
www.allitebooks.com

http://www.allitebooks.org

WildFly Configuration,
Deployment, and Administration
Second Edition

Build a functional and efficient WildFly server with this
step-by-step, practical guide

Christopher Ritchie

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

WildFly Configuration, Deployment, and Administration
Second Edition

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2011

Second edition: November 2014

Production reference: 1221114

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-623-2

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Christopher Ritchie

Reviewers
Alexis Hassler

Michael S. Jo

Jan Kalina

Commissioning Editor
Usha Iyer

Acquisition Editor
Meeta Rajani

Content Development Editor
Vaibhav Pawar

Technical Editor
Pramod Kumavat

Copy Editors
Sarang Chari

Adithi Shetty

Project Coordinator
Kranti Berde

Proofreaders
Ameesha Green

Lauren E. Harkins

Kevin McGowan

Indexers
Hemangini Bari

Mariammal Chettiyar

Rekha Nair

Graphics
Disha Haria

Abhinash Sahu

Production Coordinator
Komal Ramchandani

Cover Work
Komal Ramchandani

www.allitebooks.com

http://www.allitebooks.org

About the Author

Christopher Ritchie is a Sun Certified Programmer with over 10 years of
software experience. Having worked in both the UK and South Africa markets,
he has worked on a variety of software applications, ranging from online gaming
to telecoms and Internet banking. He has a keen interest in the WildFly application
server and is an advocate of Java EE technologies.

He currently works as a technical lead at the company he cofounded, Sports
Science Medicine Software, in South Africa. The company's core product is
a research-based application that allows the profiling of soccer players through
injury and exposure assessment.

Christopher was a technical reviewer for WildFly Performance Tuning, Packt
Publishing. You can find him at www.chris-ritchie.com.

I would like to thank my wife, Samantha, for her unwavering
support and patience, and my parents for their continued
encouragement and support. I would also like to give special
thanks to both my dad and Patrick Dzvoti for their help and
advice throughout my professional career.

www.allitebooks.com

www.chris-ritchie.com
http://www.allitebooks.org

About the Reviewers

Alexis Hassler lives in Beaujolais, France but, unlike his neighbors, he isn't
a winemaker. He's a freelance software developer and trainer (http://www.
sewatech.fr). Apart from his main activities, he cofounded the Java User Group
of Lyon (http://www.lyonjug.org) and assists the organization of the Mix-IT
conference (http://mix-it.fr).

Michael S. Jo is a technical architect with 14 years of enterprise Java web
application development experience. Michael is an enthusiast of new technology
and a lifelong learner. Currently, he works at Fujitsu Canada as an application
architect. He likes to learn and share his experience through his blog at
http://mjtoolbox.wordpress.com.

A big thank you to my love, Aramireu, Ayin, and Kristina. Also,
a thank you to Packt Publishing and its staff for giving me this
opportunity to be a part of this project.

Jan Kalina is student of informatics in the Faculty of Information Technology,
Brno University of Technology. He got familiarized with WildFly on the occasion
of writing his bachelor thesis, the result of which was a subsystem of WildFly that
allows the deployment of Java security policies on a WildFly domain. On the basis
of this, while reviewing this book, he was recruited as a developer of WildFly
Elytron at Red Hat.

www.allitebooks.com

http://www.sewatech.fr
http://www.sewatech.fr
http://www.lyonjug.org
http://mix-it.fr
http://mjtoolbox.wordpress.com
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Installing WildFly 7

What's new in WildFly 8? 7
Getting started with the application server 9

Installing the Java environment 9
Installing Java on Linux 10
Installing Java on Windows 11

Installing WildFly 8 12
Starting WildFly 13

Connecting to the server with the command-line interface 15
Stopping WildFly 16

Locating the shutdown script 17
Stopping WildFly on a remote machine 17

Restarting WildFly 17
Installing the Eclipse environment 18

Installing JBoss tools 19
Exploring the application server filesystem 21

The bin folder 22
The docs folder 22
The domain folder 22
The standalone folder 23
The welcome-content folder 24
The modules folder 24
Understanding WildFly's kernel 26
Loading application server modules 27

Summary 29

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Configuring the Core WildFly Subsystems 31
Configuring our application server 31

Extensions 33
Paths 33
Management interfaces 34
Profiles and subsystems 35
Interfaces 35
The socket-binding groups 37
System properties 38
Deployments 38
Configuring core subsystems 38
Configuring the thread pool subsystem 39

Configuring the thread factory 40
The bounded-queue thread pool 40
The blocking bounded-queue thread pool 42
The unbounded-queue thread pool 44
The queueless thread pool 45
The blocking queueless thread pool 45
The scheduled thread pool 46

Configuring application server logging 47
Choosing your logging implementation 48

Configuring the logging subsystem 49
The console-handler 49
The periodic-rotating-file-handler 50
The size-rotating-file-handler 51
The async-handler 51
The syslog-handler 52
Custom handlers 52

Configuring loggers 55
Per-deployment logging 56
Bypassing container logging 57

Summary 57
Chapter 3: Configuring Enterprise Services 59

Connecting to a database 59
Installing the JDBC driver 60
Adding a local datasource 62

Configuring the connection pool 64
Configuring the statement cache 65
Adding an xa-datasource 65

Installing the driver as a deployment unit 66
Choosing the right driver deployment strategy 68

Configuring a datasource programmatically 69

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Configuring the Enterprise JavaBeans container 70
Configuring the EJB components 71

Configuring the stateless session beans 72
Configuring the stateful session beans 74
Configuring the message-driven beans 76
Configuring the timer service 77

Configuring the messaging system 78
Configuring the transport 80
Configuring connection factories 84
Configuring JMS destinations 85
Customizing destinations with an address 86
HornetQ persistence configuration 87

Configuring the transactions service 89
Configuring concurrency 91

Configuring the context service 92
Configuring the managed thread factory 92
Configuring the managed executor service 93
Configuring the managed schedule executor service 94

Summary 94
Chapter 4: The Undertow Web Server 97

An overview of Undertow 97
The Undertow architecture 98
Configuring Undertow 99
Configuring the server 99

Configuring the listener 100
Configuring the host 102
Serving static content 103

Configuring the servlet container 104
Configuring JSP 105
Configuring the session cookie 105
Saving the session state 106

Configuring the buffer cache 106
Creating and deploying a web application 107
Creating a new Maven web project 107

Adding JSF components 111
Adding the EJB layer 114
Choosing the web context of the application 116
Deploying the web application 117

Deploying a web application to the root context 118
Adding a remote EJB client 119

Configuring the client using a properties file 122
Configuring the client programmatically 123

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Configuring data persistence 124
Using a default datasource for the JPA subsystem 126
Configuring entities 126
Configuring persistence in other application archives 129
Switching to a different provider 130

Using Jipijapa 130
Summary 131

Chapter 5: Configuring a WildFly Domain 133
Introducing the WildFly domain 133
Understanding the default domain configuration 134
Starting up and stopping a domain 136
Configuring the domain 137

Overriding the default configuration files 137
Configuring the domain.xml file 138
Configuring the host.xml file 139
Configuring the management interfaces 140
Configuring the network interfaces 141
Configuring the domain controller 142
Configuring the JVM 142

Adding JVM options to a server definition 143
Order of precedence between elements 144
Configuring server nodes 145

Applying domain configuration 146
Creating our very own domain configuration 147

Changing the domain configuration at runtime 153
Summary 156

Chapter 6: Application Structure and Deployment 159
Deploying resources on the application server 159

The JAR file 160
The WAR file 160
The EAR file 161

Deploying applications on a standalone WildFly server 161
Automatic application deployment 162

Deploying applications to a custom folder 163
Changing the behavior of the deployment scanner 163
Deployment rollback 164
Deploying an application using the CLI 164
Deploying an application using the web admin console 165
Deploying an application using the WildFly Eclipse plugin 168

Manual application deployment 170

Table of Contents

[v]

Deploying applications on a WildFly domain 172
Deploying to a domain using the CLI 173

Deploying to all server groups 173
Deploying to a single server group 174

Deploying to a domain using the Admin console 175
Explaining WildFly classloading 178

Getting to know module names 179
Finding the isolation level 180

Implicit dependencies 180
Explicit dependencies 182

Setting up global modules 184
Advanced deployment strategies 185

Setting up a single module dependency 185
Excluding the server's automatic dependencies 186
Isolating sub-deployments 187
Using the Class-Path declaration to solve dependencies 190

Summary 191
Chapter 7: Using the Management Interfaces 193

The command-line interface (CLI) 194
Reloading the server configuration 195
Employing the CLI 195

Navigating through the resources and executing operations 196
Executing commands with the CLI 204

Executing CLI scripts in batch 210
Advanced batch commands 211

Executing scripts in a file 212
Redirecting non-interactive output 213

Taking snapshots of the configuration 213
What the application server saves for you 215
Taking your own snapshots 215

History of CLI 216
The web admin console 217

Accessing the admin console 218
Configuring server profiles 220

Configuring datasources 220
Configuring JMS destinations 224
Configuring socket-binding groups 226

The CLI or web console? 227
Summary 228

Table of Contents

[vi]

Chapter 8: Clustering 229
Setting up a WildFly cluster 230

Setting up a cluster of standalone servers 230
A cluster of nodes running on different machines 231
A cluster of nodes running on the same machine 233

Setting up a cluster of domain servers 236
Troubleshooting the cluster 239

Configuring the WildFly cluster 241
Configuring the JGroups subsystem 242

Customizing the protocol stack 244
Configuring the Infinispan subsystem 245

Configuring session cache containers 247
Choosing between replication and distribution 250
Configuring the hibernate cache 252

Using replication for the hibernate cache 254
Advanced Infinispan configuration 254

Configuring the Infinispan transport 255
Configuring the Infinispan threads 255

Clustering the messaging subsystem 257
Configuring messaging credentials 259

Configuring clustering in your applications 260
Clustering session beans 261
Clustering entities 263
Caching entities 264

Using JPA annotations 265
Using Hibernate annotations 265

Caching queries 266
Clustering web applications 267
Summary 267

Chapter 9: Load-balancing Web Applications 269
Benefits of using the Apache web server with WildFly 270

Using the mod_jk library 270
Installing Apache 271
Installing mod_jk 271

Configuring mod_proxy 274
Load-balancing with mod_cluster 276
Installing mod_cluster libraries 278

The mod_cluster configuration 281
Testing mod_cluster 284

Managing mod_cluster via the CLI 284

Table of Contents

[vii]

Managing your web contexts with the CLI 286
Adding native management capabilities 287
Managing web contexts using the configuration file 288
Troubleshooting mod_cluster 288
Load-balancing between nodes 290

Using load metrics 293
An example for setting dynamic metrics on a cluster 295

Summary 296
Chapter 10: Securing WildFly 299

Approaching Java security API 300
The WildFly security subsystem 302
Using the UsersRoles login module 305
Using the Database login module 306

Encrypting passwords 307
Using an LDAP login module 309

Connecting LDAP to WildFly 310
Securing web applications 313
Securing EJBs 316
Securing web services 317

Securing the management interfaces 318
Role-based access control 321
Configuring groups 322

Securing the transport layer 323
Enabling the Secure Socket Layer 325
Certificate management tools 326
Securing HTTP communication with a self-signed certificate 327
Securing the HTTP communication with a certificate signed by a CA 329

Summary 331
Chapter 11: WildFly, OpenShift, and Cloud Computing 333

Introduction to cloud computing 333
Cloud computing versus grid computing 334
Advantages of cloud computing 335
Cloud computing options 336
Types of cloud services 337

Getting started with OpenShift Online 339
Installing OpenShift client tools 340
Accessing your OpenShift account from a different computer 342

Table of Contents

[viii]

Creating our first OpenShift application 342
Installing your first cartridge 343
Understanding the workflow 346
Building the application 346

Viewing the OpenShift server logfiles 351
Tailing the logfile 351
Viewing logs via SSH 352

Managing applications in OpenShift 352
Configuring your applications 354

Adding a database cartridge 355
Using OpenShift Tools and Eclipse 357
Scaling your application 359

Summary 360
Appendix: CLI References 363

Startup options 363
General commands 363
The domain-mode commands 364
Commands related to application deployment 365
JMS 366
Datasources 366

Datasources (using operations on resources) 366
Mod_cluster 367
Batch 368
Snapshots 368

Index 369

Preface
WildFly is the new name for the community version of JBoss AS. WildFly is still
the most popular Java Enterprise server out there. It is easy to use, has a clean
management interface, a powerful command-line tool, a modular architecture, is
light, and is lightning quick. If you need product support, it is very easy to move
from WildFly to JBoss EAP Server and, importantly, the license and support costs
won't break the bank.

This book gently introduces you to WildFly by looking at how to download and
install the server. We then move on to look at configuring enterprise services and
the various subsystems, and securing your server and applications. The topics become
more advanced as the book progresses, so in the later part of the book, we look at
high availability, which is achieved through clustering and load balancing.

Whether you are a Java developer who wishes to improve their knowledge of WildFly,
or you are a server administrator who wants to gain a better understanding of the
inner workings of WildFly, there is something in this book for everyone.

What this book covers
Chapter 1, Installing WildFly, introduces you to the WildFly server. You are taken
through the installation of Java and WildFly and learn to start, stop, and restart
the server. You will also discover the purpose of the various folders within the
WildFly install directory and gain a basic understanding of the WildFly kernel.
Lastly, you will learn to install the WildFly server adaptor in Eclipse.

Chapter 2, Configuring the Core WildFly Subsystems, provides a detailed description
of the anatomy of the standalone configuration file. You will be introduced to
the concepts of modules and subsystems, and then you will learn in detail how
to configure two of the core subsystems, the logging subsystem, and the
thread-pool subsystem.

Preface

[2]

Chapter 3, Configuring Enterprise Services, teaches you to configure enterprise services
and components, such as transactions, connection pools, Enterprise JavaBeans, and
JMS. You will also learn to install JDBC drivers and configure database connections.

Chapter 4, The Undertow Web Server, explains the architecture of Undertow and
teaches you how to configure the servlet container. You will also learn how to serve
static content and configure JSPs. In this chapter, we create a simple web application
using JSF, EJB, and JPA and teach you to deploy the application using the Eclipse
WildFly Server adaptor.

Chapter 5, Configuring a WildFly Domain, teaches you how to manage a WildFly
domain. It covers the domain and host controller configuration and outlines the
differences between a server domain and multiple standalone server instances.

Chapter 6, Application Structure and Deployment, explains the structure of web and
enterprise archives and how they are packaged. You will also learn in detail about
the various ways to deploy your application to the WildFly server. We also explain
how class loading works in WildFly.

Chapter 7, Using the Management Interfaces, introduces more advanced command-line
interface commands, such as those for adding datasources and configuring JMS.
We also provide a high-level overview of the web admin console.

Chapter 8, Clustering, provides detailed examples on clustering standalone
and domain servers. You will also learn about JGroups and how to cluster
the enterprise components, such as Messaging and Hibernate.

Chapter 9, Load-balancing Web Applications, explains the benefits of using the Apache
web server with WildFly. You will also learn how to load-balance your web
applications with mod_jk, mod_proxy, and mod_cluster.

Chapter 10, Securing WildFly, teaches you how to configure the security subsystem.
We cover various login modules, such as database login and LDAP. We also look
at securing enterprise components, such as Enterprise JavaBeans and web services.
We then look at securing the management interfaces.

Chapter 11, WildFly, OpenShift, and Cloud Computing, discusses the advancement
of cloud computing and the benefits it offers to your company. We see how
OpenShift can be used to ease software development and aid rapid deployment
of your applications to cloud servers.

Appendix, CLI References, provides a quick reference to some of the more
commonly used commands in the CLI.

Preface

[3]

What you need for this book
Prior knowledge of Java is expected. Some knowledge of Enterprise Java
would be beneficial, although not essential. To run WildFly, you will need
the following software:

• JDK 8
• WildFly 8
• MySQL (if you configure a MySQL datasource)

If you wish to run the Java code examples in this book, you will also need:

• Maven 3
• An IDE (Eclipse is used in the book)
• MySQL

Who this book is for
This book is aimed at Java developers, system administrators, and anyone who wants
to learn more about how to configure the WildFly 8 server. It will suit people who
are new to WildFly server, as no prior experience is assumed. The book progresses
to advanced concepts, which means it will also suit the more experienced system
administrators and developers.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The content of this file will include the custom Web context, as specified by the
context-root element."

A block of code is set as follows:

<servers>
 <server name="server-one" group="other-server-group">
 <socket-bindings socket-binding-group="ha-sockets"/>
 </server>
</servers>

Preface

[4]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

public class RemoteEJBClient {
 static {
 Security.addProvider(new JBossSaslProvider());
 }
 public static void main(String[] args) throws Exception {
 super();
 }
}

Any command-line input or output is written as follows:

[standalone@localhost:9990 /] data-source remove --name=MySQLPool

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Agree to the terms and click on OK."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[5]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.allitebooks.com

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http://www.allitebooks.org

Installing WildFly
The Java language has undergone many changes since its first release and will
continue to adapt to meet the needs of the developer. Oracle, which acquired Sun
in 2010, stated that its high-level Java strategy is to enhance and extend the reach
of Java to new and emerging software development objectives; simplify, optimize,
and integrate the Java platform into new deployment architectures; and invest in
the Java developer community allowing for increased participation.

This has certainly been true in the Enterprise edition of Java, the main focus of which
has been improved developer productivity, providing support for HTML5, and
meeting enterprise demands. Out of all the Enterprise Java releases, Java EE 7 has
been the most transparent and open to community participation. By allowing public
feedback, the demands of the community can be realized and used to help shape Java
EE 7 for the better, ultimately adding to the growth and success of Enterprise Java.

In addition, a large number of open source projects are used within the application
server, such as Hibernate and Undertow. Integrating all these libraries does not
come without a price because each library has evolved with complexity and
requires more and more additional libraries to work.

As most IT experts agree, the challenge for today's application servers is to combine
a rich set of features requested by customers along with a lightweight and flexible
container configuration.

What's new in WildFly 8?
WildFly 8 is the direct continuation to the JBoss AS project. The renaming of the
community version of JBoss AS was done to reduce confusion between the open
source JBoss server, the JBoss community, and the JBoss Enterprise Application
Platform (JBoss EAP). WildFly 8 is free and open source, with support coming
from the JBoss community, whereas JBoss EAP is a licensed product that comes
with support from RedHat.

Installing WildFly

[8]

The most notable updates in WildFly 8 from earlier versions are as follows:

• Java EE7 certification: WildFly is a fully compliant Java EE enterprise
server, which means that it provides reference implementations for all Java
Specification Requests (JSRs) that make up Java EE 7. JSRs are basically
change requests for the Java language. For more information on how JSRs
work, refer to https://www.jcp.org/en/jsr/overview.

• Arrival of Undertow: JBoss Web has been completely removed
and replaced with Undertow. Undertow is a cutting-edge web server
that supports non-blocking and blocking handlers, web sockets, and
asynchronous servlets. It has been designed for scalability and maximum
throughput. It is easy to use, easy to configure, and is highly customizable.

• Port Reduction: The number of open ports has been greatly reduced
in WildFly. Only two ports are open: 8080 and 9990. This has been
achieved by multiplexing protocols over HTTP using the HTTP
upgrade feature of Undertow.

• Security Manager: You can now configure per-deployment
security permissions.

• Logging: Several enhancements have been made to WildFly logging.
You can now view logfiles via the management interface, define custom
formatters, and configure logging per-deployment.

• Clustering: Clustering in WildFly is heavily refactored and
includes many new features, including web sessions, single sign-on,
and mod_cluster support for Undertow. There is also a new public
clustering API and new @Stateful EJB caching implementation.

• Command-line interface (CLI): You now have the ability to define
an alias when connecting to a server, and the CLI GUI has additional
functionality allowing you to explore any node in the tree.

In this chapter, we will cover the following topics:

• Installing the Java environment
• Installing WildFly 8
• Installing JBoss tools
• Exploring the application server filesystem
• Understanding the WildFly kernel

https://www.jcp.org/en/jsr/overview

Chapter 1

[9]

Getting started with the application
server
As far as hardware requirements are concerned, you should be aware that the server
distribution, at the time of writing, requires about 150 MB of hard disk space and
allocates a minimum of 64 MB and a maximum of 512 MB for a standalone server.

In order to get started, we are going to perform the following steps:

1. Download and install the Java Development Kit.
2. Download and install WildFly 8.
3. Download and install the Eclipse development environment. While we

will use Eclipse in this book, you are free to use your IDE of choice.

At the end of this chapter, you will have all the required software installed and
will be ready to start working with the application server.

Installing the Java environment
WildFly is written in Java; therefore it needs a Java Virtual Machine (JVM) in
which to run, along with the standard edition Java libraries. So, before we can
get started setting up or learning about WildFly, we first need to install the
Java Development Kit (JDK).

To use WildFly, you will need at least Java SE 7 or above. Although there is no
plan to use Java 8 language changes within the WildFly 8.x source code, WildFly
is compiled against Java 8. It is recommended that you use the latest version of
Java SE 8 to run WildFly.

So, let's move to the Oracle download page, http://www.oracle.com/
technetwork/java/javase/downloads/index.html, which now hosts
all JDK downloads, as shown in the following screenshot:

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Installing WildFly

[10]

This will take you to the download page for the latest JDK. At the time of writing,
this was Java 8 update 5. You will need to accept the license agreement before
downloading the JDK. Choose to download the latest version of Java for your
operating system. Have a look at the following screenshot:

The download will take a few minutes depending how fast your network is.

Installing Java on Linux
Installing Java on Linux is very straightforward. Once the download is complete,
extract the tar.gz file to your chosen install location. This command extracts the
archive to your current directory:

tar -xzvf jdk-8u5-linux-x64.tar.gz

Next, you need to add the path as an environment variable. This can be achieved
by adding the following lines to your user profile script (the .profile file found
in your home directory):

export JAVA_HOME=/installDir/jdk1.8.0_05
export PATH=$JAVA_HOME/bin:$PATH

Chapter 1

[11]

Installing Java on Windows
Windows users can simply run the executable (.exe) file to start the installation.
The name of the installer varies depending on the operating system and your
system architecture (32-bit or 64-bit); however, the steps will be the same—just
the name will change. At the time of writing, the installer for the latest version
of Java for 64-bit Windows is called jdk-8u5-windows-x64.exe.

When using Windows, you should stay away from installation paths that include
empty spaces, such as C:\Program Files, as this leads to some issues when
referencing the core libraries. An installation path such as C:\Software\Java
or simply C:\Java is a better alternative.

When the installation is complete, you will need to update a couple of settings
on the computer so that it will know where to find Java. The most important
setting is JAVA_HOME, which is directly referenced by the WildFly startup script.

If you are running Windows XP/2000, follow these steps:

1. Right-click on My Computer, and select Properties from the context menu.
2. On the Advanced tab, click on the Environment Variables button.
3. Then, in the System variables box, click on New.
4. Name the new variable JAVA_HOME, and give a value of the path to your

JDK installation; I recommend something like C:\Java\jdk1.8.0_05.

Installing WildFly

[12]

Windows 7 tip
Because of increased security in Windows 7, standard users
must have User Account Control (UAC) turned on to change the
environment variables, and the change must be completed via
user accounts. In the User Accounts window, under Tasks, select
Change my environment variables. Use the New, Edit, or Delete
button to amend environment variables

5. Now it's time to modify the system's PATH variable. Double-click on the PATH
system variable. In the box that pops up, navigate to the end of the Variable
Value line, add a semicolon to the end, and then add the path to your JDK.
This will be something like %JAVA_HOME%\bin.

Installing WildFly 8
The WildFly application server can be downloaded for free from the WildFly site,
http://www.wildfly.org/downloads/. Have a look at the following screenshot:

You will notice that there is an option to download a minimalistic core distribution.
This is aimed at developers who want to build their own application runtime using
the WildFly 8 architecture.

Choose to download the full Java EE7 distribution. Like JBoss AS 7, WildFly does
not come with an installer. It is simply a matter of extracting the compressed archive
to a location of your choosing.

http://www.wildfly.org/downloads/

Chapter 1

[13]

Linux users can extract the file using the tar or unzip command (depending on the
type of compressed file you downloaded):
tar -xzvf wildfly-8.1.0.Final.tar.gz

unzip wildfly-8.1.0.Final.zip

For those of you using Windows, you can use WinZip or WinRAR, taking care to
choose a folder that does not contain empty spaces.

Security warning
Unix/Linux users should be aware that WildFly does not require root
privileges, as none of the default ports used by WildFly are below the
privileged port range of 1024. To reduce the risk of users gaining root
privileges through WildFly, install and run WildFly as a non-root user.

Starting WildFly
After installing WildFly, it is wise to perform a simple startup test to validate that
there are no problems with your Java configuration. To test your installation, move
to the bin directory of your WildFly install and issue the following command:

• For Linux/Unix users:
$./standalone.sh

• For Windows users:
> standalone.bat

The following screenshot shows a sample WildFly 8 startup console:

Installing WildFly

[14]

The preceding command starts up a WildFly standalone instance that's equivalent
to starting the application server with the run.sh script used by releases prior to
JBoss AS 7. The run.sh file remains in the WildFly bin directory but is merely a
placeholder and will not start the application server.

Notice how fast the application server starts. This is due to the modular architecture
of WildFly. Essential services are started concurrently on boot-up, and non-critical
services are started only when needed, resulting in an exceptionally fast startup.
Local caching means that the server will start even quicker second time round!

If you need to customize the startup properties of your application server, then you
need to open and modify the standalone.conf file (or standalone.conf.bat
for Windows users). This file contains the memory requirements of WildFly. The
following is the Linux core section of it:

if ["x$JAVA_OPTS" = "x"]; then
 JAVA_OPTS="-Xms64m -Xmx512m -XX:MaxPermSize=256m -Djava.net.
preferIPv4Stack=true"
 JAVA_OPTS="$JAVA_OPTS -Djboss.modules.system.pkgs=$JBOSS_MODULES_
SYSTEM_PKGS -Djava.awt.headless=true"
fi

Java SE 8 users
PermGen has been replaced with Metaspace in Java 8. If you
are using Java 8, then remove the -XX:MaxPermSize=256m
property from the standalone.conf file, and replace it with
-XX:MaxMetaspaceSize=256m. This will prevent VM warnings
being printed to your WildFly logs on startup.

By default, the application server starts with a minimum heap space memory
requirement of 64 MB and a maximum requirement of 512 MB. This will be just
enough to get started; however, if you need to run a core Java EE application on
it, you will likely require a minimum of 1 GB of heap space. More realistically, you
will need 2 GB or more depending on your application type. Generally speaking,
32-bit machines cannot execute a process whose space exceeds 4 GB; however, on
64-bit machines, there's essentially no limit to process the size.

You can verify that the server is reachable from the network by simply pointing
your browser to the application server's welcome page, which is reachable by
default at the well-known address: http://localhost:8080. Have a look at
the following screenshot:

Chapter 1

[15]

Connecting to the server with the command-line
interface
If you have been using releases of the application server prior to JBoss AS 7, you
might have heard about the twiddle command-line utility that queries the MBeans
installed on the application server. This utility was replaced in JBoss AS 7 and is
still used in WildFly. Its replacement is a more sophisticated interface named the
command-line interface (CLI), which can be found in the JBOSS_HOME/bin folder.

References to JBOSS_HOME
Although the community version of JBoss AS has been renamed to
WildFly, you will see that the properties in the startup scripts continue
to use the property, JBOSS_HOME, to reference the install directory of
WildFly. For this reason, we will continue to use JBOSS_HOME when
referring to the root install of WildFly.

www.allitebooks.com

http://www.allitebooks.org

Installing WildFly

[16]

Just launch the jboss-cli.sh script (or jboss-cli.bat for Windows users),
and you will be able to manage the application server via a shell interface, as
shown in the following screenshot. Bear in mind that the server needs to be
running in order to connect via the CLI.

Once you are in the shell session, if you are unsure of what commands can be
issued, you can simply press the Tab button to display all possible commands. If
your command is partly typed, and there is only one possible matching command,
your command will be autocompleted. Those of you who use Linux will be used to
this type of command-line assistance.

In the preceding screenshot, we have just connected to the server using the connect
command, which, by default, uses the loopback server address and plugs into port
number 9990.

The CLI is discussed in depth in Chapter 7, Using the Management
Interfaces, which is all about the server-management interfaces. We
will have an initial taste of its basic functionalities in the following
sections, to get you accustomed to this powerful tool.

Stopping WildFly
Probably the easiest way to stop WildFly is to send an interrupt signal using
Ctrl + C. This should be done in the same console window in which you issued
the startup command, that is, where the server is running.

Chapter 1

[17]

However, if your WildFly process was launched in the background or is running
on another machine (see in the following sections), then you can use the CLI
interface to issue an immediate shutdown command as follows:

[disconnected /] connect

[standalone@localhost:9990 /] shutdown

[disconnected /]

Locating the shutdown script
There is actually one more option to shut down the application server, which is
pretty useful if you need to shut down the server from within a script. This option
consists of passing the --connect option to the admin shell, thereby switching off
the interactive mode as follows:

jboss-cli.sh --connect command=:shutdown # Unix / Linux

jboss-cli.bat --connect command=:shutdown # Windows

Stopping WildFly on a remote machine
Shutting down an application server running on a remote machine is just a matter
of connecting and providing the server's remote address to the CLI:

[disconnected /] connect 192.168.1.10

[192.168.1.10:9990 /] shutdown

Remotely accessing WildFly via the CLI requires authentication. Check
out Chapter 10, Securing WildFly, for more information about it. It also
requires that the management interface on the remote WildFly install is
opened to allow remote connections. This is covered in detail in Chapter
7, Using the Management Interfaces.

Restarting WildFly
The CLI contains a lot of useful commands. One of the most helpful options is the
ability to reload all or part of the server configuration using the reload command.

Installing WildFly

[18]

When issued on the root node path of the server, WildFly reloads all the services
configuration, as shown in the following command:

[disconnected /] connect

[standalone@localhost:9990 /] reload

Installing the Eclipse environment
Although the main focus of this book is the administration of the WildFly application
server, we are also concerned with application packaging and deployment. For this
reason, we will sometimes add examples that require a development environment
to be installed on your machine.

The development environment used in this book is Eclipse. Eclipse is known
by developers worldwide and contains a huge set of plugins, building on its
core functionality. If you are comfortable with another IDE, then feel free to
use it, but this book will demonstrate Eclipse only. At the time of writing
this, only Eclipse and NetBeans have plugins for WildFly.

So let's move to the Eclipse download page, located at http://www.eclipse.org/
downloads.

From this page, download the latest Enterprise edition. The compressed package
contains all the Java EE plugins already installed and requires about 248 MB of
disk space. Have a look at the following screenshot:

If you are using Java 8, you should make sure you download Eclipse
Luna (4.4) or the patched Version of 4.3.

Once you have downloaded Eclipse, unzip it to a folder of your choice. The extracted
folder will be called eclipse. To start Eclipse, navigate to the eclipse folder and run:

$./eclipse

Windows users can simply double-click on the executable file contained in the
eclipse folder (the one with the big, blue, round eclipse icon).

http://www.eclipse.org/downloads
http://www.eclipse.org/downloads

Chapter 1

[19]

Installing JBoss tools
The next step is to install the WildFly 8 adapter, which is a part of the suite
of plugins named JBoss tools. Installing new plugins in Eclipse is pretty simple;
just perform the following steps:

1. From the menu, navigate to Help | Eclipse Marketplace.
2. Then, search for the plugin you want to install (in this case,

type jboss tools).
3. Finally, click on Install as shown in the following screenshot:

Make sure you select the version of JBoss tools that matches your version of
Eclipse, for example, Luna or Kepler. In this case, we are using Eclipse Luna,
so I have selected the Luna version of JBoss tools. If you want to install just the
WildFly adapter, select JBossAS Tools. Agree to the terms and click on OK.
Restart Eclipse when prompted to do so.

You can now set up the WildFly server in Eclipse by performing the following steps:

1. Navigate to New | Server.
2. Expand the JBoss Community node.

Installing WildFly

[20]

3. Select the option, WildFly 8, as shown in the following screenshot:

4. Make sure you select your installed Java 8 JRE.
5. Point the home directory to that of your WildFly root directory, as shown

in the following screenshot:

Chapter 1

[21]

Exploring the application server
filesystem
Now that we are done with the installation of all the necessary tools, we will
concentrate on the application server structure. The first thing you'll notice when
you browse through the application server folders is that its filesystem is basically
divided into two core parts: the dichotomy reflects the distinction between
standalone servers and domain servers.

The concept of a domain server is not new in the market of application servers,
however, it was only introduced in JBoss with AS 7 as a way to manage and coordinate
a set of instances of the application server. An application server node which is
not configured as part of a domain is qualified as a standalone server. A standalone
server resembles, in practice, a single instance of the application server you used
to see in releases of the application server prior to JBoss AS 7.

We will discuss the concept of domains in detail in Chapter 5, Configuring a WildFly
Domain. For the time being, we will explore the different filesystem structures for
both kinds of servers.

From a bird's-eye perspective, we can see that the main filesystem is split in two: one
section that is pertinent to domain servers and another that is relative to standalone
servers. The following diagram depicts the tree of the application server:

Installing WildFly

[22]

In the next section, we will dig deeper into the folder structure of the WildFly
application server, dissecting its content and looking at what it is used for.

The bin folder
The bin folder is where you will find all your startup scripts, such as standalone.
sh and domain.sh. In addition to the startup scripts, you can find standalone.conf,
which can be used to customize WildFly's bootstrap process.

As you saw earlier, the bin folder also includes the jboss-cli.sh script (jboss-cli.
bin for Windows users), which starts the interactive CLI. You will also find various
other useful scripts, such as add-user.sh and vault.sh. This folder also contains the
web services utility scripts (wsconsume.sh and wsprovide.sh) used to generate the
web services definition language and the corresponding Java interfaces.

There are several subfolders within the bin directory. The service folder and the
init.d folder contain programs that allow you to install WildFly as service on
Windows and Linux, respectively.

The docs folder
The docs folder contains two subfolders, examples and schema. The schema folder
contains all the .xsd schema definition files used by the configuration as schema.

The examples folder contains numerous configuration examples, from a minimalistic
standalone example to an ec2 HA example (HA meaning high availability, and ec2
referring to Amazon Elastic Compute Cloud).

The domain folder
The next folder is the domain folder, which contains the domain structure split
across a set of folders:

• The configuration folder contains all the configuration files:
 ° The main configuration file is domain.xml, which contains

all services that are used by the nodes of the domain. It also
configures the socket-binding interfaces for all services.

 ° Another key file for domains is host.xml, which is used to
define the host controller (HC).

Chapter 1

[23]

 ° The last file contained in the configuration folder is logging.
properties, which is used to define the logging format of
the bootstrap process for both the process controller (PC)
and host controller.

• The content folder is used as a repository to store deployed modules.
• The lib folder hosts the subfolder ext, which is there to support Java SE/EE

style extensions. Some of the application server deployers are able to scan
this folder for additional libraries that are picked up by the local class loader.
Nevertheless, this approach is not recommended and is maintained only for
compliance with the language specifications. The modules folder should be
used to install your libraries within WildFly.

• The log folder, as you might imagine, contains the logging output of the
domain. The file, by default, is truncated every time the server is rebooted.

• The servers folder holds a set of subfolders for each server defined in the
configuration file. The most useful directory contained beneath each server
is the log folder, which is the location where single instances emit their log.

• The data folder is used by the application server to store its runtime data,
such as transaction logging.

• Finally, the tmp folder is used to store temporary files written by the server.

The standalone folder
If you are running the application server in standalone mode, this is the part of the
filesystem you will be interested in. Its structure is quite similar to the domain folder
with the notable exception of a deployment folder. Let's proceed with order. Just
below the standalone folder, you will find the following set of subdirectories:

• configuration

• data

• deployments

• lib

• log

• tmp

Installing WildFly

[24]

The content and use of these subdirectories is explained as follows:

• The configuration folder contains the application server configuration
files. As a matter of fact, the application server ships with a set of different
configuration files, each one using a different set of extensions. Launching
the standalone startup script without passing in any parameters will, by
default, use the standalone.xml configuration file.
Besides standalone.xml, this folder contains the logging.properties
file that configures the logging of the bootstrap process. The other files you
will find here are mgmt-users.properties and mgmt-group.properties,
which can be used to secure the management interfaces. Security is
discussed in detail in Chapter 10, Securing WildFly.

• The data folder is used by the application server to store its runtime data,
such as transaction logging.

• The deployments folder is the location in which users can place their
deployment content (for example, WAR, EAR, JAR, and SAR files) to have
it automatically deployed in the server runtime. Users, particularly those
running production systems, are encouraged to use WildFly's management
APIs to upload and deploy deployment content instead of relying on the
deployment scanner subsystem that periodically scans this directory. See
Chapter 6, Application Structure and Deployment, for more details.

• The lib folder hosts the subfolder ext, which is used to define extensions
of the application server. The same considerations for the domain's lib
path apply here.

• The log folder contains the logs emitted by the standalone instance of the
application server. The default logfile, named server.log, is, by default,
truncated every time the server is rebooted. This can be configured within
the standalone.xml file.

• The tmp folder is used to save temporary files written by WildFly.

The welcome-content folder
The welcome-content folder contains the default page, which is loaded when you
browse to the root of your application server (http://localhost:8080). In terms
of web server configuration, this is the Web root context.

The modules folder
Beneath the modules folder, you will find the application server's set of libraries,
which are a part of the server distribution.

Chapter 1

[25]

Historically, JBoss AS releases used to manage their set of libraries in different
ways. Let's recap to bring about some order. Earlier, Release 4.x was used to define
the core server libraries into the JBOSS_HOME/server libraries. Thereafter, each
server definition had its specific library in the server/<servername>/lib folder.

This approach was pretty simple, however, it led to a useless proliferation of libraries
that were replicated in the default/all server distribution.

Releases 5.x and 6.x had the concept of the common/lib folder, which was the main
repository for all modules that were common to all server definitions. Each server
distribution still contained a server/<servername>/lib path for the libraries that
were specific to that server definition. Unchanged from the earlier release was the
repository for core server modules comprised by JBOSS_HOME/server.

JBoss AS 7 followed a more modular approach improving over all the earlier
approaches. This modular approach remains unchanged in WildFly. The server
bootstrap library, jboss-modules.jar, can be found in the root of the application
server. This single archive is all you need to bootstrap WildFly's application
server kernel.

The main system modules are located in the system/layers/base folder under
the modules folder. This has changed slightly in WildFly as, in JBoss AS 7, all
modules were defined directly in the modules folder.

The following table outlines the diverse approaches used across different
server releases:

AS release Bootstrap libraries Server libraries
4.x JBOSS_HOME/server JBOSS_HOME/server/<server>/lib

5.x and 6.x JBOSS_HOME/server JBOSS_HOME/common/lib

and
JBOSS_HOME/server/<server>/lib

7.x and 8.x JBOSS_HOME/jboss-
modules.jar

JBOSS_HOME/modules

Listing all the modules will take up too much space, however, the module repository
layout is often the same as the module name. For example, the org.jboss.as.ejb3
module can be found in the org/jboss/as/ejb3 subfolder of the modules folder.
This approach to organizing the modules certainly makes sense, and if you are used
to a maven repository layout structure, you will have no problem getting your head
around it.

In the last section of this chapter, we will see how modules are actually loaded by
the application server.

www.allitebooks.com

http://www.allitebooks.org

Installing WildFly

[26]

Understanding WildFly's kernel
WildFly's kernel was redesigned in JBoss AS 7. Understanding the details of the
modular kernel will help you understand concepts introduced later in the book.
The kernel is based on two main projects, as follows:

• JBoss Modules: This project handles class loading of resources in
the container. You can think about JBoss modules as a thin bootstrap
wrapper for executing an application in a modular environment.

• Modular Service Container (MSC): This project provides a way to
install, uninstall, and manage services used by a container. MSC further
enables resource injection into services and dependency management
between services.

The following diagram depicts the basic architecture of WildFly's server kernel:

JB
os

s
M

S
C

JB
os

s
M

S
C

batch

security

infinispan

undertow

datasources

ejb3

jms

logging

WildFly 8

Install & manage services

With this information, we can now progress to the loading of server modules.

Chapter 1

[27]

Loading application server modules
Learning more about JBoss modules is essential if you want to understand the server
configuration discussed in the next few chapters. At its heart, a module is really just a
wrapper for a JAR file but treated by the application container as a module. The reason
for this is class loading and dependency management, as each module can be treated
as a pluggable unit, as depicted by the next diagram. WildFly has two different types
of modules; the only difference between them is the way they are packaged:

• Static modules
• Dynamic modules

Have a look at the following screenshot:

jboss-
modules.jar

jboss-
modules.jar modules system layers base

org

jboss

logging

main
jboss-

logging.jar

yourApp.jar

Static module loading from the file system

Dynamic module loading

Using a static module is the simplest way to load a module, and it's used as the
default module when starting up the application server. Static modules are defined
within the JBOSS_HOME/modules/system/layers/base directory. Each module has
a configuration file called module.xml. The following example shows the contents of
the javax.batch.api module.xml file:

<module xmlns="urn:jboss:module:1.3" name="javax.batch.api">
 <resources>
 <resource-root path="jboss-batch-api_1.0_spec-1.0.0.Final.
jar"/>
 </resources>
 <dependencies>

Installing WildFly

[28]

 <module name="javax.api"/>
 <module name="javax.enterprise.api"/>
 </dependencies>
</module>

As you can see, a module definition contains two main elements, the resources
defined in the module (and their path) and the module's dependencies. In this
example, the main resource is jboss-batch-api_1.0_spec-1.0.0.Final.jar,
contained in the same folder as the module.xml file. It has dependencies on two
other modules, javax.api and javax.enterprise.api.

A module which is defined with a main-class element is said to be executable. In
other words, the module name can be listed on the command line, and the standard
static main(String[]) method in the named module's main-class will be loaded
and executed.

Creating custom static modules is useful should you have many
applications deployed to your server, which rely on the same third-party
libraries. This means that you do not have to deploy multiple applications
with the same bundled libraries. The other benefit to creating custom
static modules is that you can declare explicit dependencies on other static
modules. Installing modules is covered in Chapter 3, Configuring Enterprise
Services, in which we install a JDBC driver as a module.

The other way to approach the module repository is by using dynamic modules.
This can be achieved in two ways, as follows:

• Firstly, we can add the module information, such as its dependencies,
within the MANIFEST file within your JAR, for example, in the Main class
mypackage/MyClass:
Dependencies: org.jboss.logging

• The second way to do this is by adding the dependency to the jboss-
deployment-structure.xml file, as shown in the following code:
<jboss-deployment-structure>
 <deployment>
 <dependencies>
 <module name="org.jboss.logging" />
 </dependencies>
 </deployment>
</jboss-deployment-structure>

We will cover this in more detail in Chapter 6, Application Structure and Deployment,
in which we explain class loading.

Chapter 1

[29]

Summary
In this chapter, we outlined the latest features that come shipped with WildFly.

We have seen that WildFly is composed of modular architecture, and that the
kernel of WildFly is made up of two separate projects: JBoss Modules and MSC.

This modular architecture results in an exceptionally light kernel that is able to
load modules as required, resulting in a quicker startup time.

The physical structure of the application server reflects the dichotomy between
standalone servers and domain servers, the former being a single node instance
and the latter a set of managed resources controlled by a domain controller and
a host controller.

In the next chapter, we will dig deeper into the details of how to configure the
application server, focusing our attention on the standalone server configuration
file (standalone.xml), which contains the configuration for both the core
application server and the stack of enterprise services running on top of it.

Configuring the Core
WildFly Subsystems

The first chapter gave us the basis to get started with WildFly 8. It is time for us to
dive right into the configuration of WildFly and see how to manage a standalone
instance of the application server. You will see that the entire server is configured
within a single file.

The configuration file is made up of a list of subsystems, including the application
server core services and standard Java EE services. It is not possible to discuss all
the subsystems within a single chapter, so they have been divided over a couple of
chapters. By the end of this chapter, you should understand and be able to configure:

• The server configuration file standalone.xml
• The application server's thread pool
• The application server's logging subsystem

Configuring our application server
The default configuration files are named standalone.xml, for standalone servers,
and domain.xml for an application server domain. An application server domain
can be seen as a specialized server configuration, which also includes the domain
and host controller setup. We will discuss the application server domain in Chapter 5,
Configuring a WildFly Domain. However, as far as the core services configuration
is concerned, what we cover here will be suitable for the domain configuration as
well. The configuration files (standalone.xml and domain.xml) are non-static files,
which means that runtime changes are persisted to them, for example, adding a
new component, such as a JMS destination, or deploying an application.

Configuring the Core WildFly Subsystems

[32]

You can define as many configuration files as you need. The WildFly 8.1.0 release
provides a few variants of standalone.xml (web profile), such as standalone-full.
xml (full profile), and the standalone-ha.xml (web profile with high availability).
You can also find some example configuration files in JBOSS_HOME/docs/examples/
configs. If you want to start the server with a different configuration file, you can
start the server with the following parameters:

./standalone.sh --server-config standalone-full-ha.xml

The standalone.xml file is located in the JBOSS_HOME/
standalone/configuration folder. This configuration
file is in XML format and is validated by a set of .xsd files
found in the JBOSS_HOME/docs/schema folder.

If you want to check the single .xsd files, you can find them in the JBOSS_HOME/
docs/schema folder of your server distribution. You can get to know all the available
server parameters with a simple inspection of these files or by importing them into
your Eclipse environment. Once they are located in your project, right-click on your
file, and navigate to Generate | XML File.

The application server configuration follows a tree-like structure that contains,
at the root element, the server definition, as shown in the following diagram:

server

profile subsystem1...*

management-interfaces

access-control

audit-log

extensions

system-properties

paths

vault

profiles

management

interfaces

socket-binding-group

deployments

deployment-overlays

In the following sections, we will show in detail the important parts of the server
configuration. This will be helpful to understand the role of each single component
in the application server, although you are advised not to manually change the
configuration file.

Chapter 2

[33]

Manually changing the configuration file can lead to unchecked data modifications.
This can corrupt the format of the file, preventing WildFly from starting up. If you
do need to update the file manually, you should consider making a backup copy first.

The best practice for changing the server configuration is to use the
command-line interface (CLI) or the web admin console, which are
described in Chapter 7, Using the Management Interfaces.

Extensions
The application server contains a list of modules that are used to extend the core
of the application server. The core of WildFly is very light, and these extensions
provide much of the functionality you expect from an application server. Just like
regular static modules, they are stored in the JBOSS_HOME/modules folder. Each
extension defined in the standalone.xml or domain.xml file is picked up by the
WildFly class loader when you start the server, before any applications are
deployed. The following code shows an extract from the server configuration:

<extensions>
 <extension module="org.jboss.as.clustering.infinispan"/>
 <extension module="org.jboss.as.connector"/>
 <extension module="org.jboss.as.deployment-scanner"/>
 <extension module="org.jboss.as.ee"/>
 <extension module="org.jboss.as.ejb3"/>
 ...
</extensions>

Paths
Logical names for a filesystem path can be defined using the paths element. These
paths can then be referenced by their logical name, rather than having to type the full
path each time within the configuration file. By default, the path entry is excluded
from the configuration. If you want to include it, you will have to manually add the
full configuration. The following example defines a path relative to the WildFly server
log with the logical name of log.dir. For a standalone server, this directory translates
into JBOSS_HOME/standalone/log/mylogdir:

<paths>

 <path name="log.dir" path="mylogdir" relative-to="jboss.server.
 log.dir"/>
</paths>

Configuring the Core WildFly Subsystems

[34]

To reference this path in other sections of the configuration file, simply use the
logical name as the path. The following example shows the path being used to
store the logging, rotating file handler:

<periodic-rotating-file-handler name="FILE" autoflush="true">
 <file relative-to="log.dir" path="myserver.log"/>
</periodic-rotating-file-handler>

Please note that the property relative-to is not mandatory. If you
don't include it in your path configuration, the path is assumed to be
an absolute path.

WildFly provides a set of system paths that are available for you to use without
the need to configure them manually. The pre-configured paths are outlined in
the following table. The first five paths cannot be overridden, but the rest can be
overridden using the path element as shown in the preceding code snippet.

Path Meaning
jboss.home The root directory of the WildFly distribution
user.home The user's home directory
user.dir The user's current working directory
java.home The Java installation directory
jboss.server.base.dir The root directory for an individual server instance
jboss.server.data.dir The directory the server will use for persistent data file

storage
jboss.server.log.dir The directory the server will use for logfile storage
jboss.server.tmp.dir The directory the server will use for temporary file storage
jboss.domain.servers.
dir

The directory under which a host controller will create the
working area for individual server instances

Management interfaces
The management interfaces are configured within the management element.
This configuration is used by the CLI, the administration console, and by JMX.
Both the native CLI interface and the web console run on admin port number 9990.
The following example is taken from the default server configuration and highlights
the ports used for the management interfaces:

<socket-binding-group name="standard-sockets" default-
interface="public">
 <socket-binding name="management-http" interface="management"
 port="9990"/>

Chapter 2

[35]

 <socket-binding name="management-https" interface="management"
 port="9993"/>
</socket-binding-group>

In the following code snippet, we show the preceding socket-binding configuration
being referenced by the management-interfaces section of the standalone.xml file:

<management-interfaces>
 <http-interface security-realm="ManagementRealm" http-upgrade-
 enabled="true">
 <socket-binding http="management-http"/>
 </http-interface>
</management-interfaces>

Management interfaces are discussed in detail in Chapter 7, Using the Management
Interfaces, which provides detailed coverage of the application server
management tools.

Profiles and subsystems
A profile can be seen as a collection of subsystems, and each subsystem in turn
contains a subset of functionalities added to the application server by means of
extensions (see the Extensions section). For example, the web subsystem contains
the definition of a set of connectors used by the container, the messaging subsystem
defines the JMS configuration and modules used by the AS's messaging provider,
and so on.

One important difference between a standalone file and a domain configuration
file is the number of profiles contained in it. When using a standalone configuration,
there's a single profile that contains the set of subsystem configurations. Domain
configuration can, on the other hand, provide multiple profiles.

Interfaces
Interfaces define a logical name for where network interfaces/IP address or host
names can be bound.

By default, the standalone application server defines two available network
interfaces, the management interface and the public interface:

 <interfaces>
 <interface name="management">
 <inet-address value="${jboss.bind.address.
 management:127.0.0.1}"/>
 </interface>

www.allitebooks.com

http://www.allitebooks.org

Configuring the Core WildFly Subsystems

[36]

 <interface name="public">
 <inet-address value="${jboss.bind.address:127.0.0.1}"/>
 </interface>
 </interfaces>

The public network interface is intended to be used for the application server
core services:

<socket-binding-group name="standard-sockets" default-
interface="public">
 ...
</socket-binding-group>

The management network interface is referenced by the AS management interfaces,
as shown in the Management interfaces section.

By default, both network interfaces resolve to the loop back address 127.0.0.1.
This means that the application server public services and the management services
are accessible only from the local machine. By changing the inet-address value,
you can bind the network interface to another IP address. The following example
shows the server listening on IP 192.168.1.1:

<interface name="public">
 <inet-address value="192.168.1.1"/>
</interface>

If, on the other hand, you want to bind the network interface to all available sets
of IP addresses, you can use the <any-address /> element, as follows:

<interface name="public">
 <any-address />
</interface>

Another useful variation of network interface is the Network Interface Card (nic)
element, which gathers the address information from the network card name:

<interface name="public">
 <nic name="eth0" />
</interface>

Binding management interfaces via CLI
You can also bind your public interface using the -b switch, followed
by a valid host/IP address. This will cause the server to listen on the
host/IP address provided. For example, to bind all public interfaces to
all IPv4 addresses, you will use $JBOSS_HOME/bin/standalone.sh
-b=0.0.0.0.

Chapter 2

[37]

The socket-binding groups
A socket-binding group defines a logical name for a socket. Each socket-binding name
can be referenced in other parts of the configuration file. In this section, you are able
to configure the network port that will be listening for incoming connections. Every
socket-binding group references a network interface through the default-interface
attribute. Have a look at the following code snippet:

<socket-binding-group name="standard-sockets" default-
interface="public">
 <socket-binding name="management-http" interface="management"
port="9990"/>
 <socket-binding name="management-https" interface="management"
port="9993"/>
 <socket-binding name="ajp" port="8009"/>
 <socket-binding name="http" port="8080"/>
 <socket-binding name="https" port="8443"/>
<socket-binding name="jacorb" interface="unsecure" port="3528"/>
 <socket-binding name="jacorb-ssl" interface="unsecure"
port="3529"/>
 <socket-binding name="txn-recovery-environment" port="4712"/>
 <socket-binding name="txn-status-manager" port="4713"/>
</socket-binding-group>

In order to change the port where a service is bound, you can change the port
attribute of its service, but a better approach is to use one of the management
interfaces. This will provide an immediate outcome of the affected change. In the
following example, we are going to change the default port for the http connector
using the CLI:

[standalone@localhost:9990 /] /socket-binding-group=
 standard-sockets/socket-binding=http:write-attribute(name="port",
 value="8090")
{
 "outcome" => "success",
 "response-headers" => {
 "operation-requires-reload" => true,
 "process-state" => "reload-required"
 }
}

You may have noticed in the response shown above that a reload is required.
This can be achieved by executing the following command:

[standalone@localhost:9990 /] :reload

Configuring the Core WildFly Subsystems

[38]

System properties
This section contains a set of system-wide properties, which can be added to the
application server as part of the booting process. By default, the system-properties
entry is excluded from the configuration. If you want to use this feature, you will need
to add the full configuration. The following configuration snippet sets the property
named example to true:

<system-properties>
 <property name="myboolean" value="true"/>
</system-properties>

The property can be later retrieved on the application server using the following code:

String s = System.getProperty("myboolean");

Deployments
The last section of the configuration file contains all the deployed applications
that have been registered on the application server. Each time a new application is
deployed or undeployed, this section is updated to reflect the new application stack.

Configuring core subsystems
Now that you have grasped the basic concepts of the WildFly configuration file,
we will look in more detail at single services.

In the following diagram, you can find a rough representation of core WildFly 8
subsystems (for the sake of simplicity, we are including just the subsystems that
are covered throughout this book):

Datasource

JBoss Security

JMS JTA

JCA

Undertow

EJB
JPA/

Hibernate

Infinispan

JGroups

Thread Pool

Kernel

modules

JB
o
s
s

L
o
g
g
in

g

WildFly 8

Chapter 2

[39]

As a first taste of configuring the application server, we will explore the areas that
are highlighted in bold in the preceding diagram. These include the following core
application server subsystems:

• The thread pool subsystem
• The JBoss logging subsystem

Let's move straight to the first subsystem, the thread pool.

Configuring the thread pool subsystem
Thread pools address two different problems. Firstly, they usually deliver improved
performance when executing large numbers of asynchronous tasks due to reduced
per-task invocation overhead. Secondly, they provide a means of bounding and
managing resources, including threads, consumed when executing a collection
of tasks.

In releases of JBoss server prior to JBoss AS 7, the thread pool configuration was
centralized in a single file or deployment descriptor. In WildFly, any subsystem
that uses thread pools manages its own thread configuration.

By appropriately configuring the thread pool section, you can tune the specific
areas that use that kind of pool to deliver new tasks. The application server
thread pool configuration can include the following elements:

• Thread factory configuration
• Bounded-queue thread configuration
• Blocking bounded-queue thread configuration
• Unbounded-queue thread configuration
• Queueless thread pool configuration
• Blocking queueless thread pool configuration
• Scheduled thread configuration

It is important to note that the thread subsystem will probably
be marked for deprecation in WildFly 9, but in WildFly 8 this
configuration is completely valid.

Let's look at each single element in detail.

Configuring the Core WildFly Subsystems

[40]

Configuring the thread factory
A thread factory (implementing java.util.concurrent.ThreadFactory) is an
object that creates new threads on demand. Using thread factories removes the
hardwiring of calls to a new thread, enabling applications to use special thread
subclasses, priorities, and so on.

The thread factory is not included in the server configuration by default, as it relies
on default values that you will rarely need to modify. Nevertheless, we will provide
a simple configuration example for the experienced user who may require complete
control of the thread configuration.

The following is an example of a custom thread factory configuration:

<thread-factory name="MyThreadFactory"
 thread-name-pattern="My Thread %t"
 group-name="dummy" />

The following are the possible attributes that you can use when defining a
thread factory:

• The name attribute is the name of the created thread factory
• The optional priority attribute may be used to specify the thread priority

of created threads
• The optional group-name attribute specifies the name of the thread group

to create for this thread factory
• The thread-name-pattern is the template used to create names for threads.

The following patterns can be used:

Pattern Output
%% Emits a percentage sign
%g Emits the per-factory thread sequence number
%f Emits the global thread sequence number
%i Emits the thread ID
%G Emits the thread group name

The bounded-queue thread pool
A bounded-queue thread pool is the most common kind of pool used by
the application server. It helps prevent resource exhaustion by defining a
constraint on the thread pool's size. It is also the most complex to use. Its
inherent complexity derives from the fact that it maintains both a fixed-length
queue and two pool sizes: a core size and a maximum size.

Chapter 2

[41]

If, each time a new task is submitted, the number of running threads is less than the
core size, a new thread is created. Otherwise, if there is room in the queue, the task
is queued.

If none of these options are viable, the executor needs to evaluate if it can still create
a new thread. If the number of running threads is less than the maximum size, a
new thread is created. Otherwise, the task is assigned to the designated hand-off
executor, if one is specified. In the absence of a designated hand-off executor, the
task will be discarded.

The following diagram summarizes the whole process, showing how all the pieces
fit together:

new Thread
handoff

executor

queue

handoff executor ?is there room

in queue ?
Task

threads

< core size

threads

< maximum size

yes

no

yes

no

yes
yes

nono

Task Discarded

Bounded Queue Thread Executor

The following is a sample configuration of a bounded-queue thread pool taken from
the configuration file:

<bounded-queue-thread-pool name="jca-short-running">
 <core-threads count="10"/>
 <queue-length count="10"/>
 <max-threads count="10"/>
 <keepalive-time time="10" unit="seconds"/>
</bounded-queue-thread-pool>

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.
com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Configuring the Core WildFly Subsystems

[42]

The following table gives a short description of each attribute/element:

Attribute/element Description
name Specifies the bean name of the created executor
allow-core-timeout Specifies whether core threads time out or not; if false,

only threads above the core size will time out
core-threads Specifies the core thread pool size, which is smaller than

the maximum pool size
max-threads Specifies the maximum thread pool size
queue-length Specifies the executor queue length
keepalive-time Specifies the amount of time that threads beyond the core

pool size should be kept running when idle
thread-factory Specifies the bean name of a specific thread factory to use

to create worker threads
handoff-executor Specifies an executor to delegate tasks to in the event that

a task cannot be accepted

Performance focus
Queue size and pool size values are a performance tradeoff, and the
right balance needs to be found between the two. When using a small
pool with a large queue, you minimize CPU usage, OS resources, and
context-switching overhead. It can, however, produce an artificially
low throughput. If tasks are strongly I/O bound (and thus frequently
blocked), a system may be able to schedule time for more threads than
you otherwise allow. The use of small queues generally requires larger
pool sizes, which keep the CPUs busier but may encounter unacceptable
scheduling overhead, which also decreases throughput.

The blocking bounded-queue thread pool
The blocking bounded-queue thread pool has a very similar configuration to the
bounded-queue thread pool; it has a slightly different workflow. The difference
being, rather than attempting to hand off to the designated hand-off executor,
the caller blocks until room becomes available in the queue.

Chapter 2

[43]

The flowchart for this thread pool is shown as follows:

new Thread

queue

is there room

in queue ?
Task

threads

< core size

threads

< maximum size

yes

no

yes

no

yes

Blocking Bounded Queue Thread Executor

no

block

The following is an example configuration for a blocking bounded-queue thread pool:

<blocking-bounded-queue-thread-pool name="jca-short-running">
 <core-threads count="10"/>
 <queue-length count="10"/>
 <max-threads count="10"/>
 <keepalive-time time="10" unit="seconds"/>
</bounded-queue-thread-pool>

Please see the following table for the bounded-queue thread pool for a description
of each attribute/element. The attributes/elements available for the blocking
bounded-queue thread pool are shown in the following table:

Attribute/element Description
name Specifies the bean name of the created executor
allow-core-
timeout

Specifies whether core threads may time out or not; if
false, only threads above the core size will time out

core-threads Specifies the core thread pool size, which is smaller than
the maximum pool size

max-threads Specifies the maximum thread pool size
queue-length Specifies the executor queue length
keepalive-time Specifies the amount of time that threads beyond the core

pool size should be kept running when idle
thread-factory Specifies the bean name of a specific thread factory to use

to create worker threads

Configuring the Core WildFly Subsystems

[44]

The unbounded-queue thread pool
The unbounded-queue thread pool executor follows a simpler but more risky
approach than the bounded thread pool; that is, it always accepts new tasks.

In practice, the unbounded thread pool has a core size and a queue with no upper
limit. When a task is submitted, if the number of running threads is less than the
core size, a new thread is created. Otherwise, the task is placed in a queue. If too
many tasks are allowed to be submitted to this type of executor, an out-of-memory
condition may occur. Have a look at the following flowchart:

new Thread

Task too many task

in queue ?

yes

Unbounded Queue Thread Executor

no

queueno
threads

< core size
yes Out of Memory

Due to its inherent risk, unbounded thread pools are not included by default
in the server configuration. We will provide a sample here, with only one
recommendation: don't try this at home, kids!

<unbounded-queue-thread-pool name="unbounded-threads">
 <max-threads count="10" />
 <keepalive-time time="10" unit="seconds"/>
</unbounded-queue-thread-pool>

If you want to know more about the meaning of each thread pool element/attribute,
you can refer to the bounded thread pool table.

The attributes/elements available for the unbounded-queue thread pool are shown
in the following table:

Attribute/element Description
name Specifies the bean name of the created executor
max-threads Specifies the maximum thread pool size
keepalive-time Specifies the amount of time that threads beyond the core pool

size should be kept running when idle
thread-factory Specifies the bean name of a specific thread factory to use to

create worker threads

Chapter 2

[45]

The queueless thread pool
As its name implies, the queueless thread pool is a thread pool executor with
no queue. Basically, this executor short-circuits the logic of the bounded thread
executor, as it does not attempt to store the task in a queue.

So, when a task is submitted, if the number of running threads is less than the
maximum size, a new thread is created. Otherwise, the task is assigned to the
designated hand-off executor if one is specified. Without any designated
hand-off, the task will be discarded. Have a look at the following flowchart:

new Thread

handoff executor ?Task

yes

no

handoff

executor

yes

no Task Discarded

Queueless Thread Executor

threads

< maximum size

Queueless executors are also not included by default in the configuration file.
However, we will provide a sample configuration here:

<queueless-thread-pool
 name="queueless-thread-pool" blocking="true">
 <max-threads count="10"/>
 <keepalive-time time="10" unit="seconds"/>
</queueless-thread-pool>

The blocking queueless thread pool
The blocking queueless thread pool has a similar configuration to the queueless
thread pool. Similar to the blocking queue thread pool, the difference is that rather
than attempting to hand off to the designated hand-off executor, the caller blocks
until room becomes available in the queue.

www.allitebooks.com

http://www.allitebooks.org

Configuring the Core WildFly Subsystems

[46]

Have a look at the following diagram:

Task
threads

< maximum size

new Thread

yes

Blocking Queueless Thread Executor

no

block

Although not included in the default configuration file, here is an example:

<blocking-queueless-thread-pool name="queueless-thread-pool">
 <max-threads count="10" />
 <keepalive-time time="10" unit="seconds"/>
</blocking-queueless-thread-pool>

The attributes/elements available for the unbounded-queue thread pool are name,
max-threads, keepalive-time, and thread-factory.

The scheduled thread pool
The server-scheduled thread pool is used for activities on the server side that require
running periodically or with delays. It maps internally to a java.util.concurrent.
ScheduledThreadPoolExecutor instance. Have a look at the following diagram:

Task
threads

< maximum size

Thread

scheduled

yes

Scheduled Thread Executor

no Task Rejected

Chapter 2

[47]

This type of executor is configured with the scheduled-thread-pool executor
element, as follows:

<scheduled-thread-pool name="remoting">
 <max-threads count="10"/>
 <keepalive-time time="10" unit="seconds"/>
</scheduled-thread-pool>

The scheduled thread pool is used by the remoting framework and by the HornetQ
subsystem, which uses both a bounded JCA thread executor and a scheduled pool
for delayed delivery.

Configuring application server logging
Every application needs to trace logging statements. At the moment, there are
several implementations of logging libraries for Java applications, the most popular
ones are:

• Log4j: It is a flexible open source logging library from Apache. Log4j is
widely used in the open source community, and it was the default logging
implementation on earlier releases of JBoss AS.

• Java SE logging libraries (JUL): It provides the logging classes and interfaces
as part of the Java SE platform's standard libraries.

Log4j and JUL have very similar APIs. They differ conceptually only in small details,
but do more or less the same thing, with the exception of log4j, which has more
features. You may or may not need these features.

The JBoss logging framework is based on JUL, which is built around three main
concepts: loggers, handlers, and formatters. These concepts allow developers to
log messages according to their type and priority and to control where messages
end up and how they look when they get there.

The following diagram shows the logging cycle using the JUL framework. The
application makes logging calls on the logger objects. These logger objects allocate
the LogRecord objects, which are passed to the handler objects for publication.
Both logger and handler may use the formatter to arrange the layout of logs
and filter to decide whether they are interested in a particular log record.

Configuring the Core WildFly Subsystems

[48]

Have a look at the following diagram:

Filter FormatterFilter

HandlerLogger

application

out

Choosing your logging implementation
The WildFly/JBoss application server, through its releases, has used different
frameworks to handle application server logs. In JBoss AS 5 and earlier, log4j
was the default logging API used by the application server.

Since JBoss AS 6, the logging provider switched to JBoss's own implementation,
which is based on the JDK 1.4 logging system. However, it provides several fixes
and workarounds for many shortcomings in the default JDK implementation.

For example, the default implementation of java.util.logging provided in the
JDK does not have per-web application logging, as the configuration is per-VM.

As a result, WildFly replaces the default JUL log manager implementation with
its own implementation, which addresses these issues. The following diagram
illustrates the modules that make up the WildFly 8 logging subsystem:

javax.api

org.apache.log4j

org.jboss.log4j.logmanagerorg.jboss.logging

org.jboss.as.logging

org.jboss.logmanager

Chapter 2

[49]

At the top of the hierarchy, there's the org.jboss.logmanager module, which
is the top-level library that manages logs for the JBoss logging subsystem. Under
jboss logmanager, you can find concrete implementations, such as the org.jboss.
logging and org.jboss.log4j.logmanager modules. By default, the application
server uses the former module (org.jboss.logging), which is implemented in
turn by org.jboss.as.logging to manage your logs inside the application server.
However, if you want to switch to the log4j implementation, the org.jboss.
log4j.logmanager module is what you need (in the last section of this chapter,
we will include an example of how to use log4j in your application).

WildFly is not limited to JBoss logging or log4j. You can use any
logging library, including slf4j or commons logging.

Configuring the logging subsystem
The logging subsystem contains a set of log handlers out of the box. A handler object
takes log messages from a logger and exports them. For example, it might write them
to a console or a file, send them to a network logging service, or forward them to an
OS log. By default, the following handlers are defined:

• console-handler

• periodic-rotating-file-handler

• size-rotating-file-handler

• async-handler

• syslog-handler

• custom-handler

The console-handler
The console-handler defines a handler that simply writes log messages to the
console, as follows:

<console-handler name="CONSOLE" autoflush="true">
 <level name="INFO"/>
 <formatter>
 <pattern-formatter pattern="%d{HH:mm:ss,SSS} %-5p [%c] (%t)
 %s%E%n"/>
 </formatter>
</console-handler>

Configuring the Core WildFly Subsystems

[50]

The optional autoflush attribute determines if buffered logs are flushed
automatically. The default value for this option is true.

The level element defines the lowest log level associated with the handler, which
means that anything with this log level and a higher value will be logged. The full
range of log levels, from lowest to highest, are: OFF, FINEST, FINER, FINE, CONFIG,
INFO, WARNING, SEVERE, and ALL.

The formatter element provides support to format LogRecords. The log formatting
inherits the same pattern strings as that of the layout pattern of log4j, which was
in turn inspired by dear old C's printf function. Check the log4j documentation
at http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/
PatternLayout.html.

Here, we will just mention that %d{HH:mm:ss,SSS} outputs the date of the logging
event using the conversion included in brackets.

• The string %-5p outputs the priority of the logging event
• The string [%c] is used to output the category of the logging event
• The string (%t) outputs the thread that generated the logging event
• The string %s outputs the log message
• Finally, the %n string outputs the platform-dependent line separator

character or characters

The periodic-rotating-file-handler
The periodic-rotating-file-handler defines a handler that writes to a
file and rotates the log after a time period derived from the given suffix string,
which should be in a format understood by java.text.SimpleDateFormat.

Here's the definition of it:

<periodic-rotating-file-handler name="FILE" autoflush="true">
 <level name="INFO"/>
 <formatter>
 <pattern-formatter pattern="%d{HH:mm:ss,SSS} %-5p [%c] (%t)
 %s%E%n"/>
 </formatter>
 <file relative-to="jboss.server.log.dir" path="server.log"/>
 <suffix value=".yyyy-MM-dd"/>
 <append value="true"/>
</periodic-rotating-file-handler>

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html

Chapter 2

[51]

This handler introduces the file element containing the path, which is the actual
filename and its relative-to position. In our case, the relative position corresponds
to the jboss.server.log.dir application server parameter.

With the default suffix configuration, logs are rolled at 12 PM. By
changing the value of SimpleDateFormat, you can also change the
period when logs are rotated, for example, the suffix yyyy-MM-dd-HH
will rotate the logs every hour.

The size-rotating-file-handler
The size-rotating-file-handler defines a handler that writes to a file, rotating
the log after the size of the file grows beyond a certain point. It also keeps a fixed
number of backups.

There's no size handler defined in the standard configuration. However,
we can find out its basic configuration from the JBOSS_HOME/docs/schema/
jboss-as-logging_2_0.xsd file. Have a look at the following code:

<size-rotating-file-handler name="FILESIZE" autoflush="true" >
 <rotate-size value="500k" />
 <level name="INFO"/>
 <formatter>
 <pattern-formatter pattern="%d{HH:mm:ss,SSS} %-5p [%c] (%t)
 %s%E%n"/>
 </formatter>
 <file relative-to="jboss.server.log.dir" path="server.log"/>
</size-rotating-file-handler>

The async-handler
The async-handler is a composite handler that attaches to other handlers to
produce asynchronous logging events. Behind the scenes, this handler uses a
bounded queue to store events. Every time a log is emitted, the asynchronous
handler appends the log into the queue and returns immediately. Here's an
example of asynchronous logging for the FILE appender:

<async-handler name="ASYNC">
 <level name="INFO" />
 <queue-length>1024</queue-length>
 <overflow-action>block</overflow-action>
 <sub-handlers>
 <handler-ref name="FILE" />
 </sub-handlers>
</async-handler>

Configuring the Core WildFly Subsystems

[52]

In this handler, we also specify the size of the queue, where events are sent, and the
action to take when the async queue overflows. You can opt between block, causing
the calling thread to be blocked, and discard, causing the message to be discarded.

When should I use the asynchronous handler?
The asynchronous handler produces a substantial performance
benefit to applications that are heavily I/O bound. Conversely,
CPU-bound applications may not benefit from asynchronous
logging, as it will put additional stress on the CPU.

The syslog-handler
A syslog-handler can be used to write logs to a remote logging server. This allows
multiple applications to send their log messages to the same server, where they can
all be parsed together. Both RFC3164 and RFC5424 formats are supported. Here is
an example of a syslog-handler:

<syslog-handler name="SYSLOG" enabled="true">
 <level name="INFO" />
 <port value="514" />
 <server-address value="192.168.0.56" />
 <formatter>
 <syslog-format syslog-type="RFC5424" />
 </formatter>
</syslog-handler>

Custom handlers
So far, we have seen just a few basic log handlers, which are usually included in your
server configuration. If you need a more advanced approach to managing your logs,
you can define a custom logging handler. In order to add a custom handler, you need
to define a class that extends the java.util.logging.Handler interface and then
override its abstract methods. For example, the following class, named JdbcLogger,
is used to write the logs to a database (full code is available at http://community.
jboss.org/wiki/CustomLogHandlersOn701).

Note that, although this article was written for JBoss AS 7, it remains
valid for WildFly 8.

http://community.jboss.org/wiki/CustomLogHandlersOn701
http://community.jboss.org/wiki/CustomLogHandlersOn701

Chapter 2

[53]

Have a look at the following code snippet:

public class JdbcLogger extends Handler{
 @Override
 public void publish(LogRecord record){
 try{
 insertRecord(record);
 }
 catch (SQLException e) {
 e.printStackTrace();
 }
 }
 @Override
 public void flush() { }
 @Override
 public void close() { }
}

Once compiled, this class needs to be packaged in an archive (for example, logger.
jar) and installed as a module in the application server. We will name the module
com.JDBCLogger, which requires the following structure under the modules folder:

modules

Path to be created

JDBCLogger

main

logger.jar

module.xml

com

modules

Configuring the Core WildFly Subsystems

[54]

The label Path to be created shows the directory structure under which we will place
the logger.jar archive and its configuration file (module.xml), which follows here:

<module xmlns="urn:jboss:module:1.3" name="com.JDBCLogger">
 <resources>
 <resource-root path="logger.jar"/>
 </resources>
 <dependencies>
 <module name="javax.api"/>
 <module name="org.jboss.logging"/>
 <module name="com.mysql"/>
 </dependencies>
</module>

Note that this module has a dependency on another module, com.mysql.
In the next chapter, we will show how to connect to a database after installing
the appropriate module.

We are almost done. Now, insert the handler in the logging subsystem, which
contains within its properties the database connection strings and the statement
that will be used to insert logs into the database:

<custom-handler name="DB" class="com.sample.JdbcLogger" module="com.
JDBCLogger">
 <level name="INFO"/>
 <formatter>
 <pattern-formatter pattern="%d{HH:mm:ss,SSS} %-5p [%c] (%t)
 %s%E%n"/>
 </formatter>
 <properties>
 <property name="driverClassName" value="com.mysql.jdbc.
 Driver"/>
 <property name="jdbcUrl" value="jdbc:mysql://localhost:3306/
 mydb"/>
 <property name="username" value="root"/>
 <property name="password" value="admin"/>
 <property name="insertStatement" value="INSERT INTO into
 log_table VALUES (?, $TIMESTAMP, $LEVEL, $MDC[ip],
 $MDC[user], $MESSAGE, hardcoded)"/>
 </properties>
</custom-handler>
<root-logger>
 <level name="INFO"/>
 <handlers>
 <handler name="CONSOLE"/>
 <handler name="FILE"/>

Chapter 2

[55]

 <handler name="DB"/>
 </handlers>
</root-logger>

The new handler, named DB, is enlisted in the root-logger to collect all logging
statements that have a priority of INFO or higher. Before testing the logger, don't
forget to create the required tables on your MySQL database, as follows:

CREATE TABLE log_table(
 id INT(11) NOT NULL AUTO_INCREMENT,
 `timestamp` VARCHAR(255) DEFAULT NULL,
 level VARCHAR(255) DEFAULT NULL,
 mdc_ip VARCHAR(255) DEFAULT NULL,
 mdc_user VARCHAR(255) DEFAULT NULL,
 message VARCHAR(1500) DEFAULT NULL,
 hardcoded VARCHAR(255) DEFAULT NULL,
 PRIMARY KEY (id)
)
ENGINE = INNODBAUTO_INCREMENT = 1

If you have carefully followed all the required steps, you will notice that log_table
contains the logging events that have been triggered since server startup. Have a
look at the following screenshot:

Configuring loggers
A logger object is used to log messages for a specific system or application
components. Loggers are normally named using a hierarchical dot-separated
namespace. Logger names can be arbitrary strings, but they should normally be
based on the package name or class name of the logged component. For example,
the logger instructs the logging system to emit logging statements for the package
com.sample if they have the log level WARN or higher:

<logger category="com.sample">
 <level name="WARN"/>
</logger>

www.allitebooks.com

http://www.allitebooks.org

Configuring the Core WildFly Subsystems

[56]

At the top of the hierarchy, there's the root-logger. There are two important things
to note about root-logger:

• It always exists
• It cannot be retrieved by name

In the default server configuration, the root-logger defines two handlers that are
connected to CONSOLE and to the FILE handler:

<root-logger>
 <level name="INFO"/>
 <handlers>
 <handler name="CONSOLE"/>
 <handler name="FILE"/>
 </handlers>
</root-logger>

Per-deployment logging
WildFly has the ability to configure per-deployment logging. This is enabled by
default. This means that if you add a logging configuration file to your deployment,
its configuration will be used to log for that deployment. The valid logging
configuration files are as follows:

• logging.properties

• jboss-logging.properties

• log4j.properties

• log4j.xml

• jboss-log4j.xml

If you package your application into an EAR, your logging configuration file should go
into the META-INF directory. If you are packaging your application into a JAR or WAR,
then it can be placed into either the META-INF directory or the WEB-INF directory.

Should you want to disable per-deployment logging, you will need to set the
use-deployment-logging-config value to false. Have a look at the following
code snippet:

<subsystem xmlns="urn:jboss:domain:logging:2.0">
 <use-deployment-logging-config value="false"/>
 <console-handler name="CONSOLE">
 <level name="INFO"/>
 <formatter>

Chapter 2

[57]

 <named-formatter name="COLOR-PATTERN"/>
 </formatter>
 </console-handler>
 ...
</subsystem>

The system property org.jboss.as.logging.per-deployment
has been deprecated in WildFly 8. You should use use-
deployment-logging-config instead.

Bypassing container logging
You may, for some reason, wish to bypass container logging altogether. To do this,
add the add-logging-api-dependencies property to your logging configuration
and set its value to false. This will disable the adding of the implicit server logging
dependencies, as shown in the following code:

<subsystem xmlns="urn:jboss:domain:logging:2.0">
 <add-logging-api-dependenciesuse-deployment-logging-config
value="false"/>
 <console-handler name="CONSOLE">
 <level name="INFO"/>
 <formatter>
 <named-formatter name="COLOR-PATTERN"/>
 </formatter>
 </console-handler>
 ...
</subsystem>

To bypass logging on per-application basis only, you will need to use the
jboss-deployment-structure.xml file to exclude the logging subsystem. We will
cover the jboss-deployment-structure.xml file in detail in Chapter 6, Application
Structure and Deployment.

Summary
In this chapter, we've gone through the basics of the application server configuration,
which is now composed of a single monolithic file that contains the configuration for
all the installed services.

Although this main configuration file will be your main point of reference to get a
full understanding of the WildFly infrastructure, we must stress the importance of
modifying it via one of the management interfaces.

Configuring the Core WildFly Subsystems

[58]

We have examined each of the sections within the thread pool configuration in
detail. We have also seen that the thread pool relies on the Java Standard Edition
Thread Executor API to define a set of pools, and that these pools are used by the
application servers' core services.

Next, we discussed the JBoss logging framework, which is built on top of the
Java Util Logging framework and addresses some known shortcomings of JUL.
We described how to configure per-application logging in your applications.

In the next chapter, we will take a look at some core enterprise service configurations,
such as the datasource and messaging subsystems. These services are the backbone
of many enterprise applications.

Configuring Enterprise
Services

This chapter covers the configuration of the Java Enterprise services that ship
with the application server. Many of the services are configured within their own
subsystem. These subsystems can be added or removed depending on whether or
not the service is required in your application. We will look at the most common
ones in the following order:

• Connecting to a database
• Configuring the Enterprise JavaBeans container
• Configuring the messaging service
• Configuring the transaction service
• Configuring concurrency

Connecting to a database
To allow your application to connect to a database, you will need to configure
your server by adding a datasource. Upon server startup, each datasource
is prepopulated with a pool of database connections. Applications acquire a
database connection from the pool by doing a JNDI lookup and then calling
getConnection(). Take a look at the following code:

Connection result = null;
try {
 Context initialContext = new InitialContext();
 DataSource datasource =
 (DataSource)initialContext.lookup("java:/MySqlDS");
 result = datasource.getConnection();
} catch (Exception ex) {
 log("Cannot get connection: " + ex);}

Configuring Enterprise Services

[60]

After the connection has been used, you should always call connection.close()
as soon as possible. This frees the connection and allows it to be returned to the
connection pool—ready for other applications or processes to use.

Releases prior to JBoss AS 7 required a datasource configuration file (ds.xml) to
be deployed with the application. Ever since the release of JBoss AS 7, this approach
has no longer been mandatory due to the modular nature of the application server.

Out of the box, the application server ships with the H2 open source database
engine (http://www.h2database.com), which, because of its small footprint
and browser-based console, is ideal for testing purposes.

However, a real-world application requires an industry-standard database,
such as the Oracle database or MySQL. In the following section, we will show
you how to configure a datasource for the MySQL database.

Any database configuration requires a two step procedure, which is as follows:

• Installing the JDBC driver
• Adding the datasource to your configuration

Let's look at each section in detail.

Installing the JDBC driver
In WildFly's modular server architecture, you have a couple of ways to install
your JDBC driver. You can install it either as a module or as a deployment unit.

The first and recommended approach is to install the driver as a module. In the
Installing the driver as a deployment unit section, we will look at a faster approach
to installing the driver. However, it does have various limitations, which we will
cover shortly.

Please see the source code for this chapter for the complete
module example.

The first step to install a new module is to create the directory structure
under the modules folder. The actual path for the module is JBOSS_HOME/
modules/<module>/main.

http://www.h2database.com

Chapter 3

[61]

The main folder is where all the key module components are installed, namely,
the driver and the module.xml file. So, next, we need to add the following units:

• JBOSS_HOME/modules/com/mysql/main/mysql-connector-java-5.1.30-
bin.jar

• JBOSS_HOME/modules/com/mysql/main/module.xml

The MySQL JDBC driver used in this example, also known as Connector/J, can be
downloaded for free from the MySQL site (http://dev.mysql.com/downloads/
connector/j/). At the time of writing, the latest version is 5.1.30.

The last thing to do is to create the module.xml file. This file contains the actual
module definition. It is important to make sure that the module name (com.mysql)
corresponds to the module attribute defined in the your datasource.

You must also state the path to the JDBC driver resource and finally add the
module dependencies, as shown in the following code:

<module xmlns="urn:jboss:module:1.3" name="com.mysql">
 <resources>
 <resource-root path="mysql-connector-java-5.1.30-bin.jar"/>
 </resources>
 <dependencies>
 <module name="javax.api"/>
 <module name="javax.transaction.api"/>
 </dependencies>
</module>

Here is a diagram showing the final directory structure of this new module:

modules

Path to be created

mysql

main

mysql-

connector.jar

module.xml

com

modules

http://dev.mysql.com/downloads/connector/j/
http://dev.mysql.com/downloads/connector/j/

Configuring Enterprise Services

[62]

You will notice that there is a directory structure already within the
modules folder. All the system libraries are housed inside the system/
layers/base directory. Your custom modules should be placed
directly inside the modules folder and not with the system modules.

Adding a local datasource
Once the JDBC driver is installed, you need to configure the datasource within the
application server's configuration file. In WildFly, you can configure two kinds of
datasources, local datasources and xa-datasources, which are distinguishable by
the element name in the configuration file.

A local datasource does not support two-phase commits using a java.
sql.Driver. On the other hand, an xa-datasource supports two-phase
commits using a javax.sql.XADataSource.

Adding a datasource definition can be completed by adding the datasource
definition within the server configuration file or by using the management interfaces.
The management interfaces are the recommended way, as they will accurately update
the configuration for you, which means that you do not need to worry about getting
the correct syntax.

In this chapter, we are going to add the datasource by modifying the server
configuration file directly. Although this is not the recommended approach, it
will allow you to get used to the syntax and layout of the file. In Chapter 7, Using
the Management Interfaces, we will show you how to add a datasource using the
management tools.

Here is a sample MySQL datasource configuration that you can copy into your
datasources subsystem section within the standalone.xml configuration file:

<datasources>
 <datasource jndi-name="java:/MySqlDS" pool-name="MySqlDS_Pool"
 enabled="true" jta="true" use-java-context="true" use-ccm="true">
 <connection-url>
 jdbc:mysql://localhost:3306/MyDB
 </connection-url>
 <driver>mysql</driver>
 <pool />
 <security>

Chapter 3

[63]

 <user-name>jboss</user-name>
 <password>jboss</password>
 </security>
 <statement/>
 <timeout>
 <idle-timeout-minutes>0</idle-timeout-minutes>
 <query-timeout>600</query-timeout>
 </timeout>
 </datasource>
 <drivers>
 <driver name="mysql" module="com.mysql"/>
 </drivers>
</datasources>

As you can see, the configuration file uses the same XML schema definition from
the earlier -*.ds.xml file, so it will not be difficult to migrate to WildFly from
previous releases.

In WildFly, it's mandatory that the datasource is bound into the
java:/ or java:jboss/ JNDI namespace.

Let's take a look at the various elements of this file:

• connection-url: This element is used to define the connection path to
the database.

• driver: This element is used to define the JDBC driver class.
• pool: This element is used to define the JDBC connection pool properties.

In this case, we are going to leave the default values.
• security: This element is used to configure the connection credentials.
• statement: This element is added just as a placeholder for

statement-caching options.
• timeout: This element is optional and contains a set of other elements, such

as query-timeout, which is a static configuration of the maximum seconds
before a query times out. Also the included idle-timeout-minutes element
indicates the maximum time a connection may be idle before being closed;
setting it to 0 disables it, and the default is 15 minutes.

Configuring Enterprise Services

[64]

Configuring the connection pool
One key aspect of the datasource configuration is the pool element. You can use
connection pooling without modifying any of the existing WildFly configurations,
as, without modification, WildFly will choose to use default settings. If you want to
customize the pooling configuration, for example, change the pool size or change
the types of connections that are pooled, you will need to learn how to modify the
configuration file.

Here's an example of pool configuration, which can be added to your datasource
configuration:

<pool>
 <min-pool-size>5</min-pool-size>
 <max-pool-size>10</max-pool-size>
 <prefill>true</prefill>
 <use-strict-min>true</use-strict-min>
 <flush-strategy>FailingConnectionOnly</flush-strategy>
</pool>

The attributes included in the pool configuration are actually borrowed from earlier
releases, so we include them here for your reference:

Attribute Meaning
initial-pool-size This means the initial number of connections a pool should

hold (default is 0 (zero)).
min-pool-size This is the minimum number of connections in the pool

(default is 0 (zero)).
max-pool-size This is the maximum number of connections in the pool

(default is 20).
prefill This attempts to prefill the connection pool to the minimum

number of connections.
use-strict-min This determines whether idle connections below min-pool-

size should be closed.
allow-multiple-
users

This determines whether multiple users can access the
datasource through the getConnection method. This
has been changed slightly in WildFly. In WildFly, the line
<allow-multiple-users>true</allow-multiple-
users> is required. In JBoss AS 7, the empty element
<allow-multiple-users/> was used.

capacity This specifies the capacity policies for the pool—either
incrementer or decrementer.

Chapter 3

[65]

Attribute Meaning
connection-
listener

Here, you can specify org.jboss.jca.adapters.jdbc.
spi.listener.ConnectionListener that allows you
to listen for connection callbacks, such as activation and
passivation.

flush-strategy This specifies how the pool should be flushed in the event of
an error (default is FailingConnectionsOnly).

Configuring the statement cache
For each connection within a connection pool, the WildFly server is able to
create a statement cache. When a prepared statement or callable statement is
used, WildFly will cache the statement so that it can be reused. In order to
activate the statement cache, you have to specify a value greater than 0 within the
prepared-statement-cache-size element. Take a look at the following code:

<statement>
 <track-statements>true</track-statements>
 <prepared-statement-cache-size>10</prepared-statement-cache-size>
 <share-prepared-statements/>
</statement>

Notice that we have also set track-statements to true. This will enable automatic
closing of statements and ResultSets. This is important if you want to use
prepared statement caching and/or don't want to prevent cursor leaks.

The last element, share-prepared-statements, can only be used when the prepared
statement cache is enabled. This property determines whether two requests in the
same transaction should return the same statement (default is false).

Adding an xa-datasource
Adding an xa-datasource requires some modification to the datasource
configuration. The xa-datasource is configured within its own element, that is,
within the datasource. You will also need to specify the xa-datasource class
within the driver element.

In the following code, we will add a configuration for our MySQL JDBC driver,
which will be used to set up an xa-datasource:

<datasources>
 <xa-datasource jndi-name="java:/XAMySqlDS" pool-name="MySqlDS_Pool"
 enabled="true" use-java-context="true" use-ccm="true">
 <xa-datasource-property name="URL">

Configuring Enterprise Services

[66]

 jdbc:mysql://localhost:3306/MyDB
 </xa-datasource-property>
 <xa-datasource-property name="User">jboss
 </xa-datasource-property>
 <xa-datasource-property name="Password">jboss
 </xa-datasource-property>
 <driver>mysql-xa</driver>
 </xa-datasource>
 <drivers>
 <driver name="mysql-xa" module="com.mysql">
 <xa-datasource-class>
 com.mysql.jdbc.jdbc2.optional.MysqlXADataSource
 </xa-datasource-class>
 </driver>
 </drivers>
</datasources>

Datasource versus xa-datasource
You should use an xa-datasource in cases where a single transaction
spans multiple datasources, for example, if a method consumes a
Java Message Service (JMS) and updates a Java Persistence API
(JPA) entity.

Installing the driver as a deployment unit
In the WildFly application server, every library is a module. Thus, simply deploying
the JDBC driver to the application server will trigger its installation.

If the JDBC driver consists of more than a single JAR file, you
will not be able to install the driver as a deployment unit. In this
case, you will have to install the driver as a core module.

So, to install the database driver as a deployment unit, simply copy the mysql-
connector-java-5.1.30-bin.jar driver into the JBOSS_HOME/standalone/
deployments folder of your installation, as shown in the following image:

Chapter 3

[67]

modules

deployments

mysql-

connector.jar

standalone

JBOSS_HOME

Once you have deployed your JDBC driver, you still need to add the datasource to
your server configuration file. The simplest way to do this is to paste the following
datasource definition into the configuration file, as follows:

<datasource jndi-name="java:/MySqlDS" pool-name="MySqlDS_Pool"
 enabled="true" jta="true" use-java-context="true" use-ccm="true">
 <connection-url>
 jdbc:mysql://localhost:3306/MyDB
 </connection-url>
 <driver>mysql-connector-java-5.1.130-bin.jar</driver>
 <pool />
 <security>
 <user-name>jboss</user-name>
 <password>jboss</password>
 </security>
</datasource>

Alternatively, you can use the command-line interface (CLI) or the web
administration console to achieve the same result, as shown later in Chapter 7,
Using the Management Interfaces.

What about domain deployment?
In this chapter, we are discussing the configuration of standalone servers.
The services can also be configured in the domain servers. Domain
servers, however, don't have a specified folder scanned for deployment.
Rather, the management interfaces are used to inject resources into the
domain. Chapter 5, Configuring a WildFly Domain, will detail all the steps
to deploy a module when using a domain server.

Configuring Enterprise Services

[68]

Choosing the right driver deployment strategy
At this point, you might wonder about a best practice for deploying the JDBC
driver. Installing the driver as a deployment unit is a handy shortcut; however,
it can limit its usage. Firstly, it requires a JDBC 4-compliant driver.

Deploying a non-JDBC-4-compliant driver is possible, but it requires a simple
patching procedure. To do this, create a META-INF/services structure containing
the java.sql.Driver file. The content of the file will be the driver name. For example,
let's suppose you have to patch a MySQL driver—the content will be com.mysql.
jdbc.Driver.

Once you have created your structure, you can package your JDBC driver with
any zipping utility or the .jar command, jar -uf <your -jdbc-driver.jar>
META-INF/services/java.sql.Driver.

The most current JDBC drivers are compliant with JDBC 4 although,
curiously, not all are recognized as such by the application server.
The following table describes some of the most used drivers and
their JDBC compliance:

Database Driver JDBC 4 compliant Contains java.
sql.Driver

MySQL mysql-connector-java-
5.1.30-bin.jar

Yes, though not recognized
as compliant by WildFly

Yes

PostgreSQL postgresql-9.3-1101.
jdbc4.jar

Yes, though not recognized
as compliant by WildFly

Yes

Oracle ojdbc6.jar/ojdbc5.jar Yes Yes
Oracle ojdbc4.jar No No

As you can see, the most notable exception to the list of drivers is the older Oracle
ojdbc4.jar, which is not compliant with JDBC 4 and does not contain the driver
information in META-INF/services/java.sql.Driver.

The second issue with driver deployment is related to the specific case of
xa-datasources. Installing the driver as deployment means that the application server
by itself cannot deduce the information about the xa-datasource class used in the
driver. Since this information is not contained inside META-INF/services, you are
forced to specify information about the xa-datasource class for each xa-datasource
you are going to create.

Chapter 3

[69]

When you install a driver as a module, the xa-datasource class information can be
shared for all the installed datasources.

<driver name="mysql-xa" module="com.mysql">
 <xa-datasource-class>
 com.mysql.jdbc.jdbc2.optional.MysqlXADataSource
 </xa-datasource-class>
</driver>

So, if you are not too limited by these issues, installing the driver as a deployment is a
handy shortcut that can be used in your development environment. For a production
environment, it is recommended that you install the driver as a static module.

Configuring a datasource programmatically
After installing your driver, you may want to limit the amount of application
configuration in the server file. This can be done by configuring your datasource
programmatically This option requires zero modification to your configuration file,
which means greater application portability. The support to configure a datasource
programmatically is one of the cool features of Java EE that can be achieved by
using the @DataSourceDefinition annotation, as follows:

@DataSourceDefinition(name = "java:/OracleDS",
 className = " oracle.jdbc.OracleDriver",
 portNumber = 1521,
 serverName = "192.168.1.1",
 databaseName = "OracleSID",
 user = "scott",
 password = "tiger",
 properties = {"createDatabase=create"})
@Singleton
public class DataSourceEJB {
 @Resource(lookup = "java:/OracleDS")
 private DataSource ds;
}

In this example, we defined a datasource for an Oracle database. It's important
to note that, when configuring a datasource programmatically, you will actually
bypass JCA, which proxies requests between the client and the connection pool.

The obvious advantage of this approach is that you can move your application from
one application server to another without the need for reconfiguring its datasources.
On the other hand, by modifying the datasource within the configuration file, you
will be able to utilize the full benefits of the application server, many of which are
required for enterprise applications.

Configuring Enterprise Services

[70]

Configuring the Enterprise JavaBeans
container
The Enterprise JavaBeans (EJB) container is a fundamental part of the Java Enterprise
architecture. The EJB container provides the environment used to host and manage the
EJB components deployed in the container. The container is responsible for providing
a standard set of services, including caching, concurrency, persistence, security,
transaction management, and locking services.

The container also provides distributed access and lookup functions for hosted
components, and it intercepts all method invocations on hosted components to enforce
declarative security and transaction contexts. Take a look at the following figure:

Standard EJB components

Stateless Session

Bean

@Stateless

interface

Stateful Session Bean

Message-driven Bean
@Stateful

interface @MessageDriven

EJB 3.1 views

@Singleton

Asynchronous Bean

@Stateless/@Stateful @Asynchronous

Singleton Bean No-interface view

As depicted in this image, you will be able to deploy the full set of EJB components
within WildFly:

• Stateless session bean (SLSB): SLSBs are objects whose instances have
no conversational state. This means that all bean instances are equivalent
when they are not servicing a client.

• Stateful session bean (SFSB): SFSBs support conversational services with
tightly coupled clients. A stateful session bean accomplishes a task for a
particular client. It maintains the state for the duration of a client session.
After session completion, the state is not retained.

• Message-driven bean (MDB): MDBs are a kind of enterprise beans that
are able to asynchronously process messages sent by any JMS producer.

Chapter 3

[71]

• Singleton EJB: This is essentially similar to a stateless session bean; however,
it uses a single instance to serve the client requests. Thus, you are guaranteed
to use the same instance across invocations. Singletons can use a set of events
with a richer life cycle and a stricter locking policy to control concurrent
access to the instance. In the next chapter, which is about web applications,
we will illustrate a Java EE 7 application that makes use of a Singleton EJB
to hold some cached data.

• No-interface EJB: This is just another view of the standard session bean,
except that local clients do not require a separate interface, that is, all public
methods of the bean class are automatically exposed to the caller. Interfaces
should only be used in EJB 3.x if you have multiple implementations.

• Asynchronous EJB: These are able to process client requests asynchronously
just like MDBs, except that they expose a typed interface and follow a more
complex approach to processing client requests, which are composed of:

 ° The fire-and-forget asynchronous void methods, which are
invoked by the client

 ° The retrieve-result-later asynchronous methods having a
Future<?> return type

EJB components that don't keep conversational states (SLSB and
MDB) can be optionally configured to emit timed notifications. See
the Configuring the timer service section for more information about it.

Configuring the EJB components
Now that we have briefly outlined the basic types of EJB, we will look at the
specific details of the application server configuration. This comprises the
following components:

• The SLSB configuration
• The SFSB configuration

• The MDB configuration

• The Timer service configuration

Let's see them all in detail.

Configuring Enterprise Services

[72]

Configuring the stateless session beans
EJBs are configured within the ejb3.2.0 subsystem. By default, no stateless
session bean instances exist in WildFly at startup time. As individual beans
are invoked, the EJB container initializes new SLSB instances.

These instances are then kept in a pool that will be used to service future EJB
method calls. The EJB remains active for the duration of the client's method
call. After the method call is complete, the EJB instance is returned to the pool.
Because the EJB container unbinds stateless session beans from clients after
each method call, the actual bean class instance that a client uses can be
different from invocation to invocation. Have a look at the following diagram:

Stateless Session Bean Life Cycle

newInstance()

dependencyInjection

@PostConstruct

>>

>>

>>

new instance

created by the

container

Business method

Instance removed

by the

container

Pool of
ready

instances

Does not

exist

@PreDestroy>>

If all instances of an EJB class are active and the pool's maximum pool size
has been reached, new clients requesting the EJB class will be blocked until
an active EJB completes a method call. Depending on how you have configured
your stateless pool, an acquisition timeout can be triggered if you are not able
to acquire an instance from the pool within a maximum time.

You can either configure your session pool through your main configuration
file or programmatically. Let's look at both approaches, starting with the main
configuration file.

In order to configure your pool, you can operate on two parameters: the
maximum size of the pool (max-pool-size) and the instance acquisition
timeout (instance-acquisition-timeout). Let's see an example:

<subsystem xmlns="urn:jboss:domain:ejb3:2.0">
 <session-bean>
 <stateless>
 <bean-instance-pool-ref pool-name="slsb-strict-max-pool"/>
 </stateless>

Chapter 3

[73]

 ...
 </session-bean>
 ...
 <pools>
 <bean-instance-pools>
 <strict-max-pool name="slsb-strict-max-pool" max-pool-size=
 "25" instance-acquisition-timeout="5" instance-acquisition-
 timeout-unit="MINUTES"/>
 </bean-instance-pools>
 </pools>
 ...
</subsystem>

In this example, we have configured the SLSB pool with a strict upper limit of 25
elements. The strict maximum pool is the only available pool instance implementation;
it allows a fixed number of concurrent requests to run at one time. If there are more
requests running than the pool's strict maximum size, those requests will get blocked
until an instance becomes available. Within the pool configuration, we have also set an
instance-acquisition-timeout value of 5 minutes, which will come into play if your
requests are larger than the pool size.

You can configure as many pools as you like. The pool used by the EJB container
is indicated by the attribute pool-name on the bean-instance-pool-ref element.
For example, here we have added one more pool configuration, largepool, and set
it as the EJB container's pool implementation. Have a look at the following code:

<subsystem xmlns="urn:jboss:domain:ejb3:1.2">
 <session-bean>
 <stateless>
 <bean-instance-pool-ref pool-name="large-pool"/>
 </stateless>
 </session-bean>
 <pools>
 <bean-instance-pools>
 <strict-max-pool name="large-pool" max-pool-size="100"
 instance-acquisition-timeout="5"
 instance-acquisition-timeout-unit="MINUTES"/>
 <strict-max-pool name="slsb-strict-max-pool"
 max-pool-size="25" instance-acquisition-timeout="5"
 instance-acquisition-timeout-unit="MINUTES"/>
 </bean-instance-pools>
 </pools>
</subsystem>

Configuring Enterprise Services

[74]

Using CLI to configure the stateless pool size
We have detailed the steps necessary to configure the SLSB pool size through
the main configuration file. However, the suggested best practice is to use CLI
to alter the server model.

Here's how you can add a new pool named large-pool to your EJB 3 subsystem:

/subsystem=ejb3/strict-max-bean-instance-pool=large-pool:
 add(max-pool-size=100)

Now, you can set this pool as the default to be used by the EJB container, as follows:

/subsystem=ejb3:write-attribute(name=default-slsb-instance-pool,
 value=large-pool)

Finally, you can, at any time, change the pool size property by operating on the
max-pool-size attribute, as follows:

/subsystem=ejb3/strict-max-bean-instance-pool=large-pool:write-
 attribute(name="max-pool-size",value=50)

Configuring the stateful session beans
SFSBs are bound to a particular client. The application server uses a cache to store
active EJB instances in memory so that they can be quickly retrieved for future client
requests. The cache contains EJBs that are currently in use by a client and instances
that were recently in use. Take a look at the following diagram:

Stateful Session Bean Life Cycle

newInstance()

dependencyInjection

@PostConstruct

>>

>>

>>

new session

started by the

client

Business method

Client

remove()

or timeout()

Ready
in

cache

Does not

exist

@
P
re

D
e
s
tr

o
y

>>

timeout

Passive

@PrePassivate>>

@PostActivate>>

Client invoked a method

on a passive instance

@
P
reD

estroy

>>

Having EJBs in memory is a costly operation, so you should move them out of
memory as soon as possible by either passivating them or removing them.

Chapter 3

[75]

Passivation is a process by which the EJB container ensures that idle SFSB instances
are freed from the cache by having their state saved to disk.

Removing a bean from the cache, on the other hand, is a process that can be triggered
programmatically for the EJB container. To remove the EJB programmatically, add
the @javax.ejb.Remove annotation to your method. When this method is invoked,
the EJB will be removed. Take a look at the following code:

@Remove
public void remove() {}

The following example shows a section of the ejb3:2.0 subsystem, which shows
the configuration of a SFSB along with its cache and passivation store configuration.
Have a look at the following code:

<subsystem xmlns="urn:jboss:domain:ejb3:2.0">
 <session-bean>
 <stateful default-access-timeout="5000" cache-ref="distributable"
 passivation-disabled-cache-ref="simple"/>
 </session-bean>
 ...
 <caches>
 <cache name="simple"/>
 <cache name="distributable" passivation-store-ref="infinispan"
 aliases="passivating clustered"/>
 </caches>
 <passivation-stores>
 <passivation-store name="infinispan" cache-container="ejb" max-
 size="10000"/>
 </passivation-stores>
 ...
</subsystem>

As you can see, the stateful bean element references a cache definition (named
distributable), which in turn is connected to a passivation store (named
infinispan). Notice the optional max-size attribute that limits the amount
of SFSBs that can be contained in the cache. You can also see that the clustered
cache uses infinispan's passivation-store (see Chapter 8, Clustering, for more
information about the infinispan cache).

In WildFly, the file-passivation-store and cluster-
passivation-store elements have been deprecated in
favor of passivation-store. Both deprecated elements
will be removed completely in future releases.

Configuring Enterprise Services

[76]

Configuring the message-driven beans
Message-driven beans (MDBs) are stateless, server-side, transaction-aware
components that are used to process asynchronous JMS messages.

One of the most important aspects of MDBs is that they can consume and process
messages concurrently.

This capability provides a significant advantage over traditional JMS clients,
which must be custom-built to manage resources, transactions, and security
in a multithreaded environment.

Just as the session beans have well-defined life cycles, so does an MDB. The MDB
instance's life cycle is pretty much the same as the stateless bean. An MDB has two
states: Does not Exist and Method ready Pool. Take a look at the following figure:

Message-driven Bean Life Cycle

newInstance()

dependencyInjection

@PostConstruct

>>

>>

>>

Method
ready
pool

Does not

exist
@

P
re

D
e
s
tr

o
y

>>

onMessage()

When a message is received, the EJB container checks whether any MDB instance is
available in the pool. If a bean is available, WildFly uses that instance. After an MDB
instance's onMessage() method returns, the request is complete, and the instance
is placed back in the pool. This results in the best response time, as the request is
served without waiting for a new instance to be created.

If no bean instances are available, the container checks whether there is room for more
MDBs in the pool by comparing the MDB's MaxSize attribute with the pool size.

If MaxSize still has not been reached, a new MDB is initialized. The creation sequence,
as pointed out in the preceding diagram, is the same as that of the stateless bean.
Failure to create a new instance, on the other hand, will imply that the request will
be blocked until an active MDB completes. If the request cannot acquire an instance
from the pool within the time defined in instance-acquisition-timeout, an
exception is thrown.

Chapter 3

[77]

The configuration of the MDB pool is exactly the same as for the SLSB, so we will just
include it here without further explanation:

<subsystem xmlns="urn:jboss:domain:ejb3:2.0">
 <mdb>
 <resource-adapter-ref resource-adapter-name="hornetq-ra"/>
 <bean-instance-pool-ref pool-name="mdb-strict-max-pool"/>
 </mdb>
 <pools>
 <bean-instance-pools>
 <strict-max-pool name="mdb-strict-max-pool" max-pool-size="20"
 instance-acquisition-timeout="5"
 instance-acquisition-timeout-unit="MINUTES"/>
 </bean-instance-pools>
 </pools>
</subsystem>

To learn more about the various types of enterprise beans, you can refer
to the Java EE 7 tutorial at http://docs.oracle.com/javaee/7/
tutorial/doc/ejb-intro002.htm.

Configuring the timer service
The EJB 3 timer service provides a way to allow methods to be invoked at specific
times or time intervals. This is useful should your application business process need
periodic notifications.

The EJB timer service can be used in any type of EJB 3, except for stateful session
beans. Using the timer services is as simple as annotating a method with @javax.
ejb.Timeout. This method will then be triggered by the container when the time
interval expires.

The following example shows you how to implement a very simple timer,
which will be started by invoking the scheduleTimer(long milliseconds)
method. Take a look at the following code:

import java.time.LocalDate;
import java.time.temporal.ChronoUnit;
import javax.annotation.Resource;
import javax.ejb.*;

@LocalBean
@Stateless
public class TimerSampleBean {

 @Resource

http://docs.oracle.com/javaee/7/tutorial/doc/ejb-intro002.htm
http://docs.oracle.com/javaee/7/tutorial/doc/ejb-intro002.htm

Configuring Enterprise Services

[78]

 private SessionContext ctx;

 public void scheduleTimer(long milliseconds) {
 LocalDate date = LocalDate.now().plus(milliseconds,
 ChronoUnit.MILLIS);
 ctx.getTimerService().createTimer(date.toEpochDay(), "Hello
 World");
 }

 @Timeout
 public void timeoutHandler(Timer timer) {
 System.out.println("* Received Timer event: " + timer.
 getInfo());
 timer.cancel();
 }
}

As far as configuration is concerned, you can store planned executions within the
filesystem or in a database. To save them in the filesystem, you need to reference
the default-data-store attribute from the file-data-store attribute (both called
file-store in this example). The number of threads reserved for the timer service
can be configured with the thread-pool-name attribute, which needs to reference
a thread-pool element. Have a look at the following code:

<subsystem xmlns="urn:jboss:domain:ejb3:2.0">
 <timer-service default-data-store="file-store" thread-pool-
 name="default">
 <data-stores>
 <file-data-store name="file-store" path="timer-service-
 data" relative-to="jboss.server.data.dir"/>
 </data-stores>
 </timer-service>
 <thread-pools>
 <thread-pool name="default">
 <max-threads count="10"/>
 <keepalive-time time="100" unit="milliseconds"/>
 </thread-pool>
 </thread-pools>
</subsystem>

Configuring the messaging system
Message-oriented middleware has always been an integral part of the application
server. Messaging systems allow you to loosely couple heterogeneous systems
together while typically providing reliability, transactions, and many other features.

Chapter 3

[79]

Messaging is not part of the Java EE web profile, so you will not find a configuration
for the messaging subsystem in the standalone.xml file. However, the messaging
subsystem is included in the configuration file named standalone-full.xml.

Messaging systems normally support two main styles of
asynchronous messaging: Queues (point-to-point messaging)
and Topics (publish/subscribe messaging).

In the point-to-point model, a sender posts messages to a particular queue, and a
receiver reads messages from the queue. Here, the sender knows the destination
of the message and posts the message directly to the receiver's queue.

The publish/subscribe model supports the publishing of messages to a particular
message topic. Subscribers may register interest in receiving messages on a particular
message topic. In this model, neither the publisher nor the subscriber know about
each other.

The following table shows the characteristics of the two different models:

Point-to-point messaging Publish/Subscribe
Only one consumer gets the message. Multiple consumers (or none) will receive

the message.
The producer does not need to run at
the time the consumer consumes the
message, nor does the consumer need to
run at the time the message is sent.

The publisher has to create a message topic
for clients to subscribe. The subscriber has
to remain continuously active to receive
messages unless he has established a durable
subscription. In that case, messages published
while the subscriber is not connected will be
redistributed whenever he reconnects.

Every message successfully processed is
acknowledged by the consumer.

JBoss AS has used different JMS implementations across its releases. Since the
release of Version 6.0, the default JMS provider is HornetQ (http://www.jboss.
org/hornetq), which provides a multi-protocol, embeddable, high-performance,
clustered, asynchronous messaging system.

At its core, HornetQ is designed simply as a set of Plain Old Java Objects
(POJOs). It has only one JAR dependency, the Netty library, which leverages
the Java Non-blocking Input/Output (NIO) API to build high-performance
network applications.

Because of its easily adaptable architecture, HornetQ can be embedded in
your own project or instantiated in any dependency injection framework,
such as Spring or Google Guice.

http://www.jboss.org/hornetq
http://www.jboss.org/hornetq

Configuring Enterprise Services

[80]

In this book, we will cover the scenario where HornetQ is embedded into a WildFly
subsystem as a module. The following diagram shows how the HornetQ server fits
in the overall picture:

WildFly 8

JCA Adaptor
Connection Pooling

Transaction

Security

HornetQ

Server

EJB EJB MDB MDB

As you can see, a key part of the HornetQ integration is the JCA Adaptor that handles
the communication between the application server and the HornetQ server.

Why can't you simply connect your resources to the HornetQ server?
This is theoretically possible; however, it violates Java EE specifications
and will result in the loss of functionalities provided by the application
server's JCA layer, such as connection pooling and automatic transaction
enlistment. These functionalities are desirable when using messaging, say,
from inside an EJB. For a description of JCA thread-pooling configuration,
refer to the The bounded-queue thread pool section in Chapter 2, Configuring
the Core WildFly Subsystems.

Configuring the transport
Configuring the transport of a JMS message is a key part of the messaging system
tuning. Out of the box, HornetQ uses Netty as its high-performance, low-level
network library. Netty is a NIO client-server framework, which enables quick and
easy development of network applications, such as protocol servers and clients. It
greatly simplifies and streamlines network programming, such as those of the TCP
and UDP socket servers.

One of the most important concepts in HornetQ transport is the definition of
acceptors and connectors.

Chapter 3

[81]

An acceptor defines which type of connection is accepted by the HornetQ server.
On the other hand, a connector defines how to connect to a HornetQ server. The
connector is used by a HornetQ client.

HornetQ defines three types of acceptors and connectors:

• inVM: This type can be used when both the HornetQ client and the server
run in the same virtual machine (inVM stands for intra virtual machine)

• Netty: This type defines a way for remote connections to be made over TCP
(uses the Netty project to handle the I/O)

• http: This type is the default configuration in WildFly and defines a way for
remote connections to be made to HornetQ over HTTP (it uses Undertow to
upgrade from the HTTP protocol to the HornetQ protocol)

To communicate, a HornetQ client must use a connector compatible with the server's
acceptor. A compatible client-server communication requires that it is carried out
using the same type of acceptor/connector shown by the following diagram:

Client

InVM-Connector

Server

InVM-Acceptor

JV
M

Client

Client

Netty-Connector

http-Connector

Server

Server

Netty-Acceptor

http-Acceptor

Port 5445

Port 8080 Port 8080

Port 5445

We can see that it's not possible to connect an InVM client connector to a Netty
server acceptor. On the other hand, it's possible to connect a HTTP client connector
to a HTTP server acceptor provided they are configured to run on the same host
and port.

Configuring Enterprise Services

[82]

WildFly 8 comes with a preconfigured acceptor/connector pair that is part of the
WildFly messaging subsystem, as shown in the following code:

<connectors>
 <http-connector name="http-connector" socket-binding="http">
 <param key="http-upgrade-endpoint" value="http-acceptor"/>
 </http-connector>
 <http-connector name="http-connector-throughput" socket-
binding="http">
 <param key="http-upgrade-endpoint" value="http-acceptor-
throughput"/>
 <param key="batch-delay" value="50"/>
 </http-connector>
 <in-vm-connector name="in-vm" server-id="0"/>
</connectors>
<acceptors>
 <http-acceptor name="http-acceptor" http-listener="default"/>
 <http-acceptor name="http-acceptor-throughput" http-
listener="default">
 <param key="batch-delay" value="50"/>
 <param key="direct-deliver" value="false"/>
 </http-acceptor>
 <in-vm-acceptor name="in-vm" server-id="0"/>
</acceptors>

As you can see, besides the in-vm acceptor/connector pair, each section defines
two kinds of acceptors/connectors, one of which relies on the default configuration,
http-connector, and the other one (http-acceptor-throughput) is specialized
for higher messaging throughputs.

You can further tune HTTP transport when you have a more complete knowledge
of the parameters that can be added to the acceptor/connector section. Here's a
comprehensive list of all parameters and their meanings:

Parameter Description
use-nio If this is true, then Java non-blocking I/O will be used. If

set to false, then the old blocking Java I/O will be used.
The default value is true.

host This specifies the host name or IP address to connect to
(when configuring a connector) or to listen on (when
configuring an acceptor). The default value for this
property is localhost. Multiple hosts or IP addresses can
be specified by separating them with commas.

Chapter 3

[83]

Parameter Description
port This specifies the port to connect to (when configuring a

connector) or to listen on (when configuring an acceptor).
The default value for this property is 5445.

tcp-no-delay If this is true, then Nagle's algorithm will be disabled. The
default value for this property is true.

tcp-send-buffer-size This parameter determines the size of the TCP send buffer
in bytes. The default value for this property is 32768
bytes.

tcp-receive-buffer-
size

This parameter determines the size of the TCP receive
buffer in bytes. The default value for this property is
32768 bytes.

batch-delay This parameter lets you configure HornetQ so that
messages are batched up to be written for a maximum
of batch-delay milliseconds before sending them for
transport. This can increase overall throughput for very
small messages. The default value for this property is 0 ms.

direct-deliver This parameter lets you configure whether message
delivery is done using the same thread as the one that
carried the message. Setting this to true (default) reduces
the thread context switch's latency at the expense of
message throughput. If your goal is a higher throughput,
set this parameter to false.

nio-remoting-threads When using NIO, HornetQ will, by default, use a
number of threads equal to three times the number of
core processors required to process incoming packets.
If you want to override this value, you can set the
number of threads by specifying this parameter. The
default value for this parameter is -1, which means use
the value derived from Runtime.getRuntime().
availableProcessors() * 3.

http-client-idle-time This determines how long a client can be idle before
sending an empty HTTP request to keep the connection
alive.

http-client-idle-
scan-period

This determines how often we can scan for idle clients, in
milliseconds

http-response-time This determines how long the server can wait before
sending an empty HTTP response to keep the connection
alive.

http-server-scan-
period

This determines how often we can scan for clients needing
responses, in milliseconds.

http-requires-
session-id

If true, the client will wait after the first call to receive a
session ID.

Configuring Enterprise Services

[84]

One frequent source of confusion among HornetQ users is why connectors
are included in the server configuration if the server is in charge of accepting
connections and delivering messages. There are two main reasons for this:

• Sometimes the server acts as a client itself when it connects to another
server, for example, when one server is bridged to another or when a
server takes part in a cluster. In these cases, the server needs to know
how to connect to other servers. That's defined by connectors.

• If you're using JMS and the server-side JMS services to instantiate
JMS ConnectionFactory instances and bind them in JNDI then, when
creating the HornetQConnectionFactory, it needs to know what server
that connection factory will create connections to.

Configuring connection factories
A JMS ConnectionFactory object is used by the client to make connections to the
server. The definition of connection-factory instances is included in the default
server configuration. Take a look at the following code:

<connection-factory name="InVmConnectionFactory">
 <connectors>
 <connector-ref connector-name="in-vm"/>
 </connectors>
 <entries>
 <entry name="java:/ConnectionFactory"/>
 </entries>
</connection-factory>
<connection-factory name="RemoteConnectionFactory">
 <connectors>
 <connector-ref connector-name="http-connector"/>
 </connectors>
 <entries>
 <entry name="java:jboss/exported/jms/
RemoteConnectionFactory"/>
 </entries>
</connection-factory>

You can find two connection factory definitions, which are as follows:

• InVmConnectionFactory: This connection factory is bound under
java:/ConnectionFactory and is used when the server and the client
are running in the same JVM (and hence in the same WildFly server)

Chapter 3

[85]

• RemoteConnectionFactory: This connection factory, as the name implies,
can be used when JMS connections are provided by a remote server.
By default, this uses http-connector and is bound by the JNDI name,
java:jboss/exported/jms/RemoteConnectionFactory.

Configuring JMS destinations
Along with the definition of connection factories in the JMS subsystem, you can find
the JMS destinations (queues and topics), which are part of the server distribution.
Have a look at the following code:

<jms-destinations>
 <jms-queue name="ExpiryQueue">
 <entry name="java:/jms/queue/ExpiryQueue"/>
 </jms-queue>
 <jms-queue name="DLQ">
 <entry name="java:/jms/queue/DLQ"/>
 </jms-queue>
</jms-destinations>

The name attribute of a queue defines the name of the queue. At the JMS level, the
actual name of the queue follows a naming convention, so it will be jms.queue.
ExpiryQueue.

The entry element configures the name that will be used to bind the queue to JNDI.
This is a mandatory element, and the queue can contain many of these to bind the
same queue to different names.

So, for example, here's how you would configure a MessageDrivenBean component
to consume messages from the ExpiryQueue:

@MessageDriven(name = "MessageMDBSample", activationConfig = {
 @ActivationConfigProperty(propertyName = "destinationType",
 propertyValue = "javax.jms.Queue"),
 @ActivationConfigProperty(propertyName = "destination",
 propertyValue = "java:/jms/queue/ExpiryQueue"),
 @ActivationConfigProperty(propertyName = "acknowledgeMode",
 propertyValue = "Auto-acknowledge") })

public class SampleMDBean implements MessageListener {
 @Resource
 private MessageDrivenContext context;
}

Configuring Enterprise Services

[86]

Why is it useful to know the actual destination name?
Apparently, it seems not important at all to know the server's
destination name (in the example, jms.queue.ExpiryQueue).
Rather, we would be concerned about the JNDI entry where the
destination is bound. However, the actual destination name plays
an important role if you want to define some properties across a set
of destinations. See the next section, Customizing destinations with
an address, for more information.

Queues and topic definitions can optionally include some non-mandatory elements,
such as selector and durable:

<jms-queue name="selectorQueue">
 <entry name="/queue/selectorQueue"/>
 <selector>name='john'</selector>
 <durable>true</durable>
</jms-queue>

The selector element defines what JMS message selector the predefined queue
will have. Only messages that match the selector will be added to the queue.
This is an optional element with a default value of null when omitted.

The durable element specifies whether or not the queue will be persisted.
This again is optional and defaults to true if omitted.

Customizing destinations with an address
If you want to provide some custom settings for JMS destinations, you can use
the address-setting block, which can be applied both to a single destination
and to a set of destinations. The default configuration applies a set of minimal
attributes to all destinations. Have a look at the following code:

<address-settings>
 <!--default for catch all-->
 <address-setting match="#">
 <dead-letter-address>jms.queue.DLQ</dead-letter-address>
 <expiry-address>jms.queue.ExpiryQueue</expiry-address>
 <redelivery-delay>0</redelivery-delay>
 <max-size-bytes>10485760</max-size-bytes>
 <message-counter-history-day-limit>10</message-counter-history-
 day-limit>
 <address-full-policy>BLOCK</address-full-policy>
 </address-setting>
</address-settings>

Chapter 3

[87]

Here is a brief description of the address settings.

The address setting's match attribute defines a filter for the destinations. When using
the wildcard, #, the properties will be valid across all destinations. For example:

<address-setting match="jms.queue.#">

Here, the settings would apply to all queues defined in the destination section:

<address-setting match="jms.queue.ExpiryQueue ">

The settings would apply to the queue named jms.queue.ExpiryQueue.

A short description of the destination's properties is as follows:

Property Description
dead-letter-address This specifies the destination for messages that could

not be delivered.
expiry-address This defines where to send a message that has expired.
expiry-delay This defines the expiration time that will be used for

messages using the default expiration time.
redelivery-delay This defines how long to wait before attempting

redelivery of a cancelled message.
max-size-bytes This specifies the maximum size of the message in

bytes before entering the page mode.
page-size-bytes This specifies the size of each page file used on the

paging system.
max-delivery-attempts This defines how many times a cancelled message can

be redelivered before it is sent to the dead-letter-
address.

message-counter-
history-day-limit

This specifies how many days the message counter
history will be kept.

address-full-policy This is used when a destination maximum size is
reached. When set to PAGE, further messages will
be paged to the disk. If the value is DROP, further
messages will be silently dropped. When BLOCK is
used, client message producers will be blocked when
they try to send further messages.

HornetQ persistence configuration
The last HornetQ topic we need to cover is message persistence. HornetQ has its own
optimized persistence engine, which can be further configured when you know all
about its various components.

Configuring Enterprise Services

[88]

The secret of HornetQ's high data persistence consists in appending
data to the journal files instead of using the costly random-access
operations, which require a higher degree of disk-head movement.
Journal files are precreated and filled with padding characters
at runtime. By precreating files, as one is filled, the journal can
immediately resume with the next one without pausing to create it.

The following are the default journal values for the messaging subsystem.
Although these values are not explicitly set in the standalone-full.xml file,
their absence causes these default values to be used.

<journal-file-size>102400</journal-file-size>
<journal-min-files>2</journal-min-files>
<journal-type>NIO</journal-type>
<persistence-enabled>true</persistence-enabled>

The default journal-file-size (expressed in bytes) is 100 KB. The minimum
number of files the journal will maintain is indicated by the property journal-min-
files, which states that at least two files will be maintained.

The property journal-type indicates the type of input/output libraries used
for data persistence. The valid values are NIO or ASYNCIO.

Choosing NIO sets the Java NIO journal. Choosing AIO sets the Linux asynchronous
I/O journal. If you choose AIO but are not running Linux or you do not have libaio
installed, then HornetQ will detect this and automatically fall back to using NIO.

The persistence-enabled property, when set to false, will disable message
persistence. That means no binding data, message data, large message data,
duplicate ID caches, or paging data will be persisted. Disabling data persistence
will give to your applications a remarkable performance boost; however, the
other side of it is that your data messaging will inevitably lose reliability.

For the sake of completeness, we include some additional properties that can
be included if you want to customize the messages/paging and journal storage
directories. Have a look at the following code:

<bindings-directory relative-to="jboss.server.data.dir"
 path="hornetq/bindings" />

Chapter 3

[89]

<large-messages-directory relative-to="jboss.server.data.dir"
 path="hornetq/largemessages" />

<paging-directory relative-to="jboss.server.data.dir"
 path="hornetq/paging" />

<journal-directory relative-to="jboss.server.data.dir"
 path="hornetq/journal" />

For best performance, we recommend that the journal be located on its own physical
volume in order to minimize disk-head movement. If the journal is on a volume that is
shared with other processes, which might be writing other files (for example, bindings
journal, database, or transaction coordinator), then the disk-head might move rapidly
between these files as it writes them, thus drastically reducing performance.

Configuring the transactions service
A transaction can be defined as a group of operations that must be performed as
a unit and can involve persisting data objects, sending a message, and so on.

When the operations in a transaction are performed across databases or other
resources that reside on separate computers or processes, this is known as
a distributed transaction. Such enterprise-wide transactions require special
coordination between the resources involved and can be extremely difficult to
program reliably. This is where Java Transaction API (JTA) comes in, providing
the interface that resources can implement and to which they can bind in order
to participate in a distributed transaction.

The EJB container is a transaction manager that supports JTA and so can participate
in distributed transactions involving other EJB containers as well as third-party JTA
resources, such as many database management systems.

Within WildFly 8, transactions are configured in their own subsystem. The transactions
subsystem consists mainly of four elements:

• Core environment
• Recovery environment
• Coordinator environment
• Object store

Configuring Enterprise Services

[90]

The core environment includes the TransactionManager interface, which allows
the application server to control the transaction boundaries on behalf of the resource
being managed. Have a look at the following diagram:

JBoss Transaction Service

Tx

Coordinator

Transaction

Manager
XA

Recovery Manager

XA

Resource

write

Object

Storescans

A transaction coordinator, in turn, manages communication with transactional
objects and resources that participate in transactions.

The recovery subsystem of JBossTS ensures that the results of a transaction are applied
consistently to all resources affected by the transaction even if any of the application
processes or the machine hosting them crashes or loses network connectivity.

Within the transaction service, JBoss transaction service uses an object store to
persistently record the outcomes of transactions for failure recovery. As a matter of
fact, the recovery manager scans the object store and other locations of information
looking for transactions and resources that require or might require recovery.

The core and recovery environments can be customized by changing their
socket-binding properties, which are referenced in the socket-binding-group
configuration section.

You might find it more useful to define custom properties in the coordinator
environment section, which might include the default timeout and logging
statistics. Here's a sample custom transaction configuration:

<subsystem xmlns="urn:jboss:domain:transactions:2.0">
 <core-environment>
 <process-id>
 <uuid/>
 </process-id>

Chapter 3

[91]

 </core-environment>
 <recovery-environment socket-binding="txn-recovery-environment"
 status-socket-binding="txn-status-manager"/>
 <coordinator-environment default-timeout="300"
 statistics-enabled="true" />
</subsystem>

The value of default-timeout specifies the default transaction timeout to be used
for new transactions, which is specified as an integer in seconds.

How does the transaction timeout impact your applications?
The transaction timeout defines the timeout for all JTA transactions
enlisted and thus severely affects your application behavior. A typical
JTA transaction might be started by your EJBs or by a JMS session. So, if
the duration of these transactions exceeds the specified timeout setting,
the transaction service will roll back the transactions automatically.

The value of statistics-enabled determines whether or not the transaction service
should gather statistical information. The default is to not gather this information.

In WildFly, the enable-statistics property has been deprecated
in favor of statistics-enabled. If you are migrating from JBoss
AS 7, the deprecated property will still work but may be removed in
future releases.

Configuring concurrency
Concurrency utilities is new to WildFly 8. As part of Java EE 7, are aim is to ease the
task of multithreading within enterprise applications. Prior to Java EE 7, there was
no safe way to create a new thread programmatically in your application.

With the new concurrency utilities, your new threads are now guaranteed to have
access to other enterprise services, such as transactions, and security.

The main concurrency components are:

• ContextService

• ManagedThreadFactory

• ManagedExecutorService

• ManagedScheduledExecutorService

Configuring Enterprise Services

[92]

Configuring the context service
The context service is used to create contextual proxies from existent objects
and is configured within the ee module of WildFly. The following is the default
configuration in WildFly:

<subsystem xmlns="urn:jboss:domain:ee:2.0">

 <concurrent>
 <context-services>
 <context-service name="default" jndi-name="java:jboss/ee/
 concurrency/context/default"
 use-transaction-setup-provider="true"/>
 </context-services>

 </concurrent>
</subsystem>

The name attribute is the name of your context service, and the use-transaction-
setup-provider attribute states whether or not the contextual proxies should
suspend and resume active transactions.

Configuring the managed thread factory
The ManagedThreadFactory component is used to create threads that are managed
by the container. The default configuration is as follows:

<concurrent>
 ...
 <managed-thread-factories>
 <managed-thread-factory name="default" jndi-name="java:jboss/
 ee/concurrency/factory/default" context-service="default"/>
 </managed-thread-factories>
 ...
</concurrent>

To use the default thread factory in your Java code, simply use the @Resource
annotation without providing a value for the lookup attribute, as follows:

@Stateless
public class ReportBean {
 @Resource
 private Managed ;
 public void runReports() {
 MyTask myTask = new MyTask();

Chapter 3

[93]

 Future<Report> future = executorService.submit(myTask);
 }
}

Configuring the managed executor service
This class is used to execute tasks in a second thread within your enterprise
application. You should always use this in preference over the executor service
found within Java SE libraries. Here is an example of the configuration in WildFly:

<concurrent>
 ...
 <managed-executor-services>
 <managed-executor-service name="default"
 jndi-name="java:jboss/ee/concurrency/executor/default"
 context-service="default" hung-task-threshold="60000"
 core-threads="5" max-threads="25" keepalive-time="5000"/>
 </managed-executor-services>
 ...
</concurrent>

The following is the full list of attributes you can use to configure your managed-
executor-service in WildFly:

context-service This defines which context service to use.
core-threads This defines the number of threads within the executors thread

pool, including idle threads.
hung-task-
threshold

This specifies how long, in milliseconds, the threads can be
allowed to run before they are considered unresponsive.

jndi-name This specifies the JNDI name for this resource.
keepalive-time This specifies how long threads can remain idle when the number

of threads is greater than the core thread size.
long-running-
tasks

This checks whether the thread is a short-running or long-running
thread.

max-threads This specifies the maximum number of threads to allow in the
executor's pool.

name This specifies the name of the resource.
queue-length This specifies the number of tasks that can be stored in the input

queue. Zero means unlimited.
reject-policy This defines how you can handle a failed task. An ABORT value

will cause an exception to be thrown; RETRY_ABORT, which will
cause a retry, and then an abort if the retry fails.

thread-factory This specifies the name of the thread factory. If it's not supplied,
the default thread factory is used.

Configuring Enterprise Services

[94]

Configuring the managed schedule executor
service
This is the same as the ManagedExecutorService, except that it has additional
functionality allowing you to schedule a thread to start at specific times. Here is
an example of the configuration:

<concurrent>
 ...
 <managed-scheduled-executor-services>
 <managed-scheduled-executor-service name="default"
 jndi-name="java:jboss/ee/concurrency/scheduler/default"
 context-service="default" hung-task-threshold="60000"
 core-threads="2" keepalive-time="3000"/>
 </managed-scheduled-executor-services>
 ...
</concurrent>

The following is the list of attributes that can be used to configure your
managed-scheduled-executor-service. Please see the preceding table
in the managed-executor-service section for details of each property.

• context-service

• core-threads

• hung-task-threshold

• jndi-name

• keepalive-time

• long-running-tasks

• name

• reject-policy

• thread-factory

Summary
In this chapter, we continued the analysis of the application server configuration
by looking at Java's enterprise services.

We first learned how to configure datasources, which can be used to add
database connectivity to your applications. Installing a datasource in WildFly 8
requires two simple steps: installing the JDBC driver and adding the datasource
into the server configuration.

Chapter 3

[95]

We then looked at the enterprise JavaBeans subsystem, which allows you to
configure and tune your EJB container. We looked at the basic EJB component
configurations (SLSB, SFSB, and MDB) and then looked at the EJB timer service
configuration that can be used to provide time-based services to your applications.

Next, we described the configuration of the message-oriented middleware, which
allows you to loosely couple heterogeneous systems together while typically
providing reliability, transactions, and various other features.

Then we moved on to the transaction subsystem configuration, which can be used
to collect transaction logs and define the timeout for all JTA transactions enlisted.

Finally, we completed our journey by taking a look at how to configure concurrency
within WildFly using the ee subsystem.

In the next chapter, we will discuss the web container configuration, providing a
complete example, that uses a variety of enterprise technologies, and focusing on
the structure and the packaging of the application.

The Undertow Web Server
In this chapter, we are going to look at how to configure Undertow, the web
server shipped with WildFly 8. This will complete our overview of the
standalone server configuration.

We will then look at the structure of a typical enterprise application by creating,
packaging, and deploying a sample Java EE 7 project. It will include JavaServer Faces
components, Enterprise JavaBeans, and CDI, and will also use the Java Persistence
API (JPA). This will give you a feel of working with a complete Java EE 7 application.

By the end of this chapter, you will have learned about:

• The architecture of Undertow
• The Undertow host configuration
• Serving static content
• The servlet container configuration
• The JSP configuration
• Configuration of session cookies
• How to create a simple web application

An overview of Undertow
Those of you who have worked with previous versions of WildFly will know that
historically, JBoss has always included Tomcat, or a fork of Tomcat (named JBoss
Web), as the application server's web container.

The decision to replace JBoss Web came about as a new web container was
required, one that supports new Java EE 7 requirements, such as web sockets and
an HTTP upgrade. It was also decided that the new web server should be lightweight
and flexible, and have better performance. The resulting server is super responsive,
can scale to over a million connections, and has exceptional throughput.

The Undertow Web Server

[98]

The Undertow architecture
Undertow is written in Java and based on the Non-blocking Input/Output API (often
referred to as New Input/Output or just NIO). With a composition-based architecture
and built using a fluent builder API, Undertow can be easily configured, giving you
as much or as little functionality as you need. By chaining handlers together, you can
build anything from a simple HTTP handler to a full Java EE 3.1 container.

There are three core parts that make up the Undertow server:

• XNIO worker instances: These instances form a thin abstraction layer over
Java NIO, providing a channel API, management of IO and worker threads,
and SSL support.

• Listeners: These handle incoming connections and the underlying protocol.
• Handlers: These are chained together to provide the main functionality for

Undertow. They define how incoming requests are handled.

The following diagram shows how these components fit together to create the web
server, and demonstrates how the handlers are chained together:

Servlet Dispatch

Handler 1

HTTP

Connector

Virtual Host Handler

HTTP

Connector

Servlet Dispatch

Handler 2

HTTP Handler

Error Page Handler

Session Handler

Security Handler

Path Handler

Chapter 4

[99]

Configuring Undertow
In this section, we are going to look at how to configure the different components
of Undertow. Undertow is configured within the Undertow subsystem found in
the standalone.xml file. Here's an extract from the Undertow subsystem:

<subsystem xmlns="urn:jboss:domain:undertow:1.1">
 <buffer-cache name="default"/>
 <server name="default-server">
 <http-listener name="default" socket-binding="http"/>
 <host name="default-host" alias="localhost">
 <location name="/" handler="welcome-content"/>
 <filter-ref name="server-header"/>
 <filter-ref name="x-powered-by-header"/>
 </host>
 </server>
 <servlet-container name="default">
 <jsp-config/>
 </servlet-container>
 <handlers>
 <file name="welcome-content" path="${jboss.home.dir}/welcome-
content"/>
 </handlers>
 ...
</subsystem>

The majority of the Undertow web server is configured within the server and
servlet-container elements, both of which we are going to look at next.

Configuring the server
Within the server element, you can configure hosts and listeners. The attributes
to configure your main server instance are as follows:

Name Meaning
default-host This is the virtual host to be used if a request has a no host header
servlet-
container

This is the servlet container to be used, as configured in the
servlet-container element

The Undertow Web Server

[100]

Configuring the listener
As we stated earlier, Undertow is made up of listeners and handlers. The listeners
are configured within the server element, as highlighted in the following code.
The default configuration in the standalone.xml file has just a single connector
defined, which is the HTTP connector:

<server name="default-server">
 <http-listener name="default" socket-binding="http"/>
 <host name="default-host" alias="localhost">
 <location name="/" handler="welcome-content"/>
 <filter-ref name="server-header"/>
 <filter-ref name="x-powered-by-header"/>
 </host>
</server>

Notice that the socket-binding attribute points to a configuration defined in the
socket-binding-group section:

<socket-binding-group name="standard-sockets" default-
interface="public">
 <socket-binding name="http" port="8080"/>
</socket-binding-group>

WildFly also supports AJP and HTTPS connection protocols; we will
cover these in detail in Chapter 9, Load-balancing Web Applications and
Chapter 10, Securing WildFly, respectively.

There are a lot of options when it comes to the configuration of the listener. The
attributes for the HTTP listener element are outlined as follows:

Property Description Default value
allow-
encoded-
slash

When set to true, this property allows the server to
decode percent-encoded slash characters (%2F). Only
enable this option if you have a legacy application that
requires it, as it can have security implications due to
different servers interpreting the slash differently.

false

always-set-
keep-alive

This property determines whether the Connection:
keep-alive header should be added to all
responses, even if not required by spec.

true

Chapter 4

[101]

Property Description Default value
buffer-
pipelined-
data

This property determines whether responses to HTTP
pipelined requests should be buffered and sent out in
a single write. This can improve performance if the
HTTP pipelining is in use and responses are small.

true

buffer-pool This property references a buffer pool as defined in
the I/O subsystem, which is used internally to read
and write requests. In general, these should be at
least 8 KB, unless you are in a memory-constrained
environment.

default

certificate-
forwarding

If this property is enabled, then the listener will take
the certificate from the SSL_CLIENT_CERT attribute.
This property should only be enabled if the client is
behind a proxy and the proxy is configured to always
set these headers.

decode-url This property determines whether the URL should be
decoded. If this property is set to false, the percent-
encoded characters in the URL will be left as is.

true

enabled This property states whether this listener is enabled true

max-cookies This property defines the maximum number of
cookies allowed. If a client sends more cookies than
this value, the connection will be closed. This exists to
prevent DOS attacks based on hash collision.

200

max-header-
size

This property defines the maximum allowed HTTP
header block size in bytes. Any request header with a
value greater than this will be closed.

5120

max-headers This property defines the maximum number of
headers allowed. It exists to prevent DOS attacks
based on hash collision.

200

max-
parameters

This property defines the maximum number of query
or path parameters allowed. If more parameters are
sent, the connection will be closed. It exists to prevent
DOS attacks based on hash collision.

1000

max-post-
size

This property defines the maximum size allowed for
incoming post requests.

0 (unlimited)

name This property defines the name given to the listener.
proxy-
address-
forwarding

This property enables x-forwarded-host and
similar headers and sets a remote IP address and
hostname.

The Undertow Web Server

[102]

Property Description Default value
redirect-
socket

This property, when enabled, automatically redirects
a request to the specified socket binding port if the
listener supports non-SSL requests and a request is
received for which a matching security constraint
requires SSL transport.

socket-
binding

This property determines the address and port the
listener listens on.

url-charset This property defines the charset to decode the URL
to.

UTF-8

worker This property references an XNIO worker as defined
in the IO subsystem. The worker that is in use controls
the IO and blocking thread pool.

default

Configuring the host
The host configuration within the server element corresponds to a virtual host and
is nested directly under the server element, as shown in the following code. Virtual
hosts allow you to group web applications according to the DNS names by which a
machine running WildFly is known.

<server name="default-server">
 ...
 <host name="default-host" alias="localhost">
 <location name="/" handler="welcome-content"/>
 <filter-ref name="server-header"/>
 <filter-ref name="x-powered-by-header"/>
 </host>
</server>

The elements nested within the host are explained here:

• location: This element defines the URL path to the content, such as
welcome-content.

• access-log: This element allows you to configure the location and
format of the access log.

• filter-ref: This element defines the filters that are applied to the
current host.

• single-sign-on: This element allows you to configure the cookies
to use for authentication.

Chapter 4

[103]

The access log can be fully configured by changing the default attributes, as shown in
the following code:

<access-log directory="${jboss.server.log.dir}" pattern="common"
prefix="access_log" rotate="true" suffix=".log" worker="default"/>

The filter-ref element states the filters applied by referencing the name of the
filters defined in the filters element, as shown in the following highlighted code:

<server name="default-server">
 <host name="default-host" alias="localhost">
 <location name="/" handler="welcome-content"/>
 <filter-ref name="server-header"/>
 <filter-ref name="x-powered-by-header"/>
 </host>
</server>
<filters>
 <response-header name="server-header" header-name="Server"
 header-value="Wildfly 8"/>
 <response-header name="x-powered-by-header" header-name="X-
 Powered-By" header-value="Undertow 1"/>
</filters>

Serving static content
You may not want to deploy all your static content with your application. These
may be images, PDF documents, or other types of files. You can configure Undertow
to look for these files on the local filesystem. This example shows you how to do this
by adding a file handler and location to the Undertow subsystem:

<server name="default-server">
 <http-listener name="default" socket-binding="http"/>
 <host name="default-host" alias="localhost">
 <location name="/" handler="welcome-content"/>
 <location name="/img" handler="images"/>
 </host>
</server>
<handlers>
 <file name="welcome-content" path="${jboss.home.dir}/welcome-
 content" directory-listing="true"/>
 <file name="images" path="/var/images" directory-listing="true"/>
</handlers>

With this additional configuration, any request for resources to www.yourdomain.
com/contextroot/img will be redirected to the filesystem on your hard disk.

The Undertow Web Server

[104]

Configuring the servlet container
An instance of a servlet container is defined within a single servlet-container
element. You can have more than one servlet-container element if you wish to
have multiple servlet containers; however, for most setups, a single instance will
suffice. The default configuration in standalone.xml is shown as follows:

<servlet-container name="default">
 <jsp-config/>
</servlet-container>

An explanation of the attributes available for the servlet-container are detailed in
the following table:

Property Description Default value
allow-non-
standard-
wrappers

This property relaxes the servlet specification,
which requires applications to only wrap the
request/response with wrapper classes that
extend the ServletRequestWrapper and
ServletResponseWrapper classes.

false

default-
buffer-cache

This is the buffer cache used to cache static
resources in the default servlet.

default-
encoding

This is the default encoding for the requests and
responses.

eager-filter-
initialization

By setting this property to true, the init method of
filters defined in your web.xml file are called upon
the first request, and not on server startup.

false

ignore-flush This ignores flushes on the servlet output stream. false

stack-trace-
on-error

The available options for this property are all,
none, or local-only. The all value will display
all traces (should not be used in a production
environment), while none means stack traces are not
shown, and local-only means only requests from
local addresses are shown and there are no headers
to indicate that the request has been proxied. This
feature uses the Undertow error page rather than the
default error page specified in web.xml.

local-only

use-listener-
encoding

This uses the default encoding used by the listener
that received the request.

false

Chapter 4

[105]

Several child elements can be added to the servlet-container element, which will
allow you to configure your JSPs, session cookies, and persistent sessions.

Configuring JSP
The JSP element is provided in the default configuration. As no additional attributes
are added, the default configuration is applied, as shown in the following code:

<jsp-config
check-interval="0"
development="false"
disabled="false"
display-source-fragment="true"
dump-smap="false"
error-on-use-bean-invalid-class-attribute="false"
generate-strings-as-char-arrays="false"
java-encoding="UTF8"
keep-generated="true"
mapped-file="true"
modification-test-interval="4"
recompile-on-fail="false"
smap="true"
source-vm="1.6"
tag-pooling="true"
target-vm="1.6"
trim-spaces="false"
x-powered-by="true"/>

Configuring the session cookie
You will probably be interested in configuring the Undertow session cookie. By
default, there is no configuration text included in the standalone.xml file, so you
will need to add it as a child element of the servlet-container configuration:

<servlet-container name="default">
 <jsp-config/>
 <session-cookie name="default" domain="yourdomain.com" http-
 only="true" max-age="60" secure="true"/>
</servlet-container>

The Undertow Web Server

[106]

The possible attributes for the session-cookie element are shown in the following
table. If you do not set these values explicitly, no value will be set, as there are
no defaults:

Property Description Default value
name This property defines the name of a cookie
domain This property defines the cookie domain
comment This property defines the cookie comment
http-only This property determines whether the cookie is HTTP-only true

secure This property determines whether the cookie is marked
as secure

true

max-age This property defines the maximum age of a cookie
(in minutes)

0 (infinite)

Saving the session state
Saving sessions allows session data to be stored when the server is restarted or the
application is redeployed. To enable this, you need to add the persistent-sessions
element to the configuration file, as shown in the following code. This property should
be used in your development environment rather than in production.

<servlet-container name="default">
 <jsp-config/>
 <persistent-sessions path="/session"
 relative-to="${jboss.server.tmp.dir}"/>
</servlet-container>

If you do not specify the path variable, then the session will only be
persistent across redeploys and not across server restarts.

Configuring the buffer cache
The buffer cache is used to cache content, for example, static files. A buffer cache
consists of one or more regions, and each region is split into smaller buffers.
Here's an example configuration of the buffer-cache element:

<subsystem xmlns="urn:jboss:domain:undertow:1.1">
 <buffer-cache name="default" buffer-size="1024"
 buffers-per-region="2048" max-regions="10" />
 ...
</subsystem>

Chapter 4

[107]

The total cache size can be calculated by multiplying the buffer size
by the buffers per region and the maximum number of regions. In
our example, it would be:
1024 bytes * 2048 * 10 = 20971520 bytes

Creating and deploying a web application
As you can see, the application server provides a relatively straightforward way
to configure the web container. In order to build and deploy a web application, it
would be good for you to learn how to organize an application along with its
specific configuration files.

WildFly 8 is a Java EE 7 compliant application server and thus, can be used to deploy
a wide range of web applications. One way of building a web application is to use
the JavaServer Faces (JSF) technology, which is an evolution of the JSP technology.
It is also part of Enterprise Java, meaning that WildFly supports it out of the box.
WildFly 8 supports the JSF release 2.2 using the Mojarra implementation.

The purpose of this example is to show you how to create, configure,
and deploy a Java EE 7 application on WildFly 8. If you want to learn
more about the various Java EE 7 technologies, you should check
out the many Java EE 7 examples created by Arun Gupta, which
have been configured specifically for WildFly. The GitHub URL is
https://github.com/javaee-samples/javaee7-samples.

Next, we are going to create a simple application. The purpose of this is to
demonstrate how to configure each of the various enterprise components
found within a typical enterprise application.

Creating a new Maven web project
There are several ways in which you can create a web application project using
Eclipse. Since Maven is the de facto build tool, it makes sense to use the Maven
project structure in this example.

https://github.com/javaee-samples/javaee7-samples

The Undertow Web Server

[108]

Let's start by creating the project file structure. Go to File | New | Maven Project,
select skip archetype selection, create a simple project, and proceed to the next
page. Then, complete the artifact details as shown in the following screenshot,
ensuring that you select war as the packaging:

After clicking on Finish, Eclipse will generate a default folder structure for
your application:

Chapter 4

[109]

We are going to use JSF to create the view. Configuring the JSF 2.2 web application
requires very little effort. You can achieve this with the following steps:

1. Create a file called web.xml and place it in the WEB-INF folder of
your application.

2. Add the FacesServlet to your web.xml file and specify what kind of
URL patterns will be directed to it.

3. Create a faces-config.xml file and place it in the WEB-INF folder.

The FacesServlet is a servlet that manages the request processing
life cycle for web applications that are utilizing JavaServer Faces to
construct the user interface.

Here's the complete web.xml file. You can see that we specified the URL patterns
that the FacesServlet will process:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.jcp.org/xml/ns/javaee/"
 xmlns:web="http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd"
 id="WebApp_ID" version="3.1">
 <display-name>Java EE 7 - WildFly 8</display-name>
 <welcome-file-list>
 <welcome-file>index.xhtml</welcome-file>
 </welcome-file-list>
 <context-param>
 <param-name>
 com.sun.faces.enableRestoreView11Compatibility
 </param-name>
 <param-value>true</param-value>
 </context-param>
 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>*.xhtml</url-pattern>
 </servlet-mapping>
 <context-param>

The Undertow Web Server

[110]

 <param-name>javax.servlet.jsp.jstl.fmt.localizationContext
</param-name>
 <param-value>resources.application</param-value>
 </context-param>
 <listener>
 <listener-class>com.sun.faces.config.ConfigureListener
</listener-class>
 </listener>
</web-app>

Next, you see a minimal JSF configuration file named faces-config.xml, which will
be placed in the WEB-INF folder of your application. This file declares the JSF release
that we are going to use, which in our case, is 2.2:

<?xml version="1.0" encoding="UTF-8"?>
<faces-config xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/web-facesconfig_2_2.xsd"
 version="2.2">
</faces-config>

Eclipse can create these configuration files for you. To do this, you will need
to activate the JavaServer Faces Facets. Right-click on your project and select
Project Properties. Here, you will find a set of configuration options that can be
automatically added to your project under the Project Facets option. You may
need to modify the files to ensure that the correct namespaces are used, and
update the content of the web.xml file.

Next, we will need to add the project dependencies to the Maven configuration
file, the pom.xml file. Maven will then download and manage all your dependencies
for you upon a project build. The complete content of pom.xml is shown in the
following code:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://
maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packtpub</groupId>
 <artifactId>chapter4</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>war</packaging>
 <description>Simple Java EE 7 example using WildFly</description>

 <repositories>

Chapter 4

[111]

 <repository>
 <id>JBoss Repository</id>
 <url>https://repository.jboss.org/nexus/content/groups/
 public/</url>
 </repository>
 </repositories>

 <dependencies>
 <dependency>
 <groupId>org.jboss.spec</groupId>
 <artifactId>jboss-javaee-7.0</artifactId>
 <version>1.0.1.Final</version>
 <type>pom</type>
 <scope>provided</scope>
 </dependency>
 </dependencies>
 <!-- build plugins removed for brevity -->
</project>

You will notice that the JBoss Nexus repository is being used rather
than Maven Central. This is because since Java EE 6, JBoss has hosted its
own EE API. The motivation for this was the unimplemented methods
in Java EE 6. To understand the full motivation, navigate to https://
developer.jboss.org/blogs/donnamishelly/2011/04/29/
jboss-java-ee-api-specs-project. I would recommend that
you use the version hosted by JBoss, as it is identical to the code
shipped with WildFly.

Adding JSF components
For the purpose of learning how to package a Java EE 7 application, we will show
you how to combine JSF components, such as JSF views with Enterprise components
like CDI and EJBs.

In this example, we will create a simple caching system that uses an EJB singleton to
handle the cache in memory. Then, we show you how to persist data to a database.
Let's start by adding a page named index.xhtml to your dynamic web project:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:f="http://xmlns.jcp.org/jsf/core">

<h:head>

https://developer.jboss.org/blogs/donnamishelly/2011/04/29/jboss-java-ee-api-specs-project
https://developer.jboss.org/blogs/donnamishelly/2011/04/29/jboss-java-ee-api-specs-project
https://developer.jboss.org/blogs/donnamishelly/2011/04/29/jboss-java-ee-api-specs-project

The Undertow Web Server

[112]

 <link href="main.css" rel="stylesheet" type="text/css" />
</h:head>
<h:body>
 <h2>JSF 2 example on WildFly 8</h2>
 <h:form id="jsfexample">
 <h:messages />
 <h:panelGrid columns="2" styleClass="default">
 <h:outputText value="Enter key:" />
 <h:inputText value="#{manager.key}" />

 <h:outputText value="Enter value:" />
 <h:inputText value="#{manager.value}" />

 <h:commandButton actionListener="#{manager.save}"
 styleClass="buttons" value="Save key/value" />
 <h:commandButton actionListener="#{manager.clear}"
 styleClass="buttons" value="Clear cache" />
 </h:panelGrid>

 <h:dataTable value="#{manager.cacheList}" var="item"
 styleClass="table" headerClass="table-header"
 rowClasses="table-odd-row,table-even-row">
 <h:column>
 <f:facet name="header">Key</f:facet>
 <h:outputText value="#{item.key}" />
 </h:column>
 <h:column>
 <f:facet name="header">Value</f:facet>
 <h:outputText value="#{item.value}" />
 </h:column>
 </h:dataTable>
 </h:form>
</h:body>
</html>

To learn about JSF, please refer to the online tutorial at http://docs.
oracle.com/javaee/7/tutorial/doc/jsf-intro.htm.

The following code references a backing bean named manager, which is used to store
and retrieve key/value pairs. Backing beans are simple Java classes which are used
as models for UI components. You will also notice the @RequestScoped annotation
in the PropertyManager class.

http://docs.oracle.com/javaee/7/tutorial/doc/jsf-intro.htm
http://docs.oracle.com/javaee/7/tutorial/doc/jsf-intro.htm

Chapter 4

[113]

When defining the scope of a backing bean, you should only use
the javax.faces.bean.RequestScoped annotation if you are
not using CDI, which is highly unlikely. Instead, you should use the
annotations found in the javax.enterprise.context.* package,
which is part of the Context and Dependency Injection framework.

Now, let's see how to code the PropertyManager managed bean:

package com.packtpub.chapter4.bean;
import java.util.List;
import javax.ejb.EJB;
import javax.enterprise.context.RequestScoped;
import javax.faces.application.FacesMessage;
import javax.faces.context.FacesContext;
import javax.faces.event.ActionEvent;
import javax.inject.Named;
import org.jboss.logging.Logger;
import com.packtpub.chapter4.ejb.SingletonBean;
import com.packtpub.chapter4.entity.Property;

@Named("manager")
@RequestScoped
public class PropertyManager {

 private Logger logger = Logger.getLogger(getClass());

 @EJB
 private SingletonBean ejb;
 private String key;
 private String value;

 public void save(ActionEvent e) {
 try {
 ejb.save(key, value);
 FacesContext.getCurrentInstance().addMessage(
 null,
 new FacesMessage(FacesMessage.SEVERITY_INFO,
 "Property Saved!", null));
 } catch (Exception ex) {
 logger.error("Error saving property", ex);
 FacesContext.getCurrentInstance().addMessage(
 null,
 new FacesMessage(FacesMessage.SEVERITY_ERROR,

The Undertow Web Server

[114]

 "Error Saving!", ex.getMessage()));
 }
 }
 public void clear(ActionEvent e) {
 logger.info("Called clear");
 ejb.deleteAll();
 }
 public List<Property> getCacheList() {
 return ejb.getProperties();
 }
// getters and setters removed for brevity
}

The most important part of this class is the @Named annotation. Annotating the
class with @Named allows this class to be picked up as a CDI managed bean. The
name passed into the annotation defines how this bean can be referenced via
the Expression Language (EL). Next, the @EJB annotation is used to inject the
SingletonBean into the class.

You can find out more about JSF managed beans at the Java
EE tutorial here: http://docs.oracle.com/javaee/7/
tutorial/doc/jsf-develop.htm.

Adding the EJB layer
The SingletonBean is an EJB, which is marked with the special @javax.ejb.
Singleton annotation. A class with such an annotation is guaranteed to be
instantiated only once per application, and exists for the life cycle of the application.
In the Java EE context, singleton beans are primarily used to store application-wide
shared data. Now, we need to create a new class named SingletonBean. The aim
of this class will be to save and retrieve key/value pairs:

package com.packtpub.chapter4.ejb;

import java.util.ArrayList;
import java.util.List;

import javax.annotation.PostConstruct;
import javax.ejb.LocalBean;
import javax.ejb.Remote;
import javax.ejb.Singleton;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;

http://docs.oracle.com/javaee/7/tutorial/doc/jsf-develop.htm
http://docs.oracle.com/javaee/7/tutorial/doc/jsf-develop.htm

Chapter 4

[115]

import javax.persistence.Query;
import javax.persistence.TypedQuery;

import com.packtpub.chapter4.entity.Property;

@Singleton
@LocalBean
public class SingletonBean {

 private List<Property> cache = new ArrayList<>();

 @PostConstruct
 public void initCache() {
 this.cache = queryCache();
 if (cache == null) {
 cache = new ArrayList<Property>();
 }
 }

 public void deleteAll() {
 this.cache.clear();
 }

 public void save(String key, String value) {
 Property property = new Property(key, value);
 this.cache.add(property);
 }

 public List<Property> getProperties() {
 return cache;
 }
}

The last class we need to add is Property, which is a plain JavaBean class:

package com.packtpub.chapter4.entity;

public class Property {
 private String key;
 private String value;
 // GETTERS & SETTERS omitted for brevity
}

The Undertow Web Server

[116]

Once you reach this point, you should have a project containing the items shown in
the following screenshot:

Choosing the web context of the application
By default, a web application inherits the web context name from the archive name,
which is deployed on the application server. Maven uses the artifact ID, followed by
the version to name the archive. So, in our example, if we deploy an archive named
chapter4-0.0.1-SNAPSHOT.war, it will be accessible using the web context name
chapter4-0.0.1-SNAPSHOT, as shown by the following image:

http://localhost:8080 xhtml/ chapter4-0.0.1-SNAPSHOT /index .

Server : port Web context Resource

The context name can be modified to something more meaningful. The simplest way
to achieve this (without changing the archive name) is by adding a jboss-web.xml
file to the WEB-INF folder of your project:

Chapter 4

[117]

The content of this file will include the custom web context, as specified by the
context-root element:

<jboss-web>
 <context-root>chapter4</context-root>
</jboss-web>

Deploying the web application
Once you are happy with your settings, you can deploy and verify your application.
If you are deploying your application from within Eclipse, just right-click on the
WildFly Runtime Server and choose the Add and Remove option (assuming you
installed the WildFly runtime as shown in Chapter 1, Installing WildFly). Next, add
the web project to the list of deployed projects.

You can then deploy the application by right-clicking on the project and choosing
Full Publish:

The Undertow Web Server

[118]

After publishing your application, you will notice that Eclipse will copy your web
application archive (chapter4-0.0.1-SNAPSHOT.war) to the server. It will also
create a file named chapter4-0.0.1-SNAPSHOT.war.dodeploy. As you will learn
in Chapter 6, Application Structure and Deployment, expanded archives, by default,
require a marker file in WildFly to trigger the deployment. Eclipse is aware of this
and creates the file for you.

Upon successful deployment, the chapter4-0.0.1-SNAPSHOT.war.dodeploy file
will be replaced by a chapter4-0.0.1-SNAPSHOT.war.deployed marker file, which
indicates that you have successfully deployed the web application. You can verify that
your application works correctly by pointing to the index.xhtml page at http://
localhost:8080/chapter4/index.xhtml, as shown in the following screenshot:

Deploying a web application to the root context
In our example, we have shown how to deploy the web application to a custom context
using jboss-web.xml. One particular case of web context is the root context. This
typically resolves to http://localhost:8080 and is used to provide some welcome
context by the web server. By default, WildFly has a root context that is mapped in the
JBOSS_HOME/welcome-content folder. You can, however, override it by deploying
one of your applications to the root context. This requires two simple steps:

1. First, you need to remove the following line from your Undertow subsystem:
<location name="/" handler="welcome-content"/>

2. Then, in your application, add a jboss-web.xml file that contains the root
context for your application:
<jboss-web>
 <context-root>/</context-root>
</jboss-web>

Chapter 4

[119]

Adding a remote EJB client
Before adding any code for the remote EJB client, we need to add two dependencies
to pom.xml. This ensures that our code will compile and run without errors:

<!-- this is required for a security -->
<dependency>
 <groupId>org.jboss.sasl</groupId>
 <artifactId>jboss-sasl</artifactId>
 <version>1.0.4.Final</version>
 <scope>provided</scope>
</dependency>
<!-- this is required for the RemoteEJBClient.java to compile -->
<dependency>
 <groupId>org.jboss</groupId>
 <artifactId>jboss-ejb-client</artifactId>
 <version>2.0.2.Final</version>
 <scope>provided</scope>
</dependency>

In order to test our application with a remote client, we need to create a remote
interface to the EJB:

package com.packtpub.chapter4.ejb;

import java.util.List;
import com.packtpub.chapter4.entity.Property;

public interface SingletonBeanRemote {
 public void deleteAll();
 public void save(String key, String value);
 public List<Property> getProperties();
}

The concrete implementation of this interface is the SingletonBeanRemoteImpl
class, which has the same Java method implementations as the SingletonBean
class that we showed in the earlier section:

@Singleton
@LocalBean
@Remote(SingletonBeanRemote.class)
public class SingletonBean implements SingletonBeanRemote {
// Bean class unchanged
}

The Undertow Web Server

[120]

EJB remote invocation happens through the Remoting framework, which uses Simple
Authentication and Security Layer (SASL) for client-server authentication. You need
to explicitly set the security provider by adding the following specification to the
test client:

static {
 Security.addProvider(new JBossSaslProvider());
}

The next part is quite tricky. We need to determine the Java Naming and Directory
Interface (JNDI) name of the EJB, for which we will need to look up the remote
EJB. The JNDI name varies depending on whether the EJB is stateful or stateless.
The following table outlines the syntax for both SLSBs and SFSBs:

EJB type JNDI syntax
Stateless
EJB

ejb:<app-name>/<module-name>/<distinct-name>/<bean-
name>!<fully-qualified-classname-of-the-remote-
interface>

Stateful EJB ejb:<app-name>/<module-name>/<distinct-name>/<bean-
name>!<fully-qualified-classname-of-the-remote-
interface>?stateful

The following table bisects each of these properties:

Parameter Description
app-name This is the application name and is used in the event that the application

has been deployed as an Enterprise archive. It typically corresponds
to the Enterprise archive name without .ear. Since we packed our
application in a web archive, this parameter will not be used.

module-name This is the module within which the EJBs are contained. Since
we deployed the application in a file named chapter4-0.0.1-
SNAPSHOT.war, it corresponds to chapter4-0.0.1-SNAPSHOT.

distinct-
name

This is an optional name that can be assigned to distinguish between
different EJB implementations. It's not used in our example.

bean-name This is the EJB name, which, by default, is the class name of the bean
implementation class, in our case, SingletonBeanRemoteImpl.

fully-
qualified-
classname-
of-the-
remote-
interface

This obviously corresponds to the fully qualified class name of the
interface you are looking up, in our case, com.packtpub.chapter4.
ejb.SingletonBeanRemote.

Chapter 4

[121]

Please notice that stateful EJBs require an additional ?stateful
parameter to be added to the JNDI lookup name.

With this information on the JNDI namespace, you will be ready to understand the
client code:

package com.packtpub.chapter4.client;

import java.security.Security;
import java.util.*;
import javax.naming.*;
import org.jboss.ejb.client.*;
import org.jboss.sasl.JBossSaslProvider;
import com.packtpub.chapter4.ejb.SingletonBean;
import com.packtpub.chapter4.ejb.SingletonBeanRemote;
import com.packtpub.chapter4.entity.Property;

public class RemoteEJBClient {
 static {
 Security.addProvider(new JBossSaslProvider());
 }
 public static void main(String[] args) throws Exception {
 testRemoteEJB();
 }
 private static void testRemoteEJB() throws NamingException {
 final SingletonBeanRemote ejb = lookupEJB();
 ejb.save("entry", "value");
 List<Property> list = ejb.getProperties();
 System.out.println(list);
 }
 private static SingletonBeanRemote lookupEJB()
 throws NamingException {

 Properties clientProperties = new Properties();
 clientProperties.put("endpoint.name", "client-endpoint");
 clientProperties.put("remote.connections", "default");
 clientProperties.put("remote.connection.default.port",
 "8080");
 clientProperties.put("remote.connection.default.host",
 "localhost");
 clientProperties.put("remote.connectionprovider.
 create.options.org.xnio.Options.SSL_ENABLED", "false");

The Undertow Web Server

[122]

 clientProperties.put("remote.connection.default.connect.
 options.org.xnio.Options.SASL_POLICY_NOANONYMOUS",
 "false");

 EJBClientConfiguration ejbClientConfiguration =
 new PropertiesBasedEJBClientConfiguration(
 clientProperties);
 ContextSelector<EJBClientContext> ejbContextSelector =
 new ConfigBasedEJBClientContextSelector(
 ejbClientConfiguration);

 EJBClientContext.setSelector(ejbContextSelector);

 final Hashtable<String, String> jndiProperties =
 new Hashtable<>();
 jndiProperties.put(Context.URL_PKG_PREFIXES,
 "org.jboss.ejb.client.naming");
 final Context context = new InitialContext(jndiProperties);
 final String appName = "";
 final String moduleName =
 "chapter4-webapp-example-0.0.1-SNAPSHOT";
 final String distinctName = "";

 final String beanName =
 SingletonBean.class.getSimpleName();
 final String viewClassName =
 SingletonBeanRemote.class.getName();
 return (SingletonBeanRemote) context.lookup("ejb:" +
 appName + "/" + moduleName + "/" + distinctName +
 "/" + beanName + "!" + viewClassName);
 }
}

As you can see, the major complexity of the remote EJB client code is related to the
JNDI lookup section. You might have noticed that in the highlighted section, we
initialized the JNDI context with a property named Context.URL_PKG_PREFIXES
to specify the list of package prefixes to be used when loading URL context factories.
In our case, we set it to org.jboss.ejb.client.naming so that the JNDI API knows
which classes are in charge of handling the ejb: namespace.

Configuring the client using a properties file
Finally, you might wonder how the client actually knows the server location where
the remote EJBs are hosted. This can be solved by adding the following client-side
property file named jboss-ejb-client.properties to the client classpath:

remote.connectionprovider.create.options.org.xnio.Options.
 SSL_ENABLED=false

Chapter 4

[123]

remote.connections=default
remote.connection.default.host=localhost
remote.connection.default.port = 8080
remote.connection.default.connect.options.org.xnio.Options.
 SASL_POLICY_NOANONYMOUS=false

Within this file, you can specify a set of properties prefixed by remote.
connectionprovider.create.options, which will be used during the remote
connection. In our example, we just set the org.xnio.Options.SSL_ENABLED
property to false, which means that a clear text transmission will be used to
connect the client and server.

The remote.connections property is used to specify a set of one or more connections
that map to an EJB receiver. In our case, there is a single remote connection named
default, which maps to the localhost and the remoting port 8080.

Finally, we need to specify that an SASL anonymous connection will be used;
otherwise, without an authentication, our connection will be refused.

Configuring the client programmatically
Another way to configure the client's connection properties is to configure them
programmatically. Here, we create a Properties object and populate it with
the same key/value pairs that are in the jboss-ejb-client.properties
configuration file. The important parts of the code are highlighted in bold:

private static SingletonBeanRemote lookupEJB()
 throws NamingException {
 Properties clientProperties = new Properties();
 clientProperties.put("endpoint.name", "client-endpoint");
 clientProperties.put("remote.connections", "default");
 clientProperties.put("remote.connection.default.port",
 "8080");
 clientProperties.put("remote.connection.default.host",
 "localhost");
 clientProperties.put("remote.connectionprovider.
 create.options.org.xnio.Options.SSL_ENABLED", "false");
 clientProperties.put("remote.connection.default.
 connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS",
 "false");

 EJBClientConfiguration ejbClientConfiguration =
 new PropertiesBasedEJBClientConfiguration(clientProperties);
 ContextSelector<EJBClientContext> ejbContextSelector =
 new ConfigBasedEJBClientContextSelector(
 ejbClientConfiguration);

The Undertow Web Server

[124]

 EJBClientContext.setSelector(ejbContextSelector);

 final Hashtable<String, String> jndiProperties =
 new Hashtable<>();
 jndiProperties.put(Context.URL_PKG_PREFIXES,
 "org.jboss.ejb.client.naming");
 final Context context = new InitialContext(jndiProperties);
 final String appName = "";
 final String moduleName =
 "chapter4-webapp-example-0.0.1-SNAPSHOT";
 final String distinctName = "";

 final String beanName = SingletonBean.class.getSimpleName();
 final String viewClassName =
 SingletonBeanRemote.class.getName();
 return (SingletonBeanRemote) context.lookup("ejb:" +
 appName + "/" + moduleName + "/" + distinctName + "/" +
 beanName + "!" + viewClassName);
 }

Configuring data persistence
We will now further enhance our application by storing the key/value pairs in a
relational database instead of keeping them in memory. To do this, we will need
to create a persistence context. Again, let me remind you that its purpose is not
to teach the theory behind data persistence, but rather to show how to configure
it within your applications.

The persistence subsystem is included, by default, within all server configurations:

<extension module="org.jboss.as.jpa"/>
<subsystem xmlns="urn:jboss:domain:jpa:1.1"></subsystem>

The JPA module is not loaded by default in the application server. However, as
soon as the application server detects that your application has persistence.xml
or persistence annotations, the JPA module will be automatically started.

So, let's add the JPA persistence.xml configuration file to our project, which
will reference the data source used to map our entities to the database:

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://xmlns.jcp.org/xml/ns/javaee/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee http://
 xmlns.jcp.org/xml/ns/javaee/persistence/persistence_2_1.xsd"
 version="2.1">

Chapter 4

[125]

 <persistence-unit name="persistenceUnit" transaction-type="JTA">
 <provider>org.hibernate.jpa.HibernatePersistenceProvider
 </provider>
 <jta-data-source>java:jboss/datasources/MySqlDS</jta-data-
 source>
 <properties>
 <property name="hibernate.dialect" value="org.hibernate.
 dialect.MySQLDialect" />
 </properties>
 </persistence-unit>
</persistence>

The key attributes of this file are the persistence unit's name, which will identify
its unique name, and the jta-data-source, which must match a valid datasource
definition. In the earlier chapter, we defined this datasource bound to a
MySQL database.

The persistence.xml file can specify either a JTA datasource
or a non-JTA datasource. Within a Java EE environment, you
have to use a JTA datasource (even when reading data without
an active transaction).

Finally, the properties element can contain any configuration property for
the underlying persistence provider. Since WildFly uses Hibernate as the EJB
persistence provider, you can pass any Hibernate options here.

Once created, this file needs to be placed in the META-INF folder of your
source/main/resources folder, as shown in the following screenshot:

The real path of the persistence.xml file
Please note that the content of the Eclipse src/main/
resources directory will be placed in the WEB-INF/classes
directory of your web application when Maven builds it.

The Undertow Web Server

[126]

Using a default datasource for the JPA
subsystem
In this example, we are referencing the datasource from within the persistence.xml
file, thus following a canonical approach well-known to many developers.

You can, however, choose a default datasource for all your JPA applications
by adding the default-datasource element into the JPA subsystem:

<subsystem xmlns="urn:jboss:domain:jpa:1.0">
 <jpa default-datasource="java:jboss/datasources/MySqlDS"/>
</subsystem>

This way, all JPA applications that haven't defined the jta-data-source element
in persistence.xml will use the default datasource configured in the main server
configuration file.

Configuring entities
Once your persistence configuration is defined, the only change we need to make
in our application is to add the javax.persistence annotations to our entity class.
The @Entity annotation means that the class will be registered as a JPA entity:

package com.packtpub.chapter4.entity;
import java.io.Serializable;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;

@Entity
public class Property implements Serializable {
 @Id
 @Column(name = "id")
 private String key;
 @Column(name = "value")
 private String value;
 //getters and setters omitted for brevity
}

Chapter 4

[127]

Our session bean needs to be changed, as well. Instead of reading and writing to
the in-memory cache, we will write to both the cache and the database, and read
only from the in-memory cache. When the application is restarted, the in-memory
cache will be populated with data queried from the database. Although this is
nothing fancy, for the sake of this demonstration, it is just fine:

import java.util.ArrayList;
import java.util.List;
import javax.annotation.PostConstruct;
import javax.ejb.Singleton;
import javax.persistence.*;
import com.packtpub.chapter4.entity.Property;

@Singleton
public class SingletonBean {
 private List<Property> cache;
 @PersistenceContext(unitName = "persistenceUnit")
 private EntityManager em;

 @PostConstruct
 public void initCache(){
 this.cache = queryCache();
 if (cache == null) cache = new ArrayList<Property>();
 }

 public void delete(){
 Query query = em.createQuery("delete FROM
 com.packtpub.chapter4.entity.Property");
 query.executeUpdate();
 this.cache.clear();
 }

 public void put(String key,String value){
 Property p = new Property();
 p.setKey(key);
 p.setValue(value);
 em.persist(p);

The Undertow Web Server

[128]

 this.cache.add(p);
 }

package com.packtpub.chapter4.ejb;

import java.util.ArrayList;
import java.util.List;

import javax.annotation.PostConstruct;
import javax.ejb.LocalBean;
import javax.ejb.Remote;
import javax.ejb.Singleton;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.persistence.Query;
import javax.persistence.TypedQuery;

import com.packtpub.chapter4.entity.Property;

@Singleton
@LocalBean
public class SingletonBean {

 private List<Property> cache = new ArrayList<>();

 @PersistenceContext(unitName = "persistenceUnit")
 private EntityManager em;

 @PostConstruct
 public void initCache() {
 this.cache = queryCache();
 if (cache == null) {
 cache = new ArrayList<Property>();
 }
 }

 public void deleteAll() {
 Query query = em.createQuery("DELETE FROM Property");
 query.executeUpdate();
 }

 public void save(String key, String value) {

Chapter 4

[129]

 Property property = new Property(key, value);
 em.persist(property);
 this.cache.add(property);
 }

 private List<Property> queryCache() {
 TypedQuery<Property> query =
 em.createQuery("FROM Property", Property.class);
 List<Property> list = query.getResultList();
 return list;
 }

 public List<Property> getProperties() {
 return cache;
 }
}

Sections of the preceding code have been highlighted to show you where the code
has been modified to use data persistence. The most relevant section is the @javax.
persistence.PersistenceContext annotation, which references a JPA context
defined in the persistence.xml file.

Once deployed, this application will persist data to your MySQL database.

Configuring persistence in other application
archives
In our example, we created a Java EE 7 application that is made of web components
and EJBs using a single web application archive. This is absolutely fine and expected,
as Java EE allows the mixing and matching of frontend components and server-side
components within a single web archive.

You can, however, deploy an application where the web layer is separated from the
business service layer. For example, suppose you were to deploy your entities in a
separate JAR file; the correct place for the persistence.xml file would be beneath
the META-INF folder of your JAR archive.

To confirm, if you are placing your JPA entities inside a WAR file, the
persistence.xml file should be placed in the WEB-INF/classes/
META-INF folder. If you package your JPA entities within a JAR file
inside a web application, you should place the persistence.xml file
in the META-INF folder.

The Undertow Web Server

[130]

Technically speaking, if you have multiple JAR files in your application, you can
deploy the persistence.xml file in a single archive and refer to the persistence unit
using the jarName#unitName notation. For example, this application's persistence
unit could be referenced from another JAR file using the following annotation:

@PersistenceContext(unitName="wildflyapp.jar#unitName")

Switching to a different provider
By default, WildFly 8.1 uses Hibernate 4.3.5 as a persistence provider. The Hibernate
JARs are included under the modules folder in the org.hibernate path. If, however,
your application requires a different version of Hibernate, such as 3.5, you can still
bundle the JARs into your application by adding the dependency to your pom.xml
file and setting the scope to runtime:

<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-core</artifactId>
 <version>3.5.0-Final</version>
 <scope>runtime</scope>
</dependency>

Besides this, you need to set the jboss.as.jpa.providerModule property to
hibernate3-bundled in your persistence.xml configuration file. The JPA
deployer will detect the presence of a different version of the persistence provider
and activate that version:

<persistence-unit>
 <properties>
 <property name="jboss.as.jpa.providerModule"
value="hibernate3-bundled" />
 </properties>
</persistence-unit>

Using Jipijapa
You can also use the Jipijapa project to simplify switching to a different JPA
provider. If you use Jipijapa, you will need to ensure that your persistence provider
is included as a runtime dependency in your pom.xml file, and you will also need to
include the correct Jipijapa integration JAR file. To use Hibernate 3, you will need to
add the following dependency in pom.xml:

<dependency>
 <groupId>org.jipijapa</groupId>
 <artifactId>jipijapa-hibernate3</artifactId>

Chapter 4

[131]

 <version>1.0.1.Final</version>
</dependency>

With Jipijapa, you can easily switch to a different version of Hibernate, or to a
different ORM provider such as EclipseLink or OpenJPA. For more details on using
the Jipijapa project, you can refer to the WildFly docs at https://docs.jboss.
org/author/display/WFLY8/JPA+Reference+Guide#JPAReferenceGuide-
BackgroundontheJipijapaproject.

Summary
In this chapter, we discussed the Undertow subsystem configuration, which is found
within the main configuration file.

The Undertow server configuration is broken into two main parts: server
configuration, which is used to configure static resources, such as HTML pages,
images, listeners, and hosts, and the servlet container configuration, which is
used to configure dynamic resources such as JSPs.

We then went through an example application that demonstrated how to package
and deploy a Java EE 7 web module on the application server.

Then, we discussed the JPA subsystem and showed you how to add data persistence
to the initial example. We outlined the correct location of the persistence.xml file,
which is required to be placed in the WEB-INF/classes/META-INF folder of your
web application or in the META-INF folder of your JAR file.

Having completed the application server standalone configuration, we will now move
on to the next chapter and look at how to configure application server domains.

https://docs.jboss.org/author/display/WFLY8/JPA+Reference+Guide#JPAReferenceGuide-BackgroundontheJipijapaproject
https://docs.jboss.org/author/display/WFLY8/JPA+Reference+Guide#JPAReferenceGuide-BackgroundontheJipijapaproject
https://docs.jboss.org/author/display/WFLY8/JPA+Reference+Guide#JPAReferenceGuide-BackgroundontheJipijapaproject

Configuring a WildFly Domain
Now that we have looked at the core configuration of the server, we can move on to
the domain configuration. Shaping a server domain is a key task for administrators
who want to efficiently coordinate a set of application servers. In this chapter, we will
describe all the steps necessary to create and configure a domain of WildFly instances.

As we will see shortly, the configuration of subsystems does not vary between
standalone and domain configuration. To work with domains, we also need to learn
about the domain controller and host controller configurations. These are responsible
for handling and coordinating the lifecycle of applications across several servers.

So, in this chapter, we will cover the following topics:

• Introduction to the WildFly domain
• How to configure the domain components
• The criteria to choose between a domain and a standalone server
• Introducing WildFly domain mode

Introducing the WildFly domain
The concept of a domain mode might be perceived as a little difficult to understand.
The reason for this is that in the Java EE paradigm, one is used to dealing with
servers rather than domains.

Basically, a domain is a group of WildFly servers managed by one of the servers.
The server managing the domain is called the domain controller. This group is under
one administration—it is the administrative unit. It's important to understand that the
concept of a domain does not interfere with the capabilities delivered by the managed
servers. For example, you might set up a domain of application server nodes running
in a cluster, providing load balancing and high availability. However, you can also
achieve the same outcome with a set of standalone application servers.

Configuring a WildFly Domain

[134]

What differentiates these two scenarios is that when running in a domain, you
can efficiently manage your set of servers from a single, centralized unit. On the
other hand, managing a set of standalone instances often requires sophisticated
multiserver management capabilities that are significantly more complex,
error-prone, and time-consuming.

From the process point of view, a domain is made up of four elements:

• Domain controller: The domain controller is the management control point of
your domain. An AS instance running in the domain mode has, at the most,
one process instance acting as a domain controller. The domain controller
holds a centralized configuration that is shared by the node instances
belonging to the domain.

• Host controller: This is a process responsible for coordinating the life cycle
of server processes and the distribution of deployments, from the domain
controller to the server instances, with the domain controller.

• Process controller: This is a very lightweight process whose primary
function is to spawn server and host controller processes, and manage their
input/output streams. This also allows the host controller to be patched and
restarted without impacting the associated servers.

• Application server nodes: These are regular Java processes that map to
instances of the application server. Each server node, in turn, belongs to
a domain group. Domain groups will be explained in detail when we
discuss the domain configuration file.

In order to understand how to configure these components, we will first look at the
basic domain configuration. This configuration is provided with the application
server default distribution.

Understanding the default domain
configuration
Out of the box, the default domain configuration (domain.xml) includes a basic
configuration made up of the following elements:

• One process controller that starts the other JVM processes
• One host controller that acts as the domain controller
• Three server nodes, with the first two being part of the main server

group and the third one (inactive) as part of the other server group

Chapter 5

[135]

A server group is a group of servers that have the same configuration
and are managed as one.

The following image reinforces these concepts:

Host
Controller

D
om

ai
n

C
on

tr
ol

le
r

domain.xml

main
server group

other
server group

server-one

server-two

server-three

OFF

MSC Service Threads

WildFly

Process
Controller

default domain

Process Controller Threads

You can use the VisualVM utility to have a look at the low-level details of
your domain from the point of view of the JVM. You can see from the following
screenshot that four JVM processes are spawned. The process controller is started
first, which, in turn, launches the host controller process and the two server nodes.

Configuring a WildFly Domain

[136]

VisualVM is a Java Virtual Machine monitoring tool that is included
in the default Java SE distribution. You can find it in your JAVA_
HOME/bin folder. Simply launch jvisualvm.exe if you are on
Windows, or jvisualvm if you are on Linux.

The important thing to note from the preceding screenshot is that with the basic
domain setup, the host controller also acts as the domain controller, that is, the host
controller holds the centralized configuration of the domain. This means that the
host controller and the domain controller share the same JVM process.

Having completed a basic introduction to the application server domain, we will
now cover all the details concerning its configuration.

Starting up and stopping a domain
Starting up a WildFly domain is simply a matter of running the JBOSS_HOME\bin\
domain.sh script (JBOSS_HOME\bin\domain.bat on Windows). In a matter of seconds,
your domain will be up and running. Have a look at the following screenshot:

In order to stop the application server domain, you can either use the Ctrl + C
shortcut in the same window in which you started the domain, or you can use the
command-line client and issue the shutdown command to the host controller.

Chapter 5

[137]

Unix/Linux users can issue the following command:

./jboss-cli.sh --connect command=/host=master:shutdown

Windows users can issue the following command:

jboss-cli.bat --connect command=/host=master:shutdown

The default host name is master, and it is defined in the host.xml,
file which is located in the JBOSS_HOME\domain\configuration
folder. We will learn more about it in the next section.

Once the domain starts, several log files are created within the JBOSS_HOME\domain\
log directory. The host controller activity is written to the host-controller.log file,
while the process controller logs are written to the process-controller.log file.

Configuring the domain
One of the main advantages of setting up a WildFly domain is the control over, and
management of, the server configurations and deployments from a single centralized
point. The main domain configuration consists of the following two files found in the
JBOSS_HOME\domain\configuration folder, which are as follows:

• domain.xml: This file describes the capabilities of your domain servers
and defines the server groups that are part of the domain. While this file
can be found on each host, only the domain.xml file found on the domain
controller is used.

• host.xml: This file is present on each host where the domain is installed
and specifies the elements specific to the servers running on the host.

Overriding the default configuration files
It is possible to use configuration files other than the default files that are provided
in a vanilla install. You can use your own custom configuration files by adding the
following parameter to your shell command:

./domain.sh --domain-config=custom_domain.xml

./domain.sh –host-config=custom_host.xml

Windows users use the same parameter, but obviously use the domain.bat file.

Note also that if you don't provide any path to your custom configuration file,
it's assumed to be relative to the jboss.server.config.dir directory.
Otherwise, you need to provide an absolute path to your file.

Configuring a WildFly Domain

[138]

Configuring the domain.xml file
The domain.xml file contains the domain subsystems' configuration that is shared
by all the servers in the domain. The content of the file follows the structure of the
standalone file, with an obvious and important difference—a domain can have
several profiles defined in it. By default, four profiles are defined: a default profile,
a full profile, a ha profile, and lastly, a full-ha profile, with the last two being used
for clustered domains. You could also, however, define your own custom profile,
such as a messaging profile, as shown in the following image:

default profile

full profile

ha profile

full-ha profile

other profile

domain.xml

profile

standalone.xml

Changing from one profile to another is the recommended way to
expand or narrow the capabilities of the servers running in your domain.

Each WildFly domain can be further split into server groups, with each one bound
to a different profile. The concept of server groups can be seen as a set of servers
managed as a single unit by the domain. You can actually use server groups for
fine-grained configuration of nodes; for example, each server group is able to define
its own settings, such as customized JVM settings, socket bindings interfaces, and
deployed applications. The following figure illustrates some common attributes
that can be applied to servers within a server group:

Server group

socket
binding
group

server-one

server-two

system
properties

name

jvm
settings deployments

profile

Chapter 5

[139]

For example, here is a more complete server group definition that is bound to the
default profile. This server group defines a web application named sample.war,
which is made available to all servers within the group. It also defines a customized
JVM configuration and some system properties (loaded at boot time), and binds its
services to the standard-sockets definition, as follows:

<server-group name="custom-server-group" profile="default">
 <deployments>
 <deployment name="sample.war_v1" runtime-name="sample.war" />
 </deployments>
 <jvm name="default">
 <heap size="512m" max-size="1g"/>
 </jvm>
 <socket-binding-group ref="standard-sockets"/>
 <system-properties>
 <property name="foo" value="bar" boot-time="true"/>
 <property name="key" value="value" boot-time="true"/>
 </system-properties>
</server-group>

Configuring the host.xml file
The other domain configuration file is named host.xml, which is found in the
JBOSS_HOME\domain\configuration folder. This file basically defines and configures
the server nodes that are running on a host as part of a domain. The term "host" used
here denotes a physical or virtual host. Within each host is a portion of the servers
from the domain. Each host can have zero or more server instances. The following
figure clarifies these details:

domain.xml

main
server group

H
os

t
/ D

om
ai

n
C

on
tr

ol
le

r

other
server group

server-one

server-three

OFF

server-two

server-five

server-four

H
os

t
C

on
tr

ol
le

r

Host1
host.xml

Host2
host.xml

Configuring a WildFly Domain

[140]

As you can see, a domain can contain several hosts (host1, host2) and also several
groups (main server group, other server group). However, while a server group is
a logical association of server nodes (which can be located anywhere), a host refers
to a set of nodes that are located on the same physical or virtual machine. Having
provided our definition of hosts, we now look into the host configuration file,
which allows you to shape the following set of core domain elements:

• The management interfaces used to control the domain
• The domain controller definition
• The network interfaces where services are bound
• The defined JVM's configurations
• The servers that are part of the domain

In the next section, we will see each element of the host.xml file in detail and learn
how to configure it appropriately.

Configuring the management interfaces
The management interface includes the definition of the native command-line
interface (CLI) and http interface that are used to manage the domain. The
following example has been taken from the host.xml file:

<management-interfaces>
 <native-interface security-realm="ManagementRealm">
 <socket interface="management" port="9999"/>
 </native-interface>
 <http-interface security-realm="ManagementRealm"
 http-upgrade-enabled="true">
 <socket interface="management" port="9990"/>
 </http-interface>
</management-interfaces>

With the default configuration, both services are bound to the management network
interfaces. The CLI and administrative interface listen on port 9990. The native
interface configuration remains should you, for some reason, want to revert back
to JBoss AS 7 settings and run on port number 9999.

Chapter 5

[141]

Configuring the network interfaces
We have just mentioned network interfaces. As you can guess from its name, a
network interface refers to one network address or a set of network addresses. By
default, the server contains three network interface definitions, namely, management,
public, and unsecure, all of which are bound to the loopback address (127.0.0.1).

By changing the inet-address value of your network interface, you can configure
the listening addresses of your application server. For example, if we want to bind the
management interfaces to the loopback address (127.0.0.1), and the public interface
to the address 192.168.1.1, you can simply use the following configuration:

<interfaces>
 <interface name="management">
 <inet-address value="127.0.0.1"/>
 </interface>
 <interface name="public">
 <inet-address value="192.168.1.1"/>
 </interface>
</interfaces>

You can also update these properties via the command line by running the
following commands:

[standalone@localhost:9990 /] /interface=management:write-
attribute(name=inet-address,value=127.0.0.1)

[standalone@localhost:9990 /] /interface=public:write-
attribute(name=inet-address,value=192.168.1.1)

In practice, this means that the management interfaces (the http admin console and
the CLI) will be bound to the loopback address, while application-related services
(bound to the public interface) will be bound to the IP address 192.168.1.1. The
following configuration is taken from the domain.xml file. Here, you can see how it
uses the public interface defined previously:

<socket-binding-group name="standard-sockets"
 default-interface="public">
 <socket-binding name="http" port="8080"/>
 <socket-binding name="https" port="8443"/>
 ...
</socket-binding-group>

Configuring a WildFly Domain

[142]

Configuring the domain controller
By default, the domain controller is located on the same machine where you started
your domain. Have a look at the following commands:

<domain-controller>
 <local/>
</domain-controller>

You can, however, configure your host to use a domain controller located on
a remote host in the following way:

<domain-controller>
 <remote host="192.168.100.1" port="9999"
 security-realm="ManagementRealm"/>
</domain-controller>

This doesn't work if the management interface is bound to localhost.
Ensure that you update the management interface correctly.

Configuring the domain controller on a remote host means that the local
configuration (domain.xml) will not be used, and that all server nodes on that host
will use the centralized remote configuration. You need authorization to access the
domain controller. We will cover the details of this in the domain example toward
the end of the chapter.

Configuring the JVM
One of the key aspects of the domain configuration is the definition of JVM arguments
for a given host. The JVM's elements are defined in the host.xml file. Here, you can
define JVM settings and associate them with a name:

<jvms>
 <permgen size="256m" max-size="256m"/>
 <jvm-options>
 <option value="-server"/>
 </jvm-options>
</jvms>

Currently, there is no element available to configure Java 8 Metaspace
properties. To configure these, you need to add them as option
elements. To set the initial size, use -XX:MetaspaceSize=256m, and
to set the maximum size, use -XX:MaxMetaspaceSize=256m.

Chapter 5

[143]

This JVM definition can then be used as part of your server group configuration
by referencing the jvm name property in your server-group configuration. Also
note that any JVM definitions within the server-group overrides those in the jvms
definition. For example, the main-server-group (domain.xml) server group uses
the default JVM for all server nodes, but redefines the heap max-size and size
values. Have a look at the following code:

<server-group name="main-server-group" profile="full">
 <jvm name="default">
 <heap size="64m" max-size="512m"/>
 </jvm>
 <socket-binding-group ref="full-sockets"/>
</server-group>

The defined JVMs can be also be associated with a single server, thus overriding
the server group definition. For example, here, server-one (defined in host.xml)
inherits the default JVM configuration but then overrides the minimum (512 MB)
and maximum heap size (1 GB):

<server name="server-one" group="main-server-group" auto-start="true">
 <jvm name="default">
 <heap size="512m" max-size="1G"/>
 </jvm>
</server>

Adding JVM options to a server definition
If you want to further specialize your JVM configuration, for example, by adding
nonstandard options to the virtual machine, you can use the jvm-options element
(host.xml). In this example, we add the concurrent, low-pause garbage collector to
the default JVM options:

<jvms>
 <jvm name="default">
 <heap size="64m" max-size="128m"/>
 <jvm-options>
 <jvm-option value="-XX:+UseConcMarkSweepGC"/>
 </jvm-options>
 </jvm>
</jvms>

Configuring a WildFly Domain

[144]

Order of precedence between elements
In the previous section, we showed you how to use the default JVM definition in the
different configuration files (host.xml and domain.xml). As a matter of fact, the JVM
definition is a typical example of a configuration that overlaps between files, which
means that the JVM can be configured at any one of the following levels:

• Host level: This configuration will apply to all servers that are defined in
host.xml

• Server-group level: This configuration applies to all servers that are part
of the group

• Server level: This configuration is used just for a single host

So far, so good. However, what happens if we define an element with the same
name at multiple levels? The application server resolves this by letting most specific
elements override their parent configuration. In other words, if you define a generic
JVM at the host level, it is overridden by the same JVM at the server-group level.
Have a look at the following code:

<!-- host.xml -->
<jvms>
 <jvm name="default">
 <heap size="64m" max-size="256m"/>
 </jvm>
</jvms>

<!—- domain.xml -->

<!—- Here the "default" jvm will be overridden by the server group jvm
definition -->

<server-group name="other-server-group" profile="default">
 <jvm name="default">
 <heap size="64m" max-size="512m"/>
 </jvm>
 <socket-binding-group ref="standard-sockets"/>
</server-group>

If you also define it at the server level, then that is the final choice for that server.
Have a look at the following code:

<!- Here, the server definition overrides any other host/group
 definition -->

Chapter 5

[145]

<server name="server-one" group="main-server-group">
 <jvm name="default">
 <heap size="256m" max-size="768m"/>
 </jvm>
</server>

The following figure describes the elements that can be defined (and possibly
overridden) at different configuration levels:

Configuration order of precedence

<path />

<interface />

<system-properties />

<jvm /> server

server-group

host

As you can see, this list also includes some elements, such as the <path> element,
the <interface> element, and the <system-properties> element, which we
have discussed in Chapter 2, Configuring the Core WildFly Subsystems.

Configuring server nodes
The last element of the host configuration includes the list of server nodes that are
part of the domain. Configuring a server requires, at minimum, the name of the
server and the group to which the server belongs. Have a look at the following code:

<!-- host.xml configuration file -->
<servers>
 <server name="server-one" group="main-server-group" />
</servers>

This server definition relies largely on default attributes for the application
server nodes. You can, however, highly customize your servers by adding
specific paths, socket-binding interfaces, system properties, and JVMs. Have
a look at the following code:

<server auto-start="true" name="sample" group="sample-group" >
 <paths>
 <path name="example" path="example"
 relative-to="jboss.server.log.dir"/>
 </paths>

Configuring a WildFly Domain

[146]

 <socket-bindings port-offset="259"
 socket-binding-group="standard-sockets" />
 <system-properties>
 <property boot-time="true" name="envVar" value="12345"/>
 </system-properties>
 <jvm name="default">
 <heap size="256m" max-size="512m"/>
 </jvm>
</server>

If you want to know all the applicable attributes of the server nodes' configuration,
we suggest that you have a look at the jboss-as-config_2_1.xsd schema, which is
located in the JBOSS_HOME/docs/schema folder of your server distribution. In Eclipse,
you can right-click on the schema file and then click on Generate | XML File.

Applying domain configuration
A common misconception among users who are new to the concept of a domain
is that a domain is pretty much the equivalent of a cluster of nodes, so it can be
used to achieve important features, such as load balancing and high availability.

It's important to understand that a domain is not pertinent to the functionalities
that your application delivers—a domain is designed around the concept of server
management. Thus, you can use it to manage both clustered applications and
applications that are not intended to run in a cluster.

To understand it better, let's give an example. Let's consider that your server topology
consists of multiple servers, and that you have defined a datasource that will be used
by your application. So, whether or not you use a cluster, you need to configure your
datasource across all your standalone servers' configurations (this means adding the
definition of the datasource in every standalone.xml) file. In this case, the advantage
of using a domain is evident: the datasource definition is contained just in the domain
controller that provides a central point through which users can keep configurations
consistent. It also has the benefit of being able to roll out configuration changes to the
servers in a coordinated fashion. One other important aspect of a domain is the ability
to provide a more fine-grained configuration than clustering is able to. For example,
you can define server groups, each one with its own custom configuration. In order
to achieve the same thing with a clustered configuration, you have to manage each
machine's standalone configuration and adapt it to your needs.

Chapter 5

[147]

However, domain and clustering are not mutually exclusive scenarios, but are
often part of a larger picture. For example, using a domain can further enhance
the efficiency of a cluster in advanced configurations where you need to manage
starting and stopping multiple AS instances. At the same time, clustering provides
typical load balancing and high-availability features, which are not integrated into
domain management.

On the other hand, there are situations where using a domain may not prove to be
that useful. For example, it's possible that your system administrators have bought
or developed their own sophisticated multiserver management tools that can do
more or less the same things that a domain configuration is able to do. In this
situation, it may not be desirable to switch out what is already configured ad hoc.

Another classic example where a domain is not needed is the development phase,
where you don't gain anything from a domain installation. Rather, it may add an
unneeded additional complexity to your architecture.

Furthermore, the standalone mode is the only choice available in some scenarios.
For example, if you are running the application server in the embedded mode,
then the choice of a domain is incompatible. For example, when using an
Arquillian project, you can test your Enterprise projects using an embedded
container, which is managed by Arquillian using a standalone configuration.

Summing it up, since the individual server configuration does not vary when
running the domain mode or the standalone mode, you can easily develop your
application in the standalone mode and then switch to the domain mode when
you are about to roll out the production application.

Creating our very own domain
configuration
We will now provide a detailed example of a domain configuration. In this example,
we include two separate host controller configurations, each one with a list of three
nodes. You need two separate installations of WildFly 8, which can be executed on
either two different machines or on the same machine. When running on the same
machine, it's practical to assign a virtual IP address to your machines so that you
don't have any port conflict in your domain.

Configuring a WildFly Domain

[148]

The following figure shows our domain project:

server-one server-two server-three server-four server-five server-six

master slave

192.168.1.1 192.168.1.2

WildFly Domain

Remote Controller: 192.168.1.1

do
m

ai
n.

xm
l

The first thing we need to do is bind the network interfaces to a valid inet address,
both for the public and management interfaces. So, assuming that the first domain
installation (master) will be bound to the inet address 192.168.1.1, open the host.
xml file and change it accordingly, as follows:

<interfaces>
 <interface name="management">
 <inet-address value="192.168.1.1"/>
 </interface>
 <interface name="public">
 <inet-address value="192.168.1.1"/>
 </interface>
</interfaces>

In the second domain installation (slave), change the inet address to 192.168.1.2
in host.xml, as follows:

<interfaces>
 <interface name="management">
 <inet-address value="192.168.1.2"/>
 </interface>
 <interface name="public">
 <inet-address value="192.168.1.2"/>
 </interface>
</interfaces>

Chapter 5

[149]

The next thing to do is define a unique host name for each installation. So, for the
first host.xml file, use the following code:

<host name="master"/>

For the second file, simply use:

<host name="slave"/>

Next, the most important step is to choose where the domain controller is located. As
we have shown earlier in the image, the domain controller will be located in the first
installation (master), so in the host.xml file, you should contain the default content:

<domain-controller>
 <local/>
</domain-controller>

Now, looking at the other installation (slave), point to the domain controller that is
running on host 192.168.1.1 (master), as follows:

<domain-controller>
 <remote host="192.168.1.1" port="9999"/>
</domain-controller>

Authentication is required for the slave to connect to the domain controller, so next
we will add a user to the installation housing the master domain. To do this, you
need to run the add-user script in the bin directory of your WildFly installation,
as follows:

JBOSS_HOME/bin/add-user.sh

Perform the following steps:

1. When asked What type of user do you wish to add?, enter a
(management user).

2. When asked for a username, enter slave.
3. When asked for a password, enter password.
4. When asked What groups do you want this user to belong to?,

leave it blank.
5. Next, you will be asked if this is correct. Type yes.

Configuring a WildFly Domain

[150]

6. Lastly, and most importantly, you will be asked if you want this new user
to be used for one AS process to connect to another AS process. You need to
type yes again. This will cause XML to be printed out, which we will use in
the slave configuration:

Lastly, on the slave server, we need to add the secret value (printed out to the
console) within the server-identities element in the host.xml file, as follows:

<security-realm name="ManagementRealm">
 <server-identities>
 <secret value="YXNkZg==" />
 </server-identities>
 ...
</security-realm>

The domain configuration is now complete. Let's start up the installation containing
the domain controller (master) and then the second installation (slave) using the
domain.bat/domain.sh scripts.

If everything is correctly configured, you will see the slave host registered on the
domain controller (master), as follows:

Chapter 5

[151]

Now, let's have a look at the domain from the management console. The management
interfaces are discussed in detail in the next chapter, but we need to briefly look at
them for the purpose of showing our domain example.

By default, you need to create one management user to be able to log in
to the management console. For now, you can just use the username and
password you created for the slave server, but in production, you would
most likely create a different management user.

If you point the browser to the management interface of your master server
(http://192.168.1.1:9990), you will not be able to access the management
interface of your slave servers.

From the main page of the management console, there are a couple of options in
which to look at your domain configuration. At this point, we are interested in
looking at the host controllers that make up the domain. So, in the top menu bar,
select the Domain menu. From here, you can select the host you are interested in
from the combobox located on the left-hand side.

As you can see, you can find all servers grouped by the host, as follows:

Configuring a WildFly Domain

[152]

Now, select Runtime from the menu. From here, you can view the status of each
server, group them by server-group, and start/stop each node. For example, as per
the default configuration, each distribution contains three nodes: two are activated
at startup, while the third one is started on demand. Hover your mouse over each
node, and options will appear allowing you to start/stop the single node. You can
also start/stop an entire server-group. Also, note that there is an option to change
the host currently being viewed, as shown in the following screenshot:

It should be clear now that each host has its own list of nodes, all of which are part
of the domain. Also, remember that each host depends on the configuration defined
in the profiles section of domain.xml that contains the domain profile used by your
domain. As mentioned earlier, one of the most evident advantages of a domain over
individual installation is the ability to centralize the services' configuration as well
as the deployed resources.

From within the web console, you can also deploy applications or install modules
such as JDBC drivers. In the next chapter, we will discuss in depth how to deploy
and install a module to a domain. The main difference between the domain mode
and the standalone mode is that once the datasource is added to the domain
controller (master), its definition becomes part of the default profile, and every
host that connects to the domain inherits its configuration.

Chapter 5

[153]

Have a look at the following screenshot:

Changing the domain configuration at runtime
So far, we have modified the configuration files before starting the domain, but it
is also possible to change the configuration on the fly while the domain is running.
These changes will be made active without the need to restart the server, as they
are done via the management console. For example, you may need to create, on the
fly, a new server group and associate some servers and applications with it. It could
be that one of your production applications has an issue that needs to be fixed. You
could try to reproduce the issue on a development environment, but your results
may not always be accurate since development and production often use different
database and class versions.

So, one way you can quickly resolve the issue is by creating a new server group,
associating one or more servers with it, and then deploying and testing the
application on it.

Configuring a WildFly Domain

[154]

This can be done using the admin console (or the CLI) in a matter of minutes.
Perform the following steps:

1. Open your browser, and navigate to the admin console. Then, select the
Domain menu option at the top. From there, choose the Server Groups tab
in the left-hand side column. This interface lets you add server groups by
clicking on the Add button, as shown in the following screenshot:

2. Then, choose a meaningful name for your group, for example,
staging-server-group, and select a Profile and Socket Binding
configuration on which the new group will be based, as follows:

Chapter 5

[155]

3. Now, it's time to associate one or more servers with the new group. Click on
the Server Configuration menu on the left-hand side, and then click the Add
button. Have a look at the following screenshot:

4. This pops up a dialog box that asks you for the new server name and the
associated server group. In this example, we are going to call it testServer.
Then, associate it with the staging-server-group with a port offset of 750
(in practice, every service is bound to a port of default port address (+ 750)).
Have a look at the following screenshot:

Configuring a WildFly Domain

[156]

Once you have set up a new server group and assigned one or more servers to it, you
can deploy your applications to the server group. Deployment of applications can
be done from the Runtime page. Click on Manage Deployments on the left-hand
side, which shows you what applications, if any, are deployed. Have a look at the
following screenshot:

From here, you can add and remove deployments to your groups, which we will
cover in the next chapter.

Summary
In this chapter, we went through the WildFly domain setup and configuration. By
configuring a server domain, you can manage your servers from a single centralized
point, which is desirable when you have to administer a large set of server nodes.

Every domain is composed of four main elements: the domain controller, the host
controller, the process controller, and the server.

The domain controller handles the domain configuration, while the host
controller coordinates the life cycle of server processes and the distribution of
deployments. The process controller handles the domain server processes and
manages their I/O streams.

Every domain is made up of one or more server groups, which allows fine-grained
configuration of the domain. Each server group can define its own JVM attributes,
socket binding interfaces, and system properties, which are loaded at startup.
You can also deploy applications to each of the nodes within the domain.

Chapter 5

[157]

Server groups are defined in the domain.xml configuration file, along with the
enterprise services enabled for the domain.

The composition of server groups is contained in the host.xml file. This file also
contains the location of the domain controller, the default JVMs, and network and
management interfaces.

We are going to cover application deployment in detail in the next chapter,
Application Structure and Deployment.

Application Structure
and Deployment

Deployment is the process of uploading resources or applications on the
application server. During the software development life cycle, it is the step that
logically follows the development phase and can be performed either manually
or in an automated fashion.

In this chapter, we will explore both approaches using the tools that are
provided by the server distribution. We will also cover how to deploy resources
on the application server using the WildFly plugin for Eclipse. This is the preferred
choice for Java developers due to the quick deployment time.

In the last part of this chapter, we cover the details of the WildFly classloader
architecture. In short, our agenda for this chapter includes the following topics:

• The type of resources that can be deployed on WildFly
• Deploying applications on a WildFly standalone instance
• Deploying applications on a WildFly domain
• Understanding WildFly's classloading architecture

Deploying resources on the application
server
There are basically three file types that we work with in Java Enterprise applications,
which are as follows:

• JAR: This is the most basic package, which can be used for both application
and common resources

Application Structure and Deployment

[160]

• WAR: This is used to package web applications
• EAR: This packages multiple WAR files or contains a set of modules

Besides these, WildFly is able to process the following archives, which provide
the application server with additional functionality:

• RAR: This is the resource adapter file, which is used to define a resource
adapter component (the resource adapter subsystem is provided by the
IronJacamar project; for more information, visit http://www.jboss.org/
ironjacamar)

• SAR: This file enables the deployment of service archives containing the
MBean services, as supported by previous versions of the application server

In this chapter, we will discuss the first three kinds of archives, all of which constitute
the typical packaging solution for Java Enterprise applications. Before discussing
application deployment, let's look at the single archives in a little more detail.

The JAR file
A Java Archive (JAR) file is used to package multiple files into a single archive.
Its internal physical layout is similar to a ZIP file, and as a matter of fact, it uses
the same algorithm as the zip utility for compressing files.

A JAR file is generally used to distribute Java classes and associated metadata.
In Java EE applications, the JAR file often contains utility code, shared libraries,
and Enterprise JavaBeans (EJBs).

The WAR file
A Web Application Archive (WAR) file is essentially an archive used to encapsulate
a web application. The web application usually includes a collection of web-related
resources, such as Java Server Pages (JSP), servlets, XHTML/HTML files, and so
on. It also includes Java class files, and possibly other file types, depending on the
technology used. Since Java EE 6, EJBs can be packaged within a WAR archive using
the same packaging guidelines that apply to web application classes. This means
that you can place EJB classes, along with the other class files, under the classes
directory under WEB-INF. Alternatively, you can package your EJBs within a JAR
file and then place this JAR file in the WEB-INF\lib directory of WAR.

Because of this, it's more common for developers to use the WAR file to distribute
Java EE applications.

http://www.jboss.org/ironjacamar
http://www.jboss.org/ironjacamar

Chapter 6

[161]

The EAR file
An Enterprise Archive (EAR) file represents an application archive, which acts
as a container for a set of modules or WAR files. An EAR file can contain any of
the following:

• One or more web modules packaged in WAR files
• One or more EJB modules packaged in JAR files
• One or more application client modules
• Any additional JAR files required by the application
• JBoss-specific archives such as the SAR file

There are two distinct advantages of using an Enterprise Archive file.
First, it helps to distribute all application components using a single
archive instead of distributing every single module. Second, and most
important, is the fact that applications within an EAR file are loaded
by a single classloader. This means that each module has visibility on
other modules packed within the same archive.

The isolation level of application modules contained in the EAR file can be modified
by adding the ear-subdeployments-isolated element to the main configuration file
(domain.xml or standalone.xml). The default value is false, which means that the
classes in the WAR file can access the classes in the ejb.jar file. Likewise, the classes
in the ejb.jar file can access each other. If, for some reason, you do not want this
behavior and want to restrict the visibility of your classes, add the following lines
to your configuration file:

<subsystem xmlns="urn:jboss:domain:ee:2.0">
 <ear-subdeployments-isolated>true</ear-subdeployments-isolated>
</subsystem>

In the Explaining WildFly classloading section, we will discuss the application server
classloading architecture in depth. We will also show you how to override this
configuration setting at the application level.

Deploying applications on a standalone
WildFly server
Deploying applications on JBoss has traditionally been a fairly simple task, so you
might wonder why a full chapter has been dedicated to it. The answer to this is that
deploying applications on WildFly can be achieved in several ways, each of which
we are going to look at.

Application Structure and Deployment

[162]

First of all, we are going to look at automatic deployment of applications via the
deployments folder, but before we do this, we need to explain the two modes
available when deploying applications:

• Automatic deployment mode: This mode is triggered by the deployment
scanner when a resource within the deployments folder is modified

• Manual deployment mode: This mode does not rely on the deployment
scanner to trigger a deployment, but rather on a set of marker files to
decide if the application needs to be deployed/redeployed

Automatic application deployment
Automatic application deployment consists of placing your application in the
deployments folder, which is located at the following path:

JBOSS_HOME\standalone\deployments

By default, every application archive (WAR, JAR, EAR, and SAR) that is placed in this
folder is automatically deployed on the server, as shown in the following screenshot:

The service that scans for deployed resources is called the deployment scanner, and
it is configured within the standalone.xml configuration file. You can find it by
searching for the deployment-scanner domain. The following snippet shows the
default deployment scanner configuration:

<subsystem xmlns="urn:jboss:domain:deployment-scanner:2.0">
 <deployment-scanner path="deployments"
 relative-to="jboss.server.base.dir" scan-interval="5000"
 runtime-failure-causes-rollback="false"/></subsystem>

Chapter 6

[163]

As you can see, by default, the server scans in the deployments folder every 5000
ms. This service can be customized in many ways. Next, we will look at how we
can further configure the deployment scanner.

Deploying applications to a custom folder
If you want to change the location of the deployment folder, you need to modify
the relative-to and path properties. If you provide both properties, the
deployments folder is a sum of both properties. For example, considering that
you have defined the wildfly8deployments path, you can later reference it as
a relative path for your deployments, as follows:

<paths>
 <path name="wildfly8deployments" path="/opt/applications" />
</paths>

<subsystem xmlns="urn:jboss:domain:deployment-scanner:2.0">
 <deployment-scanner path="deployments"
 relative-to="wildfly8deployments" scan-interval="5000"
 runtime-failure-causes-rollback="false"/>
</subsystem>

In this configuration, the deployment scanner looks for applications within the
deployments folder under /opt/applications.

The same effect can be achieved using an absolute path for your deployments,
leaving out the relative-to property and configuring the path element,
as shown in the following example:

<deployment-scanner scan-interval="5000"
 runtime-failure-causes-rollback="false"
 path="/opt/applications/deployments" />

Changing the behavior of the deployment scanner
By default, every packaged archive that is placed in the deployments folder
is automatically deployed. On the other hand, exploded applications need one
more step to be deployed (see the Manual application deployment section).

We can easily change this behavior of the deployment scanner. The properties
that control the auto-deploy feature are auto-deploy-zipped and
auto-deploy-exploded, respectively, as shown in the following code:

<deployment-scanner scan-interval="5000"
 relative-to="jboss.server.base.dir"
 path="deployments"
 auto-deploy-zipped="true" auto-deploy-exploded="false"/>

Application Structure and Deployment

[164]

You can set the auto-deploy-exploded property to true to achieve automatic
deployment of exploded archives, as follows:

<deployment-scanner scan-interval="5000"
 relative-to="jboss.server.base.dir"
 path="deployments"
 auto-deploy-zipped="true" auto-deploy-exploded="true"/>

Deployment rollback
WildFly 8 introduces a new option to roll back a failed deployment. To do this,
simply update the runtime-failure-causes-rollback property to true,
as shown in the following code snippet. The default behavior is false:

<subsystem xmlns="urn:jboss:domain:deployment-scanner:2.0">
 <deployment-scanner path="deployments"
 relative-to="jboss.server.base.dir" scan-interval="5000"
 runtime-failure-causes-rollback="true"/></subsystem>

If the failure-causes-rollback property is set to true,
a deployment failure also triggers the rollback of any other
deployment that was processed as part of the same scan.

Deploying an application using the CLI
Copying the application archives is often favored by many developers, as it can be
performed automatically by the development environment. However, we lay stress
on the advantages of using the CLI interface, which offers a wide choice of additional
options when deploying and also allows you to deploy applications remotely.

All it takes to deploy an application archive is to log in to the CLI, either a local or
remote instance, and issue the deploy command. When used without arguments,
the deploy command prints a list of applications that are currently deployed. Take
a look at the following command:

[disconnected /] connect

[standalone@localhost:9990 /] deploy MyApp.war

To deploy your application to the standalone server, pass through the relative
(or absolute) path of your archive. This path obviously relates to the client machine
if you are connected to a remote server. This immediately deploys your application
to the server. Take a look at the following screenshot:

[standalone@localhost:9990 /] deploy ./target/MyApp.war

Chapter 6

[165]

When you specify a relative path, it is relative to the location you started the CLI
utility from. You can, however, use absolute paths when specifying the location of
your archives. The CLI auto-complete functionality (using the Tab key) makes light
work of this. Have a look at the following command:

[standalone@localhost:9990 /] deploy /opt/workspace/my-app/target/MyApp.
war

By default, when you deploy via the CLI, the application is deployed and enabled
so that the user can access it. If you want to just perform the deployment of the
application and enable it at a later time, you can add the --disabled switch,
as follows:

[standalone@localhost:9990 /] deploy ./target/MyApp.war --disabled

In order to enable the application, simply issue another deploy command without
the --disabled switch, as follows:

[standalone@localhost:9990 /] deploy --name=MyApp.war

Did you notice the optional --name switch that has been added? When
using this switch, you are able to use the tab completion feature so that
you can automatically find the inactive deployment unit.

Redeploying the application requires an additional flag to the deploy command.
You will get an error if you try to deploy the same application twice without using
this flag. The –f argument forces the redeployment of the application, as shown here:

[standalone@localhost:9990 /] deploy -f ./target/MyApp.war

Undeploying the application can be done through the undeploy command,
which takes the name of the deployment as an argument, as shown here:

[standalone@localhost:9990 /] undeploy MyApp.war

Upon checking the configuration file, standalone.xml, you notice that the
deployment element for your application has been removed.

Deploying an application using the web admin
console
Application deployment can also be completed using the web admin console:

1. Start the console hyperlink, http://localhost:9990/console,
in your browser.

Application Structure and Deployment

[166]

2. You need to add at least one management user to access the web console.
To add a new user, execute the add-user.bat or add-user.sh script
within the bin folder of your WildFly installation, and enter the requested
information. See Chapter 10, Securing WildFly, for more details.

3. Server deployment is managed by the application server by selecting
Runtime in the top menu and then choosing the Manage Deployments
option. If you want to add a new application to WildFly, just click on the
Add button of your console, as shown in the following screenshot:

An intuitive wizard guides you through selecting your application and
providing a runtime name for it, as shown in the following screenshot:

Chapter 6

[167]

There are two properties shown in the wizard that may cause some confusion:

• The Name property is the name by which the deployment should be known
within a server's runtime, for example, MyApp-1.0.0.war. This is used as
the basis for the module names and is usually the name of the archive.

• The Runtime Name is typically the same as the Name, but there may
be instances where you wish to have two deployments with the same
runtime name. For example, you may have MyApp-1.0.0.war and
MyApp-1.0.1.war within the content repository but have the runtime
name of MyApp.war for both archives. They cannot be deployed at the
same time, and one of them would need to be disabled.

The admin console, by default, deploys the application but does not enable it.
By clicking on the Enable button, the application can now be accessed, as shown
in the following screenshot:

Application Structure and Deployment

[168]

Deploying an application using the WildFly
Eclipse plugin
Eclipse is the most widely used application development environment for Java
developers, and it's also the favorite IDE for JBoss developers, as the JBoss Tools
project (http://www.jboss.org/tools) supports the Eclipse environment by
providing a set of plugins for JBoss projects.

In the first chapter of this book, we outlined the installation steps for Eclipse, along
with JBoss tools. We also set up the WildFly server adapter, which allows you to
start, stop, debug, and deploy applications on WildFly using the standalone mode.

Deploying applications to WildFly is easy once you have your WildFly Eclipse
plugin installed:

1. Simply navigate to the Server tab, right-click on the WildFly Runtime
Server, and select Add and Remove. You are presented with a window,
as shown in the following screenshot:

2. Next, click on your application, select Add, and then click on Finish.
The project now publishes to the server. If you ever need to redeploy,
click on the project you want to deploy, and choose Full Publish,
as shown in the following screenshot:

http://www.jboss.org/tools

Chapter 6

[169]

Configuring Eclipse deployments
By double-clicking on the WildFly Runtime, you have access to a tabbed menu,
which contains two options: Overview and Deployment. The Deployment
option is specific to JBoss tools and lets you choose the deployment location
and packaging style of deployment. Take a look at the following screenshot:

Upon checking the Deploy projects as compressed archives option, your application
is compressed and packaged.

If you choose to deploy your application as an exploded archive,
Eclipse adds a .dodeploy marker file once the application has been
copied to the deployments folder. This triggers immediate application
deployment. See the next section for more information about marker files.

Application Structure and Deployment

[170]

Manual application deployment
When using the manual application deployment approach, the deployment scanner
does not automatically deploy the applications that are placed in the deployments
folder. Rather, it uses a set of marker files, which are used to trigger application
redeployment and capture the result of the operation.

You might wonder why marker files are used by the application server and why
the default server configuration is set to use exploded deployments.

Actually, there are several reasons for this choice, and all of them are related to
how the operating system's filesystem works. Exploded archives involve moving/
replacing files in your filesystem, which should be performed automatically. By
atomic operation, we mean that a filesystem operation needs to be performed as a
single operation. Unfortunately, some operating systems like Windows don't treat
complex filesystem operations such as a file moving as atomic operations.

Most Windows users often experience deployment issues on releases of WildFly prior
to JBoss AS 7. This is due to the JVM refusing to release a file handle to META-INF/
application.xml or an EJB descriptor file. That's because Windows uses a mandatory
file lock, which prevents any application from accessing the file. On the other hand,
operating systems such as UNIX use an advisory file lock, which means that unless
an application checks for a file lock, it is not prevented from accessing the file.

Also, using marker files, the application server is able to solve a common issue
related to large deployment files. If you've ever tried to deploy a large package unit
(especially over a network), you might have experienced deployment errors because
the deployment scanner starts deploying before the copy operation is completed,
resulting in partially-completed deployments. Marker files are used by default for
exploded deployments. They consist of empty files with a suffix, which are added
either by the user or by the container to indicate the outcome of an operation.

The most relevant marker file is .dodeploy, which triggers application
redeployment. As a matter of fact, when we add an exploded deployment and the
auto-deploy-exploded attribute is false in the deployment scanner configuration,
the logs in the console warn us that the application is still not deployed, as follows:

21:51:54,915 INFO [org.jboss.as.server.deployment.scanner]
(DeploymentScanner-threads - 1) JBAS015003: Found MyApp.war in deployment
directory. To trigger deployment create a file called MyApp.war.dodeploy

Chapter 6

[171]

Both Windows and Unix users can trigger deployment by simply running the
following command:

echo "" > MyApp.war.dodeploy

Once you have started the deployment process, the application server replies with
two possible outcomes. A deployed marker file (for example, MyApp.war.deployed)
is placed in the deployments directory by the deployment scanner service to indicate
that the given content has been deployed to the server, and your logs should confirm
the outcome, as follows:

22:23:18,887 INFO [org.jboss.as.server] (ServerService Thread Pool --
28) JBAS018559: Deployed "MyApp.war" (runtime-name : "MyApp.war")

If you remove the .deployed file, the application is undeployed,
and an .undeployed marker file is added to the deployments
folder (for example, MyApp.war.undeployed). If you try to
remove the .undeployed file, the application is deployed again.
This is a useful shortcut to quickly undeploy (or redeploy) the
application without deleting it on the filesystem.

The other possible outcome is a deployment failure, which is indicated by a .failed
marker. The content of the file includes some information about the cause of the
failure; however, you should check the server logs for more detailed information
regarding the cause of the error.

When using the autodeploy mode, you can remove the .failed marker file, which
redeploys the application when the folder is rescanned by the deployment scanner.
Additionally, the user can place the .skipdeploy marker file (for example, MyApp.
war.skipdeploy), which disables auto-deploy of the content for as long as this
marker file is present. Use this if you rely on automatic deployment and want
to ensure that no deploy is triggered when updates are still incomplete.

Let's see a sample script, which can be used to perform a safe redeployment of
a web application named MyApp.war, when using the Linux operating system:

touch $JBOSS_HOME/standalone/deployments/MyApp.war.skipdeploy

cp -r MyApp.war/ $JBOSS_HOME/standalone/deployments
rm $JBOSS_HOME/standalone/deployments/MyApp.war.skipdeploy

Application Structure and Deployment

[172]

The Windows equivalent is defined as follows:

echo "" > "%JBOSS_HOME%\standalone\deployments\MyApp.war.skipdeploy"

xcopy MyApp.war %JBOSS_HOME%\standalone\deployments\MyApp.war /E /I
del %JBOSS_HOME%\standalone\deployments\MyApp.war.skipdeploy

Finally, the application server provides some additional temporary marker files,
such as .isdeploying, .isundeploying, or .pending, that are placed by the
deployment scanner to indicate the transition to the deployment or undeployment
of a resource. Full details of marker files are provided in the README.txt file placed
in the deployments folder of the server distribution. The following table displays
a short summary of the available marker files used by the application server:

Marker Created by Description
.dodeploy User Creating this file triggers application deployment.

Touching this file causes application redeployment.
.skipdeploy User Application autodeployment is disabled as long as

this file exists.
.deployed WildFly The application is deployed. Removing it causes

undeployment of the application.
.undeployed WildFly The application has been undeployed. Removing it

causes redeployment of the application.
.failed WildFly The application deployment has failed.
.isdeploying WildFly The application deployment is in progress.
.isundeploying WildFly The application undeployment is in progress.
.pending WildFly One condition is preventing application deployment

(for example, file copying in progress).

Deploying applications on a WildFly
domain
Deploying applications on a WildFly domain is not as simple as deploying to
a standalone server. There is no predefined deployments folder in the domain
installation. The reason for this is that in the domain mode, there can be many
servers belonging to different server groups, each one running different profiles.
In this situation, a single deployments folder raises the obvious question: which
server groups will use that folder?

Chapter 6

[173]

Next, we are going to look at the options available when deploying applications
to a WildFly domain. These two options are as follows:

• The command-line interface (CLI)
• The admin web interface

Deploying to a domain using the CLI
Let's see how to deploy an application using the CLI. Start by launching the CLI,
and connect to the domain controller, as follows:

[disconnected /] connect

domain@localhost:9990 /]

When you deploy an application using the domain mode, you have to specify to
which server group the deployment is associated. The CLI lets you choose between
the following two options:

• Deploy to all server groups
• Deploy to a single server group

Deploying to all server groups
When choosing the option to deploy to all server groups, the application is deployed
to all the available server groups. The --all-server-groups flag can be used to
deploy to all the available server groups. For example, use the following command:

[domain@localhost:9990 /] deploy ../application.ear --all-server-groups

If, on the other hand, you want to undeploy an application from all server groups
belonging to a domain, you have to issue the undeploy command, as follows:

[domain@localhost:9990 /] undeploy application.ear --all-relevant-server-
groups

You might have noticed that the undeploy command uses --all-relevant-
server-groups instead of --all-server-groups. The reason for this difference
is that the deployment may not be enabled on all server groups, so by using this
option, you actually undeploy it just from all those server groups in which the
deployment is enabled.

Application Structure and Deployment

[174]

Deploying an application as disabled can be useful if you have some
startup beans (which are activated when the application is enabled)
and you want to load them, but don't want to trigger their execution,
for example, if the database or any other enterprise information system
is temporarily unavailable.

Deploying to a single server group
The option of deploying to a single server group lets you perform a selective
deployment of your application just on the server groups you have indicated,
as follows:

[domain@localhost:9990 /] deploy application.ear --server-groups=main-
server-group

You are not limited to a single server group. To deploy to multiple server groups,
separate them with a comma, as follows:

[domain@localhost:9990 /] deploy application.ear --server-groups=main-
server-group,other-server-group

Remember, you can use the autocomplete functionality (the Tab key) to display
the list of available --server-groups.

Now, suppose we want to undeploy the application from just one server group.
There can be two possible outcomes. If the application is available just on that server
group, you successfully complete the undeployment:

[domain@localhost:9990 /] undeploy MyApp.war --server-groups=main-server-
group

On the other hand, if your application is available on other server groups,
the following error is returned by the CLI:

Chapter 6

[175]

This error occurs because when you are removing an application from a server
group, the domain controller verifies that the application is not referenced by
any other server group. If it is, the undeploy command fails.

If you wish to remove your application from a single server group, you need
to issue the -keep-content argument. This causes the domain controller to
undeploy the application from the server group while retaining the content:

[domain@localhost:9990 /] undeploy application.ear --server-groups=main-
server-group --keep-content

We have covered many of the available options to deploy applications to a
domain. Before moving to the admin console, let's review the CLI deployment
options, as shown in the following table:

Command Options Effect
deploy --all-server-groups This deploys an application to all server

groups.
undeploy --server-groups This deploys an application to one or more

server groups.
undeploy --all-relevant-

server-groups
This undeploys and removes an
application from all server groups.

undeploy --server-groups This undeploys an application from one
server group. This fails if it's referenced in
another server group.

undeploy --server-groups
-keep-content

This undeploys an application from one
server group without deleting it.

Deploying to a domain using the Admin
console
Deploying applications using the Admin console is pretty intuitive and requires
just a few simple steps:

1. Start by logging in to the web application via the default address,
http://localhost:9990.

Application Structure and Deployment

[176]

2. Then, select the Runtime tab in the top menu and select Manage
Deployments in the left-hand side panel of the screen, as shown
in the following screenshot:

3. Before you can deploy your application to a server group, you need to
upload it to the server, where it is stored in a content repository. To do
this, click on CONTENT REPOSITORY, and then click on Add.
This displays the following dialog, which allows you to upload
your application:

Chapter 6

[177]

4. Once you are finished with the upload wizard, the application is uploaded
to the domain repository. In order to deploy/undeploy it to the single server
groups, you need to select the SERVER GROUPS tab, and then click on the
View button on the server group you wish to deploy to, as shown in the
following screenshot:

5. The next screen shows you all the deployments for this server group. Now,
click on the Assign button. This allows you to select from the applications that
are currently stored within the content repository. Select the checkbox for your
application and then click on Save, as shown in the following screenshot:

Application Structure and Deployment

[178]

6. At this point, the application is deployed but still not enabled. Choose
the En/Disable button to complete the deployment of the application,
as shown in the following screenshot:

Clicking on the Remove button within the SERVER GROUPS tab removes the
deployment from the server group selected, while the other Remove button within
the CONTENT REPOSITORY tab actually deletes the deployment from the
temporary domain repository where uploaded applications are bundled.

Explaining WildFly classloading
There are two approaches to managing dependencies, the first being the Class-Path
approach and the second, the Dependencies approach. We will cover both of these
topics in this section, but before we do, let's take a look at the history of classloading in
WildFly in order to understand why classloading works the way it does. As mandated
by the Java EE specification, an application server needs to provide an environment
where any deployed application can access any class, or library of classes, of a
particular version.

This is also known as Class Namespace Isolation (Java EE 5 specification, section
EE.8.4). However, loading classes from different namespaces can raise some issues
that are not easy to solve. For example, what happens if you pack a newer version
of a utility library with your application, while an older version of the same library
was loaded by the application server? Or, how do you simultaneously use two
different versions of the same utility library within the same instance of the
application server?

The JBoss AS classloading strategy has changed sensibly through the years. The 4.x
releases of the application server used UnifiedClassLoader, which aimed to reduce
communications overhead between running applications, as class data could be
shared by reference or simple copies.

Chapter 6

[179]

One of the major issues not resolved with UnifiedClassLoader is classloading
dependencies. The idea is that if one application (A) uses the classes of another
application (B), the system should know how to redeploy A when B gets redeployed;
otherwise, it references stale classes. There were actually two different attempts to try
to make this work without the user having to configure anything. Neither attempt
really worked and both were dropped.

With JBoss AS 5.0, a new classloader was based on the new Virtual File System
(VFS). The VFS was implemented to simplify and unify file handling within the
application server. The new classloader, named the VFS classloader, uses VFS to locate
JAR and class files. Even though this represented a significant change in how classes
were loaded in JBoss AS 5.0, the resulting behavior is much the same as that of prior
versions of JBoss AS.

A common source of errors was including API classes in a deployment that was also
provided by the container. This could result in multiple versions of the class being
created and the deployment failing to deploy properly.

Since JBoss AS 7, classloading marks a radical departure from previous attempts.
Classloading is now based on the JBoss modules project, and any application that
is deployed is, in effect, a module. This fact may raise some questions, such as what
module name is to be assigned to a deployed application, and how dependencies
between modules are handled by the application server.

These questions will be answered in the next few sections.

Getting to know module names
Getting to know module names is not an academic exercise. We can even go so far
as establishing dependencies between modules. So, in many cases, you need to know
how module names are assigned to an application.

Applications that are packaged as top-level archives (such as WAR, JAR, and SAR)
are assigned the following module name:

deployment.[archive name]

For example, a web application named WebExample1.war is deployed with the
following module name:

deployment.WebExample1.war

On the other hand, for applications that contain nested modules (such as EAR),
each archive is assigned a module name using the following convention:

deployment.[ear archive name].[sub deployment archive name]

Application Structure and Deployment

[180]

So, for example, the preceding web archive, if contained in an EAR file called
EnterpriseApp.ear, would be deployed with the following name:

deployment.EnterpriseApp.ear.WebExample1.war

Finding the isolation level
A general rule in WildFly 8 is that every deployed application module is isolated
from other modules, that is, by default, the application does not have visibility on
the AS modules, nor do the AS modules have visibility on the application.

Using the application server modules is relatively easy and can be summarized in
a single sentence: add a dependency to the required module and the AS will use it.
Some dependencies are automatically added to the application server, while others
need to be signaled by the user:

• The core module libraries (namely, the Enterprise classes) are qualified as
implicit dependencies, so they are automatically added to your application
when the deployer detects their usage

• Other module libraries need to be explicitly declared by the user in the
application's MANIFEST file or in a custom JBoss deployment file named
jboss-deployment-structure.xml (more about this file in the Advanced
deployment strategies section)

Implicit dependencies
Repeatedly declaring commonly used dependencies for your enterprise application
becomes very tedious. This is why the core modules are automatically added for
you by the application server. Some of these core modules are only added when the
application server detects annotations or configuration files for a particular technology.
For example, adding a beans.xml file automatically triggers the Weld dependency
(Weld is the Contexts and Dependency injection implementation used in WildFly).

The following table outlines the modules that are implicitly added to your application:

Subsystem Automatic
dependencies

Triggered dependencies Trigger condition

Core server javax.api

sun.jdk

org.jboss.vfs

EE javaee.api

Chapter 6

[181]

Subsystem Automatic
dependencies

Triggered dependencies Trigger condition

EJB3 javaee.api Presence of ejb-jar.
xml or EJB annotations

JAX-RS javax.xml.bind.
api

org.jboss.resteasy Presence of JAX-RS
annotations

JPA javax.
persistence

javaee.api

org.jboss.as.jpa

org.hibernate

Presence of @
PersistenceUnit or @
PersistenceContext
or equivalent XML

Logging org.jboss.
logging

org.apache.
commons.logging

org.apache.log4j

org.slf4j

Security org.picketbox

Web javaee.api

com.sun.jsf-impl

org.hibernate.
validator

org.jboss.as.web

org.jboss.logging

Deployment of WEB
archive; JSF added if
used

Web
services

org.jboss.ws.api

org.jboss.ws.spi

Weld javax.persistence.
api

javaee.api

org.javassist

org.jboss.
interceptor

org.jboss.as.weld

org.jboss.logging

org.jboss.weld.
core

org.jboss.weld.api

org.jboss.weld.spi

Presence of beans.xml

Application Structure and Deployment

[182]

If your application uses any of the core modules indicated, then you don't need to
specify its dependency, as the application server links the module automatically.
If you are using Maven, then you can mark these dependencies as provided.

Explicit dependencies
Modules that are not qualified as implicit dependencies need to be declared by the
user. Let's say you want to use the log4j library, which is bundled in the application
server distribution. The simplest and recommended approach to achieve this is by
including the Dependencies: [module] declaration within META-INF/MANIFEST.
MF. The following example code for the chapter uses Maven to populate the
MANIFEST.MF file:

<plugin>
 <artifactId>maven-war-plugin</artifactId>
 <version>2.1.1</version>
 <configuration>
 <failOnMissingWebXml>false</failOnMissingWebXml>
 <archive>
 <manifestEntries>
 <Dependencies>org.apache.log4j</Dependencies>
 </manifestEntries>
 </archive>
 </configuration>
</plugin>

This has the result of adding the following to your MANIFEST.MF file:

Please note that the module name does not always match the package
name of the library. The actual module name is specified in the
module.xml file by the name attribute of the module element.

Chapter 6

[183]

You are not limited to a single dependency, as you can add multiple dependencies
separated by a comma. For example, in order to add a dependency on both log4j
and Apache Velocity API, use the following:

Dependencies: org.apache.log4j,org.apache.velocity

You can even export the dependencies used by one application module to other
applications by adding the export keyword. For example, in addition to the earlier
example, we're now exporting the dependencies to other modules, as follows:

The export parameter can also be used to export a dependency
to all subdeployments contained in the EAR. Consequently, if you
export a dependency from the top-level of the EAR (or by a JAR
in the ear/lib directory), then the dependency is also available
to all subdeployment units.

Applications that are marked as dependent to the deployment.WebApp1.war
module also have access to its dependencies:

Within META-INF/MANIFEST.MF, you can also specify additional commands that
can modify the server deployer's behavior. For example, the optional attribute
can be added to specify that the deployment does not fail if the module is not
found at the deployment time.

Application Structure and Deployment

[184]

Finally, when the services keyword is specified, the deployer tries to load services
that are placed within the META-INF/services directory of the archive.

The service API has become public in Java SE 6. A service can be
defined as a set of programming interfaces and classes that provide access
to some specific application functionality or feature. A Service Provider
Interface (SPI) is the set of public interfaces and abstract classes that
a service defines.
You can define a service provider by implementing the service provider
API. Usually, you create a JAR file to hold your provider. To register your
provider, you must create a provider configuration file in the JAR file's
META-INF/services directory. When adding the services attribute
to your META-INF/MANIFEST.MF file, you are actually able to load the
services contained in the META-INF/services directory.
One excellent introduction to the SPI API is available at http://
www.oracle.com/technetwork/articles/javase/
extensible-137159.html.

Setting up global modules
Setting up global modules resembles the old AS approach to loading common libraries,
where you used to place them in the lib folder under JBOSS_HOME/common.

If you define a section named global-modules within standalone.xml/domain.
xml, then you make the module accessible to other AS modules. For example, instead
of declaring a dependency on log4j, you can alternatively use the following section:

<subsystem xmlns="urn:jboss:domain:ee:1.0">
 <global-modules>
 <module name="org.apache.log4j" />
 </global-modules>
</subsystem>

Although this approach is not generally recommended, as it brings us back to
the concept of a monolithic application server, it can still yield some benefits, for
example, when you migrate some older applications, and also when you don't
want or simply cannot specify dependencies to the archive.

http://www.oracle.com/technetwork/articles/javase/extensible-137159.html
http://www.oracle.com/technetwork/articles/javase/extensible-137159.html
http://www.oracle.com/technetwork/articles/javase/extensible-137159.html

Chapter 6

[185]

Advanced deployment strategies
The topics covered so far are sufficient for the vast majority of applications. If you are
using a complex archive configuration, such as an EAR archive with several modules
and dependencies, it might be useful to define your classloading strategy in a single
file. The configuration file, jboss-deployment-structure.xml, does exactly this.
Some of the advantages of using this file are outlined as follows:

• You can define the dependencies of all application modules in a single file
• You can load the module classes in a fine-grained manner by

including/excluding all or some parts of modules
• You can define the classloading isolation policy for your applications

packaged in an enterprise archive

Let's see what jboss-deployment-structure.xml can do for you by taking a look
at some practical examples.

Setting up a single module dependency
We have already learned how to activate a log4j dependency using the
Dependencies attribute in the archive's MANIFEST file. The same effect can be
achieved using the jboss-deployment-structure.xml file. Let's recap the archive
structure, which is basically made up of a web application named WebApp.war.

As you can see in the following diagram, the jboss-deployment-structure.xml
file needs to be placed within the META-INF folder of the EAR:

WebApp.war

App.ear

META-INF

jboss-deployment-
struct re.xmlu

Application Structure and Deployment

[186]

The following is the content of jboss-deployment-structure.xml:

<jboss-deployment-structure>
 <sub-deployment name="WebApp.war">
 <dependencies>
 <module name="org.apache.log4j" />
 </dependencies>
 </sub-deployment>
</jboss-deployment-structure>

The jboss-deployment-structure file is not for the exclusive use of EARs and can
be used within a WAR archive by placing it within the WEB-INF folder. It is, however,
applicable only as a top-level archive. Thus, if a jboss-deployment-structure.xml
file is placed in the WAR's WEB-INF folder and the WAR is packaged in an EAR file,
then the jboss-deployment-structure.xml file is ignored. The relevant part of this
file is the subdeployment element, which references the web application, including the
dependencies element. The expected outcome is that the application server triggers
the dependency to the Log4J API, which is, therefore, visible by our web application.

Excluding the server's automatic dependencies
Earlier in this chapter, we discussed how the application server can automatically
trigger dependencies when certain conditions are met. For example, if you deploy
a JSF application (containing the faces-config.xml file), then the JSF 2.2 API
implementation is automatically added.

This might not always be the desired option, as you may want to provide another
release implementation for that module. You can easily achieve this using the
exclusion element in the jboss-deployment-structure.xml file, as shown in
the following code snippet:

<jboss-deployment-structure>
 <deployment>
 <exclusions>
 <module name="javax.faces.api" />
 <module name="com.sun.jsf-impl" />
 </exclusions>
 <dependencies>
 <module name="javax.faces.api" slot="2.1"/>
 <module name="com.sun.jsf-impl" slot="2.1"/>
 </dependencies>
 </deployment>
</jboss-deployment-structure>

Chapter 6

[187]

Notice that in the dependencies section, we added our alternate JSF 2.1
implementation, which is used by your application. You need to install these
two modules shown in the preceding code, as explained in Chapter 2, Configuring
the Core WildFly Subsystems. They can be placed alongside the implementations
provided by WildFly by creating a folder named 2.1. The new folder for the
JSF 2.1 archive is highlighted in bold in the following command lines:

$JBOSS_HOME/modules/system/layers/base/javax/faces/api/main

$JBOSS_HOME/modules/system/layers/base/javax/faces/api/main/jboss-jsf-
api_2.2_spec-2.2.6.jar

$JBOSS_HOME/modules/system/layers/base/javax/faces/api/main/module.xml

$JBOSS_HOME/modules/system/layers/base/javax/faces/api/2.1

$JBOSS_HOME/modules/system/layers/base/javax/faces/api/2.1/jsf-api-2.1.jar

$JBOSS_HOME/modules/system/layers/base/javax/faces/api/2.1/module.xml

You also need to add the slot attribute to the module.xml file, as highlighted in
the following code snippet:

<module xmlns="urn:jboss:module:1.3" name="javax.faces.api"
 slot="2.1" >
 ...
</module>

Isolating sub-deployments
Considering that you have an EAR application that is made up of a web application,
an EJB module, and a JAR file containing utility classes, all subdeployments are placed
at the root of the archive so that they can see each other. However, let's suppose your
web application contains some implementations of the same EJB. That's absolutely
possible since Java EE allows your web application to include EJB classes within the
WEB-INF/classes or WEB-INF/lib folder, as the following diagram depicts:

WebApp.war

App.ear

EJB.jar

Utility.jar

EJB.jar/lib

modules
visible to

each other

is
ol

at
io

n=
fa

ls
e

Application Structure and Deployment

[188]

How does the classloader resolve this conflict? The application server classloader
has a priority list when loading classes, thus reducing any conflict between loaded
classes, as follows:

• The highest priority is automatically given to modules by the container,
including the Java EE APIs. Libraries contained in the modules folder
are included in this category.

• The next priority goes to libraries that are indicated by the user
within MANIFEST.MF of the packaged archive as dependencies
(or in the jboss-deployment-structure.xml file).

• The penultimate priority is given to libraries that are packed within
the application itself, such as classes contained in WEB-INF/lib or
WEB-INF/classes.

• Finally, the last priority goes to libraries that are packed within the
same EAR archive (in the EAR's lib folder).

So, in this example, the EJB libraries located in the WEB-INF folder hides the
implementations of EJB.jar top-level deployment. If this is not the desired
result, you can simply override it, as follows:

<jboss-deployment-structure>
 <ear-subdeployments-isolated>false</ear-subdeployments-isolated>
 <sub-deployment name="WebApp.war">
 <dependencies>
 <module name="deployment.App.ear.EJB.jar" />
 </dependencies>
 </sub-deployment>
</jboss-deployment-structure>

In the preceding code snippet, we added a dependency to the EJB.jar deployment,
which is placed at the root of the EAR and which overrides the implementation
packed within the web application.

Note the ear-subdeployments-isolated element placed at the
top of the file. By setting the EAR isolation level, you will be able to
indicate if the subdeployment modules are visible to each other.

The default value of the ear-subdeployments-isolated element is false, which
means that the subdeployment modules can see each other. If you are setting
isolation to true, each module is then picked up by a different classloader,
which means that the web application is unable to find the classes contained
in the EJB.jar and Utility.jar libraries).

Chapter 6

[189]

If you want to keep the deployment isolated but allow visibility between some of
your dependencies, then you have two choices available:

• Move the library to the EAR/lib folder so that it is picked up as a
separate module

• Specify a dependency using Dependencies or Class-Path in the
MANIFEST.MF file of the calling application

In the following diagram, you can see how to correctly set up your EAR, by placing
common libraries in the lib folder and adding a dependency to the EJB classes:

App.ear

modules
isolated

from each
other

is
ol

at
io

n=
tr

ue

lib

WebApp.war

EJB.jar

Dependencies

Utility.jar

The following is the corresponding configuration required in jboss-deployment-
structure.xml:

<jboss-deployment-structure>
 <ear-subdeployments-isolated>true</ear-subdeployments-isolated>
 <sub-deployment name="WebApp.war">
 <dependencies>
 <module name="deployment.App.ear.EJB.jar" />
 </dependencies>
 </sub-deployment>
</jboss-deployment-structure>

Application Structure and Deployment

[190]

Packaging libraries in a shared library within your EAR is an option.
With Java EE 5 onward, it has been possible to place these files in a
shared library folder called lib. You can override this default folder
name using the library-directory element in the META-INF/
application.xml file. For example, suppose you want to use the
common folder to hold your shared libraries, in which case you can add
the following line to your application.xml:

<library-directory>common</library-directory>

As a side note, you should avoid placing component-declaring
annotations (such as EJB3) in the shared folder, as it can have
unintended consequences on the deployment process. For this reason,
it is strongly recommended that you place your utility classes in the
shared library folder.

Using the Class-Path declaration to solve
dependencies
Until now, we have configured dependencies between modules using the JBoss way,
which is the recommended choice. Nevertheless, we should also account for Java's
portable way to reference one or more libraries included in the EAR file. This can be
achieved by adding the Class-Path attribute to the MANIFEST.MF file. This allows
a module to reference another library that is not otherwise visible to the application
(think back to the earlier example of a deployment unit with the isolation set to true).

For example, considering that you need to reference the Utility.jar application
from within your web application, you can simply add the following to your
META-INF/MANIFEST.MF file directly inside your EAR:

Manifest-Version: 1.0
Class-Path: Utility.jar

You can actually include more than one library to the Class-Path attribute,
separating them by a comma.

Unlike the Dependencies attribute, the Class-Path attribute points
to the actual JAR filename (and not the module name) to reference the
dependent libraries.

Chapter 6

[191]

Choosing between the Class-Path approach and JBoss's Dependencies approach
depends on how your application is structured: using JBoss's Dependencies
approach buys you a richer set of options, in particular, the ability to export the
dependencies to other deployments, as we have illustrated earlier. One more point
in favor of JBoss's Dependencies approach is the ability to reference modules that
are not actually packaged within the application.

On the other hand, the main advantage of the Class-Path approach relies on
application portability. Thus, if a fully portable solution is a priority for you,
you can consider switching to the Class-Path manifest attribute.

Summary
In this chapter, we covered a wide variety of functionalities related to the
deployment of applications. Applications are deployed differently, depending
on whether they are deployed to a standalone server or to a domain of servers.

As far as standalone servers are concerned, an application can be deployed
either automatically or manually. By default, packaged archives are deployed
automatically. This means that all you need to do is place the archive within the
standalone/deployments folder of the application server. Applications that are
deployed manually (by default, exploded archives) need marker files to activate
the deployment.

As far as domain servers are concerned, since the application server cannot determine
which server group you want to target the deployment to, you need to specify this
information when using either the command-line interface or the web admin interface.

One of the great advantages of using a domain of servers is the ability to deploy
applications on single or multiple server groups, which can even be created and
equipped at runtime.

In the later part of this chapter, we covered the classloading mechanism used by
the application server. Every application deployed to WildFly is treated as a module,
all of which are isolated from other modules contained in the application server
distribution. Modules representing Java EE API classes are implicitly added to
your application's classpath as dependencies, which means that you don't need any
special configuration to deploy a Java EE application.

Application Structure and Deployment

[192]

If you want to reference other modules contained in the application server, you simply
need to add a Dependencies property within the META-INF/MANIFEST.MF file of the
application. Enterprise archives can also specify dependencies on other modules by
setting the Class-Path attribute within the META-INF/MANIFEST.MF file.

If you want to maintain all your dependencies in a single file, you can use the
jboss-deployment-structure.xml file. This allows you to define all dependencies
within an archive, including the ability to override the default EAR isolation level
and filter in/out classes, which are part of the application server deployment.

In the next chapter, we will cover the management of the application server by
taking a close look at the command-line interface and the web admin console.

Using the Management
Interfaces

In this chapter, we will describe the management tools available with WildFly,
which can be used to control your application server instances.

WildFly provides several administration channels. One of them is the CLI,
which contains many unique features that make it convenient for daily system
administration and for monitoring application server resources.

The management tools also include a web admin console that offers an elegant
view of the application server subsystems, allowing you to perform administrative
tasks in a simple way.

Within this chapter, we will describe the following management tools:

• The command-line interface (CLI)
• The web admin console

We will also cover the following topics:

• Creating and modifying datasources
• Getting help from the CLI
• Batch scripting
• Configuring server profiles
• Adding JMS destinations
• Configuring JMS destinations
• Configuring socket-binding groups
• Choosing between the CLI and web console

Using the Management Interfaces

[194]

The command-line interface (CLI)
Terminals and consoles were one of the earliest types of communication interfaces
between a system administrator and the machine. Due to this long-time presence,
most system administrators prefer to use the raw power of the command line
to perform management tasks. One of the most evident advantages of using a
low-level interface, such as a shell, is that tasks can often be executed as a part
of batch processing or macros for repetitive actions.

As we indicated at the beginning of this book, the CLI is located
in the JBOSS_HOME/bin folder and wrapped by jboss-cli.
sh (for Windows users, it's jboss-cli.bat).

By launching the shell script, you will start with a disconnected session. You
can connect at any time with the connect [standalone/domain controller]
command, which, by default, connects to a server controller located at localhost
on port 9990:

You are disconnected at the moment. Type 'connect' to connect to the
server or 'help' for the list of supported commands.

[disconnected /] connect

[standalone@localhost:9990 /]

You can adjust the default port where the native interface is running by modifying
the line highlighted in the following code snippet, which is found within the
standalone.xml or domain.xml configuration file:

<management-interfaces>

 <http-interface security-realm="ManagementRealm" http-upgrade-
enabled="true">
 <socket-binding http="management-http"/>
 </http-interface>
 </management-interfaces>

 <socket-binding-group name="standard-sockets"
 default-interface="public" port-offset="0">
...

 <socket-binding name="management-http" interface=
 "management" port="9990"/>

Chapter 7

[195]

 <socket-binding name="management-https" interface=
 "management" port="9993"/>
...
</socket-binding-group>

As you can see from the preceding code snippet, the socket management alias
is defined within the management-interfaces section, while the corresponding
port is contained in the socket-binding section.

A handy switch is --connect, which can be used to automatically connect to your
standalone/domain controller when starting the CLI, as follows:

$JBOSS_HOME/bin/jboss-cli.sh --connect

On a Windows machine, use the following command:

$JBOSS_HOME/bin/jboss-cli.bat --connect

The corresponding command for exiting the CLI is either quit or exit,
which closes the connection to the main controller:

[standalone@localhost:9990 /] quit

Reloading the server configuration
While most changes made to the configuration via the command line take effect
immediately, some changes do not and require a reload of the server configuration,
for example, changing the socket-binding groups. To reload the server configuration,
you need to issue the :reload command, as follows:

[standalone@localhost:9990 /] :reload

{

 "outcome" => "success",

 "result" => undefined

}

Employing the CLI
One of the most interesting features of the CLI is its ability to autocomplete,
which helps you find the correct spelling of resources and commands. This can
be achieved by simply pressing the Tab key. You can even use it to find out the
parameters needed for a particular command, without the need to go through
the reference manual.

Using the Management Interfaces

[196]

This guides us to the first part of our journey, where we will learn the available
commands. So, once you have successfully connected, press the Tab key, and it
will list the options available to you. The following screenshot shows the output:

As you can see, there are over 30 options available. We can, however, group
all the interactions that occur with the CLI into two broad categories:

• Operations: These include the resource paths (addresses) on which they
are executed.

• Commands: These execute an action independently from the path of the
current resource. These don't include the resource path.

Navigating through the resources and executing
operations
Operations are strictly bound to an application server resource path. The path
along the tree of resources is represented by the / character, which, as it is,
represents the root of the tree, as it does in Unix filesystems.

When executing operations on the server's resources, you have to use a
well-defined syntax:

[node-type=node-name (,node-type=node-name)*] :
 operation-name [([parameter-name=parameter-value
 (,parameter-name=parameter-value)*])]

Chapter 7

[197]

It looks a bit awkward at first glance; however, we will try to demystify it with the
following example:

[standalone@localhost:9990 /] /subsystem=
 deployment-scanner/scanner=default:write-attribute(name=
 scan-interval,value=2500)
{"outcome" => "success"}

Here, we tell the CLI to navigate to the deployment-scanner subsystem under the
default scanner resource and set the scan-interval attribute to 2500 ms using the
write-attribute operation.

This example also shows the distinction between resources, attributes, and operations.

A resource is an element of the configuration that is located under a path. All elements
that are classified as resources can be managed through WildFly's interfaces. For
example, deployment-scanner is a resource located under the subsystem path. It
has a child element named default scanner (when no name attribute is specified, the
name defaults to default). On a single resource or on child resources, you can invoke
some operations, such as reading or writing the value of an attribute (scan-interval).

Finally, note that operations are introduced by the : prefix, while resources
are introduced by the / character. The following is a screenshot that helps you
consolidate the basic concepts:

Attribute

Resource

/subsystem=deployment-scanner

Child resource

/scanner=default
:write-attribute

scan-interval

Operation

In order to move through the resource path, you can either state the full tree path
(as in the earlier example) or use the cd command or the equivalent cn (change node)
command to navigate to the path and then issue the desired command. For example,
the previous code snippet can also be rewritten as:

[standalone@localhost:9990 /] cd /subsystem=deployment-scanner/
scanner=default

[standalone@localhost:9990 scanner=default] :write-attribute(name=scan-
interval,value=2500)

{"outcome" => "success"}

Using the Management Interfaces

[198]

Do attributes modified by the CLI survive a server restart?
When using CLI, every change is persisted into the server
configuration file. This means you must be careful when changing
the server's configuration via the CLI. To play it safe, it would be
wise to take a snapshot of your server configuration before making
large changes. See the Taking snapshots of the configuration section.

As it does for the operating system shell, issuing cd .. will move the resource
pointer to the parent resource:

[standalone@localhost:9990 scanner=default] cd ..

[standalone@localhost:9990 subsystem=deployment-scanner]

You can, at any time, check the resource path where you are located by issuing
either an empty cd command or just pwd, as you do for an Unix shell, as follows:

[standalone@localhost:9990 scanner=default] pwd

/subsystem=deployment-scanner/scanner=default

Finally, in order to simplify your navigation, we'll close this section by providing
you with a bird's-eye view of the application server's tree or resources, as follows:

core-service

deployment

extension

interface

path

subsystem

system-property

socket-binding-
group

Wildfly tree of resources

management

deployed applications

server extensions

public / management / unsecure

system paths

system properties

standard-sockets
default-interface

port-offset
socket-binding

batch
datasources
deployment-scanner
ee
ejb3
infinispan
io
jaxrs
jca
jdr
jmx
jpa
jsf
logging
mail
naming
pojo
remoting
resource-adapters
sar
security
transactions
undertow
webservices
weld

Chapter 7

[199]

As you can see, the tree of resources includes eight child resources, each one handling
one core aspect of the application server. In Appendix, CLI References, you will find a
handy list of useful commands that can be used for your daily system administration.
Most of the time, you will navigate to the subsystem resources that contain all the
application server core modules. Other resources that you might want to learn more
about are the core-service, which handles management interfaces (such as the CLI
itself), the deployment resource, which can be used to manipulate deployed artifacts,
and the socket-binding-group, which is the resource you will need to change the
ports used by the application server.

Operations that can be issued on a resource
Having learned the basics of navigation through the resources, let's see the commands
that can be issued on a resource. Operations are triggered by the : character. You can
get a list of them by using the auto-completion feature (the Tab key). The following
is a list of the commands:

Command Meaning
read-resource This command reads a model resource's attribute

values along with either basic or complete
information about any child resources.

read-resource-
description

This command outputs a description for the selected
resource.

read-operation-names This command reads the available operation names
on the node.

read-operation-
description

This command outputs a description for the available
operations.

read-children-names This command gets the name of all children under
the selected resource.

read-children-
resources

This command reads information about all of a
resource's children that are of a given type.

read-children-types This command provides the list of the children
located under the selected resource.

read-attribute This command gets the value of an attribute for the
selected resource.

write-attribute This command writes an attribute for the selected
resource.

The read-resource command deserves some more explanation. Without any
extra arguments, it provides information about the resource's attribute and the
direct child nodes.

Using the Management Interfaces

[200]

For example, the following is the resource scanning of the datasource subsystem,
which includes the default datasource named ExampleDS:

[standalone@localhost:9990 /] /subsystem=datasources:read-resource()

{

 "outcome" => "success",

 "result" => {

 "xa-data-source" => undefined,

 "data-source" => {"java:jboss/datasources/ExampleDS" =>
 undefined},

 "jdbc-driver" => {"h2" => undefined}

 }

}

You might have noticed the undefined attribute for some elements. The information
provided by the read-resource command is limited to listing the name of child
resources. If you want to read information about all child resources, including
their corresponding attributes, you have to issue the command with an additional
(recursive=true) parameter, as follows:

[standalone@localhost:9990 /] /subsystem=datasources:read-
resource(recursive=true)

{

 "outcome" => "success",

 "result" => {

 "data-source" => {

 "ExampleDS" => {

 "connection-properties" => undefined,

 "connection-url" => "jdbc:h2:mem:test;
 DB_CLOSE_DELAY=-1;DB_CLOSE_ON_EXIT=FALSE",

 "datasource-class" => undefined,

 "driver-name" => "h2",

 "enabled" => true,

 ...

 }

 },

 "jdbc-driver" => {

 "h2" => {

 "driver-module-name" => "com.h2database.h2",

Chapter 7

[201]

 "driver-name" => "h2",

 "driver-xa-datasource-class-name" =>
 "org.h2.jdbcx.JdbcDataSource",

 ...

 }

 },

 "xa-data-source" => undefined

 }

}

As you can see, by adding the recursive=true parameter, the CLI has also included
the list of configuration parameters, which are stored as children of the datasource
element. For the sake of brevity, we have intentionally included just the first few
datasource parameters.

Additionally, some resources can produce metrics, which are collected as runtime
attributes. These attributes are not shown by default unless you provide the
include-runtime=true parameter. For example, within the datasource subsystem,
you can view statistics related to the database connection pool:

[standalone@localhost:9990 statistics=pool] :read-resource(include-
runtime=true)

{

 "outcome" => "success",

 "result" => {

 "ActiveCount" => "0",

 "AvailableCount" => "20",

 "AverageBlockingTime" => "0",

 "AverageCreationTime" => "0",

 "AverageGetTime" => "0",

 "BlockingFailureCount" => "0",

 "CreatedCount" => "0",

 "DestroyedCount" => "0",

 "IdleCount" => "0",

 "InUseCount" => "0",

 "MaxCreationTime" => "0",

 "MaxGetTime" => "0",

 "MaxUsedCount" => "0",

 "MaxWaitCount" => "0",

Using the Management Interfaces

[202]

 "MaxWaitTime" => "0",

 "TimedOut" => "0",

 "TotalBlockingTime" => "0",

 "TotalCreationTime" => "0",

 "TotalGetTime" => "0",

 "WaitCount" => "0"

 }

}

If you want to learn more about a resource, you can use the read-resource-
description command, which provides a short description. It also includes a
description of the resource's runtime attributes. The output can be quite verbose,
so here we will just include its head section:

[standalone@localhost:9990 statistics=pool] :read-resource-description

{

 "outcome" => "success",

 "result" => {

 "description" =>
 "Runtime statistics provided by the resource adapter.",

 "attributes" => {

 "DestroyedCount" => {

 "description" => "The destroyed count",

 "type" => INT,

 "required" => false,

 "access-type" => "metric",

 "storage" => "runtime"

 },

 "WaitCount" => {

 "description" => "The number of requests that had
 to wait to obtain a physical connection",

 "type" => INT,

 "required" => false,

 "access-type" => "metric",

 "storage" => "runtime"

 }

 }

 }

}

Chapter 7

[203]

The read-operation-names and read-operation-description commands
provide the list of available operations on a certain resource and their description.
These produce the information outlined in the previous table, so we will not repeat
the description here.

Next, the read-children operations can be used to collect information about child
nodes. The read-children-types command provides information about the child
resources and is pretty similar to a simple ls command. For example, on the root
resource, it will produce the following:

[standalone@localhost:9990 /] :read-children-types()

{

 "outcome" => "success",

 "result" => [

 "core-service",

 "deployment",

 "deployment-overlay",

 "extension",

 "interface",

 "path",

 "socket-binding-group",

 "subsystem",

 "system-property"

]

}

The read-children-names delivers information about a single child resource,
and it's pretty much the same as issuing a cd resource followed by an ls command.
For example, if we want to know the list of deployed resources on the AS, we will
type in the following:

[standalone@localhost:9990 /] :read-children-names(child-type=deployment)

{

 "outcome" => "success",

 "result" => [

 "Enterprise.ear",

 "EJB.jar",

 "Utility.jar"

]

}

Using the Management Interfaces

[204]

Finally, the read-children-resources command returns information about a child
node of a certain type, which needs to be provided as an argument. This command
is equivalent to executing a read-resource operation on each child resource. In the
previous example, when we issue this command on a hypothetical Enterprise.ear
deployment resource, it will provide the subdeployment information, as follows:

[standalone@localhost:9990 deployment=Enterprise.ear] :
 read-children-resources(child-type=subdeployment)

{

 "outcome" => "success",

 "result" => {

 "WebApp.war" => {

 "subdeployment" => undefined,

 "subsystem" => {"web" => undefined}

 },

 "Utility.jar" => {

 "subdeployment" => undefined,

 "subsystem" => undefined

 }

 }

}

Optionally, you can also add include-runtime=true as an argument to include
runtime attributes, as well as recursive=true which provides information about
all child resources recursively.

Executing commands with the CLI
As mentioned earlier, the CLI also includes a set of actions that are not bound
to your navigation path across the AS tree, but can be issued anywhere to create
and modify resources.

For example, the version command can be issued to retrieve some basic information
about the application server and the environment when WildFly is running:

[standalone@localhost:9990 /] version

JBoss Admin Command-line Interface

JBOSS_HOME: /opt/wildfly-8.1.0.Final

JBoss AS release: 8.1.0.Final "Kenny"

JAVA_HOME: /Library/Java/JavaVirtualMachines/jdk1.8.0_05.jdk/Contents/
Home

Chapter 7

[205]

java.version: 1.8.0_05

java.vm.vendor: Oracle Corporation

java.vm.version: 25.5-b02

os.name: Mac OS X

os.version: 10.8.5

In most cases, commands are used as an alias for quickly creating some resources,
such as JMS destinations and datasources.

Let's see in the following sections how this can be achieved.

Adding a JMS destination
You can add a JMS queue with the jms-queue add command.

As you can see, one important difference between operations and
commands is also the style used to pass parameters. Operations
use brackets to pass parameters (for example, recursive=true).
Commands pass parameters using the format (--parameter), as
you do in a Unix shell.

The following is the synopsis of the jms-queue add command:

jms-queue add --queue-address=queue_name
 --entries=jndi-name(,jndi-name)* [--profile=profile_name]
 [--selector=selector_name] [--durable=(true|false)]

The only mandatory element here is queue-address, which specifies the queue
name and the entries with the JNDI names to which the queue will be bound. The
optional entries include the selector parameter, which can be added to specify a
selector on the queue to filter messages, and the durable parameter, which specifies
whether the queue should be durable or not (the default is true). Finally, note the
optional profile element, which can be used on domain configurations to specify
on which profile the queue will be created.

Remember to start the server with the -c standalone-
full.xml arguments in order to have a server configuration
that includes the messaging subsystem. If you don't, these
commands will result in errors.

The following command creates a new JMS queue (queue1), which is bound under
the JNDI queues/queue1 namespace:

jms-queue add [--profile=profile_name] --queue-address=queue1
 --entries=java:/jms/queues/queue1

Using the Management Interfaces

[206]

The equivalent command to add a JMS topic is jms-topic add, which has the
following syntax:

jms-topic add [--profile=profile_name]--topic-address=topic_name
 [--entries=entry(,entry)*] [--profile=profile_name]

This is very similar to the JMS queue, except that the JMS topic has a smaller number
of parameters. Neither the selector nor the durable parameters are required here.
Have a look at the following command:

jms-topic add [--profile=profile_name] --topic-address=topic1
 --entries=topics/topic1

Creating and modifying datasources
The CLI provides a useful data-source command to create datasources. As the
syntax of this command is quite lengthy, you may find it useful to save it as a CLI
script and adapt it to your needs.

The following is the synopsis of the data-source command:

data-source [--profile=<profile_name>] add/remove
 --jndi-name=<jndi_name> --driver-name=<driver_name>
 --name=<pool_name> --connection-url=<connection_url>

Except for profile_name, all the other parameters shown in the preceding code
snippet are mandatory. That is, you need to specify them if you want to add or
remove a datasource. As far as parameters are concerned, you need to state, at least,
the JNDI name for the datasource (jndi-name), the driver name (driver-name), the
name of the connection pool (name), and the connection URL (connection-url).

You can further customize the datasource, just as you would do in your
standalone.xml file, by adding some optional parameters. Let's see a concrete
example where we create a MySQL datasource. The first thing we need to do is
to provide a JDBC-compliant driver by deploying the JAR archive. Considering
you are using standalone mode, just copy the JDBC JAR file into the deployments
folder. Take a look at the following screenshot:

Chapter 7

[207]

A simpler approach is to deploy the JDBC driver via the command line. Assuming
you start the command-line interface from the folder where your driver is housed,
you will run the following command:

[standalone@localhost:9990 /] deploy ./mysql-connector-java-5.1.30-bin.
jar

You can alternatively choose to install the JDBC driver as a module,
which is the preferred way. This procedure is shown in Chapter 3,
Configuring Enterprise Services. For the purpose of this example, we
simply deploy the driver, as this expedites the installation procedure.

Now, let's verify that the driver has been correctly installed on the datasource
subsystem. We can do this by means of the installed-drivers-list command
on the datasources subsystem, as follows:

[standalone@localhost:9990 /] /subsystem=datasources:installed-drivers-
list

{

 "outcome" => "success",

 "result" => [

 {

 "driver-name" =>
 "mysql-connector-java-5.1.30-bin.jar_com.mysql.
 jdbc.Driver_5_1",

 "deployment-name" =>
 "mysql-connector-java-5.1.30-bin.jar_com.
 mysql.jdbc.Driver_5_1",

 "driver-module-name" => undefined,

 "module-slot" => undefined,

 "driver-datasource-class-name" => undefined,

 "driver-xa-datasource-class-name" => undefined,

 "driver-class-name" => "com.mysql.jdbc.Driver",

 "driver-major-version" => 5,

 "driver-minor-version" => 1,

 "jdbc-compliant" => false

 },

 {

 "driver-name" => "h2",

 "deployment-name" => undefined,

Using the Management Interfaces

[208]

 "driver-module-name" => "com.h2database.h2",

 "module-slot" => "main",

 "driver-datasource-class-name" => "",

 "driver-xa-datasource-class-name" =>
 "org.h2.jdbcx.JdbcDataSource",

 "driver-class-name" => "org.h2.Driver",

 "driver-major-version" => 1,

 "driver-minor-version" => 3,

 "jdbc-compliant" => true

 }

]

}

As you can see, there are now two drivers installed: the default H2 driver and the
MySQL driver that we installed previously.

Now, we are ready to create a new datasource using the MySQL JDBC driver:

[standalone@localhost:9990 /] data-source
 add --jndi-name=java:/MySqlDS --name=MySQLPool
 --connection-url=jdbc:mysql://localhost:3306/MyDB
 --driver-name=mysql-connector-java-5.1.30-bin.jar_com
 .mysql.jdbc.Driver_5_1 --user-name=myuser --password=password
 --max-pool-size=30

In this example, we just created a MySQL-bound datasource using a custom pool
size of a maximum of 30 connections.

You don't have to remember all datasource parameter names. Just use
the Tab key to autocomplete the parameter name. Also, take care that
your driver name matches with that of the output created when you
ran the installed-drivers-list command.

The data-source command can also be used to remove a datasource from the
configuration. This can be done by passing the remove parameter and the name
of the datasource, as follows:

[standalone@localhost:9990 /] data-source remove --name=MySQLPool

You can also add and remove datasources using operations executed
on the datasource system resource. See Appendix, CLI References,
which contains a compendium of the most useful CLI commands.

Chapter 7

[209]

Creating and modifying XA datasources
Modifying an XA datasource class for your connections is similar to that of a
data-source. The main difference is that you will use the xa-data-source
command, as follows:

[standalone@localhost:9990 /] xa-data-source add --name=MySQLPoolXA
 --jndi-name=java:/MySqlDSXA --driver-name=
 mysql-connector-java-5.1.30-bin.jar_com.mysql.jdbc.Driver_5_1
 --xa-datasource-properties=[{ServerName=localhost}{PortNumber=3306}]

There are three arguments required to create an XA datasource. You need a unique
name, the jndi-name, and finally, the driver-name.

This will result in the following code snippet being added to your configuration file:

<xa-datasource jndi-name="java:/MySqlDSXA"
 pool-name="MySQLPoolXA" enabled="true">
 <xa-datasource-property name="ServerName">
 localhost
 </xa-datasource-property>
 <xa-datasource-property name="PortNumber">
 3306
 </xa-datasource-property>
 <driver>mysql-connector-java-5.1.30-bin.jar_com.mysql
 .jdbc.Driver_5_1</driver>
</xa-datasource>

Getting help from the CLI
If the syntax of CLI commands seem a bit overwhelming to you, don't despair!
Besides the tab autocompletion functionality, the CLI has also has a main page
for each command, just as the Unix shell does.

If you issue a generic help command, the CLI will return a generic quick-start
guide to the interface. On the other hand, when passed as an argument to a
command, it provides a helpful description of the command synopsis and their
arguments. Take a look at the following code snippet:

[standalone@localhost:9990 /] cd --help

SYNOPSIS

 cn [node_path]

 cd [node_path]

DESCRIPTION

Using the Management Interfaces

[210]

 Changes the current node path to the argument.

 The current node path is used as the address for operation requests
that don't contains the address part. If an operation request does
include the address, the included address is considered relative to the
current node path. The current node path may end on a node-type. In that
case, to execute an operation specifying a node-name would be sufficient
(e.g. logging:read-resource).

ARGUMENTS

 node_path - the new value for the current node path following
 the format

 [node-type [=node-name (,node-type[=node-name])*]].

The following navigation signs are supported in the node-path:

 / - the root node (e.g. 'cd /' or 'cd /some=thing');

 .. - parent node (e.g. 'cd ..');

 .type - node type of the current node (e.g. 'cd .type').

Executing CLI scripts in batch
The batch mode allows the execution of multiple CLI commands as an atomic unit.
Just as you would expect from an ordinary transaction, if any of the commands or
operations fail, the changes are rolled back. On the other hand, if the execution ends
without any error, the changes are committed.

Not every command can be part of a batch. For example, navigation commands
such as cd, pwd, or help are excluded because they do not reflect any change to
the server configuration.

You can mark the beginning of a batch with the batch command. You will know
when you are in the batch mode because the prompt will be marked by the # sign.

In order to mark the end of a batch sequence, you have to use the run-batch
command. Once completed, the executed batch will be discarded and the CLI
will exit the batch mode. Take a look at the following example:

[standalone@localhost:9990 /] batch

Chapter 7

[211]

[standalone@localhost:9990 /#] jms-queue
 add --queue-address=queue1 --entries=queues/queue1

[standalone@localhost:9990 /#] deploy MDBApplication.jar

[standalone@localhost:9990 /#] run-batch

Before executing the batch by typing run-batch, you can get the list of all batch
commands entered so far by issuing the list-batch command:

[standalone@localhost:9990 /] batch

[standalone@localhost:9990 /#] jms-queue
 add --queue-address=queue1 --entries=queues/queue1

[standalone@localhost:9990 /#] deploy MDBApplication.jar

[standalone@localhost:9990 /] list-batch

#1 jms-queue add --queue-address=queue1 --entries=queues/queue1

#2 deploy MDBApplication.jar

Advanced batch commands
Script batching can indeed be more complex than just starting and executing a list
of commands. As a matter of fact, by pressing the Tab completion key when you
are in the batch mode, you should see several additional commands available.
One of the most useful ones is the holdback-batch command, which can be used
to temporarily pause the batch of commands, as follows:

[standalone@localhost:9990 /#] holdback-batch

In order to continue your batch of commands, just issue the batch command again,
as follows:

[standalone@localhost:9990 /] batch

It's even possible to save the batch by assigning a unique name so that you can
have multiple save points in your scripts, as follows:

[standalone@localhost:9990 /#] holdback-batch step1

Later on, you can continue the execution by specifying the holdback name,
as follows:

[standalone@localhost:9990 /] batch step1

When executed with the -l parameter, the batch command provides the list of
batch files that are held:

[standalone@localhost:9990 /] batch -l

step1

Using the Management Interfaces

[212]

The following table lists all batch-related commands:

Command Description
batch This command starts a batch of commands. When the batch is

paused, it reactivates the batch.
list-batch This command lists the commands that have been added to

the batch.
run-batch This command executes the currently active batch of commands

and exits the batch mode.
holdback-batch This command saves the currently active batch and exits the

batch mode, without executing the batch. The held-back batch
can later be re-activated by invoking batch commands.

clear-batch This command removes all the existing command lines from the
currently active batch. The CLI stays in the batch mode after
the command is executed.

discard-batch This command discards the currently active batch. All the
commands added to the batch will be removed, the batch will
be discarded, and the CLI will exit the batch mode.

edit-batch-line This command replaces the existing command line from the
currently active batch with the specified line number with the
new command line.

remove-batch-
line

This command removes an existing command line specified
with a line number argument from the currently active batch.

move-batch-line This command moves the existing line from the specified
position to the new position.

Executing scripts in a file
Until now, we have seen CLI commands as part of an interactive session. You
can, however, execute commands in a non-interactive fashion, adding them in a
file, just as a shell script. Suppose you created a sample test.cli file used to issue
a redeploy command:

connect

deploy Utility.jar --force

Then launch the CLI with the -file parameter, as follows:

./jboss-cli.sh --file=test.cli

Chapter 7

[213]

Windows users can use the following equivalent:

jboss-cli.bat --file=test.cli

You can pass the --user and --password arguments to
the jboss-cli.sh or jboss-cli.bat call if you need an
authentication on the management interface.

Another way to execute commands in a non-interactive way is by passing the
--commands parameter to the CLI containing the list of command lines separated
by a comma. For example, the previous script can be also be executed this way
(Unix users):

./jboss-xli.sh --commands="connect,deploy Utility.jar --force"

The equivalent script for Windows users will be as follows:

jboss-cli.bat --commands="connect,deploy Utility.jar --force"

We will get the following output:

'Utility.jar' re-deployed successfully.

Redirecting non-interactive output
When you execute the CLI in a non-interactive way, you can redirect the output
to a file, which would otherwise be printed on the screen. Just as you would do for
a shell command, use the > operator to redirect the output:

./jboss-cli.sh --file=test.cli > out.log # Linux

jboss-cli.bat --file=test.cli > out.log # Windows

Taking snapshots of the configuration
Everyone makes mistakes, but many of them are preventable. Whenever you are
performing many changes to your configuration, it's always a good idea to save
copies of your work. That's where snapshots come in; one of the advantages of
using the CLI is the ability to create snapshots of the configuration, which are
stored in its history folder.

Using the Management Interfaces

[214]

The history folder is located just one step under the configuration folder.
Standalone servers have a history folder named standalone_xml_history
that, at start up, contains the following files:

The domain configuration, on the other hand, provides two backup directories
both for the domain configuration file and the host configuration file. These folders
are named domain_xml_history and host_xml_history, respectively. To make the
reading less verbose, we will describe the snapshot mechanisms using a standalone
server. The same rules also apply to domain servers, bearing in mind that the AS
takes snapshots of both the domain.xml and host.xml files.

Let's see now what the history files are about. The standalone.initial.xml
file contains the original application server's configuration file. This file is never
overwritten by WildFly.

If you need to restore the initial configuration, do not throw away your
application server installation! Just replace the standalone.xml file
with standalone_xml_history/standalone.initial.xml.

The standalone.boot.xml file contains the AS configuration that was used for
the last successful boot of the server. This gets overwritten every time we boot the
server successfully.

If you want to undo all changes in the current session, just replace
the standalone.xml file with standalone_xml_history/
standalone.boot.xml.

Finally, the standalone.last.xml file contains the last successful configuration
committed by the application server.

Chapter 7

[215]

What the application server saves for you
The current folder is used as a temporary folder to store changes in the configuration
that happened in the current session. Each change in the application server
configuration model will result in the creation of a file named standalone.v[n].xml.
Here, n is the number of the change that is applied (standalone.v1.xml for the initial
configuration, standalone.v2.xml for the first change, and so on).

When the application server is restarted, these files are moved into a timestamped
folder within the standalone_xml_history folder. As you can see in the following
screenshot, the changes during the last session are moved at reboot into the
20140702-215555794 folder:

The timestamped folders are rotated by the application server every
30 days. If you need to store a core view of the application server
configuration, you should take snapshots of the application server
model. The next section shows how to do this.

Taking your own snapshots
As suggested by the earlier warning, you can also take snapshots on demand,
whenever you need it. Snapshots created by the user are stored directly in the
snapshot folder. In order to take a snapshot of the configuration, just issue the
take-snapshot command, and the CLI will back up your configuration. Take
a look at the following block of code:

[standalone@localhost:9990 /] :take-snapshot

{

Using the Management Interfaces

[216]

 "outcome" => "success",

 "result" => "/opt/wildfly-8.1.0.Final/standalone/configuration/
 standalone_xml_history/snapshot/
 20140702-230647552standalone.xml"

}

You can check the list of available snapshots using the list-snapshots command:

[standalone@localhost:9990 /] :list-snapshots

{

 "outcome" => "success",

 "result" => {

 "directory" => "/opt/wildfly-8.1.0.Final/standalone/
 configuration/standalone_xml_history/snapshot",

 "names" => [

 "20140702-230647552standalone.xml",

 "20140702-230817640standalone.xml",

 "20140702-230825599standalone.xml",

 "20140702-230828191standalone.xml"

]

 }

}

You can, at any time, delete a particular snapshot using the delete-snapshot
command, which requires the snapshot name as the parameter. Let's suppose
we need to delete the snapshot we just created:

[standalone@localhost:9990 /] :delete-snapshot
 (name=20140702-230828191standalone.xml)

{"outcome" => "success"}

History of CLI
All commands executed within a CLI session are stored in history, much like shell
commands for Unix systems. CLI commands are kept in memory and also persisted
on the filesystem in a file named .jboss-cli-history in the user's home directory.
You will notice that the latest 500 commands (default history size) entered in
previous sessions are part of the history.

If you want to have a look at the CLI history, just issue the history command:

[standalone@localhost:9990 /] history

Chapter 7

[217]

You can also use the arrow keys to navigate back and forth through the history of
commands and operations, much like what you do with a Linux bash shell.

The history command supports three optional arguments, which can be used to
temporarily disable/enable or clear the history. In the following table, we mention
their outcome:

Argument Effect
disable This command disables history expansion (but will not clear the

previously recorded history).
enable This command re-enables history expansion (starting from

the last recorded command before the history expansion was
disabled).

clear This command clears the in-memory history (but not the file one).

The web admin console
Historically, the JBoss AS has always provided a web-based application to perform
some administration and management tasks. Versions 4.x and earlier used the
jmx-console to read/write and display the value of MBeans, which were the
backbone of the application server. The jmx-console was indeed a useful tool;
however, it also required some degree of experience to get started with. Besides
this, the information contained in this application was fragmented across many
MBeans. For example, the datasource information was contained in four MBeans,
thus making it cumbersome to manage this resource.

The 5.x and 6.x release proposed a simpler-to-use approach made up of the admin
console, which was built as a seam-based web application. Although the new admin
console was a neat and simple application, some criticized it due to the fact that it
consumed a good amount of memory and startup time.

WildFly continues to use the web console introduced in JBoss AS 7, which you already
saw in a previous chapter. It is built using Google Web Toolkit (GWT) and uses the
HTTP management API to configure a management domain or a standalone server.

Like many GWT applications, the web console uses a JSON-encoded protocol and
a de-typed RPC style API to describe and execute management operations against
a managed domain or standalone server.

Using the Management Interfaces

[218]

Accessing the admin console
WildFly, by default, uses port 9990 to serve the admin console. You can access it at
http://localhost:9990 as configured in your standalone.xml/domain.xml:

<socket-binding name="management-http" interface="management"
port="9990"/>

Once you have logged in to the web admin console, you will land on the application
home page. In standalone mode, you will see four main tabs: Home, Configuration,
Runtime, and Administration. These tabs are explained as follows:

• Home: This tab contains a brief description of each tab, a variety of quick
links to achieve common tasks, and lots of links for other useful resources,
as shown in the following screenshot:

• Configuration: This tab can be used to model the application server
configuration, as illustrated in the following screenshot:

Chapter 7

[219]

• Runtime: This tab can be used to manage deployments, as we learned
in Chapter 6, Application Structure and Deployment. In the next section,
we will show how easy configuring server profiles can be using the
web admin console:

• Administration: This tab is used to configure users, groups, and roles.
We will cover this section in greater detail in Chapter 10, Securing WildFly.

Using the Management Interfaces

[220]

Configuring server profiles
The server profile configuration is located in the left-hand side of the web
application, and can be found under the Configuration tab. When running the
domain mode, you can switch between profiles by choosing the relevant profile
from the combobox in the top left-hand corner of the page.

As soon as you open the Configuration tab, you will see the set of subsystems
that can be configured through the web interface.

In Chapter 2, Configuring the Core WildFly Subsystems, and Chapter 3, Configuring
Enterprise Services, we showed how to configure various resources using the main
configuration file. If you are the kind of system administrator who prefers windows,
icons, menus, and pointers (WIMP) interfaces, then the next sections are for you.
Configuring the resources via the web console is pretty intuitive, so to give you a
taste, we will just cover the following topics:

• Configuring datasources
• Configuring JMS resources
• Configuring socket-binding groups

Configuring datasources
You can navigate directly to the datasources configuration panel from the list
of Common Tasks on the homepage. Otherwise, you will need to click on the
Configuration tab, followed by the Subsystems | Connector | Datasources link on
the left-hand side. This will switch the main panel to the datasource configuration
panel. This panel contains two upper tabs to configure DATASOURCE and XA
DATASOURCE. Let's see what the first tab contains.

In the middle of the panel, you can find the list of configured datasources. The
actions that can be applied are located just above the list of datasources. You can
create a new datasource by clicking on the Add button. You can also find the
Remove and Disable buttons next to the Add button.

Editing or deleting an existing datasource is a straightforward task that can be
executed with the click of a button. The same can be said about enabling and
disabling the selected datasource.

Chapter 7

[221]

Here, we will show how to add a new datasource to your standalone configuration,
which requires a few simple steps to be completed. Once you click on the Add
button, a three-step wizard will guide you through the creation of the datasource.
Let's configure a sample MySQL datasource for this purpose by performing the
following steps:

1. The first information required will be the datasource name and its JNDI
binding, as shown in the following screenshot:

2. The next step will be selecting the proper JDBC driver for your datasource.
Provided that you have successfully installed a JDBC driver on your AS,
you should have it listed as an available driver:

Using the Management Interfaces

[222]

3. Choose the MySQL JDBC driver, and in the next (last) step, you will be
required to enter the JDBC URL of the datasource along with the Username
and Password credentials, as shown in the following screenshot:

4. Clicking on Done completes the wizard, and you will be redirected to the
main panel, where the new datasource is now listed in the datasource list.
Finally, you will need to enable the new datasource by clicking on it and
then clicking on Enable:

Creating a new XA datasource
As we have shown in the The command-line interface (CLI) section, an XA datasource
requires your JDBC URL to be entered as an XA property. This is also the case
when creating the XA datasource via the admin console.

Chapter 7

[223]

Thus, the datasource JNDI naming and driver selection stays the same as for
non-XA datasources. In the following screenshot, we illustrate the last two
steps needed to complete the XA datasource creation:

In the fourth step, as shown in the following screenshot, underneath Username and
Password, you will notice the option of adding a security domain. You can leave this
blank for now. We will discuss security domains in Chapter 10, Securing WildFly.

Using the Management Interfaces

[224]

Configuring JMS destinations
Creating new Queues and Topics using the web console is even more simple.
Perform the following steps:

1. From the Configuration menu, select the Messaging option in the
subsystems menu. The main panel will switch to display the Messaging
providers. Now, select the required provider, and click on View:

2. From there, select the resource you want to create (Queue or Topic).
Then, click on the Add button to create a new one:

Chapter 7

[225]

3. If you need to create a new Queue, all you have to do is complete the next
simple dialog box, which is shown in the following screenshot:

4. When you click on Save, the new JMS resource will be enlisted in the JMS
subsystem panel (and also be persisted in the main configuration file),
as shown in the following screenshot:

Using the Management Interfaces

[226]

Configuring socket-binding groups
Changing the socket bindings of the application server can be used to solve port
conflicts with other applications or even other instances of WildFly. If you are
running the application in the domain mode, the best thing you can do is specify
a port offset for your servers, as pointed out in Chapter 4, The Undertow Web Server,
which is all about domain servers.

If, however, you are running in the standalone mode, and you have to change
just one or more port addresses, then it will probably be more easily achievable
via the web console.

To reach the Socket Binding groups option, perform the following steps:

1. Click on Socket Binding on the left-hand side, and then click on View for
the socket-binding group you want to modify.

2. Then, select the socket binding you want to change, for example, the http
server port. Then, scroll down to reveal the edit options. Click on the Edit
button and update the port value, as shown in the following screenshot:

Chapter 7

[227]

3. When you are done, click on the Save button.

Server restart needed?
Changing the socket binding groups does not produce the immediate
effect of changing the server port. The updated configuration must be
reloaded by the AS. You can simply restart the application server by
issuing the restart command or, even better, by issuing the reload
command from the CLI.

The CLI or web console?
Both management interfaces are powerful tools, and in some circumstances, one
might be a better choice than another.

For example, the CLI provides a huge addition to the application server, and in
a relatively short amount of time, it will let you configure its every resource,
including runtime metrics, in fine detail.

On the other hand, the web console provides a simple and elegant way to manage
your AS resources with little or no learning curve. In particular, we have shown
in Chapter 3, Configuring Enterprise Services, how it can be easily used to manage
the basic domain functionalities, such as configuring, starting, and stopping server
groups and hosts.

The following table shows a summary of the main benefits of each interface:

Tool Best for
CLI Being an invaluable instrument for an expert

system administrator
Reaching in-depth server attributes, such as metrics
Performing operations such as macros or batches

Web console Being a handy tool to perform most basic administration tasks
Managing top-level domain resources

Using the Management Interfaces

[228]

Summary
In this chapter, you learned how to manage the application server using the tools
that are part of the AS distribution.

You became acquainted with the CLI, which allows you to traverse the tree of
AS resources and issue commands that can read/modify or display attributes.

One of the advantages of the CLI is that you can easily build complex management
operations, thanks to its autocomplete functionality. The CLI also allows you to enlist
commands in a batch so that you can execute them in an all-or-nothing fashion, which
is typical of transactional systems.

The other management tool is the web interface, which allows you to operate
on the server configuration using an intuitive and simple interface. For system
administrators that need to perform basic administration tasks, it's an ideal tool,
as it requires little or no experience to use it.

At this point, you have enough expertise to handle more complex topics. So, in
the next chapter, we will discuss application server clustering, which allows you
to provide scalability and high availability to your applications.

Clustering
This chapter will cover WildFly's clustering capabilities. The term cluster is used to
describe a system split over several machines. Having the components of a system
synchronize over multiple machines generally improves performance and availability.

Clustering serves as an essential component to providing scalability and high
availability to your applications. One major benefit of using clustering is that
you can spread the traffic load across several AS instances via load balancing.

Load balancing is an orthogonal aspect of your enterprise application and is
generally achieved by using a properly configured web server in front of the
application server. For this reason, load balancing is discussed in the next
chapter while, in this chapter, we will discuss the following topics:

• All available options to set up a WildFly cluster either using a standalone
configuration or a domain of servers

• How to effectively configure the various components required for clustering
• The JGroups subsystem, which is used for the underlying communication

between nodes
• The Infinispan subsystem, which handles the cluster consistency using its

advanced data grid platform
• The Messaging subsystem, which uses the HornetQ clusterable

implementation

Clustering

[230]

Setting up a WildFly cluster
For the benefit of impatient readers, we will immediately show you how to get
a cluster of WildFly nodes up and running.

All you have to do to shape a new server profile is create a new XML configuration
file. As the standalone server holds just a single profile, you will likely want to use
either the configuration file named standalone-ha.xml or standalone-full-ha.
xml. Both of these ship with WildFly. This configuration file contains all the
clustering subsystems.

On the other hand, a domain server is able to store multiple profiles in the core
domain.xml configuration file, hence you can use this file both for clustered
domains and for nonclustered domain servers.

Clustering and domains are two separate concepts, the functionality
of each does not overlap. While the aim of clustering is to provide
scalability, load balancing, and high availability, a domain is a logical
grouping of servers that share a centralized domain configuration
and can be managed as a single unit.

We will now describe the different ways to assemble and start a cluster of
standalone servers and domain servers.

Setting up a cluster of standalone servers
Configuring WildFly clusters for standalone servers can be broken down into two
main possibilities:

• A cluster of WildFly nodes running on different machines
• A cluster of WildFly nodes running on the same machine

We will look at each of these in turn.

Chapter 8

[231]

A cluster of nodes running on different machines
If you decide to install each WildFly server on a dedicated machine, you are
horizontally scaling your cluster. In terms of configuration, this requires the least
effort—all you have to do is bind the server to its IP address in the configuration
file, and start the server using the standalone-ha.xml configuration. Let's build
an example with a simple, two-node cluster as illustrated in the following figure:

WildFly cluster of standalone nodes

One AS installation
per host

standalone-ha.xml

192.168.10.1

192.168.10.2

standalone-ha.xml

Open the standalone-ha.xml file on each WildFly distribution, and navigate to the
interfaces section. Within the nested interface element, insert the IP address of the
standalone server. For the first machine (192.168.10.1), we will define the following:

<interfaces>
 <interface name="management">
 <inet-address value="192.168.10.1"/>
 </interface>
 <interface name="public">
 <inet-address value="192.168.10.1"/>
 </interface>
</interfaces>

Clustering

[232]

On the second machine (192.168.10.2), we will bind to the other IP address:

<interfaces>
 <interface name="management">
 <inet-address value="192.168.10.2"/>
 </interface>
 <interface name="public">
 <inet-address value="192.168.10.2"/>
 </interface>
</interfaces>

This is the only thing you need to change in your configuration. To start the
cluster, you have to start your standalone server using the standalone-ha.xml
configuration file as follows:

./standalone.sh -c standalone-ha.xml

Rather than updating the standalone-ha.xml file with the IP
address of each server, you can use the -b option, which allows you
to provide the binding IP address on server startup. In addition,
you can use the -bmanagement flag to specify the management-
interface address. Using these options, the previous configuration
for the first server can be rewritten as:
standalone.sh -c standalone-ha.xml –b 192.168.10.1
 -bmanagement 192.168.10.1

For the second server, it can be rewritten as:
standalone.sh -c standalone-ha.xml –b 192.168.10.2
 -bmanagement 192.168.10.2

Within a few seconds, your servers will be running; however, we have not mentioned
any details relating to clustering nodes in the console. This is because, in WildFly, the
core services are only started on demand. This means the clustering services are started
only when the server detects that they are required and are stopped when no longer
required. Hence, simply starting the server with a configuration that includes the
clustering subsystems will not initiate the clustering services. To do this, we will need
to deploy a cluster-enabled application.

So, in order to verify our installation, we will deploy a bare-bones, cluster-enabled,
web application named Example.war. To enable clustering of your web applications,
you must mark them as distributable in the web.xml descriptor:

<web-app>
 <distributable/>
</web-app>

Chapter 8

[233]

When you have deployed the application to both machines, you will see that the
clustering services are now started and that each machine is able to find other
members within the cluster, as follows:

A cluster of nodes running on the same machine
The second variant of the standalone configuration comes into play when your
server nodes are located (all or some of them) on the same machine. This scenario
generally applies when you are scaling your architecture vertically by adding more
hardware resources to your computer.

Configuring server nodes on the same machine obviously requires duplicating your
WildFly distribution on your filesystem. In order to avoid port conflicts between
server distributions, you have to choose between the following two options:

• Define multiple IP address on the same machine
• Define a port offset for each server distribution

Clustering

[234]

Setting up a cluster on the same machine using multiple
IP addresses
This is also known as multihoming and requires a small amount of configuration
to get working. Each operating system uses a different approach to achieve this.
Illustrating the possible ways to configure multihoming is outside the scope of this
book but, if you are interested in multihoming, we have provided links with detailed
instructions on how to set up multihoming on Linux and Windows.

If you are using Linux, this tutorial describes in detail how to assign multiple IPs to
a single network interface, also known as IP aliasing:

http://www.tecmint.com/create-multiple-ip-addresses-to-one-single-
network-interface/

Windows users can refer to the following blog that details how to set up
multihoming in Windows 7:

http://shaheerart.blogspot.com/2011/05/how-to-configure-multihomed-
server-in.html

Once you have set up your network interface correctly, you will need to update your
standalone-ha.xml file. You need to bind each IP to a different WildFly instance,
just as we did when setting up the multiple-host cluster. Within the configuration
file, navigate to the interfaces section and, within the nested interface element,
insert the IP address to be bound to that standalone server:

<interfaces>
 <interface name="management">
 <inet-address value="192.168.10.2"/>
 </interface>
 <interface name="public">
 <inet-address value="192.168.10.2"/>
 </interface>
</interfaces>

In this example, the first server distribution is bound to the IP Address 192.168.10.1
and the second one to 192.168.10.2. (remember that you can also use the -b and
-bmanagement switches described earlier).

http://www.tecmint.com/create-multiple-ip-addresses-to-one-single-network-interface/
http://www.tecmint.com/create-multiple-ip-addresses-to-one-single-network-interface/
http://shaheerart.blogspot.com/2011/05/how-to-configure-multihomed-server-in.html
http://shaheerart.blogspot.com/2011/05/how-to-configure-multihomed-server-in.html

Chapter 8

[235]

The following figure depicts this scenario:

WildFly cluster of standalone nodes

Multihomed machine

standalone-ha.xml

standalone-ha.xml

192.168.10.1

192.168.10.2

Multiple AS
installation per host

Setting up a cluster on the same machine using port offset
Configuring multihoming is not always a viable choice, as it requires a relative
amount of network administration experience. A simpler and more straightforward
option is to define a port offset for each of your cluster members. By defining a port
offset for each server, all the default-server binding interfaces will shift by a fixed
number, hence you will not have two servers running on the same ports, causing
port conflicts.

When using port offset, you will bind each server to the same IP address. So, for all
your server distributions, you will configure the standalone-ha.xml file as follows:

<interfaces>
 <interface name="management">
 <inet-address value="192.168.10.1"/>
 </interface>
 <interface name="public">
 <inet-address value="192.168.10.1"/>
 </interface>
</interfaces>

You will then leave the first server configuration unchanged. It will use the default
socket-binding ports:

<socket-binding-group name="standard-sockets" default-
interface="public" port-offset="0">
...
</socket-binding-group>

Clustering

[236]

For the second server configuration, you will specify a port-offset value of 150:

<socket-binding-group name="standard-sockets" default-
interface="public" port-offset="150"
...
</socket-binding-group>

Your cluster configuration is now complete. You can verify this by starting each
server distribution by passing it as an argument to the configuration file as follows:

standalone.sh -c standalone-ha.xml

From the following screenshot, you can see that a port offset of 150 has been applied:

Setting up a cluster of domain servers
When you are configuring a domain cluster, you will find that the clustering
subsystems are already included within the main configuration file domain.xml.

As a matter of fact, the WildFly domain deals with clustering just as another profile
used by the application server. Opening the domain.xml file, you will see that the
application server ships with the following four profiles:

• The default profile for nonclustered environments
• The ha profile for clustered environments
• The full profile with all the subsystems for nonclustered environments
• The full-ha profile with all the subsystems for clustered environments

So, in order to use clustering on a domain, you have to first configure your server
groups to point to one of the ha profiles.

Chapter 8

[237]

Let's look at an example configuration that uses two server groups. The following
code snippet is from domain.xml:

<server-groups>
 <server-group name="main-server-group" profile="ha">
 <jvm name="default">
 <heap size="64m" max-size="512m"/>
 </jvm>
 <socket-binding-group ref="ha-sockets"/>
 </server-group>
 <server-group name="other-server-group" profile="ha">
 <jvm name="default">
 <heap size="64m" max-size="512m"/>
 </jvm>
 <socket-binding-group ref="ha-sockets"/>
 </server-group>
</server-groups>

As highlighted in the socket-binding-group element, we are referencing the
ha-sockets group, which contains all socket bindings used for the cluster. Have
a look at the following code:

<socket-binding-group name="ha-sockets" default-interface="public">
 <socket-binding name="ajp" port="8009"/>
 <socket-binding name="http" port="8080"/>
 <socket-binding name="https" port="8443"/>
 <socket-binding name="jgroups-mping" port="0" multicast-
 address="230.0.0.4" multicast-port="45700"/>
 <socket-binding name="jgroups-tcp" port="7600"/>
 <socket-binding name="jgroups-tcp-fd" port="57600"/>
 <socket-binding name="jgroups-udp" port="55200" multicast-
 address="230.0.0.4" multicast-port="45688"/>
 <socket-binding name="jgroups-udp-fd" port="54200"/>
 <socket-binding name="modcluster" port="0" multicast-
 address="224.0.1.105" multicast-port="23364"/>
 <socket-binding name="txn-recovery-environment" port="4712"/>
 <socket-binding name="txn-status-manager" port="4713"/>
 <outbound-socket-binding name="mail-smtp">
 <remote-destination host="localhost" port="25"/>
 </outbound-socket-binding>
</socket-binding-group>

Clustering

[238]

Next, we need to define the servers that are part of the domain (and of the cluster).
To keep things simple, we will reuse the domain server list that is found in the
default host.xml file, as shown in the following code snippet:

<servers>
 <server name="server-one" group="main-server-group">
 <jvm name="default">
 </server>
 <server name="server-two" group="main-server-group" auto-
 start="true">
 <socket-bindings port-offset="150"/>
 </server>
 <server name="server-three" group="other-server-group" auto-
 start="false">
 <socket-bindings port-offset="250"/>
 </server>
</servers>

We do not need to specify the socket-binding group for each server, as this was
configured in the domain.xml file. If we want to override the socket-binding group,
then we can add the following to the host.xml file:

<servers>
 ...
 <server name="server-one" group="other-server-group" auto-
 start="false">
 <socket-bindings socket-binding-group="ha-sockets"/>
 </server>
</servers>

The following figure shows an overview of this configuration:

Domain ervers
domain.xml

192.168.10.1

server-one

server-two

server-three

WildFly domain serverscluster of

ha
 s

oc
ke

ts

main
server
group

other
server
group

Chapter 8

[239]

Your clustered domain can now be started using the standard batch script
(domain.sh or domain.bat). The server groups will now point to the ha profile
and form a cluster of two nodes.

Troubleshooting the cluster
Communication via nodes in a cluster is achieved via UDP and multicasts.

A multicast is a protocol by which data is transmitted simultaneously
to all hosts that are part of the multicast group. You can think about
multicast as a radio channel where only those tuned to a particular
frequency receive the data.

If you are having problems, typically it is due to one of the following reasons:

• The nodes are behind a firewall. If your nodes are on different machines,
then it is possible that the firewall is blocking the multicasts. you can test
this by disabling the firewall for each node or adding the appropriate rules.

• You are using a home network or are behind a gateway. Typically, home
networks will redirect any UDP traffic to the Internet Service Provider (ISP),
which is then either dropped by the ISP or just lost. To fix this, you will need
to add a route to the firewall/gateway that will redirect any multicast traffic
back on to the local network instead.

Mac OS X
If you are using a Mac, you may get a java.io.IOException: Network
is unreachable error when trying to start a domain in the ha mode. To
get around this, you will need to create a proper network route to use
UDP as follows:
sudo route add 224.0.0.0 127.0.0.1 -netmask 240.0.0.0

To allow you to check whether your machine is set up correctly for multicast,
JGroups ships with two test applications that can be used to test IP multicast
communication. The test classes are McastReceiverTest and McastSenderTest.

In order to test multicast communication on your server, you should first navigate
to the location of the jgroups JAR within the modules directory, shown here:

JBOSS_HOME/modules/system/layers/base/org/jgroups/main

Within this directory, you will find jgroups-3.4.3.Final.jar, which contains
the test programs.

Clustering

[240]

Now, run the McastReceiverTest by running the following command:

java -classpath jgroups-3.4.3.Final.jar org.jgroups.tests.
McastReceiverTest -mcast_addr 224.10.10.10 -port 5555

On the same machine, but in a different terminal, run the McastSenderTest
command, as follows:

java -classpath jgroups-3.4.3.Final.jar org.jgroups.tests.McastSenderTest
-mcast_addr 224.10.10.10 -port 5555

If multicast works correctly, you should be able to type in the McastSenderTest
window and see the output in the McastReceiverTest window, as shown in the
following screenshot:

You should perform this test on each machine in the cluster. Once you have done
this, you need to ensure that UDP communication works between each machine in
the cluster by running McastSenderTest on one machine and McastReceiverTest
on the other.

Chapter 8

[241]

Finally, if you are experiencing issues with the default multicast address or port,
you can change it by modifying the jgroups-udp socket-binding group within the
domain.xml file:

<socket-binding-groups>
 ...
 <socket-binding-group name="ha-sockets"
 default-interface="public">
 ...
 <socket-binding name="jgroups-udp" port="55200"
 multicast-address="${jboss.default.multicast.
 address:230.0.0.4}"
 multicast-port="45688"/>
 ...
 </socket-binding-group>
</socket-binding-groups>

Configuring the WildFly cluster
WildFly supports clustering out of the box. There are several libraries that work
together to provide support for clustering. The following figure shows the basic
clustering architecture adopted by WildFly:

HTTP
Session

EJB3
SFSB

JPA Entity
Cache

Hibernate

HA JNDI

HA Partition

HornetQ

Infinispan

GroupsJ

The JGroups library is core to WildFly clustering. It provides the communication
channels between nodes of the cluster using a multicast transmission. These channels
are created upon deployment of a clustered application and are used to transmit
sessions and contexts around the cluster.

Another important component of clustering is Infinispan. Infinispan handles the
replication of your application data across the cluster by means of a distributed cache.

Clustering

[242]

Configuring the JGroups subsystem
Within the realm of JGroups, nodes are commonly referred to as members, and
clusters are referred to as groups.

A node is a process running on a host. JGroups keeps track of all processes within
a group. When a node joins a group, the system sends a message to all existing
members of that group. Likewise, when a node leaves or crashes, all the other
nodes of that group are notified.

As we outlined earlier in the chapter, the processes (nodes) of a group can be
located on the same host, or on different machines on a network. A member can
also be part of multiple groups. The following figure illustrates a detailed view
of JGroups architecture:

Protocol Stack

C
hannel

Application

Building
Blocks

PING MERGE2 FD SOCK FD

Network

A JGroups process broadly consists of three parts, namely a Channel, the Building
Blocks, and the Protocol Stack.

• A Channel is a simple socket-like interface used by application programmers
to build reliable group communication applications.

• The Building Blocks collectively form an abstraction interface layered on top
of channels, which can be used instead of channels whenever a higher level
interface is required.

• The Protocol Stack contains a number of protocol layers in a bidirectional
list. All messages sent have to pass through all the protocols. A layer does not
necessarily correspond to a transport protocol. For example, a fragmentation
layer might break up a message into several smaller messages, adding a
header with an ID to each fragment, and reassemble the fragments on the
receiver's side.

In the previous figure, when sending a message, the PING protocol is executed first,
then MERGE2, followed by FD_SOCK, and finally, the FD protocol. When the message
is received, this order would be reversed, which means that it would meet the FD
protocol first, then FD_SOCK, followed by MERGE2, and finally up to PING. In WildFly,
the JGroups configuration is found within the JGroups subsystem in the main
standalone-ha.xml/domain.xml configuration file.

Chapter 8

[243]

Within the JGroups subsystem, you can find the list of configured transport stacks.
The following code snippet shows the default UDP stack used for communication
between nodes:

<subsystem xmlns="urn:jboss:domain:jgroups:2.0" default-stack="udp">
 <stack name="udp">
 <transport type="UDP" socket-binding="jgroups-udp"/>
 <protocol type="PING"/>
 <protocol type="MERGE3"/>
 <protocol type="FD_SOCK" socket-binding="jgroups-udp-fd"/>
 <protocol type="FD_ALL"/>
 <protocol type="VERIFY_SUSPECT"/>
 <protocol type="pbcast.NAKACK2"/>
 <protocol type="UNICAST3"/>
 <protocol type="pbcast.STABLE"/>
 <protocol type="pbcast.GMS"/>
 <protocol type="UFC"/>
 <protocol type="MFC"/>
 <protocol type="FRAG2"/>
 <protocol type="RSVP"/>
 </stack>
 ...
</subsystem>

UDP is the default protocol for JGroups and uses multicast (or, if not available,
multiple unicast messages) to send and receive messages. A multicast UDP socket
can send and receive datagrams from multiple clients. Another feature of multicast
is that a client can contact multiple servers with a single packet, without knowing
the specific IP address of any of the hosts.

Switching to the TCP protocol is as easy as changing the
default-stack attribute:

<subsystem xmlns="urn:jboss:domain:jgroups:2.0"
default-stack="tcp">

TCP stacks are typically used when IP multicasting cannot be used for some reason.
For example, when you want to create a network over a WAN. We will cover
TCP configuration later in this chapter.

Clustering

[244]

A detailed description of all JGroups protocols is beyond the scope of this book
but, for convenience, you can find a short description of each in the following
table. To find out more about these protocols, or about JGroups, you can refer
to the JGroups site at http://jgroups.org/manual/html/index.html.

Category Usage Protocols
Transport This is responsible for sending

and receiving messages across
the network

IDP, TCP, and TUNNEL

Discovery This is used to discover active
nodes in the cluster and
determine who the coordinator is

PING, MPING, TCPPING, and
TCPGOSSIP

Failure detection This one is used to poll cluster
nodes to detect node failures

FD, FD_SIMPLE, FD_PING,
FD_ICMP, FD_SOCK, and
VERIFY_SUSPECT

Reliable delivery This ensures that messages are
actually delivered in the right
order (FIFO) to the destination
node

CAUSAL, NAKACK, pbcast.
NAKACK, SMACK, UNICAST,
and PBCAST

Group membership This is used to notify the cluster
when a node joins, leaves, or
crashes

pbcast.GMS, MERGE,
MERGE2, and VIEW_SYNC

Flow control This is used to adapt the data-
sending rate to the data-receipt
rate among the nodes

FC

Fragmentation This fragments messages
larger than a certain size and
unfragments them at the
receiver's side

FRAG2

State transfer This one synchronizes the
application state (serialized as a
byte array) from an existing node
with a newly-joining node

pbcast.STATE_TRANSFER
and pbcast.STREAMING_
STATE_TRANSFER

Customizing the protocol stack
If you want to customize your transport configuration at a lower level, then you
can override the default properties used by JGroups or even the single protocol
properties. For example, the following configuration can be used to change the
default send or receive buffer used by the JGroups UDP stack:

<subsystem xmlns="urn:jboss:domain:jgroups:2.0"
 default-stack="udp">

http://jgroups.org/manual/html/index.html

Chapter 8

[245]

 <stack name="udp">
 <transport type="UDP" socket-binding="jgroups-udp"
 diagnostics-socket-binding="jgroups-diagnostics">
 <property name="ucast_recv_buf_size">50000000</property>
 <property name="ucast_send_buf_size">1280000</property>
 <property name="mcast_recv_buf_size">50000000</property>
 <property name="mcast_send_buf_size">1280000</property>
 </transport>
 ...
 </stack>
</subsystem>

If you want to have a look at all the properties available within the JGroups
subsystem, either at transport level or at the protocol level, you can consult the
JGroups XSD file, jboss-as-jgroups_2_0.xsd, found in the JBOSS_HOME/docs/
schema folder of your server distribution.

Configuring the Infinispan subsystem
One of the requirements of a cluster is that data is synchronized across its members.
This is because, should there be a failure of a node, the application and its session
can continue on other members of the cluster. This is known as High Availability.

WildFly uses Infinispan as the distributed caching solution behind its clustering
functionality. Although Infinispan is embedded within the application server,
it can also be used as a standalone data-grid platform.

We will now quickly look at Infinispan's configuration, which is found in the
Infinispan subsystem within the main standalone-ha.xml or domain.xml
configuration file.

The following is the backbone of the Infinispan configuration:

<subsystem xmlns="urn:jboss:domain:infinispan:2.0">
 <cache-container name="server" aliases=
 "singleton cluster" default-cache="default" module=
 "org.wildfly.clustering.server">
 <transport lock-timeout="60000"/>
 <replicated-cache name="default" mode="SYNC" batching="true">
 <locking isolation="REPEATABLE_READ"/>
 </replicated-cache>
 </cache-container>

Clustering

[246]

 <cache-container name="web" default-cache="dist"
 module="org.wildfly.clustering.web.infinispan">
 ...
 </cache-container>
 <cache-container name="ejb" aliases="sfsb" default-cache=
 "dist" module="org.wildfly.clustering.ejb.infinispan">
 ...
 </cache-container>
 <cache-container name="hibernate" default-cache=
 "local-query" module="org.hibernate">
 ...
 </cache-container>
</subsystem>

One of the key differences between the standalone Infinispan configuration and
the Infinispan subsystem within WildFly is that the WildFly configuration exposes
multiple cache-container elements, while the native configuration file contains
configurations for a single cache container.

Each cache-container element contains one or more caching policies, which define
how data is synchronized for that specific cache container. The following caching
strategies can be used by cache containers:

• Local: In this caching mode, the entries are stored on the local node only,
regardless of whether a cluster has formed. Infinispan typically operates
as a local cache.

• Replication: In this caching mode, all entries are replicated to all nodes.
Infinispan typically operates as a temporary data store and doesn't offer
increased heap space.

• Distribution: In this caching mode, the entries are distributed to a subset
of the nodes only. Infinispan typically operates as a data grid providing
increased heap space.

• Invalidation: In this caching mode, the entries are stored in a cache store
only (such as a database) and invalidated from all nodes. When a node needs
the entry, it will load it from a cache store. In this mode, Infinispan operates
as a distributed cache, backed by a canonical data store, such as a database.

In the following sections, we will have a more detailed look at some of the cache
configurations, such as session caches (the web cache and the SFSB cache) and
the hibernate cache. Understanding these is essential if you are to configure your
clustered applications properly.

Chapter 8

[247]

Configuring session cache containers
In this section, we will look at the caching configuration for the HTTP session and
for stateful and singleton-session beans. The way the caches are configured for these
three is very similar. For this reason, we will discuss them together and show the
similarities between them. So, here is the cache-container configuration for the web
cache, the ejb cache, and the server cache. The web cache refers to the HTTP session
cache, the ejb cache relates to stateful session beans (SFSBs), and the server cache
relates to the singleton-session beans:

<subsystem xmlns="urn:jboss:domain:infinispan:2.0">

 <cache-container name="server" aliases=
 "singleton cluster" default-cache="default" module=
 "org.wildfly.clustering.server">
 <transport lock-timeout="60000" />
 <replicated-cache name="default" mode="SYNC"
 batching="true">
 <locking isolation="REPEATABLE_READ" />
 </replicated-cache>
 </cache-container>

 <cache-container name="web" default-cache="dist"
 module="org.wildfly.clustering.web.infinispan">
 <transport lock-timeout="60000" />
 <distributed-cache name="dist" mode="ASYNC"
 batching="true" l1-lifespan="0" owners="2">
 <file-store />
 </distributed-cache>
 </cache-container>

 <cache-container name="ejb" aliases=
 "sfsb" default-cache="dist" module=
 "org.wildfly.clustering.ejb.infinispan">
 <transport lock-timeout="60000" />
 <distributed-cache name="dist" mode="ASYNC"
 batching="true" l1-lifespan="0" owners="2">
 <file-store />
 </distributed-cache>
 </cache-container>
</subsystem>

Clustering

[248]

The configuration for each container can contain one or more caching strategy
elements. These elements are as follows:

• replicated-cache

• distributed-cache

• invalidation-cache

• local-cache

Each of these cache elements can be defined zero or more times. To specify which
cache element to use for the cache container, simply reference the name of the cache
as the property of the default-cache attribute. In the next section, we will explore
in detail the differences between these cache modes. Within each cache definition,
you may have noticed the locking attribute that corresponds to the equivalent
database isolation levels. Infinispan supports the following isolation levels:

• NONE: No isolation level means no transactional support.
• READ_UNCOMMITTED: The lowest isolation level, dirty reads are allowed, which

means one transaction may see uncommitted data from another transaction.
Rows are only locked during the writing of data, not for reads.

• READ_COMMITTED: The transaction acquires read and write locks on all
retrieved data. Write locks are released at the end of the transaction,
and read locks are released as soon as the data is selected.

• REPEATABLE_READ: This is the default isolation level used by Infinispan.
The transaction acquires read and write locks on all retrieved data and is
kept until the end of the transaction. Phantom reads can occur. Phantom
reads are when you execute the same query in the same transaction and
get a different number of results.

• SERIALIZABLE: The strictest isolation level. All transactions occur in an
isolated fashion as if they are being executed serially (one after the other),
as opposed to concurrently.

Another element nested within the cache configuration is file-store. This element
configures the path in which to store the cached data. The default data is written in
the jboss.server.data.dir directory under a folder with the same name as the
cache container.

Chapter 8

[249]

For example, the following figure shows the default file-store path for the
standalone web cache container:

$JBOSS_HOME

standalone

data

web

dist

standalone file-store

If you wish, you can customize the file-store path using the relative-to and
path elements, just as we did in Chapter 2, Configuring the Core WildFly Subsystems,
for the path element:

<cache-container name="web" default-cache="dist"
 module="org.wildfly.clustering.web.infinispan">
 <distributed-cache name="dist" mode="ASYNC"
 batching="true" l1-lifespan="0" owners="2">
 <file-store relative-to="jboss.server.data.dir"
 path="my-cache"/>
 </distributed-cache>
</cache-container>

Before moving on, let's briefly look at the way messages are sent between each node.

Data synchronization across members can be done via synchronous messages (SYNC)
or asynchronous messages (ASYNC), which are defined as follows:

• Synchronous messaging is the least efficient of the two, as each node needs to
wait for a message acknowledgement from other cluster members. However,
synchronous mode is useful if you have a need for high consistency.

• Asynchronous messaging is the quicker of the two, the flip side being that
consistency suffers. Asynchronous messaging is particularly useful when
HTTP session replication and sticky sessions are enabled. In this scenario,
a session is always accessed from the same cluster node. Only when a node
fails is the data accessed from a different node.

Clustering

[250]

The SYNC and ASYNC properties are set in the mode attribute of the cache element:

<distributed-cache name="dist" mode="ASYNC" batching="true"
 l1-lifespan="0" owners="2">

Choosing between replication and distribution
When using replicated caching, Infinispan will store every entry on every node in
the cluster grid. This means that entries added to any one of these cache instances
will be replicated to all other cache instances in the cluster, and any entry can be
retrieved from any cache. The arrows indicate the direction in which data is being
replicated. In the following figure, you can see that session data from Node 1 is
being copied to Nodes 2, 3, and 4:

Node 1
Cache

K,V Node 3
Cache

K,V

Node 2
Cache

K,V

Node 4
Cache

K,V

Replication Cache

<% session.setAttribute(K,V) %>

The scalability of replication is a function of cluster size and average data size.
If we have many nodes and/or large data sets, we hit a scalability ceiling.

If DATA_SIZE * NUMBER_OF_HOSTS is smaller than the memory
available to each host, then replication is a viable choice.

On the other hand, when using distributed caching, Infinispan will store every
cluster entry on a subset of the nodes in the grid.

Distribution makes use of a consistent-hash algorithm to determine where entries
should be stored within the cluster. You can configure how many copies of a cache
entry are maintained across the cluster. The value you choose here is a balance
between performance and durability of data. The more copies you maintain, the
lower the performance, but the lower the risk of losing data due to server outages.

Chapter 8

[251]

You can use the owners parameter (with a default value of 2) to
define the number of cluster-wide copies for each cache entry:

<distributed-cache name="dist" mode="ASYNC"
 batching="true" l1-lifespan="0" owners="2">
 <file-store/>
</distributed-cache>

The following figure shows how the session data will be replicated across the nodes
when the owners parameter is set to 2. Each node replicates its session data to two
other nodes:

Node 3
Cache

K,V

Node 2
Cache

K,V

Node 4
Cache

K,V

Distributed cache
owners = 2

<% session.setAttribute(K,V) %>

<% session.setAttribute(K) %>

Node 1
Cache

K,V

The choice between replication and distribution depends largely on the cluster
size. For example, replication provides a quick and easy way to share states across
a cluster; however, it only performs well in small clusters (fewer than ten servers).
This is due to the increased number of replication messages that need to be sent
as cluster size increases. In a distributed cache, several copies of an entry are
maintained across nodes in order to provide redundancy and fault tolerance. The
number of copies saved is typically far fewer than the number of nodes in the cluster.
This means a distributed cache provides a far greater degree of scalability than
a replicated cache.

Clustering

[252]

Configuring the hibernate cache
The hibernate cache container is a key part of your configuration as it handles the
caching of your data tier. WildFly uses hibernate as the default JPA implementation,
so the concepts described in this chapter apply both to hibernate applications and
to JPA-based applications. Hibernate caches are conceptually different from
session-based caches. They are based on the assumption that you have a permanent
storage for your data (the database) This means that it is not necessary to replicate or
distribute copies of the entities across the cluster in order to achieve high availability.
You just need to inform your nodes when data has been modified so that the entry
in the cache can be invalidated. If a cache is configured for invalidation rather than
replication, every time data is changed in a cache, other caches in the cluster receive
a message that their data is now stale and should be evicted from memory.

The benefit of this is twofold. First, network traffic is minimized as invalidation
messages are very small compared to replicating updated data. Second, caches in
the cluster will only need to do database lookups when data is stale. Whenever a
new entity or collection is read from database, it's only cached locally in order to
reduce traffic between nodes:

<cache-container name="hibernate" default-cache="local-query"
module="org.hibernate">
 <transport lock-timeout="60000"/>
 <local-cache name="local-query">
 <transaction mode="NONE"/>
 <eviction strategy="LRU" max-entries="10000"/>
 <expiration max-idle="100000"/>
 </local-cache>
 ...
</cache-container>

The local-query cache is configured by default to store up to 10,000 entries in an
LRU vector. Each entry will be evicted from the cache automatically if it has been
idle for 100,000 milliseconds, as per the max-idle attribute.

The following is a summary of the eviction strategies supported by Infinispan:

• NONE: This value disables the eviction thread
• UNORDERED: This is now deprecated. Using this value will

cause the LRU to be used

Chapter 8

[253]

• LRU: This value causes evictions to occur based on a
least-recently-used pattern

• LIRS: This value addresses shortcomings of LRU. Eviction relies on
inter-reference recency of cache entries

To read more about how LIRS works, see the Infinispan documentation
at http://infinispan.org/docs/6.0.x/user_guide/user_
guide.html#_eviction_strategies.

Once the local cache entity is updated, the cache will send a message to other members
of the cluster, telling them that the entity has been modified. This is when the
invalidation-cache comes into play. Take a look at the following code:

<invalidation-cache name="entity" mode="SYNC">
 <transaction mode="NON_XA"/>
 <eviction strategy="LRU" max-entries="10000"/>
 <expiration max-idle="100000"/>
</invalidation-cache>

The default configuration for the invalidation cache uses the same eviction
and expiration settings as for local query cache. The maximum number of entries
is set to 10,000 and the idle time before expiration to 100,000 milliseconds. The
invalidation cache can also be configured to be synchronous (SYNC) or asynchronous
(ASYNC). If you configure your invalidation cache to be synchronous, then your
cache will be blocked until all caches in the cluster receive responses to invalidation
messages. On the other hand, an asynchronous invalidation cache does not block
and wait for a response, which results in increased performance. By default,
hibernate is configured to use REPEATABLE_READ as the cache isolation level.
For most cases, the default isolation level of REPEATABLE_READ will suffice. If
you want to update it to, say, READ_COMMITTED, then you will need to add the
following to your configuration:

<invalidation-cache mode="SYNC" name="entity">
 ...
 <locking isolation="READ_COMMITTED"/>
</invalidation-cache>

The last bit of configuration we are going to look at within the Infinispan
subsystem is the timestamp cache. The timestamp cache keeps track of the
last time each database table was updated.

http://infinispan.org/docs/6.0.x/user_guide/user_guide.html#_eviction_strategies
http://infinispan.org/docs/6.0.x/user_guide/user_guide.html#_eviction_strategies

Clustering

[254]

The timestamp cache is strictly related to the query cache. It is used to store the
result set of a query run against the database. If the query cache is enabled, before
a query run, the query cache is checked. If the timestamp of the last update on a
table is greater than the time the query results were cached, the entry is evicted
from the cache and a fresh database lookup is made. This is referred to as a cache
miss. Have a look at the following code:

<replicated-cache name="timestamps" mode="ASYNC">
 <transaction mode="NONE"/>
 <eviction strategy="NONE"/>
</replicated-cache>

By default, the timestamps cache is configured with asynchronous replication as the
clustering mode. Since all cluster nodes must store all timestamps, local or invalidated
cache types are not allowed, and no eviction/expiration is allowed either.

Using replication for the hibernate cache
There may be situations when you want to replicate your entity cache across
other cluster nodes, instead of using local caches and invalidation. This may be
the case when:

• Queries executed are quite expensive
• Queries are likely to be repeated in different cluster nodes
• Queries are unlikely to be invalidated out of the cache (Hibernate invalidates

query results from the cache when one of the entity classes involved in the
query's WHERE clause changes)

In order to switch to a replicated cache, you have to configure your
default-cache attribute, as shown in the following code snippet,
as well as add the relevant replicated-cache configuration:

<cache-container name="hibernate" default-cache="replicated-cache"
module="org.hibernate">
 <replicated-cache name="replicated-cache" mode="SYNC">
 <locking isolation="REPEATABLE_READ"/>
 </replicated-cache>
</cache-container>

Advanced Infinispan configuration
Until now, we looked at the essential components required to get working with
a clustered application. Infinispan has a wealth of options available to further
customize your cache.

Chapter 8

[255]

For more information on advanced configuration of Infinispan via
the Infinispan subsystem, you can check out the documentation
at http://infinispan.org/docs/6.0.x/infinispan_
server_guide/infinispan_server_guide.html

Configuring the Infinispan transport
The Infinispan subsystem relies on the JGroups subsystem to transport cached data
between nodes. JGroups uses UDP as the default transport protocol as defined by
the default-stack attribute in the JGroups subsystem:

<subsystem xmlns="urn:jboss:domain:jgroups:2.0" default-stack="udp">
 ...
</subsystem>

You can, however, configure a different transport for each cache container. If you
want to use TCP as the transport protocol for the web cache container, then you
can add the stack attribute and set it to tcp:

<cache-container name="web" default-cache="dist">
 <transport lock-timeout="60000" stack="tcp"/>
</cache-container>

The default UDP transport is usually suitable for large clusters. It may also be
suitable if you are using replication or invalidation, as it minimizes opening too
many sockets.

To learn about the differences between TCP and UDP, please refer to this external
link at http://www.skullbox.net/tcpudp.php.

Configuring the Infinispan threads
It is important to note that the thread-pool subsystem has been deprecated in
WildFly 8. It is quite likely that it will be removed completely in WildFly 9. The
configuration in this section can still be used in WildFly 8, but you will need to add
the threads subsystem to your configuration file. Take a look at the following code:

<extensions>
 ...
 <extension module="org.jboss.as.threads"/>
</extensions>

http://infinispan.org/docs/6.0.x/infinispan_server_guide/infinispan_server_guide.html
http://infinispan.org/docs/6.0.x/infinispan_server_guide/infinispan_server_guide.html
http://www.skullbox.net/tcpudp.php

Clustering

[256]

Just as you can for JGroups transport, you can externalize your Infinispan thread
configuration, moving it into the thread-pool subsystem. The following thread pools
can be configured per cache-container:

Thread pool Description
transport This gives the size of the bounded thread pool whose threads are

responsible for transporting data across the network
listener-executor This gives the size of the thread pool used for registering and

getting notified when some cache events take place

replication-queue-
executor

This gives the size of the scheduled replication executor used for
replicating cache data

eviction-executor This gives the size of the scheduled executor service used to
periodically run eviction cleanup tasks

Customizing the thread pool may be required in some cases, for example, you may
want to apply a cache replication algorithm. You may then need to choose the number
of threads used for replicating data. In the following example, we are externalizing the
thread pools of the web cache-container by defining a maximum of 25 threads for
the bounded-queue-thread-pool and five threads for replicating data:

<subsystem xmlns="urn:jboss:domain:infinispan:2.0">

 <cache-container name="web" default-cache="repl"
 listener-executor="infinispan-listener"
 eviction-executor="infinispan-eviction"
 replication-queue-executor="infinispan-repl-queue">
 <transport executor="infinispan-transport"/>
 </cache-container>
</subsystem>
...
<subsystem xmlns="urn:jboss:domain:threads:1.1">
 <thread-factory name="infinispan-factory" priority="1"/>
 <bounded-queue-thread-pool name="infinispan-transport"/>
 <core-threads count="1"/>
 <queue-length count="100000"/>
 <max-threads count="25"/>
 <thread-factory name="infinispan-factory"/>
 </bounded-queue-thread-pool>
 <bounded-queue-thread-pool name="infinispan-listener"/>
 <core-threads count="1"/>
 <queue-length count="100000"/>
 <max-threads count="1"/>

Chapter 8

[257]

 <thread-factory name="infinispan-factory"/>
 </bounded-queue-thread-pool>
 <scheduled-thread-pool name="infinispan-eviction"/>
 <max-threads count="1"/>
 <thread-factory name="infinispan-factory"/>
 </scheduled-thread-pool>
 <scheduled-thread-pool name="infinispan-repl-queue"/>
 <max-threads count="5"/>
 <thread-factory name="infinispan-factory"/>
 </scheduled-thread-pool>
</subsystem>

Clustering the messaging subsystem
We will conclude this chapter by discussing the messaging subsystem.

The JMS provider used in WildFly is HornetQ. In order to share the message
processing load, HornetQ servers can be grouped together in a cluster. Each active
node in the cluster contains an active HornetQ server. HornetQ manages its own
messages and handles its own connections. Behind the scenes, when a node forms
a cluster connection to another node, a core bridge connection is created between
them. Once the connection has been established, messages can flow between each
of the nodes.

Clustering is automatically enabled in HornetQ if one or more
cluster-connection elements are defined. The following example
is taken from the default full-ha profile:

<subsystem xmlns="urn:jboss:domain:messaging:2.0">
 <hornetq-server>
 ...
 <cluster-connections>
 <cluster-connection name="my-cluster">
 <address>jms</address>
 <connector-ref>http-connector</connector-ref>
 <discovery-group-ref discovery-group-name=
 "dg-group1"/>
 </cluster-connection>
 </cluster-connections>
 </hornetq-server>
</subsystem>

Clustering

[258]

Now, let's look at how to configure the cluster-connection. The following
is a typical cluster connection configuration. You can either update the default
cluster-connection, or you can add your own cluster-connection element
within your <hornetq-server> definition.

<subsystem xmlns="urn:jboss:domain:messaging:2.0">
 <hornetq-server>
 ...
 <cluster-connections>
 <cluster-connection name="my-cluster">
 <address>jms</address>
 <connector-ref>http-connector</connector-ref>
 <discovery-group-ref discovery-group-name=
 "dg-group1"/>
 <retry-interval>500</retry-interval>
 <forward-when-no-consumers>false
 </forward-when-no-consumers>
 <max-hops>1</max-hops>
 </cluster-connection>
 </cluster-connections>
 </hornetq-server>
</subsystem>

The cluster-connection name attribute obviously defines the cluster connection
name, which we are going to configure. There can be zero or more cluster
connections configured in your messaging subsystem.

The address element is a mandatory parameter and determines how messages
are distributed across the cluster. In this example, the cluster connection will only
load balance the messages that are sent to addresses that start with jms. This cluster
connection will, in effect, apply to all JMS queue and topic subscriptions. This is
because they map to core queues that start with the substring jms.

The connector-ref element references the connector, which has been defined in
the connectors section of the messaging subsystem. In this case, we are using the
http connector (see Chapter 3, Configuring Enterprise Services, for more information
about the available connectors).The retry-interval element determines the
interval in milliseconds between the message retry attempts. If a cluster connection
is attempted and the target node has not been started, or is in the process of being
rebooted, then connection attempts from other nodes commence only once the time
period defined in the retry-interval has elapsed.

Chapter 8

[259]

The forward-when-no-consumers element, when set to true, will ensure that
each incoming message is distributed round robin even though there may not
be a consumer on the receiving node.

You can actually specify the connection load-balancing policy
within the connection-factory element. The out-of-the-box
policies are Round-Robin (org.hornetq.api.core.client.
loadbalance.RoundRobinConnectionLoadBalancingPolicy)
and Random (org.hornetq.api.core.client.loadbalance.
RandomConnectionLoadBalancingPolicy). You can also add your
own policy by implementing the org.hornetq.api.core.client.
loadbalance.ConnectionLoadBalancingPolicy interface.
The following example shows how to use the random policy for a
connection factory:

<connection-factory name="InVmConnectionFactory">

 ...

 <connection-load-balancing-policy-class-name>
 org.hornetq.api.core.client.loadbalance.
 RandomConnectionLoadBalancingPolicy

 </connection-load-balancing-policy-class-name>
</connection-factory>

Finally, the optional max-hops value is set to 1 (default), which is the maximum
number of times a message can be forwarded between nodes. A value of 1 means
messages are only load balanced to other HornetQ serves, which are directly
connected to this server. HornetQ can also be configured to load-balance messages
to nodes that are indirectly connected to it, that is, the other HornetQ servers are
intermediaries in a chain.

You can also refer to jboss-as-messaging_2_0.xsd for the full list
of available parameters. This can be found in the JBOSS_HOME/docs/
schema folder of your server distribution.

Configuring messaging credentials
If you try to start a cluster where nodes use the full-ha profile, you will get an
error logged to the console, as follows:

ERROR [org.hornetq.core.server] (default I/O-1) HQ224018: Failed to
create session: HornetQClusterSecurityException[errorType=CLUSTER_
SECURITY_EXCEPTION message=HQ119099: Unable to authenticate cluster user:
HORNETQ.CLUSTER.ADMIN.USER]

Clustering

[260]

This is because, when attempting to create connections between nodes, HornetQ
uses a cluster user and cluster password. As you can see in the default configuration,
you are required to update the password value:

<subsystem xmlns="urn:jboss:domain:messaging:2.0">
 <hornetq-server>
 <cluster-password>
 ${jboss.messaging.cluster.password:CHANGE ME!!}
 </cluster-password>
 <journal-file-size>102400</journal-file-size>
 ...
 </hornetq-server>
</subsystem>

Once you have changed this password, start your cluster, and you should see a
successful bridge between nodes:

Configuring clustering in your
applications
We will now complete our journey through the clustering system by looking at
how to cluster the following:

• Session beans

Chapter 8

[261]

• Entities
• Web applications

Clustering session beans
In Chapter 3, Configuring Enterprise Services, we discussed the difference between
Stateless Session Beans (SLSBs), Stateful Session Beans (SFSBs), and Singleton
Session Beans.

SLSBs are not able to retain state between invocations, so the main benefit of
clustering an SLSB is to balance the load between an array of servers:

@Stateless
@Clustered
public class ClusteredBean {
 public void doSomething() {
 // Do something
 }
}

If you want to further specialize your SLSB, then you can choose the load-balancing
algorithm used to distribute the load between your EJBs. The following are the
available load-balancing policies for your SLSB:

Load-balancing policy Description
RoundRobin It is the default load-balancing policy.

The smart proxy cycles through a list of
WildFly Server instances in a fixed order.

RandomRobin Under this policy, each request is
redirected by the smart proxy to a
random node in the cluster.

FirstAvailable It implies a random selection of the node,
but subsequent calls will stick to that
node until the node fails. The next node
will again be selected randomly.

FirstAvailableIdenticalAllProxies This is the same as FirstAvailable,
except that the random node selection
will then be shared by all dynamic
proxies.

Clustering

[262]

Then, you can apply the load-balancing policy as in the following example:

@Clustered(loadBalancePolicy="FirstAvailable")

In JBoss AS 7, you were required to annotate your SFSB with @Clustered in
order to replicate the state of the SFSB. In WildFly, this is not the case, as SFSB are
configured to have passivation enabled by default. This means that as long as you
annotate your bean with @Stateful, and you are using a server profile that supports
high availability, your SFSB will have its state replicated across servers. Have a look
at the following code:

@Stateful
public class ClusteredBean {
 public void doSomething() {
 // Do something
 }
}

To disable passivation/replication, you can simply set passivationCapable to false,
as shown here:

@Stateful(passivationCapable=false)
public class ClusteredBean {
 public void doSomething() {
 // Do something
 }
}

By default, SFSBs use the cache container named ejb, which replicates sessions across
all nodes. Should your application server node fail while sessions are running, the EJB
proxy will detect it and choose another node where session data has been replicated.
You can, however, reference a custom cache container used by your SFSB with the
@org.jboss.ejb3.annotation.CacheConfig annotation. Have a look at the
following code:

@Stateful
@CacheConfig(name="custom-ejb")
public class ClusteredBean {
 ...
}

The following is the corresponding cache container that uses a distributed cache:

<cache-container name="custom-ejb" default-cache="dist" module="org.
wildfly.clustering.ejb.infinispan" aliases="sfsb">
 <distributed-cache name="dist" batching="true" mode="ASYNC"
 owners="3">
 <locking isolation="REPEATABLE_READ"/>
 <file-store/>

Chapter 8

[263]

 </distributed-cache>
</cache-container>

Clustering entities
As entities sit deep in the backend, they do not need to be considered with
regard to load-balancing logic or session replication. However, it is useful to
cache your entities to avoid roundtrips to the database. The EJB3 persistence layer
implementation in WildFly is Hibernate 4.3.5. The Hibernate framework includes
a complex cache mechanism, which is implemented both at the Session level and
at the SessionFactory level.

The cache used in the Session level is called the first-level cache and only has
session scope. This cache is cleared as soon as the Hibernate session using it is closed.
Hibernate uses second-level caching to store entities or collections retrieved from the
database. It can also store the results of recent queries. It is the second-level cache
that we need to cluster, as this cache is used across sessions.

Enabling the second-level cache for your enterprise applications is relatively
straightforward. If you are using JPA, then all you need to do to enable the
second-level cache is add the following to your persistence.xml configuration file:

<shared-cache-mode>ENABLE_SELECTIVE</shared-cache-mode>
<properties>

 <property name="hibernate.cache.use_second_level_cache"
 value="true"/>
 <property name="hibernate.cache.use_minimal_puts" value="true"/>
</properties>

The first element, shared-cache-mode, is the JPA 2.x way of specifying whether
the entities and entity-related state of a persistence unit will be cached. The
shared-cache-mode element has five possible values, as indicated in the
following table:

Shared Cache mode Description
ALL This value causes all entities and entity-related states and data

to be cached.
NONE This value causes caching to be disabled for the persistence unit.
ENABLE_SELECTIVE This value allows caching if the @Cacheable annotation is

specified on the entity class.
DISABLE_SELECTIVE This value enables the cache and causes all entities to be cached

except those for which @Cacheable(false) is specified.

Clustering

[264]

The property named hibernate.cache.use_minimal_puts performs some
optimization on the second-level cache by reducing the amount of writes in the caches
at the cost of some additional reads. This is beneficial when clustering your entities,
as the put operation is very expensive as it activates cache replication listeners.

In addition, if you plan to use the Hibernate query cache in your applications, you
need to activate it with a separate property, as follows:

<property name="hibernate.cache.use_query_cache" value="true"/>

For the sake of completeness, we will also include the configuration needed to use
Infinispan as a caching provider for native Hibernate applications. This is the list
of properties you have to add to your hibernate.cfg.xml:

<property name="hibernate.cache.region.factory_class" value=
 "org.hibernate.cache.infinispan.JndiInfinispanRegionFactory"/>
<property name="hibernate.cache.infinispan.cachemanager" value=
 "java:CacheManager/entity"/>
<property name="hibernate.transaction.manager_lookup_class" value=
 "org.hibernate.transaction.JBossTransactionManagerLookup"/>
<property name="hibernate.cache.use_second_level_cache" value=
 "true"/>
<property name="hibernate.cache.use_minimal_puts" value="true"/>

As you can see, the configuration is more verbose because you have to tell Hibernate
to use Infinispan as a caching provider. This requires setting the correct Hibernate
transaction factory using the hibernate.transaction.factory_class property.

The hibernate.cache.infinispan.cachemanager property exposes the cache
manager used by Infinispan. By default, Infinispan binds the cache manager
responsible for the second-level cache to the JNDI name java:CacheManager/entity.

Finally, the hibernate.cache.region.factory_class property tells Hibernate
to use Infinispan's second-level caching integration, which uses CacheManager,
as defined previously, as the source for the Infinispan cache's instances.

Caching entities
Unless you have set shared-cache-mode to ALL, Hibernate will not automatically
cache your entities. You have to select which entities or queries need to be cached.
This is definitely the safest option since indiscriminate caching can hurt performance.
The following example shows how to do this for JPA entities using annotations:

import javax.persistence.*;
import org.hibernate.annotations.Cache;

Chapter 8

[265]

import org.hibernate.annotations.CacheConcurrencyStrategy;

@Entity
@Cacheable
@Cache(usage = CacheConcurrencyStrategy.TRANSACTIONAL, region
="properties")

public class Property {

@Id
@Column(name="key")
private String key;

@Column(name="value")
private String value;

// Getter & setters omitted for brevity
}

Using JPA annotations
The @javax.persistence.Cacheable annotation dictates whether this entity
class should be cached in the second-level cache. This is only applicable when
the shared-cache-mode is not set to ALL.

Using Hibernate annotations
The @org.hibernate.annotations.Cache annotation is the older annotation
used to achieve the same purpose as @Cacheable. You can still use it to define
which strategy Hibernate should use to control concurrent access to cache contents.

The CacheConcurrencyStrategy.TRANSACTIONAL property provides support
for Infinispan's fully-transactional JTA environment.

If there is a chance that your application data is read but never modified, you
can apply the CacheConcurrencyStrategy.READ_ONLY property that does not
evict data from the cache (unless performed programmatically):

@Cache(usage=CacheConcurrencyStrategy.READ_ONLY)

Finally, the last attribute is the caching region that defines where entities are placed.
If you do not specify a cache region for an entity class, all instances of this class will
be cached in the _default region. Defining a caching region can be useful if you
want to perform a fine-grained management of caching areas.

Clustering

[266]

Caching queries
The query cache can be used to cache the result set of a query. This means that if the
same query is issued again, it will not hit the database but return the cached value.

The query cache does not cache the state of the actual entities in the result
set; it caches only the identifier values and results of the value type.

In the following example, the query result set named listUsers is configured to be
cached using the @QueryHint annotation inside a @NamedQuery annotation:

@NamedQueries(
{
@NamedQuery(
name = "listUsers",
query = "FROM User c WHERE c.name = :name",
hints = { @QueryHint(name = "org.hibernate.cacheable", value =
"true") }
)
})
public class User {

@Id
@Column(name="key")
private String key;

@Column(name="name")
private String name;

...
}

Overuse of the query cache may reduce your application's
performance, so use it wisely. First, the query cache will increase
the memory requirements if your queries (stored as key in the
query cache map) are made up of hundreds of characters.
Second, and more important, the result of the query cache is
invalidated each time there's a change in one of the tables you are
querying. This can lead to a very poor hit ratio of the query cache.
Therefore, it is advisable to turn off the query cache unless you
are querying a table that is seldom updated.

Chapter 8

[267]

Clustering web applications
Clustering web applications requires the least effort. As we touched upon earlier,
all you need to do to switch on clustering in a web application is add the following
directive in the web.xml:

<web-app>
 <distributable/>
</web-app>

By default, clustered web applications will use the web cache contained in the
Infinispan configuration. You also have the option of setting up a specific cache
per deployment unit. This can be achieved by adding the replication-config
directive to the jboss-web.xml file and specifying the cache name to use:

<jboss-web>
 <replication-config>
 <cache-name>web.dist</cache-name>
 </replication-config>
</jboss-web>

The previous configuration should obviously reference a cache defined in the main
configuration file:

<cache-container name="web" default-cache="repl">
 <alias>standard-session-cache</alias>

 <distributed-cache mode="ASYNC" name="web.dist" batching="true">
 <locking isolation="REPEATABLE_READ"/>
 <file-store/>
 </distributed-cache>
</cache-container>

Summary
In this chapter, we looked at a lot of configuration options around clustering.
There was a lot of information to take in but, in summary, we will mention the
following key points.

A WildFly cluster can be composed of either standalone nodes or as part of a
domain of servers .The clustering subsystem is defined in the standalone-ha.xml
and standalone-full-ha.xml configurations files.

Clustering

[268]

There are three main components required for clustering: JGroups, Infinispan,
and messaging. JGroups provides communication between nodes in a cluster. By
default, JGroups uses UDP multicast messages to handle the cluster life cycle events.

Within enterprise applications, there are several caches that need to be configured in
order to achieve consistency of data. There are four cache containers configured by
default in WildFly. These are the singleton session bean cluster cache-container,
the SLSB cache-container, the web cache-container, and the Hibernate
cache-container.

The singleton cluster (server) cache-container is configured to replicate singleton
session bean data across nodes in the cluster. The SFSB's (ejb) cache-container is
configured to replicate stateful session bean data across nodes in the cluster. The
web cache-container is configured to replicate HTTP session data across nodes
in the cluster. The Hibernate cache-container uses a more complex approach by
defining a local-query strategy to handle local entities. An invalidation-cache
is used when data is updated and other cluster nodes need to be informed. Finally,
a replicated-cache is used to replicate the query timestamps.

Lastly, we looked at the messaging subsystem, which can be easily clustered
by defining one cluster-connection element. This will cause messages to be
transparently load-balanced across your JMS servers.

In the next chapter we will look at load balancing, the other half of the story when it
comes to configuring high availability.

Load-balancing Web
Applications

In the previous chapter, we illustrated the basic concepts of how to cluster web
applications. However, this is only part of the story. To further improve availability,
we need to look at how to load-balance your WildFly servers.

Load balancing is the distribution of incoming traffic between servers that host
the same application content. Load balancing improves application availability
by ensuring that any single server does not take too much load, and that the
application remains available should a single server fail.

Historically, the JBoss AS has inherited the load-balancing libraries from Tomcat,
which was part of the application server's web module. The web module used
mod_jk (an Apache module) to connect Tomcat to a web server, such as Apache.
For those of you who are unfamiliar with Tomcat and Apache, Tomcat (also known
as Apache Tomcat) is an open source servlet container, while Apache (also known as
Apache2 or Apache HTTPD) is an HTTP web server.

While you can still use mod_jk to connect Undertow to a web server, you should
consider using the mod_cluster API. The mod_cluster API is an HTTPD-based
load balancer that has several advantages over mod_jk, such as improved
performance and reliability. We will cover the installation of both mod_jk and
mod_cluster in this chapter.

Having made this short introduction, next we will introduce the advantages
of using a web server in front of your web applications. We will then continue
by covering the following topics:

• Connecting WildFly to Apache using mod_jk and mod_proxy
• Connecting WildFly to Apache using the mod_cluster API

Load-balancing Web Applications

[270]

Benefits of using the Apache web server
with WildFly
In most real-world situations, it's common to find the Apache web server as an entry
point to your application server. Some advantages of this are:

• Speed: Apache is generally faster at serving static content.
• Security: By placing WildFly behind Apache, you only need to worry about

connections from a single point of entry. WildFly can be configured to accept
connections from a single IP (the server hosting Apache) and will not be
accessible directly from the Internet. Essentially, Apache becomes a smart
proxy server.

• Load balancing and clustering: Using Apache as a frontend, you can
distribute traffic to multiple WildFly server instances. If one of your servers
fails, the communication transparently continues to another node in the cluster.

As stated previously, connecting Apache and WildFly can be done in one of two
ways: by either using Tomcat's mod_jk library or Apache's mod_proxy libraries.
As the installation of both mod_jk and mod_proxy does not differ from earlier
AS releases, we will just include a quick setup guide for your reference.

If, however, you are planning to set up a high-performance, dynamic cluster of
web servers, you should consider migrating to the newer mod_cluster API,
which is discussed in the following sections of this chapter.

Using the mod_jk library
The mod_jk library is a common solution to front WildFly with the Apache web server.
All requests first arrive at the Apache web server. Apache then accepts and processes
any static resource requests, such as requests for HTML pages or graphical images.
Then, with the help of mod_jk, Apache requests dynamic resources, such as JSPs or
Servlets, to Undertow. The communication between Apache and Undertow is sent
over the network using the AJP protocol, as shown in the following screenshot:

Connecting Apache to WildFly via mod_jk

HTTP

Desktop PC

Apache Web Server

AJP

Undertow Web Server

mod_jk AJP Connector

Chapter 9

[271]

Installing Apache
The most common operating system for live environments is Linux. For this
reason, we will demonstrate how to install mod_jk in Ubuntu. Bear in mind that
the configuration may differ slightly depending on the flavor of Linux you use.
These instructions work for Ubuntu Server.

You need to install Apache before attempting to install mod_jk. You can install
Apache by issuing the following commands in the terminal:

sudo apt-get update

sudo apt-get install -y apache2

Make sure that you can view the Apache welcome page after completing the
installation. Simply enter the IP of the server as the URL of your browser.
Take a look at the following screenshot:

Installing mod_jk
Next, we need to install mod_jk. The following command will install the module,
enable it, and restart Apache:

sudo apt-get install libapache2-mod-jk

You can then confirm that the module has been enabled by typing the following
command. This will list all currently enabled modules:

sudo apache2ctl -M

Load-balancing Web Applications

[272]

Then, you need to modify the virtual host within for the default configuration file,
default, which can be found in the /etc/apache2/sites-enabled directory.
The configuration shows the updated default configuration of the file. The line
you need to add is highlighted in the following code:

<VirtualHost *:80>
 ServerAdmin webmaster@localhost

 JkMount /* loadbalancer
 <Directory />
 Options FollowSymLinks
 AllowOverride None
 </Directory>

 ErrorLog ${APACHE_LOG_DIR}/error.log
 CustomLog ${APACHE_LOG_DIR}/access.log combined
</VirtualHost>

The JkMount directive tells Apache which URLs it should forward to the
mod_jk module, which in turn forwards them to the Undertow web container.
In the preceding example, all requests with the URL path /* are sent to the
mod_jk connector. This means that all requests are sent. You can also forward
specific URLs to mod_jk, for example, /website*.

If you forward all URLs, you may want to unmount one or two URLs so that static
data can be served from Apache. This can be achieved using the JkUmount directive.
For example, if you want Apache to serve static media files in the images directory,
you will have a configuration like this:

<VirtualHost *:80>
 ServerAdmin webmaster@localhost

 JkMount /* loadbalancer
 JkUmount /images/* loadbalancer

 <Directory />
 Options FollowSymLinks
 AllowOverride None
 </Directory>

 ErrorLog ${APACHE_LOG_DIR}/error.log
 CustomLog ${APACHE_LOG_DIR}/access.log combined
</VirtualHost>

Chapter 9

[273]

Next, you need to configure the mod_jk workers file, workers.properties, which is
found in the /etc/libapache2-mod-jk folder. This file specifies the IP addresses of
the Undertow web servers, between which the load is balanced. Optionally, you can
add a configuration that specifies how calls should be load-balanced across each of
the servers. For a two-node setup, the file will look like this:

Define worker list
worker.list=loadbalancer,jkstatus
Set properties for worker1 (ajp13)
worker.worker1.type=ajp13
worker.worker1.host=192.168.0.1
worker.worker1.port=8009

Set properties for worker2 (ajp13)
worker.worker2.type=ajp13
worker.worker1worker12.host=192.168.0.2
worker.worker1worker12.port=8009
worker.worker1.lbfactor=1
worker.loadbalancer.type=lb
worker.loadbalancer.balance_workers=worker1,worker2

In the workers.properties file, each node is defined using the worker.[n] naming
convention, where n represents an arbitrary name you choose for each web server
container. For each worker, you must specify the hostname (or IP address) and the
port number of the AJP13 connector running in the web server.

The load balancer type lb means that workers perform weighted round-robin
load balancing with sticky sessions.

You will need to restart Apache after modifying the worker.properties file.
Take a look at the following command:

sudo /etc/init.d/apache2 restart

In WildFly, the default configuration in the ha profiles already defines the AJP
connector. If you are not using one of the ha profiles, for example, you are using
standalone.xml, you need to add the following highlighted line:

<subsystem xmlns="urn:jboss:domain:undertow:1.1">
 <buffer-cache name="default"/>
 <server name="default-server">
 <ajp-listener name="ajp" socket-binding="ajp"/>
 <http-listener name="default" socket-binding="http"/>

 </server>
</subsystem>

Load-balancing Web Applications

[274]

The AJP connector is also already defined in the socket-binding-group element
in the ha profiles. Again, for the non-ha profiles, you will need the AJP configuration.
In the following code snippet, you can see that the AJP connector is listening on port
number 8009. Have a look at the following code:

<socket-binding-group name="standard-sockets"
 default-interface="public" port-offset="0">
 <socket-binding name="management-http"
 interface="management" port="9990"/>
 <socket-binding name="management-https"
 interface="management" port="9993"/>
 <socket-binding name="ajp" port="8009"/>
 ...
</socket-binding-group>

Once you set up this configuration, you should refresh the page showing you the
Apache welcome page. It will now show the WildFly welcome page. This proves
that Apache is directing the requests to WildFly. Stop one of the WildFly servers
and refresh the page once more. You will continue to see the WildFly welcome
page, as all requests are now being directed to the other WildFly server.

Configuring mod_proxy
In WildFly, there is support for an optional module named mod_proxy. When
installed, it can be configured so that Apache acts as a proxy server. This can be
used to forward requests to a particular web application server, such as WildFly,
without having to configure a web connector, such as mod_jk.

To install and enable mod_proxy, you need to run the following commands:

sudo apt-get install libapache2-mod-proxy-html

sudo a2enmod proxy-http

Then, you need to include these two directives in your default site file. You
need to do this for each web application that you wish to forward to WildFly
for example, to forward an application with a context path of /app. Have a
look at the following code:

ProxyPass /app http://localhost:8080/app
ProxyPassReverse /app http://localhost:8080/app

This tells Apache to forward URLs matching http://localhost/app/* to the
WildFly HTTP connector listening on port number 8080.

Chapter 9

[275]

Connecting Apache to WildFly via mod_proxy http

HTTP

Desktop PC

Apache Web Server Undertow Web Server

mod proxy HTTP Connector

HTTP

As shown in the preceding diagram, Apache's mod_proxy is TCP-based and uses
HTTP, so you don't need to add anything else within your WildFly configuration.
On top of this, there is also support for another module, mod_proxy_ajp. This
module can be used in much the same way as mod_proxy except that it uses the
AJP protocol to proxy Apache requests to WildFly. Before you can use it, you will
need to enable it as follows:

sudo a2enmod proxy-ajp

Then, add the highlighted lines to your virtual host in the default site file:

<VirtualHost *:80>
 ServerAdmin webmaster@localhost
 DocumentRoot /var/www/html

 ProxyPass / ajp://localhost:8009/
 ProxyPassReverse / ajp://localhost:8009/

 ErrorLog ${APACHE_LOG_DIR}/error.log
 CustomLog ${APACHE_LOG_DIR}/access.log combined
</VirtualHost>

Here, we simply redirect all traffic (/) to the web server listening on localhost at
port number 8009. Take a look at the following screenshot:

Connecting Apache to WildFly via mod_proxy ajp

HTTP

Desktop PC

Apache Web Server Undertow Web Server

mod proxy ajp.so AJP Connector

AJP

Load-balancing Web Applications

[276]

Again, if you use a non-ha profile, you need to add the AJP listener to your
Undertow configuration, as follows:

<subsystem xmlns="urn:jboss:domain:undertow:1.1">
 <buffer-cache name="default"/>
 <server name="default-server">
 <ajp-listener name="ajp" socket-binding="ajp"/>
 <http-listener name="default" socket-binding="http"/>

 </server>
</subsystem>

Then, you need to add the AJP port as a socket-binding element, as follows:

<socket-binding-group name="standard-sockets" default-
interface="public" port-offset="0">
 <socket-binding name="management-http" interface="management"
 port="9990"/>
 <socket-binding name="management-https" interface="management"
 port="9993"/>
 <socket-binding name="ajp" port="8009"/>

</socket-binding-group>

Load-balancing with mod_cluster
The mod_cluster is an HTTP-based load balancer, which, like mod_jk, can
be used to forward requests to a set of application server instances. There are
several advantages of using mod_cluster over mod_jk or mod_proxy:

• Dynamic clustering configuration
• Better load balancing due to the ability to use server-side load metrics
• Better integration with the application life cycle
• AJP is optional

When using a standard load balancer, such as mod_jk, you have to provide a static
list of nodes that are used to spread load. This process is inconvenient, especially if
you want to dynamically add or remove nodes depending on the amount of traffic
around your application. In addition to this, using a flat cluster configuration can
be tedious and prone to error, especially if you have a high number of nodes in
your cluster.

Chapter 9

[277]

When using mod_cluster, nodes are dynamically added to, or removed from,
your cluster. To achieve this, each WildFly server communicates its life cycle
state to Apache.

Apache sends UDP messages, the so-called advertisements, on a multicast group.
Each of the WildFly servers in the cluster subscribes to this group. It is via this
group that WildFly is informed about HTTP proxies (Apache in this case). Then,
each WildFly instance notifies the HTTP proxies about their availability, and then
the proxy adds them to a list of nodes. Should a WildFly server be removed, the
other WildFly servers in the group will be notified.

The following diagram helps illustrate this concept:

[2]

[3]

UDP message
multicast group

Apache 2

Apache2
mod cluster

[1]

WildFly
mod cluster

lifecycle notifications

Auto-discovery
httpd proxy

Another key feature of mod_cluster resides in the load metrics. Load metrics are
determined on the server side and are then sent to the Apache side as circumstances
change. As a consequence, mod_cluster provides a far more robust architecture
than traditional HTTPD-based load balancers, where metrics are statically held
on the proxy.

For more information on how server-side load metrics are calculated,
refer to the mod_cluster documentation at http://docs.jboss.
org/mod_cluster/1.2.0/html/java.load.html.

Another advantage of using mod_cluster is the ability to intercept life cycle events,
such as undeployment and redeployment. As mentioned previously in this section,
these are synchronized between Apache and the nodes in the cluster.

http://docs.jboss.org/mod_cluster/1.2.0/html/java.load.html
http://docs.jboss.org/mod_cluster/1.2.0/html/java.load.html

Load-balancing Web Applications

[278]

Installing mod_cluster libraries
There are two things to consider when installing and configuring mod_cluster. The
first involves the WildFly configuration, and the second involves downloading and
installing the mod_cluster libraries to Apache. We will look at WildFly first, as it
is preconfigured, and then move on to the installation of mod_cluster.

Bundled in your WildFly installation, you will find the mod_cluster 1.3.0 module.
This subsystem is included as part of the clustering configuration in both the
standalone-ha.xml and domain.xml configuration files, as follows:

<subsystem xmlns="urn:jboss:domain:modcluster:1.2">
 <mod-cluster-config advertise-socket="modcluster" connector="ajp">
 <dynamic-load-provider>
 <load-metric type="cpu"/>
 </dynamic-load-provider>
 </mod-cluster-config>
</subsystem>

The preceding default configuration references its socket-binding through the
advertise-socket element:

<socket-binding name="modcluster" port="0" multicast-
address="224.0.1.105" multicast-port="23364"/>

Also, note that the default configuration uses the AJP protocol. The connector
property references the name of the Undertow listener that the mod_cluster
reverse proxy will connect to. The following is the Undertow configuration with
the ajp-listener highlighted:

<subsystem xmlns="urn:jboss:domain:undertow:1.1">
 <buffer-cache name="default"/>
 <server name="default-server">
 <ajp-listener name="ajp" socket-binding="ajp"/>
 <http-listener name="default" socket-binding="http"/>

 </server>
</subsystem>

Chapter 9

[279]

You will also need to ensure that your interfaces are correctly configured to the
IP of the server your WildFly server(s) is/are running on. Update your hosts.xml
or standalone-ha.xml file, replacing the IP with the your server's IP:

<interfaces>
 <interface name="management">
 <inet-address value="178.62.50.168"/>
 </interface>
 <interface name="public">
 <inet-address value="178.62.50.168"/>
 </interface>
</interfaces>

Let's now move on to the second part—the installation and configuration of
mod_cluster within Apache.

If you do not have Apache installed, you should follow the instructions from earlier
in this chapter (see the Installing Apache section). We first need to install the required
Apache modules. These modules are used to interact with mod_cluster on WildFly.

In this example, we are using Apache 2.2, which requires Version 1.2.x of mod_cluster.
If you are using Apache 2.4, then you can use a later version of mod_cluster, namely
Version 1.3.x. You can also use Version 1.2.x, but it will need to be compiled for Apache
2.4. To see your version of Apache, run the following command:

apache2ctl -V

At the time of writing, 1.3.x binaries were not available from the
download site, so you might need to compile them from the source
(https://github.com/modcluster/mod_cluster/tree/
master)..
Please check the download site before deciding to go down the route of
compiling the source. If you wish to compile the module, you should
check http://www.openlogic.com/blog/bid/247607/JBoss-
AS7-Clustering-Using-mod_cluster-and-http-2-4-Part-1.

https://github.com/modcluster/mod_cluster/tree/master
https://github.com/modcluster/mod_cluster/tree/master
http://www.openlogic.com/blog/bid/247607/JBoss-AS7-Clustering-Using-mod_cluster-and-http-2-4-Part-1
http://www.openlogic.com/blog/bid/247607/JBoss-AS7-Clustering-Using-mod_cluster-and-http-2-4-Part-1

Load-balancing Web Applications

[280]

Go to the download site (http://mod-cluster.jboss.org/downloads), and select
the binaries for your platform. Select mod_cluster modules for httpd:

Once the binaries have been downloaded, you need to extract the archive to
the module directory in Apache. When you extract the downloaded archive,
you should see the following files:

• mod_advertise.so

• mod_manager.so

• mod_proxy_cluster.so

• mod_slotmem.so

You can run the following commands to achieve this. The first one downloads
the file from the mod_cluster website using the URL from the download page.
The second one extracts the TAR file, and the final command copies the libraries
to the modules directory.

wget -c http://downloads.jboss.org/mod_cluster/1.2.6.Final/linux-x86_64/
mod_cluster-1.2.6.Final-linux2-x64-so.tar.gz

tar -xzvf mod_cluster-1.2.6.Final-linux2-x64-so.tar.gz

cp ./*.so /usr/lib/apache2/modules

http://mod-cluster.jboss.org/downloads

Chapter 9

[281]

The mod_cluster configuration
Next, we need to create two files within the /etc/apache2/mods-available
directory. The first one is called mod_cluster.load and contains the list of libraries
this module depends on. The following is the complete content of the file:

LoadModule proxy_module
 /usr/lib/apache2/modules/mod_proxy.so
LoadModule proxy_http_module
 /usr/lib/apache2/modules/mod_proxy_http.so
LoadModule proxy_ajp_module
 /usr/lib/apache2/modules/mod_proxy_ajp.so
LoadModule slotmem_module
 /usr/lib/apache2/modules/mod_slotmen.so

LoadModule manager_module
 /usr/lib/apache2/modules/mod_manager.so
LoadModule proxy_cluster_module
 /usr/lib/apache2/modules/mod_proxy_cluster.so
LoadModule advertise_module
 /usr/lib/apache2/modules/mod_advertise.so

The slotmen module name has changed from mod_slotmen.so to
mod_cluster_slotmen.so in Version 1.3.x.

This list contains the four libraries we just copied to the module folder, and the
pre-existing mod_proxy libraries.

Each of these modules performs a specific role within the load-balancing functionality.
The core modules are mod_proxy, mod_proxy_ajp, and mod_proxy_http. They
forward requests to cluster nodes using either the HTTP/HTTPS protocol or the
AJP protocol.

Next, mod_manager is a module that reads information from WildFly and
updates the shared memory information in conjunction with mod_slotmem.
The mod_proxy_cluster is the module that contains the balancer for mod_proxy.
Finally, mod_advertise is an additional module that allows HTTPD to advertise
via multicast packets, the IP, and port number where the mod_cluster is listening.

Load-balancing Web Applications

[282]

The next file we need to create is called mod_cluster.conf. This file is placed
alongside mod_cluster.load within the /etc/apache2/mods-available
directory, as follows:

CreateBalancers 1

<IfModule manager_module>
 Listen 127.0.1.1:6666
 ManagerBalancerName mycluster

 <VirtualHost 127.0.1.1:6666>
 KeepAliveTimeout 300
 MaxKeepAliveRequests 0
 AdvertiseFrequency 5
 ServerAdvertise On
 EnableMCPMReceive

 <Location />
 Order deny,allow
 Allow from 127.0.1
 </Location>

 </VirtualHost>
</IfModule>

You have to replace the 127.0.1.1 IP address with the IP address that WildFly
uses to connect to Apache. If your Apache and WildFly are on different servers,
then it will be the IP of your Apache server. You also need to update the port
value of 6666 with the one you want to use for communicating with WildFly.

As the configuration currently stands, the Apache virtual host allows incoming
requests from:

• IP addresses with prefix 127.0.1
• The sub-network 127.0.1.0/24

The CreateBalancers directive configures how the HTTP balancers are created
in virtual hosts. The possible values of CreateBalancers are 0, 1, and 2, outlined
as follows:

• 0: Creates balancers in all virtual hosts
• 1: Does not create any balancers
• 2: Creates a balancer for the main server only

Chapter 9

[283]

Setting CreateBalancers to 1 means that you must configure a
balancer in the ProxyPass directive (shown further in the chapter).
For more information, please see this link: http://docs.jboss.
org/mod_cluster/1.2.0/html/native.config.html#d0e485

The KeepAliveTimeout directive allows the same connection to be reused
within 300 seconds. The number of requests per connection is unlimited since
we are setting MaxKeepAliveRequests to 0. The ManagerBalancerName directive
provides the balancer name for your cluster (defaults to mycluster).

What is most important for us is the ServerAdvertise directive. It uses the advertise
mechanism to tell WildFly to whom it should send the cluster information.

You can also refine the time elapsed between multicasting advertising messages
with the AdvertiseFrequency directive, which defaults to 10 seconds.

Overview of the advertising mechanism
The default multicast IP address and port used for advertising is
224.0.1.105:23364. These values match the WildFly bindings
defined in the following socket-binding named modcluster:

<socket-binding name="modcluster" port="0"
 multicast-address="224.0.1.105"
 multicast-port="23364"/>

If you ever change these values in WildFly, you will also have to
match it on the HTTPD side with the AdvertiseGroup directive:

AdvertiseGroup 224.0.1.105:23364

The very last thing you need to configure is the virtual host in your site configuration
file. Create a file called wildfly within the /etc/apache2/sites-enabled directory.
Add the following highlighted code lines:

<VirtualHost *:80>
 ServerAdmin webmaster@localhost

 ProxyPass / balancer://mycluster stickysession=JSESSIONID|jsession
 id nofailover=On
 ProxyPassReverse / balancer://mycluster

 <Location />
 Order deny,allow
 Allow from All
 </Location>

http://docs.jboss.org/mod_cluster/1.2.0/html/native.config.html#d0e485
http://docs.jboss.org/mod_cluster/1.2.0/html/native.config.html#d0e485

Load-balancing Web Applications

[284]

 ErrorLog ${APACHE_LOG_DIR}/error.log
 CustomLog ${APACHE_LOG_DIR}/access.log combined
</VirtualHost>

As a final note, if you have not already enabled proxy_ajp and proxy_http,
you will need to do so in order for mod_cluster to work, as follows:

a2enmod proxy proxy_ajp proxy_http

You can now enable the WildFly site:

sudo a2ensite wildfly

Now, enable the mod_cluster module and restart Apache:

sudo a2enmod mod_cluster

sudo /etc/init.d/apache2 restart

Testing mod_cluster
To verify that everything works correctly, start your WildFly domain ensuring
that your server group is using an ha profile. Deploy the application we used in
Chapter 4, The Undertow Web Server, to that same server group. If all is configured
correctly, you should see the application when you navigate to the context root
chapter4 at http://178.62.50.168/chapter4.

Managing mod_cluster via the CLI
There are a couple of tools that can be used to manage and retrieve runtime
information from your cluster. Your first option is the command-line management
interface, which allows you to investigate the mod_cluster subsystem.

Chapter 9

[285]

The first command you need to learn is list-proxies, which returns merely the
hostnames (and port) of the connected proxies:

[domain@localhost:9990 /] /host=master/server=server-one/
subsystem=modcluster:list-proxies

{

 "outcome" => "success",

 "result" => ["apache-wildfly:6666"]

}

While this can be useful for a quick inspection of your cluster members, you can
get more detailed information with the read-proxies-info command that actually
sends an information message to the HTTPD server:

[domain@localhost:9990 /] /host=master/server=server-one/
subsystem=modcluster:read-proxies-info

{

 "outcome" => "success",

 "result" => [

 "apache-wildfly:6666",

 "Node: [1],Name: master:server-two,Balancer: mycluster,LBGroup:
,Host: 178.62.50.168,Port: 8159,Type: ajp,Flushpackets: Off,Flushwait:
10,Ping: 10,Smax: 26,Ttl: 60,Elected: 0,Read: 0,Transfered: 0,Connected:
0,Load: 97

Node: [2],Name: master:server-one,Balancer: mycluster,LBGroup: ,Host:
178.62.50.168,Port: 8009,Type: ajp,Flushpackets: Off,Flushwait: 10,Ping:
10,Smax: 26,Ttl: 60,Elected: 0,Read: 0,Transfered: 0,Connected: 0,Load:
98

Vhost: [1:1:1], Alias: localhost

Vhost: [1:1:2], Alias: default-host

Vhost: [2:1:3], Alias: localhost

Vhost: [2:1:4], Alias: default-host

Context: [1:1:1], Context: /chapter4, Status: ENABLED

Context: [2:1:2], Context: /chapter4, Status: ENABLED

"

]

}

The mod_cluster subsystem also allows us to use the read-proxies-configuration
command, which provides more verbose information about your cluster. For the sake
of brevity, we will omit printing its output.

Load-balancing Web Applications

[286]

The list of proxies that are part of your cluster can also be modified with the CLI.
For example, you can use the add-proxy command to add a proxy that has not been
captured by the mod_cluster's httpd configuration. Have a look at the following code:

[domain@localhost:9990 /] /host=master/server=server-one/
subsystem=modcluster:add-proxy(host=192.168.0.11, port=9999)

{

 "outcome" => "success"

}

You can also remove proxies from the list using the corresponding remove-proxy
command:

[domain@localhost:9990 /] /host=master/server=server-one/
subsystem=modcluster:remove-proxy(host=192.168.0.11, port=9999)

{

 "outcome" => "success"

}

Managing your web contexts with the CLI
You can use the CLI to manage your web contexts. For example, the enable-context
command can be used to tell Apache that a particular web context is able to receive
requests, as follows:

[standalone@localhost:9990 subsystem=modcluster] :enable-
context(context=/app, virtualhost=default-host)

{"outcome" => "success"}

The corresponding disable-context command can be used to prevent Apache
from sending new requests:

[standalone@localhost:9990 subsystem=modcluster] :disable-
context(context=/app, virtualhost=default-host)

{"outcome" => "success"}

To stop Apache from sending requests from a web context, you can use the
stop-context command, as follows:

[standalone@localhost:9990 subsystem=modcluster] :stop-context(context=/
app, virtualhost=default-host, waittime=50)

{"outcome" => "success"}

Chapter 9

[287]

Adding native management capabilities
If you are not able (or simply don't want) to use the CLI, then you can also configure
the Apache web server to provide a basic management interface through the browser.

In order to do that, all you need to add is the mod_cluster_manager application
context, as follows:

<Location /mod_cluster_manager>
 SetHandler mod_cluster-manager
 Order deny,allow
 Deny from all
 Allow from 192.168.10
</Location>

You can test your mod_cluster manager application by navigating to
http://192.168.10.1/http://192.168.10.1/mod_cluster_manager.

In our example, the mod_cluster manager displays information about all the
WildFly nodes that have been discovered through multicast announcements.
Take a look at the following screenshot:

Load-balancing Web Applications

[288]

In the mod_cluster manager page, you have lots of useful information, such as the
number of hosts that are currently active (in our example, two nodes) and the web
contexts that are available. By default, all web contexts are mounted automatically
(not requiring an explicit mount as for mod_jk), but you can exclude or include them
by clicking on the Disable/Enable link, which is placed next to the web context.

Managing web contexts using the
configuration file
For the sake of completeness, we will add one more option that can be used to
manage your web context using your application server configuration file. By
default, all web contexts are enabled; however, you can exclude web contexts from
the main configuration file using the excluded-contexts directive. Take a look at
the following code:

<subsystem xmlns="urn:jboss:domain:modcluster:1.2">
 <mod-cluster-config excluded-contexts="ROOT, webapp1"/>
</subsystem>

Troubleshooting mod_cluster
Installing and enabling mod_cluster on Apache requires just a few steps to get
working. However, should you have problems, you can allow a verbose output,
which will cause an overview of your configuration to be displayed. Add the
AllowDisplay directive to your mod_cluster_manager application context as
highlighted as follows:

<Location /mod_cluster_manager>
 SetHandler mod_cluster-manager
 Order deny,allow
 Deny from all
 Allow from 192.168.10
</Location>

AllowDisplay On

Chapter 9

[289]

When adding this directive, you will get further information about the modules
loaded into HTTPD. This output may help you narrow down any issues, as shown
in the following screenshot:

One more possible cause of errors is a firewall preventing the broadcast of
advertising messages. Remember that advertisement messages use the UDP port
number 23364 and the multicast address 224.0.1.105. In order to verify if advertising
is an issue, you can try to turn it off by setting the following in the HTTPD side:

ServerAdvertise Off

This directive should be matched on the application server side by the proxy-list
element. This element defines the list of HTTPD servers with which the WildFly
server will initially communicate:

<mod-cluster-config proxy-list="192.168.10.1:6666">
 ...
</mod-cluster-config>

If there is more than one proxy, then the proxy-list will contain a comma-
separated list.

You can also check that mod_cluster is correctly advertising messages by running
a test class Advertise, which can be found at https://github.com/modcluster/
mod_cluster/blob/master/test/java/Advertize.java. You will need to compile
the class and then run it as follows:

java Advertise 224.0.1.105 23364

If the module, that is, advertizing, is correctly configured, you will see something
like the following command lines displayed:

received from /192.168.0.10:23364

received: HTTP/1.0 200 OK

https://github.com/modcluster/mod_cluster/blob/master/test/java/Advertize.java
https://github.com/modcluster/mod_cluster/blob/master/test/java/Advertize.java

Load-balancing Web Applications

[290]

Date: Sat, 26 Jul 2014 20:03:12 GMT

Sequence: 121

Digest: 4dedd3761d451227f36534b63ca2a8a1

Server: b23584e2-314f-404d-8fde-05069bfe5dc7

X-Manager-Address: 127.0.1.1:6666

X-Manager-Url: /b23584e2-314f-404d-8fde-05069bfe5dc7

X-Manager-Protocol: http

X-Manager-Host: 127.0.1.1

Finally, don't forget to check the error log in the Apache logs directory for any errors.

Also, make sure that you have enabled the mod_proxy_http module, as
mod_cluster will fail to work without it.

Load-balancing between nodes
We will run a couple of tests in order to investigate how mod_cluster distributes
the load between several different clients.

For these tests, we will use a very basic web application. The application source can be
found with the source code for this book; the project is called chapter9-balancer. It
contains a simple index.jsp page, which dumps a message on the console:

<%
Integer counter = (Integer)session.getAttribute("counter");
if (counter == null) {
 session.setAttribute("counter",new Integer(1));
}
else {
 session.setAttribute("counter",new Integer(counter+1));
}
System.out.println("Counter"+session.getAttribute("counter"));
%>

After deploying the application, go to the URL http://192.168.0.10/balancer/
index.jsp. After making several requests, you will see that each subsequent request
is sent to the same server. This shows that mod_cluster follows a sticky-session
policy. Have a look at the following screenshot:

http://192.168.0.10/balancer/index.jsp
http://192.168.0.10/balancer/index.jsp

Chapter 9

[291]

For the purpose of our tests, we need a software application that can be used
to launch several requests to our cluster. We will use JMeter, a Java desktop
application, which is generally used to test load, test functional behavior, and
measure performance. JMeter can be downloaded from http://jmeter.apache.
org/download_jmeter.cgi.

In short, a JMeter test plan consists of one or more thread groups, logic controllers,
listeners, timers, assertions, and configuration elements.

For the purpose of our example, we will just create the following elements:

• A Thread Group, which is configured to run 100 subsequent requests
• An HTTP Request element that contains information about the web

application's end point

To do this, open JMeter and navigate to Test Plan | Add | Threads | Thread
Group, as shown in the following screenshot:

http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi

Load-balancing Web Applications

[292]

Set the number of threads (users) to 100. Now right-click on the newly created Thread
Group | Add | Sampler | HTTP Request. In here, add the server IP and path, as
shown to the right-hand side of the following screenshot. The port number can be
left blank as it defaults to port number 80. Take a look at the following screenshot:

Additionally, you should add a Listener element that collates the test plan result
into a table/graph in order for you to view the results. To do this, navigate to HTTP
Request | Add | Listener | View Results in Table. Now, from the top menu,
navigate to Run | Start, and the JMeter test will be executed.

Running the test shows that the requests are roughly split between the two servers.
Have a look at the following screenshot:

Chapter 9

[293]

Using load metrics
Various system load metrics are collected from each server. These statistics allow
a normalized load value to be calculated for each server. When the cluster is under
light load, the incoming requests are evenly distributed to each server node. As the
load increases, the amount of traffic sent to a given node depends on its current load,
that is, more traffic will be directed to the node that has the least load.

The default mod_cluster configuration is configured with a dynamic load provider,
as shown in the following code:

<subsystem xmlns="urn:jboss:domain:modcluster:1.2">
 <mod-cluster-config advertise-socket="modcluster" connector="ajp">
 <dynamic-load-provider>
 <load-metric type="cpu"/>
 </dynamic-load-provider>
 </mod-cluster-config>
</subsystem>

You can customize load balancing by adding further load-metric elements.
For example:

<subsystem xmlns="urn:jboss:domain:modcluster:1.2">
 <mod-cluster-config advertise-socket="modcluster" connector="ajp">
 <dynamic-load-provider history="10" decay="2">
 <load-metric type="cpu" weight="2" capacity="1"/>
 <load-metric type="sessions" weight="1"
 capacity="512"/>
 </dynamic-load-provider>
 </mod-cluster-config>
</subsystem>

The most important factors when computing load balancing are the weight and
capacity properties. The weight (the default is 1) indicates the impact of a metric
with respect to the other metrics. In the previous example, the CPU metric will
have twice the impact compared to the sessions that have a load factor metric of 1.

The capacity property, on the other hand, can be used for a fine-grained control
over the load metrics. By setting a different capacity to each metric, you can actually
favor one node over another while preserving the metric weights.

Load-balancing Web Applications

[294]

The list of supported load metrics is summarized in the following table:

Metric Factor used to compose metric
cpu CPU load
heap Heap memory usage as a percentage of max heap size
sessions Number of web sessions
requests Number of requests/sec
send-traffic Number of outgoing requests in traffic
receive-traffic Number of incoming requests post traffic

The preceding metrics can also be set using the CLI, for example, supposing that
you want to add a metric that is based on the amount of heap used by the proxy.
Don't forget to reload the configuration when notified to do so (enter the reload
command). Here's what you need to issue:

[standalone@localhost:9990 /] /subsystem=modcluster/mod-cluster-
config=configuration/dynamic-load-provider=configuration/load-
metric=heap:add(type=heap)

{

 "outcome" => "success",

 "response-headers" => {

 "operation-requires-reload" => true,

 "process-state" => "reload-required"

 }

}

[standalone@localhost:9990 /] /subsystem=modcluster/mod-cluster-
config=configuration/dynamic-load-provider=configuration:read-resource()

{

 "outcome" => "success",

 "result" => {

 "decay" => 2,

 "history" => 9,

 "custom-load-metric" => undefined,

 "load-metric" => {

 "cpu" => undefined,

 "heap" => undefined

 }

 }

}

Chapter 9

[295]

You can also remove the metric using the remove command, as follows:

[standalone@localhost:9990 /] /subsystem=modcluster/mod-cluster-
config=configuration/dynamic-load-provider=configuration/load-
metric=heap:remove()

{

 "outcome" => "success",

 "response-headers" => {

 "operation-requires-reload" => true,

 "process-state" => "reload-required"

 }

}

An example for setting dynamic metrics on
a cluster
In the following example, we have a very simple cluster comprising two nodes.
Each node has the same JVM operating defaults, and each one is running on two
identical machines.

We will, however, simulate memory-intensive operations on the first node so
that the amount of heap memory used differs between each server, as shown
in the following screenshot:

This is a common scenario in web applications where different circumstances have
a different impact on each server's memory, for example, holding data temporarily
in the HTTP session.

Load-balancing Web Applications

[296]

In such a case, using a round-robin approach to distribute a request may lead to
an "out-of-memory" scenario on some nodes in your cluster. You can try to mitigate
this by simply modifying the configuration of the loading metrics, as follows:

<subsystem xmlns="urn:jboss:domain:modcluster:1.2">
 <mod-cluster-config advertise-socket="mod_cluster">
 <dynamic-load-provider history="10" decay="2">
 <load-metric type="heap" weight="2" />
 <load-metric type="mem" weight="1" />
 <load-metric type="cpu" weight="1" />
 </dynamic-load-provider>
 </mod-cluster-config>
</subsystem>

When using this configuration on both nodes, the heap memory usage has twice
the impact of other enlisted metrics (operating system memory and CPU speed).

The outcome of this is that the second server handles 55 percent of the requests,
while the first server handles 45 percent.

By setting the appropriate capacity, you can further achieve a better level of
granularity to node-weighting, for example, by setting a higher capacity on the
first server, as follows:

 <load-metric type="heap" weight="2" capacity="512"/>

 You can set a lower capacity on the second one, as follows:

 <load-metric type="heap" weight="2" capacity="1"/>

Then, the outcome of the test will be different, as the second server now delivers
more responses than the first one, counterbalancing the weight metric.

The capacity of each metric defaults to 512 and should be configured
such that 0 <= (load / capacity) >= 1.

Summary
In this chapter, we showed various ways of distributing application load across a
set of nodes. This is referred to as load balancing.

Load balancing requires a web server, such as Apache, which directs traffic to your
various application servers.

Chapter 9

[297]

In the first half of this chapter, we illustrated how to use the mod_jk and mod_proxy
libraries in WildFly. The mod_jk library requires some configuration on both the
HTTPD side and the AS side. The mod_proxy library is a more immediate solution
and a preferred solution when using WildFly as it requires simply configuring the
end points on the HTTPD side.

In the second half of the chapter, we looked at the recommended approach to
load-balance calls between applications using mod_cluster.

The main advantage of using mod_cluster versus traditional load balancers is that
it does not require a static list of worker nodes, rather, it registers application servers
and their applications dynamically using a multicast-based advertising mechanism.

This is especially useful in a cloud environment, where you cannot rely on a flat
list of nodes. It is much more beneficial to add or remove nodes on the fly.

Finally, another major benefit of mod_cluster is that you can use a dynamic set
of metrics that are calculated on the server side to define the load between server
nodes. For example, you can give priority to servers that have better specifications,
such as higher RAM or better processing power.

In the next chapter, we are going to look at one of the most important parts of
WildFly administration, that is, security.

Securing WildFly
Security is a key element of any enterprise application. You must be able to control
and restrict who is permitted to access your applications and what operations users
may perform.

The Java Enterprise Edition (Java EE) specification defines a simple, role-based
security model for Enterprise Java Beans (EJBs) and web components. The
implementation of JBoss security is delivered by the PicketBox framework
(formerly known as the JBoss security), which provides authentication,
authorization, auditing, and mapping capabilities to Java applications.

As the number of topics concerned with security requires a book in its own
right, this chapter will focus on the topics that are of interest to the majority
of administrators and developers. We will cover the following topics in detail:

• A short introduction to the Java security API
• The basics of the WildFly security subsystem
• Defining login modules and their integration with various

enterprise components (for example, web application EJB)
• Securing the management interfaces
• Using Secure Sockets Layer (SSL) to encrypt network calls to

web applications

Securing WildFly

[300]

Approaching Java security API
Java EE security services provide a robust and easily configurable security
mechanism to authenticate users and authorize access to application functions
and associated data. To better understand the topics related to security, we will
first provide some basic definitions:

Authentication is the process of ensuring that a person is who he claims to be.
Authentication is usually performed by checking that a user's login credentials
match those stored in a datastore. Login credentials typically consist of a username
and password but can also be in the form of an X.509 certificate or one-time password
(OTP). The following figure demonstrates the flow of a login process. The end user
provides a username and password, which is submitted to the application server.
The login module checks the user's details against those stored in a datastore. If the
credentials match, the user is logged in; if the credentials do not match, then the
login process will fail. Have a look at the following diagram:

login

modules
password match?

Authentication
datastore

User Password

Login with
John / Smith

User

Authentication

Authorization is the process by which you verify that a user has the permission to
access a particular system resource. Authorization should occur after authentication
has taken place. Have a look at the following diagram:

login

modules
Role Manager

required

Authorization
datastore

User - Roles

User

Authorization

HTTP/GET secret.jsp

Chapter 10

[301]

In Java EE, the component containers are responsible for providing application
security. A container basically provides two types of security: declarative
and programmatic.

• Declarative security defines an application component's security
requirements by means of deployment descriptors and/or annotations.
A deployment descriptor is an external file that can be modified without
the need to recompile the source code.
For example, Enterprise JavaBeans components can use an EJB deployment
descriptor that must be named ejb-jar.xml and placed in the META-INF
folder of the EJB JAR file.
Web components use a web application deployment descriptor named web.
xml located in the WEB-INF directory.
Annotations are specified within a class file, which means any changes
will require the code to be recompiled.
Using annotations provides many benefits over deployment descriptors.
First, it is clearer in the source code as to what is happening rather than
having this information scattered over various XML files. Second, it is
easier to maintain as there are fewer configuration files.
The use of annotations also means less boilerplate code for the developer.

• Programmatic security comes into the picture when security checks are
embedded within an application code. It can be used when declarative
security alone is not sufficient to express the security model of an application.
For example, the Java EE security API allows the developer to test whether
or not the current user has a specific role, using the following methods:

 ° isUserInRole(): Use this method within servlets and JSPs
(adopted in javax.servlet.http.HttpServletRequest)

 ° isCallerInRole(): Use this method in EJBs (adopted in
javax.ejb.SessionContext)

In addition, there are other API calls that provide access to the user's
identity, which are as follows:

 ° getUserPrincipal(): Use this method within servlets and JSPs
(adopted in javax.servlet.http.HttpServletRequest)

 ° getCallerPrincipal(): Use this method in EJBs
(adopted in javax.ejb.SessionContext)

Securing WildFly

[302]

Using these APIs, you can develop a complex authorization
model programmatically.

While annotations themselves are programmatic, they enable a
declarative style of security. For this reason, annotations are considered
to encompass both the declarative and programmatic security concepts.

The Java EE security model is declarative, due to which embedding the security
code into your business component is not an option. The term declarative here
means that you describe the security roles and permissions in a standard XML
descriptor. Declarative security allows the logic from this cross-cutting concern
to be extracted away from core business logic. This results in a clearer and more
readable code.

The default implementation of the declarative security model is based on Java
Authentication and Authorization Service (JAAS) login modules and subjects.
WildFly security has a security proxy layer that allows the developer to create custom
security services if the default implementation does not suffice. This allows custom
security to be built independently of the bean object using it, without polluting the
business code.

WildFly uses the PicketBox framework, which builds on JAAS. PicketBox is used
to secure all the Java EE technologies running in the application server.

The WildFly security subsystem
The WildFly security subsystem is an extension of the application server and is
included by default in both the standalone servers and domain servers. Have a
look at the following code:

<extension module="org.jboss.as.security"/>

The following is the default security subsystem contained in the server
configuration file:

<subsystem xmlns="urn:jboss:domain:security:1.2">
 <security-domains>
 <security-domain name="other" cache-type="default">
 <authentication>
 <login-module code="Remoting" flag="optional">
 <module-option name="password-stacking"
 value="useFirstPass"/>
 </login-module>

Chapter 10

[303]

 <login-module code="RealmDirect" flag="required">
 <module-option name="password-stacking"
 value="useFirstPass"/>
 </login-module>
 </authentication>
 </security-domain>
 <security-domain name="jboss-web-policy" cache-type="default">
 <authorization>
 <policy-module code="Delegating" flag="required"/>
 </authorization>
 </security-domain>
 <security-domain name="jboss-ejb-policy" cache-type="default">
 <authorization>
 <policy-module code="Delegating" flag="required"/>
 </authorization>
 </security-domain>
 </security-domains>
</subsystem>

As you can see, the configuration is pretty short, as it relies largely on default values,
especially for high-level structures, such as the security management area.

A security domain does not explicitly require an authorization policy.
If a security domain does not define an authorization module, the
default jboss-web-policy and jboss-ejb-policy authorizations
are used. In such a case, the delegating authorization policy is applied,
which simply delegates the authorization to another module declared
as <module-option>.

You can override the default authentication/authorization managers with your
own implementation by defining your own security management configuration. It is
unlikely that you will have to override these interfaces, so we will concentrate on the
security-domain element, which is a core aspect of the WildFly security subsystem.

A security domain can be imagined as a customs office for foreigners. Before the
request crosses the WildFly borders, the security domain performs all the required
authorization and authentication checks and notifies the caller whether they can
proceed or not.

Security domains are generally configured at server startup or in a running server
and subsequently bound to the JNDI tree under the key java:/jaas/. Within the
security domain, you can configure login authentication modules so that you can
easily change your authentication provider by simply changing its login module.

Securing WildFly

[304]

The following table describes all the available login modules, including a short
description of them:

Login module Description
Client This login module is designed to establish caller identity

and credentials when AS is acting as a client. It should
never be used as part of a security domain for actual server
authentication.

Database This login module loads user/role information from a
database.

Certificate This login module is designed to authenticate users based on
the X.509 certificates.

CertificateRoles This login module extends the Certificate login module
to add role-mapping capabilities from a properties file.

DatabaseCertificate This login module extends the Certificate login module
to add role-mapping capabilities from a database table.

DatabaseUsers This is a JDBC-based login module that supports
authentication and role mapping.

Identity This login module simply associates the principles specified
in the module options with any subject authenticated against
the module.

Ldap This login module loads user/role information from an LDAP
server.

LdapExtended This login module is an alternate LDAP login module
implementation that uses searches to locate both the user as
well as the associated roles to bind the authentication.

RoleMapping This login module is used to map roles that are the end result
of the authentication process to one or more declarative roles.

RunAs This login module can be used to allow another login module
to interact with a secured EJB that provides authentication
services.

Simple This login module is used to quickly set up the security for
testing purposes.

ConfigureIdentity This is a login module that associates the principles specified
in the module options with any subject authenticated against
the module.

PropertiesUsers This login module uses a properties file to store the username
and password for authentication. No roles are mapped.

SimpleUsers This login module stores username and password as options.
LdapUsers This login module authenticates users using a LDAP server.

Chapter 10

[305]

Login module Description
Kerberos This login module uses Sun's Kerberos login module as a

mechanism for authentication.
SPNEGOUsers This login module works in conjunction with

SPNEGOAuthenticator to handle the authentication.
AdvancedLdap This login module is a refactoring of the

LdapExtLoginModule, which is able to separate the login
steps (find, authenticate, or map roles) so that any of the
actions can be undertaken separately.

AdvancedADLdap This login module is an extension of the AdvancedLdap
login module, which is also able to query the primary group
of the user being authenticated.

UsersRoles This login module is a simple properties-map-based login
module that consults two Java properties-formatted text files
to map the username to the password (users.properties)
and username to roles (roles.properties).

Activating a login module is a two-step procedure, which is as follows:

1. First, you need to define the login module within your standalone.xml/
domain.xml configuration file.

2. Then, you need to tell your applications to use a login module to perform
authentication and authorization.

In earlier releases of the application server, the login module was
configured in a separate file named login-config.xml. Porting
earlier login modules into the new application server is not too
complex, as the format of the login module is pretty much the same
as the new application server.

We will now expand these points in more detail. Let's see first how to define
some commonly-used login modules, and then we will apply them to the Java
EE components, such as servlets, EJB, and web services.

Using the UsersRoles login module
The UsersRoles login module is one of the simplest security domains that can
be implemented for testing purposes in your applications. It is based on two files,
which are as follows:

• users.properties: This file contains the list of usernames and passwords
• roles.properties: This file contains the mapping between the users and

the roles

Securing WildFly

[306]

Here is a sample UsersRoles configuration that stores the security files in the
application server's configuration directory:

<security-domain name="basic" cache-type="default">
 <authentication>
 <login-module code="UsersRoles" flag="required">
 <module-option name="usersProperties" value="${jboss.server.
 config.dir}/users.properties"/>
 <module-option name="rolesProperties" value="${jboss.server.
 config.dir}/roles.properties"/>
 </login-module>
 </authentication>
</security-domain>

All you need to do to start using your security domain is add the two properties
files into the specified path (for a standalone system, the default is JBOSS_HOME/
standalone/configuration) and add your username and password within it.
This login module does not support hashed passwords; only clear passwords are
supported. For example, the users.properties file can contain something like
the following:

myusername=mypassword

The roles.properties file contains the sets of roles for a given username.
Adding a suffix to the username, as shown in the second line of the following
code, allows you to assign the username roles to a group of roles:

myusername=myrole1,myrole2
myusername.MyRoleGroup1=myrole3,myrole4

This means that authenticating with the admin/admin credentials will assign
the role of manager to the user.

Using the Database login module
A database security domain follows the same logic exposed in the earlier example,
the difference being that it stores the credentials within the database. In order to
run this example, we need to refer to the MySqlDS datasource that we created earlier,
in Chapter 3, Configuring Enterprise Services. Have a look at the following code:

<security-domain name="mysqldomain" cache-type="default">
 <authentication>
 <login-module code="Database" flag="required">
 <module-option name="dsJndiName" value="java:/
 MySqlDS"/>
 <module-option name="principalsQuery" value="select
 passwd from USERS where user=?"/>

Chapter 10

[307]

 <module-option name="rolesQuery" value="select role,
 'Roles' from USER_ROLES where user=?"/>
 </login-module>
 </authentication>
</security-domain>

You will notice in the rolesQuery module option that there is a second
select item (Roles). This corresponds to a RoleGroup column and must
always be supplied with "R" (in capital letters)..

In order to start using this configuration, you first have to create the required tables
and insert some sample data into it:

CREATE TABLE USERS(user VARCHAR(64) PRIMARY KEY, passwd VARCHAR(64));
CREATE TABLE USER_ROLES(user VARCHAR(64), role VARCHAR(32));

INSERT INTO USERS VALUES('admin', 'admin');
INSERT INTO USER_ROLES VALUES('admin', 'Manager');

As you can see, the admin user will map to the Manager role. One caveat of this
configuration is that it uses clear-text passwords in the database so, before rolling
this module production, you should consider additional security for your login
module. Let's see how you can do this in the next section.

Encrypting passwords
Storing passwords in the database as clear-text strings is not considered a good
practice. As a matter of fact, a database has even more potential security issues
than a regular filesystem.

Fortunately, securing application passwords is relatively easy and can be achieved
by adding a few extra options to your login module. As a minimum, you need to
specify that the stored passwords are encrypted using a message digest algorithm.
For example, in the mysqlLogin module, you can add the highlighted lines at the end:

<login-module code="Database" flag="required">
 <module-option name="dsJndiName" value="java:/MySqlDS"/>
 <module-option name="principalsQuery" value="SELECT passwd FROM
 USERS WHERE user=?"/>
 <module-option name="rolesQuery" value="SELECT role, 'Roles' FROM
 USER_ROLES WHERE user=?"/>
 <module-option name="hashAlgorithm" value="MD5"/>
 <module-option name="hashEncoding" value="BASE64"/>
 <module-option name="hashStorePassword" value="true"/>
</login-module>

Securing WildFly

[308]

Here, we specified that the password will be hashed against an MD5 hash algorithm;
you can alternatively use any other algorithm allowed by your JCA provider, such
as SHA.

For a production environment, you should avoid MD5 hashing, as it is a
very weak hash. Ideally, you should use something like SHA-512 with a
large number of hash iterations. You should also use a single, randomly
generated salt per user. At the time of writing, one of the best hashing
algorithms is bcrypt, which generates the salt for you. You should do
your research before making a final decision. These encryptions are not
supported by the DatabaseServerLoginModule, so you will need
to create your own custom login module. Refer to the following link to
write a custom login module: https://docs.jboss.org/jbossas/
docs/Server_Configuration_Guide/4/html/Writing_Custom_
Login_Modules-A_Custom_LoginModule_Example.html.

For the sake of completeness, we include here a small application, which uses
the java.security.MessageDigest and the org.jboss.security.Base64Util
classes to generate the base-64 hashed password to be inserted in the database.
Have a look at the following code:

public class Hash {

 public static void main(String[] args) throws Exception {
 String password = args[0];

 MessageDigest md = MessageDigest.getInstance("MD5");

 byte[] passwordBytes = password.getBytes();
 byte[] hash = md.digest(passwordBytes);
 String passwordHash =
 Base64.getEncoder().encodeToString(hash);
 System.out.println("password hash: "+passwordHash);
 }
}

https://docs.jboss.org/jbossas/docs/Server_Configuration_Guide/4/html/Writing_Custom_Login_Modules-A_Custom_LoginModule_Example.html
https://docs.jboss.org/jbossas/docs/Server_Configuration_Guide/4/html/Writing_Custom_Login_Modules-A_Custom_LoginModule_Example.html
https://docs.jboss.org/jbossas/docs/Server_Configuration_Guide/4/html/Writing_Custom_Login_Modules-A_Custom_LoginModule_Example.html

Chapter 10

[309]

Running the main program with admin as the argument generates the hash
X8oyfUbUbfqE9IWvAW1/3. This hash will be the updated password for the
admin user of our database. Have a look at the following screenshot:

If you are not using Java 8, you can use the org.jboss.security.
Base64Utils library instead of Java 8 as shown in this section.

Using an LDAP login module
The Lightweight Directory Access Protocol (LDAP) is the de facto standard for
providing directory services to applications. An LDAP server can provide central
directory information for the following:

• User credentials (login and password)
• User directory information (such as names and e-mail addresses)
• Web directories

The working of LDAP revolves around a data structure known as entry. An entry
has a set of named component parts called attributes that hold the data for that
entry. These attributes are like the fields in a database record.

An entry's content and structure are defined by its object class. The object class
(along with server and user settings) specifies which attributes must exist and
which may exist in that particular entry.

All entries stored in an LDAP directory have a unique distinguished name or DN.
The DN for each LDAP entry is composed of two parts: the relative distinguished
name (RDN) and the location within the LDAP directory where the record resides.

Securing WildFly

[310]

In practice, the RDN is the portion of your DN that is not related to the directory
tree structure and, in turn, is composed of one or several attribute names/value pairs.
Let's see a concrete example of an organization, as shown in the following diagram:

o=Acme

ou=Sales

Person cn=John Smith

ou=Marketing

Organizational
unit

Organization

c=US

In the preceding diagram, cn=John Smith (where cn stands for "common name")
could be an RDN. The attribute name is cn, and the value is John Smith.

On the other hand, the DN for John Smith would be cn=John Smith,
ou=Marketing, o=Acme, and c=US (where ou is short for organizational unit,
o is short for organization, and c is for country).

Connecting LDAP to WildFly
Connecting WildFly and LDAP can be done by means of several LDAP login
modules. The first and obvious thing we need to do is run an instance of an LDAP
server. Today, there are a huge number of LDAP servers available (both commercial
and open source), and maybe you already configured one to run in your company.
Just in case you don't have one, or simply don't want to add sample data to it, we
suggest you have a look at the Apache Directory project (http://directory.
apache.org/). It provides an excellent solution to get started with LDAP and to
build complex directory infrastructures.

Once installed, we suggest that you use the Apache Directory Studio (available
at the same link), as it allows you to quickly create a directory infrastructure. The
simplest way to create a directory from scratch is by means of an LDAP Data
Interchange Format (LDIF) file. Within this file, you can specify all entries that
will be loaded by the LDAP engine.

http://directory.apache.org/
http://directory.apache.org/

Chapter 10

[311]

A quick shortcut to import an LDIF file from the Apache studio is in
the file menu File | Import | LDIF into LDAP.

Here's a basic LDIF file we will use:

dn: dc=example,dc=com
objectclass: top
objectclass: dcObject
objectclass: organization
dc: example
o: MCC

dn: ou=People,dc=example,dc=com
objectclass: top
objectclass: organizationalUnit
ou: People

dn: uid=admin,ou=People,dc=example,dc=com
objectclass: top
objectclass: uidObject
objectclass: person
uid: admin
cn: Manager
sn: Manager
userPassword: secret

dn: ou=Roles,dc=example,dc=com
objectclass: top
objectclass: organizationalUnit
ou: Roles

dn: cn=Manager,ou=Roles,dc=example,dc=com
objectClass: top
objectClass: groupOfNames
cn: Manager
description: the JBossAS7 group
member: uid=admin,ou=People,dc=example,dc=com

Securing WildFly

[312]

Once you import this information into the LDAP server, you will end up with a
small directory, as shown in the following screenshot:

Within this directory, we have just one user registered as admin, belonging to the
Manager role, as in other login modules we have seen in the earlier sections.

Now, we will configure the LDAP connection on WildFly. For our purposes, we will
use the LdapExtended login module implementation, as shown in the following code.
This implementation uses searches to locate both the user and the associated roles to
bind as per authentication. The roles query will follow distinguished names (DNs)
recursively to navigate a hierarchical role structure. Have a look at the following code:

<login-module code="LdapExtended" flag="required">

 <module-option name="java.naming.factory.initial"
 value="com.sun.jndi.ldap.LdapCtxFactory"/>
 <module-option name="java.naming.provider.url"
 value="ldap://localhost:10389"/>
 <module-option name="java.naming.security.authentication"
 value="simple"/>
 <module-option name="bindDN" value="uid=admin,ou=system"/>
 <module-option name="bindCredential" value="secret"/>
 <module-option name="baseCtxDN" value="ou=People,dc=example,
 dc=com"/>
 <module-option name="baseFilter" value="(uid={0})"/>
 <module-option name="rolesCtxDN" value="ou=Roles,dc=example,
 dc=com"/>
 <module-option name="roleFilter" value="(member={1})"/>
 <module-option name="roleAttributeID" value="cn"/>
 <module-option name="searchScope" value="ONELEVEL_SCOPE"/>
 <module-option name="allowEmptyPasswords" value="true"/>
</login-module>

Chapter 10

[313]

Here is a brief description of the LdapExtended module's properties:

• bindDN: This is the DN used to bind against the LDAP server for the user
and roles queries, which, in our case, is "uid=admin,ou=system".

• baseCtxDN: This is the fixed DN of the context to start the user search from.
In our example, it is "ou=People,dc=example,dc=com.".

• baseFilter: This is a search filter used to locate the context of the user to
be authenticated. The input username or userDN, as obtained from the login
module, will be substituted into the filter anywhere a {0} expression is seen.

• rolesCtxDN: This is the fixed DN of the context to search for user roles.
Consider that this is not the DN of the location of the actual roles; rather,
this is the DN of where the objects containing the user roles are.

• roleFilter: This is a search filter used to locate the roles associated
with the authenticated user. An example search filter that matches on
the input username is (member={0}). An alternative that matches on
the authenticated user DN is (member={1}).

• roleAttributeID: This is the name of the role attribute of the context
that corresponds to the name of the role.

• searchScope: This sets the search scope to one of the following strings:
 ° ONELEVEL_SCOPE: This scope searches for users and associated

roles directly under the named roles context.
 ° SUBTREE_SCOPE: If the role's context is DirContext, this scope

searches the subtree rooted at the named object, including the
named object itself. If the role's context is not DirContext,
this scope searches only the object.

 ° OBJECT_SCOPE: This scope searches the named roles context only.

• allowEmptyPasswords: This is a flag indicating whether empty(length==0)
passwords should be passed to the LDAP server.

Securing web applications
Okay! So, we touched upon some of the commonly used login modules. These login
modules can be used by any Java EE application, so it's time to show a concrete
example. In this section, we will show you how to apply a login module to a web
application in order to show an implementation of basic web authentication.

Securing WildFly

[314]

Basic access authentication is the simplest way to provide a username
and password when making a request through a browser.
It works by sending an encoded string containing the user credentials.
This Base64-encoded string is transmitted and decoded by the receiver,
resulting in a colon-separated username and password string.

The first thing we need to do is turn on web authentication. This requires you to define
the security-constraints in the web application configuration file (web.xml). Have
a look at the following code:

<web-app>
...
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>HtmlAuth</web-resource-name>
 <description>application security constraints
 </description>
 <url-pattern>/*</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 <http-method>PUT</http-method>
 <http-method>DELETE</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>Manager</role-name>
 </auth-constraint>
 </security-constraint>
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>Sample Realm</realm-name>
 </login-config>

 <security-role>
 <role-name>Manager</role-name>
 </security-role>
</web-app>

The preceding configuration will add a security constraint to all URLs, which
obviously includes all your JSP servlets. Access will be restricted to users
authenticated with the Manager role.

Considering that we are using the Database login module, the
Manager role will be granted to users that have authenticated
with the admin credentials.

Chapter 10

[315]

The next configuration tweak needs to be performed in JBoss web deployment's
descriptor WEB-INF/jboss-web.xml. There, you need to declare the security domain
that will be used to authenticate the users. Have a look at the following code:

<jboss-web>
 <security-domain>java:/jboss/env/mysqldomain</security-domain>
</jboss-web>

Pay attention to the security-domain element. The value of this element must be
exactly the same as the one you typed into the security domain's name attribute.

For an overview of which JNDI names are valid in WildFly, please
refer to the following link: https://docs.jboss.org/author/
display/WFLY8/Developer+Guide#DeveloperGuide-
ReviewtheJNDINamespaceRules.

The following diagram outlines the whole configuration sequence as applied
to a Database login module. Have a look at the following diagram:

standalone.xml / domain.xml

<security-domain
name=”mysqldomain”>

Web application

web.xml

<auth-constraint>
<role-name>Manager</role-name>
</auth-constraint>

jboss.web.xml

<security-domain>
java:/jaas/mysqldomain

</security-domain>

USER_ROLES

admin Manager

Once you deploy your application, the outcome of this action should be a popup,
requesting user authentication, as shown in the following screenshot:

Logging in with admin/admin will grant access to the application with the
Manager role.

https://docs.jboss.org/author/display/WFLY8/Developer+Guide#DeveloperGuide-ReviewtheJNDINamespaceRules
https://docs.jboss.org/author/display/WFLY8/Developer+Guide#DeveloperGuide-ReviewtheJNDINamespaceRules
https://docs.jboss.org/author/display/WFLY8/Developer+Guide#DeveloperGuide-ReviewtheJNDINamespaceRules

Securing WildFly

[316]

Securing EJBs
Securing applications by means of a web login form is the most frequent option
in enterprise applications. Nevertheless, the HTTP protocol is not the only choice
available to access applications. For example, EJBs can be accessed by remote clients
using the RMI-IIOP protocol. In such a case, you should further refine your security
policies by restricting access to the EJB components, which are usually involved
in the business layer of your applications.

How does security happen at EJB level?
Authentication must be performed before any EJB method is called,
and authorization should be performed at the beginning of each EJB
method call.

The basic security checks can be achieved using the following five annotations:

• @org.jboss.ejb3.annotation.SecurityDomain: This annotation specifies
the security domain, which is associated with a specific class.

• @javax.annotation.security.RolesAllowed: This annotation specifies
the list of roles permitted to access a method(s) in an EJB.

• @javax.annotation.security.RunAs: This annotation assigns a role
dynamically to the EJB during the invocation of a method. It can be used
if you need to temporarily allow permission to access a certain method.

• @javax.annotation.security.PermitAll: This annotation allows all
roles to access a particular bean method. The purpose of this annotation is
to widen security access to some methods in a situation where you don't
exactly know what role will access the EJB. (Imagine that some modules
have been developed by a third party and they access your EJB with some
poorly identified roles).

• @javax.annotation.security.DenyAll: This annotation denies access
to all roles. It has a purpose similar to that of PermitAll.

In the following example, we are restricting access to the EJB named SecureEJB
only to the authorized role of Manager:

import org.jboss.ejb3.annotation.SecurityDomain;
import javax.annotation.security.RolesAllowed;

@Stateless
@SecurityDomain("mysqldomain")
@RolesAllowed({ "Manager" })

Chapter 10

[317]

public class SecureEJB {
 ...
}

Be careful! There is more than one SecurityDomain annotation
available in the server's classpath. As shown here, you have to
include org.jboss.ejb3.annotation.SecurityDomain.
The @RolesAllowed annotation, on the other hand, calls for
importing javax.annotation.security.RolesAllowed.

Annotations can also be applied at the method level. For example, if we need a special
role named SuperUser to insert a new user, then we tag the method, as follows:

@RolesAllowed({"SuperUser"})
public void createUser(String country,String name) {
 User customer = new User ();
 customer.setCountry(country);
 customer.setName(name);
 em.persist(customer);
}

Securing web services
Web services authorization can be carried out in two ways, depending on whether
we are dealing with a POJO-based web service or EJB-based web services.

Security changes to POJO web services are identical to those that we introduced for
servlets or JSP, which include defining security-constraints into web.xml and
login modules into jboss-web.xml.

If you are using a web client to access your web service, that's all you need to get
authenticated. If you are using a standalone client, you will need to specify the
credentials to the JAX-WS factory, as shown in the following code snippet:

 JaxWsProxyFactoryBean factory = new JaxWsProxyFactoryBean();

 factory.getInInterceptors().add(new LoggingInInterceptor());
 factory.getOutInterceptors().add(new LoggingOutInterceptor());

 factory.setServiceClass(POJOWebService.class);
 factory.setAddress("http://localhost:8080/pojoService");
 factory.setUsername("admin");
 factory.setPassword("admin");
 POJOWebService client = (POJOWebService) factory.create();

 client.doSomething();

Securing WildFly

[318]

What about EJB-based web services? The configuration is slightly different. As the
security domain is not specified in the web descriptors, we have to provide it by
means of annotations:

@Stateless
@WebService(targetNamespace = "http://www.packtpub.com/",
 serviceName = "SecureEJBService")
@WebContext(authMethod = "BASIC",
 secureWSDLAccess = false)
@SecurityDomain(value = "mysqldomain")
public class SecureEJB {
 ...
}

As you can see, the @WebContext annotation reflects the same configuration options as
POJO-based web services, with BASIC authentication and unrestricted WSDL access.

The @SecurityDomain annotation should be familiar to you now, as we introduced
it when showing you how to secure an EJB. As you can see in the preceding web
service example, it is the equivalent of the information contained in the jboss-web.
xml file (it references the mysqldomain security domain).

If you prefer using XML deployment descriptors, the previous security
configuration can also be specified by means of the META-INF/ejb-
jar.xml and META-INF/jboss-ejb3.xml files.

Securing the management interfaces
One of the most important tasks for the system administrator is restricting access
to the server management interfaces. Without a security policy, every user can
gain access to the application server and modify its properties.

The attribute that is used to switch on security on the management interface is
a security realm that needs to be defined within the security-realms section.
Have a look at the following code:

<management>
 <security-realms>
 <security-realm name="ManagementRealm">
 <authentication>
 <local default-user="$local" skip-group-
 loading="true"/>
 <properties path="mgmt-users.properties" relative-
 to="jboss.server.config.dir"/>

Chapter 10

[319]

 </authentication>
 <authorization map-groups-to-roles="false">
 <properties path="mgmt-groups.properties" relative-
 to="jboss.server.config.dir"/>
 </authorization>
 </security-realm>
 </security-realms>
 ...
 <management-interfaces>
 <http-interface security-realm="ManagementRealm" http-upgrade-
 enabled="true">
 <socket-binding http="management-http"/>
 </http-interface>
 </management-interfaces>
</management>

With the default configuration, the user properties are stored in the mgmt-users.
properties file and the group properties in the mgmt-groups.properties file.
Both these files can be found in the configuration directory of your server.

Users and groups can be added to these property files at any time.
Any updates after the server has started are detected automatically.

By default, this management realm expects the entries to be in the following format:

username=HEX(MD5(username ':' realm ':' password))

This means that each user is associated with a hex-encoded hash that consists of
the username, the name of the realm, and the password.

To add new users, you can use the utility script contained in the bin folder of your
WildFly installation named add-user.sh (Linux) or add-user.bat (Windows).
As you can see from the following screenshot, the add-user script requires the
following pieces of information:

• Realm: This is the name of the realm used to secure the management
interfaces. If you just press Enter, the user will be added in the default
realm named ManagementRealm.

• Username: This is the username we are going to add (it needs to
be alphanumeric).

• Password: This is the password field, which needs to be different from
the username.

• Groups: This is the name of the group you want the user to be part of.
If you leave this blank, you will not be added to any groups.

Securing WildFly

[320]

• AS process: This determines whether you want the user to be used to
connect to another WildFly instance.

Here, we have just added the user chris to the default realm. This resulted in the
following property being added to mgmt-users.properties of your standalone
and domain configurations:

chris=554dadf6fa222d6ea11a470f3dea7a94

You will now be able to connect to a remote WildFly management interface using
this user, as shown in the following screenshot:

Chapter 10

[321]

A much easier way to add users is to use a non-interactive shell. This approach
works by passing the username, password, and optionally the realm name to the
add-user script:

add-user.sh myuser mypassword realm1

Role-based access control
Role-based access control (RBAC) is a new feature introduced in WildFly 8. It
allows system administrators to create users for the administration console but
with restrictions to certain parts of the system. In JBoss AS 7, an admin console user
had access to everything, which is equivalent to the SuperUser role in WildFly 8.

RBAC is not enabled by default. To enable it, run the following command:

jboss-cli.sh --connect --command="/core-service=management/
access=authorization:write-attribute(name=provider,value=rbac)"

Then, reload the server config:

jboss-cli.sh --connect --command=":reload"

If you have existing users before enabling RBAC, you need to manually configure
each user by mapping that user to a role. If we had a user called Yevai and wanted
to assign her the role of SuperUser, we would do the following:

jboss-cli.sh --connect --command="/core-service=management/access=
 authorization/role-mapping=SuperUser/include=
 user-yevai:add(name=yevai,type=USER)"

There are seven predefined roles in WildFly 8. Each of them is outlined in the
following table. They are ordered with the most restrictive roles at the top and
the least restrictive at the bottom.

Role Permissions
Monitor This user can read the configuration and the current runtime state
Operator This user has all the permissions of the preceding role, and can

modify the runtime state, such as restarting or reloading the server,
and flushing the database connection pool

Maintainer This user has all the permissions of all the preceding roles, and can
modify the persistent state, such as deploying applications and
setting up new datasources

Deployer This user has all the permissions of all the preceding roles, but
with permissions to applications only. This user cannot change the
configuration of the server

Securing WildFly

[322]

Role Permissions
Administrator This user has all the permissions of all the preceding roles, and can

view and modify sensitive data, such as the access control system
Auditor This user has all the permissions of all the preceding roles, and can

view and modify resources to administer the audit-logging system
SuperUser This user has all permissions

Configuring groups
One of the new features in WildFly is the ability to assign users to groups. This
means that you can assign a bunch of users to a group and then the group to a
role. To create a new user and assign them to a group, you can run the following
noninteractive command:

user-add.sh -u tavonga -p mypassword -g MyGroup

Users can be managed via the admin console by a user who has the role of either
Administrator or SuperUser. To do this, log in to the admin console, and navigate
to the Administration tab. Here, you can add users to groups, create groups, and
finally view members of each role. Have a look at the following screenshot:

Chapter 10

[323]

Securing the transport layer
If you create a mission-critical application with just the bare concepts we covered
until now, you will not be guaranteed to be shielded from all security threats. For
example, if you need to design a payment gateway, where credit card information
is transmitted by means of an EJB or servlet, using just the authorization and
authentication stack is really not enough.

In order to prevent disclosure of information, you have to use a protocol that
provides data encryption. Encryption is the conversion of data into a form that
cannot be understood by people or systems eavesdropping on your network.
Conversely, decryption is the process of converting encrypted data back into its
original form, so it can be understood.

The protocols used to secure communication are SSL and TLS, the latter being
considered a replacement for the older SSL.

The differences between the two protocols are minor. TLS uses stronger
encryption algorithms and has the ability to work on different ports.
For the rest of our chapter, we will refer to SSL for both protocols.

There are two basic techniques to encrypt information: symmetric encryption
(also called secret key encryption) and asymmetric encryption (also called
public key encryption).

Symmetric encryption is the oldest and best-known technique. It is based on a secret
key, which is applied to the text of a message to change the content in a particular way.
As long as both the sender and recipient know the secret key, they can encrypt and
decrypt all messages that use this key. These encryption algorithms typically work
fast and are well-suited to encrypting blocks of messages at once.

One significant issue with symmetric algorithms is the requirement of an
organization to distribute keys to users. This generally results in more overhead
from the administrative aspect, while the keys remain vulnerable to unauthorized
disclosure and potential misuse.

For this reason, a mission-critical enterprise system usually relies on asymmetric
encryption algorithms. These tend to be easier to employ, manage, and make the
system ultimately more secure.

Securing WildFly

[324]

Asymmetric cryptography, also known as public key cryptography, is based on
the concept that the key used to encrypt the message is not the one used to decrypt
the message. Each user holds a couple of keys: the public key, which is distributed to
other parties, and the private key, which is kept in secret. Each message is encrypted
with the recipient's public key and can only be decrypted (by the recipient) with their
private key. Have a look at the following diagram:

Recipient’s
Public
Key

Recipient’s
Private

KeyDifferent keys are used to
encrypt and decrypt message

Encrypt Decrypt
Sender Recipient

Plaintext PlaintextCiphertext

Using asymmetric encryption, you can be sure that your message cannot be
disclosed by a third party. However, you still have one vulnerability.

Let's suppose you want to exchange information with a business partner, so you are
requesting their public key by telephone or by e-mail. A fraudulent user intercepts
your e-mail or simply listens to your conversation and quickly sends you a fake
e-mail with their public key. Now, even if your data transmission is secured, it
will be directed to the wrong person! This type of eavesdropping is called the
man-in-the-middle attack.

In order to solve this issue, we need a document that verifies that the public key
belongs to an individual. This document is called a digital certificate or the public
key certificate. A digital certificate consists of a formatted block of data that contains
the name of the certificate holder (which may be either a username or a system
name), the holder's public key, and the digital signature of a Certification Authority
(CA) for authentication. The certification authority attests that the sender's name is
the one associated with the public key in the document.

Chapter 10

[325]

A prototype of a digital certificate is shown here:

Public key certificates are commonly used for secure interaction with websites.
By default, web browsers ship with a set of predefined CAs. They are used to verify
that the public certificate served to the browser when you enter a secure site has been
actually issued by the owner of the website. In short, if you connect your browser to
https://www.abc.com and your browser doesn't give certificate warning, you can
be sure that you can safely interact with the entity in charge of the site.

Simple authentication and client authentication
In the previous example, we depicted a simple server authentication.
In this scenario, the only party that needs to prove its identity is
the server.
However, SSL is also able to perform a mutual authentication (also
called client or two-way authentication) in case the server requests
a client certificate during the SSL handshake over the network.
The client authentication requires a client certificate in the X.509
format from a CA. The X.509 format is an industry-standard format
for SSL certificates. In the next section, we will explore the available
tools to generate digital certificates and also how you can have your
certificates signed by a CA.

Enabling the Secure Socket Layer
WildFly uses the Java Secure Socket Extension (JSSE), which is bundled in the
Java Standard Edition to leverage the SSL/TLS communication.

Securing WildFly

[326]

An enterprise application can secure two protocols: HTTP and RMI. HTTP
communication is handled by the Undertow subsystem within the standalone.xml/
domain.xml file. Securing the RMI transport is not always a compelling requirement
for your applications as, in most production environments, WildFly is placed behind
a firewall.

As you can see from the following diagram, your EJBs are not directly exposed
to untrusted networks and are usually connected via a web server.

Remote Client Port 80

Firewall

Web Server

EJB container

In order to configure WildFly to use SSL, we need a tool that generates a public
key/private key pair in the form of an X.509 certificate for use by the SSL server
sockets. This is covered in the next section.

Certificate management tools
One tool that can be used to set up a digital certificate is keytool, a key and certificate
management utility that ships with the Java SE. It enables users to administer their
own public/private key pairs and associated certificates for use in self-authentication
(where the user authenticates himself or herself to other users or services) or data
integrity and authentication services using digital signatures. It also allows users
to cache the public keys (in the form of certificates) of their communicating peers.

The keytool certificate stores the keys and certificates in a file termed as keystore,
a repository of certificates used to identify a client or a server. Typically, a keystore
contains a single client or server's identity, which is password protected. Let's see an
example of keystore generation:

keytool -genkeypair -keystore wildfly.keystore
 -storepass mypassword -keypass mypassword -keyalg RSA
 -validity 180 -alias wildfly -dname "cn=packtpub,o=PackPub,c=GB"

Chapter 10

[327]

This command creates the keystore named wildfly.keystore in the working
directory and assigns it the password mypassword. It generates a public/private
key pair for the entity whose "distinguished name" has a common name packtpub,
the organization PacktPub, and a two-letter country code of GB.

This results in a self-signed certificate (using the RSA signature algorithm) that
includes the public key and the distinguished-name information. This certificate
will be valid for 180 days and is associated with the private key in a keystore
entry referred to by the alias as wildflybook.

A self-signed certificate is a certificate that has not been verified by a CA
and hence leaves you vulnerable to the classic man-in-the-middle attack.
A self-signed certificate is only suitable for in-house use or for testing
while you wait for the official certificate to arrive.

Securing HTTP communication with a
self-signed certificate
Now let's see how you can use this keystore file to secure your WildFly web
channel. Open the server configuration file (standalone.xml/domain.xml),
and navigate to the undertow subsystem.

First, we need to add an https-listener element to the server configuration,
as shown in bold in the following code snippet:

<subsystem xmlns="urn:jboss:domain:undertow:1.1">
 <buffer-cache name="default"/>
 <server name="default-server">
 <https-listener name="https" socket-binding="https" security-
 realm="CertificateRealm"/>
 <http-listener name="default" socket-binding="http"/>
 <host name="default-host" alias="localhost">
 <location name="/" handler="welcome-content"/>
 <filter-ref name="server-header"/>
 <filter-ref name="x-powered-by-header"/>
 </host>
 </server>
</subsystem>

Securing WildFly

[328]

Now, create a new security realm within the management element. The mandatory
attributes are highlighted in bold in the following code. There is the path of the
keystore, along with its password. The keystore element also takes alias,
relative-to, and key-password attributes, all of which are optional:

<management>
 <security-realms>
 <security-realm name="CertificateRealm">
 <server-identities>
 <ssl>
 <keystore path="wildfly.keystore"
 relative-to="jboss.server.config.dir"
 keystore-password="mypassword"/>
 </ssl>
 <server-identities>
 </security-realm>
 </security-realms>
</management>

Last of all, you will need to copy the wildfly.keystore file to your JBOSS_HOME/
standalone/configuration folder.

Restart WildFly to load these changes. At the bottom of your console logs, during
server startup, you should see the following printout (Undertow HTTPS listener
https listening on /127.0.0.1:8443).

Chapter 10

[329]

If you try to access a web application via HTTPS on your SSL-configured
WildFly server, for example, if you deploy chapter4 and access it via
https://localhost:8443/chapter4, you will be greeted by the following
screen (the screen displayed will depend on your browser):

If you are unfamiliar with how certificates work, once the browser has established
a secure connection with the web server, the web server sends a certificate back
to the browser. Because the certificate we just installed has not been signed by any
recognized CA, the browser security sandbox warns the user about the potential
security threat.

As this is an in-house test, we can safely proceed by choosing I Understand the
Risks | Add Exception | Confirm Security Exception. That's all you need to do
in order to activate the SSL with a self-signed certificate.

Securing the HTTP communication with a
certificate signed by a CA
In order to get a certificate that your browser recognizes, you need to issue a
certificate-signing request (CSR) to a CA. The CA will then return a signed
certificate that can be installed on your server. Most of these services are not free.
The cost depends on the number of certificates you are requesting, the encryption
strength, and other factors. StartSSL provides a free, low assurance certificate for
servers on a public domain name.

Securing WildFly

[330]

So, to generate a CSR, you need to use the keystore that you created earlier and
keyentry. Have a look at the following code:

keytool -certreq -keystore wildfly.keystore -alias wildfly -storepass
mypassword -keypass mypassword -keyalg RSA -file certreq.csr

This will create a new certificate request named certreq.csr, with the format
shown here:

-----BEGIN NEW CERTIFICATE REQUEST-----
 ...
-----END NEW CERTIFICATE REQUEST-----

The following certificate needs to be sent to a CA assuming, for example, you have
chosen Verisign (http://www.verisign.com) as the CA:

After submitting your CSR, the CA will return a signed certificate that needs to be
imported into your keychain. Let's suppose that you have saved your CA certificate
in a file named signed_ca.txt. Have a look at the following command:

keytool -import -keystore wildfly.keystore -alias testkey1 -storepass
mypassword -keypass mypassword -file signed_ca.txt

Here, the -import option is used to add a certificate or certificate chain to the list
of trusted certificates as specified by the -keystore parameter and identified by
the -alias parameter. The parameter -storepass specifies the password that is
used to protect the keystore. If the -keypass option is not provided, and the private
key password is different from the keystore password, you will be prompted for it.

Now, your web browser will recognize your new certificate as being signed by a
CA and will no longer complain that it cannot validate the certificate.

http://www.verisign.com

Chapter 10

[331]

Summary
We began this chapter discussing the basic concepts of security and the difference
between authentication and authorization.

Authentication is used to verify the identity of a user, while authorization is used
to check if the user has the rights to access a particular resource.

WildFly uses the PicketBox framework. PicketBox sits at the top of the Java
Authentication and Authorization Service (JAAS) and secures all the Java EE
technologies running in the application. The core section of the security subsystem
is contained in the security-domain element, which performs all the required
authorization and authentication checks.

We then took a look at some of the login modules used to check user credentials
against different datastores. Each login module can be used by enterprise
applications in either a programmatic or a declarative way. While programmatic
security can provide a fine-grained security model, you should consider using
declarative security, which allows a clean separation between the business layer
and the security policies.

Later in the chapter, you saw how you can secure the management interfaces,
namely, the new command-line interface, by adding a security realm to them.

In the last section of this chapter, we looked at how you can encrypt the
communication channel using the Secure Socket Layer and how you can use
certificates produced by the keytool Java utility.

In the next chapter, we will end our discussion of WildFly by showing how
you can configure and distribute enterprise applications on OpenShift, a JBoss
cloud solution.

WildFly, OpenShift,
and Cloud Computing

Since the terminology used within the realm of cloud computing can be a source
of confusion, the first section of this chapter will provide an overview of the basic
concepts of cloud computing. We will then discuss the OpenShift project and the
benefits it will bring to your organization.

Introduction to cloud computing
What is cloud computing? We hear this term everywhere, but what does it really
mean? We have all used the cloud knowingly or unknowingly. If you use Gmail,
Hotmail, or any other popular e-mail service, you have used the cloud. Simply put,
cloud computing is a set of pooled computing resources and services delivered over
the Web.

Client computing is not a new concept in the computer industry. Those of you who
have been in the IT business for a decade or two will remember that the first type
of client-server applications were the mainframe and terminal applications. At that
time, storage and CPU was very expensive, and the mainframe pooled both types of
resources and served them to thin-client terminals.

With the advent of the PC revolution, which brought mass storage and cheap CPUs
to the average corporate desktop, the file server gained popularity as a way to enable
document sharing and archiving. True to its name, the file server served storage
resources to the clients in an enterprise, while the CPU cycles needed to do productive
work were all produced and consumed within the confines of the PC client.

WildFly, OpenShift, and Cloud Computing

[334]

In the early 1990s, the budding Internet finally had enough computers attached to
it that academic institutions began seriously thinking about how to connect those
machines together to create massive, shared pools of storage and computational
power that would be much larger than what any individual institution could ever
afford to build. This is when the idea of the grid began to take shape.

Cloud computing versus grid computing
In general, the terms "grid" and "cloud" seem to be converging due to some similarities;
however, there are a list of important differences between them that are often not
understood, generating confusion and clutter within the marketplace. Grid computing
requires the resources of many computers to solve a single problem, at the same time.
Hence, it may or may not be in the cloud, depending on the type of use you make
of it. One concern about the grid is that if one piece of the software on a node fails,
other pieces of the software on other nodes may fail, too. This is alleviated if that
component has a failover component on another node, but problems can still arise
if the components rely on other pieces of software to accomplish one or more grid
computing tasks. Have a look at the following screenshot:

Cluster of
application servers

Laptop
PDA

Content
management

Database

Internet

Cloud ComputingGrid Computing

Central node

Cloud computing evolves from grid computing and allows on-demand provisioning
of resources. With cloud computing, companies can scale up to massive capacities in
an instant, without having to invest in a new infrastructure, train new personnel, or
license new software.

Chapter 11

[335]

Grid and cloud – similarities and differences
The difference between the grid and the cloud lies in the way
the tasks are computed. In a computational grid, one large job
is divided into many small portions and executed on multiple
machines. This characteristic is fundamental to a grid.
Cloud computing is intended to allow the user to avail of various
services without investing in the underlying architecture. Cloud
services include the delivery of software, infrastructure, and
storage over the Internet either as separate components or as a
complete platform.

Advantages of cloud computing
We just went through the basics of cloud computing, and now we will outline some
of the benefits you may get if you move over to using the cloud services:

• On-demand service provisioning: Using self-service provisioning,
customers can have access to cloud services quickly and easily with no
hassle. The customer simply requests a number of computing, storage,
software, processes, or other resources from the service provider.

• Elasticity: This means that customers no longer need to predict traffic but
can promote their sites aggressively and spontaneously. Engineering for
peak traffic becomes a thing of the past.

• Cost reduction: By purchasing just the right amount of IT resources on
demand, an organization can avoid purchasing unnecessary equipment.
For SMEs, using the cloud may also reduce the need for in-house IT
administrators.

• Application programming interfaces (APIs): APIs make it possible for an
organization's software to interact with cloud services. This means system
administrators can interact with their cloud model. Cloud computing
systems typically use REST-based APIs.

Although cloud computing brings many advantages, there are some disadvantages
or potential risks that you must account for. The most compelling threat is that
sensitive data processed outside the enterprise brings with it an inherent level of
risk. This is because outsourced services bypass the physical, logical, and personnel
controls a software house exerts over in-house programs. In addition, when you use
the cloud, you probably won't know exactly where your data is hosted. In fact, you
might not even know what country it will be stored in, leading to potential issues
with local jurisdiction.

WildFly, OpenShift, and Cloud Computing

[336]

As Gartner Group (http://www.gartner.com) suggests, you should always ask
providers to supply specific information on the hiring and oversight of privileged
administrators. Besides this, the cloud provider should provide evidence that
encryption schemes are designed and tested by experienced specialists. It is also
important to understand whether the providers will make a contractual commitment
to obey local privacy requirements on behalf of their customers.

Cloud computing options
Cloud computing can be divided into the following three possible forms, depending
on where the cloud is hosted, each option bringing a different level of security and
management overhead:

• Public cloud: This option is used when services and infrastructure are
provided off-site and often shared across multiple organizations. Public
clouds are generally managed by an external service provider.

• Private cloud: This option provides IT cloud resources that are dedicated to a
single organization and offered on demand. A private cloud infrastructure is
maintained on a private network.

• Hybrid cloud: This option is a mix of private and public clouds managed
as a single entity, allowing you to keep aspects of your business in the most
efficient environment.

The decision to adopt one among the different kinds of cloud computing options
is a matter of discussion between experts, and it generally depends on several key
factors. For example, as far as security is concerned, although public clouds offer
a secure environment, private clouds offer an inherent level of security that meets
even the highest of standards. In addition, you can add security services, such an
Intrusion Detection System (IDS) and dedicated firewalls. A private cloud might
be the right choice for a large organization carrying a well-run data-center with a
lot of spare capacity. It is more expensive to use a public cloud even if you have to
add new software to transform that data center into a cloud.

On the other hand, as far as scalability is concerned, one negative aspect of private
clouds is that their performance is limited to the number of machines in your cloud
cluster. Should you max out your computing power, another physical server will
need to be added. Besides this, public clouds typically deliver a pay-as-you-go model,
where you pay by the hour for the computing resources you use. This kind of utility
pricing is economical if you're spinning up and tearing down development servers
on a regular basis.

http://www.gartner.com

Chapter 11

[337]

So, the majority of public cloud deployments are generally used for web servers
or development systems where security and compliance requirements of larger
organizations and their customers are not an issue. Private clouds are generally
preferred by mid-size and large enterprises because they meet the stricter
security and compliance requirements. The downside of private clouds is that the
organizations implementing them need dedicated, high-performance hardware.
Have a look at the following diagram:

Security Utility
pricing

Performance

Governance and
Compliance

Virtuali edz
environment

Third-party
ownership

Elastic resource
capacity

Managed
perationso

Public cloudPrivate cloud

Types of cloud services
Cloud computing services can be broadly classified into the following three types.
These types are also known as cloud service models or SPI service models.

• Infrastructure as a Service (IaaS): This service allows you to spin up
computers on demand. For each server, you will be able to select the amount
of RAM, the number of processors, the amount of hard disk space, and the
operating system. It allows you to do all this in a matter of minutes, making
the acquisition of hardware easier, cheaper, and quicker. Well-known
providers of this service include Amazon EC2, Google Compute Engine,
Rackspace, and DigitalOcean.

WildFly, OpenShift, and Cloud Computing

[338]

DigitalOcean is relatively new to the market. You can spin up a
server instance in less than 60 seconds! The major selling point of
DigitalOcean is the simplicity of the interface, which means there will
be no more crawling through pages and pages of documentation. In
addition to this, it is very reasonably priced. If you are considering an
IaaS provider, DigitalOcean should definitely be added to your list.

• Platform as a Service (PaaS): This service offers a development platform
for developers. The end users write their own code, and the PaaS provider
uploads that code and presents it on the Web.
By using PaaS, you don't need to invest money to get that project environment
ready for your developers. The PaaS provider will deliver the platform on the
Web, and in most cases, you can consume the platform using your browser.
There is no need to download any software. This combination of simplicity
and cost-efficiency empowers small and medium-sized companies, and
even individual developers, to launch their own cloud SaaS.

Examples of PaaS providers are Facebook and OpenShift. Facebook
is a social application platform where third parties can write new
applications that are made available to end users. OpenShift allows
developers to deploy their WildFly web or enterprise applications to
the cloud as simply as issuing a git push command.

• Software as a Service (SaaS): This service is based on the concept of renting
software from a service provider instead of buying it. The software is usually
accessed via the browser. Also known as software on demand, it is currently
the most popular type of cloud computing because of its high flexibility,
great services, enhanced scalability, and low maintenance. Examples of
SaaS are Zoho, Google Docs, and the SalesForce CRM application. Have
a look at the following screenshot:

Chapter 11

[339]

You might wonder whether it is possible for some providers to be defined both as a
platform and as software. The answer is yes! For example, Facebook can be defined as
both a platform (because services and applications can be can be delivered via the
Facebook API) and as software (as it is used by millions of end users).

Red Hat originally developed the OpenShift platform to deploy and manage Java
EE applications on JBoss/WildFly servers running on the cloud.

OpenShift offers three versions of the software, which are as follows:

• Online: This version is a free, cloud-based platform used to deploy new
and existing Java EE, Ruby, PHP, Node.js, Perl, and Python applications
on the cloud in a matter of minutes.

• Origin: This version is a free and open source version of the software.
It only comes with community support. To run this, you need your own
infrastructure. This version is beyond the scope of this book, so it will not
be covered.

• Enterprise: This version can be downloaded and run anywhere you want,
including Amazon, Rackspace, or your own infrastructure. It is packaged
with Red Hat Enterprise Linux, is stable, and comes with full support from
Red Hat.

Getting started with OpenShift Online
OpenShift allows you to create, deploy, and manage applications within the cloud.
It provides disk space, CPU resources, memory, and network connectivity. You can
choose from a range of web cartridges, including Tomcat, WildFly, Jenkins, and many
more. You can also plug in database cartridges, such as MySQL. Depending on the
type of application you are building, you also have access to a template filesystem
layout for that type (for example, PHP, WSGI, and Rack/Rails). OpenShift also
generates a limited DNS for you.

To get started with OpenShift Online, the first thing you need to do is create an
account. Go to OpenShift's home page at https://www.openshift.com/, and
select SIGN UP. Complete the online registration and verify your e-mail address.

Before you can create an application, you need to create a domain. OpenShift uses
non-strict domains (that is, there is no preceding period).

https://www.openshift.com/

WildFly, OpenShift, and Cloud Computing

[340]

Log in to your OpenShift account and navigate to the Settings tab. Enter your
domain name and click on Save. Have a look at the following screenshot:

Each account can only support a single domain. Should you wish to
use more than one domain, you need to create a separate account with
a different username.

Installing OpenShift client tools
Installing OpenShift client tools is a simple process. The following guide shows
you how to install the tools in Ubuntu 14.04. If you want to install them in a
different flavor of Linux or in a different operating system, refer to the Red
Hat documentation at https://access.redhat.com/documentation/en-US/
OpenShift_Online/2.0/html/Client_Tools_Installation_Guide/chap-
OpenShift_Client_Tools.html.

https://access.redhat.com/documentation/en-US/OpenShift_Online/2.0/html/Client_Tools_Installation_Guide/chap-OpenShift_Client_Tools.html
https://access.redhat.com/documentation/en-US/OpenShift_Online/2.0/html/Client_Tools_Installation_Guide/chap-OpenShift_Client_Tools.html
https://access.redhat.com/documentation/en-US/OpenShift_Online/2.0/html/Client_Tools_Installation_Guide/chap-OpenShift_Client_Tools.html

Chapter 11

[341]

1. First, ensure that you have the latest package list by executing the
following command:
$ sudo apt-get update

2. You will then need to install the required dependencies, ruby, rubygems, and
git, by running the following command:
$ sudo apt-get install ruby-full rubygems-integration git-core

3. We can now install the client tools by running the following command:
$ gem install rhc

After running this command, you should see something like the following:

Fetching: net-ssh-2.9.1.gem (100%)

...

Fetching: rhc-1.28.5.gem (100%)

==

If this is your first time installing the RHC tools, please run
'rhc setup'

==

Successfully installed net-ssh-2.9.1

...

Successfully installed rhc-1.28.5

10 gems installed

Installing ri documentation for net-ssh-2.9.1...

...

Installing RDoc documentation for rhc-1.28.5...

It is important that you run the setup wizard before using the client
tools. Failing to do so might cause problems later on.

4. To run the setup, type the following command:
rhc setup

WildFly, OpenShift, and Cloud Computing

[342]

The setup will require you to enter data for the following queries in the order they
appear onscreen:

• For Enter the server hostname, just press Enter to use the default value,
which is the server used for OpenShift Online.

• For Enter username and password, enter your account username
and password.

• If there are no SSH keys on your system, one will be generated. You will be
asked if you want to upload the key to the server. Type yes.

• If you did not create a domain earlier, you will be prompted to add
a domain now.

Accessing your OpenShift account from a
different computer
Communication between your computer and OpenShift happens over SSH using
secure keys. In order to use your domain from a different machine, simply download
and install the OpenShift client tools to your other computer. When you run the tools
setup, the key for your computer will be added to your keys on the server.

To revoke access, you will need to delete the key for that computer. You can do this
by logging in to OpenShift, navigating to Settings, and scrolling down until you
reach Public Keys. Now, delete the key that relates to the computer you want to
revoke access from.

Creating our first OpenShift application
Before we develop an application to run on OpenShift, we should first define some
OpenShift terms:

• Application: This is obviously the application you will deploy to OpenShift.
• Gear: This is the container that contains your server, along with the various

resources required to run your application, such as RAM, the processor, and
hard disk space.

• Cartridge: A cartridge is a plugin that provides a specific functionality. For
example, you can select a WildFly cartridge and a database cartridge to be
added to your gear.

Chapter 11

[343]

Installing your first cartridge
To view all available cartridges, run the following command:

$ rhc cartridge list

The syntax to create an application is as follows:

$ rhc app create app_name cartridge_name

At the time of writing, there is no WildFly cartridge available in the cartridge
list. For this example, I am going to use a cartridge that is available on GitHub
(https://github.com/openshift-cartridges/openshift-wildfly-cartridge).
Navigate to the folder where you want your code to be located. If you are using
Eclipse, you may want to cd into your workspace folder. Using the preceding
syntax, but replacing the cartridge name with the cartridge URL, we will create
the application, as follows:

$ rhc app create wildfly https://cartreflect-claytondev.rhcloud.com/
 reflect?github=openshift-cartridges/
 openshift-wildfly-cartridge#WildFly8

After running this command, a significant amount of information will be printed
to the console. We will deal with this output one piece at a time. The first piece of
information is the detail related to the cartridge and gear. We can see the URL from
where the cartridge was cloned from, the gear size, and the domain:

Application Options

Domain: chrisritchie

Cartridges: https://cartreflect-claytondev.rhcloud.com/reflect?
 github=openshift-cartridges/openshift-wildfly-cartridge#WildFly8

Gear Size: default

Scaling: no

The next part shows that the application is being created, and that an artifact is being
deployed on the gear:

Creating application 'wildfly' ... Artifacts deployed: ./ROOT.war

done

https://github.com/openshift-cartridges/openshift-wildfly-cartridge

WildFly, OpenShift, and Cloud Computing

[344]

Printed out next are the details for the management console, which are as follows:

 WildFly 8 administrator added. Please make note of these credentials:

 Username: admin6vIBvE6

 Password: B_vh3CA5v4Dc

 run 'rhc port-forward wildfly to access the web admin area on port
9990.

Waiting for your DNS name to be available ... done

The following part shows the remote Git repository being cloned to your local
hard drive. The SSH key for the gear will be added to your known_hosts file
once you allow it:

Cloning into 'wildfly'...

The authenticity of host 'wildfly-chrisritchie.rhcloud.com
(50.16.172.242)' can't be established.

RSA key fingerprint is cf:ee:77:cb:0e:fc:02:d7:72:7e:ae:80:c0:90:88:a7.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'wildfly-chrisritchie.rhcloud.
com,50.16.172.242' (RSA) to the list of known hosts.

Your application 'wildfly' is now available.

Lastly, your application URL, remote GIT repository, and SSH location are all
printed out, as follows:

 URL: http://wildfly-chrisritchie.rhcloud.com/

 SSH to: 53e905324382ecc7c30001d0@wildfly-chrisritchie.rhcloud.com

 Git remote: ssh://53e905324382ecc7c30001d0@wildfly-chrisritchie.
rhcloud.com/~/git/wildfly.git/

Run 'rhc show-app wildfly' for more details about your app.

Now, you can verify that your server is up and running, and that you can access
the deployed application by pointing your browser to the URL specified in the
preceding output (http://wildfly-chrisritchie.rhcloud.com/). Have a look
at the following screenshot:

http://wildfly-chrisritchie.rhcloud.com/

Chapter 11

[345]

Now, let's turn our attention to the local repository on your computer.

You can import the repository into Eclipse by selecting File | Import
| Projects from GIT | Existing local repository | Add. Then,
browse to the location of your git repository and import it as a new
Maven project so that Eclipse can automatically generate the project
configuration files for you.

If you look at the structure of the git repository, as shown in the following
screenshot, you will see that the src folder follows a typical Maven project
structure for a web application:

WildFly, OpenShift, and Cloud Computing

[346]

If you inspect the root folder via the command line, you will also notice the hidden
folders. There are two important hidden folders. The .git folder contains all your
versioning information and Git configuration. The .openshift folder contains
various configurations for OpenShift. Have a look at the following screenshot:

The deployments folder performs the same task as the JBOSS_HOME/standalone/
deployments directory. Applications placed here will be automatically deployed
when the repository is pushed to the remote Git repository.

Understanding the workflow
Just before we start to code the actual application, we need to understand the
workflow and how the code is deployed to the server. Here are the basic steps:

1. Modify the source code in the local Git repository.
2. Add any deployments, such as JDBC connectors, to the deployments folder.

This step is optional.
3. Stage all files to the local repository, ready for committing.
4. Commit the files to the local repository.
5. Push the changes to the remote repository. This will trigger deployment

on your gear. You don't need to add your application WAR to the
deployments folder.

Building the application
So, now we need to create our own application. For the first example, we will
deploy a simple service that downloads the text within a text area as a PDF file.
This application consists of a servlet that translates the request into a PDF response
using the iText library (available at http://itextpdf.com/download.php). Here is
the servlet:

http://itextpdf.com/download.php

Chapter 11

[347]

package com.packtpub.chapter11;

import java.io.IOException;

import javax.servlet.*;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.*;

import com.itextpdf.text.*;
import com.itextpdf.text.pdf.PdfWriter;

@WebServlet("/convert")
public class TextToPdf extends HttpServlet {

 public void init(ServletConfig config)
 throws ServletException{
 super.init(config);
 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException{
 doPost(request, response);
 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException {
 String text = request.getParameter("text");
 response.setContentType("application/pdf");
 Document document = new Document();
 try{
 PdfWriter.getInstance(document,
 response.getOutputStream());
 document.open();
 document.add(new Paragraph(text));
 document.close();
 }catch(DocumentException e){
 e.printStackTrace();
 }
 }
}

public void init(ServletConfig config) throws ServletException{
 super.init(config);

WildFly, OpenShift, and Cloud Computing

[348]

}

public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException{
 doPost(request, response);
}

public void doPost(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException{
 String text = request.getParameter("text");
 response.setContentType("application/pdf");
 Document document = new Document();
 try{
 PdfWriter.getInstance(document,
 response.getOutputStream());
 document.open();

 document.add(new Paragraph(text));

 document.close();
 }catch(DocumentException e){
 e.printStackTrace();
 }
}

We also need to add the itextpdf library to the project's pom.xml file so that the
code can compile. Have a look at the following code:

<dependency>
 <groupId>com.itextpdf</groupId>
 <artifactId>itextpdf</artifactId>
 <version>5.5.2</version>
</dependency>

In addition, we need an HTML/JSP page that contains a text area. This code is inside
the createpdf.html file:

<form action="TextToPdf" method="post">
 <textarea cols="80" rows="5" name="text">
 This text will be converted to PDF.
 </textarea>
 <input type="submit" value="Convert to PDF">
</form>

Chapter 11

[349]

We have now finished the application. We need to add and commit our application
to our local Git repository using the following git add command:

$ git add *

Then, enter the following git commit command:

$ git commit -m "Initial commit of wildfly app"

Lastly, you need to push your local changes to the remote repository sitting on your
gear, as follows:

$ git push

This will push up your code and trigger various Git hooks that cause your code
to be compiled, packaged, and deployed, as you can see from the following output.
The build output has been omitted for brevity.

Counting objects: 19, done.
Compressing objects: 100% (8/8), done.
Writing objects: 100% (12/12), 1.58 KiB | 0 bytes/s, done.
Total 12 (delta 3), reused 0 (delta 0)
remote: Stopping wildfly cart
remote: Sending SIGTERM to wildfly:72039 ...
remote: Building git ref 'master', commit 7d63607
...
remote: [INFO] Scanning for projects...
remote: [INFO]
remote: [INFO] ---

remote: [INFO] Building wildfly 1.0
remote: [INFO] ---

...
remote: [INFO] ---

remote: [INFO] BUILD SUCCESS
remote: [INFO] ---

...
remote: Preparing build for deployment
remote: Deployment id is aed5acfd
remote: Activating deployment
remote: Deploying WildFly
remote: Starting wildfly cart
...
remote: CLIENT_MESSAGE: Artifacts deployed: ./ROOT.war

WildFly, OpenShift, and Cloud Computing

[350]

remote: -------------------------
remote: Git Post-Receive Result: success
remote: Activation status: success
remote: Deployment completed with status: success
To ssh://53e905324382ecc7c30001d0@wildfly-chrisritchie.rhcloud.com/~/
git/wildfly.git/
 76af36f..7d63607 master -> master

We can now finally access our application using http://wildfly-chrisritchie.
rhcloud.com/createpdf.html. Have a look at the following screenshot:

After entering some text and clicking on the Convert to PDF button, a PDF file is
downloaded containing the text, as follows:

http://wildfly-chrisritchie.rhcloud.com/createpdf.html
http://wildfly-chrisritchie.rhcloud.com/createpdf.html

Chapter 11

[351]

Launching our application generates a PDF file as the result—your first cloud
application! Now that we have deployed a simple application to your OpenShift
gear, in the next section, we will show you how to manage your OpenShift
applications and introduce some advanced features.

Viewing the OpenShift server logfiles
At some point, you will need to see what is happening on the server side. Maybe
your application is failing to deploy, or you need to see the logs after you encounter
an error. There are a few ways you can view the OpenShift server logs:

• Tail the logfile using client tools
• Run SSH into the gear

Tailing the logfile
Tailing the application server log is simple. You just need to run the rhc tail
command. For example, to view the log for the example application that we
called wildfly, you need to execute the following:

$ rhc tail -a wildfly

This will print out the latest entries from the logfile, as follows:

2014-08-11 22:11:39,270 INFO [org.wildfly.extension.undertow]
 (MSC service thread 1-4) JBAS017534: Registered web context: /

2014-08-11 22:11:41,411 INFO [org.jboss.as.server]
 (ServerService Thread Pool -- 54) JBAS018559: Deployed "ROOT.war"
 (runtime-name : "ROOT.war")

2014-08-11 22:12:26,849 INFO [org.jboss.as] (Controller Boot Thread)
 JBAS015961: Http management interface listening on
 http://127.6.97.1:9990/management

2014-08-11 22:12:26,862 INFO [org.jboss.as]
 (Controller Boot Thread) JBAS015951: Admin console listening on
 http://127.6.97.1:9990

2014-08-11 22:12:26,864 INFO [org.jboss.as]
 (Controller Boot Thread) JBAS015874: WildFly 8.1.0.Final "Kenny"
 started in 219903ms - Started 299 of 429 services
 (177 services are lazy, passive or on-demand)

To exit the log, simply press Ctrl + C.

WildFly, OpenShift, and Cloud Computing

[352]

Viewing logs via SSH
Using the rhc tail command is only useful part of the time. Most likely, you will
want to view the entire log or search the log. For this, you need to SSH into the gear.
We use the -a switch to specify the application name, as follows.

$ rhc ssh -a wildfly

By typing ls app_name, you can see that the directory structure is similar to that
of a WildFly install. You can now view your file using the less command, which
means you have full control over navigation and search within the file:

$ less wildfly/standalone/logs/server.log

...

==> example/logs/server.log <==

14:41:18,706 INFO [org.jboss.as.connector.subsystems.datasources]
(Controller Boot Thread) Deploying JDBC-compliant driver class org.
h2.Driver (version 1.2)

14:41:18,712 INFO [org.jboss.as.connector.subsystems.datasources]
(Controller Boot Thread) Deploying non-JDBC-compliant driver class com.
mysql.jdbc.Driver (version 5.1)

14:41:18,732 INFO [org.jboss.as.clustering.infinispan.subsystem]
(Controller Boot Thread) Activating Infinispan subsystem.

14:41:18,860 INFO [org.jboss.as.naming] (Controller Boot Thread)
Activating Naming Subsystem

14:41:18,877 INFO [org.jboss.as.naming] (MSC service thread 1-1)
Starting Naming Service

Using the less command gives you much more control than using
tail. Pressing Shift + F starts the tailing of the file, and Ctrl + C stops
the tailing of the file. A backslash allows you to search backwards, and
a question mark allows you to search forward in the file. It becomes
easy to find occurrences of exceptions and errors.

Managing applications in OpenShift
At first, it might appear difficult to manage your application on a remote server.
Once you have learned the commands to manage your application, this concern
should be greatly reduced.

Chapter 11

[353]

In order to control your applications, you can use the rhc app command, which
takes the action to be performed and the -a command that specifies the application
name. For example:

$rhc app restart -a app_name

The following table shows the list of commands available to manage your
applications. You can view the list of available options via the command line,
using the --help flag:

Option Description
start Starts an application
stop Stops an application that is currently running
force-stop Kills the application's processes
restart Restarts an application
reload Reloads an application
delete Deletes an application
configure Configures properties for an application
create Creates an application
deploy Deploys an application
scale-up Scales up the application cartridge

scale-down Scales down the application cartridge
show Shows an application's information

tidy Deletes an application's logfiles and temporary files

If you want to delete the application we created earlier, you will use the
following command:

$ rhc app delete -a wildfly

This is a non-reversible action! Your application code and data will be
permanently deleted if you continue!

Are you sure you want to delete the application 'atestapp'? (yes|no): yes

Deleting application 'wildfly' ... deleted

WildFly, OpenShift, and Cloud Computing

[354]

Configuring your applications
When you create an application, you will have a local copy of the repository, which
contains your application code and the WildFly server's deployments folder. Besides
this, there are a couple of hidden folders in your Git repository. The first one is the
.git folder, which contains all your Git-related configuration. The second folder is
.openshift. The following is the content of the .openshift folder:

chris-macbook:.openshift chris$ ls -lah

drwxr-xr-x 3 chris staff 102B Aug 11 21:20 action_hooks

drwxr-xr-x 4 chris staff 136B Aug 11 21:20 config

drwxr-xr-x 8 chris staff 272B Aug 11 21:20 cron

drwxr-xr-x 3 chris staff 102B Aug 11 21:20 markers

The action_hooks folder is where developers can put action hook scripts that will
be executed during the OpenShift build life cycle.

You can create a build script to perform application initialization,
such as creating tables or setting variables. For full details on
supported action hooks, see the documentation at http://
openshift.github.io/documentation/oo_user_guide.
html#build-action-hooks.

The cron folder allows the developer to add cron jobs on the gear. The scripts added
will be scheduled according to whether they are put in the minutely, hourly, daily,
weekly, or monthly folders.

The markers folder can be used to set various settings. For example, the skip_
maven_build marker file will instruct the Maven compiler to skip the build process.
Lastly and importantly, the config folder has the following structure:

chris-macbook:.openshift chris$ ls -lah config/

drwxr-xr-x 3 chris staff 102B Aug 11 21:20 modules

-rw-r--r-- 1 chris staff 29K Aug 11 21:20 standalone.xml

As you expected, the standalone.xml file is the WildFly configuration file for your
applications. The modules folder is where you can add your own modules, as you
would in a native install of WildFly.

We have only touched upon the basics of what OpenShift can do. For a more
in-depth look, see the OpenShift user guide at http://openshift.github.io/
documentation/oo_user_guide.html.

http://openshift.github.io/documentation/oo_user_guide.html#build-action-hooks
http://openshift.github.io/documentation/oo_user_guide.html#build-action-hooks
http://openshift.github.io/documentation/oo_user_guide.html#build-action-hooks
http://openshift.github.io/documentation/oo_user_guide.html
http://openshift.github.io/documentation/oo_user_guide.html

Chapter 11

[355]

Adding a database cartridge
Every enterprise application needs some kind of storage for its data. OpenShift
allows you to add database cartridges after creating your application. To view
the list of possible cartridges, you can issue the following command:

$ rhc cartridge list

Within the list that outputs, you will see various database vendor cartridge
options. In this example, we are going to add the MySQL database cartridge
to our application. To do this, run the following command:

$ rhc cartridge add mysql-5.5

If you configure your application to be scalable, the database cartridge
will be installed into a new gear. If your application is not configured
to be scalable, it will be added to the same gear as your application.
This is to ensure that your database is not affected when you scale up
or scale down your gears.

The output will print the information we need related to our new database,
such as the root password, connection URL, and so on:

chris-macbook:wildfly chris$ rhc cartridge add mysql-5.5

Adding mysql-5.5 to application 'wildfly' ... done

mysql-5.5 (MySQL 5.5)

 Gears: Located with wildfly-wildfly-8

 Connection URL: mysql://$OPENSHIFT_MYSQL_DB_HOST:$OPENSHIFT_MYSQL_DB_
PORT/

 Database Name: wildfly

 Password: y-rftt5LUl6j

 Username: adminWfn4mG6

MySQL 5.5 database added. Please make note of these credentials:

 Root User: adminWfn4mG6

 Root Password: y-rftt5LUl6j

 Database Name: wildfly

WildFly, OpenShift, and Cloud Computing

[356]

Connection URL: mysql://$OPENSHIFT_MYSQL_DB_HOST:$OPENSHIFT_MYSQL_DB_
PORT/

You can manage your new MySQL database by also embedding phpmyadmin.

The phpmyadmin username and password will be the same as the MySQL
credentials above.

RESULT:

Mysql 5.1 database added. Please make note of these credentials:

 Root User: admin

 Root Password: SH-v4VuAZ_Se

 Database Name: example

The beauty of this is that you do not need to further configure your standalone.
xml file, as all the environment variables are set for you when you add the MySQL
cartridge. You can access the datasource immediately using the JNDI namespace of
java:jboss/datasources/MysqlDS. Take a look at the datasource configuration
in the standalone.xml file. You will see all properties are external environment
variables, as follows:

<datasource jndi-name="java:jboss/datasources/MySQLDS"
 enabled="${mysql.enabled}" use-java-context="true"
 pool-name="MySQLDS" use-ccm="true">
 <connection-url>jdbc:mysql://${env.OPENSHIFT_MYSQL_DB_HOST}:
 ${env.OPENSHIFT_MYSQL_DB_PORT}/${env.OPENSHIFT_APP_NAME}
 </connection-url>
 <driver>mysql</driver>
 <security>
 <user-name>${env.OPENSHIFT_MYSQL_DB_USERNAME}</user-name>
 <password>${env.OPENSHIFT_MYSQL_DB_PASSWORD}</password>
 </security>
 <validation>
 <check-valid-connection-sql>SELECT 1
 </check-valid-connection-sql>
 <background-validation>true</background-validation>
 <background-validation-millis>60000
 </background-validation-millis>
 <!--<validate-on-match>true</validate-on-match>-->
 </validation>
 <pool>
 <flush-strategy>IdleConnections</flush-strategy>

Chapter 11

[357]

 </pool>
</datasource>

To remove the database cartridge, and thus disable it, you can simply run the
following command:

$ rhc cartridge remove mysql-5.5

Using OpenShift Tools and Eclipse
Alongside the client tools, there is also a plugin for Eclipse that allows you to
integrate with OpenShift. If you prefer graphical interfaces over the command line,
you should consider this plugin.

Installing OpenShift Tools requires the same steps as when we installed the WildFly
plugin in Chapter 2, Configuring the Core WildFly Subsystems. Perform the following
steps to install OpenShift Tools:

1. In Eclipse, go to the marketplace by clicking on Help | Eclipse Marketplace.
2. Search for the version of JBoss Tools that matches your Eclipse version.
3. Click on Install. You will be presented with the full list of features available.
4. You can now select JBoss OpenShift Tools along with any other features

you want, as shown in the following screenshot:

5. Click on Confirm, accept the license terms, and click on Finish.

WildFly, OpenShift, and Cloud Computing

[358]

When Eclipse restarts, you will be able to create new applications or import
existing applications. Creating a new application is straightforward. Perform the
following steps:

1. Navigate to File | New | OpenShift Application. Have a look at the
following screenshot:

2. You will be presented with a pop up allowing you to enter your OpenShift
account's username and password. Enter your details and click on OK.

3. The next screen will allow you to either download an existing application
from the OpenShift cloud or create a new one. We will create a new one
here and leave you to investigate the option of downloading an existing
application if that is what you require. Look for WildFly 8 in the list of
possible quickstart cartridges. Have a look at the following screenshot:

Chapter 11

[359]

4. Click on Next, enter the name of your application, and select your gear
profile. Have a look at the following screenshot:

5. Click on Next, and Next again. Your new application is now complete and
the gear is configured.

This tutorial is meant to be a brief introduction to the OpenShift Tools plugin. If you
are interested in using OpenShift Tools, please refer to the online documentation at
http://docs.jboss.org/tools/4.1.0.Final/en/User_Guide/html_single/
index.html#chap-OpenShift_Tools.

Scaling your application
Until now, we have mentioned some of the most essential features of the OpenShift
platform. Although all the available options cannot be covered within a single chapter,
there is one more feature that needs to be covered, which is application scaling.

For an application to be scalable, you must pass the -s switch as you create the
application with the following command:

$ rhc app create app_name type -s

It is not possible to make a non-scalable application scalable.
To do this, you need to take a snapshot of the application,
spin up a new scalable application, and then push your
code to it.

Once you have created a scalable application, it will automatically add nodes to the
cluster when the number of concurrent requests exceed 90 percent of the maximum
concurrent requests over one period. It will automatically scale down when the
number of concurrent requests fall below 49.9 percent of the maximum concurrent
requests over three consecutive periods.

http://docs.jboss.org/tools/4.1.0.Final/en/User_Guide/html_single/index.html#chap-OpenShift_Tools
http://docs.jboss.org/tools/4.1.0.Final/en/User_Guide/html_single/index.html#chap-OpenShift_Tools

WildFly, OpenShift, and Cloud Computing

[360]

You can also scale your application manually via the command line.
To manually scale up your application, run the following command:

$ 53e905324382ecc7c30001d0@wildfly-chrisritchie.rhcloud.com
 "haproxy_ctld -u"

To manually scale down your application, run the following command:

$ 53e905324382ecc7c30001d0@wildfly-chrisritchie.rhcloud.com
 "haproxy_ctld -d"

Lastly, you may want to disable or enable automatic scaling. This can
also be achieved via the command line. To stop automatic scaling, run
the following command:

$ 53e905324382ecc7c30001d0@wildfly-chrisritchie.rhcloud.com
 "haproxy_ctld_daemon stop"

To start automatic scaling, run the following command:

$ 53e905324382ecc7c30001d0@wildfly-chrisritchie.rhcloud.com
 "haproxy_ctld_daemon start"

Summary
In this chapter, we looked at an alternative to the traditional approach of hosting
applications on a company's own infrastructure. The OpenShift platform offers free
and paid versions of a PaaS that enables developers to deploy to the cloud without
having to worry about downloading and managing the stack, writing scripts, or
installing agents.

The OpenShift platform bears some similarities to other cloud solutions, such as
MS Azure. Just like Azure, OpenShift is a service managed and run by the vendor.
OpenShift provides the ability to quickly choose from multiple cartridges, each
of which plugs in a resource required to run your application. With a single Git
command, your source code is pushed to the gear, and your application is built
and then deployed to the server.

There are several ways to manage your OpenShift gears. First, you can manage
them via the command line. This is the best option as you have full control over
your gears. Secondly, there is the web interface, which has limited functionality
but is fine to quickly create a new application. Lastly, there is OpenShift Tools,
which is part of JBoss Tools, a suite of plugins for Eclipse.

Chapter 11

[361]

There are three options available when using OpenShift. OpenShift Online is a
product that offers free and subscription-based services. All the gears are hosted
on the public cloud. OpenShift Enterprise allows you to download a stable and
supported version of OpenShift to be run on your own hardware. Finally, if you
want the latest features (with only community support) or want to contribute to
the development of OpenShift, there is OpenShift Origin.

CLI References
To help keep things simple, here's a quick reference for the most common commands
and operations used to manage the application server via the CLI. For the sake of
brevity, only the jboss-cli.sh script (in the Linux environment) is mentioned.
Windows users should just replace this file with the equivalent jboss-cli.bat file.

Startup options
The following commands can be used to start the CLI in a noninteractive way:

• Pass script commands to the jboss-cli shell:
./jboss-cli.sh --connect command=:shutdown

• Execute a CLI shell contained in a file:

./jboss-cli.sh --file=test.cli

General commands
The following commands can be used to gather system information and set specific
server properties:

• Show environment information:
version

• Show the JNDI context:
/subsystem=naming:jndi-view

• Show the XML server configuration:
:read-config-as-xml

CLI References

[364]

• Show the services registered in the container and their statuses:
/core-service=service-container:dump-services

• Set a system property:
/system-property=property1:add(value="value")

• Show a system property:
/system-property=property1:read-resource

• Show all system properties:
/core-service=platform-mbean/
 type=runtime:read-attribute(name=system-properties)

• Remove a system property:
/system-property=property1:remove

• Change a socket binding port (for example, the http port):
/socket-binding-group=standard-sockets/socket-binding=http:
 write-attribute(name="port", value="8090")

• Show the IP address of the public interface:
/interface=public:read-attribute(name=resolved-address)

The domain-mode commands
Prefix the host name (and, if required, the server name) to indicate which host
(or server name) you are issuing the command to. Examples:

• Show the XML configuration from the host master:
/host=master:read-config-as-xml

• Show the IP address of the public interface for the server-one server
running on the host master:
/host=master/server=server-one/interface=public:
 read-attribute(name=resolved-address)

Appendix

[365]

Commands related to application
deployment
The CLI can also be used to deploy applications. The CLI assumes that the
MyApp.war file is in the working directory outside of the jboss-cli. Here's
a quick reference to the deploy commands:

• List of deployed applications:
deploy

• Deploy an application on a standalone server:
deploy MyApp.war

• Redeploy an application on a standalone server:
deploy -f MyApp.war

• Undeploy an application:
undeploy MyApp.war

• Deploy an application on all server groups:
deploy MyApp.war --all-server-groups

• Deploy an application on one or more server groups (separated by a comma):
deploy application.ear --server-groups=main-server-group

• Undeploy an application from all server groups:
undeploy application.ear --all-relevant-server-groups

• Undeploy an application from one or more server groups:
undeploy as7project.war --server-groups=main-server-group

• Undeploy an application without deleting the content:
undeploy application.ear --server-groups=main-server-group
 --keep-content

CLI References

[366]

JMS
Here, you can find the JMS commands that can be used to create/remove
JMS destinations:

• Add a JMS queue:
jms-queue add –-queue-address=queue1 --entries=queues/queue1

• Remove a JMS queue:
jms-queue remove --queue-address=queue1

• Add a JMS topic:
jms-topic add –-topic-address=topic1 --entries=topics/topic1

• Remove a JMS topic:
jms-topic remove --topic-address=topic1

Datasources
This is a list of handy datasource commands that can be issued using the
datasource alias:

• Add a datasource:
data-source add --jndi-name=java:/MySqlDS --name=MySQLPool
 --connection-url=jdbc:mysql://localhost:3306/MyDB
 --driver-name=mysql-connector-java-5.1.16-bin.jar
 --user-name=myuser --password=password –max-pool-size=30

• Remove a datasource:
data-source remove --name=java:/MySqlDS

Datasources (using operations on resources)
You can also operate on a datasource using operations on the data
sources subsystem:

• List the installed drivers:
/subsystem=datasources:installed-drivers-list

• Add a datasource:
data-source add --jndi-name=java:/MySqlDS --name=MySQLPool
 --connection-url=jdbc:mysql://localhost:3306/MyDB
 --driver-name=mysql-connector-java-5.1.30-bin.jar
 --user-name=myuser --password=password --max-pool-size=30

Appendix

[367]

• Add an XA datasource (using an operation):
xa-data-source add --name=MySQLPoolXA
 --jndi-name=java:/MySqlDSXA --driver-name=
 mysql-connector-java-5.1.30-bin.jar
 -xa-datasource-properties=[{ServerName=localhost}
 {PortNumber=3306}]

• Remove a datasource (using an operation):
/subsystem=datasources/data-source=testDS:remove

Mod_cluster
Mod_cluster management can be carried out using the following CLI operations:

• List the connected proxies:
/subsystem=modcluster:list-proxies

• Show proxies' information:
/subsystem=modcluster:read-proxies-info

• Add a proxy to the cluster:
/subsystem=modcluster:add-proxy(host= CP15-022, port=9999)

• Remove a proxy:
/subsystem=modcluster:remove-proxy(host=CP15-022, port=9999)

• Add a web context:
/subsystem=modcluster:enable-context(context=/myapp,
 virtualhost=default-host)

• Disable a web context:
/subsystem=modcluster:disable-context(context=/myapp,
 virtualhost=default-host)

• Stop a web context:
/subsystem=modcluster:stop-context(context=/myapp,
 virtualhost=default-host, waittime=50)

CLI References

[368]

Batch
Here's how to handle batch processing with the CLI:

• Start batching:
batch

• Pause batching:
holdback-batch

• Continue batching after a pause:
batch

• List of commands on the current batch stack:
list-batch

• Clear the batch session of commands:
clear-batch

• Execute batch commands on a stack:
run-batch

Snapshots
Snapshots allow the storage and retrieval of the server configuration:

• Take a snapshot of the configuration:
:take-snapshot

• List the available snapshots:
:list-snapshots

• Delete a snapshot:
:delete-snapshot(name="20140814-234725965standalone-full-ha.xml")

Index
Symbols
@EJB annotation 114
@Entity annotation 126
@javax.annotation.security.DenyAll

annotation 316
@javax.annotation.security.PermitAll

annotation 316
@javax.annotation.security.RolesAllowed

annotation 316
@javax.annotation.security.RunAs

annotation 316
@javax.ejb.Timeout method 77
@javax.persistence.Cacheable

annotation 265
@Named annotation 114
@org.hibernate.annotations.Cache

annotation 265
@org.jboss.ejb3.annotation.SecurityDomain

annotation 316
@SecurityDomain annotation 318
@WebContext annotation 318

A
acceptor 81
access-log element 102
add-proxy command 286
address element 258
address-full-policy property 87
address-setting block 86
Admin console

used, for deploying application 175-178
AdvancedADLdap login module 305

advanced batch commands 211
advanced deployment strategies

about 185
advantages 185
Class-Path declaration, using 190
server's automatic dependencies,

excluding 186, 187
single module dependency,

setting up 185, 186
sub-deployments, isolating 187-189

advanced Infinispan configuration
about 254
Infinispan threads, configuring 255, 256
Infinispan transport, configuring 255

AdvancedLdap login module 305
Advertise class, mod_cluster

URL 289
Apache

installing 271
Apache Directory project

URL 310
Apache web server

Apache, installing 271
benefits 270
mod_jk library, installing 271-273
mod_jk library, using 270
mod_proxy, configuring 274, 275
native management capabilities,

adding 287, 288
Apache web server, advantages

clustering 270
load balancing 270
security 270
speed 270

[370]

application deployment, on WildFly domain
Admin console used 175-178
performing 172, 173
to all server groups 173
to domain, CLI used 173
to single server group 174, 175

application deployment, on WildFly server
automatic application deployment 162
manual application

deployment 162, 170-172
performing 161, 162

application server
filesystem 21, 22
hardware requisites 9
Java environment, installing 9, 10
WildFly 8, installing 12
WildFly, restarting 17, 18
WildFly, starting 13, 14
WildFly, stopping 16, 17

application server configuration
core subsystems, configuring 38
deployments 38
diagrammatic representation 32
extensions 33
interfaces 35
management interfaces 34
paths 33, 34
performing 31, 32
profiles 35
socket-binding groups 37
subsystems 35
system properties 38
thread pool subsystem, configuring 39

application server logging configuration
about 47
async-handler 51
console-handler 49, 50
custom handlers 52
logging implementation, selecting 48, 49
logging subsystem, configuring 49
periodic-rotating-file-handler 50
size-rotating-file-handler 51
syslog-handler 52

application server nodes, WildFly
domain 134

AS process 320
asymmetric encryption 324

async-handler 51
asynchronous EJB

about 71
fire-and-forget asynchronous void

methods 71
retrieve-result-later asynchronous

methods 71
asynchronous messaging 249
attributes 309
attributes/elements, bounded-queue

thread pool
allow-core-timeout 43
core-threads 43
keepalive-time 43
max-threads 43
name 43
queue-length 43
thread-factory 43

attributes/elements, unbounded-queue
thread pool

keepalive-time 44
max-threads 44
name 44
thread-factory 44

authentication 300
authorization 300
autoflush attribute 50
automatic application deployment,

on WildFly server
about 162, 163
CLI, used 164, 165
deployment scanner behavior,

changing 163, 164
Eclipse deployments, configuring 169
to custom folder 163
web admin console, used 165, 167
WildFly Eclipse plugin, used 168

B
basic access authentication 314
batch-delay parameter 83
batch processing

handling 368
batch-related commands

batch 212
clear-batch 212

[371]

discard-batch 212
edit-batch-line 212
holdback-batch 212
list-batch 212
move-batch-line 212
remove-batch-line 212
run-batch 212

bin folder 22
blocking queueless thread pool

about 45
diagrammatic representation 45

bounded-queue thread pool
about 40
attributes/elements 43
configuring 41
core size 40
diagrammatic representation 41
maximum size 40

buffer cache
about 106
configuring 106

C
cache-container element 246
caching, entities

about 264
Hibernate annotations, using 265
JPA annotations, using 265

caching, queries 266
caching strategies

distribution 246
invalidation 246
local 246
replication 246

caching strategy elements 248
Certificate login module 304
certificate management tools 326
CertificateRoles login module 304
certificate-signing request (CSR) 329
Certification Authority (CA) 324
classloading dependencies 179
Class Namespace Isolation 178
Class-Path approach 178
clear command 217
CLI

about 15, 33, 140, 194, 195

application server 215
benefits 227
commands 196
commands, executing with 204, 205
commands, issued on resource 199
configuration snapshots, capturing 213, 214
datasources, creating 206-208
datasources, modifying 206-208
employing 195, 196
help command 209
history 216, 217
JMS destination, adding 205
mod_cluster, managing via 284, 286
non-interactive output, redirecting 213
operations 196
operations, executing 196-199
resources, navigating through 196-199
scripts, executing in batch 210
scripts, executing in file 212, 213
server configuration, reloading 195
snapshots, capturing 215
used, for deploying application 164, 165
used, for deploying application to

domain 173
used, for managing web contexts 286
used, for server connection 15, 16
XA datasources, creating 209
XA datasources, modifying 209

CLI deployment options
--all-relevant-server-groups 175
--all-server-groups 175
--server-groups 175
--server-groups -keep-content 175

client authentication 325
Client login module 304
clients 80
cloud computing

about 333
advantages 335
APIs 335
cost reduction 335
disadvantages 335
elasticity 335
hybrid cloud 336
on-demand service provisioning 335
options 336, 337
private cloud 336

[372]

public cloud 336
services 337
versus grid computing 334

cloud services
Infrastructure as a Service (IaaS) 337
Platform as a Service (PaaS) 338
Software as a Service (SaaS) 338
types 337

cluster-connection name attribute 258
clustering

about 230
configuring 260
entities 263, 264
session beans 261, 262
web applications 267

cluster, setting up on same machine
multiple IP addresses used 234
port offset used 235, 236

command-line interface. See CLI
command line options, for managing

OpenShift applications
configure 353
create 353
delete 353
deploy 353
force-stop 353
reload 353
restart 353
scale-down 353
scale-up 353
show 353
start 353
stop 353
tidy 353

commands, issued on resource
read-attribute 199
read-children-names 199
read-children-resources 199
read-children-types 199
read-operation-description 199
read-operation-names 199
read-resource 199
read-resource-description 199
write-attribute 199

concurrency
about 91
components 91

configuring 91
context service, configuring 92
managed executor service, configuring 93
managed schedule executor service,

configuring 94
managed thread factory, configuring 92

configuration files, WildFly domain
domain.xml 137
host.xml 137

configuration levels, JVM
host level 144
server-group level 144
server level 144

configuration, OpenShift application
about 354
database cartridge, adding 355, 356
Eclipse, using 357-359
OpenShift Tools, using 357-359

ConfigureIdentity login module 304
connector 81
connector-ref element 258
context-service attribute 93
context service, concurrency

configuring 92
coordinator environment, transactions

subsystem 90
core environment, transactions

subsystem 90
core subsystems, application server

configuration
configuring 38

core-threads attribute 93
custom handlers

about 52-55
bypassing container logging 57
loggers, configuring 55, 56
per-deployment logging 56

custom login module
reference link 308

D
database

connecting to 59, 60
DatabaseCertificate login module 304
Database login module

about 304-306

[373]

diagrammatic representation 315
passwords, encrypting 307-309
using 306

DatabaseUsers login module 304
data persistence, Maven web project

configuring 124, 125
data-source command 206
dead-letter-address property 87
declarative security 301
decryption 323
de facto standard 309
default configuration files

overriding 137
default domain configuration

about 134-136
elements 134

delete-snapshot command 216
Dependencies approach 178
deployment 159
deployments, application server

configuration 38
deployment scanner 162
digital certificate 324
DigitalOcean 338
direct-deliver parameter 83
disable command 217
distinguished name (DN) 309
distributed caching 250
docs folder

about 22
examples folder 22
schema folder 22

domain controller, WildFly domain
about 134
configuring 142

domain folder
about 22, 23
configuration folder 22
content folder 23
data folder 23
lib folder 23
log folder 23
servers folder 23
tmp folder 23

domain mode commands 364
domain.xml file

configuring 138, 139

durable element 86
dynamic modules 27

E
EAR file 160, 161
Eclipse environment

installing 18
EJB components

about 70
asynchronous EJB 71
configuring 71
MDBs 70
MDBs, configuring 76
no-interface EJB 71
SFSBs 70
SFSBs, configuring 74, 75
Singleton EJB 71
SLSBs 70
SLSBs, configuring 72, 73
timer service, configuring 77, 78

EJB container
about 70
configuring 70
messaging system, configuring 78-80
transactions service, configuring 89-91

EJB layer
adding, to Maven web project 114-116

EJBs
app-name parameter 120
bean-name parameter 120
distinct-name parameter 120
fully-qualified-classname-of-the-remote

-interface parameter 120
module-name parameter 120
securing 316, 317

enable command 217
enable-statistics property 91
encryption 323
Enterprise Archive file. See EAR file
Enterprise JavaBeans container. See

EJB container
entities

caching 264
clustering 263, 264
configuring 126-129

entry 309

[374]

entry element 85
eviction strategies, Infinispan

LIRS 253
LRU 253
NONE 252
UNORDERED 252

example, WildFly domain configuration
creating 147-152

executable module 28
expiry-address property 87
expiry-delay property 87
explicit dependencies 182, 183
extensions, application server

configuration 33

F
filesystem, application server

about 21, 22
application server modules 27, 28
bin folder 22
docs folder 22
domain folder 22, 23
modules folder 24
standalone folder 23, 24
welcome-content folder 24
WildFly's kernel 26

filter-ref element 103
formatter element 50

G
Gartner Group

URL 336
general commands 363, 364
Google Web Toolkit (GWT) 217
grid computing

versus cloud computing 334

H
help command 209
Hibernate annotations

used, for caching entities 265
hibernate cache

about 252

configuring 252-254
replication, using 254

High Availability 245
history command 217
HornetQ

about 257
http 81
inVM 81
Netty 81
URL 79

HornetQ persistence configuration 87, 88
host 140
host configuration, server element

about 102
access-log element 102
filter-ref element 102
location element 102
single-sign-on element 102

host controller, WildFly domain 134
host parameter 82
host.xml file

configuring 139, 140
http 81
http-client-idle-scan-period parameter 83
http-client-idle-time parameter 83
HTTP listener element

allow-encoded-slash attribute 100
always-set-keep-alive attribute 100
buffer-pipelined-data attribute 101
buffer-pool attribute 101
certificate-forwarding attribute 101
decode-url attribute 101
enabled attribute 101
max-cookies attribute 101
max-headers attribute 101
max-header-size attribute 101
max-parameters attribute 101
max-post-size attribute 101
name attribute 101
proxy-address-forwarding attribute 101
redirect-socket attribute 102
socket-binding attribute 102
url-charset attribute 102
worker attribute 102

http-requires-session-id parameter 83
http-response-time parameter 83

[375]

http-server-scan-period parameter 83
hung-task-threshold attribute 93
hybrid cloud 336

I
Identity login module 304
implicit dependencies 180-182
Infinispan subsystem

about 229, 241
configuring 245, 246
hibernate cache, configuring 252-254
replication and distribution, selecting

between 250, 251
session cache containers,

configuring 247-249
Infinispan transport

configuring 255
Infrastructure as a Service (IaaS) 337
installation

Apache 271
Java environment 9, 10
Java, on Linux 10
Java, on Windows 11, 12
JBoss tools 19, 20
mod_cluster 278-280
mod_jk library 271-273
WildFly 8 12, 13

interfaces, application server configuration
about 35
management network interface 36
public network interface 36

Internet Service Provider (ISP) 239
Intrusion Detection System (IDS) 336
inVM, acceptors and connectors 81
InVmConnectionFactory 84
IP aliasing 234
isolation levels, Infinispan

NONE 248
READ_COMMITTED 248
READ_UNCOMMITTED 248
REPEATABLE_READ 248
SERIALIZABLE 248

isolation level, WildFly classloading
explicit dependencies 182, 183
finding 180

implicit dependencies 180, 182
iText library

download link 346

J
Java Archive file (JAR file) 159, 160
Java Authentication and Authorization

Service (JAAS) 302
Java Development Kit (JDK) 9
Java EE 7 examples

reference link 107
Java EE 7 tutorial

reference link 77
Java EE security

about 300-302
declarative security 301
programmatic security 301

Java Enterprise Edition (Java EE) 299
Java Enterprise services configuration

about 59
concurrency, configuring 91
database, connecting to 59
EJB container, configuring 70

Java environment
installing 9, 10
installing, on Linux 10
installing, on Windows 11, 12

Java Naming and Directory Interface
(JNDI)

about 120
Stateless EJB 120
Stateful EJB 120

Java Non-blocking Input/Output (NIO)
API 79

Java Persistence API (JPA) 97
Java Secure Socket Extension (JSSE) 325
Java security API

approaching 300
Database login module, using 306, 307
EJBs, securing 316
LDAP login module, using 309, 310
UsersRoles login module, using 305, 306
web applications, securing 313-315
web services, securing 317, 318
WildFly security subsystem 302-305

[376]

Java SE logging libraries (JUL)
about 47
diagrammatic representation 47
formatters 47
handlers 47
loggers 47

JavaServer Faces Facets 110
JavaServer Faces (JSF) technology 107
Java Specification Requests. See JSRs
Java Transaction API (JTA) 89
Java Virtual Machine. See (JVM)
JBoss Enterprise Application Platform

(JBoss EAP) 7
JBoss logging framework 47
JBoss tools

installing 19, 20
JdbcLogger

reference link 52
JGroups

URL 244
JGroups protocols

about 244
discovery 244
failure detection 244
flow control 244
fragmentation 244
group membership 244
reliable delivery 244
state transfer 244
transport 244

JGroups subsystem
about 229
Building Blocks 242
Channel 242
configuring 242, 243
groups 242
members 242
protocol stack, customizing 244

JMeter
URL, for downloading 291
using 291

JMS commands 366
jms-queue add command 205
jndi-name attribute 93
journal-type property 88
JPA annotations

used, for caching entities 265

JPA subsystem
default datasource, using 126

JSF components
adding, to Maven web project 111-114

JSRs
about 8
URL 8

JVM
about 9
configuring 142
options, adding to server definition 143
precedence order between elements 144
server nodes, configuring 145

K
keepalive-time attribute 93
Kerberos login module 305
kernel, WildFly

about 26
architecture 26
JBoss Modules 26
MSC 26

keytool certificate 326

L
LDAP

about 309
attributes 309
connecting, to WildFly 310-313
DN 309
entry 309
RDN 309

LDAP Data Interchange Format (LDIF) file
about 310
using 311

LdapExtended login module
about 304
allowEmptyPasswords property 313
baseCtxDN property 313
baseFilter property 313
bindDN property 313
OBJECT_SCOPE, searchScope property 313
ONELEVEL_SCOPE, searchScope

property 313
roleAttributeID property 313
roleFilter property 313

[377]

rolesCtxDN property 313
searchScope property 313
SUBTREE_SCOPE, searchScope

property 313
LDAP login module

about 309
using 309

LdapUsers login module 304
level element 50
Lightweight Directory Access Protocol.

See LDAP
Linux

Java, installing on 10
LIRS

reference link 253
list-batch command 211
load-balancing

with mod_cluster 276, 277
load-balancing, between nodes

about 290-292
example 295, 296
load metrics, using 293, 294

load-balancing policy
FirstAvailable 261
FirstAvailableIdenticalAllProxies 261
RandomRobin 261
RoundRobin 261

load metric
used, for load-balancing between

nodes 293, 294
local-query cache 252
location element 102
log4j

about 47
URL, for documentation 50

logging implementations
about 47
Java SE logging libraries (JUL) 47
log4j 47
selecting 48

logging subsystem, application server
logging configuration

configuring 49
login modules, WildFly security subsystem

activating 305
AdvancedADLdap 305
AdvancedLdap 305

Certificate 304
CertificateRoles 304
Client 304
ConfigureIdentity 304
Database 304
DatabaseCertificate 304
DatabaseUsers 304
Identity 304
Kerberos 305
Ldap 304
LdapExtended 304
LdapUsers 304
PropertiesUsers 304
RoleMapping 304
RunAs 304
Simple 304
SimpleUsers 304
SPNEGOUsers 305
UsersRoles 305

long-running-tasks attribute 93

M
managed executor service, concurrency

configuring 93
managed schedule executor service,

concurrency
attributes 94
configuring 94

managed thread factory, concurrency
configuring 92

management interfaces, application
server configuration 34, 35

management interfaces, securing
about 318-320
groups, configuring 322
Role-based access control (RBAC) 321

management interfaces, WildFly domain
configuring 140

management tools
about 193
command-line interface (CLI) 194
web admin console 217

manual application deployment, on WildFly
server 170-172

Maven web project
creating 107-110

[378]

data persistence, configuring 124
default datasource, using for JPA

subsystem 126
deploying 117, 118
deploying, to root context 118
EJB layer, adding 114-116
entities, configuring 126-129
JSF components, adding 111-114
persistence, configuring in other

application archives 129
provider, switching 130
provider, switching with Jipijapa 130
remote EJB client, adding 119-122
remote EJB client, configuring

programmatically 123
remote EJB client, configuring with

properties file 122
web context, selecting 116, 117

max-delivery-attempts property 87
max-size-bytes property 87
max-threads attribute 93
MDBs

about 70
configuring 76, 77
Does not Exist state 76
Method ready Pool state 76

message-counter-history-day-limit
property 87

message digest algorithm 307
message-driven beans. See MDBs
messaging subsystem

clustering 257-259
messaging credentials, configuring 259

Messaging subsystem 229
messaging system, EJB

configuring 78, 79
connection factories, configuring 84
destinations, customizing with address 86
HornetQ persistence configuration 87, 88
JMS destinations, configuring 85
point-to-point model 79
publish/subscribe model 79
transport, configuring 80-84

mod_cluster
advantages 276
configuration 281-284
installing 278-280

managing, via CLI 284, 286
reference link 279
testing 284
troubleshooting 288, 290
URL, for downloading 280
used, for load-balancing 276, 277

mod_jk library
installing 271-273
using 270

mod_proxy
configuring 274, 275

Modular Service Container. See MSC
modules, application server

dynamic modules 27
loading 27, 28
static modules 27

modules folder 24
MSC 26
multihoming

about 234
configuring 235
setting up, on Linux 234
setting up, on Windows 7 234

mutual authentication 325

N
name attribute 93
Name property 167
Netty 81
network interface

about 141
configuring 141
management 141
public 141
unsecure 141

Network Interface Card (nic) element 36
New Input/Output (NIO) 98
nio-remoting-threads parameter 83
node 242
no-interface EJB 71
Non-blocking Input/Output API 98

O
one-time password (OTP) 300
OpenShift

about 339

[379]

applications, managing 352, 353
Enterprise version 339
Online version 339
Origin version 339

OpenShift application
building 346-350
cartridge, installing 343-346
configuring 354
creating 342
scaling 359, 360
workflow 346

OpenShift client tools
installing 340-342

OpenShift Online
about 339
account, accessing from different

computer 342
logging into 340
URL 339

OpenShift server logfiles
tailing 351
viewing 351
viewing, via SSH 352

OpenShift terms
application 342
cartridge 342
gear 342

OpenShift Tools
installing 357
reference link 359
using 357-359

Oracle
URL, for downloading 9

P
page-size-bytes property 87
passivation 75
paths, application server configuration

about 33, 34
java.home 34
jboss.domain.servers.dir 34
jboss.server.base.dir 34
jboss.server.data.dir 34
jboss.server.log.dir 34
jboss.server.tmp.dir 34
jboss.home 34

user.home 34
user.dir 34

periodic-rotating-file-handler 50
persistence

configuring, in other application
archives 129

persistence-enabled property 88
persistence.xml file 125
Plain Old Java Objects (POJOs) 79
Platform as a Service (PaaS) 338
point-to-point messaging

characteristics 79
pom.xml file 110
port parameter 82
private cloud 336
process controller, WildFly domain 134
profiles, application server configuration 35
programmatic security 301
PropertiesUsers login module 304
protocol servers 80
public cloud 336
public key cryptography 324
publish/subscribe messaging

characteristics 79

Q
queries

caching 266
queue-length attribute 93
queueless thread pool

about 45
diagrammatic representation 45
sample configuration 45

R
Random

reference link 259
RAR file 160
read-attribute command 199
read-children-names command 199, 203
read-children-resources command 199, 204
read-children-types command 199, 203
read-operation-description

command 199, 203
read-operation-names command 199, 203

[380]

read-resource command
about 199
example 200, 201

read-resource-description
command 199, 202

recovery environment, transactions
subsystem 90

redelivery-delay property 87
Red Hat documentation

reference link 340
reject-policy attribute 93
relative distinguished name (RDN) 309
RemoteConnectionFactory 85
remote.connections property 123
remote EJB client

adding, to Maven web project 119-122
configuring programmatically 123
configuring, properties file used 122

Remoting framework 120
replicated caching 250
resources, application server modules 28
resources, deploying on application server

about 159
EAR file 161
JAR file 160
WAR file 160

rhc tail command
using 352

Role-based access control (RBAC)
about 321
enabling 321

RoleMapping login module 304
root node path 18
Round-Robin

reference link 259
RunAs login module 304
run-batch command 211
Runtime Name property 167

S
SAR file 160
scheduled thread pool

about 46
diagrammatic representation 46

Secure Socket Layer
enabling 325, 326

security 299
security domain 303
security, WildFly

about 299
Java security API, approaching 300
management interfaces, securing 318-320
transport layer, securing 323, 324

selector element 86
server element

configuring 99
default-host attribute 99
host, configuring 102, 103
listener, configuring 100
servlet-container attribute 99
static content, serving 103

server group 140
server nodes

configuring 145, 146
server profiles, web admin console

configuring 220
datasources, configuring 220-222
JMS destinations, configuring 224, 225
socket-binding groups,

configuring 226, 227
XA datasource, creating 222

service API 184
Service Provider Interface (SPI)

about 184
reference link 184

servlet container
configuring 104
JSP, configuring 105
session cookie, configuring 105
session state, saving 106

servlet-container element
allow-non-standard-wrappers attribute 104
default-buffer-cache attribute 104
default-encoding attribute 104
eager-filter-initialization attribute 104
ignore-flush attribute 104
stack-trace-on-error attribute 104
use-listener-encoding attribute 104

session beans
clustering 261, 262

session cache containers
configuring 247, 248

[381]

session-cookie element
about 106
comment attribute 106
domain attribute 106
http-only attribute 106
max-age attribute 106
name attribute 106
secure attribute 106

SFSBs
about 70, 261
configuring 74, 75

shared-cache-mode element, values
ALL 263
DISABLE_SELECTIVE 263
ENABLE_SELECTIVE 263
NONE 263

Simple Authentication and Security
Layer (SASL) 120

Simple login module 304
SimpleUsers login module 304
single-sign-on element 102
SingletonBean 114
SingletonBeanRemoteImpl class 119
Singleton EJB 71
size-rotating-file-handler 51
SLSBs

about 70, 261
configuring 72, 73
pool, configuring 72

pool size, configuring with CLI 74
snapshots 368
socket-binding attribute 100
socket-binding groups, application

server configuration 37
Software as a Service (SaaS) 338, 339
SPNEGOUsers login module 305
standalone.boot.xml file 214
standalone folder

about 23, 24
configuration folder 24
data folder 24
deployments folder 24
lib folder 24
log folder 24
tmp folder 24

standalone.initial.xml file 214
standalone.last.xml file 214

standalone.xml 31
startup options 363
Stateful Session Beans. See SFSBs
Stateless Session Beans. See SLSBs
static modules 27
statistics-enabled 91
subsystems, application server

configuration 35
supported action hooks

reference link 354
symmetric encryption 323
synchronous messaging 249
syslog-handler 52
system-properties, application server

configuration 38

T
tab completion feature 165
TCP and UDP differences

reference link 255
tcp-no-delay parameter 83
tcp-receive-buffer-size parameter 83
tcp-send-buffer-size parameter 83
thread factory

about 40
configuring 40
group-name attribute 40
name attribute 40
priority attribute 40
thread-name-pattern 40

thread-factory attribute 93
thread pools

eviction-executor 256
listener-executor 256
replication-queue-executor 256
transport 256

thread pool subsystem configuration
blocking bounded-queue thread pool 42, 43
blocking queueless thread pool 45, 46
bounded-queue thread pool 40, 41
elements 39
performing 39
queueless thread pool 45
scheduled thread pool 46
thread factory, configuring 40
unbounded-queue thread pool 44

[382]

timer service
configuring 77, 78

timestamp cache 253
transactions service

configuring 89, 90
transactions subsystem

coordinator environment 90
core environment 90
diagrammatic representation 89
recovery environment 90

transport layer, securing
about 323, 324
certificate management tools 326
HTTP communication, securing with

certificate signed by CA 329, 330
HTTP communication, securing with

self-signed certificate 327-329
Secure Socket Layer, enabling 325

troubleshooting
cluster 239, 240

U
unbounded-queue thread pool

about 44
attributes/elements 44
diagrammatic representation 44

Undertow
architecture 98
buffer cache, configuring 106
configuring 99
diagrammatic representation 98
handlers 98
listeners 98
overview 97
server, configuring 99
servlet container, configuring 104, 105
XNIO worker instances 98

use-nio parameter 82
User Account Control (UAC) 12
UsersRoles login module

about 305
roles.properties file 305
users.properties file 305
using 306

V
Verisign

URL 330
version command 204
Virtual File System (VFS) 179

W
WAR file 160
web admin console

about 217
accessing 218, 219
Administration tab 219
benefits 227
Configuration tab 218
Home tab 218
Runtime tab 219
server profiles, configuring 220
used, for deploying application 166, 167

Web Application Archive file. See WAR file
web applications

creating 107
clustering 267
deploying 107
securing 313-315

web context, Maven web project
selecting 116

web contexts
managing, configuration file used 288
managing, with CLI 286

Web root context 24
web services

securing 317, 318
web.xml file 109
welcome-content folder 24
Weld dependency 180
WildFly 8

about 7
installing 12, 13
JBoss tools, installing 19, 20
restarting 17, 18
server connection, with CLI 15, 16
starting 13, 14
stopping 16, 17
stopping, on remote machine 17

[383]

WildFly 8, features
clustering 8
command-line interface (CLI) 8
Java EE7 certification 8
logging 8
port reduction 8
security manager 8
Undertow 8

WildFly 8, predefined roles
Administrator 322
Auditor 322
Deployer 321
Maintainer 321
Monitor 321
Operator 321
SuperUser 322

WildFly classloading
about 178, 179
advanced deployment strategies 185
global modules, setting up 184
isolation level, finding 180
module names 179

WildFly cluster
configuring 241
configuring, for domain servers 236-239
configuring, for standalone servers 230
Infinispan subsystem, configuring 245, 246
JGroups subsystem, configuring 242, 243
messaging subsystem, clustering 257-259
setting up 230
troubleshooting 239, 240

WildFly clusters, setting up for
standalone servers

cluster of nodes, running on different
machines 231, 232

cluster of nodes, running on same
machine 233

WildFly domain
about 133, 134
configuring 137
default configuration files, overriding 137
domain controller, configuring 142
domain.xml file, configuring 138, 139
elements 134
host.xml file, configuring 139, 140
initiating 136
JVM, configuring 142
management interfaces, configuring 140
network interfaces, configuring 141
stopping 136, 137

WildFly domain configuration
applying 146, 147
modifying, at runtime 153-156

WildFly domain, elements
application server nodes 134
domain controller 134
host controller 134

WildFly Eclipse plugin
used, for deploying application 168

WildFly security subsystem
about 302
login modules 304
security domain 303

Windows
Java, installing on 11, 12

windows, icons, menus, and pointers
(WIMP) interfaces 220

write-attribute command 199

X
xa-data-source command 209

Thank you for buying
WildFly Configuration, Deployment, and

Administration Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

WildFly Performance Tuning
ISBN: 978-1-78398-056-7 Paperback: 330 pages

Develop high-performing server applications using
the widely successful WildFly platform

1. Enable performance tuning with the use of
free and quality software.

2. Tune the leading open source application
server WildFly and its related components.

3. Filled with clear step-by-step instructions to
get to know the ins-and-outs of the platform, its
components, and surrounding infrastructure to
get the most and best out of it in any situation.

JBoss EAP Configuration,
Deployment, and Administration
[Video]
ISBN: 978-1-78216-248-3 Duration: 128 minutes

Detailed demonstrations to help you harness one
of the world's top open source JEE projects

1. Learn about everything from installation,
configuration, and debugging to securing
Java EE applications—ideal for JBoss
application developers.

2. In-depth explanations of JBoss EAP
features and diagrams to help explain
JBoss and Java internals.

3. Covers everything from JBoss EAP
essentials to more advanced topics through
easy-to-understand practical demonstrations.

Please check www.PacktPub.com for information on our titles

WildFly: New Features
ISBN: 978-1-78328-589-1 Paperback: 142 pages

Get acquainted with the exciting new features that
WildFly has to offer

1. Learn about the latest WildFly components,
including CLI management, classloading, and
custom modules.

2. Customize your web server and applications
by managing logs, virtual hosts, and the
context root.

3. Explore the vast variety of features and
configurations that can be implemented
through CLI and the Management Console.

JBoss EAP6 High Availability
ISBN: 978-1-78328-243-2 Paperback: 166 pages

Leverage the power of JBoss EAP6 to successfully
build high-availability clusters quickly and efficiently

1. A thorough introduction to the new domain
mode provided by JBoss EAP6.

2. Use mod_jk and mod_cluster with JBoss EAP6.

3. Learn how to apply SSL in a clustering
environment.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Installing WildFly
	What's new in WildFly 8?
	Getting started with the application server
	Installing the Java environment
	Installing Java on Linux
	Installing Java on Windows

	Installing WildFly 8
	Starting WildFly
	Connecting to the server with the command-line interface

	Stopping WildFly
	Locating the shutdown script
	Stopping WildFly on a remote machine

	Restarting WildFly
	Installing the Eclipse environment
	Installing JBoss tools

	Exploring the application server filesystem
	The bin folder
	The docs folder
	The domain folder
	The standalone folder
	The welcome-content folder
	The modules folder
	Understanding WildFly's kernel
	Loading application server modules

	Summary

	Chapter 2: Configuring the Core WildFly Subsystems
	Configuring our application server
	Extensions
	Paths
	Management interfaces
	Profiles and subsystems
	Interfaces
	The socket-binding groups
	System properties
	Deployments
	Configuring core subsystems
	Configuring the thread pool subsystem
	Configuring the thread factory
	The bounded-queue thread pool
	The blocking bounded-queue thread pool
	The unbounded-queue thread pool
	The queueless thread pool
	The blocking queueless thread pool
	The scheduled thread pool

	Configuring application server logging
	Choosing your logging implementation
	Configuring the logging subsystem

	The console-handler
	The periodic-rotating-file-handler
	The size-rotating-file-handler
	The async-handler
	The syslog-handler
	Custom handlers
	Configuring loggers
	Per-deployment logging
	Bypassing container logging

	Summary

	Chapter 3: Configuring Enterprise Services
	Connecting to a database
	Installing the JDBC driver
	Adding a local datasource
	Configuring the connection pool
	Configuring the statement cache
	Adding an xa-datasource

	Installing the driver as a deployment unit
	Choosing the right driver deployment strategy

	Configuring a datasource programmatically

	Configuring the Enterprise JavaBeans container
	Configuring the EJB components
	Configuring the stateless session beans
	Configuring stateful session beans
	Configuring the message-driven beans
	Configuring the timer service

	Configuring the messaging system
	Configuring the transport
	Configuring connection factories
	Configuring JMS destinations
	Customizing destinations with an address
	HornetQ persistence configuration

	Configuring the transactions service

	Configuring concurrency
	Configuring the context service
	Configuring the managed thread factory
	Configuring the managed executor service
	Configuring the managed schedule executor service

	Summary

	Chapter 4: The Undertow Web Server
	An overview of Undertow
	The Undertow architecture
	Configuring Undertow
	Configuring the server
	Configuring the listener
	Configuring the host
	Serving static content

	Configuring the servlet container
	Configuring JSP
	Configuring the session cookie
	Saving the session state

	Configuring the buffer cache

	Creating and deploying a web application
	Creating a new Maven web project
	Adding JSF components
	Adding the EJB layer
	Choosing the web context of the application
	Deploying the web application
	Deploying a web application to the root context

	Adding a remote EJB client
	Configuring the client using a properties file
	Configuring the client programmatically

	Configuring data persistence
	Using a default datasource for the JPA subsystem
	Configuring entities
	Configuring persistence in other application archives
	Switching to a different provider
	Using Jipijapa

	Summary

	Chapter 5: Configuring a WildFly Domain
	Introducing the WildFly domain
	Understanding the default domain configuration
	Starting up and stopping a domain
	Configuring the domain
	Overriding the default configuration files
	Configuring the domain.xml file
	Configuring the host.xml file
	Configuring the management interfaces
	Configuring the network interfaces
	Configuring the domain controller
	Configuring the JVM
	Adding JVM options to a server definition
	Order of precedence between elements
	Configuring server nodes

	Applying domain configuration

	Creating our very own domain configuration
	Changing the domain configuration at runtime

	Summary

	Chapter 6: Application Structure and Deployment
	Deploying resources on the application server
	The JAR file
	The WAR file
	The EAR file

	Deploying applications on a standalone WildFly server
	Automatic application deployment
	Deploying applications to a custom folder
	Changing the behavior of the deployment scanner
	Deployment rollback
	Deploying an application using the CLI
	Deploying an application using the web admin console
	Deploying an application using the WildFly Eclipse plugin

	Manual application deployment

	Deploying applications on a WildFly domain
	Deploying to a domain using the CLI
	Deploying to all server groups
	Deploying to a single server group

	Deploying to a domain using the Admin console

	Explaining WildFly classloading
	Getting to know module names
	Finding the isolation level
	Implicit dependencies
	Explicit dependencies

	Setting up global modules
	Advanced deployment strategies
	Setting up a single module dependency
	Excluding the server's automatic dependencies
	Isolating sub-deployments
	Using the Class-Path declaration to solve dependencies

	Summary

	Chapter 7: Using the Management Interfaces
	The command-line interface (CLI)
	Reloading the server configuration
	Employing the CLI
	Navigating through the resources and executing operations
	Executing commands with the CLI

	Executing CLI scripts in batch
	Advanced batch commands

	Executing scripts in a file
	Redirecting non-interactive output

	Taking snapshots of the configuration
	What the application server saves for you
	Taking your own snapshots

	History of CLI

	The web admin console
	Accessing the admin console
	Configuring server profiles
	Configuring datasources
	Configuring JMS destinations
	Configuring socket-binding groups

	The CLI or web console?
	Summary

	Chapter 8: Clustering
	Setting up a WildFly cluster
	Setting up a cluster of standalone servers
	A cluster of nodes running on different machines
	A cluster of nodes running on the same machine

	Setting up a cluster of domain servers
	Troubleshooting the cluster

	Configuring the WildFly cluster
	Configuring the JGroups subsystem
	Customizing the protocol stack

	Configuring the Infinispan subsystem
	Configuring session cache containers
	Choosing between replication and distribution
	Configuring the hibernate cache
	Using replication for the hibernate cache

	Advanced Infinispan configuration
	Configuring the Infinispan transport
	Configuring the Infinispan threads

	Clustering the messaging subsystem
	Configuring messaging credentials

	Configuring clustering in your applications
	Clustering session beans
	Clustering entities
	Caching entities
	Using JPA annotations
	Using Hibernate annotations

	Caching queries
	Clustering web applications
	Summary

	Chapter 9: Load-balancing Web Applications
	Benefits of using the Apache web server with WildFly
	Using the mod_jk library
	Installing Apache
	Installing mod_jk

	Configuring mod_proxy

	Load-balancing with mod_cluster
	Installing mod_cluster libraries
	The mod_cluster configuration
	Testing mod_cluster

	Managing mod_cluster via the CLI
	Managing your web contexts with the CLI
	Adding native management capabilities
	Managing web contexts using the configuration file
	Troubleshooting mod_cluster
	Load-balancing between nodes
	Using load metrics
	Example setting dynamic metrics on a cluster

	Summary

	Chapter 10: Securing WildFly
	Approaching Java security API
	The WildFly security subsystem
	Using the UsersRoles login module
	Using the Database login module
	Encrypting passwords

	Using an LDAP login module
	Connecting LDAP to WildFly

	Securing web applications
	Securing EJBs
	Securing web services

	Securing the management interfaces
	Role-based access control
	Configuring groups

	Securing the transport layer
	Enabling the Secure Socket Layer
	Certificate management tools
	Securing HTTP communication with a
self-signed certificate
	Securing the HTTP communication with a certificate signed by a CA

	Summary

	Chapter 11: WildFly, OpenShift, and Cloud Computing
	Introduction to cloud computing
	Cloud computing versus grid computing
	Advantages of cloud computing
	Cloud computing options
	Types of cloud services

	Getting started with OpenShift Online
	Installing OpenShift client tools
	Accessing your OpenShift account from a different computer

	Creating our first OpenShift application
	Installing your first cartridge
	Understanding the workflow
	Building the application

	Viewing the OpenShift server logfiles
	Tailing the logfile
	Viewing logs via SSH

	Managing applications in OpenShift
	Configuring your applications
	Adding a database cartridge
	Using OpenShift Tools and Eclipse
	Scaling your application

	Summary

	Appendix: CLI References
	Startup options
	General commands
	The domain mode commands
	Commands related to application deployment
	JMS
	Datasources
	Datasources (using operations on resources)

	Mod_cluster
	Batch
	Snapshots

	Index

