
www.allitebooks.com

http://www.allitebooks.org

WildFly Performance Tuning

Develop high-performing server applications using the
widely successful WildFly platform

Arnold Johansson
Anders Welén

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

WildFly Performance Tuning

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2014

Production reference: 1190614

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-056-7

www.packtpub.com

Cover image by Bartosz Chucherko (chucherko@gmx.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Arnold Johansson

Anders Welén

Reviewers
Ricardo Arguello

Robin Morero

Christopher Ritchie

Kylin Soong

Commissioning Editor
Ashwin Nair

Acquisition Editor
Rebecca Pedley

Content Development Editor
Anila Vincent

Technical Editors
Kapil Hemnani

Manal Pednekar

Faisal Siddiqui

Copy Editors
Roshni Banerjee

Sayanee Mukherjee

Karuna Narayanan

Stuti Srivastava

Project Coordinator
Aaron. S. Lazar

Proofreaders
Simran Bhogal

Stephen Copestake

Lindsey Thomas

Indexers
Mehreen Deshmukh

Tejal Soni

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Arnold Johansson is a versatile information technologist with a true passion
for improving people, businesses, and organizations using "good tech".

As an early adapter of the Java language and its growing ecosystem, he is
an outspoken proponent of secure Java Enterprise solutions and real Open
Source software.

After nearly two decades as an IT consultant in many levels and verticals, Arnold
now focuses on leading organizations on an architectural stable and efficient path
of excellence.

Mother and Father, thank you for everything!

Anders Welén embraced the object-oriented techniques of the Java language early
in life, and later evolved to Java Enterprise specifications. As a true believer and
evangelist of Open Source, he naturally discovered the JBoss Application Server,
which led to years of providing expert consultation, training, and support for the
JBoss and Java EE infrastructures.

As a result, Anders has seen a lot of both good and bad architectures, software
solutions, and projects, most of which were a struggle from time to time due to
performance problems.

www.allitebooks.com

http://www.allitebooks.org

Whenever Anders, through presentations, consultation, training, and (in this case)
a book, sees that what he's trying to explain is getting through and the audience
is picking up on it and adopting it for their own challenges, it gives him a warm
feeling inside.

To my parents, Stig and Birgitta, for teaching me to be curious.
To my love, Lotta, for her support while I was writing this book.

And finally, to the French language lessons in school, as I chose, and
therefore discovered, Computer Science to avoid them.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Ricardo Arguello is a software architect with more than 15 years of experience.
He has worked on enterprise applications and distributed architectures for most of
his career. He has collaborated as a JBoss.org committer in the past and is now part
of the Fedora Project as a packager of WildFly dependencies. He loves to give talks
on the need to become active Open Source collaborators rather than be passive users
of the technology.

Ricardo is the founder and owner of Soporte Libre, an Ecuadorian company devoted
to providing onsite technical support for enterprise clients using mission-critical
applications that run on Open Source. With almost 10 years' experience in delivering
middleware solutions and infrastructure platforms based on Linux, Soporte Libre
has become one of the most important Open Source businesses in Ecuador.

Robin Morero is a full stack developer/architect based in Gothenburg, Sweden.
He has a background in the telecom industry and in product development. He
is experienced in middleware, e-commerce, BSS, BRM, CRM products, and
custom development.

Christopher Ritchie is a Sun-certified programmer with over 10 years' software
experience. Having worked in both the UK and South African markets, he has
worked on a variety of software applications, ranging from online gaming to
telecoms and Internet banking.

He currently works as a software architect at his company in South Africa. He has
a keen interest in the JBoss Application Server (now WildFly) and is an advocate of
Java EE technologies. You can get to know more about him by visiting his website at
www.chris-ritchie.com.

www.allitebooks.com

http://www.allitebooks.org

Kylin Soong has six years' experience in working with JBoss and WildFly,
including developing and maintaining proficiency in Java programming, JEE
environment (JBoss/WildFly) development, knowledge of middleware architecture,
and performance tuning.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and,
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read, and search across Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy-and-paste, print, and bookmark content
• On-demand and accessible via web browsers

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: The Science of Performance Tuning 7

Performance 7
Response time 8
Throughput 9
Utilization efficiency 10

Scalability 11
Performance tuning anti-patterns 12

The one-off 12
The wrong team 13
The lack of mandate 13
The clever developer 13

Software development and quality assurance 14
Software development with performance focus 15

Analysis 15
Design 16
Implementation 16
Performance testing and tuning 17

The iterative performance-tuning process 17
Test cases and iteration 17

Setting the baseline 18
Running tests and collecting data 18
Analyzing the data 18
Tuning and retesting 18

Test data 20
Documentation 20

The environment of performance tests 21

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

The software life cycle 21
Upgrades 22
Metrics 22

Tuning an enterprise stack 23
Network 23
Hardware 23
Operating System 24
Java Virtual Machine 24
Middleware 24
Application 25

Summary 26
Chapter 2: Tools of the Tuning Trade 27

The key features of performance tuning 28
Profiling 28

Profiling in production 29
Profiling a JVM 29

Profiling and sampling 30
VisualVM 31

Standard features 31
The features of plugins 32
Connecting to a JVM 33

Local JVM 33
Remote JVM 33

Monitoring a JVM 34
Features 36
Test scenarios 37

A JMX connection to WildFly 37
Local or remote WildFly server 37
Setting up VisualVM 38
Connection in VisualVM 38

Monitoring 41
OS tools 41

Unix and Linux 42
Low CPU utilization 44
High CPU utilization 45
High resource contention 46
High disk utilization 46

OS X 47
Windows 48

WildFly tools 48
The Command-line Interface 48
The WildFly Management Console 49

Table of Contents

[iii]

JBoss DMR 50
JConsole 50

Generating load 50
Apache JMeter 51

Building a basic test plan 52
Improving the test plan 55
Recording a web session using the JMeter HTTP proxy 56
Standalone and distributed load generation 57

Summary 58
Chapter 3: Tuning the Java Virtual Machine 61

JVM 62
JVM memory areas 62

The JVM stack and native stack 62
The heap 63
Other JVM memory concepts 64

GC 64
JVM memory management with the GC 65
Configuring the JVM 69

Default settings 69
Client versus Server VM 70
The stack 70
The heap 71

Setting the maximum heap size 72
Setting the initial heap size 73
Determining what maximum size the heap should be 73
Determining what initial size the heap should be 74
Setting the size of the young and old generations 75
Setting the size ratio of Eden and the survivor spaces 77
PermGen 78

Large objects 78
Large memory pages 79
The java.lang.OutOfMemoryError error 79

From the heap 80
From the PermGen 80
Too large an array 81
Not enough native threads 81

Memory leaks 82
A leak-finding process 82
A step-by-step example using VisualVM 82

Types of GC strategies 86
The serial collector 86
The parallel collector 87

Table of Contents

[iv]

The concurrent collector 88
The G1 collector 89

Which collector to use 90
Setting VM parameters in WildFly 91
Having the relevant information available 92
VM parameters in production 93

verbose:gc 93
PrintGCDetails 93
PrintTenuringDistribution 94
loggc 95

Using tools 96
VM and GC stability 96
Summary 97

Chapter 4: Tuning WildFly 99
WildFly's history 100
WildFly's architecture 101
Various subsystem configurations 103

The thread pool executor subsystem 103
unbounded-queue-thread-pool 104
bounded-queue-thread-pool 105
blocking-bounded-queue-thread-pool 105
queueless-thread-pool 106
blocking-queueless-thread-pool 106
scheduled-thread-pool 107

Monitoring 107
The future of the thread subsystem 110

Java EE Connector Architecture and resource adapters 110
The Batch API subsystem 115
The Remoting subsystem 116
The Transactions subsystem 118

XA – Two Phase Commit (2PC) 118
Logging 118

Optimized logging code 119
Performance tuning logging in WildFly 120

Logging to the console 122
Logging to files 123
Using asynchronous logging to improve log throughput 124
Logging hierarchy and performance 125
Per-deployment logging 126

Summary 126

Table of Contents

[v]

Chapter 5: EJB Tuning in WildFly 127
The history of EJBs 128
The different types of EJBs 128

Stateless Session Beans (SLSB) 128
Stateful Session Beans 129
Singleton Session Beans 129
Message Driven Beans (MDB) 130

Performance tuning EJBs in WildFly 130
Enabling detailed statistics 130
Optimizations of Local and Remote method calls 130
Session beans and transactions 133
Remote EJB calls 137
Optimizing Stateless Session Beans 140

Tuning the SLSB pool 144
Optimizing Stateful Session Beans 147

Disabling passivation for individual SFSB 148
Optimizing Singleton Session Beans 149

Adjust lock mechanisms and time-outs 150
Container Managed Concurrency versus Bean Managed Concurrency 151
Monitoring 152

Optimizing Message Driven Beans 152
Summary 155

Chapter 6: Tuning the Persistence Layer 157
Designing a good database 158

Database normalization and denormalization 159
Database partitioning 160

Horizontal partitioning 161
Vertical partitioning 161

Using indexes 162
Tuning the Java Database Connectivity API 163

Connection pooling 164
Performance tuning a connection pool in WildFly 164

Setting the proper fetch size 171
Using batch updates for bulk insert/updates 171
Prepared statements 172
Isolation levels 175
Tuning JDBC networking 176

Tuning JPA and Hibernate 176
Optimizing object retrieval 177
Transactional integrity and performance 177

Table of Contents

[vi]

Limiting retrieved data by pagination 178
Fetching parent and child objects 179
Combining pagination and JOIN fetches 181
Improving the speed of collection queries using batches 181
Minimizing query compilation with JPA-named queries 182
Improving the performance of bulk SQL statements 183
Entity caching 183

The first-level cache 184
The second-level cache 184
The query cache 187
Query hints 188
Entity versus query cache 189
Optimizing data synchronization 189

Summary 190
Chapter 7: Tuning the Web Container in WildFly 193

Enter Undertow 193
Undertow internals 194
HTTP Upgrades 196
The default caching of static resources 196
Server and container topologies 196

Using XNIO 197
NIO basics 197
XNIO Workers 197

Tuning Undertow 198
Worker 198
The buffer pool 201

Tuning the servlet container and JSP compilation 203
Tuning hints for Jastow 205

Using Apache as a frontend 207
HTTP and AJP 209
Configuration 210

The Apache HTTPD configuration 211
The WildFly configuration 212

Summary 213

Table of Contents

[vii]

Chapter 8: Tuning Web Applications and Services 215
Web applications 216

Choosing a web framework 216
The evolution of web frameworks 216
Tuning a web component – the data table 221
Tuning servlet/JSP applications 223

Choose the scope wisely 223
JSP use of HttpSession 225
JSP include 225
Compression 225
Asynchronous servlets 226

Undertow's proprietary solutions 226
Tuning JSF-based applications 227

Configuring JSF state saving efficiently 227
The project stage 229
JSF Immediate 230
Using AJAX support in JSF 230
Loading resource files efficiently 234

WebSockets 235
Services 236

Web services 236
Performance factors 238

RESTful services 241
Summary 243

Chapter 9: JMS and HornetQ 245
Introducing JMS 245
The message and its optimizations 247
Tuning the session 248
Tuning MessageProducer 251
Optimizing HornetQ 252

Persistence storage tuning 252
Handling large messages 255
Optimizing paging 255
Message deliverance optimizations 257
Flow control 258
Miscellaneous tips and tricks 259
Monitoring 260

Summary 264

Table of Contents

[viii]

Chapter 10: WildFly Clustering 265
Cluster 266
Load balancing 267
Replication 268
Failover, failback, and session state 268
High Availability 269
The real need of clustering 270
A single point of failure 272
WildFly clustering basics 272

JGroups 273
Tuning UDP transport 277
Tuning node fault detection 278
Tuning flow control 278

Infinispan 278
Clustering in Java EE and WildFly 284

Clustered EJBs 284
MDB 285
SLSB 285
SFSB 285
Load balancing 286

Clustered Persistence (JPA) layer 288
Clustered web applications 289

Load balancing with mod_cluster 290
Clustering the HornetQ messaging system 292

Summary 295
Index 297

Preface
Buying a new suit isn't easy. Hopefully, you know why you need one. There might
be a certain occasion, such as a wedding or party, or perhaps you just need to
look sharper at work. Whatever the reason, there are likely to be some inherent
requirements. Cloth, colors, patterns, the cut and the placement as well as the
number of buttons are examples of factors that will all depend on environment and
time of usage. The thoughtful buyer will take all of these factors, and possibly more,
into consideration before making a selection.

Getting something cheap can be acceptable and cost-effective in the short run.
For longer commitments, however, it will certainly be more financially viable (and
probably more aesthetically preferable) to get the quality of a well-designed, tailored
fit, especially as this might even be customizable as your needs (size) change.

Should you need to sit a lot in your precious garment, it would be wise to double up
with at least an extra pair of pants. When wear and tear, or some other reason, makes
you drop a pair, it is good to quickly have another on standby.

Get the requirements sorted, find the right design, try it out, and tune it to fit new
needs when needed. If you find a wrinkle, make sure to iron it out and try it on
again. That is what you must do during the lifecycle of a suit and an IT system alike.

Let's go and get dressed for success with WildFly!

What this book covers
Chapter 1, The Science of Performance Tuning, talks about what performance tuning is
all about and how it can be applied within an organization.

Chapter 2, Tools of the Tuning Trade, introduces some useful Open Source tools to use
when performance tuning anything covered in this book.

Preface

[2]

Chapter 3, Tuning the Java Virtual Machine, covers what the engine of Java is and how
to tune it as well as all other Java-based applications.

Chapter 4, Tuning WildFly, explains what can be tuned in the WildFly
Application Server.

Chapter 5, EJB Tuning in WildFly, talks about how Enterprise JavaBeans can be tuned.

Chapter 6, Tuning the Persistence Layer, covers how to design an effective database as
well as how to tune JPA and queries.

Chapter 7, Tuning the Web Container in WildFly, explores Undertow—the blazingly
fast, new web container in WildFly—and discusses how it can be tuned to become
even better.

Chapter 8, Tuning Web Applications and Services, covers numerous tuning tricks and
tips surrounding the web applications and services based on Java EE.

Chapter 9, JMS and HornetQ, explains how JMS works and can be tuned in HornetQ,
the JMS provider of WildFly.

Chapter 10, WildFly Clustering, explores tuning in a clustered WildFly, HornetQ, and
Java EE components.

What you need for this book
As a base, it is recommended that you start out with the following platforms
and tools:

• Java SE 7
• WildFly 8.x (8.0.0.Final is used in the book)
• VisualVM
• Apache JMeter

More tools have been introduced within the book, but they are considered optional
depending on what you are interested in exploring and tuning.

Who this book is for
This book is for anyone interested in what performance tuning is all about and how
to do it using Java technologies, the WildFly Application Server, and other Open
Source software.

Preface

[3]

The first chapter should be considered a compulsory read for anyone working
anywhere near any form of IT, project and business managers included!

Chapter 2, Tools of the Tuning Trade, and Chapter 3, Tuning the Java Virtual Machine,
are very useful for anyone working with Java technologies.

From Chapter 4, Tuning WildFly, and forward, the content in this book turns toward
developers and architects that need to tune WildFly and the different layers of the
Java EE stack.

The final chapter is for those who (think they) need to cluster, and tune their
clustered environment.

In general, you will probably need to be a seasoned developer or software architect
in order to take in everything from this book. However, the book has been designed
so that you, as a reader, can target the area you are interested in, or have a need for,
at the moment. The book will grow with you, and you with the book.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "As the JVM runs out of memory, an
OutOfMemoryError error will occur."

A block of code or configuration is set as follows:

@MessageDriven(activationConfig = {
 @ActivationConfigProperty(propertyName = "destinationType",
 propertyValue = "javax.jms.Queue"),
 @ActivationConfigProperty(propertyName = "destination",
 propertyValue = "queue/testQueue"),
 @ActivationConfigProperty(propertyName = "maxSession",
 propertyValue = "20"),
 @ActivationConfigProperty(propertyName = "acknowledgeMode",
 propertyValue = "Auto-acknowledge") })
public class TestMDB implements MessageListener {
 public void onMessage(Message message) {
...
 }
}

www.allitebooks.com

http://www.allitebooks.org

Preface

[4]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

remote.cluster.ejb.clusternode.selector=RRSelector

Any command-line input or output is written as follows:

/subsystem=ejb3/strict-max-bean-instance-pool=mdb-strict-max-pool:read-
attribute(name=max-pool-size)

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Unfortunately, Management Console only provides a configuration view on
this pool and not any runtime information."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

The Science of
Performance Tuning

There are many definitions of science. However, the most common definition is the
systematic gathering and organization of knowledge. This refers to knowledge that,
apart from its original purpose, can be used for further explorations of even more,
and possibly further detailed, knowledge. Gaining new knowledge often involves
validating theorems or ideas through experiments and tests. When a test has been
validated or falsified, some things can be changed, or tuned, and the test can be
performed again in order to gather more knowledge about what is going on in
certain environments or situations.

As we will see, this approach of searching for knowledge in science is directly
transferable to the improvement of performance in IT systems. In our opinion,
performance testing and tuning is a science that is possibly spiced with some gut
feeling (which is often based on experience, so we would say knowledge possibly
sprung from science).

In this chapter, we will kick off by defining some key terminologies and measures
of performance. After that, we will turn our focus to the process of performance
tuning and its place in the software development process and the software life cycle.
This will include its iterative behavior and talking about when, where, and how
performance tuning should be done in an enterprise stack.

Performance
In the world of Information Technology (IT), performance is often used as a generic
term of measure. This measure can be experienced somewhat differently depending
on the role an individual has.

The Science of Performance Tuning

[8]

A user of a certain application will think more or less favorably of the application
depending on how fast it responds, or flows, from his or her individual perspective
and interactions. For a developer, an administrator, or someone else with a more
technical insight of the application, performance can mean several things, so it
will need to be defined and quantified in more detail. These expert roles will
primarily need to distinguish between response time, throughput, and resource
utilization efficiency.

Response time
Response time is normally measured in seconds (and is often defined with some
prefix, such as milli or nano) and relates to the sum of time it takes to send a request
to an operation, the execution time of the operation in a specific environment, and
the time taken to respond to the requester that the operation has completed. The
request, the execution of the operation, and the response are collectively called a
roundtrip: a there-and-back-again trip.

A typical example, (depicted in the following diagram), is a user who has filled out a
form on a web page. When the user sends the form by clicking on the Submit button
and sends the data in the form, the timer starts ticking. As the data is received by a
server, the data populates a JavaBean in a Java Servlet. From the servlet, subsequent
calls to other components such as other servlets and EJBs will occur. Some data will
then be persisted in a database. Other data can be retrieved from the same or other
databases, and everything will be transformed into a new set of data in the shape of
an HTML page that is sent back to the browser of the end user. As this response of
data materializes at the user's end, the timer is stopped and the response time of the
roundtrip can be revealed:

The response time, starting at t=0 and ending at t=x, and the roundtrip
for a use case in a system.

Deciding what, or how much, should be included in a use case for measuring the
response time, will vary on the test or problem at hand.

Chapter 1

[9]

The total response time for the roundtrip of a system can be defined as the total time
it takes to execute a call from an end user through all layers of the network and code
to a database or legacy system, and all the way back again. This is an important
and common value that is often used in service level agreements (SLA). However,
it provides a far from complete picture of the performance and health of a system.
It is important to have a set of use cases with the measured response time from
various points in the system that covers its common and most vital functionality and
components. These will be extremely helpful during tuning and when changes or
problems occur.

It is important to remember that the roundtrip in a use case
must be constant, in terms of start and stop points, between
measurements. Changing the definition will render the
measurements useless as they must be comparable!

So, what can affect the response time? In short, any change might affect the response
time in a positive or negative way. Changes that you can perform as a technician in
the software, hardware, and related infrastructure—code, configuration, hardware,
network topology, and so on—of a system, will have their effect and not seldom
other than you might expect.

With all these things static, there might still be changes that can make the response
time vary. Here, we're mostly concerned with the load on the system. As the load
of the system increases, its response times will eventually rise as the system
throughput decreases.

When an application performs work, that work is often triggered by external or
internal clients. This will require resources, such as CPU, volatile memory, network,
and persistent storage. The level of this utilization is the load of the system. Load can
be measured for one or several of these resources.

Take, for example, an increasing number of users and the interactions they do in
a system. The increase in system transactions could eventually exhaust available
connections of a pool. The excess of transactions would need to be queued for
released resources or even timeout. This then turns into a bottleneck, where the
system isn't able to handle the increasing number of transactions quickly enough.

Throughput
The load a system can manage is coupled to the measure of the system throughput.
Throughput is generically measured in transactions per given time unit, where a
transaction can be a task or operation, or even a set of operations that act as one.

The Science of Performance Tuning

[10]

The time unit is often measured in seconds but can be significantly smaller (milli,
nano) or bigger (minutes, hours, and so forth). Commonly, throughput is denoted
as transaction per second (TPS).

Here, a transaction or operation can be of any size such as a small computational
function or a big business case spanning over several components or systems. The
size is not of importance but the amount of operations is.

An alternative measure of throughput that is often used is the amount of data
transferred per second, such as bytes per second. Just like an SLA often has one or
more stated response times for a set of use cases, throughput normally also has TPS
values for the system as a whole and possibly, some for subsystems/components
that are important from a business perspective.

From a technical or IT-operations perspective, it is equally important to know what
throughput certain systems or subsystems regularly have, and at what levels these
might start to have problems and failures. These will be important indicators for
when upgrades are in order.

With a focus on Java EE, it is important to remember that the Java EE specification,
and therefore, most application servers that implement it, were designed for overall
throughput and not guarantees about response times.

Utilization efficiency
Low response times and a high measure of throughput is normally what anyone
wants from a system, as this will help in keeping customers happy and the business
thriving. If money is of no concern, it might not be a big deal from a technical
perspective to have a lot of hardware and using more resources than needed, as
long as business is booming.

This poor efficiency will, however invoke unnecessary costs, be it to the
environment, the employment force, development time, system management,
administration, and so on. Sooner or later, a business that wants to be or stay
profitable must have an efficient organization that can rely on cost-efficient IT
departments and systems. This includes utilizing available resources in the most
efficient way while keeping the customers happy. It's a balancing act that business
and IT departments must do together.

Having a bit less computational force, memory, and IT staff available might (among
many things) cause higher response times and worse throughput. Consequently,
software must be more efficient on available hardware. To make the software
efficient, we need to test and improve its performance.

Chapter 1

[11]

Scalability
A system needs to be able to handle an increasing load in order for the business
to stay attractive to customers. The response times need to be kept down for
each individual user and the total throughput needs to increase as the amount of
transactions increase. We say that the system needs to scale to the load, and scalability
is the capability that the system needs in order to increase total throughput.

When a system needs to be scaled, there are two major disciplines that can be
followed: vertical scaling and horizontal scaling. Vertical scaling (or scaling up),
as shown in the following diagram, involves adding more hardware resources,
such as processor cores and memory, to an existing computer. This was the prevalent
way to scale in the days of the mainframes but is used to some extent even today as
virtualization has gained momentum:

Vertical scaling involves adding more resources to
an existing computer.

Horizontal scaling (or scaling out) involves adding more computers that are
connected through a network. A simple example of horizontal scaling is shown in
the following diagram. This has been the concept of most computer topologies for
several years and has gained enormous momentum with cloud services and
big data:

Horizontal scaling involves adding more computers to a networked collective
of computers, such as a cluster.

The Science of Performance Tuning

[12]

In general, adding more resources to a single computer becomes more expensive
than adding more computers at some point. The single computer will be of low
volume and will often be very specialized, as it needs to have an advanced and
expensive architecture to handle a lot of processors and memory, whereas the many
cheap computers can be simple, off-the-shelf products. The single computer will be a
better computer standing next to any of the cheap ones, but at some point, the grand
number of cheap computers will collectively be cheaper, faster, and thereby, better
than the expensive one.

In the extreme, having just one computer can be hazardous as it will be a single point
of failure. Using one computer will, however, be easier from an administrative point
of view. There will only be one place to make changes or configurations. It will also
be easier from a developer's point of view, as the programming model won't have to
deal with many of the more complex scenarios that a distributed model can require.

As with all things, there are pros and cons with the two different types of scaling.
There are also several factors that bridge the gap between them. The single computer
in the vertical scaling scenario is seldom a single one. It is most common to have at
least one backup server. In the horizontal-scaling scenario, the programming model
has been simplified thanks to modern enterprise frameworks and the topology of
computers can be adapted to let each cheap server in the network work on its own
without the need (and complexity) to know about the rest.

Performance tuning anti-patterns
To tune the performance of a system means to improve one or more of its measures
of performance. The question is how, when, and where should it be done? This is
an area of great underestimation and major misconception. In the subsections that
follow, we'll give you some examples of common mistakes and problems. Try to
avoid them, or help out by correcting them, whenever and wherever you can.

The one-off
For many not-so-developed or understaffed organizations, performance testing
with some possible tuning is more or less a one-off, something done just before an
application is shipped out to production.

By only performing the testing and tuning at this point, the amount of work, if done
properly, is much higher and much more complex than if it was done iteratively
during the development of the application.

Chapter 1

[13]

Naturally, an organization must keep within its financial limits, but doing
performance testing just before a release is very hazardous. What will happen if
an application turns out to not live up to the expected and necessary measures in
production? It would clearly be very bad for business.

The wrong team
Very often, performance testing and tuning is run by staff that lacks the knowledge
of how this testing and tuning should be performed. Getting the right individuals,
in terms of competence, on board in the testing and tuning team is crucial. This can
vary but normally involves quality assurance (QA) staff, experienced performance
testers, and technical staff, such as architects and developers that have actually been
involved in creating the system under test.

The lack of mandate
Even though the quality value of a system's performance has grown to be relatively
recognized in most organizations today, there are still places where staff responsible
for performance-related tests and tuning lack the voice or mandate to enforce proper
quality tall-gates.

The clever developer
As passionate developers, we like to be clever. Making our code run smoothly is
satisfying, and the performance improvements we make can give us a feel-good
boost and self-confidence. That is great, but it's often not very meaningful to just
(over)optimize our own functions or components. As developers, we won't know
for sure how much or what parts of our code will actually be executed in such an
amount that it will need performance tuning. In the long run, it can even hamper
the performance as our optimizations might cause problems in other places of the
system as a whole.

So, performance tuning is something that an organization as a whole should take
seriously. It should be done iteratively and handled by a competent team with
complementing skills, experiences, and mandate. As it's such an important factor for
today's businesses, it should have a given place in any organizational process map.

www.allitebooks.com

http://www.allitebooks.org

The Science of Performance Tuning

[14]

Software development and
quality assurance
Back in the days, when software development started to be structured and
development teams grew, the waterfall methodology ruled. Today, that
methodology has mostly been replaced by agile counterparts that include highly
iterative approaches to the work. What has changed is the iterative and shortcut
behavior among the tasks involved along with their iterative frequency. It is not
uncommon to perform several iterations per day in modern development teams.

No matter what the methodology is, we perform some kind of analysis (requirement,
architectural) in software development from which design and implementation
phases follow. After, and often during the implementation phase, unit tests are run.

The unit test should be on a functional level, verifying the smallest building blocks
in code, such as specific functions or methods within a class. These tests are normally
run by the individual developer and are also advantageous to automate in order to
run during daily/nightly builds.

Higher levels of tests include the following:

• System tests: These tests are used to verify a system as whole
• Integration tests: These tests are used to verify integration points between

two or more components or systems
• Acceptance tests: These tests are used for the final verification by the product

owner before or during the deployment in a production environment

Most of these tests should be automated and run with live data as soon as possible.
Note that both combinations and other variants of tests can exist in different
organizations depending on various needs, organizational, or other inherited reasons.

All these types of tests are commonly part of a well-run business' QA process,
but they are also heavily entwined in the software development process as the
knowledge and cooperation from both IT and QA staff are required. This is all good,
but what about performance tests and performance tuning?

Naturally, performance testing should be included as a compulsory step in the
software development process and the results thereof should simultaneously be an
integral part of the QA process. The ownership might be arguable, but the important
thing is that it gets done, and gets done well. The exact location of when to do
performance testing will, however, need a bit more discussion.

Chapter 1

[15]

Software development with
performance focus
Let's first revisit the major steps of the software development process in more detail
with a healthy focus on performance and some quality. Remember that these steps are
run iteratively, with possible shortcuts, and sometimes, with very short iterations!

Some organizations may also define the process a bit differently, with some
steps included in other processes such as the requirement and QA processes. The
following diagram shows us a common version of the software development process
from which we will discuss its different phases. We will, however, not talk about the
acceptance testing and deployment phases in the process, as they normally won't
have any direct impact on performance tuning.

A generic version of the software development process with performance tuning.

Analysis
Creating high-quality software should always begin with some thorough requirement
analysis. This is often very focused on the business functions and their values, but it
is also very important to pay attention to the architecture of the software itself and its
required performance.

It is important to identify a set of situations that will occur in the system and turn
them into structured scenarios or use cases. These use cases need to be measurable
and their values need to be assessed from both business and technical perspectives.
Not all use cases need to have their performance assessed, but for those that need to,
deciding what types of benchmarks to use are important.

Some common performance-related questions that should be answered during the
analysis phase are:

• How many concurrent users should the system as a whole be able to serve
and what minimum response times are required in different situations?

• What levels of different software, hardware, and network resources must the
various parts of the system have at their disposal in order to run smoothly?

• Which information and level of audit is needed in different scenarios to
uphold legislative, business, or operation requirements?

The Science of Performance Tuning

[16]

From the preceding questions, it should be clear that the software requirements span
not only the business-related functionality but also nonfunctional requirements, such
as security and logging, as well as estimates of hardware and network resources. All
of of these can, and will, affect performance.

Design
Everything related to the software structure, and the software itself, is structured
here and defined in more detail. The overall architecture should be set for all major
components. Tiers of both hardware and software are detailed to fit and adhere to
the architecture and various requirements. Databases and data structures at different
levels are to be designed wherever possible. The efficiency of candidate algorithms
and libraries should be evaluated.

In short, the architectural decisions and design details must constantly be weighted
in performance.

Implementation
If the previous steps have been performed properly, implementing the software
source code with standard configurations of the system can be quite straightforward.
There should be information and decisions about what use cases and functions
should be paid special attention in terms of performance. Utilizing known best
practices and experiences (such as the ones mentioned in this book) should also be in
a developer's toolbox.

Try to not do to any overzealous tuning here though, as it
might be useless and possibly even counterproductive for
the system in large and not very cost-efficient.

After, and during, the implementation phase, there should be some testing
performed. Normally, the amount of testing increases as the software gets closer
to production. Unit testing should be performed pretty much all the time and is
actually tightly merged with coding in the implementation phase. However, system
and integration testing will not be that useful until the software reaches some
minimal level of testing maturity.

Chapter 1

[17]

Performance testing and tuning
The new kids on the block in the software development cycle are performance
testing, and its crafty cousin, tuning. Performance testing and tuning can be
performed in pretty much every iteration during the software development of
the system. There must be some reasonable need for it though, and it should be
performed in a controlled environment with competent staff.

A performance test within a development iteration might focus on individual
functions or components of the software being developed in order to verify that
design decisions are sound. These isolated tests can however, never replace a
complete and more realistic system-wide performance test.

Doing more complete performance tests on the entire system won't normally be
useful until the later iterations of development. Naturally, it should be performed
before deploying the system into production. However, remember to leave plenty of
time to correct any faults or unreached requirements, so test earlier rather than later.
Don't wait until the last iteration to do all the performance testing and tuning.

As it is often pretty much impossible to immediately live up to all requirements and
foresee all factors that might affect a system, the performance tuning process must
explore how different factors (configuration, environment, load, and so on) influence
the different use cases of a system. Furthermore, factors are quite likely to evolve
over time.

In order to structurally handle all these variables and variances while delivering a
system that effectively lives up to requirements, performance tuning is (currently)
best turned into a cyclical and iterative process in itself.

The iterative performance-tuning process
The tuning of a system involves testing in order to find bottlenecks in the system and
eliminate them by tuning the system and related components.

Test cases and iteration
Before performance tuning actually starts, it must be determined what test-cases, or
rather indicators, to focus on. This set of indicators might stay static, but after some
work (iterations), it is also common that some that are deemed not to be as fruitful
as expected are simply removed. Similarly, some new ones might be added over
time, both to follow the evolution of the system as well as to widen or deepen our
understanding of it. All this is done to improve its efficiency.

The Science of Performance Tuning

[18]

It is important that the bulk of test cases are kept between test iterations and even
between product releases. This is done in order to be able to compare results and see
how different changes affect the system. All these results will build into a knowledge
base that can help when tuning and making predictions to both the system at hand
and others in similar cases and environments.

The result of a performance test case is normally a measure of the response time,
throughput, or utilization efficiency of one or more components. These components
may be of any size or complexity. If the components are subcomponents of a larger
application or system, the set of test cases often overlap—some covering the entire
system and some covering the various subcomponents.

Setting the baseline
The first time a test is to be performed, there might not be much real data to lean on.
The requirements should give, or at least indicate, some hard numbers. These values
are called a baseline.

Running tests and collecting data
With the baseline set, tests are set up and run. As the tests execute, data must be
collected. For some, only the end result might matter, but for most, tests getting
data during the entire test run and from various points of measure will give a more
detailed picture of the health of the tested systems, possible bottlenecks, and tuning
points to explore.

Analyzing the data
Analyzing the data might involve several people and tools, each with some area,
or areas, of specialty. The collective input and analysis from all these people and
resources will normally be your best guide to what to make of the test data, as in,
what to tune and in what order.

Tuning and retesting
After the analysis is done, the system will be tuned and the baseline will possibly
be refined, and more retests will follow. Each of these retests will explore a possible
tuning alternative.

It is vital that only one individual thing is changed from
one test till its retest. Change more than one thing and you
won't know for sure what caused any new effects that are
seen. Also, consider that several changes might neutralize
or hide their individual effects.

Chapter 1

[19]

Remember that not only direct code or configuration changes to a system require
a performance test. Any and all changes to a system or its environment actually
make the system an aspirant for performance tuning. Also, note that not all changes
require performance tuning to be performed.

As you can imagine, following all tuning possibilities and always doing complete
retests could easily spin out of control. It would result in infinite branches of tuning
and tests—a situation that would be uncontrollable for any organization. It is,
therefore, important to choose carefully between the various possibilities using
knowledge, experience, and some healthy common sense. The tuning leads should
be followed one by one, normally starting with the one identified to give the most
effect (improved performance or reduction of bottleneck).

The performance-tuning process is normally complete when all
requirements are satisfied or when enough of an improvement
has been reached (normally defined by the product owner or
architect in charge). The tuning process is an iterative process that
is realized by the major steps shown in the following diagram.
Apart from resolving bottlenecks and living up to requirements, it
is equally important to not over-optimize a system. First, it is not
cost efficient. If no one has asked for that extra performance—in
terms of business or architectural/operational requirements—it
should simply not be done. Second, over-optimizing some things
(such as very minor bottlenecks) in a system can very easily, turn
its balance off, thus creating new problems elsewhere.

The iterative performance-tuning process.

The Science of Performance Tuning

[20]

Test data
Possibly one of the hardest areas of the software development and QA processes is
related to having / finding / creating useful test data. Really good test data should
have the following properties:

• It should be realistic and have the same properties as real live data
• It should not expose real user data or other sensitive information
• It should have coverage for all test cases
• It should be useful for both positive and negative tests

For tuning during load testing, the test data should also exist in large quantities.

As one can imagine, it requires a lot of work, and it can be very expensive to have a
full set of up-to-date test data with all these properties available, especially, as the
data and its properties can be more or less dynamic and change over time.

We highly encourage all efforts to use test data with the preceding properties. As
always, it will be a balancing act between the available resources of an organization
such as financial strength, people, and getting things done.

For load testing, the test data is normally generated more or less from scratch or
taken from real production data. It is important that the data is complete enough for
the relevant test scenarios. The test data does not, however, need to be as complete as
for functional testing. Volume, is more important.

Documentation
Throughout the performance-tuning process, it is important to have a stable and
complete documentation routine in order. For each iteration, at a minimum, all test
cases with traceable system configuration setups and measurement results should
be documented and saved. This will add to the knowledge base of the organization,
especially if it is made available to various departments of the organization.

It can then be a force to efficiently compare data of old releases with over time or to
make good estimates of hardware procurement or other resources. Never forget the
mantra of performance tuning:

Test, tune one thing at time and test again.

Chapter 1

[21]

The environment of performance tests
It has been mentioned that performance testing and tuning should be performed in a
controlled environment. In a perfect world, this means an environment that is free of
disturbance, production-like, and unchanged between tests.

Using the following three rules of thumb for your test environment, you will be as
close to achieving the perfect environment as you can for your performance tests:

• No disturbances: The tests should not be disturbed by other events, such
as the executions of batches, backups, unrelated network traffic, or similar
factors, to ensure that measurements relates only to the system under test.
In a production environment, there is likely to be external disturbances,
but the origins of these are hopefully known, and the systems that generate
them should have gone through separate performance tests. Simulations
in performance tests of what happens to a system at the same time as an
external disturbance runs might be useful for some situations, but it is
seldom an exact science and is not recommended in general.

• Production-like: The test environment should also be as similar to the
production environment as possible in terms of test data, configuration,
resources, services, hardware, and network capabilities in order to have
results that would actually be worth something as the system is deployed
into the real production environment. To have a full-blown copy of the
production environment available for performance testing is not always
possible due to various reasons. When the test environment isn't quite up
to level with its production counterpart, it is important to be aware of the
differences and to be able to extrapolate any test results. Just be very careful
to trust any estimates you make about the results in a different environment.

• Unchanged: The test environment must stay equal between iterations
of the same test and preferably for all tests. This intertest equality of the
environment is needed in order to make reliable comparisons of the results
from repeated tests. The exception to this, naturally, is when some part of
the environment itself is required to change as part of tuning. Then, only one
thing per test run can change and it must be thoroughly documented.

The software life cycle
After a system has successfully gone through the last phases of software development
(including performance testing, tuning, and acceptance testing), it will be deployed in
production where its hopefully long and successful life will begin for real.

The Science of Performance Tuning

[22]

Upgrades
Over its lifetime, the system will most likely need to be upgraded for one reason or
another. Upgrading might involve changes to the hardware, code, and configuration.
Before this upgraded system is put into production, it should be as thoroughly
tested as it was when it was first released in order to ensure that it will meet old,
and any new, requirements. Naturally, this includes performance testing and tuning,
when needed.

Metrics
During its life in production, a lot of things about the system will be of interest to the
business, QA, and the different IT departments. Some important questions that need
to be addressed among the different instances could be:

• Business: What use cases are actually utilized and to what grade? For what
reasons are important functions not used? Are they avoided due to poor
response times, perhaps? Does the system and its components really give the
expected Return of investment (ROI) or can there be optimizations made?

• QA and IT: Are the error rates under control? Is the hardware utilization
actually in alignment with what is estimated or is there need for more or
less of something? What about the response times and usage of components,
caches, and other software resources? What is the health of the system at any
given time?

Information to answer these questions and more can quite easily be answered by the
system itself. Some information might be available for extraction directly out of the
box from the system or from underlying resources, while others might need to be
enabled by configuration or by more or less advanced instrumentation in code.

The information is often extracted/collected by logging or monitoring through a
protocol such as SNMP (mostly used by hardware and operating system services)
or by using an API such as the Java Management Extension (JMX) API.

WildFly exposes information about quite a few resources through JMX, and
instrumenting your application code to expose values using JMX is very easy and
powerful. JMX can also be used externally from a system to give it instructions such
as clearing a cache, starting/stopping a service, and so on.

Quantifiable information from and about a system, regardless of how it is retrieved,
is called metric. The various metrics can be useful for a single situation such as a
monitoring alert for something going wrong. However, it is also important to collect
metrics over time as a proof of living up to SLA and be able to do various analysis
related to the business, quality, or technology.

Chapter 1

[23]

Performance testing and tuning is one of the areas that can benefit hugely from
having metrics available. It is, for example, very valuable during the design, or
modification, of test cases and setting realistic baselines.

Tuning an enterprise stack
Tuning can be broadly divided into different categories based on the different layers
of an enterprise IT environment. This environment is often called an enterprise stack
and consists of the layers shown in the following diagram. We will now turn our
attention to these layers one by one and discuss what tuning means and consists of in
each of them, starting from the bottom:

Layers of an enterprise stack.

Network
Network tuning typically involves the configuration of various network equipment
such as firewalls, routers, and network interfaces, but can also include verifying the
use of the correct type of cables and connectors. This type of tuning is often initially
missed during performance tuning, but in today's communication-heavy solutions,
it is absolutely vital to have a network that runs smoothly and at its highest
performance. Network tuning is also highly related to, and thus overlaps, hardware
and OS tuning.

Hardware
Hardware tuning includes selecting the right hardware components—CPU, memory,
discs, and so on—for a given system and its requirements. Shortage of memory will
increase I/O operations. Slow disks might make databases and entire systems crawl.

www.allitebooks.com

http://www.allitebooks.org

The Science of Performance Tuning

[24]

Data encryption and other computing-heavy functions will require a relatively large
amount of CPU. Often, the solution can be to just to add more or better hardware, but
it is equally important that the hardware is well-balanced and plays well together.

Operating System
Operating System (OS) tuning is closely related to network and hardware tuning as
it defines how the OS and hardware/network will cooperate and what restrictions
will be enforced. For example, CPU time slicing, I/O behavior, and network access.

Through the OS, a lot of information can also be retrieved regarding the health of not
only the OS itself, but also of the hardware and network.

Java Virtual Machine
Java Virtual Machine (JVM) tuning involves configuring the memory levels and
the garbage collector of the JVM. Although modern JVMs are considerably more
intelligent, effective, and advanced compared to older versions, they often still need
a bit of love and application-specific tuning. Tuning a JVM can drastically improve
the performance of the application that is being executed in the JVM. This tuning is,
however, quite volatile as things can easily go wrong and create new bottlenecks and
even worsen performance unless used in a very controlled way. More about this will
be covered in detail in Chapter 3, Tuning the Java Virtual Machine.

Middleware
Middleware tuning includes adjusting various configuration parameters of the
platform called middleware. This is done in order to make the platform and its
services more optimized for the applications and its components that run within
it. A middleware platform is often realized as an advanced application server; for
example, WildFly. Others might be simpler and won't include as many services; for
example, a web container like Apache Tomcat.

Some parameters and services of the middleware can be utilized by all applications,
while others can be application specific. For WildFly, some configuration and
services include thread pools, connection pools for EJBs, JMS (queues/topics)
and databases, EJB component lifecycle management, and much more. All these
configurations have default values that might be just fine, but they also might be
tweaked in order to achieve magnitudes of improved performance. Middleware
is arguably where most configuration-related tuning can be made in the stack, but
more of this will be discussed in chapters to come.

Chapter 1

[25]

Application
Application tuning is first and foremost achieved by making a thoughtful design
and writing good, efficient code. This also involves selecting the best algorithms and
libraries for your specific application. If the original design proves to be insufficient,
and other tuning types won't solve the problem, the design or code might need to be
redone completely or at least be improved in some way.

This can, for example, involve changing an entire platform, framework, or
programming model, or it can involve just improving a specific function or pattern.
It could also involve making better use of APIs or available resources. For example,
by using the StringBuffer or StringBuilder classes instead of String or by
improving the speed of database calls by using indexes. Application tuning, in terms
of initial design and implementation of a system, is often not directly seen as tuning.
However, creating a tuned application is, without a doubt, the most important type
of tuning you can do. Think about it. If you make poor design decisions or write poor
code, it will be really hard, if not impossible, to fix that by just tuning the hardware
or JVM. It would also be quite expensive—both in terms of time and money—to
make large design and code changes to a system.

As we have seen from the preceding text above and in the following diagram,
tuning can be performed pretty much everywhere in the stack, and tuning in
one place can and will affect things in all locations. Thus, having a broad and
open-minded view about possible ripple effects of singular changes will aid you
in making the best decisions.

Iterative tuning in the enterprise stack. Tuning is everywhere and everything depends
on many direct and indirect relations. Here, WildFly is depicting the middleware. Also

hardware- and network-tuning is included in the OS tuning.

The Science of Performance Tuning

[26]

Summary
In this chapter, we made the connection and discussed performance tuning as a
science. We defined performance as measures and listed some of the most important
ones used in IT—response time, throughput, and utilization efficiency.

We learned that the performance-tuning process is highly iterative, and that it is
vital to only tune one thing at a time between tests. Here, we also specified the main
place of the tuning process within the software development process and listed some
common tuning anti-patterns.

Good quality test data and production-like environments are fundamental
cornerstones of testing in general and for performance testing, this is no exception;
it's quite the opposite!

After going through metrics and their inherent value made available during the life
cycle of a piece of software, we finally talked about the tuning possibilities available
in all the layers of a complete enterprise stack. This is a stack that encompasses many
software layers (such as an application or system, the middleware, and the operating
system) as well as hardware and network equipment.

To put the theories of this chapter into practice, we will need a powerful set of
supporting tools. Moving on, this is exactly what we will be looking at in the
next chapter.

Tools of the Tuning Trade
In order to practically and efficiently tune a system, you will need the support of
some good tools that cover the different aspects of performance tuning. In this
chapter, we will focus on the following:

• The following key features of performance tuning:
 ° Profiling
 ° Monitoring
 ° Load generation

• Some theory behind these features
• How the features are being implemented in a few well-known tools
• Making sure that the tools and WildFly get along
• Some common use cases that the tools provide support for

There are some great performance-tuning tools on the market from various different
vendors, but as we're following the Open Source philosophy in this book, all the
tools we will use here come from the open source ecosystem. If you use tools
from vendors other than the ones mentioned here, don't worry! This is natural
and is something that we as authors come across time and again when assisting
various organizations. As long as your toolset is complete in terms of the necessary
functionality, this is what really counts.

Even though you might not have used the tools we present here, we won't go into
much detail about any installation or basic setup procedures, at least, not unless
they are explicitly needed for a vital feature. We'll leave these instructions to the
documentation available on each of the tool's site. If these don't fulfil your needs,
there are also numerous online resources such as community forums and blogs that
are full of useful hints and valuable tips.

Tools of the Tuning Trade

[28]

If you didn't know it earlier, performance tuning is a very multifaceted investigative
hands-on job, and to be truly efficient, you will need good tools to support your work.

The key features of performance tuning
Some of the tools in the tuning area have started out with support for one thing
or, perhaps, for a few things such as memory analysis or load testing. Over time,
however, quite a few of them have evolved in their own right or with the aid of
plugins to often have multiple functions. They also often cover several areas in the
tuning field.

So, what kind of support do we expect from a set of tuning tools? When looking at
the enterprise stack, it becomes clear that we need different types of tools depending
on the different layers of the stack:

• For the Java-based layers of the stack—the JVM, middleware, and
application—you'll first and foremost need to perform performance and
memory profiling.

• For the network, hardware, and OS layers, you will mainly need to monitor
various resources such as CPU, memory, and network throughput.

• On top of these, you also need to be able to put the system and its various
components under the defined levels of stress or load. This involves having
support for different protocols, data sets, APIs, and so on.

Profiling
In general, profiling a software system involves analyzing the behavior and
performance usage of resources that are involved, as the system executes. This
analysis is most often performed to find points of optimization and for the removal
of bottlenecks in the system. Profiling is also commonly, but not necessarily,
performed under various levels of load on the system.

Profiling is a very powerful function for investigating and helping resolve suspected
bottlenecks. Profiling can also be very complex, and the wrong interpretations
may lead to disastrous results. It should, therefore, only be performed in stable
environments, preferably, by staff that has shown an aptitude for it.

Chapter 2

[29]

Profiling in production
Conducting profiling during software development and in the performance-tuning
phase is quite normal. Then, you're normally confined to your personal development
environment such as your desktop/laptop or some test environment where the
effects that the actual profiling has on the system's performance often can be ignored.
Profiling can involve adding more code to an existing codebase by instrumentation
and by taking various types of snapshots or dumps of system resources; it can slow
down the profiled system considerably.

However, there may be a scenario where you might need to profile a system in its
production environment. Here, a different set of rules normally applies. Regular
business operations should normally not be disturbed unless total crisis has
occurred. Arguably, if you need to do profiling in production, your business has
some deep problems that can often be traced to poor performance testing and QA.
No matter what the underlying reason is though, it is not unusual for this situation
to occur.

When profiling in a production environment, it is vital to be prepared. You need to get
in and do your tests quickly, efficiently, and correctly so that you get out fast without
disturbing the business that the system supports. This means that before entering the
production environment, you'll need to figure out very closely the area within the
system in which the problem could be. You'd also need to have a plan for what and
how to measure, to some minimal level, in order to both have all the information you
need and still not afflict (too much) disturbance on the business operations.

Profiling a JVM
When we talk about profiling a Java-based system, we are actually talking about
profiling what is going on within an executing JVM. Profiling a JVM focuses on the
following two areas:

• Performance profiling: This type of profiling involves analyzing the Java
classes and their allocations. The class instances and executing methods are,
for example, measured in terms of the level of memory usage, object sizes,
and execution times.

• Memory profiling: For memory profiling, the focus lies on the information
about how the different memory areas are utilized and what happens when
the garbage collector (GC) runs. We'll discuss the JVM, its cornerstones, and
tuning possibilities in a lot more detail in an upcoming chapter.

Tools of the Tuning Trade

[30]

Profiling and sampling
In the Java universe, profiling technically involves instrumenting the Java bytecode
in order to make accurate calculations of execution down to the method level.
Instrumenting the Java bytecode is a time-consuming operation that is performed
for all code in the JVM when profiling starts. The amount of instrumented bytecode
can, however, be limited by defining what should be included or excluded, thereby
speeding up the instrumentation time in profiling. Depending on tool support,
theses definitions can be done on package, class, or method level. As the profiling
terminates, the bytecode is normally restored.

Sampling is a kind of lightweight profiling. Instead of physically instrumenting the
Java bytecode as done in profiling, sampling relies on analyzing the stack traces and
thread dumps that are taken at regular time intervals. These intervals can be defined,
for example to 10 per second.

So, what approach should you use? As always, the answer is that it depends on your
situation. Here, it depends on how well you know your system, how well you know
what to focus on in the system, and what you need or want to optimize within the
system. The following table summarizes some key features as well as the pros and
cons of profiling versus sampling in general terms:

Profiling Sampling
Data input comes from Instrumented bytecode Collected dumps
Data input interval is set per Object entry Time interval
The startup time is Slow (due to bytecode

instrumentation)
Fast (immediate)

The runtime performance is Good Good
The accuracy of measures is High to exact Good

If you're in a situation where you need to browse relatively quickly through various
parts of the system in order to narrow down where a problem is located, it is
convenient to use the sampler. As the sampler starts up quickly and can give you
a fairly good picture of how things are looking, it will help you find something to
focus on more closely.

When you have found or at least limited your focus area with sampling, you'll
probably need to find out, with reliable accuracy, what is causing the problem. In
this case, profiling is most likely to be your weapon of choice.

Chapter 2

[31]

VisualVM
A very useful and free JVM profiler is VisualVM. At the time of writing this
book, this tool normally comes bundled when you download and install the Java
Development Kit (JDK) from the Oracle Java site (http://www.oracle.com/
technetwork/java/javase). In this distribution, the tool is located in $JAVA_HOME/
bin and named jvisualvm.sh (for UNIX-based environments) or jvisualvm.bat
(for Windows).

As an alternative, you can download it from its own site (http://visualvm.java.
net). This is where you'll find the unbranded bleeding-edge version.

The core of VisualVM is shared by the NetBeans IDE (https://netbeans.org). So,
if you use the NetBeans profiler, you'll be using a lot of the functionality that is the
same as those found in VisualVM, but with differentiating workflows. There's also a
launcher plugin of VisualVM for the Eclipse IDE (http://eclipse.org) available at
https://visualvm.java.net/eclipse-launcher.html.

All examples in this book are based on the current version, VisualVM 1.3.6, and it
has been run in the standalone mode, that is, not as part of an IDE in any way.

Standard features
VisualVM is one of those tools that has evolved into supporting several interesting
areas related to tuning. In general and out-of-the-box, VisualVM normally provides
the following five major features that are visualized in different views in the UI:

• Overview: A non-interactive information view over the various JVM core
information containing arguments, properties, and some monitoring.

• Monitor: Heap dumps and full GCs can be ordered. Also, live graphs are on
display for the following components:

 ° CPU usage and GC activity
 ° Heap or PermGen memory usage with counter values of the size

used and maximum size for both memory areas
 ° Classes with counter values for loaded, unloaded, and shared

loaded/unloaded
 ° Threads with counter values for live, daemon, started, and peak

• Threads: Thread dumps can be taken and the threads (active or finished) of
the JVM are visualized in different formats (timeline, table, and details).

• Profiler: The profiler supports both profiling of performance (CPU)
and memory.

Tools of the Tuning Trade

[32]

• Sampler: The sampler has a setup and functionality that is similar to the
profiler. Lately, development has however been focused on the sampler, and
it has received more information about PermGen and threads in comparison
to the profiler, for example.

In the following screenshot, we see the user interface of VisualVM. Here, it displays
the Monitor view when connected to a local JVM running a WildFly instance just
after startup. As we can see from the graphs, there is currently no CPU or GC
activity; the heap is quite stable as are the classes loaded and the live threads. This
tells us that there is no or close to no activity causing any load on the server.

VisualVM displaying the Monitor view when connected to a JVM running a WildFly
instance under close to no load

The features of plugins
On top of these standard features, a lot more can be added to VisualVM through
plugins. These are installed by navigating to the Tools | Plugins. After a plugin has
been installed, VisualVM might need to be restarted for the plugin to work.

Some useful plugins worth mentioning are as follows:

• VisualGC: This is a plugin that gives a graphical overview of the memory
area dynamics.

Chapter 2

[33]

• VisualVM-JConsole: This is really the JConsole tool, and thereby, this plugin
in turn has a rich and useful ecosystem of plugins.

• VisualVM-MBean: This is an MBean browser. This is actually the JConsole
MBean plugin that integrates directly into VisualVM.

• The Tracer: This plugin allows for a powerful correlation and analysis of
data collected by probes.

Connecting to a JVM
When VisualVM is started, it can connect to the local and remote JVMs. On these,
it can perform monitoring and various other performance-tuning activities as
mentioned earlier.

Local JVM
As VisualVM is started, all the JVMs currently running on the same computer or host
will directly be listed under the Local node on the Applications tab on the left-hand
side. This includes the JVM of the VisualVM application itself. Whenever a JVM is
started or terminated on the local computer, it will automatically and directly show
up or disappear, respectively, from the node.

Remote JVM
It requires a more manual approach to add a JVM residing on another computer on
the network.

On the remote host
First, on the remote computer, the JVM Stat Daemon, jstatd, must be started. This
tool comes with the Java distribution and resides in $JAVA_HOME/bin. When it is
started, it will make all the JVMs on that computer accessible from our VisualVM
instance through the use of Remote Method Invocation (RMI). Using this service is
very advantageous, as it does not require any changes such as reconfiguration of the
remote JVMs or the applications executing in them.

Now, jstatd won't work out-of-the-box due to the default security settings of the
Java sandbox. Hence, it's necessary to grant jstatd some more permission. We'll do
this by creating a file named jstatd.all.policy with the following content:

grant codebase "file:${java.home}/../lib/tools.jar" {
 permission java.security.AllPermission;
};

www.allitebooks.com

http://www.allitebooks.org

Tools of the Tuning Trade

[34]

The daemon is then started (here, from the same directory in which the file is
located) with the following command:

jstatd -J-Djava.security.policy=jstatd.all.policy

On the monitoring host
Now, to actually connect to the remote JVM from VisualVM, select Add Remote
Host from the top menu, the toolbar icons, or the context menu. In the dialog that
comes up (as shown in the following screenshot), state the hostname or IP address of
the remote computer. The communication will use the RMI protocol and run on the
default port 1099. Firewall configurations should be adapted accordingly, or the port
number in the advanced settings of the dialog can be changed to anything that will
suit your specific environment:

The Add Remote Host dialog window with expanded Advanced Settings

Now, when connected, the computer and all its JVMs will show up in a tree-node
structure below the Remote node on the Applications tab on the left-hand side in
the VisualVM UI. Any new JVMs starting up or terminating on the remote node will
automatically turn up or disappear, respectively, in VisualVM, thanks to jstatd.

Monitoring a JVM
A local WildFly JVM instance will appear as the org.jboss.modules.Main node
in the tree in the Applications tab, while a remote instance will appear as the
jboss-modules.jar node.

Chapter 2

[35]

Once a connection to a JVM has been made, you should get accustomed to the variety of
information available in the different views (Overview, Monitor, Threads, and so on)
for the JVM in the tool. Just browsing the live feeds and graphs of how the JVM behaves
in terms of threads, CPU, memory, and so on can paint a pretty good picture. Starting
out with this will make you comfortable with both the tool and the basic behavior and
data flow from the specific application in the JVM that you really are interested in.

To dig a bit deeper into your system and really start to analyze system behavior, you
should start profiling or sampling. Both profiling and sampling have support for
CPU and memory-based profiling/sampling. They are available from the Profiler or
Sampler views.

We mentioned that profiling takes a relatively long time to set up due to the
instrumentation of bytecode that has to be performed before any actual analyzing
can take place. It will, therefore, benefit the profiling startup time as well as the
turnaround time of your work to limit the Java packages (containing classes) to
profile and thereby to instrument. Setting what packages to include or exclude for
profiling is performed in the CPU settings tab that is displayed when selecting the
Settings checkbox in the Profiler view as seen in the following screenshot. The same
location is available for the Sampler view.

In the CPU settings tab (lower-right corner in screenshot) of the Profiler, the packages to profile or not
can be defined, among other things

Tools of the Tuning Trade

[36]

Note also that these settings can't be changed during profiling/
sampling but must be set prior to a profiling/sampling session.

Limiting the set of Java packages to profile or sample will also make some of the
visualized data more manageable and allow you to focus on the specific code that
is of interest for you, such as the code of your application.

By default, standard Java packages with code such as java.* and javax.* are
excluded from profiling/sampling. Removing large packages of code that you trust
or that you can't or won't care about, should also be added to this list. Think code
from third parties such as frameworks and middleware.

Features
VisualVM provides lots of functions that are useful in finding bottlenecks and tuning
a system.

The tool can take various snapshots and dumps that can be viewed directly or saved
for further analysis. These include:

• Application snapshot: This includes core JVM information that is otherwise
available in the Overview and Monitor views of VisualVM

• CPU snapshot: This snapshot lists the call tree runtime usage on package/
class/method level and hotspots within the nodes of the tree

• Memory snapshot: This snapshot show bytes, objects allocated, and
generations per class or type

• Thread dump: This contains a variety of information of each thread such as
address, state, and priority, to mention a few

• Heap dump: This contains loads of useful information such as core JVM
information as in the Overview view, class and instances usage levels with
attributes and references, and threads at dump time

• VM Core dump: This includes a heap and thread dump as described earlier

Between comparable snapshots such as memory snapshots, comparisons can be
calculated. These can be very useful when investigating memory usage during
suspected memory leaks, for example.

During ongoing profiling/sampling, various deltas and GCs can also be performed.

Chapter 2

[37]

Test scenarios
When monitoring a system, it is always important to know the kind of operations
that are performed. Without this knowledge, you won't really know for sure what
you are looking at. Hence, having a well-designed set of test cases and scenarios
whose behavior you know about will help speed up the tuning process and improve
the quality of the system.

A JMX connection to WildFly
Setting up a JMX connection is necessary in order to be able to perform the sampling
of a remote JVM.

Before we describe how to set up a JMX connection, we will, however, need to
discuss some requirements of both WildFly and VisualVM.

Local or remote WildFly server
If WildFly and VisualVM reside on the same host, the connection will work with
the default configuration of the application server. For a remote WildFly, this
does not apply. As WildFly, by default, is secured to not expose its management
interface other than locally (localhost/127.0.0.1), the application server must be
reconfigured and restarted before a remote JMX connection can be made.

To accept remote connections, the WildFly management interface can be configured
in several ways. The three most common ways are listed as follows:

• From the CLI (all on one line and without spaces or newlines):
/interface=management:write-attribute(
name=inet-address,value=
"${jboss.bind.address.management:192.168.100.35}")

• In the WildFly configuration file (replace the existing IP address):
<interface name="management">
 <inet-address value=
 "${jboss.bind.address.management:192.168.100.35}"/>
</interface>

• From the command line (or in the script from) where WildFly is started:
$WILDFLY_HOME/bin/standalone.sh
 -Djboss.bind.address.management=192.168.100.35

Tools of the Tuning Trade

[38]

Here, the IP address, 192.168.100.35, is used as an example
address belonging to the remote server. Make sure that you
amend it to the IP address of your server. Also, these examples
assume that your server is running in the standalone mode,
utilizing the standalone.xml configuration file.

Setting up VisualVM
WildFly relies heavily on various remoting protocols for remote access, and for JMX,
this is no exception. For a JMX client such as VisualVM in this case, it must use the
http-remoting-jmx protocol to connect to a WildFly server instance. In order to do
this, the client must have the classes implementing this protocol in its CLASSPATH.
The classes are available as various artifacts or JAR files packaged in the WildFly
modules. Getting hold of the correct set of these artifacts can be cumbersome, but
luckily, there is a very convenient JAR file named jboss-client.jar, which is
available in the WildFly distribution. The content of the JAR file supports everything
a client needs to make JMX connections (and more) to WildFly server instances.

VisualVM should be started with jboss-client.jar in its CLASSPATH by executing
the following command (assuming you have $JAVA_HOME/bin in your $PATH):

jvisualvm -cp:a $WILDFLY_HOME/bin/client/jboss-client.jar

Connection in VisualVM
When WildFly and VisualVM have been configured and started as described earlier,
a remote JMX connection can finally be set up. By selecting Add JMX Connection
from one of the multiple menu options available in VisualVM, a pop up, as shown
in the following screenshot, will appear. By submitting a connection URL with the
possible credentials here, the connection will be set up.

Chapter 2

[39]

The Add JMX Connection dialog window

As the preceding screenshot shows, the connection URL will need to support the
http-remoting-jmx protocol we mentioned earlier. WildFly accepts the connection
for this protocol on its default management interface port, 9990. As the connection
runs over the management interface, the credentials of an existing WildFly
management user will also need to be provided. The management user is created
by the WildFly tool, add-user.sh, located in $WILDFLY_HOME/bin.

The generic form of the complete URL is as follows:
service:jmx:http-remoting-jmx://<host>:<port>

So, in our example, we would add the URL as follows:
service:jmx:http-remoting-jmx://192.168.100.35:9990

Tools of the Tuning Trade

[40]

Next, we would provide the username and password of a management user to set up
a JMX connection.

In the previous incarnation of the application server as JBoss AS7,
the remoting-jmx protocol was used on the default port, 4447.
As the WildFly architecture is now focused on port reduction,
it multiplexes, with HTTP upgrade, several protocols over just
two ports: 8080 for the application interface and 9990 for the
management interface, on which http-remoting-jmx is located.

Chapter 2

[41]

Monitoring
Keeping track of how your system reacts to different types of influences is imperative
when you're testing it, tuning it, and over time in production. The measured values
are extremely useful for both technical and business trend analysis as well as for
comparing the performance between releases. When done correctly, these trends and
comparisons can save your organization a lot of headache and enable it to quickly
predict and adapt to upcoming problems.

There are explicit tools that monitor specific features and services, and there are
others that give a more collective view of system health and performance. As we
have seen, tools such as VisualVM can provide us with a multitude of information
from various layers in the enterprise stack. It will give you the basic information
about the hardware in terms of CPU usage, and as expected, it will provide a lot of
information about the JVM as well as the middleware and the execution of inherent
applications within the JVM.

A system that, for example, is instrumented with MBeans at strategic positions can
give some extremely interesting and valuable information. This information can
become even more valuable and easily accessible from an analyst view if it can be
visually represented by graphs or other such techniques. This is often possible in the
management system available in most organizations.

OS tools
All major operating systems come with a more or less standard set of tools that can
extract and sometimes visualize important pieces of performance-related information
from the network, hardware, and the OS itself. Here, we will mention a few of the
most useful grouped by the OS that they come bundled with.

Tools of the Tuning Trade

[42]

Unix and Linux
In UNIX and Linux-based operating systems, there are a lot of useful tools available
as shell-executable commands. These tools will assist in monitoring system activities.
The most common one might be the top command, which will give an interactive
and real-time feed of processor activity and memory usage. Its output can be
adapted to most needs, so it is, as it always is with UNIX-based commands, a good
idea to read through its main pages. A basic output from top in Linux can look
similar to the following example (the output has been limited to a few lines, as it
normally is very long):

> top

Tasks: 230 total, 1 running, 229 sleeping, 0 stopped, 0 zombie
%Cpu(s):12,6us, 1,4sy, 0,0ni, 13,4id, 72,6wa, 0,0hi, 0,0si, 0,0st
KiB Mem:3940844 total, 3356556 used, 584288 free, 162736 buffers
KiB Swap:2094076 total, 0 used, 2094076 free, 1675992 cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ CMD
1777 dude 20 0 3070664 152888 16732 S 39,55 3,880 0:05.55 java
1597 dude 20 0 566232 40480 28084 S 2,659 1,027 0:01.67 konsole
1487 root 20 0 312336 97100 75408 S 1,994 2,464 2:00.16 Xorg
2626 dude 20 0 1554320 487648 51172 S 0,997 12,37 5:44.11 firefox
4825 dude 20 0 3112452 191628 78820 S 0,332 4,863 0:25.17 sof.bin

Using the following top command will give us
thread-level information within the given process
ID (such as the WildFly process):

top -H -p <PID>

Another useful and adaptive command is vmstat. As the name implies, this tool
reports virtual memory statistics. It shows the amount of virtual memory, CPU, and
paging activity. This is extremely useful when discovering bottlenecks caused by
your applications or by the system hardware.

To monitor the virtual memory activity on your system, it's best to use vmstat with
a delay. A delay is the number of seconds between updates if you don't supply a
delay, it just reports the averages since the last boot). 5 seconds is the recommended
delay interval.

Chapter 2

[43]

A sample of vmstat run on Linux, with a 5-second delay will look something similar
to the following example (after 12 seconds):

> vmstat 5
 r b swpd free buff cache si so bi bo in cs us sy id wa st
 1 0 0 687372 15124 171676 0 0 48 35 248 377 3 1 94 2 0
 2 0 0 566708 15144 171768 0 0 0 489 409 973 65 5 30 0 0
 0 1 0 385368 15188 171808 0 0 50 223 993 702 59 3 36 1 0
 0 0 0 399252 15188 171872 0 0 0 1 659 943 2 0 97 0 0
 0 0 0 374908 15200 171816 0 0 0 48 592 714 2 0 97 1 0
 0 0 0 375756 15200 171740 0 0 0 390 501 657 1 0 98 1 0

To get a good overview of the status of the TCP-stack, interfaces, connections, I/O, and
much more, netstat is very useful. For example, to list the status of all the sockets,
you will use the -a flag as shown in the following example (the output has been
limited to a few lines as the normal output can be quite long). The -n flag instructs
netstat to present all the values as numeric. In the following output, the ports that
WildFly listens (the LISTEN status) to are listed. In the following snippet, you can also
see some HTTP clients that have connected (the ESTABL status) to WildFly:

> netstat -an
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:4949 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:17500 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:5666 0.0.0.0:* LISTEN
tcp 0 0 192.168.1.9:5445 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:9990 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:3528 0.0.0.0:* LISTEN
tcp 0 0 192.168.1.9:5455 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:9999 0.0.0.0:* LISTEN
tcp 0 0 192.168.1.9:8080 0.0.0.0:* LISTEN
tcp 0 2553 192.168.1.9:8080 192.168.1.12:40204 ESTABL
tcp 0 2553 192.168.1.9:8080 192.168.1.12:40203 ESTABL
tcp 0 2553 192.168.1.9:8080 192.168.1.12:40207 ESTABL
tcp 0 2553 192.168.1.9:8080 192.168.1.12:40201 ESTABL
tcp 0 2553 192.168.1.9:8080 192.168.1.12:40209 ESTABL
tcp 0 2553 192.168.1.9:8080 192.168.1.12:40205 ESTABL
tcp 0 2553 192.168.1.9:8080 192.168.1.12:40202 ESTABL

www.allitebooks.com

http://www.allitebooks.org

Tools of the Tuning Trade

[44]

Using the tools mentioned in this section, you can investigate and validate when
problems occur with too high or too low CPU usage, resource contention, and high
disk utilization. Let's look at these problems a bit closer.

Low CPU utilization
If the computer has a low level of CPU usage or if the CPU(s) even stands idle, you
are not using your infrastructure to its optimal level of performance. It might be that
you simply have too much hardware in comparison to your needs. Acquiring the
right amount of hardware is an important and valuable ROI-factor for business. So,
having reliable performance estimates and tests to reveal how much hardware your
system needs is very valuable.

If your system has low CPU utilization in conjunction to the following three
symptoms, you should become suspicious:

• Normal network activity and I/O with high idle times across all CPUs
• As the system load rises, the idle time of the CPUs does not decrease
• As the system load increases, response times degrade too quickly

If you are experiencing any of these symptoms, it's likely that your application server
is waiting for some resources to be freed. A fundamental instrument in finding the
source of the problem is the JVM thread dump of the application server, which can
easily be obtained from the VisualVM's Monitor view.

For example, let us assume that you have many threads with the following
stack trace:

"Thread-1" prio=6 tid=0x01b66c00 nid=0xef0 waiting for monitor
 java.lang.Thread.State: BLOCKED (on object monitor)
 at DL$Thread2.run(DL.java:62)
 - waiting to lock <0x234ba128> (a java.lang.Object)
 - locked <0x239ba130> (a java.lang.Object)

These are all waiting for the same lock to be released. By searching for the lock in
the stack trace, you might be able to figure out the problem. What you find could
be a deadlock between the threads. The following is an example of a stack trace that
creates a deadlock with the preceding example:

"Thread-0" prio=6 tid=0x01b66000 nid=0xefc waiting for monitor entr
 java.lang.Thread.State: BLOCKED (on object monitor)
 at DL$Thread1.run(DL.java:37)
 - waiting to lock <0x234ba130> (a java.lang.Object)
 - locked <0x234ba128> (a java.lang.Object)

Chapter 2

[45]

The jstack and jstat command-line utilities (located in
the $JAVA_HOME/bin directory) available from the JDK
distribution are alternative tools to the graphical VisualVM.

High CPU utilization
One of the most pervasive myths among IT technicians in operations is that high
CPU usage is an obvious indicator of a system bottleneck. In reality, the truth can be
quite different.

By using a tool such as vmstat, it is quite easy to get more information that can
reveal if there really is a bottleneck. If, for example, the CPU(s) are busy, say, with a
high load of around 90 percent, it is important to regard what platform you are using
and to have a look at how the CPU time is distributed. A UNIX system with equal
distribution of the CPU time in regards to the user and system time for example, 45
percent user time and 45 percent system time, can be regarded as quite normal and
actually a good use of the available infrastructure.

The real reason to be concerned about arises when the run queue of vmstat displays
a value higher than the total amount of CPUs (or cores in today's multicore CPUs)
that are available for the computer.

As this behavior starts to occur, it is a good idea to investigate the CPU distribution.
If the system value is considerably higher than the user value, it can be a strong
indicator that there are a lot of system calls being performed.

This can happen if you are executing lots of input/output, sockets, or timestamp
creation. You should find out, along with your performance tools, the modules that
cause excessive or inefficient input/output. One potential candidate is, for example,
a class that gives out lots of unbuffered input/output. Replacing it with a buffered
one could reduce the problem greatly.

If vmstat indicates that the problems can be referred to WildFly, it is a good idea
to take a look at the JVM threads and collect a thread dump with, for example,
VisualVM or jstack.

Tools of the Tuning Trade

[46]

High resource contention
A special case of abnormal CPU utilization—low or high—is when only one or a few
CPUs experience a peak of usage. This scenario is usually caused by the fact that
your system uses a single thread to manage some resources. Your checklist should
include garbage collection configuration at the top of the list (see Chapter 3, Tuning
the Java Virtual Machine, for an in-depth discussion about it). If garbage collection is
correctly configured, you should then verify whether you have any contention in
getting access to other resources, for example, single-threaded object caches.

Using a tool such as mpstat, which indicates a thread's spin on mutex values, you
will get a measure of whether there is a kernel contention (if a thread can't acquire a
lock, it spins) or not. If a suspicion of contention exists, further investigation should
make use of a thread dump. If a pattern of locks exists, as shown in the following
code snippet where the threads wait for a queue, the evidence is quite clear:

"WorkerThread-8"..in Object.wait()..locked <0xf14213c8>(a Queue)
"WorkerThread-9"..in Object.wait()..locked <0xf14213c8>(a Queue)
"WorkerThread-8"..in Object.wait()..locked <0xf14213c8>(a Queue)

In order to resolve this problem, you should introduce additional shared resources.
This can be done by distributing the cache through a larger set of JVMs using, for
example, clustering.

High disk utilization
Excessive disk utilization is a frequent bottleneck for enterprise applications. The
iostat command is commonly used by system administrators to review I/O
statistics. If you get high levels of service time or a busy disk with constantly high
read/write values, it is time to investigate the possible root causes of the problem.
Some possible causes of excessive disk utilization in WildFly are as follows:

• Excessive application logging
• Transaction recovery logging
• Stateful Session Bean Passivation
• Poorly tuned persistent storage of queue and topic messages in the

Enterprise Management System (EMS) (HornetQ)
• Poorly configured database cache

Apart from looking at the implementations of your applications and the tuning
of WildFly with its subsystems, it is highly important to have control over which
services that are using which disks. The speed of the disks and their controllers and
drivers are important factors to investigate; they are also fairly common sources of
the problem.

Chapter 2

[47]

OS X
As Apple OS X is a UNIX-based operating system (POSIX compliant and with a BSD
base), most standard UNIX tools are available here as well. Here, the command for
looking at virtual memory statistics is named vm_stat. It has a different output from
the UNIX vmstat, focusing on various values of memory pages.

In OS X, there is also a very useful and versatile GUI application named Activity
Monitor. As can be seen from its user interface in the following screenshot, this tool
supports the monitoring of live data as well as statistics from CPU, memory, hard
disks, network, and even energy consumption per application and process. It can
also sample processes, create memory and thread dumps, and run a complete and
advanced system diagnostics for use after analysis.

The Memory view of the OS X Activity Monitor application. Here, the Java process running WildFly
has been selected. From the top menu, the main features and view are shown—CPU, Memory, Energy,

Disk, and Network.

Tools of the Tuning Trade

[48]

Windows
In Microsoft Windows, Windows Task Manager will give you a quick overview
of the processes and CPU. For more information, the Performance Monitor is a
very useful GUI application that will provide data and graphical representations
of various resources available in the Windows system. Several tools based on the
command-line available in UNIX, such as netstat, are also available in Windows,
often with different parameters.

WildFly tools
A set of useful tools come with the WildFly distribution. Although they are not
dedicated performance-tuning tools, they do have some related value, especially
for monitoring. We will go through a few of them here. We will start out with the
administrative tools that somewhat overlap. They are as follows:

• The Command Line Interface
• The WildFly Management Console
• The JBoss DMR API

We will then finish off with the special version of JConsole that comes bundled
with WildFly.

The Command-line Interface
The Command-line Interface (CLI) is exactly what it says it is, a command-line
interface tool to administer WildFly from a terminal. It is started with the
jboss-cli.sh command (for UNIX-based environments) or jboss-cli.bat
(for Windows) and will give direct access to the configuration of running WildFly
instances. As it uses the management socket, it can access remote WildFly instances
if the management interface is configured to bind to an external interface instead
of the default, localhost default. This can easily be achieved by starting WildFly
with the system property, jboss.bind.address.management, set to the appropriate
IP address as we did when we created the remote JMX connection from
VisualVM earlier.

The commands can be issued in the noninteractive mode by specifying them on the
command line (here, from $WILDFLY_HOME/bin/) as follows:

./jboss-cli.sh --controller=127.0.0.1:9990 --connect "/
subsystem=datasources/data-source=ExampleDS:read-
attribute(name=connection-url)"

Chapter 2

[49]

The CLI answer comes in the JSON format, making it relatively easy to incorporate
a command in scripts and so on. In the preceding example, the --controller
parameter allows you to specify the host to connect to by an IP address or hostname.
The --connect parameter tells the CLI to actually connect to the server. More
information about the parameters can be found using the following command:

./jboss-cli.sh --help

The CLI also supports batch processing. This means that it is possible to execute
commands in the noninteractive mode by reading them from a text file. In the
following example, the commands in the myCommands.cli file will be executed
by the CLI:

./jboss-cli.sh --controller=127.0.0.1:9990 --connect --file=myCommands.cli

Using the CLI to retrieve various configuration and metric values of pools, threads,
and application-specific variables is very valuable over time to see system trends and
for living up to SLAs. It is also very useful for quickly getting specific values during
daily operations and performance tuning.

The WildFly Management Console
The WildFly Management Console or HAL as it also is called is a web-based
administrative interface. Apart from being bundled with WildFly, it can also be
separately downloaded from http://jbossas.github.io/console, where the most
bleeding-edge version can be found. As new functionality is continuously added to
the console, it is a good idea to have a look here and see if there are any features you
might need that are not available in the console of your WildFly distribution.

As WildFly is started, the console is accessible from the http://localhost:9990/
console/App.html URL. Before accessing the console, you will, however, need to
create a management user. This is easily performed by running the add-user tool
from the $WILDFLY_HOME/bin directory.

As a part of the Management Console, a HTTP REST API is exposed. It's used
internally by the console itself but can also be called directly. In the following
example, the cURL tool (http://curl.haxx.se/) is used to generate the HTTP
request that connects to and authenticates with the WildFly management interface.
From here information about the ExampleDS datasource is retrieved.

curl --digest -L -D - http://localhost:9990/management --header
"Content-Type: application/json" -d '{"operation":"read-attribute",
"name":"connection-url", "address":["subsystem","datasources","data-
source","ExampleDS"], "json.pretty":1}' -u admin:admin

Tools of the Tuning Trade

[50]

This can easily be integrated into various systems that support REST if needed. Similar
to CLI, the console is very useful for daily operations and gives a very good overview
of the system settings. It is continuously evolved with a growing fauna of functionality.

JBoss DMR
Another entry for the management of WildFly is the JBoss Dynamic Model
Representation API (https://github.com/jbossas/jboss-dmr). This API can be
used to write your own proprietary management tools to WildFly. Its details are,
however, beyond the scope of this book.

JConsole
The jconsole tool is included in the Oracle Java distribution, but a special version
is also bundled with WildFly. The differences are that the WildFly version has a
plugin for the integrated use of the CLI and a CLASSPATH set for allowing the various
remoting protocols out of the box. Remember that we set the CLASSPATH and http-
remoting-jmx protocol for VisualVM to be able to create JMX connections to WildFly.

JConsole is a good tool for performing various types of monitoring. It is very
similar to VisualVM, but among other things, it lacks the power of profiling. It does,
however, have a rich set of plugins that we recommend you to try out, especially
as they can be run in the JConsole plugin for VisualVM and thereby create a very
multifaceted and powerful toolkit.

Generating load
There are very few applications that don't behave differently when they come under
load. To be able to investigate how the system will react when put under expected or
even extreme load, we use load generators.

It's nearly impossible to mimic all the different use cases and their individual usage.
Therefore, the load tests are often limited to 10 or 20 selected use cases. Some of them
should be the most common ones, and some known or suspected trouble makers.

It's often tempting to limit the tests to read-only ones to minimize the trouble of
setting up a database with a known state before each execution. This may be okay
in some cases, but be prepared to add read-write tests at some stage before entering
production in order to reach acceptable levels of QoS.

Chapter 2

[51]

Extensive load testing may be limited by the chosen load-generator software and
the operating system, network, and so on in such a way that it can't generate
the load needed. The solution is to add more distributable "slave" instances of
the load generator. This can create new problems around the orchestration and
synchronization of the nodes. It is, however, a vital feature that needs to be available
for test cases where large loads must be produced to mimic real scenarios. It is equally
important that these slave instances of the load generator report the results back to a
"master" and that this can present the results in some useful and accumulated way.

There are a lot of tools on the market, but here, we limit ourselves to introduce the
one we most often find in use: Apache JMeter.

Apache JMeter
Apache JMeter is an open source Java desktop application for load testing. It is
available for download from the Apache website (http://jmeter.apache.org).
In the examples of this book, we'll be using Version 2.10.

JMeter was originally designed for testing web applications but has since expanded
to support other protocols. The supported protocols that may be of interest for a Java
EE environment are as follows:

• HTTP(S)
• SOAP
• FTP
• JDBC
• JMS
• SMTP(S)
• POP3(S)
• IMAP(S)

The extensible core of JMeter provides a functionality that simplifies the process of
supporting new protocols and operations. JMeter uses multithreading to produce load.
This is used when simulating multiple callers. Besides call generation, it also provides
functionalities for response validations, data analysis, and an easy-to-use GUI.

If any product-specific JARs such as JDBC drivers
or JMS-client libraries are needed, they are simply
dropped into the $JMETER_HOME/lib/ext
directory, which will add them to the CLASSPATH.

Tools of the Tuning Trade

[52]

Building a basic test plan
When starting JMeter using $JMETER_HOME/bin/jmeter.sh (for UNIX systems) or
jmeter.bat (for Windows), the application will appear with the Test Plan screen, as
shown in the following screenshot:

The JMeter startup page

Chapter 2

[53]

The Test Plan is a container for running tests. The WorkBench functions as a
temporary workspace to store the test elements. When you are ready to test what
you have designed in WorkBench, you can copy or move the elements into Test
Plan. To get an understanding of how JMeter works, let's create a simple test case
by performing the following steps:

1. Define a thread group by right-clicking on Test Plan and navigating to
Add | Thread Group. This is the main component of the test plan and will
contain some subcomponents, as shown in the following screenshot:

The JMeter thread group

The fields in the Thread Group view will allow a user to define
the following:

 ° Number of Threads (users): This refers to the number of users
 ° Ramp-Up Period (in seconds): This refers to how long it takes to

ramp-up to the full number of threads chosen
 ° Loop Count: This refers to the number of times to execute the test

If you enable the Scheduler field in the lower part of the GUI,
you will be able to define a startup time and a stopping time
for your test, which can thus be deferred to a later time.

www.allitebooks.com

http://www.allitebooks.org

Tools of the Tuning Trade

[54]

2. Add a sampler. In this example, we want to sample a web server, so we
right-click on Thread Group, as seen in the left pane in the following
screenshot, and navigate to Add | Sampler | HTTP Request:

Part of a JMeter sampler example

In the Web Server section, you specify the server address, and in the HTTP
Request section, you specify the path to the web page that should be tested.

3. Finally, we add a listener, which is responsible for displaying the statistical
information about the sampler's result. There are several variants available,
and for this example, we choose Aggregate Report by right-clicking on
Thread Group and navigating to Add | Listener | Aggregate Report:

The JMeter listener example

Chapter 2

[55]

Before running the test, JMeter requires that we save the test plan. Click on
the Save Test Plan button from the File menu, and then, from the Run menu,
select Run. The following screenshot shows how your Aggregate Report
panel should look at the end of a profiler session. If you have selected to run
a benchmark forever, you need to manually stop the run by selecting Stop
from the Run menu.

JMeter Aggregate Report result

Improving the test plan
By default, JMeter sends one request immediately after the other without any delay.
This could potentially saturate the server and also produce a test that is not close
to a real-world scenario. As a matter of fact, user requests are usually separated
by a variable amount of time, which can be thought of as constant or following a
statistical pattern such as a Gaussian curve.

In order to introduce a delay between requests, you can introduce timers in your test
plan. Navigate to Add | Timer from the Thread Group context menu and select one
of the available timers.

JMeter also supports more or less advanced validations that can be placed on
the samplers results in the form of assertions. These are added just like other
components we've shown in this chapter and can be used for XML validations,
value checking, and so on.

Tools of the Tuning Trade

[56]

If you have a web application that uses HTTP GET, it may be
possible to use an Apache Web Server Access log file as an
input to the specialized AccessLogSampler to feed the test
case with a realistic real-world scenario.

Recording a web session using the JMeter
HTTP proxy
With the notions you have learned until this point, you are able to create a simple
web load test. In theory, you could build a more complex one by including a set of
HTTP requests, each one targeted at a different URL and carrying the appropriate
parameters. In practice, this would require quite a lot of time and would also be
prone to human error (ironically, you would end up testing the composition of
the test too!). Luckily, there's a handy option that allows us to use JMeter as proxy
server, thus recording every request made to the application. A proxy server can be
added by right-clicking on Workbench and navigating to Add | Non Test Elements
| HTTP(S) Test Script Recorder. As shown in the following diagram, the JMeter
Proxy Server sits in between the Client (browser) and Web Server:

An overview of the JMeter proxy system

Now, you need to configure your browser so that the proxy server will actually direct
the proxy request to the web server. Finally, start the HTTP proxy server by clicking on
the Start button in the lower part of the panel and start surfing to your WildFly.

When you have completed your recording, click on the Stop button in the HTTP
Proxy Server panel. The HTTP request items created in WorkBench can eventually
be dragged into your test plan.

Chapter 2

[57]

Standalone and distributed load generation
Your hardware's capabilities will inevitably limit the number of threads you can
effectively run with JMeter. If you need to set up a large scale test and you cannot
afford to execute the JMeter GUI, you can consider launching JMeter using the
command line. The following parameters can be used to run JMeter from the
command prompt:

• -n: This specifies that JMeter is to run in the non-GUI mode
• -t: This specifies the name of the JMX file that contains the test plan
• -l: This specifies the name of the JTL file to log the sample results to
• -r: This is used to run all the remote servers specified in the properties

of JMeter
• -H: This specifies the proxy server hostname or IP address if it is run using

firewall/proxy
• -P: This specifies the proxy server port if it is run using firewall/proxy

An example where JMeter will execute the test plan contained in the test1.jmx file
and log the sample results to the logfile.jtl file, would look as follows:

jmeter -n -t test1.jmx -l logfile.jtl

It's still possible to use different listeners in the JMeter GUI to
analyze the logfile.jtl file after the execution. One way is
to use the WorkBench area, add the chosen listener, and then
use its file-loading box to load the generated result file.

Sooner or later, during extensive load testing, the actual load generator, operating
system, and available memory will limit the amount of possible threads. JMeter
supports the possibility to run several JMeter slave instances on multiple servers and
use a master instance to control the lifecycle and reporting of the tests.

Performing the following schematic steps will allow you to efficiently run JMeter in
the distributed mode:

1. Make sure that the load-generator machines have the same version of JMeter,
and any data input files used by the test cases as these files will not be
propagated from the master node.

2. Start different slave servers (on host1, host2, host3, and so on),
$JMETER_HOME/bin/jmeter-server.

Tools of the Tuning Trade

[58]

3. Start the master node specifying the slave nodes, $JMETER_HOME/bin/jmeter
-R127.0.0.1,host1,host2,host3, and so on (the node list can also be
specified in the jmeter.properties config file).

4. Start the distributed test from the master in the following ways (the slaves
will follow automatically):

 ° Using GUI, navigate to Run | Remote Start All
 ° Using command line, use the jmeter -n -t script.jmx -r

command

Do not overuse listeners and assertions, as they may slow
JMeter down and, therefore, limit the load that a JMeter instance
can generate. The most memory-effective combination would
be running JMeter in the non-GUI mode with no assertions and
just using the listener named Simple Data Writer.

Summary
In this chapter, we have discussed the tools and processes based on three key
features of performance tuning:

• Profiling
• Monitoring
• Load generation

We have talked about what use these features provide during performance tuning and
how they fit into the different layers of an enterprise stack. For each feature, we have
discussed at least one well-versed tool that brings a lot of value to the tuning process.

With regards to profiling, we focused on the very versatile JVM tool, VisualVM.
We described how to make it and WildFly play well together with jstatd and the
http-remoting-jmx.

Moving onto monitoring, we discussed various OS-specific tools. These are primarily
useful for resolving problems in the lower layers of the stack. As such, they often
relate to CPU, memory, disks, and network. They also give important clues about the
real source of a problem if it has arisen in the upper layers such as poor design, code,
or configuration.

Chapter 2

[59]

We have briefly talked about the tools bundled with WildFly: CLI, Management
Console (HAL), and API (DMR).

When discussing load generation, Apache JMeter was our tool of choice. For this,
we revealed some of its many possibilities in terms of protocol support, standalone
usage, and distributed master-slave behavior.

In this chapter, we mentioned the JVM and things such as the garbage collector
which are related to it. In the next chapter, we will dig deeper into the JVM and its
various components, their settings, and optimal values.

Tuning the Java
Virtual Machine

Like every other Java application, the WildFly application server requires an engine
to operate. This engine can interpret and handle Java bytecode. As such, it has been
named Java Virtual Machine (JVM).

With every release of Java, a lot of changes and improvements to JVM have been
introduced. Over time, it has become increasingly faster and more intelligent in
determining how it should configure itself in order to give its best for any particular
situation and environment. The result is a highly advanced runtime that has become
easier to use but still needs some of our love and understanding from time to time.

So, we need to understand how JVM operates, how to interpret what it tells us,
and how to tune it to make it work even more efficiently. In order to properly reach
these goals, we will learn a lot more about JVM in this chapter by discussing the
following topics:

• The basic theory of JVM, focusing on its memory areas, and
garbage collector

• Possible (and for some scenarios, optimal) JVM settings
• What a memory leak is and how it can be found
• Reasons for various out-of-memory errors and their resolutions
• JVM settings in WildFly
• How and what to log from JVM in a production environment

Tuning the Java Virtual Machine

[62]

JVM
When we talk about JVM, it is important to first put it in its context of Java Runtime
Environment (JRE). JRE consist of, among several things, JVM, libraries (with
core Java classes), and some components (such as supporting files, Java Web
Start, and the Java Plugin). It does not, however, include tools for performing tasks
such as compiling and debugging. These are all part of the Java Development Kit
(JDK) distribution.

JVM is the execution engine for all Java applications. It is responsible for platform
security, memory management, and bytecode (compiled code) execution. With
bytecode execution, JVM creates a foundation for platform independence.

The JVM specification (http://docs.oracle.com/javase/specs/jvms/se7/html/
index.html) stipulates what an implementation should adhere to. As we focus on
Java SE 7 based on the Oracle JDK 7 distribution in this book, we'll follow that trail
by looking at its VM implementation named Hotspot.

JVM memory areas
Memory-wise, JVM is made up of two major generic storage types: stack and heap.

The JVM stack and native stack
A stack is a last in, first out (LIFO) type of storage. For each JVM thread of execution,
there is a JVM stack. In this stack, entries called frames are stored. The frames can
hold object references, variables values, and partial results. During the execution of
a Java application, these frames are added (push) to, or removed (pop) from the
JVM stack.

In JVM, there is also the concept of a native stack. Normally, there exists one stack per
JVM thread, and it is used to support native (written in a platform-native language
such as C/C++) functions/methods as the regular JVM stacks can't hold them.

As a concept, a stack is quite easy to control. When a frame is no longer needed,
it gets removed (pop), and its memory area is freed by the simple operation of
adjusting a pointer to the next frame in the stack.

Chapter 3

[63]

The heap
The heap is a memory area that, according to the specification, doesn't have to be
contiguous but, implementation-wise, it often is. The heap is created during the JVM
startup and is shared by all JVM threads. Its size can be static but can also grow to a
certain size as per the needs of the executing application. In the heap class, instances
and arrays are stored. Hence, this memory area is often denoted as the real data
storage of JVM.

This is mainly due to the fact that data structures, with some restrictions, can be
allocated at any memory position within the heap. Also, as these data structures are
no longer live, the memory they allocated will sooner or later be freed or reclaimed,
causing fragmentation of the heap.

Inside the heap, there are several separated memory areas whose sizes depend on
the size of the amount of memory available in the heap by default. These areas are
denoted as generational memory areas and are named as follows:

• Young generation
• Old (or tenured) generation
• Permanent generation

The Young generation consists of three memory areas:

• Eden
• Survivor space 0 (S0)
• Survivor space 1 (S1)

Data structures are stored in the different memory areas of the young generation
and in the tenured generation, depending on how long they have been alive. Here,
life is defined in the number of collections made by the garbage collector (GC) of
JVM. In fact, the main reason for having all these memory areas is to optimize GC
performance and, thereby, the memory usage.

Tuning the Java Virtual Machine

[64]

In the permanent generation (PermGen), data structures and meta-information of our
classes stored. We will discuss all of this in more detail in the upcoming sections:

The heap with its submemory areas (sizes are not proportional)

Other JVM memory concepts
It should be noted that, in the Hotspot JVM, there also exist concepts such as the
program counter (pc) Register, Method Areas, and Runtime Constant Pools.
Though they're highly important and interesting, we won't go into further details
of these concepts.

GC
Closely related to the memory areas of JVM is GC. Conceptually, GC is an automatic
storage-management system. It manages how allocations in memory that no longer
live should be freed, thereby making the memory available for new allocations. From
this, we reveal that the golden rules of GC are as follows:

• Collect all garbage: Due to concerns of, for example, optimizations, this rule
can be somewhat floating when interpreted in various GC implementations.
It is, therefore, sometimes more correct to rephrase the rule as collect all
garbage, eventually.

• Never collect a live object: This, on the other hand, is an absolutely sacred
rule. If it is broken, the GC cannot be trusted or used at all, as faults in the
software that executes in JVM will follow.

The Java GC specification does not specify any particular algorithm for how
collection is supposed to be done as long as the preceding rules are abided to. It is,
therefore, possible to choose an algorithmic strategy, with its related implementation,
depending on what needs your specific environment and application have. Hence,
you can write you own GC, specific for your own application.

Chapter 3

[65]

A common fallacy is that Java GC eats a lot of system time and thus degrades the
overall system performance. Such claims can be calmed by noting that it is not,
since the Java GC does not operate in kernel time, but in user time. This should calm
administrators but, as a developer, you still have to have a controlled GC.

Today's JVMs are, however, quite skilled at selecting a good GC. Sometimes, though,
there might be a need to change or tweak it a bit. We'll get back to GC strategies later
in this chapter.

Before we venture further into configuration of JVM and its components, let's have a
look at how memory areas and GC work together in general with object allocations
and freeing of memory, respectively.

JVM memory management with the GC
In the following diagrams, we have the heap memory areas, Eden, S0, S1, and
Tenured, repeated in the rows numbered 1 to 13 (to the right-hand side of each row).
Each row represents how the memory areas look at a certain age time.

Objects allocated in the memory areas are depicted with numbers inside them,
denoting the generation or age that they belong to. Generation is a measure of how
many times an object has moved from one memory area to another. A generation is
complete when a memory area is filled up with objects and needs to move all of its
live objects to the next memory area.

In step 1 in the following diagram, objects are being created and hence start to
allocate memory in Eden. New data structures always start their lives in Eden,
and their generational number is set to 1.

The heap at generational age 1

Tuning the Java Virtual Machine

[66]

Step 2 shows us more objects allocating room in Eden and some objects that are no
longer in use. These are shown in the following diagram as objects without numbers.
The memory that is no longer in use will be collected in upcoming GCs. For now,
however, all of these areas are still locked and can't yet be de- or re-allocated.

The heap at step 2

As we reach step 3, Eden is full and no more allocations can be made here. Eden is,
however, where new allocations are made, as shown in the following diagram:

The heap at step 3

Now, between steps 3 and 4, a minor collection is performed by GC and, after that, as
we can see in step 4 in the following diagram, the live objects have been moved into
S0 and the entire Eden swept clean in order to receive new allocations. Note how all
live objects now have their generational number incremented to 2.

A young or minor GC is a collection that involves moving (also
known as aging or promoting) objects from a memory area to
another, as well as freeing up memory by removing any objects
no longer referenced in the young generation (Eden, S0, or S1).

The heap at step 4

Chapter 3

[67]

In step 5, as shown in the following diagram, this starts all over again. Now,
generation 1 allocations are made in Eden and, in S0, one allocation is no
longer live.

The heap at step 5

Step 6 shows us how Eden once again is full and how many allocations are not live.
In S0, another allocation is no longer live, as shown in the following diagram:

The heap at step 6

Between steps 6 and 7, another GC executes, moving live objects from S0 to S1,
upgrading their generational number from 2 to 3, and also moving and upgrading
any live objects from Eden to S1, thus cleaning both Eden and S0. This is shown in
the following diagram:

The heap at step 7

Tuning the Java Virtual Machine

[68]

This behavior is then repeated in the following steps. As a memory area fills up, GC
is commanded to work. Live objects are moved from Eden, a working survival space
becomes a free survival space, and their generational age is increased one step each
time. This continues until the tenured age limit is hit. When it is, all allocations of this
age are moved into the tenured memory area as depicted in step 13 in the following
diagram, where we pretend that the tenured age is four.

The heap at step 8-13

As the tenured generation eventually fills up, a Full GC is performed to collect any
allocations therein that are no longer live.

An old, major, or Full GC is freeing up memory by
removing any objects no longer referenced in the old
(tenured) generation.

Performing a Full GC is very costly in comparison to collecting in Eden. From
a performance perspective, it is, therefore, desirable to mostly have relatively
short-lived objects and objects that are not promoted to tenured space too fast.
It is often also desirable to keep long-lived objects (that make it into tenured space)
alive as long as possible.

Chapter 3

[69]

Configuring the JVM
The JVM has lots and lots of configuration possibilities. In this book, we will focus on
just a few, but these are the ones that, over the years, have proved most valuable in
terms of information and performance-related impact.

Default settings
The Hotspot JVM is nowadays ergonomic. This means that, based upon the platform
configuration, it will select the runtime compiler, heap configuration, and GC that,
according to its documentation, will produce a good to excellent performance for most
applications. To get the best possible performance, specific tuning might, however,
still be required.

Starting up, JVM is already configured with a set of options. Some are just defaults,
while others are dynamically, or ergonomically, set by JVM itself during startup and
after the analysis, of, for example, the available hardware that the JVM is executing
on. Lastly, a set of options, which by default can be of a static or dynamic nature, can
be set as JVM arguments.

To find out about the options that are set for a specific environment in JVM, execute
the java command with the VM parameter, -XX:+PrintFlagsFinal, for example:
java -XX:+PrintFlagsFinal -version

This will show us a long list of the available options in an alphabetical order. The list
is over 600 lines long so we won't list them all here. A few typical lines can look as
shown in the following code snippet:

 bool IncrementalInline = true {C2 product}
uintx InitialCodeCacheSize = 2555904 {pd product}
uintx InitialHeapSize := 268435456 {product}
uintx InitialRAMFraction = 64 {product}
uintx InitialSurvivorRatio = 8 {product}
uintx MaxHeapFreeRatio = 70 {product}
uintx MaxHeapSize := 4294967296 {product}

As you can see, each line is divided in to five distinct columns of information from
left to right; we denote these columns by the following names:

• Type
• Name
• Operator
• Value
• Category

Tuning the Java Virtual Machine

[70]

The type column tells us the data type that the option value is in. For example,
boolean, int, double, uintx, and more. Obviously, these are not Java types but
native ones. Moving on to the name column, this is the option name or key.

The operator can be = or :=. The first one tells us that the default value of JVM is used
and the last one tells us that the value is changed from the default. It can have been
changed after some internal analysis of JVM itself or by a JVM argument given to it.

The value column is simply the value of the option. Finally, in the category column,
we find various information about the option such as whether it is an internal value
only, whether it is experimental and not officially supported, or whether it belongs to
a specific compiler type.

Client versus Server VM
The Hotspot JVM has two configuration flags that make it use a Client VM or a Server
VM. There is no real visible or functional difference between these VMs, other than
the fact that they are configured and optimized differently. The Client VM normally
starts faster and the Server VM runs faster over time. As the Client VM starts faster,
it is better suited to run client applications as the start up speed is more important
than the processing speed. In reality, however, this is very seldom utilized today.
Instead, the optimization of the Server VM is the prevailing variant. This has become
even more obvious, as the ergonomic choice of the VM that is selected depends on the
available hardware. Any relatively modern computer of today (Java SE 6 and 7, that
means, having two or more CPUs and at least 2 GB RAM) is considered a server class
computer and here the Server VM will automatically be selected.

Should you ever need to override the automatic selection, the Client's VM can be
explicitly defined using the configuration flag to the java command, as follows:

-client

Similarly, to explicitly define the Server VM, use the following command when
dealing with enterprise applications:

-server

As you are reading this book, you must have some really strong and new arguments
to use anything but the Server VM.

The stack
Using the default, platform-dependent size value for the stack is often a good
starting strategy. The stack size can be altered by adding this VM parameter with
a new size value: -Xss<size>.

Chapter 3

[71]

For JVMs running out of memory, it can be relevant to lower the stack size. As JVMs
with many threads can potentially use a lot of memory, it is a good idea to inspect
and correlate the values of the stack size with the memory usage.

Should you encounter the infamous java.lang.StackOverflowError, you probably
have an application whose stack is exhausted due to recursive calls or a really deep
call chain. An overview of how your application is designed and what it actually
does in terms of thread life cycle usage is often very relevant at a first encounter. If
the validation of the design and implementation turns out to be okay, the stack size
will need an increase.

The heap
The heap size can be set to an initial value, a minimum value, and a maximum value.
In older JVMs, it was considered good practice to set the minimum and maximum
values equal. This made sense as the cost of resizing the heap was very expensive.

Today, the general recommendation is to not set the minimum value at all. The JVM
will be perfectly proficient to do that itself by its ergonomic intelligence. The focus
should instead be on finding a good maximum size for the heap.

Another way of looking at the heap is shown in the following diagram. Here, the
dynamicity of the heap and its subareas is shown by the Allocated (all non-Virtual)
and Virtual columns. Within each subarea of the heap, the Allocated areas are
reserved for holding objects, while the Virtual are unused areas that are available
for growth.

The dynamic memory allocation of the heap and its subareas

Tuning the Java Virtual Machine

[72]

In the upcoming subsections, we will go through the various size- and ratio-related
VM parameters of the different memory areas. For the size-oriented parameter,
the following diagram will act as a visual guide and reference. Red-colored arrows
are for the heap excluding the PermGen area. Yellow arrows are for the young
generation and blue arrows are for the permanent generation. Note that the sum of
both the red-marked Initial arrows equals the initial size value of the heap (set by the
Xms parameter).

VM parameters for setting the sizes of the various memory areas of the heap

Setting the maximum heap size
Setting the maximum heap size of JVM is done by setting the Xmx flag with a defined
size to the java command. Note that this maximum size, however, does not include
the PermGen space discussed later in this chapter. The generic syntax is as follows:

-Xmx<size>

Here, size is the number of bytes to be reserved for the heap. The size can be
defined by actually stating each figure in the number or with a metric prefix such
as k (kilo, thousand, or 1,000), M (mega, million, or 1,000,000), or G (giga, billion, or
1,000,000,000). The suffix is allowed to both upper- and lowercase characters. All of
the following examples are, therefore, valid and allowed:

-Xmx4294967296

-Xmx5000k

-Xmx256M

-Xmx4G

Chapter 3

[73]

On a server class computer of today (64-bit), JVM normally sets the maximum heap
by default to one-fourth of the available memory on the machine. For example, on a
machine with 16 GB RAM, the maximum heap size will be 4 GB.

Setting the initial heap size
Should you realize that the initial heap size, for some reason, is wrong for your
application, you can set it in the exact same way as the maximum size. The only
difference is the name of the flag. The initial or minimum (as it was previously
known as) size of the heap is set using the Xms flag. Using a generic syntax, the
flag look as follows:

-Xms<size>

On a server class computer of today (64-bit), JVM normally sets the initial heap by
default to 1/64th of the available memory on the machine. So, for example, on a
machine with 16 GB RAM, the initial heap size will be 256 MB.

It's also worth noting that, on a 32-bit machine, the limit of
available addressable memory is just (2^32=) 4 GB. With this
type of computer architecture, the limitations in memory
often create quite a lot of problems. The addressable memory
in a 64-bit machine is over (2^64=) 18 ExaByte (1.8*10^19). As
pretty much all computers of today use 64-bit architectures,
being able to physically use enough memory is barely a
problem any longer.

Determining what maximum size the heap
should be
It is important to award JVM with at least as much memory as estimated (or
measured) for peak usage. Giving your application way too much memory isn't
good either, as it will lock up more resources than needed and also make your
system unnecessarily expensive.

Setting the correct maximum heap size of JVM for an application is one of the most
essential—and probably the most common—tuning tasks in relation to the memory
handling of the JVM.

Tuning the Java Virtual Machine

[74]

Finding the maximum heap size for any application running in a JVM involves
monitoring the heap while the system is under load. Monitoring should be done
as the load is consistent and also during peak times. The maximum peak value in
the heap usage should be noted as in the following image:

The maximum heap size is determined from the highest peak value used by the heap

The maximum heap size must be somewhat higher than the maximal monitored
value. It should also be adjusted so that not more than around 75 percent of the heap
is occupied during the normal load. If more of the heap is used, the frequency of GC
might interfere with the application performance.

An old rule is that the maximum heap size shouldn't be too large, or the GC
will take a long time. This is still true in some scenarios but, as the heap size now
is more adaptive and GC strategies have evolved, the importance of this rule
has diminished.

Determining what initial size the heap should be
The ergonomic features of Hotspot make it quite unnecessary to choose the initial
size of the heap. If we have an application that requires more initial memory than
Hotspot can foresee, then there might be some minor but still unnecessary time spent
on heap resizing. To improve the time, we could find out, and possibly set, the initial
heap size.

Chapter 3

[75]

Similar to when we determined the maximum heap size, we monitor the heap
during the load. As GC is activated, we should start to see the jagged pattern of the
utilized heap memory dropping as the collector kicks in and then rising again until
the collector once again becomes active. The level that the heap is at the lowest of
these points is the value of what the initial heap size should be set to. An example of
marking this level is given in the following image:

The initial heap size is determined by the minimal value of the heap usage after stabilization

Setting the size of the young and old generations
If the young generation is too small, short-lived objects will be moved too quickly
into the old generation, where they are more costly to collect. On the other hand,
if the young generation is too large, there will be a lot of unnecessary copying of
objects that should end up in the old generation eventually anyway. Should the
young generation be more than half the entire heap in size, it negates its ability to
perform a copy collection and results in a Full GC. This is also known as the young
generation guarantee.

The young generation guarantee ensures that the minor
collection can complete even if all the objects are live. Enough
free memory must be reserved in the tenured generation to
accommodate all the live objects arriving from the survivor
spaces. When there isn't enough memory available in the
tenured generation to accommodate all these objects, a major
collection will occur.

Relying on Hotspot's ergonomicity, setting these values is often good enough,
especially if your application runs smoothly and no OutOfMemoryErrors occur.
Should you, however, need to find a better weight value between the young and old
generations; this can only be done by systematic monitoring, measurements, and
tuning. Remember to only change one value at a time and retest iteratively.

Tuning the Java Virtual Machine

[76]

When designing an application, strive to use mainly short-lived
objects as these will die in the young generation where they
will be removed with a relatively cheap minor GC. Using some
long-lived objects is often necessary and completely valid, but
bear in mind that these will require a relatively costly Full GC
as they reach the tenured age and memory area.

As for the Heap, the initial and the maximum value of the young generation can be
set to absolute values by flags to the java command. To set the maximum size of the
young generation, use the following flag:

-XX:MaxNewSize=<size>

For the initial size, use the following flag:

-XX:NewSize=<size>

When setting the maximum size, great care has to be taken as it also impacts the
old generation. The greater the size we award to the young generation, the smaller
the old generation will get. Normally, the old generation should be considerably
larger than the young generation. It can, therefore, make more sense to set a
relative size ratio between the old and young generations. For this, you can use
the following flag:

-XX:NewRatio=<ratio>

Setting this with a ratio value of, for example, 3 will mean that the old generation
is three times larger than the young generation. So, one-quarter of the space belongs
to the young generation and three-quarters to the old. The default when using the
server configuration is 2. Commonly, a ratio value of 2 or 3 is used for a majority
of the applications we've come across.

Now, combining the absolute and relative will give a complete definition of the
young-old generations' sizes. Consider the following example:

java -XX:NewSize=64m -XX:MaxNewSize=1g -XX:NewRatio=3 MyApp

Here, JVM will try to keep the size of the old generation three times larger than
the young, but the young will also be kept larger than 64 MB and will never get
bigger than 1 GB.

Chapter 3

[77]

Setting the size ratio of Eden and the survivor
spaces
Having a relatively small-sized Eden is generally not good as objects will have to
be quickly moved into the survivor spaces and GCs become triggered quite often.
Similarly, having survivor spaces that are not good as they will fill up too quickly
and, consequently, objects will mature into the old generation too quickly.

Finding the balance of Eden and the survivor spaces is just as important as finding
it for all other memory areas. Finding and using the correct settings also follows the
same approach.

Leave the ergonomic settings of Hotspot alone if your application works fine.
Otherwise, monitor and tune in the controlled way: change one thing, retest, and so
on. Learning about the age distribution of objects is particularly useful in this work.

Using the following parameter will list the age distribution of all objects in the
survivor spaces on each minor (young) GC. More details of this parameter will be
given in the VM parameters in production section later on in this chapter:

-XX:+PrintTenuringDistribution

Just as with setting the size ratio between the young and old generations, we can set
the ratio between Eden and one of the survivor spaces. This is done using the
following flag:

-XX:SurvivorRatio=<ratio>

Setting this with a ratio value of, for example, 10 will mean that Eden is ten times
larger than each of the survivor spaces. Consequently, Eden will own 10/12 of the
young generation and S0 and S1 will both own one-twelfth each. The default is 8
and, most commonly, a ratio value between 8 and 12 is used for a majority of the
applications we've come across.

The tenuring threshold is a term that denotes the number of times an object
survives a young collection and is aged enough to be promoted to the old (tenured)
generation. The initial and maximum tenuring thresholds, respectively, can be set by
the following two parameters:

-XX:InitialTenuringThreshold=<threshold>

-XX:MaxTenuringThreshold=<threshold>

Tuning the Java Virtual Machine

[78]

Note that threshold here is an integer value. To specify at what percent the "to"
survivor space should be utilized before a minor GC kicks in can be set by the
following parameter:

-XX:TargetSurvivorRatio=<ratio>

Here, ratio is an integer that denotes a percentage. A ratio value of 90 would
hence denote that 90 percent of the "to" survivor space should be filled before the
collection kicks in. How all these values come in to play is shown by running a VM
with the PrintTenuringDistribution parameter.

PermGen
The last of the major memory areas we will explore is PermGen. This area is separate
from the rest of the areas in the heap as it doesn't handle the storage of objects that are
moving around between areas. Instead, PermGen is used to store the object metadata
that lasts the JVM lifetime. Reloading and recycling of classes happens here as an
application server reloads classes. PermGen has a history of poor optimizations;
as a developer using an application server or some other Java tool that loads a lot
of classes, you're very likely to have seen the very familiar and pesky java.lang.
OutOfMemoryError: PermGen space that we will discuss more in detail shortly.
Setting the maximum size of the PermGen area is done using the java flag as follows:

-XX:MaxPermSize=<size>

In Java SE 8, PermGen has been removed, which certainly is
something that many will feel happy about (at least initially).
Instead, we will be introduced to a new memory area called
Metaspace. This area will handle metadata and is similar to
solutions available in the JRockit and IBM VMs. How this will
play out remains to be seen, but there are some disturbing
signs. As the new memory area is located in the native
memory space that is outside of the Java-controlled space, it
will certainly introduce new challenges in terms of analysis
and monitoring. This is especially obvious as tooling currently
is close to nonexistent.

Large objects
When designing and implementing an application, it is worth remembering to avoid
allocating very large objects that are kept alive for a long time. The problems with these
objects are that they have the potential to severely fragment the heap. Despite good GC
strategies and improved defragmentation techniques, consequences can, in the end, be
catastrophic for JVM, often in the shape of a java.lang.OutOfMemoryError error.

Chapter 3

[79]

Large objects that have a short lifespan will be collected relatively fast and won't
cause many problems. If these large objects are also allocated at the same time,
they can be stored as continuous memory space, fragmentation can be kept to a
minimum. They are also likely to be collected at the same time.

Another good solution is to chop the large objects up in to smaller ones, as this will
make their long lifespan less cumbersome for the memory handling of JVM. Should
none of these techniques be an option, the solution of enabling large memory pages
might do the trick.

Large memory pages
Modern CPUs have a feature named large memory pages. This feature allows
applications that require a lot of memory to make 2 to 4 MB-sized allocations instead
of the standard 4 KB. Needless to say, this can improve the performance significantly
for some applications. It can, however, also cause degraded performance when
shortage of memory (that often occurs in systems with long uptime, where memory
has become so fragmented that new memory reservations are not allowed) leads to
excessive paging.

The large memory pages feature is available in the 64-bit JVM, where the parameter
for enabling it is the following one:

-XX:+UseLargePages

By default, large memory pages is disabled in Java on most major platforms (Linux,
OS X, and Windows) but enabled for some (such as Solaris). You will need to adapt
your operating system settings accordingly.

The java.lang.OutOfMemoryError error
It is sometimes said that a programmer has not really experienced anything until
he or she has come across a java.lang.OutOfMemoryError (OOME) error. The
Java SE 7 javadoc (http://docs.oracle.com/javase/7/docs/api/java/lang/
OutOfMemoryError.html) describes the OOME as follows:

Thrown when the Java Virtual Machine cannot allocate an object because it is out
of memory, and no more memory could be made available by the garbage collector.
OutOfMemoryError objects may be constructed by the virtual machine as if
suppression was disabled and/or the stack trace was not writable.

Tuning the Java Virtual Machine

[80]

When this error turns up, the OOME hints, in its message, what memory area
has been exhausted or what other memory-related problem it pertains to. Most
commonly, it points out the heap or PermGen.

The responses among different organizations and individuals vary. Many try to
create more or less clever workarounds in order to avoid the nasty OOME that
will crash the VM of their valuable system and require it to be restarted. Some
often seen, but not recommended, walkarounds include daily restarts, where and
somewhat more advanced versions actually check whether the heap level is critical
before restarting.

Others will just increase the heap and PermGen until there is no crashing. It is often
valid to increase the heap to some level—as we've previously explored. To increase
the heap to just avoid or postpone an OOME is not good enough, though. Instead,
we must understand what causes the OOME and, if it is a memory leak, how to find
and resolve it. We will discuss how to find the source of a memory leak shortly but,
first, we need to understand the most common types of OOME.

From the heap
Should the OOME have a message that states that the problem lies within the "Java
Heap space", we need to consider a few options. More heap memory might actually
be needed by the application. Alternatively, the application holds on to too many
object references for too long. In this case, we have what is commonly known as a
memory leak.

In either way, an analysis of how the heap utilization looks over time is necessary.
A heap with an uneven allocation curve (not the nice, shark-fin shaped one) that
grows both its initial (minimum) and maximum limits is a clear suspect for a leak.

From the PermGen
An OOME message that states the "PermGen space" means that the PermGen space
is full. This can happen whenever an application needs to load a large number of
classes. Resolving this problem could be aided by carefully considering class usage in
the application. Unfortunately, this is never realistic during development; for existing
applications, it might require a total redesign. Instead, here is the solution to increase
the PermGen space with the previously mentioned -XX:MaxPermSize VM parameter.

Chapter 3

[81]

The PermGen space often gets exhausted after redeploying an
application a few times. This is due to the fact that, every time
you deploy an application, the application is loaded using its own
classloader. Simply put, a classloader is a special class that loads
.class files from JAR files. When you undeploy the application,
the class loader is discarded and all the classes that it loaded
should be collected by the GC sooner or later. The problem is that
web containers do not collect the garbage of the classloader itself
and the classes it loads. Each time you reload the webapp context,
more copies of these classes are loaded; as these are stored in the
permanent heap generation, it will eventually run out of memory.
Thus, restarting the JVM from time to time is a much better idea
than just raising the PermGen size.

Too large an array
When the details of an OOME message state the "requested array size exceeds VM
limit", an application will attempt to allocate an array that is larger than the heap
size. For example, if an application attempts to allocate an array of 512 MB but the
maximum heap size is 256 MB, then an OOME will be thrown with this message.
If this object allocation is intentional, then the simple way to solve this issue is by
increasing the maximum size of the Java heap. If not, some clever redesign of the
application will hopefully be the solution.

Not enough native threads
An OOME message that says "unable to create new native thread" can indicate
that the computer user that runs JVM is not being allowed to create enough user
processes (these are dependent on the platform but are named user threads in Java).
The following command will list how many user processes the current user on a
UNIX-system is allowed to execute:

ulimit -a

Changing the number of processes the user is allowed to execute is done by issuing
the following command (preferably in a shell startup script or something similar, so
it won't need to be given manually), where 4096 now will be the new number of the
allowed user processes:

ulimit -u 4096

Tuning the Java Virtual Machine

[82]

Memory leaks
A very common performance problem in software development is memory leaks.
The creators and maintainers of the Java language have done a lot to minimize this
problem by the garbage collection of released (set to null) and unreferenced object
instances for example, but poor code can and will still create problems. When an
OOME occurs and the problem is suspected to be due to a memory leak, it is time to
start investigating the real cause(s).

The rule of thumb to identify a likely heap leak is as follows:

If the heap size usage keeps increasing for a while after each time a Full GC has
executed, it implies a likely memory leak

For the best estimate, the same type and amount of operations should be performed
iteratively during each cycle before/after the Full GCs.

By using a tool such as VisualVM, it can, in some obvious cases, be possible to
identify a leak directly by simply looking at the graph of the heap space memory. If it
keeps growing despite Full GCs being executed, it is time to investigate.

A leak-finding process
A simple but effective process to find memory leaks can be defined in the following
three steps:

1. Find suspect-leaked class instances
2. Find where the suspects have been instantiated
3. Find the reason(s) why the leak exists

A step-by-step example using VisualVM
Using the VisualVM tool that was introduced in the previous chapter, we have
managed to find and resolve quite a few leaks by following the simple process
mentioned previously. Here, the process has been broken down into a number of
fine-granular tasks and operations while using the VisualVM Profiler. Perform the
following steps:

1. In VisualVM, connect to the JVM that runs your WildFly with a possible
memory-leaking application.

2. In the Profiler view, enable the Settings checkbox and go to the Memory
settings tab.

Chapter 3

[83]

3. Here, check the Record allocations stack traces checkbox as shown in the
following screenshot:

The settings of the Profiler in VisualVM

4. Uncheck the Settings checkbox again. The changes are saved.
5. Click on the Memory button to start memory profiling. This will take quite

some time to start as the bytecode will be instrumented.
6. When the application is in a steady state, perform a GC and then take a

snapshot by clicking on the Snapshot button. It will show up as a leaf node
under the VM instance node in the Applications tab to the left.

7. Wait for a while to let the profiled application leak memory. This might
happen as the system sits idle but could probably happen as it performs
some tasks (preferably as automated and deterministic tests).

8. After the application has run (and leaked memory) for a while, take another
snapshot like the one taken previously (including a GC before the snapshot).

9. Select both snapshot nodes under the VM instance in the Applications tree.
10. Right-click on the selection of both snapshots and choose Compare from the

pop-up menu.

Tuning the Java Virtual Machine

[84]

11. A new Snapshots Comparison view will show up as shown in the following
screenshot; in it, the differences between allocated objects will be displayed:

Comparing snapshots in VisualVM

12. The top elements are the ones that have increased in numbers the most, and
these are the main suspects as the cause of a memory leak.

13. Go back to the two snapshot views again and select the identified suspect
in both.

14. Right-click on the selection and choose Show Allocation Stack Traces from
the pop-up menu. Alternatively, click on the Allocation Stack Traces button
in the bottom of the view.

Note that allocation stack traces can only be taken when
profiling. The option does not work when performing
the sampling.

15. Identify the methods where there is a large difference in the contribution to
the total count.

Chapter 3

[85]

16. These might be where leaked objects have been instantiated. Many believe
that the work is done here, but that's not always quite true. It is important to
keep in mind that the leaking object is very likely to leak from some place other
than where it got created. Therefore, we will need to figure out the object that
actually holds the reference to the leaking object. This is the point of leakage.

17. Take a heap dump from the VM instance in the tree by right-clicking on it
and selecting Heap Dump.

18. The heap dump will show up as a leaf node under the VM instance in the
tree to the left.

19. Open the view of the heap dump and look into the Classes sub-view. You
can see the objects holding references to your suspected leaking object.
Sometimes, you can find enough clues about what you're looking for here
but, when there are a lot of instances involved and code you can't control
(or have the source code for), it might not be enough. If needed, use the filter
functionality in your view to be able to focus on relevant data and not be
disturbed by an overwhelming amount of data.

20. Double-clicking on the suspect in the Classes sub-view will open up the
Instances sub-view. Here, all instances of the suspect class are shown
as follows:

The Instances subview of the heap dump in VisualVM

Tuning the Java Virtual Machine

[86]

21. Make sure the Instances, Fields, and References buttons to the top-left
section of the sub-views menu bar are all selected.

22. Here, it is gets a bit iterative, and especially so if there are many instances
(as there almost always are). Select an instance and look at its references.

23. Here, the references that hold the leaked object are found—and thus the
reason for the leak.

24. Many references of the same sort are often a likely indication of where your
leaked object could be. Verify for falsification of the leak by giving the related
code a thorough inspection.

Following these steps is by no means a guarantee to finding a leak, but they have
proved fruitful and should be considered a template that you can adapt for your
specific environment and needs.

Types of GC strategies
There are several different collector types of the GC. These types are also known as
strategies and they are, in turn, realized by different implementations depending on
the JVM manufacturer. Today, many different implementations exist and these are
mixtures of the basic strategies. First, let's have a look at most common strategies of
the Hotspot VM:

• The serial collector
• The parallel collector
• The concurrent collector
• The Garbage First (G1) collector

It should be noted that, within a strategy, different GC algorithms can be enabled for
the young generation and the old generation, respectively—all to optimize memory
management and performance.

The serial collector
The serial collector performs garbage collection using a single thread as shown
in the following diagram. This thread stops all other JVM threads—a so called
stop-the-world behavior. While it is a relatively efficient collector, since there
is no communication overhead between threads, it cannot take advantage of
multiprocessor machines. So, it is best suited for single-processor machines—and
as we know, these are no longer common.

Chapter 3

[87]

The serial collector at work

The serial collector is selected by default on the hardware and operating system
configurations that are not elected as server class machines or can be explicitly
enabled with the following VM parameter:

-XX:+UseSerialGC

The parallel collector
The parallel collector, also commonly known as the throughput collector, is the
default collector on server grade machines for Java SE 7. It can also be explicitly
enabled with the following VM parameter:

-XX:+UseParallelGC

The parallel collector performs minor collections in parallel, which can significantly
improve the performance of applications that have lots of minor collections.

As you can see from the next diagram, the parallel collector still requires a so-called
stop-the-world activity. However, since the collections are performed in parallel,
making good utilization of many CPUs, it decreases the garbage collection overhead
and hence increases the application throughput.

The parallel collector at work

Tuning the Java Virtual Machine

[88]

Since the release of J2SE 5.0 update 6, you can benefit from a feature called parallel
compaction that allows the parallel collector to also perform major collections in
parallel. Without parallel compaction, major collections are performed using a single
thread, which can significantly limit scalability.

This collector includes a compaction phase where GC identifies the regions that are
free and uses its threads to copy data into those regions. This produces a heap that
is densely packed on one end with a large empty block on the other end. In practice,
this helps reduce the fragmentation of the heap, which is crucial when you are trying
to allocate large objects.

Parallel compaction is enabled by default as of the Java SE 7 update 4 release. It can
otherwise be explicitly enabled by the -XX:+UseParallelOldGC VM parameter and
disabled by the -XX:-UseParallelOldGC parameter

Many think that the word Old in the name of GC refers to it as being old or
deprecated. Nothing could be more wrong. Old simply refers to the old generation
memory area and this GC is often preferred over the regular parallel collector.

The concurrent collector
The concurrent collector is a low-pause collector more commonly known as the
Concurrent Mark Sweep (CMS) collector. It performs most of its work concurrently
with the application still executing. This optimizes performance by keeping GC
pauses short.

Basically, this collector consumes processor resources for the purpose of having
shorter major collection pause times. This can happen because the concurrent
collector uses a single garbage collector thread that runs simultaneously with the
application threads. Thus, the purpose of the concurrent collector is to complete the
collection of the tenured generation before it becomes full.

The following diagram gives us an idea of how the concurrent collector operates:

The concurrent collector at work

Chapter 3

[89]

At first, the collector identifies the live objects, which are directly reachable in an
Initial Mark phase. Then, in the Concurrent Mark phase, the collector marks all the
live objects that are reachable while the application is still running. A subsequent
Remark phase is needed to revisit objects that are modified in the concurrent
marking phase. Finally, the Concurrent Sweep phase reclaims all objects that have
been marked.

The reverse of the coin is that this technique, used to minimize pauses, can actually
reduce the overall application performance. Hence, it is designed for applications
whose response time is more important than overall throughput.

The concurrent collector is enabled with the -XX:+UseConcMarkSweepGC
VM parameter.

The G1 collector
The G1 collector is included—and fully supported—in the Oracle JDK 7 update 4
distribution of Java SE 7. G1 and is targeted at server environments with multicore
CPUs equipped with large amounts of memory. It is called a regionalized parallel-
concurrent collector and is enabled by using the -XX:+UseG1GC VM parameter.

When using G1, the heap is divided into equal-sized regions between 1 and 32 MB.
JVM sets this size at startup. The goal is to have no more than 2048 regions in a VM.
The Eden (E), Survivor (S), and Tenured (T) generation are divided into logical non-
continuous sets of these regions, as visualized in the following diagram:

The heap with its sub memory areas; using the G1 collector

G1 is not a real-time collector, but it tries to meet user-defined pause time targets
using a pause prediction model by adjusting the amount of regions used by the
different memory areas. Heap fragmentations are reduced by the compaction realized
by parallel copying of objects between sets of regions—called Collection Sets (CSet).

Tuning the Java Virtual Machine

[90]

Object references in the regions are tracked by independent Remembered Sets
(RSet). These enable parallel and independent collection between regions since
scanning can be minimized to a region instead of the entire heap.

It is worth noting that, for the G1 collector, the JVM footprint can be a bit larger in
comparison to other collectors. This is due to the CSet and RSet data structures and is
nothing to worry about.

The goal of G1 is to always stay within any pause time and to reclaim as much
memory as possible, starting with areas that contain the most reclaimable space.

All this makes the G1 collector very stable in terms of minimal interrupts for the
collection and compaction and effective in terms of memory usage.

The Oracle website states that:

Applications that require a large heap, have a big active data set, have bursty or
non-uniform workloads or suffer from long garbage collection induced latencies
should benefit from switching to G1.

This can certainly be true for many applications but, in reality, the G1 collector is still
seldom used in production. This might be due to the fact that it is relatively new and,
as such, so few know about it. Many do not even bother tuning GC at all. For most
others, though, the CMS is "good enough" for most applications.

Which collector to use
Which collector is really the best? The answer is that it depends a lot on the
machine type and memory area allocations, for example. In the following table, we
summarize some of the major benefits of each collector mentioned previously:

Collector When to use
Serial Single-processor machines and small heaps

Parallel Multiprocessor machines and applications that require high
throughput

Concurrent Fast processor machines and applications with strict SLAs that
require quick response times

G1 Multiprocessor server machines with applications using large
heaps (>6GB) and in need of minimal GC latency

As you can see, the serial collector is not really an option for enterprise solutions
of today.

Chapter 3

[91]

Should your application be deployed on a multiprocessor machine and require
to complete the highest possible number of transactions in a time window, the
parallel collector is a good choice. This is the case for applications that perform batch
processing activities, billing, and payroll applications.

Having fast processors and an application that needs to serve every single request
by a strict amount of time is generally a case for the concurrent collector. The
concurrent collector is particularly suited to applications that have a relatively large
set of long-lived data since it can reclaim older objects without a long pause. This
is generally the case in web applications where a consistent amount of memory is
stored in the HttpSession.

The new G1 collector is a useful, but not widely used, replacement for the parallel or
concurrent collectors when one ore more of the following situations are noticeable
for an application:

• More than half the heap is occupied with live data
• There are long GC or compaction pauses (longer than half a second)
• The rate of object allocation or promotion varies a lot

Setting VM parameters in WildFly
Setting JVM parameters to be picked up by the JVM running WildFly can be done in
several ways. The most common ways are as follows:

• Setting the parameters to an environment variable directly in the shell that
starts the JVM.

• Setting the parameters in the server startup script, for example, in
$WILDFLY_HOME/bin/standalone.sh or domain.sh.

• Setting the parameters in the server configuration file, that is, in
$WILDFLY_HOME/bin/standalone.conf or domain.conf.

The first alternative is in practice not very useful for anything other that testing out
new variables.

The second alternative can be used, but previously set parameters might be lost.
Also, putting the configuration on the wrong line can easily mess up the rest of the
logic in the script.

The last alternative is the recommended one for pretty much all situations as the
configuration is persisted and versioned in a way that separates configuration
from logic.

Tuning the Java Virtual Machine

[92]

It is customary to use the environment variable, JAVA_OPTS, to set JVM parameters.
All of the mentioned alternatives make use of this variable as it gets picked up and
used by the startup scripts of WildFly.

To not lose any previously set VM parameter, a good practice is to set the environment
variable to refer to itself on adding new parameters. This is done by using the
following syntax:

JAVA_OPTS="$JAVA_OPTS <new-vm-params>"

The following command will, as an example, start WildFly with a maximum heap
of 2 GB, where any old VM parameters previously set to JAVA_OPTS are ignored
(they are removed as the variable is set by the new value):

JAVA_OPTS=-Xmx2g

Having the relevant information available
If, or rather when, you start to encounter problems in your production environment,
it is vital that you have as much relevant information available in order to be able to
resolve the problem.

Should the information not be available, chances are often slim that you can figure
out what went wrong and how it can be fixed. A bad but common scenario is
when a serious problem occurs and no relevant information is available in logs or
elsewhere. In these cases, you will most likely need to make adjustments in code
and configuration that will allow you to gather interesting information and let the
problem occur (at least) one more time. Recreating serious problems in a production
environment is naturally something that should be avoided at all costs.

Logging lots of various types of information for different purposes (such as security,
business, and even performance) is often required in an application and its application
server. As logging can be a source for performance degradation, an opposing
requirement is normally to not log (too) much in the production environment. Finding
the right level for a specific application or system is a matter of practically weighing
the various requirements from the different parts of an organization against each
other—business, quality, and operations, to mention a few.

Chapter 3

[93]

VM parameters in production
The following VM parameters should always be set in your production environment to
log relevant information. Even if they come with a small price in terms of performance
costs (mostly disk I/O), if they are not set, you have quite a challenge ahead of you to
resolve any VM-related problems (memory, GC, and so on) in your applications.

verbose:gc
To retrieve basic memory details after each collection, add the following parameter:

-verbose:gc

The logged output looks like the following for a minor and major GC, respectively:

[GC 85310K->39093K(173056K), 0.0123160 secs]

[Full GC 39093K->25698K(173056K), 0.1902890 secs]

First, on each line, GC means that a minor GC is executed, whereas Full GC naturally
means that a full or major GC has executed.

The numbers before and after the arrow (->) tell us how much memory in the heap
was allocated by objects before and after the GC, respectively.

Then comes a number in parentheses. This number is the total committed amount of
heap space.

Finally, at the end of each row, we have the time the GC took to execute.

PrintGCDetails
For more information about the individual memory areas within the heap, the
-XX:+PrintGCDetails parameter can replace the verbose:gc parameter. It actually
overrides the previous command and output. This parameter is also often considered
to be the minimal level of information that can be useful for tools' support.

The logged output looks like the following for a minor and major GC, respectively:

[GC [PSYoungGen: 31715K->6683K(93696K)] 56498K->31474K(161792K),
 0.0071920 secs] [Times: user=0.03 sys=0.01, real=0.01 secs]

[Full GC [PSYoungGen: 6683K->0K(93696K)] [ParOldGen: 24790K-
 >18597K(68096K)] 31474K->18597K(161792K) [PSPermGen: 43415K-
 >42377K(77824K)], 0.1933750 secs] [Times: user=0.78 sys=0.01,
 real=0.19 secs]

Tuning the Java Virtual Machine

[94]

This output is very similar to the one by verbose:gc. First, GC or Full GC tells if
there was a minor or major collection, respectively.

Then, within brackets, for the young generation, we first see what collector is used.
Then, still within the same brackets, before and after the ->, we see how much
memory area was allocated before and after the collection, respectively. Finally,
within the same brackets, the number within parentheses tells us how much memory
in total is committed by the young generation.

While a log of a minor GC shows us the corresponding data for the entire heap,
the major GC will show us the data for the old generation (including which
collector is being utilized for that memory area), the heap, and then, for PermGen,
in serial sequence.

Finally, we have four time values: the time the collection took and then three time
values—user, sys and real—that are similar to the output of the time command.

The ratio of the user/real gives us an approximation of the
increase in speed you're getting from different collectors.
The system time can be an indicator of the system activity
that is slowing down the collection—should, for example,
paging occur, sys will be high.

PrintTenuringDistribution
Retrieving information about premature promotion is important as it includes
information about the correct size of memory pools. To enable the output of this
information, the following flag should be added to the JVM:

-XX:+PrintTenuringDistribution

The output looks like the following:

[GC Desired survivor size 19922944 bytes, new threshold 7 (max 15)

87601K->39197K(174080K), 0.0133280 secs]

Indicating that this is a minor collection, is given by the initial GC.

We then see that the size of the "to" survivor space is (here, almost 20 MB) what
the current tenuring threshold is (in this case 7) and what the maximum tenuring
threshold is set to (max 15).

Chapter 3

[95]

Before and after -> is the size of allocated objects that we are given in the heap before
and after the collection, respectively. Then, within parentheses, we get the total
committed size of the heap.

Finally, the time that the collection took is given.

loggc
When you suspect or know that a problem that needs analyzing exists, you do not
want to parse out the GC log data from the regular logs (console/stdout). Here, the
GC log data would be mixed with other data from WildFly or your application since
by default all log data ends up in $WILDFLY_HOME/standalone/log/server.log by
default. The degree depends somewhat on how you have configured your logging
framework(s), but there will be mixed types of information that can be hard to read
or parse. To ease this pain, make sure that you always point out a specific file to
where the GC-log data should end up by using the following parameter:

-Xloggc:<file>

By directing the GC log data in this way, a timestamp is also added to each line
in the log. This timestamp tells us at what relative point in time the collection
occurred, which is counted in seconds (and with three decimals' accuracy)
from when JVM started. The same effect can also be realized by using the
PrintGCTimeStamps parameter.

Saving the GC log data to a disk can't be recommended highly enough. It is always
worth it! A disk is relatively cheap in comparison to the cost of, more or less blindly,
chasing problems when no information is available. Also the indirect disturbance
to business when chasing around for clues can be significant. Remember that if you
won't be able to catch the information about an error right away, you will need for it
to occur at least twice before you can start the forensics!

Retrieving GC data can also be done by accessing the javax.management.MXBeans
runtime. Using MXBeans can, however, have a negative impact on the running
application and they may cause GC problems on their own. Logs, on the other hand,
are more useful as they can contain more information and have less relative impact
on performance.

Saved log data files can be postprocessed and used by tools for calculations and
visualizations that will aid any search for problems.

Tuning the Java Virtual Machine

[96]

Using tools
To effectively analyze JVM-related log data, using tools is not only encouraged, it
is required in practice. Without proper tool support, analysis is really limited to
guessing as it is virtually impossible to get an overview of the vast amount of data
that comes from JVM. Tooling can be anything from simple scripts that compare the
memory area sized between GCs to advanced graphical visualization tools that can
alert you of irregularities and allow you to hone in-focus areas. We won't go into
depths about how to use any specific tool here, but you should be aware of the fact
that there are several freely available alternatives to licensed products. Some very
useful tools are as follows:

• Tools that come with Oracle JDK 7: jstat (JVM Statistics Monitoring), jmap
(Memory Map), and jhat (Java Heap Analysis Tool)

• GCViewer
• GarbageCat
• IBM GCMV for Eclipse (search for "GCMV" on the Eclipse Marketplace)
• HPjmeter

VM and GC stability
VMs (in our case Hotspot) and collectors have improved immensely in many
performance-related aspects over the years, both in major as well as minor versions.
The changes can involve internal behavior that might affect your application in both
positive and negative ways. Either way, the changes and their effects are seldom
possible to realize by just reading the release notes.

The changes can also quite often be externally visible. The output of various VM
parameters, such as the ones for GC logging, has changed many times.

All of these changes are rarely documented in a satisfactory way and changes that
can affect your entire application might turn up even in minor releases. To handle
this in an orderly fashion involves, as per usual, rigorous and strategic tests.

No VM upgrade, changes in GC strategy, or adaption of VM parameters should be
allowed in the production environment without proper tests. As always, change one
thing, and one thing only, between each test!

Chapter 3

[97]

Summary
The JVM is the engine for all Java-based applications. It has evolved tremendously
over the years, enabling Java applications to execute faster and to be more
memory-efficient. The JVM is good at setting its own default values using
ergonomics based on the environment but often needs tuning as, for example,
memory runs short or the JVM runs slow.

Memory areas for holding objects are the heap with its subareas, young
generation—with Eden and the Survivor spaces S0 and S1—and old (tenured)
generation. The size of these areas can be tuned individually and sometimes
relative to each other, all to ensure that the best possible configuration for a
specific application can be met.

The PermGen memory area is part of the heap but separately holds metadata and
isn't involved in object allocation or collection. As with the rest of the memory areas,
PermGen can be sized individually.

GC moves aging objects within the heap and removes any unused ones, thus freeing
memory. Depending on specific application needs, different GC strategies can be
applied in JVM.

As JVM runs out of memory, an OutOfMemoryError error will occur. Identifying the
cause of this error and resolving it can be a relatively standard but comprehensive
process that always requires tool support.

By proactively logging the relevant information, you will be well prepared to handle
problems as they occur, instead of being reactive.

Now, we're finally ready to move on to performance-tune WildFly!

Tuning WildFly
In this chapter, we will talk about the various subsystems of WildFly as well as
their individual tuning possibilities. To get a better understanding of how these
subsystems work together, an introduction to the overall history and architecture
of WildFly is also given.

An application server is a rather complex piece of software that consists of several
enterprise components that must cooperate to fulfill the Java EE specifications.
Tuning such a beast can be a daunting task. It's not enough to just understand the
Java EE specification and its subspecifications. The real challenge often lies in the
understanding of how an application server of choice has been implemented and
making practical use of these specifications.

WildFly is, as of 2013, the new name of the historically famous and well renowned
JBoss Application Server (JBoss AS). As arguably the most prolific open source
application server in the market, JBoss AS made itself famous for being very
modular. It embraced other open source products that enabled it to efficiently forge
a complete Java EE server. As such, it has made a strong case in personifying the
force and strength of open technologies. The successful use of separate modules
and third-party open source artifacts continues in WildFly as it achieves full Java
EE specification compliance. With lots of separate implementations, it's often
not enough to just browse through the core documentation of the application
server itself. To really understand the possibilities when fine-tuning an individual
component, you must also study how the specific components operate and how they
interact with each other.

Tuning WildFly

[100]

WildFly's history
The history of WildFly, especially under the previous name JBoss AS, is filled with
several market-leading technology innovations and architectural decisions.

It started out as an EJB container called Enterprise Java Bean Open Source Software
(EJBOSS) in 1999. The name was later changed to JBoss as Sun Microsystem, the
owner of the EJB trademark, asked the project to stop using "EJB" as part of the
application's server name.

The key features that were introduced in earlier versions included support for
Hot Deploy and the use of Dynamic Proxies, removing the need to generate
client stubs for remote EJBs. The reputation of being one of the most modular
application servers steadily grew as Version 2 and Version 3 were released. These
were based on JMX and just about every component in the product was wrapped
and exposed as an MBean. The JMX infrastructure was a good choice to build a
platform of loosely-coupled components. It was extended with add-ons for lifecycle
behavior and artifact dependencies to produce a base that was in use up to and
including Version 4.

Even though JBoss AS 3 did comply with the J2EE 1.3 specification, it never became
a certified J2EE application server. When Version 4 came and received its J2EE 1.4
certification, the market embraced it and it became a real contender also among the
biggest commercial alternatives.

The project decided to abandon the JMX kernel for Version 5 and implemented
a new microcontainer providing POJO injection between services for fine-grained
dependencies. However, these new features came at a price. Version 5 and its minor
releases demanded a greater amount of resources (basically memory and CPU) than
the previous versions. Therefore, it is generally considered a heavyweight release
when compared to the 4.x releases.

The microcontainer was used throughout JBoss AS 5 and 6, but for Version 7 a
complete new container was introduced, focusing on parallel execution. This
new solution is what makes both JBoss AS 7 and WildFly 8 fast and lightweight.
Functionality for and around platform management has also been rewritten. The
various "infamous" XML files of the previous versions have been combined into a
single one. A new Domain execution mode was also introduced, making it simpler to
manage a large number of server instances.

Chapter 4

[101]

The following table explains which application server versions correspond to which
versions of the J2EE / Java EE specifications:

JBoss/WildFly release J2EE / Java EE specification
(Not all certified)

JBoss AS 3 J2EE 1.3
JBoss AS 4 J2EE 1.4
JBoss AS 5 Java EE 5
JBoss AS 6 Java EE 6
JBoss AS 7 Java EE 6
WildFly 8 Java EE 7

In the following table, you can see the typical startup times for some of the key
releases, as measured on a moderate laptop. As you can see, the latest incarnation,
WildFly, is blazingly fast. Thanks to internal cacheing, WildFly becomes even faster
at subsequent startups. This quick restart cycle is very useful during development
and iterative testing.

JBoss/WildFly release Configuration mode JVM Startup time
(in seconds)

JBoss AS 4.0.5.GA Default 1.4 6.5
JBoss AS 5.1.0.GA Default 5 20
JBoss AS 6.1.0.Final Default 6 14
JBoss AS 7.2.0.Final standalone-full.xml 6 3
WildFly 8.0.0.Final standalone-full.xml 7 3

WildFly's architecture
JBoss has a long history of being one of the most modular application servers in
the market. This remains true for WildFly 8. The different Java EE components in
WildFly, for example Enterprise JavaBeans (EJB), Java Message Service (JMS),
Java Persistence Architecture (JPA), and the WebContainer, are all packaged into
something called subsystems or extensions.

All the active extensions in a configuration can easily be located in the activated
server configuration file (that is, in standalone*.xml or domain.xml) under the
extensions tag.

Tuning WildFly

[102]

If the application being deployed does not need all the functionality provided
by WildFly, subsystems can easily be removed from the configuration file, thus
disabling modules with functionality.

This saves memory, threads, and sometimes startup time; it also improves overall
performance. In addition to this, there are also quite a few extensions that utilize
lazy loading. This means that they will not be loaded until requested and therefore
the direct impact of removing these is not as obvious as in earlier versions of the
application server. In the older versions, all components were loaded and their
resources were allocated directly at startup.

The actual removal is done by removing the appropriate extension from the
configuration file. For example, to remove the support for CORBA (implemented
in WildFly using a project called JacORB), the following line of configuration
should be removed:

<extension module="org.jboss.as.jacorb"/>

This subsystem also has the following configuration section that needs to be removed:

<subsystem xmlns="urn:jboss:domain:jacorb:1.3">
 <orb socket-binding="jacorb" ssl-socket-binding="jacorb-ssl">
 <initializers security="identity" transactions="spec"/>
 </orb>
</subsystem>

Note that there might be dependencies between
subsystems that can hinder their removal. For example,
removing the transaction subsystem is quite futile, as
most parts of WildFly need transaction support.

As another example, you can compare the different standalone server configuration
files (standalone*.xml) under $WILDFLY_HOME/standalone/configuration. Here,
you can see how the different configurations contain their own list of active subsystems.

The following are some examples of subsystems that may be of interest to remove
(unless utilized, of course):

• org.jboss.as.jacorb: This is the support for CORBA that not many
applications use nowadays

• org.jboss.as.sar: These are the legacy JBoss-AS-specific SAR archive
packages of JMX beans

• org.jboss.as.webservices: This is the support for web services
• org.jboss.as.messaging: This is the support for JMS

Chapter 4

[103]

You may also want to consider the removal of unused default resources that
have been configured, such as datasources and drivers—for example, the default
datasource ExampleDS and its driver for the H2 database, all of which are located in
the datasources subsystem.

Various subsystem configurations
In a high-performance environment, every costly resource instantiation needs to
be minimized. This can be done effectively using pools. The different subsystems
in WildFly often use various pools of resources to minimize the cost of creating
new ones. These resources are often threads or various connection objects. Another
benefit is that the pools work as a gatekeeper, hindering the underlying system from
being overloaded. This is performed by preventing client calls from reaching their
target if a limit has been reached.

In the upcoming sections of this chapter, we will provide an overview of the different
subsystems and their pools.

The thread pool executor subsystem
The thread pool executor subsystem was introduced in JBoss AS 7. Other subsystems
can reference thread pools configured in this one. This makes it possible to normalize
and manage the thread pools via native WildFly management mechanisms, and it
allows you to share thread pools across subsystems.

The following code is an example taken from the WildFly Administration Guide
(https://docs.jboss.org/author/display/WFLY8/Admin+Guide) that describes
how the Infinispan subsystem may use the subsystem, setting up four different pools:

<subsystem xmlns="urn:jboss:domain:threads:1.0">
 <thread-factory name="infinispan-factory" priority="1"/>
 <bounded-queue-thread-pool name="infinispan-transport">
 <core-threads count="1"/>
 <queue-length count="100000"/>
 <max-threads count="25"/>
 <thread-factory name="infinispan-factory"/>
 </bounded-queue-thread-pool>
 <bounded-queue-thread-pool name="infinispan-listener">
 <core-threads count="1"/>
 <queue-length count="100000"/>
 <max-threads count="1"/>
 <thread-factory name="infinispan-factory"/>
 </bounded-queue-thread-pool>

https://docs.jboss.org/author/display/WFLY8/Admin+Guide

Tuning WildFly

[104]

 <scheduled-thread-pool name="infinispan-eviction">
 <max-threads count="1"/>
 <thread-factory name="infinispan-factory"/>
 </scheduled-thread-pool>
 <scheduled-thread-pool name="infinispan-repl-queue">
 <max-threads count="1"/>
 <thread-factory name="infinispan-factory"/>
 </scheduled-thread-pool>
</subsystem>
...
<cache-container name="web" default-cache="repl"
 listener-executor="infinispan-listener"
 eviction-executor="infinispan-eviction"
 replication-queue-executor="infinispan-repl-queue">
 <transport executor="infinispan-transport"/>
 <replicated-cache name="repl" mode="ASYNC" batching="true">
 <locking isolation="REPEATABLE_READ"/>
 <file-store/>
 </replicated-cache>
</cache-container>

The following thread pools are available:

• unbounded-queue-thread-pool
• bounded-queue-thread-pool
• blocking-bounded-queue-thread-pool
• queueless-thread-pool
• blocking-queueless-thread-pool
• scheduled-thread-pool

The details of these thread pools are described in the following sections:

unbounded-queue-thread-pool
The unbounded-queue-thread-pool thread pool executor has the maximum size and an
unlimited queue. If the number of running threads is less than the maximum size
when a task is submitted, a new thread will be created. Otherwise, the task is placed
in a queue. This queue is allowed to grow infinitely.

Chapter 4

[105]

The configuration properties are shown in the following table:

max-threads Max allowed threads running simultaneously

keepalive-time
This specifies the amount of time that pool threads should be
kept running when idle. (If not specified, threads will run until
the executor is shut down.)

thread-factory This specifies the thread factory to use to create worker threads.

bounded-queue-thread-pool
The bounded-queue-thread-pool thread pool executor has a core, maximum size, and
a specified queue length. If the number of running threads is less than the core size
when a task is submitted, a new thread will be created; otherwise, it will be put in
the queue. If the queue's maximum size has been reached and the maximum number
of threads hasn't been reached, a new thread is also created. If max-threads is hit,
the call will be sent to the handoff-executor. If no handoff-executor is configured, the
call will be discarded.

The configuration properties are shown in the following table:

core-threads Optional and should be less that max-threads
queue-length This specifies the maximum size of the queue.

max-threads This specifies the maximum number of threads that are allowed
to run simultaneously.

keepalive-time
This specifies the amount of time that pool threads should be
kept running when idle. (If not specified, threads will run until
the executor is shut down.)

handoff-
executor

This specifies an executor to which tasks will be delegated, in
the event that a task cannot be accepted.

allow-core-
timeout

This specifies whether core threads may time-out; if false, only
threads above the core size will time-out.

thread-factory This specifies the thread factory to use to create worker threads.

blocking-bounded-queue-thread-pool
The blocking-bounded-queue-thread-pool thread pool executor has a core, a maximum
size and a specified queue length. If the number of running threads is less than the
core size when a task is submitted, a new thread will be created. Otherwise, it will
be put in the queue. If the queue's maximum size has been reached, a new thread is
created; if not, max-threads is exceeded. If so, the call is blocked.

Tuning WildFly

[106]

The configuration properties are shown in the following table:

core-threads Optional and should be less that max-threads
queue-length This specifies the maximum size of the queue.

max-threads This specifies the maximum number of simultaneous threads
allowed to run.

keepalive-time
This specifies the amount of time that pool threads should be
kept running when idle. (If not specified, threads will run until
the executor is shut down.)

allow-core-
timeout

This specifies whether core threads may time-out; if false, only
threads above the core size will time-out.

thread-factory This specifies the thread factory to use to create worker threads

queueless-thread-pool
The queueless-thread-pool thread pool is a thread pool executor without any queue. If
the number of running threads is less than max-threads when a task is submitted,
a new thread will be created; otherwise, the handoff-executor will be called. If no
handoff-executor is configured the call will be discarded.

The configuration properties are shown in the following table:

max-threads Max allowed threads running simultaneously

keepalive-time
The amount of time that pool threads should be kept running
when idle. (If not specified, threads will run until the executor is
shut down.)

handoff-
executor

Specifies an executor to delegate tasks to in the event that a task
cannot be accepted

thread-factory The thread factory to use to create worker threads

blocking-queueless-thread-pool
The blocking-queueless-thread-pool thread pool executor has no queue. If the number
of running threads is less than max-threads when a task is submitted, a new thread
will be created. Otherwise, the caller will be blocked.

Chapter 4

[107]

The configuration properties are shown in the following table:

max-threads Max allowed threads running simultaneously

keepalive-time
This specifies the amount of time that pool threads should be
kept running when idle. (If not specified, threads will run until
the executor is shut down.)

thread-factory This specifies the thread factory to use to create worker threads

scheduled-thread-pool
The scheduled-thread-pool thread pool is used by tasks that are scheduled to trigger at
a certain time.

The configuration properties are shown in the following table:

max-threads Max allowed threads running simultaneously

keepalive-time
This specifies the amount of time that pool threads should be
kept running when idle. (If not specified, threads will run until
the executor is shut down.)

thread-factory This specifies the thread factory to use to create worker threads

Monitoring
All of the pools just mentioned can be administered and monitored using both
CLI and JMX (actually, the Admin Console can be used to administer, but not
see, any live data). The following example and screenshots show the access to an
unbounded-queue-thread-pool called test.

Using CLI, run the following command:

/subsystem=threads/unbounded-queue-thread-pool=test:read-
resource(include-runtime=true)

The response to the preceding command is as follows:

{

 "outcome" => "success",

 "result" => {

 "active-count" => 0,

 "completed-task-count" => 0L,

 "current-thread-count" => 0,

 "keepalive-time" => undefined,

Tuning WildFly

[108]

 "largest-thread-count" => 0,

 "max-threads" => 100,

 "name" => "test",

 "queue-size" => 0,

 "rejected-count" => 0,

 "task-count" => 0L,

 "thread-factory" => undefined

 }

}

Using JMX (query and result in the JConsole UI), run the following code:

jboss.as:subsystem=threads,unbounded-queue-thread-pool=test

An example thread pool by JMX is shown in the following screenshot:

An example thread pool by JMX

Chapter 4

[109]

The following screenshot shows the corresponding information in the
Admin Console

Example thread pool—Admin Console

Tuning WildFly

[110]

The future of the thread subsystem
According to the official JIRA case WFLY-462 (https://issues.jboss.org/
browse/WFLY-462), the central thread pool configuration has been targeted for
removal in future versions of the application server. It is, however, uncertain that
all subprojects will adhere to this. The actual configuration will then be moved out
to the subsystem itself. This seems to be the way the general architecture of WildFly
is moving in terms of pools—moving away from generic ones and making them
subsystem-specific. The different types of pools described here are still valid though.

Note that, contrary to previous releases, Stateless EJB is no longer pooled by default.
More information of this is available in the JIRA case WFLY-1383. It can be found at
https://issues.jboss.org/browse/WFLY-1383.

Java EE Connector Architecture and
resource adapters
The Java EE Connector Architecture (JCA) defines a contract for an Enterprise
Information Systems (EIS) to use when integrating with the application server. EIS
includes databases, messaging systems, and other servers/systems external to an
application server. The purpose is to provide a standardized API for developers and
integration of various application server services such as transaction handling.

The EIS provides a so called Resource Adaptor (RA) that is deployed in WildFly and
configured in the resource-adaptor subsystem. The RA is normally realized as one or
more Java classes with configuration files stored in a Resource Archive (RAR) file.
This file has the same characteristics as a regular Java Archive (JAR) file, but with
the rar suffix.

The following code is a dummy example of how a JCA connection pool setup may
appear in a WildFly configuration file:

<subsystem xmlns="urn:jboss:domain:resource-adapters:2.0">
 <resource-adapters>
 <resource-adapter>
 <archive>eisExample.rar</archive>
 <!-- Resource adapter level config-property -->
 <config-property name="Server">
 localhost
 </config-property>
 <config-property name="Port">
 6666
 </config-property>
 <transaction-support>

https://issues.jboss.org/browse/WFLY-1383

Chapter 4

[111]

 LocalTransaction
 </transaction-support>
 <connection-definitions>
 <connection-definition
 class-name="ManagedConnectionFactory"
 jndi-name="java:/eisExample/ConnectionFactory"
 pool-name="EISExampleConnectionPool">
 <pool>
 <min-pool-size>10</min-pool-size>
 <max-pool-size>100</max-pool-size>
 <prefill>true</prefill>
 </pool>
 </connection-definition>
 </connection-definitions>
 </resource-adapter>
 </resource-adapters>
</subsystem>

By default in WildFly, these pools will not be populated until used for the first
time. By setting prefill to true, the pool will be be populated during deployment.
Retrieving and using a connection as a developer is easy. Just perform a JNDI lookup
for the factory at java:/eisExample/ConnectionFactory and then get a connection
from that factory. Other usages that will be running for a long time will not benefit
from pooling and will create their connection directly from the RA. An example of
this is a Message Driven Bean (MDB) that listens on a RA for messages.

The settings for this connection pool can be fetched in runtime by running the
following command in the CLI:

/subsystem=resource-adapters/resource-adapter=eisExample.rar/connection-
definitions=EISExampleConnectionPool:read-resource(include-runtime=true)

The response to the preceding command is as follows:

{

 "outcome" => "success",

 "result" => {

 "allocation-retry" => undefined,

 "allocation-retry-wait-millis" => undefined,

 "background-validation" => false,

 "background-validation-millis" => undefined,

 "blocking-timeout-wait-millis" => undefined,

 "capacity-decrementer-class" => undefined,

 "capacity-decrementer-properties" => undefined,

Tuning WildFly

[112]

 "capacity-incrementer-class" => undefined,

 "capacity-incrementer-properties" => undefined,

 "class-name" => "ManagedConnectionFactory",

 "enabled" => true,

 "enlistment" => true,

 "flush-strategy" => "FailingConnectionOnly",

 "idle-timeout-minutes" => undefined,

 "initial-pool-size" => undefined,

 "interleaving" => false,

 "jndi-name" => "java:/eisExample/ConnectionFactory",

 "max-pool-size" => 100,

 "min-pool-size" => 10,

 "no-recovery" => false,

 "no-tx-separate-pool" => false,

 "pad-xid" => false,

 "pool-prefill" => false,

 "pool-use-strict-min" => false,

 "recovery-password" => undefined,

 "recovery-plugin-class-name" => undefined,

 "recovery-plugin-properties" => undefined,

 "recovery-security-domain" => undefined,

 "recovery-username" => undefined,

 "same-rm-override" => undefined,

 "security-application" => false,

 "security-domain" => undefined,

 "security-domain-and-application" => undefined,

 "sharable" => true,

 "use-ccm" => true,

 "use-fast-fail" => false,

 "use-java-context" => true,

 "use-try-lock" => undefined,

 "wrap-xa-resource" => true,

 "xa-resource-timeout" => undefined,

 "config-properties" => undefined

 }

}

Chapter 4

[113]

Using JMX (URI and result in the JConsole UI):

jboss.as:subsystem=resource-adapters,
 resource-adapter=eisExample.rar,
 connection-definitions=EISExampleConnectionPool

An example connection pool for a RA is shown in the following screenshot:

An example connection pool for an RA

Besides the connection pool, the JCA subsystem in WildFly uses two internal
thread pools:

• short-running-threads
• long-running-threads

These thread pools are of the type blocking-bounded-queue-thread-pool and the
behavior of this type is described earlier in the Thread pool executor subsystem section.

Tuning WildFly

[114]

The following command is an example of a CLI command to change queue-length
for the short-running-threads pool:

/subsystem=jca/workmanager=default/short-running-threads=default:
write-attribute(name=queue-length, value=100)

These pools can all be administered and monitored using both CLI and JMX. The
following example and screenshot show the access to the short-running-threads pool:

Using CLI, run the following command:

/subsystem=jca/workmanager=default/short-running-threads=default:
read-resource(include-runtime=true)

The response to the preceding command is as follows:

{

 "outcome" => "success",

 "result" => {

 "allow-core-timeout" => false,

 "core-threads" => 50,

 "current-thread-count" => 0,

 "handoff-executor" => undefined,

 "keepalive-time" => {

 "time" => 10L,

 "unit" => "SECONDS"

 }

 "largest-thread-count" => 0,

 "max-threads" => 50,

 "name" => "default",

 "queue-length" => 50,

 "queue-size" => 0,

 "rejected-count" => 0,

 "thread-factory" => undefined

 }

}

Using JMX (URI and result in the JConsole UI):

jboss.as:subsystem=jca,workmanager=default,short-running-
threads=default

Chapter 4

[115]

The JCA thread pool can be seen in the following screenshot:

The JCA thread pool

If your application depends heavily on JCA, these pools should be monitored, and
perhaps tuned as needed, to provide improved performance.

The Batch API subsystem
The Batch API is new in JEE 7 and is implemented in WildFly by the Batch
subsystem. Internally it uses an unbounded-queue-thread-pool (see the description
earlier in this chapter). If the application uses the Batch API extensively, the pool
settings may need adjustment.

The configuration can be fetched using the CLI or by JMX.

Using CLI, run the following command:

/subsystem=batch/thread-pool=batch:read-resource(include-runtime=true)

The response to the preceding command is as follows:

{

 "outcome" => "success",

 "result" => {

 "keepalive-time" => {

 "time" => 100L,

Tuning WildFly

[116]

 "unit" => "MILLISECONDS"

 },

 "max-threads" => 10,

 "name" => "batch",

 "thread-factory" => undefined

 }

}

Using JMX (URI and result in the JConsole UI):

jboss.as:subsystem=batch,thread-pool=batch

The Batch API thread pool is shown in the following screenshot:

The Batch API thread pool

The Remoting subsystem
The Remoting subsystem exposes a connector to allow inbound communications
with JNDI, JMX, and the EJB subsystem through multiplexing over the HTTP port
(default 8080).

What happens is that the web container (the subsystem Undertow in WildFly)
uses something called HTTP Upgrade to redirect, for example, EJB3 calls to the
Remoting subsystem, if applicable. This new feature in WildFly makes life easier
for administrators as all the scattered ports from earlier versions are now narrowed
down to two: one for the application (8080) and one for management (9990).

Chapter 4

[117]

All this is based on Java NIO API and utilizes a framework called XNIO
(http://www.jboss.org/xnio).

The XNIO-based implementation uses a bounded-queue-thread-pool
(see the description earlier in this chapter) with the following attributes:

Attribute Description

task-core-threads This specifies the number of core threads for the Remoting
worker task thread pool

task-max-threads This specifies the maximum number of threads for the
Remoting worker task thread pool

task-keepalive This specifies the number of milliseconds to keep noncore
Remoting worker task threads alive

task-limit This specifies the maximum number of Remoting worker
tasks to allow before rejecting

The settings can be managed using CLI by running the following command:

/subsystem=remoting:read-resource(include-runtime=true)

The response to the preceding command is as follows:

{

 "outcome" => "success",

 "result" => {

 "worker-read-threads" => 1,

 "worker-task-core-threads" => 4,

 "worker-task-keepalive" => 60,

 "worker-task-limit" => 16384,

 "worker-task-max-threads" => 8,

 "worker-write-threads" => 1,

 "connector" => undefined,

 "http-connector" => {"http-remoting-connector" => undefined},

 "local-outbound-connection" => undefined,

 "outbound-connection" => undefined,

 "remote-outbound-connection" => undefined

 }

}

http://www.jboss.org/xnio

Tuning WildFly

[118]

The Transactions subsystem
The Transaction subsystem has a fail-safe transaction log. It will, by default, store
data on disk at ${jboss.server.data.dir}/tx-object-store. For a standalone
server instance, this will point to the $WILDFLY_HOME/standalone/data/tx-
object-store/ directory. The disk you choose to store your transaction log must
give high performance and must be reliable. A good choice would be a local RAID,
configured to write through cache. Even if remote disk storage is possible, the
network overhead can be a performance bottleneck.

One way to point out another path for this object storage is to use the following CLI
commands specifying an absolute path:
/subsystem=transactions:write-attribute(name=object-store-path,value="/
mount/diskForTx")

reload

XA – Two Phase Commit (2PC)
The use of XA is somewhat costly and it shouldn't be used if it isn't necessary
with distributed transaction between two or more resources (often databases, but
also such things as JMS). If needed, we strongly recommend using XA instead of
trying to build something yourself, such as compensating transactions to guarantee
consistency between the resources. Such solutions can very quickly become quite
advanced and the result will probably not outperform the XA protocol anyway.

Even though WildFly supports Last Resource Commit Optimization (LRCO), it
shouldn't be used for performance optimization. It is only intended as a workaround
to provide limited support to use one non-XA resource within an XA transaction.

Logging
Logging information is an indispensable activity both in development and in
production. However, you should choose what information is needed for debugging
(development phase) and what information is needed for routine maintenance
(production phase) carefully. Decide carefully about where to log information and
about the formatting of the log messages so that the information can be processed
and analyzed in the future by other applications.

Avoid logging unnecessary information. This will make the logging output
convoluted and it badly affects the performance of your application.

Make sure that the appropriate log level is used, so you only log necessary
information by default. As we will see later on in this chapter, it is possible
to adjust the log levels to get clues from a running application server at runtime.

Chapter 4

[119]

Optimized logging code
If the log level threshold disables a log message, performance is often improved in
terms of less data to write to the log. However, as we shall see, this is not always true.

Logging frameworks are normally very quick to check the threshold and can directly
reject any log call that has a low log-level. Thus, the only cost, performance-wise,
becomes a cheap, in-VM method call.

However, such a call may involve a "hidden" cost in terms of parameter object
construction. The following example actually includes concatenate strings,
converting both integer and entry[i] into a new string object before even calling
the logging framework. The code is as follows:

LOG.debug("Entry #" + i + " is " + entry[i]);

A common pattern that can be used to eliminate this costly parameter object creation
is as follows:

if (DEBUG) {
 LOG.debug("Entry #" + i + " is " + entry[i]);
}

If your logging framework supports parametrized methods (such as SLFJ), the
following code may also be faster than regular String concatenation:

LOG.debug("Entry #{} is {}", i, entry[i]);

The following test case uses 30 threads, and calls a servlet that contains 10 DEBUG
calls (all are dismissed from ending up in the log file). Each individual DEBUG call
consists of 10 string concatenations and a call to a method that sleeps for 1 ms. For
non-optimized log calls, the results are as visualized in the following screenshot:

Non-optimized log calls

Tuning WildFly

[120]

Optimizing the log calls with the improved parametrized technique will result
in an improved throughput of a whooping 450 percent, as shown in the following
screenshot (great gains in performance can be made simply by thinking about
how to log!):

Optimized log calls

Performance tuning logging in WildFly
Logging in WildFly is handled by the logging subsystem. By default, logging
messages from all deployed applications, together with the output from stdout and
stderr, will be printed to the server.log file.

In general, the configuration of the logging subsystem largely consists of defining
handlers, loggers, root-logger, and formatters. The following configuration is an
example of a default setup:

<subsystem xmlns="urn:jboss:domain:logging:2.0">
 <console-handler name="CONSOLE">
 <level name="INFO"/>
 <formatter>
 <named-formatter name="COLOR-PATTERN"/>
 </formatter>
 </console-handler>
 <periodic-rotating-file-handler name="FILE" autoflush="true">
 <formatter>
 <named-formatter name="PATTERN"/>
 </formatter>
 <file relative-to="jboss.server.log.dir"
 path="server.log"/>
 <suffix value=".yyyy-MM-dd"/>
 <append value="true"/>
 </periodic-rotating-file-handler>
 <logger category="com.arjuna">

Chapter 4

[121]

 <level name="WARN"/>
 </logger>
 <logger category="org.apache.tomcat.util.modeler">
 <level name="WARN"/>
 </logger>
 <logger category="org.jboss.as.config">
 <level name="DEBUG"/>
 </logger>
 <logger category="sun.rmi">
 <level name="WARN"/>
 </logger>
 <logger category="jacorb">
 <level name="WARN"/>
 </logger>
 <logger category="jacorb.config">
 <level name="ERROR"/>
 </logger>
 <root-logger>
 <level name="INFO"/>
 <handlers>
 <handler name="CONSOLE"/>
 <handler name="FILE"/>
 </handlers>
 </root-logger>
 <formatter name="PATTERN">
 <pattern-formatter pattern="%d{yyyy-MM-dd HH:mm:ss,SSS}
 %-5p [%c] (%t) %s%E%n"/>
 </formatter>
 <formatter name="COLOR-PATTERN">
 <pattern-formatter pattern="%K{level}%d{HH:mm:ss,SSS}
 %-5p [%c] (%t %s%E%n"/>
 </formatter>
</subsystem>

The root-logger header defines which handlers should be active. It may also set
the default threshold level (which, in the standard WildFly distribution is set to
the INFO level out-of-the-box in WildFly). Individual logger entries control the log
level of individual packages. These settings are very important when it comes to
performance. You don't want to log more than is necessary as it will use resources.
You should, as a general rule, stick to a less-detailed level of logging for your classes,
such as WARN, to minimize logging.

Tuning WildFly

[122]

Remember that it is always possible to change levels at runtime
whenever required. For example, the level can be changed by
using the following CLI:
/subsystem=logging/logger=com.your.category:write-
attribute(name=level,value=DEBUG)

The logging system also supports filtering, which means that it's possible to write
rules that either approve a message to be logged or dismiss it. By dismissing
a message, you gain performance by not needing to write any data. However,
extensive filtering may also consume CPU resources, so this is a trade-off that
needs to be investigated case-by-case.

By default, two handlers are defined: one console-handler and one
periodic-rotating-file-handler. The following handlers are available
in WildFly:

• console-handler: This logs information to the console
• file-handler: This logs information to a file
• periodic-rotating-file-handler: This logs information to a file that is

rotated over time
• size-rotating-file-handler: This logs information to a file that is rotated

by size settings
• syslog-handler: This logs information to the syslog
• async-handler: This defines a handler that writes data to the sub-handlers

in an asynchronous thread
• custom-handler: This defines a custom handler that you write yourself

Logging to the console
It is worth mentioning, from a performance point of view, that console-handler
should always be removed from a production configuration. Printing text to the
console involves a lot of work for the OS during I/O-related operations. Also, on
Windows, writing data to the console is a blocking-unbuffered operation. In general,
writing lots of data to the console will slow down or block an application.

Chapter 4

[123]

Let's take the previous test case and change the logging setup in WildFly so that the
generated messages of the servlet will be logged and test it on a Linux system. The
following screenshot shows a test case where the console-handler is enabled and
the standard file-handler writes to a disk:

Console logging enabled

In the following screenshot, we have the results of the same test case but with
console logging disabled. As we can see, in our case, there is a considerable
difference of about 25 percent in throughput.

Console logging disabled

Logging to files
There are several different log handlers that write to available disk. All of the
handlers benefit in performance by using a dedicated disk for logging. The built-in
WildFly default path variable jboss.server.log.dir is used (see the usage in the
configuration in the Performance tuning logging in WildFly section).

Tuning WildFly

[124]

Note that this is not a system parameter. If you want to
define one yourself and use that instead, the following
CLI may be used to change the default FILE handler:
/path=my.own.wildfly.log.path:add(path=/mount/
diskForLogs)

/subsystem=logging/periodic-rotating-file-
handler=FILE:change-file(file={relative-to="my.
own.wildfly.log.path", path="server.log"})

You can further tune your file based handlers by setting the autoflush attribute to
false in the configuration. By default, a flush operation is executed after writing
each event, ensuring that the message is immediately written to the disk. Setting
the autoflush attribute to false can drastically reduce I/O activity, since it will
buffer logs in the memory before writing them to the disk. The improvement varies
somewhat depending on the host machine, and it can be significantly higher on
systems that are heavily I/O loaded.

Using asynchronous logging to improve log
throughput
As described earlier, async-handler can be used to log events asynchronously.
Behind the scenes, this appender uses a bounded queue to store events. Every time
a log is emitted, the log call immediately returns after placing events in the bounded
queue. An internal thread serves the events accumulated in the bounded queue for
the selected handlers to process. The following code is an example of a configuration
for an async handler:

<async-handler name="async">
 <queue-length value="10"/>
 <overflow-action value="block"/>
 <!-- Which other handlers to call -->
 <subhandlers>
 <handler name="FILE"/>
 <handler name="anotherDefinedHandler"/>
 </subhandlers>
</async-handler>

By increasing the queue-length option, you can raise the maximum number of
logging events that can be buffered in the internal queue.

Chapter 4

[125]

What happens if the queue reaches its limit and won't accept any more messages? It
depends on its configuration attribute called overflow-action. The default value is
block, which means that the caller thread will be blocked until the message can be
processed. It is possible to set it to discard, but this means of course that messages
will be lost and never written to the log target.

Many developers wrongly believe that this async handler is the fastest appender.
This is however true only in certain circumstances. The async handler does not
automatically improve logging throughput. On the contrary, a non-negligible
number of CPU cycles is spent managing the bounded queue and synchronizing the
dispatcher thread with various client threads. Thus, logging each event will take a
little longer to complete; appending those events will hopefully take place at times
where other threads are idle, either waiting for new input to process or blocked on
I/O-intensive operations. To summarize, if you are running I/O-bound applications,
then you will benefit from asynchronous logging. On the other hand, CPU-bound
applications will not.

However, as we said, the async handler does not always increase performance. Do
not include it blindly in your setup. Verify by running a benchmark first. If you don't
want to experiment too much with your configuration, my advice is to stay with one
of the plain file handlers, which is a safe bet.

Logging hierarchy and performance
As you are deciding on a logging strategy, consider that the loggers are organized in
a parent-child relationship. For example, a logger for the org category is the parent
logger of the org.example child logger. In the logger hierarchy, the child logger
inherits the properties and the logger components from its immediate parent. In
short, this means that all the logging events captured by the org.example child
logger will be processed by the child logger itself and also by its org parent logger,
in the logger definition, by setting the use-parent-handlers attribute of the logger
to false, as shown in the following code. You can circumvent ancestor loggers, thus
improving the performance significantly.

<logger category="org.example" use-parent-handlers="false" >
 <level value="INFO" />
 <appender-ref ref="FILE"/>
</logger>

Tuning WildFly

[126]

Per-deployment logging
Per-deployment logging is a way to configure logging in a deployable artifact, but
Per-deployment logging is a way to configure logging in a deployable artifact, but it
is completely separate from the logging configuration in WildFly. Per-deployment
logging can be realized by adding a logging configuration file to the deployment
artifact (EAR, WAR, JAR, RAR, and so on). Such a file should be located in the
META-INF (or WEB-INF for web applications) directory of your deployment.

The following configuration files are allowed:

• logging.properties

• jboss-logging.properties

• log4j.properties

• log4j.xml

• jboss-log4j.xml

Also, the jboss-deployment-structure.xml file can be used to disable the loading
of the JBoss logging module (org.jboss.logging) altogether.

The principles of performance tuning that we have discussed in this chapter are
applicable regardless of the underlying framework you use.

Summary
A modern application server such as WildFly is a complex beast to conquer. It
comprises multiple subsystems, many of which are projects in their own right,
and as such have their own project lifecycle. Many of them you may already
recognize as they are well-known open source projects. Keep in mind that, when
you try to resolve a performance issue with WildFly, it may not be enough to look
at the Wildfly documentation; you many need to dig further and look at the
subprojects documentation.

Several of the subsystems that have not been addressed in this chapter are so important
that they have been discussed in their own dedicated chapters. They are as follows:

• EJB3
• JPA
• HornetQ (JMS)
• Undertow (the web container)

Starting from the next chapter, we will go through the various performance settings
and design tips for EJB3 in WildFly.

EJB Tuning in WildFly
In this chapter, we will go through the different types of Enterprise JavaBeans from
an optimization perspective. We will talk about the common best practices, look
at their configurations within WildFly in more detail, and introduce Enterprise
JavaBeans. An Enterprise JavaBean (EJB) is a component whose purpose is to
encapsulate business logic and make various types of interfaces available. The
encapsulation is performed by letting the EJBs methods expose what services should
be visible for a client. A client can both be local (that is, within the same deployed
artifact: EAR or WAR) or remote.

An EJB is basically a Plain-Old-Java-Object (POJO) that runs in a server-side
environment, providing patterns and best practices for common services such
as thread-safe code, transactions, security, and remote access. For EJBs, this
environment is called an EJB container, and you can regard an EJB as a portable
component that needs this container to be able to execute. The container allows the
developer to focus on the business logic without having to worry about complicated
issues and the common services just mentioned. The default behavior of the
container can be overridden by the following:

• Annotations in the application code
• XML in specific configuration files

Some partial adjustments can also be made in the configuration of the application
server and its internal components.

EJB Tuning in WildFly

[128]

The history of EJBs
In 1999, the EJB specification (JSR 220) was released. It embraced the component model
of development in order to increase reuse and simplify business implementations.

After some hype, it started to get a bad reputation for not being able to deliver
what it promised. The programming model was much too complex for developers,
and the specification allowed for arguably too much freedom among vendors that
contributed to poor compatibility between containers.

Alternatives soon emerged. Spring came along with its Inversion of Control (IoC)
container and Dependency Injection (DI). Instead of the EJB Entity Beans, which
had severe performance problems, Hibernate provided a better alternative with its
Object Relational Mapping (ORM) model.

Under pressure, Java EE 5 was delivered with the very much improved and
simplified EJB 3.0 and JPA 1.0 specifications. Session beans stayed in the EJB
specification, while the Entity Beans were re-engineered into a brand new
POJO-based component that could also be used outside a Java EE container. To
further simplify development, annotations were introduced along with default
configuration values. The use of XML and some interfaces became optional.

This work has continued through the following specifications of JEE6 (with EJB
3.1) and JEE7 (with EJB 3.2), enabling the developers of today to use even simpler
and more efficient enterprise frameworks where they can focus on the business
functionality instead of the boilerplate code. WildFly 8 is JEE7 certified and thus
supports EJB 3.2.

The different types of EJBs
Here, we will give you a brief introduction of the different EJB types.

Stateless Session Beans (SLSB)
Stateless Session Beans (SLSB) are business objects that do not have a state
associated with them; they are typically used for one-off operations such as fetching
a list of elements from a legacy system. Instances of stateless session beans may be
pooled. If they are pooled and a client accesses one of them, the EJB container checks
whether there are any available instances in the pool. If any available instance is
present, the instance is returned to the client.

Chapter 5

[129]

If no instances are available, the container creates a new instance (unless the pool has
reached its max size) that will be returned to the client. In this case, the number of
clients that can be served is not unlimited.

As mentioned previously, some implementations don't use a pool. In these cases,
instances are normally created and destroyed with each invocation. This might be
slower than using a pool as it consumes resources to create new instances.

Stateful Session Beans
Stateful Session Beans (SFSB) are business objects that have a state, that is, they
keep track of which calling client they are dealing with throughout a session. Thus,
access to the bean instance is strictly limited to only one client at a time.

A typical scenario for SFSB is a web store checkout process, which might be handled
by a stateful session bean that would use its state to keep track of items the customer
is purchasing.

Stateful session beans remain alive in the EJB container until they are explicitly
removed, either by the client or the container when they time out. Meanwhile,
the EJB container might need to passivate inactive stateful session beans to
disk. Passivation requires an overhead and constitutes a performance hit to
the application. If the passivated stateful bean is subsequently required by the
application, the container activates it by restoring it from the disk.

By explicitly removing SFSB-instances when they are no longer needed, applications
will decrease the need for the passivation and minimize container overhead and
improve performance. Also, by explicitly removing SFSB-instances, you do not need
to rely on timeout values.

Singleton Session Beans
Singleton Session Beans have a global shared state within the JVM and only exist
in one single instance. The typical usage of Singleton Session Beans is for caches or
configuration data.

It is common to use a Singleton Session Bean with the
@Startup and @PostConstruct annotations as a
simple way to kick-start application code that needs to be
executed at deployment and undeployment.

EJB Tuning in WildFly

[130]

Message Driven Beans (MDB)
Another type of EJB is the Message Driven Bean (MDB). In comparison to Session
Beans, MDBs are triggered by incoming messages instead of method calls. They
connect to the Message Oriented Middleware (MOM) infrastructure, usually (but
not exclusively) by using the Java Message Service (JMS) API. Note that MDBs are
not tied to the JMS API, though. MDBs subscribe to message queues or message
topics, and their execution is triggered as messages.

MDBs are similar to Stateless Session Beans, but a client can't look up MDBs. Hence,
direct client access to an MDB is not possible.

Performance tuning EJBs in WildFly
Most of the performance tuning of EJBs in WildFly consists of tuning various pools.
The following sections will go more into detail about each of the EJB types and their
actual tuning. First though, we will start with some generic information about enabling
detailed statistics in WildFly and a few optimizations of local and remote method calls.

Enabling detailed statistics
By default, detailed statistics aren't generated in WildFly. To generate statistics, it
must be enabled using the following CLI command:

/subsystem=ejb3:write-attribute(name=enable-statistics,value=true)

Optimizations of Local and Remote
method calls
Session beans have two possible interfaces, @Local and @Remote. The difference is
that when the local interface is used, it makes it possible for the application server to
perform a pass-by-reference instead of a pass-by-value call. When using references, the
method-call parameters are sent as memory references (like any other standard Java
call within the same VM), but when using the remote interface, all parameters need
to be serialized.

The pass-by-value approach is easy to understand when using remote clients as
memory references doesn't work, but the fact is that if the remote interface is used
within the application server, it will still have to go through the serialization process,
as this is required by the EJB3 specification. So, the recommendation is that you
always use the local interface when possible. The following diagram illustrates the
difference between the two approaches:

Chapter 5

[131]

Pass-by-reference versus Pass-by-value

In the top pass-by-reference case, the Client makes a local method call. No serialization
is needed. Only the reference of (or address to) the object instance for the parameter
is actually passed to the EJB. The EJB will then look at the same object instance
located as the position in memory as the Client used and has referenced.

Using the bottom pass-by-value case, the object instance parameter is serialized and
copied from the Client to the EJB, where it is deserialized and used, as the Client
performs the method call to the EJB. Here, there is more than one object instance of
the parameter in memory.

So when is it not possible? As mentioned previously, remote clients need to use
the remote interface, but actually, all clients that are located outside the EAR file
are prohibited to use the local interface, even if they are running within the same
application server.

From a technological point of view, it is possible for an application server to optimize
remote interface calls within the same VM and use pass-by-reference instead of
pass-by-value; this breaks the EJB specification contract though. As such, it
should only be utilized after thorough consideration of architecture and future
platform plans (as updated versions of the application server might not include
this functionality).

EJB Tuning in WildFly

[132]

To enable optimization in WildFly, you can execute the following CLI command:

/subsystem=ejb3:write-attribute(name=in-vm-remote-interface-invocation-
pass-by-value, value=false)

Note that pass-by-reference will only be used if the
client and EJB have access to the same class definitions
(meaning identical classes loaded from the same
classloader). WildFly will perform a shallow check to
verify whether the optimization is enabled and will
return to non-optimized calling if needed. A shallow
check, in contrast to a deep check, only checks the
top-level object and will not continue checking any
references within it to others. This means that you may
get ClassCastException, so only use it if you are sure
that the client is using the same classloader as EJB.

If remote interfaces are used, it is a good idea to minimize the number of network
calls done by using the coarse grained approach.

Looking at the following diagram, we see an example of a client making many calls
to an EJB, setting one attribute at time:

The fine grained approach

The preceding diagram is an example of what is considered to be a fine grained
approach. This works relatively fine if local interfaces (and pass-by-reference) are
used as there will be local in-VM method calls. However, should the client access an
EJB through remote interfaces (and using pass-by-value), the calls will go over the
network, resulting in relatively high performance-related costs.

Chapter 5

[133]

The coarse grained approach illustrated in the following diagram uses a data
object (person) that is populated with information on the client side (using all
deployment-local and in-VM calls) and is then sent to the EJB in only one remote call
(EJB.setData(person)). This minimizes the necessary network-related calls and
improves performance and overall efficiency.

The coarse grained approach

Session beans and transactions
If you are using Container Managed Transaction (CMT), which is the default
transaction strategy, the container will automatically start a transaction for you
because the default transaction attribute is REQUIRED. This guarantees that the
work performed by the method is within a global transaction context.

However, transaction management is an expensive affair and you need to verify
whether your EJB methods really need a transaction. For example, a method that
simply returns a list of objects to the client usually does not need to be enlisted
in a transaction.

For this reason, it's considered a best practice in tuning to remove unneeded
transactions from your EJB. Unfortunately, this is often underestimated by
developers who find it easier to define a generic transaction policy for all methods
in the deployment descriptor. For example, in the following example configuration,
all methods of TestEJB will use the Required transaction attribute:

<container-transaction>
 <method>
 <ejb-name>TestEJB</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>

</container-transaction>

EJB Tuning in WildFly

[134]

Using EJB3 annotations, you have no excuse for your negligence; you can explicitly
disable transactions by setting the transaction type to NOT_SUPPORTED with a simple
annotation, as shown in the following code:

@TransactionAttribute(TransactionAttributeType.NOT_SUPPORTED)
public List<PayRoll> findAll() {
 …
}

The common problems are applications with long-running batches that include
transaction handling. They may hit the default transaction timeout of 300 seconds
(5 minutes) in WildFly. Instead of just increasing this setup that affects all transactions
on the application server, it is better to override the timeout for the individual EJB
that starts the transaction. A "hanging" call may lock resources for a long time, which
are resources needed by other callers, thus slowing down the application due by
queueing. Keeping the transaction timeout at a reasonable level for standard calls
and increasing it just for specific ones; this minimizes the impact of this happening.
Instead the locked resources will be released at an early time-out.

The default timeout can be managed by issuing the following CLI command:

/subsystem=transactions:read-attribute(name=default-timeout)

{

 "outcome" => "success",

 "result" => 300

}

Setting the timeout to a specific value can be done by the following CLI command
(we're setting it to 600 seconds here):

/subsystem=transactions:write-attribute(name=default-timeout, value=600)

A specific timeout value can also be configured in code with the following annotation:

@TransactionTimeout(value = 600, unit = TimeUnit.SECONDS)

Or, it can be configured in the jboss-ejb3.xml configuration file by using the
following code:

<container-transaction>
 <method>
 <ejb-name>MyBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <tx:trans-timeout>

Chapter 5

[135]

 <tx:timeout>600</tx:timeout>
 <tx:unit>Seconds</tx:unit>
 </tx:trans-timeout>
</container-transaction>
...

Note that it is only valid when using the transaction
attributes REQUIRED (if the current bean is the actual
creator of the transaction) or REQUIRES_NEW (if a new
transaction should be created for every call to the bean).

In WildFly, it is possible to activate statistics for the transactions. It is disabled
by default for performance reasons but can be enabled using the following CLI
command and then restarting the application server:

/subsystem=transactions:write-attribute(name=enable-statistics,
value=true)

Execute the following CLI command to list the available transaction
statistics' attributes:

/subsystem=transactions:read-resource-description

The attributes that may be of interest for monitoring are as follows:

• number-of-transactions

• default-timeout

• number-of-application-rollbacks

• number-of-aborted-transactions

• number-of-inflight-transactions

• number-of-timed-out-transactions

• number-of-committed-transactions

• number-of-resource-rollbacks

EJB Tuning in WildFly

[136]

A JMX MBean with the ObjectName jboss.as:subsystem=transactions is also
available for monitoring. An example using JConsole for listing it and its attributes
is shown in the following screenshot:

Transaction information MBean

Chapter 5

[137]

In the following screenshot, the Transaction Metrics view in Management Console
provides an overall view of the transactions:

Transaction information in Management Console

Remote EJB calls
For the examples in this chapter, we are using JMeter with a special EJB Sampler (both
test-cases and the sampler are available at https://bitbucket.org/wptbook2014/
wildfly-performance-tuning-ch5). As this sampler is being executed in the JMeter
JVM and not within WildFly, it is regarded as a remote EJB client.

https://bitbucket.org/wptbook2014/wildfly-performance-tuning-ch5
https://bitbucket.org/wptbook2014/wildfly-performance-tuning-ch5

EJB Tuning in WildFly

[138]

In WildFly, there is a special thread pool used for all remote access that we need to
tune. This pool consists of a max-threads size and a queue (of tasks) with no upper
bound. If no threads are available for a task, this task will be put in the queue without
any timeout. By default, this thread pool is set to a maximum of 10 simultaneous
threads, which is a value that is often way too low for a production setup.

The following two CLI commands can be used to read and change the
max-threads configuration:

Get max threads

/subsystem=ejb3/thread-pool=default:read-attribute(name=max-treads)

{

 "outcome" => "success",

 "result" => 10

}

Set max threads

/subsystem=ejb3/thread-pool=default:write-attribute(name=max-threads,
 value=100)

This thread pool can also be monitored using CLI. Execute the following CLI
command to list the attributes available for monitoring:

/subsystem=ejb3/thread-pool=default:read-resource-description

The attributes that may be of interest for monitoring are as follows:

• max-threads

• largest-thread-count

• current-thread-count

• activeCount

• task-count

• completed-task-count

• rejected-count

• queue-size

A JMX MBean with the ObjectName jboss.as:subsystem=ejb3,thread-
pool=default is also available for monitoring. The following screenshot
shows you how it uses JConsole:

Chapter 5

[139]

The EJB3 thread pool MBean

The following screenshot shows you Management Console, which only provides a
configuration view on this pool and not any runtime information:

The EJB3 thread pool in the Management Console

EJB Tuning in WildFly

[140]

As this thread pool is used for EJB3 asynchronous and timer calls as well as for
remote access, you may need to investigate it even if you do not have any remote
clients in your application.

For the remainder of this chapter, test results depend on the max-threads parameter
in the EJB3 thread pool setting being set to 100. If it's not set to 100, none of the tests
will be able to execute more than 10 simultaneous calls.

Optimizing Stateless Session Beans
If SLSB isn't costly to instantiate (no heavy @PostConstruct), pooling may be
slower than just creating new instances when needed. This behavior is actually
default in WildFly, and it means that each caller thread creates its own instance
of the needed SLSB.

The downsides are that it can be counterproductive when SLSB takes a long time to
be created or in a scenario where you have resources that are starving. For example,
you might need to have exact control of your SLSB if they are strictly dependent on
an external resource such as a JMS queue.

Enabling instance pooling for SLSB can be done by the following CLI command
which activates an already shipped and configured pool:

/subsystem=ejb3:write-attribute(name=default-slsb-instance-
 pool,value=slsb-strict-max-pool)

The approach to be used depends on a lot of criteria and the best decision is based
(as usual) on real tests. As there is not much to optimize if the default behavior is
used, besides minimizing lifecycle callbacks, we focus the rest of the discussion on
a scenario when SLSB pooling is enabled.

When enabling SLSB pooling, the default maximum pool size in WildFly is set to 20.

The following two CLI commands retrieve and set the maximum size of the pool:

Get the max pool size

/subsystem=ejb3/strict-max-bean-instance-pool=slsb-strict-max-
 pool:read-attribute(name=max-pool-size)

Set the max pool size

/subsystem=ejb3/strict-max-bean-instance-pool=slsb-strict-max-
 pool:write-attribute(name=max-pool-size, value=30)

Chapter 5

[141]

If there is no instance available in the pool, the caller will be put on hold for a
maximum of 5 minutes (default). This can be changed by executing the following
CLI commands:

Get the unit for the timeout value

/subsystem=ejb3/strict-max-bean-instance-pool=slsb-strict-max-
 pool:read-attribute(name=timeout-unit)

Get the timeout value

/subsystem=ejb3/strict-max-bean-instance-pool=slsb-strict-max-
 pool:read-attribute(name=timeout)

Set the timeout value

/subsystem=ejb3/strict-max-bean-instance-pool=slsb-strict-max-
 pool:write-attribute(name=timeout, value=10L)

In the following examples, we will show you how an SLSB pool can be monitored.
SLSB is named StatelessSessionTestBean and is located in the MyEJB.jar
example rtifact, which in turn, is deployed within EAR, MyEAR.ear.

Use the following CLI command to explore the available attributes of the SLSB pool
for any given bean deployed:

/deployment=MyEAR.ear/subdeployment=MyEJB.jar/subsystem=ejb3/
stateless- session-bean=StatelessSessionTestBean:
read-resource-description

The attributes that may be of interest for monitoring are as follows:

• pool-max-size

• pool-current-size

• pool-available-count

• peak-concurrent-invocations

• invocations

• pool-create-count

• pool-remove-count

EJB Tuning in WildFly

[142]

To find the peak load value of an already deployed SLSB, have a look at the
peak-concurrent-invocations attribute.

As usual, there is also an MBean available to provide the same information. In
this case the JMX MBean has the ObjectName jboss.as:deployment=MyEAR.
ear,subdeployment=MyEJB.jar,subsystem=ejb3,stateless-session-
bean=StatelessSessionTestBean, and it's output can be seen using JConsole as
shown in the following screenshot:

Statistic MBean for a SLSB

Chapter 5

[143]

Unfortunately, the Management Console only provides a configuration view on
this pool and not any runtime information. The setup possibilities can be seen in the
following screenshot:

Management Console's view of a SLSB pool

EJB Tuning in WildFly

[144]

Tuning the SLSB pool
Let's run a test case with 100 simultaneous threads calling a SLSB that just sleep for
1 second, where each thread executes 10 iterations without any pause in between.
The following screenshot shows you the JMeter report of this test:

The JMeter result SLSB

For the remaining examples in this chapter, we will focus on the Throughput
column. In real life, you probably want to investigate the other measurements as
well. For example, whether the call time values (Average, Median, 90% Line, Min,
and Max) can be checked in order to find any extreme values that may point to some
resource starvation, synchronization problems, and so on.

So let's turn to the Throughput column. Shouldn't the throughput be around 20
invocations/sec as the pool size is 20? Let's look at the pool usage for the SLSB using
the JMX MBean during the test using JConsole, as shown in the following screenshot:

MBean for SLSB in test

Chapter 5

[145]

WildFly has only created 10 instances in the pool, but shouldn't it be 20?

The answer is that we actually hit the limit of the EJB remote thread pool mentioned
in the beginning of this chapter. Let's change it to 100 using the CLI command:

/subsystem=ejb3/thread-pool=default:write-attribute(name=max-threads,
 value=100)

After the change and re-testing, the following screenshot displays the result
from JMeter:

The JMeter result of the test SLSB with the increased EJB3 pool

Now, we have reached the expected throughput of around 20 invocations/sec, and
watching the JMX MBean for the SLSB confirms that 20 instances have been created
and used.

So what if the default size of 20 is not enough for the application. One solution
would be to increase the default setting. This would, however, affect all SLSB in the
container. It is also possible to create a new pool and let the individual SLSB use that
pool instead. First, we create a new pool named slsb-strict-max-pool-100, using
the following CLI command:

/subsystem=ejb3/strict-max-bean-instance-pool=slsb-strict-max-pool-
 100:add(max-pool-size=100, timeout-unit=MINUTES, timeout=5L)

Then, we can use it in our bean with the WildFly/JBoss specific annotation, as shown
in the following code:

@org.jboss.ejb3.annotation.PPool(value="slsb-strict-max-pool-100")

Or, we can use the jboss-ejb3.xml configuration file as shown in the following code:

<p:pool>
 <ejb-name>MyBean</ejb-name>

EJB Tuning in WildFly

[146]

 <p:bean-instance-pool-ref>slsb-strict-max-pool-100</p:bean-instance-
pool-ref>
</p:pool>
...

Now we really are getting this bean to fly. A new test run shows us the results from
JMeter in the following screenshot:

The JMeter results of the test SLSB with the increased instance pool

With all this said, do not forget that these test cases are a bit unrealistic. Clients very
seldom call the same SLSB over and over again with no pause. So, there is normally
no need to blindly correlate the pool's size with the expected number of callers.

Let's run a test case with 100 simultaneous threads, which calls SLSB with an
instance pool set to 10. Each caller thread sleeps for one second between calls and the
SLSB return the execution immediately without any sleep. The result from JMeter is
shown in the following screenshot:

The JMeter results of a more realistic SLSB test

Chapter 5

[147]

The Throughput column shows you that a pool of 10 is probably enough for this
scenario as we match the load that should generate 100 calls/sec.

Optimizing Stateful Session Beans
As we discussed earlier, with SFSB the passivation process requires overhead
and constitutes a performance hit to the application. If the passivated SFSB is
subsequently required by the application, the container activates it by restoring it
from the disk.

By explicitly removing SFSB when finished, applications will decrease the need for
passivation, minimize container overhead, and improve their performance. Also, by
explicitly removing SFSB, you do not need to rely on timeout values for the removal
of stale beans.

The default setup of passivation in WildFly uses a cache called simple. This is a
cache that doesn't passivate anything. This means that all SFSB are kept in memory
without any timeouts. Unless removed by the application or their timeout setting,
these can cause an out-of-memory exception in extreme cases. The following CLI
command shows you the default setup:

/subsystem=ejb3:read-attribute(name=default-sfsb-cache)

{

 "outcome" => "success",

 "result" => "simple"

}

It is highly recommended that you change the setup to enable disk passivation in
WildFly. This can be done using the following CLI command:

/subsystem=ejb3:write-attribute(name=default-sfsb-cache,
 value=passivating)

The threshold that specifies the maximum number of SFSB in memory before
passivation will start (the default is 100000) and can be retrieved and configured
with the following two CLI commands:

/subsystem=ejb3/passivation-store=infinispan:read-attribute(name=max-
size)

{

 "outcome" => "success",

 "result" => 100000

}

/subsystem=ejb3/passivation-store=infinispan:write-attribute(name=max-
size, value=50000)

EJB Tuning in WildFly

[148]

A default timeout for the removal of old unused SFSB isn't available in WildFly, so
it's good practice to use the @StatefulTimeout annotation in the SFSB to instruct
the container to remove the bean. Otherwise, it will be kept forever (or at least to the
next restart). The following example sets it to 30 minutes:

@StatefulTimeout(value=30)

The same attribute and value set in XML using the deployment descriptor is shown
in the following code:

<stateful-timeout>
 <timeout>30</timeout>
 <unit>Minutes</unit>
</stateful-timeout>

Disabling passivation for individual SFSB
As WildFly supports EJB 3.2, it also provides the possibility to disable passivation
for an individual SFSB. This can be done in code using annotations, as shown in the
following code:

@Stateful(passivationCapable=false)

The same attribute and value set in XML using the deployment descriptor is shown
in the following code:

...
<session>
 <ejb-name>MyBean</ejb-name>
 <ejb-class>org.myapp.MyStatefulBean</ejb-class>
 <session-type>Stateful</session-type>
 <passivation-capable>false</passivation-capable>
</session>
...

The overuse of passivation disabling may lead to the application running out of
memory, as all instances must be kept in memory.

Individual SFSB can be monitored using the CLI. Execute the following CLI
command to list the available attributes:

/deployment=MyEAR.ear/subdeployment=MyEJB.jar/subsystem=ejb3/stateful-
session-bean=StatefulSessionTestBean:read-resource-description

Chapter 5

[149]

The attributes that may be of interest for monitoring are as follows:

• total-size

• invocations

• cache-size

• peak-concurrent-invocations

• passivated-count

A JMX MBean with the ObjectName jboss.as:deployment=MyEAR.ear,
subdeployment=MyEJB.jar,subsystem=ejb3,stateful-session-
bean=StatefulSessionTestBean is also available for monitoring and is
presented using JConsole, as shown in the following screenshot:

JConsole showing the statistic MBean for a SFSB

Optimizing Singleton Session Beans
Part of the basic idea of Session Beans is that the container is responsible for
disallowing concurrent calls to the same instance. This helps in the construction of
robust systems as the programmer doesn't have to produce thread-safe code.

A disadvantage of this is that the robustness can often lead to performance problems.
This is especially common when using Singleton Session Beans; as there's only
one instance, it can easily become a performance bottleneck if it is left with its
default behavior.

EJB Tuning in WildFly

[150]

This is demonstrated in the following test case. Here are 10 client threads running
simultaneously performing 10 calls to a Singleton Session Bean method that takes 1
second to process before returning. The result is a throughput of only 1/second
(60/min) as seen in the following screenshot of the JMeter report:

The JMeter result for a Singleton EJB

If you study WildFly's system log you are likely to see a few timeouts as well, as it
took the client more than the default 5 seconds to obtain an instance.

Adjust lock mechanisms and time-outs
By using the @Lock annotation, a developer can instruct the EJB container to apply
appropriate read or write locks more effectively, as shown in the following code:

@Singleton
@AccessTimeout(value=60, timeUnit=SECONDS)
@Lock(READ)
public class ExampleSingletonBean {
 private String info;

 public String getInfo() {
 return info;
 }

 @Lock(WRITE)
 public void setInfo(String info) {
 this.info = info;
 }
}

Chapter 5

[151]

This bean will now use a read lock for all methods with the exception of the
setInfo method, which will have a write lock. The timeout for getting access
is set to 60 seconds.

Running the same test case against a Singleton Session Bean with read lock
enabled gives us a throughput of almost 10 per second (9.1/sec), as shown in
the following screenshot:

The JMeter result of a Singleton EJB with tuned locking

Container Managed Concurrency versus Bean
Managed Concurrency
When the EJB container is responsible for handling concurrency (with the optional
help of the @Lock annotation), it is called Container Managed Concurrency (CMC).
It is also possible for a programmer to take full control by changing the bean to use
Bean Managed Concurrency (BMC) by using the following annotations:

@ConcurrencyManagement(BEAN)
@Singleton
public class ExampleSingletonBean {
 // Threadsafe code
}

Note that any code in this bean now really must be
thread-safe! No assistance is given by the container.

EJB Tuning in WildFly

[152]

Monitoring
Each Singleton Session Bean can be monitored using CLI. Execute the following
command to list the available attributes:

/deployment=MyEAR.ear/subdeployment=MyEJB.jar/subsystem=ejb3/singleton-be
an=SingletonSessionTestBean:read-resource-description

The attributes that may be of interest for monitoring are as follows:

• peak-concurrent-invocations

• invocations

A JMX MBean with the ObjectName jboss.as:deployment=MyEAR.
ear,subdeployment=MyEJB.jar,subsystem=ejb3,singleton-
bean=SingletonSessionTestBean is also available and can be seen in
the following JConsole screenshot:

The Statistics MBean for a Singleton Bean shown with JConsole

Optimizing Message Driven Beans
MDB is a Java EE component that asynchronously processes messages, often from an
incoming Resource Adaptor (RA). The default adaptor is the built-in JMS provider
in WildFly.

As JMS is often used together with MDBs, proper tuning
of the JMS provider and the connected destinations is
also very important for the overall performance. More
about tuning the WildFly JMS provider, its messages, and
destinations will be addressed in an upcoming chapter.

Chapter 5

[153]

As messages can be processed simultaneously, MDB instances need to be pooled in
the same way as, for example, a SLSB. The default pool size for MDBs in WildFly
is 20. This can be verified and modified using the following CLI commands:

Get the max pool size

/subsystem=ejb3/strict-max-bean-instance-pool=mdb-strict-max-pool:read-
attribute(name=max-pool-size)

Set the max pool size

/subsystem=ejb3/strict-max-bean-instance-pool=mdb-strict-max-pool:write-
attribute(name=max-pool-size, value=30)

It is easy to draw the conclusion that this number corresponds to the number of
RA listeners on a JMS destination as well. This means that an MDB that listens to
messages from a JMS queue would make the application server set up 20 listeners
to that queue. This is actually not the case. These listeners are configured separately
with RA-specific parameters.

In WildFly, the default adaptor is HornetQ (which is the JMS provider), and it
uses the maxSession property (the default value is 15), which can be set in the @
ActivationConfigProperty annotation in MDB, as shown in the following code:

@MessageDriven(activationConfig = {
 @ActivationConfigProperty(propertyName = "destinationType",
 propertyValue = "javax.jms.Queue"),
 @ActivationConfigProperty(propertyName = "destination",
 propertyValue = "queue/testQueue"),
 @ActivationConfigProperty(propertyName = "maxSession",
 propertyValue = "20"),
 @ActivationConfigProperty(propertyName = "acknowledgeMode",
 propertyValue = "Auto-acknowledge") })
public class TestMDB implements MessageListener {
 public void onMessage(Message message) {
...
 }
}

Each MDB can be monitored using CLI. Execute the following command to list the
available attributes:

/deployment=MyEAR.ear/subdeployment=MyEJB.jar/subsystem=ejb3/message-
driven-bean=TestMDB:read-resource-descriptiondescriptiondescriptiondescri
ption

EJB Tuning in WildFly

[154]

The attributes that may be of interest for monitoring are as follows:

• invocations

• peak-concurrent-invocations

• pool-available-count

• pool-current-size

• pool-create-count

• pool-remove-count

Just like the other bean types, there is a JMX MBean with the ObjectName jboss.as:
deployment=MyEAR.ear,subdeployment=MyEJB.jar,subsystem=ejb3,
message-driven-bean=TestMDB.

The following screenshot visualizes the result using JConsole:

Statistics MBean for MDB shown with JConsole

A common scenario is that the application needs to process the messages not only
asynchronously, but also in a strict serial order. The solution is often to configure the
maxSession parameter to 1, thus making a "singleton MDB". This is of course, bad
for performance and it would be much better to redesign the application to allow the
messages to be processed in parallel.

Chapter 5

[155]

As MDBs are often used for long-running tasks, remember what we talked about
in the section about transactions. Make the transaction runtime as short as possible,
perhaps by splitting up a long task into several smaller ones.

If the loss of messages is acceptable in case of failures, an
alternative to using MDBs could be asynchronous EJBs to
improve performance.

Summary
In this chapter, we studied the different performance issues and configurations of
the various types of EJBs. In WildFly, the default setup of SLSB isn't using a pool,
and this may be adequate for some applications but certainly not for all. The use of
SFSB needs to be analyzed to keep the passivation to a minimum, and the default
passivation configuration is unlikely to fit a production scenario. For Singleton
Session Beans, the default locking strategy should be scrutinized before entering
a production environment.

Next, we will turn our focus on how to tune persistent content handling in a Java EE
application stack.

Tuning the Persistence Layer
Data persistence is a key ingredient of any enterprise application, and it has been
a part of JDK since its very first release. Most readers certainly agree that data
persistence is the most common cause of bottlenecks in applications. Unfortunately,
isolating the root of the problem is not a straightforward affair and requires
investigating areas from the SQL code to the interfaces used to issue SQL statements.
Other potential areas that may affect your data persistence are the database
configuration and the underlying network and database hardware.

For this reason, we have divided this chapter into the following three main sections
in order to cover all the major factors that can drag down the performance of your
data persistence:

• The first section introduces some principles of good database design. If your
database design doesn't conform to some commonly agreed rules, chances
are high that you will find it hard to achieve the performance needed for a
successful application.

• The next section illustrates how to improve the performance of the Java
Database Connectivity (JDBC) API, which allows connecting to a legacy
database by means of drivers released by database vendors.

• The last section covers the core concepts of the Java Persistence API (JPA) and
the Hibernate framework, which is used by WildFly as the persistence engine.

Tuning the Persistence Layer

[158]

The majority of persistent storage solutions in the enterprise world are and have
been relational databases for the last decades. There is a good reason for this as they
proved very reliable and flexible. Other solutions include document databases, Big
Data systems, and data grids. These techniques will not be covered in this book,
but it is interesting to see how several of these solutions try to implement the JPA
standard as they get more mature.

Designing a good database
Even if modern development tools and processes tend to make it easier to push the
database design phase towards the end of the development cycle, it is crucial to
not do so. Once the application has been implemented, it's simply too late to fix an
inaccurate database design, leaving no other choice but to buy a larger amount of
fast, expensive hardware to cope with the problem—if possible.

Designing a database structure is usually the task of a database administrator.
However, it's not rare in today's tight-budget world that the software architect takes
care to design the database schemas as well. That's why you should be aware of basic
concepts such as database normalization, database partitioning, and good indexing.

Continuous database design, sanity checks, and early performance tests in parallel
with the development process will minimize future headaches.

Chapter 6

[159]

Database normalization and denormalization
One fundamental cornerstone of database design is normalization. Its purpose is to
eliminate redundant data and support data integrity. An example of a denormalized
database and its normalized counterpart is visualized in the following diagram (note
how the normalized version allows adding more cities to a company without any
alteration to the database design):

The denormalized and a normalized database tables

To measure and check how normalized a database design is, several so-called
Normal Forms (NF) have evolved over the years. These NFs can be seen as
collections of criteria to measure the normalization. Edgar F. Codd, who invented
the database relational model, also defined the first three NFs (NF1, NF2, and NF3)
in the early 70s. Over the years, several other NFs have emerged, but a database
that complies with NF3 is commonly regarded as a normalized database. A detailed
walkthrough of the different NFs is not in the scope of this book, but we encourage
you to investigate these on your own.

Tuning the Persistence Layer

[160]

Databases intended for Online Transaction Processing (OLTP) are typically more
normalized than databases intended for Online Analytical Processing (OLAP).
The reason for this, from a performance view, is that normalization generally favors
updates and inserts while denormalization favors reads.

Your first goal in the design process should be to normalize your data. Next, you
can test your design with realistic data and transactions. At this point, if you see that
denormalization helps, then you can apply it by all means. However, don't assume
that you need to denormalize data until you can prove (through testing) that it's the
right thing to do.

With JPA object-relational mapping, you can use the
@Embedded annotation for denormalized columns to
specify a persistent field whose @Embeddable type can
be stored as an intrinsic part of the owning entity and can
share the identity of the entity.

Database partitioning
If you are designing a database that can potentially be very large, holding millions or
even billions of rows, you should consider the option of partitioning your database
tables. Different database vendors have different supports and add-ons to help with
this, but we will stick to the overall principles in this book. You can partition your
database either horizontally or vertically.

Chapter 6

[161]

Horizontal partitioning
Horizontal partitioning involves splitting a large table into smaller tables. The
following diagram shows an example of how it can be done:

Horizontal partitioning of a database table

The main advantage of this is that it is generally much faster to query a single
small table than a single large table. The performance of some queries can improve
dramatically if the heavily accessed rows are located in one of the smaller tables,
as both the table and its indexes may fit in memory.

Vertical partitioning
By using the vertical partitioning scheme, we split a table with many columns into
multiple tables with fewer columns. Now, only certain columns are included in a
particular dataset, with each partition including all rows.

Tuning the Persistence Layer

[162]

For example, a table that contains a number of very wide text or BLOB columns that
aren't referenced can often be split into two tables with the most-referenced columns
in one table and the seldom-referenced text or BLOB columns in another. The
following diagram shows an example of vertical partitioning:

Vertical partitioning of a database table

Using JPA/Hibernate mapping, you can easily map the preceding case with a
lazy one-to-many relationship between the tables. The second table contains a less
frequently accessed BLOB data type that can be lazily loaded. Hence, it is queried
and retrieved just when the client requests the specific fields of the relationship.

Using indexes
The database index functionality is one of the best ways to improve the read
performance of a database schema. Just like the reader searching for a word in
a book, an index helps when you look for a specific record or set of records with
a WHERE clause.

Since index entries are stored in a sorted order, indexes also help when processing
GROUP BY and ORDER BY clauses. Without an index, the database has to load the
records and sort them during execution.

Though indexes are indispensable for fast queries, they can have some drawbacks,
as well, when the time comes to modify records in particular. As a matter of fact, any
time a query modifies the data in a table, the indexes on the data must change too.
Try to use a maximum of four or five indexes on one table, not more. If you have a
read-only table, then the number of indexes may be safely increased.

There are a number of guidelines to build the most effective indexes for your
application that are valid for every database, in particular the following:

• Index on appropriate columns: In order to achieve the maximum benefit
from an index, you should choose to index the most common column, that is,
in your WHERE, ORDER BY, or GROUP BY clauses for queries against this table.

• Keep indexes small: Short indexes are faster to process in terms of I/O and
are faster to compare. An index on an integer field provides optimal results.

Chapter 6

[163]

• Choose distinct keys: If the fields bearing the index have small or no duplicate
values, this is highly selective and provides the best performance results.

• Structure a composite (multicolumn) index correctly: If you create a
composite index, the order of the columns is very important. Put the most
unique data element, the element that has the biggest variety of values, first
in the index. The index will then find the correct page faster.

To help you investigate whether indexes are used effectively for
a particular query, most database vendors provide the possibility
to get feedback from the query analyzer within the database
server. As an example, you can use the EXPLAIN command in
PostgreSQL for this, as shown in the following line of code:

EXPLAIN SELECT * FROM product WHERE family=13;

Few JPA/Hibernate users seem to know that it is possible to
define indexes in the table configuration with Hibernate. For
example, if you need to define an index named index1 on the
columns column1 and column2, you can use the following
simple annotation:

@Table(appliesTo="tableName", indexes = {
 @Index(name="index1",
 columnNames={"column1","column2"})})

Tuning the Java Database
Connectivity API
Java Database Connectivity (JDBC) is the Java standard that defines how a client
accesses a (in most cases, relational) database. The different database vendors
provide an implementation of this API, often called a JDBC driver.

Even if the basic purpose of JDBC is to provide a standardized way of executing
native SQL statements and handling the result sets, it's often used as a foundation
for other frameworks, for example, JPA or Hibernate.

Performance-tuning JDBC consists of the following processes:

• Introducing a database connection pool that reuses your connections
• Making use of proper JDBC features, such as fetch size and batch size
• Using prepared statements in your application and configuring a prepared

statement cache at application server level

Tuning the Persistence Layer

[164]

Connection pooling
The first basic rule you need to follow when programming JDBC is to use a
connection pool when accessing a database. Establishing database connections,
depending upon the platform, can take from a few milliseconds up to one second.
This can be a meaningful amount of time for many applications, if done frequently.

A connection pool allows the reuse of physical connections and minimizes expensive
operations in the creation and closure of sessions. Also, maintaining many idle
connections is expensive for a database management system, and the pool can
optimize the usage of idle connections (or disconnect, if there are no requests).

A common misconception among many Java developers is that acquiring and
returning connections continuously from the pool stresses your application server
excessively. Thus, it's not rare to see implementations with a database manager,
which holds static connection fields to be shared across the application.

However, this is not an issue as the overhead for the application server is actually
quite small. Of course, this doesn't mean you need to abuse the connection pool
when it's not necessary. For example, it's always good to reuse the same connection
and statements if you are performing a set of database operations within the same
business method.

Sharing your connection instance across several business methods is not a good idea
as it can easily confuse whoever is using these classes, and it can easily end up with
connection leaks. So, keep your code simple and tidy, and don't be afraid to open
and close your connections in every business method.

Performance tuning a connection pool in WildFly
A connection pool in WildFly is also called a DataSource, and it is managed by the
subsystem DataSources. The pool may be defined whenever the underlying JDBC
driver is deployed, using the CLI, the Admin Console, or a special deployable
XML file. The following CLI command is a minimal example of a connection pool
(bundled with WildFly for the H2 database) with all the default values and just the
minimum required parameters defined:

/subsystem=datasources/data-source=TestDS:add(connection-
 url=jdbc:h2:mem:testDB,jndi-name=java:jboss/TestDS, driver-name=h2)

Chapter 6

[165]

The following table contains selected parameters that may be of interest
performance-wise. Fields marked with depends in the Performance recommendation
column mean that a recommendation depends too much on application,
environment, and other factors to be stated:

Value Description Default
value

Performance
recommendation

min-pool-size This specifies the minimum
number of connections for a pool. 0

Normal production
usage +10-20 percent;
in more extreme
cases, set it to the
value of max-pool-
size

max-pool-size

This specifies the maximum
number of connections for a pool.
Note that there will probably be
a maximum limit for the number
of connections allowed by the
database to match.

20

Maximum usage
observed (in
production or
relevant tests) +10-20
percent

pool-prefill This specifies whether the pool
should be prefilled. false true

initial-pool-
size

This is the initial number of
connections in a pool. min-pool-size

pool-use-
strict-min

This specifies whether the min-
pool-size should be considered
strictly.

false true

blocking-
timeout-wait-
millis

This is the maximum time to block
while waiting for a connection.
Note that this timeout is only to
apply the lock itself. It will not
trigger if creating a new connection
takes a long time.

allocation-
retry-wait-
millis

This is the time to wait between
retrying to allocate a connection.

idle-timeout-
minutes

This is the maximum time a
connection may be idle before
being closed.
The actual maximum time also
depends on the scan time of the
IdleRemover thread, which is half of
the smallest idle-timeout-minutes
value of any pool.

Tuning the Persistence Layer

[166]

Value Description Default
value

Performance
recommendation

allocation-
retry

This is the number of allocation
tries that should be tried before
throwing an exception.

flush-
strategy

This is the flush strategy in case of
the following errors:

• FailingConnectionOnly

• IdleConnections

• EntirePool

Failing
Connect
ionOnly

check-valid-
connection-
sql

This is the SQL statement to check
validity of a pool connection when
it's fetched from the pool.

If not needed, do not
use it

valid-
connection-
checker-
class-name

This is a org.jboss.
jca.adapters.jdbc.
ValidConnectionChecker
class that is used for validating a
connection.

Used instead of
check-valid-
connection-sql
when there is such
a database vendor
implementation
available, as it is
probably more
efficient

valid-
connection-
checker-
properties

This is the valid connection
checker properties.

use-fast-fail

This specifies whether a connection
allocation should fail directly if the
first connection fetched is invalid
or keep trying until all connections
in the pool are tried.

false

background-
validation

This specifies whether connections
should be validated in the
background instead of when they
are fetched from the pool.

false

true

If connection
validation is needed,
doing it in the
background is better
than each time a
connection is fetched

background-
validation-
millis

This specifies the time between
background validations.

Chapter 6

[167]

Value Description Default
value

Performance
recommendation

prepared-
statements-
cache-size

This is the number of prepared
statements per connection in an
LRU cache.

share-
prepared-
statements

This specifies whether to share
prepared statements, that is,
whether asking for the same
statement twice without closing
uses the same underlying prepared
statement.

false

query-timeout This helps set the query timeout.

set-tx-query-
timeout

This automatically sets the query
timeout to the time remaining until
the transactions will timeout (if no
transaction is active, the value of
query-timeout will be used).

false

spy This enables logging of SQL
statements. false

false

Useful if set to
true for obtaining
and investigating
the executed SQL
statements. Enable
logging for "org.
jboss.jdbc" as
well

transaction-
isolation

This sets the transaction isolation
level:

• TRANSACTION_NONE

• TRANSACTION_READ_
UNCOMMITTED

• TRANSACTION_READ_
COMMITTED

• TRANSACTION_
REPEATABLE_READ

• TRANSACTION_
SERIALIZABLE

See information later
in this chapter

Tuning the Persistence Layer

[168]

Value Description Default
value

Performance
recommendation

track-
statements

This specifies whether WildFly
should check statements and result
set closure when a connection is
returned. The possible values are:

• false (Do not track)
• true (Track and warn

when not closed)
• nowarn (Track but do not

warn)

NOWARN

false

Note that this means
you must be sure
that the application
doesn't leak. To
use true in all test
environments is
recommended

connection-
properties

This specifies the properties that
will be fed to the JDBC driver.

Can be used to set
JDBC driver-specific
optimizations

In order to calculate the optimal pool size, it's important to know how many
connections an application requires. Monitoring the pool can be done with the CLI, the
JMX, and the Admin Console. By finding the runtime statistics, it is possible to get an
inside view of how the pool works during performance tests and in production.

The available statistics about the pool can be investigated by using the CLI. A CLI
command for a non-XA DataSource pool (ExampleDS) is as follows:

/subsystem=datasources/data-source=ExampleDS/statistics=pool:
read-resource-description

A CLI command for an XA DataSource pool (ExampleXADS) is as follows:

/subsystem=datasources/xa-data-source=ExampleXADS/statistics=pool:
read-resource-description

The same information is available by JMX, as shown in the following screenshot,
with the JConsole and the URI:

jboss.as:subsystem=datasources,data-source=ExampleDS,statistics=pool

Chapter 6

[169]

For XA, use the URI:

jboss.as:subsystem=datasources,xa-data-
source=ExampleDS,statistics=pool.

The JConsole displaying statistical information of the ExampleDS DataSource

Tuning the Persistence Layer

[170]

In comparison to the MBean shown in the JConsole, the WildFly Admin Console in
the following screenshot shows limited information:

The WildFly Admin Console displaying statistical information of the ExampleDS DataSource

From the programmer's point of view, what WildFly provides you with is a
Connection object, wrapped by the org.jboss.jca.adapters.jdbc.jdk7.
WrappedConnectionJDK7 class.

For example, if you are interested in retrieving the underlying implementation of
an OracleConnection from the connection pool in WildFly, you can perform the
following operations:

Connection conn = myWildFlyDatasource.getConnection();
WrappedConnectionJDK7 wrappedConn = (WrappedConnectionJDK7)conn;
Connection underlyingConn = wrappedConn.getUnderlyingConnection();
OracleConnection oracleConn = (OracleConnection)underlyingConn;

Chapter 6

[171]

You may be wondering what the advantage of retrieving the underlying Connection
implementation is. One good reason is the need to access some custom properties
that are not available through the base Connection interface.

For example, if you are using an Oracle thin driver and you need to debug your
Prepared Statement Cache Size, you can use the getStatementCacheSize() method
of the OracleConnection object, as shown in the following code:

System.out.println("Cache size: " + oracleConn.
getStatementCacheSize());

Setting the proper fetch size
The fetch size is the number of rows retrieved from the database at one time, by the
JDBC driver, as you scroll through a ResultSet using the next() method. If you
set the query fetch size to 100, the JDBC driver retrieves the first 100 rows at once
when you retrieve the first row (or all of them if fewer than 100 rows satisfy the
query). When you retrieve the second row, the JDBC driver merely returns the row
from the local memory. It doesn't have to retrieve that row from the database. This
feature improves performance by reducing the number of calls (frequently network
transmissions) to the database.

To set the query fetch size, use the setFetchSize() method on the Statement
(or PreparedStatement or CallableStatement) before execution. The optimal fetch
size is not always obvious. Usually, the fetch size of one half or one quarter of the
total expected result size is optimal. As a general rule, setting the query fetch size is
mostly effective for a large result set. If you set the fetch size as much larger than the
number of rows retrieved, it's likely that you'll get a performance decrease, not an
increase. The default value differs for different database vendors.

If you plan to increase the default row prefetch for all your
statements, then you may be able to do so using a driver-
specific connection parameter (for example, Oracle uses
defaultRowPrefetch and DB2 uses block size).

Using batch updates for bulk insert/updates
In situations where you want to issue several inserts or updates in the same unit of
work, update batching lets you group the statements together and transmit them to
the database as one set of instructions. As with setting the query fetch size, update
batching works by reducing the number of network transmissions between the
application and the database.

Tuning the Persistence Layer

[172]

For example, consider a website for online sales. When customers create orders, they
often order multiple items. Usually, when the order is recorded, the items on the
order are recorded at the same time. Update batching allows the multiple inserts for
the order to be transmitted to the database at once.

Update batching is supported for SQL issued via the Statement, PreparedStatement,
and CallableStatement classes. As with manipulating the query fetch size, the
amount of performance improvement with batching statements varies between
database vendors. Also, the network speed plays an important role in determining
the real benefit of bulk updates.

Prepared statements
When a database receives a statement, the database engine first parses the SQL string
and looks for syntax errors. Once the statement is parsed, the database needs to figure
out the most efficient plan to execute the statement. This can be quite expensive
computationally. Once the query plan is created, the database engine can execute it.

Ideally, if we send the same statement to the database twice, then we'd like the
database to reuse the access plan for the first statement. This uses less of the
CPU than if it regenerated the plan a second time. In Java, as well as in other
languages, you can obtain a good performance boost by using prepared statements
instead of concatenating the parameters as a string, using markers, as shown in
the following code:

PreparedStatement ps =
 conn.prepareStatement("SELECT a,b FROM t WHERE c = ?");

Prepared statements allow the database to reuse the access plans for the statement,
and it makes the program execute more efficiently inside the database. This
basically lets your application run faster or makes more of the CPU available
to users of the database.

Prepared statements can be cached by the application server itself when it's necessary
to issue the same statements across different requests. Enabling the prepared
statements cache is quite simple; all you have to do is set the prepared-statement-
cache-size attribute in your connection pool configuration.

In practice, WildFly keeps a list of prepared statements for each database connection
in the pool. When an application prepares a new statement on a connection, the
application server checks if that statement has already been used. If it has been used,
the PreparedStatement object instance is recovered from the cache and returned
to the application. If not, the call is passed to the JDBC driver and the query or the
PreparedStatement object is added into that connection's cache. The cache used by
prepared statements is a Least Recently Used (LRU) cache.

Chapter 6

[173]

The performance benefit provided by the prepared statement cache is
application-specific and can be observed using, for example, the CLI.

The CLI command for a non-XA DataSource (TestDS) is as follows:

/subsystem=datasources/data-source=TestDS/statistics=jdbc:read-resource-
description

The CLI command for an XA DataSource (TestXADS) is as follows:

/subsystem=datasources/xa-data-source=TestXADS/statistics=jdbc:read-
resource-description

As usual, MBean is also available. For a regular DataSource named
ExampleDS, it can be found at jboss.as:subsystem=datasources,data-
source=ExampleDS,statistics=jdbc, and for the XA DataSource named
ExampleXADS, it can be found at jboss.as:subsystem=datasources,xa-data-sou
rce=ExampleXADS,statistics=jdbc.

The attributes and values of ExampleDS are shown in the following screenshot
using JConsole:

The JConsole displaying JDBC-related statistical information of the ExampleDS DataSource

Tuning the Persistence Layer

[174]

The WildFly Admin Console presents a somewhat less detailed view, as shown in
the following screenshot:

The WildFly Admin Console displaying JDBC-related statistical information of the ExampleDS DataSource

When working with prepared statements, one should be aware of the following
two things:

• Prepared statements are cached per connection. The more connections you
have, the more prepared statements you get (even when they are the same
query). So, use them frugally and don't simply guess how many are needed
by your application.

• When the connection pool shrinks because the idle timeout for a connection
expires, statements are removed from the pool of cached prepared
statements. This can cause an overhead that outweighs the benefits of
caching statements.

One good compromise that has been tried on a few projects is to
create two pools for an application: a larger one (let's say with up to
30 connections) with no prepared statement cache, and a smaller one
with a prepared statement cache activated and min-pool-size
equal to max-pool-size, in order to avoid any shrinking of the pool.

Chapter 6

[175]

Isolation levels
The levels of transaction isolation are defined by the SQL standard, using the
following scenarios:

• Dirty read: It occurs when a transaction reads data that has been modified by
a concurrent uncommitted transaction

• Non-repeatable read: It occurs if a transaction re-reads the same data and
the values differ between reads (due to data being committed by another
concurrent transaction)

• Phantom read: A transaction re-executes a query returning a set of rows
that satisfy a search condition, and it finds that the set of rows satisfying the
condition has changed due to another recently-committed transaction

The following table explains how these scenario relate to the isolation levels:

Isolation level Dirty read Non-repeatable
read Phantom read

TRANSACTION_READ_UNCOMMITED Possible Possible Possible
TRANSACTION_READ_COMMITED Not possible Possible Possible
TRANSACTION_REPEATABLE_READ Not possible Not possible Possible
TRANSACTION_SERIALIZABLE Not possible Not possible Not possible

Selecting the appropriate isolation level depends on the application's requirements.
For an application for which there is no risk of concurrent writes when data is read,
TRANSACTION_READ_UNCOMMITED may very well be okay. On the other hand, if your
application handles really critical data, such as a bank account, you may very well
need the safest choice, delivered by TRANSACTION_SERIALIZABLE.

Choosing the correct level is a tradeoff between safety and performance. If the
application doesn't need to deal with concurrent transactions at all, the most
performance-friendly choice would be TRANSACTION_NONE, which lacks isolation.

Be aware that the selected database may not support all
isolation levels. It is actually allowed to "upgrade" to the
next level if the selected one isn't supported. PostgreSQL,
for example, supports TRANSACTION_READ_COMMITTED
(default) and TRANSACTION_SERIALIZABLE.

Tuning the Persistence Layer

[176]

Tuning JDBC networking
A JDBC connection is, behind the scenes, a socket connection to legacy systems.
So, you can apply the same low-level network tuning, which is generally used for
socket-data transmission.

For example, it is useful to set the TCP send and receive buffer to a higher value than
the default (32 KB) if your system allows it. This can be done in most databases using
the following connection properties:

• tcpSndBuf = 65534

• tcpRcvBuf = 65534

• tcpNoDelay = true

Note that not all JDBC drivers honor the same connection
properties; only some of them may provide additional
properties that are particularly suited to the underlying
database. Therefore, use these properties with caution, and
only if you really need to fix or tune network issues with
your relational database.

Tuning JPA and Hibernate
Programming with the JDBC API is quite simple as it is merely a thin layer over the
database programming interfaces. There are, however, some considerations that you
need to take into account:

• First, using the native SQL language in your code exposes your application
to a tight coupling with the database where your code had initially
been developed. Even if the SQL dialects are similar, each database
performs differently depending on the structure of the query, necessitating
vendor-specific tuning in most cases.

• Second, when you are using plain JDBC, you need to bridge the gap between
the relational model and the object model by creating a layer of intermediate
objects or collections that host the data fetched from the database. This is an
unnecessary effort because Object-Relational Mapping (ORM) tools, such as
Hibernate, can do it for you out-of-the-box.

• Finally, by using an intermediate layer that sits between your code and the
database, it's possible to add additional services such as caching, which, if
properly used, can greatly improve the performance of your applications.

Chapter 6

[177]

As of Java EE 5, the Java Persistence API (JPA) provides a POJO-based persistence
model to map between the world of objects (in Java) and relations (database).
This allows you to design your persistence layer with the support of a standard
specification using Java classes with relations.

Although developed by the EJB 3.0 expert group, JPA is not limited to usage in
EJBs. It can be used in application clients, web applications, and standard Java SE
applications. As JPA is a specification, it needs an implementation. In WildFly, the
implementation provider is the globally renowned ORM project, Hibernate.

WildFly 8.0.0.Final makes use of the JPA 2.1 specification and the bundled module
since the provider is Hibernate in Version 4.3.1.

JPA and Hibernate are ORM technologies that are strategically similar from one point
of view since they are both fit to bridge the gap between the object world of Java
and the legacy relational systems. They are, however, semantically different because
JPA is a standard Java EE specification while Hibernate is a de facto framework that
can be used both as a JPA implementation provider and as a standalone technology.
Although we focus on Java EE, and thus JPA, in this book, suggesting which strategy
delivers the best application design is outside the scope of discussion. We will
primarily focus the walkthrough and examples on JPA, but will also give references
to Hibernate as we go on.

Optimizing object retrieval
Efficient data loading is the most important factor when we aim at improving the
performance of Hibernate and JPA. Since every SQL statement issued to a database
bears a cost (from network latency, statement compiling, data handling, and so on),
the goal is to minimize the number of statements and know how to tune them so that
querying can be as efficient as possible. In the following sections, we will walk you
through various optimization techniques and describe how different alternatives
may affect performance.

Transactional integrity and performance
Concurrent updates of the same data from different transactions can be very
hazardous. Think about ordering flights from a system that won't allow you to
be sure that you get any tickets until after the final step of the payment process.
An even worse scenario from the health sector, with unthinkable consequences,
could be doctors updating the same patient records simultaneously and thus
overwriting vital information.

Tuning the Persistence Layer

[178]

With transactional locking strategies, competing operations in different transactions
can be stopped. Using pessimistic locking only allows changes to data within the
owning transaction. It locks an entire database table row from all changes external
to the owning transaction. This is a very secure solution for upholding transactional
integrity, but it can also cause deadlocks. It is not very useful or a sound strategy
in terms of performance for the often interaction-heavy systems of today because it
scales poorly.

Instead, optimistic locking is normally recommended. Here, a transaction can perform
operations against the same data row that is already "owned" by another transaction.
As long as no conflict actually occurs, everything is fine. Should there be a conflict, a
javax.persistence.OptimisticLockException is thrown when using JPA.

Optimistic locking with row-based versioning is supported in JPA by the use of the @
Version annotation on an entity's attribute, as shown in the following code:

@Version
private Long version;

Any update to the entity will cause the version attribute to increase by one, making
concurrent updates detectable and protecting the transactional integrity.

Limiting retrieved data by pagination
Retrieving more data than is needed from a database is normally a poor design
choice that influences performance negatively. Imagine a web-based sales
application where you want to show a table list of items; the total amount of items
in the database is too large to show in one page of the table, so you should use
pagination, where a small and manageable set of the total amount of items is shown
on each page.

Naturally, you can read all the items from the database with a query, here given in
Java using Java Persistence Query Language (JPQL), which looks something like the
following code:

EntityManager em;
Query query = em.createQuery("SELECT i FROM Item i");

The JPQL will then translate into the SQL statement:

SELECT * FROM Item;

Chapter 6

[179]

This will load all available items from the database into the memory. Depending
on your application, you can keep them in the memory and handle sorting and
pagination here. Doing so will, however, sooner or later, result in a stale dataset, and
any update to the database will not be reflected in your retrieved set of data.

To minimize problems with stale data, you will need to retrieve the dataset each
time you flip through the pages of items in the application. Using the same query
as mentioned, this will retrieve a lot more data than is needed for a single page.
Your application may display 20 lines per page, with an item on each line, while
the database may contain thousands of items in total. The overhead of unused data
will be overwhelming, and the users will likely suffer from the poor performance of
the system.

Instead, you should limit your query to only retrieve the items that will actually
be shown (or used) on each page. This is often denoted as true pagination. Using
JPA, you can use the setFirstResult(int) and setMaxResult(int) methods of
the javax.persistence.Query class to set the range of rows that are needed to
be retrieved from the database in every situation. Our previous example has now
evolved to the following, retrieving 20 items for each page:

Query query = em.createQuery("SELECT i FROM Item i");
query.setFirstResult(page * 20);
query.setMaxResults(20);
List<Item> items = query.getResultList();

Fetching parent and child objects
All normalized data models pretty much have relations between objects/tables.
For the upcoming sections, we will use the object data model given in the following
diagram. A Customer object can have many orders, and each Order instance can
contain several Item objects:

A sample object data model.

In this case, the Order object is said to have a one-to-many relation to the Item object.
In JPA, this will be realized by the @OneToMany annotation. The following is the
(simplified) definition of the items list attribute of the Order class:

@OneToMany
private List<Item> items;

Tuning the Persistence Layer

[180]

When we retrieve an Order object from the database, the related Item objects will
not be retrieved until they are used (presuming that the Order object is attached to
the persistence context). This is due to the fact that we use the LAZY fetch-type, which
is the default for one-to-many relations.

Using a LAZY strategy is a useful performance strategy
when you do not (or rarely) need related objects.

If we want the Item objects to be retrieved with the Order object right away, we can
simply set the fetch-type to EAGER. This can be done by defining the fetch attribute
in the relation annotation as follows:

@OneToMany(fetch = FetchType.EAGER)
private List<Item> items;

Other relation definitions (and annotations) are one-to-one (@OneToOne), many-to-
one (@ManyToOne), and many-to-many (@ManyToMany). The different relation types
have different default fetch-behaviors that we encourage all readers to explore as
they will affect implementations.

Whether we use the LAZY or the EAGER fetch-type, the queries to retrieve data can be
the same. For example, when one specific Order (here id=10) is retrieved, the JPQL
query will look like the following code:

SELECT o FROM Order o WHERE o.id = 10;

Then, as we venture into the list of items related to each Order object, the Item objects
will be retrieved by an additional JPQL query, as shown in the following code:

SELECT i FROM Item i WHERE i.order.id = 10;

As the number of parent objects (here Order) increases, these multiple questions can
turn out to be a real bottleneck. This is often denoted as n+1 problem, and a common
solution is to use a single query, using an SQL JOIN to retrieve both the parent object
and all of its related children objects (Item). This is normally much more effective
than using multiple queries, but the performance enhancement needs to be weighed
against factors of code simplicity and readability.

In our case, the JOIN fetch can be implemented in JPQL as follows:

FROM Order o LEFT OUTER JOIN FETCH o.items BY o.id

Chapter 6

[181]

Combining pagination and JOIN fetches
Paging features are not implemented internally by JPA, Hibernate, or JDBC but by
using the database's native functions that limit the number of records fetched by the
query. For this reason, every database will use its own proprietary syntax.

This leads to an important aspect to consider: if we query using a JOIN fetch,
the logical table created by the database does not necessarily correspond to the
collections of objects we deal with. As a matter of fact, the outcome of the join may
duplicate orders in the logical tables, but the database doesn't care about that since
it's working with tables and not with objects. In order to deal with this problem,
Hibernate does not issue a statement with a native SQL instruction (such as LIMIT or
ROWNUM). Instead, it fetches all of the records and performs the paging in memory.

Results from using pagination with firstResult()
and maxResults() methods, specified with a
collection join fetch, apply in memory in Hibernate.

Using a combination of JOIN fetch and paging often shows fewer throughputs than
either of the techniques used separately. So, as a rule of thumb, it is wise to use either
JOIN fetches or paging to reduce the time spent in retrieving data. They should,
however, not be used together as the result may be a reduction in performance.

Naturally, and as always, you should test and see how the techniques behave in the
specific queries in your application and environment.

Improving the speed of collection queries
using batches
Imagine a use case with a customer object loading orders lazily. If a Hibernate
session or JPA entity manager has 5,000 customers attached to it, then by default, for
each first access to one of the customers' order collection, Hibernate will issue an SQL
statement to fill that collection. At the end, 5,000 statements will be executed to fetch
the order collections.

Batch fetching is an optimization technique of the LAZY select fetching strategy,
which can be used to define the identical associations to populate in a single database
query. You can apply batch fetching using the Hibernate @BatchSize annotation at
class level, as shown in the following code:

@Entity @BatchSize(size = 50)
public class Item implements Serializable { ...

Tuning the Persistence Layer

[182]

Alternatively, a default value can be set by the default_batch_fetch_size
property variable for all classes of a persistence unit, in a persistence.xml file,
as shown in the following code:

<property name="hibernate.default_batch_fetch_size" value="50" />

It can also be set per class in an ORM (orm.xml) file, as shown in the following code:

<class name="Item" batch-size="50">...</class>

With these settings, when Hibernate loads its 5,000 customers, it will load the items
for the first 50, then for the next 50, and so on.

While referenced collections are seldom loaded, batch fetching is a very effective
optimization technique for data retrieval.

Minimizing query compilation with
JPA-named queries
Until now, we have used queries defined in the single EJB methods to request data.
Instead of spreading queries across methods, JPA provides the possibility to declare
them in a standardized way at a class level and to recall them whenever needed. This
technique is called named queries and is implemented with annotations on (preferably
related) the Entity classes, as shown in the following example code snippet:

@Entity
@NamedQueries({
 @NamedQuery(name = "listAllCustomersWithName",
 query = "FROM Customer c WHERE c.name = :name")
})
public class Customer implements Serializable { ...

The advantage, in terms of performance, is that the persistence provider will
precompile HQL- or JPQL-named queries to SQL as part of the deployment or
initialization phase of an application. This avoids the overhead of continuously
parsing HQL/JPQL and generating related SQL statements.

Even with a cache for converted queries, dynamic query definition will always be
less efficient than using named queries.

Named queries enforce the best practice of using query parameters. Query parameters
help to keep the number of distinct SQL strings parsed by the database to a minimum.
As databases typically keep a cache of SQL statements on hand for frequently
accessed queries, this is an essential part of ensuring peak database performance.

Chapter 6

[183]

Improving the performance of bulk
SQL statements
Many updates to multiple rows and columns in a database can be performed with
a single SQL statement. For entity-based inserts and updates, grouping multiple
statements into a single SQL statement is considerably more advanced (if even
possible) and often not desirable from design and business-flow perspectives.

Instead, looping over similar inserts/updates of an entity is a more common
behavior. To avoid the burden of synchronizing the entity classes with the database
for every operation, you should set a fetch size as before, and then manually perform
a flush as the bulk of operations reaches the desired flush-size level.

The larger the bulk of statements, the better the performance achieved, but the more
memory used. It's just one more tradeoff between memory and performance.

Entity caching
A major justification for using object/relational persistence layers against direct
JDBC is their potential for caching. Caching structurally implies a temporary store to
keep data for quicker access later on. Although nothing beats a good database design
and good fetching strategies, there is no doubt that caching can have a serious impact
on performance for some kinds of applications.

We will introduce the JPA caching system with its implementation in its provider,
Hibernate, and show how to enable and use the first and second level cache. This
information and these rules can be applied to caching in general, and they are valid
for more than just Hibernate applications.

A cache is a representation of the current database state either in memory or on
the disk of the application server machine. In JPA/Hibernate, there are different
types of caches, used for different purposes. Let us first take a look at the following
cache types:

• The first-level cache (L1C or 1LC): This is related to the JPA persistence
context and entity manager, which will translate to the session in Hibernate.
This cache caches managed entities within the current persistence context.
This is also a mandatory cache that depends on the life-length of the
persistence context scope—transaction or extended.

• The second-level cache (L2C or 2LC): This cache works at the JPA
EntityManagerFactory (SessionFactory in Hibernate) level and is responsible
for caching objects across persistence contexts. This is an optional cache.

Tuning the Persistence Layer

[184]

• The query cache: This is responsible for caching queries and their results.
The following diagram shows where Hibernate caches are located in the
path of a JDBC connection:

JPA components and caches

The first-level cache
Nothing is needed to enable or use the L1C. It's, by default, on and it cannot be
disabled. Using the entity manager operations guarantees that there will be one
and only one object instance within a single persistence context for any particular
database row. The same entity can, however, be managed in another user's
transaction. The optimistic or the pessimistic locking strategy should be used for
controlling transactions and the level of integrity.

The second-level cache
The L2C is responsible for caching entities across persistence contexts on the
EntityManagerFactory level. This is often known as the Entity cache, and caching
with L2C is normally transparent to an application.

In JPA 1.0, the specification did not define the concept of a shared cache. As of JPA
2.0, it is defined but optional, so providers do not have to implement it. However,
Hibernate and most other major providers do implement it.

As the L2C existence is still optional for JPA providers,
portable applications should not completely rely on its
support for SLA compliance.

This cache is beneficial because it avoids database access for already loaded entities
and is faster for reading entities that are unmodified and frequently accessed.

Chapter 6

[185]

On the negative side, L2C can be very memory-consuming for large amounts of
objects. Data can be stale for updated objects. Performance can suffer significantly
depending on what locking mechanism is used (optimistic/pessimistic). For frequent
or concurrently updated entities, L2C scales poorly.

Using L2C in the wrong context may actually degrade performance.

Use L2C for entities that are read often, modified infrequently,
and not critical if stale.

Hibernate also provides a pluggable architecture where different cache
implementations can be plugged in and used as L2C. In WildFly, Infinispan is utilized
as an L2C cache provider for Hibernate.

The L2C is not enabled or configured by default in WildFly or Hibernate. To
enable L2C in WildFly with Hibernate, first add the following configuration to the
properties block in your application's persistence.xml file:

<property name="hibernate.cache.use_second_level_cache" value="true"/>

A cache mode is also set in the configuration file using the share-cache-mode
tag (as shown in the following code) as the equivalent can naturally be set on
EntityManagerFactory in code as well:

<shared-cache-mode>ENABLE_SELECTIVE</shared-cache-mode>

Depending on what this mode is set to, individual entities may need to be configured
in order to be enabled for L2C. The different cache modes are described in the JEE7
documentation as follows:

Cache mode setting Description
ALL All entity data is stored in the L2C for this persistence unit.

NONE No data is cached in the persistence unit. The persistence
provider must not cache any data.

ENABLE_SELECTIVE Enable caching for entities that have been explicitly set with
the @Cacheable annotation.

DISABLE_SELECTIVE Enable caching for all entities, except those that have been
explicitly set with the @Cacheable(false) annotation.

UNSPECIFIED The caching behavior for the persistence unit is undefined. The
persistence provider's default caching behavior will be used.

Tuning the Persistence Layer

[186]

If the mode is ENABLE_SELECTIVE, we will need to configure each entity that we'd
like to enable for L2C with the @Cacheable annotation (Hibernate uses the @Cache
annotation) on class level. This can also be configured using XML.

Using annotations, this will look like the following code:

@Entity @Cacheable
public class Customer implements Serializable { ...

How data is stored in the L2C can be configured using a retrieval-mode property
named javax.persistence.retrieveMode. This property can have the values USE
(default), BYPASS, and REFRESH of the javax.persistence.CacheStoreMode, and it
is set in code for an entity manager as follows:

EntityManager em = ...;
em.setProperty("javax.persistence.cache.storeMode", "BYPASS");

Alternatively, it is possible to set the retrieval mode per query using a hint. Hints are
explored in more detail in the next section.

The different property values affect the L2C as follows:

• USE: When data is read from or committed to the database, the cache data
is created or updated. If data already exists in the cache, no refresh will be
forced when data is read from the database. The cache has moderate speed,
but it may contain stale objects.

• BYPASS: The cache is unchanged (bypassed and not updated) when data is
read from or committed to the database. This makes the cache fast but very
volatile as it sooner or later is likely to contain stale objects.

• REFRESH: When data is read from or committed to the database, the cache
data is created or updated on database reads, and a refresh is forced on data
in the cache. This is a safer but slower option.

If you want to inspect your objects existing in the cache, it can be retrieved as follows:
EntityManager em = ...;
Cache cache = em.getEntityManagerFactory().getCache();
Long pk = ...;
boolean existInCache = cache.contains(Customer.class, pk);

Similarly, clearing the cache of one specific object instance (with a given primary
key), all objects of one entity type, or all objects, is easily done with the following
three method calls, respectively:

cache.evict(Customer.class, pk);
cache.evict(Customer.class);
cache.evictAll();

Chapter 6

[187]

The query cache
The entity cache requires that you access your database rows by means of its
primary key. Sometimes, this strategy cannot be applied, and you need a more
flexible way to collect your data, such as caching the result of a specific query,
like in the following code:

List<Customer> customers =
 em.createQuery("from Customer c where c.name = :name);

Using the query cache, the statement that comprised the query can be cached as
well, including any parameter values along with the primary keys of all entities
that comprise the result set.

Hibernate does not cache the state of the actual entities in the cache. Only identifier
values and results of value types are cached. The query cache should, therefore,
always be used along with the L2C for entities that are expected to be part of the
result set.

To enable the query cache in Hibernate, first add the following property to the
property block in the persistence.xml file of an application, as shown in the
following code:

<property name="hibernate.cache.use_query_cache" value="true"/>

Then, the queries that will be stored in the cache need to be defined. This is done
by a query hint in the annotations on a named query as in the following code:

@NamedQueries({
 NamedQuery(name = "findCustomersByName",
 query = "FROM Customer c WHERE c.name = :name",
 hints = { @QueryHint(
 name = "org.hibernate.cacheable",
 value = "true") })
})

Alternatively, this step can be performed on a specific query by using the
following code:

Query query = ...
query.setHint("org.hibernate.cacheable", new Boolean(true));

Query caching, as with all caching, has a cost. If a query is run
only a very few times or seldom, using caching is likely to be
more expensive than running a query without it.

Tuning the Persistence Layer

[188]

You may wonder how your Hibernate caching provider understands whether the
data stored in the query cache is synchronized with the content of the database. The
answer is in the timestamp cache, which is actually used to decide if a cached query
result set is stale. Hibernate looks in the timestamp cache for the timestamp of the
most recent insertion, update, or deletion made to the queried table. If it's later than
the timestamp of the cached query results, then the cached results are discarded and
a new query is issued.

The Hibernate query cache should not be confused with
the query cache available for many databases, such as
the Postgres Query Cache (PQC) for PostgreSQL.

Query hints
Using query hints is a powerful feature of the JPA that allows dynamic and
even adaptive tuning of queries. Query hints are often performance-related and
implementation-specific per provider. For JPA and Hibernate, the following EJB3
hints are available:

Hint Description
javax.persistence.
cache.retrieveMode

CacheRetrieveMode.[BYPASS|USE]

javax.persistence.
cache.storeMode

CacheStoreMode.[BYPASS|REFRESH|USE]

org.hibernate.timeout Query timeout in seconds (new Integer(10))

org.hibernate.fetchSize
Number of rows fetched by the JDBC driver per roundtrip
(new Integer(50))

org.hibernate.comment
Add a comment to the SQL query, useful for the DBA (new
String("fetch all orders in 1 statement"))

org.hibernate.cacheable
Whether or not a query is cacheable (new
Boolean(true)); defaults to false

org.hibernate.cacheMode
Override the cache mode for this query
(CacheMode.REFRESH)

org.hibernate.
cacheRegion Cache region of this query (new String("regionName"))

org.hibernate.readOnly
Entities retrieved by this query will be loaded in a read-only
mode, where Hibernate will never dirty-check them or make
changes persistent (new Boolean(true)); default to false

org.hibernate.flushMode
Flush mode used for this query (useful to pass
Hibernate-specific flush modes, in particular MANUAL).

org.hibernate.cacheMode Cache mode used for this query

Chapter 6

[189]

The hint scopes (global definitions are valid for all lower scopes, but lower-
positioned definitions override the global) can be defined as follows:

• For an entire persistence unit: Using properties in the persistence.xml file
• For EntityManagerFactory: Using the createEntityManagerFacotory()

method
• For EntityManager: Using the createEntityManager() or setProperty()

method
• For a named query definition: Using the @QueryHints annotation
• For a specific query execution: Using the setHint() method

Entity versus query cache
Entity caching takes advantage of the fact that a database row (that reflects an
entity's state) can be locked, with cache updates applied with that lock in place. This
is extremely useful to ensure cache consistency across the cluster.

There is no clear database analog to a query result set that can be efficiently locked to
ensure consistency in the cache. As a result, the fail-fast semantics used with the PUT
operation of entity caching are not available; instead, query caching has semantics
akin to an entity insertion, including costly synchronous cluster updates.

To make things worse, Hibernate must aggressively invalidate query results from the
cache any time any instance of one of the entity classes involved in the query's WHERE
clause changes. As stated before, this is done by means of the timestamp cache,
which checks the latest timestamp for every operation executed on a query.

As a consequence of these semantics, you need to use query cache with caution
and mainly for data that is read-only or seldom updated. Always monitor your
application performance with the cache disabled first and then with the cache
enabled. If you don't see any substantial benefit from caching your queries, then you
should stay away from query cache, which will otherwise consume system resources.

Optimizing data synchronization
For most JPA providers, including Hibernate, the default strategy for flushing data
to a database is to set it to FlushMode.AUTO. This means that uncommitted changes
are flushed before queries and on commit and flush operations. This ensures that the
changes are visible for the upcoming query.

Tuning the Persistence Layer

[190]

The FlushMode.COMMIT decouples transaction demarcation from the
synchronization. It only flushes changes on explicit commit and flush operations.

By using manual flushing, execution of insertions and updates, that are sent in bulk,
can be delayed.

Summary
Performance-tuning the persistent layer means starting at the bottom with a good
database design with correct indexes, well tuned queries, and a thought-through
choice of isolation level. If JDBC is used directly, make sure that connection pooling
is used, and investigate what the application may gain by using fetch size, batch
updates, and prepared statements.

With Hibernate and the JPA specifications, the gap between the relational database
layer and the Java objects is bridged. In the Java layer, tuning can be performed
using the following techniques and strategies:

• Retrieving data with Hibernate and JPA requires applying the correct fetch
strategy. Lazily loaded data avoids the cost of early loading relationships.
This, however, carries the problem of additional queries executed to fetch the
parent-child relationship, also known as n+1 problem.

• Pagination can be used by means of the setFirstResult() or
setMaxResults() method of the Query class. This allows loading a smaller
page of data with consistent time saving.

• Using the JOIN fetches, you can combine data extraction of the parent-child
relationship with a single SQL statement. In most cases, this optimization is
the logical solution to the n+1 problem.

• Batch fetching is an optimization of the LAZY select fetching strategy, which
can be used to define how many identical associations to populate in a single
database query.

The easy appliance and portability of caching is one of the main benefits of
Hibernate/JPA over JDBC programming. There are basically three types of caching:

• The first-level cache allows caching objects within the current persistence
context (entity manager)

• The second-level cache is responsible for caching objects across the
persistence contexts of an EntityManagerFactory

• The query cache stores queries, including variables and result sets

You should cache data which is read-only or seldom modified.

Chapter 6

[191]

Before applying any caching strategy, monitor your system performance without a
cache. Then, you can progressively try to introduce caches, verifying whether the
performance has increased.

Expect the most consistent performance gains with entity caching. Use query caching
with caution as frequent updates may reduce (or negate completely) the benefit of
this cache.

After digging around in the persistence layer, we will next discuss how to tune the
web container in WildFly. Jump on!

Tuning the Web Container
in WildFly

In this chapter, we will introduce Undertow, which is the brand new web container
in WildFly. We will have a quick look at its internals and then continue our
performance focus and look at the available tuning configuration options in the
container. Finally, we look at the benefits of a web server such as Apache HTTPD
with mod_cluster, acting as a frontend to our application server.

Enter Undertow
A vital part of an application server is its web container. In the previous incarnations
of WildFly (when it was named JBoss AS), the old container, JBoss Web Server
(JWS—https://www.jboss.org/jbossweb/), that was based on a fork of
Apache Tomcat (http://tomcat.apache.org/), acted as an embedded Java EE
web container.

As of WildFly 8, JWS has been replaced by technologies from the Java-based web
server, Undertow (http://undertow.io/). Similar to JWS/Tomcat, Undertow can
act both as a web server and a Java EE web container. It can also run in embedded
mode, just as it does in WildFly, as well as in standalone mode.

Tuning the Web Container in WildFly

[194]

Undertow was initially designed for speed. It is lightweight and adaptable, allowing
it to handle new features and advanced technologies such as the WebSockets API
and HTTP Upgrades, which we will discuss further on. The Undertow project
is relatively new but has already come far when it comes to its initial goals. As it
matures further in areas such as documentation and configuration possibilities, its
future looks very bright.

By making use of XNIO (http://www.jboss.org/xnio/), which is a framework
based on the Java New Input Output (NIO or New I/O) API, Undertow
receives vital support for the speed of both blocking and non-blocking I/O.
These technologies and techniques are utilized by, for example, WebSockets and
asynchronous servlets.

Although there is support for non-blocking I/O through the
core I/O APIs (NIO/XNIO) that Undertow is built upon,
most of the things that Java EE applications use are backed
by the servlet container and Java servlets are defined to
utilize blocking I/O. So, by having servlet-based applications,
you never use the non-blocking I/O mode to serve requests
unless you're using WebSockets (a new asynchronous
technology) or implementing the io.undertow.servlet.
ServletExtension proprietary interface.

Undertow internals
Internally, Undertow is assembled by listeners and a chain of building blocks,
named handlers.

A listener is a component that handles protocol-specific incoming calls that, in turn,
are forwarded to a handler chain. At the time of writing this book, the following
three listeners are supported out of the box:

• HTTP
• HTTPS
• Apache JServ Protocol (AJP): This has no support for HTTP Upgrades

These listeners are, at their core, XNIO listeners that in turn are a higher level of an
NIO channel.

Chapter 7

[195]

A handler is basically a Java class that can add almost any functionality, for example,
security, error page handling, metrics or virtual host support. The handlers in
Undertow are chained together and allow the construction of a highly dynamic
platform. A platform that can be anything from a simple HTTP processor within
your code to a full-fledged Java EE servlet container or more. The handlers are also
very dynamic and adaptive as they can select the next handler in the chain based
on the current request and its content. This paves the way for HTTP Upgrades. The
listeners and a sample chain of handlers are visualized in the following diagram:

Undertow listeners with a simple chain of handlers

Creating a custom handler can be quite useful. It could, for example, collect
performance measurements or metrics, be used as a tool in tuning, and for
detailed SLA compliance. At the time of writing this book, it is not possible
to simply configure the Undertows handler chain in WildFly. Therefore, we will,
only briefly describe how to implement a custom handler by implementing the
io.undertow.server.HttpHandler interface as shown in the following code
snippet of MyHandler:

Import io.undertow.server.HttpHandler;

public class MyHandler implements HttpHandler {
 private final HttpHandler next;

 public MyHandler(HttpHandler next) {
 this.next = next;
 }
 @Override
 public void handleRequest(HttpServerExchange exchange)
 throws Exception {
 // *** your fabulous code here ***
 next.handleRequest(exchange);
 }}

Tuning the Web Container in WildFly

[196]

HTTP Upgrades
A core feature of Undertow is its support for HTTP Upgrade.

Generically, this involves starting communication with the server by one protocol
(often the basic plain-text HTTP 1.1), which is then "upgraded" to another version or, as
is more common in WildFly, changed into another protocol entirely. This mechanism
is very useful to multiplex between various remote protocols over the standard web
container port (which, by default, is set to 8080 in WildFly/Undertow) for HTTP.
This is very useful in environments where default port access is normally disabled for
everything except for, for example, SSH (22), HTTP (80), and HTTPS (443).

In WildFly, HTTP Upgrade is used for most protocols, including RMI and JNDI.

The default caching of static resources
By default, Undertow is configured to cache static resources. Unfortunately, it seems
that no information related to monitoring or configuration is available in the current
version of WildFly. To disable the cache, the default-buffer-cache attribute needs
to be removed by using the following configuration:

<servlet-container default-buffer-cache="default"/>

Server and container topologies
It is possible to run several web servers or web containers in a single WildFly
instance. The practical use for these, however, seems quite limited for the time being.
Although Undertow benefits from port reduction and performance improvements,
resulting in an overall smaller memory footprint, it is still advisable to not use
several web containers in the same WildFly instance.

More than one web container/server would involve a more complex configuration
(in the standalone.xml or domain.xml file). Also, as the console does not (yet) have
support for it, administration is limited to CLI.

Starting a new WildFly application server instance is also administratively easy
and not a very expensive operation resource-wise. With all this taken into account,
there are not much incentive for starting a web container on its own, unless in very
extreme cases of performance.

Chapter 7

[197]

Using XNIO
Undertow has been designed to make full use of the ultra-high-performance
XNIO framework.

XNIO, in turn, builds on the Java NIO API. XNIO provides full NIO support and
enhances it by providing an enriched and simplified API with a partially higher
abstraction layer. XNIO also offers other related functionalities, such as callbacks,
multicast, and socket support (both blocking and non-blocking).

NIO basics
The Java NIO API itself was introduced with J2SE 1.4, enhancing the overall
standard I/O performance and including support for native memory.

The following are the main components of NIO:

• Channel
• Buffer
• Selectors

A NIO channel is a component that a client can use to write data to or read data from.
The standard channels currently support both file and network (both UDP
and TCP) access. They can be asynchronous and they write incoming data to or
read outgoing data from NIO buffers.

The NIO buffers are used to store data and are based on the datatype of what they
can store. The java.nio.ByteByffer is probably the most common datatype, but
all primitive types are supported. You put data into a buffer, "flip" it (change its
read-write mode), and then take data out of it.

A NIO selector is a sort of inspector that can handle several channels. This is useful as
it optimizes thread usage by letting one thread handle several channels.

XNIO Workers
In XNIO, the buffers are used for fast data storage just as in NIO. New and important
is however is the concept of Workers. A worker has the role of a coordinator that creates
listener channels and manages thread pools. These pools are either for worker threads,
that are responsible for various user-defined actions, or for I/O threads that handle
things such as cancellation events and callbacks for reading or writing events.

Tuning the Web Container in WildFly

[198]

More of how the WildFly listeners, workers, and buffer pools relate and how they
can be configured will be explained more in detail in the following section.

Tuning Undertow
As mentioned earlier, WildFly handles traffic on different protocols through
listeners. The only one that is enabled out of the box is the HTTP listener. If support
is needed for AJP and HTTPS, the corresponding listeners will need to be configured
and enabled. In earlier versions of the application server, there were quite a few
settings that had to do with performance tuning on these protocol configurations
(mainly thread pools settings). This is not the case in Undertow as thread handling is
handled earlier in the stack by the I/O subsystem and using XNIO.

Two key components are configured by the Undertow subsystem. First, there
is a XNIO worker pointed out by the worker attribute and named default by
default. Secondly, there is a buffer pool pointed out by the buffer pool attribute.
Even though clear by context, this is—like so many other things in in the default
configuration of WildFly—also named default. We will now have a more detailed
look into these components.

Worker
Our first component is the worker. The actual name value of the default worker
for a specific listener (in this example, the: http-listener) can be retrieved by the
following CLI command:

/subsystem=undertow/server=default-server/http-listener=default:read-
attribute(name=worker)

{

 "outcome" => "success",

 "result" => "default"

}

Many workers can be defined in WildFly, and each worker
can serve one or more listeners.

Chapter 7

[199]

The same information can also be explored in the Admin Console, as shown in the
following screenshot:

The console view of the HTTP listener in the Undertow subsystem

The name points to a worker configuration in the I/O subsystem called default. The
available attributes of the worker can be listed using the following CLI command:

/subsystem=io/worker=default:read-resource-description

Tuning the Web Container in WildFly

[200]

The same attributes are also available in the Admin Console, as shown in the
following screenshot:

The console view of the default worker in the I/O subsystem

Chapter 7

[201]

The following table explains the attributes and their impact on performance:

Parameter Description Default value Performance hint

stack-size The stack size of
a created thread

0 (uses the
default setting
of JVM)

The normal thread stack size logic
applies. A value that is too large
uses an unnecessary amount of
memory and a value that is too low
may result in OOMEs

task-
keepalive

The number of
seconds to keep a
connection from
a client alive

60
Very dependent on the use case. If
unsure, start with the default value
and test, test, test

io-threads

The number of IO
threads created
for non-blocking
tasks

3

The Undertow documentation says
1 per CPU core is reasonable, but
tests have shown that # CPU core *
2 to be even better

task-max-
threads

The maximum
number of
threads

15 # CPU core * 16

task-core-
threads

The number of
threads created
for blocking tasks
(such as servlet
calls)

4
Depends on the application, but
the general advice would be at
least 10 per CPU core

The buffer pool
The other component pointed out by Undertow is a buffer pool. Just as with the
worker setup, the default name of the pool for a specific listener (in this case, http
listener) is pointed out by the configuration and can be retrieved by using the
following CLI command:

/subsystem=undertow/server=default-server/http-listener=default:read-
attribute(name=buffer-pool)

{

 "outcome" => "success"

 "result" => "default"

}

This points once again to a setup in the I/O subsystem:

/subsystem=io/buffer-pool=default:read-resource-description

Tuning the Web Container in WildFly

[202]

The same attributes are also available in the Admin Console, as shown in the
following screenshot:

The console view of the default buffer in the I/O subsystem

The following table explains the attributes and their impact on performance:

Parameter Description Default
value Performance hint

direct-
buffers

Should the buffer pool use
direct buffers, this instructs the
JVM to use native (if possible)
I/O operations on the buffers.

true true

buffer-
size The size of the buffer 16384

A general suggestion is to
match the socket buffer size
in the underlying OS (16 kb
is the default for Linux)

Chapter 7

[203]

Tuning the servlet container and
JSP compilation
A feature in the servlet container in Undertow that relates to performance is the
option to ignore flushes on a servlet output stream. Ignoring flushes can provide
better performance in most cases. The current setting can be investigated using the
following CLI command:

/subsystem=undertow/servlet-container=default:read-attribute
(name=ignore-flush)

The default value of the ignore-flush attribute is false and can be easily changed
to true using the following command in the CLI:

/subsystem=undertow/servlet-container=default:write-
attribute(name=ignore-flush, value=true)

An MBean named jboss.as:subsystem=undertow,servlet-container=default
is also available. The following screenshot shows you the JConsole view of the
attributes of the default servlet container:

The JConsole view of the attributes of the default servlet container

Tuning the Web Container in WildFly

[204]

The setup is also available through the Admin Console, as shown in the
following screenshot:

The Admin Console view of the attributes of the default servlet container

Chapter 7

[205]

Tuning hints for Jastow
The JSP engine in Undertow is called Jastow and is a fork of the Apache Jasper
project. In the following table, we list a subset of the available configuration
attributes that are related to performance improvement and that may be of interest
in production(-like) environments:

Parameter Description Default
value Performance hint

development Recompiles JSP without the
application redeployment false false

trim-spaces Removes unneeded spaces to
minimize the response size false

It may be of interest
to set this to true if
network is a limitation

tag-pooling Pools and reuses tag handler
instances true true

check-
interval

These are the number of
seconds between checks if a
JSP needs to be recompiled
(only valid if the flag
development is set to true)

0
(=disabled)

Disable it by setting the
flag development to
false

modification-
test-interval

This is the maximum age
in seconds before JSP is
recompiled (only valid if the
flag development is set to
true)

4
Disable it by setting the
flag development to
false

recompile-on-
fail

This decides whether failed
JSP compilations should
trigger recompile for each
request

false false

generate-
strings-as-
char-arrays

Converts strings into
character arrays false

May improve
performance if set to
true in some cases

All these values (and others) regarding the JSP compilation can be retrieved using
the CLI. The following CLI command lists the available JSP settings together with
short descriptions:

/subsystem=undertow/servlet-container=default/setting=jsp:read-resource-
description

Tuning the Web Container in WildFly

[206]

It is also possible to get the values through JMX using the Mbean jboss.
as:subsystem=undertow,servlet-container=default,setting=jsp. The
following screenshot shows you the JConsole view of the JSP attributes of the
default servlet container:

The JConsole view of JSP attributes of the default servlet container

The same information is also available through the Admin Console, as shown in the
following screenshot:

Chapter 7

[207]

The Admin Console view of JSP attributes of the default servlet container

Using Apache as a frontend
A quite common setup for Java EE application servers, where clients are use HTTP,
is to have a native web server, such as Apache HTTPD, acting as a frontend server.
This setup has the following potential benefits:

• HTTPS termination: Handling the computations of HTTPS encryption and
decryption takes a lot of CPU usage. A native stack (as in Apache HTTPD)
or even designated hardware, is normally more optimized and faster than
handling these computations in Java.

Tuning the Web Container in WildFly

[208]

In this book, we use Apache HTTPD as an example, as
it is very versatile and is the most common web server
in the world. Several options, such as nginx and lighttpd,
are however available and should be evaluated before
deciding on which to use.

In most scenarios, it is allowed to terminate HTTPS in the frontend (that can
execute on it's own hardware that is separate from the application server)
and use unencrypted traffic within the infrastructure of the application
server. Your IT security policies and business requirements related to
performance should give direction to what is allowed and needed for
your environment.

Using a web server such as Apache HTTPD for HTTPS termination relieves the computational
burden of encryption/decryption on the application server and its hardware

• Static content: Even though the new Java EE web containers have improved
in serving static content (using internal caches and so on), an application
with much static content may very well benefit from locating that material in
a native web server. Thus, it lets the Java EE / servlet web container focus on
more dynamic and executing content.

Static content placed in the web server, Apache HTTPD, enables the application
server, WildFly, to focus on more runtime tasks and dynamic content

For applications that are required to handle very large
loads, there exist some interesting options in terms of web
accelerators. Among these specialized caching solutions,
it is worth exploring, for example, Apache mod_cache
(http://httpd.apache.org/docs/current/mod/
mod_cache.html) and Varnish Cache (https://www.
varnish-cache.org/).

Chapter 7

[209]

• Demilitarized Zone (DMZ): Some infrastructure and security-related
scenarios mandate the use of a DMZ in front of all applications that interact
with internal systems. In these cases, a web server put in the DMZ can act as a
frontend for the WildFly servers that are running in an internal network zone.

The Apache HTTPD web server can act as a gateway in DMZ, handling,
for example, traffic traceability and security access to a secured internal

zone where application servers such as WildFly run

• Load balancing: A web server such as Apache HTTPD can, with some extra
modules such as mod_cluster, act as a software load balancer in front of a
collection of WildFly instances. The web server (load balancer) then provides
functionality for both load balancing and failover. This will be discussed
more in detail in the last chapter of the book as we dissect WildFly clusters.

The Apache HTTPD and mod_cluster act as a load balancer, directing traffic,
by some balancing algorithm, to the underlying WildFly application servers

HTTP and AJP
The HTTP protocol was not originally designed with focus on performance. Instead,
its main focus was simplicity and ease of understanding. Its simplicity actually
makes it humanly readable and very easy to work with.

Interpreting the HTTP protocol into a more binary representation requires quite an
amount of CPU overhead in terms of both encoding and decoding. An example of this
is having a web server frontend where incoming HTTP calls first need to be decoded
(after any HTTPS termination is performed) and then encoded to HTTP again before
sending the call on to an application server, where a final HTTP decoding must be
performed. Outgoing calls must go through the same but reversed operations.

Tuning the Web Container in WildFly

[210]

To aid this constant and costly high-level encoding-decoding, Apache JServ Protocol
(AJP), http://tomcat.apache.org/connectors-doc/ajp/ajpv13a.html), was
invented. It is a binary protocol that can carry everything that HTTP can, but it is
less CPU intensive to encode and decode. For performance reasons, it is highly
recommended that you use AJP instead of HTTP between the Apache HTTPD web
server and WildFly.

The functionality of handling a request dispatch to a backend server is made
possible in Apache HTTPD through some module plugins. The most common
plugins are listed as follows:

• mod_proxy: http://httpd.apache.org/docs/2.4/mod/mod_proxy.html
• mod_jk: http://tomcat.apache.org/connectors-doc/
• mod_cluster: https://www.jboss.org/mod_cluster

While mod_jk has traditionally been the most commonly used out of these, mod_
cluster is more modern, easier to configure, and is also well integrated with WildFly.
Therefore, this is also the plugin that we use for all examples in the book. As we use
just one WildFly instance in this scenario, the remaining load balancing and failover
features of mod_cluster will be covered more in detail in a later chapter.

Configuration
We will set up a scenario where we want to configure an Apache HTTPD web server
in front of a single non-clustered WildFly. The mod_cluster subsystem in WildFly is
not enabled for non-clustered setups by default, so we need to add it to our setup.

No matter which Apache plugin you choose, there is a really nice
application available at http://lbconfig.appspot.com/,
which helps you generate a good setup depending on your
topology. Note that the generated JBoss setup is not correct for
WildFly but should still provide good information.

The configuration consists of two major parts: one in Apache HTTPD and one
in WildFly.

Chapter 7

[211]

The Apache HTTPD configuration
The easiest way to get an Apache HTTPD with mod_cluster up and running
is to download a ready-to-use Apache, bundled with mod_cluster, from:
https://www.jboss.org/mod_cluster/downloads.

Otherwise, you have to download the required modules from the same website,
install them into your existing HTTPD, and add some minimal configuration.
Note the IP address (192.168.1.200) and port (6666), both of which will be
used in the WildFly configuration as well. The following lines need to be added
in httpd.conf (or referenced files):

LoadModule proxy_module mod_proxy.so
LoadModule proxy_ajp_module mod_proxy_ajp.so
LoadModule slotmem_module mod_slotmem.so
LoadModule manager_module mod_manager.so
LoadModule proxy_cluster_module mod_proxy_cluster.so
LoadModule advertise_module mod_advertise.so
...
<IfModule manager_module>
 Listen 192.168.1.200:6666
 <VirtualHost 192.168.1.200:6666>
 <Directory />
 Order deny,allow
 Deny from all
 Allow from 192.168.1
 </Directory>

 ServerAdvertise On:192.168.1.200:6666
 EnableMCPMReceive

 <Location /mod_cluster-manager>
 SetHandler mod_cluster-manager
 Order deny,allow
 Deny from all
 Allow from 192.168.1
 </Location>
 </VirtualHost>
</IfModule>

Tuning the Web Container in WildFly

[212]

The last part that defines mod_cluster-manager is optional and provides a status
page available at http://192.168.1.200:6666/mod_cluster-manager, showing
you various kinds of information about the connected WildFly server (or servers, as
in most cases).

The WildFly configuration
Enabling the mod_cluster subsystem for a non-clustered WildFly is done by
adding the mod_cluster subsystem with minimal configuration and an AJP listener
(as WildFly isn't configured with one enabled out of the box) by performing the
following steps:

1. Start with adding the mod_cluster extension by using the following
CLI command:
/extension=org.jboss.as.modcluster:add

2. Then, add an AJP listener by using the following command:
/subsystem=undertow/server=default-server/ajp-
listener=ajp:add(socket-binding=ajp, scheme="http")

3. Finally, add a (here minimal) mod_cluster configuration by using the
following commands:
/subsystem=modcluster:add

/subsystem=modcluster/mod-cluster-config=configuration:add
(proxy-list="192.168.1.200:6666", connector="ajp")

This tells WildFly to send information to 192.168.1.200 on port 6666,
which fits well with the earlier configured Apache's dedicated virtual host
for mod_cluster.

After installing mod_cluster and configuring WildFly, as shown in the preceding
steps, your web applications deployed on WildFly should be automatically available
through the Apache HTTPD frontend server. This allows Apache HTTPD to handle
static content and HTTPS termination. An HTTPS setup will need a more detailed
configuration, but that is outside the scope of this book. By viewing the mod_cluster
status page at http://192.168.1.200:6666/mod_cluster-manager, it can be
verified that the setup is correct. The following screenshot shows you the content of
the mod_cluster status page:

Chapter 7

[213]

The mod_cluster admin page

The screenshot shows us that there are two web applications deployed on the WildFly
server (wildfly-performance-tuning-ch6-web-2014.0-SNAPSHOT and h2console)
and that these will be accessible by clients that go through Apache HTTPD.

Summary
In this chapter, we learned that the old web container—JBoss Web Server—of JBoss
AS has been replaced by Undertow. This new web server/container is blazing fast
and highly adaptive to handle new technologies.

Support for HTTP, HTTPS, and AJP is available through listeners that connect to a
chain of handlers that, in turn, provide dynamic functionality.

Undertow is based on the XNIO framework that, supports and enhances Java NIO.

There are relatively few tuning points in Undertow, but heed should be taken for the
available worker pools, buffer pools, and JSP compilation attributes. As always, the
needs of your specific use case and environment can only be satisfied by tests.

Tuning the Web Container in WildFly

[214]

Using a web server such as Apache HTTPD (with mod_cluster) as a frontend to one
or many underlying application servers such as WildFly can be very beneficiary and
allows the following:

• HTTPS termination
• Static content handling
• DMZ
• Load balancing

After setting the stage with the foundation of a web container, we now move into the
tuning of the actual Java EE web applications that are to be executed in the container.

Tuning Web Applications
and Services

In this chapter, you will learn about how to write fast and efficient Java EE
based web applications and services by the use of some common design and
tuning techniques.

From a bird's eye view, all web applications can arguably and roughly be divided
into the following two broad areas:

• Business-to-Consumer (B2C) applications: In these applications, the user
interacts through a User Interface (UI), usually in a browser, with server-
side business logic and data that often resides in one or more legacy systems.
The typical archetype of a B2C application based on Java EE is engineered
using dynamic web pages (JSP/servlets) and/or frameworks based on a
component-driven UI design model (JSF). WebSockets is a new and exciting
player in this field.

• Business-to-Business (B2B) applications: These typically involve the
exchange of information between businesses with legacy systems and
makes use of Service Oriented Architecture (SOA). They are also common
paradigms of the integration of heterogeneous systems, which are often
used in and by an Enterprise Service Bus (ESB) platform. In Java EE, a B2B
application that uses SOA is most often realized using web services and/or
RESTful services.

Although these areas sometimes float together and overlap, especially as SOA
becomes increasingly utilized within application stacks, this chapter has been split
into two main sections that dissect each respective area. In the first section, we will
discuss the performance tuning of web applications with a focus on different Java
EE frameworks and related technologies and consequently, in the second section,
we will talk about the performance tuning of Java EE based services.

Tuning Web Applications and Services

[216]

Web applications
Web applications of today are almost always built with some kind of web
framework. These frameworks exist in vast numbers that seem to rise by the day.
No matter which language you favor, there is likely to be a framework out there
for you. Determining what or which frameworks are actually suitable for your
organization and use cases is, however, not always an easy task.

Choosing a web framework
When it comes to adopting new technologies, many of the decision points are
mainly organizational and related to the business. When an organization intends to
adopt an application-development framework, it is typically looking to cover the
following requirements:

• Adaptivity and business-related integration possibilities with existing
products of interest for the organization (internal and external)

• The ability to cover current and foreseeable business requirements
• Address complexities and maximize the developer productivity, which can

often be done by having simple but feature-rich frameworks that minimize
or reduce the amount of code (and sometimes even configuration, although
this often seems to go in the opposite direction) that developers have to write
and maintain

• Allow developers to focus on the business logic and minimize the required
amount of boilerplate code and configuration

Following our path with a focus on Java EE, we will mainly address tuning related
to the frameworks of the specification. Before going into the gory details of tuning
though, we will start with a bit of historic background on dynamic web frameworks
with an eye on how to improve overall performance.

The evolution of web frameworks
Initially, dynamic web applications were based on the Common Gateway Interface
(CGI), portrayed in the next diagram. These applications were commonly realized
by a script that parsed the URI of the incoming HTTP request method call (normally,
GET or PUT), performed some business logic, and then returned a response as a
generated HTML page. A basic web server with a supporting CGI library would
spawn a new OS process for each incoming call. Naturally, this was very ineffective
and had its limitations (such as the number of processes and network ports) that
quickly became obvious in environments under heavy load.

Chapter 8

[217]

A logical model of Common Gateway Interface

With the introduction of the Java Servlet API, a platform called a web container for
executing Java-based logic came into play. In this container, an incoming call results
in a thread being retrieved from a pool of threads and designated to execute the logic
of the servlet. Using pooled threads allowed for a much improved performance in
comparison to the process of continuously spawning new threads. Earlier, servlet
containers actually didn't have a pool of threads but simply spawned a new thread for
each incoming call. It was an improvement over spawning processes, but pooling took
it up another notch. Although a lot of productivity improvements had also been made
to parse incoming calls (including request attributes and values), the bare half-duplex
servlets still need to create their HTML output and stream it to an awaiting browser
client. The concept of the bare servlet is depicted in the following diagram:

Servlet

As an attempt to make responses more dynamic and increase developer
productivity, JavaServer Pages (JSP) was introduced. A JSP is really a template
page mixed with a markup language notation, which almost always is (X)HTML,
and special JSP elements with Java code. When a JSP is called, it is initially compiled
(on the first call or precompiled) into a Java servlet. The JSP can be used instead
of a regular servlet that contains both logic and view, but the two have come to
complement each other. The servlet would initially accept a call and handle any
business logic before controlling what JSP it could and would pass on the execution
to. The receiving JSP would act as a dynamic template with logic that is relevant only
for the view.

Tuning Web Applications and Services

[218]

Using just a JSP without a separate controller (models, views, and controllers will
shortly be described) is a pattern called Model-1, while the servlet-JSP (controller
and view) combination is called Model-2. The preceding diagram with the bare
servlet (replaced by a JSP) is equal to the Model-1 pattern and the following diagram
equals the Model-2 pattern:

The Java servlet and JSP in a Model-2 pattern setup

At the core of almost any modern application is the data of the organizational business
model. This includes how it can be effectively used, controlled, and manipulated
by end users through a Graphical User Interface (GUI) view. The Model-View-
Controller (MVC) pattern, as seen in the following diagram, confirms this by
separating the business domain object into a model, the visualization and rendering of
the business data into a view suitable for interaction, and the request processing and
business logic into a controller. Using Java Enterprise technologies, the view could be a
JSP, the controller could be a servlet, and the model are objects that holds and possibly
persists data (such as an Entity, POJO, or Data Access Object—DAO).

The components of the MVC pattern

Chapter 8

[219]

One of the initial and strong arguments for the MVC pattern was its separation of
concerns. Each of the three cornerstones of the pattern would handle its own area of
specialization free from the other. This was great and lots of frameworks were, and
are, based on the pattern. In reality, though, tight couplings between several of the
cornerstones was the result.

As requirements for rich and highly responsive UIs in web applications became
increasingly strong, solutions based on just Java servlets and JSPs became more
and more inadequate.

JavaServer Faces (JSF) is a server-side component framework, which together with
related component libraries, was intended as the next step of evolution in the Java
enterprise specifications.

In JSF, a number of life cycle phases were introduced as depicted in the
following diagram:

The JSF life cycle phases and paths

From a developer's point of view, these phases are completely isolated from each
other in order to secure the separation of concerns. Thus, each phase can also be
separately and independently overridden to handle the various tasks the framework
enables. To make things even better, should the framework or user (developer) need,
the life cycle can be short-circuited to only execute the necessary phases. Should
for example, the validation fail (here, in the Process Validations phase), the JSF
framework will notice it and jump directly to the last (Render Response) phase,
skipping all intermediate phases, and enable the quick display of the relevant
error-related information.

Tuning Web Applications and Services

[220]

Despite its best intentions, JSF is often criticized for the following points:

1. Being complex and hard to understand
2. Being too "silent" and hard to debug
3. Having poor performance

In comparison to many earlier frameworks, JSF is definitely more complex, as in, it
has more steps and paths of execution. As with all things, we must, however, take
a step back and think about the entire problem domain and what we are trying to
solve for each particular case. The reason that JSF is more complex is that it also
solves more problems than its predecessors. A rich enterprise application is for
example often required to support (Bean) validation, transactional states, and partial
updates of the Domain Object Model (DOM) component tree in the GUI. Putting
these in perspective, JSF is actually a simple, dynamic, and feature-rich standardized
framework that aids productivity and application management. JSF is often
misunderstood in terms of complexity, but it is true that it can be hard to interpret
where in the life cycle, and why, a problem occurs. A simple aid for this is to enable
a simple phase listener such as the PhaseTracker class in the following code (note
that, in this example, the phase listener is triggered before and after each phase
(PhaseId.ANY_PHASE) in the JSF life cycle):

public class PhaseTracker implements PhaseListener {
 @Override
 public void afterPhase(PhaseEvent phaseEvent) {
 System.out.println("PhaseTracker.afterPhase: " +
 phaseEvent.getPhaseId() + ":" +
 phaseEvent.toString());
 }
 @Override
 public void beforePhase(PhaseEvent phaseEvent) {
 System.out.println("PhaseTracker.beforePhase: " +
 phaseEvent.getPhaseId() + ":" +
 phaseEvent.toString());
 }
 @Override
 public PhaseId getPhaseId() {
 return PhaseId.ANY_PHASE;
 }
}

The configuration in faces-config.xml can be seen in the following configuration:

<lifecycle>
 <phase-listener>util.jsf.PhaseTracker</phase-listener>
</lifecycle>

Chapter 8

[221]

A phase listener can also easily be instrumented to measure the execution time
between phases and other performance-related metrics that might be useful for
tuning your application.

JSF's reputation of poor performance is both justified and not justified. In the end, it
is really all about what you need support for. If you do not need support for what
JSF brings to the table, then it just isn't for you. If you, for example, need extremely
fast server responsiveness and can ignore features such as validation, transactions,
and rich component libraries, looking for another framework is recommended. If
you, on the other hand, do need these and other enterprise features as well as a
standardized way to develop web applications, JSF should at least be on your
short-list of frameworks to evaluate.

Should you opt for putting together a set of frameworks
on your own (such as Hibernate for bean validation and
persistence and JBoss/Arjuna for transaction support),
keep in your mind that you will soon have created an
"enterprise"-like web framework stack on your own.
This might be completely relevant for your particular
situation, but it very seldom is, as it almost always comes
with unjustified costs in terms integration complexity,
version management, and maintenance.

The JSF render response phase is often identified as the most costly of all phases in
terms of both CPU usage intensity and execution time. The good thing, however,
is that the JSF architecture supports partial updates of the user interface DOM. By
using the Asynchronous Java and XML (AJAX) set of technologies (Javascript,
HTML, CSS, and so on), request calls from a client can be made to a server-side
application that only returns and updates a partial part of the complete DOM tree.
This technique enables more responsive UIs and can improve overall performance.
AJAX is, therefore, available and increasingly used in the various JSF component
frameworks, such as PrimeFaces (http://www.primefaces.org/), Richfaces
(http://www.jboss.org/richfaces/), or IceFaces (http://www.icesoft.org/),
to mention a few.

Tuning a web component – the data table
When we are talking about web-based GUI components, a button or a text input field
are quite likely to be among the most common. The performance tuning possibilities
of these are however, quite limited. A larger but still very common and very tunable
component is the data table.

Tuning Web Applications and Services

[222]

To make things interesting, we have looked at the performance of a simple data table
that only displays the entity data using the following three technologies:

• Servlet/JSP with the core JavaServer Pages Template Library (JSTL)
• Pure JSF (2.2)
• JSF with PrimeFaces (4.x)

Each test used the same data set and displayed the same number of entities (rows)
with attributes (columns) in a data table. As each use case and environment will
factor in, the actual number of measurements will be quite irrelevant. Hence, we
will not list the actual results here but, instead, focus on the relative results.

The data table in the servlet/JSP implementation was implemented as follows in
the JSP page:

<c:forEach items="${beanList}" var="bean">
 ${bean.attribute1}
 ${bean.attribute2}
 ${bean.attribute3}
</c:forEach>

In the pure JSF solution, the head of the data table definition looked similar to the
following code in the JSF page:

<h:dataTable value="#{tableBean.beanList}" var="bean">

Finally, and similar to JSF-PrimeFaces, the head of the data table definition can be
seen in the following code:

<p:dataTable value"#{tableBean.beanList}" var="bean">

The result showed that, in terms of the throughput, the servlet/JSP solution was
about twice as good as the pure JSF solution, and the pure JSF solution was slightly
better than the one that used JSF-PrimeFaces.

From this, we can simply believe that servlet/JSP solutions are "better" than any of
the JSF variants. Now, if you only want to show data without any user interaction,
this might just be true. The feature requirements of rich user interfaces, however,
imply otherwise. In a modern application, the user interface with a data table is quite
likely to support at least some, if not all, of the following features:

• True pagination
• Filtering
• Sorting
• Selecting and view/editing of an element (row or cell), which, on performing

an update, might require validation in turn

Chapter 8

[223]

Implementing these features in a servlet/JSP solution will be quite cumbersome
and will require a lot of custom code. Likewise, implementing the pure JSF solution
will require quite a lot of code. The JSF-PrimeFaces solution, on the other hand, is
extremely simple and productive. Each of the individual features can be enabled by
adding an attribute to the data table definition (for example: paginator="true",
sorting="true" and selection="#{customersAction.selectedCustomer}"),
plus a relatively simple and straightforward data model class (extending, for
example, the org.primefaces.model.LazyDataModel class) that retrieves the
correct data set to be shown for a given action—a new page, filtering, and so on.

The different JSF component libraries have evolved separately
and continue to do so. Thus, their set of features differ quite a bit
and can change radically even between versions. The choice of
which JSF component library to be used is very important, as it will
impact the developer's productivity, product stability, and user
experience heavily. So, before just selecting a library, make sure
that you have a well-thought-out set of requirements (including
both business and technological) that it should be able to live up to.

Tuning servlet/JSP applications
In this section, we will talk about some common tuning activities related primarily
with servlets and JSP pages. Some of these activities are also relevant when using
other technologies.

Choose the scope wisely
Storing data objects in the correct scope depending on when and how they are
needed is an important design aspect that can and will affect the performance
of an application.

For servlets and JSPs, the following are the scopes that exist:

• Servlet/Application
• Session
• Request
• Page (JSPs only where it is default)

From top to bottom of the bullets, the objects put in a certain context will in general
live longer and will be accessible from a lower positioned context. So, changing
an object in the application scope will for example make the change visible in
(and affect) all sessions.

Tuning Web Applications and Services

[224]

Storing a lot of data including large objects or objects graphs in, for example, the
HttpSession should be avoided as it will consume memory that won't be released until
the session dies and it can carry a heavy computation overhead due to serialization.

Should you need to, you can store an object in the session as follows:

HttpSession session = request.getSession();
session.setAttribute("user", objectToStoreInSession);

In a JSP page, a JavaBean object can be stored in a given scope as follows
(selecting one of the four listed scopes):

<jsp:useBean id="myName"
 scope="page|request|session|application"
 class="MyClass">
</jsp:useBean>

As data objects stored in one scope and no longer need to be there, they should be
removed. Removing an object associated with a specific attribute from the session is
done using the following line of code:

session.removeAttribute("user");

Should you need to clear (invalidate) the entire session, this can be done by using the
following line of code:

session.invalidate()

Session timeouts
Setting a session timeout that is adequate for your specific use case is very important.
Setting the timeout to a high number will in effect limit the number of sessions that
can exist in memory over time on a server. Setting a number that is too small will
annoy your customers (as they might get prematurely logged out due to "short"
periods of inactivity) and have negative effects on the business.

Defining the session timeout for all sessions in a web application can be done in the
web.xml file of the application. Its configuration is as follows (note that it should be
an integer and that it defines the timeout in minutes):

<web-app ...>
 <session-config>
 <session-timeout>20</session-timeout>
 </session-config>
</web-app>

Setting the timeout can also be done programmatically per session, as follows
(note that here, the timeout is defined in seconds):

HttpSession session = request.getSession();
session.setMaxInactiveInterval(20*60);

Chapter 8

[225]

JSP use of HttpSession
If a JSP does not need to use the HttpSession—which is created by default—some
overhead can be saved by disabling it with the following code:

<%@ page session="false"%>

JSP include
Files can be included in JSP pages in the following two ways:

• Directive: The content of the specified file is included when the main
page is converted to a servlet (during the translation phase). For example:
<%@ include file="me.jsp" %>.

• Action: The content of the specified file is included when the page
is requested (during the request processing phase). For example:
<jsp:include page="me.jsp" />.

If the included file does not change, the Directive variant will be faster. If it does
change (in the case of an exploded artifact—WAR—and with the container in
development mode—which isn't recommended in production), the directive will
require a recompilation of the main page, which will affect performance.

The Action variant is a more dynamic solution, should you need to change
included pages.

Compression
By using compression, the physical amount of a set of data that travels over the
network will be minimized. Communication will, thus, be less susceptible to network
latency. This will naturally come at the computational and CPU-intensive cost of
compressing/decompressing data. Performing compression is most often worth the
trouble and cost but this should, as usual, be validated per environment, platform,
and use case.

Compression in a servlet is conveniently performed by the use of streams. The
java.util.zip.GZIPOutputStream / java.util.zip.GZIPInputStream class
will perform GZIP-format-based compression/decompression. Similar standard
implementations exist for the ZIP and deflate formats.

In order to properly recognize a compressed request or response, the proper content
type must be interpreted for incoming, or a set for outgoing, communications, for
example, application/x-gzip for GZIPed transmissions.

Tuning Web Applications and Services

[226]

Asynchronous servlets
To meet the needs in terms of increased traffic from applications that use, for
example, AJAX to create rich and responsive graphical user interfaces, servlets and
filters can be made asynchronous. These servlets accept a call and immediately
spawn a new thread in which execution is continued. The initial servlet thread will
be non-blocking and can return immediately without having to wait for resources or
responses from other events. Instead, it will be free to handle new incoming requests.
The response to the original client will be made from the newly spawned thread
whenever it is ready.

An asynchronous servlet is marked as shown in the following code, with the
asyncSupported attribute in the @WebServlet annotation:

@WebServlet(urlPatterns={"/asyncservlet"}, asyncSupported=true)

Within a service method (here for a GET operation), an implementation of the
javax.servlet.AsyncContext interface is then used to spawn a new thread by
executing code like the following:

public void doGet(HttpServletRequest req,
 HttpServletResponse resp) {
 AsyncContext actx = req.startAsync();
 // start and execute new thread
 actx.start(new Runnable() {
 public void run() {
 String param = actx.getRequest().getParameter("p");
 /* perform processing HERE */
 HttpServletResponse response = actx.getResponse();
 /* output to response HERE */
 actx.complete();
 }
 }
}

The req.startAsync() method call tells the servlet to release, but not return a
response to the client after the method has finalized the execution. Instead, the newly
spawned thread will commit the response and send it to the client as the complete()
method of AsyncContext is executed.

Undertow's proprietary solutions
To achieve extreme speeds in the Undertow web container and server, it is
recommended that you look into the usage of its own non-blocking servlets and
native handlers. These are realized by implementing the io.undertow.servlet.
ServletExtension and io.undertow.server.HttpHandler interfaces, respectively.

Chapter 8

[227]

Note that these handlers are completely proprietary
to Undertow!

We mentioned the Undertow handlers briefly in the previous chapter, and
more information can be found in the Undertow online documentation at:
(http://undertow.io/documentation/servlet/using-non-blocking-
handlers-with-servlet.html).

Tuning JSF-based applications
WildFly ships with the Mojorra JSF 2.2 implementation, but it also comes with
a feature called Multi-JSF that allows it to utilize any type or version of JSF
implementation. Here, we will only look at features and configurations of the
Mojorra implementation, however.

We previously got to taste one of the most common web components (the data table)
that is part of almost every web application. Unfortunately, there is no magic switch
that can dramatically improve the performance of a single JSF component. However,
some general best practices do exist to accelerate the JSF life cycle. We can group
them roughly into three areas:

• Configuring JSF state saving efficiency
• Using the Ajax support in JSF to reduce the cost of page rendering and

data transmission
• Loading (JavaScript/CSS) files efficiently

Configuring JSF state saving efficiently
One of the most important settings that affect the performance and the memory used
by the JSF user interface components is where to save the session state. You can opt
between saving the state in the server (the default), which normally provides better
performance but has high memory usage, or saving it in the client, which reduces the
server memory footprint, at the cost of performance loss.

Besides this, by using the server-session state, you can have control over the
serialization process, which is mandated by the JSF specification, to keep the
application state consistent through the JSF life cycle. Thus, the suggested guideline
is to leave it to the default (server) session-state saving, or explicitly configured with
the following context parameter setting in your applications web.xml file:

<context-param>
 <param-name>javax.faces.STATE_SAVING_METHOD</param-name>

Tuning Web Applications and Services

[228]

 <param-value>server</param-value>
</context-param>

Looking at our data table example, saving the state on the server gave us about
15 percent higher throughput compared to saving it on the client. As always, you
should test and see how this and any other change affects your specific application.

The state saving method in server mode
When using the server-based state saving method, we have at least four major
configurations that can affect performance.

First, as memory usage can become excessive in the server mode, we can limit the
number of views stored in a session by the following two context parameters:

• com.sun.faces.numberOfViewsInSession: This has a default value of 15.
This setting limits the number of JSF views per logical view in a session for
both client and server modes of the state saving method. The Least Recently
Used (LRU) algorithm is used to maintain the limit.

• com.sun.faces.numberOfLogicalViews: This has a default value of 15.
The LRU algorithm is used here as well to maintain the limit.

A value that is too low on either of these parameters will throw a javax.faces.
application.ViewExpiredException error during the restore view phase, but
a low enough number will save memory, thereby leaving room for more sessions
per server.

Another way of conserving memory is by compression. When setting both of the
following context parameters to true, the state for the view will be serialized and
compressed before being Base64 encoded:

• com.sun.faces.serializeServerState: This has a default value of false.
• com.sun.faces.compressViewState: This has a default value of true.

Doing this will however require the use of more CPU resources (mainly from
serialization), which normally affects performance negatively. Bandwidth and
memory usage, on the other hand, will benefit.

The state saving method in client mode
In the client-based state saving method, there are three major configurations that can
affect performance.

Chapter 8

[229]

First, like in the server mode, enabling (setting it to its default true value) the
com.sun.faces.compressViewState parameter will make the application use
GZIP compression. This will reduce the memory and bandwidth usage but will
require more CPU resources.

Secondly, the size of the client buffer is set to 8192 bytes per request by default.
Depending on the complexity of the views of the application, this value can be
adjusted using the com.sun.faces.clientStateWriteBufferSize parameter. A
higher value will naturally use more bandwidth and memory. Should compression
be turned on, the CPU usage will also go up.

Finally, we have the configuration parameter that lets you stipulate the
implementation (class) to be used for serialization: com.sun.faces.
serializationProvider. Using this parameter, you can define an implementation
that satisfies your specific needs. You can even provide your own implementation by
implementing the com.sun.faces.spi.SerializationProvider Service Provider
Interface (SPI).

A summary of state saving method configurations
The most important configurations of the state saving methods and their effects,
which were discussed in the preceding section, have been summarized in the
following table. The values (Small, Medium, and Large) are merely relative and
are used to indicate the configurations' general effect to each other. Hence, they do
not, for example, directly indicate an actual low (small) or high (large) amount of
resource utilization.

State saving
method Compression Server side

memory usage CPU usage Bandwidth
usage

Server False Large Small Small
Server True Small to Medium Large Small
Client True Small Large Medium
Client False Small Medium Large

The project stage
When you develop a JSF-2-based application, it would be wise to have your
development project configured, in its web.xml file, to use the Development
mode, as shown in the following configuration:

<context-param>
 <param-name>javax.faces.PROJECT_STAGE</param-name>
 <param-value>Development</param-value>
</context-param>

Tuning Web Applications and Services

[230]

At the cost of some performance, this will give you better error messages, even from
the client-side JavaScript. As the application is moved into production (or during
performance tests), the value should naturally be changed into Production to
regain performance.

JSF Immediate
The immediate attribute is a standard JSF UI component attribute and is also
available on most command and input components in both the PrimeFaces and
RichFaces component libraries.

For components that have the value of immediate set to true, validation, conversion,
and events associated with these components will be processed directly in the Apply
Request Values phase rather than a later phase. The component values will also be
directly associated with their corresponding backing bean attributes. This can, for
example, be used for performance enhancing flows, where one quickly wants to
short-circuit the JSF life cycle while still performing some tasks on incoming values.

Using AJAX support in JSF
One of the major upgrades of the JSF 2 release was the addition of the AJAX support
for user interface components. By using AJAX development techniques, web
applications can retrieve data from the server asynchronously in the background,
without interfering with the display and behavior of the existing page. This leads to
an increase in the network interactivity with the website but also a potential boost in
the overall performance. Since only a portion of the webpage can now be updated
as a consequence of users' actions, the user interfaces can get a better feel of the flow
and responsiveness in comparison to when the entire page needed re-rendering.
In this section, we will show you, with examples, how AJAX can improve its
performance by using features of the RichFaces and PrimeFaces component libraries.

Partial DOM updates by a component and attribute
The modern JSF component library has many benefits. The AJAX support for their
various UI components is arguably one of the major ones. For example, if you
need to limit the part of the web page that needs to be updated, you can, in most
components, do it by means of a special component or a single component attribute.

Based on the f:ajax tag of JSF 2 Facelets, RichFaces supports partial updates using
the similar a4j:ajax tag (the convention changed from a4j:ajax in RichFaces 4 to
r:ajax in RichFaces 5) to update a part of the DOM tree.

Chapter 8

[231]

The following code sample shows you how RichFaces puts AJAX in action
using a4j:ajax:

<h:inputText value="#{userBean.name}">
 <a4j:ajax event="keyup" render="out" />
</h:inputText>
<h:outputText value="#{userBean.name}" id="out" />

As seen in the following figure, an input text field, "senses" each keystroke and echoes
every char to an output text field with the "out" ID —all with the help of the a4j:ajax
component, which actually handles all the "sensing" and echoing. The only part of the
DOM tree that gets updated is the branch with the outputText component.

A RichFaces sample of the a4j:ajax component performing partial
updates to the DOM tree. Each character typed into the inputText
component to the left is echoed in the outputText on the right.

More RichFaces examples are available in its online
showcase at http://showcase.richfaces.org/.

In other component libraries such as PrimeFaces, the AJAX support is available in both
specialized and similar (p:ajax) components/tags. AJAX support can also be available
within other components using specific attributes. In the following PrimeFaces
example, the update attribute of the p:commandButton component points to the ID of
another component (outputText). This component will be updated with the value of
the userBean.name, which was earlier populated in the inputText component:

<h:outputLabel for="name" value="Name:"/>
<p:inputText id="name" value="#{userBean.name}" />
<p:commandButton value="Submit" update="display"/>
<h:outputText value="#{userBean.name}" id="display" />

The preceding code will display the following:

When the button labeled Submit is pressed, the text in the inputText
component is copied to the rightmost outputText component

More PrimeFaces examples are available in its online showcase
at http://www.primefaces.org/showcase/.

Tuning Web Applications and Services

[232]

Updating a single component in the DOM tree by AJAX is naturally very efficient.
Often more or larger sets of components need to be updated though. You might need
to update a row in a table, an entire table, a submenu, and so on. You will normally
see the most performance gains when the tree's least needed amount is updated.

When several areas of a page needs to be updated at the same time, however, the
choice lies between updating each branch of components individually or the smallest
common parent component (such as a common panel) that covers them all. If you
have identified a view like this to be in need of tuning, then here you must test which
direction is best for your particular use case.

Single partial AJAX async (form) requests
The previous examples will submit all data in the form in which the components are
organized. Sometimes, you might only have the need to send data from a specific
component and any optional parameters. This will normally reduce the network
traffic volume even more (in the request at least, but often, also in response).
RichFaces supports this by setting the ajaxSingle attribute—which is available
on some components—to true, as shown in the following example:

<a4j:commandButton action="#{bean.save}"
 value="Submit" ajaxSingle="true"/>

In PrimeFaces, a similar attribute is available on command components (such
as commandButton and commandLink) and is named partialSubmit. Here it is,
however, defined to handle only values related to partially processed components.

The command components in PrimeFaces also have an attribute named ajax. With
that enabled (and set to true, which also is the default value) the submit type of the
component will be handled by AJAX.

Also, in PrimeFaces, by enabling (setting to true) the async attribute on the
command components will prevent the AJAX requests to be queued.

All of these three PrimeFaces attributes can potentially improve the performance of
your application.

As an observant reader might have noticed, different component
libraries have many features that are similar, if not the same.
Although they sometimes use the same names for components and
attributes, it does not mean that they have the same functionality
or perform the same actions. This makes quick transitions and
comparisons between libraries tedious and the usage hazardous. It
is, therefore, important to always verify the real and exact meaning
of every attribute in the documentation of the respective library.

Chapter 8

[233]

Filters
In the now relatively old, but still used RichFaces 3 library, you can use an AJAX
filter (org.ajax4jsf.Filter) and its related initialization parameters to handle code
correction for AJAX requests and optimizations of XML parsing. The filter is actually
a standard servlet filter defined in the web.xml file of a web application as follows:

<filter>
 <display-name>RichFaces Filter</display-name>
 <filter-name>richfaces</filter-name>
 <filter-class>org.ajax4jsf.Filter</filter-class>
</filter>

The filter has a few initialization parameters that can affect performance, which
are as follows:

• enable-cache

• forcenotrf (also known as forceparser)

The enable-cache initialization parameter, which is set to true by default, enables
the caching of framework-generated resources (such as JavaScript, CSS, and images).
During development and debugging, this parameter could be set to false in order
to ensure that caching won't affect results. In production, it should be set to true to
ensure best performance.

Using the default true value of the forcenotrf parameter will force parsing by an
HTML syntax checker as well as conversion to well-formed XML on any JSF page.
Setting it to false only parses AJAX responses. This will improve performance, but
might cause visual side-effects during AJAX updates.

As parsing and correcting text, such as HTML, is a both a time and CPU-consuming
operation, it is important to use an efficient parser. In RichFaces 3, the available
options are as follows:

• NONE: No corrections are made.
• TIDY: Recommended for applications with complicated or non-standard

markup. This parser is often very slow.
• NEKO: Accelerates AJAX requests a lot but also requires the markup to be

completely strict, or errors might occur.

Tuning Web Applications and Services

[234]

The parsers are configured as follows (the path value of each parser is normally
defined to handle files that contain whatever each parser needs or specializes in,
but here, they are all just marked with an asterisk, *):

<context-param>
 param-name>org.ajax4jsf.xmlparser.ORDER</param-name>
 <param-value>NONE,NEKO</param-value>
</context-param>
<context-param>
 <param-name>org.ajax4jsf.xmlparser.NONE</param-name>
 <param-value>*</param-value>
</context-param>
<context-param>
 <param-name>org.ajax4jsf.xmlparser.NEKO</param-name>
 <param-value>*</param-value>
</context-param>

Loading resource files efficiently
When inspecting a webpage with a rich UI, such as the ones using a JSF component
library, you will see a lot of resources such as CSS, Javascript, and image files being
used. These are vital in creating the intriguing experience of the page, but they
come with a cost. Each new file will need to be retrieved over the network in a new
request. Both the number of requests as well as the size of the files requested affect
the performance negatively as their numbers rise.

In RichFaces, you can enable resource optimization, which will aggregate all possible
requests into one by adding the following configurations to your web.xml file
(the resourceOptimization parameter actually has different names in different
versions, so it is wise to verify this with the documentation of the version you use;
this is for RichFaces 4.2 and above):

<servlet>
 <servlet-name>Resource Servlet</servlet-name>
 <servlet-class>
 org.richfaces.webapp.ResourceServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>

<context-param>
 <param-name>
 org.richfaces.resourceOptimization.enabled
 </param-name>
 <param-value>true</param-value>
</context-param>

Chapter 8

[235]

RichFaces also optimizes packaging and compression on the fly when the
javax.faces.PROJECT_STAGE context parameter, discussed earlier, is set to
Production. When this parameter is set to Development, resources are still
packaged but no compression will be used, which is great for debugging.

From PrimeFaces extensions (http://primefaces-extensions.github.io/),
another strategy for resource optimization is provided. Here, compression,
aggregation, and image loading by Data URIs (roughly a type of aggregation where
files are embedded in CSS) is performed during the artifact creation using the
following Maven plugin:

<groupId>org.primefaces.extensions</groupId>
<artifactId>resources-optimizer-maven-plugin</artifactId>

For applications where many resources are used often both per page and in separate
pages, the combination of resource optimization and client-side caching is likely
to give the overall performance a significant boost. The first request will, however,
normally be a bit slow as this is required to retrieve the big files.

WebSockets
WebSockets is a relatively new technology in which the API is specified by the W3C.
It provides full-duplex communications between two peers over the TCP protocol. It
normally runs over an HTTP where an initial client-server handshake will include an
HTTP upgrade to the less verbose WebSocket protocol (specified by the IETF), before
moving on to sending actual messages. A single thread per client-server connection
will be used, and that connection is kept open until either party closes it.

WebSockets support in Java comes from the Java API for WebSockets specification.
Here, WebSocket endpoints can be created using classes with the @ClientEndpoint
and @ServerEndpoint annotations.

Modern web browsers support the WebSocket protocol, and JavaScript is regularly
used on the client side.

From the given description, it should be clear that WebSockets in itself is a
technology that has been built for performance. Tuning is mainly a design issue.
Things such as the size and complexity of messages will always matter, but in equal
comparison to all other technologies listed in this chapter (possibly except for the
Undertow proprietary solutions that have not been compared), WebSockets has
constantly proven to be the fastest. As the message size and/or number of requests
increases, the superiority of WebSockets also becomes increasingly clearer.

Tuning Web Applications and Services

[236]

Services
In Java EE, there is support for two major types of services:

• Web Services
• RESTful Services

We will talk more about each of these shortly, but first, we will discuss services
in general.

Both of the server types mentioned enable loose coupling between two parties acting
in the client-server mode. The two parties can be different systems in separate
organizations, which are located at different geographical locations. They can also be
two different modules within a local system or application stack.

Not only are the service types available in numerous implementations of different
languages and operating systems, but they can also communicate with each other
no matter what the platforms are. This platform independence will, for example,
let a client written in C# and running on Windows, communicate with services
implemented in Java, deployed in WildFly, and running on a Linux server. All it
takes is an agreed convention.

Services were originally thought of and designed to be stateless. There are however
projects and even specifications that can make services stateful and enable
transactional integrity. Before jumping on that train, however, we would like to urge
everyone to think about it at least twice. Services were originally created to be stateless.
Adding session synchronization, object serialization, passivation, and transactional
support will not be good for the performance and some features will go against basic
design principles (in for example SOA).

Web services
In Java EE, support for Web Services comes in the shape of the Java API for XML
Web Services (JAX-WS) specification. In WildFly, this is realized by JBossWS and
the integration with Apache CXF (JBossWS-CXF).

In general terms, Web services allow clients to communicate with service endpoints
on a server by the use of XML. The client-server communication uses the XML-based
Simple Object Access Protocol (SOAP) protocol that defines an envelope structure
and regularly runs over HTTP. It could, however, really use any underlying protocol
(such as SMTP, JMS, or basic TCP).

In Java EE, a modern web service is normally realized by a @WebService annotated
servlet or EJB (POJOs are also possible), with web service operations being
implemented by @WebMetod annotated methods.

Chapter 8

[237]

In the service endpoint, or port as it is also commonly known, the payload of a
message can be handled in many ways. It can be parsed, transformed, and converted
into something else, such as a new document or a (set or graph of) Java object(s).
Converting an XML message to Java objects is very common, and it is supported by
the Java Architecture for XML Binding (JAXB) specification.

Specifically, JAXB binds web service operations and messages with the Java method
and allows you to customize the mapping while automatically handling the runtime
conversion. This makes it easy for you to incorporate the XML data and processing
functions in applications based on the Java technology, without having to know
much about XML. A generic view on how SOAP and JAXB operates with an XML
message is presented in the following diagram:

Binding and marshalling/unmarshalling of an XML document using JAXB and transferred by SOAP

The core process, which allows the translation of Java objects into XML, and vice
versa, is known as marshalling and unmarshalling respectively. As with all things that
deal with strings and XML, they are CPU-intensive operations, which can easily
become bottlenecks of performance. Thus, most of your tuning efforts with web
services should be directed at reducing the conversion complexity between the XML
and Java object graphs.

Marshalling and serialization are two similar processes that are
often confused with the other. They are are loosely synonymous
but semantically different:

• Marshalling involves the transformation of the memory
representation of an object (its data) into a format that is
suitable for storage or transmission, a format that often
is XML or JSON.

• Serialization transforms the actual objects with state
into a format for persistent storage or transmission. The
format is normally a byte stream; text-based formats
work as well but normally with an increased overhead
in storage and performance.

Tuning Web Applications and Services

[238]

Performance factors
With web services, there are not many configuration parameters available for tuning.
If you choose to implement your web service endpoint as a servlet or EJB, the tuning
parameters available for the EJB and servlet container (Undertow), respectively, will
apply. These were addressed in the previous chapters, but in short, mainly pools can
be tuned.

Instead, the design of web services and the characteristics of the XML-based
documents sent between client and server become the predominantly important
factors. The following are three major variables that affect the documents:

• Document size: The total length of the XML document
• Element count: The number of elements that the XML document contains
• Level of nesting: The depth and complexity of objects or collections of

objects that are defined within other objects in the XML document

On the basis of these variables, we can elaborate the following
performance guidelines.

Sending many documents back and forth between a client and server requires
quite a lot of overhead, especially in terms of extra marshalling/unmarshalling and
network latency. For this reason, web services are not suited for chatty conversations.
Similarly, it is not a good idea to fragment a message into many different fine-
grained chunks even if this will minimize the message complexity and not increase
the total size of the actual message payload (the business information).

More messages will always mean more overhead for
managing and sending the actual data over the network.

In harmony with general SOA recommendations, you should design coarse-grained
web services instead. To be effective, these services should also perform a relatively
large amount of work on the server and acknowledge the client with just a response
code or a minimal set of attributes.

Minimizing the size of a message that will be sent over the wire (or whatever
medium your network operates in) is an important performance-related aspect.
The same set of data can be sent in many ways.

Chapter 8

[239]

One way is to serialize the message and transmit it as a byte sequence within a
SOAP message. This, however, does not always create smaller messages and is
often impractical both in terms of performance and handling. The serialization
and deserialization is a very expensive operation that can easily cost more than the
intended gains. Handling the data of the serialized chunk will also be ineffective, as
it will always need deserialization before anything can be done with it. This becomes
especially obvious in situations where you initially only need to access a small set of
data of a large message in order to make decisions about how to handle the rest.

Instead of basic serialization, the message could be compressed using more effective
algorithms. These could, for example, be implemented by JAX-WS handlers using
the @HandlerChain annotation. These handlers operate much like interceptors.
They execute before (or after) an incoming (or outgoing) call reaches the service
endpoint (or the client); they can be chained, and they operate on both the client and
server side. With handlers handling the compression/decompression, the work is
transparent to any business layer, but it should be verified by performance tests that
the overall performance will actually benefit.

With the introduction of the javax.jws.WebService annotation in Java EE 5, it
became easy and very tempting to simply enable POJOs as web services. As POJO
evolves over time in a model, it might come to include collections of other objects.
The size of the message retrieved can then grow in size and expense in more or less
complex and uncontrollable ways. Also, bloating a content-carrying object with, for
example, transport logic, does not rime well with sound architectural guidelines
like separation of concerns.

Looking at how an XML document can be structured in terms of nodes and attributes
tells us that there are several ways to include the same set of information. Using
(short named) attributes over nodes (there will always be two tags in a node: one
"start" and one "end") will save you quite a lot of bytes per message.

We could do this more or less manually by creating an XML document into which we
copy relevant data from a source, such as a Java object. We can also do this in a more
automated way using JAXB.

Let's say we have simple Person POJO, as shown in the following code:

public class Person {
 String name;
 String address;
 String city;
 String postcode;
 String country;
 // ...
}

Tuning Web Applications and Services

[240]

Using JAXB, this will (approximately) translate into the following SOAP envelope:

<env:Envelope
 xmlns:env='http://schemas.xmlsoap.org/soap/envelope/'>
 <env:Header />
 <env:Body>
 <ns2:getListResponse xmlns:ns2='http://packtpub.com/'>
 <return>
 <person>
 <name>John Doe</name>
 <address>Storgatan 1</street>
 <city>Stockholm</city>
 <postcode>12345</postcode>
 <country>SE</country>
 </person>
 <!-- other persons -->
 </return>
 </ns2:getListResponse>
 </env:Body>
</env:Envelope>

As you can see, lots of characters are wasted in XML node elements that could
conveniently be replaced by attributes, thus saving a good quantity of bytes.
Annotating the Person POJO with relevant JAXB annotations as shown in the
following code will instruct the JAXB parser to create a message with the same
information, but at the same time, it will be more optimized in size:

@XmlRootElement
public class Person {
 @XmlAttribute
 String name;
 @XmlAttribute
 String address;
 @XmlAttribute
 String city;
 @XmlAttribute
 String postcode;
 @XmlAttribute
 String country;
 // ...
}

The corresponding XML code is in this case is about 20 percent smaller:

<env:Envelope
 xmlns:env='http://schemas.xmlsoap.org/soap/envelope/'>
 <env:Header />
 <env:Body>

Chapter 8

[241]

 <ns2:getListResponse xmlns:ns2='http://packtpub.com/'>
 <return>
 <person name="John and Jane Doe"
 address="100" city="Anytown"
 postcode="12345" country="USA"/>
 <!-- other persons -->
 </return>
 </ns2:getListResponse>
 </env:Body>
</env:Envelope>

Another important factor, which can improve the performance of your web services,
is caching. You could consider caching responses at the price of additional memory
requirements or potential stale data issues. Caching should also be accomplished on
web services documents such as Web Service Definition Language (WSDL), which
contains the specifications of the web service contract (endpoints and operations). It's
advisable to refer to a local backup copy of your WSDL when you are rolling your
service in to production, as shown in the following example:

@WebServiceClient(name = "ExampleWS",
 targetNamespace = http://packtpub.com/",
 wsdlLocation = "http://127.0.0.1:8080/ExampleWS/hello?wsdl")

At the same time, you should consider caching the instance that contains the web
service port. Its name attribute provides a unique identifier among all port types
defined within the enclosing WSDL document.

In short, a port contains an abstract view of the web
service, but acquiring a copy of it is an expensive
operation, which should be avoided every time you
need to access your web service.

The potential threat of this approach is that you might introduce objects
(the proxy port) in your client code, that are not thread safe. You should instead
synchronize their access or use a pool of instances. An exception to this rule
is the Apache CXF implementation, which documents that "CXF proxies are
thread safe for MANY use cases" These cases are described in the project FAQs
at http://cxf.apache.org/faq.html.

RESTful services
REpresentational State Transfer (REST) is an architectural style that, like web
services, is independent of language implementation, platform, and underlying
transport mechanism. In practice, it (almost always) uses HTTP and URIs for
transport and communication.

Tuning Web Applications and Services

[242]

Java EE supports REST by the Java API for RESTful Web Services (JAX-RS)
specification. In WildFly, JAX-RS and several extensions come from the
RESTeasy project.

REST services are simpler in many ways and, when well designed, they are arguably
more logical than web services. As addressing, accessing, and controlling are done
by the use of URIs, the necessary tool support on the client side can often be minimal.
A browser is often enough for raw access.

The stateless features of REST and it being closely related to HTTP methods and
URIs makes it ideal for platforms where high performance is of importance. For
example, will farms of fast web servers (and/or application servers) with (thin) REST
services be able to effectively serve magnitudes of clients. Thanks to the nature of
the RESTful services, these farms will also be extremely scalable and can adapt to
the demand in traffic. This adaptability is important in the world of today where the
efficient use of elastic and virtual servers is an important business factor

REST services are good for many use cases where the state is not required. It can
also be more chatty, fine, and granular than web services without loosing much
performance, as headers are normally smaller and marshalling is not (always) needed.

How the URI is constructed has minimal impact on performance. The use of the URI
path and/or the key-value attributes matters more in design perspectives where the
same information can be modeled in several ways—as in the following two URIs:

http://mysite/animal/monkey/tooth
http://mysite?animal=monkey&part=tooth

Should the message size of a RESTful service become a concern, it is possible to cache
results just as you would for an ordinary web application.

By compressing data, it is also possible to minimize the amount of bytes traveling
over the network. This will, however, put extra requirements of functionality on the
client and might make several, less ordinary browsers unable to use the services.

Apart from caching and compression, designing what data to use and how it should
be structured during transmission is really the only way to limit network packages.

Using the structure of a URI to carve out, or drill down to, the related business level
of information that you are interested in is a powerful feature where design efforts
should be allowed to focus.

Making RESTful services as "thin" and responsive as possible is also a design goal.

Chapter 8

[243]

Summary
In this chapter, we have discussed various web application and web service
technologies with a focus on how to tune them.

We started out with what to look for when selecting a web framework and talked
about the evolution of web frameworks. To demonstrate a very common GUI
component, we looked at the data table and how it behaved using different web
technologies. Although servlets/JSPs were faster for a simple use case, factors such as
productivity and maintainability were low, while complexity quickly got (too) high as
the need for enhancements and alteration came into the picture. JSF with a component
library (PrimeFaces) supported by AJAX can be a better solution.

As we went through a few tuning hints, solutions, and technologies related to both
servlets/JSPs and JavaScript, we also mentioned proprietary solutions in Undertow
and talked about WebSockets as the best performing and arguably the most
promising technology in web application development today.

Moving on to services, we made a point that web services should be coarse grained
as they are good at handling XML documents of a significant size. RESTful services
can do this as well, but they are even more apt at handling more fine-granular
queries and commands.

The inherent stateless nature of REST services also makes for extremely scalable and
high-performing platforms that can easily adapt to a varying number of clients.

For web applications as well as RESTful and web services, minimizing the amount
of data sent between client and server over the network can be an important
performance enhancement. This can be done by the following:

• Caching
• Compression
• Minimizing the actual message content by design

It is essential that you correctly test which factors are the most important for your
use case. Negative results in performance might occur for some tuning options.

After talking about applications and services using the classic client-server paradigm,
we will now turn our attention to the tuning of message-oriented middleware.

JMS and HornetQ
Being able to connect and share information between two or more, often
heterogeneous and most commonly distributed, systems (or applications or
components) is a very common challenge in IT management. Historically, solving
this involved binding the systems together with proprietary hard-coded connections.
Consequently, the systems became tightly coupled as they had to be highly aware of
each other. In practice, it became impossible to change one system without making
changes to any other.

With the advent and use of Message-oriented Middleware (MOM) and the inherent
message broker component, the systems became more loosely coupled. The terms
"MOM" and "message broker" are often used interchangeably, and they normally
denote the software (or hardware) component responsible for actual message
transportation. Loose coupling means that the systems no longer need to directly
know about, and depend on, each other's API interfaces or inner workings. Changes
to one system—or even a complete system exchange—now becomes irrelevant for all
other systems. All that matters is that the messages that are exchanged between the
systems stay the same, and they are exchanged by an intermediary message broker
located at some agreed address.

Introducing JMS
MOMs are not very well defined and their implementations sometimes tend to
touch integration platforms by, for example, including data transformation. Here,
we will only care about, and focus on, the messages and the broker that facilitates
transportation of these messages.

In Java EE, the Java Messaging Service (JMS) specification (Version 2.0 is currently
used in Java EE 7 and WildFly 8.0.0.Final) defines the API for how Java code can
interact with the MOM message brokers. In WildFly, the broker component is
realized by HornetQ (http://hornetq.jboss.org/), currently in Version 2.4.1.Final.

JMS and HornetQ

[246]

In JMS, and in general, the message broker supports the following two major
communication models, or destination types, as they are also called:

• Queue: As seen in the following diagram, a message is sent from a client
called Producer to a given Queue. The message is then distributed to another
receiving client named Consumer. The Consumer has registered itself as
a recipient with the same Queue. A queue often uses Point-to-Point (PTP)
communication. This is true, but only really per message! Should several
consumers register themselves to the queue, a message will reach one and
only one of them. The one it will reach is defined by a given distribution
algorithm that selects among the available consumers. Should no consumer
be available, the queue will store the message (in memory or in persistent
storage) until a consumer becomes available. When a consumer has received
a message, it will acknowledge this to the queue.

A conceptual model of a Queue with a Producer, a Message M, and registered Consumers

• Topic: A message is sent from a client called Publisher to a given Topic.
This message is then distributed to all receiving clients, called Subscribers.
The Subscribers subscribe to the Topic and expect to get all messages on the
subscription. This model is often also called publish-subscribe, or pub-sub for
short. As a subscriber receives its copy of the message, it will acknowledge
this to the Topic. A message must be delivered to all connected subscribers.
For an unconnected subscriber to receive any missed messages on
reconnection, it needs to have a durable subscription.

Chapter 9

[247]

A conceptual model of a Topic with a Publisher, a Message M and registered Subscribers

At the core of MOMs and JMS is the rule of guaranteed delivery of messages as the
descriptions of both the Queue and Topic above notes. If the broker is configured to
rely on storing messages in-memory only, they will naturally be lost if the broker,
for some reason, has a complete production failure. It is, therefore, common to store
messages in persistent storage as soon as they enter the broker. This will increase
stability and guarantee message delivery, but it will also come with the price of
increased use of resources and slower throughput.

The message and its optimizations
In JMS, a message, javax.jms.Message, consists of a header, some properties,
and a body. In the body, the actual payload of business data is located. As for most
payloads, the less the data transferred, the less I/O will occur, which in turn infers
increased throughput. Keeping a JMS message as small as possible puts less strain on
both the network and the persistence layer of the JMS provider.

The following are the five types of messages available in JMS, each defining what the
message body can contain:

• javax.jms.TextMessage: It holds a Java string object.
• javax.jms.ObjectMessage: It holds a serialized Java object.
• javax.jms.MapMessage: It holds a message constructed by a set of key-value

pairs. The keys are String objects, and the values are Java primitive data types.
• javax.jms.StreamMessage: It holds a stream of Java primitive data types.
• javax.jms.BytesMessage: It holds a message constructed by

uninterpreted bytes.

JMS and HornetQ

[248]

For all JMS message types, the keep-it-small principle applies
to provide the best preparation for good performance.

One of the most commonly utilized types is javax.jms.TextMessage. Today, it is
often used to transport XML messages. Reducing the size of the message is not only
good for the performance of the JMS provider, but also minimizes the XML parsing
process, and thus, it contributes to improve overall performance. It is important to
not just blindly use an existing (and often ambitious in coverage) XML document
standard. The removal of unneeded information should always be considered as
considerable size reductions may be possible.

It can be easy, and therefore tempting, to use the ObjectMessage type as it is
convenient to pass already constructed and structured Java objects between
producers and consumers. The cost of serialization can, however, be very expensive.
Sending just the required information of an object by, for example, excluding
non-required information using transient attributes can improve performance at
varying levels, depending on what is excluded.

The type that offers the best possibility for constructing compact and effective
messages is BytesMessage. Here, you have total control of the exact number of bytes
the message will consist of.

As for the content of the body, the size, amount, and structure of properties in a
message should also be considered during the tuning process.

Tuning the session
When connecting to a JMS session, you should strive to reuse an existing session as
it can be quite expensive and time-consuming to create a new. Note that reusing an
existing session is only fully acceptable within a thread as the session in not thread-safe.

In order to realize the requirements of guaranteed delivery, JMS defines an
acknowledgement mechanism that is used in the communication between the
clients. The behavior of this mechanism can be controlled by selecting an appropriate
acknowledgement mode. The JMS specification provides the following three modes:

• CLIENT_ACKNOWLEDGE: Any client code must acknowledge the message by
calling one of its acknowledge methods. Failing to do this may lead to a
serious buildup of resources on the server.

• AUTO_ACKNOWLEDGE: A client's consumption of a message will be automatically
acknowledged immediately when it's received, either returning from the
receive method or calling the process method on a message listener.

Chapter 9

[249]

• DUPS_OK_ACKNOWLEDGE: Acknowledgment is done lazily, which can lead to
duplicate messages being sent if the JMS provider fails in the process.

Using the AUTO_ACKNOWLEDGE mode will generate an acknowledgement to be sent
for each message received, leading to more network traffic. If the application can
handle duplicate messages without any problems, selecting DUPS_OK_ACKNOWLEDGE
will provide the best performance by providing the possibility of sending
acknowledgments in batches. The default size of these batches is 1 MB, it is specified
by the dups-ok-batch-size parameter, and it can be changed with the following
CLI commands:

/subsystem=messaging/hornetq-server=default/connection-factory=InVmConnec
tionFactory:write-attribute(name=dups-ok-batch-size, value=2097152)

/subsystem=messaging/hornetq-server=default/connection-factory=RemoteConn
ectionFactory:write-attribute(name=dups-ok-batch-size, value=2097152)

There are three different methods available in the JMS Connection object to create
a JMS session:

• createSession()

• createSession(boolean transacted, int acknowledgeMode)

• createSession(int sessionMode)

The behavior of the createSession() method is described in the following table:

Environment Acknowledging behavior
Java SE AUTO_ACKNOWLEDGE
Java EE with active JTA
transaction

The session will participate with the transaction (and either
commit or rollback as controlled by the transaction)

Java EE without active
JTA transaction AUTO_ACKNOWLEDGE

Similarly, the behavior of the createSession(boolean transacted, int
acknowledgeMode) method is described in the following table:

Environment transacted=false transacted=true
Java SE The provided

acknowledgeMode will be
used.

The session will participate with
a local transaction (and either
commit or rollback as controlled
by the transaction). The argument
acknowledgeMode is ignored.

JMS and HornetQ

[250]

Environment transacted=false transacted=true
Java EE with
active JTA
transaction

Both parameters are ignored.
The session will participate
with the transaction (and either
commit or rollback as controlled
by the transaction).
It is recommended to use
createSession() instead.

Both parameters are ignored. The
session will participate with the
transaction (and either commit
or rollback as controlled by the
transaction).
It is recommended to use
createSession() instead.

Java EE without
active JTA
transaction

The argument transacted is
ignored, and only AUTO_
ACKNOWLEDGE or DUPS_OK_
ACKNOWLEDGE is allowed.

The argument transacted is
ignored, and only AUTO_
ACKNOWLEDGE or DUPS_OK_
ACKNOWLEDGE is allowed.

Finally, the behavior of the createSession(int sessionMode) method is
described, based on the four available session modes, in the following two tables:

Environment sessionMode=SESSION_
TRANSACTED

sessionMode=CLIENT_
ACKNOWLEDGE

Java SE Will use a local transaction
controlled by the sessions and the
commit or rollback methods

CLIENT_ACKNOWLEDGE

Java EE with
active JTA
transaction

The sessionMode parameter
is ignored and the session will
participate with the transaction
(either commit or rollback, as
controlled by the transaction)

sessionMode is ignored and
the session will participate with
the transaction (either commit
or rollback, as controlled by the
transaction)

Java EE without
active JTA
transaction

Not allowed Not allowed

Environment SessionMode=AUTO_
ACKNOWLEDGE

SessionMode=DUPS_OK_
ACKNOWLEDGE

Java SE AUTO_ACKNOWLEDGE DUPS_OK_ACKNOWLEDGE

Java EE with
active JTA
transaction

sessionMode is ignored and
the session will participate with
the transaction (either commit
or rollback, as controlled by the
transaction)

sessionMode is ignored and
the session will participate with
the transaction (either commit
or rollback, as controlled by the
transaction)

Java EE without
active JTA
transaction

AUTO_ACKNOWLEDGE DUPS_OK_ACKNOWLEDGE

Chapter 9

[251]

If the session participates in a JTA transaction, the actual acknowledgements will
not be sent until the transaction either commits or rolls back. This has the side-effect
of minimizing network calls which in turn has a positive impact on performance if
several messages can be acknowledged in the same call.

As an addition to the three standard JMS acknowledgment modes, HornetQ also
supports two vendor-specific variants:

• PRE_ACKNOWLEDGE: If it is okay to lose messages due to a failure; this mode can
be used to send the acknowledgement to the server before it is even delivered
to the client. This saves extra network calls and CPU resources, otherwise
needed for handling message loss. The following scenario, taken from the
HornetQ documentation, is a good example of when to use this mode:
"An example of a use case for pre-acknowledgement is for stock price update
messages. With these messages, it might be reasonable to lose a message
in event of crash since the next price update message will arrive soon,
overriding the previous price."

• INDIVIDUAL_ACKNOWLEDGE: If it's not known when a message will be
acknowledged, there are scenarios where using one consumer per thread is
not applicable. In these cases, INDIVIDUAL_ACKNOWLEDGE can be used in the
same manner as CLIENT_ACKNOWLEDGE, with the exception that messages are
acknowledged individually.

Tuning MessageProducer
Just as with the Session object, try to reuse a created MessageProducer (within the
same thread). It is possible to even reuse a MessageProducer to send messages to
different destinations. The trick is to create the producer with a null destination and
specify the target destination in the send method instead.

As we briefly mentioned earlier, persisting each incoming message in order to
guarantee that they will not be lost in the event of a broker restart or crash will not
be positive for performance. It is arguably the most performance-degrading action in
messaging. If guaranteed, message delivery is not a requirement for a given scenario;
it can be disabled by setting the delivery mode on the relevant MessageProducer to
DeliveryMode.NON_PERSISTENT.

It is possible to set the amount of time a message should be kept in the JMS provider
by using the setTimeToLive method. Even if this functionality is intended to make
sure that what is regarded as old messages isn't processed, it can also provide better
performance by relieving message consumers from the sometimes unnecessary task
of processing old messages by just dealing with the more actual ones.

JMS and HornetQ

[252]

Each message sent to a destination will get a unique MessageID that can be used for
correlation, and so on. If this isn't needed, it is possible to disable the ID by calling
the setDisableMessageID method. This will save both message size and total time
for message generation.

The same thing applies to the timestamp that is put in the message when it is sent to the
JMS provider. It can be disabled by using the setDisableMessageTimeStamp method.

In order to hint to the JMS provider about which messages should be delivered
before others, the JMS specification implements ten levels of priority values,
where 0 is the lowest and 9 the highest values. The priority can be set using the
setPriority method.

It's possible to set the delivery mode, priority, and time-to-live as
settings on MessageProducer, but it is also possible to override
these using the send method for individual messages—just as
with the destination as previously described.

Optimizing HornetQ
Up to now, we mostly discussed optimizations that can be done using standard
JMS functionalities. In the rest of the chapter, we will focus on HornetQ-specific
optimizations that can be used in WildFly.

Persistence storage tuning
As HornetQ uses a journal (basically a set of binary files) located on disk for persistent
storage of messages, the first thing is to make sure is that the files are placed on their
own dedicated physical disk(s). Any other I/O to that disk may harm performance
as it will compete with HornetQ to control the disk head. This is very important as
the HornetQ journal is an append-only journal, and moving the disk head will have
a serious impact on performance. The journaling directory can be changed by the
following CLI command (exchange the path value for your absolute path):

/subsystem=messaging/hornetq-server=default/path=journal-directory:write-
attribute(name=path, value="/path/to/journal/files")

Whenever a journal file is created, it is created with a fixed size, and whenever the
journal is filled, a new journal file will be created. HornetQ will detect when a journal
file is not needed any longer (for example, when all its data has been deleted) and
will either reuse it or delete it.

Chapter 9

[253]

A compaction mechanism that helps reclaim file space is also active. Compaction
will be triggered if the number of journal files is bigger than the value of the
journal-compact-min-files parameter (the default value is 10). Another setting,
called journal-compact-percentage (the default is 30), controls whether an
individual journal file should be targeted for compaction by stating the minimal
percentage of live data. A value of less than this number will trigger a compaction
if the journal-compact-min-files criterion has been met. Changing the default
settings may help in some cases. The settings can easily be managed by using the
CLI—here, changing the values to 20 and 40 respectively:

/subsystem=messaging/hornetq-server=default:write-attribute(name=journal-
compact-min-files, value=20)

/subsystem=messaging/hornetq-server=default:write-attribute(name=journal-
compact-percentage, value=40)

The recommended optimal size setting for the journal file is to match the capacity of
the cylinder on the disk used. The default value is 10 MB and can be changed with
the CLI by stating the number of bytes, as follows:

/subsystem=messaging/hornetq-server=default:write-attribute(name=journal-
file-size, value=2048000)

This value needs to be larger than the maximum size of the messages, or HornetQ
cannot persist all messages. Note that this is not true for large messages that will be
discussed in detail later in this chapter.

The minimum number of journal files is set to 2 by default. Even if no data exists
to persist, this minimal number of journal files will be created at startup. As an
optimization, you may change the default setting to better match the number of
files used by a given application during normal load. This will minimize unneeded
creation of journal files as they will always be available. Changing the number of
files is easily done using the CLI (here setting it to 5), as follows:

/subsystem=messaging/hornetq-server=default:write-attribute
(name=journalmin-files, value=5)

Writes to the journal include a low-level buffer that can be tuned in terms of size
(journal-buffer-size) and write-timeout (journal-buffer-timeout). Increasing
the timeout can improve throughput at the cost of latency.

JMS and HornetQ

[254]

The actual writing to journals on disk is normally synchronized with the caller's JTA
transaction lifecycle or blocking for non-transactional requests. These behaviors may
be changed (set to false) to increase performance by the following CLI commands
(note that doing so breaks the guarantee of data integrity in case of failures):

/subsystem=messaging/hornetq-server=default:write-attribute(name=journal-
sync-transactional, value=false)

/subsystem=messaging/hornetq-server=default:write-attribute(name=journal-
sync-non-transactional, value=false)

The actual interaction with the filesystem is either done using Java NIO or, if
available, the Linux Asynchronous IO (AIO) library. Even though Java NIO
delivers great performance, AIO will provide even better performance. When data is
persisted using AIO, a callback acknowledgement will help HornetQ avoid waiting
for synchronizations. The usage of AIO is only available on Linux and if the libaio is
installed. The supported filesystems are ext2, ext3, ext4, jfs, and xfs.

Warning: Locating journals on a Network File System
(NFS) share will work, but it will fall back to a slower
synchronized mechanism.

If AIO is used, increasing the default size (500) of an internal blocking-write requests
queue, which is called journal-max-io, may increase performance even more.
Using the CLI, the command for changing this value (here to set to 1000) is
as follows:

/subsystem=messaging/hornetq-server=default:write-attribute(name=journal-
max-io, value=1000)

As mentioned earlier, the most rewarding performance-enhancing tuning feature of
a messaging broker such as HornetQ is to disable the persisting of messages. If it is
an acceptable scenario to disable persisting for all destinations in HornetQ, it can be
done using the following CLI command:

/subsystem=messaging/hornetq-server=default:write-
attribute(name=persistence-enabled, value=false)

Chapter 9

[255]

Handling large messages
HornetQ supports special handling for really large messages by using input and
output streams. The actual data will end up on disk, and the location can be changed
by the following CLI command (exchange the path value for your absolute path):

/subsystem=messaging/hornetq-server=default/path=large-messages-
directory:write-attribute(name=path, value="/path/to/large/message/
files")

As previously described, it's not advisable to use the same disk for large messages as
for the regular journal files.

The limit for what is considered a large message is set to 100 kB by default, but
it may be reconfigured by the following CLI commands (for in-VM and remote
ConnectionFactories respectively):

/subsystem=messaging/hornetq-server=default/connection-factory=InVmConnec
tionFactory:write-attribute(name=min-large-message-size, value=204800)

/subsystem=messaging/hornetq-server=default/connection-factory=RemoteConn
ectionFactory:write-attribute(name=min-large-message-size, value=204800)

This reflects the actual size of the stored message and not necessarily the size of
the message in memory. A TextMessage, for example, is stored using a two-bytes
encoding. This means that a TextMessage, larger than half the size of the defined
value of a large message, will be considered a large message.

Large messages may also be compressed (at the cost of using CPU resources).
To enable this, use the following CLI commands (for in-VM and remote
ConnectionFactories respectively):

/subsystem=messaging/hornetq-server=default/connection-factory=InVmConnec
tionFactory:write-attribute(name=compress-large-messages, value=true)

/subsystem=messaging/hornetq-server=default/connection-factory=RemoteConn
ectionFactory:write-attribute(name=compress-large-messages, value=true)

Optimizing paging
To economize memory usage, HornetQ supports paging messages to disk instead
of keeping them all in memory. This feature is enabled in WildFly by default, and
the configuration for selected destinations is done using something called addresses
in HornetQ. An address is a kind of matching pattern with support for the special
wildcard character: #.

JMS and HornetQ

[256]

The default setup is that, whenever an address uses more that 10 MB of memory, it
will start paging new messages to disk, and it will there use paging files, each 2 MB
in size. These settings (for the address #, matching all destinations) can be managed
with the following CLI commands:

/subsystem=messaging/hornetq-server=default/address-setting=#:read-
attribute(name=max-size-bytes)
{

 "outcome" => "success",
 "result" => 10485760L

}

/subsystem=messaging/hornetq-server=default/address-setting=#:write-
attribute(name=max-size-bytes, value=20971520L)

/subsystem=messaging/hornetq-server=default/address-setting=#:read-
attribute(name=page-size-bytes)

{

 "outcome" => "success",
 "result" => 2097152L

}

/subsystem=messaging/hornetq-server=default/address-setting=#:write-
attribute(name=page-size-bytes, value=4194304L)

Warning: Whenever addresses are used to identify
matching destinations, the actual setting will be used by
all matched destinations. This means that the preceding
example sets the page-size-bytes to 4194304 for each
destination matched and not total for all of them.

The behavior when the page-size-bytes limit is hit depends on the address-full-
policy address setting, which in turn supports the following policy settings:

• PAGE: It enables paging. It is the default setting in WildFly.
• BLOCK: It blocks message producers.
• DROP: It silently drop messages.
• FAIL: It returns an error to the producer.

It may be changed for an address by the following CLI command (here using the
wildcard address #):

/subsystem=messaging/hornetq-server=default/address-setting=#:write-
attribute(name=address-full-policy, value=DROP)

Chapter 9

[257]

So a good paging configuration has a considerable impact on performance as keeping
more messages in memory, is better than paging and depaging them to and from
a disk. Also, message selectors will only work on messages in memory, and any
matching message will only be consumed when it is depaged from disk into memory.
The same limitation exists for JMS browsers.

Another important factor is that a message needs to be in memory to be acknowledged.
If a message is paged to a disk during consumption, the acknowledgment request will
be blocked (if blocking acknowledgment is configured) until depaged. If there is no
memory available for depaging, the consumption may appear to hang.

From a performance point of view, the paging files should, just as with large
messages, be put on a separate disk with the regular journal files. The exact location
of the paging files can be configured by the following CLI command (exchange the
path value for your absolute path):

/subsystem=messaging/hornetq-server=default/path=paging-directory:write-
attribute(name=path, value="/path/for/paging/files")

Message deliverance optimizations
Whenever the HornetQ communication is a part of a JTA transaction, the actual
commit (or rollback) request will not return until the persistence is done. If it is
acceptable, in case of a failure, to lose the transactional integrity, it is possible to make
the request return at once (for increased performance). HornetQ will handle the
commit (or rollback) in the background when the journal-sync-transactional
parameter is set to false. This parameter can be set by using the following
CLI command:

/subsystem=messaging/hornetq-server=default:write-attribute(name=journal-
sync-transactional, value=false)

Acknowledgement for non-JTA scenarios will wait (block) until persistence is
done for durable messages but return immediately for non-durable messages. This
behavior is controlled by the BlockOnDurableSend and BlockOnNonDurableSend
parameters, and these can be configured using the following CLI commands:

/subsystem=messaging/hornetq-server=default/connection-factory=InVmConnec
tionFactory:write-attribute(name=block-on-durable-send, value=false)

/subsystem=messaging/hornetq-server=default/connection-factory=InVmConnec
tionFactory:write-attribute(name=block-on-non-durable-send, value=false)

JMS and HornetQ

[258]

/subsystem=messaging/hornetq-server=default/connection-factory=RemoteConn
ectionFactory:write-attribute(name=block-on-durable-send, value=false)

/subsystem=messaging/hornetq-server=default/connection-factory=Remo
teConnectionFactory:write-attribute(name=block-on-non-durable-send,
value=false)

Using the blocking mode has an impact on performance as it results in extra requests
to HornetQ. The recommendation, if possible, is to use JTA to control the sending
of messages.

To remedy the blocking in non-JTA send acknowledgments, HornetQ can
use a separate stream for asynchronous send acknowledgments for improved
performance. This involves creating a handler that implements the org.
hornetq.api.core.client.SendAcknowledgementHandler interface with the
sendAcknowledged(ClientMessage message) method. A handler instance is set
on ClientSession and a message is sent to the server as usual. When the server
receives the message, it will send an asynchronous acknowledgement back to the
client, which is picked up by the sendAcknowledge method mentioned earlier.

For this feature to be enabled, confirmation-window-size must be set to a positive
integer value denoting the number of bytes. A non-JTA acknowledgement request
will not block by default, until HornetQ has persisted to a disk. Even if this is good
for performance, you should be aware that enabling blocking provides a more strict
delivering policy. This is controlled by the BlockOnAcknowledge parameter and can
be changed with the following CLI commands:

/subsystem=messaging/hornetq-server=default/connection-factory=InVmConnec
tionFactory:write-attribute(name=block-on-acknowledge, value=true)

/subsystem=messaging/hornetq-server=default/connection-factory=RemoteConn
ectionFactory:write-attribute(name=block-on-acknowledge, value=true)

Flow control
To prevent clients (and the server) from being overwhelmed with data, HornetQ
uses flow control for both the consumer and the producer. By default, it is based
on a window-size system, but it can. as we shall see, be changed to a configuration
specifying the number of messages per seconds as an alternative.

For the producer, the default window size is set to 64 kb. For the consumer, the
value is set to 10 MB, which limits the number of in-flight bytes. If you have very
fast consumers, increasing the window may result in better performance. These
settings can be administered by the following CLI commands:

/subsystem=messaging/hornetq-server=default/connection-factory=InVmConnec
tionFactory:write-attribute(name=producer-window-size, value=65536)

Chapter 9

[259]

/subsystem=messaging/hornetq-server=default/connection-factory=InVmConnec
tionFactory:write-attribute(name=consumer-window-size, value=1048576)

/subsystem=messaging/hornetq-server=default/connection-factory=RemoteConn
ectionFactory:write-attribute(name=producer-window-size, value=65536)

/subsystem=messaging/hornetq-server=default/connection-factory=RemoteConn
ectionFactory:write-attribute(name=consumer-window-size, value=1048576)

An alternative solution is to control the flow based on the number of messages per
second. This can be achieved by setting the producer-max-rate and consumer-max-
rate parameters to a value other than the default (1, which means disabled), using
the following CLI commands:

/subsystem=messaging/hornetq-server=default/connection-factory=InVmConnec
tionFactory:write-attribute(name=producer-max-rate, value=10)

/subsystem=messaging/hornetq-server=default/connection-factory=InVmConnec
tionFactory:write-attribute(name=consumer-max-rate, value=10)

/subsystem=messaging/hornetq-server=default/connection-factory=RemoteConn
ectionFactory:write-attribute(name=producer-max-rate, value=10)

/subsystem=messaging/hornetq-server=default/connection-factory=RemoteConn
ectionFactory:write-attribute(name=consumer-max-rate, value=10)

Miscellaneous tips and tricks
In many systems, no security settings are used and the destinations are free for
everyone to use. In these cases, a small performance gain can be achieved by totally
disabling the security check in HornetQ, using the following CLI command:

/subsystem=messaging/hornetq-server=default:write-
attribute(name=security-enabled, value=false)

Whenever redelivery is active, it has an impact on performance because these
messages compete with the normal flow of messages. Setting the redelivery delay
to a high value and the redelivery limit to a low value will minimize this impact.

A common pattern is to use temporary queues as response channels, and a really
bad variant is to create a temporary queue for each request. If used, make instead
sure that these queues are reused for as many requests as possible. If durable topics
are used, remember to delete non-active subscribers so that HornetQ doesn't have to
keep a lot of unneeded messages.

JMS and HornetQ

[260]

As an alternative to JMS, HornetQ also supports its own low-level API called the
Core API. Using it can be good for performance, but it is of course bad for standard
compliance and future migrations. Another variant of this that is worth investigating
is the Simple/Streaming Text Oriented Message Protocol (STOMP). Check more at
http://stomp.github.io.

Just as with all TCP traffic, the TCP buffer sizes may be profitably tuned. Note
that the recent versions of Linux include an auto-tuning mechanism for this, and
overriding it may be counterproductive.

Monitoring
HornetQ as a separate project does not come shipped with any management tool,
besides the MBean support. In WildFly, the CLI is integrated to both retrieve and set
various settings on the part of the HornetQ system.

During optimization work and production monitoring, things such as queue size and
the number of connected consumers are of interest.

Information about the in-VM and remote connection factories can be retrieved and set
using CLI. The following commands provide a detailed list of the following options:

/subsystem=messaging/hornetq-server=default/connection-factory=InVmConnec
tionFactory:read-resource-description

/subsystem=messaging/hornetq-server=default/connection-factory=RemoteConn
ectionFactory:read-resource-description

The same information can be accessed using JMX through the following two MBeans:

• jboss.as:subsystem=messaging,hornetq-server=default,connection-
factory=InVmConnectionFactory

• jboss.as:subsystem=messaging,hornetq-server=default,connection-
factory=RemoteConnectionFactory

Chapter 9

[261]

In the following screenshot, the JConsole shows the in-VM connection factory:

Information about a connection factory MBean

JMS and HornetQ

[262]

Some of these values can also be seen in the Management Console, as shown in the
following screenshot:

Figure: Information about a connection factory in the Management Console.

There is also information available for individual destinations. In this example, a
sample queue named jmsTestQueue will be used.

From the CLI, a list of all available variables can be retrieved with the
following command:

/subsystem=messaging/hornetq-server=default/jms-queue=jmsTestQueue:read-
resource-description

The matching MBean is called jboss.as:subsystem=messaging,hornetq-
server=default,runtime-queue=jms.queue.jmsTestQueue and its attribute
values are listed in the following JConsole screenshot:

Chapter 9

[263]

Information about a destination using JMX

The same queue is seen through the Management Console in the following screenshot:

Information about a destination using the Management Console

JMS and HornetQ

[264]

Summary
In this chapter, we discussed various performance tuning features related to JMS and
HornetQ—the JMS provider in WildFly. HornetQ is a very competent MOM that
has high performance as one of its major design goals.

The following are some of the general rules for performance-tuning JMS:

• Keep messages as small as possible
• Avoid durable messages (if possible)
• Use JTA to be able to batch handling messages
• If losing messages due to failures is okay, then there are some

optimizations available

Tuning HornetQ includes looking at the storage of persistent messages, where
dedicated and separate disks should be used for journals and large messages. Paging
sizes, flow control and message delivery options are also major factors that affect
performance. As HornetQ is an advanced and large project, we urge you to read its
documentation in detail to make the most of all its bells and whistles.

We will shortly look more into HornetQ as we now will engage a cluster of
WildFly instances.

WildFly Clustering
In the initial chapter of this book, we mentioned that systems often need to be able to
scale with the load exerted to them.

A system that scales up (vertically) with, for example, more memory and CPU cores
in a single computer, has arguably several advantages. Upgrades of new hardware
resources are almost always completely handled by the operating system and the
JVM. Thus, administration, monitoring, and even applications will only need some
to no alteration at all. Consequently, there is not much more to actually tune here,
apart from what we've already discussed in previous chapters.

Unfortunately, the clustering monitoring subsystem that was
initially scheduled for WildFly 8 has for now been delayed
until the release of WildFly 9. With it, you will be able
to review statistics of the cluster red applications within
the cluster according to the plan. You will also be able to
integrate diagnostic tools by using the management API,
however, this is subject to change at any time. Alas, for now,
monitoring is limited to CLI and JMX.

On the other hand, on a system that scales out (horizontally) with the addition
of more computer nodes, there will normally be a lot of new things to tune. For a
large amount of enterprise solutions today, clustering has become the predominant
scaling strategy. This is often due to cost but also because a single computer simply
cannot scale to such a level or with such dynamicity as a distributed system. In this
chapter, we will discuss tuning in the different realizations of horizontal scaling, in
the different layers of a distributed Java enterprise stack and in a WildFly cluster. We
will also discuss what clustering is all about.

WildFly Clustering

[266]

A lot of misconceptions exist in the areas of distributed systems and clustering. It is,
therefore, extremely important to define and describe what different terms mean in
each context. Here, we will start out by defining the following core terms:

• Cluster
• Load balancing
• Replication
• Failover, failback, and session state
• High Availability

Cluster
A cluster is a collection of distributed computer nodes that are connected by a network
in some way, often using Local Area Network (LAN). The purpose of the connected
nodes is to efficiently handle tasks by communicating with each other and sharing or
dividing work and information among themselves. From an onlooker's perspective,
the cluster acts like a single computer, as depicted in the following diagram:

Clients calling a cluster of nodes

Its main purpose is, however, to be more (cost-) efficient in terms of, for example,
handling more requests and performing more computations compared to a single
machine. Extending this to Java EE means that one (or more) application server, such
as WildFly, runs on each computer node and in each of these application servers,
there are applications or other components (such as EJBs) that execute and work
together in order to handle traffic and perform computations.

Chapter 10

[267]

Load balancing
In a cluster, the nodes can often handle load balancing themselves. Busy nodes
can communicate with others, and transfer work to nodes that are not so busy.
A non-clustered topology of nodes that do not communicate with each other can
also be load balanced, as seen in the following diagram:

Clients calling non-clustered nodes through a load balancer that directs traffic to the nodes

The nodes will then have a common gateway, or load balancer, in front of them,
which routes traffic to the available nodes. The routing is usually performed
according to an algorithm (such as first-available, sticky-session, or round-robin) that
may or may not adapt itself based on the traffic to, and load on, each node. Using
Apache HTTPD with a mod_cluster module as a load balancing gateway in front of
a farm of WildFly application servers is a very common setup. We mentioned this
setup in Chapter 7, Tuning the Web Container in WildFly, and will look into it further in
a little while.

WildFly Clustering

[268]

Replication
Clustering also normally includes the replication of computation and/or data. Data
replication involves moving the data from one node to one or more of the other
nodes, as seen in the following diagram:

Data replicated from the left node in the cluster to all of the other nodes in the same cluster

Alternatively, data can be moved to a common storage from where others may reach
it. This is, however, not considered to be true replication but shared storage. The result
of replication is that no matter which node the communication is routed to, the
integrity of the data is preserved at one or more locations.

Failover, failback, and session state
Should a node not be able to fulfill its duties for any reason, another mode could step
in and take care of the work and data. This is called failover and is exemplified in the
following diagram (true or silent failover is completely transparent to the client):

Chapter 10

[269]

Failover: Should a node in a cluster leave the cluster for some reason
a client call can be handled by another node in the cluster

Should the failing node come back to work again after a period of time, work and
data can be transferred back again by a failback procedure. This transfer often has
some restrictions, for example, it can only happen during the next call from the client.

Data chosen for replication in Java EE solutions most often describes the session
state. A session is a set of data that belongs to a particular communication flow. It
can be persisted but more commonly resides in faster and more volatile memory
(RAM). A common example is the HttpSession, where each instance with content
is said to belong to, and be unique to, each end user.

High Availability
When talking about a cluster or a system with load balancing, High Availability
(HA) is also often mentioned. A HA system is a system that, as a whole, is available
without interruption at almost all times. The almost here is the fresh wind of reality
kicking in. In practice, it can be enormously costly—if at all possible—to construct
a system with 100 percent availability. It is, therefore, common to talk about the
number of nines the system is available to. Four nines means 99.99 percent, five
means 99.999, and so on. The number of nines is an often-recurring attribute in
Service Level Agreements (SLA).

In a HA system, the resilience to disturbances is imperative. Common solutions are
to have more nodes alive than necessary or to have the possibility of quickly starting
up new ones. A virtualized environment becomes increasingly utilized for these
purposes and for quickly scaling up or down according to how the load changes over
time (per hour, day, or month).

WildFly Clustering

[270]

The real need of clustering
As previously described, the nature of clustering can be quite complex. From
experience, management often blindly demands full clustering without knowing and
taking the full implications into account. Far too often, we hear something similar
to this: "the system is mission critical, so it must be clustered". The common belief
is that clustering will save the business and solve all issues that can be related to
performance and availability. Now, clustering can and will help in many cases, but
it is always important to be objective and help the management by explaining the
actual needs and consequences, especially in terms of increased costs in maintenance
and complexity.

It is important to always consider what kind of system is under discussion. For
instance, a system that deals with upholding life, such as a "heart-lung machine",
is a system that has to operate without errors every second it has a connected client
(the patient). This scenario is, of course, extremely important and requires both
failover and full replication (and no, Java EE would probably not be an option for
implementing such a thing in reality).

An "Internet book shop", on the other hand, might also be considered to be very
important ("critical!") for business. It may need clustering in the form of load
balancing in order to handle load and failover to guarantee uptime in the case of
failure or maintenance downtime. If it's okay that a few clients might lose their
"shopping list" and have to log in again on the rare occasion of a failover, then no
replication will be needed at all. Thus, it will be easy to scale horizontally. This basic
level is actually all that many organizations need and accept, especially when the
total cost and other implications of clustering becomes clear.

There are some common tricks to replication that may lower its cost for some resources
(such as memory and network bandwidth). These tricks might, however, come at the
expense and risk of possibly losing some data in some very special situations.

One example is where replication is performed to only some, and not all, nodes in a
cluster, as shown in the following diagram (the risk of all nodes carrying a particular
set of data failing is probably very low):

Chapter 10

[271]

Buddy replication involves replicating the data of one
node to only some of the other nodes in the cluster

Another trick is to send replication data to other nodes asynchronously. This makes
the response to the client independent, more loosely coupled, and possibly faster,
as it doesn't need to wait for the replication transfer and acknowledgments from
the other nodes. Implicitly, this also provides an improved possibility for the server
to send batches of replicated data between nodes. Asynchronous replication is
exemplified in the following diagram:

In an asynchronous replication, a client request does not need to wait
for replication to finish before a response is returned to the client

WildFly Clustering

[272]

Setups such as these can provide a very stable platform that still meets business
requirements related to both functionality and availability.

As an example, we can take another look at the Internet book shop. Let's say that
we have a minimal cluster of two nodes that are load balanced. If we have 100
simultaneous perfectly balanced users, this would mean that we have 50 users on
each node. When using asynchronous replication with a timeout of 30 seconds,
we implicitly say that we can afford loosing the last 30 seconds of session data. In
reality, we estimate how many of these 50 users might have clicked on a book to buy
(putting it in the session data) in the last 30 seconds. Here, let's say two users clicked
on a book. In this case, 98 percent of our users will not notice a failure on one of the
nodes (with the exception of, perhaps, a somewhat longer response time when the
failover occurs). The two percent of affected users will still have their list of earlier
selected books in the shopping card with the exception of the very last selection.

A single point of failure
Even if the different Java EE layers of an application are clustered, there are still
other parts of the infrastructure that may be single points of failures. Examples are
network hardware (switches and so on), load balancers, and database systems.
These need to be investigated further to minimize the impact of a failure.

Another important consideration during risk analysis is to divide the available
cluster nodes between several data centers when possible. This ensures that the
application will run even if one of the data centers is unavailable.

WildFly clustering basics
When two or more WildFly instances are started with an HA configuration
(such as standalone-ha.xml), they form a cluster. In each of these instances, the
selected web applications and EJBs can be easily clustered. We will look at these
later on in this chapter. First, however, we will have investigate the foundations
of clustering in WildFly.

The low-level parts of cluster communications in WildFly, such as discovery and
group handling, are handled by technologies from an open source project called
JGroups (http://www.jgroups.org). Higher-level functions, such as replication
and data handling are performed using Infinispan (http://infinispan.org).

Chapter 10

[273]

JGroups
The following text taken from the JGroups website provides us with a good
introduction to JGroups:

JGroups is a toolkit for reliable messaging. It can be used to create clusters whose
nodes can send messages to each other. The main features include the following:

• Cluster creation and deletion. Cluster nodes can be spread across LANs
or WANs.

• The joining and leaving of clusters.
• Membership detection and notification about joined/left/crashed cluster nodes.
• The detection and removal of crashed nodes.
• The sending and receiving of node-to-cluster messages (point-to-multipoint).
• The sending and receiving of node-to-node messages (point-to-point).

The actual configuration of JGroups is done through a protocol stack where each
layer can be configured to match the needed setup for matching specific network
characteristics. These layers include infrastructural building blocks such as
the following:

• Transport (UDP, TCP)
• The fragmentation of large messages
• Reliable message transmission (and retransmission in case of errors) using

unicast and multicast
• The failure detection of crashed nodes
• The flow control

WildFly Clustering

[274]

Additional support for message ordering, encryption, compression, and so on also
exists. Additionally, it is possible to implement your own protocol. Communication
with JGroups is performed through a channel that acts as the frontend for the
complete stack, as seen in the following diagram:

Two JGroups stacks communicating through a network

In WildFly, the JGroup setup is located in the JGroups subsystem. This subsystem
is activated in the included configurations called standalone-ha.xml and
standalone-full-ha.xml by default.

Here, there are two stacks that are configured, one for UDP and one for TCP. The
actual underlying native JGroups stacks can be retrieved using the following CLI
commands for UDP and TCP, respectively:

/subsystem=jgroups/stack=udp:export-native-configuration

/subsystem=jgroups/stack=tcp:export-native-configuration

Describing these setups in detail is out of the scope of this book, but we urge you to
investigate the JGroups documentation to get a good understanding of how it works.

Chapter 10

[275]

Using the default UDP or TCP setup often depends on the size of your cluster.
From experience, we have noted that TCP is normally faster for a cluster with just
two to three nodes, whereas UDP is better suited for larger clusters. To change the
configuration to use TCP, the following CLI command can be executed:

/subsystem=jgroups:write-attribute(name=default-stack,value="tcp")

As UDP is using multicasting for communication, every node that listens to the
specified multicast address and port will get the message. The default socket-binding
group used by JGroups is jgroups-udp and is configured to use the 230.0.0.4 IP
address with the 45688 port.

The TCP stack actually also uses multicast. In this case, it is used for the automatic
discovery of other nodes. The socket-binding group used in this case is jgroups-
mping, which specifies the multicast 230.0.0.4 IP address with the 45700 port. As an
alternative, it is possible to change the discovery unit from MPING to TCPPING. This
allows a node to connect to a specified list of nodes without relying on auto discovery.

If you run several clusters on the same network, you have to
make sure that they use different multicast setups in order to
avoid interference. This can be accomplished using the CLI.

For a UDP stack, run the following command:
/socket-binding-group=standard-sockets/socket-
binding=jgroups-udp:write-attribute(name=
multicast-address, value="230.0.0.4")

For a TCP stack, use the following command:
/socket-binding-group=standard-sockets/socket-
binding=jgroups-mping:write-attribute(name
=multicast-address, value="230.0.0.4")

Alternatively, WildFly can be started with the jboss.default.
multicast.address=230.0.0.4 VM- parameter.

Changing the group name will also work but this means that
messages will be handled by all node's JGroups stack and then
ignored if they do not belong to the correct group. This involves
unnecessary work, and it is better to change the multicast
address instead.

Another thing that can contribute to the efficiency of the UDP stack in large clusters
is that it utilizes the MERGE3 implementation to control merges. This is a more
efficient implementation than MERGE2, which is utilized by the TCP stack. It is also
important to remember that multicast will normally only work when the nodes are
located in the same subnet.

WildFly Clustering

[276]

WildFly creates the following channels when it starts a cluster:

• server

• web

• ejb

In WildFly, a lot of information and statistics are available using the CLI or from
MBeans. This information not only includes the channels, but also the different
building blocks in the stack. As an example, the following CLI commands can be
used to get the number of messages and bytes that pass through the web channel:

/subsystem=jgroups/channel=web:read-attribute(name=sent-messages)

/subsystem=jgroups/channel=web:read-attribute(name=received-messages)

/subsystem=jgroups/channel=web:read-attribute(name=sent-bytes)

/subsystem=jgroups/channel=web:read-attribute(name=received-bytes)

A corresponding MBean can be found with the jgroups:type=channel,cluster="
web"."." name, as seen in the following screenshot of JConsole:

The JConsole that shows us some values of the MBean for the JGroups web channel

Chapter 10

[277]

By using the CLI, it is possible to ask the channels which nodes are part of the
cluster. This list of nodes is called a view in JGroups. The following is an example
command to get the view for the web channel:

/subsystem=jgroups/channel=web:read-attribute(name=view)

In the same manner, information can be gathered about the individual building
blocks under /subsystem=jgroups/channel=web/protocol=XXX.

No matter if you add your own stack or start off using one of the distributed
ones (which is recommended) for your tuning, we also strongly recommend that
every change be tested individually to tune the setup that fits your scenario in the
best manner.

Tuning UDP transport
As JGroups guarantees reliable delivery, any lost UDP datagrams will be bad for
performance, as JGroups then need to retransmit messages. A common reason
for this is the undersized socket that receives buffers on the UDP protocol. These
are controlled by mcast_recv_buf_size and ucast_recv_buf_size and can be
configured by the following commands in the CLI for the web channel:

/subsystem=jgroups/channel=web/protocol=UDP:read-attribute(name=mcast_
recv_buf_size)

{

 "outcome" => "success",
 "result" => 25000000

}

/subsystem=jgroups/channel=web/protocol=UDP:write-attribute(name=mcast_
recv_buf_size, value=50000000)

/subsystem=jgroups/channel=web/protocol=UDP:read-attribute(name=ucast_
recv_buf_size)

{

 "outcome" => "success",
 "result" => 20000000

}

/subsystem=jgroups/channel=web/protocol=UDP:write-attribute(name=ucast_
recv_buf_size, value=40000000);

By monitoring the number of dropped UDP datagrams using the netstat -su
command, these values might need adjustment, especially if the cluster consists of
more than just a few nodes.

WildFly Clustering

[278]

Even if these settings are tuned, the underlying OS
might very well impose a limitation on the UDP
buffer size that can't be exceeded.

Tuning node fault detection
Whenever a new node appears, it needs to be discovered and merged into the
existing cluster. This merger can be more costly than expected, as there might
be a lot of data that needs to be transferred before the node is ready to execute.

This data transfer will naturally occur when a new node is started, but it may also
happen if a node is regarded as unusable by the fault-detection protocol (and the
following extra checks) in JGroups. If the node is totally unresponsive for a long time
due to, for example, a really large GC or lack of CPU resources, it might be removed
from the cluster. When the node comes "alive" again, it will try to merge into the
cluster and the transfer costs might very well trigger the causes for why it was
expelled the first time. This may lead to a "bad cycle" consuming a lot of resources
that could be used elsewhere in a better manner. If this occurs often, you might need
to tune the fault-detection protocol to be somewhat slower to suspect nodes, or even
better, fix the real problem that has made it unresponsive.

Tuning flow control
To prevent fast senders from filling the buffers of overwhelming slow readers,
JGroups implements ticket-based flow control (FC). The tickets are used to prevent
packet loss and are defined as the number of bytes that are allowed to be sent but
not acknowledged.

Some switches and network cards also implement the flow control (IEEE 802.3x)
to slow down fast senders (please refer to your hardware documentation). This is
a good low-level performance feature that can be used if the UDP stack is used in
JGroups, even if the functionality is somewhat duplicated by the JGroups stack.

Infinispan
Support for caching is mainly handled by the Infinispan subsystem in WildFly. It can
handle various data types and is utilized by for example HTTP sessions and SFSBs.
It also uses JGroups for low-level communication.

Infinispan is a key-value data grid with support for high-end functions such as
cluster distribution, transaction isolation, eviction, expiration, state transfers, and
persistent storage (cache loaders/stores). It is often used as a replicated cache, which
is exactly how it is used in WildFly.

Chapter 10

[279]

Infinispan supports the following cache types:

• local-cache: This is a local cache that does not replicate anything. If several
caches exist, they are completely isolated from each other.

• invalidation cache: Cache data is stored in a shared cache store (such as
a database) and invalidated from all nodes when changed, which means that
they will need to retrieve the data again.

WildFly Clustering

[280]

• replicated cache: All data is replicated to all nodes, making the
caches identical.

• distributed-cache: Instead of replicating the data to all nodes in the cluster,
a hashing algorithm is used to specify where in the cluster the data should
be stored. Together with a number that specifies the number of nodes that
should keep a copy of the data, huge yet fail-tolerant clusters can be built.

Chapter 10

[281]

Note that even if we ask Node #3 about the k1 key, it will work, as this node
will fetch the data from Node #1, and act just as we'd use Node #1 directly.
All this is based on the hashing algorithm.
It is possible to give Infinispan a "hint" of the location of a node. This hint
provides information needed for the system to make sure that the selected
backup nodes are located in, for example, another rack or even data center.
Available settings exist for machine, rack, and site.
To limit the number of remote calls of multiple GET requests that are issued,
Infinispan can use a L1 (level 1) cache to temporarily store values fetched
from other nodes, for a short time. Enabling L1 will improve the performance
of repeated reads of non-local keys. This will, however, come at the expense
of memory and the fact that invalidation messages need to be issued
whenever data is updated. We suggest that you test the application
both with and without this enabled before blindly trusting it to provide
improved performance.

Configuration-wise, Infinispan uses cache containers to group caches for different
purposes. The following table lists the available cache containers and their caches,
as distributed with a clustered WildFly:

Cache-Container Default type Description

Server Replicated -

Web Distributed Stores the HTTP sessions

EJB Distributed Handles SFSBs

Hibernate Local Local query cache

Entity Invalidation Entity cache

Timestamps Replicated Entity timestamp cache

Which one of the existing caches that is defined in a cache-container is specified by
the default-cache attribute. Here, the value of this setup is retrieved by using the
CLI for the web cache container:

/subsystem=infinispan/cache-container=web:read-attribute(name=default-
cache) {

 "outcome" => "success",
 "result" => "dist"

}

WildFly Clustering

[282]

The dist value in this case points to a cache in the cache group with a corresponding
name. All kinds of cache information can be retrieved and managed using CLI
commands such as the ones that follow. These retrieve and set the total number of
nodes that can store a value for a specific key name (here, owners):
/subsystem=infinispan/cache-container=web/distributed-cache=dist:read-
attribute(name=owners)

{

 "outcome" => "success",
 "result" => 4

}

/subsystem=infinispan/cache-container=web/distributed-cache=dist:write-
attribute(name=owners, value=5)

In WildFly, the timeout for the L1 can be changed using the following CLI command
for the web cache (the time is in milliseconds):
/subsystem=infinispan/cache-container=web/distributed-cache=dist:read-
attribute(name=l1-lifespan)

{

 "outcome" => "success",
 "result" => 60000L

}

Similarly, in the following command, we set the time to two minutes (120,000 ms):
/subsystem=infinispan/cache-container=web/distributed-cache=dist:read-
attribute(name=l1-lifespan, value=120000L)

All replication in Infinispan can either be executed synchronously or asynchronously,
as visualized in following two diagrams:

The synchronous replication of State between WildFly nodes

Chapter 10

[283]

The asynchronous replication of State between WildFly nodes

By utilizing asynchronous replication, performance will normally increase at the
risk of loosing data in the case of failures. Asynchronous replication is the default
behavior in WildFly and is set to an interval of 10 ms. These settings can naturally be
changed using CLI. The following steps show us how the web cache can be adjusted:

1. First, we set the replication interval (here to 5000 ms):
/subsystem=infinispan/cache-container=web/distributed-
cache=dist:write-attribute(name=queue-flush-interval, value=5000)

2. We then continue by setting the maximum number of replication events
(here, 10) to be queued before the replication, even if the interval hasn't
been reached:
/subsystem=infinispan/cache-container=web/distributed-
cache=dist:write-attribute(name=queue-size, value=10)

3. Finally, we switch to the SYNC (from the default ASYNC) mode:

/subsystem=infinispan/cache-container=web/distributed-
cache=dist:write-attribute(name=mode, value=SYNC)

The Admin Console in WildFly has a lot of information about the setup of these
caches under the Profile tab. Unfortunately, it lacks the runtime information.
Luckily, this can be retrieved using the CLI.

WildFly Clustering

[284]

Starting a clustered WildFly (using a HA profile) will not start the cluster
initialization process until a clustered application is deployed. The node will then
either join a cluster or start a new one. This is not optimal from a management
and/or performance point of view, as a redeploy or undeploy operation will make
the node leave the cluster (if no other deployed application keeps it in the cluster).
When the application is redeployed again, the node will need to join, and possibly
create, the cluster again. This default lazy behavior can be changed so that WildFly
always starts up the cluster during the normal startup and keeps it up and running
until shutdown. Issue the following CLI command for each of the caches in a node
that you want to start the clustering for (in this case, the distributed web cache):

/subsystem=infinispan/cache-container=web/distributed-cache=dist:write-
attribute(name=start, value=EAGER)

More information on Infinispan can be found in the book
titled Infinispan – the Data Grid Platform by Packt Publishing,
at http://www.packtpub.com/infinispan-data-
grid-platform/book.

Clustering in Java EE and WildFly
WildFly supports clustering for all major Java EE components. For some
components, this support is mandated by specification, and for others, WildFly
has proprietary support like many other application servers.

In the upcoming sections, we will discuss clustering and related performance
tuning as they exist in the different layers of the Java EE stack and relevant
subsystems of WildFly.

Clustered EJBs
As we will see, WildFly, like most other application servers, provides support for
clustering of the relevant types of EJBs. It is, however, important to remember that
clustering of EJBs is still proprietary and not a part of the Java EE specification.

The @org.jboss.ejb3.annotation.Clustered
annotation and its XML counterpart is unique to the
WildFly (and JBoss AS and JBoss EAP) application
server and not a part of the Java EE APIs.

Chapter 10

[285]

This type of heterogeneity sometimes makes the work of migrating clustered
applications quite complicated. It also makes it hard to do fair and comparable
performance measurements between different platforms.

MDB
Message Driven Beans (MDB) cannot be clustered by themselves. An MDB is
always merely a client that accepts incoming messages from, for example, a queue or
a topic in a messaging system such as HornetQ. Instead, it is the messaging system
that might be clustered. Alone or as a cluster, from a queue's perspective, it will
choose one registered MDB as a recipient and send a message to it. When talking
about topics, all (possibly available, depending on configuration) subscribing MDBs
will have the message sent to them. The relevant tuning related to the messaging is
located in HornetQ and will be discussed later on in this chapter.

SLSB
With the @Clustered annotation Stateless Session Beans (SLSB) can be clustered
and EJB clients will have a dynamic view of the EJBs topology. The clustering of
SLSBs only involves load balancing. No replication exists, which is natural as SLSBs
have no state.

According to the WildFly 8 clustering documentation, the
@Clustered annotation is arguably needed for clustered
SLSBs in WildFly 8.0.0.Final (as described previously). In
our tests, however, SLSBs becomes clustered without the
annotation when WildFly is started with a HA profile.

SFSB
Stateful Session Beans (SFSB) are by default, and without the @Clustered
annotation, clustered when WildFly is started with an HA configuration profile.
Just as with SLSBs, with the @Clustered annotation, EJB clients will have a dynamic
view of the SFSBs' topology.

The passivation of SFSBs in WildFly is handled by the subsystem of Infinispan. In a
basic configuration (such as standalone.xml) without HA support, a local cache with
file-based storage is used. When WildFly is changed to use an HA configuration profile
(for example standalone-ha.xml), the replication is changed to use a clustered cache.
As noted in Chapter 5, EJB Tuning in WildFly, it can be beneficial for performance in
terms of response times to disable passivation by setting the passivationCapable
attribute to false on the SFSB. This has the logical (in the way Infinispan is used)
but rather nasty side effect of also turning replication off. Thus, the state will not be
replicated to other nodes as one of them, for whatever reason, leaves the cluster.

WildFly Clustering

[286]

A client that calls a clustered SFSB with the passivation turned off like this will
receive an exception in return as the call will no longer be handled with integrity
when the node has left the cluster. In many ways, this will cause more loss in
performance enhancements than gains.

Turning passivation off on a clustered SFSB
(passivationCapable=false) also turns off the replication
for that SFSB. This type of tuning in a clustered environment
is not recommended without very good reasons. Strategies
to handle the side effects are vital. Technically, these can be
experienced in the way of lost session states and exceptions
being thrown to clients. Business-related side effects may vary
in the degree of seriousness but should be treated as severe
until proven otherwise.

Load balancing
How the calls from a remote client to a clustered EJB are distributed depends on
the type of EJB and the type of load balancing algorithm that is defined. Choosing
an algorithm that suits the needs of your specific application and environment will
normally affect performance significantly.

By default, calls from a client to a cluster of Stateless EJBs (SLSB) will be distributed
among the SLSBs in a round-robin/random like behavior. For a clustered Stateful
EJBs (SFSB), the calls are sticky by default, which means that the same instance in
the cluster will be called from a specific client as long as the EJB instance is available.
Should the selected node disappear from the cluster, the replication transfers the
session to other instances that can handle subsequent calls.

The load balancing algorithm is realized by a cluster node selector, which in turn,
is a Java class that implements the org.jboss.ejb.client.ClusterNodeSelector
interface with the selectNode method implemented. WildFly ships with
RandomClusterNodeSelector, which is a cluster node selector that, just as its name
suggests, randomly selects a node in the cluster. Using this selector in a production
environment that has demands of high performance and predictability is not
recommended. Instead, it is highly recommended that you use a selector that is more
predictable in its behavior and/or can make more intelligent decisions in selecting a
node to direct calls to. This does, however, require you to create your own selector.

Rigorous testing is vital before putting a custom cluster node
selector into production, as faulty behavior can be costly and
sometimes, hard to resolve.

Chapter 10

[287]

The following example implements a custom cluster node selector using the simple
but often effective round robin (RR) algorithm:

public class RRSelector implements ClusterNodeSelector {
 private AtomicInteger nodeIndex;
 public RoundRobinClusterNodeSelector() {
 LOGGER.info("RoundRobinClusterNodeSelector created");
 nodeIndex = new AtomicInteger(0);
 }
 @Override
 public String selectNode(String clusterName,
 String[] connectedNodes, String[] availableNodes) {
 if (availableNodes.length < 2) {
 return availableNodes[0];
 }
 return availableNodes[nodeIndex.getAndIncrement() %
 availableNodes.length];
 }
}

This class then needs to be defined in the configuration on the client side. If the client
is a server-side container-based component, such as an EJB, the configuration is
placed in a file named jboss-ejb-client.xml (note the .xml extension used here!).
This file is in turn located in the topmost deployment artifact, for example, in the
META-INF directory of an EAR. The configuration of the XML file with the mentioned
selector is shown in the following code:

<jboss-ejb-client xmlns="urn:jboss:ejb-client:1.1">
 <client-context>
...
 <clusters>
 <cluster cluster-node-selector="RRSelector">
...
 </cluster>
 </clusters>
 </client-context>
</jboss-ejb-client>

WildFly Clustering

[288]

If the client is a standalone Java application, the corresponding configuration needs
to be placed in the jboss-ejb-client.properties file (note the .properties
extension used here!). This file will then need to be located in the classpath of the
application. In this file, the selector is defined as shown in the following property for
a remote cluster named ejb:

remote.cluster.ejb.clusternode.selector=RRSelector

The ejb name corresponds to the cache container that backs the clustered EJB.
The ejb name is also default, as configured in the Infinispan subsystem in WildFly.
This subsystem is then referred to from the cache-container attribute of the
cluster-passivation-store element of the EJB3 subsystem.

Clustered Persistence (JPA) layer
As described in an earlier chapter, the JPA provider in WildFly, which is Hibernate,
can use caches for both data and query cache. This is also true
for a clustered WildFly server.

If the application specifies the use of a query cache, WildFly will use a local
Infinispan cache called local-query by default, with a replicated timestamp cache
(named timestamps) that keeps track of all the most recent changes made to the
queried tables. As this cache is replicated, all nodes will know whether their local
query cache is out of date.

These caches are accessible from the CLI under /subsystem=infinispan/cache-
container=hibernate/replicated-cache=timestamps and /subsystem=
infinispan/cache-container=hibernate/local-cache=local-query.

The actual entity is cached by default if it is enabled for the application in an
invalidation cache called entity. This entity is located in the CLI under /
subsystem=infinispan/cache-container=hibernate/invalidation-
cache=entity.

Even if a second-level-cache has proven itself effective in a non-clustered
environment, it has to be tested again and re-verified as it moves into a clustered
environment. The relatively small overhead of the invalidation cache can often
affect performance more than anticipated. Similarly, the timestamp cache can cause
performance issues in large clusters.

Chapter 10

[289]

Clustered web applications
A web application that is deployed to nodes in a cluster becomes available for
clustering when the <distributable/> element is added at the top level in the
web.xml file of the application.

Converse to EJBs, the servlet specification does
stipulate clustering with replication of session
data for web applications.

In web applications, the data attributes of the web sessions (HttpSession instances)
as used in servlets and JSPs, is what is actually replicated between nodes.

By default, the entire HttpSession (with all attributes) will be replicated to each
node each time an attribute in the session is altered during a request. If the session is
large in size due to many and/or large attributes, replication can become
a serious bottleneck.

By setting the replication-granularity element in jboss-web.xml to ATTRIBUTE
(the default is SESSION) as shown in the following code, only the changed attributes
in a request are replicated between the nodes of the cluster:

<replication-config>
 <replication-granularity>ATTRIBUTE</replication-granularity>
</replication-config>

Keeping the data of the HttpSession as small as possible benefits performance.
Few and small attributes also minimize memory usage, keeps down CPU usage
during the required serialization/deserialization process, and holds down the
use of network resources.

A lot of enhancements of clustering and performance have been
incorporated in WildFly 8. See more at https://community.
jboss.org/wiki/ClusteringChangesInWildFly8.

WildFly Clustering

[290]

Load balancing with mod_cluster
HTTP-based load balancing can, as we have previously mentioned in Chapter 7, Tuning
the Web Container in WildFly, (where we also talked about the basic installation and
configuration), be set up by installing the mod_cluster module in the Apache HTTPD
web server and enabling the mod_cluster subsystem in WildFly. With mod_cluster, we
get a very effective and adaptive software-based load balancer that can direct traffic
to a dynamic farm of WildFly server instances. Load balancing with mod_cluster is
based on load factors communicated from the connected servers. Thus, mod_cluster
can make its traffic-directing decisions based on the actual and individual load on the
nodes instead of just relying on an internal algorithm. Naturally, classic load-balancing
features, such as, static per node load and sticky session can be used as well. A
conceptual example of HTTPD and mod_cluster using using load factors (f) of WildFly
instances to direct traffic is shown in the following diagram:

An Apache HTTPD web server with a mod_cluster module acts as load balancer
in front of some WildFly instances with the mod_cluster subsystem enabled

The load factor that decides how mod_cluster directs traffic is communicated from
each WildFly instance to the load balancer. How the load factor is calculated on
each server is decided by a load provider. The following are the two types of load
providers that exist:

• simple-load-provider
• dynamic-load-provider

Chapter 10

[291]

With the simple-load-provider, a static load factor is set for each server. The given
load factor will never change (unless it's manually done), and the load balancer will
always make the (same) decision based on this factor. The static load configuration can
be useful, for example, in farms where the different servers have the same or known
diverging hardware capacity and where traffic is quite constant and similar in terms
of the computation need. A server with low capacity can have a lower load number
than a server with a higher capacity. The configuration of the simple-load-provider is
located within the mod_cluster subsystem configuration of a WildFly server, as shown
in the following configuration snippet. The value of the load factor attribute (which
accepts any integer and has the default value of 1) should be higher for servers with
more capacity:

<mod-cluster-config ...>
 <simple-load-provider factor="1"/>
</mod-cluster-config>

Switching to a simple-load-provider setup, such as the preceding one, from the
default dynamic-load-provider requires the following steps to be followed:

• Remove the default dynamic load provider setup by using the following
command:
/subsystem=modcluster/mod-cluster-config=configuration/dynamic-
load-provider=configuration:remove

• Add a simple load provider by using the following command:

/subsystem=modcluster/mod-cluster-config=configuration:write-
attribute(name=simple-load-provider, value=1)

Getting the right number for the load attribute is not always easy and few systems
will have a traffic flow even enough for the simple-load-provider to be optimal.

With the default dynamic-load-provider, a WildFly instance will communicate a
load factor to the load balancer that can be based on several performance-related
load metrics. These load-metric types include measurements from connection pools,
the web container (sessions, connector, traffic load, and more), the JVM (such as
heap usage), the operating system and underlying hardware (for example, the
CPU and memory usage), as well as your own custom load-metric type. A sample
configuration of the dynamic-load-provider with a few load-metric types is shown
in the following configuration:

<mod-cluster-config advertise-socket="mod_cluster">
 <dynamic-load-provider history="5" decay="2">
 <load-metric type="cpu" weight="5" capacity="1"/>
 <load-metric type="sessions" weight="2" capacity="256"/>
 <custom-load-metric class="myclass"

WildFly Clustering

[292]

 weight="1" capacity="64">
 <property name="mykey1" value="value1" />
 <property name="mykey2" value="value2" />
 </custom-load-metric>
 </dynamic-load-provider>
</mod-cluster-config>

With all these possibilities of tuning, it will certainly be possible to have a setup
as close to perfect as it can be. Finding this perfect setup is, however, something
completely different. We would advice you to start with a relatively easy and basic
setup. Beginning with just one load-metric type, such as the CPU usage (which is
the default) or number of sessions, and get its values to work well in representative
traffic conditions. After this, you can slowly add more types, tune values, and add
possible weighting to each type as you learn more about how the system responds
to alternating conditions and values. Having a homogenous system with equal
hardware and services/applications running on all WildFly instances will simplify
this work enormously.

More information about mod_cluster, its load providers, and
types is available at http://mod-cluster.jboss.org and
http://docs.jboss.org/mod_cluster/1.2.0/html/.

Clustering the HornetQ messaging system
In a cluster of HornetQ instances, each node (standalone or as a subsystem in
WildFly) handles its own messages. Message sharing and processing uses core bridges
(a proprietary low-level communication channel in HornetQ) which are enabled by
default and uses UDP multicast in WildFly. With these bridges, connections between
nodes make it possible for messages to be consumed by clients that are registered to
a node that doesn't have the message stored locally but on another node.

The choice of the cluster topology can affect the performance in many ways,
especially when the number of nodes exceeds two. In, a symmetric cluster, for
example, all nodes know about each other's existence, and each node also knows
about all available queues and consumers on the other nodes. Consequently, a node
is a maximum of one hop away from another. Having a minimal number of hops
is naturally good for performance. This topology is exemplified in the following
diagram. Here, the Master nodes (Node #1-3) are connected by core bridges, and
each node has its own Journal for (persistent – if durable) storage of messages.
A client may, for example, connect to one node, say Node #1, and help consume
messages from Node #2 or Node #3 to support good load balancing.

Chapter 10

[293]

A symmetric HornetQ cluster

In a chain cluster, on the other hand, a node only knows about the node (and its
queues and consumers) ahead of and behind itself. For a three-node chain cluster,
a message can, therefore, potentially be two hops away. This could impose worse
performance (in waiting for a message) but it may be required due to a structural
need within the organization or the setup of the physical network.

For all the mentioned types of cluster topologies, only load balancing is involved.

Clustered HornetQ nodes can either be of Master (also known as Live) or Backup
types. By default, clustered WildFly nodes are all of the Master type and use their
own private journals for persistent storage. This means that even if the consumption
of messages is spread over the cluster, the messages stored on one node will not be
available for others in case of a node failure. So, only Master nodes will handle the
JMS traffic, and Backup nodes are more of a hot standby.

In terms of HA and failover (with optional failback), HornetQ provides the following
two setups:

• Message replication between Master and Backup nodes
• Shared persistent storage of messages for Master and Backup nodes

WildFly Clustering

[294]

For the first setup, the replication of messages between a Master and a Backup
node, as seen in the following diagram, can take a lot of resources as messages
are continuously transferred between the nodes:

Regular clients are however, not directly blocked by normal replication. There is also
often a relatively high-time delay as the Backup node starts up and synchronizes
itself and its messages before it can serve clients. Knowing which node has the
most correct and current set of messages can, under some situations of failover and
failback, also be unclear.

On the other hand, and as given in the second setup, and as seen in the following
diagram, a shared persistence storage of a Master and one or more Backup nodes, is
a good way to ensure that all messages can be consumed without the hesitation of
missing any. One should, however, note that shared storage is also where a typical
bottleneck might occur. Both network and disk latency will heavily influence
performance in this location. Using a SAN with a fast controller and disks is
recommended for this setup, whereas a NAS should be avoided at all costs.

Chapter 10

[295]

In a cluster with replication between a Live (Master) and its Backup nodes,
each node has its own Journal for persistent storage of messages

From experience, we have seen that it is advantageous to have
a separate HornetQ cluster (built using HornetQ embedded
in WildFly or standalone HornetQ servers) serving WildFly
instances (clustered or not) with application logic.

In a HornetQ cluster realized by WildFly servers with
embedded HornetQ and where deployment artifacts (such
as MDBs) use JMS resources (such as factories and queues),
problems are very likely to occur. These problems include poor
stability (especially for the Backup nodes) and synchronization
issues of artifacts and resources during deployment.

Summary
In this chapter, we talked about the importance of knowing the terminology related
to clustering, including load balancing, high availability, failover, and replication.
While each feature has its benefits, there may also be drawbacks, especially in terms
of maintenance and complexity. The two foundations of clustering in WildFly are
as follows:

• The cluster node communication by JGroups
• Data distribution and caching with Infinispan

WildFly Clustering

[296]

Large parts of the Java EE stack and its components can be clustered and tuned. In
WildFly, these components include the following:

• The different EJBs
• Web applications
• Load balancing of HTTP traffic using mod_cluster
• The persistence layer
• HornetQ

The golden rule for whenever replication is involved is to make sure that the dataset
is as small as possible.

Now you can tune WildFly. Get out there and test its wings!

Index
Symbols
@Embedded annotation 160
@org.jboss.ejb3.annotation.Clustered

annotation 284
@PostConstruct annotation 129
@Startup annotation 129

A
acceptance tests 14
action variant 225
AJAX support, in JSF

about 230
filters 233
partial DOM updates, by component

and attribute 230, 231
single partial AJAX async (form)

requests 232
AJP

about 194
and HTTP 209, 210

analysis phase 15, 16
Apache, as frontend

benefits 207-209
using 207

Apache CXF implementation
URL, for FAQs 241

Apache HTTPD configuration 211
Apache Jasper project 205
Apache JMeter

about 51
basic test plan, building 52-55
distributed load generation 57, 58
standalone load generation 57, 58
test plan, improving 55

URL 51
web session, recording JMeter HTTP

proxy used 56
Apache JServ Protocol. See AJP
Apache Tomcat

URL 193
application server 99
application snapshot 36
application tuning 25, 26
architecture, WildFly 101-103
assertions 55
async-handler 122
Asynchronous IO (AIO) 254
Asynchronous Java and XML (AJAX) 221
asynchronous logging

used, for improving log
throughput 124, 125

AUTO_ACKNOWLEDGE mode
about 248
using 249

B
baseline

setting 18
basics, NIO 197
Batch API subsystem 115, 116
batch fetching 181
batch updates

using, for bulk insert/updates 171, 172
Bean Managed Concurrency. See BMC
benefits, collector 90, 91
benefits, for Apache as frontend

Demilitarized Zone (DMZ) 209
HTTPS termination 207
load balancing 209

[298]

static content 208
Big Data systems 158
BLOB columns 162
BLOB data type 162
blocking-bounded-queue-thread-pool

executor
about 105
configuration properties 106

blocking-queueless-thread-pool executor
about 106
configuration properties 107

BMC
versus CMC 151

bounded-queue-thread-pool executor
about 105
configuration properties 105

buffer pool, Undertow 201, 202
Business-to-Business (B2B) applications 215
Business-to-Consumer (B2C)

applications 215

C
cache 183
cache containers, Infinispan 281-284
cache mode 185
cache mode setting

ALL 185
DISABLE_SELECTIVE 185
ENABLE_SELECTIVE 185
NONE 185
UNSPECIFIED 185

cache types, Infinispan
distributed-cache 280
invalidation cache 279
local-cache 279
replicated cache 280

CLI
used, for monitoring Singleton Session

Beans 152
CLIENT_ACKNOWLEDGE mode 248
Client VM

versus Server VM 70
cluster 266
clustered EJBs

about 284
load balancing 286-288

MDB 285
SFSB 285, 286
SLSB 285

Clustered Persistence (JPA) layer 288
clustered web applications

about 289
load balancing, with mod_cluster 290, 291

clustering
in Java EE 284
in WildFly 284
need for 270-272

clustering basics, WildFly
about 272
JGroups 273-276

clustering monitoring subsystem 265
cluster node selector 286
CMC

versus BMC 151
Collection Sets (CSet) 89
collector

benefits 90, 91
Command Line Interface (CLI) 48
Common Gateway Interface

logical model 217
Common Gateway Interface (CGI) 216
communication models,

JMS message broker
Queue 246
Topic 246, 247

components, NIO
buffers 197
channel 197
selector 197

concurrent collector 88, 90
Concurrent Mark phase 89
Concurrent Mark Sweep (CMS) collector 88
Concurrent Sweep phase 89
configuration, Apache HTTPD 211
configuration, JSF state

about 227
state saving method, in client mode 228
state saving method, in server mode 228
summary of state saving method

configurations 229
configuration, JVM

about 69
Client VM, versus Server VM 70

[299]

default settings 69, 70
heap 71, 72
stack 70

configuration properties,
blocking-bounded-queue-thread-pool

max-threads 106
queue-length 106

configuration properties,
blocking-queueless-thread-pool

keepalive-time 107
thread-factory 107

configuration properties,
bounded-queue-thread-pool

allow-core-timeout 105
handoff-executor 105
keepalive-time 105
max-threads 105
thread-factory 105

configuration properties,
queueless-thread-pool

handoff-executor 106
keepalive-time 106
thread-factory 106

configuration properties,
scheduled-thread-poolA pool

keepalive-time 107
thread-factory 107

configuration properties,
unbounded-queue-thread-pool

keepalive-time 105
thread-factory 105

configuration, WildFly 212, 213
connection pooling

about 164
performance tuning, in WildFly 164-171

console-handler 122
Consumer 246
Container Managed Concurrency. See CMC
Container Managed Transaction (CMT) 133
Core API 260
CPU snapshot 36
CPU usage

high CPU utilization 45
low CPU utilization 44

createSession(boolean transacted,
int acknowledgeMode) method

behavior 249

createSession(int sessionMode) method
behavior 250

createSession() method
behavior 249

custom-handler 122

D
Data Access Object-DAO 218
database

designing 158
database design

denormalization 159
normalization 159

database partitioning
about 160
horizontal partitioning 161
vertical partitioning 161, 162

data persistence 157
Datasource 164
data synchronization

optimizing 189
data table

tuning 221, 222
default-buffer-cache attribute 196
Demilitarized Zone (DMZ) 209
denormalization 160
Dependency Injection (DI) 128
design phase 16
directive variant 225
distributed-cache 280
documentation routine 20
Domain Object Model (DOM) 220
dumps, VisualVM

heap dump 36
thread dump 36
VM Core dump 36

DUPS_OK_ACKNOWLEDGE mode 249
dynamic-load-provider 291

E
EJB

about 101, 127
history 128

EJB types
about 128

[300]

MDB 130
SFSB 129
Singleton Session Beans 129
SLSB 128

enable-cache parameter 233
Enterprise Information Systems (EIS) 110
Enterprise JavaBean. See EJB
Enterprise Java Bean Open Source

Software (EJBOSS) 100
Enterprise Management System (EMS) 46
Enterprise Service Bus (ESB) 215
enterprise stack

tuning 23
enterprise stack layers

application 25, 26
hardware 23
JVM 24
middleware 24
network 23
OS 24

enterprise stack, tuning categories
application tuning 25, 26
hardware tuning 24
JVM tuning 24
middleware tuning 24
network tuning 23
OS tuning 24

entity caching
about 183
first-level cache (L1C or 1LC) 183, 184
query cache 187, 188
query hints 188
second-level cache (L2C or 2LC) 183-186
versus query caching 189

environment, performance tests
rules 21

evolution, web framework 216-221
extensions 101

F
failback procedure 269
failover 268
features, JGroups 273
features, performance tuning

about 28
load generation 50

monitoring 41
profiling 28

features, VisualVM
monitor 31
overview 31
profiler 31
sampler 32
threads 31

file-handler 122
first-level cache (L1C or 1LC) 183
flow control (FC)

about 278
tuning 278

forcenotrf parameter 233
frames 62
full-duplex communications 235
future, Thread subsystem 110

G
G1 collector (Garbage First) 89, 90
garbage collector (GC)

about 29, 63-65
rules 64

GC, JVM memory management 65-68
GC stability

and VM 96
GC strategies

types 86
GC strategies, types

concurrent collector 88
G1 collector 89, 90
parallel collector 87, 88
serial collector 86, 87

Graphical User Interface (GUI) 218

H
handlers, Undertow

about 195
custom handler, creating 195

handlers, WildFly
async-handler 122
console-handler 122
custom-handler 122
file-handler 122
periodic-rotating-file-handler 122

[301]

size-rotating-file-handler 122
syslog-handler 122

hardware tuning 23
heap

about 63, 71, 72
Allocated columns 71
Virtual columns 71

heap dump 36
heap, JVM configuration

heap size, determining 73-76
initial heap size, setting 73
maximum heap size, setting 72
PermGen, exploring 78
size ratio, setting of Eden 77, 78
size ratio, setting of survivor spaces 77, 78

Hibernate 128
High Availability (HA) 269
high disk utilization 46
high resource contention 46
history, EJBs 128
history, WildFly 100, 101
horizontal partitioning, database 161
horizontal scaling (scaling out) 11, 12
HornetQ

optimizing 252
URL 245

HornetQ messaging system
clustering 292-294

HornetQ optimization
flow control 258
large messages, handling 255
message deliverance optimizations 257, 258
miscellaneous tips and tricks 259
monitoring 260-263
paging, optimizing 255-257
persistence storage tuning 252-254

Hotspot 62
Hotspot JVM 69
HTTP

and AJP 209, 210
http-remoting-jmx protocol 38
HttpSession 269
HTTPS termination 207
HTTP Upgrade 116, 235
HTTP Upgrades 194, 196

I
IceFaces

URL 221
immediate attribute 230
implementation phase 16
indexes

guidelines, for efficiency 162, 163
using 162

INDIVIDUAL_ACKNOWLEDGE
mode 251

Infinispan
about 185, 278
cache containers 281-284
cache types 279-281
URL 272, 284

Information Technology (IT) 7
Initial Mark phase 89
integration tests 14
invalidation cache 279
Inversion of Control (IoC) 128
io.undertow.server.HttpHandler interface

implementing 195
isolation levels

TRANSACTION_READ_COMMITED 175
TRANSACTION_READ_

UNCOMMITED 175
TRANSACTION_REPEATABLE_

READ 175
TRANSACTION_SERIALIZABLE 175

isolation levels, scenarios
dirty read 175
non-repeatable read 175
phantom read 175

iterative performance-tuning process
documentation routine 20
test cases and iteration 17-19
test data, creating 20

J
Jastow

about 205
tuning hints 205, 206

Java API for RESTful Web
Services (JAX-RS) 242

[302]

Java API for XML Web
Services (JAX-WS) 236

Java Architecture for XML
Binding (JAXB) 237

Java Archive (JAR) file 110
java command 70
Java Database Connectivity. See JDBC
Java Development Kit (JDK) 31, 62
Java EE

clustering 284
Java EE Connector Architecture (JCA) 110
java.lang.OutOfMemoryError error

about 79
from heap 80
from PermGen 80
requested array size exceeds VM limit

message 81
unable to create new native thread

message 81
Java Management Extension (JMX) 22
Java Messaging Service. See JMS
java.nio.ByteByffer datatype 197
Java Persistence API. See JPA
Java Persistence Query

Language (JPQL) 178
Java Runtime Environment. See JRE
Java SE 8 (JSE8) 78
JavaServer Faces. See JSF
JavaServer Pages. See JSP
JavaServer Pages Template

Library (JSTL) 222
Java Servlet API 217
Java Virtual Machine. See JVM
javax.jms.BytesMessage 247
javax.jms.MapMessage 247
javax.jms.Message 247
javax.jms.ObjectMessage 247
javax.jms.StreamMessage 247
javax.jms.TextMessage 247
JBoss AS (JBoss Application Server) 99
jboss-cli.bat command 48
jboss-cli.sh command 48
jboss-deployment-structure.xml file 126
JBoss Web Server. See JWS
JConsole 50
JDBC 157, 163

JDBC API tuning
about 163
batch updates, using for bulk

insert/updates 171, 172
connection pooling 164
isolation level 175
prepared statements 172-174
proper fetch size, setting 171

JDBC networking
tuning 176

JGroups
features 273
flow control, tuning 278
node fault detection, tuning 278
overview 273-276
UDP transport, tuning 277
URL 272

JIRA case WFLY-1383
URL 110

JMeter HTTP proxy
used, for recording web session 56

JMeter Proxy Server 56
JMS

about 101, 130, 245
message, optimizing 247, 248

JMS session
tuning 248

JMX
connecting, to local WildFly server 37
connecting, to remote WildFly server 37
connecting, to WildFly 37

JMX, connection to WildFly
about 37
connection, in VisualVM 38, 40

journal-compact-percentage setting 253
JPA 101, 157, 177
JPA/Hibernate tuning

about 176
child object, fetching 179, 180
entity caching 183
object retrieval, optimizing 177
pagination and JOIN fetches,

combining 181
parent object, fetching 179, 180
performance, improving of bulk SQL

statements 183

[303]

query compilation, minimizing with
JPA-named queries 182

retrieved data, limiting by
pagination 178, 179

speed of collection queries, improving
with batches 181, 182

transactional integrity and
performance 177

JRE 62
JSF

about 219
AJAX support, using in 230
life cycle phases 219, 221

JSF-based applications
tuning 227

JSF-based applications tuning
about 227
AJAX support, using in JSF 230
immediate attribute 230
JSF state saving, configuring 227
project stage 229
resource files, loading 234

JSP 217
JVM

about 24, 61, 62
configuring 69
memory areas 62
memory concepts 64
monitoring 34
profiling 29
URL, for specification 62
VisualVM, connecting to 33

JVM memory management
with GC 65-68

JVM, monitoring
test scenarios 37

JVM parameters
setting, in WildFly 91, 92

JVM, profiling
memory profiling 29
performance profiling 29

JVM stack 62
JVM tuning 24
JWS

URL 193

L
large memory pages feature 79
large objects 78, 79
last in, first out (LIFO) 62
Last Resource Commit Optimization

(LRCO) 118
Least Recently Used (LRU) algorithm 228
Least Recently Used (LRU) cache 172
Linux 42
listeners, Undertow

AJP 194
HTTP 194
HTTPS 194

load
generating 50

load balancing
about 209, 267, 286-288
with mod_cluster 290, 291

Local Area Network (LAN) 266
local-cache 279
local JVM

about 33
VisualVM, connecting to 33

local WildFly server
JMX, connecting to 37

logfile.jtl file 57
loggc parameter 95
logging

about 118
optimized logging code 119, 120

log throughput
improving, asynchronous logging

used 124, 125
loose coupling 245

M
marshalling 237
MBeans 41
MDB

about 111, 130, 285
optimizing 152-154

memory areas, JVM
heap 63
JVM stack 62
native stack 62

[304]

memory concepts, JVM 64
memory leaks

about 82
finding, VisualVM used 82-86
process, for finding 82

memory profiling 29
memory snapshot 36
message broker 245
message deliverance optimizations 257, 258
Message Driven Bean. See MDB
Message-oriented Middleware. See MOM
MessageProducer

tuning 251, 252
messages, JMS

about 247
javax.jms.BytesMessage 247
javax.jms.MapMessage 247
javax.jms.ObjectMessage 247
javax.jms.StreamMessage 247
javax.jms.TextMessage 247
optimizations 247, 248

Metaspace 78
methods, JMS Connection object

createSession() 249
createSession(boolean transacted, int

acknowledgeMode) 249
createSession(int sessionMode) 250

metrics 22
middleware tuning 24
mod_cluster module

about 290
URL 210, 292

Model-1 pattern 218
Model-2 pattern 218
Model-View-Controller (MVC) pattern

about 218
components 219

modes, JMS specification
AUTO_ACKNOWLEDGE 248
CLIENT_ACKNOWLEDGE 248
DUPS_OK_ACKNOWLEDGE 249

mod_jk
URL 210

mod_proxy
URL 210

Mojorra JSF 2.2 227

MOM 130, 245
monitoring 41
mpstat tool 46
Multi-JSF 227

N
n+1 problem 180
named queries 182
native stack 62
NetBeans IDE

URL 31
netstat command 43
Network File System (NFS) 254
network tuning 23
NIO (New Input Output)

about 194
basics 197

NIO buffers 197
NIO channel 197
NIO selector 197
node fault detection

tuning 278
Normal Forms (NF) 159
normalization 159

O
Object-Relational Mapping (ORM) 128, 176
object retrieval

optimizing 177
OLAP (Online Analytical Processing) 160
OLTP (Online Transaction Processing) 160
OOME 80
Operating System. See OS
optimistic locking 178
optimized logging code 119, 120
OS 24
OS tools

about 41
Linux 42
OS X 47
UNIX 42
Windows 48

OS tuning 24
OS X 47
OutOfMemoryError. See OOME

[305]

P
pagination, and JOIN fetches

combining 181
paging

optimizing 255-257
parallel collector 87-90
parameters, connection pooling

allocation-retry 166
allocation-retry-wait-millis 165
background-validation 166
background-validation-millis 166
blocking-timeout-wait-millis 165
check-valid-connection-sql 166
connection-properties 168
flush-strategy 166
idle-timeout-minutes 165
initial-pool-size 165
max-pool-size 165
min-pool-size 165
pool-prefill 165
pool-use-strict-min 165
prepared-statements-cache-size 167
query-timeout 167
set-tx-query-timeout 167
share-prepared-statements 167
spy 167
track-statements 168
transaction-isolation 167
use-fast-fail 166
valid-connection-checker-class-name 166
valid-connection-checker-properties 166

parameters, for Jastow tuning hints
check-interval 205
development 205
generate-strings-as-char-arrays 205
modification-test-interval 205
recompile-on-fail 205
tag-pooling 205
trim-spaces 205

parameters, for running JMeter
-H 57
-l 57
-n 57
-P 57
-r 57
-t 57

parameters, for Undertow buffer pool
buffer-size 202
direct-buffers 202

parameters, for Undertow worker
io-threads 201
stack-size 201
task-core-threads 201
task-keepalive 201
task-max-threads 201

performance
about 7, 8
response time 8, 9
throughput 9, 10
utilization efficiency 10

performance factors, Web services 238-241
performance profiling 29
performance testing 17
performance tuning

about 17
key features 28

performance tuning anti-patterns
about 12
clever developer 13
lack of mandate 13
one-off 12
wrong team 13

performance tuning EJBs, in WildFly
about 130
detailed statistics, enabling 130
MDB, optimizing 152-154
optimization, of local method calls 130-133
optimization, of remote method

calls 130-133
remote EJB calls 137-140
session beans 133-136
SFSB, optimizing 147, 148
Singleton Session Beans, optimizing 149
SLSB, optimizing 140-143
transactions 133-136

performance tuning, logging in WildFly
about 120, 121
asynchronous logging, used for improving

log throughput 124, 125
logging hierarchy and performance 125
logging, to console 122
logging, to file 123
per-deployment logging 126

[306]

periodic-rotating-file-handler 122
PermGen (permanent generation) 64, 78
persistence storage tuning 252-254
pessimistic locking 178
PhaseTracker class 220
Point-to-Point (PTP) communication 246
POJO (Plain-Old-Java-Object) 127
Postgres Query Cache (PQC) 188
PRE_ACKNOWLEDGE mode 251
prepared statements 172-174
PrimeFaces

URL 221
URL, for examples 231
URL, for extensions 235

PrintGCDetails parameter 93, 94
PrintTenuringDistribution parameter 94, 95
Process Validations phase 219
Producer 246
production environment

availability, ensuring of relevant
information 92

profiler 31
profiling

about 28, 30
in production environment 29
versus sampling 30

program counter (pc) Register 64
properties, blocking-bounded-queue-

thread-pool
allow-core-timeout 106
keepalive-time 106
thread-factory 106

properties, second-level cache (L2C or 2LC)
BYPASS 186
REFRESH 186
USE 186

proprietary solutions, Undertow 226
Publisher 246

Q
quality assurance (QA) 13
query cache 184, 187, 188
query caching

data synchronization, optimizing 189
versus entity caching 189

query hints
about 187
javax.persistence.cache.retrieveMode 188
javax.persistence.cache.storeMode 188
org.hibernate.cacheable 188
org.hibernate.cacheMode 188
org.hibernate.cacheRegion 188
org.hibernate.comment 188
org.hibernate.fetchSize 188
org.hibernate.flushMode 188
org.hibernate.readOnly 188
org.hibernate.timeout 188

Queue 246
queueless-thread-pool executor

about 106
configuration properties 106

R
Remark phase 89
Remembered Sets (RSet) 90
remote EJB calls

overview 137-140
remote JVM

about 33
on monitoring host 34
on remote host 33
VisualVM, connecting to 33

Remote Method Invocation (RMI) 33
remote WildFly server

JMX, connecting to 37
remoting-jmx protocol 40
Remoting subsystem 116, 117
Render Response phase 219
replicated cache 280
replication 268
REpresentational State Transfer. See REST
Resource Adaptor (RA) 110, 152
Resource Archive (RAR) file 110
response time

about 8
factors, affecting 9
measuring 8, 9

REST 241
RESTful services 241, 242
Return of investment (ROI) 22

[307]

RichFaces
URL 221
URL, for examples 231

round robin (RR) algorithm 287
roundtrip 8

S
sampler 32
sampling

about 30
versus profiling 30

scalability
about 11, 12
horizontal scaling 11
vertical scaling 11

scheduled-thread-poolA pool executor
about 107
configuration properties 107

second-level cache (L2C or 2LC)
about 183-185
properties 186

serial collector 86, 87, 90
serialization 237
server configuration file 101
Server VM

versus Client VM 70
Service Level Agreements (SLA) 9, 269
Service Oriented Architecture (SOA) 215
Service Provider Interface (SPI) 229
servlet container, and JSP compilation

tuning 203
tuning hints, for Jastow 205, 206

servlet/JSP applications
tuning 223

servlet/JSP applications tuning
asynchronous servlets 226
compression, using 225
JSP include 225
JSP use of HttpSession 225
scope, selecting 223
session timeout, setting 224

session 269
session state 269
SFSB

about 129, 285, 286
optimizing 147, 148

passivation, disabling for 148, 149
Simple Data Writer 58
simple-load-provider 291
Simple Object Access Protocol (SOAP) 236
Simple/Streaming Text Oriented Message

Protocol. See STOMP
single point of failure 272
Singleton Session Beans

about 129
monitoring, CLI used 152
optimizing 149

Singleton Session Beans optimization
CMC versus BMC 151
lock mechanisms, adjusting 150, 151
time-outs, adjusting 150, 151

size-rotating-file-handler 122
SLSB

about 128, 285
optimizing 140-143

SLSB pool
tuning 144-147

snapshots, VisualVM
application snapshot 36
CPU snapshot 36
memory snapshot 36

software development
and quality assurance 14

software development, performance focus
design 16
implementation phase 16
performance testing 17
performance tuning 17
requirement analysis 15, 16

software life cycle
about 21
metrics 22
upgrades 22

stack 70
Stateful EJB (SFSB) 286
Stateful Session Beans. See SFSB
Stateless EJB (SLSB) 286
Stateless Session Beans. See SLSB
STOMP

URL 260
Subscriber 246
subsystem configurations

about 103

[308]

Batch API subsystem 115, 116
Java EE Connector Architecture

(JCA) 110-115
monitoring 107, 109
Remoting subsystem 116, 117
Resource Adaptor (RA) 110-115
thread pool executor subsystem 103, 104
Transactions subsystem 118

subsystems
about 101
org.jboss.as.jacorb 102
org.jboss.as.messaging 102
org.jboss.as.sar 102
org.jboss.as.webservices 102

syslog-handler 122
system

upgrading 22
system tests 14

T
task-core-threads attribute 117
task-keepalive attribute 117
task-limit attribute 117
task-max-threads attribute 117
test-cases

and iteration 17, 18
baseline, setting 18
data, analyzing 18
system, retesting 18, 19
system, tuning 18, 19
tests, running and data collection 18

test data
creating 20

thread dump 36
thread pool executor subsystem

about 103, 104
blocking-bounded-queue-thread-pool 105
blocking-queueless-thread-pool 106
bounded-queue-thread-pool 105
queueless-thread-pool 106
scheduled-thread-poolA pool 107
unbounded-queue-thread-pool 104

threads 31
Thread subsystem

future 110

throughput
alternative measure 10
measuring 9, 10

throughput collector. See parallel collector
tightly coupled 245
tools, WildFly

about 48
Command Line Interface (CLI) 48
JBoss DMR 50
JConsole 50
WildFly Management Console 49

top command 42
Topic 246
Tracer 33
transaction per second (TPS) 10
Transactions subsystem

about 118
XA transaction 118

tuning hints, Jastow 205, 206
Two Phase Commit (2PC) 118

U
UDP transport

tuning 277
unbounded-queue-thread-pool executor

about 104
configuration properties 105

Undertow
about 193
default caching, of static resources 196
handler 195
HTTP Upgrades feature 196
listeners 194
proprietary solutions 226
server, and container topologies 196
tuning 198
URL 193
URL, for documentation 227

Undertow tuning
buffer pool 201, 202
worker 198-201

UNIX 42
unmarshalling 237
User Interface (UI) 215
user interface, VisualVM 32

[309]

Using tools 96
utilization efficiency 10

V
vendor specific variants, HornetQ

INDIVIDUAL_ACKNOWLEDGE 251
PRE_ACKNOWLEDGE 251

verbose:gc parameter 93
vertical partitioning, database 161, 162
vertical scaling (scaling up) 11
view 277
VisualGC 32
VisualVM

about 31
connecting, to JVM 33
connecting, to local JVM 33
connecting, to remote JVM 33
features 31
plugins, features 32
setting up 38
URL, for downloading 31
URL, for downloading Java Development

Kit (JDK) 31
used, for finding memory leaks 82-86
user interface 32

VisualVM, for Eclipse IDE
URL, for downloading 31

VisualVM-JConsole 33
VisualVM-MBean 33
VM

and GC stability 96
VM Core dump 36
VM parameters

in production environment 93
VM parameters, in production environment

loggc 95
PrintGCDetails 93, 94
PrintTenuringDistribution 94, 95
verbose:gc 93

vmstat command 42

W
web applications

about 216
Business-to-Business (B2B) applications 215

Business-to-Consumer (B2C)
applications 215

web component
tuning 221, 223

web container 217
web framework

evolution 216-221
selecting 216

Web Service Definition Language
(WSDL) 241

Web services
about 236, 237
performance factors 238-241

web session
recording, JMeter HTTP proxy used 56

WebSockets
about 215
overview 235, 236

WebSockets API 194
WildFly

architecture 101-103
clustering 284
clustering basics 272
history 100, 101
JMX, connecting to 37
JVM parameters, setting in 91, 92
logging, performance tuning 120, 121
tools 48

WildFly Administration Guide
URL 103

WildFly configuration 212, 213
WildFly Management Console 49
Windows 48
worker, Undertow 198-201
worker, XNIO 197

X
XNIO

URL 117, 194
using 197

XNIO worker 197

Y
young generation guarantee 75

Thank you for buying
WildFly Performance Tuning

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

JBoss EAP6 High Availability
ISBN: 978-1-78328-243-2 Paperback: 166 pages

Leverage the power of JBoss EAP6 to successfully
build high-availability clusters quickly and efficiently

1. A thorough introduction to the new domain
mode provided by JBoss EAP6.

2. Use mod_jk and mod_cluster with JBoss EAP6.

3. Learn how to apply SSL in a clustering
environment.

JBoss Weld CDI for Java Platform
ISBN: 978-1-78216-018-2 Paperback: 122 pages

Learn CDI concepts and develop modern web
applications using JBoss Weld

1. Learn about dependency injection with CDI.

2. Install JBoss Weld in your favorite container.

3. Develop your own extension to CDI.

4. Decouple code with CDI events.

Please check www.PacktPub.com for information on our titles

JBoss ESB Beginner's Guide
ISBN: 978-1-84951-658-7 Paperback: 320 pages

A comprehensive, practical guide to developing
service-based applications using the Open Source
JBoss Enterprise Service Bus

1. Develop your own service-based applications,
from simple deployments through to complex
legacy integrations.

2. Learn how services can communicate with
each other and the benefits to be gained from
loose coupling.

3. Contains clear, practical instructions for service
development, highlighted through the use of
numerous working examples.

Drools JBoss Rules 5.X
Developer's Guide
ISBN: 978-1-78216-126-4 Paperback: 338 pages

Define and execute your business rules with Drools

1. Learn the power of Drools as a platform for
writing your business rules.

2. Integrate Drools into your Java business
application using the Spring framework.

3. Through real-world examples and solutions,
you will be taken from novice to expert.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: The Science of
Performance Tuning
	Performance
	Response time
	Throughput
	Utilization efficiency

	Scalability
	Performance tuning anti-patterns
	The one-off
	The wrong team
	The lack of mandate
	The clever developer

	Software development and quality assurance
	Software development with
performance focus
	Analysis
	Design
	Implementation
	Performance testing and tuning

	The iterative performance-tuning process
	Test cases and iteration
	Setting the baseline
	Running tests and collecting data
	Analyzing the data
	Tuning and retesting

	Test data
	Documentation

	The environment of performance tests
	The software life cycle
	Upgrades
	Metrics

	Tuning an enterprise stack
	Network
	Hardware
	Operating System
	Java Virtual Machine
	Middleware
	Application

	Summary

	Chapter 2: Tools of the Tuning Trade
	The key features of performance tuning
	Profiling
	Profiling in production
	Profiling a JVM

	Profiling and sampling
	VisualVM
	Standard features
	The features of plugins
	Connecting to a JVM
	Local JVM
	Remote JVM

	Monitoring a JVM
	Features
	Test scenarios

	A JMX connection to WildFly
	Local or remote WildFly server
	Setting up VisualVM
	Connection in VisualVM

	Monitoring
	OS tools
	UNIX and Linux
	Low CPU utilization
	High CPU utilization
	High resource contention
	High disk utilization

	OS X
	Windows

	WildFly tools
	The Command Line Interface
	The WildFly Management Console
	JBoss DMR
	JConsole

	Generating load
	Apache JMeter
	Building a basic test plan
	Improving the test plan
	Recording a web session using the JMeter HTTP proxy
	Standalone and distributed load generation

	Summary

	Chapter 3: Tuning the Java
Virtual Machine
	JVM
	JVM memory areas
	The JVM stack and native stack
	The heap
	Other JVM memory concepts

	GC
	JVM memory management with the GC
	Configuring the JVM
	Default settings
	Client versus Server VM
	The stack
	The heap
	Setting the maximum heap size
	Setting the initial heap size
	Determining what maximum size the heap
should be
	Determining what initial size the heap should be
	Setting the size of the young and old generations
	Setting the size ratio of Eden and the survivor spaces
	PermGen

	Large objects
	Large memory pages
	The java.lang.OutOfMemoryError error
	From the heap
	From the PermGen
	Too large an array
	Not enough native threads

	Memory leaks
	A leak-finding Process
	A step-by-step example using VisualVM

	Types of GC strategies
	The serial collector
	The parallel collector
	The concurrent collector
	The G1 collector

	Which collector to use
	Setting VM parameters in WildFly
	Having the relevant information available
	VM parameters in production
	verbose:gc
	PrintGCDetails
	PrintTenuringDistribution
	loggc

	Using tools
	VM and GC stability
	Summary

	Chapter 4: Tuning WildFly
	WildFly's history
	WildFly's architecture
	Various subsystem configurations
	The thread pool executor subsystem
	unbounded-queue-thread-pool
	bounded-queue-thread-pool
	blocking-bounded-queue-thread-pool
	queueless-thread-pool
	blocking-queueless-thread-pool
	scheduled-thread-pool

	Monitoring
	The future of the thread subsystem

	Java EE Connector Architecture and
resource adapters
	The Batch API subsystem
	The Remoting subsystem
	The Transactions subsystem
	XA – Two Phase Commit (2PC)

	Logging
	Optimized logging code
	Performance-tuning logging in WildFly
	Logging to the console
	Logging to file
	Using asynchronous logging to improve log throughput
	Logging hierarchy and performance
	Per-deployment logging

	Summary

	Chapter 5: EJB Tuning in WildFly
	The history of EJBs
	The different types of EJBs
	Stateless Session Beans (SLSB)
	Stateful Session Beans
	Singleton Session Beans
	Message Driven Beans (MDB)

	Performance tuning EJBs in WildFly
	Enabling detailed statistics
	Optimizations of Local and Remote
method calls
	Session beans and transactions
	Remote EJB calls
	Optimizing Stateless Session Beans
	Tuning the SLSB pool

	Optimizing Stateful Session Beans
	Disabling passivation for individual SFSB

	Optimizing Singleton Session Beans
	Adjust lock mechanisms and time-outs
	Container Managed Concurrency versus Bean Managed Concurrency
	Monitoring

	Optimizing Message Driven Beans

	Summary

	Chapter 6: Tuning the Persistence Layer
	Designing a good database
	Database normalization and denormalization
	Database partitioning
	Horizontal partitioning
	Vertical partitioning

	Using indexes

	Tuning the Java Database
Connectivity API
	Connection pooling
	Performance-tuning a connection pool in WildFly

	Setting the proper fetch size
	Using batch updates for bulk insert/updates
	Prepared statements
	Isolation levels
	Tuning JDBC networking

	Tuning JPA and Hibernate
	Optimizing object retrieval
	Transactional integrity and performance
	Limiting retrieved data by pagination
	Fetching parent and child objects
	Combining pagination and JOIN fetches
	Improving the speed of collection queries using batches
	Minimizing query compilation with
JPA-named queries
	Improving the performance of bulk SQL statements
	Entity caching
	The first-level cache
	The second-level cache
	The query cache
	Query hints
	Entity vs query cache
	Optimizing data synchronization

	Summary

	Chapter 7: Tuning the Web Container
in WildFly
	Enter Undertow
	Undertow internals
	HTTP Upgrades
	The default caching of static resources
	Server and container topologies

	Using XNIO
	NIO basics
	XNIO Workers

	Tuning Undertow
	Worker
	The buffer pool

	Tuning the servlet container and
JSP compilation
	Tuning hints for Jastow

	Using Apache as a frontend
	HTTP and AJP
	Configuration
	The Apache HTTPD configuration
	The WildFly configuration

	Summary

	Chapter 8: Tuning Web Applications
and Services
	Web applications
	Choosing a web framework
	The evolution of web frameworks
	Tuning a web component – the data table
	Tuning servlet/JSP applications
	Choose the scope wisely
	JSP use of HttpSession
	JSP include
	Compression
	Asynchronous servlets

	Undertow's proprietary solutions
	Tuning JSF-based applications
	Configuring JSF state saving efficiently
	The project stage
	JSF Immediate
	Using AJAX support in JSF
	Loading resource files efficiently

	WebSockets

	Services
	Web services
	Performance factors

	RESTful services

	Summary

	Chapter 9: JMS and HornetQ
	Introducing JMS
	The message and its optimizations
	Tuning the session
	Tuning MessageProducer
	Optimizing HornetQ
	Persistence storage tuning
	Handling large messages
	Optimizing paging
	Message deliverance optimizations
	Flow control
	Miscellaneous tips and tricks
	Monitoring

	Summary

	Chapter 10: WildFly Clustering
	Cluster
	Load balancing
	Replication
	Failover, failback, and session state
	High Availability
	The real need of clustering
	A single point of failure
	WildFly clustering basics
	JGroups
	Tuning the UDP transport
	Tuning node fault detection
	Tuning flow control

	Infinispan

	Clustering in Java EE and WildFly
	Clustered EJBs
	MDB
	SLSB
	SFSB
	Load balancing

	Clustered Persistence (JPA) layer
	Clustered web applications
	Load balancing with mod_cluster

	Clustering the HornetQ messaging system

	Summary

	Index

