ability to
automatically upload data to online forms.

MANAGING LARGE AMOUNTS OF DATA

Spiders in particular can generate huge amounts of data. That's why
it's important for you to know how to effectively store and reduce the
size of web pages, text, and images.

file:///D|/!!/final/Ifundamental_Concepts_and_techniques.html (1 von 2) [29.03.2008 23:22:16]

Ifundamental_Concepts_and_techniques.html

You may already have experience from other areas of computer science that
you can apply to these activities. However, even if these concepts are familiar to
you, developing webbots may force you to view these skills in a different
context, so the following chapters are still worth reading. If you don't already
have experience in these areas, the next six chapters will provide the basics for
designing and developing webbots. You'll use this groundwork in the other
projects and advanced considerations discussed later.

WHAT'S IN IT FOR YOU?

Whether you're a software developer looking for new skills or a business leader looking for a
competitive advantage, this chapter is where you will discover how webbots create
opportunities.

Uncovering the Internet's True Potential

Webbots present a virtually untapped resource for software developers and business leaders.
This is because the public has yet to realize that most of the Internet's potential lies outside
the capability of the existing browser/website paradigm. For example, in today's world, people
are satisfied with pointing a browser at a website and using whatever information or services
they find there. With webbots, the focus of the Internet will shift from what's available on
individual websites toward what people actually want to accomplish. To this end, webbots will
use as many online resources as required to satisfy their individual needs.

To be successful with webbots, you need to stop thinking like other Internet users. Namely,
you need to stop thinking about the Internet in terms of a browser viewing one website at a
time. This will be difficult, because we've all become dependent on browsers. While you can
do a wide variety of things with a browser, you also pay a price for that versatility—browsers
need to be sufficiently generic to be useful in a wide variety of circumstances. As a result,
browsers can do general things well, but they lack the ability to do specific things
exceptionally well.[] Webbots, on the other hand, can be programmed for specific tasks and
can perform those tasks with perfection. Additionally, webbots have the ability to automate
anything you do online or notify you when something needs to be done.

[] For example, they can't act on your behalf, filter content for relevance, or perform tasks automatically.

file:///D|/!!/final/Ifundamental_Concepts_and_techniques.html (2 von 2) [29.03.2008 23:22:16]

Iwhat_apos_s_in_it_for_you_question.html

FUNDAMENTAL CONCEPTS AND TECHNIQUES

While most web development books explain how to create websites, this book
teaches developers how to combine, adapt, and automate existing websites to
fit their specific needs. FUNDAMENTAL CONCEPTS AND TECHNIQUES introduces
the concept of web automation and explores elementary techniques to harness
the resources of the Web.

WHAT'S IN IT FOR YOU?

This chapter explores why it is fun to write webbots and why webbot
development is a rewarding career with expanding possibilities.

IDEAS FOR WEBBOT PROJECTS

We've been led to believe that the only way to use a website is with a
browser. If, however, you examine what you want to do, as opposed
to what a browser allows you to do, you'll look at your favorite web
resources in a whole new way. This chapter discusses existing as well
as potential webbots.

DOWNLOADING WEB PAGES

This chapter introduces PHP/CURL, the free library that makes it easy
to download web pages—even when the targeted web pages use
advanced techniques like forwarding, encryption, authentication, and
cookies.

PARSING TECHNIQUES

Downloaded web pages aren't of any use until your webbot can
separate the data you need from the data you don't need.

AUTOMATING FORM SUBMISSION

To truly automate web agents, your application needs the ability to
automatically upload data to online forms.

MANAGING LARGE AMOUNTS OF DATA

Spiders in particular can generate huge amounts of data. That's why
it's important for you to know how to effectively store and reduce the
size of web pages, text, and images.

file:///D|/!!/final/Iwhat_apos_s_in_it_for_you_question.html (1 von 2) [29.03.2008 23:22:17]
www.allitebooks.com

http://www.allitebooks.org

Iwhat_apos_s_in_it_for_you_question.html

You may already have experience from other areas of computer science that
you can apply to these activities. However, even if these concepts are familiar to
you, developing webbots may force you to view these skills in a different
context, so the following chapters are still worth reading. If you don't already
have experience in these areas, the next six chapters will provide the basics for
designing and developing webbots. You'll use this groundwork in the other
projects and advanced considerations discussed later.

WHAT'S IN IT FOR YOU?

Whether you're a software developer looking for new skills or a business leader looking for a
competitive advantage, this chapter is where you will discover how webbots create
opportunities.

Uncovering the Internet's True Potential

Webbots present a virtually untapped resource for software developers and business leaders.
This is because the public has yet to realize that most of the Internet's potential lies outside
the capability of the existing browser/website paradigm. For example, in today's world, people
are satisfied with pointing a browser at a website and using whatever information or services
they find there. With webbots, the focus of the Internet will shift from what's available on
individual websites toward what people actually want to accomplish. To this end, webbots will
use as many online resources as required to satisfy their individual needs.

To be successful with webbots, you need to stop thinking like other Internet users. Namely,
you need to stop thinking about the Internet in terms of a browser viewing one website at a
time. This will be difficult, because we've all become dependent on browsers. While you can
do a wide variety of things with a browser, you also pay a price for that versatility—browsers
need to be sufficiently generic to be useful in a wide variety of circumstances. As a result,
browsers can do general things well, but they lack the ability to do specific things
exceptionally well.[] Webbots, on the other hand, can be programmed for specific tasks and
can perform those tasks with perfection. Additionally, webbots have the ability to automate
anything you do online or notify you when something needs to be done.

[] For example, they can't act on your behalf, filter content for relevance, or perform tasks automatically.

file:///D|/!!/final/Iwhat_apos_s_in_it_for_you_question.html (2 von 2) [29.03.2008 23:22:17]

Iuncovering_the_internet_apos_s_true_potential.html

FUNDAMENTAL CONCEPTS AND TECHNIQUES

While most web development books explain how to create websites, this book
teaches developers how to combine, adapt, and automate existing websites to
fit their specific needs. FUNDAMENTAL CONCEPTS AND TECHNIQUES introduces
the concept of web automation and explores elementary techniques to harness
the resources of the Web.

WHAT'S IN IT FOR YOU?

This chapter explores why it is fun to write webbots and why webbot
development is a rewarding career with expanding possibilities.

IDEAS FOR WEBBOT PROJECTS

We've been led to believe that the only way to use a website is with a
browser. If, however, you examine what you want to do, as opposed
to what a browser allows you to do, you'll look at your favorite web
resources in a whole new way. This chapter discusses existing as well
as potential webbots.

DOWNLOADING WEB PAGES

This chapter introduces PHP/CURL, the free library that makes it easy
to download web pages—even when the targeted web pages use
advanced techniques like forwarding, encryption, authentication, and
cookies.

PARSING TECHNIQUES

Downloaded web pages aren't of any use until your webbot can
separate the data you need from the data you don't need.

AUTOMATING FORM SUBMISSION

To truly automate web agents, your application needs the ability to
automatically upload data to online forms.

MANAGING LARGE AMOUNTS OF DATA

Spiders in particular can generate huge amounts of data. That's why
it's important for you to know how to effectively store and reduce the
size of web pages, text, and images.

file:///D|/!!/final/Iuncovering_the_internet_apos_s_true_potential.html (1 von 2) [29.03.2008 23:22:18]

Iuncovering_the_internet_apos_s_true_potential.html

You may already have experience from other areas of computer science that
you can apply to these activities. However, even if these concepts are familiar to
you, developing webbots may force you to view these skills in a different
context, so the following chapters are still worth reading. If you don't already
have experience in these areas, the next six chapters will provide the basics for
designing and developing webbots. You'll use this groundwork in the other
projects and advanced considerations discussed later.

WHAT'S IN IT FOR YOU?

Whether you're a software developer looking for new skills or a business leader looking for a
competitive advantage, this chapter is where you will discover how webbots create
opportunities.

Uncovering the Internet's True Potential

Webbots present a virtually untapped resource for software developers and business leaders.
This is because the public has yet to realize that most of the Internet's potential lies outside
the capability of the existing browser/website paradigm. For example, in today's world, people
are satisfied with pointing a browser at a website and using whatever information or services
they find there. With webbots, the focus of the Internet will shift from what's available on
individual websites toward what people actually want to accomplish. To this end, webbots will
use as many online resources as required to satisfy their individual needs.

To be successful with webbots, you need to stop thinking like other Internet users. Namely,
you need to stop thinking about the Internet in terms of a browser viewing one website at a
time. This will be difficult, because we've all become dependent on browsers. While you can
do a wide variety of things with a browser, you also pay a price for that versatility—browsers
need to be sufficiently generic to be useful in a wide variety of circumstances. As a result,
browsers can do general things well, but they lack the ability to do specific things
exceptionally well.[] Webbots, on the other hand, can be programmed for specific tasks and
can perform those tasks with perfection. Additionally, webbots have the ability to automate
anything you do online or notify you when something needs to be done.

[] For example, they can't act on your behalf, filter content for relevance, or perform tasks automatically.

file:///D|/!!/final/Iuncovering_the_internet_apos_s_true_potential.html (2 von 2) [29.03.2008 23:22:18]

Iwhats_in_it_for_developers_question.html

What's in It for Developers?

Your ability to write a webbot can distinguish you from a pack of lesser developers. Web
developers—who've gone from designing the new economy of the late 1990s to falling victim
to it during the dot-com crash of 2001—know that today's job market is very competitive.
Even today's most talented developers can have trouble finding meaningful work. Knowing
how to write webbots will expand your ability as a developer and make you more valuable to
your employer or potential employers.

A webbot writer differentiates his or her skill set from that of someone whose knowledge of
Internet technology extends only to creating websites. By designing webbots, you
demonstrate that you have a thorough understanding of network technology and a variety of
network protocols, as well as the ability to use existing technology in new and creative ways.

Webbot Developers Are in Demand

There are many growth opportunities for webbot developers. You can demonstrate this for
yourself by looking at your website's file access logs and recording all the non-browsers that
have visited your website. If you compare current server logs to those from a year ago, you
should notice a healthy increase in traffic from nontraditional web clients or webbots.
Someone has to write these automated agents, and as the demand for webbots increases, so
does the demand for webbot developers.

Hard statistics on the growth of webbot use are hard to come by, since many webbots defy
detection and masquerade as traditional web browsers. In fact, the value that webbots bring
to businesses forces most webbot projects underground. I can't talk about most of the
webbots I've developed because they create competitive advantages for clients, and they'd
rather keep those techniques secret. Regardless of the actual numbers, it's a fact that
webbots and spiders comprise a large amount of today's Internet traffic and that many
developers are required to both maintain existing webbots and develop new ones.

Webbots Are Fun to Write

In addition to solving serious business problems, webbots are also fun to write. This should be
welcome news to seasoned developers who no longer experience the thrill of solving a
problem or using a technology for the first time. Without a little fun, it's easy for developers
to get bored and conclude that software is simply a sequence of instructions that do the same
thing every time a program runs. While predictability makes software dependable, it also
makes it tiresome to write. This is especially true for computer programmers who specialize in
a specific industry and lack diversity in tasks. At some point in their careers, nearly all of the
programmers I know have become very tired of what they do, in spite of the fact that they
still like to write computer programs.

Webbots, however, are almost like games, in that they can pleasantly surprise their
developers with their unpredictability. This is because webbots operate on data that changes
frequently, and they respond slightly differently every time they run. As a result, webbots
become impulsive and lifelike. Unlike other software, webbots feel organic! Once you write a
webbot that does something wonderfully unexpected, you'll have a hard time describing the
experience to those writing traditional software applications.

Webbots Facilitate "Constructive Hacking"

file:///D|/!!/final/Iwhats_in_it_for_developers_question.html (1 von 2) [29.03.2008 23:22:19]

Iwhats_in_it_for_developers_question.html

By its strict definition, hacking is the process of creatively using technology for a purpose
other than the one originally intended. By using web pages, news groups, email, or other
online technology in unintended ways, you join the ranks of innovators that combine and alter
existing technology to create totally new and useful tools. You'll also broaden the possibilities
for using the Internet.

Unfortunately, hacking also has a dark side, popularized by stories of people breaking into
systems, stealing private data, and rendering online services unusable. While some people do
write destructive webbots, I don't condone that type of behavior here. In fact, KEEPING
WEBBOTS OUT OF TROUBLE is dedicated to this very subject.

file:///D|/!!/final/Iwhats_in_it_for_developers_question.html (2 von 2) [29.03.2008 23:22:19]

Iwhats_in_it_for_business_leaders_question.html

What's in It for Business Leaders?

Few businesses gain a competitive advantage simply by using the Internet. Today, businesses
need a unique online strategy to gain a competitive advantage. Unfortunately, most
businesses limit their online strategy to a website—which, barring some visual design
differences, essentially functions like all the other websites within the industry.

Customize the Internet for Your Business

Most of the webbot projects I've developed are for business leaders who've become frustrated
with the Internet as it is. They want added automation and decision-making capability on the
websites they use to run their businesses. Essentially, they want webbots that customize
other people's websites (and the data those sites contain) for the specific way they do
business. Progressive businesses use webbots to improve their online experience, optimizing
how they buy things, how they gather facts, how they're notified when things change, and
how to enforce business rules when making online purchases.

Businesses that use webbots aren't limited to envisioning the Internet as a set of websites
that are accessed by browsers. Instead, they see the Internet as a stockpile of varied
resources that they can customize (using webbots) to serve their specific needs.

There has always been a lag between when people figure out how to do something manually
and when they figure out how to automate the process. Just as chainsaws replaced axes and
as sewing machines superseded needles and thimbles, it is only natural to assume that new
(automated) methods for interacting with the Internet will follow the methods we use today.
The companies that develop these processes will be the first to enjoy the competitive
advantage created by their vision.

Capitalize on the Public's Inexperience with Webbots

Most people have very little experience using the Internet with anything other than a
browser, and even if people have used other Internet clients like email or news readers, they
have never thought about how their online experience could be improved through
automation. For most, it just hasn't been an issue.

For businesspeople, blind allegiance to browsers is a double-edged sword. In one respect, it's
good that people aren't familiar with the benefits that webbots provide—this provides
opportunities for you to develop webbot projects that offer competitive advantages. On the
other hand, if your supervisors are used to the Internet as seen through a browser alone, you
may have a hard time selling your webbot projects to management.

Accomplish a Lot with a Small Investment

Webbots can achieve amazing results without elaborate setups. I've used obsolete computers
with slow, dial-up connections to run webbots that create completely new revenue channels
for businesses. Webbots can even be designed to work with existing office equipment like
phones, fax machines, and printers.

file:///D|/!!/final/Iwhats_in_it_for_business_leaders_question.html [29.03.2008 23:22:20]

Ifinal_thoughts.html

Final Thoughts

One of the nice things about webbots is that you can create a large effect without making
something difficult for customers to use. In fact, customers don't even need to know that a
webbot is involved. For example, your webbots can deliver services through traditional-
looking websites. While you know that you're doing something radically innovative, the end
users don't realize what's going on behind the scenes—and they don't really need to know
about the hordes of hidden webbots and spiders combing the Internet for the data and
services they need. All they know is that they are getting an improved Internet experience.
And in the end, that's all that matters.

file:///D|/!!/final/Ifinal_thoughts.html [29.03.2008 23:22:21]

Iideas_for_webbot_projects.html

IDEAS FOR WEBBOT PROJECTS

It's often more difficult to find applications for new technology than it is to learn the
technology itself. Therefore, this chapter focuses on encouraging you to generate ideas for
things that you can do with webbots. We'll explore how webbots capitalize on browser
limitations, and we'll see a few examples of what people are currently doing with webbots.
We'll wrap up by throwing out some wild ideas that might help you expand your expectations
of what can be done online.

Inspiration from Browser Limitations

A useful method for generating ideas for webbot projects is to study what cannot be done by
simply pointing a browser at a typical website. You know that browsers, used in traditional
ways, cannot automate your Internet experience. For example, they have these limitations:

● Browsers cannot aggregate and filter information for relevance

● Browsers cannot interpret what they find online

● Browsers cannot act on your behalf

However, a browser may leverage the power of a webbot to do many things that it could not
do alone. Let's look at some real-life examples of how browser limitations were leveraged into
actual webbot projects.

Webbots That Aggregate and Filter Information for Relevance

TrackRates.com (http://www.trackrates.com, shown in TrackRates.com) is a website that
deploys an army of webbots to aggregate and filter hotel room prices from travel websites. By
identifying room prices for specific hotels for specific dates, it determines the actual market
value for rooms up to three months into the future. This information helps hotel managers
intelligently price rooms by specifically knowing what the competition is charging for similar
rooms. TrackRates.com also reveals market trends by performing statistical analysis on room
prices, and it tries to determine periods of high demand by indicating dates on which hotels
have booked all of their rooms.

TrackRates.com

file:///D|/!!/final/Iideas_for_webbot_projects.html (1 von 4) [29.03.2008 23:22:22]

http://trackrates.com/
http://www.trackrates.com/
http://trackrates.com/
http://trackrates.com/

Iideas_for_webbot_projects.html

I wrote TrackRates.com to help hotel managers analyze local markets and provide facts for
setting room prices. Without the TrackRates.com webbot, hotel managers either need to
guess what their rooms are worth, rely on less current information about their local hotel
market, or go through the arduous task of manually collecting this data.

Webbots That Interpret What They Find Online

WebSiteOptimization.com (http://www.websiteoptimization.com) uses a webbot to help web
developers create websites that use resources effectively. This webbot accepts a web page's
URL (as shown in TrackRates.com) and analyzes how each graphic, CSS, and JavaScript file is
used by the web page. In the interest of full disclosure, I should mention that I wrote the
back end for this web page analyzer.

A website-analyzing webbot

file:///D|/!!/final/Iideas_for_webbot_projects.html (2 von 4) [29.03.2008 23:22:22]

http://trackrates.com/
http://trackrates.com/
http://websiteoptimization.com/
http://www.websiteoptimization.com/

Iideas_for_webbot_projects.html

The WebSiteOptimization.com webbot analyzes the data it collects and offers suggestions for
optimizing website performance. Without this tool, developers would have to manually parse
through their HTML code to determine which files are required by web pages, how much
bandwidth they are using, and how the organization of the web page affects its performance.

Webbots That Act on Your Behalf

Pokerbots, webbots that play online poker, are a response to the recent growth in online
gambling sites, particularly gaming sites with live poker rooms. While the action in these
pokers sites is live, not all the players are. Some online poker players are webbots, like Poker
Robot, shown in An example pokerbot.

Webbots designed to play online poker not only know the rules of Texas hold 'em but use
predetermined business rules to expertly read how others play. They use this information to
hold, fold, or bet appropriately. Reportedly, these automated players can very effectively pick
the pockets of new and inexperienced poker players. Some collusion webbots even allow one
virtual player to play multiple hands at the same table, while making it look like a separate
person is playing each hand. Imagine playing against a group of people who not only know
each other's cards, but hold, fold, and bet against you as a team!

Obviously, such webbots that play expert poker (and cheat) provide a tremendous advantage.
Nobody knows exactly how prevalent pokerbots are, but they have created a market for anti-
pokerbot software like Poker BodyGuard, distributed by StopPokerCheaters.com.

An example pokerbot

file:///D|/!!/final/Iideas_for_webbot_projects.html (3 von 4) [29.03.2008 23:22:22]
www.allitebooks.com

http://websiteoptimization.com/
http://stoppokercheaters.com/
http://www.allitebooks.org

Iideas_for_webbot_projects.html

file:///D|/!!/final/Iideas_for_webbot_projects.html (4 von 4) [29.03.2008 23:22:22]

Iinspiration_from_browser_limitations.html

IDEAS FOR WEBBOT PROJECTS

It's often more difficult to find applications for new technology than it is to learn the
technology itself. Therefore, this chapter focuses on encouraging you to generate ideas for
things that you can do with webbots. We'll explore how webbots capitalize on browser
limitations, and we'll see a few examples of what people are currently doing with webbots.
We'll wrap up by throwing out some wild ideas that might help you expand your expectations
of what can be done online.

Inspiration from Browser Limitations

A useful method for generating ideas for webbot projects is to study what cannot be done by
simply pointing a browser at a typical website. You know that browsers, used in traditional
ways, cannot automate your Internet experience. For example, they have these limitations:

● Browsers cannot aggregate and filter information for relevance

● Browsers cannot interpret what they find online

● Browsers cannot act on your behalf

However, a browser may leverage the power of a webbot to do many things that it could not
do alone. Let's look at some real-life examples of how browser limitations were leveraged into
actual webbot projects.

Webbots That Aggregate and Filter Information for Relevance

TrackRates.com (http://www.trackrates.com, shown in TrackRates.com) is a website that
deploys an army of webbots to aggregate and filter hotel room prices from travel websites. By
identifying room prices for specific hotels for specific dates, it determines the actual market
value for rooms up to three months into the future. This information helps hotel managers
intelligently price rooms by specifically knowing what the competition is charging for similar
rooms. TrackRates.com also reveals market trends by performing statistical analysis on room
prices, and it tries to determine periods of high demand by indicating dates on which hotels
have booked all of their rooms.

TrackRates.com

file:///D|/!!/final/Iinspiration_from_browser_limitations.html (1 von 4) [29.03.2008 23:22:23]

http://trackrates.com/
http://www.trackrates.com/
http://trackrates.com/
http://trackrates.com/

Iinspiration_from_browser_limitations.html

I wrote TrackRates.com to help hotel managers analyze local markets and provide facts for
setting room prices. Without the TrackRates.com webbot, hotel managers either need to
guess what their rooms are worth, rely on less current information about their local hotel
market, or go through the arduous task of manually collecting this data.

Webbots That Interpret What They Find Online

WebSiteOptimization.com (http://www.websiteoptimization.com) uses a webbot to help web
developers create websites that use resources effectively. This webbot accepts a web page's
URL (as shown in TrackRates.com) and analyzes how each graphic, CSS, and JavaScript file is
used by the web page. In the interest of full disclosure, I should mention that I wrote the
back end for this web page analyzer.

A website-analyzing webbot

file:///D|/!!/final/Iinspiration_from_browser_limitations.html (2 von 4) [29.03.2008 23:22:23]

http://trackrates.com/
http://trackrates.com/
http://websiteoptimization.com/
http://www.websiteoptimization.com/

Iinspiration_from_browser_limitations.html

The WebSiteOptimization.com webbot analyzes the data it collects and offers suggestions for
optimizing website performance. Without this tool, developers would have to manually parse
through their HTML code to determine which files are required by web pages, how much
bandwidth they are using, and how the organization of the web page affects its performance.

Webbots That Act on Your Behalf

Pokerbots, webbots that play online poker, are a response to the recent growth in online
gambling sites, particularly gaming sites with live poker rooms. While the action in these
pokers sites is live, not all the players are. Some online poker players are webbots, like Poker
Robot, shown in An example pokerbot.

Webbots designed to play online poker not only know the rules of Texas hold 'em but use
predetermined business rules to expertly read how others play. They use this information to
hold, fold, or bet appropriately. Reportedly, these automated players can very effectively pick
the pockets of new and inexperienced poker players. Some collusion webbots even allow one
virtual player to play multiple hands at the same table, while making it look like a separate
person is playing each hand. Imagine playing against a group of people who not only know
each other's cards, but hold, fold, and bet against you as a team!

Obviously, such webbots that play expert poker (and cheat) provide a tremendous advantage.
Nobody knows exactly how prevalent pokerbots are, but they have created a market for anti-
pokerbot software like Poker BodyGuard, distributed by StopPokerCheaters.com.

An example pokerbot

file:///D|/!!/final/Iinspiration_from_browser_limitations.html (3 von 4) [29.03.2008 23:22:23]

http://websiteoptimization.com/
http://stoppokercheaters.com/

Iinspiration_from_browser_limitations.html

file:///D|/!!/final/Iinspiration_from_browser_limitations.html (4 von 4) [29.03.2008 23:22:23]

Ia_few_crazy_ideas_to_get_you_started.html

A Few Crazy Ideas to Get You Started

One of the goals of this book is to encourage you to write new and experimental webbots of
your own design. A way to jumpstart this process is to brainstorm and generate some ideas
for potential projects. I've taken this opportunity to list a few ideas to get you started. These
ideas are not here necessarily because they have commercial value. Instead, they should act
as inspiration for your own webbots and what you want to accomplish online.

When designing a webbot, remember that the more specifically you can define the task, the
more useful your webbot will be. What can you do with a webbot? Let's look at a few
scenarios.

Help Out a Busy Executive

Suppose you're a busy executive type and you like to start your day reading your online
industry publication. Time is limited, however, and you only let yourself read industry news
until you've finished your first cup of coffee. Therefore, you don't want to be bothered with
stories that you've read before or that you know are not relevant to your business. You ask
your developer to create a specialized webbot that consolidates articles from your favorite
industry news sources and only displays links to stories that it has not shown you before.

The webbot could ignore articles that contain certain key phrases you previously entered in an
exclusion list[] and highlight articles that contain references to you or your competitors. With
such an application, you could quickly scan what's happening in your industry and only spend
time reading relevant articles. You might even have more time to enjoy your coffee.

[] An exclusion list is a list of keywords or phrases that are ignored by a webbot.

Save Money by Automating Tasks

It's possible to design a webbot that automatically buys inventory for a store, given a
predetermined set of buying criteria. For example, assume you own a store that sells used
travel gear. Some of your sources for inventory are online auction websites.[] Say you are
interested in bidding on under-priced Tumi suitcases during the closing minute of their
auctions. If you don't use a webbot of some sort, you will have to use a web browser to check
each auction site periodically.

[] Some online auctions actually provide tools to help you write webbots that manage auctions. If you're
interested in automating online auctions, check out eBay's Developers Program (http://developer.ebay.
com).

Without a webbot, it can be expensive to use the Internet in a business setting, because
repetitive tasks (like procuring inventory) are time consuming without automation.
Additionally, the more mundane the task, the greater the opportunity for human error.
Checking online auctions for products to resell could easily consume one or two hours a day—
up to 25 percent of a 40-hour work week. At that rate, someone with an annual salary of
$80,000 would cost a company $20,000 a year to procure inventory (without a webbot). That
cost does not include the cost of opportunities lost while the employee manually surfs auction
sites. In scenarios like this, it's easy to see how product acquisition with a webbot saves a lot
of money—even for a small business with small requirements. Additionally, a webbot may

file:///D|/!!/final/Ia_few_crazy_ideas_to_get_you_started.html (1 von 4) [29.03.2008 23:22:24]

http://developer.ebay.com/
http://developer.ebay.com/

Ia_few_crazy_ideas_to_get_you_started.html

uncover bargains missed by someone manually searching the auction site.

Protect Intellectual Property

You can write a webbot to protect your online intellectual property. For example, suppose you
spent many hours writing a JavaScript program. It has commercial value, and you license the
script for others to use for a fee. You've been selling the program for a few months and have
learned that some people are downloading and using your program without paying for it. You
write a webbot to find websites that are using your JavaScript program without your
permission. This webbot searches the Internet and makes a list of URLs that reference your
JavaScript file. In a separate step, the webbot does a whois lookup on the domain to
determine the owner from the domain registrar.[] If the domain is not one of your registered
users, the webbot compiles contact information from the domain registrar so you can contact
the parties who are using unlicensed copies of your code.

[] whois is a service that returns information about the owner of a website. You can do the equivalent of a
whois from a shell script or from an online service.

Monitor Opportunities

You can also write webbots that alert you when particular opportunities arise. For example,
let's say that you have an interest in acquiring a Jack Russell Terrier.[] Instead of devoting
part of each day to searching for your new dog, you decide to write a webbot to search for
you and notify you when it finds a dog meeting your requirements. Your webbot performs a
daily search of the websites of local animal shelters and dog rescue organizations. It parses
the contents of the sites, looking for your dog. When the webbot finds a Jack Russell Terrier,
it sends you an email notification describing the dog and its location. The webbot also records
this specific dog in its database, so it doesn't send additional notifications for the same dog in
the future. This is a fairly common webbot task, which could be modified to automatically
discover job listings, sports scores, or any other timely information.

[] I actually met my dog online.

Verify Access Rights on a Website

Webbots may prevent the potentially nightmarish situation that exists for any web developer
who mistakenly gives one user access to another user's data. To avoid this situation, you
could commission a webbot to verify that all users receive the correct access to your site. This
webbot logs in to the site with every viable username and password. While acting on each
user's behalf, the webbot accesses every available page and compares those pages to a list of
appropriate pages for each user. If the webbot finds a user is inadvertently able to access
something he or she shouldn't, that account is temporarily suspended until the problem is
fixed. Every morning before you arrive at your office, the webbot emails a report of any
irregularities it found the night before.

Create an Online Clipping Service

Suppose you're very vain, and you'd like a webbot to send an email to your mother every
time a major news service mentions your name. However, since you're not vain enough to
check all the main news websites on a regular basis, you write a webbot that accomplishes
the task for you. This webbot accesses a collection of websites, including CNN, Forbes, and
Fortune. You design your webbot to look only for articles that mention your name, and you

file:///D|/!!/final/Ia_few_crazy_ideas_to_get_you_started.html (2 von 4) [29.03.2008 23:22:24]

Ia_few_crazy_ideas_to_get_you_started.html

employ an exclusion list to ignore all articles that contain words or phrases like shakedown,
corruption, or money laundering. When the webbot finds an appropriate article, it
automatically sends your mother an email with a link to the article. Your webbot also blind
copies you on all emails it sends so you know what she's talking about when she calls.

Plot Unauthorized Wi-Fi Networks

You could write a webbot that aids in maintaining network security on a large corporate
campus. For example, suppose that you recently discovered that you have a problem with
employees attaching unauthorized wireless access points to your network. Since these
unauthorized access points occur inside your firewalls and proxies, you recognize that these
unauthorized Wi-Fi networks pose a security risk that you need to control. Therefore, in
addition to a new security policy, you decide to create a webbot that automatically finds and
records the location of all wireless networks on your corporate campus.

You notice that your mail room uses a small metal cart to deliver mail. Because this cart
reaches every corner of the corporate campus on a daily basis, you seek and obtain
permission to attach a small laptop computer with a webbot and Global Positioning System
(GPS) card to the cart. As your webbot hitches a ride through the campus, it looks for open
wireless network connections. When it finds a wireless network, it uses the open network to
send its GPS location to a special website. This website logs the GPS coordinates, IP address,
and date of uplink in a database. If you did your homework correctly, in a few days your
webbot should create a map of all open Wi-Fi networks, authorized and unauthorized, in your
entire corporate campus.

Track Web Technologies

You could write webbots that use web page headers, the information that servers send to
browsers so they may correctly render websites, to maintain a list of web technologies used
by major corporations. Headers typically indicate the type of webserver (and often the
operating system) that websites use, as shown in A web page header showing server
technology.

A web page header showing server technology

Your webbot starts by accessing the headers of each website from a list that you keep in a
database. It then parses web technology information from the header. Finally, the webbot
stores that information in a database that is used by a graphing program to plot how server

file:///D|/!!/final/Ia_few_crazy_ideas_to_get_you_started.html (3 von 4) [29.03.2008 23:22:24]

Ia_few_crazy_ideas_to_get_you_started.html

technology choices change over time.

Allow Incompatible Systems to Communicate

In addition to creating human-readable output, you could design a webbot that only talks to
other computers. For example, let's say that you want to synchronize two databases, one on
a local private network and one that's behind a public website. In this case, synchronization
(ensuring that both databases contain the same information) is difficult because the systems
use different technologies with incompatible synchronization techniques. Given the
circumstances, you could write a webbot that runs on your private network and, for example,
analyzes the public database through a password-protected web service every morning. The
webbot uses the Internet as a common protocol between these databases, analyzes data on
both systems, and exchanges the appropriate data to synchronize the two databases.

file:///D|/!!/final/Ia_few_crazy_ideas_to_get_you_started.html (4 von 4) [29.03.2008 23:22:24]

Ifinal_thoughts_id1.html

Final Thoughts

Studying browser limitations is one way to uncover ideas for new webbot designs. You've
seen some real-world examples of webbots in use and read some descriptions of conceptual
webbot designs. But, enough with theory—let's head to the lab!

The next four chapters describe the basics of webbot development: downloading pages,
parsing data, emulating form submission, and managing large amounts of data. Once you
master these concepts, you can move on to actual webbot projects.

file:///D|/!!/final/Ifinal_thoughts_id1.html [29.03.2008 23:22:25]
www.allitebooks.com

http://www.allitebooks.org

Idownloading_web_pages.html

DOWNLOADING WEB PAGES

The most important thing a webbot does is move web pages from the Internet to your
computer. Once the web page is on your computer, your webbot can parse and manipulate it.

This chapter will show you how to write simple PHP scripts that download web pages. More
importantly, you'll learn PHP's limitations and how to overcome them with PHP/CURL, a
special binding of the cURL library that facilitates many advanced network features. cURL is
used widely by many computer languages as a means to access network files with a number
of protocols and options.

Note: While web pages are the most common targets for webbots and spiders, the Web is not the
only source of information for your webbots. Later chapters will explore methods for extracting
data from newsgroups, email, and FTP servers, as well.

Prior to discovering PHP, I wrote webbots in a variety of languages, including Visual Basic,
Java, and Tcl/Tk. But due to its simple syntax, in-depth string parsing capabilities, networking
functions, and portability, PHP proved ideal for webbot development. However, PHP is
primarily a server language, and its chief purpose is to help webservers interpret incoming
requests and send the appropriate web pages in response. Since webbots don't serve pages
(they request them), this book supplements PHP built-in functions with PHP/CURL and a
variety of libraries, developed specifically to help you learn to write webbots and spiders.

Think About Files, Not Web Pages

To most people, the Web appears as a collection of web pages. But in reality, the Web is
collection of files that form those web pages. These files may exist on servers anywhere in the
world, and they only create web pages when they are viewed together. Because browsers
simplify the process of downloading and rendering the individual files that make up web
pages, you need to know the nuts and bolts of how web pages are put together before you
write your first webbot.

When your browser requests a file, as shown in When a browser requests a web page, it first
receives an index file., the webserver that fields the request sends your browser a default or
index file, which maps the location of all the files that the web page needs and tells how to
render the text and images that comprise that web page.

When a browser requests a web page, it first receives an index file.

As a rule, this index file also contains references to the other files required to render the

file:///D|/!!/final/Idownloading_web_pages.html (1 von 2) [29.03.2008 23:22:26]

Idownloading_web_pages.html

complete web page,[] as shown in Downloading files, as they are referenced by the index file.
These may include images, JavaScript, style sheets, or complex media files like Flash,
QuickTime, or Windows Media files. The browser downloads each file separately, as it is
referenced by the index file.

[] Some very simple websites consist of only one file.

Downloading files, as they are referenced by the index file

For example, if you request a web page with references to eight items your single web page
actually executes nine separate file downloads (one for the web page and one for each file
referenced by the web page). Usually, each file resides on the same server, but they could
just as easily exist on separate domains, as shown in Downloading files, as they are
referenced by the index file.

file:///D|/!!/final/Idownloading_web_pages.html (2 von 2) [29.03.2008 23:22:26]

Ithink_about_files_comma_not_web_pages.html

DOWNLOADING WEB PAGES

The most important thing a webbot does is move web pages from the Internet to your
computer. Once the web page is on your computer, your webbot can parse and manipulate it.

This chapter will show you how to write simple PHP scripts that download web pages. More
importantly, you'll learn PHP's limitations and how to overcome them with PHP/CURL, a
special binding of the cURL library that facilitates many advanced network features. cURL is
used widely by many computer languages as a means to access network files with a number
of protocols and options.

Note: While web pages are the most common targets for webbots and spiders, the Web is not the
only source of information for your webbots. Later chapters will explore methods for extracting
data from newsgroups, email, and FTP servers, as well.

Prior to discovering PHP, I wrote webbots in a variety of languages, including Visual Basic,
Java, and Tcl/Tk. But due to its simple syntax, in-depth string parsing capabilities, networking
functions, and portability, PHP proved ideal for webbot development. However, PHP is
primarily a server language, and its chief purpose is to help webservers interpret incoming
requests and send the appropriate web pages in response. Since webbots don't serve pages
(they request them), this book supplements PHP built-in functions with PHP/CURL and a
variety of libraries, developed specifically to help you learn to write webbots and spiders.

Think About Files, Not Web Pages

To most people, the Web appears as a collection of web pages. But in reality, the Web is
collection of files that form those web pages. These files may exist on servers anywhere in the
world, and they only create web pages when they are viewed together. Because browsers
simplify the process of downloading and rendering the individual files that make up web
pages, you need to know the nuts and bolts of how web pages are put together before you
write your first webbot.

When your browser requests a file, as shown in When a browser requests a web page, it first
receives an index file., the webserver that fields the request sends your browser a default or
index file, which maps the location of all the files that the web page needs and tells how to
render the text and images that comprise that web page.

When a browser requests a web page, it first receives an index file.

As a rule, this index file also contains references to the other files required to render the

file:///D|/!!/final/Ithink_about_files_comma_not_web_pages.html (1 von 2) [29.03.2008 23:22:27]

Ithink_about_files_comma_not_web_pages.html

complete web page,[] as shown in Downloading files, as they are referenced by the index file.
These may include images, JavaScript, style sheets, or complex media files like Flash,
QuickTime, or Windows Media files. The browser downloads each file separately, as it is
referenced by the index file.

[] Some very simple websites consist of only one file.

Downloading files, as they are referenced by the index file

For example, if you request a web page with references to eight items your single web page
actually executes nine separate file downloads (one for the web page and one for each file
referenced by the web page). Usually, each file resides on the same server, but they could
just as easily exist on separate domains, as shown in Downloading files, as they are
referenced by the index file.

file:///D|/!!/final/Ithink_about_files_comma_not_web_pages.html (2 von 2) [29.03.2008 23:22:27]

Idownloading_files_with_phps_built_in_functions.html

Downloading Files with PHP's Built-in Functions

Before you can appreciate PHP/CURL, you'll need to familiarize yourself with PHP's built-in
functions for downloading files from the Internet.

Downloading Files with fopen() and fgets()

PHP includes two simple built-in functions for downloading files from a network—fopen() and
fgets(). The fopen() function does two things. First, it creates a network socket, which
represents the link between your webbot and the network resource you want to retrieve.
Second, it implements the HTTP protocol, which defines how data is transferred. With those
tasks completed, fgets() leverages the networking ability of your computer's operating
system to pull the file from the Internet.

Creating Your First Webbot Script

Let's use PHP's built-in functions to create your first webbot, which downloads a "Hello,
world!" web page from this book's companion website. The short script is shown in Listing 3-1.

Define the file you want to download
$target = "http://www.schrenk.com/nostarch/webbots/hello_world.html";
$file_handle = fopen($target, "r");

Fetch the file
while (!feof($file_handle))
 echo fgets($file_handle, 4096);
fclose($file_handle);

Listing 3-1: Downloading a file from the Web with fopen() and fgets()

As shown in Listing 3-1, fopen() establishes a network connection to the target, or file you
want to download. It references this connection with a file handle, or network link called
$file_handle. The script then uses fopen() to fetch and echo the file in 4,096-byte chunks
until it has downloaded and displayed the entire file. Finally, the script executes an fclose()
to tell PHP that it's finished with the network handle.

Before we can execute the example in Listing 3-1, we need to examine the two ways to
execute a webbot: You can run a webbot either in a browser or in a command shell.[]

[] See SCHEDULING WEBBOTS AND SPIDERS for more information on executing webbots as scheduled
events.

Executing Webbots in Command Shells

If you have a choice, it is usually better to execute webbots from a shell or command line.
Webbots generally don't care about web page formatting, so they will display exactly what is
returned from a webserver. Browsers, in contrast, will interpret HTML tags as instructions for
rendering the web page. For example, Running a webbot script in a shell shows what Listing 3-
1 looks like when executed in a shell.

file:///D|/!!/final/Idownloading_files_with_phps_built_in_functions.html (1 von 3) [29.03.2008 23:22:28]

Idownloading_files_with_phps_built_in_functions.html

Running a webbot script in a shell

Executing Webbots in Browsers

To run a webbot script in a browser, simply load the script on a webserver and execute it by
loading its URL into the browser's location bar as you would any other web page. Contrast
Running a webbot script in a shell with Browser "rendering" the output of a webbot, where
the same script is run within a browser. The HTML tags are gone, as well as all of the
structure of the returned file; the only things displayed are two lines of text. Running a
webbot in a browser only shows a partial picture and often hides important information that a
webbot needs.

Note: To display HTML tags within a browser, surround the output with <xmp> and </xmp> tags.

Browser "rendering" the output of a webbot

file:///D|/!!/final/Idownloading_files_with_phps_built_in_functions.html (2 von 3) [29.03.2008 23:22:28]

Idownloading_files_with_phps_built_in_functions.html

Browser buffering is another complication you might run into if you try to execute a webbot in
a browser. Buffering is useful when you're viewing web pages because it allows a browser to
wait until it has collected enough of a web page before it starts rendering or displaying the
web page. However, browser buffering is troublesome for webbots because they frequently
run for extended periods of time—much longer than it would take to download a typical web
page. During prolonged webbot execution, status messages written by the webbot may not be
displayed by the browser while it is buffering the display.

I have one webbot that runs continuously; in fact, it once ran for seven months before
stopping during a power outage. This webbot could never run effectively in a browser because
browsers are designed to render web pages with files of finite length. Browsers assume short
download periods and may buffer an entire web page before displaying anything—therefore,
never displaying the output of your webbot.

Note: Browsers can still be very useful for creating interfaces that set up or control the actions of
a webbot. They can also be useful for displaying the results of a webbot's work.

Downloading Files with file()

An alternative to fopen() and fgets() is the function file(), which downloads formatted
files and places them into an array. This function differs from fopen() in two important ways:
One way is that, unlike fopen(), it does not require you to create a file handle, because it
creates all the network preparations for you. The other difference is that it returns the
downloaded file as an array, with each line of the downloaded file in a separate array
element. The script in Listing 3-2 downloads the same web page used in Listing 3-1, but it
uses the file() command.

<?
// Download the target file
$target = "http://www.schrenk.com/nostarch/webbots/hello_world.html";
$downloaded_page_array = file($target);

// Echo contents of file
for($xx=0; $xx<count($downloaded_page_array); $xx++)
 echo $downloaded_page_array[$xx];
?>

Listing 3-2: Downloading files with file()

The file() function is particularly useful for downloading comma-separated value (CSV) files,
in which each line of text represents a row of data with columnar formatting (as in an Excel
spreadsheet). Loading files line-by-line into an array, however, is not particularly useful when
downloading HTML files because the data in a web page is not defined by rows or columns; in
a CSV file, however, rows and columns have specific meaning.

file:///D|/!!/final/Idownloading_files_with_phps_built_in_functions.html (3 von 3) [29.03.2008 23:22:28]

Iintroducing_php_exclamation_curl.html

Introducing PHP/CURL

While PHP is capable when it comes to simple file downloads, most real-life applications
require additional functionality to handle advanced issues such as form submission,
authentication, redirection, and so on. These functions are difficult to facilitate with PHP's
built-in functions alone. Therefore, most of this book's examples use PHP/CURL to download
files.

The open source cURL project is the product of Swedish developer Daniel Stenberg and a
team of developers. The cURL library is available for use with nearly any computer language
you can think of. When cURL is used with PHP, it's known as PHP/CURL.

The name cURL is either a blend of the words client and URL or an acronym for the words
client URL Request Library—you decide. cURL does everything that PHP's built-in networking
functions do and a lot more. PHP/CURL REFERENCE expands on cURL's features, but here's a
quick overview of the things PHP/CURL can do for you, a webbot developer.

Multiple Transfer Protocols

Unlike the built-in PHP network functions, cURL supports multiple transfer protocols, including
FTP, FTPS, HTTP, HTTPS, Gopher, Telnet, and LDAP. Of these protocols, the most important is
probably HTTPS, which allows webbots to download from encrypted websites that employ the
Secure Sockets Layer (SSL) protocol.

Form Submission

cURL provides easy ways for a webbot to emulate browser form submission to a server. cURL
supports all of the standard methods, or form submission protocols, as you'll learn in
AUTOMATING FORM SUBMISSION.

Basic Authentication

cURL allows webbots to enter password-protected websites that use basic authentication.
You've encountered authentication if you've seen this familiar gray box, shown in A basic
authentication prompt, asking for your username and password. PHP/CURL makes it easy to
write webbots that enter and use password-protected websites.

A basic authentication prompt

file:///D|/!!/final/Iintroducing_php_exclamation_curl.html (1 von 3) [29.03.2008 23:22:30]

Iintroducing_php_exclamation_curl.html

Cookies

Without cURL, it is difficult for webbots to read and write cookies, those small bits of data that
websites use to create session variables that track your movement. Websites also use cookies
to manage shopping carts and authenticate users. cURL makes it easy for your webbot to
interpret the cookies that webservers send it; it also simplifies the process of showing
webservers all the cookies your webbot has written. AUTHENTICATION and ADVANCED
COOKIE MANAGEMENT have much more to say on the subject of webbots and cookies.

Redirection

Redirection occurs when a web browser looks for a file in one place, but the server tells it that
the file has moved and that it should download it from another location. For example, the
website www.company.com may use redirection to force browsers to go to www.company.
com/spring_sale when a seasonal promotion is in place. Browsers handle redirections
automatically, and cURL allows webbots to have the same functionality.

Agent Name Spoofing

Every time a webserver receives a file request, it stores the requesting agent's name in a log
file called an access log file. This log file stores the time of access, the IP address of the
requester, and the agent name, which identifies the type of program that requested the file.
Generally, agent names identify the browser that the web surfer was using to view the
website.

Some agent names that a server log file may record are shown in Listing 3-3. The first four
names are browsers; the last is the Google spider.

Code View:

Mozilla/5.0 (Windows; U; Windows NT 5.1; rv:1.7.6) Gecko/20050225 Firefox/1.0.1
Mozilla/4.0 (compatible; MSIE 5.0; Windows 2000) Opera 6.03 [en]
Mozilla/5.0 (compatible; Konqueror/3.1-rc3; i686 Linux; 20020515)
Mozilla/4.0 (compatible; MSIE 7.0b; Windows NT 5.1)
Googlebot/2.1 (+http://www.google.com/bot.html)

Listing 3-3: Agent names as seen in a file access log

A webbot using cURL can assume any appropriate (or inappropriate) agent name. For
example, sometimes it is advantageous to identify your webbots, as Google does. Other
times, it is better to make your webbot look like a browser. If you write webbots that use the
LIB_http library (described later), your webbot's agent name will be Test Webbot. If you
download a file from a webserver with PHP's fopen() or file() functions, your agent name
will be the version of PHP installed on your computer.

Referer Management

cURL allows webbot developers to change the referer, which is the reference that servers use

file:///D|/!!/final/Iintroducing_php_exclamation_curl.html (2 von 3) [29.03.2008 23:22:30]

http://www.company.com/
http://www.company.com/spring_sale
http://www.company.com/spring_sale

Iintroducing_php_exclamation_curl.html

to detect which link the web surfer clicked. Sometimes webservers use the referer to verify
that file requests are coming from the correct place. For example, a website might enforce a
rule that prevents downloading of images unless the referring web page is also on the same
webserver. This prohibits people from bandwidth stealing, or writing web pages using images
on someone else's server. cURL allows a webbot to set the referer to an arbitrary value.

Socket Management

cURL also gives webbots the ability to recognize when a webserver isn't going to respond to a
file request. This ability is vital because, without it, your webbot might hang (forever) waiting
for a server response that will never happen. With cURL, you can specify how long a webbot
will wait for a response from a server before it gives up and moves on.

file:///D|/!!/final/Iintroducing_php_exclamation_curl.html (3 von 3) [29.03.2008 23:22:30]
www.allitebooks.com

http://www.allitebooks.org

Iinstalling_php_exclamation_curl.html

Installing PHP/CURL

Since PHP/CURL is tightly integrated with PHP, installation should be unnecessary, or at
worst, easy. You probably already have PHP/CURL on your computer; you just need to enable
it in php.ini, the PHP configuration file. If you're using Linux, FreeBSD, OS X, or another Unix-
based operating system, you may have to recompile your copy of Apache/PHP to enjoy the
benefits of PHP/CURL. Installing PHP/CURL is similar to installing any other PHP library. If you
need help, you should reference the PHP website (http://www.php.net) for the instructions for
your particular operating system and PHP version.

file:///D|/!!/final/Iinstalling_php_exclamation_curl.html [29.03.2008 23:22:30]

http://www.php.net/

Ilib_http.html

LIB_http

Since PHP/CURL is very flexible and has many configurations, it is often handy to use it within a
wrapper function, which simplifies the complexities of a code library into something easier to
understand. For your convenience, this book uses a library called LIB_http, which provides
wrapper functions to the PHP/CURL features you'll use most. The remainder of this chapter
describes the basic functions of the LIB_http library.

LIB_http is a collection of PHP/CURL routines that simplify downloading files. It contains
defaults and abstractions that facilitate downloading files, managing cookies, and completing
online forms. The name of the library refers to the HTTP protocol used by the library. Some of
the reasons for using this library will not be evident until we cover its more advanced features.
Even simple file downloads, however, are made easier and more robust with LIB_http because
of PHP/CURL. The most recent version of LIB_http is available at this book's website.

Familiarizing Yourself with the Default Values

To simplify its use, LIB_http sets a series of default conditions for you, as described below:

● Your webbot's agent name is Test Webbot.

● Your webbot will time out if a file transfer doesn't complete within 25 seconds.

● Your webbot will store cookies in the file c:\ cookie.txt.

● Your webbot will automatically follow a maximum of four redirections, as directed by
servers in HTTP headers.

● Your webbot will, if asked, tell the remote server that you do not have a local
authentication certificate. (This is only important if you access a website employing SSL
encryption, which is used to protect confidential information on e-commerce websites.)

These defaults are set at the beginning of the file. Feel free to change any of these settings to
meet your specific needs.

Using LIB_http

The LIB_http library provides a set of wrapper functions that simplify complicated PHP/CURL
interfaces. Each of these interfaces calls a common routine, http(), which performs the
specified task, using the values passed to it by the wrapper interfaces. All functions in LIB_http
share a similar format: A target and referring URL are passed, and an array is returned,
containing the contents of the requested file, transfer status, and error conditions.

While LIB_http has many functions, we'll restrict our discussion to simply fetching files from
the Internet using HTTP. The remaining features are described as needed throughout the book.

http_get()

The function http_get() downloads files with the GET method; it has many advantages over
PHP's built-in functions for downloading files from the Internet. Not only is the interface simple,

file:///D|/!!/final/Ilib_http.html (1 von 6) [29.03.2008 23:22:32]

Ilib_http.html

but this function offers all the previously described advantages of using PHP/CURL. The script in
Listing 3-4 shows how files are downloaded with http_get().

Usage: http_get()
array http_get (string target_url, string referring_url)

Listing 3-4: Using http_get()

These are the inputs for the script in Listing 3-4:

target_url is the fully formed URL of the desired file
referring_url is the fully formed URL of the referer

These are the outputs for the script in Listing 3-4:

$array['FILE'] contains the contents of the requested file
$array['STATUS'] contains status information regarding the file transfer
$array['ERROR'] contains a textual description of any errors

http_get_withheader()

When a web agent requests a file from the Web, the server returns the file contents, as
discussed in the previous section, along with the HTTP header, which describes various
properties related to a web page. Browsers and webbots rely on the HTTP header to determine
what to do with the contents of the downloaded file.

The data that is included in the HTTP header varies from application to application, but it may
define cookies, the size of the downloaded file, redirections, encryption details, or
authentication directives. Since the information in the HTTP header is critical to properly using a
network file, LIB_http configures cURL to automatically handle the more common header
directives. Listing 3-5 shows how this function is used.

Usage: http_get_withheader()
array http_get_withheader (string target_url, string referring_url)

Listing 3-5: Using http_get()

These are the inputs for the script in Listing 3-5:

target_url is the fully formed URL of the desired file
referring_url is the fully formed URL of the referer

These are the outputs for the script in Listing 3-5:

$array['FILE'] contains the contents of the requested file, including the HTTP header
$array['STATUS'] contains status information about the file transfer
$array['ERROR'] contains a textual description of any errors

The example in Listing 3-6 uses the http_get_withheader() function to download a file and
display the contents of the returned array.

file:///D|/!!/final/Ilib_http.html (2 von 6) [29.03.2008 23:22:32]

Ilib_http.html

Include http library
include("LIB_http.php");

Define the target and referer web pages
$target = "http://www.schrenk.com/publications.php";
$ref = "http://www.schrenk.com";

Request the header
$return_array = http_get_withheader($target, $ref);

Display the header
echo "FILE CONTENTS \n";
var_dump($return_array['FILE']);

echo "ERRORS \n";
var_dump($return_array['ERROR']);

echo "STATUS \n";

var_dump($return_array['STATUS']);

Listing 3-6: Using http_get_withheader()

The script in Listing 3-6 downloads the page and displays the requested page, any errors, and a
variety of status information related to the fetch and download.

Listing 3-7 shows what is produced when the script in Listing 3-6 is executed, with the array
that includes the page header, error conditions, and status. Notice that the contents of the
returned file are limited to only the HTTP header, because we requested only the header and
not the entire page. Also, notice that the first line in a HTTP header is the HTTP code, which
indicates the status of the request. An HTTP code of 200 tells us that the request was
successful. The HTTP code also appears in the status array element.[]

[] A complete list of HTTP codes can be found in STATUS CODES.

Code View:

FILE CONTENTS
string(215) "HTTP/1.1 200 OK
Date: Sat, 08 Oct 2008 16:38:51 GMT
Server: Apache/2.0.53 (FreeBSD) mod_ssl/2.0.53 OpenSSL/0.9.7g PHP/4.4.0
X-Powered-By: PHP/4.4.0
Content-Type: text/html; charset=ISO-8859-1

"
ERRORS
string(0) ""

STATUS
array(20) {
 ["url"]=>
 string(39) "http://www.schrenk.com/publications.php"
 ["content_type"]=>
 string(29) "text/html; charset=ISO-8859-1"
 ["http_code"]=>

file:///D|/!!/final/Ilib_http.html (3 von 6) [29.03.2008 23:22:32]

Ilib_http.html

 int(200)

 ["header_size"]=>
 int(215)
 ["request_size"]=>
 int(200)
 ["filetime"]=>
 int(-1)
 ["ssl_verify_result"]=>
 int(0)
 ["redirect_count"]=>
 int(0)
 ["total_time"]=>
 float(0.683)
 ["namelookup_time"]=>
 float(0.005)
 ["connect_time"]=>
 float(0.101)
 ["pretransfer_time"]=>
 float(0.101)
 ["size_upload"]=>
 float(0)
 ["size_download"]=>
 float(0)
 ["speed_download"]=>
 float(0)
 ["speed_upload"]=>
 float(0)
 ["download_content_length"]=>
 float(0)
 ["upload_content_length"]=>
 float(0)
 ["starttransfer_time"]=>
 float(0.683)
 ["redirect_time"]=>
 float(0)
}

Listing 3-7: File contents, errors, and the download status array returned by LIB_http

The information returned in $array['STATUS'] is extraordinarily useful for learning how the
fetch was conducted. Included in this array are values for download speed, access times, and
file sizes—all valuable when writing diagnostic webbots that monitor the performance of a
website.

Learning More About HTTP Headers

When a Content-Type line appears in an HTTP header, it defines the MIME, or the media type of
file sent from the server. The MIME type tells the web agent what to do with the file. For
example, the Content-Type in the previous example was text/html, which indicates that the file
is a web page. Knowing if the file they just downloaded was an image or an HTML file helps
browsers know if they should display the file as text or render an image. For example, the HTTP
header information for a JPEG image is shown in Listing 3-8.

file:///D|/!!/final/Ilib_http.html (4 von 6) [29.03.2008 23:22:32]

Ilib_http.html

HTTP/1.1 200 OK
Date: Mon, 23 Mar 2009 00:06:13 GMT
Server: Apache/1.3.12 (Unix) mod_throttle/3.1.2 tomcat/1.0 PHP/4.0.3pl1
Last-Modified: Wed, 23 Jul 2008 18:03:29 GMT
ETag: "74db-9063-3d3eebf1"
Accept-Ranges: bytes
Content-Length: 36963
Content-Type: image/jpeg

Listing 3-8: An HTTP header for an image file request

Examining LIB_http's Source Code

Most webbots in this book will use the library LIB_http to download pages from the Internet. If
you plan to explore any of the webbot examples that appear later in this book, you should
obtain a copy of this library; the latest version is available for download at this book's website.
We'll explore some of the defaults and functions of LIB_http here.

LIB_http Defaults

At the very beginning of the library is a set of defaults, as shown in Listing 3-9.

Code View:

define("WEBBOT_NAME", "Test Webbot"); # How your webbot will appear in server
logs
define("CURL_TIMEOUT", 25); # Time (seconds) to wait for network
response
define("COOKIE_FILE", "c:\cookie.txt"); # Location of cookie file

Listing 3-9: LIB_http defaults

LIB_http Functions

The functions shown in Listing 3-10 are available within LIB_http. All of these functions return
the array defined earlier, containing downloaded files, error messages, and the status of the file
transfer.

Code View:

http_get($target, $ref) # Simple get request (w/o header)
http_get_withheader($target, $ref) # Simple get request (w/ header)
http_get_form($target, $ref, $data_array) # Form (method ="GET", w/o
header)
http_get_form_withheader($target, $ref, $data_array) # Form (method ="GET", w/ header)
http_post_form($target, $ref, $data_array) # Form (method ="POST", w/o
header)
http_post_withheader($target, $ref, $data_array) # Form (method ="POST", w/
header)
http_header($target, $ref) # Only returns header

file:///D|/!!/final/Ilib_http.html (5 von 6) [29.03.2008 23:22:32]

Ilib_http.html

Listing 3-10: LIB_http functions

file:///D|/!!/final/Ilib_http.html (6 von 6) [29.03.2008 23:22:32]

Ifinal_thoughts_id2.html

Final Thoughts

Some of these functions use an additional input parameter, $data_array, when form data is
passed from the webbot to the webserver. These functions are listed below:

● http_get_form()

● http_get_form_withheader()

● http_post_form()

● http_post_form_withheader()

If you don't understand what all these functions do now, don't worry. Their use will become
familiar to you as you go through the examples that appear later in this book. Now might be a
good time to thumb through PHP/CURL REFERENCE, which details the features of cURL that
webbot developers are most apt to need.

file:///D|/!!/final/Ifinal_thoughts_id2.html [29.03.2008 23:22:33]

Iparsing_techniques.html

PARSING TECHNIQUES

Parsing is the process of segregating what's desired or useful from what is not. In the case of
webbots, parsing involves detecting and separating image names and addresses, key
phrases, hyper-references, and other information of interest to your webbot. For example, if
you are writing a spider that follows links on web pages, you will have to separate these links
from the rest of the HTML. Similarly, if you write a webbot to download all the images from a
web page, you will have to write parsing routines that identify all the references to image files.

Parsing Poorly Written HTML

One of the problems you'll encounter when parsing web pages is poorly written HTML. A large
amount of HTML is machine generated and shows little regard for human readability, and
hand-written HTML often disregards standards by ignoring closing tags or misusing quotes
around values. Browsers may correctly render web pages that have substandard HTML, but
poorly written HTML interferes with your webbot's ability to parse web pages.

Fortunately, a software library known as HTMLTidy[] will clean up poorly written web pages.
PHP includes HTMLTidy in its standard distributions, so you should have no problem getting it
running on your computer. Installing HTMLTidy (also known as just Tidy) should be similar to
installing cURL. Complete installation instructions are available at the PHP website.[]

[] See http://tidy.sourceforge.net.

[] See http://www.php.net.

The parse functions (described next) rely on Tidy to put unparsed source code into a known
state, with known delimiters and known closing tags of known case.

Note: If you do not have HTMLTidy installed on your computer, the parsing described in this book
may not work correctly.

file:///D|/!!/final/Iparsing_techniques.html [29.03.2008 23:22:34]

http://tidy.sourceforge.net/
http://www.php.net/

Iparsing_poorly_written_html.html

PARSING TECHNIQUES

Parsing is the process of segregating what's desired or useful from what is not. In the case of
webbots, parsing involves detecting and separating image names and addresses, key
phrases, hyper-references, and other information of interest to your webbot. For example, if
you are writing a spider that follows links on web pages, you will have to separate these links
from the rest of the HTML. Similarly, if you write a webbot to download all the images from a
web page, you will have to write parsing routines that identify all the references to image files.

Parsing Poorly Written HTML

One of the problems you'll encounter when parsing web pages is poorly written HTML. A large
amount of HTML is machine generated and shows little regard for human readability, and
hand-written HTML often disregards standards by ignoring closing tags or misusing quotes
around values. Browsers may correctly render web pages that have substandard HTML, but
poorly written HTML interferes with your webbot's ability to parse web pages.

Fortunately, a software library known as HTMLTidy[] will clean up poorly written web pages.
PHP includes HTMLTidy in its standard distributions, so you should have no problem getting it
running on your computer. Installing HTMLTidy (also known as just Tidy) should be similar to
installing cURL. Complete installation instructions are available at the PHP website.[]

[] See http://tidy.sourceforge.net.

[] See http://www.php.net.

The parse functions (described next) rely on Tidy to put unparsed source code into a known
state, with known delimiters and known closing tags of known case.

Note: If you do not have HTMLTidy installed on your computer, the parsing described in this book
may not work correctly.

file:///D|/!!/final/Iparsing_poorly_written_html.html [29.03.2008 23:22:35]
www.allitebooks.com

http://tidy.sourceforge.net/
http://www.php.net/
http://www.allitebooks.org

Istandard_parse_routines.html

Standard Parse Routines

I have simplified parsing by identifying a few useful functions and placing them into a library
called LIB_parse. These functions (or a combination of them) provide everything needed for
99 percent of your parsing tasks. Whether or not you use the functions in LIB_parse, I highly
suggest that you standardize your parsing routines. Standardized parse functions make your
scripts easier to read and faster to write—and perhaps just as importantly, when you limit
your parsing options to a few simple solutions, you're forced to consider simpler approaches
to parsing problems. The latest version of LIB_parse is available from this book's website.

file:///D|/!!/final/Istandard_parse_routines.html [29.03.2008 23:22:35]

Iusing_lib_parse.html

Using LIB_parse

The parsing library used in this book, LIB_parse, provides easy-to-read parsing functions that
should meet most parsing tasks your webbots will encounter. Primarily, LIB_parse contains
wrapper functions that provide simple interfaces to otherwise complicated routines. To use
the examples in this book, you should download the latest version of this library from the
book's website.

One of the things you may notice about LIB_parse is the lack of regular expressions.
Although regular expressions are the mainstay for parsing text, you won't find many of them
here. Regular expressions can be difficult to read and understand, especially for beginners.
The built-in PHP string manipulation functions are easier to understand and usually more
efficient than regular expressions.

The following is a description of the functions in LIB_parse and the parsing problems they
solve. These functions are also described completely within the comments of LIB_parse.

Splitting a String at a Delimiter: split_string()

The simplest parsing function returns a string that contains everything before or after a
delimiter term. This simple function can also be used to return the text between two terms.
The function provided for that task is split_string(), shown in Listing 4-1.

Code View:

/*
string split_string (string unparsed, string delimiter, BEFORE/AFTER,
INCL/EXCL)
Where
 unparsed is the string to parse
 delimiter defines boundary between substring you want and substring you
don't want
 BEFORE indicates that you want what is before the delimiter
 AFTER indicates that you want what is after the delimiter
 INCL indicates that you want to include the delimiter in the parsed text
 EXCL indicates that you don't want to include the delimiter in the parsed text

*/

Listing 4-1: Using split_string()

Simply pass split_string() the string you want to split, the delimiter where you want the
split to occur, whether you want the portion of the string that is before or after the delimiter,
and whether or not you want the delimiter to be included in the returned string. Examples
using split_string() are shown in Listing 4-2.

file:///D|/!!/final/Iusing_lib_parse.html (1 von 7) [29.03.2008 23:22:37]

Iusing_lib_parse.html

include("LIB_parse.php");
$string = "The quick brown fox";

Parse what's before the delimiter, including the delimiter
$parsed_text = split_string($string, "quick", BEFORE, INCL);
// $parsed_text = "The quick"

Parse what's after the delimiter, but don't include the delimiter
$parsed_text = split_string($string, "quick", AFTER, EXCL);
// $parsed_text = "brown fox"

Listing 4-2: Examples of split_string() usage

Parsing Text Between Delimiters: return_between()

Sometimes it is useful to parse text between two delimiters. For example, to parse a web
page's title, you'd want to parse the text between the <title> and </title> tags. Your
webbots can use the return_between() function in LIB_parse to do this.

The return_between() function uses a start delimiter and an end delimiter to define a
particular part of a string your webbot needs to parse, as shown in Listing 4-3.

/*
string return_between (string unparsed, string
start, string end,
INCL/EXCL)
Where
 unparsed is the string to parse
 start identifies the starting delimiter
 endidentifies the ending delimiter
 INCL indicates that you want to include the
delimiters in the parsed text
 EXCL indicates that you don't want to
include delimiters in the parsed text
*/

Listing 4-3: Using return_between()

The script in Listing 4-4 uses return_between() to parse the HTML title of a web page.

Code View:

Include libraries
include("LIB_parse.php");
include("LIB_http.php");

Download a web page
$web_page = http_get($target="http://www.nostarch.com", $referer="");

Parse the title of the web page, inclusive of the title tags
$title_incl = return_between($web_page['FILE'], "<title>", "</title>", INCL);

file:///D|/!!/final/Iusing_lib_parse.html (2 von 7) [29.03.2008 23:22:37]

Iusing_lib_parse.html

Parse the title of the web page, exclusive of the title tags
$title_excl = return_between($web_page['FILE'], "<title>", "</title>", EXCL);

Display the parsed text
echo "title_incl = ".$title_incl;
echo "\n";
echo "title_excl = ".$title_excl;

Listing 4-4: Using return_between() to find the title of a web page

When Listing 4-4 is run in a shell, the results should look like Examples of using
return_between(), with and without returned delimiters.

Examples of using return_between(), with and without returned delimiters

Parsing a Data Set into an Array: parse_array()

Sometimes the things your webbot needs to parse, like links, appear more than once in a web
page. In these cases, a single parsed result isn't as useful as an array of results. Such a
parsed array could contain all the links, meta tags, or references to images in a web page.
The parse_array() function does essentially the same thing as the return_between()
function, but it returns an array of all items that match the parse description or all
occurrences of data between two delimiting strings. This function, for example, makes it
extremely easy to extract all the links and images from a web page.

The parse_array() function , shown in Listing 4-5, is most useful when your webbots need to
parse the content of reoccurring tags. For example, returning an array of everything between
every occurrence of returns information about all the images in a web page.
Alternately, returning an array of everything between <script and </script> will parse all
inline JavaScript. Notice that in each of these cases, the opening tag is not completely
defined. This is because <img and <script are sufficient to describe the tag, and additional

file:///D|/!!/final/Iusing_lib_parse.html (3 von 7) [29.03.2008 23:22:37]

Iusing_lib_parse.html

parameters (that we don't need to define in the parse) may be present in the downloaded
page.

This simple parse is also useful for parsing tables, meta tags, formatted text, video, or any
other parts of web pages defined between reoccurring HTML tags.

/*
array return_array (string unparsed, string
beg, string end)
Where
 unparsed is the string to parse
 begis a reoccurring beginning delimiter
 end is a reoccurring ending delimiter
 array contains every occurrence of what's found
between beginning and end.

*/

Listing 4-5: Using parse_array()

The script in Listing 4-6 uses the parse_array() function to parse and display all the meta
tags on the FBI website. Meta tags are primarily used to define a web page's content to a
search engine.

The following code, which uses parse_array() to gather the meta tags from a web page,
could be incorporated with the project in SEARCH-RANKING WEBBOTS to determine how
adjustments in your meta tags affect your ranking in search engines. To parse all the meta
tags, the function must be told to return all instances that occur between <meta and >. Again,
notice that the script only uses enough of each delimiter to uniquely identify where a meta
tag starts and ends. Remember that the definitions you apply for start and stop variables
must apply for each data set you want to parse.

include("LIB_parse.php"); # Include parse library
include("LIB_http.php"); # Include cURL library

$web_page = http_get($target="http://www.fbi.gov", $referer="");
$meta_tag_array = parse_array($web_page['FILE'], "<meta", ">");

for($xx=0; $xx<count($meta_tag_array); $xx++)

 echo $meta_tag_array[$xx]."\n";

Listing 4-6: Using parse_array() to parse all the meta tags from http://www.fbi.gov

When the script in Listing 4-6 runs, the result should look like Using parse_array() to parse
the meta tags from the FBI website.

Using parse_array() to parse the meta tags from the FBI website

file:///D|/!!/final/Iusing_lib_parse.html (4 von 7) [29.03.2008 23:22:37]

Iusing_lib_parse.html

Parsing Attribute Values: get_attribute()

Once your webbot has parsed tags from a web page, it is often important to parse attribute
values from those tags. For example, if you're writing a spider that harvests links from web
pages, you will need to parse all the link tags, but you will also need to parse the specific
href attribute of the link tag. For these reasons, LIB_parse includes the get_attribute()
function.

The get_attribute() function provides an interface that allows webbot developers to parse
specific attribute values from HTML tags. Its usage is shown in Listing 4-7.

/*
string get_attribute(string tag, string
attribute)
Where
 tag is the HTML tag that contains the
attribute you want to parse
 attribute is the name of the specific attribute
in the HTML tag

*/

Listing 4-7: Using get_attribute()

This parse is particularly useful when you need to get a specific attribute from a previously
parsed array of tags. For example, Listing 4-8 shows how to parse all the images from http://
www.schrenk.com, using get_attribute() to get the src attribute from an array of
tags.

include("LIB_parse.php"); # include parse library
include("LIB_http.php"); # include curl library

// Download the web page

file:///D|/!!/final/Iusing_lib_parse.html (5 von 7) [29.03.2008 23:22:37]

http://www.schrenk.com/
http://www.schrenk.com/

Iusing_lib_parse.html

$web_page = http_get($target="http://www.schrenk.com", $referer="");

// Parse the image tags
$meta_tag_array = parse_array($web_page['FILE'], "<img", ">");

// Echo the image source attribute from each image tag
for($xx=0; $xx<count($meta_tag_array); $xx++)
 {
 $name = get_attribute($meta_tag_array[$xx], $attribute="src");
 echo $name ."\n";

 }

Listing 4-8: Parsing the src attributes from image tags

Results of running Listing 4-8, showing parsed image names shows the output of Listing 4-8.

Results of running Listing 4-8, showing parsed image names

Removing Unwanted Text: remove()

Up to this point, parsing meant extracting desired text from a larger string. Sometimes,
however, parsing means manipulating text. For example, since webbots usually lack
JavaScript interpreters, it's often best to delete JavaScript from downloaded files. In other
cases, your webbots may need to remove all images or email addresses from a web page. For
these reasons, LIB_parse includes the remove() function. The remove() function is an easy-
to-use interface for removing unwanted text from a web page. Its usage is shown in Listing 4-
9.

/*
string remove(string web page
, string open_tag
, string close_tag
)

file:///D|/!!/final/Iusing_lib_parse.html (6 von 7) [29.03.2008 23:22:37]

Iusing_lib_parse.html

Where
 web_page
 is the contents of the web page you want to affect
 open_tag
 defines the beginning of the text that you want to remove
 close_tag
 defines the end of the text you want to remove

*/

Listing 4-9: Using remove()

By adjusting the input parameters, the remove() function can remove a variety of text from
web pages, as shown in Listing 4-10.

$uncommented_page = remove($web_page, "<!--", "-->");
$links_removed = remove($web_page, "<a", "");
$images_removed = remove($web_page, "<img", " >");
$javascript_removed = remove($web_page, "<script", "</script>");

Listing 4-10: Using remove()

file:///D|/!!/final/Iusing_lib_parse.html (7 von 7) [29.03.2008 23:22:37]

Iuseful_php_functions.html

Useful PHP Functions

In addition to the previously described parsing functions in LIB_parse, PHP also contains a
multitude of built-in parsing functions. The following is a brief sample of the most valuable
built-in PHP parsing functions, along with examples of how they are used.

Detecting Whether a String Is Within Another String

You can use the stristr() function to tell your webbot whether or not a string contains
another string. The PHP community commonly uses the term haystack to refer to the entire
unparsed text and the term needle to refer to the substring within the larger string. The
function stristr() looks for an occurrence of needle in haystack. If found, stristr()
returns a substring of haystack from the occurrence of needle to the end of the larger string.
In normal use, you're not always concerned about the actual returned text. Generally, the
fact that something was returned is used as an indication that you found the existence of
needle in the haystack.

The stristr() function is handy if you want to detect whether or not a specific word is
mentioned in a web page. For example, if you want to know if a web page mentions dogs,
you can execute the script shown in Listing 4-11.

if(stristr($web_page, "dogs"))
 echo "This is a web page that mentions dogs.";
else
 echo "This web page does not mention dogs";

Listing 4-11: Using stristr() to see if a string contains another string

In this example, we're not specifically interested in what the stristr() function returns, but
whether is returns anything at all. If something is returned, we know that the web page
contained the word dogs.

The stristr() function is not case sensitive. If you need a case-sensitive version of stristr
(), use strstr().

Replacing a Portion of a String with Another String

The PHP built-in function str_replace() puts a new string in place of all occurrences of a
substring within a string, as shown in Listing 4-12.

$org_string = "I wish I had a Cat.";
$result_string = str_replace("Cat", "Dog", $org_string);
$result_string contains "I wish I had a Dog."

Listing 4-12: Using str_replace() to replace all occurrences of Cat with Dog

The str_repalce() function is also useful when a webbot needs to remove a character or set

file:///D|/!!/final/Iuseful_php_functions.html (1 von 3) [29.03.2008 23:22:38]

Iuseful_php_functions.html

of characters from a string. You do this by instructing str_replace() to replace text with a
null string, as shown in Listing 4-13.

$result = str_replace("$","","$100.00"); // Remove the dollar sign
$result contains 100.00

Listing 4-13: Using str_replace() to remove leading dollar signs

Parsing Unformatted Text

The script in Listing 4-14 uses a variety of built-in functions, along with a few functions from
LIB_http and LIB_parse, to create a string that contains unformatted text from a website.
The result is the contents of the web page without any HTML formatting.

Code View:

include("LIB_parse.php"); # Include parse library
include("LIB_http.php"); # Include cURL library

// Download the page
$web_page = http_get($target="http://www.cnn.com", $referer="");

// Remove all JavaScript
$noformat = remove($web_page['FILE'], "<script", "</script>");
// Strip out all HTML formatting
$unformatted = strip_tags($only_text);

// Remove unwanted white space
$noformat = str_replace("\t", "", $noformat); // Remove tabs
$noformat = str_replace(" ", "", $noformat); // Remove non-breaking spaces
$noformat = str_replace("\n", "", $noformat); // Remove line feeds
echo $noformat;

Listing 4-14: Parsing the content from the HTML used on http://www.cnn.com

Measuring the Similarity of Strings

Sometimes it is convenient to calculate the similarity of two strings without necessarily
parsing them. PHP's similar_text() function returns a value that represents the percentage
of similarity between two strings. The syntax for using similar_text() is shown in Listing 4-
15.

$similarity_percentage = similar_text($string1, $string2);

Listing 4-15: Example of using PHP's similar_text() function

You may use similar_text() to determine if a new version of a web page is significantly
different than a cached version.

file:///D|/!!/final/Iuseful_php_functions.html (2 von 3) [29.03.2008 23:22:38]
www.allitebooks.com

http://www.cnn.com/
http://www.allitebooks.org

Iuseful_php_functions.html

file:///D|/!!/final/Iuseful_php_functions.html (3 von 3) [29.03.2008 23:22:38]

Ifinal_thoughts_id3.html

Final Thoughts

As demonstrated, a wide variety of parsing tasks can be performed with the standardized
parsing routines in LIB_parse, along with a few of PHP's built-in functions. Here are a few
more suggestions that may help you in your parsing projects.

Note: You'll get plenty of parsing experience as you explore the projects in this book. The projects
also introduce a few advanced parsing techniques. In PRICE-MONITORING WEBBOTS, we'll cover
advanced methods for parsing data in tables. In SEARCH-RANKING WEBBOTS, you'll learn about
the insertion parse, which makes it easier to parse and debug difficult-to-parse web pages.

Don't Trust a Poorly Coded Web Page

While the scripts in LIB_parse attempt to handle most situations, there is no guarantee that
you will be able to parse poorly coded or nonsensical web pages. Even the use of Tidy will not
always provide proper results. For example, code like this:

may drive your parsing routines crazy. If you're having trouble debugging a parsing routine,
check to see if the page has errors. If you don't check for errors, you may waste many hours
trying to parse unparseable web pages.

Parse in Small Steps

When you are writing a script that depends on several levels of parsing, avoid the temptation
to write your parsing script in one pass. Since succeeding sections of your code will depend on
earlier parses, write and debug your scripts one parse at a time.

Don't Render Parsed Text While Debugging

If you are viewing the results of your parse in a browser, remember that the browser will
attempt to render your output as a web page. If the results of your parse contain tags,
display your parses within <xmp> and </xmp> tags. These tags will tell the browser not to
render the results of your parse as HTML. Failure to analyze the unformatted results of your
parse may cause you to miss things that are inside tags.[]

[] DOWNLOADING WEB PAGES describes additional methods for viewing text downloaded from websites.

Use Regular Expressions Sparingly

The use of regular expressions is a parsing language in itself, and most modern programming

file:///D|/!!/final/Ifinal_thoughts_id3.html (1 von 2) [29.03.2008 23:22:39]

Ifinal_thoughts_id3.html

languages support aspects of regular expressions. In the right hands, regular expressions are
also useful for parsing and substituting text; however, they are famous for their sharp
learning curve and cryptic syntax. I avoid regular expressions whenever possible.

The regular expression engine used by PHP is not as efficient as engines used in other
languages, and it is certainly less efficient than PHP's built-in functions for parsing HTML. For
those reasons, my preference is to limit regular expression use to instances in which there are
few alternatives; in those cases, I use wrapper functions to take advantage of the
functionality of regular expressions while shielding the developer from their complexities.

file:///D|/!!/final/Ifinal_thoughts_id3.html (2 von 2) [29.03.2008 23:22:39]

Iautomating_form_submission.html

AUTOMATING FORM SUBMISSION

You learned how to download files from the Internet in DOWNLOADING WEB PAGES. In this
chapter, you'll learn how to fill out forms and upload information to websites. When your
webbots have the ability to exchange information with target websites, as opposed to just
asking for information, they become capable of acting on your behalf. Interactive webbots can
do these kinds of things:

● Transfer funds between your online bank accounts when an account balance drops
below a predetermined limit

● Buy items in online auctions when an item and its price meet preset criteria

● Autonomously upload files to a photo sharing website

● Advise a distributor to refill a vending machine when product inventory is low

Webbots send data to webservers by mimicking what people do as they fill out standard HTML
forms on websites. This process is called form emulation. Form emulation is not an easy task,
since there are many ways to submit form information. In addition, it's important to submit
forms exactly as the webserver expects them to be filled out, or else the server will generate
errors in its log files. People using browsers don't have to worry about the format of the data
they submit in a form. Webbot designers, however, must reverse engineer the form interface
to learn about the data format the server is expecting. When the form interface is properly
debugged, the form data from a webbot appears exactly as if it were submitted by a person
using a browser.

If done poorly, form emulation can get webbot designers into trouble. This is especially true if
you are creating an application that delivers a competitive advantage for a client and you
want to conceal the fact that you are using a webbot. A number of things could happen if your
webbot gets into trouble, ranging from leaking (to your competitors) that you're gaining an
advantage through the use of a webbot to having your website privileges revoked by the
owner of the target website.

The first rule of form emulation is staying legal: Represent yourself truthfully, and don't
violate a website's user agreement. The second rule is to send form data to the server exactly
as the server expects to receive it. If your emulated form data deviates from the format that
is expected, you may generate suspicious-looking errors in the server's log. In either case,
the server's administrator will easily figure out that you are using a webbot. Even though your
webbot is legitimate, the server log files your webbot creates may not resemble browser
activity. They may indicate to the website's administrator that you are a hacker and lead to a
blocked IP address or termination of your account. It is best to be both stealthy and legal. For
these reasons, you may want to read Chapters 24 and 28 before you venture out on your own.

Reverse Engineering Form Interfaces

Webbot developers need to look at online forms differently than people using the same forms
in a browser. Typically, when people use browsers to fill out online forms, performing some
task like paying a bill or checking an account balance, they see various fields that need to be
selected or otherwise completed.

file:///D|/!!/final/Iautomating_form_submission.html (1 von 2) [29.03.2008 23:22:40]

Iautomating_form_submission.html

Webbot designers, in contrast, need to view HTML forms as interfaces or specifications that
tell a webbot how a server expects to see form data after it is submitted. A webbot designer
needs to have the same perspective on forms as the server that receives the form. For
example, a person filling out the form in A simple form with various form elements would
complete a variety of form elements—text boxes, text areas, select lists, radio controls,
checkboxes, or hidden elements—that are identified by text labels.

A simple form with various form elements

While a human associates the text labels shown in A simple form with various form elements
with the form elements, a webbot designer knows that the text labels and types of form
elements are immaterial. All the form needs to do is send the correct name/data pairs that
represent these data fields to the correct server page, with the expected protocol. This isn't
nearly as complicated as it sounds, but before we can go further, it's important that you
understand the various parts of HTML forms.

file:///D|/!!/final/Iautomating_form_submission.html (2 von 2) [29.03.2008 23:22:40]

Ireverse_engineering_form_interfaces.html

AUTOMATING FORM SUBMISSION

You learned how to download files from the Internet in DOWNLOADING WEB PAGES. In this
chapter, you'll learn how to fill out forms and upload information to websites. When your
webbots have the ability to exchange information with target websites, as opposed to just
asking for information, they become capable of acting on your behalf. Interactive webbots can
do these kinds of things:

● Transfer funds between your online bank accounts when an account balance drops
below a predetermined limit

● Buy items in online auctions when an item and its price meet preset criteria

● Autonomously upload files to a photo sharing website

● Advise a distributor to refill a vending machine when product inventory is low

Webbots send data to webservers by mimicking what people do as they fill out standard HTML
forms on websites. This process is called form emulation. Form emulation is not an easy task,
since there are many ways to submit form information. In addition, it's important to submit
forms exactly as the webserver expects them to be filled out, or else the server will generate
errors in its log files. People using browsers don't have to worry about the format of the data
they submit in a form. Webbot designers, however, must reverse engineer the form interface
to learn about the data format the server is expecting. When the form interface is properly
debugged, the form data from a webbot appears exactly as if it were submitted by a person
using a browser.

If done poorly, form emulation can get webbot designers into trouble. This is especially true if
you are creating an application that delivers a competitive advantage for a client and you
want to conceal the fact that you are using a webbot. A number of things could happen if your
webbot gets into trouble, ranging from leaking (to your competitors) that you're gaining an
advantage through the use of a webbot to having your website privileges revoked by the
owner of the target website.

The first rule of form emulation is staying legal: Represent yourself truthfully, and don't
violate a website's user agreement. The second rule is to send form data to the server exactly
as the server expects to receive it. If your emulated form data deviates from the format that
is expected, you may generate suspicious-looking errors in the server's log. In either case,
the server's administrator will easily figure out that you are using a webbot. Even though your
webbot is legitimate, the server log files your webbot creates may not resemble browser
activity. They may indicate to the website's administrator that you are a hacker and lead to a
blocked IP address or termination of your account. It is best to be both stealthy and legal. For
these reasons, you may want to read Chapters 24 and 28 before you venture out on your own.

Reverse Engineering Form Interfaces

Webbot developers need to look at online forms differently than people using the same forms
in a browser. Typically, when people use browsers to fill out online forms, performing some
task like paying a bill or checking an account balance, they see various fields that need to be
selected or otherwise completed.

file:///D|/!!/final/Ireverse_engineering_form_interfaces.html (1 von 2) [29.03.2008 23:22:41]

Ireverse_engineering_form_interfaces.html

Webbot designers, in contrast, need to view HTML forms as interfaces or specifications that
tell a webbot how a server expects to see form data after it is submitted. A webbot designer
needs to have the same perspective on forms as the server that receives the form. For
example, a person filling out the form in A simple form with various form elements would
complete a variety of form elements—text boxes, text areas, select lists, radio controls,
checkboxes, or hidden elements—that are identified by text labels.

A simple form with various form elements

While a human associates the text labels shown in A simple form with various form elements
with the form elements, a webbot designer knows that the text labels and types of form
elements are immaterial. All the form needs to do is send the correct name/data pairs that
represent these data fields to the correct server page, with the expected protocol. This isn't
nearly as complicated as it sounds, but before we can go further, it's important that you
understand the various parts of HTML forms.

file:///D|/!!/final/Ireverse_engineering_form_interfaces.html (2 von 2) [29.03.2008 23:22:41]

Iform_handlers_comma_data_fields_comma_methods_com.html

Form Handlers, Data Fields, Methods, and Event Triggers

Web-based forms have four main parts, as shown in Parts of a form:

● A form handler

● One or more data fields

● A method

● One or more event triggers

I'll examine each of these parts in detail and then show how a webbot emulates a form.

Parts of a form

Form Handlers

The action attribute in the <form> tag defines the web page that interprets the data entered
into the form. We'll refer to this page as the form handler. If there is no defined action, the
form handler is the same as the page that contains the form. The examples in Variations in
Form-Handler Descriptions compare the location of form handlers in a variety of conditions.

Table Variations in Form-Handler Descriptions

action Attribute Meaning
<form
 name="myForm"
 action="search.php"
>

The script called search.php will accept and
interpret the form data. This script shares the
same server and directory as the page that
served the form.

file:///D|/!!/final/Iform_handlers_comma_data_fields_comma_methods_com.html (1 von 5) [29.03.2008 23:22:43]

Iform_handlers_comma_data_fields_comma_methods_com.html

<form
 name="myForm"
 action="../cgi/search.php"
>

A script called search.php handles this form
and is in the cgi directory, which is parallel to
the current directory.

<form
 name="myForm"
 action="/search.php"
>

The script called search.php, in the home
directory of the server that served the page,
handles this form.

<form
 name="myForm"
 action="www.schrenk.com/search.php"
>

The contents of this form are sent to the
specified page at http://www.schrenk.com.

<form name="myForm">

There isn't an action (or form handler)
specified in the <form> tag. In these cases,
the same page that delivered the form is also
the page that interprets the completed form.

Servers have no use for the form's name, which is the variable that identifies the form. This
variable is only used by JavaScript, which associates the form name with its form elements.
Since servers don't use the form's name, webbots (and their designers) have no use for it
either.

Data Fields

Form input tags define data fields and the name, value, and user interface used to input the
value. The user interface (or widget) can be a text box, text area, select list, radio control,
checkbox, or hidden element. Remember that while there are many types of interfaces, they
are completely meaningless to the webbot that emulates the form and the server that handles
the form. From a webbot's perspective, there is no difference between data entered via a text
box or a select list. The input tag's name and its value are the only things that matter.

Every data field must have a name.[] These names become form data variables, or containers
for their data values. In Listing 5-1, a variable called session_id is set to 0001, and the value
for search is whatever was in the text box labeled Search when the user clicked the submit
button. Again, from a webbot designer's perspective, it doesn't matter what type of data
elements define the data fields (hidden, select, radio, text box, etc.). It is important that the
data has the correct name and that the value is within a range expected by the form handler.

[] The HTML value of any form element is only its stating or default value. The user may change the final
element with JavaScript or by editing the form before it is sent to the form handler.

<form method="GET">
 <input type="hidden" name="session_id" value="0001">
 <input type="text" name="search" value="">
 <input type="submit">
</form>

file:///D|/!!/final/Iform_handlers_comma_data_fields_comma_methods_com.html (2 von 5) [29.03.2008 23:22:43]

http://www.schrenk.com/

Iform_handlers_comma_data_fields_comma_methods_com.html

Listing 5-1: Data fields in a HTML form

Methods

The form's method describes the protocol used to send the form data to the form handler.
The most common methods for form data transfers are GET and POST.

The GET Method

You are already familiar with the GET method, because it is identical to the protocol you used
to request web pages in previous chapters. With the GET protocol, the URL of a web page is
combined with data from form elements. The address of the page and the data are separated
by a ? character, and individual data variables are separated by & characters, as shown in
Listing 5-2. The portion of the URL that follows the ? character is known as a query string.

URL http://www.schrenk.com/search.php?term=hello&sort=up

Listing 5-2: Data values passed in a URL (GET method)

Since GET form variables may be combined with the URL, the web page that accepts the form
will not be able to tell the difference between the form submitted in Listing 5-3 and the form
emulation techniques shown in Listings 5-4 and 5-5. In either case, the variables term and
sort will be submitted to the web page http://www.schrenk.com/search with the GET protocol.
[]

[] In forms where no form method is defined, like the form shown in Listing 5-3, the default form method
is GET.

<form name="frm1" action="http://www.schrenk.com/search.php">
 <input type="text" name="term" value="hello">
 <input type="text" name="sort" value="up">
 <input type="submit">
</form>

Listing 5-3: A GET method performed by a form submission

Alternatively, you could use LIB_http to emulate the form, as in Listing 5-4.

Code View:

include("LIB_http.php");

$action = "http://www.schrenk.com/search.php"; // Address of form handler
$method="GET"; // GET method
$ref = ""; // Referer variable
$data_array['term'] = "hello"; // Define term
$data_array['sort'] = "up"; // Define sort
$response = http($target=$action, $ref, $method, $data_array, EXCL_HEAD);

file:///D|/!!/final/Iform_handlers_comma_data_fields_comma_methods_com.html (3 von 5) [29.03.2008 23:22:43]

http://www.schrenk.com/search

Iform_handlers_comma_data_fields_comma_methods_com.html

Listing 5-4: Using LIB_http to emulate the form in Listing 5-3 with data passed in an array

Conversely, since the GET method places form information in the URL's query string, you
could also emulate the form with a script like Listing 5-5.

Code View:

include("LIB_http.php");

$action = "http://www.schrenk.com/search.php?term=hello&sort=up";
$method=""GET";
$ref = "" ;
$response = http($target=$action, $ref, $method, $data_array="", EXCL_HEAD);

Listing 5-5: Emulating the form in Listing 5-3 by combining the URL with the form data

The reason we might choose Listing 5-4 over Listing 5-5 is that the code is cleaner when form
data is treated as array elements, especially when many form values are passed to the form
handler. Passing form variables to the form's handler with an array is also more symmetrical,
meaning that the procedure is nearly identical to the one required to pass values to a form
handler expecting the POST method.

The POST Method

While the GET method tacks on form data at the end of the URL, the POST method sends data
in a separate file. The POST method has these advantages over the GET method:

● POST methods can send more data to servers than GET methods can. The maximum
length of a GET method is typically around 250 characters. POST methods, in contrast,
can easily upload several megabytes of information during a single form upload.

● Since URL fetch requests are sent in HTTP headers, and since headers are never
encrypted, sensitive data should always be transferred with POST methods. POST
methods don't transfer form data in headers, and thus, they may be encrypted.
Obviously, this is only important for web pages using encryption.

● GET method requests are always visible on the location bar of the browser. POST
requests only show the actual URL in the location bar.

Regardless of the advantages of POST over GET, you must match your method to the method
of form you are emulating. Keep in mind that methods may also be combined in the same
form. For example, forms with POST methods may also use form handlers that contains query
strings.

To submit a form using the POST method with LIB_http, simply specify the POST protocol, as

file:///D|/!!/final/Iform_handlers_comma_data_fields_comma_methods_com.html (4 von 5) [29.03.2008 23:22:43]

Iform_handlers_comma_data_fields_comma_methods_com.html

shown in Listing 5-6.

Code View:

include("LIB_http.php");

$action = "http://www.schrenk.com/search.php"; // Address of form handler
$method="POST "; // POST method
$ref = ""; // Referer variable
$data_array['term'] = "hello"; // Define term
$data_array['sort'] = "up"; // Define sort
$response = http($target=$action, $ref, $method, $data_array, EXCL_HEAD);

Listing 5-6: Using LIB_http to emulate a form with the POST method

Regardless of the number of data elements, the process is the same. Some form handlers,
however, access the form elements as an array, so it's always a good idea to match the order
of the data elements that is defined in the HTML form.

Event Triggers

A submit button typically acts as the event trigger, which causes the form data to be sent to
the form handler using the defined form method. While the submit button is the most
common event trigger, it is not the only way to submit a form. It is very common for web
developers to employ JavaScript to verify the contents of the form before it is submitted to
the server. In fact, any JavaScript event like onClick or onMouseOut can submit a form, as
can any other type of human-generated JavaScript event. Sometimes, JavaScript may also
change the value of a form variable before the form is submitted. The use of JavaScript as an
event trigger causes many difficulties for webbot designers, but these issues are remedied by
the use of special tools, as you'll soon see.

file:///D|/!!/final/Iform_handlers_comma_data_fields_comma_methods_com.html (5 von 5) [29.03.2008 23:22:43]

Iunpredictable_forms.html

Unpredictable Forms

You may not be able to tell exactly what the form requires by looking at the source HTML.
There are three primary reasons for this: the use of JavaScript, the readability of machine
generated HTML, and the presence of cookies.

JavaScript Can Change a Form Just Before Submission

Forms often use JavaScript to manipulate data before sending it to the form handler. These
manipulations are usually the result of checking the validity of data entered into the form data
field. Since these manipulations happen dynamically, it is nearly impossible to predict what
will happen unless you actually run the JavaScript and see what it does—or unless you have a
JavaScript parser in your head.

Form HTML Is Often Unreadable by Humans

You cannot expect to look at the source HTML for a web page and determine, with any
precision, what the form does. Regardless of the fact that all browsers have a View Source
option, it is important to remember that HTML is rendered by machines and does not have to
be readable by people—and it frequently isn't. It is also important to remember that much of
the HTML served on web pages is dynamically generated by scripts. For these reasons, you
should never expect HTML pages to be easy to read, and you should never count on being
able to accurately analyze a form by looking at a script.

Cookies Aren't Included in the Form, but Can Affect Operation

While cookies are not evident in a form, they can often play an important role, since they may
contain session variables or other important data that isn't readily visible but is required to
process a form. You'll learn more about webbots that use cookies in AUTHENTICATION and
ADVANCED COOKIE MANAGEMENT.

file:///D|/!!/final/Iunpredictable_forms.html [29.03.2008 23:22:44]

Ianalyzing_a_form.html

Analyzing a Form

Since it is so hard to accurately analyze an HTML form by hand, and since the importance of
submitting a form correctly is critical, you may prefer to use a tool to analyze the format of
forms. This book's website has a form handler that provides this service. The form analyzer
works by substituting the form's original form handler with the URL of the form analyzer.
When the analyzer receives form data, it creates a web page that describes the method, data
variables, and cookies sent by the form exactly as they are seen by the original form handler,
even if the web page uses JavaScript.

To use the emulator, you must first create a copy of the web page that contains the form you
want to analyze, and place that copy on your hard drive. Then you must replace the form
handler on the web page with a form handler that will analyze the form structure. For
example, if the form you want to analyze has a <form> tag like the one in Listing 5-7, you
must substitute the original form handler with the address of my form analyzer, as shown in
Listing 5-8.

<form
 method="POST"
 action="https://panel.schrenk.com/keywords/search/"
>

Listing 5-7: Original form handler

<form
 method="POST"
 action="http://www.schrenk.com/nostarch/webbots/form_analyzer.php"
>

Listing 5-8: Substituting the original form handler with a handler that analyzes the form

To analyze the form, save your changes to your hard drive and load the modified web page
into a browser. Once you fill out the form (by hand) and submit it, the form analyzer will
provide an analysis similar to the one in Using a form analyzer.

This simple diagnosis isn't perfect—use it at your own risk. However, it does allow a webbot
developer to verify the form method, agent name, and GET and POST variables as they are
presented to the actual form handler. For example, in this particular exercise, it is evident
that the form handler expects a POST method with the variables sessionid, email, message,
status, gender, and vol.

Forms with a session ID point out the importance of downloading and analyzing the form
before emulating it. In this typical case, the session ID is assigned by the server and cannot
be predicted. The webbot can accurately use session IDs only by first downloading and
parsing the web page containing the form.

Using a form analyzer

file:///D|/!!/final/Ianalyzing_a_form.html (1 von 4) [29.03.2008 23:22:45]

Ianalyzing_a_form.html

If you were to write a script that emulates the form submitted and analyzed in Using a form
analyzer, it would look something like Listing 5-9.

include("LIB_http.php");

Initiate addresses
$action="http://www.schrenk.com/nostarch/webbots/form_analyzer.php";
$ref = "" ;

Set submission method
$method="POST";

Set form data and values
$data_array['sessionid'] = "sdfg73453845";
$data_array['email'] = "sales@schrenk.com";
$data_array['message'] = "This is a test message";
$data_array['status'] = "in school";
$data_array['gender'] = "M";
$data_array['vol'] = "on";

$response = http($target=$action, $ref, $method, $data_array, EXCL_HEAD);

Listing 5-9: Using LIB_http to emulate the form analysis in Using a form analyzer

After you write a form-emulation script, it's a good idea to use the analyzer to verify that the
form method and variables match the original form you are attempting to emulate. If you're
feeling ambitious, you could improve on this simple form analyzer by designing one that
accepts both the submitted and emulated forms and compares them for you.

file:///D|/!!/final/Ianalyzing_a_form.html (2 von 4) [29.03.2008 23:22:45]

Ianalyzing_a_form.html

The script in Listing 5-10 is similar to the one running at http://www .schrenk.com/nostarch/
webbots/form_analyzer.php. This script is for reference only. You can download the latest
copy from this book's website. Note that the PHP sections of this script appear in bold.

Code View:

<?
setcookie("SET BY THIS PAGE", "This is a diagnostic cookie.");
?>
<head>
 <title>HTTP Request Diagnostic Page</title>
 <style type="text/css">
 p { color: black; font-weight: bold; font-size: 110%; font-family: arial}
 .title { color: black; font-weight: bold; font-size: 110%; font-family:
arial}
 .text {font-weight: normal; font-size: 90%;}
 TD { color: black; font-size: 100%; font-family: courier; vertical-align:
top;}
 .column_title { color: black; font-size: 100%; background-color: eeeeee;
 font-weight: bold; font-family: arial}
 </style>
</head>
<p class="title">Webbot Diagnostic Page</p>
<p class="text">This web page is a tool to diagnose webbot functionality by
examining what the webbot sends to webservers.
<table border="1" cellspacing="0" cellpadding="3" width="800">
 <tr class="column_title">
 <th width="25%">Variable</th>
 <th width="75%">Value sent to server</th>
 </tr>
 <tr>
 <td>HTTP Request Method</td><td><?echo $_SERVER["REQUEST_METHOD"];?></td>
 </tr>
 <tr>
 <td>Your IP Address</td><td><?echo $_SERVER["REMOTE_ADDR"];?></td>
 </tr>
 <tr>
 <td>Server Port</td><td><?echo $_SERVER["SERVER_PORT"];?></td>
 </tr>
 <tr>
 <td>Referer</td>
 <td><?
 if(isset($_SERVER['HTTP_REFERER']))
 echo $_SERVER['HTTP_REFERER'];
 else
 echo "Null
";
 ?>
 </td>
 </tr>
 <tr>
 <td>Agent Name</td>
 <td><?
 if(isset($_SERVER['HTTP_USER_AGENT']))
 echo $_SERVER['HTTP_USER_AGENT'];
 else
 echo "Null
";
 ?>

file:///D|/!!/final/Ianalyzing_a_form.html (3 von 4) [29.03.2008 23:22:45]

http://www .schrenk.com/nostarch/webbots/form_analyzer.php
http://www .schrenk.com/nostarch/webbots/form_analyzer.php

Ianalyzing_a_form.html

 </td>
 </tr>

 <tr>
 <td>Get Variables</td>
 <td><?
 if(count($_GET)>0)
 var_dump($_GET);
 else
 echo "Null";
 ?>
 </td>
 </tr>
 <tr>
 <td>Post Variables</td>
 <td><?
 if(count($_POST)>0)
 var_dump($_POST);
 else
 echo "Null";
 ?>
 </td>
 </tr>
 <tr>
 <td>Cookies</td>
 <td><?
 if(count($_COOKIE)>0)
 var_dump($_COOKIE);
 else
 echo "Null";
 ?>
 </td>
 </tr>
</table>
<p class="text">This web page also sets a diagnostic cookie, which should be
visible the second time you access this page.

Listing 5-10: A simple form analyzer

file:///D|/!!/final/Ianalyzing_a_form.html (4 von 4) [29.03.2008 23:22:45]

Ifinal_thoughts_id4.html

Final Thoughts

Years of experience have taught me a few tricks for emulating forms. While it's not hard to
write a webbot that submits a form, it is often difficult to do it right the first time. Moreover,
as you read earlier, there are many reasons to submit a form correctly the first time. I highly
suggest reading Chapters 24, 25, and 28 before creating webbots that emulate forms. These
chapters provide additional insight into potential problems and perils that you're likely to
encounter when writing webbots that submit data to webservers.

Don't Blow Your Cover

If you're using a webbot to create a competitive advantage for a client, you don't want that
fact to be widely known—especially to the people that run the targeted site.

There are two ways a webbot can blow its cover while submitting a form:

● It emulates the form but not the browser.

● It generates an error either because it poorly analyzed the form or poorly executed the
emulation. Either error may create a condition that isn't possible when the form is
submitted by a browser, creating a questionable entry in a server activity log.

Note: This topic is covered in more detail in DESIGNING STEALTHY WEBBOTS AND SPIDERS.

Correctly Emulate Browsers

Emulating a browser is easy, but you should verify that you're doing it correctly. Your webbot
can look like any browser you desire if you properly declare the name of your web agent. If
you're using the LIB_http library, the constant WEBBOT_NAME defines how your webbot
identifies itself, and furthermore, how servers log your web agent's name in their log files. In
some cases, webservers verify that you are using a particular web browser (most commonly
Internet Explorer) before allowing you to submit a form.

If you plan to emulate a browser as well as the form, you should verify that the name of your
webbot is set to something that looks like a browser (as shown in Listing 5-11). Obviously, if
you don't change the default value for your webbot's name in the LIB_http library, you'll tell
everyone who looks at the server logs that you're using a test webbot.

Define how your webbot will appear in server logs
define("WEBBOT_NAME", "Internet Explorer");

Listing 5-11: Setting the name of your webbot to Internet Explorer in LIB_http

file:///D|/!!/final/Ifinal_thoughts_id4.html (1 von 2) [29.03.2008 23:22:46]

Ifinal_thoughts_id4.html

Strange user agent names will often be noticed by webmasters, since they routinely analyze
logs to see which browsers people use to access their sites to ensure that they don't run into
browser compatibility problems.

Avoid Form Errors

Even more serious than using the wrong agent name is submitting a form that couldn't
possibly be sent from the form the webserver provides on its website. These mistakes are
logged in the server's error log and are subject to careful scrutiny. Situations that could cause
server errors include the following:

● Using the wrong form protocol

● Submitting the form to the wrong action (form handler)

● Submitting form variables in the wrong order

● Ignoring an expected variable that the form handler needs

● Adding an extra variable that the form handler doesn't expect

● Emulating a form that is no longer available on the website

Using the wrong method can have several undesirable outcomes. If your webbot sends too
much data with a GET method when the form specifies a POST method, you risk the danger of

losing some of your data. (Most webservers restrict the length of a GET method.[]) Another
danger of using the wrong form method is that many form handlers expect variables to be
members of either a $_GET or $_POST array, which is a keyed name/value array similar to the
$data_array used in LIB_http. If you're sending the form a POST variable called 'name', and
the server is expecting $_GET['name'], your webbot will generate an entry in the server's
error log because it didn't send the variable the server was looking for.

[] Servers routinely restrict the length of a GET request to help protect the server from extremely long
requests, which are commonly used by hackers attempting to compromise servers with buffer overflow
exploits.

Also, remember that protocols aren't limited to the form method. If the form handler expects
an SSL-encrypted https protocol, and you deliver the emulated form to an unencrypted http
address, the form handler won't understand you because you'll be sending data to the wrong
server port. In addition, you're potentially sending sensitive data over an unencrypted
connection.

The final thing to verify is that you are sending your emulated form to a web page that exists
on the target server. Sometimes mistakes like this are the result of sloppy programming, but
this can also occur when a webmaster updates the site (and form handler). For this reason, a
proactive webbot designer verifies that the form handler hasn't changed since the webbot was
written.

file:///D|/!!/final/Ifinal_thoughts_id4.html (2 von 2) [29.03.2008 23:22:46]

Imanaging_large_amounts_of_data.html

MANAGING LARGE AMOUNTS OF DATA

You will soon find that your webbots are capable of collecting massive amounts of data. The
amount of data a simple automated webbot or spider can collect, even if it runs only once a
day for several months, is colossal. Since none of us have unlimited storage, managing the
quality and volume of the data our programs collect and store becomes very important. In
this chapter, I will describe methods to organize the data that your webbots collect and then
investigate ways to reduce the size of what you save.

Organizing Data

Organizing the resources that your webbots download requires planning. Whether you employ
a well-defined file structure or a relational database, the result should meet the needs of the
particular problem your application attempts to solve. For example, if the data is primarily
text, is accessed by many people, or is in need of sort or search capability, then you may
prefer to store information in a relational database, which addresses these needs. If, on the
other hand, you are storing many images, PDFs, or Word documents, you may favor storing
files in a structured filesystem. You may even create a hybrid system where a database
references media files stored in structured directories.

Naming Conventions

While there is no "correct" way to organize data, there are many bad ways to store the data
webbots generate. Most mistakes arise from assigning non-descriptive or confusing names to
the data your webbots collect. For this reason, your designs must incorporate naming
conventions that uniquely identify files, directories, and database properties. Define names
for things early, during your planning stages, as opposed to naming things as you go along.
Always name in a way that allows your data structure to grow. For example, a real estate
webbot that refers to properties as houses may be difficult to maintain if your application later
expands to include raw land, offices, or businesses. Updating names for your data can
become tedious, since your code and documentation will reference those names many times.

Your naming convention can enforce any rules you like, but you should consider the following
guidelines:

● You need to enforce any naming standards with an iron fist, or they will cease to be
standards.

● It's often better to assign names based on the type of thing an object is, rather than
what is actually is. For example, in the previous real estate example, it may have been
better to name the database table that describes houses properties, so when the scope
of the project expands,[] it can handle a variety of real estate. With this method, if
your project grows, you could add another column to the table to describe the type of
property. It is always easier to expand data tables than to rename columns.

[] Projects always expand in scope.

● Consider who (or what) will be using your data organization. For example, a directory
called Saturday_January_23 might be easy for a person to read, but a directory called
0123 might be a better choice if a computer accesses its contents. Sequential numbers

file:///D|/!!/final/Imanaging_large_amounts_of_data.html (1 von 9) [29.03.2008 23:22:48]

Imanaging_large_amounts_of_data.html

are easier for computer programs to interpret.

● Define the format of your names. People will often use compound words and separate
the word with underscores for readability, as in name_first. Other times, people
separate compound words with case, as in nameFirst; this is commonly referred to as
CamelCase. These format definitions should include things like case, language, and
parts of speech. For example, if you decide to separate terms with underscores, you
shouldn't use CamelCase to name other terms later. It's very common for developers
to use different standards to help identify differences between functions, data
variables, and objects.

● If you give members of a certain group labels that are all the same part of speech,
don't occasionally throw in a label with another grammatical form. For example, if you
have a group of directories named with nouns, don't name another directory in the
same group with a verb—and if you do, chances are it probably doesn't belong in that
group of things in the first place.

● If you are naming files in a directory, you may want to give the files names that will
later facilitate easy grouping or sorting. For example, if you are using a filename that
defines a date, filenames with the format year_month_day will make more sense when
sorted than filenames with the format month_day_year. This is because year, month,
and day is a sequential progression from largest to smallest and will accurately reflect
order when sorted.

Storing Data in Structured Files

To successfully store files in a structured series of directories, you need to find out what the
files have in common. In most cases, the problem you're trying to solve and the means for
retrieving the data will dictate the common factors among your files. Figuratively, you need to
look for the lowest common denominator for all your files. Example of a structured filesystem
primarily based on dates shows a file structure for storing data retrieved by a webbot that
runs once a day. Its common theme is time.

Example of a structured filesystem primarily based on dates

file:///D|/!!/final/Imanaging_large_amounts_of_data.html (2 von 9) [29.03.2008 23:22:48]

Imanaging_large_amounts_of_data.html

With the structure defined in Example of a structured filesystem primarily based on dates,
you could easily locate thumbnail images created by the webbot on February 3, 2006 because
the folders comply with the following specification:

drive:\project\year\month\day\category\subcategory\files

Therefore, the path would look like this:

c:\Spider_files\2006\02\03\Graphics\Thumbnails\

People may easily decipher this structure, and so will programs, which need to determine the
correct file path programmatically. A geographically themed example of a structured
filesystem shows another file structure, primarily based on geography.

A geographically themed example of a structured filesystem

file:///D|/!!/final/Imanaging_large_amounts_of_data.html (3 von 9) [29.03.2008 23:22:48]

Imanaging_large_amounts_of_data.html

Ensure that all files have a unique path and that either a person or a computer can easily
make sense of these paths.

File structures, like the ones shown in the previous figures, are commonly created by
webbots. You'll see how to write webbots that create file structures in IMAGE-CAPTURING
WEBBOTS.

Storing Text in a Database

While many applications call for file structures similar to the ones shown in Example of a
structured filesystem primarily based on dates or A geographically themed example of a
structured filesystem, the majority of projects you're likely to encounter will require that data
is stored in a database. A database has many advantages over a file structure. The primary
advantage is the ability to query or make requests from the database with a query language
called Structured Query Language or SQL (pronounced SEE-quill). SQL allows programs to
sort, extract, update, combine, insert, and manipulate data in nearly any imaginable way.

It is not within the scope of this book to teach SQL, but this book does include the LIB_mysql

library, which simplifies using SQL with the open source database called MySQL[] (pronounced
my-esk-kew-el).

[] More information about MySQL is available at http://www.mysql.com and http://www.php.net.

LIB_mysql

LIB_mysql consists of a few server configurations and three functions, which should handle
most of your database needs. These functions act as abstractions or simplifications of the
actual interface to the program. Abstractions are important because they allow access to a
wide variety of database functions with a common interface and error-reporting method. They
also allow you to use a database other than MySQL by creating a similar library for a new
database. For example, if you choose to use another database someday, you could write
abstractions with the same function names used in LIB_mysql. In this way, you can make the
code in this book work with Oracle, SQL Server, or any other database without modifying any
scripts.

file:///D|/!!/final/Imanaging_large_amounts_of_data.html (4 von 9) [29.03.2008 23:22:48]

http://www.mysql.com/
http://www.php.net/

Imanaging_large_amounts_of_data.html

The source code for LIB_mysql is available from this book's website. There are other fine
database abstractions available from projects like PEAR and PECL; however, the examples in
this book use LIB_mysql.

Listing 6-1 shows the configuration area of LIB_mysql. You should configure this area for your
specific MySQL installation before you use it.

Code View:

MySQL Constants (scope = global)

define("MYSQL_ADDRESS", "localhost"); // Define IP address of your MySQL Server
define("MYSQL_USERNAME", ""); // Define your MySQL username
define("MYSQL_PASSWORD", ""); // Define your MySQL password
define("DATABASE", ""); // Define your default database

Listing 6-1: LIB_mysql server configurations

As shown in Listing 6-1, the configuration section provides an opportunity to define where
your MySQL server resides and the credentials needed to access it. The configuration section
also defines a constant, "DATABASE", which you may use to define the default database for
your project.

There are three functions in LIB_mysql that facilitate the following:

● Inserting data into the database

● Updating data already in the database

● Executing a raw SQL query

Each function uses a similar interface, and each provides error reporting if you request an
erroneous query.

The insert() Function

The insert() function in LIB_mysql simplifies the process of inserting a new entry into a
database by passing the new data in a keyed array. For example, if you have a table like the
one in Example table people before the insert(), you can insert another row of data with the
script in Listing 6-2, making it look like the table in Example table people after executing the
insert() in Listing 6-2.

Example table people before the insert()

file:///D|/!!/final/Imanaging_large_amounts_of_data.html (5 von 9) [29.03.2008 23:22:48]

Imanaging_large_amounts_of_data.html

$data_array['NAME'] = "Jill Monroe";
$data_array['CITY'] = "Irvine";
$data_array['STATE'] = "CA";
$data_array['ZIP'] = "55410";
insert(DATABASE, $table="people", $data_array);

Listing 6-2: Example of using insert()

Example table people after executing the insert() in Listing 6-2

The update() Function

Alternately, you can use update() to update the record you just inserted with the script in
Listing 6-3, which changes the ZIP code for the record.

$data_array['NAME'] = "Jill Monroe";
$data_array['CITY'] = "Irvine";
$data_array['STATE'] = "CA";
$data_array['ZIP'] = "92604";
update(DATABASE, $table="people", $data_array, $key_column="ID", $id="3");

Listing 6-3: Example script for updating data in a table

Running the script in Listing 6-3 changes values in the table, as shown in Example table
people after updating ZIP codes with the script in Listing 6-3.

Example table people after updating ZIP codes with the script in Listing 6-3

The exe_sql() Function

For database functions other than inserting or updating records, LIB_mysql provides the
exe_sql() function, which executes a SQL query against the database. This function is
particularly useful for extracting data with complex queries or for deleting records, altering

file:///D|/!!/final/Imanaging_large_amounts_of_data.html (6 von 9) [29.03.2008 23:22:48]

Imanaging_large_amounts_of_data.html

tables, or anything else you can do with SQL. Example Usage Scenarios for the
LIB_mysql_exe_sql() Function shows various uses for this function.

Table Example Usage Scenarios for the LIB_mysql_exe_sql() Function

Instruction Result
$array = exe_sql(DATABASE, "select * $array[1]['ID']="1";

from people"); $array[1]['NAME']="Kelly Garrett";

 $array[1]['CITY']="Culver City";

 $array[1]['STATE']="CA";

 $array[1]['ZIP']="90232";

 $array[2]['ID']="2";

 $array[2]['NAME']="Sabrina Duncan";

 $array[2]['CITY']="Anaheim";

 $array[2]['STATE']="CA";

 $array[2]['ZIP']="92812";

 $array[3]['ID']="3";

 $array[3]['NAME']="Jill Monroe";

 $array[3]['CITY']="Irvine";

 $array[3]['STATE']="CA";

 $array[3]['ZIP']="92604";

$array = exe_sql(DATABASE, "select * from
people where ID='2'");

$array['ID']="2";

 $array['NAME']="Sabrina Duncan";

 $array['CITY']="Anaheim";

 $array['STATE']="CA";

 $array['ZIP']="92604";

List($name)= exe_sql(DATABASE, "select
NAME from people where ID='2'");

$name = "Sabrina Duncan";

exe_sql(DATABASE, "delete from people
where ID='2'");

Deletes row 3 from table

Please note that if exe_sql() is fetching data from the database, it will always return an
array of data. If the query returns multiple rows of data, you'll get a multidimensional array.
Otherwise, a single-dimensional array is returned.

Storing Images in a Database

It is usually better to store images in a file structure and then refer to the paths of the images
in the database, but occasionally you may find the need to store images as blobs, or large
unstructured pieces of data, directly in a database. These occasions may arise when you don't
have the requisite system permissions to create a file. For example, many web administrators
do not allow their webservers to create files, as a security measure. To store an image in a
database, set the typecasting or variable type for the image to blob or large blob and insert
the data, as shown in Listing 6-4.

$data_array['IMAGE_ID'] = 6;

file:///D|/!!/final/Imanaging_large_amounts_of_data.html (7 von 9) [29.03.2008 23:22:48]

Imanaging_large_amounts_of_data.html

$data_array['IMAGE'] = base64_encode(file_get_contents($file_path));
insert(DATABASE, $table, $data_array);

Listing 6-4: Storing an image directly in a database record

When you store a binary file, like an image, in a database, you should base64-encode the
data first. Since the database assumes text or numeric data, this precaution ensures that no
bit combinations will cause internal errors in the database. If you don't do this, you take the
risk that some odd bit combination in the image will be interpreted as an unintended database
command or special character.

Since images are—or should be—base64 encoded, you need to decode the images before you
can reuse them. The script in Listing 6-5 shows how to display an image stored in a database
record.

<!— Display an image stored in a database where the image ID is 6 —>

Listing 6-5: HTML that displays an image stored in a database

Listing 6-6 shows the code to extract, decode, and present the image.

<?
Get needed database library
include("LIB_mysql.php");

Convert the variable on the URL to a new variable
$image_id=$_GET['img_id'];

Get the base64-encoded image from the database
$sql = "select IMAGE from table where IMAGE_ID='".$image_id."'";
list($img) = exe_sql (DATABASE, $sql);

Decode the image and send it as a file to the requester
header("Content-type: image/jpeg");
echo base64_decode($img);
exit;
?>

Listing 6-6: Script to query, decode, and create an image from an image record in a database

When an image tag is used in this fashion, the image src attribute is actually a function that
pulls the image from the database before is sends it to the waiting web agent. This function
knows which image to send because it is referenced in the query of the src attribute. In this
case, that record is img_id, which corresponds with the table column IMAGE_ID. The program
show_image.php actually creates a new image file each time it is executed.

Database or File?

Your decision to store information in a database or as files in a directory structure is largely
dependent on your application, but because of the advantages that SQL brings to data

file:///D|/!!/final/Imanaging_large_amounts_of_data.html (8 von 9) [29.03.2008 23:22:48]

Imanaging_large_amounts_of_data.html

storage, I often use databases. The one common exception to this rule is images files, which
(as previously mentioned) are usually more efficiently stored as files in a directory.
Nevertheless, when files are stored in local directories, it is often convenient to identify the
physical address of the file you saved in a database.

file:///D|/!!/final/Imanaging_large_amounts_of_data.html (9 von 9) [29.03.2008 23:22:48]

Iorganizing_data.html

MANAGING LARGE AMOUNTS OF DATA

You will soon find that your webbots are capable of collecting massive amounts of data. The
amount of data a simple automated webbot or spider can collect, even if it runs only once a
day for several months, is colossal. Since none of us have unlimited storage, managing the
quality and volume of the data our programs collect and store becomes very important. In
this chapter, I will describe methods to organize the data that your webbots collect and then
investigate ways to reduce the size of what you save.

Organizing Data

Organizing the resources that your webbots download requires planning. Whether you employ
a well-defined file structure or a relational database, the result should meet the needs of the
particular problem your application attempts to solve. For example, if the data is primarily
text, is accessed by many people, or is in need of sort or search capability, then you may
prefer to store information in a relational database, which addresses these needs. If, on the
other hand, you are storing many images, PDFs, or Word documents, you may favor storing
files in a structured filesystem. You may even create a hybrid system where a database
references media files stored in structured directories.

Naming Conventions

While there is no "correct" way to organize data, there are many bad ways to store the data
webbots generate. Most mistakes arise from assigning non-descriptive or confusing names to
the data your webbots collect. For this reason, your designs must incorporate naming
conventions that uniquely identify files, directories, and database properties. Define names
for things early, during your planning stages, as opposed to naming things as you go along.
Always name in a way that allows your data structure to grow. For example, a real estate
webbot that refers to properties as houses may be difficult to maintain if your application later
expands to include raw land, offices, or businesses. Updating names for your data can
become tedious, since your code and documentation will reference those names many times.

Your naming convention can enforce any rules you like, but you should consider the following
guidelines:

● You need to enforce any naming standards with an iron fist, or they will cease to be
standards.

● It's often better to assign names based on the type of thing an object is, rather than
what is actually is. For example, in the previous real estate example, it may have been
better to name the database table that describes houses properties, so when the scope
of the project expands,[] it can handle a variety of real estate. With this method, if
your project grows, you could add another column to the table to describe the type of
property. It is always easier to expand data tables than to rename columns.

[] Projects always expand in scope.

● Consider who (or what) will be using your data organization. For example, a directory
called Saturday_January_23 might be easy for a person to read, but a directory called
0123 might be a better choice if a computer accesses its contents. Sequential numbers

file:///D|/!!/final/Iorganizing_data.html (1 von 9) [29.03.2008 23:22:50]

Iorganizing_data.html

are easier for computer programs to interpret.

● Define the format of your names. People will often use compound words and separate
the word with underscores for readability, as in name_first. Other times, people
separate compound words with case, as in nameFirst; this is commonly referred to as
CamelCase. These format definitions should include things like case, language, and
parts of speech. For example, if you decide to separate terms with underscores, you
shouldn't use CamelCase to name other terms later. It's very common for developers
to use different standards to help identify differences between functions, data
variables, and objects.

● If you give members of a certain group labels that are all the same part of speech,
don't occasionally throw in a label with another grammatical form. For example, if you
have a group of directories named with nouns, don't name another directory in the
same group with a verb—and if you do, chances are it probably doesn't belong in that
group of things in the first place.

● If you are naming files in a directory, you may want to give the files names that will
later facilitate easy grouping or sorting. For example, if you are using a filename that
defines a date, filenames with the format year_month_day will make more sense when
sorted than filenames with the format month_day_year. This is because year, month,
and day is a sequential progression from largest to smallest and will accurately reflect
order when sorted.

Storing Data in Structured Files

To successfully store files in a structured series of directories, you need to find out what the
files have in common. In most cases, the problem you're trying to solve and the means for
retrieving the data will dictate the common factors among your files. Figuratively, you need to
look for the lowest common denominator for all your files. Example of a structured filesystem
primarily based on dates shows a file structure for storing data retrieved by a webbot that
runs once a day. Its common theme is time.

Example of a structured filesystem primarily based on dates

file:///D|/!!/final/Iorganizing_data.html (2 von 9) [29.03.2008 23:22:50]

Iorganizing_data.html

With the structure defined in Example of a structured filesystem primarily based on dates,
you could easily locate thumbnail images created by the webbot on February 3, 2006 because
the folders comply with the following specification:

drive:\project\year\month\day\category\subcategory\files

Therefore, the path would look like this:

c:\Spider_files\2006\02\03\Graphics\Thumbnails\

People may easily decipher this structure, and so will programs, which need to determine the
correct file path programmatically. A geographically themed example of a structured
filesystem shows another file structure, primarily based on geography.

A geographically themed example of a structured filesystem

file:///D|/!!/final/Iorganizing_data.html (3 von 9) [29.03.2008 23:22:50]

Iorganizing_data.html

Ensure that all files have a unique path and that either a person or a computer can easily
make sense of these paths.

File structures, like the ones shown in the previous figures, are commonly created by
webbots. You'll see how to write webbots that create file structures in IMAGE-CAPTURING
WEBBOTS.

Storing Text in a Database

While many applications call for file structures similar to the ones shown in Example of a
structured filesystem primarily based on dates or A geographically themed example of a
structured filesystem, the majority of projects you're likely to encounter will require that data
is stored in a database. A database has many advantages over a file structure. The primary
advantage is the ability to query or make requests from the database with a query language
called Structured Query Language or SQL (pronounced SEE-quill). SQL allows programs to
sort, extract, update, combine, insert, and manipulate data in nearly any imaginable way.

It is not within the scope of this book to teach SQL, but this book does include the LIB_mysql

library, which simplifies using SQL with the open source database called MySQL[] (pronounced
my-esk-kew-el).

[] More information about MySQL is available at http://www.mysql.com and http://www.php.net.

LIB_mysql

LIB_mysql consists of a few server configurations and three functions, which should handle
most of your database needs. These functions act as abstractions or simplifications of the
actual interface to the program. Abstractions are important because they allow access to a
wide variety of database functions with a common interface and error-reporting method. They
also allow you to use a database other than MySQL by creating a similar library for a new
database. For example, if you choose to use another database someday, you could write
abstractions with the same function names used in LIB_mysql. In this way, you can make the
code in this book work with Oracle, SQL Server, or any other database without modifying any
scripts.

file:///D|/!!/final/Iorganizing_data.html (4 von 9) [29.03.2008 23:22:50]

http://www.mysql.com/
http://www.php.net/

Iorganizing_data.html

The source code for LIB_mysql is available from this book's website. There are other fine
database abstractions available from projects like PEAR and PECL; however, the examples in
this book use LIB_mysql.

Listing 6-1 shows the configuration area of LIB_mysql. You should configure this area for your
specific MySQL installation before you use it.

Code View:

MySQL Constants (scope = global)

define("MYSQL_ADDRESS", "localhost"); // Define IP address of your MySQL Server
define("MYSQL_USERNAME", ""); // Define your MySQL username
define("MYSQL_PASSWORD", ""); // Define your MySQL password
define("DATABASE", ""); // Define your default database

Listing 6-1: LIB_mysql server configurations

As shown in Listing 6-1, the configuration section provides an opportunity to define where
your MySQL server resides and the credentials needed to access it. The configuration section
also defines a constant, "DATABASE", which you may use to define the default database for
your project.

There are three functions in LIB_mysql that facilitate the following:

● Inserting data into the database

● Updating data already in the database

● Executing a raw SQL query

Each function uses a similar interface, and each provides error reporting if you request an
erroneous query.

The insert() Function

The insert() function in LIB_mysql simplifies the process of inserting a new entry into a
database by passing the new data in a keyed array. For example, if you have a table like the
one in Example table people before the insert(), you can insert another row of data with the
script in Listing 6-2, making it look like the table in Example table people after executing the
insert() in Listing 6-2.

Example table people before the insert()

file:///D|/!!/final/Iorganizing_data.html (5 von 9) [29.03.2008 23:22:50]

Iorganizing_data.html

$data_array['NAME'] = "Jill Monroe";
$data_array['CITY'] = "Irvine";
$data_array['STATE'] = "CA";
$data_array['ZIP'] = "55410";
insert(DATABASE, $table="people", $data_array);

Listing 6-2: Example of using insert()

Example table people after executing the insert() in Listing 6-2

The update() Function

Alternately, you can use update() to update the record you just inserted with the script in
Listing 6-3, which changes the ZIP code for the record.

$data_array['NAME'] = "Jill Monroe";
$data_array['CITY'] = "Irvine";
$data_array['STATE'] = "CA";
$data_array['ZIP'] = "92604";
update(DATABASE, $table="people", $data_array, $key_column="ID", $id="3");

Listing 6-3: Example script for updating data in a table

Running the script in Listing 6-3 changes values in the table, as shown in Example table
people after updating ZIP codes with the script in Listing 6-3.

Example table people after updating ZIP codes with the script in Listing 6-3

The exe_sql() Function

For database functions other than inserting or updating records, LIB_mysql provides the
exe_sql() function, which executes a SQL query against the database. This function is
particularly useful for extracting data with complex queries or for deleting records, altering

file:///D|/!!/final/Iorganizing_data.html (6 von 9) [29.03.2008 23:22:50]

Iorganizing_data.html

tables, or anything else you can do with SQL. Example Usage Scenarios for the
LIB_mysql_exe_sql() Function shows various uses for this function.

Table Example Usage Scenarios for the LIB_mysql_exe_sql() Function

Instruction Result
$array = exe_sql(DATABASE, "select * $array[1]['ID']="1";

from people"); $array[1]['NAME']="Kelly Garrett";

 $array[1]['CITY']="Culver City";

 $array[1]['STATE']="CA";

 $array[1]['ZIP']="90232";

 $array[2]['ID']="2";

 $array[2]['NAME']="Sabrina Duncan";

 $array[2]['CITY']="Anaheim";

 $array[2]['STATE']="CA";

 $array[2]['ZIP']="92812";

 $array[3]['ID']="3";

 $array[3]['NAME']="Jill Monroe";

 $array[3]['CITY']="Irvine";

 $array[3]['STATE']="CA";

 $array[3]['ZIP']="92604";

$array = exe_sql(DATABASE, "select * from
people where ID='2'");

$array['ID']="2";

 $array['NAME']="Sabrina Duncan";

 $array['CITY']="Anaheim";

 $array['STATE']="CA";

 $array['ZIP']="92604";

List($name)= exe_sql(DATABASE, "select
NAME from people where ID='2'");

$name = "Sabrina Duncan";

exe_sql(DATABASE, "delete from people
where ID='2'");

Deletes row 3 from table

Please note that if exe_sql() is fetching data from the database, it will always return an
array of data. If the query returns multiple rows of data, you'll get a multidimensional array.
Otherwise, a single-dimensional array is returned.

Storing Images in a Database

It is usually better to store images in a file structure and then refer to the paths of the images
in the database, but occasionally you may find the need to store images as blobs, or large
unstructured pieces of data, directly in a database. These occasions may arise when you don't
have the requisite system permissions to create a file. For example, many web administrators
do not allow their webservers to create files, as a security measure. To store an image in a
database, set the typecasting or variable type for the image to blob or large blob and insert
the data, as shown in Listing 6-4.

$data_array['IMAGE_ID'] = 6;

file:///D|/!!/final/Iorganizing_data.html (7 von 9) [29.03.2008 23:22:50]

Iorganizing_data.html

$data_array['IMAGE'] = base64_encode(file_get_contents($file_path));
insert(DATABASE, $table, $data_array);

Listing 6-4: Storing an image directly in a database record

When you store a binary file, like an image, in a database, you should base64-encode the
data first. Since the database assumes text or numeric data, this precaution ensures that no
bit combinations will cause internal errors in the database. If you don't do this, you take the
risk that some odd bit combination in the image will be interpreted as an unintended database
command or special character.

Since images are—or should be—base64 encoded, you need to decode the images before you
can reuse them. The script in Listing 6-5 shows how to display an image stored in a database
record.

<!— Display an image stored in a database where the image ID is 6 —>

Listing 6-5: HTML that displays an image stored in a database

Listing 6-6 shows the code to extract, decode, and present the image.

<?
Get needed database library
include("LIB_mysql.php");

Convert the variable on the URL to a new variable
$image_id=$_GET['img_id'];

Get the base64-encoded image from the database
$sql = "select IMAGE from table where IMAGE_ID='".$image_id."'";
list($img) = exe_sql (DATABASE, $sql);

Decode the image and send it as a file to the requester
header("Content-type: image/jpeg");
echo base64_decode($img);
exit;
?>

Listing 6-6: Script to query, decode, and create an image from an image record in a database

When an image tag is used in this fashion, the image src attribute is actually a function that
pulls the image from the database before is sends it to the waiting web agent. This function
knows which image to send because it is referenced in the query of the src attribute. In this
case, that record is img_id, which corresponds with the table column IMAGE_ID. The program
show_image.php actually creates a new image file each time it is executed.

Database or File?

Your decision to store information in a database or as files in a directory structure is largely
dependent on your application, but because of the advantages that SQL brings to data

file:///D|/!!/final/Iorganizing_data.html (8 von 9) [29.03.2008 23:22:50]

Iorganizing_data.html

storage, I often use databases. The one common exception to this rule is images files, which
(as previously mentioned) are usually more efficiently stored as files in a directory.
Nevertheless, when files are stored in local directories, it is often convenient to identify the
physical address of the file you saved in a database.

file:///D|/!!/final/Iorganizing_data.html (9 von 9) [29.03.2008 23:22:50]

Imaking_data_smaller.html

Making Data Smaller

Now that you know how to store data, you'll want to efficiently store the data in ways that
reduce the amount of disk spaced required, while facilitating easy retrieval and manipulation of
that data. The following section explores methods for reducing the size of the data your
webbots collect in these ways:

● Storing references to data

● Compressing data

● Removing unneeded formatting

● Thumbnailing or creating smaller representations of larger graphic files

Storing References to Image Files

Since your webbot and the image files it discovers share the same network, it is possible to
store a network reference to the image instead of making a physical copy of it. For example,
instead of downloading and storing the image north_beach.jpg from www.schrenk.com, you
might store a reference to its URL, http://www.schrenk.com/north_beach.jpg, in a database.
Now, instead of retrieving the file from your data structure, you could retrieve the actual file
from its original location. While you can apply this technique to images, this technique is not
limited to image files but also applies to HTML, JavaScript, Style Sheets, or any other
networked file.

There are three main advantages to recording references to images instead of storing copies of
the images. The most obvious advantage is that the reference to an image will usually
consume much less space than a copy of the image file. Another advantage is that if the
original image on the website changes, you will still have access to the most current version of
that image—provided that the network address of the image hasn't also changed. A less
obvious advantage to storing the network address of an image is that you may shield yourself
from potential copyright issues when you make a copy of someone else's intellectual property.

The disadvantage of storing a reference to an image instead of the actual images is that there
is no guarantee that it still references an image that's available online. When the remote image
changes, your reference will be obsolete. Given the short-lived nature of online media, images
can change or disappear without warning.

Compressing Data

From a webbot's perspective, compression can happen either when a webserver delivers pages
or when your webbot compresses pages before it stores them for later use. Compression on
inbound files will save bandwidth; the second method can save space on your hard drives. If
you're ambitious, you can use both forms of compression.

Compressing Inbound Files

Many webservers automatically compress files before they serve pages to browsers. Managing
your incoming data is just as important as managing the data on your hard drive.

file:///D|/!!/final/Imaking_data_smaller.html (1 von 5) [29.03.2008 23:22:51]

http://www.schrenk.com/
http://www.schrenk.com/north_beach.jpg

Imaking_data_smaller.html

Servers configured to serve compressed web pages will look for signals from the web client
indicating that it can accept compressed pages. Like browsers, your webbots can also tell
servers that they can accept compressed data by including the lines shown in Listing 6-7 in
your PHP and cURL routines.

$header[] = "Accept-Encoding: compress, gzip";
curl_setopt($curl_session, CURLOPT_HTTPHEADER, $header);

Listing 6-7: Requesting compressed files from a webserver

Servers equipped to send compressed web pages won't send compressed files if they decide
that the web agent cannot decompress the pages. Servers default to uncompressed pages if
there's any doubt of the agent's ability to decompress compressed files. Over the years, I have
found that some servers look for specific agent names—in addition to header directions—
before deciding to compress outgoing data. For this reason, you won't always gain the
advantage of inbound compression if your webbot's agent name is something nonstandard like
Test Webbot. For that reason, when inbound file compression is important, it's best if your
webbot emulates a common browser.[]

[] For more information on agent name spoofing, please review DOWNLOADING WEB PAGES.

Since the webserver is the final arbiter of an agent's ability to handle compressed data—and
since it always defaults on the side of safety (no compressions)—you're never guaranteed to
receive a compressed file, even if one is requested. If you are requesting compression from a
server, it is incumbent on your webbot to detect whether or not a web page was compressed.
To detect compression, look at the returned header to see if the web page is compressed and,
if so, what form of compression was used (as shown in Listing 6-8).

Code View:

if (stristr($http_header, "zip")) // Assumes that header is in $http_header
 $compressed = TRUE;

Listing 6-8: Analyzing the HTTP header to detect inbound file compression

If the data was compressed by the server, you can decompress the files with the function
gzuncompress() in PHP, as shown in Listing 6-9.

$uncompressed_file = gzuncompress($compressed_file);

Listing 6-9: Decompressing a compressed file

Compressing Files on Your Hard Drive

PHP provides a variety of built-in functions for compressing data. Listing 6-10 demonstrates
these functions. This script downloads the default HTML file from http://www.schrenk.com,
compresses the file, and shows the difference between the compressed and uncompressed
files. The PHP sections of this script appear in bold.

file:///D|/!!/final/Imaking_data_smaller.html (2 von 5) [29.03.2008 23:22:51]

http://www.schrenk.com/

Imaking_data_smaller.html

Code View:

Demonstration of PHP file compression

Include cURL library
include("LIB_http.php");

Get web page
$target = "http://www.schrenk.com";
$ref = "";
$method = "GET";
$data_array = "";
$web_page = http_get($target, $ref, $method, $data_array, EXCL_HEAD);

Get sizes of compressed and uncompressed versions of web page
$uncompressed_size = strlen($web_page['FILE']);
$compressed_size = strlen(gzcompress($web_page['FILE'], $compression_value = 9));
$noformat_size = strlen(strip_tags($web_page['FILE']));

Report the sizes of compressed and uncompressed versions of web page
?>
<table border="1">
 <tr>
 <th colspan="3">Compression report for <? echo $target?></th>
 </tr>
 <tr>
 <th>Uncompressed</th>
 <th>Compressed</th>
 </tr>
 <tr>
 <td align="right"><?echo $uncompressed_size?> bytes</td>
 <td align="right"><?echo $compressed_size?> bytes</td>
 </tr>
</table>

Listing 6-10: Compressing a downloaded file

Running the script from Listing 6-10 in a browser provides the results shown in The script from
Listing 6-10, showing the value of compressing files.

Before you start compressing everything your webbot finds, you should be aware of the
disadvantages of file compression. In this example, compression resulted in files roughly 20
percent of the original size. While this is impressive, the biggest drawback to compression is
that you can't do much with a compressed file. You can't perform searches, sorts, or
comparisons on the contents of a compressed file. Nor can you modify the contents of a file
while it's compressed. Furthermore, while text files (like HTML files) compress effectively,
many media files like JPG, GIF, WMF, or MOV are already compressed and will not compress
much further. If your webbot application needs to analyze or manipulate downloaded files, file
compression may not be for you.

The script from Listing 6-10, showing the value of compressing files

file:///D|/!!/final/Imaking_data_smaller.html (3 von 5) [29.03.2008 23:22:51]

Imaking_data_smaller.html

Removing Formatting

Removing unneeded HTML formatting instructions is much more useful for reducing the size of
a downloaded file than compressing it, since it still facilitates access to the useful information
in the file. Formatting instructions like <div class="font_a"> are of little use to a webbot
because they only control format and not content, and because they can be removed without
harming your data. Removing formatting reduces the size of downloaded HTML files while still
leaving the option of manipulating the data later. Fortunately, PHP provides strip_tags_(), a
built-in function that automatically strips HTML tags from a document. For example, if I add
the lines shown in Listing 6-11 to the previous script, we can see the affect of stripping the
HTML formatting.

$noformat = strip_tags($web_page['FILE']); // Remove HTML tags
$noformat_size = strlen($noformat); // Get size of new string

Listing 6-11: Removing HTML formatting using the strip_tags() function

If you run the program in Listing 6-10 again and modify the output to also show the size of the
unformatted file, you will see that the unformatted web page is nearly as compact as the
compressed version. The results are shown in Comparison of uncompressed, compressed, and
unformatted file sizes.

Comparison of uncompressed, compressed, and unformatted file sizes

Unlike the compressed data, the unformatted data can still be sorted, modified, and searched.
You can make the file even smaller by removing excessive spaces, line feeds, and other white
space with a simple PHP function called trim(), without reducing your ability to manipulate
the data later. As an added benefit, unformatted pages may be easier to manipulate, since
parsing routines won't confuse HTML for the content you're acting on. Remember that
removing the HTML tags removes all links, JavaScript, image references, and CSS information.
If any of that is important, you should extract it before removing a page's formatting.

file:///D|/!!/final/Imaking_data_smaller.html (4 von 5) [29.03.2008 23:22:51]

Imaking_data_smaller.html

file:///D|/!!/final/Imaking_data_smaller.html (5 von 5) [29.03.2008 23:22:51]

Ithumbnailing_images.html

Thumbnailing Images

The most effective method of decreasing the size of an image is to create smaller versions, or
thumbnails, of the original. You may easily create thumbnails with the LIB_thumbnail library,
which you can download from this book's website. To use this library, you will have to verify
that your configuration uses the gd (revision 2.0 or higher) graphics module.[] The script in
Listing 6-12 demonstrates how to use LIB_thumbnail to create a miniature version of a
larger image. The PHP sections of this script appear in bold.

[] If the gd module is not installed in your configuration, please reference http://www.php.net/manual/en/
ref.image.php for further instructions.

Code View:

Demonstration of LIB_thumbnail.php

Include libraries
include("LIB_http.php");
include("LIB_thumbnail.php");

Get image from the Internet
$target = "http://www.schrenk.com/north_beach.jpg";
$ref = "";
$method = "GET";
$data_array = "";
$image = http_get($target, $ref, $method, $data_array, EXCL_HEAD);

Store captured image file to local hard drive
$handle = fopen("test.jpg", "w");
fputs($handle, $image['FILE']);
fclose($handle);

Create thumbnail image from image that was just stored locally
$org_file = "test.jpg";
$new_file_name = "thumbnail.jpg";

Set the maximum width and height of the thumbnailed image
$max_width = 90;
$max_height= 90;

Create the thumbnailed image
create_thumbnail($org_file, $new_file_name, $max_width, $max_height);
?>
Full-size image

<p>
Thumbnail image

file:///D|/!!/final/Ithumbnailing_images.html (1 von 2) [29.03.2008 23:22:53]

http://www.php.net/manual/en/ref.image.php
http://www.php.net/manual/en/ref.image.php

Ithumbnailing_images.html

Listing 6-12: Demonstration of how LIB_thumbnail may create a thumbnailed image

The script in Listing 6-12 fetches an image from the Internet, writes a copy of the original to
a local file, defines the maximum dimensions of the thumbnail, creates the thumbnail, and
finally displays both the original image and the thumbnail image.

The product of running the script in Listing 6-12 is shown in Output of Listing 6-12, making
thumbnails with LIB_thumbnail.

The thumbnailed image shown in Output of Listing 6-12, making thumbnails with
LIB_thumbnail consumes roughly 30 percent as much space as the original file. If the original
file was larger or the specification for the thumbnailed image was smaller, the savings would
be even greater.

Output of Listing 6-12, making thumbnails with LIB_thumbnail

file:///D|/!!/final/Ithumbnailing_images.html (2 von 2) [29.03.2008 23:22:53]

Ifinal_thoughts_id5.html

Final Thoughts

When storing information, you need to consider what is being stored and how that
information will be used later. Furthermore, if the data isn't going to be used later, you need
to ask yourself why you need to save it.

Sometimes it is easier to parse text before the HTML tags are removed. This is especially true
with regard to data in tables, where rows and columns are parsed.

While unformatted pages are stripped of presentation, colors, and images, the remaining text
is enough to represent the original file. Without the HTML, it is actually easier to characterize,
manipulate, or search for the presence of keywords.

Before you continue, this is a good time to download LIB_mysql, LIB_http, and
LIB_thumbnail from this book's website. You will need all of these libraries to program later
examples in this book.

file:///D|/!!/final/Ifinal_thoughts_id5.html [29.03.2008 23:22:53]

Iprojects.html

PROJECTS

This section expands on the concepts you learned in the previous section with
simple yet demonstrative projects. Any of these projects, with further
development, could be transformed from a simple webbot concept into a
potentially marketable product.

PRICE-MONITORING WEBBOTS

The first project describes webbots that collect and analyze online
prices from a mock store that exists on this book's website. The
prices change periodically, creating an opportunity for your webbots
to analyze and make purchase decisions based on the price of items.

Since this example store is solely for your experimentation, you'll gain
confidence in testing your webbot on web pages that serve no
commercial purpose and haven't changed since this book's
publication. This environment also affords the freedom to make
mistakes without obsessing over the crumbs your webbots leave
behind in an actual online store's server log file.

IMAGE-CAPTURING WEBBOTS

The image-capturing webbot leverages your knowledge of
downloading and parsing web pages to create an application that
copies all the images (and their directory structure) to your local hard
drive. In addition to creating a useful tool, you'll also learn how to
convert relative addresses into fully resolved URLs, a technique that
is vital for later spidering projects.

LINK-VERIFICATION WEBBOTS

Here you will have the opportunity to write a webbot that
automatically verifies that all the links on a web page point to valid
web pages. I'll conclude the chapter with ideas for expanding this
concept into a variety of useful tools and products.

ANONYMOUS BROWSING WEBBOTS

In this chapter, I'll introduce the concept of using a webbot as a
proxy, or intermediary agent that intercepts and modifies information
flowing between a user and the Internet. The result of this project is a
simple proxy webbot that allows users to surf the Internet
anonymously.

file:///D|/!!/final/Iprojects.html (1 von 4) [29.03.2008 23:22:55]

Iprojects.html

SEARCH-RANKING WEBBOTS

This project describes a simple webbot that determines how highly a
search engine ranks a website, given a set of search criteria. You'll
also find a host of ideas about how you can modify this concept to
provide a variety of other services.

AGGREGATION WEBBOTS

Aggregation is a technique that gathers the contents of multiple web
pages in a single location. This project introduces techniques that
make it easy to exploit the availability of RSS news services.

FTP WEBBOTS

Webbots that use FTP are able to move the information they collect to
an FTP server for storage or use by other applications. In this
chapter, we'll explore methods for navigating on, uploading to, and
downloading from FTP servers.

NNTP NEWS WEBBOTS

While often overlooked in favor of newer, web-based sources, NNTP is
still a viable protocol with an active user base. In this chapter, I'll
describe methods by which you can interface your webbots to news
servers, which use NNTP.

WEBBOTS THAT READ EMAIL

Here you will learn how to write webbots that read and delete
messages from any POP3 mail server. The ability to read email allows
a webbot to interpret instructions sent by email or apply a variety of
email filters.

WEBBOTS THAT SEND EMAIL

In this chapter, you'll learn various methods that allow your webbots
to send email messages and notifications. You will also learn how to
leverage what you learned in the previous chapter to create "smart
email addresses" that can determine how to forward messages based
on their content—without modifying anything on the mail server.

CONVERTING A WEBSITE INTO A FUNCTION

This project describes how you can use form emulation and parsing
techniques to transform any preexisting online application into a
function you can call from any PHP program.

file:///D|/!!/final/Iprojects.html (2 von 4) [29.03.2008 23:22:55]

Iprojects.html

PRICE-MONITORING WEBBOTS

In this chapter, we'll look at a strategic application of webbots—monitoring online prices.
There are many reasons one would do this. For example, a webbot might monitor prices for
these purposes:

● Notifying someone (via email or text message[]) when a price drops below a preset
threshold

[] WEBBOTS THAT SEND EMAIL describes how webbots send email and text messages.

● Predicting price trends by performing statistical analysis on price histories

● Establishing your company's prices by studying what the competition charges for
similar items

Regardless of your reasons to monitor prices, the one thing that all of these strategies have in
common is that they all download web pages containing prices and then identify and parse
the data.

In this chapter, I will describe methods for monitoring online prices on e-commerce websites.
Additionally, I will explain how to parse data from tables and prepare you for the webbot
strategies revealed in PROCUREMENT WEBBOTS AND SNIPERS.

The Target

The practice store, available at this book's website,[] will be the target for our price-
monitoring webbot. A screenshot of the store is shown in The e-commerce website that is
monitored by the price-monitoring webbot.

[] The URL for this store is found at http://www.schrenk.com/nostarch/webbots.

The e-commerce website that is monitored by the price-monitoring webbot

file:///D|/!!/final/Iprojects.html (3 von 4) [29.03.2008 23:22:55]

http://www.schrenk.com/nostarch/webbots

Iprojects.html

This practice store provides a controlled environment that is ideal for this exercise. For
example, by targeting the example store you can do the following:

● Experiment with price-monitoring webbots without the possibility of interfering with an
actual business

● Control the content of this target, so you don't run the risk of someone modifying the
web page, which could break the example scripts[]

[] The example scripts are resistant to most changes in the target store.

The prices change on a daily basis, so you can also use it to practice writing webbots that
track and graph prices over time.

file:///D|/!!/final/Iprojects.html (4 von 4) [29.03.2008 23:22:55]

Iprice_monitoring_webbots.html

PROJECTS

This section expands on the concepts you learned in the previous section with
simple yet demonstrative projects. Any of these projects, with further
development, could be transformed from a simple webbot concept into a
potentially marketable product.

PRICE-MONITORING WEBBOTS

The first project describes webbots that collect and analyze online
prices from a mock store that exists on this book's website. The
prices change periodically, creating an opportunity for your webbots
to analyze and make purchase decisions based on the price of items.

Since this example store is solely for your experimentation, you'll gain
confidence in testing your webbot on web pages that serve no
commercial purpose and haven't changed since this book's
publication. This environment also affords the freedom to make
mistakes without obsessing over the crumbs your webbots leave
behind in an actual online store's server log file.

IMAGE-CAPTURING WEBBOTS

The image-capturing webbot leverages your knowledge of
downloading and parsing web pages to create an application that
copies all the images (and their directory structure) to your local hard
drive. In addition to creating a useful tool, you'll also learn how to
convert relative addresses into fully resolved URLs, a technique that
is vital for later spidering projects.

LINK-VERIFICATION WEBBOTS

Here you will have the opportunity to write a webbot that
automatically verifies that all the links on a web page point to valid
web pages. I'll conclude the chapter with ideas for expanding this
concept into a variety of useful tools and products.

ANONYMOUS BROWSING WEBBOTS

In this chapter, I'll introduce the concept of using a webbot as a
proxy, or intermediary agent that intercepts and modifies information
flowing between a user and the Internet. The result of this project is a
simple proxy webbot that allows users to surf the Internet
anonymously.

file:///D|/!!/final/Iprice_monitoring_webbots.html (1 von 4) [29.03.2008 23:22:56]

Iprice_monitoring_webbots.html

SEARCH-RANKING WEBBOTS

This project describes a simple webbot that determines how highly a
search engine ranks a website, given a set of search criteria. You'll
also find a host of ideas about how you can modify this concept to
provide a variety of other services.

AGGREGATION WEBBOTS

Aggregation is a technique that gathers the contents of multiple web
pages in a single location. This project introduces techniques that
make it easy to exploit the availability of RSS news services.

FTP WEBBOTS

Webbots that use FTP are able to move the information they collect to
an FTP server for storage or use by other applications. In this
chapter, we'll explore methods for navigating on, uploading to, and
downloading from FTP servers.

NNTP NEWS WEBBOTS

While often overlooked in favor of newer, web-based sources, NNTP is
still a viable protocol with an active user base. In this chapter, I'll
describe methods by which you can interface your webbots to news
servers, which use NNTP.

WEBBOTS THAT READ EMAIL

Here you will learn how to write webbots that read and delete
messages from any POP3 mail server. The ability to read email allows
a webbot to interpret instructions sent by email or apply a variety of
email filters.

WEBBOTS THAT SEND EMAIL

In this chapter, you'll learn various methods that allow your webbots
to send email messages and notifications. You will also learn how to
leverage what you learned in the previous chapter to create "smart
email addresses" that can determine how to forward messages based
on their content—without modifying anything on the mail server.

CONVERTING A WEBSITE INTO A FUNCTION

This project describes how you can use form emulation and parsing
techniques to transform any preexisting online application into a
function you can call from any PHP program.

file:///D|/!!/final/Iprice_monitoring_webbots.html (2 von 4) [29.03.2008 23:22:56]

Iprice_monitoring_webbots.html

PRICE-MONITORING WEBBOTS

In this chapter, we'll look at a strategic application of webbots—monitoring online prices.
There are many reasons one would do this. For example, a webbot might monitor prices for
these purposes:

● Notifying someone (via email or text message[]) when a price drops below a preset
threshold

[] WEBBOTS THAT SEND EMAIL describes how webbots send email and text messages.

● Predicting price trends by performing statistical analysis on price histories

● Establishing your company's prices by studying what the competition charges for
similar items

Regardless of your reasons to monitor prices, the one thing that all of these strategies have in
common is that they all download web pages containing prices and then identify and parse
the data.

In this chapter, I will describe methods for monitoring online prices on e-commerce websites.
Additionally, I will explain how to parse data from tables and prepare you for the webbot
strategies revealed in PROCUREMENT WEBBOTS AND SNIPERS.

The Target

The practice store, available at this book's website,[] will be the target for our price-
monitoring webbot. A screenshot of the store is shown in The e-commerce website that is
monitored by the price-monitoring webbot.

[] The URL for this store is found at http://www.schrenk.com/nostarch/webbots.

The e-commerce website that is monitored by the price-monitoring webbot

file:///D|/!!/final/Iprice_monitoring_webbots.html (3 von 4) [29.03.2008 23:22:56]

http://www.schrenk.com/nostarch/webbots

Iprice_monitoring_webbots.html

This practice store provides a controlled environment that is ideal for this exercise. For
example, by targeting the example store you can do the following:

● Experiment with price-monitoring webbots without the possibility of interfering with an
actual business

● Control the content of this target, so you don't run the risk of someone modifying the
web page, which could break the example scripts[]

[] The example scripts are resistant to most changes in the target store.

The prices change on a daily basis, so you can also use it to practice writing webbots that
track and graph prices over time.

file:///D|/!!/final/Iprice_monitoring_webbots.html (4 von 4) [29.03.2008 23:22:56]

Ithe_target.html

PROJECTS

This section expands on the concepts you learned in the previous section with
simple yet demonstrative projects. Any of these projects, with further
development, could be transformed from a simple webbot concept into a
potentially marketable product.

PRICE-MONITORING WEBBOTS

The first project describes webbots that collect and analyze online
prices from a mock store that exists on this book's website. The
prices change periodically, creating an opportunity for your webbots
to analyze and make purchase decisions based on the price of items.

Since this example store is solely for your experimentation, you'll gain
confidence in testing your webbot on web pages that serve no
commercial purpose and haven't changed since this book's
publication. This environment also affords the freedom to make
mistakes without obsessing over the crumbs your webbots leave
behind in an actual online store's server log file.

IMAGE-CAPTURING WEBBOTS

The image-capturing webbot leverages your knowledge of
downloading and parsing web pages to create an application that
copies all the images (and their directory structure) to your local hard
drive. In addition to creating a useful tool, you'll also learn how to
convert relative addresses into fully resolved URLs, a technique that
is vital for later spidering projects.

LINK-VERIFICATION WEBBOTS

Here you will have the opportunity to write a webbot that
automatically verifies that all the links on a web page point to valid
web pages. I'll conclude the chapter with ideas for expanding this
concept into a variety of useful tools and products.

ANONYMOUS BROWSING WEBBOTS

In this chapter, I'll introduce the concept of using a webbot as a
proxy, or intermediary agent that intercepts and modifies information
flowing between a user and the Internet. The result of this project is a
simple proxy webbot that allows users to surf the Internet
anonymously.

file:///D|/!!/final/Ithe_target.html (1 von 4) [29.03.2008 23:22:57]

Ithe_target.html

SEARCH-RANKING WEBBOTS

This project describes a simple webbot that determines how highly a
search engine ranks a website, given a set of search criteria. You'll
also find a host of ideas about how you can modify this concept to
provide a variety of other services.

AGGREGATION WEBBOTS

Aggregation is a technique that gathers the contents of multiple web
pages in a single location. This project introduces techniques that
make it easy to exploit the availability of RSS news services.

FTP WEBBOTS

Webbots that use FTP are able to move the information they collect to
an FTP server for storage or use by other applications. In this
chapter, we'll explore methods for navigating on, uploading to, and
downloading from FTP servers.

NNTP NEWS WEBBOTS

While often overlooked in favor of newer, web-based sources, NNTP is
still a viable protocol with an active user base. In this chapter, I'll
describe methods by which you can interface your webbots to news
servers, which use NNTP.

WEBBOTS THAT READ EMAIL

Here you will learn how to write webbots that read and delete
messages from any POP3 mail server. The ability to read email allows
a webbot to interpret instructions sent by email or apply a variety of
email filters.

WEBBOTS THAT SEND EMAIL

In this chapter, you'll learn various methods that allow your webbots
to send email messages and notifications. You will also learn how to
leverage what you learned in the previous chapter to create "smart
email addresses" that can determine how to forward messages based
on their content—without modifying anything on the mail server.

CONVERTING A WEBSITE INTO A FUNCTION

This project describes how you can use form emulation and parsing
techniques to transform any preexisting online application into a
function you can call from any PHP program.

file:///D|/!!/final/Ithe_target.html (2 von 4) [29.03.2008 23:22:57]

Ithe_target.html

PRICE-MONITORING WEBBOTS

In this chapter, we'll look at a strategic application of webbots—monitoring online prices.
There are many reasons one would do this. For example, a webbot might monitor prices for
these purposes:

● Notifying someone (via email or text message[]) when a price drops below a preset
threshold

[] WEBBOTS THAT SEND EMAIL describes how webbots send email and text messages.

● Predicting price trends by performing statistical analysis on price histories

● Establishing your company's prices by studying what the competition charges for
similar items

Regardless of your reasons to monitor prices, the one thing that all of these strategies have in
common is that they all download web pages containing prices and then identify and parse
the data.

In this chapter, I will describe methods for monitoring online prices on e-commerce websites.
Additionally, I will explain how to parse data from tables and prepare you for the webbot
strategies revealed in PROCUREMENT WEBBOTS AND SNIPERS.

The Target

The practice store, available at this book's website,[] will be the target for our price-
monitoring webbot. A screenshot of the store is shown in The e-commerce website that is
monitored by the price-monitoring webbot.

[] The URL for this store is found at http://www.schrenk.com/nostarch/webbots.

The e-commerce website that is monitored by the price-monitoring webbot

file:///D|/!!/final/Ithe_target.html (3 von 4) [29.03.2008 23:22:57]

http://www.schrenk.com/nostarch/webbots

Ithe_target.html

This practice store provides a controlled environment that is ideal for this exercise. For
example, by targeting the example store you can do the following:

● Experiment with price-monitoring webbots without the possibility of interfering with an
actual business

● Control the content of this target, so you don't run the risk of someone modifying the
web page, which could break the example scripts[]

[] The example scripts are resistant to most changes in the target store.

The prices change on a daily basis, so you can also use it to practice writing webbots that
track and graph prices over time.

file:///D|/!!/final/Ithe_target.html (4 von 4) [29.03.2008 23:22:57]

Idesigning_the_parsing_script.html

Designing the Parsing Script

Our webbot's objective is to download the target web page, parse the price variables, and
place the data into an array for processing. The price-monitoring webbot is largely an exercise
in parsing data that appears in tables, since useful online data usually appears as such. When
tables aren't used, <div> tags are generally applied and can be parsed in a similar manner.

While we know that the test target for this example won't change, we don't know that about
targets in the wild. Therefore, we don't want to be too specific when telling our parsing
routines where to look for pricing information. In this example, the parsing script won't look
for data in specific locations; instead, it will look for the desired data relative to easy-to-find
text that tells us where the desired information is located. If the position of the pricing
information on the target web page changes, our parsing script will still find it.

Let's look at a script that downloads the target web page, parses the prices, and displays the
data it parsed. This script is available in its entirety from this book's website. The script is
broken into sections here; however, iterative loops are simplified for clarity.

file:///D|/!!/final/Idesigning_the_parsing_script.html [29.03.2008 23:22:58]

Iinitialization_and_downloading_the_target.html

Initialization and Downloading the Target

The example script initializes by including the LIB_http and LIB_parse libraries you read
about earlier. It also creates an array where the parsed data is stored, and it sets the product
counter to zero, as shown in Listing 7-1.

Initialization
include("LIB_http.php");
include("LIB_parse.php");
$product_array=array();
$product_count=0;

Download the target (practice store) web page
$target = "http://www.schrenk.com/webbots/example_store";
$web_page = http_get($target, "");

Listing 7-1: Initializing the price-monitoring webbot

After initialization, the script proceeds to download the target web page with the get_http()
function described in DOWNLOADING WEB PAGES.

After downloading the web page, the script parses all the page's tables into an array, as shown
in Listing 7-2.

Parse all the tables on the web page into an array
$table_array = parse_array($web_page['FILE'], "<table", "</table>");

Listing 7-2: Parsing the tables into an array

The script does this because the product pricing data is in a table. Once we neatly separate all
the tables, we can look for the table with the product data. Notice that the script uses <table,
not <table>, as the leading indicator for a table. It does this because <table will always be
appropriate, no matter how many table formatting attributes are used.

Next, the script looks for the first landmark, or text that identifies the table where the product
data exists. Since the landmark represents text that identifies the desired data, that text must
be exclusive to our task. For example, by examining the page's source code we can see that
we cannot use the word origin as a landmark because it appears in both the description of this
week's auction and the list of products for sale. The example script uses the words Products for
Sale, because that phrase only exists in the heading of the product table and is not likely to
exist elsewhere if the web page is updated. The script looks at each table until it finds the one
that contains the landmark text, Products for Sale, as shown in Listing 7-3.

Code View:

Look for the table that contains the product information
for($xx=0; $xx<count($table_array); $xx++)
 {
 $table_landmark = "Products For Sale";
 if(stristr($table_array[$xx], $table_landmark)) // Process this table

file:///D|/!!/final/Iinitialization_and_downloading_the_target.html (1 von 4) [29.03.2008 23:22:59]

Iinitialization_and_downloading_the_target.html

 {
 echo "FOUND: Product table\n";

Listing 7-3: Examining each table for the existence of the landmark text

Once the table containing the product pricing data is found, that table is parsed into an array
of table rows, as shown in Listing 7-4.

Parse table into an array of table rows
$product_row_array = parse_array($table_array[$xx], "<tr", "</tr>");

Listing 7-4: Parsing the table into an array of table rows

Then, once an array of table rows from the product data table is available, the script looks for
the product table heading row. The heading row is useful for two reasons: It tells the webbot
where the data begins within the table, and it provides the column positions for the desired
data. This is important because in the future, the order of the data columns could change (as
part of a web page update, for example). If the webbot uses column names to identify data,
the webbot will still parse data correctly if the order changes, as long as the column names
remain the same.

Here again, the script relies on a landmark to find the table heading row. This time, the
landmark is the word Condition, as shown in Listing 7-5. Once the landmark identifies the table
heading, the positions of the desired table columns are recorded for later use.

Code View:

for($table_row=0; $table_row<count($product_row_array); $table_row++)
 {
 # Detect the beginning of the desired data (heading row)
 $heading_landmark = "Condition";
 if((stristr($product_row_array[$table_row], $heading_landmark)))
 {
 echo "FOUND: Table heading row\n";

 # Get the position of the desired headings
 $table_cell_array = parse_array($product_row_array[$table_row], "<td", "</td>");
 for($heading_cell=0; $heading_cell<count($table_cell_array); $heading_cell++)
 {
 if(stristr(strip_tags(trim($table_cell_array[$heading_cell])), "ID#"))
 $id_column=$heading_cell;
 if(stristr(strip_tags(trim($table_cell_array[$heading_cell])),
"Product name"))
 $name_column=$heading_cell;
 if(stristr(strip_tags(trim($table_cell_array[$heading_cell])), "Price"))
 $price_column=$heading_cell;
 }
 echo "FOUND: id_column=$id_column\n";
 echo "FOUND: price_column=$price_column\n";
 echo "FOUND: name_column=$name_column\n";

 # Save the heading row for later use

file:///D|/!!/final/Iinitialization_and_downloading_the_target.html (2 von 4) [29.03.2008 23:22:59]

Iinitialization_and_downloading_the_target.html

 $heading_row = $table_row;
 }

Listing 7-5: Detecting the table heading and recording the positions of desired columns

As the script loops through the table containing the desired data, it must also identify where
the pricing data ends. A landmark is used again to identify the end of the desired data. The
script looks for the landmark Calculate, from the form's submit button, to identify when it has
reached the end of the data. Once found, it breaks the loop, as shown in Listing 7-6.

Detect the end of the desired data table
$ending_landmark = "Calculate";
if((stristr($product_row_array[$table_row], $ending_landmark)))
 {
 echo "PARSING COMPLETE!\n";
 break;
 }

Listing 7-6: Detecting the end of the table

If the script finds the headers but doesn't find the end of the table, it assumes that the rest of
the table rows contain data. It parses these table rows, using the column position data gleaned
earlier, as shown in Listing 7-7.

Code View:

Parse product and price data
if(isset($heading_row) && $heading_row<$table_row)
 {
 $table_cell_array = parse_array($product_row_array[$table_row], "<td", "</td>");
 $product_array[$product_count]['ID'] =
 strip_tags(trim($table_cell_array[$id_column]));
 $product_array[$product_count]['NAME'] =
 strip_tags(trim($table_cell_array[$name_column]));
 $product_array[$product_count]['PRICE'] =
 strip_tags(trim($table_cell_array[$price_column]));
 $product_count++;
 echo"PROCESSED: Item #$product_count\n";
 }

Listing 7-7: Assigning parsed data to an array

Once the prices are parsed into an array, the webbot script can do anything it wants with the
data. In this case, it simply displays what it collected, as shown in Listing 7-8.

Display the collected data

file:///D|/!!/final/Iinitialization_and_downloading_the_target.html (3 von 4) [29.03.2008 23:22:59]

Iinitialization_and_downloading_the_target.html

for($xx=0; $xx<count($product_array); $xx++)
 {
 echo "$xx. ";
 echo "ID: ".$product_array[$xx]['ID'].", ";
 echo "NAME: ".$product_array[$xx]['NAME'].", ";
 echo "PRICE: ".$product_array[$xx]['PRICE']."\n";
 }

Listing 7-8: Displaying the parsed product pricing data

As shown in The price-monitoring webbot, as run in a shell, the webbot indicates when it finds
landmarks and prices. This not only tells the operator how the webbot is running, but also
provides important diagnostic information, making both debugging and maintenance easier.

Since prices are almost always in HTML tables, you will usually parse price information in a
manner that is similar to that shown here. Occasionally, pricing information may be contained
in other tags, (like <div> tags, for example), but this is less likely. When you encounter <div>
tags, you can easily parse the data they contain into arrays using similar methods.

The price-monitoring webbot, as run in a shell

file:///D|/!!/final/Iinitialization_and_downloading_the_target.html (4 von 4) [29.03.2008 23:22:59]

Ifurther_exploration.html

Further Exploration

Now you know how to parse pricing information from a web page—what you do with this
information is up to you. If you are so inclined, you can expand your experience with some of
the following suggestions.

● Since the prices in the example store change on a daily basis, monitor the daily price
changes for a month and save your parsed results in a database.

● Develop scripts that graph price fluctuations.

● Read about sending email with webbots in WEBBOTS THAT SEND EMAIL, and develop
scripts that notify you when prices hit preset high or low thresholds.

While this chapter covers monitoring prices online, you can use similar parsing techniques to
monitor and parse other types of data found in HTML tables. Consider using the techniques
you learned here to monitor things like baseball scores, stock prices, weather forecasts,
census data, banner ad rotation statistics,[] and more.

[] You can use webbots to perform a variety of diagnostic functions. For example, a webbot may
repeatedly download a web page to gather metrics on how banner ads are rotated.

file:///D|/!!/final/Ifurther_exploration.html [29.03.2008 23:23:00]

Iimage_capturing_webbots.html

IMAGE-CAPTURING WEBBOTS

In this chapter, I'll describe a webbot that identifies and downloads all of the images on a web
page. This webbot also stores images in a directory structure similar to the directory structure
on the target website. This project will show how a seemingly simple webbot can be made
more complex by addressing these common problems:

● Finding the page base, or the address that defines the address from which all relative
addresses are referenced

● Dealing with changes to the page base, caused by page redirection

● Converting relative addresses into fully resolved URLs

● Replicating complex directory structures

● Properly downloading image files with binary formats

In SPIDERS, you'll expand on these concepts to develop a spider that downloads images from
an entire website, not just one page.

Example Image-Capturing Webbot

Our image-capturing webbot downloads a target web page (in this case, the Viking Mission
web page on the NASA website) and parses all references to images on the page. The webbot
downloads each image, echoes the image's name and size to the console, and stores the file
on the local hard drive. The image-capturing bot, when executed from a shell shows what the
webbot's output looks like when executed from a shell.

The image-capturing bot, when executed from a shell

file:///D|/!!/final/Iimage_capturing_webbots.html (1 von 2) [29.03.2008 23:23:01]

Iimage_capturing_webbots.html

On this website, like many others, several unique images share the same filename but have
different file paths. For example, the image /templates/logo.gif may represent a different
graphic than /templates/affiliate/logo.gif. To solve this problem, the webbot re-creates a local
copy of the directory structure that exists on the target web page. Re-creating a file structure
for stored images shows the directory structure the webbot created when it saved these
images it downloaded from the NASA example.

file:///D|/!!/final/Iimage_capturing_webbots.html (2 von 2) [29.03.2008 23:23:01]

Iexample_image_capturing_webbot.html

IMAGE-CAPTURING WEBBOTS

In this chapter, I'll describe a webbot that identifies and downloads all of the images on a web
page. This webbot also stores images in a directory structure similar to the directory structure
on the target website. This project will show how a seemingly simple webbot can be made
more complex by addressing these common problems:

● Finding the page base, or the address that defines the address from which all relative
addresses are referenced

● Dealing with changes to the page base, caused by page redirection

● Converting relative addresses into fully resolved URLs

● Replicating complex directory structures

● Properly downloading image files with binary formats

In SPIDERS, you'll expand on these concepts to develop a spider that downloads images from
an entire website, not just one page.

Example Image-Capturing Webbot

Our image-capturing webbot downloads a target web page (in this case, the Viking Mission
web page on the NASA website) and parses all references to images on the page. The webbot
downloads each image, echoes the image's name and size to the console, and stores the file
on the local hard drive. The image-capturing bot, when executed from a shell shows what the
webbot's output looks like when executed from a shell.

The image-capturing bot, when executed from a shell

file:///D|/!!/final/Iexample_image_capturing_webbot.html (1 von 2) [29.03.2008 23:23:02]

Iexample_image_capturing_webbot.html

On this website, like many others, several unique images share the same filename but have
different file paths. For example, the image /templates/logo.gif may represent a different
graphic than /templates/affiliate/logo.gif. To solve this problem, the webbot re-creates a local
copy of the directory structure that exists on the target web page. Re-creating a file structure
for stored images shows the directory structure the webbot created when it saved these
images it downloaded from the NASA example.

file:///D|/!!/final/Iexample_image_capturing_webbot.html (2 von 2) [29.03.2008 23:23:02]

Icreating_the_image_capturing_webbot.html

Creating the Image-Capturing Webbot

This example webbot relies on a library called LIB_download_images, which is available from
this book's website. This library contains the following functions:

● download_binary_file(), which safely downloads image files

● mkpath(), which makes directory structures on your hard drive

● download_images_for_page(), which downloads all the images on a page

Re-creating a file structure for stored images

For clarity, I will break down this library into highlights and accompanying explanations.

The first script (Listing 8-1) shows the main webbot used in The image-capturing bot, when
executed from a shell and Re-creating a file structure for stored images.

include("LIB_download_images.php");

file:///D|/!!/final/Icreating_the_image_capturing_webbot.html (1 von 6) [29.03.2008 23:23:03]

Icreating_the_image_capturing_webbot.html

$target="http://www.nasa.gov/mission_pages/viking/index.html";
download_images_for_page($target);

Listing 8-1: Executing the image-capturing webbot

This short webbot script loads the LIB_download_images library, defines a target web page, and
calls the download_images_for_page() function, which gets the images and stores them in a
complementary directory structure on the local drive.

Note: Please be aware that the scripts in this chapter, which are available at http://www .schrenk.
com/nostarch/webbots, are created for demonstration purposes only. Although they should work in
most cases, they aren't production ready. You may find long or complicated directory structures, odd
filenames, or unusual file formats that will cause these scripts to crash.

Binary-Safe Download Routine

Our image-grabbing webbot uses the function download_binary_file(), which is designed to
download binary files, like images. Other binary files you may encounter could include
executable files, compressed files, or system files. Up to this point, the only file downloads
discussed have been ASCII (text) files, like web pages. The distinction between downloading
binary and ASCII files is important because they have different formats and can cause confusion
when downloaded. For example, random byte combinations in binary files may be
misinterpreted as end-of-file markers in ASCII file downloads. If you download a binary file with
a script designed for ASCII files, you stand a good chance of downloading a partial or corrupt
file.

Even though PHP has its own, built-in binary-safe download functions, this webbot uses a
custom download script that leverages PHP/cURL functionality to download images from SSL
sites (when the protocol is HTTPS), follow HTTP file redirections, and send referer information to
the server.

Sending proper referer information is crucial because many websites will stop other websites
from "borrowing" images. Borrowing images from other websites (without hosting the images
on your server) is bad etiquette and is commonly called hijacking. If your webbot doesn't
include a proper referer value, its activity could be confused with a website that is hijacking
images. Listing 8-2 shows the file download script used by this webbot.

Code View:

function download_binary_file($file, $referer)
 {
 # Open a PHP/CURL session
 $s = curl_init();

 # Configure the cURL command
 curl_setopt($s, CURLOPT_URL, $file); // Define target site
 curl_setopt($s, CURLOPT_RETURNTRANSFER, TRUE); // Return file contents in
a string
 curl_setopt($s, CURLOPT_BINARYTRANSFER, TRUE); // Indicate binary transfer

file:///D|/!!/final/Icreating_the_image_capturing_webbot.html (2 von 6) [29.03.2008 23:23:04]

http://www .schrenk.com/nostarch/webbots
http://www .schrenk.com/nostarch/webbots

Icreating_the_image_capturing_webbot.html

 curl_setopt($s, CURLOPT_REFERER, $referer); // Referer value
 curl_setopt($s, CURLOPT_SSL_VERIFYPEER, FALSE); // No certificate
 curl_setopt($s, CURLOPT_FOLLOWLOCATION, TRUE); // Follow redirects
 curl_setopt($s, CURLOPT_MAXREDIRS, 4); // Limit redirections to four

 # Execute the cURL command (send contents of target web page to string)
 $downloaded_page = curl_exec($s);

 # Close PHP/CURL session and return the file
 curl_close($s);
 return $downloaded_page;
 }

Listing 8-2: A binary-safe file download routine, optimized for webbot use

Directory Structure

The script that creates directories (shown in Re-creating a file structure for stored images) is
derived from a user-contributed routine found on the PHP website (http://www.php.net). Users
commonly submit scripts like this one when they find something they want to share with the
PHP community. In this case, it's a function that expands on mkdir() by creating complete
directory structures with multiple directories at once. I modified the function slightly for our
purposes. This function, shown in Listing 8-3, creates any file path that doesn't already exist on
the hard drive and, if needed, it will create multiple directories for a single file path. For
example, if the image's file path is images/templates/November, this function will create all
three directories—images, templates, and November—to satisfy the entire file path.

function mkpath($path)
 {
 # Make sure that the slashes are all single and lean the correct way
 $path=preg_replace('/(\/){2,}|(\\\){1,}/','/',$path);

 # Make an array of all the directories in path
 $dirs=explode("/",$path);

 # Verify that each directory in path exists and create if necessary
 $path="";
 foreach ($dirs as $element)
 {
 $path.=$element."/";
 if(!is_dir($path)) // Directory verified here
 mkdir($path); // Created if it doesn't exist
 }
 }

Listing 8-3: Re-creating file paths for downloaded images

This script in Listing 8-3 places all the path directories into an array and attempts to re-create
that array, one directory at a time, on the local filesystem. Only nonexistent directories are
created.

The Main Script

file:///D|/!!/final/Icreating_the_image_capturing_webbot.html (3 von 6) [29.03.2008 23:23:04]

http://www.php.net/

Icreating_the_image_capturing_webbot.html

The main function for this webbot, download_images_for_page(), is broken down into
highlights and explained below. As mentioned earlier, this function—and the entire
LIB_download_images library—is available at this book's website.

Initialization and Target Validation

Since $target is used later for resolving the web address of the images, the $target value
must be validated after the web page is downloaded. This is important because the server may
redirect the webbot to an updated web page. That updated URL is the actual URL for the target
page and the one that all relative files are referenced from in the next step. The script in Listing
8-4 verifies that the $target is the actual URL that was downloaded and not the product of a
redirection.

function download_images_for_page($target)
 {
 echo "target = $target\n";
 # Download the web page
 $web_page = http_get($target, $referer="");
 # Update the target in case there was a redirection

 $target = $web_page['STATUS']['url'];

Listing 8-4: Downloading the target web page and responding to page redirection

Defining the Page Base

Much like the <base> HTML tag, the webbot uses $page_base to define the directory address of
the target web page. This address becomes the reference for all images with relative addresses.
For example, if $target is http://www.schrenk.com/april/index.php, then $page_base becomes
http://www.schrenk.com/april.

This task, which is shown in Listing 8-5, is performed by the function get_base_page_address
() and is actually in LIB_resolve_address and included by LIB_download_images.

 # Strip filename off target for use as page base
 $page_base=get_base_page_address($target);

Listing 8-5: Creating the page base for the target web page

As an example, if the webbot finds an image with the relative address 14/logo.gif, and the page
base is http://www.schrenk.com/april, the webbot will use the page base to derive the fully
resolved address for the image. In this case, the fully resolved address is http://www.schrenk.
com/april/14/logo.gif. In contrast, if the image's file path is /march/14/logo.gif, the address will
resolve to http://www.schrenk.com/march/14/logo.gif.

Creating a Root Directory for Imported File Structure

Since this webbot may download images from a number of domains, it creates a directory
structure for each (see Listing 8-6). The root directory of each imported file structure is based
on the page base.

file:///D|/!!/final/Icreating_the_image_capturing_webbot.html (4 von 6) [29.03.2008 23:23:04]

http://www.schrenk.com/april/index.php
http://www.schrenk.com/april
http://www.schrenk.com/april
http://www.schrenk.com/april/14/logo.gif
http://www.schrenk.com/april/14/logo.gif
http://www.schrenk.com/march/14/logo.gif

Icreating_the_image_capturing_webbot.html

Code View:

 # Identify the directory where images are to be saved
 $save_image_directory = "saved_images_".str_replace("http://", "", $page_base);

Listing 8-6: Creating a root directory for the imported file structure

Parsing Image Tags from the Downloaded Web Page

The webbot uses techniques described in PARSING TECHNIQUES to parse the image tags from
the target web page and put them into an array for easy processing. This is shown in Listing 8-
7. The webbot stops if the target web page contains no images.

 # Parse the image tags
 $img_tag_array = parse_array($web_page['FILE'], "<img", ">");
 if(count($img_tag_array)==0)
 {
 echo "No images found at $target\n";
 exit;
 }

Listing 8-7: Parsing the image tags

The Image-Processing Loop

The webbot employs a loop, where each image tag is individually processed. For each image
tag, the webbot parses the image file source and creates a fully resolved URL (see Listing 8-8).
Creating a fully resolved URL is important because the webbot cannot download an image
without its complete URL: the HTTP protocol identifier, the domain, the image's file path, and
the image's filename.

Code View:

 $image_path = get_attribute($img_tag_array[$xx], $attribute="src");
 echo " image: ".$image_path;
 $image_url = resolve_address($image_path, $page_base);

Listing 8-8: Parsing the image source and creating a fully resolved URL

Creating the Local Directory Structure

The webbot verifies that the file path exists in the local file structure. If the directory doesn't
exist, the webbot creates the directory path, as shown in Listing 8-9.

Code View:

file:///D|/!!/final/Icreating_the_image_capturing_webbot.html (5 von 6) [29.03.2008 23:23:04]

Icreating_the_image_capturing_webbot.html

 if(get_base_domain_address($page_base) == get_base_domain_address($image_url))
 {
 # Make image storage directory for image, if one doesn't exist
 $directory = substr($image_path, 0, strrpos($image_path, "/"));

 clearstatcache(); // Clear cache to get accurate directory status
 if(!is_dir($save_image_directory."/".$directory)) // See if dir exists

 mkpath($save_image_directory."/".$directory); // Create if it
doesn't

Listing 8-9: Creating the local directory structure for each image file

Downloading and Saving the File

Once the path is verified or created, the image is downloaded (using its fully resolved URL) and
stored in the local file structure (see Listing 8-10).

Code View:

 # Download the image and report image size
 $this_image_file = download_binary_file($image_url, $referer=$target);
 echo " size: ".strlen($this_image_file);

 # Save the image
 $fp = fopen($save_image_directory."/".$image_path, "w");
 fputs($fp, $this_image_file);
 fclose($fp);
 echo "\n";

Listing 8-10: Downloading and storing images

The webbot repeats this process for each image parsed from the target web page.

file:///D|/!!/final/Icreating_the_image_capturing_webbot.html (6 von 6) [29.03.2008 23:23:04]

Ifurther_exploration_id1.html

Further Exploration

You can point this webbot at any web page, and it will generate a copy of each image that
page uses, arranged in a directory structure that resembles the original. You can also develop
other useful webbots based on this design. If you want to test your skills, consider the
following challenges.

● Write a similar webbot that detects hijacked images.

● Improve the efficiency of the script by reworking it so that it doesn't download an
image it has downloaded previously.

● Modify this webbot to create local backup copies of web pages.

● Adjust the webbot to cache movies or audio files instead of images.

● Modify the bot to monitor when images change on a web page.

file:///D|/!!/final/Ifurther_exploration_id1.html [29.03.2008 23:23:04]

Ifinal_thoughts_id6.html

Final Thoughts

If you attempt to run this webbot on a remote server, remember that your webbot must have
write privileges on that server, or it won't be able to create file structures or download images.

file:///D|/!!/final/Ifinal_thoughts_id6.html [29.03.2008 23:23:05]

Ilink_verification_webbots.html

LINK-VERIFICATION WEBBOTS

This webbot project solves a problem shared by all web developers—detecting broken links on
web pages. Verifying links on a web page isn't a difficult thing to do, and the associated script
is short.

Link-verification bot flow chart shows the simplicity of this webbot.

Creating the Link-Verification Webbot

For clarity, I'll break down the creation of the link-verification webbot into manageable
sections, which I'll explain along the way. The code and libraries used in this chapter are
available for download at this book's website.

Initializing the Webbot and Downloading the Target

Before validating links on a web page, your webbot needs to load the required libraries and
initialize a few key variables. In addition to LIB_http and LIB_parse, this webbot introduces
two new libraries: LIB_resolve_addresses and LIB_http_codes. I'll explain these additions
as I use them.

Link-verification bot flow chart

file:///D|/!!/final/Ilink_verification_webbots.html (1 von 6) [29.03.2008 23:23:07]

Ilink_verification_webbots.html

The webbot downloads the target web page with the http_get() function, which was
described in DOWNLOADING WEB PAGES.

Code View:

Include libraries
include("LIB_http.php");
include("LIB_parse.php");
include("LIB_resolve_addresses.php");
include("LIB_http_codes.php");

Identify the target web page and the page base
$target = "http://www.schrenk.com/nostarch/webbots/page_with_broken_links.php";
$page_base = "http://www.schrenk.com/nostarch/webbots/";

Download the web page
$downloaded_page = http_get($target, $ref="");

Listing 9-1: Initializing the bot and downloading the target web page

file:///D|/!!/final/Ilink_verification_webbots.html (2 von 6) [29.03.2008 23:23:07]

Ilink_verification_webbots.html

Setting the Page Base

In addition to defining the $target, which points to a diagnostic page on the book's website,
Listing 9-1 also defines a variable called $page_base. A page base defines the domain and
server directory of the target page, which tells the webbot where to find web pages
referenced with relative links.

Relative links are references to other files—relative to where the reference is made. For
example, consider the relative links in Examples of Relative Links.

Table Examples of Relative Links

Link References a File Located In . . .
 Same directory as web page
 The page's parent directory (up one level)
 The page's parent's parent directory (up 2 levels)
 The server's root directory

Your webbot would fail if it tried to download any of these links as is, since your webbot's
reference point is the computer it runs on, and not the computer where the links where
found. The page base, however, gives your webbot the same reference as the target page.
You might think of it this way: The page base is to a webbot as the <base> tag is to a
browser. The page base sets the reference for everything referred to on the target web page.

Parsing the Links

You can easily parse all the links and place them into an array with the script in Listing 9-2.

Code View:

Parse the links
$link_array = parse_array($downloaded_page['FILE'], $beg_tag="<a", $close_tag=">");

Listing 9-2: Parsing the links from the downloaded page

The code in Listing 9-2 uses parse_array() to put everything between every occurrence of

<a and > into an array.[] The function parse_array() is not case sensitive, so it doesn't
matter if the target web page uses <a>, <A> or a combination of both tags to define links.

[] Parsing functions are explained in PARSING TECHNIQUES.

Running a Verification Loop

You gain a great deal of convenience when the parsed links are available in an array. The
array allows your script to verify the links iteratively through one set of verification
instructions, as shown in Listing 9-3. The PHP sections of this script appear in bold.

file:///D|/!!/final/Ilink_verification_webbots.html (3 von 6) [29.03.2008 23:23:07]

Ilink_verification_webbots.html

Listing 9-3 also includes some HTML formatting to create a nice-looking report, which you'll
see later. Notice that the contents of the verification loop have been removed for clarity. I'll
explain what happens in this loop next.

Status of links on <?echo $target?>

<table border="1" cellpadding="1" cellspacing="0">
 <tr bgcolor="#e0e0e0">
 <th>URL</th>
 <th>HTTP CODE</th>
 <th>MESSAGE</th>
 <th>DOWNLOAD TIME (seconds)</th>
 </tr>
<?
for($xx=0; $xx<count($link_array); $xx++)
 {
 // Verification and display go here
 }

Listing 9-3: The verification loop

Generating Fully Resolved URLs

Since the contents of the $link_array elements are actually complete anchor tags, we need
to parse the value of the href attribute out of the tags before we can download and test the
pages they reference.

The value of the href attribute is extracted from the anchor tag with the function
get_attribute(), as shown in Listing 9-4.

// Parse the HTTP attribute from link
$link = get_attribute($tag=$link_array[$xx], $attribute="href");

Listing 9-4: Parsing the referenced address from the anchor tag

Once you have the href address, you need to combine the previously defined $page_base
with the relative address to create a fully resolved URL, which your webbot can use to
download pages. A fully resolved URL is any URL that describes not only the file to download,
but also the server and directory where that file is located and the protocol required to access
it. Examples of Fully Resolved URLs (for links on) shows the fully resolved addresses for the
links in Examples of Relative Links, assuming the links are on a page in the directory, http://
www.schrenk.com/nostarch/webbots.

Table Examples of Fully Resolved URLs (for links on http://www.schrenk.com/
nostarch/book)

Link Fully Resolved URL
 http://www.schrenk.com/nostarch/webbots/

linked_page.html
 http://www.schrenk.com/nostarch/linked_page.html

file:///D|/!!/final/Ilink_verification_webbots.html (4 von 6) [29.03.2008 23:23:07]

http://www.schrenk.com/nostarch/webbots
http://www.schrenk.com/nostarch/webbots
http://www.schrenk.com/nostarch/book
http://www.schrenk.com/nostarch/book
http://www.schrenk.com/nostarch/webbots/linked_page.html
http://www.schrenk.com/nostarch/webbots/linked_page.html
http://www.schrenk.com/nostarch/linked_page.html

Ilink_verification_webbots.html

 http://www.schrenk.com/linked_page.html
 http://www.schrenk.com/linked_page.html

Fully resolved URLs are made with the resolve_address() function (see Listing 9-5), which
is in the LIB_resolve_addresses library. This library is a set of routines that converts all
possible methods of referencing web pages in HTML into fully resolved URLs.

// Create a fully resolved URL
$fully_resolved_link_address = resolve_address($link, $page_base);

Listing 9-5: Creating fully resolved addresses with resolve_address()

Downloading the Linked Page

The webbot verifies the status of each page referenced by the links on the target page by
downloading each page and examining its status. It downloads the pages with http_get(),
just as you downloaded the target web page earlier (see Listing 9-6).

// Download the page referenced by the link and evaluate
$downloaded_link = http_get($fully_resolved_link_address, $target);

Listing 9-6: Downloading a page referenced by a link

Notice that the second parameter in http_get() is set to the address of the target web page.
This sets the page's referer variable to the target page. When executed, the effect is the
same as telling the server that someone requested the page by clicking a link from the target
web page.

Displaying the Page Status

Once the linked page is downloaded, the webbot relies on the STATUS element of the
downloaded array to analyze the HTTP code, which is provided by PHP/CURL. (For your future
projects, keep in mind that PHP/CURL also provides total download time and other diagnostics
that we're not using in this project.)

HTTP status codes are standardized, three-digit numbers that indicate the status of a page
fetch.[] This webbot uses these codes to determine if a link is broken or valid. These codes
are divided into ranges that define the type of errors or status, as shown in HTTP Code
Ranges and Related Categories.

[] The official reference for HTTP codes is available on the World Wide Web Consortium's website (http://
www.w3.org/Protocols/rfc2616/rfc2616-sec10.html).

Table HTTP Code Ranges and Related Categories

HTTP Code Range Category Meaning
100-199 Informational Not generally used

file:///D|/!!/final/Ilink_verification_webbots.html (5 von 6) [29.03.2008 23:23:07]

http://www.schrenk.com/linked_page.html
http://www.schrenk.com/linked_page.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Ilink_verification_webbots.html

200-299 Successful Your page request was successful
300-399 Redirection The page you're looking for has moved or has been

removed
400-499 Client error Your web client made a incorrect or illogical page

request
500-599 Server error A server error occurred, generally associated with a bad

form submission

The $status_code_array was created when the LIB_http_codes library was imported. When
you use the HTTP code as an index into $status_code_array, it returns a human-readable
status message, as shown in Listing 9-7. (PHP script is in bold.)

Code View:

<tr>
 <td align="left"><?echo $downloaded_link['STATUS']['url']?></td>
 <td align="right"><?echo $downloaded_link['STATUS']['http_code']?></td>
 <td align="left"><?echo $status_code_array[$downloaded_link['STATUS']
['http_code']]?></td>
 <td align="right"><?echo $downloaded_link['STATUS']['total_time']?></td>
</tr>

Listing 9-7: Displaying the status of linked web pages

As an added feature, the webbot displays the amount of time (in seconds) required to
download pages referenced by the links on the target web page. This period is automatically
measured and recorded by PHP/CURL when the page is downloaded. The period required to
download the page is available in the array element: $downloaded_link['STATUS']
['total_time'].

file:///D|/!!/final/Ilink_verification_webbots.html (6 von 6) [29.03.2008 23:23:07]

Icreating_the_link_verification_webbot.html

LINK-VERIFICATION WEBBOTS

This webbot project solves a problem shared by all web developers—detecting broken links on
web pages. Verifying links on a web page isn't a difficult thing to do, and the associated script
is short.

Link-verification bot flow chart shows the simplicity of this webbot.

Creating the Link-Verification Webbot

For clarity, I'll break down the creation of the link-verification webbot into manageable
sections, which I'll explain along the way. The code and libraries used in this chapter are
available for download at this book's website.

Initializing the Webbot and Downloading the Target

Before validating links on a web page, your webbot needs to load the required libraries and
initialize a few key variables. In addition to LIB_http and LIB_parse, this webbot introduces
two new libraries: LIB_resolve_addresses and LIB_http_codes. I'll explain these additions
as I use them.

Link-verification bot flow chart

file:///D|/!!/final/Icreating_the_link_verification_webbot.html (1 von 6) [29.03.2008 23:23:08]

Icreating_the_link_verification_webbot.html

The webbot downloads the target web page with the http_get() function, which was
described in DOWNLOADING WEB PAGES.

Code View:

Include libraries
include("LIB_http.php");
include("LIB_parse.php");
include("LIB_resolve_addresses.php");
include("LIB_http_codes.php");

Identify the target web page and the page base
$target = "http://www.schrenk.com/nostarch/webbots/page_with_broken_links.php";
$page_base = "http://www.schrenk.com/nostarch/webbots/";

Download the web page
$downloaded_page = http_get($target, $ref="");

Listing 9-1: Initializing the bot and downloading the target web page

file:///D|/!!/final/Icreating_the_link_verification_webbot.html (2 von 6) [29.03.2008 23:23:08]

Icreating_the_link_verification_webbot.html

Setting the Page Base

In addition to defining the $target, which points to a diagnostic page on the book's website,
Listing 9-1 also defines a variable called $page_base. A page base defines the domain and
server directory of the target page, which tells the webbot where to find web pages
referenced with relative links.

Relative links are references to other files—relative to where the reference is made. For
example, consider the relative links in Examples of Relative Links.

Table Examples of Relative Links

Link References a File Located In . . .
 Same directory as web page
 The page's parent directory (up one level)
 The page's parent's parent directory (up 2 levels)
 The server's root directory

Your webbot would fail if it tried to download any of these links as is, since your webbot's
reference point is the computer it runs on, and not the computer where the links where
found. The page base, however, gives your webbot the same reference as the target page.
You might think of it this way: The page base is to a webbot as the <base> tag is to a
browser. The page base sets the reference for everything referred to on the target web page.

Parsing the Links

You can easily parse all the links and place them into an array with the script in Listing 9-2.

Code View:

Parse the links
$link_array = parse_array($downloaded_page['FILE'], $beg_tag="<a", $close_tag=">");

Listing 9-2: Parsing the links from the downloaded page

The code in Listing 9-2 uses parse_array() to put everything between every occurrence of

<a and > into an array.[] The function parse_array() is not case sensitive, so it doesn't
matter if the target web page uses <a>, <A> or a combination of both tags to define links.

[] Parsing functions are explained in PARSING TECHNIQUES.

Running a Verification Loop

You gain a great deal of convenience when the parsed links are available in an array. The
array allows your script to verify the links iteratively through one set of verification
instructions, as shown in Listing 9-3. The PHP sections of this script appear in bold.

file:///D|/!!/final/Icreating_the_link_verification_webbot.html (3 von 6) [29.03.2008 23:23:08]

Icreating_the_link_verification_webbot.html

Listing 9-3 also includes some HTML formatting to create a nice-looking report, which you'll
see later. Notice that the contents of the verification loop have been removed for clarity. I'll
explain what happens in this loop next.

Status of links on <?echo $target?>

<table border="1" cellpadding="1" cellspacing="0">
 <tr bgcolor="#e0e0e0">
 <th>URL</th>
 <th>HTTP CODE</th>
 <th>MESSAGE</th>
 <th>DOWNLOAD TIME (seconds)</th>
 </tr>
<?
for($xx=0; $xx<count($link_array); $xx++)
 {
 // Verification and display go here
 }

Listing 9-3: The verification loop

Generating Fully Resolved URLs

Since the contents of the $link_array elements are actually complete anchor tags, we need
to parse the value of the href attribute out of the tags before we can download and test the
pages they reference.

The value of the href attribute is extracted from the anchor tag with the function
get_attribute(), as shown in Listing 9-4.

// Parse the HTTP attribute from link
$link = get_attribute($tag=$link_array[$xx], $attribute="href");

Listing 9-4: Parsing the referenced address from the anchor tag

Once you have the href address, you need to combine the previously defined $page_base
with the relative address to create a fully resolved URL, which your webbot can use to
download pages. A fully resolved URL is any URL that describes not only the file to download,
but also the server and directory where that file is located and the protocol required to access
it. Examples of Fully Resolved URLs (for links on) shows the fully resolved addresses for the
links in Examples of Relative Links, assuming the links are on a page in the directory, http://
www.schrenk.com/nostarch/webbots.

Table Examples of Fully Resolved URLs (for links on http://www.schrenk.com/
nostarch/book)

Link Fully Resolved URL
 http://www.schrenk.com/nostarch/webbots/

linked_page.html
 http://www.schrenk.com/nostarch/linked_page.html

file:///D|/!!/final/Icreating_the_link_verification_webbot.html (4 von 6) [29.03.2008 23:23:08]

http://www.schrenk.com/nostarch/webbots
http://www.schrenk.com/nostarch/webbots
http://www.schrenk.com/nostarch/book
http://www.schrenk.com/nostarch/book
http://www.schrenk.com/nostarch/webbots/linked_page.html
http://www.schrenk.com/nostarch/webbots/linked_page.html
http://www.schrenk.com/nostarch/linked_page.html

Icreating_the_link_verification_webbot.html

 http://www.schrenk.com/linked_page.html
 http://www.schrenk.com/linked_page.html

Fully resolved URLs are made with the resolve_address() function (see Listing 9-5), which
is in the LIB_resolve_addresses library. This library is a set of routines that converts all
possible methods of referencing web pages in HTML into fully resolved URLs.

// Create a fully resolved URL
$fully_resolved_link_address = resolve_address($link, $page_base);

Listing 9-5: Creating fully resolved addresses with resolve_address()

Downloading the Linked Page

The webbot verifies the status of each page referenced by the links on the target page by
downloading each page and examining its status. It downloads the pages with http_get(),
just as you downloaded the target web page earlier (see Listing 9-6).

// Download the page referenced by the link and evaluate
$downloaded_link = http_get($fully_resolved_link_address, $target);

Listing 9-6: Downloading a page referenced by a link

Notice that the second parameter in http_get() is set to the address of the target web page.
This sets the page's referer variable to the target page. When executed, the effect is the
same as telling the server that someone requested the page by clicking a link from the target
web page.

Displaying the Page Status

Once the linked page is downloaded, the webbot relies on the STATUS element of the
downloaded array to analyze the HTTP code, which is provided by PHP/CURL. (For your future
projects, keep in mind that PHP/CURL also provides total download time and other diagnostics
that we're not using in this project.)

HTTP status codes are standardized, three-digit numbers that indicate the status of a page
fetch.[] This webbot uses these codes to determine if a link is broken or valid. These codes
are divided into ranges that define the type of errors or status, as shown in HTTP Code
Ranges and Related Categories.

[] The official reference for HTTP codes is available on the World Wide Web Consortium's website (http://
www.w3.org/Protocols/rfc2616/rfc2616-sec10.html).

Table HTTP Code Ranges and Related Categories

HTTP Code Range Category Meaning
100-199 Informational Not generally used

file:///D|/!!/final/Icreating_the_link_verification_webbot.html (5 von 6) [29.03.2008 23:23:08]

http://www.schrenk.com/linked_page.html
http://www.schrenk.com/linked_page.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Icreating_the_link_verification_webbot.html

200-299 Successful Your page request was successful
300-399 Redirection The page you're looking for has moved or has been

removed
400-499 Client error Your web client made a incorrect or illogical page

request
500-599 Server error A server error occurred, generally associated with a bad

form submission

The $status_code_array was created when the LIB_http_codes library was imported. When
you use the HTTP code as an index into $status_code_array, it returns a human-readable
status message, as shown in Listing 9-7. (PHP script is in bold.)

Code View:

<tr>
 <td align="left"><?echo $downloaded_link['STATUS']['url']?></td>
 <td align="right"><?echo $downloaded_link['STATUS']['http_code']?></td>
 <td align="left"><?echo $status_code_array[$downloaded_link['STATUS']
['http_code']]?></td>
 <td align="right"><?echo $downloaded_link['STATUS']['total_time']?></td>
</tr>

Listing 9-7: Displaying the status of linked web pages

As an added feature, the webbot displays the amount of time (in seconds) required to
download pages referenced by the links on the target web page. This period is automatically
measured and recorded by PHP/CURL when the page is downloaded. The period required to
download the page is available in the array element: $downloaded_link['STATUS']
['total_time'].

file:///D|/!!/final/Icreating_the_link_verification_webbot.html (6 von 6) [29.03.2008 23:23:08]

Irunning_the_webbot.html

Running the Webbot

Since the output of this webbot contains formatted HTML, it is appropriate to run this webbot
within a browser, as shown in Running the link-verification webbot.

Running the link-verification webbot

This webbot counts and identifies all the links on the target website. It also indicates the HTTP
code and diagnostic message describing the status of the fetch used to download the page
and displays the actual amount of time it took the page to load.

Let's take this time to look at some of the libraries used by this webbot.

LIB_http_codes

The following script creates an indexed array of HTTP error codes and their definitions. To use
the array, simply include the library, insert your HTTP code value into the array, and echo as
shown in Listing 9-8.

include(LIB_http_codes.php);
echo $status_code_array[$YOUR_HTTP_CODE]['MSG']

Listing 9-8: Decoding an HTTP code with LIB_http_codes

LIB_http_codes is essentially a group of array declarations, with the first element being the
HTTP code and the second element, ['MSG'], being the status message text. Like the others,
this library is also available for download from this book's website.

LIB_resolve_addresses

The library that creates fully resolved addresses, LIB_resolve_addresses, is also available
for download at the book's website.

file:///D|/!!/final/Irunning_the_webbot.html (1 von 2) [29.03.2008 23:23:09]

Irunning_the_webbot.html

Note: Before you download and examine this library, be warned that creating fully resolved URLs
is a lot like making sausage—while you might enjoy how sausage tastes, you probably wouldn't
like watching those lips and ears go into the grinder. Simply put, the act of converting relative
links into fully resolved URLs involves awkward, asymmetrical code with numerous exceptions to
rules and many special cases. This library is extraordinarily useful, but it isn't made up of pretty
code.

If you don't need to see how this conversion is done, there's no reason to look. If, on the
other hand, you're intrigued by this description, feel free to download the library from the
book's website and see for yourself. More importantly, if you find a cleaner solution, please
upload it to the book's website to share it with the community.

file:///D|/!!/final/Irunning_the_webbot.html (2 von 2) [29.03.2008 23:23:09]

Ifurther_exploration_id2.html

Further Exploration

You can expand this basic webbot to do a variety of very useful things. Here is a short list of
ideas to get you started on advanced designs.

● Create a web page with a form that allows people to enter and test the links of any
web page.

● Schedule a link-verification bot to run periodically to ensure that links on web pages
remain current. (For information on scheduling webbots, read SCHEDULING WEBBOTS
AND SPIDERS.)

● Modify the webbot to send email notifications when it finds dead links. (More
information on webbots that send email is available in WEBBOTS THAT SEND EMAIL.)

● Encase the webbot in a spider to check the links on an entire website.

● Convert this webbot into a function that is called directly from PHP. (This idea is
explored in CONVERTING A WEBSITE INTO A FUNCTION.)

file:///D|/!!/final/Ifurther_exploration_id2.html [29.03.2008 23:23:10]

Ianonymous_browsing_webbots.html

ANONYMOUS BROWSING WEBBOTS

The Internet is a public place, and as in any other community, web surfers leave telltale clues
of where they've been and what they've done. While many people feel anonymous online, the
fact is that server logs, cookies, and browser caches leave little doubt to what happens on the
Internet. While total online anonymity is nearly impossible, you can cloak your activity
through a specialized webbot called a proxybot, or simply a proxy. This chapter investigates
applications for proxies and later explores a webbot proxy project that provides anonymous
web browsing.

Anonymity with Proxies

A proxy is a special type of webbot that serves as an intermediary between webservers and
clients. Proxies have many uses including banning people from browsing prohibited websites,
blocking banner advertisements, and inhibiting suspect scripts from running on browsers.

One of the more popular proxies is Squid, a web proxy that, among other things, saves
bandwidth on large networks by caching frequently downloaded images.[] Squid, along with
most other proxies, also converts private network IP addresses into a single public address
through a process called Network Address Translation (NAT).

[] Information about Squid, a popular open source web proxy cache, is available at http://www.squid-
cache.org. In addition to caching frequently downloaded images, Squid also caches DNS lookups, failed
requests, and many other Internet objects.

A side effect of proxy use is that proxies create a potentially anonymous browsing
environment because individual network addresses are pooled into a single network address.
Since only the proxied network address is visible to web servers, the identities of the
individual surfers remain unknown. Anonymity is the focus of this chapter, but before we start
that discussion, a quick review of the liabilities of browsing in a non-proxied environment is in
order.

Non-proxied Environments

In non-proxied network environments, web clients are totally exposed to the servers they
access. This is important in terms of privacy because servers maintain records of requesting
IP addresses, the files accessed, and the times they were accessed, as depicted in Browsing
in a non-proxied network environment.

Browsing in a non-proxied network environment

file:///D|/!!/final/Ianonymous_browsing_webbots.html (1 von 5) [29.03.2008 23:23:12]

http://www.squid-cache.org/
http://www.squid-cache.org/

Ianonymous_browsing_webbots.html

Additionally, webservers may store small records of browsing activity on clients' hard drives in
the form of cookies.[] By reading cookies on a user's successive visits to the same Internet
domain, webservers determine a variety of information, including previously defined browsing
preferences, authentication criteria, and browsing history for that user within that domain.

[] AUTHENTICATION and ADVANCED COOKIE MANAGEMENT describe cookies and their application to
webbots in detail.

Your Online Exposure

You may think that you only expose your identity online when you formally register a
username and password with a website, or that your identity is only known at sites where
you've registered. However, a variety of tricks are available to monitor Internet activity, even
when you don't have administration rights to a website. For example, you can learn a lot
about the users of community forums, news servers, or even MySpace by uploading a single-
pixel image, usually a transparent GIF file, to one of those services. While the single-pixel
image is essentially invisible, everybody who accesses a web page containing one also
downloads this seemingly innocuous little image. If things are set up correctly, each web
surfer who downloads a page containing one of these single-pixel images leaves a record in a
server log file, unknowingly recording his or her IP address and file access time. Here are
some of the things you can learn from these log files:

● IP addresses of the web surfers accessing the page

● Frequency that someone with a specific IP address (or domain of origin) visits the page

● Time of day that web surfer visited the web page

● Total traffic the web page receives

file:///D|/!!/final/Ianonymous_browsing_webbots.html (2 von 5) [29.03.2008 23:23:12]

Ianonymous_browsing_webbots.html

● Indications of when traffic to the web page is heavy or light

Once you have a visitor's IP address, you could also identify his or her ISP by performing a
reverse DNS lookup, which converts an IP address into its domain of origin. Many times, a
reverse DNS lookup only reveals someone's ISP, like EarthLink or AOL. And since so many
people (from all over the world) use these ISPs, that information isn't very useful. Other
times, however, the domain name will give you the name of a specific corporation or
organization that downloaded the web page.[]

[] In the late 1990s, Amazon.com used a similar technique, combined with purchase data, to determine
the reading lists of large corporations. For a short while, Amazon.com actually published these lists on its
website. For obvious reasons, this feature was short-lived.

You can also configure the server that hosts the single-pixel image to write a cookie on the
hard drive of the web surfer. With this cookie, you can determine when an individual user
gains access to web pages. If you place your single-pixel image on many web pages that are
visited by a specific Internet user, you can track much of that user's browsing activity.

If you think these threats to one's privacy are too theoretical, consider what happens on a
larger scale with online advertising companies like MySpace, Google, DoubleClick, and
SpecificClick. Given the large number of web pages on which these companies'
advertisements appear, they are capable of tracking a very large percentage of your online
activity. Just consider how many of the websites you visit have advertisements. Then look at
your browser's cookie records (usually available in the privacy settings of your browser, as
shown in Viewing advertisers' cookies) to see how many of these media companies have left
cookies on your computer.

Viewing advertisers' cookies

Armed with what you know now, are you wondering why advertising companies write cookies
to your hard drive? Are you questioning why the cookie in Viewing advertisers' cookies
doesn't expire for nearly three years? I hope that this information freaks you out just a little
and whets your appetite to learn more about writing anonymizing webbot proxies.

Proxied Environments

Typically, in corporate settings, proxies sit between a private network and the Internet, and
all traffic that moves between the two is forced through the proxy. In the process, the proxy
replaces each individual's identity with its own, and thereby "hides" the web surfer from the

file:///D|/!!/final/Ianonymous_browsing_webbots.html (3 von 5) [29.03.2008 23:23:12]

http://amazon.com/
http://amazon.com/

Ianonymous_browsing_webbots.html

webserver's log files, as shown in Hiding behind a proxy.

Hiding behind a proxy

Since the web surfer in Hiding behind a proxy is the only proxy user, no anonymity is achieved
—the proxy is synonymous with the person using it. Ambiguity, and eventually anonymity, is
achieved as more people use the same proxy, as in Achieving anonymity through numbers.

Achieving anonymity through numbers

file:///D|/!!/final/Ianonymous_browsing_webbots.html (4 von 5) [29.03.2008 23:23:12]

Ianonymous_browsing_webbots.html

The log files recorded by the webservers become ambiguous as more people use the proxy
because the proxy's identity no longer represents a single web surfer. As the number of
people using the proxy increases, the identity of individual users decreases. While anonymity
is not generally an objective for proxies of this type, it is a side effect of operation, and the
focus of this chapter's project.

file:///D|/!!/final/Ianonymous_browsing_webbots.html (5 von 5) [29.03.2008 23:23:12]

Ianonymity_with_proxies.html

ANONYMOUS BROWSING WEBBOTS

The Internet is a public place, and as in any other community, web surfers leave telltale clues
of where they've been and what they've done. While many people feel anonymous online, the
fact is that server logs, cookies, and browser caches leave little doubt to what happens on the
Internet. While total online anonymity is nearly impossible, you can cloak your activity
through a specialized webbot called a proxybot, or simply a proxy. This chapter investigates
applications for proxies and later explores a webbot proxy project that provides anonymous
web browsing.

Anonymity with Proxies

A proxy is a special type of webbot that serves as an intermediary between webservers and
clients. Proxies have many uses including banning people from browsing prohibited websites,
blocking banner advertisements, and inhibiting suspect scripts from running on browsers.

One of the more popular proxies is Squid, a web proxy that, among other things, saves
bandwidth on large networks by caching frequently downloaded images.[] Squid, along with
most other proxies, also converts private network IP addresses into a single public address
through a process called Network Address Translation (NAT).

[] Information about Squid, a popular open source web proxy cache, is available at http://www.squid-
cache.org. In addition to caching frequently downloaded images, Squid also caches DNS lookups, failed
requests, and many other Internet objects.

A side effect of proxy use is that proxies create a potentially anonymous browsing
environment because individual network addresses are pooled into a single network address.
Since only the proxied network address is visible to web servers, the identities of the
individual surfers remain unknown. Anonymity is the focus of this chapter, but before we start
that discussion, a quick review of the liabilities of browsing in a non-proxied environment is in
order.

Non-proxied Environments

In non-proxied network environments, web clients are totally exposed to the servers they
access. This is important in terms of privacy because servers maintain records of requesting
IP addresses, the files accessed, and the times they were accessed, as depicted in Browsing
in a non-proxied network environment.

Browsing in a non-proxied network environment

file:///D|/!!/final/Ianonymity_with_proxies.html (1 von 5) [29.03.2008 23:23:13]

http://www.squid-cache.org/
http://www.squid-cache.org/

Ianonymity_with_proxies.html

Additionally, webservers may store small records of browsing activity on clients' hard drives in
the form of cookies.[] By reading cookies on a user's successive visits to the same Internet
domain, webservers determine a variety of information, including previously defined browsing
preferences, authentication criteria, and browsing history for that user within that domain.

[] AUTHENTICATION and ADVANCED COOKIE MANAGEMENT describe cookies and their application to
webbots in detail.

Your Online Exposure

You may think that you only expose your identity online when you formally register a
username and password with a website, or that your identity is only known at sites where
you've registered. However, a variety of tricks are available to monitor Internet activity, even
when you don't have administration rights to a website. For example, you can learn a lot
about the users of community forums, news servers, or even MySpace by uploading a single-
pixel image, usually a transparent GIF file, to one of those services. While the single-pixel
image is essentially invisible, everybody who accesses a web page containing one also
downloads this seemingly innocuous little image. If things are set up correctly, each web
surfer who downloads a page containing one of these single-pixel images leaves a record in a
server log file, unknowingly recording his or her IP address and file access time. Here are
some of the things you can learn from these log files:

● IP addresses of the web surfers accessing the page

● Frequency that someone with a specific IP address (or domain of origin) visits the page

● Time of day that web surfer visited the web page

● Total traffic the web page receives

file:///D|/!!/final/Ianonymity_with_proxies.html (2 von 5) [29.03.2008 23:23:13]

Ianonymity_with_proxies.html

● Indications of when traffic to the web page is heavy or light

Once you have a visitor's IP address, you could also identify his or her ISP by performing a
reverse DNS lookup, which converts an IP address into its domain of origin. Many times, a
reverse DNS lookup only reveals someone's ISP, like EarthLink or AOL. And since so many
people (from all over the world) use these ISPs, that information isn't very useful. Other
times, however, the domain name will give you the name of a specific corporation or
organization that downloaded the web page.[]

[] In the late 1990s, Amazon.com used a similar technique, combined with purchase data, to determine
the reading lists of large corporations. For a short while, Amazon.com actually published these lists on its
website. For obvious reasons, this feature was short-lived.

You can also configure the server that hosts the single-pixel image to write a cookie on the
hard drive of the web surfer. With this cookie, you can determine when an individual user
gains access to web pages. If you place your single-pixel image on many web pages that are
visited by a specific Internet user, you can track much of that user's browsing activity.

If you think these threats to one's privacy are too theoretical, consider what happens on a
larger scale with online advertising companies like MySpace, Google, DoubleClick, and
SpecificClick. Given the large number of web pages on which these companies'
advertisements appear, they are capable of tracking a very large percentage of your online
activity. Just consider how many of the websites you visit have advertisements. Then look at
your browser's cookie records (usually available in the privacy settings of your browser, as
shown in Viewing advertisers' cookies) to see how many of these media companies have left
cookies on your computer.

Viewing advertisers' cookies

Armed with what you know now, are you wondering why advertising companies write cookies
to your hard drive? Are you questioning why the cookie in Viewing advertisers' cookies
doesn't expire for nearly three years? I hope that this information freaks you out just a little
and whets your appetite to learn more about writing anonymizing webbot proxies.

Proxied Environments

Typically, in corporate settings, proxies sit between a private network and the Internet, and
all traffic that moves between the two is forced through the proxy. In the process, the proxy
replaces each individual's identity with its own, and thereby "hides" the web surfer from the

file:///D|/!!/final/Ianonymity_with_proxies.html (3 von 5) [29.03.2008 23:23:13]

http://amazon.com/
http://amazon.com/

Ianonymity_with_proxies.html

webserver's log files, as shown in Hiding behind a proxy.

Hiding behind a proxy

Since the web surfer in Hiding behind a proxy is the only proxy user, no anonymity is achieved
—the proxy is synonymous with the person using it. Ambiguity, and eventually anonymity, is
achieved as more people use the same proxy, as in Achieving anonymity through numbers.

Achieving anonymity through numbers

file:///D|/!!/final/Ianonymity_with_proxies.html (4 von 5) [29.03.2008 23:23:13]

Ianonymity_with_proxies.html

The log files recorded by the webservers become ambiguous as more people use the proxy
because the proxy's identity no longer represents a single web surfer. As the number of
people using the proxy increases, the identity of individual users decreases. While anonymity
is not generally an objective for proxies of this type, it is a side effect of operation, and the
focus of this chapter's project.

file:///D|/!!/final/Ianonymity_with_proxies.html (5 von 5) [29.03.2008 23:23:13]

Ithe_anonymizer_project.html

The Anonymizer Project

In many respects, this anonymizer is like the previously described network proxies. However,
this anonymizer is web-based, in contrast to most (corporate) proxies, which provide the only
path from a local network to the Internet. Since all traffic between the private network and
the Internet passes through these network proxies, it is simpler for them to modify traffic.
Our web-based proxy, in contrast, runs on a web script and must contain the traffic within a
browser. What this means is that every link passing through a web-based proxy must be
modified to keep the web surfer on the anonymizer's web page, which is shown in The
anonymous browsing proxy.

The anonymous browsing proxy

The user interface of the anonymous browsing proxy provides a place for web surfers to enter
the URL of the website they wish to surf anonymously. After clicking Go, the page appears in
the browser window, and the webserver, where the content originates, records the identity of
the anonymizer. Because of the proxy, the webserver has no knowledge of the identity of the
web surfer.

In order for the proxy to work, all web surfing activity must happen within the anonymizer
script. If someone clicks a link, he or she must return to the anonymizer and not end up at
the website referenced by the link. Therefore, before sending the web page to the browser,
the anonymizer changes each link address to reference itself, while passing a Base64-
encoded address of the link in a variable, as shown in the status bar at the bottom of The
anonymous browsing proxy.

file:///D|/!!/final/Ithe_anonymizer_project.html (1 von 4) [29.03.2008 23:23:14]

Ithe_anonymizer_project.html

Note: This is a simple anonymizer, designed for study; it is not suitable for use in production
environments. It will not work correctly on web pages that rely on forms, cookies, JavaScript,
frames, or advanced web development techniques.

Writing the Anonymizer

The following scripts describe the anonymizer's design. The complete script for the
anonymizer project is available on this book's website.[] For clarity, only script highlights are
described in detail here.

[] This book's website is available at http://www.schrenk.com/nostarch/webbots.

Downloading and Preparing the Target Web Page

After initializing libraries and variables, which is done in Listing 10-1, the anonymizer
downloads and prepares the target web page for later processing. Note that the anonymizer
makes use of the parsing and HTTP libraries described in FUNDAMENTAL CONCEPTS AND
TECHNIQUES.

Code View:

Download the target web page
$page_array = http_get($target_webpage), $ref="", GET, $data_array="", EXCL_HEAD);

Clean up the HTML formatting with Tidy
$web_page = tidy_html($page_array['FILE']);

Get the base page address so we can create fully resolved addresses later
$page_base = get_base_page_address($page_array['STATUS']['url']);

Remove JavaScript and HTML comments from web page
$web_page = remove($web_page, "<script", "</script>");
$web_page = remove($web_page, "<!--", "-->");

Listing 10-1: Downloading and prepping the target web page

Modifying the <base> Tag

After prepping the target web page, the <base> tag is either inserted or modified so all
relative page addresses will properly resolve from the anonymizer's URL. This is shown in
Listing 10-2.

Code View:

file:///D|/!!/final/Ithe_anonymizer_project.html (2 von 4) [29.03.2008 23:23:14]

http://www.schrenk.com/nostarch/webbots

Ithe_anonymizer_project.html

$new_base_value = "<base href=\"".$page_base."\">";
if(!stristr($web_page, "<base"))
 {
 # If there is a <head>, insert <base> at beginning of <head></head>
 if(stristr($web_page, "<head"))
 {
 $web_page = eregi_replace("<head>", "<head>\n".$new_base_value, $web_page);
 }
 # Else insert a <head><base></head> at beginning of web page
 else
 {
 $web_page = "</head>\n".$new_base_value."\n</head>" . $web_page;
 }
 }

Listing 10-2: Adjusting the target page's <base> tag

Parsing the Links

The next step is to create an array of all the links on the page, which is done with the script in
Listing 10-3.

$a_tag_array = parse_array($web_page, "<a", ">");

Listing 10-3: Creating an array of all the links (anchor tags)

Substituting the Links

After parsing links into an array, the code loops through each link. This loop, shown in Listing
10-4, performs the following steps:

1.

Parse the hyper-reference attribute for each link.

2.

Convert the hyper-reference into a fully resolved URL.

3.

Convert the hyper-reference into the following format:

anonymizer_address?v= hyper referencebase64_encoded

4.

Substitute the original hyper-reference with the URL (representing the

file:///D|/!!/final/Ithe_anonymizer_project.html (3 von 4) [29.03.2008 23:23:14]

Ithe_anonymizer_project.html

anonymizer_address and the original link passed as a variable) created in the
previous step.

Code View:

for($xx=0; $xx<count($a_tag_array); $xx++)
 {
 // Get the original href value
 $original_href = get_attribute($a_tag_array[$xx], "href");
 // Convert href to a fully resolved address
 $fully_resolved_href = get_fully_resolved_address($original_href, $page_base);

 // Substitute the original href with "this_page?v=fully resolved address"
 $substitution_tag = str_replace($original_href,
 trim($this_page."?v=".base64_encode($fully_resolved_href)),
 $a_tag_array[$xx]);

 // Substitute the original tag with the new one
 $web_page = str_replace($a_tag_array[$xx], $substitution_tag, $web_page);
 }

Listing 10-4: Substituting links with coded links that re-reference the anonymizer

Displaying the Proxied Web Page

Once all the links are processed, the anonymizer sends the newly processed web page to the
requesting web surfer's browser, as shown in Listing 10-5.

Display the processed target web page
echo $web_page;

Listing 10-5: Displaying the proxied web page

That's all there is to it. The important thing is to design the anonymizer so all links displayed
in the anonymizer's window re-reference the anonymizer with a $_GET variable that identifies
the actual page to download. This is really not that hard to do, but as mentioned earlier, this
anonymizer does not handle forms, cookies, JavaScript, frames, or more advanced web
design techniques. That being said, it's a good place to start, and you should use this script to
further explore the concept of anonymizing. With a few modifications, you could write web
proxies that modify web content in a variety of ways.

file:///D|/!!/final/Ithe_anonymizer_project.html (4 von 4) [29.03.2008 23:23:14]

Ifinal_thoughts_id7.html

Final Thoughts

It is important to note that anonymizers do not always provide complete anonymity.
Anonymous browsing techniques rely on many users to mask the actions of individuals, and
they are not foolproof. However, even simple anonymizers hide a web surfer's ISP and
country of origin. Moreover, barring a disclosure of the anonymizer's server logs, users should
remain anonymous; even if those logs were examined, they would still have to be referenced
with the logs of ISPs to identify web surfers. Advanced anonymizers complicate issues further
by making page requests from a variety of domains, which adds more confusion to server
logs and users' identities. An anonymizer's access log files gain further protection if you host
anonymizers on encrypted servers in countries that don't honor your home country's
subpoenas for server log records.[] (You didn't hear me make that recommendation,
however.)

[] Perhaps the most famous of these countries is Sealand, a sovereign country built on an abandoned
World War II anti-aircraft platform seven miles off the coast of England. More information about Sealand
is available at its official website, http://www.sealandgov.org.

People argue about whether or not anonymous browsing is a good thing. On one hand, it can
hamper the tracking of cyber criminals. However, anonymizers also provide freedom to
people living in countries that severely limit what they can view online. I have also found
anonymizers to be helpful in cases where I needed to view a website from a remote domain in
order to debug security certificates. I don't have a lot of personal experience with other
people's anonymizers, so I won't make any recommendations, but if these types of programs
interest you, a quick Google search will reveal that many are available.

file:///D|/!!/final/Ifinal_thoughts_id7.html [29.03.2008 23:23:15]

http://www.sealandgov.org/

Isearch_ranking_webbots.html

SEARCH-RANKING WEBBOTS

Every day, millions of people find what they need online through search websites. If you own
an online business, your search ranking may have far-reaching effects on that business. A
higher-ranking search result should yield higher advertising revenue and more customers.
Without knowing your search rankings, you have no way to measure how easy it is for people
to find your web page, nor will you have a way to gauge the success of your attempts to
optimize your web pages for search engines.

Manually finding your search ranking is not as easy as it sounds, especially if you are
interested in the ranking of many pages with an assortment of search terms. If your web page
appears on the first page of results, it's easy to find, but if your page is listed somewhere on
the sixth or seventh page, you'll spend a lot of time figuring out how your website is ranked.
Even searches for relatively obscure terms can return a large number of pages. (A recent
Google search on the term tapered drills, for example, yielded over 44,000 results.) Since
search engine spiders continually update their records, your search ranking may also change
on a daily basis. Complicating the matter more, a web page will have a different search
ranking for every search term. Manually checking web page search rankings with a browser
does not make sense—webbots, however, make this task nearly trivial.

With all the search variations for each of your web pages, there is a need for an automated
service to determine your web page's search ranking. A quick Internet search will reveal
several such services, like the one shown in A search-ranking service, GoogleRankings.com.

A search-ranking service, GoogleRankings.com

This chapter demonstrates how to design a webbot that finds a search ranking for a domain
and a search term. While this project's target is on the book's website, you can modify this

file:///D|/!!/final/Isearch_ranking_webbots.html (1 von 3) [29.03.2008 23:23:16]

http://googlerankings.com/

Isearch_ranking_webbots.html

webbot to work on a variety of available search services.[] This example project also shows
how to perform an insertion parse, which injects parsing tags within a downloaded web page
to make parsing easier.

[] If you modify this webbot to work on other search services, make sure you are not violating their
respective Terms of Service agreements.

Description of a Search Result Page

Most search engines return two sets of results for any given search term, as shown in Parts of
a search results page. The most prominent search results are paid placements, which are
purchased advertisements made to look something like search results. The other set of search
results is made up of organic placements (or just organics), which are non-sponsored search
results.

This chapter's project focuses on organics because they're the links that people are most
likely to follow. Organics are also the search results whose visibility is improved through
Search Engine Optimization.

Parts of a search results page

file:///D|/!!/final/Isearch_ranking_webbots.html (2 von 3) [29.03.2008 23:23:16]

Isearch_ranking_webbots.html

The other part of the search result page we'll focus on is the Next link. This is important
because it tells our webbot where to find the next page of search results.

For our purposes, the search ranking is determined by counting the number of pages in the
search results until the subject web page is first found. The page number is then combined
with the position of the subject web page within the organic placements on that page. For
example, if a web page is the sixth organic on the first result page, it has a search ranking of
1.6. If a web page is the third organic on the second page, its search ranking is 2.3.

file:///D|/!!/final/Isearch_ranking_webbots.html (3 von 3) [29.03.2008 23:23:16]

Idescription_of_a_search_result_page.html

SEARCH-RANKING WEBBOTS

Every day, millions of people find what they need online through search websites. If you own
an online business, your search ranking may have far-reaching effects on that business. A
higher-ranking search result should yield higher advertising revenue and more customers.
Without knowing your search rankings, you have no way to measure how easy it is for people
to find your web page, nor will you have a way to gauge the success of your attempts to
optimize your web pages for search engines.

Manually finding your search ranking is not as easy as it sounds, especially if you are
interested in the ranking of many pages with an assortment of search terms. If your web page
appears on the first page of results, it's easy to find, but if your page is listed somewhere on
the sixth or seventh page, you'll spend a lot of time figuring out how your website is ranked.
Even searches for relatively obscure terms can return a large number of pages. (A recent
Google search on the term tapered drills, for example, yielded over 44,000 results.) Since
search engine spiders continually update their records, your search ranking may also change
on a daily basis. Complicating the matter more, a web page will have a different search
ranking for every search term. Manually checking web page search rankings with a browser
does not make sense—webbots, however, make this task nearly trivial.

With all the search variations for each of your web pages, there is a need for an automated
service to determine your web page's search ranking. A quick Internet search will reveal
several such services, like the one shown in A search-ranking service, GoogleRankings.com.

A search-ranking service, GoogleRankings.com

This chapter demonstrates how to design a webbot that finds a search ranking for a domain
and a search term. While this project's target is on the book's website, you can modify this

file:///D|/!!/final/Idescription_of_a_search_result_page.html (1 von 3) [29.03.2008 23:23:17]

http://googlerankings.com/

Idescription_of_a_search_result_page.html

webbot to work on a variety of available search services.[] This example project also shows
how to perform an insertion parse, which injects parsing tags within a downloaded web page
to make parsing easier.

[] If you modify this webbot to work on other search services, make sure you are not violating their
respective Terms of Service agreements.

Description of a Search Result Page

Most search engines return two sets of results for any given search term, as shown in Parts of
a search results page. The most prominent search results are paid placements, which are
purchased advertisements made to look something like search results. The other set of search
results is made up of organic placements (or just organics), which are non-sponsored search
results.

This chapter's project focuses on organics because they're the links that people are most
likely to follow. Organics are also the search results whose visibility is improved through
Search Engine Optimization.

Parts of a search results page

file:///D|/!!/final/Idescription_of_a_search_result_page.html (2 von 3) [29.03.2008 23:23:17]

Idescription_of_a_search_result_page.html

The other part of the search result page we'll focus on is the Next link. This is important
because it tells our webbot where to find the next page of search results.

For our purposes, the search ranking is determined by counting the number of pages in the
search results until the subject web page is first found. The page number is then combined
with the position of the subject web page within the organic placements on that page. For
example, if a web page is the sixth organic on the first result page, it has a search ranking of
1.6. If a web page is the third organic on the second page, its search ranking is 2.3.

file:///D|/!!/final/Idescription_of_a_search_result_page.html (3 von 3) [29.03.2008 23:23:17]

Iwhat_the_search_ranking_webbot_does.html

What the Search-Ranking Webbot Does

This webbot (actually a specialized spider) submits a search term to a search web page and
looks for the subject web page in the search results. If the webbot finds the subject web page
within the organic search results, it reports the web page's ranking. If, however, the webbot
doesn't find the subject in the organics on that page, it downloads the next page of search
results and tries again. The webbot continues searching deeper into the pages of search
results until it finds a link to the subject web page. If the webbot can't find the subject web
page within a specified number of pages, it will stop looking and report that it could not find
the web page within the number of result pages searched.

file:///D|/!!/final/Iwhat_the_search_ranking_webbot_does.html [29.03.2008 23:23:18]

Irunning_the_search_ranking_webbot.html

Running the Search-Ranking Webbot

Running the search-ranking webbot shows the output of our search-ranking webbot. In each
case, there must be both a test web page (the page we're looking for in the search results)
and a search term. In our test case, the webbot is looking for the ranking of http://www.

loremianam.com, with a search term of webbots.[] Once the webbot is run, it only takes a few
seconds to determine the search ranking for this combination of web page and search term.

[] Unlike a real search service, the demonstration search pages on the book's website return the same
page set regardless of the search term used.

Running the search-ranking webbot

file:///D|/!!/final/Irunning_the_search_ranking_webbot.html [29.03.2008 23:23:19]

http://www.loremianam.com/
http://www.loremianam.com/

Ihow_the_search_ranking_webbot_works.html

How the Search-Ranking Webbot Works

Our search-ranking webbot uses the process detailed in Search-ranking webbot at work to
determine the ranking of a website using a specific search term. These are the steps:

1.

Initialize variables for use, including the search criteria and the subject web page.

2.

Fetch the subject web page from the search engine using the search term.

3.

Parse the organic search results from the advertisement and navigation text.

4.

Determine whether or not the desired website appears in this page's search results.

a.

If the desired website is not found, keep looking deeper into the search
results until the desired web page is found or the maximum number of
attempts has been used.

b.

If the desired website is found, record the ranking.

5.

Report the results.

Search-ranking webbot at work

file:///D|/!!/final/Ihow_the_search_ranking_webbot_works.html (1 von 2) [29.03.2008 23:23:20]

Ihow_the_search_ranking_webbot_works.html

file:///D|/!!/final/Ihow_the_search_ranking_webbot_works.html (2 von 2) [29.03.2008 23:23:20]

Ithe_search_ranking_webbot_script.html

The Search-Ranking Webbot Script

The following section describes key aspects of the webbot's script. The latest version of this
script is available for download at this book's website.

Note: If you want to experiment with the code, you should download the webbot's script. I have
simplified the scripts shown here for demonstration purposes.

Initializing Variables

Initialization consists of including libraries and identifying the subject website and search
criteria, as shown in Listing 11-1.

Initialization
// Include libraries
include("LIB_http.php");
include("LIB_parse.php");

// Identify the search term and URL combination
$desired_site = "www.loremianam.com";
$search_term = "webbots";
// Initialize other miscellaneous variables
$page_index = 0;
$url_found = false;
$previous_target = "";
// Define the target website and the query string for the search term
$target = "http://www.schrenk.com/nostarch/webbots/search
$target = $target."?q=".urlencode(trim($search_term));
End: Initialization

Listing 11-1: Initializing the search-ranking webbot

The target is the page we're going to download, which in this case is a demonstration search
page on this book's website. That URL also includes the search term in the query string. The
webbot URL encodes the search term to guarantee that none of the characters in the search
term conflict with reserved URL character combinations. For example, the PHP built-in
function urlencode() changes Karen Susan Terri to Karen+Susan+Terri. If the search term
contains characters that are illegal in a URL—for example, the comma or ampersand in Karen,
Susan & Terri—it would be safely encoded to Karen%2C+Susan+%26+Terri.

Starting the Loop

The webbot loops through the main section of the code, which requests pages of search
results and searches within those pages for the desired site, as shown in Listing 11-2.

file:///D|/!!/final/Ithe_search_ranking_webbot_script.html (1 von 6) [29.03.2008 23:23:21]

Ithe_search_ranking_webbot_script.html

Initialize loop
while($url_found==false)
 {
 $page_index++;
 echo "Searching for ranking on page #$page_index\n";

Listing 11-2: Starting the main loop

Within the loop, the script removes any HTML special characters from the target to ensure
that the values passed to the target web page only include legal characters, as shown in
Listing 11-3. In particular, this step replaces & with the preferred & character.

 // Verify that there are no illegal characters in the URLs
 $target = html_entity_decode($target);
 $previous_target = html_entity_decode($previous_target);

Listing 11-3: Formatting characters to create properly formatted URLs

This particular step should not be confused with URL encoding, because while & is a legal
character to have in a URL, it will be interpreted as $_GET['amp'] and return invalid results.

Fetching the Search Results

The webbot tries to simulate the action of a person who is manually looking for a website in a
set of search results. The webbot uses two techniques to accomplish this trick. The first is the
use of a random delay of three to six seconds between fetches, as shown in Listing 11-4.

 sleep(rand(3, 6));

Listing 11-4: Implementing a random delay

Taking this precaution will make it less obvious that a webbot is parsing the search results.
This a good practice for all webbots you design.

The second technique simulates a person manually clicking the Next button at the bottom of
the search result page to see the next page of search results. Our webbot "clicks" on the link
by specifying a referer variable, which in our case is always the target used in the previous
iteration of the loop, as shown in Listing 11-5. On the initial fetch, this value is an empty
string.

 $result = http_get($target, $ref=$previous_target, GET, "", EXCL_HEAD);
 $page = $result['FILE'];

Listing 11-5: Downloading the next page of search results from the target and specifying a
referer variable

The actual contents of the fetch are returned in the FILE element of the returned $result
array.

file:///D|/!!/final/Ithe_search_ranking_webbot_script.html (2 von 6) [29.03.2008 23:23:21]

Ithe_search_ranking_webbot_script.html

Parsing the Search Results

This webbot uses a parsing technique referred to as an insertion parse because it inserts
special parsing tags into the fetched web page to facilitate an easy parse (and easy debug).
Consider using the insertion parse technique when you need to parse multiple blocks of data
that share common separators. The insertion parse is particularly useful when web pages
change frequently or when the information you need is buried deep within a complicated
HTML table structure. The insertion technique also makes your code much easier to debug,
because by viewing where you insert your parsing tags, you can figure out where your
parsing script thinks the desired data is.

Think of the text you want to parse as blocks of text surrounded by other blocks of text you
don't need. Imagine that the web page you want to parse looks like Desired data depicted in
dark gray, where the desired text is depicted as the dark blocks. Find the beginning of the
first block you want to parse. Strip away everything prior to this point and insert a <data> tag
at the beginning of this block (Initiating an insertion parse). Replace the text that separates
the blocks of text you want to parse with </data> and <data> tags. Now every block of text
you want to parse is sandwiched between <data> and </data> tags (see Delimiting desired
text with <data> tags). This way, the text can be easily parsed with the parse_array()
function. The final <data> tag is an artifact and is ignored.

Desired data depicted in dark gray

Initiating an insertion parse

Delimiting desired text with <data> tags

file:///D|/!!/final/Ithe_search_ranking_webbot_script.html (3 von 6) [29.03.2008 23:23:21]

Ithe_search_ranking_webbot_script.html

The script that performs the insertion parse is straightforward, but it depends on accurately
identifying the text that surrounds the blocks we want to parse. The first step is to locate the
text that identifies that start of the first block. The only way to do this is to look at the HTML
source code of the search results. A quick examination reveals that the first organic is
immediately preceded by <!--@gap;-->.[] The next step is to find some common text that
separates each organic search result. In this case, the search terms are also separated by
<!--@gap;-->.

[] Comments are common parsing landmarks, especially when web pages are created with an HTML
generator like Adobe Dreamweaver.

To place the <data> tag at the beginning of the first block, the webbot uses the strops()
function to determine where the first block of text begins. That position is then used in
conjunction with substr() to strip away everything before the first block. Then a simple
string concatenation places a <data> tag in front of the first block, as shown in Listing 11-6.

 // We need to place the first <data> tag before the first piece
 // of desired data, which we know starts with the first occurrence
 // of $separator
 $separator = "<!--@gap;-->";

 // Find first occurrence of $separator
 $beg_position = strpos($page, $separator);

 // Get rid of everything before the first piece of desired data
 // and insert a <data> tag before the data
 $page = substr($page, $beg_position, strlen($page));
 $page = "<data>".$page;

Listing 11-6: Inserting the initial insertion parse tag (as in Initiating an insertion parse)

The insertion parse is completed with the insertion of the </data> and <data> tags. The
webbot does this by simply replacing the block separator that we identified earlier with our
insertion tags, as shown in Listing 11-7.

 $page = str_replace($separator, "</data> <data>", $page);

 // Put all the desired content into an array
 $desired_content_array = parse_array($page, "<data>", "</data>", EXCL);

file:///D|/!!/final/Ithe_search_ranking_webbot_script.html (4 von 6) [29.03.2008 23:23:21]

Ithe_search_ranking_webbot_script.html

Listing 11-7: Inserting the insertion delimiter tags (as in Delimiting desired text with <
data> tags)

Once the insertion is complete, each block of text is sandwiched between tags that allow the
webbot to use the parse_array() function to create an array in which each array element is
one of the blocks. Could you perform this parse without the insertion parse technique? Of
course. However, the insertion parse is more flexible and easier to debug, because you have
more control over where the delimiters are placed, and you can see where the file will be
parsed before the parse occurs.

Once the search results are parsed and placed into an array, it's a simple process to compare
them with the web page we're ranking, as in Listing 11-8.

Code View:

 for($page_rank=0; $page_rank<count($desired_content_array); $page_rank++)
 {
 // Look for the $subject_site to appear in one of the listings
 if(stristr($desired_content_array[$page_rank], $subject_site))
 {
 $url_found_rank_on_page = $page_rank;
 $url_found=true;
 }
 }

Listing 11-8: Determining if an organic matches the subject web page

If the web page we're looking for is found, the webbot records its ranking and sets a flag to
tell the webbot to stop looking for additional occurrences of the web page in the search
results.

If the webbot doesn't find the website in this page, it finds the URL for the next page of
search results. This URL is the link that contains the string Next. The webbot finds this URL by
placing all the links into an array, as shown in Listing 11-9.

 // Create an array of links on this page
 $search_links = parse_array($result['FILE'], "<a", "", EXCL);

Listing 11-9: Parsing the page's links into an array

The webbot then looks at each link until it finds the hyperlink containing the word Next. Once
found, it sets the referer variable with the current target and uses the new link as the next
target. It also inserts a random three-to-six second delay to simulate human interaction, as
shown in Listing 11-10.

Code View:

 for($xx=0; $xx<count($search_links); $xx++)

file:///D|/!!/final/Ithe_search_ranking_webbot_script.html (5 von 6) [29.03.2008 23:23:21]

Ithe_search_ranking_webbot_script.html

 {
 if(strstr($search_links[$xx], "Next"))
 {
 $previous_target = $target;
 $target = get_attribute($search_links[$xx], "href");

 // Remember that this path is relative to the target page, so add
 // protocol and domain
 $target = "http://www.schrenk.com/nostarch/webbots/search/".$target;
 }
 }

Listing 11-10: Looking for the URL for the next page of search results

file:///D|/!!/final/Ithe_search_ranking_webbot_script.html (6 von 6) [29.03.2008 23:23:21]

Ifinal_thoughts_id8.html

Final Thoughts

Now that you know how to write a webbot that determines search rankings and how to
perform an insertion parse, here are a few other things to think about.

Be Kind to Your Sources

Remember that search engines do not make money by displaying search results. The search-
ranking webbot is a concept study and not a suggestion for a product that you should develop
and place in a production environment, where the public uses it. Also—and this is important—
you should not violate any search website's Terms of Service agreement when deploying a
webbot like this one.

Search Sites May Treat Webbots Differently Than Browsers

Experience has taught me that some search sites serve pages differently if they think they're
dealing with an automated web agent. If you leave the default setting for the agent name (in
LIB_http) set to Test Webbot, your programs will definitely look like webbots instead of
browsers.

Spidering Search Engines Is a Bad Idea

It is not a good idea to spider Google or any other search engine. I once heard (at a hacking
conference) that Google limits individual IP addresses to 250 page requests a day, but I have
not verified this. Others have told me that if you make the page requests too quickly, Google
will stop replying after sending three result pages. Again, this is unverified, but it won't be an
issue if you obey Google's Terms of Service agreement.

What I can verify is that I have, in other circumstances, written spiders for clients where
websites did limit the number of daily page fetches from a particular IP address to 250. After
the 251st fetch within a 24-hour period, the service ignored all subsequent requests coming
from that IP address. For one such project, I put a spider on my laptop and ran it in every Wi-
Fi-enabled coffee house I could find in South Minneapolis. This tactic involved drinking a lot of
coffee, but it also produced a good number of unique IP addresses for my spider, and I was
able to complete the job more quickly than if I had run the spider (in a limited capacity) over
a period of many days in my office.

Despite Google's best attempts to thwart automated use of its search results, there are
rumors indicating that MSN has been spidering Google to collect records for its own search
engine.[]

[] Jason Dowdell, "Microsoft Crawling Google Results For New Search Engine?" November 11, 2004,
WebProNews (http://www.webpronews.com/insiderreports/searchinsider/wpn-49-
20041111MicrosoftCrawlingGoogleResultsForNewSearchEngine.html).

If you're interested in these issues, you should read KEEPING WEBBOTS OUT OF TROUBLE,
which describes how to respectfully treat your target websites.

Familiarize Yourself with the Google API

file:///D|/!!/final/Ifinal_thoughts_id8.html (1 von 2) [29.03.2008 23:23:22]

http://www.webpronews.com/insiderreports/searchinsider/wpn-49-20041111MicrosoftCrawlingGoogleResultsForNewSearchEngine.html
http://www.webpronews.com/insiderreports/searchinsider/wpn-49-20041111MicrosoftCrawlingGoogleResultsForNewSearchEngine.html

Ifinal_thoughts_id8.html

If you are interested in pursuing projects that use Google's data, you should investigate the
Google developer API, a service (or Application Program Interface), which makes it easier for
developers to use Google in noncommercial applications. At the time of this writing, Google
provided information about its developer API at http://www.google.com/apis/index.html.

file:///D|/!!/final/Ifinal_thoughts_id8.html (2 von 2) [29.03.2008 23:23:22]

http://www.google.com/apis/index.html

Ifurther_exploration_id3.html

Further Exploration

Here are some other ways to leverage the techniques you learned in this chapter.

● Design another search-ranking webbot to examine the paid advertising listings instead
of the organic listings.

● Write a similar webbot to run daily over a period of many days to measure how
changing a web page's meta tags or content affects the page's search engine ranking.

● Design a webbot that examines web page rankings using a variety of search terms.

● Use the techniques explained in this chapter to examine how search rankings differ
from search engine to search engine.

file:///D|/!!/final/Ifurther_exploration_id3.html [29.03.2008 23:23:23]

Iaggregation_webbots.html

AGGREGATION WEBBOTS

If you've ever researched topics online, you've no doubt found the need to open multiple web
browsers, each loaded with a different resource. The practice of viewing more than one web
page at once has become so common that all major browsers now support tabs that allow
surfers to easily view multiple websites at once. Another approach to simultaneously viewing
more than one website is to consolidate information with an aggregation webbot.

People are doing some pretty cool things with aggregation scripts these days. To whet your
appetite for what's possible with an aggregation webbot, look at the web page found at http://
www.housingmaps.com. This bot combines real estate listings from http://www.craigslist.org
with Google Maps. The results are maps that plot the locations and descriptions of homes for
sale, as shown in craigslist real estate ads aggregated with Google Maps.

craigslist real estate ads aggregated with Google Maps

Choosing Data Sources for Webbots

Aggregation webbots can use data from a variety of places; however, some data sources are
better than others. For example, your webbots can parse information directly from web
pages, as you did in PRICE-MONITORING WEBBOTS, but this should never be your first
choice. Since web page content is intermixed with page formatting and web pages are

file:///D|/!!/final/Iaggregation_webbots.html (1 von 2) [29.03.2008 23:23:24]

http://www.housingmaps.com/
http://www.housingmaps.com/
http://www.craigslist.org/

Iaggregation_webbots.html

frequently updated, this method is prone to error. When available, a developer should always
use a non-HTML version of the data, as the creators of HousingMaps did. The data shown in
craigslist real estate ads aggregated with Google Maps came from Google Maps' Application

Program Interface (API)[] and craigslist's Real Simple Syndication (RSS) feed.

[] See http://www.google.com/apis/maps.

Application Program Interfaces provide access to specific applications, like Google Maps,
eBay, or Amazon.com. Since APIs are developed for specific applications, the features from
one API will not work in another. Working with APIs tends to be complex and often has a
steep learning curve. Their complexity, however, is mitigated by the vast array of services
they provide. The details of using Google's API (or any other API for that matter) are outside
of the scope of this book.

In contrast to APIs, RSS provides a standardized way to access data from a variety of
sources, like craigslist. RSS feeds are simple to parse and are an ideal protocol for webbot
developers because, unlike unparsed web pages or site-specific APIs, RSS feeds conform to a
consistent protocol. This chapter's example project explores RSS in detail.

file:///D|/!!/final/Iaggregation_webbots.html (2 von 2) [29.03.2008 23:23:24]

http://www.google.com/apis/maps
http://amazon.com/

Ichoosing_data_sources_for_webbots.html

AGGREGATION WEBBOTS

If you've ever researched topics online, you've no doubt found the need to open multiple web
browsers, each loaded with a different resource. The practice of viewing more than one web
page at once has become so common that all major browsers now support tabs that allow
surfers to easily view multiple websites at once. Another approach to simultaneously viewing
more than one website is to consolidate information with an aggregation webbot.

People are doing some pretty cool things with aggregation scripts these days. To whet your
appetite for what's possible with an aggregation webbot, look at the web page found at http://
www.housingmaps.com. This bot combines real estate listings from http://www.craigslist.org
with Google Maps. The results are maps that plot the locations and descriptions of homes for
sale, as shown in craigslist real estate ads aggregated with Google Maps.

craigslist real estate ads aggregated with Google Maps

Choosing Data Sources for Webbots

Aggregation webbots can use data from a variety of places; however, some data sources are
better than others. For example, your webbots can parse information directly from web
pages, as you did in PRICE-MONITORING WEBBOTS, but this should never be your first
choice. Since web page content is intermixed with page formatting and web pages are

file:///D|/!!/final/Ichoosing_data_sources_for_webbots.html (1 von 2) [29.03.2008 23:23:25]

http://www.housingmaps.com/
http://www.housingmaps.com/
http://www.craigslist.org/

Ichoosing_data_sources_for_webbots.html

frequently updated, this method is prone to error. When available, a developer should always
use a non-HTML version of the data, as the creators of HousingMaps did. The data shown in
craigslist real estate ads aggregated with Google Maps came from Google Maps' Application

Program Interface (API)[] and craigslist's Real Simple Syndication (RSS) feed.

[] See http://www.google.com/apis/maps.

Application Program Interfaces provide access to specific applications, like Google Maps,
eBay, or Amazon.com. Since APIs are developed for specific applications, the features from
one API will not work in another. Working with APIs tends to be complex and often has a
steep learning curve. Their complexity, however, is mitigated by the vast array of services
they provide. The details of using Google's API (or any other API for that matter) are outside
of the scope of this book.

In contrast to APIs, RSS provides a standardized way to access data from a variety of
sources, like craigslist. RSS feeds are simple to parse and are an ideal protocol for webbot
developers because, unlike unparsed web pages or site-specific APIs, RSS feeds conform to a
consistent protocol. This chapter's example project explores RSS in detail.

file:///D|/!!/final/Ichoosing_data_sources_for_webbots.html (2 von 2) [29.03.2008 23:23:25]

http://www.google.com/apis/maps
http://amazon.com/

Iexample_aggregation_webbot.html

Example Aggregation Webbot

The webbot described in this chapter combines news from multiple sources. While the scripts
in this chapter only display the data, I'll conclude with suggestions for extending this project
into a webbot that makes decisions and takes action based on the information it finds.

Familiarizing Yourself with RSS Feeds

While your webbot could aggregate information from any online source, this example will
combine news feeds in the RSS format. RSS is a standard for making online content available
for a variety of uses. Originally developed by Netscape in 1997, RSS quickly became a
popular means to distribute news and other online content, including blogs. After AOL and
Sun Microsystems divided up Netscape, the RSS Advisory Board took ownership of the RSS
specification.[]

[] See http://www.rssboard.org.

Today, nearly every news service provides information in the form of RSS. RSS feeds are
actually web pages that package online content in eXtensible Markup Language (XML) format.
Unlike HTML, XML typically lacks formatting information and surrounds data with tags that
make parsing very easy. Generally, RSS feeds provide links to web pages and just enough
information to let you know whether a link is worth clicking, though feeds can also include
complete articles.

The first part of an RSS feed contains a header that describes the RSS data to follow, as
shown in Listing 12-1.

<title>
 RSS feed title
</title>
<link>
 www.Link_to_web_page.com
</link>
<description>
 Description of RSS feed
</description>
<copyright>
 Copyright notice
</copyright>
<lastBuildDate>
 Date of RSS publication
</lastBuildDate>

Listing 12-1: The RSS feed header describes the content to follow

Not all RSS feeds start with the same set of tags, but Listing 12-1 is representative of the
tags you're likely to find on most feeds. In addition to the tags shown, you may also find tags
that specify the language used or define the locations of associated images.

Following the header is a collection of items that contains the content of the RSS feed, as

file:///D|/!!/final/Iexample_aggregation_webbot.html (1 von 5) [29.03.2008 23:23:26]

http://www.rssboard.org/

Iexample_aggregation_webbot.html

shown in Listing 12-2.

<item>
 <title>
 Title of item
 </title>
 <link>
 URL of associated web page for item
 </link>
 <description>
 Description of item
 </description>
 <pubDate>
 Publication date of item
 </pubDate>
</item>
<item>
 Other items may follow, defined as above
</item>

Listing 12-2: Example of RSS item descriptions

Depending on the source, RSS feeds may also use industry-specific XML tags to describe item
contents. The tags shown in Listing 12-2, however, are representative of what you should find
in most RSS data.

Our project webbot takes three RSS feeds and consolidates them on a single web page, as
shown in The aggregation webbot.

The aggregation webbot

The webbot shown in The aggregation webbot summarizes news from three sources. It

file:///D|/!!/final/Iexample_aggregation_webbot.html (2 von 5) [29.03.2008 23:23:26]

Iexample_aggregation_webbot.html

always shows current information because the webbot requests the current news from each
source every time the web page is downloaded.

Writing the Aggregation Webbot

This webbot uses two scripts. The main script, shown in Listing 12-3, defines which RSS feeds
to fetch and how to display them. Both scripts are available at this book's website. The PHP
sections of this script appear in bold.

Code View:

<?
Include libraries
include("LIB_http.php");
include("LIB_parse.php");
include("LIB_rss.php");
?>
<head>
 <style> BODY {font-family:arial; color: black;} </style>
</head>
<table>
 <tr>
 <td valign="top" width="33%">
 <?
 $target = "http://www.nytimes.com/services/xml/rss/nyt/RealEstate.xml";
 $rss_array = download_parse_rss($target);
 display_rss_array($rss_array);
 ?>
 </td>
 <td valign="top" width="33%">
 <?
 $target = "http://www.startribune.com/rss/1557.xml";
 $rss_array = download_parse_rss($target);
 display_rss_array($rss_array);
 ?>
 </td>
 <td valign="top" width="33%">
 <?
 $target = "http://www.mercurynews.com/mld/mercurynews/news/breaking_news/
rss.xml";
 $rss_array = download_parse_rss($target);
 display_rss_array($rss_array);
 ?>
 </td>
 </tr>
</table>

Listing 12-3: Main aggregation webbot script, describing RSS sources and display format

As you can tell from the script in Listing 12-3, most of the work is done in the LIB_rss
library, which we will explore next.

file:///D|/!!/final/Iexample_aggregation_webbot.html (3 von 5) [29.03.2008 23:23:26]

Iexample_aggregation_webbot.html

Downloading and Parsing the Target

As the name implies, the function download_parse_rss() downloads the target RSS feed and
parses the results into an array for later processing, as shown in Listing 12-4.

Code View:

function download_parse_rss($target)
 {
 # Download the RSS page
 $news = http_get($target, "");

 # Parse title and copyright notice
 $rss_array['TITLE'] = return_between($news['FILE'],
 "<title>", "</title>", EXCL);
 $rss_array['COPYRIGHT'] = return_between($news['FILE'],
 "<copyright>", "</copyright>", EXCL);

 # Parse the items
 $item_array = parse_array($news['FILE'], "<item>", "</item>");
 for($xx=0; $xx<count($item_array); $xx++)
 {
 $rss_array['ITITLE'][$xx] = return_between($item_array[$xx],
 "<title>", "</title>", EXCL);
 $rss_array['ILINK'][$xx] = return_between($item_array[$xx],
 "<link>", "</link>", EXCL);
 $rss_array['IDESCRIPTION'][$xx] = return_between($item_array[$xx],
 "<description>", "</description>", EXCL);
 $rss_array['IPUBDATE'][$xx] = return_between($item_array[$xx],
 "<pubDate>", "</pubDate>", EXCL);
 }

 return $rss_array;
 }

Listing 12-4: Downloading the RSS feed and parsing data into an array

In addition to using the http_get() function in the LIB_http library, this script also employs
the return_between() and parse_array() functions to ease the task of parsing the RSS data
from the XML tags.

After downloading and parsing the RSS feed, the data is formatted and displayed with the
function in Listing 12-5. (PHP script appears in bold.)

Code View:

function display_rss_array($rss_array)
 {?>
 <table border="0">
 <!-- Display the article title and copyright notice -->
 <tr>
 <td>

file:///D|/!!/final/Iexample_aggregation_webbot.html (4 von 5) [29.03.2008 23:23:26]

Iexample_aggregation_webbot.html

 <?echo strip_cdata_tags($rss_array['TITLE'])?>

 </td>
 </tr>

 <tr><td><?echo strip_cdata_tags($rss_array['COPYRIGHT'])?></td></tr>

 <!-- Display the article descriptions and links -->
 <?for($xx=0; $xx<count($rss_array['ITITLE']); $xx++)
 {?>
 <tr>
 <td>
 <a href="<?echo strip_cdata_tags($rss_array['ILINK'][$xx])?>">
 <?echo strip_cdata_tags($rss_array['ITITLE'][$xx])?>

 </td>
 </tr>
 <tr>
 <td><?echo strip_cdata_tags($rss_array['IDESCRIPTION'][$xx])?></td>
 </tr>
 <tr>
 <td>

 <?echo strip_cdata_tags($rss_array['IPUBDATE'][$xx])?>

 </td>
 </tr>
 <?}?>
 </table>
 <?}?>

Listing 12-5: Displaying the contents of $rss_array

Dealing with CDATA

It's worth noting that the function strip_cdata_tags() is used to remove CDATA tags from
the RSS data feed. XML uses CDATA tags to identify text that may contain characters or
combinations of characters that could confuse parsers. CDATA tells parsers that the data
encased in CDATA tags should not be interpreted as XML tags. Listing 12-6 shows the format
for using CDATA.

<![[...text goes here...]]>

Listing 12-6: format

Since parsers ignore all , the script needs to strip off the tags to make the data displayable in
a browser.

file:///D|/!!/final/Iexample_aggregation_webbot.html (5 von 5) [29.03.2008 23:23:26]

Iadding_filtering_to_your_aggregation_webbot.html

Adding Filtering to Your Aggregation Webbot

Your webbots can also modify or filter data received from RSS (or any other source). In this
chapter's news aggregator, you could filter (i.e., not use) any stories that don't contain
specific keywords or key phrases. For example, if you only want news stories that contain the
words webbots, web spiders, and spiders, you could create a filter array like the one shown in
Listing 12-7.

$filter_array[]="webbots";
$filter_array[]="web spiders";
$filter_array[]="spiders";

Listing 12-7: Creating a filter array

We can use $filter_array to select articles for viewing by modifying the
download_parse_rss() function used in Listing 12-4. This modification is shown in Listing 12-
8.

Code View:

function download_parse_rss($target, $filter_array)
 {
 # Download the RSS page
 $news = http_get($target, "");

 # Parse title and copyright notice
 $rss_array['TITLE'] = return_between($news['FILE'],
 "<title>", "</title>", EXCL);
 $rss_array['COPYRIGHT'] = return_between($news['FILE'],
 "<copyright>", "</copyright>", EXCL);

 # Parse the items
 $item_array = parse_array($news['FILE'], "<item>", "</item>");
 for($xx=0; $xx<count($item_array); $xx++)
 {
 # Filter stories for relevance
 for($keyword=0; $keyword<count($filter_array); $keyword ++)
 {
 if(stristr($item_array[$xx], $filter_array[$keyword]))
 {
 $rss_array['ITITLE'][$xx] = return_between($item_array[$xx],
 "<title>", "</title>", EXCL);
 $rss_array['ILINK'][$xx] = return_between($item_array[$xx],
 "<link>", "</link>", EXCL);
 $rss_array['IDESCRIPTION'][$xx] = return_between($item_array[$xx],
 "<description>", "</description>", EXCL);
 $rss_array['IPUBDATE'][$xx] = return_between($item_array[$xx],
 "<pubDate>", "</pubDate>", EXCL);
 }
 }
 }
 return $rss_array;

file:///D|/!!/final/Iadding_filtering_to_your_aggregation_webbot.html (1 von 2) [29.03.2008 23:23:27]

Iadding_filtering_to_your_aggregation_webbot.html

 }

Listing 12-8: Adding filtering to the download_parse_rss() function

Listing 12-8 is identical to Listing 12-4, with the following exceptions:

● The filter array is passed to download_parse_rss()

● Each news story is compared to every keyword

● Only stories that contain a keyword are parsed and placed into $rss_array

The end result of the script in Listing 12-8 is an aggregator that only lists stories that contain
material with the keywords in $filter_array. As configured, the comparison of stories and
keywords is not case sensitive. If case sensitivity is required, simply replace stristr() with
strstr(). Remember, however, that the amount of data returned is directly tied to the
number of keywords and the frequency with which they appear in stories.

file:///D|/!!/final/Iadding_filtering_to_your_aggregation_webbot.html (2 von 2) [29.03.2008 23:23:27]

Ifurther_exploration_id4.html

Further Exploration

The true power of webbots is that they can make decisions and take action with the
information they find online. Here are a few suggestions for extending what you've learned to
do with RSS or other data you choose to aggregate with your webbots.

● Modify the script in Listing 12-8 to accept stories that don't contain a keyword.

● Write an aggregation webbot that doesn't display information unless it finds it on two
or more sources.

● Design a webbot that looks for specific keywords in news stories and sends an email
notification when those keywords appear.

● Search blogs for spelling errors.

● Find an RSS feed that posts scores from your favorite sports team. Parse and store the
scores in a database for later statistical analysis.

● Write a webbot that uses news stories to help you decided whether to buy or sell
commodities futures.

● Devise an online clipping service that archives information about your company.

● Create an RSS feed for the example store used in PRICE-MONITORING WEBBOTS.

file:///D|/!!/final/Ifurther_exploration_id4.html [29.03.2008 23:23:28]

Iftp_webbots.html

FTP WEBBOTS

File transfer protocol (FTP) is among the oldest Internet protocols.[] It dates from the
Internet's predecessor ARPANET, which was originally funded by the Eisenhower
administration.[] Research centers started using FTP to exchange large files in the early
1970s, and FTP became the de facto transport protocol for email, a status it maintained until
the early 1990s. Today, system administrators most commonly use FTP to allow web
developers to upload and maintain files on remote webservers. Though it's an older protocol,
FTP still allows computers with dissimilar technologies to share files, independent of file
structure and operating system.

[] The original document defining FTP can be viewed at http://www.w3.org/Protocols/rfc959.

[] Katie Hafner and Matthew Lyon, Where Wizards Stay Up Late: The Origins of the Internet (New York:
Simon & Schuster, 1996), 14.

Example FTP Webbot

To gain an insight for uses of an FTP-capable webbot, consider this scenario. A national
retailer needs to move large sales reports from each of its stores to a centralized corporate
webserver. This particular retail chain was built through acquisition, so it uses multiple
protocols and proprietary computer systems. The one thing all of these systems have in
common is access to an FTP server. The goal for this project is to use FTP protocols to
download store sales reports and move them to the corporate server.

The script for this example project is available for study at this book's website. Just remember
that the script satisfies a ficticious scenario and will not run unless you change the
configuration. In this chapter, I have split it up and annotated the sections for clarity. Listing
13-1 shows the initialization for the FTP servers.

Code View:

<?

// Define the source FTP server, file location, and authentication values
define("REMOTE_FTP_SERVER", "remote_FTP_address"); // Domain name or IP address
define("REMOTE_USERNAME", "yourUserName");
define("REMOTE_PASSWORD", "yourPassword");
define("REMOTE_DIRCTORY", "daily_sales");
define("REMOTE_FILE", "sales.txt");

// Define the corporate FTP server, file location, and authentication values
define("CORP_FTP_SERVER", "corp_FTP_address");
define("CORP_USERNAME", "yourUserName");
define("CORP_PASSWORD", "yourPassword");
define("CORP_DIRCTORY", "sales_reports");
define("CORP_FILE", "store_03_".date("Y-M-d"));

file:///D|/!!/final/Iftp_webbots.html (1 von 4) [29.03.2008 23:23:30]

http://www.w3.org/Protocols/rfc959

Iftp_webbots.html

Listing 13-1: Initializing the FTP bot

This program also configures a routine to send a short email notification when commands fail.
Automated email error notification allows the script to run autonomously without requiring
that someone verify the operation manually.[] Listing 13-2 shows the email configuration
script.

[] See SCHEDULING WEBBOTS AND SPIDERS for information on how to make webbots run periodically.

Code View:

include("LIB_MAIL.php");
$mail_addr['to'] = "admin@somedomain.com";
$mail_addr['from'] = "admin@somedomain.com";
function report_error_and_quit($error_message, $server_connection)
 {
 global $mail_addr;

 // Send error message
 echo "$error_message, $server_connection";
 formatted_mail($error_message, $error_message, $mail_addr, "text/plain");

 // Attempt to log off the server gracefully if possible
 ftp_close($server_connection);

 // It is not traditional to end a function this way, but since there is
 // nothing to return or do, it is best to exit
 exit();
 }

Listing 13-2: Email configuration

The next step is to make a connection to the remote FTP server. After making the connection,
the script authenticates itself with its username and password, as shown in Listing 13-3.

Code View:

// Negotiate a socket connection to the remote FTP server
$remote_connection_id = ftp_connect(REMOTE_FTP_SERVER);

// Log in (authenticate) the source server
if(!ftp_login($remote_connection_id, REMOTE_USERNAME, REMOTE_PASSWORD))
 report_error_and_quit("Remote ftp_login failed", $remote_connection_id);

Listing 13-3: Connecting and authenticating with the remote server

file:///D|/!!/final/Iftp_webbots.html (2 von 4) [29.03.2008 23:23:30]

Iftp_webbots.html

Once authenticated by the server, the script moves to the target file's directory and
downloads the file to the local filesystem. After downloading the file, the script closes the
connection to the remote server, as shown in Listing 13-4.

Code View:

// Move the directory of the source file
if(!ftp_chdir($remote_connection_id, REMOTE_DIRCTORY))
 report_error_and_quit("Remote ftp_chdir failed", $remote_connection_id);

// Download the file
if(!ftp_get($remote_connection_id, "temp_file", REMOTE_FILE, FTP_ASCII))
 report_error_and_quit("Remote ftp_get failed", $remote_connection_id);

// Close connections to the remote FTP server
ftp_close($remote_connection_id);

Listing 13-4: Downloading the file and closing the connection

The final task, shown in Listing 13-5, uploads the file to the corporate server using techniques
similar to the ones used to download the file.

Code View:

// Negotiate a socket connection to the corporate FTP server
$corp_connection_id = ftp_connect(CORP_FTP_SERVER);

// Log in to the corporate server
if(!ftp_login($corp_connection_id, CORP_USERNAME, CORP_PASSWORD))
 report_error_and_quit("Corporate ftp_login failed", $corp_connection_id);

// Move the destination directory
if(!ftp_chdir($corp_connection_id, CORP_DIRECTORY))
 report_error_and_quit("Corporate ftp_chdir failed", $corp_connection_id);

// Upload the file
if(!ftp_put($corp_connection_id, CORP_FILE, "temp_file", FTP_ASCII))
 report_error_and_quit("Corporate ftp_put failed", $corp_connection_id);

// Close connections to the corporate FTP server
ftp_close($corp_connection_id);

// Send notification that the webbot ran successfully
formatted_mail("ftpbot ran successfully at ".time("M d,Y h:s"), "", $mail_addr,
$content_type);
?>

Listing 13-5: Logging in and uploading the previously downloaded file to the corporate server

file:///D|/!!/final/Iftp_webbots.html (3 von 4) [29.03.2008 23:23:30]

Iftp_webbots.html

file:///D|/!!/final/Iftp_webbots.html (4 von 4) [29.03.2008 23:23:30]

Iexample_ftp_webbot.html

FTP WEBBOTS

File transfer protocol (FTP) is among the oldest Internet protocols.[] It dates from the
Internet's predecessor ARPANET, which was originally funded by the Eisenhower
administration.[] Research centers started using FTP to exchange large files in the early
1970s, and FTP became the de facto transport protocol for email, a status it maintained until
the early 1990s. Today, system administrators most commonly use FTP to allow web
developers to upload and maintain files on remote webservers. Though it's an older protocol,
FTP still allows computers with dissimilar technologies to share files, independent of file
structure and operating system.

[] The original document defining FTP can be viewed at http://www.w3.org/Protocols/rfc959.

[] Katie Hafner and Matthew Lyon, Where Wizards Stay Up Late: The Origins of the Internet (New York:
Simon & Schuster, 1996), 14.

Example FTP Webbot

To gain an insight for uses of an FTP-capable webbot, consider this scenario. A national
retailer needs to move large sales reports from each of its stores to a centralized corporate
webserver. This particular retail chain was built through acquisition, so it uses multiple
protocols and proprietary computer systems. The one thing all of these systems have in
common is access to an FTP server. The goal for this project is to use FTP protocols to
download store sales reports and move them to the corporate server.

The script for this example project is available for study at this book's website. Just remember
that the script satisfies a ficticious scenario and will not run unless you change the
configuration. In this chapter, I have split it up and annotated the sections for clarity. Listing
13-1 shows the initialization for the FTP servers.

Code View:

<?

// Define the source FTP server, file location, and authentication values
define("REMOTE_FTP_SERVER", "remote_FTP_address"); // Domain name or IP address
define("REMOTE_USERNAME", "yourUserName");
define("REMOTE_PASSWORD", "yourPassword");
define("REMOTE_DIRCTORY", "daily_sales");
define("REMOTE_FILE", "sales.txt");

// Define the corporate FTP server, file location, and authentication values
define("CORP_FTP_SERVER", "corp_FTP_address");
define("CORP_USERNAME", "yourUserName");
define("CORP_PASSWORD", "yourPassword");
define("CORP_DIRCTORY", "sales_reports");
define("CORP_FILE", "store_03_".date("Y-M-d"));

file:///D|/!!/final/Iexample_ftp_webbot.html (1 von 4) [29.03.2008 23:23:31]

http://www.w3.org/Protocols/rfc959

Iexample_ftp_webbot.html

Listing 13-1: Initializing the FTP bot

This program also configures a routine to send a short email notification when commands fail.
Automated email error notification allows the script to run autonomously without requiring
that someone verify the operation manually.[] Listing 13-2 shows the email configuration
script.

[] See SCHEDULING WEBBOTS AND SPIDERS for information on how to make webbots run periodically.

Code View:

include("LIB_MAIL.php");
$mail_addr['to'] = "admin@somedomain.com";
$mail_addr['from'] = "admin@somedomain.com";
function report_error_and_quit($error_message, $server_connection)
 {
 global $mail_addr;

 // Send error message
 echo "$error_message, $server_connection";
 formatted_mail($error_message, $error_message, $mail_addr, "text/plain");

 // Attempt to log off the server gracefully if possible
 ftp_close($server_connection);

 // It is not traditional to end a function this way, but since there is
 // nothing to return or do, it is best to exit
 exit();
 }

Listing 13-2: Email configuration

The next step is to make a connection to the remote FTP server. After making the connection,
the script authenticates itself with its username and password, as shown in Listing 13-3.

Code View:

// Negotiate a socket connection to the remote FTP server
$remote_connection_id = ftp_connect(REMOTE_FTP_SERVER);

// Log in (authenticate) the source server
if(!ftp_login($remote_connection_id, REMOTE_USERNAME, REMOTE_PASSWORD))
 report_error_and_quit("Remote ftp_login failed", $remote_connection_id);

Listing 13-3: Connecting and authenticating with the remote server

file:///D|/!!/final/Iexample_ftp_webbot.html (2 von 4) [29.03.2008 23:23:31]

Iexample_ftp_webbot.html

Once authenticated by the server, the script moves to the target file's directory and
downloads the file to the local filesystem. After downloading the file, the script closes the
connection to the remote server, as shown in Listing 13-4.

Code View:

// Move the directory of the source file
if(!ftp_chdir($remote_connection_id, REMOTE_DIRCTORY))
 report_error_and_quit("Remote ftp_chdir failed", $remote_connection_id);

// Download the file
if(!ftp_get($remote_connection_id, "temp_file", REMOTE_FILE, FTP_ASCII))
 report_error_and_quit("Remote ftp_get failed", $remote_connection_id);

// Close connections to the remote FTP server
ftp_close($remote_connection_id);

Listing 13-4: Downloading the file and closing the connection

The final task, shown in Listing 13-5, uploads the file to the corporate server using techniques
similar to the ones used to download the file.

Code View:

// Negotiate a socket connection to the corporate FTP server
$corp_connection_id = ftp_connect(CORP_FTP_SERVER);

// Log in to the corporate server
if(!ftp_login($corp_connection_id, CORP_USERNAME, CORP_PASSWORD))
 report_error_and_quit("Corporate ftp_login failed", $corp_connection_id);

// Move the destination directory
if(!ftp_chdir($corp_connection_id, CORP_DIRECTORY))
 report_error_and_quit("Corporate ftp_chdir failed", $corp_connection_id);

// Upload the file
if(!ftp_put($corp_connection_id, CORP_FILE, "temp_file", FTP_ASCII))
 report_error_and_quit("Corporate ftp_put failed", $corp_connection_id);

// Close connections to the corporate FTP server
ftp_close($corp_connection_id);

// Send notification that the webbot ran successfully
formatted_mail("ftpbot ran successfully at ".time("M d,Y h:s"), "", $mail_addr,
$content_type);
?>

Listing 13-5: Logging in and uploading the previously downloaded file to the corporate server

file:///D|/!!/final/Iexample_ftp_webbot.html (3 von 4) [29.03.2008 23:23:31]

Iexample_ftp_webbot.html

file:///D|/!!/final/Iexample_ftp_webbot.html (4 von 4) [29.03.2008 23:23:31]

Iphp_and_ftp.html

PHP and FTP

PHP provides built-in functions that closely resemble standard FTP commands. In addition to
transferring files, PHP allows your scripts to perform many administrative functions. Common
FTP Commands Supported by PHP lists the most useful FTP commands supported by PHP.

Table Common FTP Commands Supported by PHP

FTP Function (Where $ftp Is the FTP File
Stream) Usage
ftp_cdup($ftp); Makes the parent directory the current

directory
ftp_chdir ($ftp, "directory/path") Changes the current directory
ftp_delete ($ftp, "file_name") Deletes a file
ftp_get ($ftp, "local file", "remote
file", MODE)

Copies the remote file to the local file
where MODE indicates if the remote file is
FTP_ASCII or FTP_BINARY

ftp_mkdir($ftp, "directory name") Creates a new directory
ftp_rename($ftp, "file name") Renames a file or a directory on the FTP

server
ftp_put ($ftp, "remote file", "local
file", MODE)

Copies the local file to the remote file
where MODE indicates if the local file is
FTP_ASCII or FTP_BINARY

ftp_rmdir($ftp, "directory/path") Removes a directory
ftp_rawlist($ftp, "directory/path") Returns an array with each array element

containing directory information about a file

As shown in Common FTP Commands Supported by PHP, the PHP FTP commands allow you to
write webbots that create, delete, and rename directories and files. You may also use PHP/
CURL to perform advanced FTP tasks requiring advanced authentication or encryption. Since
FTP seldom uses these features, they are out of the scope of this book, but they're available
for you to explore on the official PHP website available at http://www.php.net.

file:///D|/!!/final/Iphp_and_ftp.html [29.03.2008 23:23:32]

http://www.php.net/

Ifurther_exploration_id5.html

Further Exploration

Since FTP is often the only application-level protocol that computer systems share, it is a
convenient communication bridge between new and old computer systems. Moreover, in
addition to using FTP as a common path between disparate—or obsolete—systems, FTP is still
the most common method for uploading files to websites. With the information in this
chapter, you should be able to write webbots that update websites with information found at
a variety of sources. Here are some ideas to get you started.

● Write a webbot that updates your corporate server with information gathered from
sales reports.

● Develop a security webbot that uses a webcam to take pictures of your warehouse or
parking lot, timestamps the images, and uploads the pictures to an archival server.

● Design a webbot that creates archives of your company's internal forums on an FTP
server.

● Create a webbot that photographically logs the progress of a construction site and
uploads these pictures to an FTP server. Once construction is complete, compile the
individual photos into an animation showing the construction process.

If you don't have access to an FTP server on the Internet, you can still experiment with FTP
bots. An FTP server is probably already on your computer if your operating system is Unix,
Linux, or Mac OS X. If you have a Windows computer, you can find free FTP servers on many
shareware sites. Once you locate FTP server software, you can set up your own local server
by following the instructions accompanying your FTP installation.

file:///D|/!!/final/Ifurther_exploration_id5.html [29.03.2008 23:23:33]

Inntp_news_webbots.html

NNTP NEWS WEBBOTS

Another non-web protocol your webbots can use is the Network News Transfer Protocol
(NTTP). Before modern applications like MySpace, Facebook, and topic-specific web forums,
NNTP was used to build online communities where people with common interests exchanged
information in newsgroups. Members of newsgroups contribute articles—announcements,
questions, or answers relating to one of thousands of subject-specific topics. Collectively,
these articles are referred to as news. While NNTP is an older Internet protocol, it is still in
wide use today, and it provides a valuable source of information for certain webbot projects.
I've recently found NNTP useful when working on projects for private investigators, the
hospitality industry, and financial institutions.

NNTP Use and History

NNTP originated in 1986[] and was designed for a network much different from the one we
use today. When NNTP was conceived, broadband and always-on access to networks were
virtually unheard of. To utilize the network as it existed, NNTP employed a non-centralized
server configuration, similar to what email uses. Users logged in to one of the many news
servers on the network where they read articles, posted new articles, and replied to old ones.
Behind the scenes, NNTP servers periodically synchronized to distribute updated news to all
servers hosting specific newsgroups. Today, NNTP servers exchange news so frequently that
newly submitted articles appear on news servers across the world almost immediately. In
1986, however, news servers often waited until the early morning hours to synchronize, when
phone (modem) calls to the network were cheapest. If the newsgroup process seems odd by
today's standards, remember that NNTP was optimized for use when networks were slower
and more expensive.

[] RFC 977 defines the original NNTP specification (http://www.ietf.org/rfc/rfc977.txt).

While HTTP has superseded many older protocols (like Gopher[]), newsgroups have survived
and are still widely used today. Most modern communication applications like Microsoft
Outlook and Mozilla Thunderbird include news clients in their basic configurations (see A
newsgroup as viewed in Mozilla Thunderbird, a typical news reader).

[] Gopher was a predecessor to the World Wide Web, developed at the University of Minnesota (http://
www.ietf.org/rfc/rfc1436.txt).

A newsgroup as viewed in Mozilla Thunderbird, a typical news reader

file:///D|/!!/final/Inntp_news_webbots.html (1 von 2) [29.03.2008 23:23:34]

http://www.ietf.org/rfc/rfc977.txt
http://www.ietf.org/rfc/rfc1436.txt
http://www.ietf.org/rfc/rfc1436.txt

Inntp_news_webbots.html

While the number of active newsgroups is declining, there are still tens of thousands of
newsgroups in use today. The news server I use (hosted by RoadRunner) subscribes to
26,365 newsgroups. Since the variety of topics covered by newsgroups is so diverse (ranging
from alt.alien.visitors to alt.www.software.spiders.programming), you're apt to find
one that interests you. Newsgroups are a fun source of homegrown information; however,
like many sources on the Internet, you need to take what you read with a grain of salt.
Newsgroups allow anyone to make anonymous contributions, and themes like conspiracy,
spam, and self-promotion all thrive under those conditions.

file:///D|/!!/final/Inntp_news_webbots.html (2 von 2) [29.03.2008 23:23:34]

Inntp_use_and_history.html

NNTP NEWS WEBBOTS

Another non-web protocol your webbots can use is the Network News Transfer Protocol
(NTTP). Before modern applications like MySpace, Facebook, and topic-specific web forums,
NNTP was used to build online communities where people with common interests exchanged
information in newsgroups. Members of newsgroups contribute articles—announcements,
questions, or answers relating to one of thousands of subject-specific topics. Collectively,
these articles are referred to as news. While NNTP is an older Internet protocol, it is still in
wide use today, and it provides a valuable source of information for certain webbot projects.
I've recently found NNTP useful when working on projects for private investigators, the
hospitality industry, and financial institutions.

NNTP Use and History

NNTP originated in 1986[] and was designed for a network much different from the one we
use today. When NNTP was conceived, broadband and always-on access to networks were
virtually unheard of. To utilize the network as it existed, NNTP employed a non-centralized
server configuration, similar to what email uses. Users logged in to one of the many news
servers on the network where they read articles, posted new articles, and replied to old ones.
Behind the scenes, NNTP servers periodically synchronized to distribute updated news to all
servers hosting specific newsgroups. Today, NNTP servers exchange news so frequently that
newly submitted articles appear on news servers across the world almost immediately. In
1986, however, news servers often waited until the early morning hours to synchronize, when
phone (modem) calls to the network were cheapest. If the newsgroup process seems odd by
today's standards, remember that NNTP was optimized for use when networks were slower
and more expensive.

[] RFC 977 defines the original NNTP specification (http://www.ietf.org/rfc/rfc977.txt).

While HTTP has superseded many older protocols (like Gopher[]), newsgroups have survived
and are still widely used today. Most modern communication applications like Microsoft
Outlook and Mozilla Thunderbird include news clients in their basic configurations (see A
newsgroup as viewed in Mozilla Thunderbird, a typical news reader).

[] Gopher was a predecessor to the World Wide Web, developed at the University of Minnesota (http://
www.ietf.org/rfc/rfc1436.txt).

A newsgroup as viewed in Mozilla Thunderbird, a typical news reader

file:///D|/!!/final/Inntp_use_and_history.html (1 von 2) [29.03.2008 23:23:35]

http://www.ietf.org/rfc/rfc977.txt
http://www.ietf.org/rfc/rfc1436.txt
http://www.ietf.org/rfc/rfc1436.txt

Inntp_use_and_history.html

While the number of active newsgroups is declining, there are still tens of thousands of
newsgroups in use today. The news server I use (hosted by RoadRunner) subscribes to
26,365 newsgroups. Since the variety of topics covered by newsgroups is so diverse (ranging
from alt.alien.visitors to alt.www.software.spiders.programming), you're apt to find
one that interests you. Newsgroups are a fun source of homegrown information; however,
like many sources on the Internet, you need to take what you read with a grain of salt.
Newsgroups allow anyone to make anonymous contributions, and themes like conspiracy,
spam, and self-promotion all thrive under those conditions.

file:///D|/!!/final/Inntp_use_and_history.html (2 von 2) [29.03.2008 23:23:35]

Iwebbots_and_newsgroups.html

Webbots and Newsgroups

Newsgroups are a rich source of content for webbot developers. While less convenient than
websites, news servers are not hard to access, especially when you have a set of functions
that do most for the work for you. All of this chapter's example scripts use the LIB_nntp
library. Functions in this library provide easy access to articles on news servers and create
many opportunities for webbots. LIB_nntp contains functions that list newsgroups hosted by
specific news servers, list available articles within newsgroups, and download particular
articles. As with all libraries used in this book, the latest version of LIB_nntp is available for
download at the book's website.

Identifying News Servers

Before you use NNTP, you'll need to find an accessible news server. A Google search for free
news servers will provide links to some, but keep in mind that not all news servers are equal.
Since few news servers host all newsgroups, not every news server will have the group you're
looking for. Many free news servers also limit the number of requests you can make in a day
or suffer from poor performance. For these reasons, many people prefer to pay for access to
reliable news servers. You might already have access to a premium news server through your
ISP. Be warned, however, that some ISPs' news servers (like those hosted by RoadRunner
and EarthLink) will not allow access if you are not directly connected to a subnet in their
network.

Identifying Newsgroups

Your news bots should always verify that the group you want to access is hosted by your
news server. The script in Listing 14-1 uses get_nntp_groups() to create an array containing
all the newsgroups on a particular news server. (Remember to put the name of your news
server in place of your.news.server below.) Putting the newsgroups in an array is handy,
since it allows a webbot to examine groups iteratively.

include("LIB_nntp.php");
$server = "your.news.server";
$group_array= get_nntp_groups($server);
var_dump($group_array);

Listing 14-1: Requesting (and viewing) the newsgroups available on a news server

The result of executing Listing 14-1 is shown in Newsgroups hosted on a news server.

Newsgroups hosted on a news server

file:///D|/!!/final/Iwebbots_and_newsgroups.html (1 von 7) [29.03.2008 23:23:36]

Iwebbots_and_newsgroups.html

Notice that Newsgroups hosted on a news server only shows the newsgroups that hadn't
already scrolled off the screen. In this example, my news server returned 46,626 groups. (It
also required 40 seconds to download them all, so expect a short delay when requesting large
amounts of data.) For each group, the server responds with the name of the group, the
identifier of the first article, the identifier of the last article, and a y if you can post articles to
this group or an n if posting articles to this group (on this server) is prohibited.

News servers terminate messages by sending a line that contains just a period (.), which you
can see in the last array element in Newsgroups hosted on a news server. That lone period is
the only sign your webbot will receive to tell it to stop looking for data. If your webbot reads
buffers incorrectly, it will either hang indefinitely or return with incomplete data. The small
function shown in Listing 14-2 (found in LIB_nntp) correctly reads data from an open NNTP
network socket and recognizes the end-of-message indicator.

function read_nntp_buffer($socket)
 {
 $this_line ="";
 $buffer ="";
 while($this_line!=".\r\n") // Read until lone . found on line
 {
 $this_line = fgets($socket); // Read line from socket
 $buffer = $buffer . $this_line;

 }
 return $buffer;
 }

Listing 14-2: Reading NNTP data and identifying the end of messages

The script in Listing 14-1 uses the function get_nntp_groups() to get an array of available
groups hosted by your news server. The script for that function is shown below in Listing 14-3.

function get_nntp_groups($server)
 {
 # Open socket connection to the mail server

file:///D|/!!/final/Iwebbots_and_newsgroups.html (2 von 7) [29.03.2008 23:23:36]

Iwebbots_and_newsgroups.html

 $fp = fsockopen($server, $port="119", $errno, $errstr, 30);
 if (!$fp)
 {
 # If socket error, issue error
 $return_array['ERROR'] = "ERROR: $errstr ($errno)";
 }
 else
 {
 # Else tell server to return a list of hosted newsgroups
 $out = "LIST\r\n";
 fputs($fp, $out);
 $groups = read_nntp_buffer($fp);
 $groups_array = explode("\r\n", $groups); // Convert to an array
 }
 fputs($fp, "QUIT \r\n"); // Log out
 fclose($fp); // Close socket
 return $groups_array;
 }

Listing 14-3: A function that finds available newsgroups on a news server

As you'll learn, all NNTP commands follow a structure similar to the one used in Listing 14-3.
Most NNTP commands require that you do the following:

1.

Connect to the server (on port 119)

2.

Issue a command, like LIST (followed by a carriage return/line feed)

3.

Read the results (until encountering a line with a lone perioid)

4.

End the session with a QUIT command

5.

Close the network socket

Other NNTP commands that identify groups hosted by news servers are listed in RFC 997. You
can use the basic structure of get_nntp_groups() as a guide to creating other functions that
execute NNTP commands found in RFC 997.

Finding Articles in Newsgroups

As you read earlier, newsgroup articles are distributed among each of the news servers
hosting a particular newsgroup and are physically located at each server hosting the
newsgroup. Each article has a sequential numeric identifier that identifies the article on a

file:///D|/!!/final/Iwebbots_and_newsgroups.html (3 von 7) [29.03.2008 23:23:36]

Iwebbots_and_newsgroups.html

particular news server. You may request the range of numeric identifiers for articles (for a
given a newsgroup) with a script similar to the one in Listing 14-4.

include("LIB_nntp.php");
Request article IDs
$server = "your.news.server";
$newsgroup = "alt.vacation.las-vegas";
$ids_array = get_nntp_article_ids($server, $newsgroup);

Report Results
echo "\nInfo about articles in $newsgroup on $server\n";
echo "Code: ". $ids_array['RESPONSE_CODE']."\n";
echo "Estimated # of articles: ". $ids_array['EST_QTY_ARTICLES']."\n";
echo "First article ID: ". $ids_array['FIRST_ARTICLE']."\n";
echo "Last article ID: ". $ids_array['LAST_ARTICLE']."\n";

Listing 14-4: Requesting article IDs from a news server

The result of running the script in Listing 14-4 is shown in Executing get_nntp_article_ids()
and displaying the results.

Executing get_nntp_article_ids() and displaying the results

This function returns data in an array, with elements containing a status code,[] the estimated
quantity of articles for that group on the server, the identifier of the first article in the
newsgroup, and the identifier of the last article in the newsgroup. An estimate of the number
of articles is provided because some articles are deleted after submission, so not every article
within the given range is actually available. It's also worth noting that each server will have
its own rules for when articles become obsolete, so each server will have a different number
of articles for any one newsgroup. The code that actually reads the article identifiers from the
server is shown in Listing 14-5.

[] There is a full list of NNTP status codes in STATUS CODES.

file:///D|/!!/final/Iwebbots_and_newsgroups.html (4 von 7) [29.03.2008 23:23:36]

Iwebbots_and_newsgroups.html

Code View:

function get_nntp_article_ids($server, $newsgroup)
 {
 # Open socket connection to the mail server
 $socket = fsockopen($server, $port="119", $errno, $errstr, 30);
 if (!$socket)
 {
 # If socket error, issue error
 $return_array['ERROR'] = "ERROR: $errstr ($errno)";
 }
 else
 {
 # Else tell server which group to connect to
 fputs($socket, "GROUP ".$newsgroup." \r\n");
 $return_array['GROUP_MESSAGE'] = trim(fread($socket, 2000));

 # Get the range of available articles for this group
 fputs($socket, "NEXT \r\n");
 $res = fread($socket, 2000);
 $array = explode(" ", $res);

 $return_array['RESPONSE_CODE'] = $array[0];
 $return_array['EST_QTY_ARTICLES'] = $array[1];
 $return_array['FIRST_ARTICLE'] = $array[2];
 $return_array['LAST_ARTICLE'] = $array[3];
 }
 fputs($socket, "QUIT \r\n");
 fclose($socket);
 return $return_array;
 }

Listing 14-5: The function get_nntp_article_ids()

Reading an Article from a Newsgroup

Once you know the range of valid article identifiers for your newsgroup (on your news sever),
you can request an individual article. For example, the script in Listing 14-6 reads article
number 562340 from the group alt.vacation.las-vegas.

include("LIB_nntp.php");
$server = "your.news.server";
$newsgroup = "alt.vacation.las-vegas";
$article = read_nntp_article($server, $newsgroup, $article=562340);
echo $article['HEAD'];
echo $article['ARTICLE'];

Listing 14-6: Reading and displaying an article from a news server

When you execute the code in Listing 14-6, you'll see a screen similar to the one in Reading a
newsgroup article. On my news server, article 562340 is the same article displayed in the

file:///D|/!!/final/Iwebbots_and_newsgroups.html (5 von 7) [29.03.2008 23:23:36]

Iwebbots_and_newsgroups.html

screenshot of the Thunderbird news reader, shown earlier in A newsgroup as viewed in Mozilla

Thunderbird, a typical news reader.[]

[] Remember that article IDs are unique to newsgroups on each specific news server. Your article IDs are
apt to be different.

Reading a newsgroup article

The first part of Reading a newsgroup article shows the NTTP header, which, like a mail or
HTTP header, returns status information about the article. Following the header is the article.
Notice that in the header and at the beginning of the article, it is also referred to as
<cNxth.1119$lU5.548@newsfe07.phx>. Unlike the server-dependent identifier used in the
previous function call, this longer identifier is universal and references this article on any
news server that hosts this newsgroup.

The function called to read the news article is shown in Listing 14-7.

Code View:

function read_nntp_article($server, $newsgroup, $article)
 {
 # Open socket connection to the mail server
 $socket = fsockopen($server, $port="119", $errno, $errstr, 30);

file:///D|/!!/final/Iwebbots_and_newsgroups.html (6 von 7) [29.03.2008 23:23:36]

Iwebbots_and_newsgroups.html

 if (!$socket)
 {
 # If socket error, issue error
 $return_array['ERROR'] = "ERROR: $errstr ($errno)";
 }

 else
 {
 # Else tell server which group to connect to
 fputs($socket, "GROUP ".$newsgroup." \r\n");

 # Request this article's HEAD
 fputs($socket, "HEAD $article \r\n");
 $return_array['HEAD'] = read_nntp_buffer($socket);

 # Request the article
 fputs($socket, "BODY $article \r\n");
 $return_array['ARTICLE'] = read_nntp_buffer($socket);
 }
 fputs($socket, "QUIT \r\n"); // Sign out (newsgroup server)
 fclose($socket); // Close socket
 return $return_array; // Return data array
 }

Listing 14-7: A function that reads a newsgroup article

As mentioned earlier, NNTP was designed for use on older (slower) networks. For this reason,
the article headers are available separately from the actual articles. This allowed news
readers to download article headers first, to show users which articles were available on their
news servers. If an article interested the viewer, that article alone was downloaded,
consuming minimum bandwidth.

file:///D|/!!/final/Iwebbots_and_newsgroups.html (7 von 7) [29.03.2008 23:23:36]

Ifurther_exploration_id6.html

Further Exploration

Now that you know how to use webbots to interface with newsgroups, here is a list of ideas
you can use to develop news bots for your own purposes.

● Develop a newsgroup clipping service. This service could monitor numerous
newsgroups for mention of specific keywords and either aggregate that information in
a database or send email alerts when a keyword appears in a newsgroup.

● Build a web-based newsgroup portal, similar to http://groups.google.com.

● Create a webbot that gathers weather forecasts for Las Vegas from the National
Weather Service website, and post this weather information for vacationers on alt.

vacation.las-vegas.[]

[] Due to the ridiculous amounts of spam on newsgroups, scripts for posting articles on
newsgroups were deliberately omitted from this chapter. However, between the scripts used as
examples in this chapter and the original NNTP RFC, you should be able to figure out how to post
articles to newsgroups on your own.

● Monitor newsgroups for unauthorized use of intellectual property.

● Create a database that archives a newsgroup.

● Write a web-based newsgroup client that allows users to read newsgroups
anonymously.

file:///D|/!!/final/Ifurther_exploration_id6.html [29.03.2008 23:23:37]

http://groups.google.com/

Iwebbots_that_read_email.html

WEBBOTS THAT READ EMAIL

When a webbot can read email, it's easier for it to communicate with the outside world.[]
Webbots capable of reading email can take instruction via email commands, share data with
handheld devices like BlackBerries and Palm PDAs, and filter messages for content.

[] See WEBBOTS THAT SEND EMAIL to learn how to send email with webbots and spiders.

For example, if package-tracking information is sent to an email account that a webbot can
access, the webbot can parse incoming email from the carrier to track delivery status. Such a
webbot could also send email warnings when shipments are late, communicate shipping
charges to your corporate accounting software, or create reports that analyze a company's
use of overnight shipping.

The POP3 Protocol

Of the many protocols for reading email from mail servers, I selected Post Office Protocol 3
(POP3) for this task because of its simplicity and near-universal support among mail servers.
POP3 instructions are also easy to perform in any Telnet or standard TCP/IP terminal program.
[] The ability to use Telnet to execute POP3 commands will provide an understanding of POP3
commands, which we will later convert into PHP routines that any webbot may execute.

[] Telnet clients are standard on all Windows, Mac OS X, Linux, and Unix distributions.

Logging into a POP3 Mail Server

Listing 15-1 shows how to connect to a POP3 mail server though a Telnet client. Simply enter
telnet, followed by the mail server name and the port number (which is always 110 for
POP3). The mail server should reply with a message similar to the one in Listing 15-1.

telnet mail.server.net 110
+OK <9238.1142228@mail2.server.net>

Listing 15-1: Making a Telnet connection to a POP3 mail server

The reply shown in Listing 15-1 says that you've made a connection to the POP3 mail server
and that it is waiting for its next command, which should be your attempt to log in. Listing 15-
2 shows the process for logging in to a POP3 mail server.

user me@server.com
+OK
pass xxxxxxxx
+OK

Listing 15-2: Successful authentication to a POP3 mail server

file:///D|/!!/final/Iwebbots_that_read_email.html (1 von 5) [29.03.2008 23:23:38]

Iwebbots_that_read_email.html

When you try this, be sure to substitute your email account in place of me@server.com and
the password associated with your account for xxxxxxxx.

If authentication fails, the mail server should return an authentication failure message, as
shown in Listing 15-3.

-ERR authorization failed

Listing 15-3: POP3 authentication failure

Reading Mail from a POP3 Mail Server

Before you can download email messages from a POP3 mail server, you'll need to execute a
LIST command. The mail server will then respond with the number of messages on the server.

The POP3 LIST Command

The LIST command will also reveal the size of the email messages and, more importantly,
how to reference individual email messages on the server.

The response to the LIST command contains a line for every available message for the
specified account. Each line consists of a sequential mail ID number, followed by the size of
the message in bytes. Listing 15-4 shows the results of a LIST command on an account with
two pieces of email.

LIST
+OK
1 2398
2 2023
.

Listing 15-4: Results of a POP3 LIST command

The server's reply to the LIST command tells us that there are two messages on the server
for the specified account. We can also tell that message 1 is the larger message, at 2,398
bytes, and that message 2 is 2,023 bytes in length. Beyond that, we don't know anything
specific about any of these messages.

The last line in the response is the end of message indicator. Servers always terminate POP3
responses with a line containing only a period.

The POP3 RETR Command

To read a specific message, enter RETR followed by a space and the mail ID received from the
LIST command. The command in Listing 15-5 requests message 1.

RETR 1

Listing 15-5: Requesting a message from the server

file:///D|/!!/final/Iwebbots_that_read_email.html (2 von 5) [29.03.2008 23:23:38]

mailto:me@server.com.html

Iwebbots_that_read_email.html

The mail server should respond to the RETR command with a string of characters resembling
the contents of Listing 15-6.

Code View:

+OK 2398 octets
Return-Path: <returnpath@server.com>
Delivered-To: me@server.com
Received: (qmail 73301 invoked from network); 19 Feb 2006 20:55:31 -0000
Received: from mail2.server.net
 by mail1.server.net (qmail-ldap-1.03) with compressed QMQP; 19 Feb
2006 20:55:31 -0000
Delivered-To: CLUSTERHOST mail2.server.net me@server.com
Received: (qmail 50923 invoked from network); 19 Feb 2006 20:55:31 -0000
Received: by simscan 1.1.0 ppid: 50907, pid: 50912, t: 2.8647s
 scanners: attach: 1.1.0 clamav: 0.86.1/m:34/d:1107 spam: 3.0.4
Received: from web30515.mail.mud.server.com
 (envelope-sender <sender@server.com>)
 by mail2.server.net (qmail-ldap-1.03) with SMTP
 for <me@server.com>; 19 Feb 2006 20:55:28 -0000
Received: (qmail 7734 invoked by uid 60001); 19 Feb 2006 20:55:26 -0000

Message-ID: <20060219205526.7732.qmail@web30515.mail.mud.server.com>
Date: Sun, 19 Feb 2006 12:55:26 -0800 (PST)
From: mike schrenk <sender@server.com>
Subject: Hey, Can you read this email?
To: mike schrenk <me@server.com>
MIME-Version: 1.0
Content-Type: multipart/alternative; boundary="0-349883719-1140382526=:7581"
Content-Transfer-Encoding: 8bit
X-Spam-Checker-Version: SpamAssassin 3.0.4 (2005-06-05) on mail2.server.com
X-Spam-Level:
X-Spam-Status: No, score=0.9 required=17.0 tests=HTML_00_10,HTML_MESSAGE,
 HTML_SHORT_LENGTH autolearn=no version=3.0.4

--0-349883719-1140382526=:7581
Content-Type: text/plain; charset=iso-8859-1
Content-Transfer-Encoding: 8bit

This is an email sent from my Yahoo! email account.
--0-349883719-1140382526=:7581
Content-Type: text/html; charset=iso-8859-1
Content-Transfer-Encoding: 8bit

This is an email sent from my Yahoo! email account.

<BR
--0-349883719-1140382526=:7581--
.

Listing 15-6: A raw email message read from the server using the RETR POP3 command

As you can see, even a short email message has a lot of overhead. Most of the returned
information has little to do with the actual text of a message. For example, the email message
retrieved in Listing 15-6 doesn't appear until over halfway down the listing. The rest of the

file:///D|/!!/final/Iwebbots_that_read_email.html (3 von 5) [29.03.2008 23:23:38]

Iwebbots_that_read_email.html

text returned by the mail server consists of headers, which tell the mail client the path the
message took, which services touched it (like SpamAssassin), how to display or handle the
message, to whom to send replies, and so forth.

These headers include some familiar information such as the subject header, the to and from
values, and the MIME version. You can easily parse this information with the return_between
() function found in the LIB_parse library (see PARSING TECHNIQUES), as shown in Listing
15-7.

$ret_path = return_between($raw_message, "Return-Path: ", "\n", EXCL);
$deliver_to = return_between($raw_message, "Delivered-To: ", "\n", EXCL);
$date = return_between($raw_message, "Date: ", "\n", EXCL);
$from = return_between($raw_message, "From: ", "\n", EXCL);
$subject = return_between($raw_message, "Subject: ", "\n", EXCL);

Listing 15-7: Parsing header values

The header values in Listing 15-7 are separated by their names and a \n (carriage return)
character. Note that the header name must be followed by a colon (:) and a space, as these
words may appear elsewhere in the raw message returned from the mail server.

Parsing the actual message is more involved, as shown in Listing 15-8.

Code View:

$content_type = return_between($raw_message, "Content-Type: ", "\n", EXCL);
$boundary = get_attribute($content_type, "boundary");
$raw_msg = return_between($message, "--".$boundary, "--".$boundary, EXCL);
$msg_separator = $raw_msg, chr(13).chr(10).chr(13).chr(10);
$clean_msg = return_between($raw_msg, $msg_separator, $msg_separator, EXCL);

Listing 15-8: Parsing the actual message from a raw POP3 response

When parsing the message, you must first identify the Content-Type, which holds the
boundaries describing where the message is found. The Content-Type is further parsed with

the get_attribute() function, to obtain the actual boundary value.[] Finally, the text defined
within the boundaries may contain additional information that tells the client how to display
the content of the message. This information, if it exists, is removed by parsing only what's
within the message separator, a combination of carriage returns and line feeds.

[] The actual boundary, which defines the message, is prefixed with -- characters to distinguish the
actual boundary from where it is defined.

Other Useful POP3 Commands

The DELE and QUIT (followed by the mail id) commands mark a message for deletion. Listing
15-9 shows demonstrations of both the DELE and QUIT commands.

file:///D|/!!/final/Iwebbots_that_read_email.html (4 von 5) [29.03.2008 23:23:38]

Iwebbots_that_read_email.html

DELE 8
+OK
QUIT
+OK

Listing 15-9: Using the POP3 DELE and QUIT commands

When you use DELE, the deleted message is only marked for deletion and not actually
deleted. The deletion doesn't occur until you execute a QUIT command and your server
session ends.

Note: If you've accidentally marked a message with the DELE function and wish to retain it when
you quit, enter RSET followed by the message number. The message will not be marked for
deletion when you issue the QUIT command (retention is the default condition).

file:///D|/!!/final/Iwebbots_that_read_email.html (5 von 5) [29.03.2008 23:23:38]

Ithe_pop3_protocol.html

WEBBOTS THAT READ EMAIL

When a webbot can read email, it's easier for it to communicate with the outside world.[]
Webbots capable of reading email can take instruction via email commands, share data with
handheld devices like BlackBerries and Palm PDAs, and filter messages for content.

[] See WEBBOTS THAT SEND EMAIL to learn how to send email with webbots and spiders.

For example, if package-tracking information is sent to an email account that a webbot can
access, the webbot can parse incoming email from the carrier to track delivery status. Such a
webbot could also send email warnings when shipments are late, communicate shipping
charges to your corporate accounting software, or create reports that analyze a company's
use of overnight shipping.

The POP3 Protocol

Of the many protocols for reading email from mail servers, I selected Post Office Protocol 3
(POP3) for this task because of its simplicity and near-universal support among mail servers.
POP3 instructions are also easy to perform in any Telnet or standard TCP/IP terminal program.
[] The ability to use Telnet to execute POP3 commands will provide an understanding of POP3
commands, which we will later convert into PHP routines that any webbot may execute.

[] Telnet clients are standard on all Windows, Mac OS X, Linux, and Unix distributions.

Logging into a POP3 Mail Server

Listing 15-1 shows how to connect to a POP3 mail server though a Telnet client. Simply enter
telnet, followed by the mail server name and the port number (which is always 110 for
POP3). The mail server should reply with a message similar to the one in Listing 15-1.

telnet mail.server.net 110
+OK <9238.1142228@mail2.server.net>

Listing 15-1: Making a Telnet connection to a POP3 mail server

The reply shown in Listing 15-1 says that you've made a connection to the POP3 mail server
and that it is waiting for its next command, which should be your attempt to log in. Listing 15-
2 shows the process for logging in to a POP3 mail server.

user me@server.com
+OK
pass xxxxxxxx
+OK

Listing 15-2: Successful authentication to a POP3 mail server

file:///D|/!!/final/Ithe_pop3_protocol.html (1 von 5) [29.03.2008 23:23:40]

Ithe_pop3_protocol.html

When you try this, be sure to substitute your email account in place of me@server.com and
the password associated with your account for xxxxxxxx.

If authentication fails, the mail server should return an authentication failure message, as
shown in Listing 15-3.

-ERR authorization failed

Listing 15-3: POP3 authentication failure

Reading Mail from a POP3 Mail Server

Before you can download email messages from a POP3 mail server, you'll need to execute a
LIST command. The mail server will then respond with the number of messages on the server.

The POP3 LIST Command

The LIST command will also reveal the size of the email messages and, more importantly,
how to reference individual email messages on the server.

The response to the LIST command contains a line for every available message for the
specified account. Each line consists of a sequential mail ID number, followed by the size of
the message in bytes. Listing 15-4 shows the results of a LIST command on an account with
two pieces of email.

LIST
+OK
1 2398
2 2023
.

Listing 15-4: Results of a POP3 LIST command

The server's reply to the LIST command tells us that there are two messages on the server
for the specified account. We can also tell that message 1 is the larger message, at 2,398
bytes, and that message 2 is 2,023 bytes in length. Beyond that, we don't know anything
specific about any of these messages.

The last line in the response is the end of message indicator. Servers always terminate POP3
responses with a line containing only a period.

The POP3 RETR Command

To read a specific message, enter RETR followed by a space and the mail ID received from the
LIST command. The command in Listing 15-5 requests message 1.

RETR 1

Listing 15-5: Requesting a message from the server

file:///D|/!!/final/Ithe_pop3_protocol.html (2 von 5) [29.03.2008 23:23:40]

mailto:me@server.com.html

Ithe_pop3_protocol.html

The mail server should respond to the RETR command with a string of characters resembling
the contents of Listing 15-6.

Code View:

+OK 2398 octets
Return-Path: <returnpath@server.com>
Delivered-To: me@server.com
Received: (qmail 73301 invoked from network); 19 Feb 2006 20:55:31 -0000
Received: from mail2.server.net
 by mail1.server.net (qmail-ldap-1.03) with compressed QMQP; 19 Feb
2006 20:55:31 -0000
Delivered-To: CLUSTERHOST mail2.server.net me@server.com
Received: (qmail 50923 invoked from network); 19 Feb 2006 20:55:31 -0000
Received: by simscan 1.1.0 ppid: 50907, pid: 50912, t: 2.8647s
 scanners: attach: 1.1.0 clamav: 0.86.1/m:34/d:1107 spam: 3.0.4
Received: from web30515.mail.mud.server.com
 (envelope-sender <sender@server.com>)
 by mail2.server.net (qmail-ldap-1.03) with SMTP
 for <me@server.com>; 19 Feb 2006 20:55:28 -0000
Received: (qmail 7734 invoked by uid 60001); 19 Feb 2006 20:55:26 -0000

Message-ID: <20060219205526.7732.qmail@web30515.mail.mud.server.com>
Date: Sun, 19 Feb 2006 12:55:26 -0800 (PST)
From: mike schrenk <sender@server.com>
Subject: Hey, Can you read this email?
To: mike schrenk <me@server.com>
MIME-Version: 1.0
Content-Type: multipart/alternative; boundary="0-349883719-1140382526=:7581"
Content-Transfer-Encoding: 8bit
X-Spam-Checker-Version: SpamAssassin 3.0.4 (2005-06-05) on mail2.server.com
X-Spam-Level:
X-Spam-Status: No, score=0.9 required=17.0 tests=HTML_00_10,HTML_MESSAGE,
 HTML_SHORT_LENGTH autolearn=no version=3.0.4

--0-349883719-1140382526=:7581
Content-Type: text/plain; charset=iso-8859-1
Content-Transfer-Encoding: 8bit

This is an email sent from my Yahoo! email account.
--0-349883719-1140382526=:7581
Content-Type: text/html; charset=iso-8859-1
Content-Transfer-Encoding: 8bit

This is an email sent from my Yahoo! email account.

<BR
--0-349883719-1140382526=:7581--
.

Listing 15-6: A raw email message read from the server using the RETR POP3 command

As you can see, even a short email message has a lot of overhead. Most of the returned
information has little to do with the actual text of a message. For example, the email message
retrieved in Listing 15-6 doesn't appear until over halfway down the listing. The rest of the

file:///D|/!!/final/Ithe_pop3_protocol.html (3 von 5) [29.03.2008 23:23:40]

Ithe_pop3_protocol.html

text returned by the mail server consists of headers, which tell the mail client the path the
message took, which services touched it (like SpamAssassin), how to display or handle the
message, to whom to send replies, and so forth.

These headers include some familiar information such as the subject header, the to and from
values, and the MIME version. You can easily parse this information with the return_between
() function found in the LIB_parse library (see PARSING TECHNIQUES), as shown in Listing
15-7.

$ret_path = return_between($raw_message, "Return-Path: ", "\n", EXCL);
$deliver_to = return_between($raw_message, "Delivered-To: ", "\n", EXCL);
$date = return_between($raw_message, "Date: ", "\n", EXCL);
$from = return_between($raw_message, "From: ", "\n", EXCL);
$subject = return_between($raw_message, "Subject: ", "\n", EXCL);

Listing 15-7: Parsing header values

The header values in Listing 15-7 are separated by their names and a \n (carriage return)
character. Note that the header name must be followed by a colon (:) and a space, as these
words may appear elsewhere in the raw message returned from the mail server.

Parsing the actual message is more involved, as shown in Listing 15-8.

Code View:

$content_type = return_between($raw_message, "Content-Type: ", "\n", EXCL);
$boundary = get_attribute($content_type, "boundary");
$raw_msg = return_between($message, "--".$boundary, "--".$boundary, EXCL);
$msg_separator = $raw_msg, chr(13).chr(10).chr(13).chr(10);
$clean_msg = return_between($raw_msg, $msg_separator, $msg_separator, EXCL);

Listing 15-8: Parsing the actual message from a raw POP3 response

When parsing the message, you must first identify the Content-Type, which holds the
boundaries describing where the message is found. The Content-Type is further parsed with

the get_attribute() function, to obtain the actual boundary value.[] Finally, the text defined
within the boundaries may contain additional information that tells the client how to display
the content of the message. This information, if it exists, is removed by parsing only what's
within the message separator, a combination of carriage returns and line feeds.

[] The actual boundary, which defines the message, is prefixed with -- characters to distinguish the
actual boundary from where it is defined.

Other Useful POP3 Commands

The DELE and QUIT (followed by the mail id) commands mark a message for deletion. Listing
15-9 shows demonstrations of both the DELE and QUIT commands.

file:///D|/!!/final/Ithe_pop3_protocol.html (4 von 5) [29.03.2008 23:23:40]

Ithe_pop3_protocol.html

DELE 8
+OK
QUIT
+OK

Listing 15-9: Using the POP3 DELE and QUIT commands

When you use DELE, the deleted message is only marked for deletion and not actually
deleted. The deletion doesn't occur until you execute a QUIT command and your server
session ends.

Note: If you've accidentally marked a message with the DELE function and wish to retain it when
you quit, enter RSET followed by the message number. The message will not be marked for
deletion when you issue the QUIT command (retention is the default condition).

file:///D|/!!/final/Ithe_pop3_protocol.html (5 von 5) [29.03.2008 23:23:40]

Iexecuting_pop3_commands_with_a_webbot.html

Executing POP3 Commands with a Webbot

POP3 commands can be performed with PHP's opensocket(), fputs(), and fgets()
functions. The LIB_pop3 library is available for you to download from this book's website. This
library contains functions for connecting to the mail server, authenticating your account on
the server, finding out what mail is available for the account, requesting messages from the
server, and deleting messages.

The scripts in Listings 15-10 through 15-13 show how to use the LIB_pop3 library. The larger
script is split up and annotated here for clarity, but it is available in its entirety on this book's
website.

Note: Before you use the script in Listing 15-10, replace the values for SERVER, USER, and PASS
with your email account information.

Code View:

include("LIB_pop3.php"); // Include POP3 command library

define("SERVER", "your.mailserver.net"); // Your POP3 mailserver
define("USER", "your@emailsccount.com "); // Your POP3 email address
define("PASS", "your_password"); // Your POP3 password

Listing 15-10: Including the LIB_pop3 library and initializing credentials

In Listing 15-11, the script makes the connection to the server and, after a successful login
attempt, obtains a connection array containing the "handle" that is required for all subsequent
communication with the server.

Connect to POP3 server
$connection_array = POP3_connect(SERVER, USER, PASS);
$POP3_connection = $connection_array['handle'];
if($POP3_connection)
 {
 // Create an array, which is the result of a POP3 LIST command
 $list_array = POP3_list($POP3_connection);

Listing 15-11: Connecting to the server and making an array of available messages

The script in Listing 15-12 uses the $list_array obtained in the previous step to create
requests for each email message. It displays each message along with its ID and size and

file:///D|/!!/final/Iexecuting_pop3_commands_with_a_webbot.html (1 von 2) [29.03.2008 23:23:41]

Iexecuting_pop3_commands_with_a_webbot.html

then deletes the message, as shown here.

 # Request and display all messages in $list_array
 for($xx=0; $xx<count($list_array); $xx++)
 {
 // Parse the mail ID from the message size
 list($mail_id, $size) = explode(" ", $list_array[$xx]);

 // Request the message for the specific mail ID
 $message = POP3_retr($POP3_connection, $mail_id);

 // Display message and place mail ID, size, and message in an array
 echo "$mail_id, $size\n";
 $mail_array[$xx]['ID'] = $mail_id;
 $mail_array[$xx]['SIZE'] = $size;
 $mail_array[$xx]['MESSAGE'] = $message;

 // Display message in <xmp></xmp> tags to disable HTML
 // (in case script is run in a browser)
 echo "<xmp>$message</xmp>";

 // Delete the message from the server
 POP3_delete($POP3_connection, $mail_id);
 }

Listing 15-12: Reading, displaying, and deleting each message found on the server

Finally, after each message is read and deleted from the server, the session is closed, as
shown in Listing 15-13.

 // End the server session
 echo POP3_quit($POP3_connection);
 }
else
 {
 echo "Login error";
 }

Listing 15-13: Closing the connection to the server, or noting the login error if necessary

Subsequently, if the connection wasn't originally made to the server, the script returns an
error message.

file:///D|/!!/final/Iexecuting_pop3_commands_with_a_webbot.html (2 von 2) [29.03.2008 23:23:41]

Ifurther_exploration_id7.html

Further Exploration

With a little thought, you can devise many creative uses for webbots that can access email
accounts. There are two general areas that may serve as inspiration.

● Use email as a means to control webbots. For example, you could use an email
message to tell a spider which domain to use as a target, or you could send an email
to a procurement bot (featured in PROCUREMENT WEBBOTS AND SNIPERS) to indicate
which items to purchase.

● Use an email-enabled webbot to interface incompatible systems. For example, you
could upload a small file to an FTP sever from a BlackBerry if the file (the contents of
the email) were sent to a special webbot that, after reading the email, sent the file to
the specified server. This could effectively connect a legacy system to remote users.

Email-Controlled Webbots

Here are a few ideas to get you started with email-controlled webbots.

● Design a webbot that forwards messages from a mailing list to your personal email
address based upon references to a preset list of terms. (For example, the webbot
could forward all messages that reference the words robot, web crawler, webbot, and
spider.)

● Develop a procurement bot that automatically reconfigures your eBay bidding strategy
when it receives an email from eBay indicating that someone has outbid you.

● Create a strategy that forwards an email message to a webbot that, in turn, displays
the message on a 48-foot scrolling marquee that is outside your office building
(assuming you have access to such a display!).

Email Interfaces

Here are a few ways you can capitalize on email-enabled webbots to interface different
systems.

● Develop a webbot that automatically updates your financial records based on email you
receive from PayPal.

● Create a webbot that automatically forwards all email with the word support in the
subject line to the person working the help desk at that time.

● Write a webbot that notifies you when one of your mail servers has reached its email
(size) quota.

● Write a service that interfaces shipping notification email messages from FedEx to your
company's fulfillment system.

● Develop an email-to-fax service that faxes an email message to the phone number in

file:///D|/!!/final/Ifurther_exploration_id7.html (1 von 2) [29.03.2008 23:23:42]

Ifurther_exploration_id7.html

the email's subject line. (This isn't hard to do if you have an old fax/modem from the
last century lying around.)

● Write a webbot that maintains statistics about your email accounts, indicating who is
sending the most email, when servers are busiest, the number of messages that are
deleted without being read, when servers fail, and email addresses that are returned
as undeliverable.

file:///D|/!!/final/Ifurther_exploration_id7.html (2 von 2) [29.03.2008 23:23:42]

Iwebbots_that_send_email.html

WEBBOTS THAT SEND EMAIL

In WEBBOTS THAT READ EMAIL you learned how to create webbots that read email. In this
chapter I'll show you how to write webbots that can create massive amounts of email. On that
note, let's talk briefly about email ethics.

Email, Webbots, and Spam

Spam has negatively influenced all of our email experiences.[] It was probably only a few
years ago that every email in one's inbox had some value and deserved to be read. Today,
however, my spam filter (a proxy service that examines email headers and content to
determine if the email is legitimate or a potential scam) rejects roughly 80 percent of the
email I receive, flagging it as unwanted solicitation at best and, at worst, a phishing attack—
email that masquerades itself as legitimate and requests credit card or other personal
information.

[] I would like to extend my sincerest apologies to the Hormel Foods Corporation for perpetuating the use
of the word spam to describe unwanted email. I'd rather refer to the phenomenon of junk email with a
clever term like eJunk or NetClutter. But unfortunately, no other synonym has the worldwide acceptance
of spam. Hormel Foods deserves better treatment of its brand—and for this reason I want to stress the
difference between SPAM and spam. For additional information on Hormel's take on the use of the word
spam, please refer to http://www.spam.com/ci/ci_in.htm.

Nobody likes unsolicited email, and your webbot's effectiveness will be reduced if its
messages are interpreted as spam by end readers or automated filters. When using your
webbots to send volumes of mail, follow these guidelines:

● Allow recipients to unsubscribe. If people can't remove themselves from a mailing
list, they're subscribed involuntarily. Email that is part of a periodic mailing should
include a link that allows the recipient to opt out of future mailings.[]

[] Unfortunately, many spammers rely on people opting out of mailing lists to verify that an
email address is actively used. For many, opting out of a mail list ensures they will continue to
receive unsolicited email.

● Avoid multiple emails. Avoid sending multiple emails with similar content or intent to
the same address.

● Use a relevant subject line. Don't deceive email recipients (or try to avoid a spam
filter) with misleading subject lines. If you're actually selling "herbal Via8r4," don't use
a subject line like RE: Thanks!

● Identify yourself. Don't spoof your email headers or the originator's actual email
address in order to trick spam filters into delivering your email.

● Obey the law. Depending where you live, laws may prohibit sending specific types of
email. For example, under the Children's Online Privacy Protection Act (COPPA), it is
illegal in the United States to solicit personal information from children. (More
information is available at the COPPA website, http://www.coppa.org.) Laws regarding
email ethics change constantly. If you have questions, talk to a lawyer that specializes
in online law.

file:///D|/!!/final/Iwebbots_that_send_email.html (1 von 2) [29.03.2008 23:23:43]

http://www.spam.com/ci/ci_in.htm
http://www.coppa.org/

Iwebbots_that_send_email.html

Note: Do not use any of the following techniques to test the resolve of people's spam filters. I
recommend reading KEEPING WEBBOTS OUT OF TROUBLE and having a personal consultation with
an attorney before doing anything remotely questionable.

file:///D|/!!/final/Iwebbots_that_send_email.html (2 von 2) [29.03.2008 23:23:43]

Iemail_comma_webbots_comma_and_spam.html

WEBBOTS THAT SEND EMAIL

In WEBBOTS THAT READ EMAIL you learned how to create webbots that read email. In this
chapter I'll show you how to write webbots that can create massive amounts of email. On that
note, let's talk briefly about email ethics.

Email, Webbots, and Spam

Spam has negatively influenced all of our email experiences.[] It was probably only a few
years ago that every email in one's inbox had some value and deserved to be read. Today,
however, my spam filter (a proxy service that examines email headers and content to
determine if the email is legitimate or a potential scam) rejects roughly 80 percent of the
email I receive, flagging it as unwanted solicitation at best and, at worst, a phishing attack—
email that masquerades itself as legitimate and requests credit card or other personal
information.

[] I would like to extend my sincerest apologies to the Hormel Foods Corporation for perpetuating the use
of the word spam to describe unwanted email. I'd rather refer to the phenomenon of junk email with a
clever term like eJunk or NetClutter. But unfortunately, no other synonym has the worldwide acceptance
of spam. Hormel Foods deserves better treatment of its brand—and for this reason I want to stress the
difference between SPAM and spam. For additional information on Hormel's take on the use of the word
spam, please refer to http://www.spam.com/ci/ci_in.htm.

Nobody likes unsolicited email, and your webbot's effectiveness will be reduced if its
messages are interpreted as spam by end readers or automated filters. When using your
webbots to send volumes of mail, follow these guidelines:

● Allow recipients to unsubscribe. If people can't remove themselves from a mailing
list, they're subscribed involuntarily. Email that is part of a periodic mailing should
include a link that allows the recipient to opt out of future mailings.[]

[] Unfortunately, many spammers rely on people opting out of mailing lists to verify that an
email address is actively used. For many, opting out of a mail list ensures they will continue to
receive unsolicited email.

● Avoid multiple emails. Avoid sending multiple emails with similar content or intent to
the same address.

● Use a relevant subject line. Don't deceive email recipients (or try to avoid a spam
filter) with misleading subject lines. If you're actually selling "herbal Via8r4," don't use
a subject line like RE: Thanks!

● Identify yourself. Don't spoof your email headers or the originator's actual email
address in order to trick spam filters into delivering your email.

● Obey the law. Depending where you live, laws may prohibit sending specific types of
email. For example, under the Children's Online Privacy Protection Act (COPPA), it is
illegal in the United States to solicit personal information from children. (More
information is available at the COPPA website, http://www.coppa.org.) Laws regarding
email ethics change constantly. If you have questions, talk to a lawyer that specializes
in online law.

file:///D|/!!/final/Iemail_comma_webbots_comma_and_spam.html (1 von 2) [29.03.2008 23:23:44]

http://www.spam.com/ci/ci_in.htm
http://www.coppa.org/

Iemail_comma_webbots_comma_and_spam.html

Note: Do not use any of the following techniques to test the resolve of people's spam filters. I
recommend reading KEEPING WEBBOTS OUT OF TROUBLE and having a personal consultation with
an attorney before doing anything remotely questionable.

file:///D|/!!/final/Iemail_comma_webbots_comma_and_spam.html (2 von 2) [29.03.2008 23:23:44]

Isending_mail_with_smtp_and_php.html

Sending Mail with SMTP and PHP

Outgoing email is sent using the Simple Mail Transfer Protocol (SMTP). Fortunately, PHP's
built-in mail() function handles all SMTP socket-level protocols and handshaking for you. The
mail() function acts as your mail client, sending email messages just as Outlook or
Thunderbird might.

Configuring PHP to Send Mail

Before you can use PHP as a mail client, you must edit PHP's configuration file, php.ini, to
point PHP to the mail server's location. For example, the script in Listing 16-1 shows the
section of php.ini that configures PHP to work with sendmail, the Unix mail server on many
networks.

Code View:

[mail function]
; For Win32 only.
SMTP = localhost

; For Win32 only.
;sendmail_from = me@example.com

; For Unix only. You may supply arguments as well (default: "sendmail -t -i").
sendmail_path = /usr/sbin/sendmail -t -i

Listing 16-1: Configuring PHP's mail() function

Note: Notice that the configuration differs slightly for Windows and Unix installations. For
example, windows servers use PHP.INI to describe the network location of the mail server you
want to use. In contrast, Unix installations need the file path to your local mail server. In either
case, you must have access to a mail server (preferably in the same network domain) that allows
you to send email.

Only a few years ago, you could send email through almost any mail server on the Internet
using relay host, which enables mail servers to relay messages from mail clients in one
domain to a different domain. When using relay host, one can send nearly anonymous email,
because these mail servers accept commands from any mail client without needing any form
of authentication.

The relay host process has been largely abandoned by system administrators because
spammers can use it to send millions of anonymous commercial emails. Today, almost every

file:///D|/!!/final/Isending_mail_with_smtp_and_php.html (1 von 4) [29.03.2008 23:23:45]

Isending_mail_with_smtp_and_php.html

mail server will ignore commands that come from a different domain or from users that are
not registered as valid clients.

An "open" mail server—one that allows relaying—is obviously a dangerous thing. I once
worked for a company with two corporate mail servers, one of which mistakenly allowed mail
relaying. Eventually, a spammer discovered it and commandeered it as a platform for
dispatching thousands of anonymous commercial emails.[] In addition to wasting our
bandwidth, our domain was reported as one that belonged to a spammer and subsequently
got placed on a watch list used by spam-detection companies. Once they identified our
domain as a source of spam, many important corporate emails weren't received because
spam filters had rejected them. It took quite an effort to get our domain off of that list. For
this reason, you will need a valid email account to send email from a webbot.

[] Spammers write webbots to discover mail servers that allow mail relaying.

Sending an Email with mail()

PHP provides a built-in function for sending email, as shown in Listing 16-2.

$email_address = "some.account@someserver.com";
$email_subject = "Webbot Notification Email";
$email_message = "Your webbot found something that needs you attention";
mail($email_address, $email_subject, $email_message);

Listing 16-2: Sending an email with PHP's built-in mail() function

In the simplest configuration, as shown in Listing 16-2, you only need to specify the
destination email address, the subject, and the message. For the reasons mentioned in the
relay host discussion, however, you will need a valid account on the same server as the one
specified in your php.ini file.

There are, of course, more options than those shown in Listing 16-2. However, these options
usually require that you build email headers, which tell a mail client how to format the email
and how the email should be distributed. Since the syntax for email headers is very specific, it
is easy to implement them incorrectly. Therefore, I've written a small email library called
LIB_mail with a function formatted_mail(), which makes it easy to send emails that are
more complex than what can easily be sent with the mail() function alone. The script for
LIB_mail is shown in Listing 16-3.

Code View:

function formatted_mail($subject, $message, $address, $content_type)
 {
 # Set defaults
 if(!isset($address['cc'])) $address['cc'] = "";
 if(!isset($address['bcc'])) $address['bcc'] = "";

 # Ensure that there's a Reply-to address
 if(!isset($address['replyto'])) $address['replyto'] = $address['from'];

 # Create mail headers
 $headers = "";
 $headers = $headers . "From: ".$address['from']."\r\n";

file:///D|/!!/final/Isending_mail_with_smtp_and_php.html (2 von 4) [29.03.2008 23:23:45]

Isending_mail_with_smtp_and_php.html

 $headers = $headers . "Return-Path: ".$address['from']."\r\n";
 $headers = $headers . "Reply-To: ".$address['replyto']."\r\n";

 # Add Cc to header if needed
 if (strlen($address['cc'])< 0)
 $headers = $headers . "Cc: ".$address['cc']."\r\n";

 # Add Bcc to header if needed
 if (strlen($address['bcc'])< 0)
 $headers = $headers . "Bcc: ".$address['bcc']."\r\n";

 # Add content type
 $headers = $headers . "Content-Type: ".$content_type."\r\n";

 # Send the email
 $result = mail($address['to'], $subject, $message, $headers);

 return $result;
 }

Listing 16-3: Sending formatted email with LIB_mail

The main thing to take away from the script above is that the mail header is a very syntax-
sensitive string that works better if it is a built-in function than if it is created repeatedly in
your scripts. Also, up to six addresses are involved in sending email, and they are all passed
to this routine in an array called $address. These addresses are defined in Email Addresses
Used by LIB_mail.

Table Email Addresses Used by LIB_mail

Address Function Required or Optional
To: Defines the address of the main recipient of the email Required
Reply-to: Defines the address where replies to the email are

sent
Optional

Return-path: Indicates where notifications are sent if the email
could not be delivered

Optional

From: Defines the email address of the party sending the
email

Required

Cc: Refers to an address of another party, who receives
a carbon copy of the email, but is not the primary
recipient of the message

Optional

Bcc: Is similar to Cc: and stands for blind carbon copy;
this address is hidden from the other parties
receiving the same email

Optional

Configuring the Reply-to address is also important because this address is used as the
address where undeliverable email messages are sent. If this is not defined, undeliverable
email messages will bounce back to your system admin, and you won't know that an email
wasn't delivered. For this reason, the function automatically uses the From address if a
Return-path address isn't specified.

file:///D|/!!/final/Isending_mail_with_smtp_and_php.html (3 von 4) [29.03.2008 23:23:45]

Isending_mail_with_smtp_and_php.html

file:///D|/!!/final/Isending_mail_with_smtp_and_php.html (4 von 4) [29.03.2008 23:23:45]

Iwriting_a_webbot_that_sends_email_notifications.html

Writing a Webbot That Sends Email Notifications

Here's a simple webbot that, when run, sends an email notification if a web page has changed
since the last time it was checked.[] Such a webbot could have many practical uses. For
example, it could monitor online auctions or pages on your fantasy football league's website.
A modified version of this webbot could even notify you when the balance of your checking
account changes. The webbot simply downloads a web page and stores a page signature, a
number that uniquely describes the content of the page, in a database. This is also known as
a hash, or a series of characters, that represents a test message or a file. In this case, a small
hash is used to create a signature that references a file without the need to reference the
entire contents of the file. If the signature of the page differs from the one in the database,
the webbot saves the new value and sends you an email indicating that the page has
changed. Listing 16-4 shows the script for this webbot.[]

[] For information on periodic and autonomous launching of webbots, read SCHEDULING WEBBOTS AND
SPIDERS.

[] This script makes use of LIB_mysql. If you haven't already done so, make sure you read MANAGING
LARGE AMOUNTS OF DATA to learn how to use this library.

Code View:

Get libraries
include("LIB_http.php"); # include cURL library
include("LIB_mysql.php"); # include MySQL library
include("LIB_mail.php"); # include mail library

Define parameters
$webbot_email_address = "webbot@YourDomain.com";
$notification_email_address = "yourEmail@YourDomain.com ";
$target_web_site = "www.trackrates.com";

Download the website
$download_array = http_get($target_web_site, $ref="");
$web_page = $download_array['FILE'];

Calculate a 40-character sha1 hash for use as a simple signature
$new_signature = sha1($web_page);

Compare this signature to the previously stored value in a database
$sql = "select SIGNATURE from signatures where WEB_PAGE='".$target_web_site."'";
list($old_signature) = exe_sql(DATABASE, $sql);

If the new signature is different than the old one, update the database and
send an email notifying someone that the web page changed.
if($new_signature != $old_signature)
 {
 // Update database
 if(isset($data_array)) unset($data_array);
 $data_array['SIGNATURE'] = $new_signature;
 update(DATABASE, $table="signatures",

file:///D|/!!/final/Iwriting_a_webbot_that_sends_email_notifications.html (1 von 4) [29.03.2008 23:23:47]

Iwriting_a_webbot_that_sends_email_notifications.html

 $data_array, $key_column="WEB_PAGE", $id=$target_web_site);

 // Send email
 $subject = $target_web_site." has changed";
 $message = $subject . "\n";
 $message = $message . "Old signature = ".$old_signature."\n";
 $message = $message . "New signature = ".$new_signature."\n";
 $message = $message . "Webbot ran at: ".date("r")."\n";
 $address['from'] = $webbot_email_address;
 $address['replyto'] = $webbot_email_address;
 $address['to'] = $notification_email_address;
 formatted_mail($subject, $message, $address, $content_type="text/plain");
 }

Listing 16-4: A simple webbot that sends an email when a web page changes

When the webbot finds that the web page's signature has changed, it sends an email like the
one in Listing 16-5.

www.trackrates.com has changed
Old signature = baf73f476aef13ae48bd7df5122d685b6d2be2dd
New signature = baf73f476aed685b6d2be2ddf13ae48bd7df5124
Webbot ran at: Mon, 20 Mar 2007 17:08:00 -0600

Listing 16-5: Email generated by the webbot in Listing 16-4

Keeping Legitimate Mail out of Spam Filters

Many spam filters automatically reject any email in which the domain of the sender doesn't
match the domain of the mail server used to send the message. For this reason, it is wise to
verify that the domains for the From and Reply-to addresses match the outgoing mail server's
domain.

The idea here is not to fool spam filters into letting you send unwanted email, but rather to
ensure that legitimate email makes it to the intended Inbox and not the Junk folder, where no
one will read it.

Sending HTML-Formatted Email

It's easy to send HTML-formatted email with images, hyperlinks, or any other media found in
web pages. To send HTML-formatted emails with the formatted_mail() function, do the
following:

● Set the $content_type variable to text/html. This will tell the routine to use the
proper MIME in the email header.

● Use fully formed URLs to refer to any images or hyperlinks. Relative address references
will resolve to the mail client, not the online media you want to use.

file:///D|/!!/final/Iwriting_a_webbot_that_sends_email_notifications.html (2 von 4) [29.03.2008 23:23:47]

Iwriting_a_webbot_that_sends_email_notifications.html

● Since you never know the capabilities of the client reading the email, use standard
formatting techniques. Tables work well.

● Avoid CSS. Traditional font tags are more predictable in HTML email.

● For debugging purposes, it's a good idea to build your message in a string, as shown in
Listing 16-6.

Code View:

Get library
include("LIB_mail.php"); # Include mail library

Define addresses
$address['from'] = "mikeSchrenk@yahoo.com";
$address['replyto'] = $address['from'];
$address['to'] = "mikeSchrenk@yahoo.com";

Define subject line
$subject = "Example of an HTML-formatted email";

Define message
$message = "";
$message = $message . "<table bgcolor='#e0e0e0' border='0' cellpadding='0'
cellspacing='0'>";
$message = $message . "<tr>";
$message = $message . "<td><td>";
$message = $message . "</tr>";
$message = $message . "<tr>";
$message = $message . "<td>";
$message = $message . "";
$message = $message . "Here is an example of a clean HTML-formatted email";
$message = $message . "";
$message = $message . "<td>";
$message = $message . "</tr>";
$message = $message . "<tr>";
$message = $message . "<td>";
$message = $message . "";
$message = $message . "with an image and a <a href='http://www.schrenk.com'
>hyperlink.";

$message = $message . "";
$message = $message . "<td>";
$message = $message . "</tr>";
$message = $message . "</table>";

echo $message;

// Send email
formatted_mail($subject, $message, $address, $content_type="text/html");
?>

Listing 16-6: Sending HTML-formatted email

file:///D|/!!/final/Iwriting_a_webbot_that_sends_email_notifications.html (3 von 4) [29.03.2008 23:23:47]

Iwriting_a_webbot_that_sends_email_notifications.html

The email sent by Listing 16-6 looks like HTML-formatted email sent by the script in Listing
16-6.

HTML-formatted email sent by the script in Listing 16-6

Be aware that not all mail clients can render HTML-formatted email. In those instances, you
should send either text-only emails or a multi-formatted email that contains both HTML and
unformatted messages.

file:///D|/!!/final/Iwriting_a_webbot_that_sends_email_notifications.html (4 von 4) [29.03.2008 23:23:47]

Ifurther_exploration_id8.html

Further Exploration

If you think about all the ways you use email, you'll probably be able to come up with some
very creative uses for your webbots. The following concepts should serve as starting points
for your own webbot development.

Using Returned Emails to Prune Access Lists

You can design an email-wielding webbot to help you identify illegitimate members of a
members-only website. If someone has access to a business-to-business website but is no
longer employed by a company that uses the site, that person probably also lost access to his
or her corporate email address; any email sent to that account will be returned as
undeliverable. You could design a webbot that periodically sends some type of report to
everyone who has access to the website. Any emails that return as undeliverable will alert
you to a member's email address that is no longer valid. Your webbot can then track these
undeliverable emails and deactivate former employees from your list of members.

Using Email as Notification That Your Webbot Ran

It's handy to have an indication that a webbot has actually run. A simple email at the end of
the webbot's session can inform you that it ran and what it did. Often, the actual content of
these email notifications is not as significant as the emails themselves, which indicate that a
webbot ran successfully. Similarly, you can use email notifications to tell you exactly when
and how a webbot has failed.

Leveraging Wireless Technologies

Since wireless email clients like cell phones and BlackBerries allow people to use email away
from their desks, your webbots can effectively use email in more situations than they could
only a few years ago. Think about applications where webbots can exploit mobile email
technology. For example, you could write a webbot that checks the status of your server and
sends warnings to people when they're away from the office. You could also develop a webbot
that sends an instant message when your company is mentioned on CNN.com.

Writing Webbots That Send Text Messages

Many wireless carriers support email interfaces for text messaging, or short message service
(SMS). These messages appear as text on cell phones, and many people find them to be less
intrusive than voice messages. To send a text message, you simply email the message to one
of the email-to-text message addresses provided by wireless carriers—a task you could easily
hand off to a webbot. SMS EMAIL ADDRESSES contains a list of email-to-text message
addresses; if you can't find your carrier in this list, contact its customer service department to
see if it provides this service.

file:///D|/!!/final/Ifurther_exploration_id8.html [29.03.2008 23:23:48]

http://cnn.com/

Iconverting_a_website_into_a_function.html

CONVERTING A WEBSITE INTO A FUNCTION

Webbots are easier to use when they're packaged as functions. These functions are simply interfaces
to webbots that download and parse information and return the desired data in a predefined
structure. For example, the National Oceanic and Atmospheric Association (NOAA) provides weather
forecasts on its website (http://www.noaa.gov). You could write a function to execute a webbot that
downloads and parses a forecast. This interface could also return the forecast in an array, as shown
in Listing 17-1.

Get weather forecast
$forcast_array = get_noaa_forecast($zip=89109);

Display forecast
echo $forcast_array['MONDAY']['TEMPERATURE']."
";
echo $forcast_array['MONDAY']['WIND_SPEED']."
";
echo $forcast_array['MONDAY']['WIND_DIRECTION']."
";

Listing 17-1: Simplifying webbot use by creating a function interface

While the example in Listing 17-1 is hypothetical, you can see that interfacing with a webbot in this
manner conceals the dirty details of downloading or parsing web pages. Yet, the programmer has full
ability to access online information and services that the webbots provide. From a programmer's
perspective, it isn't even obvious that webbots are used.

When a programmer accesses a webbot from a function interface, he or she gains the ability to use
the webbot both programmatically and in real time. This is a departure from the traditional method
of launching webbots.[] Customarily, you schedule a webbot to execute periodically, and if the
webbot generates data, that information is stored in a database for later retrieval. With a function
interface to a webbot, you don't have to wait for a webbot to run as a scheduled task. Instead, you
can directly request the specific contents of a web page whenever you need them.

[] Traditional methods for executing webbots are described in SCHEDULING WEBBOTS AND SPIDERS.

Writing a Function Interface

This project uses a web page that decodes ZIP codes and converts that operation into a function,
which is available from a PHP program. This particular web page finds the city, county, state, and
geo coordinates for the post office located in a specific ZIP code. Theoretically, you could use this
function to validate ZIP codes or use the latitude and longitude information to plot locations on a
map. Target website, which returns information about a ZIP code shows the target website for this
project.

Target website, which returns information about a ZIP code

file:///D|/!!/final/Iconverting_a_website_into_a_function.html (1 von 6) [29.03.2008 23:23:49]

Iconverting_a_website_into_a_function.html

The sole purpose of the web page in Target website, which returns information about a ZIP code is to
be a target for your webbots. (A link to this page is available at this book's website.) This target web
page uses a standard form to capture a ZIP code. Once you submit that form, the web page returns
a variety of information about the ZIP code you entered in a table below the form.

Defining the Interface

This example function uses the interface shown in Listing 17-2, where a function named
decode_zipcode() accepts a five-digit ZIP code as a input parameter and returns an array, which
describes the area serviced by the ZIP code.

array $zipcode_array = decode_zipcode(int $zipcode);

input:
 $zipcode is a five-digit USPS ZIP code
output:
 $zipcode_array['CITY']
 $zipcode_array['COUNTY']
 $zipcode_array['STATE']
 $zipcode_array['LATITUDE']
 $zipcode_array['LONGITUDE']

Listing 17-2: decode_zipcode() interface

Analyzing the Target Web Page

Since this webbot needs to submit a ZIP code to a form, you will need to use the techniques you
learned in AUTOMATING FORM SUBMISSION to emulate someone manually submitting the form. As
you learned, you should always pass even simple forms through a form analyzer (similar to the one
used in AUTOMATING FORM SUBMISSION) to ensure that you will submit the form in the manner the
server expects. This is important because web pages commonly insert dynamic fields or values into
forms that can be hard to detect by just looking at a page.

To use the form analyzer, simply load the web page into a browser and view the source code, as
shown in Displaying the form's source code.

Displaying the form's source code

file:///D|/!!/final/Iconverting_a_website_into_a_function.html (2 von 6) [29.03.2008 23:23:49]

Iconverting_a_website_into_a_function.html

Saving the form's source code

Once you have the target's source code, save the HTML to your hard drive, as done in Saving the
form's source code.

Once the form's HTML is on your hard drive, you must edit it to make the form submit its content to
the form analyzer instead of the target server. You do this by changing the form's action attribute to
the location of the form analyzer, as shown in Changing the form's action attribute to the form
analyzer.

Changing the form's action attribute to the form analyzer

file:///D|/!!/final/Iconverting_a_website_into_a_function.html (3 von 6) [29.03.2008 23:23:49]

Iconverting_a_website_into_a_function.html

Now you have a copy of the target form on your hard drive, with the form's original action attribute
replaced with the web address of the form analyzer. The final step is to load this local copy of the
form into a browser, manually fill in the form, and submit it to the analyzer. Once submitted, you
should see the analysis performed by the form analyzer, as shown in Analyzing the target form.

Analyzing the target form

The analysis tells us that the method is POST and that there are three required data fields. In addition
to the zipcode field, there is also a hidden session field (which looks suspiciously like a Unix
timestamp) and a Submit field, which is actually the name of the Submit button. To emulate the form
submission, it is vitally important to correctly use all the field names (with appropriate values) as well
as the same method used by the original form.

Once you write your webbot, it's a good idea to test it by using the form analyzer as a target to
ensure that the webbot submits the form as the target webserver expects it to. This is also a good

file:///D|/!!/final/Iconverting_a_website_into_a_function.html (4 von 6) [29.03.2008 23:23:49]

Iconverting_a_website_into_a_function.html

time to verify the agent name your webbot uses.

Using describe_zipcode()

The script that interfaces the target web page to a PHP function, called describe_zipcode(), is
available in its entirety at this book's website. It is broken into smaller pieces and annotated here for
clarity.

Getting the Session Value

It is uncommon to find dynamically assigned values, like the session value employed by this target,
in forms. Since the session is assigned dynamically, the webbot must first make a page request to
get the session value before it can submit form values. This actually mimics normal browser use, as
the browser first must download the form before submitting it. The webbot captures the session
variable with the script described in Listing 17-3.

Start interface describe_zipcode($zipcode)
describe_zipcode($zipcode)

 {
 # Get required libraries and declare the target
 include ("LIB_http.php");
 include("LIB_parse.php");
 $target = "http://www.schrenk.com/nostarch/webbots/zip_code_form.php";

 # Download the target
 $page = http_get($target, $ref="");

 # Parse the session hidden tag from the downloaded page
 # <input type="hidden" name="session" value="xxxxxxxxxx">
 $session_tag = return_between($string = $page['FILE'] ,
 $start = "<input type=\"hidden\" name=\
 "session\"",
 $end = ">",
 $type = EXCL
);

 # Remove the "'s and "value=" text to reveal the session value
 $session_value = str_replace("\"", "", $session_tag);
 $session_value = str_replace("value=", "", $session_value);

Listing 17-3: Downloading the target to get the session variable

The script in Listing 17-3 is a classic screen scraper. It downloads the page and parses the session
value from the form <input> tag. The str_replace() function is later used to remove superfluous
quotes and the tag's value attribute. Notice that the webbot uses LIB_parse and LIB_http,

described in previous chapters, to download and parse the web page.[]

[] LIB_http and LIB_parse are described in Chapters 3 and 4, respectively.

Submitting the Form

Once you know the session value, the script in Listing 17-4 may be used to submit the form. Notice
the use of http_post_form() to emulate the submission of a form with the POST method. The form
fields are conveniently passed to the target webserver in $data_array[].

$data_array['session'] = $session_value;

file:///D|/!!/final/Iconverting_a_website_into_a_function.html (5 von 6) [29.03.2008 23:23:49]

Iconverting_a_website_into_a_function.html

$data_array['zipcode'] = $zipcode;
$data_array['Submit'] = "Submit";
$form_result = http_post_form($target, $ref=$target, $data_array);

Listing 17-4: Emulating the form

Parsing and Returning the Result

The remaining step is to parse the desired city, county, state, and geo coordinates from the web
page obtained from the form submission in the previous listing. The script that does this is shown in
Listing 17-5.

Code View:

$landmark = "Information about ".$zipcode;
$table_array = parse_array($form_result['FILE'], "<table", "</table>");
for($xx=0; $xx<count($table_array); $xx++)

 {
 # Parse the table containing the parsing landmark
 if(stristr($table_array[$xx], $landmark))
 {
 $ret['CITY'] = return_between($table_array[$xx], "CITY", "</tr>", EXCL);
 $ret['CITY'] = strip_tags($ret['CITY']);
 $ret['STATE'] = return_between($table_array[$xx], "STATE", "</tr>", EXCL);
 $ret['STATE'] = strip_tags($ret['STATE']);
 $ret['COUNTY'] = return_between($table_array[$xx], "COUNTY", "</tr>", EXCL);
 $ret['COUNTY'] = strip_tags($ret['COUNTY']);
 $ret['LATITUDE'] = return_between($table_array[$xx], "LATITUDE", "</tr>", EXCL);
 $ret['LATITUDE'] = strip_tags($ret['LATITUDE']);
 $ret['LONGITUDE'] = return_between($table_array[$xx], "LONGITUDE", "</tr>", EXCL);
 $ret['LONGITUDE'] = strip_tags($ret['LONGITUDE']);
 }
 }
Return the parsed data

return $ret;
} # End Interface describe_zipcode($zipcode)

Listing 17-5: Parsing and returning the data

This script first uses parse_array() to create an array containing all the tables in the downloaded
web page, which is returned in $form_result['FILE']. The script then looks for the table that
contains the parsing landmark Information about Once the webbot finds the table that holds
the data we're looking for, it parses the data using unique strings that identify the beginning and end
of the desired data. The parsed data is then cleaned up with strip_tags() and returned in the array
we described earlier. Once the data is parsed and placed into an array, that array is returned to the
calling program.

file:///D|/!!/final/Iconverting_a_website_into_a_function.html (6 von 6) [29.03.2008 23:23:49]

Iwriting_a_function_interface.html

CONVERTING A WEBSITE INTO A FUNCTION

Webbots are easier to use when they're packaged as functions. These functions are simply interfaces
to webbots that download and parse information and return the desired data in a predefined
structure. For example, the National Oceanic and Atmospheric Association (NOAA) provides weather
forecasts on its website (http://www.noaa.gov). You could write a function to execute a webbot that
downloads and parses a forecast. This interface could also return the forecast in an array, as shown
in Listing 17-1.

Get weather forecast
$forcast_array = get_noaa_forecast($zip=89109);

Display forecast
echo $forcast_array['MONDAY']['TEMPERATURE']."
";
echo $forcast_array['MONDAY']['WIND_SPEED']."
";
echo $forcast_array['MONDAY']['WIND_DIRECTION']."
";

Listing 17-1: Simplifying webbot use by creating a function interface

While the example in Listing 17-1 is hypothetical, you can see that interfacing with a webbot in this
manner conceals the dirty details of downloading or parsing web pages. Yet, the programmer has full
ability to access online information and services that the webbots provide. From a programmer's
perspective, it isn't even obvious that webbots are used.

When a programmer accesses a webbot from a function interface, he or she gains the ability to use
the webbot both programmatically and in real time. This is a departure from the traditional method
of launching webbots.[] Customarily, you schedule a webbot to execute periodically, and if the
webbot generates data, that information is stored in a database for later retrieval. With a function
interface to a webbot, you don't have to wait for a webbot to run as a scheduled task. Instead, you
can directly request the specific contents of a web page whenever you need them.

[] Traditional methods for executing webbots are described in SCHEDULING WEBBOTS AND SPIDERS.

Writing a Function Interface

This project uses a web page that decodes ZIP codes and converts that operation into a function,
which is available from a PHP program. This particular web page finds the city, county, state, and
geo coordinates for the post office located in a specific ZIP code. Theoretically, you could use this
function to validate ZIP codes or use the latitude and longitude information to plot locations on a
map. Target website, which returns information about a ZIP code shows the target website for this
project.

Target website, which returns information about a ZIP code

file:///D|/!!/final/Iwriting_a_function_interface.html (1 von 6) [29.03.2008 23:23:51]

Iwriting_a_function_interface.html

The sole purpose of the web page in Target website, which returns information about a ZIP code is to
be a target for your webbots. (A link to this page is available at this book's website.) This target web
page uses a standard form to capture a ZIP code. Once you submit that form, the web page returns
a variety of information about the ZIP code you entered in a table below the form.

Defining the Interface

This example function uses the interface shown in Listing 17-2, where a function named
decode_zipcode() accepts a five-digit ZIP code as a input parameter and returns an array, which
describes the area serviced by the ZIP code.

array $zipcode_array = decode_zipcode(int $zipcode);

input:
 $zipcode is a five-digit USPS ZIP code
output:
 $zipcode_array['CITY']
 $zipcode_array['COUNTY']
 $zipcode_array['STATE']
 $zipcode_array['LATITUDE']
 $zipcode_array['LONGITUDE']

Listing 17-2: decode_zipcode() interface

Analyzing the Target Web Page

Since this webbot needs to submit a ZIP code to a form, you will need to use the techniques you
learned in AUTOMATING FORM SUBMISSION to emulate someone manually submitting the form. As
you learned, you should always pass even simple forms through a form analyzer (similar to the one
used in AUTOMATING FORM SUBMISSION) to ensure that you will submit the form in the manner the
server expects. This is important because web pages commonly insert dynamic fields or values into
forms that can be hard to detect by just looking at a page.

To use the form analyzer, simply load the web page into a browser and view the source code, as
shown in Displaying the form's source code.

Displaying the form's source code

file:///D|/!!/final/Iwriting_a_function_interface.html (2 von 6) [29.03.2008 23:23:51]

Iwriting_a_function_interface.html

Saving the form's source code

Once you have the target's source code, save the HTML to your hard drive, as done in Saving the
form's source code.

Once the form's HTML is on your hard drive, you must edit it to make the form submit its content to
the form analyzer instead of the target server. You do this by changing the form's action attribute to
the location of the form analyzer, as shown in Changing the form's action attribute to the form
analyzer.

Changing the form's action attribute to the form analyzer

file:///D|/!!/final/Iwriting_a_function_interface.html (3 von 6) [29.03.2008 23:23:51]

Iwriting_a_function_interface.html

Now you have a copy of the target form on your hard drive, with the form's original action attribute
replaced with the web address of the form analyzer. The final step is to load this local copy of the
form into a browser, manually fill in the form, and submit it to the analyzer. Once submitted, you
should see the analysis performed by the form analyzer, as shown in Analyzing the target form.

Analyzing the target form

The analysis tells us that the method is POST and that there are three required data fields. In addition
to the zipcode field, there is also a hidden session field (which looks suspiciously like a Unix
timestamp) and a Submit field, which is actually the name of the Submit button. To emulate the form
submission, it is vitally important to correctly use all the field names (with appropriate values) as well
as the same method used by the original form.

Once you write your webbot, it's a good idea to test it by using the form analyzer as a target to
ensure that the webbot submits the form as the target webserver expects it to. This is also a good

file:///D|/!!/final/Iwriting_a_function_interface.html (4 von 6) [29.03.2008 23:23:51]

Iwriting_a_function_interface.html

time to verify the agent name your webbot uses.

Using describe_zipcode()

The script that interfaces the target web page to a PHP function, called describe_zipcode(), is
available in its entirety at this book's website. It is broken into smaller pieces and annotated here for
clarity.

Getting the Session Value

It is uncommon to find dynamically assigned values, like the session value employed by this target,
in forms. Since the session is assigned dynamically, the webbot must first make a page request to
get the session value before it can submit form values. This actually mimics normal browser use, as
the browser first must download the form before submitting it. The webbot captures the session
variable with the script described in Listing 17-3.

Start interface describe_zipcode($zipcode)
describe_zipcode($zipcode)

 {
 # Get required libraries and declare the target
 include ("LIB_http.php");
 include("LIB_parse.php");
 $target = "http://www.schrenk.com/nostarch/webbots/zip_code_form.php";

 # Download the target
 $page = http_get($target, $ref="");

 # Parse the session hidden tag from the downloaded page
 # <input type="hidden" name="session" value="xxxxxxxxxx">
 $session_tag = return_between($string = $page['FILE'] ,
 $start = "<input type=\"hidden\" name=\
 "session\"",
 $end = ">",
 $type = EXCL
);

 # Remove the "'s and "value=" text to reveal the session value
 $session_value = str_replace("\"", "", $session_tag);
 $session_value = str_replace("value=", "", $session_value);

Listing 17-3: Downloading the target to get the session variable

The script in Listing 17-3 is a classic screen scraper. It downloads the page and parses the session
value from the form <input> tag. The str_replace() function is later used to remove superfluous
quotes and the tag's value attribute. Notice that the webbot uses LIB_parse and LIB_http,

described in previous chapters, to download and parse the web page.[]

[] LIB_http and LIB_parse are described in Chapters 3 and 4, respectively.

Submitting the Form

Once you know the session value, the script in Listing 17-4 may be used to submit the form. Notice
the use of http_post_form() to emulate the submission of a form with the POST method. The form
fields are conveniently passed to the target webserver in $data_array[].

$data_array['session'] = $session_value;

file:///D|/!!/final/Iwriting_a_function_interface.html (5 von 6) [29.03.2008 23:23:51]

Iwriting_a_function_interface.html

$data_array['zipcode'] = $zipcode;
$data_array['Submit'] = "Submit";
$form_result = http_post_form($target, $ref=$target, $data_array);

Listing 17-4: Emulating the form

Parsing and Returning the Result

The remaining step is to parse the desired city, county, state, and geo coordinates from the web
page obtained from the form submission in the previous listing. The script that does this is shown in
Listing 17-5.

Code View:

$landmark = "Information about ".$zipcode;
$table_array = parse_array($form_result['FILE'], "<table", "</table>");
for($xx=0; $xx<count($table_array); $xx++)

 {
 # Parse the table containing the parsing landmark
 if(stristr($table_array[$xx], $landmark))
 {
 $ret['CITY'] = return_between($table_array[$xx], "CITY", "</tr>", EXCL);
 $ret['CITY'] = strip_tags($ret['CITY']);
 $ret['STATE'] = return_between($table_array[$xx], "STATE", "</tr>", EXCL);
 $ret['STATE'] = strip_tags($ret['STATE']);
 $ret['COUNTY'] = return_between($table_array[$xx], "COUNTY", "</tr>", EXCL);
 $ret['COUNTY'] = strip_tags($ret['COUNTY']);
 $ret['LATITUDE'] = return_between($table_array[$xx], "LATITUDE", "</tr>", EXCL);
 $ret['LATITUDE'] = strip_tags($ret['LATITUDE']);
 $ret['LONGITUDE'] = return_between($table_array[$xx], "LONGITUDE", "</tr>", EXCL);
 $ret['LONGITUDE'] = strip_tags($ret['LONGITUDE']);
 }
 }
Return the parsed data

return $ret;
} # End Interface describe_zipcode($zipcode)

Listing 17-5: Parsing and returning the data

This script first uses parse_array() to create an array containing all the tables in the downloaded
web page, which is returned in $form_result['FILE']. The script then looks for the table that
contains the parsing landmark Information about Once the webbot finds the table that holds
the data we're looking for, it parses the data using unique strings that identify the beginning and end
of the desired data. The parsed data is then cleaned up with strip_tags() and returned in the array
we described earlier. Once the data is parsed and placed into an array, that array is returned to the
calling program.

file:///D|/!!/final/Iwriting_a_function_interface.html (6 von 6) [29.03.2008 23:23:51]

Ifinal_thoughts_id9.html

Final Thoughts

Now that you know how to write function interfaces to a web page (or in our case, a form),
you can convert the data and functionality of any web page into something your programs
can use easily in real time. Here are a few more things for you to consider.

Distributing Resources

A secondary benefit of creating a function interface to a webbot is that when a webbot uses a
web page on another server as a resource, it allocates bandwidth and computational power
across several computers. Since more resources are deployed, you can get more done in less
time. You can use this technique to spread the burden of running complex webbots to more
than one computer on your local or remote networks. This technique may also be used to
make page requests from multiple IP addresses (for added stealth) or to spread bandwidth
across multiple Internet nodes.

Using Standard Interfaces

The interface described in this example is specific to PHP. Although scripts for Perl, Java, or C+
+ environments would be very similar to this one, you could not use this script directly in an
environment other than PHP. You can solve this problem by returning data in a language-
independent format like XML or SOAP (Simple Object Access Protocol). To learn more about
these protocols, read DESIGNING WEBBOT-FRIENDLY WEBSITES.

Designing a Custom Lightweight "Web Service"

Our example assumed that the target was not under our control, so we had to live within the
constraints presented by the target website. When you control the website your interface
targets, however, you can design the web page in such a way that you don't have to parse
the data from HTML. In these instances, the data is returned as variables that your program
can use directly. These techniques are also described in detail in DESIGNING WEBBOT-
FRIENDLY WEBSITES.

If you're interested in creating your own ZIP code server (with a lightweight interface), you'll
need a ZIP code database. You should be able to find one by performing a Google search for
ZIP code database.

file:///D|/!!/final/Ifinal_thoughts_id9.html [29.03.2008 23:23:52]

Iadvanced_technical_considerations.html

ADVANCED TECHNICAL CONSIDERATIONS

The chapters in this section explore the finer technical aspects of webbot and
spider development. In the first two chapters, I'll share some lessons I learned
the hard way while writing very specialized webbots and spiders. I'll also
describe methods for leveraging PHP/CURL to create webbots that manage
authentication, encryption, and cookies.

SPIDERS

This discussion of spider design starts with an exploration of simple
spiders that find and follow links on specific web pages. The
conversation later expands to techniques for developing advanced
spiders that autonomously roam the Internet, looking for specific
information and dropping payloads—performing predefined functions
as they find desired information.

PROCUREMENT WEBBOTS AND SNIPERS

In this chapter, we'll explore the design theory of writing snipers,
webbots that automatically purchase items. Snipers are primarily
used on online auctions sites, "attacking" when a specific list of
criteria are met.

WEBBOTS AND CRYPTOGRAPHY

Encrypted websites are not a problem for webbots using PHP/CURL.
Here we'll explore how online encryption certificates work and how
PHP/CURL makes encryption easy to handle.

AUTHENTICATION

In this chapter on accessing authenticated (i.e., password-protected)
sites, we'll explore the various methods used to protect a website
from unauthorized users. You'll also learn how to write webbots that
can automatically log in to these sites.

ADVANCED COOKIE MANAGEMENT

Advanced cookie management involves managing cookie expiration
dates and multiple sets of cookies for multiple users. We'll also
explore PHP/CURL's ability (and inability) to meet these challenges.

SCHEDULING WEBBOTS AND SPIDERS

file:///D|/!!/final/Iadvanced_technical_considerations.html (1 von 3) [29.03.2008 23:23:53]

Iadvanced_technical_considerations.html

In the final installment in this section, we'll explore methods for
periodically launching or executing a webbot. These techniques will
allow your webbots to run unattended while simulating human
activity.

SPIDERS

Spiders, also known as web spiders, crawlers, and web walkers, are specialized webbots that—
unlike traditional webbots with well-defined targets—download multiple web pages across
multiple websites. As spiders make their way across the Internet, it's difficult to anticipate
where they'll go or what they'll find, as they simply follow links they find on previously
downloaded pages. Their unpredictability makes spiders fun to write because they act as if
they almost have minds of their own.

The best known spiders are those used by the major search engine companies (Google,
Yahoo!, and MSN) to identify online content. And while spiders are synonymous with search
engines for many people, the potential utility of spiders is much greater. You can write a
spider that does anything any other webbot does, with the advantage of targeting the entire
Internet. This creates a niche for developers that design specialized spiders that do very
specific work. Here are some potential ideas for spider projects:

● Discover sales of original copies of 1963 Spider-Man comics. Design your spider to
email you with links to new findings or price reductions.

● Periodically create an archive of your competitors' websites.

● Invite every MySpace member living in Cleveland, Ohio to be your friend.[]

[] This is only listed here to show the potential for what spiders can do. Please don't actually do
this! Automated agents like this violate MySpace's terms of use. Develop webbots responsibly.

● Send a text message when your spider finds jobs for Miami-based fashion
photographers who speak Portuguese.

● Maintain an updated version of your local newspaper on your PDA.

● Validate that all the links on your website point to active web pages.

● Perform a statistical analysis of noun usage across the Internet.

● Search the Internet for musicians that recorded new versions of your favorite songs.

● Purchase collectible Bibles when your spider detects one with a price substantially
below the collectible price listed on Amazon.com.

This list could go on, but you get the idea. To a business, a well-purposed spider is like
additional staff, easily justifying the one-time development cost.

How Spiders Work

Spiders begin harvesting links at the seed URL, the address of the initial target web page. The

file:///D|/!!/final/Iadvanced_technical_considerations.html (2 von 3) [29.03.2008 23:23:53]

http://amazon.com/

Iadvanced_technical_considerations.html

spider uses these links as references to the next set of pages to process, and as it downloads
each of those web pages, the spider harvests more links. The first page the spider downloads
is known as the first penetration level. In each successive level of penetration, additional web
pages are downloaded as directed by the links harvested in the previous level. The spider
repeats this process until it reaches the maximum penetration level. A simple spider shows a
typical spider process.

A simple spider

file:///D|/!!/final/Iadvanced_technical_considerations.html (3 von 3) [29.03.2008 23:23:53]

Ispiders.html

ADVANCED TECHNICAL CONSIDERATIONS

The chapters in this section explore the finer technical aspects of webbot and
spider development. In the first two chapters, I'll share some lessons I learned
the hard way while writing very specialized webbots and spiders. I'll also
describe methods for leveraging PHP/CURL to create webbots that manage
authentication, encryption, and cookies.

SPIDERS

This discussion of spider design starts with an exploration of simple
spiders that find and follow links on specific web pages. The
conversation later expands to techniques for developing advanced
spiders that autonomously roam the Internet, looking for specific
information and dropping payloads—performing predefined functions
as they find desired information.

PROCUREMENT WEBBOTS AND SNIPERS

In this chapter, we'll explore the design theory of writing snipers,
webbots that automatically purchase items. Snipers are primarily
used on online auctions sites, "attacking" when a specific list of
criteria are met.

WEBBOTS AND CRYPTOGRAPHY

Encrypted websites are not a problem for webbots using PHP/CURL.
Here we'll explore how online encryption certificates work and how
PHP/CURL makes encryption easy to handle.

AUTHENTICATION

In this chapter on accessing authenticated (i.e., password-protected)
sites, we'll explore the various methods used to protect a website
from unauthorized users. You'll also learn how to write webbots that
can automatically log in to these sites.

ADVANCED COOKIE MANAGEMENT

Advanced cookie management involves managing cookie expiration
dates and multiple sets of cookies for multiple users. We'll also
explore PHP/CURL's ability (and inability) to meet these challenges.

SCHEDULING WEBBOTS AND SPIDERS

file:///D|/!!/final/Ispiders.html (1 von 3) [29.03.2008 23:23:54]

Ispiders.html

In the final installment in this section, we'll explore methods for
periodically launching or executing a webbot. These techniques will
allow your webbots to run unattended while simulating human
activity.

SPIDERS

Spiders, also known as web spiders, crawlers, and web walkers, are specialized webbots that—
unlike traditional webbots with well-defined targets—download multiple web pages across
multiple websites. As spiders make their way across the Internet, it's difficult to anticipate
where they'll go or what they'll find, as they simply follow links they find on previously
downloaded pages. Their unpredictability makes spiders fun to write because they act as if
they almost have minds of their own.

The best known spiders are those used by the major search engine companies (Google,
Yahoo!, and MSN) to identify online content. And while spiders are synonymous with search
engines for many people, the potential utility of spiders is much greater. You can write a
spider that does anything any other webbot does, with the advantage of targeting the entire
Internet. This creates a niche for developers that design specialized spiders that do very
specific work. Here are some potential ideas for spider projects:

● Discover sales of original copies of 1963 Spider-Man comics. Design your spider to
email you with links to new findings or price reductions.

● Periodically create an archive of your competitors' websites.

● Invite every MySpace member living in Cleveland, Ohio to be your friend.[]

[] This is only listed here to show the potential for what spiders can do. Please don't actually do
this! Automated agents like this violate MySpace's terms of use. Develop webbots responsibly.

● Send a text message when your spider finds jobs for Miami-based fashion
photographers who speak Portuguese.

● Maintain an updated version of your local newspaper on your PDA.

● Validate that all the links on your website point to active web pages.

● Perform a statistical analysis of noun usage across the Internet.

● Search the Internet for musicians that recorded new versions of your favorite songs.

● Purchase collectible Bibles when your spider detects one with a price substantially
below the collectible price listed on Amazon.com.

This list could go on, but you get the idea. To a business, a well-purposed spider is like
additional staff, easily justifying the one-time development cost.

How Spiders Work

Spiders begin harvesting links at the seed URL, the address of the initial target web page. The

file:///D|/!!/final/Ispiders.html (2 von 3) [29.03.2008 23:23:54]

http://amazon.com/

Ispiders.html

spider uses these links as references to the next set of pages to process, and as it downloads
each of those web pages, the spider harvests more links. The first page the spider downloads
is known as the first penetration level. In each successive level of penetration, additional web
pages are downloaded as directed by the links harvested in the previous level. The spider
repeats this process until it reaches the maximum penetration level. A simple spider shows a
typical spider process.

A simple spider

file:///D|/!!/final/Ispiders.html (3 von 3) [29.03.2008 23:23:54]

Ihow_spiders_work.html

ADVANCED TECHNICAL CONSIDERATIONS

The chapters in this section explore the finer technical aspects of webbot and
spider development. In the first two chapters, I'll share some lessons I learned
the hard way while writing very specialized webbots and spiders. I'll also
describe methods for leveraging PHP/CURL to create webbots that manage
authentication, encryption, and cookies.

SPIDERS

This discussion of spider design starts with an exploration of simple
spiders that find and follow links on specific web pages. The
conversation later expands to techniques for developing advanced
spiders that autonomously roam the Internet, looking for specific
information and dropping payloads—performing predefined functions
as they find desired information.

PROCUREMENT WEBBOTS AND SNIPERS

In this chapter, we'll explore the design theory of writing snipers,
webbots that automatically purchase items. Snipers are primarily
used on online auctions sites, "attacking" when a specific list of
criteria are met.

WEBBOTS AND CRYPTOGRAPHY

Encrypted websites are not a problem for webbots using PHP/CURL.
Here we'll explore how online encryption certificates work and how
PHP/CURL makes encryption easy to handle.

AUTHENTICATION

In this chapter on accessing authenticated (i.e., password-protected)
sites, we'll explore the various methods used to protect a website
from unauthorized users. You'll also learn how to write webbots that
can automatically log in to these sites.

ADVANCED COOKIE MANAGEMENT

Advanced cookie management involves managing cookie expiration
dates and multiple sets of cookies for multiple users. We'll also
explore PHP/CURL's ability (and inability) to meet these challenges.

SCHEDULING WEBBOTS AND SPIDERS

file:///D|/!!/final/Ihow_spiders_work.html (1 von 3) [29.03.2008 23:23:55]

Ihow_spiders_work.html

In the final installment in this section, we'll explore methods for
periodically launching or executing a webbot. These techniques will
allow your webbots to run unattended while simulating human
activity.

SPIDERS

Spiders, also known as web spiders, crawlers, and web walkers, are specialized webbots that—
unlike traditional webbots with well-defined targets—download multiple web pages across
multiple websites. As spiders make their way across the Internet, it's difficult to anticipate
where they'll go or what they'll find, as they simply follow links they find on previously
downloaded pages. Their unpredictability makes spiders fun to write because they act as if
they almost have minds of their own.

The best known spiders are those used by the major search engine companies (Google,
Yahoo!, and MSN) to identify online content. And while spiders are synonymous with search
engines for many people, the potential utility of spiders is much greater. You can write a
spider that does anything any other webbot does, with the advantage of targeting the entire
Internet. This creates a niche for developers that design specialized spiders that do very
specific work. Here are some potential ideas for spider projects:

● Discover sales of original copies of 1963 Spider-Man comics. Design your spider to
email you with links to new findings or price reductions.

● Periodically create an archive of your competitors' websites.

● Invite every MySpace member living in Cleveland, Ohio to be your friend.[]

[] This is only listed here to show the potential for what spiders can do. Please don't actually do
this! Automated agents like this violate MySpace's terms of use. Develop webbots responsibly.

● Send a text message when your spider finds jobs for Miami-based fashion
photographers who speak Portuguese.

● Maintain an updated version of your local newspaper on your PDA.

● Validate that all the links on your website point to active web pages.

● Perform a statistical analysis of noun usage across the Internet.

● Search the Internet for musicians that recorded new versions of your favorite songs.

● Purchase collectible Bibles when your spider detects one with a price substantially
below the collectible price listed on Amazon.com.

This list could go on, but you get the idea. To a business, a well-purposed spider is like
additional staff, easily justifying the one-time development cost.

How Spiders Work

Spiders begin harvesting links at the seed URL, the address of the initial target web page. The

file:///D|/!!/final/Ihow_spiders_work.html (2 von 3) [29.03.2008 23:23:55]

http://amazon.com/

Ihow_spiders_work.html

spider uses these links as references to the next set of pages to process, and as it downloads
each of those web pages, the spider harvests more links. The first page the spider downloads
is known as the first penetration level. In each successive level of penetration, additional web
pages are downloaded as directed by the links harvested in the previous level. The spider
repeats this process until it reaches the maximum penetration level. A simple spider shows a
typical spider process.

A simple spider

file:///D|/!!/final/Ihow_spiders_work.html (3 von 3) [29.03.2008 23:23:55]

Iexample_spider.html

Example Spider

Our example spider will reuse the image harvester (described in IMAGE-CAPTURING WEBBOTS)
that downloads images for an entire website. The image harvester is this spider's payload—the
task that it will perform on every web page it visits. While this spider performs a useful task, its
primary purpose is to demonstrate how spiders work, so design compromises were made that
affect the spider's scalability for use on larger tasks. After we explore this example spider, I'll
conclude with recommendations for making a scalable spider suitable for larger projects.

Listings 18-1 and 18-2 are the main scripts for the example spider. Initially, the spider is limited
to collecting links. Since the payload adds complexity, we'll include it after you've had an
opportunity to understand how the basic spider works.

Code View:

Initialization
include("LIB_http.php"); // http library
include("LIB_parse.php"); // parse library
include("LIB_resolve_addresses.php"); // Address resolution library
include("LIB_exclusion_list.php"); // List of excluded keywords
include("LIB_simple_spider.php"); // Spider routines used by this app

set_time_limit(3600); // Don't let PHP time out

$SEED_URL = "http://www.YourSiteHere.com";
$MAX_PENETRATION = 1; // Set spider penetration depth
$FETCH_DELAY = 1; // Wait 1 second between page fetches
$ALLOW_OFFISTE = false; // Don't let spider roam from seed domain
$spider_array = array(); // Initialize the array that holds links

Listing 18-1: Main spider script, initialization

The script in Listing 18-1 loads the required libraries and initializes settings that tell the spider
how to operate. This project introduces two new libraries: an exclusion list
(LIB_exclusion_list.php) and the spider library used for this exercise (LIB_simple_spider.
php). We'll explain both of these new libraries as we use them.

In any PHP spider design, the default script time-out of 30 seconds needs to be set to a period
more appropriate for spiders, since script execution may take minutes or even hours. Since
spiders may have notoriously long execution times, the script in Listing 18-1 sets the PHP script
time-out to one hour (3,600 seconds) with the set_time_limit(3600) command.

The example spider is configured to collect enough information to demonstrate how spiders
work but not so much that the sheer volume of data distracts from the demonstration. You can
set these settings differently once you understand the effects they have on the operation of
your spider. For now, the maximum penetration level is set to 1. This means that the spider will
harvest links from the seed URL and the pages that the links on the seed URL reference, but it
will not download any pages that are more than one link away from the seed URL. Even when
you tie the spider's hands—as we've done here—it still collects a ridiculously large amount of
data. When limited to one penetration level, the spider still harvested 583 links when pointed at

file:///D|/!!/final/Iexample_spider.html (1 von 2) [29.03.2008 23:23:56]

Iexample_spider.html

http://www.schrenk.com. This number excludes redundant links, which would otherwise raise
the number of harvest links to 1,930. For demonstration purposes, the spider also rejects links
that are not on the parent domain.

The main spider script, shown in Listing 18-2, is quite simple. Much of this simplicity, however,
comes at the cost of storing links in an array, instead of a more scalable (and more
complicated) database. As you can see, the functions in the libraries make it easy to download
web pages, harvest links, exclude unwanted links, and fully resolve addresses.

Code View:

Get links from $SEED_URL
echo "Harvesting Seed URL\n";
$temp_link_array = harvest_links($SEED_URL);
$spider_array = archive_links($spider_array, 0, $temp_link_array);

Spider links from remaining penetration levels
for($penetration_level=1; $penetration_level<=$MAX_PENETRATION; $penetration_level++)
 {
 $previous_level = $penetration_level - 1;
 for($xx=0; $xx<count($spider_array[$previous_level]); $xx++)
 {
 unset($temp_link_array);
 $temp_link_array = harvest_links($spider_array[$previous_level][$xx]);
 echo "Level=$penetration_level, xx=$xx of
 ".count($spider_array[$previous_level])." \n";
 $spider_array = archive_links($spider_array, $penetration_level,
 $temp_link_array);
 }
 }

Listing 18-2: Main spider script, harvesting links

When the spider uses www.schrenk.com as a seed URL, it harvests and rejects links, as shown
in Running the simple spider from Listings 18-1 and 18-2.

Now that you've seen the main spider script, an exploration of the routines in
LIB_simple_spider will provide insight to how it really works.

file:///D|/!!/final/Iexample_spider.html (2 von 2) [29.03.2008 23:23:56]

http://www.schrenk.com/
http://www.schrenk.com/

Ilib_simple_spider.html

LIB_simple_spider

Special spider functions are found in the LIB_simple_spider library. This library provides
functions that parse links from a web page when given a URL, archive harvested links in an
array, identify the root domain for a URL, and identify links that should be excluded from the
archive.

This library, as well as the other scripts featured in this chapter, is available for download at
this book's website.

Running the simple spider from Listings 18-1 and 18-2

harvest_links()

The harvest_links() function downloads the specified web page and returns all the links in
an array. This function, shown in Listing 18-3, uses the $DELAY setting to keep the spider

from sending too many requests to the server over too short a period.[]

[] A stealthier spider would shuffle the order of web page requests.

Code View:

file:///D|/!!/final/Ilib_simple_spider.html (1 von 5) [29.03.2008 23:23:57]

Ilib_simple_spider.html

function harvest_links($url)
 {
 # Initialize
 global $DELAY;
 $link_array = array();

 # Get page base for $url (used to create fully resolved URLs for the links)
 $page_base = get_base_page_address($url);

 # $DELAY creates a random delay period between 1 second and full delay period
 $random_delay = rand(1, rand(1, $DELAY));
 # Download webpage
 sleep($random_delay);
 $downloaded_page = http_get($url, "");

 # Parse links
 $anchor_tags = parse_array($downloaded_page['FILE'], "<a", "", EXCL);
 # Get http attributes for each tag into an array
 for($xx=0; $xx<count($anchor_tags); $xx++)
 {
 $href = get_attribute($anchor_tags[$xx], "href");
 $resolved_addrses = resolve_address($href, $page_base);
 $link_array[] = $resolved_address;
 echo "Harvested: ".$resolved_addres." \n";
 }
 return $link_array;
 }

Listing 18-3: Harvesting links from a web page with the harvest_links() function

archive_links()

The script in Listing 18-4 uses the link array collected by the previous function to create an
archival array. The first element of the archival array identifies the penetration level where
the link was found, while the second contains the actual link.

function archive_links($spider_array, $penetration_level, $temp_link_array)
 {
 for($xx=0; $xx<count($temp_link_array); $xx++)
 {
 # Don't add excluded links to $spider_array
 if(!excluded_link($spider_array, $temp_link_array[$xx]))
 {
 $spider_array[$penetration_level][] = $temp_link_array[$xx];
 }
 }
 return $spider_array;

 }

Listing 18-4: Archiving links in $spider_array

file:///D|/!!/final/Ilib_simple_spider.html (2 von 5) [29.03.2008 23:23:57]

Ilib_simple_spider.html

get_domain()

The function get_domain() parses the root domain from the target URL. For example, given a
target URL like https://www.schrenk.com/store/product_list.php, the root domain is schrenk.
com.

The function get_domain() compares the root domains of the links to the root domain of the
seed URL to determine if the link is for a URL that is not in the seed URL's domain, as shown
in Listing 18-5.

function get_domain($url)
 {
 // Remove protocol from $url
 $url = str_replace("http://", "", $url);
 $url = str_replace("https://", "", $url);

 // Remove page and directory references
 if(stristr($url, "/"))
 $url = substr($url, 0, strpos($url, "/"));

 return $url;
 }

Listing 18-5: Parsing the root domain from a fully resolved URL

This function is only used when the configuration for $ALLOW_OFFSITE is set to false.

exclude_link()

This function examines each link and determines if it should be included in the archive of
harvested links. Reasons for excluding a link may include the following:

● The link is contained within JavaScript

● The link already appears in the archive

● The link contains excluded keywords are listed in the exclusion array

● The link is to a different domain

Code View:

function excluded_link($spider_array, $link)
 {
 # Initialization
 global $exclusion_array, $ALLOW_OFFSITE;
 $exclude = false;

 // Exclude links that are JavaScript commands
 if(stristr($link, "javascript"))
 {

file:///D|/!!/final/Ilib_simple_spider.html (3 von 5) [29.03.2008 23:23:57]

https://www.schrenk.com/store/product_list.php
http://schrenk.com/
http://schrenk.com/

Ilib_simple_spider.html

 echo "Ignored JavaScript function: $link\n";
 $exclude=true;
 }

 // Exclude redundant links
 for($xx=0; $xx<count($spider_array); $xx++)
 {
 $saved_link="";
 while(isset($saved_link))
 {
 $saved_link=array_pop($spider_array[$xx]);
 if($link == array_pop($spider_array[$xx]))
 {
 echo "Ignored redundant link: $link\n";
 $exclude=true;
 break;
 }
 }
 }

 // Exclude links found in $exclusion_array
 for($xx=0; $xx<count($exclusion_array); $xx++)
 {
 if(stristr($link, $exclusion_array[$xx]))
 {
 echo "Ignored excluded link: $link\n";
 $exclude=true;
 break;
 }
 }

 // Exclude offsite links if requested
 if($ALLOW_OFFSITE==false)
 {
 if(get_domain($link)!=get_domain($SEED_URL))
 {
 echo "Ignored offsite link: $link\n";
 $exclude=true;
 break;
 }
 }
 return $exclude;
 }

Listing 18-6: Excluding unwanted links

There are several reasons to exclude links. For example, it's best to ignore any links
referenced within JavaScript because—without a proper JavaScript interpreter—those links
may yield unpredictable results. Removing redundant links makes the spider run faster and
reduces the amount of data the spider needs to manage. The exclusion list allows the spider
to ignore undesirable links to places like Google AdSense, banner ads, or other places you
don't want the spider to go.

file:///D|/!!/final/Ilib_simple_spider.html (4 von 5) [29.03.2008 23:23:57]

Ilib_simple_spider.html

file:///D|/!!/final/Ilib_simple_spider.html (5 von 5) [29.03.2008 23:23:57]

Iexperimenting_with_the_spider.html

Experimenting with the Spider

Now that you have a general idea how this spider works, go to the book's website and
download the required scripts. Play with the initialization settings, use different seed URLs,
and see what happens.

Consider these three warnings before you start:

● Use a respectful $FETCH_DELAY of at least a second or two so you don't create a denial
of service (DoS) attack by consuming so much bandwidth that others cannot use the
web pages you target. Better yet, read KEEPING WEBBOTS OUT OF TROUBLE before
you begin.

● Keep the maximum penetration level set to a low value like 1 or 2. This spider is
designed for simplicity, not scalability, and if you penetrate too deeply into your seed
URL, your computer will run out of memory.

● For best results, run spider scripts within a command shell, not through a browser.

file:///D|/!!/final/Iexperimenting_with_the_spider.html [29.03.2008 23:23:58]

Iadding_the_payload.html

Adding the Payload

The payload used by this spider is an extension of the library used in IMAGE-CAPTURING
WEBBOTS to download all the images found on a web page. This time, however, we'll
download all the images referenced by the entire website. The code that adds the payload to
the spider is shown in Listing 18-7. You can tack this code directly onto the end of the script
for the earlier spider.

Code View:

Add the payload to the simple spider
// Include download and directory creation lib
include("LIB_download_images.php");

// Download images from pages referenced in $spider_array
for($penetration_level=1; $penetration_level<=$MAX_PENETRATION; $penetration_level++)
 {
 for($xx=0; $xx<count($spider_array[$previous_level]); $xx++)
 {
 download_images_for_page($spider_array[$previous_level][$xx]);
 }
 }

Listing 18-7: Adding a payload to the simple spider

Functionally, the addition of the payload involves the inclusion of the image download library
and a two-part loop that activates the image harvester for every web page referenced at every
penetration level.

file:///D|/!!/final/Iadding_the_payload.html [29.03.2008 23:23:59]

Ifurther_exploration_id9.html

Further Exploration

As mentioned earlier, the example spider was optimized for simplicity, not scalability.
Moreover, while it was suitable for learning about spiders, it is not suitable for use in a
production environment where you want to spider many web pages. There are, however,
opportunities for enhancements to improve performance and scalability.

Save Links in a Database

The single biggest limitation of the example spider is that all the links are stored in an array.
Arrays can only get so big before the computer is forced to rely on disk swapping, a technique
that expands the amount of data space by moving some of the storage task from RAM to a
disk drive. Disk swapping adversely affects performance and often leads to system crashes.
The other drawback to storing links in an array is that all the work your spider performed is
lost as soon as the program terminates. A much better approach is to store the information
your spiders harvest in a database.

Saving your spider's data in a database has many advantages. First of all, you can store more
information. Not only does a database increase the number of links you can store, but it also
makes it practical to cache images of the pages you download for later processing. As we'll
see later, it also allows more than one spider to work on the same set of links and facilitates
multiple computers to launch payloads on the data collected by the spider(s).

Separate the Harvest and Payload

The example spider performs the payload after harvesting all the links. Often, however, link
harvesting and payload are two distinctly separate pieces of code, and they are often
performed by two separate computers. While one script harvests links and stores them in a
database, another process can query the same database to determine which web pages have
not received the payload. You could, for example, use the same computer to schedule the
spiders to run in the morning and the payload script to run in the evening. This assumes, of
course, that you save your spidered results in a database, where the data has persistence and
is available over an extended period.

Distribute Tasks Across Multiple Computers

Your spider can do more in less time if it teams with other spiders to download multiple pages
simultaneously. Fortunately, spiders spend most of their time waiting for webservers to
respond to requests for web pages, so there's a lot of unused computer power when a single
spider process is running on a computer. You can run multiple copies of the same spider
script if your spider software queries a database to identify the oldest unprocessed link. After
it parses links from that web page, it can query the database again to determine whether
links on the next level of penetration already exist in the database—and if not, it can save
them for later processing. Once you've written one spider to operate in this manner, you can
run multiple copies of the identical spider script on the same computer, each accessing the
same database to complete a common task. Similarly, you can also run multiple copies of the
payload script to process all the links harvested by the team of spiders.

If you run out of processing power on a single computer, you can use the same technique
used to run parallel spiders on one machine to run multiple spiders on multiple computers.
You can improve performance further by hosting the database on its own computer. As long

file:///D|/!!/final/Ifurther_exploration_id9.html (1 von 2) [29.03.2008 23:24:00]

Ifurther_exploration_id9.html

as all the spiders and all the payload computers have network access to a common database,
you should be able to expand this concept until the database runs out of processing power.
Distributing the database, unfortunately, is more difficult than distributing spiders and
payload tasks.

Regulate Page Requests

Spiders (especially the distributed types) increase the potential of overwhelming target
websites with page requests. It doesn't take much computer power to completely flood a
network. In fact, a vintage 33 MHz Pentium has ample resources to consume a T1 network
connection. Multiple modern computers, of course, can do much more damage. If you do
build a distributed spider, you should consider writing a scheduler, perhaps on the computer
that hosts your database, to regulate how often page requests are made to specific domains
or even to specific subnets. The scheduler could also remove redundant links from the
database and perform other routine maintenance tasks. If you haven't already done so, this is
a good time to read (or reread) KEEPING WEBBOTS OUT OF TROUBLE.

file:///D|/!!/final/Ifurther_exploration_id9.html (2 von 2) [29.03.2008 23:24:00]

Iprocurement_webbots_and_snipers.html

PROCUREMENT WEBBOTS AND SNIPERS

A procurement bot is any intelligent web agent that automatically makes online purchases on
a user's behalf. These webbots are improvements over manual online procurement because
they not only automate the online purchasing process, but also autonomously detect events
that indicate the best time to buy. Procurement bots commonly make automated purchases
based on the availability of merchandise or price reductions. For other webbots, external
events like low inventory levels trigger a purchase.

The advantage of using procurement bots in your business is that they identify opportunities
that may only be available for a short period or that may only be discovered after many hours
of browsing. Manually finding online deals can be tedious, time consuming, and prone to
human error. The ability to shop automatically uncovers bargains that would otherwise go
unnoticed. I've written automated procurement bots that—on a monthly basis—purchase
hundreds of thousands of dollars of merchandise that would be unknown to less vigilant
human buyers.

Procurement Webbot Theory

Before you begin, consider that procurement bots require both planning and in-depth
investigation of target websites. These programs spend your (or your clients') money, and
their success is dependent on how well you design, program, debug, and implement them.
With this in mind, use the techniques described elsewhere in this book before embarking on
your first procurement bot—in other words, your first webbot shouldn't be one that spends
money. You can use the online test store (introduced in PRICE-MONITORING WEBBOTS) as
target practice before writing webbots that make autonomous purchases in the wild.

While procurement bots purchase a wide range of products in various circumstances, they
typically follow the steps shown in Structure of a procurement bot.

Structure of a procurement bot

file:///D|/!!/final/Iprocurement_webbots_and_snipers.html (1 von 3) [29.03.2008 23:24:01]

Iprocurement_webbots_and_snipers.html

While price and need govern this particular webbot in deciding when to make a purchase, you
can design virtually any type of procurement bot by substituting different purchase trigger
events.

Get Purchase Criteria

A procurement bot first needs to gather the purchase criteria, which is a description of the
item or items to purchase. The purchase criteria may range from simple part numbers to item
descriptions combined with complicated calculations that determine how much you want to
pay for an item.

Authenticate Buyer

Once the webbot has identified the purchase criteria, it authenticates the buyer by
automatically logging in to the online store as a registered user. In almost all cases, this
means the webbot must know the username and password of the person it represents.[] (For
more on how webbots handle the authentication process, see AUTHENTICATION.)

[] The exceptions to this rule are instances like the eBay API, which allow third parties to act on
someone's behalf without knowing that individual's username and password.

Verify Item

Prior to purchase, procurement bots should verify that requested items are still available for

file:///D|/!!/final/Iprocurement_webbots_and_snipers.html (2 von 3) [29.03.2008 23:24:01]

Iprocurement_webbots_and_snipers.html

sale if they were selected in advance of the actual purchase. For example, if you instruct a
procurement bot to buy something in an online auction, the bot should email you if the
auction is canceled and the item is no longer for sale. (WEBBOTS THAT SEND EMAIL describes
how to send email from a webbot.) The procurement process should also stop at this point.
This sounds obvious, but unless you program your webbot to stop when items are no longer
for sale, it may attempt to purchase unavailable items.

Evaluate Purchase Triggers

Purchase triggers determine when available merchandise meets predefined purchase criteria.
When those conditions are met, the purchase is made. Bear in mind that it may take days,
weeks, or even months before a buying opportunity presents itself. But when it does, you'll be
the first in line (unless someone who is also running a procurement bot beats you to it).[]

[] Occasionally, you may find yourself in direct competition with other webbots. I've found that when this
happens, it's usually best not to get overly competitive and do things like use excessive bandwidth or
server connections that might identify your presence.

Together, the purchase criteria and purchase triggers define what your procurement bot does.
If you want to pick up cheap merchandise or capitalize on price reductions, you might use
price as a trigger. More complicated webbots may weigh both price and inventory levels to
make purchasing decisions. Other procurement bots may make purchases based on the
scarcity of merchandise. Alternatively, as we'll explore later, you may write a sniper, which
uses the time an auction ends as a trigger to bidding.

Make Purchase

Purchases are finalized by completing and submitting forms that collect information about the
purchased product, shipping address, and payment method. Your webbot should submit these
forms in the same manner as described earlier in this book. (See AUTOMATING FORM
SUBMISSION for more on writing webbots that submit forms to websites.)

Evaluate Results

After making a purchase, the target server will display a web page that confirms your
purchase. Your webbot should parse the page to determine that your acquisition was
successful and then communicate the result of the purchase to you. Notifications of this type
are usually done through email. If the procurement bot buys many items, however, it might
be better to report the status of all purchases on a web page or to send an email with the
consolidated results for the entire day's activity.

file:///D|/!!/final/Iprocurement_webbots_and_snipers.html (3 von 3) [29.03.2008 23:24:01]

Iprocurement_webbot_theory.html

PROCUREMENT WEBBOTS AND SNIPERS

A procurement bot is any intelligent web agent that automatically makes online purchases on
a user's behalf. These webbots are improvements over manual online procurement because
they not only automate the online purchasing process, but also autonomously detect events
that indicate the best time to buy. Procurement bots commonly make automated purchases
based on the availability of merchandise or price reductions. For other webbots, external
events like low inventory levels trigger a purchase.

The advantage of using procurement bots in your business is that they identify opportunities
that may only be available for a short period or that may only be discovered after many hours
of browsing. Manually finding online deals can be tedious, time consuming, and prone to
human error. The ability to shop automatically uncovers bargains that would otherwise go
unnoticed. I've written automated procurement bots that—on a monthly basis—purchase
hundreds of thousands of dollars of merchandise that would be unknown to less vigilant
human buyers.

Procurement Webbot Theory

Before you begin, consider that procurement bots require both planning and in-depth
investigation of target websites. These programs spend your (or your clients') money, and
their success is dependent on how well you design, program, debug, and implement them.
With this in mind, use the techniques described elsewhere in this book before embarking on
your first procurement bot—in other words, your first webbot shouldn't be one that spends
money. You can use the online test store (introduced in PRICE-MONITORING WEBBOTS) as
target practice before writing webbots that make autonomous purchases in the wild.

While procurement bots purchase a wide range of products in various circumstances, they
typically follow the steps shown in Structure of a procurement bot.

Structure of a procurement bot

file:///D|/!!/final/Iprocurement_webbot_theory.html (1 von 3) [29.03.2008 23:24:02]

Iprocurement_webbot_theory.html

While price and need govern this particular webbot in deciding when to make a purchase, you
can design virtually any type of procurement bot by substituting different purchase trigger
events.

Get Purchase Criteria

A procurement bot first needs to gather the purchase criteria, which is a description of the
item or items to purchase. The purchase criteria may range from simple part numbers to item
descriptions combined with complicated calculations that determine how much you want to
pay for an item.

Authenticate Buyer

Once the webbot has identified the purchase criteria, it authenticates the buyer by
automatically logging in to the online store as a registered user. In almost all cases, this
means the webbot must know the username and password of the person it represents.[] (For
more on how webbots handle the authentication process, see AUTHENTICATION.)

[] The exceptions to this rule are instances like the eBay API, which allow third parties to act on
someone's behalf without knowing that individual's username and password.

Verify Item

Prior to purchase, procurement bots should verify that requested items are still available for

file:///D|/!!/final/Iprocurement_webbot_theory.html (2 von 3) [29.03.2008 23:24:02]

Iprocurement_webbot_theory.html

sale if they were selected in advance of the actual purchase. For example, if you instruct a
procurement bot to buy something in an online auction, the bot should email you if the
auction is canceled and the item is no longer for sale. (WEBBOTS THAT SEND EMAIL describes
how to send email from a webbot.) The procurement process should also stop at this point.
This sounds obvious, but unless you program your webbot to stop when items are no longer
for sale, it may attempt to purchase unavailable items.

Evaluate Purchase Triggers

Purchase triggers determine when available merchandise meets predefined purchase criteria.
When those conditions are met, the purchase is made. Bear in mind that it may take days,
weeks, or even months before a buying opportunity presents itself. But when it does, you'll be
the first in line (unless someone who is also running a procurement bot beats you to it).[]

[] Occasionally, you may find yourself in direct competition with other webbots. I've found that when this
happens, it's usually best not to get overly competitive and do things like use excessive bandwidth or
server connections that might identify your presence.

Together, the purchase criteria and purchase triggers define what your procurement bot does.
If you want to pick up cheap merchandise or capitalize on price reductions, you might use
price as a trigger. More complicated webbots may weigh both price and inventory levels to
make purchasing decisions. Other procurement bots may make purchases based on the
scarcity of merchandise. Alternatively, as we'll explore later, you may write a sniper, which
uses the time an auction ends as a trigger to bidding.

Make Purchase

Purchases are finalized by completing and submitting forms that collect information about the
purchased product, shipping address, and payment method. Your webbot should submit these
forms in the same manner as described earlier in this book. (See AUTOMATING FORM
SUBMISSION for more on writing webbots that submit forms to websites.)

Evaluate Results

After making a purchase, the target server will display a web page that confirms your
purchase. Your webbot should parse the page to determine that your acquisition was
successful and then communicate the result of the purchase to you. Notifications of this type
are usually done through email. If the procurement bot buys many items, however, it might
be better to report the status of all purchases on a web page or to send an email with the
consolidated results for the entire day's activity.

file:///D|/!!/final/Iprocurement_webbot_theory.html (3 von 3) [29.03.2008 23:24:02]

Isniper_theory.html

Sniper Theory

Of all procurement bots, snipers are the best known, largely because of their popularity on
eBay. Snipers are procurement bots that use time as their trigger event. Snipers wait until
the closing seconds of an online auction and bid just before the auction ends. The intent is to
make the auction's last bid and avoid price escalation caused by bidding wars. While making
the last bid is what characterizes snipers, a more important feature is that they enable people
to participate in online auctions without having to dedicate their time to monitoring individual
items or making bids at the most opportune moments.

While eBay is the most popular target, sniping programs can purchase products from any
auction website, including Yahoo!, Overstock.com, uBid, or even official US government
auction sites.

The sniping process is similar to that of the procurement bots described earlier. The main
differences are that the clocks on the auction website and sniper must be synchronized, and
the purchase trigger is determined by the auction's end time. Anatomy of a sniper shows a
common sniper construction.

Anatomy of a sniper

file:///D|/!!/final/Isniper_theory.html (1 von 4) [29.03.2008 23:24:04]

http://overstock.com/

Isniper_theory.html

Get Purchase Criteria

The purchase criteria for an auction are generally the auction identification number and the
maximum price the user is willing to pay for the item. Advanced snipers, however, may
periodically look for and target any auction that matches other predefined purchase criteria
like the brand or age of an item.

Authenticate Buyer

Authentication of snipers is similar to other authentication practices discussed earlier.
Occasionally, snipers can authenticate users without the need for a username and password,
but these techniques vary depending on the auction site and the special programming
interfaces it provides. The problem of disclosing login credentials to third-party sniping
services is one of the reasons people often choose to write their own snipers.

Verify Item

Many auctions end prematurely due to early cancellation by the seller or to buy-it-now
purchases, which allow a bidder to buy an item for a fixed price before the auction comes to
its scheduled end. For both of these reasons, snipers must periodically verify that the auction
it intends to snipe is still a valid auction. Not doing so may cause a sniper to mistakenly bid
on nonexistent auctions. Typically, snipers validate the auction once after collecting the
purchase criteria and again just before bidding.

Synchronize Clocks

Since a sniper uses the closing time of an auction as its event trigger, the sniper and auction
website must synchronize their clocks. Synchronization involves requesting the timestamp
from the online auction's server and subtracting that value from the auction's scheduled end.
The result is the starting value for a countdown clock. When the countdown clock approaches
zero, the sniper places its bid.

A countdown clock is a more accurate method of establishing a bid time than relying on your
computer's internal clock to make a bid a few seconds before the scheduled end of an
auction. This is particularly true if your sniper is running on a PC, where internal clocks are
notoriously inaccurate.

To guarantee synchronization of the sniper and the online auction's clock, the sniper should
synchronize periodically and with increased frequency as the end of the auction nears.
Periodic synchronization reduces the sniper's reliance on the accuracy of your computer's
clock. Chances are, neither the clock on the auction site's server nor the one on your PC is set
to the correct time, but from a sniper's perspective, the server's clock is the only one that
matters.

Obtaining a server's clock value is as easy as making a header request and parsing the
server's timestamp from the header, as shown in Listing 19-1.

// Include libraries
include("LIB_http.php");
include("LIB_parse.php");

// Identify the server you want to get local time from
$target = "http://www.schrenk.com";

file:///D|/!!/final/Isniper_theory.html (2 von 4) [29.03.2008 23:24:04]

Isniper_theory.html

// Request the httpd head
$header_array = http_header($target, $ref="");

// Parse the local server time from the header
$local_server_time = return_between($header_array['FILE'], $start="Date:",
 $stop="\n", EXCL);

// Convert the local server time to a timestamp
$local_server_time_ts = strtotime($local_server_time);

// Display results
echo "\nReturned header:\n";
echo $header_array['FILE']."\n";
echo "Parsed server timestamp = ".$local_server_time_ts ."\n";
echo "Formatted server time = ".date("r", $local_server_time_ts)."\n";

Listing 19-1: A script that fetches and parses a server's time settings

When the script in Listing 19-1 is run, it displays a screen similar to the one in Result of
running the script in Listing19-1. Here you can see that the script requests an HTTP header
from a target server. It then parses the timestamp (which is identified by the line starting
with Date:) from the header.

Result of running the script in Listing19-1

It is fairly safe to assume that the target webserver's clock is the same clock that is used to
time the auctions. However, as a precaution, it is worthwhile to verify that the timestamp
returned from the webserver correlates to the time displayed on the auction web pages.

Once the sniper parses the server's formatted timestamp, it converts it into a Unix
timestamp, an integer that represents the number of seconds that have elapsed since January
1, 1970. The use of the Unix timestamp is important because in order to perform the
countdown, the sniper needs to know how many seconds separate the current time from the
scheduled end of the auction. If you have Unix timestamps for both events, it's simply a
matter of subtracting the current server timestamp value from the end of auction timestamp.
Failure to convert to Unix timestamps results in some difficult calendar math. For example,
without Unix timestamps, you may need to subtract 10:20 PM, September 19 from 8:12 AM,

file:///D|/!!/final/Isniper_theory.html (3 von 4) [29.03.2008 23:24:04]

Isniper_theory.html

September 20 to obtain the time remaining in an auction.

Time to Bid?

A sniper needs to make one bid, close to the auction's scheduled end but just before other
bidders have time to respond to it. Therefore, you will want to make your bid a few seconds
before the auction ends, but not so close to the end that the auction is over before the server
has time to process your bid.

Submit Bid

Your sniper will submit bids in a manner similar to the other procurement bots, but since your
bid is time sensitive, your sniper will need to anticipate how long it will take to complete the
forms and get responses from the target server. You should expect to fine-tune this process
on live auctions.

Evaluate Results

Evaluating the results of a sniping attempt is also similar to evaluating the purchase results of
other procurement bots. The only difference is that, unlike other procurement bots, there is a
possibility that you were outbid or that the sniper bid too late to win the item. For these
reasons, you may want to include additional diagnostic information in the results, including
the final price, and whether you were outbid or the auction ended before your bid was
completed. This way, you can learn what may have gone wrong and correct problems that
may reappear in future sniping attempts.

file:///D|/!!/final/Isniper_theory.html (4 von 4) [29.03.2008 23:24:04]

Itesting_your_own_webbots_and_snipers.html

Testing Your Own Webbots and Snipers

The online store you used in PRICE-MONITORING WEBBOTS may also be used to test your
trial procurement bots and snipers. You should feel free to make your mistakes here before
you commit errors with a real procurement bot that discloses a competitive advantage or
causes suspension of your privileges on an actual target website. Aspects of the test store
that you may find particularly useful for testing your skills include the following:

● The store requires that buyers register and authenticate themselves before making any
purchase or bidding in any auction.

● The prices in the store periodically change. Use this feature to design procurement bots
that capitalize on unannounced price dips.

The address of the online test store is listed on this book's website, which is available at
http://www.schrenk.com/nostarch/webbots.

file:///D|/!!/final/Itesting_your_own_webbots_and_snipers.html [29.03.2008 23:24:05]

http://www.schrenk.com/nostarch/webbots

Ifurther_exploration_id10.html

Further Exploration

As a developer with the skills to write procurement bots, you should ask yourself what other
types of purchasing agents you can write and what other parameters you can use to make
purchasing decisions. Consider mapping out your particular ideas in a flowchart as I did in
Structure of a procurement bot and Anatomy of a sniper.

After you've honed your skills at the book's test store, consider the following ideas as starting
points for developing your own procurement bots and snipers.

● Develop a sniper that makes counterbids as necessary.

● Design a sniper that uses scarcity of an item as criteria for purchase.

● Write a procurement bot that detects price reductions.

● Write a procurement bot that monitors the availability of tickets for upcoming concerts
and sporting events. When it appears that the tickets for a concert or game will sell out
in advance of the event, create a procurement bot that automatically purchases tickets
for resale later. (Make sure not to conflict with local laws, of course.)

Write a procurement bot that monitors weather forecasts and makes stock or commodity
purchases based on industries that are affected by inclement weather.

file:///D|/!!/final/Ifurther_exploration_id10.html [29.03.2008 23:24:06]

Ifinal_thoughts_id10.html

Final Thoughts

Purchasing agents are easier to write than to test. This is especially true when sniping high-
value items like cars, jewelry, and industrial equipment, where mistakes are expensive.
Obviously, when you're writing sniping agents that buy big-ticket items, you want to get
things right the first time, but this is also true of procurement bots that buy cheaper
merchandise. Here is some general advice for debugging procurement bots and snipers.

● Debug code in stages, only moving to the next step after validating that the prior stage
works correctly.

● Assume that there are limited opportunities to test your ability to make purchases with
actual trigger events. Hours, days, or even weeks may pass between purchase
opportunities. Schedule ample debugging time, since the speed at which you can
validate your code is directly associated with the availability of specific products to
purchase.

● Assume that all transactional websites, sites where money is exchanged, are closely
monitored. Even though your intentions are pure, the system administrator of your
target webserver may confuse your coding and process errors with hackers exploiting
vulnerabilities in the server. The consequences of such mistakes may lead to loss of
privileges.

● Keep a low profile. Test as much as you can before communicating with the website's
server, and limit the number of times you communicate with that target server.

● Make sure to read Chapters 25 and 28 before deploying any procurement bot.

file:///D|/!!/final/Ifinal_thoughts_id10.html [29.03.2008 23:24:06]

Iwebbots_and_cryptography.html

WEBBOTS AND CRYPTOGRAPHY

Cryptography uses mathematics to secure data by applying well-known algorithms (or
ciphers) to render the data unreadable to people who don't have the key, the string of bits
required to unlock the code. The beauty of cryptography is that it relies on standards to
secure data transmission between web clients and servers. Without these standards, it would
be impossible to have consistent security across the multitude of places that require secure
data transmission.

Don't confuse cryptography with obfuscation. Obfuscation attempts to obscure or hide data
without standardized protocols—as a result, it is about as reliable as hiding your house key
under the doormat. And since it doesn't rely on standard methods for "un-obfuscation," it is
not suitable for applications that need to work in a variety of circumstances.

Encryption—the use of cryptography—created a commercial environment on the Internet,
mostly by making it safe to pay for online purchases with credit cards. The World Wide Web
didn't widely support encryption until 1995, shortly after the Netscape Navigator browser
(paired with its Commerce Server) began supporting a protocol called Secure Sockets Layer
(SSL). SSL is a private way to transmit personal data through an encrypted data transport
layer. While Transport Layer Security (TLS) has superseded SSL, the new protocol only
changes SSL slightly, and SSL is still the popular term used to describe web encryption.
Today, all popular webservers and web browsers support encryption. (You can identify when a
website begins to use encryption, because the protocol changes from http to https.[]) If you
design webbots that handle sensitive information, you will need to know how to download
encrypted websites and make encrypted requests.

[] Additionally, when SSL is used, the network port changes from 80 to 447.

In addition to privacy, SSL also ensures the identity of websites by confirming that a digital
certificate (what I referred to earlier as a key) was assigned to the website using SSL. This
means, for example, that when you check your bank balance, you know that the web page
you access is actually coming from your bank's server and is not the product of a phishing
attack. This is enforced by validating the bank's certificate with the agency that assigned it to
the bank's IP address. Another feature of SSL is that it ensures that web clients and servers
receive all the transmitted data, because the decryption methods won't work on partial data
sets.

Designing Webbots That Use Encryption

As when downloading unencrypted web pages, PHP provides choices to the webbot designer
who needs to access secure servers. The following sections explore methods for requesting
and downloading web pages that use encryption.

SSL and PHP Built-in Functions

In PHP version 5 or higher, you can use the standard PHP built-in functions (discussed in
DOWNLOADING WEB PAGES) to request and download encrypted files if you change the
protocol from http: to https:. However, I wouldn't recommend using the built-in functions
because they lack many features that are important to webbot developers, like automatic
forwarding, form submission, and cookie support, just to name a few.

file:///D|/!!/final/Iwebbots_and_cryptography.html (1 von 2) [29.03.2008 23:24:07]

Iwebbots_and_cryptography.html

Encryption and PHP/CURL

To download an encrypted web page in PHP/CURL, simply set the protocol to https:, as
shown in Listing 20-1.

http_get("https://some.domain.com", $referer);

Listing 20-1: Requesting an encrypted web page

It's important to note that in some PHP distributions, the protocol may be case sensitive, and
a protocol defined as HTTPS: will not work. Therefore, it's a good practice to be consistent and
always specify the protocol in lowercase.

file:///D|/!!/final/Iwebbots_and_cryptography.html (2 von 2) [29.03.2008 23:24:07]

Idesigning_webbots_that_use_encryption.html

WEBBOTS AND CRYPTOGRAPHY

Cryptography uses mathematics to secure data by applying well-known algorithms (or
ciphers) to render the data unreadable to people who don't have the key, the string of bits
required to unlock the code. The beauty of cryptography is that it relies on standards to
secure data transmission between web clients and servers. Without these standards, it would
be impossible to have consistent security across the multitude of places that require secure
data transmission.

Don't confuse cryptography with obfuscation. Obfuscation attempts to obscure or hide data
without standardized protocols—as a result, it is about as reliable as hiding your house key
under the doormat. And since it doesn't rely on standard methods for "un-obfuscation," it is
not suitable for applications that need to work in a variety of circumstances.

Encryption—the use of cryptography—created a commercial environment on the Internet,
mostly by making it safe to pay for online purchases with credit cards. The World Wide Web
didn't widely support encryption until 1995, shortly after the Netscape Navigator browser
(paired with its Commerce Server) began supporting a protocol called Secure Sockets Layer
(SSL). SSL is a private way to transmit personal data through an encrypted data transport
layer. While Transport Layer Security (TLS) has superseded SSL, the new protocol only
changes SSL slightly, and SSL is still the popular term used to describe web encryption.
Today, all popular webservers and web browsers support encryption. (You can identify when a
website begins to use encryption, because the protocol changes from http to https.[]) If you
design webbots that handle sensitive information, you will need to know how to download
encrypted websites and make encrypted requests.

[] Additionally, when SSL is used, the network port changes from 80 to 447.

In addition to privacy, SSL also ensures the identity of websites by confirming that a digital
certificate (what I referred to earlier as a key) was assigned to the website using SSL. This
means, for example, that when you check your bank balance, you know that the web page
you access is actually coming from your bank's server and is not the product of a phishing
attack. This is enforced by validating the bank's certificate with the agency that assigned it to
the bank's IP address. Another feature of SSL is that it ensures that web clients and servers
receive all the transmitted data, because the decryption methods won't work on partial data
sets.

Designing Webbots That Use Encryption

As when downloading unencrypted web pages, PHP provides choices to the webbot designer
who needs to access secure servers. The following sections explore methods for requesting
and downloading web pages that use encryption.

SSL and PHP Built-in Functions

In PHP version 5 or higher, you can use the standard PHP built-in functions (discussed in
DOWNLOADING WEB PAGES) to request and download encrypted files if you change the
protocol from http: to https:. However, I wouldn't recommend using the built-in functions
because they lack many features that are important to webbot developers, like automatic
forwarding, form submission, and cookie support, just to name a few.

file:///D|/!!/final/Idesigning_webbots_that_use_encryption.html (1 von 2) [29.03.2008 23:24:09]

Idesigning_webbots_that_use_encryption.html

Encryption and PHP/CURL

To download an encrypted web page in PHP/CURL, simply set the protocol to https:, as
shown in Listing 20-1.

http_get("https://some.domain.com", $referer);

Listing 20-1: Requesting an encrypted web page

It's important to note that in some PHP distributions, the protocol may be case sensitive, and
a protocol defined as HTTPS: will not work. Therefore, it's a good practice to be consistent and
always specify the protocol in lowercase.

file:///D|/!!/final/Idesigning_webbots_that_use_encryption.html (2 von 2) [29.03.2008 23:24:09]

Ia_quick_overview_of_web_encryption.html

A Quick Overview of Web Encryption

The following is a hasty overview of how web encryption works. While incomplete, it's here to
provide a greater appreciation for everything PHP/CURL does and to help you be semi-literate
in SSL conversations with peers, vendors, and clients.

Once a web client recognizes it is talking to a secure server, it initiates a handshake process,
where the web client and server agree on the type of encryption to use. This is important
because web clients and servers are typically capable of using several ciphers or encryption
algorithms. Two commonly used encryption ciphers include Digital Encryption Standard (DES)
and Message Digest Algorithm (MD5).

The server replies to the web client with a variety of data, including its encryption certificate,
a long string of numbers used to authenticate the domain and tell the web client how to
decrypt the data it gets from the server. The web client also sends the server a random string
of data that the server uses to decrypt information originating from the client.

The process of creating an SSL for secure data communication should happen transparently
and generally shouldn't be a concern for developers. This is regardless of the fact that
creating a secure connection to a webserver requires multiple (complicated) communications
between the web client and server. In the end—when set up properly—all data flowing to and
from a secure website is encrypted, including all GET and POST requests and cookies. Aside
from local certificates, which are explained next, that's about all webbot developers need to
know about encryption. If, however, you thirst for detailed information, or you see yourself as
a future Hacker Jeopardy contestant,[] you should read the SSL specification. The full details
are available at http://wp .netscape.com/eng/ssl3/ssl-toc.html.

[] Hacker Jeopardy is a contest where contestants answer detailed questions about various Internet
protocols. This game is an annual event at the hacker conference DEFCON (http://www .defcon.org).

file:///D|/!!/final/Ia_quick_overview_of_web_encryption.html [29.03.2008 23:24:10]

http://wp .netscape.com/eng/ssl3/ssl-toc.html
http://www .defcon.org/

Ilocal_certificates.html

Local Certificates

Corporate networks sometimes use local certificates to authenticate both client and server. In
the vast majority of cases, however, there is no need for a local certificate—in fact, I have
never been in a situation that required one. However, PHP/CURL supports local encryption
certificates, and it's important to configure them even if you don't use them. Versions 7.10
and later of cURL assume that a local certificate is used and will not download any web page if
the local certificate isn't defined.[] This is counterintuitive since local certificates are seldom
used; therefore, LIB_http—the library this book uses to fetch web pages and submit forms—
assumes that there is no local encryption certificate and configures PHP/CURL accordingly, as
shown in Listing 20-2.

[] I learned this lesson the hard way when a client flew me to Palo Alto for a week to work on a project.
None of my PHP/CURL routines worked on the client's server because it used a later version of cURL than
I was using. After a few embarrassing moments, I discovered that the problem involved defining local
certificates, even when they aren't used.

curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, FALSE); // No certificate

Listing 20-2: Telling PHP/CURL not to look for a local certificate

Later releases of cURL require this option even when no local certificate is used. For that
reason, you should define this option every time you design a PHP/CURL interface.

If your webbot needs to run in a very secure network, a local certificate may be required to
authenticate your webbot as a valid user of the web page or service it accesses. If you need
to use a local encryption certificate, you can define one with the PHP/CURL options described
in Listing 20-3.

curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, TRUE); // Certificate in use
curl_setopt($ch, CURLOPT_CAINFO, $file_name); // Certificate file name

Listing 20-3: Telling PHP/CURL how to use a local encryption certificate

On even rarer occasions, you may have to support multiple local certificates. In those cases,
you can define a directory path, instead of a filename, to tell cURL where to find the location
of all your encryption certificates, as shown in Listing 20-4.

Code View:

curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, TRUE); // Certificate in use
curl_setopt($ch, CURLOPT_CAPATH, $path); // Directory where multiple
 // certificates are stored

Listing 20-4: Telling PHP/CURL how to use multiple local encryption certificates

file:///D|/!!/final/Ilocal_certificates.html (1 von 2) [29.03.2008 23:24:11]

Ilocal_certificates.html

file:///D|/!!/final/Ilocal_certificates.html (2 von 2) [29.03.2008 23:24:11]

Ifinal_thoughts_id11.html

Final Thoughts

Occasionally, you can force an encrypted website into transferring unencrypted data by
simply changing the protocol from https to http in the request. While this may allow you to
download the web page, this technique is a bad idea because, in addition to potentially
revealing confidential data, your webbot's actions will look unusual in server log files, which
will destroy all attempts at stealth.

Sometimes web developers use the wrong protocol when designing web forms. It's important
to remember that the default protocol for form submission is http, and unless specifically
defined as https by the form's action attribute, the form is submitted without encryption,
even if the form exists on a secure web page! Using the wrong network protocol is a common
mistake made by inexperienced web developers. For that reason, when your webbot submits
a form, you need to be sure it uses the same form-submission protocol that is defined by the
downloaded form. For example, if you download an encrypted form page and the form's
action attribute isn't defined, the protocol is http, not https! As wrong as it sounds, you
need to use the same protocol defined by the web form, even if it is not the proper protocol to
use in that specific case. If your webbot uses a protocol that is different than the one
browsers use when submitting the form, you may cause the system administrator to scratch
his or her head and investigate why one web client isn't using the same protocol everyone
else is using.

file:///D|/!!/final/Ifinal_thoughts_id11.html [29.03.2008 23:24:11]

Iauthentication.html

AUTHENTICATION

If your webbots are going to access sensitive information or handle money, they'll need to
authenticate, or sign in as registered users of websites. This chapter teaches you how to write
webbots that access password-protected websites. As in previous chapters, you can practice
what you learn with example scripts and special test pages on the book's website.

What Is Authentication?

Authentication is the processes of proving that you are who you say you are. You authenticate
yourself by presenting something that only you can produce. Things That Prove a Person's
Identity describes the three categories of things used to prove a person's identity.

Table Things That Prove a Person's Identity

You Authenticate Yourself With . . . Examples
Something you know Usernames and passwords; Social Security numbers
Something you are (biometrics) DNA samples; thumbprints; retina, voice, and facial

scans
Something you have House keys, digital certificates, encoded magnetic

cards, wireless key fobs, implanted canine
microchips

Types of Online Authentication

Most websites that require authentication ask for usernames and passwords (something you
know). The username and password—also known as login criteria—are compared to records in
a database. The user is allowed access to the website if the login criteria match the records in
the database. Based on the login criteria, the website may optionally restrict the user to
specific parts of the website or grant specific functionality.

Usernames and passwords are the most convenient way to authenticate people online
because they can be authenticated with a browser and without the need for additional
hardware or software.

Websites also authenticate through the use of digital certificates (something you have), which
must be exchanged between client and server and validated before access to a website or
service is granted. The intricacies of digital certificates are described in WEBBOTS AND
CRYPTOGRAPHY. If you skipped this chapter, this is a good time to read it. Otherwise, all you
need to know is that digital certificates are files that reside on servers, or less frequently, on
the hard drives of client computers. The contents of these certificate files are automatically
exchanged to authenticate the computer that holds the certificate. You're most apt to
encounter digital certificates when using the HTTPS protocol (also know as SSL) to access
secure websites. Here, the certificate authenticates the website and facilitates the use of an
encrypted data channel. Less frequently, a certificate is required on the client computer as
well, to access virtual private networks (VPNs), which allow remote users to access private
corporate networks. PHP/CURL manages certificates automatically if you specify the https:
protocol in the URL. PHP/CURL also facilitates the use of local certificates; in the odd
circumstance that you require a client-side certificate, PHP/CURL and client-side certificates

file:///D|/!!/final/Iauthentication.html (1 von 2) [29.03.2008 23:24:13]

Iauthentication.html

are covered in PHP/CURL REFERENCE.

Biometrics (something you are) are generally not used in online authentication and are
beyond the scope of this chapter. Personally, I have only seen biometrics used to authenticate
users to online services when biometric information is readily available, as in telemedicine.

Strengthening Authentication by Combining Techniques

Your webbots may encounter websites that use multiple forms of authentication, since
authentication is strengthened when two or more techniques are combined. For example,
ATMs require both an ATM card (something you have) and a personal identification number
(PIN) (something you know). Similarly, the retailer Target experimented with an ATM-style
authentication scheme when it introduced USB credit card readers that worked in conjunction
with Target.com.

Authentication and Webbots

You may very well encounter certificates—and even biometrics—as a webbot developer, so
the more familiar you are with the various forms of authentication, the more potential targets
your webbots will have. You'll find, however, that most webbots authenticate with simple
usernames and passwords. The following sections describe the most common techniques for
using usernames and passwords.

file:///D|/!!/final/Iauthentication.html (2 von 2) [29.03.2008 23:24:13]

http://target.com/

Iwhat_is_authentication_question.html

AUTHENTICATION

If your webbots are going to access sensitive information or handle money, they'll need to
authenticate, or sign in as registered users of websites. This chapter teaches you how to write
webbots that access password-protected websites. As in previous chapters, you can practice
what you learn with example scripts and special test pages on the book's website.

What Is Authentication?

Authentication is the processes of proving that you are who you say you are. You authenticate
yourself by presenting something that only you can produce. Things That Prove a Person's
Identity describes the three categories of things used to prove a person's identity.

Table Things That Prove a Person's Identity

You Authenticate Yourself With . . . Examples
Something you know Usernames and passwords; Social Security numbers
Something you are (biometrics) DNA samples; thumbprints; retina, voice, and facial

scans
Something you have House keys, digital certificates, encoded magnetic

cards, wireless key fobs, implanted canine
microchips

Types of Online Authentication

Most websites that require authentication ask for usernames and passwords (something you
know). The username and password—also known as login criteria—are compared to records in
a database. The user is allowed access to the website if the login criteria match the records in
the database. Based on the login criteria, the website may optionally restrict the user to
specific parts of the website or grant specific functionality.

Usernames and passwords are the most convenient way to authenticate people online
because they can be authenticated with a browser and without the need for additional
hardware or software.

Websites also authenticate through the use of digital certificates (something you have), which
must be exchanged between client and server and validated before access to a website or
service is granted. The intricacies of digital certificates are described in WEBBOTS AND
CRYPTOGRAPHY. If you skipped this chapter, this is a good time to read it. Otherwise, all you
need to know is that digital certificates are files that reside on servers, or less frequently, on
the hard drives of client computers. The contents of these certificate files are automatically
exchanged to authenticate the computer that holds the certificate. You're most apt to
encounter digital certificates when using the HTTPS protocol (also know as SSL) to access
secure websites. Here, the certificate authenticates the website and facilitates the use of an
encrypted data channel. Less frequently, a certificate is required on the client computer as
well, to access virtual private networks (VPNs), which allow remote users to access private
corporate networks. PHP/CURL manages certificates automatically if you specify the https:
protocol in the URL. PHP/CURL also facilitates the use of local certificates; in the odd
circumstance that you require a client-side certificate, PHP/CURL and client-side certificates

file:///D|/!!/final/Iwhat_is_authentication_question.html (1 von 2) [29.03.2008 23:24:14]

Iwhat_is_authentication_question.html

are covered in PHP/CURL REFERENCE.

Biometrics (something you are) are generally not used in online authentication and are
beyond the scope of this chapter. Personally, I have only seen biometrics used to authenticate
users to online services when biometric information is readily available, as in telemedicine.

Strengthening Authentication by Combining Techniques

Your webbots may encounter websites that use multiple forms of authentication, since
authentication is strengthened when two or more techniques are combined. For example,
ATMs require both an ATM card (something you have) and a personal identification number
(PIN) (something you know). Similarly, the retailer Target experimented with an ATM-style
authentication scheme when it introduced USB credit card readers that worked in conjunction
with Target.com.

Authentication and Webbots

You may very well encounter certificates—and even biometrics—as a webbot developer, so
the more familiar you are with the various forms of authentication, the more potential targets
your webbots will have. You'll find, however, that most webbots authenticate with simple
usernames and passwords. The following sections describe the most common techniques for
using usernames and passwords.

file:///D|/!!/final/Iwhat_is_authentication_question.html (2 von 2) [29.03.2008 23:24:14]

http://target.com/

Iexample_scripts_and_practice_pages.html

Example Scripts and Practice Pages

We'll explore three types of online authentication. For each case, you'll receive examples of
authentication scripts designed specifically to work with password-protected sections of this
book's website. You can experiment (and make mistakes) on these practice pages before
writing authenticating webbots that work on real websites. The location of the practice pages
is shown in Location of Authentication Practice Pages on the Book's Website.

Table Location of Authentication Practice Pages on the Book's Website

Authentication Method Location of Practice Pages
Basic authentication http://www.schrenk.com/nostarch/webbots/basic_authentication

Cookies sessions http://www.schrenk.com/nostarch/webbots/cookie_authentication

Query sessions http://www.schrenk.com/nostarch/webbots/query_authentication

For simplicity, all of the authentication examples on the book's website use the login criteria
shown in Login Criteria Used for All Authentication Practice Pages.

Table Login Criteria Used for All Authentication Practice Pages

Username Password
webbot sp1der3

file:///D|/!!/final/Iexample_scripts_and_practice_pages.html [29.03.2008 23:24:15]

http://www.schrenk.com/nostarch/webbots/basic_authentication
http://www.schrenk.com/nostarch/webbots/cookie_authentication
http://www.schrenk.com/nostarch/webbots/query_authentication

Ibasic_authentication_id1.html

Basic Authentication

The most common form of online is authentication is basic authentication. Basic
authentication is a dialogue between the webserver and browsing agent in which the login
credentials are requested and processed, as shown in Basic authentication dialogue.

Web pages subject to basic authentication exist in what's called a realm. Generally, realms
refer to all web pages in the current server directory as well as the web pages in sub-
directories. Fortunately, browsers shield people from many of the details defined in Basic
authentication dialogue. Once you authenticate yourself with a browser, it appears that you
don't re-authenticate yourself when accessing other pages within the realm. In reality, the
dialogue from Basic authentication dialogue happens for each page downloaded within the
realm. Your browser automatically resubmits your authentication credentials without asking
you again for your username and password. When accessing a basic authenticated website
with a webbot, you will need to send your login credentials every time the webbot requests a
page within the authenticated realm, as shown later in the example script.

Basic authentication dialogue

file:///D|/!!/final/Ibasic_authentication_id1.html (1 von 3) [29.03.2008 23:24:16]

Ibasic_authentication_id1.html

Before you write an auto-authenticating webbot, you should first visit the target website and
manually authenticate yourself into the site with a browser. This way you can validate your
login credentials and learn about the target site before you design your webbot. When you
request a web page from the book's basic authentication test area, your browser will initially
present a login form for entering usernames and passwords, as shown in Basic authentication
login form.

Basic authentication login form

After entering your username and password, you will gain access to a simple set of practice
pages (shown in Basic authentication test pages) for testing auto-authenticating webbots and
basic authentication. You should familiarize yourself with these simple pages before reading
further.

Basic authentication test pages

The commands required to download a web page with basic authentication are very similar to
those required to download a page without authentication. The only change is that you need
to configure the CURLOPT_USERPWD option to pass the login credentials to PHP/CURL. The
format for login credentials is the username and password separated by a colon, as shown in
Listing 21-1.

Code View:

file:///D|/!!/final/Ibasic_authentication_id1.html (2 von 3) [29.03.2008 23:24:16]

Ibasic_authentication_id1.html

<?

Define target page
$target = "http://www.schrenk.com/nostarch/webbots/basic_authentication/index.php";

Define login credentials for this page
$credentials = "webbot:sp1der3";

Create the cURL session
$ch = curl_init();
curl_setopt($ch, CURLOPT_URL, $target); // Define target site
curl_setopt($ch, CURLOPT_USERPWD, $credentials); // Send credentials
curl_setopt($ch, CURLOPT_RETURNTRANSFER, TRUE); // Return page in string

Echo page
$page = curl_exec($ch); // Place web page into a string
echo $page; // Echo downloaded page

Close the cURL session
curl_close($ch);
?>

Listing 21-1: The minimal code required to access the basic authentication test pages

Once the favored form of authentication, basic authentication is losing out to other techniques
because it is weaker. For example, with basic authentication, there is no way to log out
without closing your browser. There is also no way to change the appearance of the
authentication form because the browser creates it. Basic authentication is also not very
secure, as the browser sends the login criteria to the server in cleartext. Digest authentication
is an improvement over basic authentication. Unlike basic authentication, digest
authentication sends the password to the server as an MD5 digest with 128-bit encryption.
Unfortunately, support for digest authentication is spotty, especially with older browsers. If
you're using PHP 5, you can use the curl_setopt() function to tell PHP/CURL which form of
authentication to use. Since we're focusing on PHP 4, let's limit this discussion to basic
authentication, though the process is otherwise identical with digest authentication.

file:///D|/!!/final/Ibasic_authentication_id1.html (3 von 3) [29.03.2008 23:24:16]

Isession_authentication.html

Session Authentication

Unlike basic authentication, in which login credentials are sent each time a page is
downloaded, session authentication validates users once and creates a session value that
represents that authentication. The session values (instead of the actual username and
password) are passed to each subsequent page fetch to indicate that the user is
authenticated. There are two basic methods for employing session authentication—with
cookies and with query strings. These methods are nearly identical in execution and work
equally well. You're apt to encounter both forms of sessions as you gain experience writing
webbots.

Authentication with Cookie Sessions

Cookies are small pieces of information that servers store on your hard drive. Cookies are
important because they allow servers to identify unique users. With cookies, websites can
remember preferences and browsing habits (within the domain), and use sessions to facilitate
authentication.

How Cookies Work

Servers send cookies in HTTP headers. It is up to the client software to parse the cookie from
the header and save the cookie values for later use. On subsequent fetches within the same
domain, it is the client's responsibility to send the cookies back to the server in the HTTP
header of the page request. In our cookie authentication example, the cookie session can be
viewed in the header returned by the server, as shown in Listing 21-2.

HTTP/1.1 302 Found
Date: Sat, 09 Sep 2006 16:09:03 GMT
Server: Apache/2.0.58 (FreeBSD) mod_ssl/2.0.58 OpenSSL/0.9.8a PHP/4.4.2
X-Powered-By: PHP/4.4.2
Set-Cookie: authenticate=1157818143
Location: index0.php
Content-Length: 1837
Content-Type: text/html; charset=ISO-8859-1

Listing 21-2: Cookies returned from the server in the HTTP header

The line in bold typeface defines the name of the cookie and its value. In this case there is
one cookie named authenticate with the value 1157818143.

Sometimes cookies have expiration dates, which is an indication that the server wants the
client to write the cookie to a file on the hard drive. Other times, as in our example, no
expiration date is specified. When no expiration date is specified, the server requests that the
browser save the cookie in RAM and delete it when the browser closes. For security reasons,
authentication cookies typically have no expiration date and are stored in RAM.

When authentication is done using a cookie, each successive page within the website
examines the session cookie, and, based on internal rules, determines whether the web agent
is authorized to download that web page. The actual value of the cookie session is of little
importance to the webbot, as long as the value of the cookie session matches the value
expected by the target webserver. In many cases, as in our example, the session also holds a

file:///D|/!!/final/Isession_authentication.html (1 von 7) [29.03.2008 23:24:17]

Isession_authentication.html

time-out value that expires after a limited period. Authentication with cookie sessions shows a
typical cookie authentication session.

Authentication with cookie sessions

Unlike basic authentication, where the login criteria are sent in a generic (browser-dependent)
form, cookie authentication uses custom forms, as shown in The login page for the cookie
authentication example.

The login page for the cookie authentication example

file:///D|/!!/final/Isession_authentication.html (2 von 7) [29.03.2008 23:24:17]

Isession_authentication.html

Regardless of the authentication method used by your target web page, it's vitally important
to explore your target screens with a browser before writing self-authenticating webbots. This
is especially true in this example, because your webbot must emulate the login form. You
should take this time to explore the cookie authentication pages on this book's website. View
the source code for each page, and see how the code works. Use your browser to monitor the
values of the cookies the web pages use. Now is also a good time to preview ADVANCED
COOKIE MANAGEMENT.

The example cookie session page from the book's website shows an example of the screens
that lay beyond the login screen.

The example cookie session page from the book's website

Cookie Session Example

A webbot must do the following to authenticate itself to a website that uses cookie sessions:

● Download the web page with the login form

● Emulate the form that gathers the login credentials

file:///D|/!!/final/Isession_authentication.html (3 von 7) [29.03.2008 23:24:17]

Isession_authentication.html

● Capture the cookie written by the server

● Provide the session cookie to the server on each page request

The script in Listing 21-3 first downloads the login page as a normal user would with a
browser. As it emulates the form that sends the login credentials, it uses the
CURLOPT_COOKIEFILE and CURLOPT_COOKIEJAR options to tell cURL where the cookies should
be written and where to find the cookies that are read by the server. To most people (myself
included), it seems redundant to have one set of outbound cookies and another set of
inbound cookies. In every case I've seen, webbots use the same file to write and read
cookies. It's important to note that PHP/CURL will always save cookies to a file, even when
the cookie has no expiration date. This presents some interesting problems, which are
explained in ADVANCED COOKIE MANAGEMENT.

Code View:

<?
Define target page
$target = "http://www.schrenk.com/nostarch/webbots/cookie_authentication/index.php";

Define the login form data
$form_data="enter=Enter&username=webbot&password=sp1der3";

Create the cURL session
$ch = curl_init();
curl_setopt($ch, CURLOPT_URL, $target); // Define target site
curl_setopt($ch, CURLOPT_RETURNTRANSFER, TRUE); // Return page in string
curl_setopt($ch, CURLOPT_COOKIEJAR, "cookies.txt"); // Tell cURL where to write
cookies
curl_setopt($ch, CURLOPT_COOKIEFILE, "cookies.txt"); // Tell cURL which cookies
to send
curl_setopt($ch, CURLOPT_POST, TRUE);
curl_setopt($ch, CURLOPT_POSTFIELDS, $form_data);
curl_setopt($ch, CURLOPT_FOLLOWLOCATION, TRUE); // Follow redirects

Execute the PHP/CURL session and echo the downloaded page
$page = curl_exec($ch);
echo $page;

Close the cURL session
curl_close($ch);
?>

Listing 21-3: Auto-authentication with cookie sessions

Once the session cookie is written, your webbot should be able to download any authenticated
page, as long as the cookie is presented to the website by your cURL session. Just one word
of caution: Depending on your version of cURL, you may need to use a complete path when
defining your cookie file.

Authentication with Query Sessions

file:///D|/!!/final/Isession_authentication.html (4 von 7) [29.03.2008 23:24:17]

Isession_authentication.html

Query string sessions are nearly identical to cookie sessions, the difference being that instead
of storing the session value in a cookie, the session value is stored in the query string. Other
than this difference, the process is identical to the protocol describing cookie session
authentication (outlined in Authentication with cookie sessions). Query sessions create
additional work for website developers, as the session value must be tacked on to all links
and included in all form submissions. Yet some web developers (myself included) prefer query
sessions, as some browsers and proxies restrict the use of cookies and make cookie sessions
difficult to implement.

This is a good time to manually explore the test pages for query authentication on the
website. Once you enter your username and password, you'll notice that the authentication
session value is visible in the URL as a GET value, as shown in Session variable visible in the
query string (URL). However, this may not be the case in all situations, as the session value
could also be in a POST value and invisible to the viewer.

Session variable visible in the query string (URL)

Like the cookie session example, the query session example first emulates the login form.
Then it parses the session value from the authenticated result and includes the session value
in the query string of each page it requests. A script capable of downloading pages from the
practice pages for query session authentication is shown in Listing 21-4.

Code View:

<?
Include libraries
include("LIB_http.php");
include("LIB_parse.php");

Request the login page
$domain = "http://www.schrenk.com/";
$target = $domain."nostarch/webbots/query_authentication";
$page_array = http_get($target, $ref="");

echo $page_array['FILE']; // Display the login page
sleep(2); // Include small delay between page fetches
echo "<hr>";

file:///D|/!!/final/Isession_authentication.html (5 von 7) [29.03.2008 23:24:17]

Isession_authentication.html

Send the query authentication form
$login = $domain."nostarch/webbots/query_authentication/index.php";

$data_array['enter'] = "Enter";
$data_array['username'] = "webbot";
$data_array['password'] = "sp1der3";
$page_array = http_post_form($login, $ref=$target, $data_array);
echo $page_array['FILE']; // Display first page after login page
sleep(2); // Include small delay between page fetches
echo "<hr>";

Parse session variable
$session = return_between($page_array['FILE'], "session=", "\"", EXCL);

Request subsequent pages using the session variable
$page2 = $target . "/index2.php?session=".$session;
$page_array = http_get($page2, $ref="");
echo $page_array['FILE']; // Display page two
?>

Listing 21-4: Authenticating a webbot on a page using query sessions

Output of Listing 21-4

file:///D|/!!/final/Isession_authentication.html (6 von 7) [29.03.2008 23:24:17]

Isession_authentication.html

file:///D|/!!/final/Isession_authentication.html (7 von 7) [29.03.2008 23:24:17]

Ifinal_thoughts_id12.html

Final Thoughts

Here are a few additional things to remember when writing webbots that access password-
protected websites.

● For clarity, the examples in this chapter use a minimal amount of code to perform a
task. In actual use, you'll want to follow the comprehensive practices mentioned
elsewhere in this book for downloading pages, parsing results, emulating forms, using
cURL, and writing fault-tolerant webbots.

● It's important to note that no form of online authentication is effective unless it is
accompanied by encryption. After all, it does little good to authenticate users if
sensitive information is sent across the network in cleartext, which can be read by
anyone with a packet sniffer.[] In most cases, authentication will be combined with
encryption. For more information about webbots and encryption, revisit WEBBOTS AND
CRYPTOGRAPHY.

[] A packet sniffer is a special type of agent that lets people read raw network traffic.

● If your webbot communicates with more than one domain, you need to be careful not
to broadcast your login criteria when writing webbots that use basic authentication. For
example, if you hard-code your username and password into a PHP/CURL routine,
make sure that you don't use the same function when fetching pages from other
domains. This sounds silly, but I've seen it happen, resulting in cleartext login
credentials in server log files.

● Websites may use a combination of two or more authentication types. For example, an
authenticated site might use both query and cookie sessions. Make sure that you
account for all potential authentication schemes before releasing your webbots.

● The latest versions of all the scripts used in this chapter are available for download at
this book's website.

file:///D|/!!/final/Ifinal_thoughts_id12.html [29.03.2008 23:24:18]

Iadvanced_cookie_management.html

ADVANCED COOKIE MANAGEMENT

In the previous chapter, you learned how to use cookies to authenticate webbots to access
password-protected websites. This chapter further explores cookies and the challenges they
present to webbot developers.

How Cookies Work

Cookies are small pieces of ASCII data that websites store on your computer. Without using
cookies, websites cannot distinguish between new visitors and those that visit on a daily
basis. Cookies add persistence, the ability to identify people who have previously visited the
site, to an otherwise stateless environment. Through the magic of cookies, web designers can
write scripts to recognize people's preferences, shipping address, login status, and other
personal information.

There are two types of cookies. Temporary cookies are stored in RAM and expire when the
client closes his or her browser; permanent cookies live on the client's hard drive and exist
until they reach their expiration date (which may be so far into the future that they'll outlive
the computer they're on). For example, consider the script in Listing 22-1, which writes one
temporary cookie and one permanent cookie that expires in one hour.

Set cookie that expires when browser closes
setcookie ("TemporaryCookie", "66");

Set cookie that expires in one hour
setcookie ("PermanentCookie", "88", time() + 3600);

Listing 22-1: Setting permanent and temporary cookies with PHP

Listing 22-1 shows the cookies' names, values, and expiration dates, if required. A temporary
cookie written from , with a value of 66 and A permanent cookie written from , with a value of
88 show how the cookies written by the script in Listing 22-1 appear in the privacy settings of
a browser.

A temporary cookie written from http://www.schrenk.com, with a value of 66

file:///D|/!!/final/Iadvanced_cookie_management.html (1 von 2) [29.03.2008 23:24:19]

http://www.schrenk.com/

Iadvanced_cookie_management.html

A permanent cookie written from http://www.schrenk.com, with a value of 88

Browsers and webservers exchange cookies in HTTP headers. When a browser requests a web
page from a webserver, it looks to see if it has any cookies previously stored by that web
page's domain. If it finds any, it will send those cookies to the webserver in the HTTP header
of the fetch request. When you execute the cURL command in Cookies as they appear in the
HTTP header sent by the server, you can see the cookies as they appear in the returned
header.

Cookies as they appear in the HTTP header sent by the server

A browser will never modify a cookie unless it expires or unless the user erases it using the
browser's privacy settings. Servers, however, may write new information to cookies every
time they deliver a web page. These new cookie values are then passed to the web browser in
the HTTP header, along with the requested web page. According to the specification, a
browser will only expose cookies to the domain that wrote them. Webbots, however, are not
bound by these rules and can manipulate cookies as needed.

file:///D|/!!/final/Iadvanced_cookie_management.html (2 von 2) [29.03.2008 23:24:19]

http://www.schrenk.com/

Ihow_cookies_work_id1.html

ADVANCED COOKIE MANAGEMENT

In the previous chapter, you learned how to use cookies to authenticate webbots to access
password-protected websites. This chapter further explores cookies and the challenges they
present to webbot developers.

How Cookies Work

Cookies are small pieces of ASCII data that websites store on your computer. Without using
cookies, websites cannot distinguish between new visitors and those that visit on a daily
basis. Cookies add persistence, the ability to identify people who have previously visited the
site, to an otherwise stateless environment. Through the magic of cookies, web designers can
write scripts to recognize people's preferences, shipping address, login status, and other
personal information.

There are two types of cookies. Temporary cookies are stored in RAM and expire when the
client closes his or her browser; permanent cookies live on the client's hard drive and exist
until they reach their expiration date (which may be so far into the future that they'll outlive
the computer they're on). For example, consider the script in Listing 22-1, which writes one
temporary cookie and one permanent cookie that expires in one hour.

Set cookie that expires when browser closes
setcookie ("TemporaryCookie", "66");

Set cookie that expires in one hour
setcookie ("PermanentCookie", "88", time() + 3600);

Listing 22-1: Setting permanent and temporary cookies with PHP

Listing 22-1 shows the cookies' names, values, and expiration dates, if required. A temporary
cookie written from , with a value of 66 and A permanent cookie written from , with a value of
88 show how the cookies written by the script in Listing 22-1 appear in the privacy settings of
a browser.

A temporary cookie written from http://www.schrenk.com, with a value of 66

file:///D|/!!/final/Ihow_cookies_work_id1.html (1 von 2) [29.03.2008 23:24:20]

http://www.schrenk.com/

Ihow_cookies_work_id1.html

A permanent cookie written from http://www.schrenk.com, with a value of 88

Browsers and webservers exchange cookies in HTTP headers. When a browser requests a web
page from a webserver, it looks to see if it has any cookies previously stored by that web
page's domain. If it finds any, it will send those cookies to the webserver in the HTTP header
of the fetch request. When you execute the cURL command in Cookies as they appear in the
HTTP header sent by the server, you can see the cookies as they appear in the returned
header.

Cookies as they appear in the HTTP header sent by the server

A browser will never modify a cookie unless it expires or unless the user erases it using the
browser's privacy settings. Servers, however, may write new information to cookies every
time they deliver a web page. These new cookie values are then passed to the web browser in
the HTTP header, along with the requested web page. According to the specification, a
browser will only expose cookies to the domain that wrote them. Webbots, however, are not
bound by these rules and can manipulate cookies as needed.

file:///D|/!!/final/Ihow_cookies_work_id1.html (2 von 2) [29.03.2008 23:24:20]

http://www.schrenk.com/

Iphp_exclamation_curl_and_cookies.html

PHP/CURL and Cookies

You can write webbots that support cookies without using PHP/CURL, but doing so adds to the
complexity of your designs. Without PHP/CURL, you'll have to read each returned HTTP
header, parse the cookies, and store them for later use. You will also have to decide which
cookies to send to which domains, manage expiration dates, and return everything correctly
in headers of page requests. PHP/CURL does all this for you, automatically. Even with PHP/
CURL, however, cookies pose challenges to webbot designers.

Fortunately, PHP/CURL does support cookies, and we can effectively use it to capture the
cookies from the previous example, as shown in Listing 22-2.

Code View:

include("LIB_http.php");
$target="http://www.schrenk.com/nostarch/webbots/EXAMPLE_writing_cookies.php";
http_get($target, "");

Listing 22-2: Reading cookies with PHP/CURL and the LIB_http library

LIB_http defines the file where PHP/CURL stores cookies. This declaration is done near the
beginning of the file, as shown in Listing 22-3.

Location of your cookie file (must be a fully resolved address)
define("COOKIE_FILE", "c:\cookie.txt");

Listing 23-3: Cookie file declaration, as made in LIB_http

As noted in Listing 22-3, the address for a cookie file should be a fully resolved local one.
Relative addresses sometimes work, but not for all PHP/CURL distributions. When you execute
the scripts in Listing 22-1 (available at this book's website), PHP/CURL writes the cookies (in
Netscape Cookie Format) in the file defined in the LIB_http configuration, as shown in Listing
22-4.

Code View:

Netscape HTTP Cookie File
http://www.netscape.com/newsref/std/cookie_spec.html
This file was generated by libcurl! Edit at your own risk.

www.schrenk.com FALSE /nostarch/webbots/ FALSE 1159120749 PermanentCookie 88

www.schrenk.com FALSE /nostarch/webbots/ FALSE 0 TemporaryCookie 66

file:///D|/!!/final/Iphp_exclamation_curl_and_cookies.html (1 von 2) [29.03.2008 23:24:21]

Iphp_exclamation_curl_and_cookies.html

Listing 22-4: The cookie file, as written by PHP/CURL

Note: Each web client maintains its own cookies, and the cookie file written by PHP/CURL is not
the same cookie file created by your browser.

file:///D|/!!/final/Iphp_exclamation_curl_and_cookies.html (2 von 2) [29.03.2008 23:24:21]

Ihow_cookies_challenge_webbot_design.html

How Cookies Challenge Webbot Design

Webservers will not think anything is wrong if your webbots don't use cookies, since many
people configure their browsers not to accept cookies for privacy reasons. However, if your
webbot doesn't support cookies, you will not be able to access sites that demand their use.
Moreover, if your webbot doesn't support cookies correctly, you will lose your webbot's
stealthy properties. You also risk revealing sensitive information if your webbot returns
cookies to servers that didn't write them.

Cookies operate transparently—as such, we may forget that they even exist. Yet the data
passed in cookies is just as important as the data transferred in GET or POST methods. While
PHP/CURL handles cookies for webbot developers, some instances still cause problems—most
notably when cookies are supposed to expire or when multiple users (with separate cookies)
need to use the same webbot.

Purging Temporary Cookies

One of the problems with the way PHP/CURL manages cookies is that as PHP/CURL writes
them to the cookie file, they all become permanent, just like a cookie written to your hard
drive by a browser. My experience indicates that all cookies accepted by PHP/CURL become
permanent, regardless of the webserver's intention. This in itself is usually not a problem,
unless your webbot accesses a website that manages authentication with temporary cookies.
If you fail to purge your webbot's temporary cookies, and it accesses the same website for a
year, that essentially tells the website's system administrator that you haven't closed your
browser (let alone rebooted your computer!) for the same period of time. Since this is not a
likely scenario, your account may receive unwanted attention or your webbot may eventually
violate the website's authentication process. There is no configuration within PHP/CURL for
managing cookie expiration, so you need to manually delete your cookies every so often in
order to avoid these problems.

Managing Multiple Users' Cookies

In some applications, your webbots may need to manage cookies for multiple users. For
example, suppose you write one of the procurement bots or snipers mentioned in
PROCUREMENT WEBBOTS AND SNIPERS. You may want to integrate the webbot into a
website where several people may log in and specify purchases. If these people each have
private accounts at the e-commerce website that the webbot targets, each user's cookies will
require separate management.

Webbots can manage multiple users' cookies by employing a separate cookie file for each
user. LIB_http, however, does not support multiple cookie files, so you will have to write a
scheme that assigns the appropriate cookie file to each user. Instead of declaring the name of
the cookie file once, as is done in LIB_http, you will need to define the cookie file each time a
PHP/CURL session is used. For simplicity, it makes sense to use the person's username in the
cookie file, as shown in Listing 22-5.

Code View:

Open a PHP/CURL session
$s = curl_init();

file:///D|/!!/final/Ihow_cookies_challenge_webbot_design.html (1 von 2) [29.03.2008 23:24:22]

Ihow_cookies_challenge_webbot_design.html

Select the cookie file (based on username)
$cookie_file = "c:\bots\".$username."cookies.txt";
curl_setopt($s, CURLOPT_COOKIEFILE, $cookie_file); // Read cookie file
curl_setopt($s, CURLOPT_COOKIEJAR, $cookie_file); // Write cookie file

Configure the cURL command
curl_setopt($s, CURLOPT_URL, $target); // Define target site
curl_setopt($s, CURLOPT_RETURNTRANSFER, TRUE); // Return in string

Indicate that there is no local SSL certificate
curl_setopt($s, CURLOPT_SSL_VERIFYPEER, FALSE); // No certificate

curl_setopt($s, CURLOPT_FOLLOWLOCATION, TRUE); // Follow redirections
curl_setopt($s, CURLOPT_MAXREDIRS, 4); // Limit redirections to four

Execute the cURL command (Send contents of target web page to string)
$downloaded_page = curl_exec($s);

Close PHP/CURL session

curl_close($s);

Listing 22-5: A PHP/CURL script, capable of managing cookies for multiple users

file:///D|/!!/final/Ihow_cookies_challenge_webbot_design.html (2 von 2) [29.03.2008 23:24:22]

Ifurther_exploration_id11.html

Further Exploration

While PHP/CURL's cookie management is extremely useful to webbot developers, it has a few
shortcomings. Here are some ideas for improving on what PHP/CURL already does.

● Design a script that reads cookies directly from the HTTP header and programmatically
sends the correct cookies back to the server in the HTTP header of page requests.
While you're at it, improve on PHP/CURL's ability to manage cookie expiration dates.

● For security reasons, sometimes administrators do not allow scripts running on hosted
webservers to write local files. When this is the case, PHP/CURL is not able to maintain
cookie files. Resolve this problem by writing a MySQL-based cookie management
system.

● Write a webbot that pools cookies written by two or more webservers. Find a useful
application for this exploit.

● Write a script that, on a daily basis, deletes temporary cookies from PHP/CURL's
Netscape-formatted cookie file.

file:///D|/!!/final/Ifurther_exploration_id11.html [29.03.2008 23:24:23]

Ischeduling_webbots_and_spiders.html

SCHEDULING WEBBOTS AND SPIDERS

Up to this point, all of our webbots have run only when executed directly from a command line or
through a browser. In real-world situations, however, you may want to schedule your webbots and
spiders to run automatically. This chapter describes methods for scheduling webbots to run
unattended in a Windows environment. Most readers should have access to the scheduling tool I'll
be using here.

If you are using an operating system other than Windows, don't despair. Most operating systems
support scheduling software of some type. In Unix, Linux, and Mac OS X environments, you can
always use the cron command, a text-based scheduling tool. Regardless of the operating system
you use, there should also be a graphical interface for a scheduling tool, similar to the one Windows
uses.

The Windows Task Scheduler

The Windows Task Scheduler is an easy-to-use graphical user interface (GUI) designed for the
somewhat complex duty of scheduling tasks. You can access the Task Scheduler through the Control
Panel or in the Accessories directory, under System Tools.

To see the tasks currently scheduled on your computer, simply click Scheduled Tasks. In addition
to showing the schedule and status of these tasks, this window is also the tool you'll use to create
new scheduled tasks. It will look like the one in The Windows Task Scheduler.

The Windows Task Scheduler

Preparing Your Webbots to Run as Scheduled Tasks

Before you schedule your webbot to run automatically, you should create a batch file that executes
the webbot. It is easier to schedule a batch file than to specify the PHP file directly, because the
batch file adds flexibility in defining path names and allows multiple webbots, or events, to run from
the same scheduled task. Listing 23-1 shows the format for executing a PHP webbot from a batch
file.

drive:/php_path/php drive:/webbot_path/my_webbot.php

Listing 23-1: Executing a local webbot from a batch file

file:///D|/!!/final/Ischeduling_webbots_and_spiders.html (1 von 4) [29.03.2008 23:24:24]

Ischeduling_webbots_and_spiders.html

In the batch file shown in Listing 23-1, the operating system executes the PHP interpreter, which
subsequently executes my_webbot.php.

drive:/curl_path/curl http://www.somedomain.com/remote_webbot.php

Listing 23-2: Executing a remote webbot from a batch file

Scheduling a Webbot to Run Daily

To schedule a daily execution of your batch file, click Add Scheduled Task in the Task Scheduler
window. This will initiate a wizard, which walks you through the process of creating a schedule of
execution times for your application. The first step is to identify the application you want to
schedule. To schedule your webbot, click the Browse button to locate the batch file that executes it,
as shown in Selecting an application to schedule.

Selecting an application to schedule

Once you select the webbot you want to schedule—in this example, test_webbot.bat—the wizard
asks for the periodicity, or the frequency of execution. Windows allows you to schedule a task to run
daily, weekly, monthly, just once, when the computer starts, or when you log on, as shown in
Configuring the periodicity of your webbot.

Configuring the periodicity of your webbot

file:///D|/!!/final/Ischeduling_webbots_and_spiders.html (2 von 4) [29.03.2008 23:24:24]

Ischeduling_webbots_and_spiders.html

After selecting a period, you will specify the time of day you want your webbot to execute. You can
also specify whether the webbot will run every day or only on weekdays, as shown in Configuring
the time and days your webbot will run. You can even schedule a webbot to skip one day or more.

Additionally, you can set the entire schedule to begin sometime in the future. For example, the
configuration shown in Configuring the time and days your webbot will run will cause the webbot to
run Monday through Friday at 6:20 PM, commencing on January 16, 2008.

Configuring the time and days your webbot will run

The final step of the scheduling wizard is to enter your Windows username and password, as shown
in Entering a username and password to authenticate your webbot. This will allow your webbot to
run without Windows prompting you for authentication.

Entering a username and password to authenticate your webbot

file:///D|/!!/final/Ischeduling_webbots_and_spiders.html (3 von 4) [29.03.2008 23:24:24]

Ischeduling_webbots_and_spiders.html

On completing the wizard, the scheduler displays your new scheduled task, as shown in The Task
Scheduler showing the status of test_webbot's schedule.

The Task Scheduler showing the status of test_webbot's schedule

file:///D|/!!/final/Ischeduling_webbots_and_spiders.html (4 von 4) [29.03.2008 23:24:24]

Ithe_windows_task_scheduler.html

SCHEDULING WEBBOTS AND SPIDERS

Up to this point, all of our webbots have run only when executed directly from a command line or
through a browser. In real-world situations, however, you may want to schedule your webbots and
spiders to run automatically. This chapter describes methods for scheduling webbots to run
unattended in a Windows environment. Most readers should have access to the scheduling tool I'll
be using here.

If you are using an operating system other than Windows, don't despair. Most operating systems
support scheduling software of some type. In Unix, Linux, and Mac OS X environments, you can
always use the cron command, a text-based scheduling tool. Regardless of the operating system
you use, there should also be a graphical interface for a scheduling tool, similar to the one Windows
uses.

The Windows Task Scheduler

The Windows Task Scheduler is an easy-to-use graphical user interface (GUI) designed for the
somewhat complex duty of scheduling tasks. You can access the Task Scheduler through the Control
Panel or in the Accessories directory, under System Tools.

To see the tasks currently scheduled on your computer, simply click Scheduled Tasks. In addition
to showing the schedule and status of these tasks, this window is also the tool you'll use to create
new scheduled tasks. It will look like the one in The Windows Task Scheduler.

The Windows Task Scheduler

Preparing Your Webbots to Run as Scheduled Tasks

Before you schedule your webbot to run automatically, you should create a batch file that executes
the webbot. It is easier to schedule a batch file than to specify the PHP file directly, because the
batch file adds flexibility in defining path names and allows multiple webbots, or events, to run from
the same scheduled task. Listing 23-1 shows the format for executing a PHP webbot from a batch
file.

drive:/php_path/php drive:/webbot_path/my_webbot.php

Listing 23-1: Executing a local webbot from a batch file

file:///D|/!!/final/Ithe_windows_task_scheduler.html (1 von 4) [29.03.2008 23:24:25]

Ithe_windows_task_scheduler.html

In the batch file shown in Listing 23-1, the operating system executes the PHP interpreter, which
subsequently executes my_webbot.php.

drive:/curl_path/curl http://www.somedomain.com/remote_webbot.php

Listing 23-2: Executing a remote webbot from a batch file

Scheduling a Webbot to Run Daily

To schedule a daily execution of your batch file, click Add Scheduled Task in the Task Scheduler
window. This will initiate a wizard, which walks you through the process of creating a schedule of
execution times for your application. The first step is to identify the application you want to
schedule. To schedule your webbot, click the Browse button to locate the batch file that executes it,
as shown in Selecting an application to schedule.

Selecting an application to schedule

Once you select the webbot you want to schedule—in this example, test_webbot.bat—the wizard
asks for the periodicity, or the frequency of execution. Windows allows you to schedule a task to run
daily, weekly, monthly, just once, when the computer starts, or when you log on, as shown in
Configuring the periodicity of your webbot.

Configuring the periodicity of your webbot

file:///D|/!!/final/Ithe_windows_task_scheduler.html (2 von 4) [29.03.2008 23:24:25]

Ithe_windows_task_scheduler.html

After selecting a period, you will specify the time of day you want your webbot to execute. You can
also specify whether the webbot will run every day or only on weekdays, as shown in Configuring
the time and days your webbot will run. You can even schedule a webbot to skip one day or more.

Additionally, you can set the entire schedule to begin sometime in the future. For example, the
configuration shown in Configuring the time and days your webbot will run will cause the webbot to
run Monday through Friday at 6:20 PM, commencing on January 16, 2008.

Configuring the time and days your webbot will run

The final step of the scheduling wizard is to enter your Windows username and password, as shown
in Entering a username and password to authenticate your webbot. This will allow your webbot to
run without Windows prompting you for authentication.

Entering a username and password to authenticate your webbot

file:///D|/!!/final/Ithe_windows_task_scheduler.html (3 von 4) [29.03.2008 23:24:25]

Ithe_windows_task_scheduler.html

On completing the wizard, the scheduler displays your new scheduled task, as shown in The Task
Scheduler showing the status of test_webbot's schedule.

The Task Scheduler showing the status of test_webbot's schedule

file:///D|/!!/final/Ithe_windows_task_scheduler.html (4 von 4) [29.03.2008 23:24:25]

Icomplex_schedules.html

Complex Schedules

There are several ways to satisfy the need for a complex schedule. The easiest solution may
be to schedule additional tasks. For example, if you need to run a webbot once at 6:20 PM
and again at 6:45 PM, the simplest solution is to create another task that runs the same
webbot at the later time.

The Task Scheduler is also capable of managing very complex schedules. If you right-click
your webbot in the Task Scheduler window, select the Schedule tab, and then click the
Advanced button, you can create the schedule shown in An advanced weekly schedule,
which runs the webbot every 10 minutes from 6:20 PM to 9:10 PM, every weekday except
Wednesdays, starting on January 16, 2008.

An advanced weekly schedule

If a monthly period is required, you can specify which month and days you want the webbot
to run. The configuration in Scheduling webbots to launch monthly describes a schedule that
launches a webbot on the first Wednesday of every month.

Scheduling webbots to launch monthly

file:///D|/!!/final/Icomplex_schedules.html (1 von 2) [29.03.2008 23:24:26]

Icomplex_schedules.html

file:///D|/!!/final/Icomplex_schedules.html (2 von 2) [29.03.2008 23:24:26]

Inon_calendar_based_triggers.html

Non-Calendar-Based Triggers

Calendar events, like those examined in this chapter, are not the only events that may trigger
a webbot to run. However, other types of triggers usually require that a scheduled task run
periodically to detect if the non-calendar event has occurred. For example, the script in the
following listings uses techniques discussed in WEBBOTS THAT READ EMAIL to trigger a
webbot to run after receiving an email with the words Run the webbot in the subject line.

First, the webbot initializes itself to read email and establishes the location of the webbot it
will run when it receives the triggering email message, as shown in Listing 23-3.

// Include the POP3 command library
include("LIB_pop3.php");
define("SERVER", "your.mailserver.net"); // Your POP3 mail server
define("USER", "your@email.com"); // Your POP3 email address
define("PASS", "your_password"); // Your POP3 password
$webbot_path = "c:\\webbots\\view_competitor.bat";

Listing 23-3: Initializing the webbot that is triggered via email

Once the initialization is complete, this webbot attempts to make a connection to the mail
server, as shown in Listing 23-4.

// Connect to POP3 server
$connection_array = POP3_connect(SERVER, USER, PASS);
$POP3_connection = $connection_array['handle'];

Listing 23-4: Making a mail server connection

As shown in Entering a username and password to authenticate your webbot, once a
successful connection to the mail server is made, this webbot looks at each pending message
to determine if it contains the trigger phrase Run the webbot. When this phrase is found, the
webbot executes in a shell.

Code View:

if($POP3_connection)
 {
 // Create an array of received messages
 $email_array = POP3_list($POP3_connection);

 // Examine each message in $email_array
 for($xx=0; $xx<count($email_array); $xx++)
 {
 // Get each email message
 list($mail_id, $size) = explode(" ", $email_array[$xx]);
 $message = POP3_retr($POP3_connection, $mail_id);

 // Run the webbot if email subject contains "Run the webbot"
 if(stristr($message, "Subject: Run the webbot"))

file:///D|/!!/final/Inon_calendar_based_triggers.html (1 von 2) [29.03.2008 23:24:27]

Inon_calendar_based_triggers.html

 {
 $output = shell_exec($webbot_path);
 echo "<pre>$output </pre>";

 // Delete message, so we don't trigger another event from this email
 POP3_delete($POP3_connection, $mail_id);
 }
 }

 }

Listing 23-5: Reading each message and executing a webbot when a specific email is received

Once the webbot runs, it deletes the triggering email message so it won't mistakenly be
executed a second time on subsequent checks for email messages containing the trigger
phrase.

file:///D|/!!/final/Inon_calendar_based_triggers.html (2 von 2) [29.03.2008 23:24:27]

Ifinal_thoughts_id13.html

Final Thoughts

Now that you know how to automate the task of launching webbots from both scheduled and
non-scheduled events, it's time for a few words of caution.

Determine the Webbot's Best Periodicity

A common question when deploying webbots is how often to schedule a webbot to check if
data has changed on a target server. The answer to this question depends on your need for
stealth and how often the target data changes. If your webbot must run without detection,
you should limit the number of file accesses you perform, since every file your webbot
downloads leaves a clue to its existence in the server's log file. Your webbot becomes
increasingly obvious as it creates more and more log entries.

The periodicity of your webbot's execution may also hinge on how often your target changes.
Additionally, you may require notification as soon as a particularly important website changes.
Timeliness may drive the need to run the webbot more frequently. In any case, you never
want to run a webbot more often than necessary. You should read KEEPING WEBBOTS OUT
OF TROUBLE before you deploy a webbot that runs frequently or consumes excessive
bandwidth from a server.

I always contend that you shouldn't access a target more than what's necessary to perform a
job. If that need for expedience requires that you connect to a target more than once every
hour or so, you're probably hitting it too hard. Obviously, the rules change if you own the
target server.

Avoid Single Points of Failure

Remember that hardware and software are both subject to unexpected crashes. If your
webbot performs a mission-critical task, you should ensure that your scheduler doesn't create
a single point of failure or execute a process step that may cause an entire webbot to fail if
that one step crashes. WRITING FAULT-TOLERANT WEBBOTS describes methods to ensure
that your webbot does not stop working if a scheduled webbot fails to run.

Add Variety to Your Schedule

The other potential problem with scheduled tasks is that they run precisely and repeatedly,
creating entries in the target's access log at the same hour, minute, and second. If you
schedule your webbot to run once a month, this may not be a problem, but if a webbot runs
daily at exactly the same time, it will become obvious to any competent system administrator
that a webbot, and not a human, is accessing the server. If you want to schedule a webbot
that emulates a human using a browser, you should continue on to DESIGNING STEALTHY
WEBBOTS AND SPIDERS for more information.

file:///D|/!!/final/Ifinal_thoughts_id13.html [29.03.2008 23:24:28]

Ilarger_considerations.html

LARGER CONSIDERATIONS

As you develop webbots and spiders, you will soon learn (or wish you had
learned) that there is more to webbot and spider development than mastering
the underlying technologies. Beyond technology, your webbots need to coexist
with society—and perhaps more importantly, they need to coexist with the
system administrators of the sites you target. This section attempts to guide you
through the larger considerations of webbot and spider development with the
hope of keeping you out of trouble.

DESIGNING STEALTHY WEBBOTS AND SPIDERS

Sometimes it is best if webbots are indistinguishable from normal
Internet traffic. In this chapter, I'll explain when and how stealth is
important to webbots and how to design and deploy webbots that look
like normal browser traffic.

WRITING FAULT-TOLERANT WEBBOTS

Since the Internet is constantly changing, it is a good idea to design
webbots that will be less likely to fail if your target websites change. In
this chapter, we'll focus on methods to design fault tolerance into your
webbots and spiders so they will more easily adapt (or at least
gracefully fail) when websites change.

DESIGNING WEBBOT-FRIENDLY WEBSITES

Here I'll explain how and why to write web pages that are easy for
webbots and spiders to download and analyze, with a special focus on
the needs of search engine spiders. You will also learn how to write
specialized interfaces, designed specifically to transfer data from
websites to webbots.

KILLING SPIDERS

In this chapter, we'll explore techniques for writing web pages that
protect sensitive information from webbots and spiders, while still
accommodating normal browser users.

KEEPING WEBBOTS OUT OF TROUBLE

Possibly the most important part of this book, this chapter discusses
the possible legal issues you may encounter as a webbot developer
and tells you how to avoid them.

file:///D|/!!/final/Ilarger_considerations.html (1 von 5) [29.03.2008 23:24:30]

Ilarger_considerations.html

DESIGNING STEALTHY WEBBOTS AND SPIDERS

This chapter explores design and implementation considerations that make webbots hard to
detect. However, the inclusion of a chapter on stealth shouldn't imply that there's a stigma
associated with writing webbots; you shouldn't feel self-conscious about writing webbots, as
long as your goals are to create legal and novel solutions to tedious tasks. Most of the reasons
for maintaining stealth have more to do with maintaining competitive advantage than covering
the tracks of a malicious web agent.

Why Design a Stealthy Webbot?

Webbots that create competitive advantages for their owners often lose their value shortly
after they're discovered by the targeted website's administrator. I can tell you from personal
experience that once your webbot is detected, you may be accused of creating an unfair
advantage for your client. This type of accusation is common against early adopters of any
technology. (It is also complete bunk.) Webbot technology is available to any business that
takes the time to research and implement it. Once it is discovered, however, the owner of the
target site may limit or block the webbot's access to the site's resources. The other thing that
can happen is that the administrator will see the value that the webbot offers and will create a
similar feature on the site for everyone to use.

Another reason to write stealthy webbots is that system administrators may misinterpret
webbot activity as an attack from a hacker. A poorly designed webbot may leave strange
records in the log files that servers use to track web traffic and detect hackers. Let's look at
the errors you can make and how these errors appear in the log files of a system administrator.

Log Files

System administrators can detect webbots by looking for odd activity in their log files, which
record access to servers. There are three types of log files for this purpose: access logs, error
logs, and custom logs (Windows' log files recording file access and errors (Apache running on
Windows)). Some servers also deploy special monitoring software to parse and detect
anomalies from normal activity within log files.

Windows' log files recording file access and errors (Apache running on Windows)

file:///D|/!!/final/Ilarger_considerations.html (2 von 5) [29.03.2008 23:24:30]

Ilarger_considerations.html

Access Logs

As the name implies, access logs record information related to the access of files on a
webserver. Typical access logs record the IP address of the requestor, the time the file was
accessed, the fetch method (typically GET or POST), the file requested, the HTTP code, and the
size of the file transfer, as shown in Listing 24-1.

Code View:

221.2.21.16 - - [03/Feb/2008:14:57:45 -0600] "GET / HTTP/1.1" 200 1494
12.192.2.206 - - [03/Feb/2008:14:57:46 -0600] "GET /favicon.ico HTTP/1.1" 404 283
27.116.45.118 - - [03/Feb/2008:14:57:46 -0600] "GET /apache_pb.gif HTTP/1.1" 200 2326
214.241.24.35 - - [03/Feb/2008:14:57:50 -0600] "GET /test.php HTTP/1.1" 200 41

Listing 24-1: Typical access log entries

Access log files have many uses, like metering bandwidth and controlling access. Know that
the webserver records every file download your webbot requests. If your webbot makes 50
requests a day from a server that gets 200 hits a day, it will become obvious to even a casual
system administrator that a single party is making a disproportionate number of requests,
which will raise questions about your activity.

Also, remember that using a website is a privilege, not a right. Always assume that your
budget of accesses per day is limited, and if you go over that limit, it is likely that a system
administrator will attempt to limit your activity when he or she realizes a webbot is accessing
the website. You should strive to limit the number of times your webbot accesses any site.
There are no definite rules about how often you can access a website, but remember that if an
individual system administrator decides your IP is hitting a site too often, his or her opinion will
always trump yours.[] If you ever exceed your bandwidth budget, you may find yourself
blocked from the site.

file:///D|/!!/final/Ilarger_considerations.html (3 von 5) [29.03.2008 23:24:30]

Ilarger_considerations.html

[] There may also be legal implications for hitting a website too many times. For more information on this
subject, see KEEPING WEBBOTS OUT OF TROUBLE.

Error Logs

Like access logs, error logs record access to a website, but unlike access logs, error logs only
record errors that occur. A sampling of an actual error log is shown in Listing 24-2.

Code View:

[Tue Mar 08 14:57:12 2008] [warn] module mod_php4.c is already added, skipping
[Tue Mar 08 15:48:10 2008] [error] [client 127.0.0.1] File does not exist:
c:/program files/apache group/apache/htdocs/favicon.ico
[Tue Mar 08 15:48:13 2008] [error] [client 127.0.0.1] File does not exist:
c:/program files/apache group/apache/htdocs/favicon.ico
[Tue Mar 08 15:48:37 2008] [error] [client 127.0.0.1] File does not exist:
c:/program files/apache group/apache/htdocs/t.gif

Listing 24-2: Typical error log entries

The errors your webbot is most likely to make involve requests for unsupported methods
(often HEAD requests) or requesting files that aren't on the website. If your webbot repeatedly
commits either of these errors, a system administrator will easily determine that a webbot is
making the erroneous page requests, because it is almost impossible to cause these errors
when manually surfing with a browser. Since error logs tend to be smaller than access logs,
entries in error logs are very obvious to system administrators.

However, not all entries in an error log indicate that something unusual is going on. For
example, it's common for people to use expired bookmarks or to follow broken links, both of
which could generate File not found errors.

At other times, errors are logged in access logs, not error logs. These errors include using a
GET method to send a form instead of a POST (or visa versa), or emulating a form and sending
the data to a page that is not a valid action address. These are perhaps the worst errors
because they are impossible for someone using a browser to commit—therefore, they will
make your webbot stand out like a sore thumb in the log files.

These are the best ways to avoid strange errors in log files:

● Debug your webbot's parsing software on web pages that are on your own server before
releasing it into the wilderness

● Use a form analyzer, as described in AUTOMATING FORM SUBMISSION, when emulating
forms

● Program your webbot to stop if it is looking for something specific but cannot find it

Custom Logs

Many web administrators also keep detailed custom logs, which contain additional data not

file:///D|/!!/final/Ilarger_considerations.html (4 von 5) [29.03.2008 23:24:30]

Ilarger_considerations.html

found in either error or access logs. Information that may appear in custom logs includes the
following:

● The name of the web agent used to download a file

● A fully resolved domain name that resolves the requesting IP address

● A coherent list of pages a visitor viewed during any one session

● The referer to get to the requested page

The first item on the list is very important and easy to address. If you call your webbot test
webbot, which is the default setting in LIB_http, the web administrator will finger your webbot
as soon as he or she views the log file. Sometimes this is by design; for example, if you want
your webbot to be discovered, you may use an agent name like See www.myWebbot.com for
more details. I have seen many webbots brand themselves similarly.

If the administrator does a reverse DNS lookup to convert IP addresses to domain names, that
makes it very easy to trace the origin of traffic. You should always assume this is happening
and restrict the number of times you access a target.

Some metrics programs also create reports that show which pages specific visitors downloaded
on sequential visits. If your webbot always downloads the same pages in the same order,
you're bound to look odd. For this reason, it's best to add some variety (or randomness, if
applicable) to the sequence and number of pages your webbots access.

Log-Monitoring Software

Many system administrators use monitoring software that automatically detects strange
behavior in log files. Servers using monitoring software may automatically send a notification
email, instant message, or even page to the system administrator upon detection of critical
errors. Some systems may even automatically shut down or limit accessibility to the server.

Some monitoring systems can have unanticipated results. I once created a webbot for a client
that made HEAD requests from various web pages. While the use of the HEAD request is part of
the web specification, it is rarely used, and this particular monitoring software interpreted the
use of the HEAD request as malicious activity. My client got a call from the system
administrator, who demanded that we stop hacking his website. Fortunately, we all discussed
what we were doing and left as friends, but that experience taught me that many
administrators are inexperienced with webbots; if you approach situations like this with
confidence and knowledge, you'll generally be respected. The other thing I learned from this
experience is that when you want to analyze a header, you should request the entire page
instead of only the header, and then parse the results on your hard drive.

file:///D|/!!/final/Ilarger_considerations.html (5 von 5) [29.03.2008 23:24:30]

http://www.mywebbot.com/

Idesigning_stealthy_webbots_and_spiders.html

LARGER CONSIDERATIONS

As you develop webbots and spiders, you will soon learn (or wish you had
learned) that there is more to webbot and spider development than mastering
the underlying technologies. Beyond technology, your webbots need to coexist
with society—and perhaps more importantly, they need to coexist with the
system administrators of the sites you target. This section attempts to guide you
through the larger considerations of webbot and spider development with the
hope of keeping you out of trouble.

DESIGNING STEALTHY WEBBOTS AND SPIDERS

Sometimes it is best if webbots are indistinguishable from normal
Internet traffic. In this chapter, I'll explain when and how stealth is
important to webbots and how to design and deploy webbots that look
like normal browser traffic.

WRITING FAULT-TOLERANT WEBBOTS

Since the Internet is constantly changing, it is a good idea to design
webbots that will be less likely to fail if your target websites change. In
this chapter, we'll focus on methods to design fault tolerance into your
webbots and spiders so they will more easily adapt (or at least
gracefully fail) when websites change.

DESIGNING WEBBOT-FRIENDLY WEBSITES

Here I'll explain how and why to write web pages that are easy for
webbots and spiders to download and analyze, with a special focus on
the needs of search engine spiders. You will also learn how to write
specialized interfaces, designed specifically to transfer data from
websites to webbots.

KILLING SPIDERS

In this chapter, we'll explore techniques for writing web pages that
protect sensitive information from webbots and spiders, while still
accommodating normal browser users.

KEEPING WEBBOTS OUT OF TROUBLE

Possibly the most important part of this book, this chapter discusses
the possible legal issues you may encounter as a webbot developer
and tells you how to avoid them.

file:///D|/!!/final/Idesigning_stealthy_webbots_and_spiders.html (1 von 5) [29.03.2008 23:24:31]

Idesigning_stealthy_webbots_and_spiders.html

DESIGNING STEALTHY WEBBOTS AND SPIDERS

This chapter explores design and implementation considerations that make webbots hard to
detect. However, the inclusion of a chapter on stealth shouldn't imply that there's a stigma
associated with writing webbots; you shouldn't feel self-conscious about writing webbots, as
long as your goals are to create legal and novel solutions to tedious tasks. Most of the reasons
for maintaining stealth have more to do with maintaining competitive advantage than covering
the tracks of a malicious web agent.

Why Design a Stealthy Webbot?

Webbots that create competitive advantages for their owners often lose their value shortly
after they're discovered by the targeted website's administrator. I can tell you from personal
experience that once your webbot is detected, you may be accused of creating an unfair
advantage for your client. This type of accusation is common against early adopters of any
technology. (It is also complete bunk.) Webbot technology is available to any business that
takes the time to research and implement it. Once it is discovered, however, the owner of the
target site may limit or block the webbot's access to the site's resources. The other thing that
can happen is that the administrator will see the value that the webbot offers and will create a
similar feature on the site for everyone to use.

Another reason to write stealthy webbots is that system administrators may misinterpret
webbot activity as an attack from a hacker. A poorly designed webbot may leave strange
records in the log files that servers use to track web traffic and detect hackers. Let's look at
the errors you can make and how these errors appear in the log files of a system administrator.

Log Files

System administrators can detect webbots by looking for odd activity in their log files, which
record access to servers. There are three types of log files for this purpose: access logs, error
logs, and custom logs (Windows' log files recording file access and errors (Apache running on
Windows)). Some servers also deploy special monitoring software to parse and detect
anomalies from normal activity within log files.

Windows' log files recording file access and errors (Apache running on Windows)

file:///D|/!!/final/Idesigning_stealthy_webbots_and_spiders.html (2 von 5) [29.03.2008 23:24:31]

Idesigning_stealthy_webbots_and_spiders.html

Access Logs

As the name implies, access logs record information related to the access of files on a
webserver. Typical access logs record the IP address of the requestor, the time the file was
accessed, the fetch method (typically GET or POST), the file requested, the HTTP code, and the
size of the file transfer, as shown in Listing 24-1.

Code View:

221.2.21.16 - - [03/Feb/2008:14:57:45 -0600] "GET / HTTP/1.1" 200 1494
12.192.2.206 - - [03/Feb/2008:14:57:46 -0600] "GET /favicon.ico HTTP/1.1" 404 283
27.116.45.118 - - [03/Feb/2008:14:57:46 -0600] "GET /apache_pb.gif HTTP/1.1" 200 2326
214.241.24.35 - - [03/Feb/2008:14:57:50 -0600] "GET /test.php HTTP/1.1" 200 41

Listing 24-1: Typical access log entries

Access log files have many uses, like metering bandwidth and controlling access. Know that
the webserver records every file download your webbot requests. If your webbot makes 50
requests a day from a server that gets 200 hits a day, it will become obvious to even a casual
system administrator that a single party is making a disproportionate number of requests,
which will raise questions about your activity.

Also, remember that using a website is a privilege, not a right. Always assume that your
budget of accesses per day is limited, and if you go over that limit, it is likely that a system
administrator will attempt to limit your activity when he or she realizes a webbot is accessing
the website. You should strive to limit the number of times your webbot accesses any site.
There are no definite rules about how often you can access a website, but remember that if an
individual system administrator decides your IP is hitting a site too often, his or her opinion will
always trump yours.[] If you ever exceed your bandwidth budget, you may find yourself
blocked from the site.

file:///D|/!!/final/Idesigning_stealthy_webbots_and_spiders.html (3 von 5) [29.03.2008 23:24:31]

Idesigning_stealthy_webbots_and_spiders.html

[] There may also be legal implications for hitting a website too many times. For more information on this
subject, see KEEPING WEBBOTS OUT OF TROUBLE.

Error Logs

Like access logs, error logs record access to a website, but unlike access logs, error logs only
record errors that occur. A sampling of an actual error log is shown in Listing 24-2.

Code View:

[Tue Mar 08 14:57:12 2008] [warn] module mod_php4.c is already added, skipping
[Tue Mar 08 15:48:10 2008] [error] [client 127.0.0.1] File does not exist:
c:/program files/apache group/apache/htdocs/favicon.ico
[Tue Mar 08 15:48:13 2008] [error] [client 127.0.0.1] File does not exist:
c:/program files/apache group/apache/htdocs/favicon.ico
[Tue Mar 08 15:48:37 2008] [error] [client 127.0.0.1] File does not exist:
c:/program files/apache group/apache/htdocs/t.gif

Listing 24-2: Typical error log entries

The errors your webbot is most likely to make involve requests for unsupported methods
(often HEAD requests) or requesting files that aren't on the website. If your webbot repeatedly
commits either of these errors, a system administrator will easily determine that a webbot is
making the erroneous page requests, because it is almost impossible to cause these errors
when manually surfing with a browser. Since error logs tend to be smaller than access logs,
entries in error logs are very obvious to system administrators.

However, not all entries in an error log indicate that something unusual is going on. For
example, it's common for people to use expired bookmarks or to follow broken links, both of
which could generate File not found errors.

At other times, errors are logged in access logs, not error logs. These errors include using a
GET method to send a form instead of a POST (or visa versa), or emulating a form and sending
the data to a page that is not a valid action address. These are perhaps the worst errors
because they are impossible for someone using a browser to commit—therefore, they will
make your webbot stand out like a sore thumb in the log files.

These are the best ways to avoid strange errors in log files:

● Debug your webbot's parsing software on web pages that are on your own server before
releasing it into the wilderness

● Use a form analyzer, as described in AUTOMATING FORM SUBMISSION, when emulating
forms

● Program your webbot to stop if it is looking for something specific but cannot find it

Custom Logs

Many web administrators also keep detailed custom logs, which contain additional data not

file:///D|/!!/final/Idesigning_stealthy_webbots_and_spiders.html (4 von 5) [29.03.2008 23:24:31]

Idesigning_stealthy_webbots_and_spiders.html

found in either error or access logs. Information that may appear in custom logs includes the
following:

● The name of the web agent used to download a file

● A fully resolved domain name that resolves the requesting IP address

● A coherent list of pages a visitor viewed during any one session

● The referer to get to the requested page

The first item on the list is very important and easy to address. If you call your webbot test
webbot, which is the default setting in LIB_http, the web administrator will finger your webbot
as soon as he or she views the log file. Sometimes this is by design; for example, if you want
your webbot to be discovered, you may use an agent name like See www.myWebbot.com for
more details. I have seen many webbots brand themselves similarly.

If the administrator does a reverse DNS lookup to convert IP addresses to domain names, that
makes it very easy to trace the origin of traffic. You should always assume this is happening
and restrict the number of times you access a target.

Some metrics programs also create reports that show which pages specific visitors downloaded
on sequential visits. If your webbot always downloads the same pages in the same order,
you're bound to look odd. For this reason, it's best to add some variety (or randomness, if
applicable) to the sequence and number of pages your webbots access.

Log-Monitoring Software

Many system administrators use monitoring software that automatically detects strange
behavior in log files. Servers using monitoring software may automatically send a notification
email, instant message, or even page to the system administrator upon detection of critical
errors. Some systems may even automatically shut down or limit accessibility to the server.

Some monitoring systems can have unanticipated results. I once created a webbot for a client
that made HEAD requests from various web pages. While the use of the HEAD request is part of
the web specification, it is rarely used, and this particular monitoring software interpreted the
use of the HEAD request as malicious activity. My client got a call from the system
administrator, who demanded that we stop hacking his website. Fortunately, we all discussed
what we were doing and left as friends, but that experience taught me that many
administrators are inexperienced with webbots; if you approach situations like this with
confidence and knowledge, you'll generally be respected. The other thing I learned from this
experience is that when you want to analyze a header, you should request the entire page
instead of only the header, and then parse the results on your hard drive.

file:///D|/!!/final/Idesigning_stealthy_webbots_and_spiders.html (5 von 5) [29.03.2008 23:24:31]

http://www.mywebbot.com/

Iwhy_design_a_stealthy_webbot_question.html

LARGER CONSIDERATIONS

As you develop webbots and spiders, you will soon learn (or wish you had
learned) that there is more to webbot and spider development than mastering
the underlying technologies. Beyond technology, your webbots need to coexist
with society—and perhaps more importantly, they need to coexist with the
system administrators of the sites you target. This section attempts to guide you
through the larger considerations of webbot and spider development with the
hope of keeping you out of trouble.

DESIGNING STEALTHY WEBBOTS AND SPIDERS

Sometimes it is best if webbots are indistinguishable from normal
Internet traffic. In this chapter, I'll explain when and how stealth is
important to webbots and how to design and deploy webbots that look
like normal browser traffic.

WRITING FAULT-TOLERANT WEBBOTS

Since the Internet is constantly changing, it is a good idea to design
webbots that will be less likely to fail if your target websites change. In
this chapter, we'll focus on methods to design fault tolerance into your
webbots and spiders so they will more easily adapt (or at least
gracefully fail) when websites change.

DESIGNING WEBBOT-FRIENDLY WEBSITES

Here I'll explain how and why to write web pages that are easy for
webbots and spiders to download and analyze, with a special focus on
the needs of search engine spiders. You will also learn how to write
specialized interfaces, designed specifically to transfer data from
websites to webbots.

KILLING SPIDERS

In this chapter, we'll explore techniques for writing web pages that
protect sensitive information from webbots and spiders, while still
accommodating normal browser users.

KEEPING WEBBOTS OUT OF TROUBLE

Possibly the most important part of this book, this chapter discusses
the possible legal issues you may encounter as a webbot developer
and tells you how to avoid them.

file:///D|/!!/final/Iwhy_design_a_stealthy_webbot_question.html (1 von 5) [29.03.2008 23:24:33]

Iwhy_design_a_stealthy_webbot_question.html

DESIGNING STEALTHY WEBBOTS AND SPIDERS

This chapter explores design and implementation considerations that make webbots hard to
detect. However, the inclusion of a chapter on stealth shouldn't imply that there's a stigma
associated with writing webbots; you shouldn't feel self-conscious about writing webbots, as
long as your goals are to create legal and novel solutions to tedious tasks. Most of the reasons
for maintaining stealth have more to do with maintaining competitive advantage than covering
the tracks of a malicious web agent.

Why Design a Stealthy Webbot?

Webbots that create competitive advantages for their owners often lose their value shortly
after they're discovered by the targeted website's administrator. I can tell you from personal
experience that once your webbot is detected, you may be accused of creating an unfair
advantage for your client. This type of accusation is common against early adopters of any
technology. (It is also complete bunk.) Webbot technology is available to any business that
takes the time to research and implement it. Once it is discovered, however, the owner of the
target site may limit or block the webbot's access to the site's resources. The other thing that
can happen is that the administrator will see the value that the webbot offers and will create a
similar feature on the site for everyone to use.

Another reason to write stealthy webbots is that system administrators may misinterpret
webbot activity as an attack from a hacker. A poorly designed webbot may leave strange
records in the log files that servers use to track web traffic and detect hackers. Let's look at
the errors you can make and how these errors appear in the log files of a system administrator.

Log Files

System administrators can detect webbots by looking for odd activity in their log files, which
record access to servers. There are three types of log files for this purpose: access logs, error
logs, and custom logs (Windows' log files recording file access and errors (Apache running on
Windows)). Some servers also deploy special monitoring software to parse and detect
anomalies from normal activity within log files.

Windows' log files recording file access and errors (Apache running on Windows)

file:///D|/!!/final/Iwhy_design_a_stealthy_webbot_question.html (2 von 5) [29.03.2008 23:24:33]

Iwhy_design_a_stealthy_webbot_question.html

Access Logs

As the name implies, access logs record information related to the access of files on a
webserver. Typical access logs record the IP address of the requestor, the time the file was
accessed, the fetch method (typically GET or POST), the file requested, the HTTP code, and the
size of the file transfer, as shown in Listing 24-1.

Code View:

221.2.21.16 - - [03/Feb/2008:14:57:45 -0600] "GET / HTTP/1.1" 200 1494
12.192.2.206 - - [03/Feb/2008:14:57:46 -0600] "GET /favicon.ico HTTP/1.1" 404 283
27.116.45.118 - - [03/Feb/2008:14:57:46 -0600] "GET /apache_pb.gif HTTP/1.1" 200 2326
214.241.24.35 - - [03/Feb/2008:14:57:50 -0600] "GET /test.php HTTP/1.1" 200 41

Listing 24-1: Typical access log entries

Access log files have many uses, like metering bandwidth and controlling access. Know that
the webserver records every file download your webbot requests. If your webbot makes 50
requests a day from a server that gets 200 hits a day, it will become obvious to even a casual
system administrator that a single party is making a disproportionate number of requests,
which will raise questions about your activity.

Also, remember that using a website is a privilege, not a right. Always assume that your
budget of accesses per day is limited, and if you go over that limit, it is likely that a system
administrator will attempt to limit your activity when he or she realizes a webbot is accessing
the website. You should strive to limit the number of times your webbot accesses any site.
There are no definite rules about how often you can access a website, but remember that if an
individual system administrator decides your IP is hitting a site too often, his or her opinion will
always trump yours.[] If you ever exceed your bandwidth budget, you may find yourself
blocked from the site.

file:///D|/!!/final/Iwhy_design_a_stealthy_webbot_question.html (3 von 5) [29.03.2008 23:24:33]

Iwhy_design_a_stealthy_webbot_question.html

[] There may also be legal implications for hitting a website too many times. For more information on this
subject, see KEEPING WEBBOTS OUT OF TROUBLE.

Error Logs

Like access logs, error logs record access to a website, but unlike access logs, error logs only
record errors that occur. A sampling of an actual error log is shown in Listing 24-2.

Code View:

[Tue Mar 08 14:57:12 2008] [warn] module mod_php4.c is already added, skipping
[Tue Mar 08 15:48:10 2008] [error] [client 127.0.0.1] File does not exist:
c:/program files/apache group/apache/htdocs/favicon.ico
[Tue Mar 08 15:48:13 2008] [error] [client 127.0.0.1] File does not exist:
c:/program files/apache group/apache/htdocs/favicon.ico
[Tue Mar 08 15:48:37 2008] [error] [client 127.0.0.1] File does not exist:
c:/program files/apache group/apache/htdocs/t.gif

Listing 24-2: Typical error log entries

The errors your webbot is most likely to make involve requests for unsupported methods
(often HEAD requests) or requesting files that aren't on the website. If your webbot repeatedly
commits either of these errors, a system administrator will easily determine that a webbot is
making the erroneous page requests, because it is almost impossible to cause these errors
when manually surfing with a browser. Since error logs tend to be smaller than access logs,
entries in error logs are very obvious to system administrators.

However, not all entries in an error log indicate that something unusual is going on. For
example, it's common for people to use expired bookmarks or to follow broken links, both of
which could generate File not found errors.

At other times, errors are logged in access logs, not error logs. These errors include using a
GET method to send a form instead of a POST (or visa versa), or emulating a form and sending
the data to a page that is not a valid action address. These are perhaps the worst errors
because they are impossible for someone using a browser to commit—therefore, they will
make your webbot stand out like a sore thumb in the log files.

These are the best ways to avoid strange errors in log files:

● Debug your webbot's parsing software on web pages that are on your own server before
releasing it into the wilderness

● Use a form analyzer, as described in AUTOMATING FORM SUBMISSION, when emulating
forms

● Program your webbot to stop if it is looking for something specific but cannot find it

Custom Logs

Many web administrators also keep detailed custom logs, which contain additional data not

file:///D|/!!/final/Iwhy_design_a_stealthy_webbot_question.html (4 von 5) [29.03.2008 23:24:33]

Iwhy_design_a_stealthy_webbot_question.html

found in either error or access logs. Information that may appear in custom logs includes the
following:

● The name of the web agent used to download a file

● A fully resolved domain name that resolves the requesting IP address

● A coherent list of pages a visitor viewed during any one session

● The referer to get to the requested page

The first item on the list is very important and easy to address. If you call your webbot test
webbot, which is the default setting in LIB_http, the web administrator will finger your webbot
as soon as he or she views the log file. Sometimes this is by design; for example, if you want
your webbot to be discovered, you may use an agent name like See www.myWebbot.com for
more details. I have seen many webbots brand themselves similarly.

If the administrator does a reverse DNS lookup to convert IP addresses to domain names, that
makes it very easy to trace the origin of traffic. You should always assume this is happening
and restrict the number of times you access a target.

Some metrics programs also create reports that show which pages specific visitors downloaded
on sequential visits. If your webbot always downloads the same pages in the same order,
you're bound to look odd. For this reason, it's best to add some variety (or randomness, if
applicable) to the sequence and number of pages your webbots access.

Log-Monitoring Software

Many system administrators use monitoring software that automatically detects strange
behavior in log files. Servers using monitoring software may automatically send a notification
email, instant message, or even page to the system administrator upon detection of critical
errors. Some systems may even automatically shut down or limit accessibility to the server.

Some monitoring systems can have unanticipated results. I once created a webbot for a client
that made HEAD requests from various web pages. While the use of the HEAD request is part of
the web specification, it is rarely used, and this particular monitoring software interpreted the
use of the HEAD request as malicious activity. My client got a call from the system
administrator, who demanded that we stop hacking his website. Fortunately, we all discussed
what we were doing and left as friends, but that experience taught me that many
administrators are inexperienced with webbots; if you approach situations like this with
confidence and knowledge, you'll generally be respected. The other thing I learned from this
experience is that when you want to analyze a header, you should request the entire page
instead of only the header, and then parse the results on your hard drive.

file:///D|/!!/final/Iwhy_design_a_stealthy_webbot_question.html (5 von 5) [29.03.2008 23:24:33]

http://www.mywebbot.com/

Istealth_means_simulating_human_patterns.html

Stealth Means Simulating Human Patterns

Webbots that don't draw attention to themselves are ones that behave like people and leave
normal-looking records in log files. For this reason, you want your webbot to simulate normal
human activity. In short, stealthy webbots don't act like machines.

Be Kind to Your Resources

Possibly the worst thing your webbot can do is consume too much bandwidth from an
individual website. To limit the amount of bandwidth a webbot uses, you need to restrict the
amount of activity it has at any one website. Whatever you do, don't write a webbot that
frequently makes requests from the same source. Since your webbot doesn't read the
downloaded web pages and click links as a person would, it is capable of downloading pages
at a ridiculously fast rate. For this reason, your webbot needs to spend most of its time
waiting instead of downloading pages.

The ease of writing a stealthy webbot is directly correlated with how often your target data
changes. In the early stages of designing your webbot, you should decide what specific data
you need to collect and how often that data changes. If updates of the target data happen
only once a day, it would be silly to look for it more often than that.

System administrators also use various methods and traps to deter webbots and spiders.
These concepts are discussed in detail in KILLING SPIDERS.

Run Your Webbot During Busy Hours

If you want your webbot to generate log records that look like normal browsing, you should
design your webbot so that it makes page requests when everyone else makes them. If your
webbot runs during busy times, your log records will be intermixed with normal traffic. There
will also be more records separating your webbot's access records in the log file. This will not
reduce the total percentage of requests coming from your webbot, but it will make your
webbot slightly less noticeable.

Running webbots during high-traffic times is slightly counterintuitive, since many people
believe that the best time to run a webbot is in the early morning hours—when the system
administrator is at home sleeping and you're not interfering with normal web traffic. While the
early morning may be the best time to go out in public without alerting the paparazzi, on the
Internet, there is safety in numbers.

Don't Run Your Webbot at the Same Time Each Day

If you have a webbot that needs to run on a daily basis, it's best not to run it at exactly same
time every day, because doing so would leave suspicious-looking records in the server log
file. For example, if a system administrator notices that someone with a certain IP address
access the same file at 7:01 AM every day, he or she will soon assume that the requestor is
either a highly compulsive human or a webbot.

Don't Run Your Webbot on Holidays and Weekends

Obviously, your webbot shouldn't access a website over a holiday or weekend if it would be

file:///D|/!!/final/Istealth_means_simulating_human_patterns.html (1 von 2) [29.03.2008 23:24:34]

Istealth_means_simulating_human_patterns.html

unusual for a person to do the same. For example, I've written procurement bots (see
PROCUREMENT WEBBOTS AND SNIPERS) that buy things from websites only used by
businesses. It would have been odd if the webbot checked what was available for purchase at
a time when businesses are typically closed. This is, unfortunately, an easy mistake to make,
because few task-scheduling programs track local holidays. You should read SCHEDULING
WEBBOTS AND SPIDERS for more information on this issue.

Use Random, Intra-fetch Delays

One sure way to tell a system administrator that you've written a webbot is to request pages
faster than humanly possible. This is an easy mistake to make, since computers can make
page requests at lightening speeds. For this reason, it's imperative to insert delays between
repeated page fetches on the same domain. Ideally, the delay period should be a random
value that mimics human browsing behavior.

file:///D|/!!/final/Istealth_means_simulating_human_patterns.html (2 von 2) [29.03.2008 23:24:34]

Ifinal_thoughts_id14.html

Final Thoughts

A long time ago—before I knew better—I needed to gather some information for a client from
a government website (on a Saturday, no less). I determined that in order to collect all the
data I needed by Monday morning, my spider would have to run at full speed for most of the
weekend (another bad idea). I started in the morning, and everything was going well; the
spider was downloading pages, parsing information, and storing the results in my database at
a blazing rate.

While only casually monitoring the spider, I used the idle time to browse the website I was
spidering. To my horror, I found that the welcome page explicitly stated that the website did
not, under any circumstances, allow webbots to gather information from it.

Furthermore, the welcome page stated that any violation of this policy was considered a
felony, and violators would be prosecuted fully. Since this was a government website, I
assumed it had the lawyers to follow through with a threat like this. In retrospect, the phrase
full extent of the law was probably more of a fear tactic than an indication of eminent legal
action. Since all the data I collected was in the public domain, and the funding of the site's
servers came from public money (some of it mine), I couldn't possibly have done anything
wrong, could I?

My fear was that since I was hitting the server very hard, the department would file a
trespass-to-chattels[] case against me. Regardless, it had my attention, and I questioned the
wisdom of what I was doing. An activity that seemed so innocent only moments earlier
suddenly had the potential of becoming a criminal offense. I wasn't sure what the
department's legal rights were, nor was I sure to what extent a judge would have agreed with
its arguments, since there were no applicable warnings on the pages I was spidering.
Nevertheless, it was obvious that the government would have more lawyers at its disposal
than I would, if it came to that.

[] See KEEPING WEBBOTS OUT OF TROUBLE for more information about trespass to chattels.

Just as I started to contemplate my future in jail, the spider suddenly stopped working.
Fearing the worst, I pointed my browser at the page I had been spidering and felt the blood
drain from my face as I read a web page similar to the one shown in A government warning
that my IP address had been blocked.

A government warning that my IP address had been blocked

file:///D|/!!/final/Ifinal_thoughts_id14.html (1 von 3) [29.03.2008 23:24:35]

Ifinal_thoughts_id14.html

I knew I had no choice but to call the number on the screen. This website obviously had
monitoring software, and it detected that I was operating outside of stated policies. Moreover,
it had my IP address, so someone could easily discover who I was by tracing my IP address
back to my ISP.[] Once the department knew who my ISP was, it could subpoena billing and
log files to use as evidence. I was busted—not by some guy with a server, but by the full
force and assets (i.e., lawyers) of the State of Minnesota. My paranoia was magnified by the
fact that it was only late Saturday morning, and I had all weekend to think about my situation
before I could call the number on Monday morning.

[] You can find the owner of an IP address at http://www.arin.net.

When Monday finally came, I called the number and was very apologetic. Realizing that they
already knew what I was doing, I gave them a full confession. Moreover, I noted that I had
read the policy on the main page after I started spidering the site and that there were no
warnings on the pages I was spidering.

Fortunately, the person who answered the phone was not the department's legal counsel (as I
feared), but a friendly system administrator who was mostly concerned about maintaining a
busy website on a limited budget. She told me that she'd unblock my IP address if I promised
not to hit the server more than three times a minute. Problem solved. (Whew!)

The embarrassing part of this story is that I should have known better. It only takes a small
amount of code between page requests to make a webbot's actions look more human. For
example, the code snippet in Listing 24-3 will cause a random delay between 20 and 45
seconds.

$minumum_delay_seconds = 20;
$maximum_delay_seconds = 45;
sleep($minumum_delay_seconds, $maximum_delay_seconds);

file:///D|/!!/final/Ifinal_thoughts_id14.html (2 von 3) [29.03.2008 23:24:35]

http://www.arin.net/

Ifinal_thoughts_id14.html

Listing 24-3: Creating a random delay

You can summarize the complete topic of stealthy webbots in a single concept: Don't do
anything with a webbot that doesn't look like something one person using a browser would
do. In that regard, think about how and when people use browsers, and try to write webbots
that mimic that activity.

file:///D|/!!/final/Ifinal_thoughts_id14.html (3 von 3) [29.03.2008 23:24:35]

Iwriting_fault_tolerant_webbots.html

WRITING FAULT-TOLERANT WEBBOTS

The biggest complaint users have about webbots is their unreliability: Your webbots will
suddenly and inexplicably fail if they are not fault tolerant, or able to adapt to the changing
conditions of your target websites. This chapter is devoted to helping you write webbots that
are tolerant to network outages and unexpected changes in the web pages you target.

Webbots that don't adapt to their changing environments are worse than nonfunctional ones
because, when presented with the unexpected, they may perform in odd and unpredictable
ways. For example, a non-fault-tolerant webbot may not notice that a form has changed and
will continue to emulate the nonexistent form. When a webbot does something that is
impossible to do with a browser (like submit an obsolete form), system administrators become
aware of the webbot. Furthermore, it's usually easy for system administrators to identify the
owner of a webbot by tracing an IP address or matching a user to a username and password.
Depending on what your webbot does and which website it targets, the identification of a
webbot can lead to possible banishment from the website and the loss of a competitive
advantage for your business. It's better to avoid these issues by designing fault-tolerant
webbots that anticipate changes in the websites they target.

Fault tolerance does not mean that everything will always work perfectly. Sometimes changes in
a targeted website confuse even the most fault-tolerant webbot. In these cases, the proper
thing for a webbot to do is to abort its task and report an error to its owner. Essentially, you
want your webbot to fail in the same manner a person using a browser might fail. For example,
if a webbot is buying an airline ticket, it should not proceed with a purchase if a seat is not
available on a desired flight. This action sounds silly, but it is exactly what a poorly programmed
webbot may do if it is expecting an available seat and has no provision to act otherwise.

Types of Webbot Fault Tolerance

For a webbot, fault tolerance involves adapting to changes to URLs, HTML content (which affect
parsing), forms, cookie use, and network outages and congestion). We'll examine each of these
aspects of fault tolerance in the following sections.

Adapting to Changes in URLs

Possibly the most important type of webbot fault tolerance is URL tolerance, or a webbot's
ability to make valid requests for web pages under changing conditions. URL tolerance ensures
that your webbot does the following:

● Download pages that are available on the target site

● Follow header redirections to updated pages

● Use referer values to indicate that you followed a link from a page that is still on the
website

Avoid Making Requests for Pages That Don't Exist

Before you determine that your webbot downloaded a valid web page, you should verify that
you made a valid request. Your webbot can verify successful page requests by examining the
HTTP code, a status code returned in the header of every web page. If the request was
successful, the resulting HTTP code will be in the 200 series—meaning that the HTTP code will

file:///D|/!!/final/Iwriting_fault_tolerant_webbots.html (1 von 10) [29.03.2008 23:24:37]

Iwriting_fault_tolerant_webbots.html

be a three-digit number beginning with a two. Any other value for the HTTP code may indicate
an error. The most common HTTP code is 200, which says that the request was valid and that
the requested page was sent to the web agent. The script in Listing 25-1 shows how to use the
LIB_http library's http_get() function to validate the returned page by looking at the returned
HTTP code. If the webbot doesn't detect the expected HTTP code, an error handler is used to
manage the error and the webbot stops.

<?
include("LIB_http.php");
Get the web page
$page = http_get($target="www.schrenk.com", $ref="");
Vector to error handler if error code detected
if($page['STATUS']['http_code']!="200")
 error_handler("BAD RESULT", $page['STATUS']['http_code']);

?>

Listing 25-1: Detecting a bad page request

Before using the method described in Listing 25-1, review a list of HTTP codes and decide which
codes apply to your situation.[]

[] A full list of HTTP codes is available in STATUS CODES.

If the page no longer exists, the fetch will return a 404 Not Found error. When this happens, it's
imperative that the webbot stop and not download any more pages until you find the cause of
the error. Not proceeding after detecting an error is a far better strategy than continuing as if
nothing is wrong.

Web developers don't always remove obsolete web pages from their websites—sometimes they
just link to an updated page without removing the old one. Therefore, webbots should start at
the web page's home page and verify the existence of each page between the home page and
the actual targeted web page. This process does two things. It helps your webbot maintain
stealth, as it simulates the browsing habits of a person using a browser. Moreover, by validating
that there are links to subsequent pages, you verify that the pages you are targeting are still in
use. In contrast, if your webbot targets a page within a site without verifying that other pages
still link to it, you risk targeting an obsolete web page.

The fact that your webbot made a valid page request does not indicate that the page you've
downloaded is the one you intended to download or that it contains the information you
expected to receive. For that reason, it is useful to find a validation point, or text that serves as
an indication that the newly downloaded web page contains the expected information. Every
situation is different, but there should always be some text on every page that validates that
the page contains the content you're expecting. For example, suppose your webbot submits a
form to authenticate itself to a website. If the next web page contains a message that welcomes
the member to the website, you may wish to use the member's name as a validation point to
verify that your webbot successfully authenticated, as shown in Listing 25-2.

$username = "GClasemann";
$page = http_get($target, $ref="");
if(!stristr($page['FILE'], "$username")
 {
 echo "authentication error";
 error_handler("BAD AUTHENTICATION for ".$username, $target);

file:///D|/!!/final/Iwriting_fault_tolerant_webbots.html (2 von 10) [29.03.2008 23:24:37]

Iwriting_fault_tolerant_webbots.html

 }

Listing 25-2: Using a username as a validation point to confirm the result of submitting a form

The script in Listing 25-2 verifies that a validation point, in this case a username, exists as
anticipated on the fetched page. This strategy works because the only way that the user's name
would appear on the web page is if he or she had been successfully authenticated by the
website. If the webbot doesn't find the validation point, it assumes there is a problem and it
reports the situation with an error handler.

Follow Page Redirections

Page redirections are instructions sent by the server that tell a browser that it should download
a page other than the one originally requested. Web developers use page redirection techniques
to tell browsers that the page they're looking for has changed and that they should download
another page in its place. This allows people to access correct pages even when obsolete
addresses are bookmarked by browsers or listed by search engines. As you'll discover, there are
several methods for redirecting browsers. The more web redirection techniques your webbots
understand, the more fault tolerant your webbot becomes.

Header redirection is the oldest method of page redirection. It occurs when the server places a
Location: URL line in the HTTP header, where URL represents the web page the browser should
download (in place of the one requested). When a web agent sees a header redirection, it's
supposed to download the page defined by the new location. Your webbot could look for
redirections in the headers of downloaded pages, but it's easier to configure PHP/CURL to follow
header redirections automatically.[] Listing 25-3 shows the PHP/CURL options you need to make
automatic redirection happen.

[] LIB_http does this for you.

Code View:

curl_setopt($curl_session, CURLOPT_FOLLOWLOCATION, TRUE); // Follow redirects
curl_setopt($curl_session, CURLOPT_MAXREDIRS, 4); // Only follow 4
redirects

Listing 25-3: Configuring PHP/CURL to follow up to four header redirections

The first option in Listing 25-3 tells PHP/CURL to follow all page redirections as they are defined
by the target server. The second option limits the number of redirections your webbot will
follow. Limiting the number of redirections defeats webbot traps where servers redirect agents
to the page they just downloaded, causing an endless number of requests for the same page
and an endless loop.

In addition to header redirections, you should also be prepared to identify and accommodate
page redirections made between the <head> and </head> tags, as shown in Listing 25-4.

<html>
 <head>
 <meta http-equiv="refresh" content="0; URL=http://www.nostarch.com">

file:///D|/!!/final/Iwriting_fault_tolerant_webbots.html (3 von 10) [29.03.2008 23:24:37]

Iwriting_fault_tolerant_webbots.html

 </head>
</html >

Listing 25-4: Page redirection between the <head> and </head> tags

In Listing 25-4, the web page tells the browser to download http://www.nostarch.com instead
of the intended page. Detecting these kinds of redirections is accomplished with a script like the
one in Listing 25-5. This script looks for redirections between the <head> and </head> tags in a
test page on the book's website.

Code View:

<?
Include http, parse, and address resolution libraries
include("LIB_http.php");
include("LIB_parse.php");
include("LIB_resolve_addresses.php");

Identify the target web page and the page base
$target = "http://www.schrenk.com/nostarch/webbots/head_redirection_test.php";
$page_base = "http://www.schrenk.com/nostarch/webbots/";

Download the web page
$page = http_get($target, $ref="");

Parse the <head></head>
$head_section = return_between($string=$page['FILE'], $start="<head>", $end="</head>",
 $type=EXCL);

Create an array of all the meta tags
$meta_tag_array = parse_array($head_section, $beg_tag="<meta", $close_tag=">");

Examine each meta tag for a redirection command
for($xx=0; $xx<count($meta_tag_array); $xx++)
 {
 # Look for http-equiv attribute
 $meta_attribute = get_attribute($meta_tag_array[$xx], $attribute="http-equiv");
 if(strtolower($meta_attribute)=="refresh")
 {
 $new_page = return_between($meta_tag_array[$xx], $start="URL", $end=">",
$type=EXCL);
 # Clean up URL
 $new_page = trim(str_replace("", "", $new_page));
 $new_page = str_replace("=", "", $new_page);
 $new_page = str_replace("\"", "", $new_page);
 $new_page = str_replace("'", "", $new_page);
 # Create fully resolved URL
 $new_page = resolve_address($new_page, $page_base);
 }
 break;
 }

Echo results of script
echo "HTML Head redirection detected
";
echo "Redirect page = ".$new_page;
?>

file:///D|/!!/final/Iwriting_fault_tolerant_webbots.html (4 von 10) [29.03.2008 23:24:37]

http://www.nostarch.com/

Iwriting_fault_tolerant_webbots.html

Listing 25-5: Detecting redirection between the <head> and </head> tags

Listing 25-5 is also an example of the need for good coding practices as part of writing fault-
tolerant webbots. For instance, in Listing 25-5 notice how these practices are followed:

● The script looks for the redirection between the <head> and </head> tags, and not just
anywhere on the web page

● The script looks for the http-equiv attribute only within a meta tag

● The redirected URL is converted into a fully resolved address

● Like a browser, the script stops looking for redirections when it finds the first one

The last—and most troublesome—type of redirection is that done with JavaScript. These
instances are troublesome because webbots typically lack JavaScript parsers, making it difficult
for them to interpret JavaScript. The simplest redirection of this type is a single line of
JavaScript, as shown in Listing 25-6.

<script>document.location = 'http://www.schrenk.com'; </script>

Listing 25-6: A simple JavaScript page redirection

Detecting JavaScript redirections is also tricky because JavaScript is a very flexible language,
and page redirections can take many forms. For example, consider what it would take to detect
a page redirection like the one in Listing 25-7.

<html>
 <head>
 <script>
 function goSomeWhereNew(URL)
 {
 location.href = URL;
 }
 </script>
 <body onLoad=" goSomeWhereNew('http://www.schrenk.com')">
 </body>
</html>

Listing 27-7: A complicated JavaScript page redirection

Fortunately, JavaScript page redirection is not a particularly effective way for a web developer
to send a visitor to a new page. Some people turn off JavaScript in their browser configuration,
so it doesn't work for everyone; therefore, JavaScript redirection is rarely used. Since it is
difficult to write fault-tolerant routines to handle JavaScript, you may have to tough it out and
rely on the error-detection techniques addressed later in this chapter.

Maintain the Accuracy of Referer Values

The last aspect of verifying that you're using correct URLs is ensuring that your referer values

file:///D|/!!/final/Iwriting_fault_tolerant_webbots.html (5 von 10) [29.03.2008 23:24:37]

Iwriting_fault_tolerant_webbots.html

correctly simulate followed links. You should set the referer to the last target page you
requested. This is important for several reasons. For example, some image servers use the
referer value to verify that a request for an image is preceded by a request for the entire web
page. This defeats bandwidth hijacking, the practice of sourcing images from other people's
domains. In addition, websites may defeat deep linking, or linking to a website's inner pages, by
examining the referer to verify that people followed a prescribed succession of links to get to a
specific point within a website.

Adapting to Changes in Page Content

Parse tolerance is your webbot's ability to parse web pages when your webbot downloads the
correct page, but its contents have changed. The following paragraphs describe how to write
parsing routines that are tolerant to minor changes in web pages. This may also be a good time
to review PARSING TECHNIQUES, which covers general parsing techniques.

Avoid Position Parsing

To facilitate fault tolerance when parsing web pages, you should avoid all attempts at position
parsing, or parsing information based on its position within a web page. For example, it's a bad
idea to assume that the information you're looking for has these characteristics:

● Starts x characters from the beginning of the page and is y characters in length

● Is in the xth table in a web page

● Is at the very top or bottom of a web page

Any small change in a website can effect position parsing. There are much better ways of
finding the information you need to parse.

Use Relative Parsing

Relative parsing is a technique that involves looking for desired information relative to other
things on a web page. For example, since many web pages hold information in tables, you can
place all the tables into an array, identifying which table contains a landmark term that
identifies the correct table. Once a webbot finds the correct table, the data can be parsed from
the correct cell by finding the cell relative to a specific column name within that table. For an
example of how this works, look at the parsing techniques performed in PRICE-MONITORING
WEBBOTS in which a webbot parses prices from an online store.

Table column headings may also be used as landmarks to identify data in tables. For example,
assume you have a table like Use Table Headers to Identify Data Within Columns, which
presents statistics for three baseball players.

Table Use Table Headers to Identify Data Within Columns

Player Team Hits Home Runs Average
Zoe Marsupials 78 15 .327
Cullen Wombats 56 16 .331
Kade Wombats 58 17 .324

In this example you could parse all the tables from the web page and isolate the table
containing the landmark Player Statistics. In that table, your webbot could then use the column

file:///D|/!!/final/Iwriting_fault_tolerant_webbots.html (6 von 10) [29.03.2008 23:24:37]

Iwriting_fault_tolerant_webbots.html

names as secondary landmarks to identify players and their statistics.

Look for Landmarks That Are Least Likely to Change

You achieve additional fault tolerance when you choose landmarks that are least likely to
change. From my experience, the things in web pages that change with the lowest frequency
are those that are related to server applications or back-end code. In most cases, names of
form elements and values for hidden form fields seldom change. For example, in Listing 25-8
it's very easy to find the names and breeds of dogs because the form handler needs to see
them in a well-defined manner. Webbot developers generally don't look for data values in forms
because they aren't visible in rendered HTML. However, if you're lucky enough to find the data
values you're looking for within a form definition, that's where you should get them, even if
they appear in other visible places on the website.

<form method="POST" action="dog_form.php">
 <input type="hidden" name="Jackson" value="Jack Russell Terrier">
 <input type="hidden" name="Xing" value="Shepherd Mix">
 <input type="hidden" name="Buster" value="Maltese">
 <input type="hidden" name="Bare-bear" value="Pomeranian">
</form>

Listing 25-8: Finding data values in form variables

Similarly, you should avoid landmarks that are subject to frequent changes, like dynamically
generated content, HTML comments (which Macromedia Dreamweaver and other page-
generation software programs automatically insert into HTML pages), and information that is
time or calendar derived.

Adapting to Changes in Forms

Form tolerance defines your webbot's ability to verify that it is sending the correct form
information to the correct form handler. When your webbot detects that a form has changed, it
is usually best to terminate your webbot, rather than trying to adapt to the changes on the fly.
Form emulation is complicated, and it's too easy to make embarrassing mistakes—like
submitting nonexistent forms. You should also use the form diagnostic page on the book's
website (described in AUTOMATING FORM SUBMISSION) to analyze forms before writing form
emulation scripts.

Before emulating a form, a webbot should verify that the form variables it plans to submit are
still in use in the submitted form. This check should verify the data pair names submitted to the
form handler and the form's method and action. Listing 25-9 parses this information on a test
page on the book's website. You can use similar scripts to isolate individual form elements,
which can be compared to the variables in form emulation scripts.

Code View:

<?
Import libraries
include("LIB_http.php");
include("LIB_parse.php");
include("LIB_resolve_addresses.php");

Identify location of form and page base address
$page_base ="http://www.schrenk.com/nostarch/webbots/";
$target = "http://www.schrenk.com/nostarch/webbots/easy_form.php";

file:///D|/!!/final/Iwriting_fault_tolerant_webbots.html (7 von 10) [29.03.2008 23:24:37]

Iwriting_fault_tolerant_webbots.html

$web_page = http_get($target, "");

Find the forms in the web page
$form_array = parse_array($web_page['FILE'], $open_tag="<form", $close_tag="</form>");

Parse each form in $form_array
for($xx=0; $xx<count($form_array); $xx++)
 {
 $form_beginning_tag = return_between($form_array[$xx], "<form", ">", INCL);
 $form_action = get_attribute($form_beginning_tag, "action");

 // If no action, use this page as action
 if(strlen(trim($form_action))==0)
 $form_action = $target;
 $fully_resolved_form_action = resolve_address($form_action, $page_base);

 // Default to GET method if no method specified
 if(strtolower(get_attribute($form_beginning_tag, "method")=="post"))
 $form_method="POST";
 else
 $form_method="GET";

 $form_element_array = parse_array($form_array[$xx], "<input", ">");
 echo "Form Method=$form_method
";
 echo "Form Action=$fully_resolved_form_action
";
 # Parse each element in this form
 for($yy=0; $yy<count($form_element_array); $yy++)
 {
 $element_name = get_attribute($form_element_array[$yy], "name");
 $element_value = get_attribute($form_element_array[$yy], "value");
 echo "Element Name=$element_name, value=$element_value
";
 }
 }
?>

Listing 25-9: Parsing form values

Listing 25-9 finds and parses the values of all forms in a web page. When run, it also finds the
form's method and creates a fully resolved URL for the form action, as shown in Results of
running the script in Listing 25-9.

Results of running the script in Listing 25-9

file:///D|/!!/final/Iwriting_fault_tolerant_webbots.html (8 von 10) [29.03.2008 23:24:37]

Iwriting_fault_tolerant_webbots.html

Adapting to Changes in Cookie Management

Cookie tolerance involves saving the cookies written by websites and making them available
when fetching successive pages from the same website. Cookie management should happen
automatically if you are using the LIB_http library and have the COOKIE_FILE pointing to a file
your webbots can access.

One area of concern is that the LIB_http library (and PHP/CURL, for that matter) will not delete
expired cookies or cookies without an expiration date, which are supposed to expire when the
browser is closed. In these cases, it's important to manually delete cookies in order to simulate
new browser sessions. If you don't delete expired cookies, it will eventually look like you're
using a browser that has been open continuously for months or even years, which can look
pretty suspicious.

Adapting to Network Outages and Network Congestion

Unless you plan accordingly, your webbots and spiders will hang, or become nonresponsive,
when a targeted website suffers from a network outage or an unusually high volume of network
traffic. Webbots become nonresponsive when they request and wait for a page that they never
receive. While there's nothing you can do about getting data from nonresponsive target
websites, there's also no reason your webbot needs to be hung up when it encounters one. You
can avoid this problem by inserting the command shown in Listing 25-10 when configuring your
PHP/CURL sessions.

curl_setopt($curl_session, CURLOPT_TIME, $timeout_value);

Listing 25-10: Setting time-out values in PHP/CURL

CURLOPT_TIME defines the number of seconds PHP/CURL waits for a targeted website to
respond. This happens automatically if you use the LIB_http library featured in this book. By
default, page requests made by LIB_http wait a maximum of 25 seconds for any target website
to respond. If there's no response within the allotted time, the PHP/CURL session returns an
empty result.

While on the subject of time-outs, it's important to recognize that PHP, by default, will time-out
if a script executes longer than 30 seconds. In normal use, PHP's time-out ensures that if a
script takes too long to execute, the webserver will return a server error to the browser. The
browser, in turn, informs the user that a process has timed-out. The default time-out works
great for serving web pages, but when you use PHP to build webbot or spider scripts, PHP must
facilitate longer execution times. You can extend (or eliminate) the default PHP script-execution
time with the commands shown in Listing 25-11.

You should exercise extreme caution when eliminating PHP's time-out, as shown in the second
example in Listing 25-11. If you eliminate the time-out, your script may hang permanently if it
encounters a problem.

set_time_limit(60); // Set PHP time-out to 60 seconds
set_time_limit(0); // Completely remove PHP script time-out

Listing 25-11: Adjusting the default PHP script time-out

file:///D|/!!/final/Iwriting_fault_tolerant_webbots.html (9 von 10) [29.03.2008 23:24:37]

Iwriting_fault_tolerant_webbots.html

Always try to avoid time-outs by designing webbots that execute quickly, even if that means
your webbot needs to run more than once to accomplish a task. For example, if a webbot needs
to download and parse 50 web pages, it's usually best to write the bot in such a way that it can
process pages one at a time and know where it left off; then you can schedule the webbot to
execute every minute or so for an hour. Webbot scripts that execute quickly are easier to test,
resemble normal network traffic more closely, and use fewer system resources.

file:///D|/!!/final/Iwriting_fault_tolerant_webbots.html (10 von 10) [29.03.2008 23:24:37]

Itypes_of_webbot_fault_tolerance.html

WRITING FAULT-TOLERANT WEBBOTS

The biggest complaint users have about webbots is their unreliability: Your webbots will
suddenly and inexplicably fail if they are not fault tolerant, or able to adapt to the changing
conditions of your target websites. This chapter is devoted to helping you write webbots that
are tolerant to network outages and unexpected changes in the web pages you target.

Webbots that don't adapt to their changing environments are worse than nonfunctional ones
because, when presented with the unexpected, they may perform in odd and unpredictable
ways. For example, a non-fault-tolerant webbot may not notice that a form has changed and
will continue to emulate the nonexistent form. When a webbot does something that is
impossible to do with a browser (like submit an obsolete form), system administrators become
aware of the webbot. Furthermore, it's usually easy for system administrators to identify the
owner of a webbot by tracing an IP address or matching a user to a username and password.
Depending on what your webbot does and which website it targets, the identification of a
webbot can lead to possible banishment from the website and the loss of a competitive
advantage for your business. It's better to avoid these issues by designing fault-tolerant
webbots that anticipate changes in the websites they target.

Fault tolerance does not mean that everything will always work perfectly. Sometimes changes in
a targeted website confuse even the most fault-tolerant webbot. In these cases, the proper
thing for a webbot to do is to abort its task and report an error to its owner. Essentially, you
want your webbot to fail in the same manner a person using a browser might fail. For example,
if a webbot is buying an airline ticket, it should not proceed with a purchase if a seat is not
available on a desired flight. This action sounds silly, but it is exactly what a poorly programmed
webbot may do if it is expecting an available seat and has no provision to act otherwise.

Types of Webbot Fault Tolerance

For a webbot, fault tolerance involves adapting to changes to URLs, HTML content (which affect
parsing), forms, cookie use, and network outages and congestion). We'll examine each of these
aspects of fault tolerance in the following sections.

Adapting to Changes in URLs

Possibly the most important type of webbot fault tolerance is URL tolerance, or a webbot's
ability to make valid requests for web pages under changing conditions. URL tolerance ensures
that your webbot does the following:

● Download pages that are available on the target site

● Follow header redirections to updated pages

● Use referer values to indicate that you followed a link from a page that is still on the
website

Avoid Making Requests for Pages That Don't Exist

Before you determine that your webbot downloaded a valid web page, you should verify that
you made a valid request. Your webbot can verify successful page requests by examining the
HTTP code, a status code returned in the header of every web page. If the request was
successful, the resulting HTTP code will be in the 200 series—meaning that the HTTP code will

file:///D|/!!/final/Itypes_of_webbot_fault_tolerance.html (1 von 10) [29.03.2008 23:24:39]

Itypes_of_webbot_fault_tolerance.html

be a three-digit number beginning with a two. Any other value for the HTTP code may indicate
an error. The most common HTTP code is 200, which says that the request was valid and that
the requested page was sent to the web agent. The script in Listing 25-1 shows how to use the
LIB_http library's http_get() function to validate the returned page by looking at the returned
HTTP code. If the webbot doesn't detect the expected HTTP code, an error handler is used to
manage the error and the webbot stops.

<?
include("LIB_http.php");
Get the web page
$page = http_get($target="www.schrenk.com", $ref="");
Vector to error handler if error code detected
if($page['STATUS']['http_code']!="200")
 error_handler("BAD RESULT", $page['STATUS']['http_code']);

?>

Listing 25-1: Detecting a bad page request

Before using the method described in Listing 25-1, review a list of HTTP codes and decide which
codes apply to your situation.[]

[] A full list of HTTP codes is available in STATUS CODES.

If the page no longer exists, the fetch will return a 404 Not Found error. When this happens, it's
imperative that the webbot stop and not download any more pages until you find the cause of
the error. Not proceeding after detecting an error is a far better strategy than continuing as if
nothing is wrong.

Web developers don't always remove obsolete web pages from their websites—sometimes they
just link to an updated page without removing the old one. Therefore, webbots should start at
the web page's home page and verify the existence of each page between the home page and
the actual targeted web page. This process does two things. It helps your webbot maintain
stealth, as it simulates the browsing habits of a person using a browser. Moreover, by validating
that there are links to subsequent pages, you verify that the pages you are targeting are still in
use. In contrast, if your webbot targets a page within a site without verifying that other pages
still link to it, you risk targeting an obsolete web page.

The fact that your webbot made a valid page request does not indicate that the page you've
downloaded is the one you intended to download or that it contains the information you
expected to receive. For that reason, it is useful to find a validation point, or text that serves as
an indication that the newly downloaded web page contains the expected information. Every
situation is different, but there should always be some text on every page that validates that
the page contains the content you're expecting. For example, suppose your webbot submits a
form to authenticate itself to a website. If the next web page contains a message that welcomes
the member to the website, you may wish to use the member's name as a validation point to
verify that your webbot successfully authenticated, as shown in Listing 25-2.

$username = "GClasemann";
$page = http_get($target, $ref="");
if(!stristr($page['FILE'], "$username")
 {
 echo "authentication error";
 error_handler("BAD AUTHENTICATION for ".$username, $target);

file:///D|/!!/final/Itypes_of_webbot_fault_tolerance.html (2 von 10) [29.03.2008 23:24:39]

Itypes_of_webbot_fault_tolerance.html

 }

Listing 25-2: Using a username as a validation point to confirm the result of submitting a form

The script in Listing 25-2 verifies that a validation point, in this case a username, exists as
anticipated on the fetched page. This strategy works because the only way that the user's name
would appear on the web page is if he or she had been successfully authenticated by the
website. If the webbot doesn't find the validation point, it assumes there is a problem and it
reports the situation with an error handler.

Follow Page Redirections

Page redirections are instructions sent by the server that tell a browser that it should download
a page other than the one originally requested. Web developers use page redirection techniques
to tell browsers that the page they're looking for has changed and that they should download
another page in its place. This allows people to access correct pages even when obsolete
addresses are bookmarked by browsers or listed by search engines. As you'll discover, there are
several methods for redirecting browsers. The more web redirection techniques your webbots
understand, the more fault tolerant your webbot becomes.

Header redirection is the oldest method of page redirection. It occurs when the server places a
Location: URL line in the HTTP header, where URL represents the web page the browser should
download (in place of the one requested). When a web agent sees a header redirection, it's
supposed to download the page defined by the new location. Your webbot could look for
redirections in the headers of downloaded pages, but it's easier to configure PHP/CURL to follow
header redirections automatically.[] Listing 25-3 shows the PHP/CURL options you need to make
automatic redirection happen.

[] LIB_http does this for you.

Code View:

curl_setopt($curl_session, CURLOPT_FOLLOWLOCATION, TRUE); // Follow redirects
curl_setopt($curl_session, CURLOPT_MAXREDIRS, 4); // Only follow 4
redirects

Listing 25-3: Configuring PHP/CURL to follow up to four header redirections

The first option in Listing 25-3 tells PHP/CURL to follow all page redirections as they are defined
by the target server. The second option limits the number of redirections your webbot will
follow. Limiting the number of redirections defeats webbot traps where servers redirect agents
to the page they just downloaded, causing an endless number of requests for the same page
and an endless loop.

In addition to header redirections, you should also be prepared to identify and accommodate
page redirections made between the <head> and </head> tags, as shown in Listing 25-4.

<html>
 <head>
 <meta http-equiv="refresh" content="0; URL=http://www.nostarch.com">

file:///D|/!!/final/Itypes_of_webbot_fault_tolerance.html (3 von 10) [29.03.2008 23:24:39]

Itypes_of_webbot_fault_tolerance.html

 </head>
</html >

Listing 25-4: Page redirection between the <head> and </head> tags

In Listing 25-4, the web page tells the browser to download http://www.nostarch.com instead
of the intended page. Detecting these kinds of redirections is accomplished with a script like the
one in Listing 25-5. This script looks for redirections between the <head> and </head> tags in a
test page on the book's website.

Code View:

<?
Include http, parse, and address resolution libraries
include("LIB_http.php");
include("LIB_parse.php");
include("LIB_resolve_addresses.php");

Identify the target web page and the page base
$target = "http://www.schrenk.com/nostarch/webbots/head_redirection_test.php";
$page_base = "http://www.schrenk.com/nostarch/webbots/";

Download the web page
$page = http_get($target, $ref="");

Parse the <head></head>
$head_section = return_between($string=$page['FILE'], $start="<head>", $end="</head>",
 $type=EXCL);

Create an array of all the meta tags
$meta_tag_array = parse_array($head_section, $beg_tag="<meta", $close_tag=">");

Examine each meta tag for a redirection command
for($xx=0; $xx<count($meta_tag_array); $xx++)
 {
 # Look for http-equiv attribute
 $meta_attribute = get_attribute($meta_tag_array[$xx], $attribute="http-equiv");
 if(strtolower($meta_attribute)=="refresh")
 {
 $new_page = return_between($meta_tag_array[$xx], $start="URL", $end=">",
$type=EXCL);
 # Clean up URL
 $new_page = trim(str_replace("", "", $new_page));
 $new_page = str_replace("=", "", $new_page);
 $new_page = str_replace("\"", "", $new_page);
 $new_page = str_replace("'", "", $new_page);
 # Create fully resolved URL
 $new_page = resolve_address($new_page, $page_base);
 }
 break;
 }

Echo results of script
echo "HTML Head redirection detected
";
echo "Redirect page = ".$new_page;
?>

file:///D|/!!/final/Itypes_of_webbot_fault_tolerance.html (4 von 10) [29.03.2008 23:24:39]

http://www.nostarch.com/

Itypes_of_webbot_fault_tolerance.html

Listing 25-5: Detecting redirection between the <head> and </head> tags

Listing 25-5 is also an example of the need for good coding practices as part of writing fault-
tolerant webbots. For instance, in Listing 25-5 notice how these practices are followed:

● The script looks for the redirection between the <head> and </head> tags, and not just
anywhere on the web page

● The script looks for the http-equiv attribute only within a meta tag

● The redirected URL is converted into a fully resolved address

● Like a browser, the script stops looking for redirections when it finds the first one

The last—and most troublesome—type of redirection is that done with JavaScript. These
instances are troublesome because webbots typically lack JavaScript parsers, making it difficult
for them to interpret JavaScript. The simplest redirection of this type is a single line of
JavaScript, as shown in Listing 25-6.

<script>document.location = 'http://www.schrenk.com'; </script>

Listing 25-6: A simple JavaScript page redirection

Detecting JavaScript redirections is also tricky because JavaScript is a very flexible language,
and page redirections can take many forms. For example, consider what it would take to detect
a page redirection like the one in Listing 25-7.

<html>
 <head>
 <script>
 function goSomeWhereNew(URL)
 {
 location.href = URL;
 }
 </script>
 <body onLoad=" goSomeWhereNew('http://www.schrenk.com')">
 </body>
</html>

Listing 27-7: A complicated JavaScript page redirection

Fortunately, JavaScript page redirection is not a particularly effective way for a web developer
to send a visitor to a new page. Some people turn off JavaScript in their browser configuration,
so it doesn't work for everyone; therefore, JavaScript redirection is rarely used. Since it is
difficult to write fault-tolerant routines to handle JavaScript, you may have to tough it out and
rely on the error-detection techniques addressed later in this chapter.

Maintain the Accuracy of Referer Values

The last aspect of verifying that you're using correct URLs is ensuring that your referer values

file:///D|/!!/final/Itypes_of_webbot_fault_tolerance.html (5 von 10) [29.03.2008 23:24:39]

Itypes_of_webbot_fault_tolerance.html

correctly simulate followed links. You should set the referer to the last target page you
requested. This is important for several reasons. For example, some image servers use the
referer value to verify that a request for an image is preceded by a request for the entire web
page. This defeats bandwidth hijacking, the practice of sourcing images from other people's
domains. In addition, websites may defeat deep linking, or linking to a website's inner pages, by
examining the referer to verify that people followed a prescribed succession of links to get to a
specific point within a website.

Adapting to Changes in Page Content

Parse tolerance is your webbot's ability to parse web pages when your webbot downloads the
correct page, but its contents have changed. The following paragraphs describe how to write
parsing routines that are tolerant to minor changes in web pages. This may also be a good time
to review PARSING TECHNIQUES, which covers general parsing techniques.

Avoid Position Parsing

To facilitate fault tolerance when parsing web pages, you should avoid all attempts at position
parsing, or parsing information based on its position within a web page. For example, it's a bad
idea to assume that the information you're looking for has these characteristics:

● Starts x characters from the beginning of the page and is y characters in length

● Is in the xth table in a web page

● Is at the very top or bottom of a web page

Any small change in a website can effect position parsing. There are much better ways of
finding the information you need to parse.

Use Relative Parsing

Relative parsing is a technique that involves looking for desired information relative to other
things on a web page. For example, since many web pages hold information in tables, you can
place all the tables into an array, identifying which table contains a landmark term that
identifies the correct table. Once a webbot finds the correct table, the data can be parsed from
the correct cell by finding the cell relative to a specific column name within that table. For an
example of how this works, look at the parsing techniques performed in PRICE-MONITORING
WEBBOTS in which a webbot parses prices from an online store.

Table column headings may also be used as landmarks to identify data in tables. For example,
assume you have a table like Use Table Headers to Identify Data Within Columns, which
presents statistics for three baseball players.

Table Use Table Headers to Identify Data Within Columns

Player Team Hits Home Runs Average
Zoe Marsupials 78 15 .327
Cullen Wombats 56 16 .331
Kade Wombats 58 17 .324

In this example you could parse all the tables from the web page and isolate the table
containing the landmark Player Statistics. In that table, your webbot could then use the column

file:///D|/!!/final/Itypes_of_webbot_fault_tolerance.html (6 von 10) [29.03.2008 23:24:39]

Itypes_of_webbot_fault_tolerance.html

names as secondary landmarks to identify players and their statistics.

Look for Landmarks That Are Least Likely to Change

You achieve additional fault tolerance when you choose landmarks that are least likely to
change. From my experience, the things in web pages that change with the lowest frequency
are those that are related to server applications or back-end code. In most cases, names of
form elements and values for hidden form fields seldom change. For example, in Listing 25-8
it's very easy to find the names and breeds of dogs because the form handler needs to see
them in a well-defined manner. Webbot developers generally don't look for data values in forms
because they aren't visible in rendered HTML. However, if you're lucky enough to find the data
values you're looking for within a form definition, that's where you should get them, even if
they appear in other visible places on the website.

<form method="POST" action="dog_form.php">
 <input type="hidden" name="Jackson" value="Jack Russell Terrier">
 <input type="hidden" name="Xing" value="Shepherd Mix">
 <input type="hidden" name="Buster" value="Maltese">
 <input type="hidden" name="Bare-bear" value="Pomeranian">
</form>

Listing 25-8: Finding data values in form variables

Similarly, you should avoid landmarks that are subject to frequent changes, like dynamically
generated content, HTML comments (which Macromedia Dreamweaver and other page-
generation software programs automatically insert into HTML pages), and information that is
time or calendar derived.

Adapting to Changes in Forms

Form tolerance defines your webbot's ability to verify that it is sending the correct form
information to the correct form handler. When your webbot detects that a form has changed, it
is usually best to terminate your webbot, rather than trying to adapt to the changes on the fly.
Form emulation is complicated, and it's too easy to make embarrassing mistakes—like
submitting nonexistent forms. You should also use the form diagnostic page on the book's
website (described in AUTOMATING FORM SUBMISSION) to analyze forms before writing form
emulation scripts.

Before emulating a form, a webbot should verify that the form variables it plans to submit are
still in use in the submitted form. This check should verify the data pair names submitted to the
form handler and the form's method and action. Listing 25-9 parses this information on a test
page on the book's website. You can use similar scripts to isolate individual form elements,
which can be compared to the variables in form emulation scripts.

Code View:

<?
Import libraries
include("LIB_http.php");
include("LIB_parse.php");
include("LIB_resolve_addresses.php");

Identify location of form and page base address
$page_base ="http://www.schrenk.com/nostarch/webbots/";
$target = "http://www.schrenk.com/nostarch/webbots/easy_form.php";

file:///D|/!!/final/Itypes_of_webbot_fault_tolerance.html (7 von 10) [29.03.2008 23:24:39]

Itypes_of_webbot_fault_tolerance.html

$web_page = http_get($target, "");

Find the forms in the web page
$form_array = parse_array($web_page['FILE'], $open_tag="<form", $close_tag="</form>");

Parse each form in $form_array
for($xx=0; $xx<count($form_array); $xx++)
 {
 $form_beginning_tag = return_between($form_array[$xx], "<form", ">", INCL);
 $form_action = get_attribute($form_beginning_tag, "action");

 // If no action, use this page as action
 if(strlen(trim($form_action))==0)
 $form_action = $target;
 $fully_resolved_form_action = resolve_address($form_action, $page_base);

 // Default to GET method if no method specified
 if(strtolower(get_attribute($form_beginning_tag, "method")=="post"))
 $form_method="POST";
 else
 $form_method="GET";

 $form_element_array = parse_array($form_array[$xx], "<input", ">");
 echo "Form Method=$form_method
";
 echo "Form Action=$fully_resolved_form_action
";
 # Parse each element in this form
 for($yy=0; $yy<count($form_element_array); $yy++)
 {
 $element_name = get_attribute($form_element_array[$yy], "name");
 $element_value = get_attribute($form_element_array[$yy], "value");
 echo "Element Name=$element_name, value=$element_value
";
 }
 }
?>

Listing 25-9: Parsing form values

Listing 25-9 finds and parses the values of all forms in a web page. When run, it also finds the
form's method and creates a fully resolved URL for the form action, as shown in Results of
running the script in Listing 25-9.

Results of running the script in Listing 25-9

file:///D|/!!/final/Itypes_of_webbot_fault_tolerance.html (8 von 10) [29.03.2008 23:24:39]

Itypes_of_webbot_fault_tolerance.html

Adapting to Changes in Cookie Management

Cookie tolerance involves saving the cookies written by websites and making them available
when fetching successive pages from the same website. Cookie management should happen
automatically if you are using the LIB_http library and have the COOKIE_FILE pointing to a file
your webbots can access.

One area of concern is that the LIB_http library (and PHP/CURL, for that matter) will not delete
expired cookies or cookies without an expiration date, which are supposed to expire when the
browser is closed. In these cases, it's important to manually delete cookies in order to simulate
new browser sessions. If you don't delete expired cookies, it will eventually look like you're
using a browser that has been open continuously for months or even years, which can look
pretty suspicious.

Adapting to Network Outages and Network Congestion

Unless you plan accordingly, your webbots and spiders will hang, or become nonresponsive,
when a targeted website suffers from a network outage or an unusually high volume of network
traffic. Webbots become nonresponsive when they request and wait for a page that they never
receive. While there's nothing you can do about getting data from nonresponsive target
websites, there's also no reason your webbot needs to be hung up when it encounters one. You
can avoid this problem by inserting the command shown in Listing 25-10 when configuring your
PHP/CURL sessions.

curl_setopt($curl_session, CURLOPT_TIME, $timeout_value);

Listing 25-10: Setting time-out values in PHP/CURL

CURLOPT_TIME defines the number of seconds PHP/CURL waits for a targeted website to
respond. This happens automatically if you use the LIB_http library featured in this book. By
default, page requests made by LIB_http wait a maximum of 25 seconds for any target website
to respond. If there's no response within the allotted time, the PHP/CURL session returns an
empty result.

While on the subject of time-outs, it's important to recognize that PHP, by default, will time-out
if a script executes longer than 30 seconds. In normal use, PHP's time-out ensures that if a
script takes too long to execute, the webserver will return a server error to the browser. The
browser, in turn, informs the user that a process has timed-out. The default time-out works
great for serving web pages, but when you use PHP to build webbot or spider scripts, PHP must
facilitate longer execution times. You can extend (or eliminate) the default PHP script-execution
time with the commands shown in Listing 25-11.

You should exercise extreme caution when eliminating PHP's time-out, as shown in the second
example in Listing 25-11. If you eliminate the time-out, your script may hang permanently if it
encounters a problem.

set_time_limit(60); // Set PHP time-out to 60 seconds
set_time_limit(0); // Completely remove PHP script time-out

Listing 25-11: Adjusting the default PHP script time-out

file:///D|/!!/final/Itypes_of_webbot_fault_tolerance.html (9 von 10) [29.03.2008 23:24:39]

Itypes_of_webbot_fault_tolerance.html

Always try to avoid time-outs by designing webbots that execute quickly, even if that means
your webbot needs to run more than once to accomplish a task. For example, if a webbot needs
to download and parse 50 web pages, it's usually best to write the bot in such a way that it can
process pages one at a time and know where it left off; then you can schedule the webbot to
execute every minute or so for an hour. Webbot scripts that execute quickly are easier to test,
resemble normal network traffic more closely, and use fewer system resources.

file:///D|/!!/final/Itypes_of_webbot_fault_tolerance.html (10 von 10) [29.03.2008 23:24:39]

Ierror_handlers.html

Error Handlers

When a webbot cannot adjust to changes, the only safe thing to do is to stop it. Not stopping
your webbot may otherwise result in odd performance and suspicious entries in the target
server's access and error log files. It's a good idea to write a routine that handles all errors in
a prescribed manner. Such an error handler should send you an email that indicates the
following:

● Which webbot failed

● Why it failed

● The date and time it failed

A simple script like the one in Listing 25-12 works well for this purpose.

function webbot_error_handler($failure_mode)
 {
 # Initialization
 $email_address = "your.account@someserver.com";
 $email_subject = "Webbot Failure Notification";

 # Build the failure message
 $email_message = "Webbot T-Rex encountered a fatal error
";
 $email_message = $email_message . $failure_more . "
";
 $email_message = $email_message . "at".date("r") . "
";

 # Send the failure message via email
 mail($email_address, $email_subject, $email_message);
 # Don't return, force the webbot script to stop
 exit;
 }

Listing 25-12: Simple error-reporting script

The trick to effectively using error handlers is to anticipate cases in which things may go
wrong and then test for those conditions. For example, the script in Listing 25-13 checks the
size of a downloaded web page and calls the function in the previous listing if the web page is
smaller than expected.

Download web page
$target = "http://www.somedomain.com/somepage.html";
$downloaded_page = http_get($target, $ref="");
$web_page_size = strlen($downloaded_page['FILE']);
if($web_page_size < 1500)
 webbot_error_handler($target." smaller than expected, actual size="
.$web_page_size);

Listing 25-13: Anticipating and reporting errors

file:///D|/!!/final/Ierror_handlers.html (1 von 2) [29.03.2008 23:24:40]

Ierror_handlers.html

In addition to reporting the error, it's important to turn off the scheduler when an error is
found if the webbot is scheduled to run again in the future. Otherwise, your webbot will keep
bumping up against the same problem, which may leave odd records in server logs. The
easiest way to disable a scheduler is to write error handlers that record the webbot's status in
a database. Before a scheduled webbot runs, it can first query the database to determine if an
unaddressed error occurred earlier. If the query reveals that an error has occurred, the
webbot can ignore the requests of the scheduler and simply terminate its execution until the
problem is addressed.

file:///D|/!!/final/Ierror_handlers.html (2 von 2) [29.03.2008 23:24:40]

Idesigning_webbot_friendly_websites.html

DESIGNING WEBBOT-FRIENDLY WEBSITES

I'll start this chapter with suggestions that help make web pages accessible to the most widely
used webbots—the spiders that download, analyze, and rank web pages for search engines, a
process often called search engine optimization (SEO).

Finally, I'll conclude the chapter by explaining the occasional importance of special-purpose web
pages, formatted to send data directly to webbots instead of browsers.

Optimizing Web Pages for Search Engine Spiders

The most important thing to remember when designing a web page for SEO is that spiders rely
on you, the developer, to provide context for the information they find. This is important
because web pages using HTML mix content with display format commands. To add complexity
to the spider's task, a spider has to examine words in the web page's content to determine how
relevant the words are to the web page's main topic. You can improve a spider's ability to index
and rank your web pages, as well as improve your search ranking by predictably using a few
standard HTML tags. The topic of SEO is vast and many books are entirely dedicated to it. This
chapter only scratches the surface, but it should get you on your way.

Well-Defined Links

Search engines generally associate the number of links to a web page with the web page's
popularity and importance. In fact, getting other websites to link to your web page is probably
the best way to improve your web page's search ranking. Regardless of where the links
originate, it's always important to use descriptive hyper-references when making links. Without
descriptive links, search engine spiders will know the linked URL, but they won't know the
importance of the link. For example, the first link in Listing 26-1 is much more useful to search
spiders than the second link.

Code View:

<!-- Example of a descriptive link -->
JavaScript Animation Tutorial

<!-- Example of a nondescriptive link -->
Click here for a JavaScript tutorial

Listing 26-1: Descriptive and nondescriptive links

Google Bombs and Spam Indexing

Google bombing is an example of how search rankings are affected by the terms used to
describe links. Google bombing (also known as spam indexing) is a technique where people
conspire to create many links, with identical link descriptions, to a specific web page. As Google
(or any other search engine) indexes these web pages, the link descriptions become associated
with the targeted web page. As a result, when people enter the link descriptions as search
terms, the targeted pages are highly ranked in the results. Google bombing is occasionally used

file:///D|/!!/final/Idesigning_webbot_friendly_websites.html (1 von 3) [29.03.2008 23:24:41]

Idesigning_webbot_friendly_websites.html

for political purposes to place a targeted politician's website as the highest ranked result for a
derogatory search term. For example, depending on the search engine you use, a search for the
phrase miserable failure may return the official biography of George W. Bush as the top result.
Similarly, a search for the word waffles may produce the official web page of Senator John
Kerry. While Google has adapted its rankings to account for a few well-known instances of this
gamesmanship, Google bombing is still possible, and it remains an unresolved challenge for all
search engines.

Title Tags

The HTML title tag helps spiders identify the main topic of a web page. Each web page should
have a unique title that describes the general purpose of the page, as shown in Listing 26-2.

<title>Official Website: Webbots, Spiders, and Screen Scrapers</title>

Listing 26-2: Describing a web page with a title tag

Meta Tags

You can think of meta tags as extensions of the title tag. Like title tags, meta tags explain the
main topic of the web page. However, unlike title tags, they allow for detailed descriptions of
the content on the web page and the search terms people may use to find the page. For
example, Listing 26-3 shows meta tags that may accompany the title tag used in the previous
example.

Code View:

<!- The meta:author defines the author of the web page -->
<meta name="Author" content="Michael Schrenk">

<!-- The meta:description is how search engines describe the page in search results-->
<meta name="Description" content="Official Website: Webbots, Spiders, and Screen
Scrapers">

<!-- The meta:keywords are a list of search terms that may lead people to your web
page-->
<meta name="Keywords" content="Webbot, Spider, Webbot Development, Spider
Development">

Listing 26-3: Describing a web page in detail with meta tags

There are many misconceptions about meta tags. Many people insist on using every conceivable
keyword that may apply to a web page, using the more, the better theory. In reality, you
should limit your selection of keywords to the six or eight keywords that best describe the
content of your web page. It's important to remember that the keywords represent potential
search terms that people may use to find your web page. Moreover, for each additional keyword
you use, your web page becomes less specific in the eyes of search engines. As you increase
the number of keywords, you also increase the competition for use of those keywords. When
this happens, other pages containing the same keywords dilute your position within search
rankings. There are also rumors that some search engines ignore web pages that have
excessive numbers of keywords as a measure to avoid keyword spamming, or the overuse of

file:///D|/!!/final/Idesigning_webbot_friendly_websites.html (2 von 3) [29.03.2008 23:24:41]

Idesigning_webbot_friendly_websites.html

keywords. Whether these rumors are true or not, it still makes sense to use fewer, but better
quality, keywords. For this reason, there is usually no need to include regular plurals[] in
keywords.

[] A regular plural is the singular form of a word followed by the letter s.

Note: The more unique your keywords are, the higher your web page will rank in search results
when people use those keywords in web searches. Once thing to watch out for is when your keyword
is part of another, longer word. For example, I once worked for a company called Entolo. We had
difficulty getting decent rankings on search engines because the word Entolo is a subset of the word
Scientology (sciENTOLOgy). Since there were many more heavily linked web pages dedicated to
Scientology, our website seldom registered highly with any search services.

Header Tags

In addition to making web pages easier to read, header tags help search engines identify and
locate important content on web pages. For example, consider the example in Listing 26-4.

<h1 class="main_header">North American Wire Packaging</h1>
In North America, large amounts of wire are commonly shipped on spools...

Listing 26-4: Using header tags to identify key content on a web page

In the past, web designers strayed from using header tags because they only offer a small
availability of font selections. But now, with the wide acceptance of style sheets, there is no
reason not to use HTML header tags to describe important sections of your web pages.

Image alt Attributes

Long ago, before everyone had graphical browsers, web designers used the alt attribute of the
HTML tag to describe images to people with text-based browsers. Today, with the
increasing popularity of image search tools, the alt attribute helps search engines interpret the
content of images, as shown below in Listing 26-5.

Listing 26-5: Using the alt attribute to identify the content of an image

file:///D|/!!/final/Idesigning_webbot_friendly_websites.html (3 von 3) [29.03.2008 23:24:41]

Ioptimizing_web_pages_for_search_engine_spiders.html

DESIGNING WEBBOT-FRIENDLY WEBSITES

I'll start this chapter with suggestions that help make web pages accessible to the most widely
used webbots—the spiders that download, analyze, and rank web pages for search engines, a
process often called search engine optimization (SEO).

Finally, I'll conclude the chapter by explaining the occasional importance of special-purpose web
pages, formatted to send data directly to webbots instead of browsers.

Optimizing Web Pages for Search Engine Spiders

The most important thing to remember when designing a web page for SEO is that spiders rely
on you, the developer, to provide context for the information they find. This is important
because web pages using HTML mix content with display format commands. To add complexity
to the spider's task, a spider has to examine words in the web page's content to determine how
relevant the words are to the web page's main topic. You can improve a spider's ability to index
and rank your web pages, as well as improve your search ranking by predictably using a few
standard HTML tags. The topic of SEO is vast and many books are entirely dedicated to it. This
chapter only scratches the surface, but it should get you on your way.

Well-Defined Links

Search engines generally associate the number of links to a web page with the web page's
popularity and importance. In fact, getting other websites to link to your web page is probably
the best way to improve your web page's search ranking. Regardless of where the links
originate, it's always important to use descriptive hyper-references when making links. Without
descriptive links, search engine spiders will know the linked URL, but they won't know the
importance of the link. For example, the first link in Listing 26-1 is much more useful to search
spiders than the second link.

Code View:

<!-- Example of a descriptive link -->
JavaScript Animation Tutorial

<!-- Example of a nondescriptive link -->
Click here for a JavaScript tutorial

Listing 26-1: Descriptive and nondescriptive links

Google Bombs and Spam Indexing

Google bombing is an example of how search rankings are affected by the terms used to
describe links. Google bombing (also known as spam indexing) is a technique where people
conspire to create many links, with identical link descriptions, to a specific web page. As Google
(or any other search engine) indexes these web pages, the link descriptions become associated
with the targeted web page. As a result, when people enter the link descriptions as search
terms, the targeted pages are highly ranked in the results. Google bombing is occasionally used

file:///D|/!!/final/Ioptimizing_web_pages_for_search_engine_spiders.html (1 von 3) [29.03.2008 23:24:43]

Ioptimizing_web_pages_for_search_engine_spiders.html

for political purposes to place a targeted politician's website as the highest ranked result for a
derogatory search term. For example, depending on the search engine you use, a search for the
phrase miserable failure may return the official biography of George W. Bush as the top result.
Similarly, a search for the word waffles may produce the official web page of Senator John
Kerry. While Google has adapted its rankings to account for a few well-known instances of this
gamesmanship, Google bombing is still possible, and it remains an unresolved challenge for all
search engines.

Title Tags

The HTML title tag helps spiders identify the main topic of a web page. Each web page should
have a unique title that describes the general purpose of the page, as shown in Listing 26-2.

<title>Official Website: Webbots, Spiders, and Screen Scrapers</title>

Listing 26-2: Describing a web page with a title tag

Meta Tags

You can think of meta tags as extensions of the title tag. Like title tags, meta tags explain the
main topic of the web page. However, unlike title tags, they allow for detailed descriptions of
the content on the web page and the search terms people may use to find the page. For
example, Listing 26-3 shows meta tags that may accompany the title tag used in the previous
example.

Code View:

<!- The meta:author defines the author of the web page -->
<meta name="Author" content="Michael Schrenk">

<!-- The meta:description is how search engines describe the page in search results-->
<meta name="Description" content="Official Website: Webbots, Spiders, and Screen
Scrapers">

<!-- The meta:keywords are a list of search terms that may lead people to your web
page-->
<meta name="Keywords" content="Webbot, Spider, Webbot Development, Spider
Development">

Listing 26-3: Describing a web page in detail with meta tags

There are many misconceptions about meta tags. Many people insist on using every conceivable
keyword that may apply to a web page, using the more, the better theory. In reality, you
should limit your selection of keywords to the six or eight keywords that best describe the
content of your web page. It's important to remember that the keywords represent potential
search terms that people may use to find your web page. Moreover, for each additional keyword
you use, your web page becomes less specific in the eyes of search engines. As you increase
the number of keywords, you also increase the competition for use of those keywords. When
this happens, other pages containing the same keywords dilute your position within search
rankings. There are also rumors that some search engines ignore web pages that have
excessive numbers of keywords as a measure to avoid keyword spamming, or the overuse of

file:///D|/!!/final/Ioptimizing_web_pages_for_search_engine_spiders.html (2 von 3) [29.03.2008 23:24:43]

Ioptimizing_web_pages_for_search_engine_spiders.html

keywords. Whether these rumors are true or not, it still makes sense to use fewer, but better
quality, keywords. For this reason, there is usually no need to include regular plurals[] in
keywords.

[] A regular plural is the singular form of a word followed by the letter s.

Note: The more unique your keywords are, the higher your web page will rank in search results
when people use those keywords in web searches. Once thing to watch out for is when your keyword
is part of another, longer word. For example, I once worked for a company called Entolo. We had
difficulty getting decent rankings on search engines because the word Entolo is a subset of the word
Scientology (sciENTOLOgy). Since there were many more heavily linked web pages dedicated to
Scientology, our website seldom registered highly with any search services.

Header Tags

In addition to making web pages easier to read, header tags help search engines identify and
locate important content on web pages. For example, consider the example in Listing 26-4.

<h1 class="main_header">North American Wire Packaging</h1>
In North America, large amounts of wire are commonly shipped on spools...

Listing 26-4: Using header tags to identify key content on a web page

In the past, web designers strayed from using header tags because they only offer a small
availability of font selections. But now, with the wide acceptance of style sheets, there is no
reason not to use HTML header tags to describe important sections of your web pages.

Image alt Attributes

Long ago, before everyone had graphical browsers, web designers used the alt attribute of the
HTML tag to describe images to people with text-based browsers. Today, with the
increasing popularity of image search tools, the alt attribute helps search engines interpret the
content of images, as shown below in Listing 26-5.

Listing 26-5: Using the alt attribute to identify the content of an image

file:///D|/!!/final/Ioptimizing_web_pages_for_search_engine_spiders.html (3 von 3) [29.03.2008 23:24:43]

Iweb_design_techniques_that_hinder_search_engine_s.html

Web Design Techniques That Hinder Search Engine
Spiders

There are common web design techniques that inhibit search engine spiders from properly
indexing web pages. You don't have to avoid using these techniques altogether, but you
should avoid using them in situations where they obscure links and ASCII text from search
engine spiders. There is no single set of standards or specifications for SEO. Search engine
companies also capriciously change their techniques for compiling search results. The
concepts mentioned here, however, are a good set of suggestions for you to consider as you
develop your own best practice policies.

JavaScript

Since most webbots and spiders lack JavaScript interpreters, there is no guarantee that a
spider will understand hyper-references made with JavaScript. For example, the second hyper-
reference in Listing 26-6 stands a far better chance of being indexed by a spider than the first
one.

<-- Example of a non-optimized hyper-reference -->
<script>
 function linkToPage(url)

 {
 document.location=url;
 }
</script>

<-- Example of an easy-to-index hyper-reference -->
My home page

Listing 26-6: JavaScript links are hard for search spiders to interpret.

Non-ASCII Content

Search engine spiders depend on ASCII characters to identify what's on a web page. For that
reason, you should avoid presenting text in images or Flash movies. It is particularly
important not to design your website's navigation scheme in Flash, because it will not be
visible outside of the Flash movie, and it will be completely hidden from search pages. Not
only will your Flash pages fail to show up in search results, but other pages will also not be
able to deep link directly to the pages within Flash movies. In short, websites done entirely in
Flash kill any and all attempts at SEO and will receive less traffic than properly formatted
HTML websites.

file:///D|/!!/final/Iweb_design_techniques_that_hinder_search_engine_s.html [29.03.2008 23:24:44]

Idesigning_data_only_interfaces.html

Designing Data-Only Interfaces

Often, the express purpose of a web page is to deliver data to a webbot, another website, or a
stand-alone desktop application. These web pages aren't concerned about how people will read
them in a browser. Rather, they are optimized for efficiency and ease of use by other computer
programs. For example, you might need to design a web page that provides real-time sales
information from an e-commerce site.

XML

Today, the eXtensible Markup Language (XML) is considered the de facto standard for
transferring online data. XML describes data by wrapping it in HTML-like tags. For example,
consider the sample sales data from an e-commerce site, shown in Sample Sales Information.

When converted to XML, the data in Sample Sales Information looks like Listing 26-7.

Table Sample Sales Information

Brand Style Color Size Price
Gordon LLC Cotton T Red XXL 19.95
Ava St Girlie T Blue S 19.95

<ORDER>
 <SHIRT>
 <BRAND>Gordon LLC</BRAND>
 <STYLE>Cotton T</STYLE >
 <COLOR>Red</COLOR>
 <SIZE>XXL</SIZE>
 <PRICE>19.95</PRICE>
 </SHIRT>
 <SHIRT>
 <BRAND>Ava St</BRAND>
 <STYLE>Girlie T</STYLE >
 <COLOR>Blue</COLOR>
 <SIZE>S</SIZE>
 <PRICE>19.95</PRICE>
 </SHIRT>
</ORDER>

Listing 26-7: An XML version of the data in Sample Sales Information

XML presents data in a format that is not only easy to parse, but, in some applications, it may
also tell the client computer what to do with the data. The actual tags used to describe the
data are not terribly important, as long as the XML server and client agree to their meaning.
The script in Listing 26-8 downloads and parses the XML represented in the previous listing.

Code View:

Include libraries
include("LIB_http.php");

file:///D|/!!/final/Idesigning_data_only_interfaces.html (1 von 6) [29.03.2008 23:24:45]

Idesigning_data_only_interfaces.html

include("LIB_parse.php");

Download the order
$url = "http://www.schrenk.com/nostarch/webbots/26_1.php";
$download = http_get($url, "");

Parse the orders
$order_array = return_between($download ['FILE'], "<ORDER>", "</ORDER>", $type=EXCL);

Parse shirts from order array
$shirts = parse_array($order_array, $open_tag="<SHIRT>", $close_tag="</SHIRT>");
for($xx=0; $xx<count($shirts); $xx++)
 {
 $brand[$xx] = return_between($shirts[$xx], "<BRAND>", "</BRAND>", $type=EXCL);
 $color[$xx] = return_between($shirts[$xx], "<COLOR>", "</COLOR>", $type=EXCL);
 $size[$xx] = return_between($shirts[$xx], "<SIZE>", "</SIZE>", $type=EXCL);
 $price[$xx] = return_between($shirts[$xx], "<PRICE>", "</PRICE>", $type=EXCL);
 }

Echo data to validate the download and parse
for($xx=0; $xx<count($color); $xx++)
 echo "BRAND=".$brand[$xx]."

 COLOR=".$color[$xx]."

 SIZE=".$size[$xx]."

 PRICE=".$price[$xx]."<hr>";

Listing 26-8: A script that parses XML data

Lightweight Data Exchange

As useful as XML is, it suffers from overhead because it delivers much more protocol than
data. While this isn't important with small amounts of XML, the problem of overhead grows
along with the size of the XML file. For example, it may take a 30KB XML file to present 10KB
of data. Excess overhead needlessly consumes bandwidth and CPU cycles, and it can become
expensive on extremely popular websites. In order to reduce overhead, you may consider
designing lightweight interfaces. Lightweight interfaces deliver data more efficiently by
presenting data in variables or arrays that can be used directly by the webbot. Granted, this is
only possible when you define both the web page delivering the data and the client interpreting
the data.

How Not to Design a Lightweight Interface

Before we explore proper methods for passing data to webbots, let's explore what can happen
if your design doesn't take the proper security measures. For example, consider the order data
from Sample Sales Information, reformatted as variable/value pairs, as shown in Listing 26-9.

$brand[0]="Gordon LLC";
$style[0]="Cotton T";
$color[0]="red";
$size[0]="XXL";
$price[0]=19.95;
$brand[1]="Ava LLC";
$style[0]="Girlie T";

file:///D|/!!/final/Idesigning_data_only_interfaces.html (2 von 6) [29.03.2008 23:24:45]

Idesigning_data_only_interfaces.html

$color[1]="blue";
$size[1]="S";
$price[1]=19.95;

Listing 26-9: Data sample available at http://www.schrenk.com/nostarch/webbots/26_2.php

The webbot receiving this data could convert this string directly into variables with PHP's eval
() function, as shown in Listing 26-10.

Include libraries
include("LIB_http.php");
$url = "http://www.schrenk.com/nostarch/webbots/26_2.php";
$download = http_get($url, "");
Convert string received into variables
eval($download['FILE']);

Show imported variables and values
for($xx=0; $xx<count($color); $xx++)
 echo "BRAND=".$brand[$xx]."

 COLOR=".$color[$xx]."

 SIZE=".$size[$xx]."

 PRICE=".$price[$xx]."<hr>";

Listing 26-10: Incorrectly interpreting variable/value pairs

While this seems very efficient, there is a severe security problem associated with this
technique. The eval() function, which interprets the variable settings in Listing 26-10, is also
capable of interpreting any PHP command. This opens the door for malicious code that can run
directly on your webbot!

A Safer Method of Passing Variables to Webbots

An improvement on the previous example would verify that only data variables are interpreted
by the webbot. We can accomplish this by slightly modifying the variable/value pairs sent to
the webbot (shown in Listing 26-11) and adjusting how the webbot processes the data (shown
in Listing 26-12). Listing 26-11 shows a new lightweight test interface that will deliver
information directly in variables for use by a webbot.

brand[0]="Gordon LLC";
style[0]="Cotton T";
color[0]="red";
size[0]="XXL";
price[0]=19.95;
brand[1]="Ava LLC";
style[0]="Girlie T";
color[1]="blue";
size[1]="S";
price[1]=19.95;

Listing 26-11: Data sample used by the script in Listing 26-12

The script in Listing 26-12 shows how the lightweight interface in Listing 26-11 is interpreted.

file:///D|/!!/final/Idesigning_data_only_interfaces.html (3 von 6) [29.03.2008 23:24:45]

http://www.schrenk.com/nostarch/webbots/26_2.php

Idesigning_data_only_interfaces.html

Code View:

Get http library
include("LIB_http.php");

Define and download lightweight test interface
$url = "http://www.schrenk.com/nostarch/webbots/26_3.php";
$download = http_get($url, "");

Convert the received lines into array elements
$raw_vars_array = explode(";", $download['FILE']);

Convert each of the array elements into a variable declaration
for($xx=0; $xx<count($raw_vars_array)-1; $xx++)
 {
 list($variable, $value)=explode("=", $raw_vars_array[$xx]);
 $eval_string="$".trim($variable)."="."\"".trim($value)."\"".";";
 eval($eval_string);
 }

Echo imported variables
for($xx=0; $xx<count($color); $xx++)
 {
 echo "BRAND=".$brand[$xx]."

 COLOR=".$color[$xx]."

 SIZE=".$size[$xx]."

 PRICE=".$price[$xx]."<hr>";

 }

Listing 26-12: A safe method for directly transferring values from a website to a webbot

The technique shown in Figure 26-12 safely imports the variable/data pairs from Listing 26-11
because the eval() command is explicitly directed to only set a variable to a value and not to
execute arbitrary code.

This lightweight interface actually has another advantage over XML, in that the data does not
have to appear in any particular order. For example, if you rearranged the data in Listing 26-
11, the webbot would still interpret it correctly. The same could not be said for the XML data.
And while the protocol is slightly less platform independent than XML, most computer
programs are still capable of interpreting the data, as done in the example PHP script in Listing
26-12.

SOAP

No discussion of machine-readable interfaces is complete without mentioning the Simple
Object Access Protocol (SOAP). SOAP is designed to pass instructions and data between
specific types of web pages (known as web services) and scripts run by webbots, webservers,
or desktop applications. SOAP is the successor of earlier protocols that make remote
application calls, like Remote Procedure Call (RPC), Distributed Component Object Model
(DCOM), and Common Object Request Broker Architecture (CORBA).

file:///D|/!!/final/Idesigning_data_only_interfaces.html (4 von 6) [29.03.2008 23:24:45]

Idesigning_data_only_interfaces.html

SOAP is a web protocol that uses HTTP and XML as the primary protocols for passing data
between computers. In addition, SOAP also provides a layer (or two) of abstraction between
the functions that make the request and receive the data. In contrast to XML, where the client
needs to make a fetch and parse the results, SOAP facilitates functions that (appear to)
directly execute functions on remote services, which return data in easy-to-use variables. An
example of a SOAP call is shown in Listing 26-13.

In typical SOAP calls, the SOAP interface and client are created and the parameters describing
requested web services are passed in an array. With SOAP, using a web service is much like
calling a local function.

If you'd like to experiment with SOAP, consider creating a free account at Amazon Web
Services. Amazon provides SOAP interfaces that allow you to access large volumes of data at
both Amazon and Alexa, a web-monitoring service (http://www.alexa.com). Along with
Amazon Web Services, you should also review the PHP-specific Amazon SOAP tutorial at Dev
Shed, a PHP developers' site (http://www.devshed.com).

PHP 5 has built-in support for SOAP. If you're using PHP 4, however, you will need to use the
appropriate PHP Extension and Application Repository (PEAR, http://www.pear.php.net)
libraries, included in most PHP distributions. The PHP 5 SOAP client is faster than the PEAR
libraries, because SOAP support in PHP 5 is compiled into the language; otherwise both
versions are identical.

include("inc/PEAR/SOAP"); // Import SOAP client

Define the request
$params = array(
 'manufacturer' => "XYZ CORP",
 'mode' => 'development',
 'sort' => '+product',
 'type' => 'heavy',
 'userkey' => $ACCESS_KEY
)

Create the SOAP object
$WSDL = new SOAP_WSDL($ADDRESS_OF_SOAP_INTERFACE);

Instantiate the SOAP client
$client = $WSDL->getProxy();

Make the request
$result_array = $client->SomeGenericSOAPRequest($params);

Listing 26-13: A SOAP call

Advantages of SOAP

SOAP interfaces to web services provide a common protocol for requesting and receiving data.
This means that web services running on one operating system can communicate with a
variety of computers, PDAs, or cell phones using any operating system, as long as they have a
SOAP client.

Disadvantages of SOAP

file:///D|/!!/final/Idesigning_data_only_interfaces.html (5 von 6) [29.03.2008 23:24:45]

http://www.alexa.com/
http://www.devshed.com/
http://www.pear.php.net/

Idesigning_data_only_interfaces.html

SOAP is a very heavy interface. Unlike the interfaces explored earlier, SOAP requires many
layers of protocols. In traffic-heavy applications, all this overhead can result in sluggish
performance. SOAP applications can also suffer from a steep learning curve, especially for
developers accustomed to lighter data interfaces. That being said, SOAP and web services are
the standard for exchanging online data, and SOAP instructions are something all webbot
developers should know how to use. The best way to learn SOAP is to use it. In that respect, if
you'd like to explore SOAP further, you should read the previously mentioned Dev Shed
tutorial on using PHP to access the Amazon SOAP interface. This will provide a gradual
introduction that should make complex interfaces (like eBay's SOAP API) easier to understand.

file:///D|/!!/final/Idesigning_data_only_interfaces.html (6 von 6) [29.03.2008 23:24:45]

Ikilling_spiders.html

KILLING SPIDERS

Thus far, we have talked about how to create effective, stealthy, and smart webbots.
However, there is also a market for developers who create countermeasures that defend
websites from webbots and spiders. These opportunities exist because sometimes website
owners want to shield their sites from webbots and spiders for these purposes:

● Protect intellectual property

● Shield email addresses from spammers

● Regulate how often the website is used

● Create a level playing field for all users

The first three items in this list are fairly obvious, but the fourth is more complicated. Believe
it or not, creating a level playing field is one of the main reasons web developers cite for
attempting to ban webbots from their sites. Online companies often try to be as impartial as
possible when wholesaling items to resellers or awarding contracts to vendors. At other times,
websites deny access to all webbots to create an assumption of fairness or parity, as is the
case with MySpace. This is where the conflict exists. Businesses that seek to use the Internet
to gain competitive advantages are not interested in parity. They want a strategic advantage.

Successfully defending websites from webbots is more complex than simply blocking all
webbot activity. Many webbots, like those used by search engines, are beneficial, and in most
cases they should be able to roam sites at will. It's also worth pointing out that, while it's
more expensive, people with browsers can gather corporate intelligence and make online
purchases just as effectively as webbots can. Rather than barring webbots in general, it's
usually preferable to just ban certain behavior.

Let's look at some of the things people do to attempt to block webbots and spiders. We'll start
with the simplest (and least effective) methods and graduate to more sophisticated practices.

Asking Nicely

Your first approach to defending a website from webbots is to request nicely that webbots and
spiders do not use your resources. This is your first line of defense, but if used alone, it is not
very effective. This method doesn't actually keep webbots from accessing data—it merely
states your desire for such—and it may or may not express the actual rights of the website
owner. Though this strategy is limited in its effectiveness, you should always ask first, using
one of the methods described below.

Create a Terms of Service Agreement

The simplest way to ask webbots to avoid your website is to create a site policy or Terms of
Service agreement, which is a list of limitations on how the website should be used by all
parties. A website's Terms of Service agreement typically includes a description of what the
website does with data it collects, a declaration of limits of liability, copyright notifications,
and so forth. If you don't want webbots and spiders harvesting information or services from
your website, your Terms of Service agreement should prohibit the use of automated web

file:///D|/!!/final/Ikilling_spiders.html (1 von 4) [29.03.2008 23:24:46]

Ikilling_spiders.html

agents, spiders, crawlers, and screen scapers. It is a good idea to provide a link to the usage
policy on every page of your website. Though some webbots will honor your request, others
surely won't, so you should never rely solely on a usage policy to protect a website from
automated agents.

Although an official usage policy probably won't keep webbots and spiders away, it is your
opportunity to state your case. With a site policy that specifically forbids the use of webbots,
it's easier to make a case if you later decide to play hardball and file legal action against a
webbot or spider owner.

You should also recognize that a written usage policy is for humans to read, and it will not be
understood by automated agents. There are, however, other methods that convey your
desires in ways that are easy for webbots to detect.

Use the robots.txt File

The robots.txt file,[] or robot exclusion file, was developed in 1994 after a group of
webmasters discovered that search engine spiders indexed sensitive parts of their websites.
In response, they developed the robots.txt file, which instructs web agents to access only
certain parts of a site. According to the robots.txt specification, a webbots should first look for
the presence of a file called robots.txt in the website's root directory before it downloads
anything else from the website. This file defines how the webbot should access files in other
directories.[]

[] The filename robots.txt is case sensitive. It must always be lowercase.

[] Each website should have only one robots.txt file.

The robots.txt file borrows its Unix-type format from permissions files. A typical robots.txt file
is shown in A typical robots.txt file, disallowing all user agents from selected directories.

A typical robots.txt file, disallowing all user agents from selected directories

In addition to what you see in A typical robots.txt file, disallowing all user agents from
selected directories, a robots.txt file may disallow different directories for specific web agents.
Some robots.txt files even specify the amount of time that webbots must wait between
fetches, though these parameters are not part of the actual specification. Make sure to read

file:///D|/!!/final/Ikilling_spiders.html (2 von 4) [29.03.2008 23:24:46]

Ikilling_spiders.html

the specification[] before implementing a robots.txt file.

[] The robots.txt specification is available at http://www.robotstxt.org,

There are many problems with robots.txt. The first problem is that no recognized body, such
as the World Wide Web Consortium (W3C) or a corporation, governs the specification. The
robots exclusion file is actually the result of a "consensus of opinion" of members of a now-
defunct robots mailing list. The lack of a recognized organizing body has left the specification
woefully out of date. For example, the specification did not anticipate agent name spoofing,
so unless a robots.txt file disallows all webbots, any webbot can comply with the imposed
restrictions by changing its name. In fact, a robots.txt file may actually direct a webbot to
sensitive areas of a website or otherwise hidden directories. A much better tactic is to secure
your confidential information through authentication or even obfuscation. Perhaps the most
serious problem with the robots.txt specification is that there is no enforcement mechanism.
Compliance is strictly voluntary.

However futile the attempt, you should still use the robots.txt file if for no other reason than
to mark your turf. If you are serious about securing your site from webbots and spiders,
however, you should use the the tactics described later in this chapter.

Use the Robots Meta Tag

Like the robots.txt file, the intent of the robots meta tag[] is to warn spiders to stay clear of
your website. Unfortunately, this tactic suffers from many of the same limitations as the
robots.tx file, because it also lacks an enforcement mechanism. A typical robots meta tag is
shown in Listing 27-1.

[] The specification for the robots meta tag is available at http://www.robotstxt.org/wc/meta_user.html

<head>

 <meta name="robots" content="noindex, nofollow">

</head>

Listing 27-1: The robots meta tag

There are two main commands for this meta tag: noindex and nofollow. The first command
tells spiders not to index the web page in search results. The second command tells spiders
not to follow links from this web page to other pages. Conversely, index and follow
commands are also available, and they achieve the opposite effect. These commands may be
used together or independently.

The problem with site usage policies, robots.txt files, and meta tags is that the webbots
visiting your site must voluntarily honor your requests. On a good day, this might happen. On
its own, a Terms of Service policy, a robots.txt file, or a robots meta tag is something short of
a social contract, because a contract requires at least two willing parties. There is no
enforcing agency to contact when someone doesn't honor your requests. If you want to deter
webbots and spiders, you should start by asking nicely and then move on to the tougher
approaches described next.

file:///D|/!!/final/Ikilling_spiders.html (3 von 4) [29.03.2008 23:24:46]

http://www.robotstxt.org/
http://www.robotstxt.org/wc/meta_user.html

Ikilling_spiders.html

file:///D|/!!/final/Ikilling_spiders.html (4 von 4) [29.03.2008 23:24:46]

Iasking_nicely.html

KILLING SPIDERS

Thus far, we have talked about how to create effective, stealthy, and smart webbots.
However, there is also a market for developers who create countermeasures that defend
websites from webbots and spiders. These opportunities exist because sometimes website
owners want to shield their sites from webbots and spiders for these purposes:

● Protect intellectual property

● Shield email addresses from spammers

● Regulate how often the website is used

● Create a level playing field for all users

The first three items in this list are fairly obvious, but the fourth is more complicated. Believe
it or not, creating a level playing field is one of the main reasons web developers cite for
attempting to ban webbots from their sites. Online companies often try to be as impartial as
possible when wholesaling items to resellers or awarding contracts to vendors. At other times,
websites deny access to all webbots to create an assumption of fairness or parity, as is the
case with MySpace. This is where the conflict exists. Businesses that seek to use the Internet
to gain competitive advantages are not interested in parity. They want a strategic advantage.

Successfully defending websites from webbots is more complex than simply blocking all
webbot activity. Many webbots, like those used by search engines, are beneficial, and in most
cases they should be able to roam sites at will. It's also worth pointing out that, while it's
more expensive, people with browsers can gather corporate intelligence and make online
purchases just as effectively as webbots can. Rather than barring webbots in general, it's
usually preferable to just ban certain behavior.

Let's look at some of the things people do to attempt to block webbots and spiders. We'll start
with the simplest (and least effective) methods and graduate to more sophisticated practices.

Asking Nicely

Your first approach to defending a website from webbots is to request nicely that webbots and
spiders do not use your resources. This is your first line of defense, but if used alone, it is not
very effective. This method doesn't actually keep webbots from accessing data—it merely
states your desire for such—and it may or may not express the actual rights of the website
owner. Though this strategy is limited in its effectiveness, you should always ask first, using
one of the methods described below.

Create a Terms of Service Agreement

The simplest way to ask webbots to avoid your website is to create a site policy or Terms of
Service agreement, which is a list of limitations on how the website should be used by all
parties. A website's Terms of Service agreement typically includes a description of what the
website does with data it collects, a declaration of limits of liability, copyright notifications,
and so forth. If you don't want webbots and spiders harvesting information or services from
your website, your Terms of Service agreement should prohibit the use of automated web

file:///D|/!!/final/Iasking_nicely.html (1 von 4) [29.03.2008 23:24:48]

Iasking_nicely.html

agents, spiders, crawlers, and screen scapers. It is a good idea to provide a link to the usage
policy on every page of your website. Though some webbots will honor your request, others
surely won't, so you should never rely solely on a usage policy to protect a website from
automated agents.

Although an official usage policy probably won't keep webbots and spiders away, it is your
opportunity to state your case. With a site policy that specifically forbids the use of webbots,
it's easier to make a case if you later decide to play hardball and file legal action against a
webbot or spider owner.

You should also recognize that a written usage policy is for humans to read, and it will not be
understood by automated agents. There are, however, other methods that convey your
desires in ways that are easy for webbots to detect.

Use the robots.txt File

The robots.txt file,[] or robot exclusion file, was developed in 1994 after a group of
webmasters discovered that search engine spiders indexed sensitive parts of their websites.
In response, they developed the robots.txt file, which instructs web agents to access only
certain parts of a site. According to the robots.txt specification, a webbots should first look for
the presence of a file called robots.txt in the website's root directory before it downloads
anything else from the website. This file defines how the webbot should access files in other
directories.[]

[] The filename robots.txt is case sensitive. It must always be lowercase.

[] Each website should have only one robots.txt file.

The robots.txt file borrows its Unix-type format from permissions files. A typical robots.txt file
is shown in A typical robots.txt file, disallowing all user agents from selected directories.

A typical robots.txt file, disallowing all user agents from selected directories

In addition to what you see in A typical robots.txt file, disallowing all user agents from
selected directories, a robots.txt file may disallow different directories for specific web agents.
Some robots.txt files even specify the amount of time that webbots must wait between
fetches, though these parameters are not part of the actual specification. Make sure to read

file:///D|/!!/final/Iasking_nicely.html (2 von 4) [29.03.2008 23:24:48]

Iasking_nicely.html

the specification[] before implementing a robots.txt file.

[] The robots.txt specification is available at http://www.robotstxt.org,

There are many problems with robots.txt. The first problem is that no recognized body, such
as the World Wide Web Consortium (W3C) or a corporation, governs the specification. The
robots exclusion file is actually the result of a "consensus of opinion" of members of a now-
defunct robots mailing list. The lack of a recognized organizing body has left the specification
woefully out of date. For example, the specification did not anticipate agent name spoofing,
so unless a robots.txt file disallows all webbots, any webbot can comply with the imposed
restrictions by changing its name. In fact, a robots.txt file may actually direct a webbot to
sensitive areas of a website or otherwise hidden directories. A much better tactic is to secure
your confidential information through authentication or even obfuscation. Perhaps the most
serious problem with the robots.txt specification is that there is no enforcement mechanism.
Compliance is strictly voluntary.

However futile the attempt, you should still use the robots.txt file if for no other reason than
to mark your turf. If you are serious about securing your site from webbots and spiders,
however, you should use the the tactics described later in this chapter.

Use the Robots Meta Tag

Like the robots.txt file, the intent of the robots meta tag[] is to warn spiders to stay clear of
your website. Unfortunately, this tactic suffers from many of the same limitations as the
robots.tx file, because it also lacks an enforcement mechanism. A typical robots meta tag is
shown in Listing 27-1.

[] The specification for the robots meta tag is available at http://www.robotstxt.org/wc/meta_user.html

<head>

 <meta name="robots" content="noindex, nofollow">

</head>

Listing 27-1: The robots meta tag

There are two main commands for this meta tag: noindex and nofollow. The first command
tells spiders not to index the web page in search results. The second command tells spiders
not to follow links from this web page to other pages. Conversely, index and follow
commands are also available, and they achieve the opposite effect. These commands may be
used together or independently.

The problem with site usage policies, robots.txt files, and meta tags is that the webbots
visiting your site must voluntarily honor your requests. On a good day, this might happen. On
its own, a Terms of Service policy, a robots.txt file, or a robots meta tag is something short of
a social contract, because a contract requires at least two willing parties. There is no
enforcing agency to contact when someone doesn't honor your requests. If you want to deter
webbots and spiders, you should start by asking nicely and then move on to the tougher
approaches described next.

file:///D|/!!/final/Iasking_nicely.html (3 von 4) [29.03.2008 23:24:48]

http://www.robotstxt.org/
http://www.robotstxt.org/wc/meta_user.html

Iasking_nicely.html

file:///D|/!!/final/Iasking_nicely.html (4 von 4) [29.03.2008 23:24:48]

Ibuilding_speed_bumps.html

Building Speed Bumps

Better methods of deterring webbots are ones that make it difficult for a webbot to operate on
a website. Just remember, however, that a determined webbot designer may overcome these
obstacles.

Selectively Allow Access to Specific Web Agents

Some developers may be tempted to detect their visitors' web agent names and only serve
pages to specific browsers like Internet Explorer or Firefox. This is largely ineffective because a
webbot can pose as any web agent it chooses.[] However, if you insist on implementing this
strategy, make sure you use a server-side method of detecting the agent, since you can't trust
a webbot to interpret JavaScript.

[] Read DOWNLOADING WEB PAGES if you are interested in browser spoofing.

Use Obfuscation

As you learned in WEBBOTS AND CRYPTOGRAPHY, obfuscation is the practice of hiding
something through confusion. For example, you could use HTML special characters to
obfuscate an email link, as shown in Listing 27-2.

Code View:

Please email me at:
<a href="mailto:me@<s></s>addr.co&
#109;">
 me@addr <u></u>.com

Listing 27-2: Obfuscating the email address me@addr.com with HTML special characters

While the special characters are hard for a person to read, a browser has no problem rendering
them, as you can see in A browser rendering of the obfuscated script in Listing 27-2.

You shouldn't rely on obfuscation to protect data because once it is discovered, it is usually
easily defeated. For example, in the previous illustration, the PHP function htmlspecialchars
() can be used to convert the codes into characters. There is no effective way to protect HTML
through obfuscation. Obfuscation will slow determined webbot developers, but it is not apt to
stop them, because obfuscation is not the same as encryption. Sooner or later, a determined
webbot designer is bound to decode any obfuscated text.[]

[] To learn the difference between obfuscation and encryption, read WEBBOTS AND CRYPTOGRAPHY.

file:///D|/!!/final/Ibuilding_speed_bumps.html (1 von 3) [29.03.2008 23:24:49]

mailto:me@addr.com.html

Ibuilding_speed_bumps.html

A browser rendering of the obfuscated script in Listing 27-2

Use Cookies, Encryption, JavaScript, and Redirection

Lesser webbots and spiders have trouble handling cookies, encryption, and page redirection,
so attempts to deter webbots by employing these methods may be effective in some cases.
While PHP/CURL resolves most of these issues, webbots still stumble when interpreting cookies
and page redirections written in JavaScript, since most webbots lack JavaScript interpreters.
Extensive use of JavaScript can often effectively deter webbots, especially if JavaScript creates
links to other pages or if it is used to create HTML content.

Authenticate Users

Where possible, place all confidential information in password-protected areas. This is your
best defense against webbots and spiders. However, authentication only affects people without
login credentials; it does not prevent authorized users from developing webbots and spiders to
harvest information and use services within password-protected areas of a website. You can
learn about writing webbots that access password-protected websites in AUTHENTICATION.

Update Your Site Often

Possibly the single most effective way to confuse a webbot is to change your site on a regular
basis. A website that changes frequently is more difficult for a webbot to parse than a static
site. The challenge is to change the things that foul up webbot behavior without making your
site hard for people to use. For example, you may choose to randomly take one of the
following actions:

● Change the order of form elements

● Change form methods

● Rename files in your website

● Alter text that may serve as convenient parsing reference points, like form variables

These techniques may be easy to implement if you're using a high-quality content
management system (CMS). Without a CMS, though, it will take a more deliberate effort.

Embed Text in Other Media

Webbots and spiders rely on text represented by HTML codes, which are nothing more than
numbers capable of being matched, compared, or manipulated with mathematical precision.

file:///D|/!!/final/Ibuilding_speed_bumps.html (2 von 3) [29.03.2008 23:24:49]

Ibuilding_speed_bumps.html

However, if you place important text inside images or other non-textual media like Flash,
movies, or Java applets, that text is hidden from automated agents. This is different from the
obfuscation method discussed earlier, because embedding relies on the reasoning power of a
human to react to his or her environment. For example, it is now common for authentication
forms to display text embedded in an image and ask a user to type that text into a field before
it allows access to a secure page. While it's possible for a webbot to process text within an
image, it is quite difficult. This is especially true when the text is varied and on a busy
background, as shown in Text within an image is hard for a webbot to interpret. This technique
is called a Completely Automated Public Turing test to tell Computers and Humans Apart
(CAPTCHA).[] You can find more information about CAPTCHA devices at this book's website.

[] Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA) is a registered
trademark of Carnegie Mellon University.

Before embedding all your website's text in images, however, you need to recognize the
downside. When you put text in images, beneficial spiders, like those used by search engines,
will not be able to index your web pages. Placing text within images is also a very inefficient
way to render text.

Text within an image is hard for a webbot to interpret

file:///D|/!!/final/Ibuilding_speed_bumps.html (3 von 3) [29.03.2008 23:24:49]

Isetting_traps.html

Setting Traps

Your strongest defenses against webbots are techniques that detect webbot behavior.
Webbots behave differently because they are machines and don't have the reasoning ability of
people. Therefore, a webbot will do things that a person won't do, and a webbot lacks
information that a person either knows or can figure out by examining his or her environment.

Create a Spider Trap

A spider trap is a technique that capitalizes on the behavior of a spider, forcing it to identify
itself without interfering with normal human use. The spider trap in the following example
exploits the spider behavior of indiscriminately following every hyperlink on a web page. If
some links are either invisible or unavailable to people using browsers, you'll know that any
agent that follows the link is a spider. For example, consider the hyperlinks in Listing 27-3.

<a>
<a>

Listing 27-3: Two spider traps

There are many ways to trap a spider. Some other techniques include image maps with hot
spots that don't exist and hyperlinks located in invisible frames without width or height
attributes.

Fun Things to Do with Unwanted Spiders

Once unwanted guests are detected, you can treat them to a variety of services.

Identifying a spider is the first step in dealing with it. Moreover, with browser-spoofing
techniques, a spider trap becomes a necessity in determining which traffic is automated and
which is human. What you do once you detect a spider is up to you, but Strategies for
Responding When You Identify a Spider should give you some ideas. Just remember to act
within commonsense legal guidelines and your own website policies.

Table Strategies for Responding When You Identify a Spider

Strategy Implementation
Banish Record the IP addresses of spiders that reach the spider trap and configure the

webserver to ignore future requests from these addresses.
Limit access Record the IP addresses of the spiders in the spider trap and limit the pages

they can access on their next visit.
Mislead Depending on the situation, you could redirect known (unwanted) spiders with

an alternate set of misleading web pages. As much as I love this tactic, you
should consult with an attorney before implementing this idea.

file:///D|/!!/final/Isetting_traps.html (1 von 2) [29.03.2008 23:24:50]

Isetting_traps.html

Analyze Analyze the IP address and find out where the spider comes from, who might
own it, and what it is up to. A good resource for identifying IP addresses
registered in the United States is http://www.arin.net. You could even create a
special log that tracks all activity from known hostile spiders. You can also use
this technique to learn whether or not a spider is part of a distributed attack.

Ignore The default option is to just ignore any automated activity on your website.

file:///D|/!!/final/Isetting_traps.html (2 von 2) [29.03.2008 23:24:50]

http://www.arin.net/

Ifinal_thoughts_id15.html

Final Thoughts

Before website owners decide to expend their resources on deterring webbots, they should
ask themselves a few questions.

● What can a webbot do with your website that a person armed with a browser cannot
do?

● Are your deterrents keeping desirable spiders (like search engines) from accessing
your web pages?

● Does an automated agent (that you want to thwart) pose an actual threat to your
website? Is it possible that it may even provide a benefit, as a procurement bot might?

● If your website contains information that needs to be protected from webbots, should
that information really be online in the first place?

● If you put information in a public place, do you really have the right to bar certain
methods of reading it?

If you still insist on banning webbots from your website, keep in mind that unless you
deliberately develop measures like the ones near the end of this chapter, you will probably
have little luck in defending your site from rogue webbots.

file:///D|/!!/final/Ifinal_thoughts_id15.html [29.03.2008 23:24:51]

Ikeeping_webbots_out_of_trouble.html

KEEPING WEBBOTS OUT OF TROUBLE

By this point, you know how to access, download, parse, and process any of the 76 million
websites on the Internet.[] Knowing how to do something, however, does not give you the

[] This estimate of the number of websites on the Internet as of February 2006 comes from http://news.
netcraft.com/archives/web_server_survey.html.

right to do it. While I have cast warnings throughout the book, I haven't, until now, focused
on the consequences of designing webbots or spiders that act selfishly and without regard to
the rights of website owners or related infrastructure.[]

[] If you interfere with the operation of one site, you may also affect other, non-targeted websites if they
are hosted on the same (virtual) server.

Since many businesses rely on the performance of their websites to conduct business, you
should consider interfering with a corporate website equivalent to interfering with a physical
store or factory. When deploying a webbot or spider, remember that someone else is paying
for hosting, bandwidth, and development for the websites you target. Writing webbots and
spiders that consume irresponsible amounts of bandwidth, guess passwords, or capriciously
reuse intellectual property may well be a violation of someone's rights and will eventually land
you in trouble. Back in the day—that is, before the popularization of the Internet—
programmers had to win their stripes before they earned the confidence of their peers and
gained access to networks or sensitive information. At that time, people who had access to
data networks were less likely to abuse them because they had a stake in the security of data
and the performance of networks. One of the outcomes of the Internet's free access to
information, open infrastructure, and apparent anonymous browsing is that it is now easier
than ever to act irresponsibly. A free dial-up account gives anyone and everyone access to
(and the opportunity to compromise) servers all over the world. With worldwide access to
data centers and the ability to download quick exploits, it's easy for people without a technical
background (or a vested interest in the integrity of the Internet) to access confidential
information or launch attacks that render services useless to others.

The last thing I want to do is pave a route for people to create havoc on the Internet. The
purpose of this book is to help Internet developers think beyond the limitations of the browser
and to develop webbots that do new and useful things. Webbot development is still virgin
territory and there are still many new and creative things to do. You simply lack creativity if
you can't develop webbots that do interesting things without violating someone's rights.

Webbots (and their developers) generally get into trouble when they make unauthorized use
of copyrighted information or use an excessive amount of a website's infrastructure
(bandwidth, servers, administration, etc.). This chapter addresses both of these areas. We'll
also explore the requests webmasters make to limit webbot use on their websites.

Note: This chapter introduces warnings that all webbot and spider writers should understand and
consider before embarking on webbot projects. I'm not dispensing legal advice, so don't even
think of blaming me if you misbehave and are sued or find the FBI knocking at your door. This is
my attempt to identify a few (but not all) issues related to developing webbots and spiders.

file:///D|/!!/final/Ikeeping_webbots_out_of_trouble.html (1 von 2) [29.03.2008 23:24:52]

http://news.netcraft.com/archives/web_server_survey.html
http://news.netcraft.com/archives/web_server_survey.html

Ikeeping_webbots_out_of_trouble.html

Perhaps with this information, you will be able to at least ask an attorney intelligent questions. To
reiterate, I am not a lawyer, and this is not legal advice. My responsibility is to tell you that, if
misused, automated web agents can get you into deep trouble. In turn, you're obligated to take
responsibility for your own actions and to consult an attorney who is aware of local laws before
doing anything that even remotely violates the rights of someone else. I urge you to think before
you act.

It's All About Respect

Your career as a webbot developer will be short-lived if you don't respect the rights of those
who own, maintain, and rely upon the web servers your webbots and spiders target.
Remember that websites are designed for people using browsers and that often a website's
profit model is dependent on those traffic patterns. In a matter of seconds, a single webbot
can create as much web traffic as a thousand web surfers, without the benefit of generating
commerce or ad revenue, or extending a brand. It's helpful to think of webbots as "super
browsers," as webbots have increased abilities. But in order to walk among mere browsers,
webbots and spiders need to comply with the norms and customs of the rest of the web
agents on the Internet.

In KILLING SPIDERS you read about website polices, robots.txt files, robots meta tags, and
other tools server administrators use to regulate webbots and spiders. It's important to
remember, however, that obeying a webmaster's webbot restrictions does not absolve webbot
developers from responsibility. For example, even if a webbot doesn't find any restrictions in
the website's Terms of Service agreement, robots.txt file, or meta tags, the webbot developer
still doesn't have permission to violate the website's intellectual property rights or use
inordinate amounts of the webserver's bandwidth.

file:///D|/!!/final/Ikeeping_webbots_out_of_trouble.html (2 von 2) [29.03.2008 23:24:52]

Iits_all_about_respect.html

KEEPING WEBBOTS OUT OF TROUBLE

By this point, you know how to access, download, parse, and process any of the 76 million
websites on the Internet.[] Knowing how to do something, however, does not give you the

[] This estimate of the number of websites on the Internet as of February 2006 comes from http://news.
netcraft.com/archives/web_server_survey.html.

right to do it. While I have cast warnings throughout the book, I haven't, until now, focused
on the consequences of designing webbots or spiders that act selfishly and without regard to
the rights of website owners or related infrastructure.[]

[] If you interfere with the operation of one site, you may also affect other, non-targeted websites if they
are hosted on the same (virtual) server.

Since many businesses rely on the performance of their websites to conduct business, you
should consider interfering with a corporate website equivalent to interfering with a physical
store or factory. When deploying a webbot or spider, remember that someone else is paying
for hosting, bandwidth, and development for the websites you target. Writing webbots and
spiders that consume irresponsible amounts of bandwidth, guess passwords, or capriciously
reuse intellectual property may well be a violation of someone's rights and will eventually land
you in trouble. Back in the day—that is, before the popularization of the Internet—
programmers had to win their stripes before they earned the confidence of their peers and
gained access to networks or sensitive information. At that time, people who had access to
data networks were less likely to abuse them because they had a stake in the security of data
and the performance of networks. One of the outcomes of the Internet's free access to
information, open infrastructure, and apparent anonymous browsing is that it is now easier
than ever to act irresponsibly. A free dial-up account gives anyone and everyone access to
(and the opportunity to compromise) servers all over the world. With worldwide access to
data centers and the ability to download quick exploits, it's easy for people without a technical
background (or a vested interest in the integrity of the Internet) to access confidential
information or launch attacks that render services useless to others.

The last thing I want to do is pave a route for people to create havoc on the Internet. The
purpose of this book is to help Internet developers think beyond the limitations of the browser
and to develop webbots that do new and useful things. Webbot development is still virgin
territory and there are still many new and creative things to do. You simply lack creativity if
you can't develop webbots that do interesting things without violating someone's rights.

Webbots (and their developers) generally get into trouble when they make unauthorized use
of copyrighted information or use an excessive amount of a website's infrastructure
(bandwidth, servers, administration, etc.). This chapter addresses both of these areas. We'll
also explore the requests webmasters make to limit webbot use on their websites.

Note: This chapter introduces warnings that all webbot and spider writers should understand and
consider before embarking on webbot projects. I'm not dispensing legal advice, so don't even
think of blaming me if you misbehave and are sued or find the FBI knocking at your door. This is
my attempt to identify a few (but not all) issues related to developing webbots and spiders.

file:///D|/!!/final/Iits_all_about_respect.html (1 von 2) [29.03.2008 23:24:53]

http://news.netcraft.com/archives/web_server_survey.html
http://news.netcraft.com/archives/web_server_survey.html

Iits_all_about_respect.html

Perhaps with this information, you will be able to at least ask an attorney intelligent questions. To
reiterate, I am not a lawyer, and this is not legal advice. My responsibility is to tell you that, if
misused, automated web agents can get you into deep trouble. In turn, you're obligated to take
responsibility for your own actions and to consult an attorney who is aware of local laws before
doing anything that even remotely violates the rights of someone else. I urge you to think before
you act.

It's All About Respect

Your career as a webbot developer will be short-lived if you don't respect the rights of those
who own, maintain, and rely upon the web servers your webbots and spiders target.
Remember that websites are designed for people using browsers and that often a website's
profit model is dependent on those traffic patterns. In a matter of seconds, a single webbot
can create as much web traffic as a thousand web surfers, without the benefit of generating
commerce or ad revenue, or extending a brand. It's helpful to think of webbots as "super
browsers," as webbots have increased abilities. But in order to walk among mere browsers,
webbots and spiders need to comply with the norms and customs of the rest of the web
agents on the Internet.

In KILLING SPIDERS you read about website polices, robots.txt files, robots meta tags, and
other tools server administrators use to regulate webbots and spiders. It's important to
remember, however, that obeying a webmaster's webbot restrictions does not absolve webbot
developers from responsibility. For example, even if a webbot doesn't find any restrictions in
the website's Terms of Service agreement, robots.txt file, or meta tags, the webbot developer
still doesn't have permission to violate the website's intellectual property rights or use
inordinate amounts of the webserver's bandwidth.

file:///D|/!!/final/Iits_all_about_respect.html (2 von 2) [29.03.2008 23:24:53]

Icopyright.html

Copyright

One way to keep your webbots out of trouble is to obey copyright, the set of laws that
protects intellectual property owners. Copyright allows people and organizations to claim the
exclusive right to use specific text, images, media, and control the manner in which they are
published. All webbot developers need to have an awareness of copyright. Ignoring copyright
can result in banishment from websites and even lawsuits.

Do Consult Resources

Before you venture off on your own (or assume that what you're reading here applies to your
situation), you should check out a few other resources. For basic copyright information, start
with the website of the United States Copyright Office, http://www.copyright.gov. Another
resource, which you might find more readable, is http://www.bitlaw.com/copyright,
maintained by Daniel A. Tysver of Beck & Tysver, a firm specializing in intellectual property
law. Of course, these websites only apply to US laws. If you're outside the United States,
you'll need to consult other resources.

Don't Be an Armchair Lawyer

Mitigating factors and varying interpretations affect copyright law enforcement. There seems
to be an exception to every rule. If you have specific questions about copyright law, the
smartest thing to do is to consult an attorney. Since the Internet is relatively new, intellectual
property law—as it applies to the Internet—is somewhat fluid and open to interpretation.
Ultimately, courts interpret the law. While it is not within the scope of this book to cover
copyright in its entirety, the following sections identify common copyright issues that webbot
developers may find interesting.

Copyrights Do Not Have to Be Registered

In the United States, you do not have to officially register a copyright with the Copyright
Office to have the protection of copyright laws. The US Copyright office states that copyrights
are granted automatically, as soon as an original work is created. As the Copyright Office
describes on its website:

Copyright is secured automatically when the work is created, and a work is
"created" when it is fixed in a copy or phonorecord for the first time. "Copies"
are material objects from which a work can be read or visually perceived either
directly or with the aid of a machine or device, such as books, manuscripts,
sheet music, film, videotape, or microfilm. "Phonorecords" are material objects
embodying fixations of sounds (excluding, by statutory definition, motion
picture soundtracks), such as cassette tapes, CDs, or LPs. Thus, for example, a
song (the "work") can be fixed in sheet music ("copies") or in phonograph disks
("phonorecords"), or both. If a work is prepared over a period of time, the part
of the work that is fixed on a particular date constitutes the created work as of
that date.[]

[] US Copyright Office, "Copyright Office Basics," July 2006 (http://www.copyright.gov/
circs/circ1.html).

file:///D|/!!/final/Icopyright.html (1 von 4) [29.03.2008 23:24:54]

http://www.bitlaw.com/copyright

Icopyright.html

Notice that online content isn't specifically mentioned in the above paragraph, while there are
specific references to original works "fixed in copy" through books, sheet music, videotape,
CDs, and LPs. While there is no specific mention of websites, one may assume that references
to works that may be "perceived either directly or through the aid of a machine or device"
also covers content on webservers. The important thing for webbot developers to remember
is that it is dangerous to assume that something is free to use if it is not expressly
copyrighted.

If you don't need to register a copyright, why do people still do it? People file for specific
copyrights to strengthen their ability to defend their rights in court. If you are interested in
registering a copyright for a website, the US Copyright Office has a special publication for you.
[]

[] US Copyright Office, "Copyright Registration for Online Works (Circular 66)," July 2006 (http://www.
copyright.gov/circs/circ66.html).

Assume "All Rights Reserved"

If you hold (or claim to hold) a copyright, you don't need to explicitly add the phrase all rights
reserved to the copyright notice. For example, if a movie script does not indicate that all
rights are reserved, you are not free to assume that you can legally produce an online cartoon
based on the movie. Similarly, if a web page doesn't explicitly state that the site owner
reserves all rights, don't assume that a webbot can legally use the site's images in an
unrelated project. The habit of stating all rights reserved in a copyright notice stems from old
intellectual property treaties that required it. If a work is unmarked, assume that all rights are
reserved.

You Cannot Copyright a Fact

The US Copyright Office website explains that copyright protects the way one expresses
oneself and that no one has exclusive rights to facts, as stated below:

Copyright protects the particular way an author has expressed himself; it does
not extend to any ideas, systems, or factual information conveyed in the work.[]

[] US Copyright Office, "Fair Use," July 2006 (http://www.copyright.gov/fls/fl102.html).

How would you interpret this? You might conclude that someone cannot copy the manner or
style in which someone else publishes facts, but that the facts themselves are not
copyrightable. What happens if a business announces on its website that it has 83
employees? Does the head count for that company become a fact that is not protected by
copyright laws? What if the website also lists prices, phone numbers, addresses, or historic
dates?

You might be safe if you write a webbot that only collects pure facts.[] But that doesn't
prevent someone else from having a differing opinion and challenging you in court.

[] Consult your attorney for clarification on your legal rights to collect specific information.

You Can Copyright a Collection of Facts if Presented Creatively

In the previous excerpt from the US Copyright Office website, we learned that copyright law

file:///D|/!!/final/Icopyright.html (2 von 4) [29.03.2008 23:24:54]

Icopyright.html

protects the "particular way" in which someone expresses him or herself and that facts
themselves are not protected by copyright. One way to think of this is that while you cannot
copyright a fact, you might be able to copyright a collection of facts—if they are presented
creatively. For example, a phone company cannot copyright a phone number, but it can
copyright an entire phone directory website, if the phone numbers are presented in an
original and creative way.

It appears that courts are serious when they say copyright only applies to collections of facts
when they are presented in new and creative ways. For example, in one case a phone
company republished the names and phone numbers (subscriber information) from another
phone company's directory.[] A dispute over intellectual property rights erupted between the
two companies, and the case went to court. The fact that the original phone book contained
phone numbers from a selected area and listed them in alphabetical order was not enough
creativity to secure copyright protection. The judge ruled that the original phone directory
lacked originality and was not protected by copyright law—even though the publication had a
registered copyright. If nothing else, this indicates that intellectual property law is open to
interpretation and that individuals' interpretations of the law are less important than court
decisions.

[] Feist Publications, Inc. v. Rural Telephone Service Co., 499 U.S. 340, 1991.

You Can Use Some Material Under Fair Use Laws

United States copyright law also allows for fair use, a set of exclusions from copyright for
material used within certain limits. The scope of what falls into the fair use category is largely
dependent on the following:

● Nature of the copyrighted material

● Amount of material used

● Purpose for which the material is used

● Market effect of the new work upon the original

Copyrighted material commonly falls under fair use if a limited amount of the material is used
for scholastic or archival purposes. Fair use also protects the right to use selections of
copyrighted material for parody, in short quotations, or in reviews. Generally speaking, you
can quote a small amount of copyrighted material if you include a reference to the original
source. However, you may become a target for a lawsuit if you profit from selling shirts
featuring a catchphrase from a movie, even though you are only quoting a small part of a
larger work, as it will likely interfere with the market for legitimate T-shirts.

The US Copyright Office says the following regarding fair use:

Under the fair use doctrine of the U.S. copyright statute, it is permissible to use
limited portions of a work including quotes, for purposes such as commentary,
criticism, news reporting, and scholarly reports. There are no legal rules
permitting the use of a specific number of words, a certain number of musical
notes, or percentage of a work. Whether a particular use qualifies as fair use
depends on all the circumstances.[]

[] US Copyright Office, "Can I Use Someone Else's Work? Can Someone Else Use Mine?

file:///D|/!!/final/Icopyright.html (3 von 4) [29.03.2008 23:24:54]

Icopyright.html

(FAQ)," July 12, 2006 (http://www.copyright.gov/help/faq/faq-fairuse.html#howmuch).

As you may guess, fair use exclusions are often abused and frequently litigated. A famous
case surrounding fair use was Kelly v. Arriba Soft.[] In this case, Leslie A. Kelly conducted an
online business of licensing copyrighted images. The Arriba Soft Corporation, in contrast,
created an image-management program that used webbots and spiders to search the Internet
for new images to add to its library. Arriba Soft failed to identify the sources of the images it
found and gave the general impression that the images it found were available under fair use
statutes. While Kelly eventually won her case against Arriba Soft, it took five years of
charges, countercharges, rulings, and appeals. Much of the confusion in settling the suit was
caused by applying pre-Internet laws to determine what constituted fair use of intellectual
property published online.

[] If you Google Kelly v. Arriba, you'll find a wealth of commentary and court rulings for this saga.

file:///D|/!!/final/Icopyright.html (4 von 4) [29.03.2008 23:24:54]

Itrespass_to_chattels.html

Trespass to Chattels

In addition to copyright, the other main concept that you should be aware of is trespass to
chattels. Unlike traditional trespass, which refers to unauthorized use of real property (land or
real estate), trespass to chattels prevents or impairs an owner's use of or access to personal
property. The trespass-to-chattels laws were written before the invention of the Internet, but
in certain instances, they still protect access to personal property. Consider the following
examples of trespass to chattels:

● Blocking access to someone's boat with a floating swim platform

● Preventing the use of a fax machine by continually spamming it with nuisance or junk
faxes

● Erecting a building that blocks someone's ocean view

From your perspective as a webbot or spider developer, violation of trespass to chattels may
include:

● Consuming so much bandwidth from a target server that you affect the website's
performance or other people's use of the website

● Increasing network traffic on a website to the point that the owner is forced to add
infrastructure to meet traffic needs

● Sending excessive quantities of email as to diminish the utility of email or email servers

To better understand trespass to chattels, consider the spider developed by a company called
Bidder's Edge, which cataloged auctions on eBay. This centralized spider collected information
about auctions in an effort to aggregate the contents of several auction sites, including eBay,
into one convenient website. In order to collect information on all eBay auctions, it
downloaded as many as 100,000 pages a day.

To put the impact of Bidder's Edge spider into context, assume that a typical eBay web page
is about 250KB in size. If the spider requested 100,000 pages a day, the spider would
consume 25GB of eBay's bandwidth every day, or 775GB each month. In response to the
increased web traffic, eBay was forced to add servers and upgrade its network.

With this amount of requests coming from Bidder's Edge spiders, it was easy for eBay to
identify the source of the increased server load. Initially, eBay claimed that Bidder's Edge
illegally used its copyrighted auctions. When that argument proved unsuccessful, eBay
pursued a trespass-to-chattels case.[] In this case, eBay successfully argued that the Bidder's
Edge spider increased the load on its servers to the point that it interfered with the use of the
site. eBay also claimed a loss due to the need to upgrade its servers to facilitate the increased
network traffic caused by the Bidder's Edge spider. Bidder's Edge eventually settled with eBay
out of court, but only after it was forced offline and agreed to change its business plan.

[] You can find more information about this case at http://pub.bna.com/lw/21200.htm. Googling eBay,
Inc. v. Bidder's Edge will also provide links to comments about the succession of rulings on this case.

file:///D|/!!/final/Itrespass_to_chattels.html (1 von 2) [29.03.2008 23:24:55]

http://pub.bna.com/lw/21200.htm

Itrespass_to_chattels.html

How do you avoid claims of trespass to chattels? You can start by not placing an undue load
on a target server. If the information is available from a number of sources, you might target
multiple servers instead of relying on a single source. If the information is only available from
a single source, it is best to limit downloads to the absolute minimum number of pages to do
the job. If that doesn't work, you should evaluate whether the risk of a lawsuit outweighs the
opportunities created by your webbot. You should also ensure that your webbot or spider
does not cause damage to a business or individual.

file:///D|/!!/final/Itrespass_to_chattels.html (2 von 2) [29.03.2008 23:24:55]

Iinternet_law.html

Internet Law

While the laws protecting physical property are long established and reinforced by
considerable numbers of court rulings, the laws governing virtual property and virtual
behavior are less mature and constantly evolving. While one would think the same laws
should protect both online and offline property, the reality is that most laws were written
before the Internet and don't directly address those things that are unique to it, like email,
frames, hyperlinks, or blogs. Since many existing laws do not specifically address the
Internet, the application of the law (as it applies to the Internet) is open to much
interpretation.

One example of a law to deal specifically with Internet abuse is Virginia's so-called Anti-Spam
Law.[] This law is a response to the large amount of server resources consumed by servicing
unwanted email. The law attacks spammers indirectly by declaring it a felony to falsify or
forge email addresses in connection to unsolicited email. It also provides penalties of as much
as $10.00 per unsolicited email or $25,000 per day. Laws like this one are required to address
specific Internet-related concerns. Well-defined rules, like those imposed by Virginia's Anti-
Spam Law, are frequently difficult to derive from existing statutes. And while it may be
possible to prosecute a spammer with laws drafted before the popularity of the Internet, less
is open to the court's interpretation when the law deals specifically with the offense.

[] "SB 881 Computer Crimes Act; electronic mail," Virginia Senate, approved March 29, 1999 (http://leg1.
state.va.us/cgi-bin/legp504.exe?991+sum+SB881).

When contemplating the laws that apply to you as a webbot developer, consider the following:

● Webbots and spiders add a wrinkle to the way online information is used, as most web
pages are intended to be used with manually operated browsers. For example,
disputes may arise when webbots ignore paid advertising and disrupt the intended
business model of a website. Webmasters, however, usually want some webbots (such
as search engine crawlers) to visit their sites.

● The Internet is still relatively young and there are few precedents for online law.
Existing intellectual property law doesn't always apply well to the Internet. For
example, in the Kelly v. Arriba Soft case, which we discussed earlier, there was serious
contention over whether or not a website has the right to link to other web pages. The
opportunity to challenge (and regulate) hyper-references to media belonging to
someone else didn't exist before the Internet.

● New laws governing online commerce and intellectual property rights are constantly
introduced as the Internet evolves and people conduct themselves in different ways.
For example, blogs have recently created a number of legal questions. Are bloggers
publishers? Are bloggers responsible for posts made by visitors to their websites? The
answer to both questions is no—at least for now.[]

[] In 2006 a Pennsylvania court ruled that bloggers are not responsible for comments posted to
the blog by their readers; to read a PDF of the judge's opinion, visit http://www.paed.uscourts.
gov/documents/opinions/06D0657P.pdf

● It is always wise for webbot developers to stay current with online laws, since old laws
are constantly being tested and new laws are being written to address specific issues.

file:///D|/!!/final/Iinternet_law.html (1 von 2) [29.03.2008 23:24:57]

Iinternet_law.html

● The strategies people use to violate as well as protect online intellectual property are
constantly changing. For example, pay per click advertising, a process in which
companies only pay for ads that people click, has spawned the arrival of so-called
clickbots, which simulate people clicking ads to generate revenue for the owner of the
website carrying the advertisements. People test the law again by writing webbots that
stuff the ballot boxes of online polls and contests. In response to the threat mounted
by new webbot designs, web developers counter with technologies like CAPTCHA
devices,[] which force people to type text from an image (or complete some other task
that would be similarly difficult for webbots) before accessing a website. There may be
as many prospects for webbot developers to create methods to block webbots as there
are opportunities to write webbots.

[] More information about CAPTCHA devices is available in KILLING SPIDERS.

● Laws vary from country to country. And since websites can be hosted by servers
anywhere the world, it can be difficult to identify—let alone prosecute—the violator of a
law when the offender operates from a country that doesn't honor other countries' laws.

file:///D|/!!/final/Iinternet_law.html (2 von 2) [29.03.2008 23:24:57]

Ifinal_thoughts_id16.html

Final Thoughts

The knowledge and techniques required to develop a useful webbot are identical to those
required to develop a destructive one. Therefore, it is imperative to realize when your
enthusiasm for what you're doing obscures your judgment and causes you to cross a line you
didn't intend to cross. Be careful. Talk to a qualified attorney before you need one.

If Internet law is appealing to you or if you are interested in protecting your online rights, you
should consider joining the Electronic Frontier Foundation (EFF). This group of lawyers,
coders, and other volunteers is dedicated to protecting digital rights. You can find more
information about the organization at its website, http://www.eff.org.

file:///D|/!!/final/Ifinal_thoughts_id16.html [29.03.2008 23:24:57]

http://www.eff.org/

Iphpcurl_exclamation_reference.html

Appendix. PHP/CURL REFERENCE

This appendix highlights the options and features of PHP/CURL that will be of greatest interest
to webbot developers. In addition to the features described here, you should know that PHP/
CURL is an extremely powerful interface with a dizzying array of options. A full specification of
PHP/CURL is available at the PHP website.[]

[] See http://us2.php.net/manual/en/ref.curl.php.

Creating a Minimal PHP/CURL Session

In some regards, a PHP/CURL session is similar to a PHP file I/O session. Both create a
session (or file handle) to reference an external file. And in both cases, when the file transfer
is complete, the session is closed. However, PHP/CURL differs from standard file I/O because
it requires a series of options that define the nature of the file transfer set before the
exchange takes place. These options are set individually, in any order. When many options
are required, the list of settings can be long and confusing. For simplicity, Listing A-1 shows
the minimal options required to create a PHP/CURL session that will put a downloaded file into
a variable.

Code View:

<?
Open a PHP/CURL session
$s = curl_init();

Configure the cURL command
curl_setopt($s, CURLOPT_URL, "http://www.schrenk.com"); // Define target site
curl_setopt($s, CURLOPT_RETURNTRANSFER, TRUE); // Return in string

Execute the cURL command (send contents of target web page to string)
$downloaded_page = curl_exec($s);

Close PHP/CURL session
curl_close($s);
?>

Listing A-1: A minimal PHP/CURL session

The rest of this section details how to initiate sessions, set options, execute commands, and
close sessions in PHP/CURL. We'll also look at how PHP/CURL provides transfer status and
error messages.

file:///D|/!!/final/Iphpcurl_exclamation_reference.html [29.03.2008 23:24:58]

http://us2.php.net/manual/en/ref.curl.php

Icreating_a_minimal_php_exclamation_curl_session.html

Appendix. PHP/CURL REFERENCE

This appendix highlights the options and features of PHP/CURL that will be of greatest interest
to webbot developers. In addition to the features described here, you should know that PHP/
CURL is an extremely powerful interface with a dizzying array of options. A full specification of
PHP/CURL is available at the PHP website.[]

[] See http://us2.php.net/manual/en/ref.curl.php.

Creating a Minimal PHP/CURL Session

In some regards, a PHP/CURL session is similar to a PHP file I/O session. Both create a
session (or file handle) to reference an external file. And in both cases, when the file transfer
is complete, the session is closed. However, PHP/CURL differs from standard file I/O because
it requires a series of options that define the nature of the file transfer set before the
exchange takes place. These options are set individually, in any order. When many options
are required, the list of settings can be long and confusing. For simplicity, Listing A-1 shows
the minimal options required to create a PHP/CURL session that will put a downloaded file into
a variable.

Code View:

<?
Open a PHP/CURL session
$s = curl_init();

Configure the cURL command
curl_setopt($s, CURLOPT_URL, "http://www.schrenk.com"); // Define target site
curl_setopt($s, CURLOPT_RETURNTRANSFER, TRUE); // Return in string

Execute the cURL command (send contents of target web page to string)
$downloaded_page = curl_exec($s);

Close PHP/CURL session
curl_close($s);
?>

Listing A-1: A minimal PHP/CURL session

The rest of this section details how to initiate sessions, set options, execute commands, and
close sessions in PHP/CURL. We'll also look at how PHP/CURL provides transfer status and
error messages.

file:///D|/!!/final/Icreating_a_minimal_php_exclamation_curl_session.html [29.03.2008 23:24:59]

http://us2.php.net/manual/en/ref.curl.php

Iinitiating_php_exclamation_curl_sessions.html

Initiating PHP/CURL Sessions

Before you use cURL, you must initiate a session with the curl_init() function. Initialization
creates a session variable, which identifies configurations and data belonging to a specific
session. Notice how the session variable $s, created in Listing A-1, is used to configure,
execute, and close the entire PHP/CURL session. Once you create a session, you may use it as
many times as you need to.

file:///D|/!!/final/Iinitiating_php_exclamation_curl_sessions.html [29.03.2008 23:25:00]

Isetting_php_exclamation_curl_options.html

Setting PHP/CURL Options

The PHP/CURL session is configured with the curl_setopt() function. Each individual
configuration option is set with a separate call to this function. The script in Listing A-1 is
unusual in its brevity. In normal use, there are many calls to curl_setopt(). There are over
90 separate configuration options available within PHP/CURL, making the interface very
versatile.[] The average PHP/CURL user, however, uses only a small subset of the available
options. The following sections describe the PHP/CURL options you are most apt to use. While
these options are listed here in order of relative importance, you may declare them in any
order. If the session is left open, the configu-ration may be reused many times within the
same session.

[] You can find a complete set of PHP/CURL options at http://www.php.net/manual/en/function.curl-
setopt.php.

CURLOPT_URL

Use the CURLOPT_URL option to define the target URL for your PHP/CURL session, as shown in
Listing A-2.

curl_setopt($s, CURLOPT_URL, "http://www.schrenk.com/index.php");

Listing A-2: Defining the target URL

You should use a fully formed URL describing the protocol, domain, and file in every PHP/
CURL file request.

CURLOPT_RETURNTRANSFER

The CURLOPT_RETURNTRANSFER option must be set to TRUE, as in Listing A-3, if you want the
result to be returned in a string. If you don't set this option to TRUE, PHP/CURL echoes the
result to the terminal.

curl_setopt($s, CURLOPT_RETURNTRANSFER, TRUE); // Return in string

Listing A-3: Telling PHP/CURL that you want the result to be returned in a string

CURLOPT_REFERER

The CURLOPT_REFERER option allows your webbot to spoof a hyper-reference that was clicked
to initiate the request for the target file. The example in Listing A-4 tells the target server that
someone clicked a link on http://www.a_domain.com/index.php to request the target web
page.

curl_setopt($s, CURLOPT_REFERER, "http://www.a_domain.com/index.php");

file:///D|/!!/final/Isetting_php_exclamation_curl_options.html (1 von 6) [29.03.2008 23:25:02]

http://www.php.net/manual/en/function.curl-setopt.php
http://www.php.net/manual/en/function.curl-setopt.php
http://www.a_domain.com/index.php

Isetting_php_exclamation_curl_options.html

Listing A-4: Spoofing a hyper-reference

CURLOPT_FOLLOWLOCATION and CURLOPT_MAXREDIRS

The CURLOPT_FOLLOWLOCATION option tells cURL that you want it to follow every page
redirection it finds. It's important to understand that PHP/CURL only honors header
redirections and not redirections set with a refresh meta tag or with JavaScript, as shown in
Listing A-5.

Example of redirection that cURL will follow
header("Location: http://www.schrenk.com");
?>

<!-- Examples of redirections that cURL will not follow-->
<meta http-equiv="Refresh" content="0;url=http://www.schrenk.com">
<script>document.location="http://www.schrenk.com"</script>

Listing A-5: Redirects that cURL can and cannot follow

Any time you use CURLOPT_FOLLOWLOCATION, set CURLOPT_MAXREDIRS to the maximum
number of redirections you care to follow. Limiting the number of redirections keeps your
webbot out of infinite loops, where redirections point repeatedly to the same URL. My
introduction to CURLOPT_MAXREDIRS came while trying to solve a problem brought to my
attention by a network administrator, who initially thought that someone (using a webbot I
wrote) launched a DoS attack on his server. In reality, the server misinterpreted the webbot's
header request as a hacking exploit and redirected the webbot to an error page. There was a
bug on the error page that caused it to repeatedly redirect the webbot to the error page,
causing an infinite loop (and near-infinite bandwidth usage). The addition of
CURLOPT_MAXREDIRS solved the problem, as demonstrated in Listing A-6.

Code View:

curl_setopt($s, CURLOPT_FOLLOWLOCATION, TRUE); // Follow header redirections
curl_setopt($s, CURLOPT_MAXREDIRS, 4); // Limit redirections to 4

Listing A-6: Using the CURLOPT_FOLLOWLOCATION and CURLOPT_MAXREDIRS options

CURLOPT_USERAGENT

Use this option to define the name of your user agent, as shown in Listing A-7. The user
agent name is recorded in server access log files and is available to server-side scripts in the
$_SERVER['HTTP_USER_AGENT'] variable.

$agent_name = "test_webbot";
curl_setopt($s, CURLOPT_USERAGENT, $agent_name);

Listing A-7: Setting the user agent name

file:///D|/!!/final/Isetting_php_exclamation_curl_options.html (2 von 6) [29.03.2008 23:25:02]

Isetting_php_exclamation_curl_options.html

Keep in mind that many websites will not serve pages correctly if your user agent name is
something other than a standard web browser.

CURLOPT_NOBODY and CURLOPT_HEADER

These options tell PHP/CURL to return either the web page's header or body. By default, PHP/
CURL will always return the body, but not the header. This explains why setting CURL_NOBODY
to TRUE excludes the body, and setting CURL_HEADER to TRUE includes the header, as shown in
Listing A-8.

curl_setopt($s, CURLOPT_HEADER, TRUE); // Include the header
curl_setopt($s, CURLOPT_NOBODY, TURE); // Exclude the body

Listing A-8: Using the CURLOPT_HEADER and CURLOPT_NOBODY options

CURLOPT_TIMEOUT

If you don't limit how long PHP/CURL waits for a response from a server, it may wait forever—
especially if the file you're fetching is on a busy server or you're trying to connect to a
nonexistent or inactive IP address. (The latter happens frequently when a spider follows dead
links on a website.) Setting a time-out value, as shown in Listing A-9, causes PHP/CURL to
end the session if the download takes longer than the time-out value (in seconds).

Code View:

curl_setopt($s, CURLOPT_TIMEOUT, 30); // Don't wait longer than 30 seconds

Listing A-9: Setting a socket time-out value

CURLOPT_COOKIEFILE and CURLOPT_COOKIEJAR

One of the slickest features of PHP/CURL is the ability to manage cookies sent to and received
from a website. Use the CURLOPT_COOKIEFILE option to define the file where previously
stored cookies exist. At the end of the session, PHP/CURL writes new cookies to the file
indicated by CURLOPT_COOKIEJAR. An example is in Listing A-10; I have never seen an
application where these two options don't reference the same file.

Code View:

curl_setopt($s, CURLOPT_COOKIEFILE, "c:\bots\cookies.txt"); // Read cookie file
curl_setopt($s, CURLOPT_COOKIEJAR, "c:\bots\cookies.txt"); // Write cookie file

Listing A-10: Telling PHP/CURL where to read and write cookies

file:///D|/!!/final/Isetting_php_exclamation_curl_options.html (3 von 6) [29.03.2008 23:25:02]

Isetting_php_exclamation_curl_options.html

When specifying the location of a cookie file, always use the complete location of the file, and
do not use relative addresses. More information about managing cookies is available in
ADVANCED COOKIE MANAGEMENT.

CURLOPT_HTTPHEADER

The CURLOPT_HTTPHEADER configuration allows a cURL session to send an outgoing header
message to the server. The script in Listing A-11 uses this option to tell the target server the
MIME type it accepts, the content type it expects, and that the user agent is capable of
decompressing compressed web responses.

Note that CURLOPT_HTTPHEADER expects to receive data in an array.

$header_array[] = "Mime-Version: 1.0";
$header_array[] = "Content-type: text/html; charset=iso-8859-1";
$header_array[] = "Accept-Encoding: compress, gzip";
curl_setopt($curl_session, CURLOPT_HTTPHEADER, $header_array);

Listing A-11: Configuring an outgoing header

CURLOPT_SSL_VERIFYPEER

You only need to use this option if the target website uses SSL encryption and the protocol in
CURLOPT_URL is https:. An example is shown in Listing A-12.

curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, FALSE); // No certificate

Listing A-12: Configuring PHP/CURL not to use a local client certificate

Depending on the version of PHP/CURL you use, this option may be required; if you don't use
it, the target server will attempt to download a client certificate, which is unnecessary in all
but rare cases.

CURLOPT_USERPWD and CURLOPT_UNRESTRICTED_AUTH

As shown in Listing A-13, you may use the CURLOPT_USERPWD option with a valid username
and password to access websites that use basic authentication. In contrast to using a
browser, you will have to submit the username and password to every page accessed within
the basic authentication realm.

curl_setopt($s, CURLOPT_USERPWD, "username:password");
curl_setopt($s, CURLOPT_UNRESTICTED_AUTH, TRUE);

Listing A-13: Configuring PHP/CURL for basic authentication schemes

If you use this option in conjunction with CURLOPT_FOLLOWLOCATION, you should also use the
CURLOPT_UNRESTRICTED_AUTH option, which will ensure that the username and password are
sent to all pages you're redirected to, providing they are part of the same realm.

file:///D|/!!/final/Isetting_php_exclamation_curl_options.html (4 von 6) [29.03.2008 23:25:02]

Isetting_php_exclamation_curl_options.html

Exercise caution with using CURLOPT_USERPWD, as it is possible that you can inadvertently
send username and password information to the wrong server, where it may appear in access
log files.

CURLOPT_POST and CURLOPT_POSTFIELDS

The CURLOPT_POST and CURLOPT_POSTFIELDS options configure PHP/CURL to emulate forms
with the POST method. Since the default method is GET, you must first tell PHP/CURL to use
the POST method. Then you must specify the POST data that you want to be sent to the target
webserver. An example is shown in Listing A-14.

curl_setopt($s, CURLOPT_POST, TRUE); // Use POST method
$post_data = "var1=1&var2=2&var3=3"; // Define POST data values
curl_setopt($s, CURLOPT_POSTFIELDS, $post_data);

Listing A-14: Configuring POST method transfers

Notice that the POST data looks like a standard query string sent in a GET method.
Incidentally, to send form information with the GET method, simply attach the query string to
the target URL.

CURLOPT_VERBOSE

The CURLOPT_VERBOSE option controls the quantity of status messages created during a file
transfer. You may find this helpful during debugging, but it is best to turn off this option
during the production phase, because it produces many entries in your server log file. A
typical succession of log messages for a single file download looks like Listing A-15.

* About to connect() to www.schrenk.com port 80
* Connected to www.schrenk.com (66.179.150.101) port 80
* Connection #0 left intact
* Closing connection #0

Listing A-15: Typical messages from a verbose PHP/CURL session

If you're in verbose mode on a busy server, you'll create very large log files. Listing A-16
shows how to turn off verbose mode.

curl_setopt($s, CURLOPT_VERBOSE, FALSE); // Minimal logs

Listing A-16: Turning off verbose mode reduces the size of server log files.

CURLOPT_PORT

By default, PHP/CURL uses port 80 for all HTTP sessions, unless you are connecting to an SSL
encrypted server, in which case port 443 is used.[] These are the standard port numbers for
HTTP and HTTPS protocols, respectively. If you're connecting to a custom protocol or wish to
connect to a non-web protocol, use CURLOPT_PORT to set the desired port number, as shown

file:///D|/!!/final/Isetting_php_exclamation_curl_options.html (5 von 6) [29.03.2008 23:25:02]

Isetting_php_exclamation_curl_options.html

in Listing A-17.

[] Well-known and standard port numbers are defined at http://www.iana.org/assignments/port-numbers.

curl_setopt($s, CURLOPT_PORT, 234); // Use port number 234

Listing A-17: Using nonstandard communication ports

Note: Configuration settings must be capitalized, as shown in the previous examples. This is
because the option names are predefined PHP constants. Therefore, your code will fail if you
specify and option as curlopt_port instead of CURLOPT_PORT.

file:///D|/!!/final/Isetting_php_exclamation_curl_options.html (6 von 6) [29.03.2008 23:25:02]

http://www.iana.org/assignments/port-numbers

Iexecuting_the_php_exclamation_curl_command.html

Executing the PHP/CURL Command

Executing the PHP/CURL command sets into action all the options defined with the
curl_setopt() function. This command executes the previously configured session
(referenced by $s in Listing A-18).

$downloaded_page = curl_exec($s);

Listing A-18: Executing a PHP/CURL command for session $s

You can execute the same command multiple times or use curl_setopt() to change
configurations between calls of curl_exec(), as long as the session is defined and hasn't
been closed. Typically, I create a new PHP/CURL session for every page I access.

Retrieving PHP/CURL Session Information

Additional information about the current PHP/CURL session is available once a curl_exec()
command is executed. Listing A-19 shows how to use this command.

$info_array = curl_getinfo($s);

Listing A-19: Getting additional information about the current PHP/CURL session

The curl_getinfo() command returns an array of information, including connect and
transfer times, as shown in Listing A-20.

Code View:

array(20)
 {
 ["url"]=> string(22) "http://www.schrenk.com"
 ["content_type"]=> string(29) "text/html; charset=ISO-8859-1"
 ["http_code"]=> int(200) ["header_size"]=> int(247)
 ["request_size"]=> int(125)
 ["filetime"]=> int(-1)
 ["ssl_verify_result"]=> int(0)
 ["redirect_count"]=> int(0)
 ["total_time"]=> float(0.884)
 ["namelookup_time"]=> float(0)
 ["connect_time"]=> float(0.079)
 ["pretransfer_time"]=> float(0.079)
 ["size_upload"]=> float(0)
 ["size_download"]=> float(19892)
 ["speed_download"]=> float(22502.2624434)
 ["speed_upload"]=> float(0)
 ["download_content_length"]=> float(0)
 ["upload_content_length"]=> float(0)
 ["starttransfer_time"]=> float(0.608)
 ["redirect_time"]=> float(0)

file:///D|/!!/final/Iexecuting_the_php_exclamation_curl_command.html (1 von 2) [29.03.2008 23:25:03]

Iexecuting_the_php_exclamation_curl_command.html

 }

Listing A-20: Data made available by the curl_getinfo() command

Viewing PHP/CURL Errors

The curl_error() function returns any errors that may have occurred during a PHP/CURL
session. The usage for this function is shown in Listing A-21.

$errors = curl_error($s);

Listing A-21: Accessing PHP/CURL session errors

A typical error response is shown in Listing A-22.

Couldn't resolve host 'www.webbotworld.com'

Listing A-22: Typical PHP/CURL session error

file:///D|/!!/final/Iexecuting_the_php_exclamation_curl_command.html (2 von 2) [29.03.2008 23:25:03]

Iclosing_php_exclamation_curl_sessions.html

Closing PHP/CURL Sessions

You should close a PHP/CURL session immediately after you are done using it, as shown in
Listing A-23. Closing the PHP/CURL session frees up server resources, primarily memory.

curl_close($s);

Listing A-23: Closing a PHP/CURL session

In normal use, PHP performs garbage collection, freeing resources like variables, socket
connections, and memory when the script completes. This works fine for scripts that control
web pages and execute quickly. However, webbots and spiders may require that PHP scripts
run for extended periods without garbage collection. (I've written webbot scripts that run for
months without stopping.) Closing each PHP/CURL session is imperative if you're writing
webbot and spider scripts that make many PHP/CURL connections and run for extended
periods of time.

file:///D|/!!/final/Iclosing_php_exclamation_curl_sessions.html [29.03.2008 23:25:04]

Istatus_codes.html

Appendix. STATUS CODES

This appendix contains status codes returned by web (HTTP) and news (NNTP) servers. Your
webbots and spiders should use these status codes to determine the success or failure
communicating with servers. When debug-ging your scripts, status codes also provide hints
as to what's wrong.

HTTP Codes

The following is a representative sample of HTTP codes. These codes reflect the status of an
HTTP (web page) request. You'll see these codes returned in $returned_web_page['STATUS']
['http_code'] if you're using the LIB_http library.

Code View:

100 Continue
101 Switching Protocols
200 OK
201 Created
202 Accepted
203 Non-Authoritative Information
204 No Content
205 Reset Content
206 Partial Content
300 Multiple Choices
301 Moved Permanently
302 Found
303 See Other
304 Not Modified
305 Use Proxy
306 (Unused)
307 Temporary Redirect
400 Bad Request
401 Unauthorized
402 Payment Required
403 Forbidden
404 Not Found
405 Method Not Allowed
406 Not Acceptable
407 Proxy Authentication Required
408 Request Timeout
409 Conflict
410 Gone
411 Length Required
412 Precondition Failed
413 Request Entity Too Large
414 Request-URI Too Long
415 Unsupported Media Type
416 Requested Range Not Satisfiable
417 Expectation Failed
500 Internal Server Error
501 Not Implemented
502 Bad Gateway

file:///D|/!!/final/Istatus_codes.html (1 von 2) [29.03.2008 23:25:05]

Istatus_codes.html

503 Service Unavailable
504 Gateway Timeout
505 HTTP Version Not Supported

file:///D|/!!/final/Istatus_codes.html (2 von 2) [29.03.2008 23:25:05]

Ihttp_codes.html

Appendix. STATUS CODES

This appendix contains status codes returned by web (HTTP) and news (NNTP) servers. Your
webbots and spiders should use these status codes to determine the success or failure
communicating with servers. When debug-ging your scripts, status codes also provide hints
as to what's wrong.

HTTP Codes

The following is a representative sample of HTTP codes. These codes reflect the status of an
HTTP (web page) request. You'll see these codes returned in $returned_web_page['STATUS']
['http_code'] if you're using the LIB_http library.

Code View:

100 Continue
101 Switching Protocols
200 OK
201 Created
202 Accepted
203 Non-Authoritative Information
204 No Content
205 Reset Content
206 Partial Content
300 Multiple Choices
301 Moved Permanently
302 Found
303 See Other
304 Not Modified
305 Use Proxy
306 (Unused)
307 Temporary Redirect
400 Bad Request
401 Unauthorized
402 Payment Required
403 Forbidden
404 Not Found
405 Method Not Allowed
406 Not Acceptable
407 Proxy Authentication Required
408 Request Timeout
409 Conflict
410 Gone
411 Length Required
412 Precondition Failed
413 Request Entity Too Large
414 Request-URI Too Long
415 Unsupported Media Type
416 Requested Range Not Satisfiable
417 Expectation Failed
500 Internal Server Error
501 Not Implemented
502 Bad Gateway

file:///D|/!!/final/Ihttp_codes.html (1 von 2) [29.03.2008 23:25:05]

Ihttp_codes.html

503 Service Unavailable
504 Gateway Timeout
505 HTTP Version Not Supported

file:///D|/!!/final/Ihttp_codes.html (2 von 2) [29.03.2008 23:25:05]

Inntp_codes.html

NNTP Codes

Listed below are the NNTP status codes. Your webbots should use these codes to verify the
reposes returned from news servers.

Code View:

100 help text follows
199 debug output
200 server ready - posting allowed
201 server ready - no posting allowed
202 slave status noted
205 closing connection - goodbye!
211 group selected
215 list of newsgroups follows
220 article retrieved - head and body follow
221 article retrieved - head follows
222 article retrieved - body follows
223 article retrieved - request text separately
230 list of new articles by message-id follows
231 list of new newsgroups follows
235 article transferred ok
240 article posted ok
335 send article to be transferred. End with <CR-LF>.<CR-LF>
340 send article to be posted. End with <CR-LF>.<CR-LF>
400 service discontinued
411 no such news group
412 no newsgroup has been selected
420 no current article has been selected
421 no next article in this group
422 no previous article in this group
423 no such article number in this group
430 no such article found
435 article not wanted - do not send it
436 transfer failed - try again later
437 article rejected - do not try again
440 posting not allowed
441 posting failed
500 command not recognized
501 command syntax error
502 access restriction or permission denied
503 program fault - command not performed

file:///D|/!!/final/Inntp_codes.html [29.03.2008 23:25:06]

Isms_email_addresses.html

Appendix. SMS EMAIL ADDRESSES

Sometimes it is useful for webbots to send Short Message Service (SMS) or text message
notifications. In most cases, you can send a text message to a subscriber by simply sending
an email to the wireless subscriber's mail server, using the subscriber's phone number or
username as the addressee. Below is a collection of email addresses that will send text
messages. The email addresses in the table below have not been individually verified, but
each entry was found on more than one source.

Note: Special charges may apply to the use of these services. Contact the individual service
provider for more information regarding charges.

If you don't see the carrier you need listed below, contact the carrier to check—most wireless
services support this service and the carrier's customer service department should be able to
help if you have questions.

Wireless Carrier Text Message Email Address
Alltel 10digitphonenumber@alltelmessage.com

Ameritech Paging 10digitpagernumber@paging.acswireless.com

BeeLine GSM phonenumber@sms.beemail.ru

Bell Mobility (Canada) phonenumber@txt.bell.ca

Bell South phonenumber@bellsouth.cl

Bell South Mobility phonenumber@blsdcs.net

Blue Sky Frog phonenumber@blueskyfrog.com

Boost phonenumber@myboostmobile.com

Cellular One 10digitphonenumber@mobile.celloneusa.com

Cellular One West phonenumber@mycellone.com

Cingular Wireless 10digitphonenumber@mobile.mycingular.com

Dutchtone/Orange-NL phonenumber@sms.orange.nl

Edge Wireless phonenumber@sms.edgewireless.com

Fido phonenumber@fido.ca

Golden Telecom phonenumber@sms.goldentele.com

Idea Cellular phonenumber@ideacellular.net

Manitoba Telecom Systems phonenumber@text.mtsmobility.com

MetroPCS 10digitphonenumber@mymetropcs.com

MobileOne phonenumber@m1.com.sg

Mobilfone phonenumber@page.mobilfone.com

file:///D|/!!/final/Isms_email_addresses.html (1 von 2) [29.03.2008 23:25:08]

mailto:10digitphonenumber@alltelmessage.com.html
mailto:10digitpagernumber@paging.acswireless.com.html
mailto:phonenumber@sms.beemail.ru.html
mailto:phonenumber@txt.bell.ca.html
mailto:phonenumber@bellsouth.cl.html
mailto:phonenumber@blsdcs.net.html
mailto:phonenumber@blueskyfrog.com.html
mailto:phonenumber@myboostmobile.com.html
mailto:10digitphonenumber@mobile.celloneusa.com.html
mailto:phonenumber@mycellone.com.html
mailto:10digitphonenumber@mobile.mycingular.com.html
mailto:phonenumber@sms.orange.nl.html
mailto:phonenumber@sms.edgewireless.com.html
mailto:phonenumber@fido.ca.html
mailto:phonenumber@sms.goldentele.com.html
mailto:phonenumber@ideacellular.net.html
mailto:phonenumber@text.mtsmobility.com.html
mailto:10digitphonenumber@mymetropcs.com.html
mailto:phonenumber@m1.com.sg.html
mailto:phonenumber@page.mobilfone.com.html

Isms_email_addresses.html

Mobility Bermuda phonenumber@ml.bm

Netcom phonenumber@sms.netcom.no

Nextel 10digitphonenumber@messaging.nextel.com

NPI Wireless phonenumber@npiwireless.com

O2 username@o2.co.uk

Orange phonenumber@orange.net

Oskar phonenumber@mujoskar.cz

Personal Communication sms@pcom.ru (number in subject line)

PlusGSM phonenumber@text.plusgsm.pl

Qualcomm name@pager.qualcomm.com

Qwest 10digitphonenumber@qwestmp.com

Southern LINC 10digitphonenumber@page.southernlinc.com

Sprint PCS 10digitphonenumber@messaging.sprintpcs.com

SunCom number@tms.suncom.com

SureWest Communications phonenumber@mobile.surewest.com

T-Mobile 10digitphonenumber@tmomail.net

T-Mobile Germany phonenumber@t-d1-sms.de

T-Mobile UK phonenumber@t-mobile.uk.net

Tele2 Latvia phonenumber@sms.tele2.lv

Telefonica Movistar phonenumber@movistar.net

Telenor phonenumber@mobilpost.no

TIM 10digitphonenumber@timnet.com

UMC phonenumber@sms.umc.com.ua

Unicel phonenumber@utext.com

Verizon Pagers 10digitpagernumber@myairmail.com

Verizon PCS 10digitphonenumber@vtext.com

Virgin Mobile phonenumber@vmobl.com

Wyndtell number@wyndtell.com

file:///D|/!!/final/Isms_email_addresses.html (2 von 2) [29.03.2008 23:25:08]

mailto:phonenumber@ml.bm.html
mailto:phonenumber@sms.netcom.no.html
mailto:10digitphonenumber@messaging.nextel.com.html
mailto:phonenumber@npiwireless.com.html
mailto:username@o2.co.uk.html
mailto:phonenumber@orange.net.html
mailto:phonenumber@mujoskar.cz.html
mailto:sms@pcom.ru.html
mailto:phonenumber@text.plusgsm.pl.html
mailto:name@pager.qualcomm.com.html
mailto:10digitphonenumber@qwestmp.com.html
mailto:10digitphonenumber@page.southernlinc.com.html
mailto:10digitphonenumber@messaging.sprintpcs.com.html
mailto:number@tms.suncom.com.html
mailto:phonenumber@mobile.surewest.com.html
mailto:10digitphonenumber@tmomail.net.html
mailto:phonenumber@t-d1-sms.de.html
mailto:phonenumber@t-mobile.uk.net.html
mailto:phonenumber@sms.tele2.lv.html
mailto:phonenumber@movistar.net.html
mailto:phonenumber@mobilpost.no.html
mailto:10digitphonenumber@timnet.com.html
mailto:phonenumber@sms.umc.com.ua.html
mailto:phonenumber@utext.com.html
mailto:10digitpagernumber@myairmail.com.html
mailto:10digitphonenumber@vtext.com.html
mailto:phonenumber@vmobl.com.html
mailto:number@wyndtell.com.html

appendix_1_0.html

Webbots, Spiders, and Screen Scrapers
Table of Contents
 • Index • Errata

Not Available in This
Format Html view Reduce Text zoom Increase Previous Next

Appendix. Colophon

Webbots, Spiders, and Screen Scrapers was laid out in Adobe FrameMaker. The font
families used are New Baskerville for body text, Futura for headings and tables, and
Dogma for titles.

The book was printed and bound at Malloy Incorporated in Ann Arbor, Michigan. The
paper is Glatfelter Thor 60# Antique, which is made from 50 percent recycled materials,
including 30 percent postconsumer content. The book uses a RepKover binding, which
allows it to lay flat when open.

Webbots, Spiders, and Screen Scrapers
Table of Contents
 • Index • Errata

Not Available in This
Format Html view Reduce Text zoom Increase Previous Next

Top of Page

URL http://safari.informit.com/9781593271206/appendix_1_0

file:///D|/!!/final/appendix_1_0.html [29.03.2008 23:25:33]

file:///9781593271206
file:///9781593271206?tocview=true
file:///9781593271206/index
http://www.oreilly.com/catalog/1593271204/errata/
file:///9781593271206/Isms_email_addresses
file:///9781593271206/Isms_email_addresses
file:///9781593271206/index
file:///9781593271206/index
file:///9781593271206
file:///9781593271206?tocview=true
file:///9781593271206/index
http://www.oreilly.com/catalog/1593271204/errata/
file:///9781593271206/Isms_email_addresses
file:///9781593271206/Isms_email_addresses
file:///9781593271206/index
file:///9781593271206/index
file:///9781593271206/appendix_1_0

index.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]
[X] [Y] [Z]

file:///D|/!!/final/index.html [29.03.2008 23:25:34]

SYMBOL.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V]
[W] [X] [Y] [Z]

$_GET array 2nd
$_POST array 2nd
$address array 2nd
$content_type variable 2nd
$data_array 2nd 3rd
 for LIB_http library functions
$FETCH_DELAY 2nd
$filter_array 2nd
$link_array elements 2nd
$page_base variable 2nd
$result array, FILE element 2nd
$status_code_array 2nd
& (ampersand), in GET method
. (period)
 as NNTP end-of-message indicator
 as POP3 end-of-message indicator
404 Not Found error
<base> tag
<data> tags, for insertion parse
<div> tags, parsing data into array
<form> tag, action attribute
<head> tag, detecting redirection
 tags
 alt attribute
 parsing from downloaded web page
 src attribute from array, parsing
<title> tag, and spiders
<xmp> and </xmp> tags
 displaying parses within
? (question mark), in GET method

file:///D|/!!/final/SYMBOL.html [29.03.2008 23:25:35]

A.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]
[X] [Y] [Z]

abstractions, of program interface
access log file
 and webbot detection
 error logging in
 legal issues
access rights, verifying
action attribute of form 2nd
action of person, simulating
agent name
 default for
 defining for PHP/CURL session
 log record of
 spoofing
 with cURL
aggregating information by relevance
aggregation webbots
 and filtering
 CDATA
 choosing data sources
 downloading and parsing script
 RSS feeds
 writing
Alexa web-monitoring service
"all rights reserved" notice
Amazon Web Services, SOAP interfaces
Amazon.com
ampersand (&), in GET method
anonymous browsing webbots
 anonymizer project
 online exposure
 proxied environments
 proxies
anonymous commercial email
Apache
Application Program Interfaces (APIs)
archive_links() function
ARPANET
array
 assigning parsed data to
 elements, form data as
 limitations
 of tags, src attribute from
 parsing

file:///D|/!!/final/A.html (1 von 2) [29.03.2008 23:25:36]

http://amazon.com/

A.html

 data set into
 table into
attributes, parsing values
audience, for Internet
authentication
 and encryption
 basic
 by cURL
 curl_setopt() function options for
 test pages
 default response to request
 digest
 example scripts and practice pages
 for deterring webbots
 of buyer by procurement webbot
 of snipers
 session
 strengthening by combining techniques
 types
 with query string sessions
automating tasks

file:///D|/!!/final/A.html (2 von 2) [29.03.2008 23:25:36]

B.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]
[X] [Y] [Z]

bandwidth
 consumption
 hijacking
 stealing
base64-encoding
basic authentication
 by cURL
 curl_setopt() function options for
 test pages
batch file, for webbot
Bcc: address field
Beck & Tysver legal website
Bidder's Edge spiders
bids, timing placement of
binary-safe download routine
biometrics
blobs, storing images as
blogs
broken links, webbot detecting
browser buffering
browsers
 emulating
 executing webbots in
 inspiration from limitations of
 problem with
 search engine treatment vs. treatment of webbot
 tabbed browsing
business leaders, webbot benefits for
buy-it-now auction purchases

file:///D|/!!/final/B.html [29.03.2008 23:25:37]

C.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]
[X] [Y] [Z]

CamelCase
CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) 2nd 3rd
Cascading Style Sheets (CSS)
 impact of removing HTML tags
case
 for naming
 sensitivity, stristr() function vs. strstr() function
Cc: address field
CDATA tags
certificates 2nd
 local
Children's Online Privacy Protection Act (COPPA)
ciphers
client URL Request Library (cURL)
client-server technology
clipping service, online
clocks, synchronization for sniper
code
 in book
 libraries available online
collusion webbots
comma-separated value (CSV) files, file() function for downloading
command shell
 and spider scripts
 executing webbots in
Common Object Request Broker Architecture (CORBA)
communication, on incompatible systems
community forums, uploading single-pixel image to
competitive advantage 2nd
 from webbots
Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA) 2nd 3rd
compressing data
computers. See also server
 distributing tasks across multiple
Content-Type line
 for email message
 in HTTP header
converting website into function
COOKIE_FILE
cookies
 about
 adapting to management changes
 and forms

file:///D|/!!/final/C.html (1 von 3) [29.03.2008 23:25:38]

C.html

 and webbot design
 cURL to read and write
 defaults for
 deleting 2nd
 expiration dates for
 for authentication
 for deterring webbots
 managing multiple users'
 permanent
 persistence with
 PHP/CURL and
 purging temporary
 viewing
copyright issues 2nd
 "all rights reserved" notice
 and facts
 fair use laws
 registration
CORBA (Common Object Request Broker Architecture)
cron command
cryptography
CSV (comma-separated value) files, file() function for downloading
cURL 2nd
 for executing webbot on remote server
 local certificate and
curl_error() function
curl_exec() function
curl_getInfo() function
curl_init() function
curl_setopt() function 2nd
 case sensitivity
 CURLOPT_COOKIEFILE option 2nd
 CURLOPT_COOKIEJAR option 2nd
 CURLOPT_FOLLOWLOCATION option
 CURLOPT_HEADER option
 CURLOPT_HTTPHEADER option
 CURLOPT_MAXREDIRS option 2nd
 CURLOPT_NOBODY option
 CURLOPT_PORT option
 CURLOPT_POST option
 CURLOPT_POSTFIELDS option
 CURLOPT_REFERER option
 CURLOPT_RETURNTRANSFER option
 CURLOPT_SSL_VERIFYPEER option
 CURLOPT_TIMEOUT option
 CURLOPT_UNRESTRICTED_AUTH option
 CURLOPT_URL option
 CURLOPT_USERAGENT option

file:///D|/!!/final/C.html (2 von 3) [29.03.2008 23:25:38]

C.html

 CURLOPT_USERPWD option 2nd
 CURLOPT_VERBOSE option
 executing
 for time-out values
custom logs, and webbot detection

file:///D|/!!/final/C.html (3 von 3) [29.03.2008 23:25:38]

D.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]
[X] [Y] [Z]

daily scheduling of webbots
data
 fields in forms
 networks, access and abuse
 set, parsing into array
 sources, choosing for aggregation webbot
data management
 organizing data
 naming conventions
 storing images in database
 storing text in database
 structured files
 reducing size
 data compression
 removing formatting
 storing references to image files
 thumbnailing images
data-only interfaces
 lightweight data exchange
 SOAP (Simple Object Access Protocol)
 XML (eXtensible Markup Language)
database
 for saving links
 storing images in
 storing text in
dates, in filenames
DCOM (Distributed Component Object Model)
decode_zipcode() function
deep linking
default file, for web page
delays, inserting between page fetches 2nd
DELE command (POP3)
deleting
 cookies 2nd
 HTML formatting
 unwanted text
 white space
delimiters
 parsing text between
 splitting string at
denial of service (DoS) attack, preventing
DES (Digital Encryption Standard)
describe_zipcode() function

file:///D|/!!/final/D.html (1 von 2) [29.03.2008 23:25:39]

D.html

developers, webbot benefits for
digest authentication
digital certificate 2nd
 local
Digital Encryption Standard (DES)
directories
 script for creating 2nd
disclaimer
disk swapping
Distributed Component Object Model (DCOM)
DoubleClick online advertising
download_binary_file() function
download_images_for_page() function 2nd 3rd
download_parse_rss() function 2nd
downloading
 linked page
 web pages
 vs. files
 with FTP
 with LIB_http
 with link-verification webbot
 with parsing script
 with PHP built-in functions
 with PHP/CURL

file:///D|/!!/final/D.html (2 von 2) [29.03.2008 23:25:39]

E.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]
[X] [Y] [Z]

eBay
 snipers and
Electronic Frontier Foundation (EFF)
email
 as webbot trigger
 for notification
 of FTP transmission failure
 of webbot action
 guidelines
 headers
 keeping legitimate out of spam filter
 placing account information in script
 reading with webbots
 sending
 email with webbots
 HTML-formatted email
 notifications with webbots
 with mail() function
 with PHP
 undeliverable as alert to invalid address
email-controlled webbots
encryption
 authentication and
 certificate
 for deterring webbots
 overview of web
 webbots using
end-of-message indicator (POP3)
error
 handlers
 information
 from http_get() function
 from http_get_withheader() function
 logs, and webbot detection
eval() function
event triggers
exclude_link() function
exclusion list, for spiders
exe_sql() function
executing webbots
 in browsers
 in command shell
expiration dates, for cookies

file:///D|/!!/final/E.html (1 von 2) [29.03.2008 23:25:40]

E.html

file:///D|/!!/final/E.html (2 von 2) [29.03.2008 23:25:40]

F.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]
[X] [Y] [Z]

facts, and copyright
fair use laws
fault-tolerant webbots
 cookie management changes
 form changes
 network outages and congestion
 page content changes
 URL changes
 and referer values accuracy
 page redirection
 requests for nonexistent pages
fgets() function 2nd
file handle
file() function, downloading files with
filesystem, geographically structured
filtering
 by aggregation webbot
 information by relevance
finding articles, in newsgroups
Flash
 for deterring webbots
 for website navigation, problems caused by
fopen() function
form data variables
format of names
formatted_mail() function 2nd
forms
 adapting to changes
 analyzing 2nd
 and cookies
 avoiding errors
 emulation
 legal issues and
 handlers
 input tags
 main parts
 source code
 displaying
 saving
 submission 2nd
 cURL for
 data fields in forms
 event triggers

file:///D|/!!/final/F.html (1 von 2) [29.03.2008 23:25:42]

F.html

 form handlers
 GET method
 POST method 2nd
 reverse engineering form interfaces
 unpredictability
fputs() function
From: address field
FTP (File Transfer Protocol)
 server, connecting to
 webbots
ftp_cdup() function
ftp_chdir() function
ftp_delete() function
ftp_get() function
ftp_mkdir() function
ftp_put() function
ftp_rawlist() function
ftp_rename() function
ftp_rmdir() function
fully resolved URLs
functions. See also individual functions
 converting website into
 describe_zipcode() function
 interface definition
 submitting form
 target page analysis

file:///D|/!!/final/F.html (2 von 2) [29.03.2008 23:25:42]

G.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]
[X] [Y] [Z]

garbage collection, by PHP
geographically structured filesystem
GET method
 and errors
 http_get() function for downloading with
 vs. POST method
get_attribute() function 2nd
get_base_page_address() function
get_domain() function
get_http() function
get_nntp_article_ids() function
get_nntp_groups() function 2nd
Google
 bombing
 developer API
 spiders from
GoogleRankings.com

file:///D|/!!/final/G.html [29.03.2008 23:25:42]

http://googlerankings.com/

H.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]
[X] [Y] [Z]

hacking
 constructive
 webbot activity appearing as
handle for file
handshake process
hard drives, compressing files on
hardware requirements
harvest, separating from payload
harvest_links() function
hash
haystack
header tags, and search engine optimization
headers
 in email 2nd
 redirection
hijacking bandwidth 2nd
holidays, scheduling webbots on
Hormel Foods Corporation
hotel room prices, aggregating and filtering data
href attribute
 extracting value
 of link tag, parsing
HTML (Hypertext Markup Language)
 for formatting email
 formatting, deleting
 parsing
 content of reoccurring tags
 poorly written
 text between tags
 removing formatting
htmlspecialchars() function
HTMLTidy (Tidy) 2nd
HTTP
 header
 and security
 exchanging cookies in
 protocol
 port for
 status codes 2nd
HTTP codes
 from http_get_withheader() function
http() routine
http_get() function 2nd 3rd 4th 5th 6th

file:///D|/!!/final/H.html (1 von 2) [29.03.2008 23:25:43]

H.html

http_get_form() function
http_get_form_withheader() function
http_get_withheader() function 2nd
http_header() function
http_post_form() function 2nd
http_post_withheader() function
HTTPS protocol
 port for
human patterns, webbot simulation of

file:///D|/!!/final/H.html (2 von 2) [29.03.2008 23:25:43]

I.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]
[X] [Y] [Z]

identity, online exposure and
image-capturing webbots
 binary-safe download routine
 directory structure
 execution
 main script
 overview
image-processing loop
images
 borrowing from other sites
 single-pixel
 storing in database
 thumbnailing
incompatible systems, communication on
index file, for web page
indexing web pages, by search engine spider
industry news articles, consolidating
infinite loops, preventing
information, aggregating and filtering by relevance
initialization
 download_images_for page() function
 link-verification webbot
 parsing script
 search-ranking script
input tags in forms
insert() function
insertion parse 2nd
installing
 HTMLTidy
 PHP/CURL
intellectual property
 law
 protecting
interfaces, data-only
Internet
 access to
 audience for
 customizing for business
 law
Internet Explorer, setting webbot name to
intranet
IP (Internet Protocol) addresses
 converting private to public
 identifying ISP from

file:///D|/!!/final/I.html (1 von 2) [29.03.2008 23:25:44]

I.html

 resource for identifying

file:///D|/!!/final/I.html (2 von 2) [29.03.2008 23:25:44]

J.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]
[X] [Y] [Z]

Java applets, for deterring webbots
JavaScript
 as event trigger
 deleting
 for data manipulation
 for deterring webbots
 impact of removing HTML tags
 impact on spider indexing
 redirection with

file:///D|/!!/final/J.html [29.03.2008 23:25:45]

K.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]
[X] [Y] [Z]

Kelly v. Arriba Soft 2nd
keywords
 in meta tags
 spamming

file:///D|/!!/final/K.html [29.03.2008 23:25:46]

L.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]
[X] [Y] [Z]

landmark
 for end of data
 for table heading row
 to identify table
 using least likely to change
legal issues. See also copyright issues
 for email
 in form emulation
 Internet
 website policies and
legitimate mail, keeping out of spam filters
LIB_download_images library
LIB_http library 2nd
 default conditions for
 downloading with
 file for storing cookies
 for form analysis emulation
 for form emulation
 source code
 defaults
 functions
LIB_http_codes library
LIB_mail library
LIB_mysql library 2nd
 exe_sql() function
 insert() function
 update() function
LIB_nntp library
LIB_parse library
 parsing with
LIB_pop3 library
LIB_resolve_addresses library 2nd
LIB_rss library
LIB_simple_spider library
LIB_thumbnail library
lightweight data exchange
link-verification webbots
 advanced options
 displaying page status
 downloading linked page
 flowchart

file:///D|/!!/final/L.html (1 von 2) [29.03.2008 23:25:47]

L.html

 generating fully resolved URLs
 initialization and downloading target
 parsing links
 running
 setting page base
 verification loop
links
 broken, using webbot to detect
 href attribute of tag, parsing
 impact of removing HTML tags
 in anonymizer
 parsing
 substituting
 parsing
 relative, page base for
 saving in database
 well-defined, and search engine ranking
Linux, scheduling in
LIST command (POP3)
local certificates
Location: line, in HTTP header
log files
 software for monitoring
 webbot detection with
logging in, to POP3 mail server
login criteria

file:///D|/!!/final/L.html (2 von 2) [29.03.2008 23:25:47]

M.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]
[X] [Y] [Z]

Mac OS X, scheduling in
mail() function
maximum penetration level for spider
Message Digest Algorithm (MD5) 2nd
meta tags 2nd
Microsoft Outlook, using as news client
MIME type
mkdir() function
mkpath() function 2nd
monthly scheduling of webbots
Mosaic
Mozilla Thunderbird, using as news client
MSN, spiders from
MySpace, uploading single-pixel image to
MySQL 2nd

file:///D|/!!/final/M.html [29.03.2008 23:25:48]

N.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]
[X] [Y] [Z]

naming
 conventions
 data fields
 webbots
NAT (Network Address Translation)
National Oceanic and Atmospheric Association (NOAA)
needle
network
 adapting to outages and congestion
 socket
Network Address Translation (NAT)
Network News Transfer Protocol (NNTP)
 header
 news webbots
 and newsgroups
 finding articles in newsgroups
 NNTP use and history
 reading articles from newsgroup
 status codes
news
 articles, consolidating
 servers, identifying
newsgroups 2nd
 finding articles in
 reading articles from
 uploading single-pixel images to
Next button, simulating person clicking
NOAA (National Oceanic and Atmospheric Association)
nofollow option, for robots meta tag
noindex option, for robots meta tag
non-ASCII content, and search engine spiders
non-proxied environments, browsing in
nonexistent web pages, avoiding requests for
null string, replacing text with

file:///D|/!!/final/N.html [29.03.2008 23:25:49]

O.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]
[X] [Y] [Z]

obfuscation 2nd
obsolete web pages, risk of targeting
online
 auctions, automating bidding in
 clipping service
 purchases, automating
"open" mail server
opening tags, for function parameter
opensocket() function
optimizing website performance
organic placements in search results 2nd
organizing data
 naming conventions
 storing images in database
 storing text in database
 structured files
outgoing header message, from cURL session
overhead, in XML file

file:///D|/!!/final/O.html [29.03.2008 23:25:50]

P.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]
[X] [Y] [Z]

package-tracking information
packet sniffer
page
 base
 defining
 setting
 redirection
 CURLOPT_FOLLOWLOCATION option for
 for deterring webbots
 with cURL
 signature
paid placements in search results 2nd
parse tolerance
parse_array() function 2nd 3rd 4th 5th
parsing
 attribute values
 data set into array
 image tags from downloaded web page
 links
 poorly written HTML
 position vs. relative
 src attribute, from array of tags
 standard routines for
 text between delimiters
 unformatted text
 with LIB_parse
passwords
 for deterring webbots
pay-per-click advertising
payload for spider 2nd
 separating from harvest
penetration level for spider
period (.)
 as NNTP end-of-message indicator
 as POP3 end-of-message indicator
periodicity of webbots 2nd
permanent cookies
persistence with cookies
phishing attack 2nd
PHP 2nd
 and FTP
 and SSL
 detecting string within string

file:///D|/!!/final/P.html (1 von 3) [29.03.2008 23:25:51]

P.html

 downloading
 with built-in functions
 with scripts
 for sending email
 functions for compressing data
 version 5 support for SOAP
 website
PHP Extension and Application Repository
php.ini file, editing to show mail server location
PHP/CURL
 and certificates
 and cookies
 downloading with
 encryption and
 for following header redirections
 installing
 sessions
 closing
 creating minimal
 initiating
 retrieving information
 setting options
 viewing errors
plotting Wi-Fi networks
Poker BodyGuard anti-pokerbot software
pokerbots
POP3 protocol
 authentication failure
 executing commands with webbots
port
 for HTTP and HTTPS protocols
 for POP3 server
position parsing, avoiding
POST method
 and errors
price-monitoring webbots
 parsing script
 target
privacy, threats to
private network IP addresses, converting to public
procurement bot
 purchase criteria
 purchase triggers
 theory
project ideas
 aggregating and filtering information
 automating tasks
 communicating on incompatible systems
 consolidating industry news articles
 intellectual property protection
 online clipping service

file:///D|/!!/final/P.html (2 von 3) [29.03.2008 23:25:51]

P.html

 plotting Wi-Fi networks
 pokerbots
 tracking web technologies
 verifying access rights
 WebSiteOptimization.com
projects
 aggregation webbots
 anonymous browsing webbots
 converting website into function
 FTP webbots
 image-capturing webbots
 link-verification webbots
 NNTP news webbots
 price-monitoring webbots
 reading email with webbots
 search-ranking webbots
 sending email with webbots
proxied environments
proxies, anonymity with
proxybot
public, capitalizing on inexperience with webbots
purchase
 criteria, for procurement bot
 triggers, for procurement bot

file:///D|/!!/final/P.html (3 von 3) [29.03.2008 23:25:51]

http://websiteoptimization.com/

Q.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]
[X] [Y] [Z]

query string sessions, authentication with
question mark (?), in GET method
QUIT command (POP3)

file:///D|/!!/final/Q.html [29.03.2008 23:25:52]

R.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]
[X] [Y] [Z]

random delay
ranking web pages, by search engine spider
read_nntp_article() function
read_nntp_buffer() function
reading mail from POP3 server
Real Simple Syndication (RSS) feed 2nd
realm
redirection
 CURLOPT_FOLLOWLOCATION option for
 for deterring webbots
 with cURL
references to image files, storing
referer
 management, with cURL
 variable
regular expressions
 avoiding
relational database
relative
 links, page base for
 parsing
relay host
relevance, aggregating and filtering information by
Remote Procedure Call (RPC)
remote server, using cURL to execute webbot on
remove() function
replacing portion of string
Reply-to: address field
resolve_address() function
resources, distributing
respect
RETR command (POP3)
Return-path: address field
return_between() function 2nd 3rd
reverse DNS lookup
reverse engineering form interfaces
RoadRunner
robot exclusion file
robots meta tag
robots.txt file
root
 directory, creating for imported file structure
 domain, parsing from target URL

file:///D|/!!/final/R.html (1 von 2) [29.03.2008 23:25:53]

R.html

RPC (Remote Procedure Call)
RSET command (POP3)
RSS (Real Simple Syndication) feed 2nd

file:///D|/!!/final/R.html (2 von 2) [29.03.2008 23:25:53]

S.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]
[X] [Y] [Z]

sale item, verifying availability
saving
 links in database
 source code for form
scheduling
 adding variety to
 and stealth 2nd
 complex
 disabling
 for distributed spider
 webbots to run daily
 webbots to run monthly
 Windows Task Scheduler
scripts
 writing in small steps
Sealand
search engine
 optimization
 spiders
 design techniques hindering
 indexing web pages with
 Terms of Service agreement
search results page, parts of
search term, in URL
search-ranking webbots
 fetching search results
 how they work
 initializing variables
 parsing search results
 running
 search results page description
 starting loop
 what they do
Secure Sockets Layer (SSL)
 CURLOPT_SSL_VERIFYPEER option for
 sites, downloading images from
seed URL
sending email
server
 avoiding undue load on
 error log, form errors in
 obtaining clock value
 remote, using cURL to execute webbot on
session

file:///D|/!!/final/S.html (1 von 3) [29.03.2008 23:25:54]

S.html

 authentication
 ID, forms with
 value, dynamically assigned
set_time_limit() function 2nd
Short Message Service (SMS) 2nd
Simple Object Access Protocol (SOAP)
simulating action of person
single points of failure, avoiding
single-pixel image, uploading
size reduction
 data compression
 removing formatting
 storing references to image files
SMS (Short Message Service) 2nd
snipers
 authentication
 clock synchronization
 testing
SOAP (Simple Object Access Protocol)
socket management, with cURL
software
 for monitoring logs
 requirements for
source code
 configuration area of LIB_mysql
 for form
 displaying
 saving
spam
 filters
 keeping legitimate mail out of
spam indexing
special characters
SpecificClick online advertising
spiders
 adding payload 2nd
 distributing tasks across multiple computers
 examples
 experimenting with
 how they work
 LIB_simple_spider library
 archive_links() function
 exclude_link() function
 get_domain() function
 harvest_links() function
 maximum penetration level for
 options for treating unwanted
 potential ideas for
spiders, continued
 of search engines
 regulating page requests of

file:///D|/!!/final/S.html (2 von 3) [29.03.2008 23:25:54]

S.html

 resources for
 saving links in database
 setting traps for
split_string() function
splitting string, at delimiter
SQL (Structured Query Language)
Squid
src attribute, from array of tags, parsing
status codes
 HTTP
 NNTP
status messages, quantity created in file transfer
status of request, from http_get_withheader() function
stealth
 and scheduling 2nd
 reasons for
 simulating human patterns in order to achieve
Stenberg, Daniel
str_replace() function 2nd
strings
 detecting within strings
 measuring similarity of
 replacing portion of
 splitting at delimiter
strip_cdata_tags() function
strip_tags() function
stristr() function
strops() function
strstr() function
structured files
Structured Query Language (SQL)
style sheets
 impact of removing HTML tags
submit button
substr() function
synchronization
 of clocks for sniper

file:///D|/!!/final/S.html (3 von 3) [29.03.2008 23:25:54]

T.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]
[X] [Y] [Z]

tables
 parsing data in
 using landmarks to identify
target URL, defining for PHP/CURL session
targets
 downloading and preparing for anonymizer
 downloading, in parsing script
 validation in download_images_for_page() function
Task Scheduler (Windows)
 complex scheduling
 Schedule tab
tasks, automating
Telnet
 for executing POP3 commands
temporary cookies
 purging
Terms of Service agreements
 for search engines
text
 embedding in other media
 messaging
 parsing unformatted
 removing unwanted
 storing in database
thumbnailing images
Tidy (HTMLTidy) 2nd
time
 required for downloading linked pages
 running webbot during busy
timeout
 curl_setopt() function for
 default for
 and spiders
 for PHP/CURL
 in PHP, changing
timestamp, Unix
TLS (Transport Layer Security)
tracking web technologies
TrackRates.com
transactional websites
transfer protocols, cURL support for
Transport Layer Security (TLS)
trespass-to-chattels law 2nd

file:///D|/!!/final/T.html (1 von 2) [29.03.2008 23:25:55]

http://trackrates.com/

T.html

triggers, non-calendar-based
trim() function
Tysver, Daniel A.

file:///D|/!!/final/T.html (2 von 2) [29.03.2008 23:25:55]

U.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]
[X] [Y] [Z]

undeliverable mail, using to prune access lists
unformatted text, parsing
unique keywords
Unix
 scheduling in
 timestamp
unwanted text, deleting
update() function, of LIB_mysql
updating website, frequency for deterring webbots
uploading files, with FTP
urlencode() function
URLs
 adapting to changes
 page redirection
 referer values' accuracy
 requests for nonexistent pages
 defining target for PHP/CURL session
 fully resolved
US Copyright Office 2nd
usernames

file:///D|/!!/final/U.html [29.03.2008 23:25:56]

V.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]
[X] [Y] [Z]

validation point, for downloaded web page
variables, passing to webbots
verification loop
Virginia, Anti-Spam law
virtual
 private networks (VPNs)
 property, laws governing

file:///D|/!!/final/V.html [29.03.2008 23:25:57]

W.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]
[X] [Y] [Z]

weather forecasts
web
 agent, selectively allowing access to specific
 pages
 accessibility to webbots
 adapting to content changes
 avoiding requests for nonexistent
 displaying proxied
 displaying status of
 notification of change in
 parsing image tags from downloaded
 poorly written HTML within
 ranking by search engine spider
 status of request for
 validation point for
 services
 designing custom lightweight
 technologies, tracking
webbot_error_handler() function
WEBBOT_NAME constant
webbots (web robots)
 benefits of
 for business leaders
 for developers
 cookies and design of
 countermeasures for
 allowing selective access to specific agents
 embedding text in other media
 obfuscation
 reasons for
 robots meta tag
 robots.txt file
 Terms of Service agreements
 with cookies, encryption, JavaScript, and redirection
 creating first script
 daily scheduling of
 executing
 in browsers
 in command shell
 fault-tolerant
 for reading email
 and executing POP3 commands
 and POP3 protocol

file:///D|/!!/final/W.html (1 von 2) [29.03.2008 23:25:58]

W.html

 growth in use
 monthly scheduling of
 periodicity of 2nd
 preparing to run as scheduled tasks
 preventing negative consequences of
 project ideas
 reasons for stealth
webbots, continued
 and trespass-to-chattels law
 for sending email
 script, creating first
 setting traps
 simulating human patterns
 spreading burden of running complex
 testing
 weekend scheduling of
WebSiteOptimization.com
websites
 converting into functions
 for book
 limiting access to
 optimizing performance of
 transactional
weekends, scheduling webbots to run on
well-defined links, for search engine optimization
white space, deleting
Wi-Fi networks, plotting
Windows Task Scheduler
 complex scheduling
wireless subscriber, mail server
World Wide Web
World Wide Web Consortium (W3C), HTTP codes
wrapper function, using PHP/CURL within

file:///D|/!!/final/W.html (2 von 2) [29.03.2008 23:25:58]

http://websiteoptimization.com/

X.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]
[X] [Y] [Z]

XML (eXtensible Markup Language)
 for RSS feed
 overhead

file:///D|/!!/final/X.html [29.03.2008 23:25:59]

Y.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]
[X] [Y] [Z]

Yahoo!, spiders from

file:///D|/!!/final/Y.html [29.03.2008 23:26:00]

Z.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]
[X] [Y] [Z]

ZIP codes
 database for
 web page for decoding

file:///D|/!!/final/Z.html [29.03.2008 23:26:01]

	main
	Lokale Festplatte
	main.html

	toc
	Lokale Festplatte
	toc.html

	Ipreface
	Lokale Festplatte
	Ipreface.html

	Idedication
	Lokale Festplatte
	Idedication.html

	Iacknowledgments
	Lokale Festplatte
	Iacknowledgments.html

	Iintroduction
	Lokale Festplatte
	Iintroduction.html

	Ifundamental_Concepts_and_techniques
	Lokale Festplatte
	Ifundamental_Concepts_and_techniques.html

	Iwhat_apos_s_in_it_for_you_question
	Lokale Festplatte
	Iwhat_apos_s_in_it_for_you_question.html

	Iuncovering_the_internet_apos_s_true_potential
	Lokale Festplatte
	Iuncovering_the_internet_apos_s_true_potential.html

	Iwhats_in_it_for_developers_question
	Lokale Festplatte
	Iwhats_in_it_for_developers_question.html

	Iwhats_in_it_for_business_leaders_question
	Lokale Festplatte
	Iwhats_in_it_for_business_leaders_question.html

	Ifinal_thoughts
	Lokale Festplatte
	Ifinal_thoughts.html

	Iideas_for_webbot_projects
	Lokale Festplatte
	Iideas_for_webbot_projects.html

	Iinspiration_from_browser_limitations
	Lokale Festplatte
	Iinspiration_from_browser_limitations.html

	Ia_few_crazy_ideas_to_get_you_started
	Lokale Festplatte
	Ia_few_crazy_ideas_to_get_you_started.html

	Ifinal_thoughts_id1
	Lokale Festplatte
	Ifinal_thoughts_id1.html

	Idownloading_web_pages
	Lokale Festplatte
	Idownloading_web_pages.html

	Ithink_about_files_comma_not_web_pages
	Lokale Festplatte
	Ithink_about_files_comma_not_web_pages.html

	Idownloading_files_with_phps_built_in_functions
	Lokale Festplatte
	Idownloading_files_with_phps_built_in_functions.html

	Iintroducing_php_exclamation_curl
	Lokale Festplatte
	Iintroducing_php_exclamation_curl.html

	Iinstalling_php_exclamation_curl
	Lokale Festplatte
	Iinstalling_php_exclamation_curl.html

	Ilib_http
	Lokale Festplatte
	Ilib_http.html

	Ifinal_thoughts_id2
	Lokale Festplatte
	Ifinal_thoughts_id2.html

	Iparsing_techniques
	Lokale Festplatte
	Iparsing_techniques.html

	Iparsing_poorly_written_html
	Lokale Festplatte
	Iparsing_poorly_written_html.html

	Istandard_parse_routines
	Lokale Festplatte
	Istandard_parse_routines.html

	Iusing_lib_parse
	Lokale Festplatte
	Iusing_lib_parse.html

	Iuseful_php_functions
	Lokale Festplatte
	Iuseful_php_functions.html

	Ifinal_thoughts_id3
	Lokale Festplatte
	Ifinal_thoughts_id3.html

	Iautomating_form_submission
	Lokale Festplatte
	Iautomating_form_submission.html

	Ireverse_engineering_form_interfaces
	Lokale Festplatte
	Ireverse_engineering_form_interfaces.html

	Iform_handlers_comma_data_fields_comma_methods_com
	Lokale Festplatte
	Iform_handlers_comma_data_fields_comma_methods_com.html

	Iunpredictable_forms
	Lokale Festplatte
	Iunpredictable_forms.html

	Ianalyzing_a_form
	Lokale Festplatte
	Ianalyzing_a_form.html

	Ifinal_thoughts_id4
	Lokale Festplatte
	Ifinal_thoughts_id4.html

	Imanaging_large_amounts_of_data
	Lokale Festplatte
	Imanaging_large_amounts_of_data.html

	Iorganizing_data
	Lokale Festplatte
	Iorganizing_data.html

	Imaking_data_smaller
	Lokale Festplatte
	Imaking_data_smaller.html

	Ithumbnailing_images
	Lokale Festplatte
	Ithumbnailing_images.html

	Ifinal_thoughts_id5
	Lokale Festplatte
	Ifinal_thoughts_id5.html

	Iprojects
	Lokale Festplatte
	Iprojects.html

	Iprice_monitoring_webbots
	Lokale Festplatte
	Iprice_monitoring_webbots.html

	Ithe_target
	Lokale Festplatte
	Ithe_target.html

	Idesigning_the_parsing_script
	Lokale Festplatte
	Idesigning_the_parsing_script.html

	Iinitialization_and_downloading_the_target
	Lokale Festplatte
	Iinitialization_and_downloading_the_target.html

	Ifurther_exploration
	Lokale Festplatte
	Ifurther_exploration.html

	Iimage_capturing_webbots
	Lokale Festplatte
	Iimage_capturing_webbots.html

	Iexample_image_capturing_webbot
	Lokale Festplatte
	Iexample_image_capturing_webbot.html

	Icreating_the_image_capturing_webbot
	Lokale Festplatte
	Icreating_the_image_capturing_webbot.html

	Ifurther_exploration_id1
	Lokale Festplatte
	Ifurther_exploration_id1.html

	Ifinal_thoughts_id6
	Lokale Festplatte
	Ifinal_thoughts_id6.html

	Ilink_verification_webbots
	Lokale Festplatte
	Ilink_verification_webbots.html

	Icreating_the_link_verification_webbot
	Lokale Festplatte
	Icreating_the_link_verification_webbot.html

	Irunning_the_webbot
	Lokale Festplatte
	Irunning_the_webbot.html

	Ifurther_exploration_id2
	Lokale Festplatte
	Ifurther_exploration_id2.html

	Ianonymous_browsing_webbots
	Lokale Festplatte
	Ianonymous_browsing_webbots.html

	Ianonymity_with_proxies
	Lokale Festplatte
	Ianonymity_with_proxies.html

	Ithe_anonymizer_project
	Lokale Festplatte
	Ithe_anonymizer_project.html

	Ifinal_thoughts_id7
	Lokale Festplatte
	Ifinal_thoughts_id7.html

	Isearch_ranking_webbots
	Lokale Festplatte
	Isearch_ranking_webbots.html

	Idescription_of_a_search_result_page
	Lokale Festplatte
	Idescription_of_a_search_result_page.html

	Iwhat_the_search_ranking_webbot_does
	Lokale Festplatte
	Iwhat_the_search_ranking_webbot_does.html

	Irunning_the_search_ranking_webbot
	Lokale Festplatte
	Irunning_the_search_ranking_webbot.html

	Ihow_the_search_ranking_webbot_works
	Lokale Festplatte
	Ihow_the_search_ranking_webbot_works.html

	Ithe_search_ranking_webbot_script
	Lokale Festplatte
	Ithe_search_ranking_webbot_script.html

	Ifinal_thoughts_id8
	Lokale Festplatte
	Ifinal_thoughts_id8.html

	Ifurther_exploration_id3
	Lokale Festplatte
	Ifurther_exploration_id3.html

	Iaggregation_webbots
	Lokale Festplatte
	Iaggregation_webbots.html

	Ichoosing_data_sources_for_webbots
	Lokale Festplatte
	Ichoosing_data_sources_for_webbots.html

	Iexample_aggregation_webbot
	Lokale Festplatte
	Iexample_aggregation_webbot.html

	Iadding_filtering_to_your_aggregation_webbot
	Lokale Festplatte
	Iadding_filtering_to_your_aggregation_webbot.html

	Ifurther_exploration_id4
	Lokale Festplatte
	Ifurther_exploration_id4.html

	Iftp_webbots
	Lokale Festplatte
	Iftp_webbots.html

	Iexample_ftp_webbot
	Lokale Festplatte
	Iexample_ftp_webbot.html

	Iphp_and_ftp
	Lokale Festplatte
	Iphp_and_ftp.html

	Ifurther_exploration_id5
	Lokale Festplatte
	Ifurther_exploration_id5.html

	Inntp_news_webbots
	Lokale Festplatte
	Inntp_news_webbots.html

	Inntp_use_and_history
	Lokale Festplatte
	Inntp_use_and_history.html

	Iwebbots_and_newsgroups
	Lokale Festplatte
	Iwebbots_and_newsgroups.html

	Ifurther_exploration_id6
	Lokale Festplatte
	Ifurther_exploration_id6.html

	Iwebbots_that_read_email
	Lokale Festplatte
	Iwebbots_that_read_email.html

	Ithe_pop3_protocol
	Lokale Festplatte
	Ithe_pop3_protocol.html

	Iexecuting_pop3_commands_with_a_webbot
	Lokale Festplatte
	Iexecuting_pop3_commands_with_a_webbot.html

	Ifurther_exploration_id7
	Lokale Festplatte
	Ifurther_exploration_id7.html

	Iwebbots_that_send_email
	Lokale Festplatte
	Iwebbots_that_send_email.html

	Iemail_comma_webbots_comma_and_spam
	Lokale Festplatte
	Iemail_comma_webbots_comma_and_spam.html

	Isending_mail_with_smtp_and_php
	Lokale Festplatte
	Isending_mail_with_smtp_and_php.html

	Iwriting_a_webbot_that_sends_email_notifications
	Lokale Festplatte
	Iwriting_a_webbot_that_sends_email_notifications.html

	Ifurther_exploration_id8
	Lokale Festplatte
	Ifurther_exploration_id8.html

	Iconverting_a_website_into_a_function
	Lokale Festplatte
	Iconverting_a_website_into_a_function.html

	Iwriting_a_function_interface
	Lokale Festplatte
	Iwriting_a_function_interface.html

	Ifinal_thoughts_id9
	Lokale Festplatte
	Ifinal_thoughts_id9.html

	Iadvanced_technical_considerations
	Lokale Festplatte
	Iadvanced_technical_considerations.html

	Ispiders
	Lokale Festplatte
	Ispiders.html

	Ihow_spiders_work
	Lokale Festplatte
	Ihow_spiders_work.html

	Iexample_spider
	Lokale Festplatte
	Iexample_spider.html

	Ilib_simple_spider
	Lokale Festplatte
	Ilib_simple_spider.html

	Iexperimenting_with_the_spider
	Lokale Festplatte
	Iexperimenting_with_the_spider.html

	Iadding_the_payload
	Lokale Festplatte
	Iadding_the_payload.html

	Ifurther_exploration_id9
	Lokale Festplatte
	Ifurther_exploration_id9.html

	Iprocurement_webbots_and_snipers
	Lokale Festplatte
	Iprocurement_webbots_and_snipers.html

	Iprocurement_webbot_theory
	Lokale Festplatte
	Iprocurement_webbot_theory.html

	Isniper_theory
	Lokale Festplatte
	Isniper_theory.html

	Itesting_your_own_webbots_and_snipers
	Lokale Festplatte
	Itesting_your_own_webbots_and_snipers.html

	Ifurther_exploration_id10
	Lokale Festplatte
	Ifurther_exploration_id10.html

	Ifinal_thoughts_id10
	Lokale Festplatte
	Ifinal_thoughts_id10.html

	Iwebbots_and_cryptography
	Lokale Festplatte
	Iwebbots_and_cryptography.html

	Idesigning_webbots_that_use_encryption
	Lokale Festplatte
	Idesigning_webbots_that_use_encryption.html

	Ia_quick_overview_of_web_encryption
	Lokale Festplatte
	Ia_quick_overview_of_web_encryption.html

	Ilocal_certificates
	Lokale Festplatte
	Ilocal_certificates.html

	Ifinal_thoughts_id11
	Lokale Festplatte
	Ifinal_thoughts_id11.html

	Iauthentication
	Lokale Festplatte
	Iauthentication.html

	Iwhat_is_authentication_question
	Lokale Festplatte
	Iwhat_is_authentication_question.html

	Iexample_scripts_and_practice_pages
	Lokale Festplatte
	Iexample_scripts_and_practice_pages.html

	Ibasic_authentication_id1
	Lokale Festplatte
	Ibasic_authentication_id1.html

	Isession_authentication
	Lokale Festplatte
	Isession_authentication.html

	Ifinal_thoughts_id12
	Lokale Festplatte
	Ifinal_thoughts_id12.html

	Iadvanced_cookie_management
	Lokale Festplatte
	Iadvanced_cookie_management.html

	Ihow_cookies_work_id1
	Lokale Festplatte
	Ihow_cookies_work_id1.html

	Iphp_exclamation_curl_and_cookies
	Lokale Festplatte
	Iphp_exclamation_curl_and_cookies.html

	Ihow_cookies_challenge_webbot_design
	Lokale Festplatte
	Ihow_cookies_challenge_webbot_design.html

	Ifurther_exploration_id11
	Lokale Festplatte
	Ifurther_exploration_id11.html

	Ischeduling_webbots_and_spiders
	Lokale Festplatte
	Ischeduling_webbots_and_spiders.html

	Ithe_windows_task_scheduler
	Lokale Festplatte
	Ithe_windows_task_scheduler.html

	Icomplex_schedules
	Lokale Festplatte
	Icomplex_schedules.html

	Inon_calendar_based_triggers
	Lokale Festplatte
	Inon_calendar_based_triggers.html

	Ifinal_thoughts_id13
	Lokale Festplatte
	Ifinal_thoughts_id13.html

	Ilarger_considerations
	Lokale Festplatte
	Ilarger_considerations.html

	Idesigning_stealthy_webbots_and_spiders
	Lokale Festplatte
	Idesigning_stealthy_webbots_and_spiders.html

	Iwhy_design_a_stealthy_webbot_question
	Lokale Festplatte
	Iwhy_design_a_stealthy_webbot_question.html

	Istealth_means_simulating_human_patterns
	Lokale Festplatte
	Istealth_means_simulating_human_patterns.html

	Ifinal_thoughts_id14
	Lokale Festplatte
	Ifinal_thoughts_id14.html

	Iwriting_fault_tolerant_webbots
	Lokale Festplatte
	Iwriting_fault_tolerant_webbots.html

	Itypes_of_webbot_fault_tolerance
	Lokale Festplatte
	Itypes_of_webbot_fault_tolerance.html

	Ierror_handlers
	Lokale Festplatte
	Ierror_handlers.html

	Idesigning_webbot_friendly_websites
	Lokale Festplatte
	Idesigning_webbot_friendly_websites.html

	Ioptimizing_web_pages_for_search_engine_spiders
	Lokale Festplatte
	Ioptimizing_web_pages_for_search_engine_spiders.html

	Iweb_design_techniques_that_hinder_search_engine_s
	Lokale Festplatte
	Iweb_design_techniques_that_hinder_search_engine_s.html

	Idesigning_data_only_interfaces
	Lokale Festplatte
	Idesigning_data_only_interfaces.html

	Ikilling_spiders
	Lokale Festplatte
	Ikilling_spiders.html

	Iasking_nicely
	Lokale Festplatte
	Iasking_nicely.html

	Ibuilding_speed_bumps
	Lokale Festplatte
	Ibuilding_speed_bumps.html

	Isetting_traps
	Lokale Festplatte
	Isetting_traps.html

	Ifinal_thoughts_id15
	Lokale Festplatte
	Ifinal_thoughts_id15.html

	Ikeeping_webbots_out_of_trouble
	Lokale Festplatte
	Ikeeping_webbots_out_of_trouble.html

	Iits_all_about_respect
	Lokale Festplatte
	Iits_all_about_respect.html

	Icopyright
	Lokale Festplatte
	Icopyright.html

	Itrespass_to_chattels
	Lokale Festplatte
	Itrespass_to_chattels.html

	Iinternet_law
	Lokale Festplatte
	Iinternet_law.html

	Ifinal_thoughts_id16
	Lokale Festplatte
	Ifinal_thoughts_id16.html

	Iphpcurl_exclamation_reference
	Lokale Festplatte
	Iphpcurl_exclamation_reference.html

	Icreating_a_minimal_php_exclamation_curl_session
	Lokale Festplatte
	Icreating_a_minimal_php_exclamation_curl_session.html

	Iinitiating_php_exclamation_curl_sessions
	Lokale Festplatte
	Iinitiating_php_exclamation_curl_sessions.html

	Isetting_php_exclamation_curl_options
	Lokale Festplatte
	Isetting_php_exclamation_curl_options.html

	Iexecuting_the_php_exclamation_curl_command
	Lokale Festplatte
	Iexecuting_the_php_exclamation_curl_command.html

	Iclosing_php_exclamation_curl_sessions
	Lokale Festplatte
	Iclosing_php_exclamation_curl_sessions.html

	Istatus_codes
	Lokale Festplatte
	Istatus_codes.html

	Ihttp_codes
	Lokale Festplatte
	Ihttp_codes.html

	Inntp_codes
	Lokale Festplatte
	Inntp_codes.html

	Isms_email_addresses
	Lokale Festplatte
	Isms_email_addresses.html

	appendix_1_0
	Lokale Festplatte
	appendix_1_0.html

	index
	Lokale Festplatte
	index.html

	SYMBOL
	Lokale Festplatte
	SYMBOL.html

	A
	Lokale Festplatte
	A.html

	B
	Lokale Festplatte
	B.html

	C
	Lokale Festplatte
	C.html

	D
	Lokale Festplatte
	D.html

	E
	Lokale Festplatte
	E.html

	F
	Lokale Festplatte
	F.html

	G
	Lokale Festplatte
	G.html

	H
	Lokale Festplatte
	H.html

	I
	Lokale Festplatte
	I.html

	J
	Lokale Festplatte
	J.html

	K
	Lokale Festplatte
	K.html

	L
	Lokale Festplatte
	L.html

	M
	Lokale Festplatte
	M.html

	N
	Lokale Festplatte
	N.html

	O
	Lokale Festplatte
	O.html

	P
	Lokale Festplatte
	P.html

	Q
	Lokale Festplatte
	Q.html

	R
	Lokale Festplatte
	R.html

	S
	Lokale Festplatte
	S.html

	T
	Lokale Festplatte
	T.html

	U
	Lokale Festplatte
	U.html

	V
	Lokale Festplatte
	V.html

	W
	Lokale Festplatte
	W.html

	X
	Lokale Festplatte
	X.html

	Y
	Lokale Festplatte
	Y.html

	Z
	Lokale Festplatte
	Z.html

