
Zend Fram
ew

ork 1 to 2 M
igration Guide

Bart M
cLeod

Bart McLeod is a painter and sculptor and 
spends most of his time programming in PHP 
and JavaScript. He currently works as a self-
employed Zend Framework contributor, coach, 
developer, writer and speaker.  Bart holds �ive 
Zend Certi�ications: PHP 4, 5, 5.3 and ZF 1 and 
2. He blogs occasionally at spaceweb.nl and he 
tweets @bartmcleod. You may contact him by 
mail at mcleod@spaceweb.nl

Zend Framework 1 to 2 
Migration Guide

by Bart McLeod

Zend Framework 1 was one of the �irst major frameworks 
for PHP 5 and, for many, introduced object-oriented 
programming principles for writing PHP applications. 
Many developers looking to embrace a well-architected and 
supported framework chose to use it as the foundation for 
their applications. However, the �irst version was not without 
its faults. Zend Framework 2 is a signi�icant improvement 
over its predecessor. It re-designed key components, 
promotes the re-use of code through modules, and takes 
advantage of features introduced in PHP 5.3 such as 
namespaces.

The �irst release of ZF1 was in 2006. If you’re maintaining an application 
built on it, this practical guide will help you to plan how to migrate 
to ZF2. This book addresses common issues that you’ll encounter 
and provides advice on how best to update your application to take 
advantage of ZF2’s features. It also compares how key components—
including Views, Database Access, Forms, Validation, and Controllers—
have been updated and how to address these changes in your application 
code.

Written by PHP professional and Zend Framework contributor, coach, 
and consultant Bart McLeod, this book leverages his expertise to ease 
your application’s transition to Zend Framework 2.

www.phparch.com

ZF to

ZF2
www.allitebooks.com

http://www.allitebooks.org


Zend Framework 1 to 2 
Migration Guide

by 
Bart McLeod

www.allitebooks.com

http://www.allitebooks.org


Zend Framework 1 to 2 Migration Guide
Contents Copyright ©2015 Bart McLeod—All Rights Reserved

Book and cover layout, design and text Copyright ©2015 musketeers.me, LLC. and its predecessors—All 
Rights Reserved. Print and Digital copies available from https://www.phparch.com/books/

First Edition: October 2015 
ISBN - Print:  978-1-940111-21-6 
ISBN - PDF:  978-1-940111-22-3 
ISBN - ePub:  978-1-940111-23-0 
ISBN - Mobi:  978-1-940111-24-7 
ISBN - Safari:  978-1-940111-25-4 
Produced & Printed in the United States

No part of this book may be reproduced, stored in a public retrieval system, or publicly transmitted in 
any form or by means without the prior written permission of the publisher, except in the case of brief 
quotations embedded in critical reviews or articles.

Disclaimer
Although every effort has been made in the preparation of this book to ensure the accuracy of the 
information contained therein, this book is provided “as-is” and the publisher, the author(s), their 
distributors and retailers, as well as all affiliated, related or subsidiary parties take no responsibility for any 
inaccuracy and any and all damages caused, either directly or indirectly, by the use of such information. We 
have endeavored to properly provide trademark information on all companies and products mentioned in 
the book by the appropriate use of capitals. However, we cannot guarantee the accuracy of such information.

musketeers.me, the musketeers.me logo, php[architect], the php[architect] logo, NanoBook and the 
NanoBook logo are trademarks or registered trademarks of musketeers.me, LLC, its assigns, partners, 
predecessors and successors.

Written by 
Bart McLeod

Published by 
musketeers.me, LLC.  
201 Adams Ave.  
Alexandria, VA 22301  
USA

240-348-5PHP (240-348-5747)

info@phparch.com  
www.phparch.com

Editor-in-Chief 
Oscar Merida

Managing Editor 
Eli White

Technical Reviewer 
Matthew Setter

Layout and Design 
Kevin Bruce

www.allitebooks.com

https://www.phparch.com/books/
mailto:info%40phparch.com?subject=
http://www.phparch.com
http://www.allitebooks.org


Zend Framework 1 to 2 migration guide iii

Table of 
Contents

   Preface

Introduction   VII
Practical Guide   VII

Chapter 1. Quick start: Zend_Tool versus   
    ZendSkeletonApplication 1

The Migration Process   2
Example Projects   2

Chapter 2. Zend Framework 2 Overview   3
Less Magic   3
Modular   4
Classmaps   5
Name Changes   6
Zend_Registry is Gone   7
jQuery Integration is History   7

www.allitebooks.com

http://www.allitebooks.org


Zend Framework 1 to 2 migration guideiV

Table of ConTenTs

Chapter 3. Model View Controller   9
Modules   10
Event Driven   11

Chapter 4. Getting Started   13
Why Are the Screens Different?   15
Building Your Own Module   16

Chapter 5. Error Handling and Logging   23
No ErrorController   23
Simple Migration Steps for Error Handling   23
Full Control Over Errors: ExceptionStrategy   29
Logging   32

Chapter 6. Layout   37
Changing the Default Layout   38
Module-Specific Layouts   39

Chapter 7. The View   45
Modifying the ViewModel   47
Render a Different Template   47
template_path_stack and template_map   48
Nested View Models vs. Partials   48
View Helpers   51
The View has Grown Up with ZF2   55

Chapter 8. Controller Plugins & Translations   57
Action Helpers   57
A ZF2 Controller Plugin   59
Translations   60

www.allitebooks.com

http://www.allitebooks.org


Zend Framework 1 to 2 migration guide V

Table of ConTenTs

Chapter 9. Forms   63
Decorators are Gone   64
A Simple Form   64
Converting the Form   67

Chapter 10. Data Validating and Filtering   71
Filtering and Validating Our Data   72
Putting Things Together   75

Chapter 11. The Database   83
The Model and Code Generation   84
Zend\Db   85
Zend\Db Examples   86

Chapter 12. Development Practices   93
Configuring Different Environments   93
Third-party Modules   96
Composer Installations   98

www.allitebooks.com

http://www.allitebooks.org


Zend Framework 1 to 2 migration guideVi

www.allitebooks.com

http://www.allitebooks.org


Zend Framework 1 to 2 migration guide Vii

Preface
Introduction

Zend Framework (ZF) 2, the successor to Zend Framework 1, saw its first stable release 
in September 2012. By the time I’ll have finished this guide, ZF2 will have been available 
for much longer. There are two main reasons that you might have opened this guide for 
reading.

The first is that you’re already a Zend Framework developer and didn’t get the chance 
to follow the development of ZF2. Now you want to catch up quickly by comparing ZF1 
to ZF2. The second is somewhat different; you are faced with the challenge of migrating 
a ZF1 MVC application to ZF2. In that case, you must understand that ZF2 is not just an 
upgrade compared to ZF1; it is mostly a new product.

Practical Guide

Although I might try to explain the abstract concepts behind some of the new features 
of ZF2, in terms of design patterns, there are others who are better at academic 
explanations. My goal is to provide you with an easy-to-use guide that addresses common 
issues you are likely to encounter. For example: if you used a certain view helper in 
ZF1, what would it look like in ZF2, and how will you actually make your ZF2 application 
aware of the existence of it?

www.allitebooks.com

http://www.allitebooks.org


Zend Framework 1 to 2 migration guideViii

www.allitebooks.com

http://www.allitebooks.org


Zend Framework 1 to 2 migration guide 1

Chapter

1
Quick start: Zend_Tool versus 
ZendSkeletonApplication

Zend_Tool could be used in ZF1 to generate a new ZF project for you and to 
add controllers and other stuff to existing ZF projects. If you never knew you 
used Zend_Tool, that’s no problem at all. If you used ZendStudio to create 
new ZF projects, it was using Zend_Tool under the hood. It’s also possible 
that you built your project from scratch, all by yourself, or that you simply 
inherited a code base.

ZF2 offers a small, basic application that only presents one static page, one that 
you can change in order to build your own application. Changing it would mean 
adding modules and configuration options. It’s called ZendSkeletonApplication, 
and it’s available from GitHub or as a downloadable archive at 
https://github.com/zendframework/ZendSkeletonApplication.

www.allitebooks.com

https://github.com/zendframework/ZendSkeletonApplication
http://www.allitebooks.org


Zend Framework 1 to 2 migration guide2

Chapter 1 : QuiCk start: Zend_tool Versus ZendskeletonappliCation

There is also a separate project called ZFTool, which can install a 
ZendSkeletonApplication for you. It can also do other things, such as 
adding a module. This is under active development, and you can find it at 
https://github.com/zendframework/ZFTool.

In addition, if you want to use ZFTool, it is best installed using Composer. Composer is 
a dependency manager that you can use to install php libraries and applications. If you 
are familiar with Composer, this will be great news for you. If not, Composer might 
present another hurdle to overcome, and you’d better skip it until you’re ready for it. If 
you are unfamiliar with Composer and want to start making convenient installations 
from the command line right from the beginning, then please read the chapter on 
Development Practices.

The Migration Process

For a migration project, I strongly recommend that you use the 
ZendSkeletonApplication, moving elements into it from your existing ZF1 
application one by one, starting with the easiest parts. This allows you to gradually learn 
the concepts of ZF2, leveraging them when you get to the harder parts.

Example Projects

This guide comes with two projects, which you can download from GitHub and are 
equivalent in terms of functionality. One is built on ZF1, and the other is built on ZF2. The 
functionality by itself is trivial, as it only demonstrates the differences between the two 
versions of the framework. The ZF1 example has been set up using Zend_Tool, while the 
ZF2 example is a clone of the ZendSkeletonApplication with an extra module, called 
Book, which contains the examples. You will learn about modules in ZF2 later on.

Zend_Tool is used as follows:

zf create project book

The versions I used were the latest versions from version control (svn for ZF1 and Git for 
ZF2). When I started the projects, these versions were ZF1.12.0 and ZF2.0.4. At publication, 
ZF2 was at 2.4.1.

For both projects, the ZF library had to be in a certain directory inside the project. 
For ZF1, it has to be library/Zend by default. In ZF2, the default location is 
vendor/ZF2/library/Zend. If you only download the ZendSkeletonApplication 
and then run a composer installation from inside it, it will download and install the ZF2 
library for you. But you can also download it yourself and just place it in vendor such 
that the libraries are in the path mentioned above.

https://github.com/zendframework/ZFTool


Zend Framework 1 to 2 migration guide 3

Chapter

2
Zend Framework 2 

Overview
For this migration guide, I will assume that you are using ZF1 as an MVC 

application (more about MVC in the next chapter) and that you also intend to use 
ZF2 that way.

Less Magic

The way MVC has implemented changes in ZF2, there is less magic going on. Many things 
that happened magically in ZF1 are carried out explicitly in ZF2. An example of this 
is how your application loads its view helpers. In ZF1, if you put them in the helpers 
directory, under your views directory, the application would auto-magically find them. 
In ZF2, you have to tell the application how to create your view helpers by configuring 
each one explicitly. In short, magic has been replaced by configuration.



Zend Framework 1 to 2 migration guide4

Chapter 2 : Zend Framework 2 oVerView

Modular

ZF2 is built around the concept of reusable modules, which form the foundation of your 
application. Again, there is no magic when it comes to loading modules. In  
config/application.config.php, you configure which modules are loaded and in 
which order. The configurations of these modules are merged in that same order, but they 
can be overridden globally if necessary. This is important to remember!

The recommended way to write configurations is with PHP arrays because they are both 
easy to create and the most performant. Additionally, building PHP arrays is something 
we all master, so no new skills are required to configure your application. However, some 
knowledge is required so you know what to configure and when.

Services and Events
As modules are the building blocks of the application, so services are the building blocks 
of modules. Events wire modules together, making ZF2 fully event-driven. However, this 
guide is about migration, and ZF1 was not event driven. Consequently, diving into events 
really deeply is beyond the scope of this book, but we’ll cover the common uses of events.

Arrays and Your Code Editor
The configuration arrays of ZF2 are the big stumbling block for developers new to it. 
While they offer invaluable flexibility and become more readable as you get used to them, 
they look intimidating at first glance. It’s even more intimidating to edit them if your 
code editor doesn’t do the indentation automatically.

Code formatting tools and extensions are available for major IDEs and editors. If your 
using one that can’t be configured to automatically indent arrays the way you can best 
read them, then I would recommend giving PHPStorm a try. PHPStorm is a really fast 
and an incredibly smart IDE that does an excellent job of formatting your configuration 
arrays. You can download the latest version here: https://www.jetbrains.com/phpstorm.

IDE and editor choices are highly personal, and there are many others—both commercial 
and Open-source—available. If PHPStorm doesn’t suit you, there are many you can try 
just a web search away. Some other popular IDEs and editors include Eclipse, Netbeans, 
and SublimeText.

https://www.jetbrains.com/phpstorm


Classmaps

Zend Framework 1 to 2 migration guide 5

Classmaps

One of the key performance improvements in ZF2 was the introduction of classmap 
autoloading. You might encounter them in an existing ZF1 project, as well, as they were 
back-ported to ZF1. There are other autoloaders available, some of which look more like 
what we we’re used to. But classmap autoloading is easy to use and very fast.

A classmap is no more than an associative array telling PHP which class is in which file. 
That is, it maps classnames to file system paths. There is a classmap_generator.php 
script available in the ZF2 source, which will create a classmap for you if you need one for 
a library, for example.

If you are introducing or converting classes one by one, it is just as easy to type up your 
classmap as you go; furthermore, each library or namespace can have its own classmap. 
This is an example of a classmap taken from my pet project ‘CuddleFish’:

$path = __DIR__ . '/CuddleFish/'; 
 
return array( 
   'CuddleFish\DataObject' => $path . 'DataObject.php', 
   'CuddleFish\ListProvider' => $path . 'ListProvider.php', 
   'CuddleFish\Globals' => $path . 'Globals.php', 
   'CuddleFish\Access' => $path . 'Access.php', 
   'CuddleFish\DAGO' => $path . 'DAGO.php', 
   'CuddleFish\AdminModule' => $path . 'AdminModule.php', 
   'CuddleFish\Auth\Adapter' => $path . 'Auth/Adapter.php', 
);

Autoloader Configuration
The Module class, which is the only requirement for a module, has a method called 
getAutoloaderConfig, which returns an array of all of the autoloaders for the module. 
If you configure a classmap autoloader, you can configure that with a classmap for each 
namespace or library that you wish to load.

public function getAutoloaderConfig() 
{ 
    return array( 
        'Zend\Loader\ClassMapAutoloader' => array( 
            'Book' => __DIR__ . '/class_map.php', 
        ), 
    ); 
}

The above example will load all the classes in the Book module or namespace from the 
classmap in module/Book/class_map.php.



Zend Framework 1 to 2 migration guide6

Chapter 2 : Zend Framework 2 oVerView

Standard Autoloader
While you are actively developing your module, it is easier to use the standard autoloader, 
instead of a classmap. This way, you do not have to keep your classmap up-to-date while 
you keep adding classes:

public function getAutoloaderConfig() 
{ 
  return array( 
    'Zend\Loader\StandardAutoloader' => array( 
      'namespaces' => array( 
         __NAMESPACE__ => __DIR__ . '/src/' . __NAMESPACE__, 
      ), 
    ), 
  ); 
}

Note that the configuration array for the standard autoloader has an extra nesting level. 
This configuration tells the standard autoloader to look for the classes from the Book 
namespace inside the path module/Book/src/Book. Adding the extra src directory is a 
convention; it is up to you where you put your classes.

Name Changes

Many names have changed for various reasons. One very important reason is that naming 
of various components has to be consistent across the framework. Another is that with 
the introduction of namespaces, which involves changing names by nature, some names 
are no longer available.

To give an example, you can’t replace Zend_View_Helper_Abstract with  
Zend\View\Helper\Abstract because abstract is a reserved word in PHP. It is 
simply not possible to execute the following:

namespace Zend\View\Helper; 
 
abstract class Abstract { 
    //[...] 
}

Instead, it has become the following: Zend\View\Helper\AbstractHelper.



Zend_registry is gone

Zend Framework 1 to 2 migration guide 7

Zend_Registry is Gone

Zend_Registry was the next big thing after the dreaded Globals class. It was a clever 
way to get dependencies from a central repository, but it was limited. Once you are 
calling Zend_Registry::get('log') in two hundred different places and want to use 
a different log in, say, twenty of those, what are you going to do? What if you want to do 
that conditionally? What if third-party code also wants to use the log key in the same 
registry?

ZF2 gets rid of the registry and replaces that with a central object for registering services: 
the ServiceManager. Objects in need of the ServiceManager can implement the 
ServiceLocatorAwareInterface, which exposes the getServiceLocator() method. 
This yields the ServiceManager, which can then be easily asked for all configured 
dependencies the object might use with the get method of the ServiceManager.

Keys configured with the ServiceManager should follow convention to avoid name 
clashes, making it easy to change them later, should a name clash occur. You can even 
configure which keys you use as aliases. An example of a key used to configure a logging 
service is Book\log.

How do you get your log instance or any other dependency inside your controller if you 
can’t use the registry or something else that is globally available? The answer is to use a 
factory class or closure, which instantiates your controller.

You will learn more about factories later on. The essence is that the factory has access 
to the ServiceManager and therefore has access to every service that the manager has 
been configured with. It can then inject it into your controller before returning it.

jQuery Integration is History

jQuery integration, which was provided by ZendX in ZF1, is now absent and unlikely 
to return. Given that, you will have to integrate jQuery the normal way. This is just a 
matter of creating regular <script> tags in the <head> section of the layout template 
or by using the headScript() view helper, which point to the jQuery source files and a 
<link> tag for the jQuery stylesheet or use the headLink() view helper for that.



Zend Framework 1 to 2 migration guide8

Chapter 2 : Zend Framework 2 oVerView



Zend Framework 1 to 2 migration guide 9

Chapter

3
Model View 

Controller
Here we go, our first design pattern. Zend Framework offers a Model View 

Controller (MVC) implementation, but it is also possible to use ZF without 
using its MVC infrastructure. MVC is about separating Views (V) from business 
logic that is encapsulated in Models (M) and the interaction between the two 
via (C—Controllers). The goal is to provide components that are more reusable 
and easier to test.

ZF, unlike other frameworks at the time, did not tightly couple to the M in MVC. In the 
ZF philosophy, you, the developer, are the only one who can decide what your business 
model is about and hence what it’s going to look like. ZF developers do not want to make 
assumptions about that, and because of that, they offer no model implementation out 
of the box, though there are components you can use. ZF1 and ZF2 both offer views and 
controllers and an infrastructure to tie those together. While views and controllers have 
many similarities between both versions of the framework, the wiring is totally different.



Zend Framework 1 to 2 migration guide10

Chapter 3 : model View Controller

Modules

In ZF1, you could have modules, but their behavior wasn’t truly modular. A module in ZF1 
could not live in another ZF1 application without changing that application or changing 
the module. The MVC application and the module always ended up sharing things, such 
as configurations, that they should have used independently. It was almost impossible to 
pick up a module and drop it into another ZF1 application.

With ZF2, this has changed completely. ZF2 is built entirely around the concept of 
independent, or drop-in, modules. In fact, even the ZF2 library itself is a module. This 
doesn’t mean that modules can never depend on other modules, nor that they can never 
have any dependencies, in general. But they should be able to operate inside another 
application if you move them there, as long as their dependencies are satisfied. Generally 
speaking, they should not depend on the ZF2 application they are dropped into. In line 
with this philosophy, if you are going to write a ZF2 application, you are going to write 
modules.

A good example is ZfcUser (more about that later). ZfcUser depends on ZfcBase (and 
ZF2). Both ZfcUser and ZfcBase are modules. If you drop both into a ZF2 application 
and set up and configure the database table for ZfcUser, then you can authenticate 
users. Nothing else is needed. If you install ZfcUser with Composer, it will install 
ZfcBase for you because it is configured as a dependency of ZfcUser. Nice and simple.

Dependency Injection
To add the flexibility regarding dependencies that is needed to implement such a truly 
modular approach, a developer-friendly flavor of the famous Dependency Injection (DI) 
pattern has been implemented, called Service Locator. The name says it all; if you need 
something, ask for it. It’s like room service for software.

To gain a deeper understanding of the how the ServiceManager works in the context of 
MVC, you should really read the online documentation for the ServiceManager [1].  
It provides a good explanation, but you will need to try it out for yourself to fully 
appreciate its power.

In ZF2, you write services, which you wire together using events. All the basic wiring is 
already done for you by the MVC infrastructure, but if you need something fancy, you 
can either hook into the existing wiring or throw some of your own custom events into 
the mix.

The events are controlled by an EventManager, and services are managed by a 
ServiceManager. The ServiceManager implements the ServiceLocatorInterface, 
which means you can pull services out of it by calling its get($key) method with the key 
that the service was registered with.

[1] http://framework.zend.com/manual/2.1/en/modules/zend.service-manager.quick-start.html

http://framework.zend.com/manual/2.1/en/modules/zend.service-manager.quick-start.html


eVent driVen

Zend Framework 1 to 2 migration guide 11

Event Driven

ZF1 knew of some events. You could, for example, implement a preDispatch method 
inside your controller or controller plugin, which would be called by the MVC 
infrastructure at the “right” time. This was more like a hook system, such as those that 
WordPress and Drupal use. You had little control over what the right time actually was, 
and you were limited to events that were provided as predefined function names (hooks) 
that you could either implement or omit.

While you can still implement similar hooks at certain points, ZF2 is fully event driven. 
You can tie anything to anything else using events, and it will probably take you some 
time to get used to this and to leverage it to its full potential. ZF2 uses the EventManager 
for this, and that component is back-ported to ZF1 version 1.12 so that you can now use 
some of its power in ZF1.

Event Hook Example
Let’s compare a controller’s preDispatch event hook in ZF1 to its counterpart in ZF2. The 
code in the event implementation also demonstrates how some names have changed.

Zend Framework 1
// inside IndexController 
public function preDispatch() 
{ 
   $session = new Zend_Session_Namespace('Fronted'); 
   $session->hello = 'The session says hello!'; 
}

This is nothing spectacular, but how would you do this in ZF2? You would rename the 
preDispatch hook to a dispatch hook, and you need to add $request and $response 
arguments to comply with the hook method signature. It now works if you extended your 
controller from AbstractActionController, which takes care of the basics for you.

www.allitebooks.com

http://www.allitebooks.org


Zend Framework 1 to 2 migration guide12

Chapter 3 : model View Controller

Zend Framework 2
// inside IndexController 
use Zend\Stdlib\RequestInterface; 
use Zend\Stdlib\ResponseInterface; 
use Zend\Session\Container as SessionContainer; 
 
public function dispatch( 
   RequestInterface $request, 
   ResponseInterface $response = null 
) 
{ 
   $session = new SessionContainer('Frontend_2'); 
   $session->hello = 'The session says hello 2!'; 
   return parent::dispatch($request, $response); 
}

So by extending the AbstractActionController, you get some basic event hooks for 
free. The postDispatch hook is gone, but you can use the render hook, which also 
existed in ZF1. These are still hooks, but you can now get greater flexibility if you want to 
by leveraging the capabilities of the EventManager. You will see examples of that later 
on.

Sessions and a Name Change
Note that the code inside dispatch is also different. Many components have undergone 
subtle name changes. In this example, \Zend\Session\Namespace is not possible 
because Namespace is a reserved word in PHP as of version 5.3. The replacement in 
this case is: \Zend\Session\Container, which we alias into our own namespace with 
use as SessionContainer.

Implicit versus Explicit
Singletons are mostly gone in ZF2. There is no registry, although you could use the 
Zend_Registry from ZF1 if you wanted to. The registry was a typical singleton. 
Singletons tend to get in the way of flexibility, and flexibility is key to ZF2. In this guide, 
I mention the EventManager and the ServiceManager frequently, as if they were 
omnipotent singletons. They are not.

The MVC uses a ServiceManager, an EventManager, and a shared EventManager 
(of which there is only one), but you can have your own EventManagers and 
ServiceManagers to keep a good separation of concerns in your domain logic. If you want 
to get anything done in ZF2, you must explicitly tell your application how you want it 
done. It is under your control. Remember that when things get difficult.



Zend Framework 1 to 2 migration guide 13

Chapter

4
Getting Started

What did we just do? We compared an event hook implementation between 
ZF1 and ZF2 without considering the application in its entirety. If you are 
like me, it is likely that you wish to follow along with this book while trying 
out some code. It is difficult to try the previous example because it is out of 
context. It is easy enough to add the event to the IndexController of a 
fresh ZF1 application.

But how will you know if the event triggered without running a debugger or 
echoing something from the session in a view? For ZF2, the whole picture is even 
harder to get because you are probably new to ZF2, and there are at least two 
approaches you could take. The easiest is to modify the Application module in the 
ZendSkeletonApplication, and the more elaborate approach is to create your own 
module and try it in there. The latter is the approach I’m going to walk you through 
because it will help you better understand the differences between ZF1 and 2.



Zend Framework 1 to 2 migration guide14

Chapter 4 : getting started

First of all, I will show you two screens, the ZF1 application (Figure 4.1) and the ZF2 
application (Figure 4.2), each showing the result of the helloAction 
in their own way.

The helloAction is the action that demonstrates that we actually put something in the 
session. You can set (or add to) the page title from within the template like you could in 
ZF1:

<?php 
$this->headTitle( 
   'PreDispatch example 2',  
   Zend\View\Helper\PlaceHolder\Container\AbstractContainer::SET 
); 
?>

or simply

<?php $this->headTitle('PreDispatch example 2', 'SET') ?>

FIGURE 4.2

PreDispatch examplePredispatch example

book/book/hello

Skeleton Application Home

The session says hello!

@2005 - 2012 by Zend Technologies Ltd. All rights reserved.

FIGURE 4.1

The session says hello!

PreDispatch examplePredispatch example

book1/index/hello



why are the sCreens diFFerent?

Zend Framework 1 to 2 migration guide 15

Why Are the Screens Different?

When we migrate an application, we should not want to change its looks at the same time. 
If we do, we are in for trouble. It is best to make the change one step at a time. So why 
are these screens different? If we imagine we are doing a real migration, they should be 
identical. The answer is layout.

Note that this is not something you can replay from the code that accompanies the book. 
Once this code is shipped, the visual result of both helloAction should be the same.

Layouts
The reason that Figure 4.1 doesn’t look exactly like Figure 4.2 is that the layouts are 
different. In fact, the ZF1 version doesn’t even use a layout because a new ZF1 project, as 
created by Zend Tool, doesn’t use a layout by default. The ZendSkeletonApplication, 
which, as you know, is the default ZF2 application, does use a layout. The code that 
produces the ZF1 screen is easy to explain.

The IndexController is shown in Listing 4.1. What you see in there is the default code 
generated by Zend_Tool plus the preDispatch hook and a helloAction method, 
which assigns the hello variable from the session to the view.

Listing 4.1 IndexController

<?php 
class IndexController extends Zend_Controller_Action 
{ 
   public function preDispatch() 
   { 
      $session = new Zend_Session_Namespace('Fronted'); 
      $session->hello = 'The session says hello!'; 
   } 
 
   public function init() 
   { 
 
   } 
 
   public function indexAction() 
   { 
      // action body 
   } 
 
   public function helloAction() 
   { 
      $session = new Zend_Session_Namespace('Fronted'); 
      $this->view->hello = $session->hello; 
   } 
}



Zend Framework 1 to 2 migration guide16

Chapter 4 : getting started

The corresponding view template is in Listing 4.2. This is an extremely simple view, 
which uses no layout. This is not realistic because in a real project, you will probably find 
yourself facing a complex layout, but for this example, it will do.

Listing 4.2 View template

<html> 
<head> 
   <title>Predispatch example</title> 
</head> 
<body> 
<?php echo $this->hello ?> 
</body> 
</html>

Building Your Own Module

Because I follow the hard way of building my ZF2 module, implementing the dispatch 
event in ZF2 requires more work than just adding two functions and a view script. Here 
is a step-by-step guide to building your own very basic module next to the default 
Application module.

1. Create a directory Book at the same level as Application, under the module 
directory in the ZendSkeletonApplication.

2. Under Book, you create a directory structure, which you can mirror from 
Application. It is easy to write a small shell script that creates all these 
directories in one go so that you can automate the creation of future 
modules if you wish. Alternatively, you could try ZFTool. This structure is a 
recommendation because ZF2 will let you play your own game if you like. But I 
will stick to the recommendation.

3. Add a Module.php file that contains the Book\Module class. Note that your 
module always lives in its own namespace, which is named after the module.

4. Add the IndexController.
5. Add the hello.phtml view.
6. Activate the module by adding it in config/application.config.php.

If you build your own module like this, step by step, you will notice that certain parts are 
missing and that you have to copy certain parts of the default Application module to 
make it work. This way, you will learn quickly what parts are required and which aren’t. 
Remember that the Module.php file is the only real requirement for a ZF2 module.

We will now go through the steps in more detail to identify exactly which parts we really 
need for our basic setup.



Building your own module

Zend Framework 1 to 2 migration guide 17

Don’t Create a Module Called Default!
You can’t have a module called Default. The first thing you would have to do if you 
edit the Module.php file is type namespace Default;. This is invalid in PHP because 
default is a reserved keyword (used in a switch statement).

The Module Directory and its Structure
The Book module directory is going to be created next to module/Application. In 
Figure 4.3, you can see the minimal basic structure needed to produce Figure 4.2, the 
output of the helloAction. What we see is very similar to the ZF1 project structure. One 
notable difference is the src directory under the Book module directory. It hosts the 
classes that belong to this module under the ‘extra’ src/Book directory.

This looks more complicated than we would wish for. It is logical that we place our 
IndexController under Book/Controller because its fully qualified name is  
Book\Controller\IndexController, and therefore, it must live in  
Book/Controller/IndexController.php on the file system. Because we are already 
in the Book module directory, the extra src/Book path could have been omitted. The 
reason for this extra path is the fact that the Book directory has to be PSR-0 compliant in 
its role as a place for the class library of your module. If you’re not already familiar with 
PSR-0, you can find out more information about PSR-0 at http://www.php-fig.org/psr/psr-0/

Simply put, src/Book may only contain classes belonging to the Book namespace. If 
you were to put your classes at the same level as your view directory under the top-level 
Book directory, this would not be true. That is the reason there is an extra src directory, 
which functions as a signal: “Hey, your library goes in here.”

FIGURE 4.3module
Application
Book

src
Book

Controller

src

book
index

view
IndexController.php

hello.html
Module.php

http://www.php-fig.org/psr/psr-0/


Zend Framework 1 to 2 migration guide18

Chapter 4 : getting started

Next to the src directory, there is a view directory, where your view scripts live. 
Unlike in ZF1, there is no intermediate scripts directory below that, but there is 
the intermediate book directory, which is named after the module; you will find the 
directories matching the controller names, such as index, directly under the view/book 
directory. In view/book/index, we put our hello.phtml view script. This script can be 
the same as for ZF1. However, there is the layout in ZF2, which is absent in ZF1. We will 
dig into this shortly.

Activating the Book Module
Activating the Book module is really simple. Just open the file 
config/application.config.php in your editor, and add it to the modules array:

<?php 
return array( 
    'modules' => array( 
        'Application', 
        'Book', 
    ), 
    //[...] 
);

Making the Module Work
In order to work, the module still needs some configuration. As I covered previously, 
unlike a ZF1 application, a ZF2 application doesn’t load our controller and view 
automatically at a certain URL. We can’t, for example, go to /book/index/hello to see 
our helloAction at work. We need to configure all of that. This adds work on our side, 
but it also makes it explicit and puts us in control.

Module Initialization
If you want your module to listen to certain (MVC) events, the init method or the 
onBootstrap method are good candidates.

From the manual:

You will see an example of using the init method when we implement module-
specific layouts, and you will see an example of using the onBootstrap event handler 
when we implement our own exception strategy.

The init() method is called for every module implementing this feature, on every page 
request, and it should only be used for performing lightweight tasks, such as registering 
event listeners. Rob Allen has collected a list of all ZF2 events. [1]

[1] All ZF2 Events, http://akrabat.com/zend-framework-2/a-list-of-zf2-events/

http://akrabat.com/zend-framework-2/a-list-of-zf2-events/


Building your own module

Zend Framework 1 to 2 migration guide 19

Controller Configuration
The Module class can implement the getConfig() method to return all of the 
configuration in one go as an associative array. It can also implement some alternative 
functions to retrieve specific configuration sections. The advantage of implementing, for 
example:

getControllerConfig(\Zend\Di\ServiceLocatorInterface $serviceLocator)

Instead of providing the controllers key in the configuration array, is that you can use 
the service locator argument to get other services for you. You can then inject these into 
any of your controllers.

Alternatively, if you configure the controllers key, you can do the same thing only if 
you provide a factory per controller. The factory will get a ServiceManager argument 
on which you can call getServiceLocator(). In our simple example, this configuration 
is sufficient:

public function getControllerConfig( 
    \Zend\Di\ServiceLocatorInterface $serviceLocator 
) 
{ 
    return array( 
        'invokables' => array( 
            'Book\Controller\Index' =>  
            'Book\Controller\IndexController', 
        ), 
    ); 
}

We could have accomplished the same thing by setting the controllers key in the array 
returned from getConfig():

'controllers' => array( 
    'invokables' => array( 
        'Book\Controller\Index' => 
             'Book\Controller\IndexController', 
    ), 
);

An invokable in this context is something you can use without parameters, such as a class 
name that can be used to create an instance or a concrete instance object. If you want 
to instantiate your controller with some arguments, you would have to use a factory or 
a closure that acts as a factory. In such a case, you specify it under the factories key, 
instead of under invokables. As with invokables, it is possible to specify just the fully 
qualified name of the factory class.



Zend Framework 1 to 2 migration guide20

Chapter 4 : getting started

Note that the lengthy index Book\Controller\Index is an alias chosen to avoid key 
naming conflicts between modules. It is the result of a naming convention, but if we 
would have chosen Our-SuperCool-Awesome-Controller, this key would have been 
just as valid.

Configuring the Route and View
From getConfig(), we return the route configuration and the view configuration for 
only this simple example:

public function getConfig() 
{ 
   return array( 
      'router' => array( 
         'routes' => array( 
            'hello' => array( 
               'type' => 'Zend\Mvc\Router\Http\Literal', 
               'options' => array( 
                  'route'    => '/index/hello', 
                  'defaults' => array( 
                    'controller' => 'Book\Controller\Index', 
                    'action'     => 'hello', 
                  ), 
               ), 
            ) 
         ) 
      ), 
      'view_manager' => array( 
         'template_path_stack' => array( 
            __DIR__ . '/view', 
         ), 
      ), 
   ); 
}

Note that the only thing we tell the view_manager is where to get our views, which we 
do by specifying the template_path_stack.

The route configuration is more complex, but it can provide you with the same 
options you had in ZF1 if you need them. Note that the controller that we have 
specified for our route is designated by the lengthy alias that we specified in the 
getControllerConfig() method. Because this is about migration and we have full 
control over the route, we can make it match the route we used in ZF1, which was the 
default for ZF1, /index/hello. You’d likely not be using such a route, but this proves 
that you can do a conversion while preserving your routes.



Building your own module

Zend Framework 1 to 2 migration guide 21

Configure the Class Loader
The last thing we need before our module will work is to configure autoloading, 
something we also do in Book\Module.

public function getAutoloaderConfig() 
{ 
   return array( 
      'Zend\Loader\StandardAutoloader' => 
      array( 
         'namespaces' => array( 
            __NAMESPACE__ => 
            __DIR__ . '/src/' . __NAMESPACE__, 
         ), 
      ), 
   ); 
}

Note that we do not use the fast class map autoloader here. We use the 
StandardAutoloader, which is the easiest to use. All you need to do is give it an array 
of namespaces associated with the paths they are in. Of course, in order for this to work, 
the classes in your namespace must be named following the PSR-0 convention. You can 
see that you are free to place your module classes anywhere you like. All you have to do is 
change the path here. But of course, it is just as easy to stick to the recommendation.

Now we have covered everything that was needed to convert our preDispatch event 
and the corresponding action and view that demonstrate the result. Note that only three 
files are involved. And while the directory structure may seem confusing at first, we only 
have these three files to contend with:

• Book/src/Book/Controller/IndexController.php
• Book/view/index/hello.phtml
• Book/Module.php

In the chapter about layouts, we will take a closer look at why the two screens are 
different and how we can rectify that. Before we do, we need to look at how errors are 
displayed.

www.allitebooks.com

http://www.allitebooks.org


Zend Framework 1 to 2 migration guide22

Chapter 4 : getting started



Zend Framework 1 to 2 migration guide 23

Chapter

5
Error Handling and 

Logging

No ErrorController

ZF2 is all about the explicit configuration of dependencies and events. Error 
handling is subject to that, as well. Error handling can be easily configured, 
but you have to know where. On the other side of the spectrum, where you 
want to be completely in control, you can implement your own exception 
strategy, and then it is completely up to you what you do with the exception.

Simple Migration Steps for Error Handling
If you just want to migrate an existing application, then think of it in terms of what you 
had in ZF1 and how it translates to ZF2. In ZF1, you had an ErrorController, and 
you could configure the application to display the exceptions—or not—by configuring 
resources.frontController.params.displayExceptions.



Zend Framework 1 to 2 migration guide24

Chapter 5 : error handling and logging

In your ErrorController, you could check the value of the displayExceptions 
parameter and display the exception or a friendly message. The setting would typically 
be turned on in the development environment through reading the environment variable 
APPLICATION_ENV. In ZF2, this is different. What you get are error templates, some 
configuration options, and, if you must, an ExceptionStrategy.

Error Templates
In ZF2, you can configure error templates. The view manager can be configured with two 
predefined keys, which may point to an alias defined in your template map. That is what 
the default Application module does. The keys point to different templates for 404 and 
500 errors. This is convenient if you want to treat entering a wrong URL differently from 
an application error.

In ZF1, the error controller checked the type of the exception and printed a different 
response header and a different message for a route mismatch (404) or an application 
error (500). In addition, it would set the exception variable on the view if exceptions 
had to be displayed.

If you are building your own module and want to do without the Application 
module, you might want to copy the two templates and their configuration from the 
Application module so that you can build on them.

Configuring Error Templates
In the view_manager configuration key, configure these keys with templates that you 
will define in the template_map:

'not_found_template'       => 'error/404', 
'exception_template'       => 'error/index',

And in the template_map, configure the templates with the same keys:

'error/404'    => __DIR__ . '/view/error/404.phtml', 
'error/index'  => __DIR__ . '/view/error/index.phtml',

Now copy the error templates directory from the Application module into your 
own view directory, and you will no longer need your Application module for error 
handling.

To Use Error Translations or Not?
If you copy both templates from the Application module, you will either have to edit 
them to not use translations, or you’ll have to enable translations (see the chapter about 
translations or look in the Application module to see how it’s done). If you forget this 
and an exception is thrown, you will not see the actual exception but this one:



simple migration steps For error handling

Zend Framework 1 to 2 migration guide 25

Fatal error: Uncaught exception 'Zend\I18n\Exception\ 
RuntimeException' with message 'Translator has not been set'.

Practical Migration of Error Handling
Here are a few possible scenarios:

• You are facing the task of migrating a large application, and time is running out.
• You can’t be bothered with the details of intelligent ways to handle errors and all 

the differences between ZF1 and ZF2.
• You just want the errors handled the same way as before.
• You have created a beautiful 404 page to display a friendly message and search 

suggestions to the end user.

If any of these reflect how you feel, then you’ll want to reproduce your ZF1 behavior in 
your ZF2 application. Now, I can’t show you how to handle all the different scenarios, but 
I can show you how to reproduce in ZF2 what happened to an unmatched route in ZF1. 
If I point my browser at http://localhost/book1/n, it will display the page you see 
in Figure 5.1. This is the behavior you get when displayExceptions is turned on in 
application.ini and the route can’t be matched. In this case, the route match looks 
for an NController, which is not defined.

FIGURE 5.1



Zend Framework 1 to 2 migration guide26

Chapter 5 : error handling and logging

If we do the same in our ZF2 application, we get the result displayed in Figure 5.2. As you 
can see, no additional information is shown about an exception in ZF2 (if you read on, 
you will learn that there is no exception at all if the route is not matched). By default, 
you only get the user-friendly message.

This is almost the same page 
you would see in ZF1 but with 
exceptions turned off. Therefore, 
in order to get back the friendly 
behavior, all you have to do is 
overwrite 404.phtml with your 
old beautiful template. However, if 
your ZF1 ErrorController added 
logic that was consumed in your 
template, then you will have to move that logic to the template. If that’s not possible 
or if it is (rightfully) considered a bad practice, then you should implement your own 
exception strategy.

Display Exceptions?
The error templates 404.phtml and index.phtml that ship with the Application 
module do check for $this->display_exceptions. You should use $this for 
template variables in ZF1 style, but that is not the point here. The point is that you 
should know where to configure this variable so that you can mimic the old setting from 
application.ini, which controlled displaying exceptions.

In the old days, you would set this to true for development and to false for production. 
In ZF2, you configure this under the 'view_manager' configuration key in the same 
place where you configure the error templates. It is best to only configure these in 
config/autoload/local.php so that these settings will never make it to your 
production environment (see the chapter about configuring environments):

// only inside a local.php file 
return array( 
    'view_manager' => array( 
        'display_exceptions'       => true, 
        'display_not_found_reason' => true, 
    ), 
);

FIGURE 5.2

A 404 error occurred
Page not found



simple migration steps For error handling

Zend Framework 1 to 2 migration guide 27

For demonstration purposes, I have created an exceptionAction in the 
IndexController of the Book module:

public function exceptionAction() 
{ 
    throw new \DomainException("This is a mock exception [..]"); 
}

And I have added a route for it:

// inside 'routes' configuration key in Module::getConfig() 
'exception' => array( 
    'type' => 'Zend\Mvc\Router\Http\Literal', 
    'options' => array( 
        'route'    => '/exception', 
        'defaults' => array( 
            'controller' => 'Book\Controller\Index', 
            'action'     => 'exception', 
        ), 
    ), 
),

Now, if I go to http://localhost/book/exception, I get to see the exception and the 
stacktrace (see Figure 5.3).

FIGURE 5.3



Zend Framework 1 to 2 migration guide28

Chapter 5 : error handling and logging

The result of opening the non-
existent page /book/n is now 
as in Figure 5.4. It says that 
no exception is available. This 
is different from ZF1, where 
a route mismatch was an 
exception, as we saw earlier 
(see Figure 5.1). If you used 
to log this kind of exception 
and still need to, you should 
register a handler to the 

MvcEvent::EVENT_DISPATCH_ERROR event and log it in there:

// in Module::onBootstrap(MvcEvent $e) 
$eventManager->attach( 
   MvcEvent::EVENT_DISPATCH_ERROR, 
   function($e) use ($logger){ 
      $logger->err( 
         'A route mismatch occured at ' 
         . $_SERVER['REQUEST_URI'] 
      ); 
   } 
);

ExceptionStrategy

Behind the scenes, a Zend\Mvc\View\Http\ExceptionStrategy or a 
RouteNotFoundStrategy in the same namespace is used by default to 
decide what to do with an exception or a route mismatch. They have a method, 
setDisplayExceptions(), which is used to toggle exceptions, but for the 
RouteNotFoundStrategy, you will find the setDisplayNotFoundReason() method 
more useful. If you want to interact with the ExceptionStrategy, you can do so inside 
the onBootstrap event hook of the Module class:

// inside Module::onBootstrap(MvcEvent $e) 
$exceptionStrategy = $e->getApplication() 
   ->getServiceManager() 
   ->get('ViewManager') 
   ->getExceptionStrategy();

Now, this works for 500 errors, while for a 404, you would need the 
getRouteNotFoundStrategy() method. Please note that you will not need to interact 
with either strategy in most cases.

FIGURE 5.4

A 404 error occurred
Page not found
The requested URL could not be matched by routing.

No exception available 



Full Control oVer errors: exCeptionstrategy

Zend Framework 1 to 2 migration guide 29

Simplest Error Template
Warning: The behavior described as follows only exists if you do not configure any of the above 
templates. Skip this part if you are simply using the Application module or if you have 
already configured your error templates.

If you do not need or want any of the clever customizations, you can place an empty 
error.phtml in any of the configured view paths, and your errors will be thrown like 
you expect them to be. Without this template, the only exception you will see is that the 
error template can’t be found. It looks like this:

Unable to render template 'error'; resolver could not 
resolve to a file.

This is how you configure an error template:

'view_manager' => array( 
    'template_map' => array( 
        'error' => __DIR__ . '/view/error.phtml', 
    ), 
),

Alternatively, placing error.phtml on one of the configured paths in the 
view_path_stack will do equally well. The behavior that causes this to happen is 
also defined in the default ExceptionStrategy. In the case of an event that has an 
exception, a response is created with a view model.

On the view model, the template is set to error if no other exception template is defined. 
So if you want your errors to be thrown as is, you should configure a simpler exception 
strategy for the view manager and register it with the EventManager. You might also 
want to do this if you need additional logic when handling errors.

Full Control Over Errors: ExceptionStrategy

There we go! You’re the brave developer who wants to do his own thing. Very well then! 
Let’s implement a custom exception strategy, which re-throws the exception as is when 
displayExceptions is configured as true and shows the default exception template 
otherwise.

To me, this really looks like a bug, but I spoke to the developers about it in IRC on 
#zftalk.dev, and they think of it as normal behavior. The line of thought is: “If there is 
an exception, the error template will be rendered”. In my opinion, when the 
error.phtml default template file doesn’t exist, the exception should be thrown as is. I 
suppose no one will even object when I change the code accordingly.



Zend Framework 1 to 2 migration guide30

Chapter 5 : error handling and logging

If you implement your own exception strategy, you are completely free in how you 
handle bad situations in the execution life-cycle of your application. For the sake of 
simplicity, I have chosen that the only customization is re-throwing the exception if 
displayExceptions is true.

First of all, we’ll create the simplest exception strategy we can think of:

<?php 
namespace Book; 
 
use Zend\Mvc\View\Http\ExceptionStrategy 
   as ZendExceptionStrategy;

class ExceptionStrategy extends ZendExceptionStrategy 
{ 
   public function prepareExceptionViewModel(MvcEvent $e) 
   { 
      if ($this->displayExceptions() 
         && $exception = $e->getError() 
      ) { 
         // re-throw the exception 
         $exception = $e->getParam('exception'); 
 
         if ($exception instanceof \Exception) { 
            throw($exception); 
         } 
      } 
      // default behavior 
      return parent::prepareExceptionViewModel($e); 
   } 
}

This is a new class in our Book module namespace that extends the default 
ExceptionStrategy. Now we need to configure this as our exception strategy.

One thing that people try is what you would expect from the dependency injection 
principles: the exception strategy is registered as a service, so what is expected is that 
you can provide your own service, instead:

public function getServiceConfig() 
{ 
   return array( 
      'invokables' => array( 
         'ExceptionStrategy' => 'Book\ExceptionStrategy', 
      ), 
   ); 
}



Full Control oVer errors: exCeptionstrategy

Zend Framework 1 to 2 migration guide 31

If you try this, you get the following exception:

Zend\ServiceManager\ServiceManager::setService: A service by 
the name "ExceptionStrategy" or another alias already exists and 
cannot be overridden. Please use an alternate name.

As you can see, this is not the way to go. The other obvious approach would be to set the 
exception strategy on the view manager in the onBootstrap event handler. This yields 
yet another error:

Call to undefined method Zend\Mvc\View\Http\ViewManager:: 
setExceptionStrategy().

So this is not the way to go, either.

The key to understanding how to do it is the concept of the 
Zend\EventManager\ListenerAggregateInterface. An exception strategy 
implements it. This interface is for self-registering events. These events will register 
at a higher priority (100) than common MvcEvents. That means that passing 
your own ExceptionStrategy to the EventManager will result in your own 
ExceptionStrategy being triggered before the default:

// in Module::onBootstrap(MvcEvent $e) 
$serviceManager = $e->getApplication()->getServiceManager(); 
 
/* get the merged config  
 * (of all modules, *.global.php and *.local.php) 
 */ 
$config = $serviceManager->get('Config'); 
 
// instantiate the custom Book\ExceptionStrategy 
$exceptionStrategy = new ExceptionStrategy(); 
 
// pass configuration options! 
$exceptionStrategy->setDisplayExceptions( 
   $config['view_manager']['display_exceptions'] 
)->setExceptionTemplate( 
   $config['view_manager']['exception_template'] 
); 
 
// attach the ListenerAggregateInterface         
$eventManager->attachAggregate($exceptionStrategy);

Now, when display_exceptions is turned on and an exception is thrown, it just gets 
re-thrown.

www.allitebooks.com

http://www.allitebooks.org


Zend Framework 1 to 2 migration guide32

Chapter 5 : error handling and logging

Logging

If in ZF1, a logger was configured as a resource in application.ini, logging of errors 
used to be done in the ErrorController, which is now gone. This is what made the ZF1 
default error logging mechanism tick: In the ErrorController, there was a function 
getLog() that would pull the logger from the automagically loaded resources:

// inside ErrorController: 
 
public function getLog() 
{ 
   $bootstrap = $this->getInvokeArg('bootstrap'); 
   if (!$bootstrap->hasResource('Log')) { 
      return false; 
   } 
   $log = $bootstrap->getResource('Log'); 
   return $log; 
}

After an exception occurred, the indexAction of the ErrorController would be 
called, and the error would be logged:

// inside errorController::indexAction 
 
// Log exception, if logger available 
if ($log = $this->getLog()) { 
    $log->log( 
        $this->view->message, 
        $priority,  
        $errors->exception 
    ); 
    $log->log( 
        'Request Parameters', 
        $priority, 
        $errors->request->getParams() 
    ); 
}

In order to autoload the logger, it had to be configured as a resource in 
application.ini:

// log resource automagically loaded from application.ini 
[development] 
resources.log.firebug.writerName = "Firebug" 
resources.log.firebug.filterName = "Priority" 
resources.log.firebug.filterParams.priority = Zend_Log::INFO

It must be said that if you are converting a very old ZF1 application, then you will likely 
not see any auto-loaded resources, and the logger will be configured differently.



logging

Zend Framework 1 to 2 migration guide 33

This is the output produced in production when going to /book1/exception where I 
purposely throw an exception:

// in application.log, configured for production 
2013-04-22T07:41:46+02:00 CRIT (2): Application error 
2013-04-22T07:41:46+02:00 CRIT (2): Request Parameters

Logging in ZF2
As you should now expect, in ZF2, logging has to be configured explicitly and is no longer 
tied to an ErrorController because we don’t have one. However, logging errors has 
been made incredibly easy. You can log both PHP errors and exceptions by registering a 
logger instance using static methods on Zend\Log\Logger:

// near the top of Module.php 
use Zend\Log\Logger; 
 
// inside Module::onBootstrap(MvcEvent $e) 
$logger = $serviceManager->get('Book\Log'); 
Logger::registerErrorHandler($logger); 
Logger::registerExceptionHandler($logger);

And of course, you must then configure the Book\Log as a service. For the sake of the 
example, I use the FirePHP logger because that’s my favorite. Alternatively, you can log 
errors to a file or a database.

To use Zend Framework’s FirePHP writer, you must first add the FirePHPCore Server 
Library. You can do this with composer by adding the following to your composer.json 
file:

   "repositories": [{ 
      "type" : "pear", 
      "url" : "pear.firephp.org", 
      "vendor-alias" : "firephp" 
   }], 
   "minimum-stability": "dev", 
   "require" : { 
       "firephp/FirePHPCore" : "*" 
   } 
}

FirePHP is a browser extension that enables you to log to your Firebug Console using a simple 
PHP method call. Originally developed for Firefox’s Firebug extension, there’s also a version 
available for Chrome.



Zend Framework 1 to 2 migration guide34

Chapter 5 : error handling and logging

FIGURE 5.5

http://book/exception file:///Users/b...ew/preview.html

book/exception

array('file'=>'/Users/bartmcleod/git/Zen...oller 

/IndexController.php', 'line'=>'34', 'trace'=> 

... )

http://book/exception

Then from within your module code:

// near the top of Module.php 
require_once 'vendor/FirePHPCore/FirePHP.class.php'; 
 
use Zend\Log\Writer\FirePhp as FirePhpWriter; 
use Zend\Log\Writer\FirePhp\FirePhpBridge; 
 
// in Module::getServiceConfig(), 'factories' key 
'Book\Log' => function($serviceManager) { 
    $log = new Logger(); 
    $writer = new FirePhpWriter( 
        new FirePhpBridge( 
            new \FirePHP() 
        ) 
    ); 
    $log->addWriter($writer); 
    return $log; 
},

With this setup, you will see FirePHP log the exception that is thrown at 
/book/exception (Figure 5.5).



logging

Zend Framework 1 to 2 migration guide 35

If you are curious to know why vendor is on the include_path, you should take a look 
inside application.config.php where it’s configured.

In many scenarios, particulary apps with AJAX requests or one-page application logging 
with FirePHP to the browser can be very useful, It somehow gets in the way of the 
actual throwing of the exception, so the page doesn’t show the exception being thrown 
anymore. I suppose it ends up somewhere in the headers just after spitting out the 
FirePHP headers, so it’s probably better to try and catch the exception and then log it 
instead of trying to log it to some fancy Firefox extension while also throwing it, thus 
halting PHP execution and ending up with a response that is halfway finished. Your 
browser doesn’t like that. You can use s Zend\Log instance with any number of Writers, 
so you should consider adding a Steam or Database writer as well.



Zend Framework 1 to 2 migration guide36

Chapter 5 : error handling and logging



Zend Framework 1 to 2 migration guide 37

Chapter

6
Layout

Please take a look back at Figure 5.1 and 5.2. They show two screen shots 
taken from the ZF1 and ZF2 applications, respectively. They do not look 
the same, even though they should. This is due to the fact that I took 
the default, quick start, applications of both frameworks as my starting 
point. The ZF1 default application does not come with layout, while the ZF2 
ZendSkeletonApplication does.

If you paid attention, you will have noticed that the configuration of our ZF2 Book 
module doesn’t mention layout; it is the layout of the default Application module that 
we see in action. For the view script, I took the ZF1 view script and stripped out the html, 
head, title, and body tags because those are already included in the layout.



Zend Framework 1 to 2 migration guide38

Chapter 6 : layout

Changing the Default Layout
There are several approaches we can take to make the layouts the same between our ZF1 
and ZF2 examples:

1. Disable the Application module in the ZF2 application (this will produce an 
error for several reasons).

2. Add layout to the ZF1 application, and add layout configuration to our ZF2 Book 
module. Then use the same layout template in both cases.

3. Configure the ZF2 Book module so that it no longer uses layout but, instead, uses 
the same view script we had for ZF1.

4. Disable layout in ZF2 only for the hello action.

While the first and last two options are interesting from an academic point of view, it is 
likely for a real-life project to use a layout, which would lead to the second option. The 
second option can be implemented in five ways if, in all five cases, we configure a layout 
for the Book module.

Here’s how:

1. Load the Book module last (like we already do in application.config.php). 
This will overwrite the layout configuration of the default Application module, 
effectively giving both modules the same layout.

2. Disable—i.e., do not load—the Application module. This will automatically 
leave us with only the layout of the Book module.

3. Use module-specific layouts. This requires some extra programming. You will 
need it sooner or later, so I will show you how to do exactly this, with a lot of 
help from Evan Coury, who blogged about it.

4. Override the layout configuration in config/autoload/book.global.php. 
The only difference with the first option is that by doing it this way, the 
loading order of the modules doesn’t matter because the configuration loaded 
from *.global.php overrides module configuration (more about that in the 
Configuration section).

5. Configure a layout key in the view_manager configuration to point to a layout 
template that we want to use. This is probably the simplest option.

Is Layout Required?
While it is academic, you might nevertheless be curious to know whether loading the 
default Application module would free us from the layout. It doesn’t; it gives us an 
error, instead:

Unable to render template "layout/layout"

If you disable the Application module without configuring your error template(s) at the 
same time, you will see a different error:

Unable to render template 'error'; resolver could not 
resolve to a file



module-speCiFiC layouts

Zend Framework 1 to 2 migration guide 39

In the chapter about error templates, you can read about how to solve this.

Apparently, while ZF2 is very flexible and explicit, a layout is implicitly enabled. Can we 
turn it off at all? The answer is yes. In fact, Abdul Malik Iksan blogged about it [1], and I 
have simplified his code to show you how it can be done for a module:

public function onBootstrap(\Zend\Mvc\MvcEvent $e) 
{ 
   $sharedEvents = $e 
      ->getApplication() 
      ->getEventManager() 
      ->getSharedManager(); 
   $sharedEvents->attach( 
      __NAMESPACE__, 
      'dispatch', 
      function ($e) { 
         $result = $e->getResult(); 
         $result->setTerminal(true); 
      } 
   ); 
}

The key in this example, which is a good demonstration of how events can be used, is the 
line $result->setTerminal(true);. This will make only the view script render, not 
the layout.

Disabling layout by setting terminal to true on the result of the dispatch event can be 
used at any level: per action, per module (as shown above) and per application. In the action, 
you can also set this on the view model (the view model in that case is also the result of 
the dispatch action, but it could equally be a response object).

Module-Specific Layouts
What we really want are module-specific layouts. Let’s assume that we have an admin 
area and a front end, and we don’t want them to share their layouts. While the event 
manager is module agnostic, we can use the module namespace to detect which module 
we are in and use that to decide which layout to render.

In order for this to work, you should configure a key for a layout template for each 
module that needs a specific layout:

'view_manager' => array( 
   'template_map' => array( 
      'layout/book' 
      => __DIR__ . '/../view/layout/layout.phtml', 
   ), 
),

[1] Zend Framework 2 : Disable Layout in specific Module, http://wp.me/p2Eg2-un

http://wp.me/p2Eg2-un


Zend Framework 1 to 2 migration guide40

Chapter 6 : layout

This only means that the path to the template can now be found using the layout/book 
key. Nothing else. This will not automatically make the Book module render this layout.

Layouts are rendered by default when configured with the layout/layout key. If 
you want to use a different key, you can do so by configuring the layout key inside the 
view_manager configuration with your own layout key:

'view_manager' => array( 
    'layout' => 'layout/book', 
)

This will still not be module specific: all of your modules will now use this layout.

You should remember that configuration is stacked and merged. So if in the 
template_map configuration, you use layout/layout as the key for the layout 
view script path, it would work but only if your module was registered last in 
application.config. And then, if it is listed last and you use the layout/layout key, 
all of your modules will use the admin layout, which is obviously not what we intended to 
happen.

While there is no module awareness, there is an awareness of the topmost namespace 
being dispatched. Evan Coury, one of the hard-working community members developing 
ZF2, wrote a great blog post about this[2]. I used the example in his post to make my 
module-specific layouts work.

It works like this; in the Module.php file where your Module class lives, you use the 
init method to register for an event which is specific to dispatching the controllers that 
live in the module for which you want to use a specific layout:

public function init(ModuleManager $moduleManager) 
{ 
   // from the example by Evan Coury 
   $sharedEvents = $moduleManager 
      ->getEventManager() 
      ->getSharedManager(); 
   $sharedEvents->attach( 
      __NAMESPACE__, 
      'dispatch', 
      function($e) { 
         // specific to namespace 
         $controller = $e->getTarget(); 
         // set layout alias 
         $controller->layout('layout/mylayout'); 
      }, 
      100); 
}

[2] http://blog.evan.pro/module-specific-layouts-in-zend-framework-2

http://blog.evan.pro/module-specific-layouts-in-zend-framework-2


module-speCiFiC layouts

Zend Framework 1 to 2 migration guide 41

What is done in this code is that if anything (more specifically: a controller) is 
dispatched in our namespace, we want to change the layout. Controllers implement the 
Dispatchable interface, and the request is dispatched to them at dispatch time, so that 
is also a good time to set the layout. The priority is set to 100 in this example, but the 
simple examples work equally well if you omit this.

The first argument of the attach method is a context identifier for the event, which 
limits the effect of the trigger to a certain context. In case you are wondering who is 
firing the dispatch event in a context named __NAMESPACE__, this is what Evan answers:

What we did was add the first level of the namespace of the controller being dispatched 
as an event identifier in the AbstractActionController. In fact, it is done in its parent class, 
AbstractController:

public function setEventManager( 
   EventManagerInterface $events) 
{ 
   $events->setIdentifiers(array( 
      'Zend\Stdlib\DispatchableInterface', 
      __CLASS__, 
      get_called_class(), 
      $this->eventIdentifier, 
      /* [LOOK: this is where it happens!!] */ 
      substr( 
         get_called_class(), 
         0, 
         strpos(get_called_class(), '\\') 
      ) 
   )); 
   $this->events = $events; 
   $this->attachDefaultListeners(); 
 
   return $this; 
}

With Evan’s solution in place, our Module.php file now looks like Listing 6.1. Of course, 
in order to make our book layout work, we had to add a directory named layout to our 
view directory and add the book.phtml layout script in there.

www.allitebooks.com

http://www.allitebooks.org


Zend Framework 1 to 2 migration guide42

Chapter 6 : layout

Listing 6.1 Module with a specific layout

<?php 
namespace Book; 
use Zend\ModuleManager\ModuleManager as ModuleManager; 
use Zend\Di\ServiceLocatorInterface; 
  
class Module 
{ 
   public function init(ModuleManager $moduleManager) 
   { 
      // from example by Evan Coury 
      $sharedEvents = $moduleManager 
         ->getEventManager() 
         ->getSharedManager(); 
      $sharedEvents 
         ->attach( 
            __NAMESPACE__, 
            'dispatch', 
            function($e) { 
               // specific to namespace 
               $controller = $e->getTarget(); 
               // now you can use a different key! 
               $controller->layout('layout/book'); 
            }, 
            100 
         ); 
    } 
 
    public function getConfig() 
    { 
       return array( 
          'router' => array( 
             'routes' => array( 
                'hello' => array( 
                   'type' => 'Zend\Mvc\Router\Http\Literal', 
                   'options' => array( 
                      'route'    => '/index/hello', 
                      'defaults' => array( 
                         'controller' 
                                 => 'Book\Controller\Index', 
                           'action' => 'hello', 
                      ), 
                   ), 
                ) 
             ) 
          ), 



module-speCiFiC layouts

Zend Framework 1 to 2 migration guide 43

          'view_manager' => array( 
             'template_path_stack' => array( 
                __DIR__ . '/view', 
             ), 
          ), 
       ); 
    } 
 
    public function getControllerConfig( 
        ServiceLocatorInterface $serviceLocator = null) 
    { 
       return array( 
          'invokables' => array( 
             'Book\Controller\Index' 
                => 'Book\Controller\IndexController', 
          ), 
       ); 
    } 
 
    public function getAutoloaderConfig() 
    { 
       return array( 
          'Zend\Loader\StandardAutoloader' => array( 
             'namespaces' => array( 
                __NAMESPACE__ => __DIR__ . '/src/' 
                                 . __NAMESPACE__, 
             ), 
           ), 
        ); 
    } 
 
    /** 
     * @param \Zend\Mvc\MvcEvent $e 
     */ 
    /* This is an example of how to not render layout 
       per module, which we do not use 
    public function onBootstrap(\Zend\Mvc\MvcEvent $e) 
    { 
       $sharedEvents = $e->getApplication() 
                         ->getEventManager() 
                         ->getSharedManager(); 
       $sharedEvents->attach( 
          __NAMESPACE__, 
          'dispatch', 
          function ($e) { 
             $result = $e->getResult(); 
             $result->setTerminal(true); 
          } 
       ); 
    } 
    */ 
}



Zend Framework 1 to 2 migration guide44

Chapter 6 : layout

The contents of the layout script are almost as they would be in ZF1:

<?php echo $this->docType('HTML5') ?> 
 
<head> 
   <?php echo $this->headMeta()->setCharset('utf-8') ?> 
 
   <?php echo $this->headTitle() ?> 
 
</head> 
<body> 
<?php echo $content ?> 
</body> 
</html>

The main difference is that in ZF1, we would have written $this->layout()->content, 
instead of $content, so this has become a little easier.



Zend Framework 1 to 2 migration guide 45

Chapter

7
The View

We already know that view scripts have improved, as you no longer 
need to type $this-> in front of view variables. You can use them as local 
variables. Let’s look at the following edge case (I have seen many views in ZF1 
applications with code like this).

<?php 
// variable $products instantiated in view script 
$products = array('apples', 'bananas'); 
 
// $this->products assigned to view in controller action 
foreach ($this->products as $product) { 
   // do something 
}



Zend Framework 1 to 2 migration guide46

Chapter 7 : the View

In ZF2, $this->products and $products are the same if products is returned in the 
view model, while in ZF1, they are different. However, in ZF2, as soon as we assign a new 
value to $products, it is different from $this->products. They are not references to 
each other. This is true at least for a scalar value, where objects would be references at all 
times, unless you clone them. The following view script has the same output in ZF1 and 
ZF2 if $this->products holds the value array('orange', 'kiwi')):

<h1>Products</h1> 
<?php 
   $products = array('apple', 'banana'); 
?> 
<?php echo $this->htmlList($this->products) ?> 
<?php echo $this->htmlList($products) ?>

The output is:

<h1>Products</h1> 
<ul> 
   <li>orange</li> 
   <li>kiwi</li> 
</ul> 
<ul> 
   <li>apple</li> 
   <li>banana</li> 
</ul>

In ZF2, we do not assign the value of products to the view, like we did in ZF1. Instead, 
we return a view model or an associative array from the controller action. There are 
three ways to do this. In ZF1, there were two ways of assigning variables to the view. You 
must take care to check for both ways when you do a migration. The two ways of ZF1 
looked like this:

// assigning to the view object from inside 
// the controller action 
$this->view->products = array('orange', 'kiwi');

or

// pass an array of vars via assign() 
$vars = array('products' => array('orange', 'kiwi')); 
$this->view->assign($vars);

These two ways could be mixed.



modiFying the Viewmodel

Zend Framework 1 to 2 migration guide 47

In ZF2, the three ways are the following:

public function productsAction() 
{ 
   // returning an array of view variables  
   // from a controller action 
   return array('products' => array('orange', 'kiwi')); 
}

or

use Zend\View\Model\ViewModel; 
 
// returning a ViewModel object containing view 
// variables specified in the constructor  
return new ViewModel( 
   array('products' => array('orange', 'kiwi')) 
);

or

// returning a ViewModel object containing view 
// variables assigned as needed in program flow.  
$view = new ViewModel(); 
$view->products = array('orange', 'kiwi'); 
return $view;

Modifying the ViewModel

In addition to what you could do in ZF1, you can modify the view model to alter the 
behavior of the view. As we saw earlier with layout, if you do not want to render 
the layout for a specific action, but only the view script itself, you can use the 
setTerminal() method on your view model:

$view->setTerminal(true);

Render a Different Template

By default, the template being rendered is named after the action. The helloAction 
renders the hello.phtml template. In ZF1, you could do the following inside the 
controller action in order to render a template with a different name:

// render the form.phtml template from the helloAction 
$this->render('form');



Zend Framework 1 to 2 migration guide48

Chapter 7 : the View

In ZF2, you set a different template on the view model to achieve the same:

// render the hello template from the productsAction 
$view->setTemplate('book/index/hello.phtml');

template_path_stack and template_map

In the above case, the view directory is on the template path stack (see the 
view_manager configuration), but you still need to specify the path from there to 
the alternative template. If you have configured an alias for a template, that works, 
too. For example, I can add an alias for an alternative products view script, using the 
template_map key in the configuration of the view_manager:

// inside 'view_manager' configuration array 
'template_map' => array( 
   'products' => __DIR__ 
                 . '/view/book/index/alternative.phtml', 
),

Now, I can change the view model inside the products action so that it will render this 
alternative view script:

// use the alias 'products' in the controller action 
$view->setTemplate('products');

By the way, using a template_map is faster than relying on the template_path_stack 
because it doesn’t require any searching the filesystem.

Nested View Models vs. Partials

Nested view models are a novelty of ZF2. How do these relate to partials, and when do we 
need to consider nested view models over partials in a migration process? Let’s create 
an example that uses a partial in ZF1 and see what we can do in ZF2. So in the book ZF1 
application, we put a partialAction method in the IndexController and make it use 
a the-partial.phtml. The partial.phtml action template looks like this:

<h1>View script using a partial</h1> 
<?php 
   echo $this->partial( 
      'index/partials/the-partial.phtml', 
      array('variable' => 'Got a variable!') 
   ) 
?>



nested View models Vs. partials

Zend Framework 1 to 2 migration guide 49

And the partial itself, view/scripts/index/partials/the-partial.phtml:

<h2>Partial</h2> 
<p>This is the partial.</p> 
<p> 
    <?php echo $this->variable ?> 
</p>

The result for ZF1 can be seen in Figure 7.1. The good news is that this can be reused in 
almost the same way in ZF2. The only thing that might need a change is the path to the 
partial, as your view paths may be different. Of course, you could modify the view path 
configuration and not change a single line in the templates. In our example application, I 
did change the path in partial.phtml:

<h1>View script using a partial</h1> 
<?php 
   echo $this->partial( 
      'book/index/partials/the-partial.phtml', 
      array('variable' => 'Got a variable!') 
   ) 
?>

The only change is that the module name and a slash are prefixed to the path (book/). 
This is because the view directory is in the configured view paths, and the book 
directory is found in there, so we can start the path starting with the book directory.

This is the ZF 1 layout (/Users/bartmcleoud/project/book/application/layouts/layout.phtml)

View script using partial
Partial
This is partial.

Got a variable!

FIGURE 7.1



Zend Framework 1 to 2 migration guide50

Chapter 7 : the View

Now can we get the same results using a nested view model? Inside the nestedAction in 
ZF2, we set up the view models:

public function nestedAction() 
{ 
   $partialView = new ViewModel(); 
   $partialView->setTemplate( 
      'book/index/partials/the-partial.phtml' 
   ); 
   $partialView->variable = 'Nested model has a variable!'; 
 
   $view = new ViewModel(); 
   $view->addChild($partialView, 'nested'); 
   return $view; 
}

The second argument to addChild is the variable name that the output of the nested 
view will get in the parent template. The nested.phtml is therefore very simple:

<h1>View script using nested model</h1> 
<?php 
   echo $nested 
?>

A route must be defined for the nested action, but after that, it works seamlessly. The 
main difference is that in ZF2, it’s easier to control complex structures when building 
nested view models inside your controller than it is to keep track of nested partials and 
partial loops from within your views. This makes it easier to keep controlling logic where 
it belongs: inside your controller.

Modifying the Layout
The layout is just another view model to which your action view model is added, like 
when you nest view models yourself. That means that if you retrieve the layout within 
your controller action or within your view template, you can do things like alter the 
layout template or insert additional view models into the layout. Getting the layout 
inside your controller action is straightforward:

$layout = $this->layout();

The ZF2 manual has excellent sections on the view layer, so I’m not going to repeat 
that information here. Please remember that if you have advanced needs, the manual 
is the place to read about the new and cool features available. Make sure you bookmark 
http://framework.zend.com/manual/current/en/modules/zend.view.quick-start.html.

http://framework.zend.com/manual/current/en/modules/zend.view.quick-start.html.


View helpers

Zend Framework 1 to 2 migration guide 51

Escaping Variables
Automatic escaping of view variables is another new feature in ZF2. In 
the case of a conversion, you would have to remove all current calls to 
$this->escape($this->someparam) and replace them by just $someparam. 
Converting is complicated, however, by the fact that object properties and array 
elements are not automatically escaped. 

These must be escaped by calling:

 $this->escapeHtml($someparam['some-element']) 

or: 

$this->escapeHtml($someparam->someProperty) 

Note that $this->escape won’t work anymore.

The view helpers that help you escape now depend on the output context, and 
you should call the appropriate helper for the context you are escaping to. In this 
case, I assumed HTML as the context. The new helpers are EscapeUrl, EscapeCss, 
EscapeHtml, EscapeHtmlAttr, and EscapeJs. Most of the replacement work 
can be done by a replace in files using a regular expressions. Of course, if you want a 
quick and easy way, you could also write your own Escape view helper that returns 
$this->view->escapeHtml($value).

View Helpers

In ZF1, view helpers had a method named after the last part of their name, and this 
method would invoke the view helper. For example, Zend_View_Helper_Url would 
have the url() method. That method could return either a string or the object itself. In 
the latter case, an additional __toString() method was needed to return the string 
output from the view helper.

Simple view helpers do not need that, but more complex ones do. This mechanism still 
works in ZF2, but the method that is used to invoke the view helper can’t have the same 
name. Consider the URL view helper as an example. Its fully qualified name would be 
Zend\View\Helper\Url, and with namespaces, it would have the class declaration 
listed below. However, because of backwards compatibility, the url method would be 
considered a constructor, so it shouldn’t be used as an alias to invoke the helper.

www.allitebooks.com

http://www.allitebooks.org


Zend Framework 1 to 2 migration guide52

Chapter 7 : the View

namespace Zend\View\Helper; 
 
// this doesn't work as in ZF1 
class Url extends \Zend\View\Helper\AbstractHelper { 
    // [...] 
    public function url() 
    { 
        // [...] 
    } 
}

function url() would be seen as the constructor because the name is the same as the 
class name; therefore, this had to change. ViewHelpers now implement the __invoke() 
magic method from the PHP documentation[1]

ViewHelpers may extend Zend\View\Helper\AbstractHelper or implement setView 
and getView methods, thus implementing the Zend\View\Helper\HelperInterface. 
An example is in Listing 7.1.

Listing 7.1 Implementing HelperInterface

<?php 
namespace Book\View\Helper; 
use Zend\View\Helper\HelperInterface; 
use Zend\View\Renderer\RendererInterface as Renderer; 
 
class Hello implements HelperInterface 
{ 
   protected $view; 
 
   public function __invoke() 
   { 
      return 'Hello from ViewHelper Hello!'; 
   } 
 
   public function setView(Renderer $view) 
   { 
      $this->view = $view; 
   } 
 
   public function getView() 
   { 
      return $this->view; 
   } 
}

[1] http://php.net/manual/en/language.oop5.magic.php#object.invoke

The __invoke() method is called when a script tries to call an object as a function.



View helpers

Zend Framework 1 to 2 migration guide 53

Unless you have a specific reason, it is simpler to just extend the AbstractHelper 
(Listing 7.2).

Listing 7.2 Extending AbstractHelper

<?php 
namespace Book\View\Helper; 
use Zend\View\Helper\AbstractHelper; 
 
class HelloSimple extends AbstractHelper 
{ 
   public function __invoke() 
   { 
      return 'Simple hello from ViewHelper HelloSimple!'; 
   } 
}

Configuring Your View Helpers
In ZF1, your view helpers had to be placed in the view/helpers directory, and they 
would be found automatically. You could configure this otherwise, but in ZF2, you have 
to configure your view helpers explicitly. Configuration of view helpers can be simple, 
though:

'view_helpers' => array( 
   'invokables' => array( 
      'hello' => 'Book\View\Helper\Hello', 
   ), 
),

Note that the view_helpers key goes at the top level of the configuration array 
returned from getConfig() (not under view_manager). Alternatively, you might 
implement the getViewHelperConfig() method in Module to return the same array.

Either way, you are not limited to configuring invokables. You may also configure 
factories as a class name, as a closure, or as a concrete instance of a factory. The first 
argument of the factory method is a Zend\View\HelperPluginManager instance, 
on which you can call getServiceLocator(). The service locator that is returned 
can get you any service configured for the application. So this is a good way to inject 
dependencies into you view helper, should you need any.



Zend Framework 1 to 2 migration guide54

Chapter 7 : the View

Caching and Closures Don’t Mix
The advantage of not using closures as factories in your configuration anywhere is 
that you will be able to cache your configuration because your configuration will be 
serializable. Because closures have an in-memory state and cannot provide a __sleep or 
a __wakeup method, they can’t be restored from a cached string representation. Writing 
closures, on the other hand, is easy and straightforward. In general, it is recommended 
that you write factory classes, instead, and provide the class names to your factories 
configuration.

An example of a view helper that needs a dependency (a logger) is the Logger view 
helper in Listing 7.3.

Listing 7.3 View helper with a dependency

<?php 
namespace Book\View\Helper; 
 
use Zend\View\Helper\AbstractHelper; 
 
class Logger extends AbstractHelper 
{ 
   protected $logger; 
 
   public function __invoke($message) 
   { 
      $this->logger->info($message); 
   } 
 
   public function setLogger($logger) 
   { 
      $this->logger = $logger; 
   } 
}

We can configure this using a closure like this:

'view_helpers' =>  array( 
   'factories' => array( 
      'logger' => function(HelperPluginManager $pm) { 
         $sm = $pm->getServiceLocator(); 
         $logger = $sm->get('Book\Log'); 
         $viewHelper = new View\Helper\Logger(); 
         $viewHelper->setLogger($logger); 
         return $viewHelper; 
      } 
   ), 
),



the View has grown up with ZF2

Zend Framework 1 to 2 migration guide 55

As you can see, the logger dependency is injected into the view helper when the view 
helper is requested from the closure. You may have view helpers in your ZF1 project that 
have many dependencies. By configuring those dependencies as a service with the service 
manager, you can inject them into your view helper at creation time.

Autoloading Your View Helper
You may wonder how the view helper is found once it has been configured as 
shown above. Book is the module namespace, and the path to the module classes is 
configured in the Book\Module class that is defined in the obligatory Module.php 
file inside the Book module directory. The function getAutoloaderConfig 
(Listing 7.4) returns the configuration for the autoloaders, and in this case, the 
StandardAutoloader is the one that finds the view helper class located at 
module/Book/src/Book/View/Helper/Hello.php.

Listing 7.4 Autoloader configuration

public function getAutoloaderConfig() 
{ 
   return array( 
      'Zend\Loader\StandardAutoloader' => array( 
         'namespaces' => array( 
            __NAMESPACE__ => __DIR__ . '/src/' 
               . __NAMESPACE__, 
         ), 
      ), 
   ); 
}

Of course, you can configure this any way you like, but it is probably best to stick to 
conventions and established best practices. One of the things you would want to do in 
production is to configure a class map autoloader, instead, because it is faster.

The View has Grown Up with ZF2

The View layer has grown up with ZF2. In fact, it is so flexible that 
it is almost dazzling to read the documentation. Try it for yourself: 
http://framework.zend.com/manual/2.0/en/modules/zend.view.quick-start.html. The whole 
view-rendering process has been made so that you can configure it completely tailored 
to your needs. If you had to play tricks in your ZF1 application to generate specific 
responses or sophisticated layouts, you should definitely get a profound understanding 
of the new view layer before you migrate. You will find something useful in there, which 
may lead to a more robust or better-performing application than you had before.

http://framework.zend.com/manual/2.0/en/modules/zend.view.quick-start.html.


Zend Framework 1 to 2 migration guide56

Chapter 7 : the View



Zend Framework 1 to 2 migration guide 57

Chapter

8
Controller Plugins & 

Translations

Action Helpers

Action helpers were not widely used in ZF1. I have seen several applications 
that didn’t implement any action helpers when they could have. An action 
helper should not be confused with Zend_View_Helper_Action, the latter 
being a view helper that calls an action on a controller.

Action helpers were a means to share code snippets, a bit like traits, between controllers, 
that had little in common otherwise. One of the things that kept me puzzled while 
learning ZF2 was, “Where did the action helpers go?” The answer is that they are now 
called Controller Plugins, and they are surprisingly easy to implement, configure, and use.



Zend Framework 1 to 2 migration guide58

Chapter 8 : Controller plugins & translations

Before you look at implementing your own controller plugin, make sure to take a look at 
those already defined. In the sample ZF1 application called book, I have defined a useless 
action helper, purely for demonstration purposes:

// ZF1 
class Book_Action_Helper_Name 
   extends Zend_Controller_Action_Helper_Abstract 
{ 
   public function direct() 
   { 
      $controller = $this->getActionController(); 
      return get_class($controller); 
   } 
}

It returns the class name of the controller. Notice how it implements a direct() method 
to allow calling it by its class name inside a controller. This action helper is consumed in 
the IndexController::nameAction action:

// ZF1 
public function nameAction() 
{ 
   $this->view->controllerName = $this->_helper->Name(); 
}

Note the underscore for the protected _helper property. The use of underscores is 
discouraged, and you should not do it in a ZF2 project. When we call Name() on this 
property, which holds the helper broker, it will look for an action helper that matches 
the configured naming rules and will then call the direct() method on it. The naming 
rules must be configured or set in the code. In the example application, they are 
configured in application.ini:

resources.frontController.actionhelperpaths.Book_Action_Helper \ 
  = APPLICATION_PATH "/controllers/helpers"



a ZF2 Controller plugin

Zend Framework 1 to 2 migration guide 59

A ZF2 Controller Plugin

The above action helper from ZF1 can be replaced with a controller plugin:

<?php 
namespace Book\Controller\Plugin; 
 
use Zend\Mvc\Controller\Plugin\AbstractPlugin; 
 
class Name extends AbstractPlugin 
{ 
   public function __invoke() 
   { 
      $controller = $this->getController(); 
      return get_class($controller); 
   } 
}

Configuring Controller Plugins
Configuring controller plugins is easy:

// inside array returned by Module::getConfig(): 
 
'controller_plugins' => array( 
   'invokables' => array( 
      'controllerName' => 'Book\Controller\Plugin\Name', 
   ) 
),

Consuming a Controller Plugin
Using a controller plugin inside a controller action is even easier than configuring it:

public function nameAction() 
{ 
   return array( 
      'controllerName' => $this->controllerName(), 
   ); 
}

The above snippet will expose the $controllerName variable to the view so that we 
can now reuse the name.phtml template from the ZF1 application. We need to configure 
a route for the name action in order to see the result (see “Configuring the route and 
view”).



Zend Framework 1 to 2 migration guide60

Chapter 8 : Controller plugins & translations

While we can reuse the template, we won’t because we want to set a different title from 
within the template:

// name.phtml 
<?php echo $controllerName ?> 
<?php 
   $this->headTitle('Controller Plugin example'); 
?>

Translations

Translations are not a requirement for your application to work, but many real-life ZF1 
applications make use of translations. Not only can translations be used to translate 
from one language to another, but given their nature, they are also very handy when you 
want to translate column names or error codes to human-readable labels. It is therefore 
very likely that when migrating a ZF1 application, you will also have to migrate the 
translations.

CSV Format is Gone
There is no longer support for the *.csv format for your translations. I liked that format, 
but I’m probably one of the very few. It is, however, easy to convert your *.csv files 
to PHP arrays (which are supported—even recommended—for speed). You can convert 
either at runtime or just once, when you migrate the application. You can use file() to 
read your CSV file and get it back as an array of lines and then use str_getcsv to get 
the translation data on that line:

<?php 
$translations = array(); 
$lines = file(__DIR__ . '/' . $locale . '.csv'); 
 
foreach ($lines as $line) { 
   $pair = str_getcsv($line, ';'); 
   $translations[$pair[0]] = $pair[1]; 
} 
 
return $translations;

The above example will convert a *.csv file for a given locale at runtime, but it’s easy 
to use it for a one-off conversion. Doing it at runtime can be employed if you want to 
continue editing your translation in *.csv files.



translations

Zend Framework 1 to 2 migration guide 61

Translations in ZF2
You will need to set up translations if you want to use the error templates (see the 
chapter about error templates) from the Application module without using the 
Application module itself. This is obviously doing things the hard way, but you will 
gain a better understanding of how they really work.

Even if you do not translate anything, you can still configure and build in a translation 
mechanism. If, one day, you decide you want it, it will already be in place.

The translator itself is configured at the root level of the configuration array returned 
from Module::getConfig():

'translator' => array( 
   'locale' => 'nl_NL', 
   'translation_file_patterns' => array( 
      array( 
         'type'     => 'PhpArray', 
         'base_dir' => __DIR__ . '/language', 
         'pattern'  => '%s.php', 
      ), 
   ), 
),

In this configuration, it is clear that a default locale is specified (in my case, nl_NL), and 
translation_file_patterns specifies how the translation file can be found. The %s in 
the pattern will be replaced by the locale. So in my case, I write my translations in a file 
named nl_NL.php and place it in Book/language, where Book is the module directory.

As for the contents of the translations file, this is really simple, just like you could do it in 
ZF1:

<?php 
return array( 
   'An error occurred' => 'Er is een fout opgetreden', 
);

As you can see, I have only translated a single string. You will see this in action at the URL 
/exception of the ZF2 sample application if you switch display_exceptions to false 
in config/autoload/local.php.

www.allitebooks.com

http://www.allitebooks.org


Zend Framework 1 to 2 migration guide62

Chapter 8 : Controller plugins & translations

The service that provides the translator is configured in the service configuration. 
This can be either under the service_manager key in the root of the same main 
configuration array or in the dedicated Module::getServiceConfig() method:

public function getServiceConfig() 
{ 
   return array( 
      'factories' => array( 
         'translator' => 
         'Zend\I18n\Translator\TranslatorServiceFactory', 
      ), 
   ); 
}



Zend Framework 1 to 2 migration guide 63

Chapter

9
Forms

Zend\Form is a complete rewrite of Zend_Form. You won’t find much that 
is backwards compatible in there. Compared to its predecessor, Zend\Form 
offers a clear separation of concerns. As a consequence, filtering and 
validating form values have been separated out into Zend\InputFilter. 
Zend\InputFilter takes care of both filtering and validating, while 
displaying forms is taken care of by a set of dedicated view helpers found in 
the Zend\Form\View\Helper namespace.

With Zend Framework 1, you could use Zend_Form in two ways, depending on whether 
you liked the decorator system. In the former case, you would only use very few 
decorators (the View_Helper being the absolute minimum). In the latter case, you might 
even have built your own decorator management system, like I did (sigh).



Zend Framework 1 to 2 migration guide64

Chapter 9 : Forms

Decorators are Gone

If you don’t know how the decorator system worked, don’t worry; many did not, and the 
decorators are gone in ZF2. If you have to do a migration, you should avoid learning how 
to use decorators just to do the migration. Instead, focus on the desired end result: what 
your form should look like and what it should do.

Although I was one of the people who actually liked the challenges that came with 
using decorators, it would not be fair to only address a migration scenario based on the 
extensive use of decorators. So the example that I will show is a simple form that doesn’t 
use any decorators other than the ones provided by default.

A Simple Form

First, I will create the form in my ZF1 application, then migrate it to ZF2. In the 
ZF1 example application, I have dedicated a controller to forms, and it is called 
FormController. The indexAction builds the simple form and renders it using the 
default view script located at /views/scripts/form/index.phtml. The index action:

public function indexAction() 
{ 
   $form = new Zend_Form('person'); 
   $form->setAction($this->view->url()); 
   $form->addElement( 
      'text','firstname', array('label' => 'First name') 
   ); 
   $form->addElement( 
      'text','lastname', array('label' => 'Last name') 
   ); 
   $form->addElement( 
      'submit', 'save', array('label' => 'Send') 
   ); 
   $this->view->form = $form; 
}

And the corresponding view script:

<?php echo $this->form ?>

This is all you needed in ZF1 to get the output in Listing 9.1. This is only the output 
of the form; I have omitted the layout in this case for clarity. As we can see, the form 
automatically renders <dl>, <dd>, and <td> tags, which many of us hated so much when 
we first met Zend_Form. Those who understood the power of the decorator system and 
learned to love it still needed quite some time to become proficient with it.



a simple Form

Zend Framework 1 to 2 migration guide 65

Listing 9.1 Decorated form in ZF1
<form enctype="application/x-www-form-urlencoded" 
    action="/Form" method="post"> 
    <dl class="zend_form"> 
        <dt id="firstname-label"> 
            <label for="firstname" class="optional"> 
            First name</label> 
        </dt> 
        <dd id="firstname-element"> 
            <input type="text" name="firstname" 
             id="firstname" value="" /> 
        </dd> 
        <dt id="lastname-label"> 
            <label for="lastname" class="optional"> 
            Last name</label> 
        </dt> 
        <dd id="lastname-element"> 
            <input type="text" name="lastname" 
             id="lastname" value="" /> 
        </dd> 
        <dt id="save-label">&#160;</dt> 
        <dd id="save-element"> 
            <input type="submit" name="save" 
             id="save" value="Send" /> 
        </dd> 
    </dl> 
</form>

Although it is unlikely that you are using Zend_Form without any customization, this 
form allows me to demonstrate some migration steps you could take.

The Route to Our Form
For starters, the URL where the form is displayed should be identical: in my case 
/book1/Form (ZF1) should translate to /book/Form (ZF2). Also, in order to keep a 
similar level of organization, I should create a dedicated FormController in my ZF2 
Book module.

Note that it is disputable if the URL should be the same or not. ZF2 is modular by nature, 
and the modular structure can also provide a namespace for URLs. In that sense, it would 
be more logical to create the URL /book/Book/Form, thus including the Book module 
namespace in the URL. It is only because I want to demonstrate that you can create 
identical functionality with ZF2 compared to ZF1 that I insist on getting the form at the 
same URL as before.



Zend Framework 1 to 2 migration guide66

Chapter 9 : Forms

In ZF1, the route /Form worked by default because I had a FormController, and I used 
the indexAction to display the form (index is the default, so you don’t have to type 
/Form/index). In my ZF2 application, this won’t work out of the box. There is a fallback 
route defined in the Application module, which follows the same pattern as in ZF1. But 
that will only work for the Application module because it is defined as a child route 
of the basic route /application defined in there. Still, all these routes would still be 
prefixed with /application, thus providing a namespace for all fallback routes in the 
application module.

A Custom Route
To keep things explicit, I will define a custom, literal route to the form.

'form' => array( 
   'type' => 'Zend\Mvc\Router\Http\Literal', 
   'options' => array( 
      'route'    => '/Form', 
      'defaults' => array( 
         'controller' => 'Book\Controller\Form', 
         'action'     => 'index', 
      ), 
   ), 
)

We also need the alias Book\Controller\Form in the controller configuration. This 
works exactly the same as the alias we already defined for our IndexController (see 
Listing 6.1).

The FormController
The actual FormController has to be placed at the same level as the IndexController, 
and we will create it from scratch this time:

namespace Book\Controller; 
 
use Zend\Mvc\Controller\AbstractActionController; 
 
class FormController extends AbstractActionController 
{ 
   public function indexAction() 
   { 
 
   } 
}

This is the minimum code required to display our form, which has a static template for 
now. Note that the base controller lives in the Zend\Mvc\Controller namespace and is 
called AbstractActionController, as opposed to Zend_Controller_Action in ZF1.



ConVerting the Form

Zend Framework 1 to 2 migration guide 67

Converting the Form

Now that we have all of the wiring in place and can open the exact same form in our 
browser, it’s time to actually convert the form. So far, we have only copied the output 
from the ZF1 view script into the ZF2 view script, and we have gotten the same end result. 
But no actual ZF2 form is being used.

To change that, we first build up our form in the indexAction; however, we now use 
Zend\Form\Form. Its usage differs from ZF1 (see Listing 9.2). Some differences are subtle, 
while others are bigger. Let’s look at them one by one. Please note that there is an error 
in Listing 9.2 that I will address later on. Therefore, do not use this as an example just yet.

Listing 9.2 Using a form in an action

<?php 
// @file: FormController.php 
namespace Book\Controller; 
 
use Zend\Mvc\Controller\AbstractActionController; 
use Zend\Form\Form; 
use Zend\Form\Element; 
use Zend\View\Model\ViewModel as View; 
 
class FormController extends AbstractActionController 
{ 
   public function indexAction() 
   { 
      $form = new Form('person'); 
      $firstname = new Element\Text('firstname'); 
      $firstname->setLabel('First name'); 
 
      $lastname = new Element\Text('lastname'); 
      $lastname->setLabel('Last name'); 
 
      $submit = new Element\Submit('save'); 
      $submit->setValue('Send'); 
      $form 
         ->add($firstname) 
         ->add($lastname) 
         ->add($submit); 
 
      $view = new View(); 
      $view->form = $form; 
      return $view; 
   } 
} 



Zend Framework 1 to 2 migration guide68

Chapter 9 : Forms

Importing the Namespaces
First of all, note our use statements near the top of the file FormController.php. 
We use Zend\View\Model\ViewModel as View, Zend\Form\Form, and 
Zend\Form\Element. If you are already used to namespaces, you do not need an 
explanation. But otherwise, you should realize that this is a way to import these 
namespaces so that we can use their short name or alias: View, Form, and Element. Any 
type of element we need, we can now instantiate using new Element\{type}(), as in 
new Element\Select(), for example.

Adding Elements
Adding these elements to the form is not done like before, by calling addElement, but 
just by calling add on the form object. The add() method is very flexible. You can use 
it to add elements, fieldsets, and configurations that can be parsed by the form factory. 
A form itself is just a special incarnation of a fieldset in ZF2, so yes, it is right that 
fieldsets can be nested. A collection is a repeating fieldset typically used to represent a 
OneToMany relationship between objects that are used as hydrators on the form (more 
about hydration later).

The view model is a way to pass the form to the view. Note that we could have chosen to 
pass a simple associative array, instead. Do not forget to return the view model or array 
from the action; otherwise, it will not reach the output.

Rendering the Elements
With the code from Listing 9.2 in place, we still do not really use our form elements. In 
order to use the actual elements, we need to render them in the view script. Decorators 
are gone. If we render an element, we can choose between several options: render the 
basic element using the formInput view helper and render other aspects, such as the 
label, explicitly or use the formRow() view helper.

This will render the element and its label in one go. Alternatively, we can write our own 
view helpers to render repeated sequences of HTML markup that we would otherwise 
consider too tedious to type.

In our example, we need explicit rendering, as we are reproducing legacy markup, 
generated by a default Zend_Form that did use decorators (see Listing 9.1). The result is 
in Listing 9.3. A difference that jumps to the eye immediately is that if we convert forms 
using this approach, we need a lot more code than we did in ZF1. What we get in return, 
though, is a lot of flexibility.



ConVerting the Form

Zend Framework 1 to 2 migration guide 69

Listing 9.3 Replicating form markup 

<?php 
    $firstname = $form->get('firstname'); 
    $lastname = $form->get('lastname'); 
    $submit = $form->get('save'); 
    $form->prepare(); 
    // Get the form label plugin 
    $formLabel = $this->plugin('formLabel'); 
?> 
 
<?= $this->form()->openTag($form) ?> 
    <dl class="zend_form"> 
        <dt id="firstname-label"> 
            <label for="firstname" class="optional"> 
            <?= $firstname->getLabel() ?></label> 
        </dt> 
        <dd id="firstname-element"> 
            <?= $this->formInput($firstname) ?> 
        </dd> 
        <dt id="lastname-label"> 
            <label for="lastname" class="optional"> 
            <?= $lastname->getLabel() ?></label> 
        </dt> 
        <dd id="lastname-element"> 
            <?= $this->formInput($lastname) ?> 
        </dd> 
        <dt id="save-label">&#160;</dt> 
        <dd id="save-element"> 
            <?= $this->formInput($submit) ?> 
        </dd> 
    </dl> 
<?= $this->form()->closeTag() ?>

What I did not show you here is that there are more ways to add elements and to 
configure forms, such as by annotating the objects that you might associate with the 
form as hydrators. In particular, annotations will save you a lot of typing and keep the 
configuration of your forms tied to your objects. It is, of course, up to you if you want 
that.



Zend Framework 1 to 2 migration guide70

Chapter 9 : Forms

Comparing the Output
The output of what we have migrated so far is in Listing 9.4. What you should 
notice is that the form elements do not have ID attributes yet. This is different 
from the old output in Listing 9.1. We need to add the IDs explicitly using 
setAttribute('id', 'firstname'), for example. This was the “error” I talked about 
when I discussed Listing 9.2. Note that on the form itself, this works differently: the form 
automatically gets the name and the ID set to the same value, which is the string value 
the form was initialized with.

Listing 9.4 Migrated form output

<form action="" method="POST" name="person" id="person"> 
    <dl class="zend_form"> 
        <dt id="firstname-label"> 
            <label for="firstname" class="optional">First name</label> 
        </dt> 
        <dd id="firstname-element"> 
            <input type="text" name="firstname" value="" /> 
        </dd> 
        <dt id="lastname-label"> 
            <label for="lastname" class="optional">Last name</label> 
        </dt> 
        <dd id="lastname-element"> 
            <input type="text" name="lastname" value="" /> 
        </dd> 
        <dt id="save-label">&#160;</dt> 
        <dd id="save-element"> 
            <input type="submit" name="save" value="Send" /> 
        </dd> 
    </dl> 
</form>



Zend Framework 1 to 2 migration guide 71

Chapter

10
Data Validating and 

Filtering
Validating and filtering are often related to forms, but they can be used 

separately. To emphasize this and also just to keep the book well structured, 
I reserve this separate chapter for validation and filtering. Filtering and 
validating can be used against any form of data, regardless of whether forms 
are involved. In ZF1, validation was tied closely to forms, but you could use 
it separately, too, by using Zend_Filter_Input. This component has been 
replaced and improved by Zend\InputFilter\InputFilter. Also, the new 
input filter is now the single centralized way to filter and validate at all times.



Zend Framework 1 to 2 migration guide72

Chapter 10 : data Validating and Filtering

Filtering and Validating Our Data

Suppose that we want to simply validate a 'firstname' and 'lastname', without 
worrying about where the data comes from. We will create an input filter, which trims 
whitespace from the 'firstname' and validates it against a regular expression, while it 
leaves the 'lastname' as is. We will do this in the FormController for convenience’s 
sake and call the method filterAction, with a corresponding filter.phtml view 
and a corresponding '/Form/filter' route, that is configured as a child route of the 
'/Form' route:

'may_terminate' => true, 
'child_routes' => array( 
   'filter' => array( 
      'type' => 'Zend\Mvc\Router\Http\Literal', 
      'options' => array( 
         'route' => '/filter', 
         'defaults' => array( 
            'action' => 'filter', 
         ), 
      ), 
   ), 
),

A child route is appended to the parent route. In this case, the parent route stops at the 
end of /Form, and that is where the child route comes in with /filter, resulting in 
Form/filter. If the parent changes, all child routes change. Options of the parent are 
inherited by the children and can be overridden. Defining child routes saves you only a 
little typing; it is mostly useful for restricting routes to a hierarchy.

The 'may_terminate' => true line is essential; without it, the parent route doesn’t 
work. This is because if you use child routes, you are actually using a TreeRouteStack, 
and it needs to know that it is permitted and that no other segments follow after the 
parent part (/Form).

The filterAction is in Listing 10.1, the view script used to display the result is in 
Listing 10.2, and the rendered result looks like Figure 10.1. To demonstrate that it doesn’t 
matter where the values come from, I have used a regular array filled with hardcoded 
data. The input filter simply doesn’t care that we don’t use a form.



Filtering and Validating our data

Zend Framework 1 to 2 migration guide 73

Listing 10.1 Defining our filter action

/** 
 * Filters and validates a dataset containing 
 * a 'firstname' field 
 * @return array Associative array with view data 
 */ 
public function filterAction() 
{ 
   $filter = new InputFilter(); 
   $filter->add( 
      array( 
         'name' => 'firstname', 
         'filters' => array( 
            array( 
               'name' => 'string_trim', 
            ), 
         ), 
         'validators' => array( 
            array( 
               'name' => 'regex', 
               'options' => array( 
                  'pattern' => "/^[a-z]*$/i", 
               ) 
            ), 
         ), 
      ) 
   ); 
   $filter->add(array('name' => 'lastname')); 
 
   $data = array( 
      'firstname' => ' James (007) ', 
      'lastname'  => 'Bond', 
   ); 
 
   $filter->setData($data); 
 
   $valid = $filter->isValid(); 
 
   // use the filtered values as view data 
   $view = $filter->getValues(); 
 
   // add some information 
   $view['valid'] = $valid; 
   $view['messages'] = $filter->getMessages(); 
 
   // return the view data 
   return $view; 
}



Zend Framework 1 to 2 migration guide74

Chapter 10 : data Validating and Filtering

Listing 10.2 Displaying filter results

<h1>The filtered and validated result:</h1> 
<p>The quotes are there so that you can see that whitespace 
is stripped off the first name</p> 
 
<p>First name: &quot;<?php echo $firstname ?>&quot;</p> 
<p>Last name: &quot;<?php echo $this->escapeHtml($lastname)?> 
 &quot;</p> 
 
<h2> 
    <?php if ($valid === true) : ?> 
        The data is valid. 
    <?php else: ?> 
        INVALID data detected! 
    <?php endif ?> 
</h2> 
<?php if (isset($messages)) : ?> 
    <?php foreach ($messages as $message) : ?> 
        <p> 
            <?php var_dump($message) ?> 
        </p> 
    <?php endforeach ?> 
<?php endif ?>

The filtered and validated result:
The quotes are there so that you can see that whitespace is stripped off the first name

First name: "James (007)"

Last name: "Bond".

INVALID data detected!
array(1) { ["regexNotMatch"]=>string(54) "The input does not match against pattern '/^[a-z]*$/i'" } 

FIGURE 10.1



putting things together

Zend Framework 1 to 2 migration guide 75

However, if we pass the input filter and the data to a form, we can validate the form. In 
addition, when we pass an object to the form, we can have its properties populated by the 
form data. This process is called hydration. Several hydrator types are available, and you 
can even create your own. The simplest one just populates properties directly.

When migrating, you should be aware of the new capabilities of forms, which allows you 
to take full advantage of them. Having played with those will help you identify areas 
where they will be beneficial.

Putting Things Together

Read on to find out how an input filter and a form work together. Once you learn, you 
will be able to make a comparison with validation done back in ZF1, where we used to add 
validators to individual form elements. The following examples should give you an idea of 
how things have shifted and how you would best transpose your old validations to their 
ZF2 counterparts.

Automatic Validation
ZF2 comes with the InputFilterAwareInterface, which is powerful if you implement 
it. It basically means that you can give any object an input filter and methods to retrieve 
and set it and other objects can reliably use it to validate the object. That means that if 
we make a PersonEntity object InputFilterAware, the form will automatically use 
its filter to validate it.

In order to demonstrate processing and validating both the form and a person entity, I 
will first create a person entity. It will be called Book\Entity\PersonEntity (Listing 
10.3 - next page).



Zend Framework 1 to 2 migration guide76

Chapter 10 : data Validating and Filtering

Listing 10.3 Person Entity

<?php 
/** 
 * ZF 1 -> ZF 2 migration 
 * 
 * Basic object with a very simple representation of a person 
 * 
 * @author Bart McLeod (mcleod@spaceweb.nl) 
 */ 
 
namespace Book\Entity; 
 
use Zend\InputFilter\InputFilterAwareInterface; 
use Zend\InputFilter\InputFilterInterface; 
use Book\Filter\PersonFilter; 
 
class PersonEntity implements InputFilterAwareInterface 
{ 
   protected $inputFilter; 
   public $firstname; 
   public $lastname; 
 
   /** 
    * Set input filter 
    * 
    * @param  InputFilterInterface $inputFilter 
    * @return InputFilterAwareInterface 
    */ 
   public function setInputFilter( 
      InputFilterInterface $inputFilter) 
   { 
      $this->inputFilter = $inputFilter; 
   } 
 
   /** 
    * Retrieve input filter 
    * 
    * @return InputFilterInterface 
    */ 
   public function getInputFilter() 
   { 
      if (is_null($this->inputFilter)) { 
         $this->inputFilter = new PersonFilter(); 
      } 
 
      return $this->inputFilter; 
   } 
}



putting things together

Zend Framework 1 to 2 migration guide 77

To be able to reuse the corresponding input filter, I will also create a 
Book\Filter\PersonFilter (Listing 10.4).

Listing 10.4 Person Input Filter

<?php 
/** 
 * ZF 1 -> ZF 2 migration 
 * 
 * Example of a custom input filter 
 * 
 * @author Bart McLeod (mcleod@spaceweb.nl) 
 */ 
 
namespace Book\Filter; 
 
use Zend\InputFilter\InputFilter; 
 
class PersonFilter extends InputFilter 
{ 
   public function __construct() 
   { 
      $this->add( 
         array( 
            'name' => 'firstname', 
            'filters' => array( 
               array( 
                  'name' => 'string_trim', 
               ), 
            ), 
            'validators' => array( 
               array( 
                  'name' => 'regex', 
                  'options' => array( 
                     'pattern' => "/^[a-z]*$/i", 
                  ) 
               ), 
            ), 
         ) 
      ); 
      $this->add(array('name' => 'lastname')); 
   } 
}

Lastly, we will also need a Book\Form\PersonForm (Listing 10.5). Note that I repeat the 
type in the name of the object, naming the form PersonForm, instead of just Person. 
This is a convention that I copied from what I see in ZF2 code and code examples, but 
it is not always my personal preference. Sometimes, I prefer to use short names like 
Book\Entity\Person.



Zend Framework 1 to 2 migration guide78

Chapter 10 : data Validating and Filtering

Listing 10.5 Person Form

<?php 
/** 
 * ZF 1 -> ZF 2 migration 
 * 
 * Example of a custom form 
 * 
 * @author Bart McLeod (mcleod@spaceweb.nl) 
 */ 
 
namespace Book\Form; 
 
use Zend\Form\Form; 
use Zend\Form\Element; 
 
class PersonForm extends Form 
{ 
   public function __construct($name = null, 
                               $options = array()) 
   { 
      parent::__construct($name, $options); 
      $this->setupElements(); 
   } 
 
   protected function setupElements() 
   { 
      $firstname = new Element\Text('firstname'); 
      $firstname 
         ->setLabel('First name') 
         ->setAttribute('id', 'firstname'); 
 
      $lastname = new Element\Text('lastname'); 
      $lastname 
         ->setLabel('Last name') 
         ->setAttribute('id', 'lastname'); 
 
      $submit = new Element\Submit('save'); 
      $submit 
         ->setAttribute('id', 'save') 
         ->setValue('Send'); 
      $this 
         ->add($firstname) 
         ->add($lastname) 
         ->add($submit); 
   } 
}



putting things together

Zend Framework 1 to 2 migration guide 79

The advanced usage examples go into another controller, the ImprovedFormController 
(Listing 10.6). The routes to it will begin with /Form2.

Listing 10.6 Improved Form Controller

<?php 
namespace Book\Controller; 
 
use Book\Entity\PersonEntity; 
use Book\Filter\PersonFilter; 
use Zend\Mvc\Controller\AbstractActionController; 
use Book\Form\PersonForm as Form; 
use Zend\Form\Element; 
use Zend\InputFilter\InputFilter; 
use Zend\Stdlib\Hydrator\ObjectProperty; 
 
class ImprovedFormController 
   extends AbstractActionController 
{ 
   /** 
    * Displays the custom person form 
    * 
    * @return array|\Zend\View\Model\ViewModel 
    */ 
   public function indexAction() 
   { 
      $form = new Form('person'); 
      $form->setAttribute( 
         'action', 
         $this->url()->fromRoute('form2/process') 
      ); 
      return array('form' => $form); 
   } 
 
   public function processAction() 
   { 
      $form = new Form('person'); 
      $post = $this->params()->fromPost(); 
      $person = new PersonEntity(); 
      $form->setObject($person); 
      $form->setHydrator(new ObjectProperty()); 
      $form->setData($post); 
 
      $valid = $form->isValid() ? 'valid' : 'INVALID'; 
      return array( 
         'valid'  => $valid 
            'person' => $person, 
        ); 
    } 
}



Zend Framework 1 to 2 migration guide80

Chapter 10 : data Validating and Filtering

Object Hydration
As you can see, the actions in this controller are much simpler than those of the 
FormController because the logic is now encapsulated in custom classes. There is 
also some added value: the form almost automatically populates a PersonEntity in its 
processAction. The result of the processAction is displayed by process.phtml:

<h1>Result</h1> 
<p> 
    The form is <?php echo $valid ?> 
</p> 
<h2>Check if the object is hydrated:</h2> 
<p> 
    <?php var_dump($person) ?> 
</p>

And the output HTML source:

<div id="main"> 
    <h1>Result</h1> 
<p> 
    The form is valid 
</p> 
<h2>Check if the object is hydrated:</h2> 
<p> 
<!-- below is a simplified entity, before it  
     was InputFilterAware --> 
object(Book\Entity\PersonEntity)#271 (3) { 
  ["firstname"]=&gt; 
  string(4) "Bart" 
  ["lastname"]=&gt; 
  string(6) "McLeod" 
  ["save"]=&gt; 
  string(4) "Send" 
} 
</p></div>

Note that the var_dump in the above example uses a PersonEntity that is not yet 
InputFilterAware.

Adding a Validation Group
The scary bit is that the resulting $person object now also holds a save property with 
a value of Send, which is obviously not our intention. This is because the form adds 
every element it contains to the input filter, and I used an ObjectProperty hydrator. 
What you see here is the name and the value of the submit button hydrating the 
PersonEntity.



putting things together

Zend Framework 1 to 2 migration guide 81

Nothing prevents PHP from adding the property to the PersonEntity object, even 
if that property is not defined. We can solve this by adding a validation group to the 
PersonForm. A validation group solves the problem because it specifies which inputs are 
allowed. The updated PersonForm is in Listing 10.7.

Listing 10.7 Form with Validation Group

<?php 
/** 
 * ZF 1 -> ZF 2 migration 
 * 
 * Example of a custom form 
 * 
 * @author Bart McLeod (mcleod@spaceweb.nl) 
 */ 
 
namespace Book\Form; 
 
use Zend\Form\Form; 
use Zend\Form\Element; 
 
class PersonForm extends Form 
{ 
   public function __construct($name = null, 
                               $options = array()) 
   { 
      parent::__construct($name, $options); 
      $this->setupElements(); 
   } 
 
   protected function setupElements() 
   { 
      $firstname = new Element\Text('firstname'); 
      $firstname 
         ->setLabel('First name') 
         ->setAttribute('id', 'firstname'); 
 
      $lastname = new Element\Text('lastname'); 
      $lastname 
         ->setLabel('Last name') 
         ->setAttribute('id', 'lastname'); 
 
      $submit = new Element\Submit('save'); 
      $submit 
         ->setAttribute('id', 'save') 
         ->setValue('Send'); 

Continued next page



Zend Framework 1 to 2 migration guide82

Chapter 10 : data Validating and Filtering

      $this 
         ->add($firstname) 
         ->add($lastname) 
         ->add($submit); 
 
 
      $this->setValidationGroup( 
         array( 
            'firstname', 
            'lastname', 
         ) 
      ); 
   } 
}

The following code was added:

// inside Book\Form\PersonForm::setupElements() 
$this->setValidationGroup( 
    array( 
        'firstname', 
        'lastname', 
    ) 
);

Other Hydrators
To prevent malicious users from creating any property they like on 
your objects, you can use a hydrator that uses setter methods that you 
have explicitly defined: Zend\Stdlib\Hydrator\ClassMethods or 
Zend\Stdlib\Hydrator\ArraySerializable. The ClassMethods hydrator 
uses getter and setter methods that you have defined on your object, while 
the ArraySerializable hydrator can handle objects that implement the 
ArraySerializable interface.



Zend Framework 1 to 2 migration guide 83

Chapter

11
The Database

While this chapter is about the Database, I obviously do not believe there is 
only one database. Talking databases in modern software development is risky 
because you have no idea what your audience will think of when hearing the 
D-word. Some people may think SQLite, while others may think NoSql or Big 
Data. Many of us will be familiar with using MySQL as a database backend, and 
I am no exception.

Your existing ZF1 application might be using a database right now. It is likely that your 
ZF1 code interacts with it one way or the other. There are, in fact, so many different 
ways you might have implemented your business models (the part of your software that 
interacts with the data) that it is hard to tell which migration strategy would be best for 
you. If you are the type of person who wants to continuously improve on things (which 
is probably why you are reading this guide), then you will find ways to improve your 
business models when you look at the completely rewritten Zend\Db component or 
Doctrine 2 integration.



Zend Framework 1 to 2 migration guide84

Chapter 11 : the dataBase

While I am relatively unfamiliar with Doctrine, I know a little about Zend_Db, and I am 
also using the new Zend\Db component from ZF2 in my everyday work. While Doctrine 
offers a complete object relation model (ORM) once configured, Zend\Db is more 
about the objects themselves and the interaction with the database and, if you must, 
relationships. Don’t let me keep you from using Doctrine, though. But in this guide, I will 
talk about Zend\Db because it is native to ZF2, not because I think Doctrine is bad.

As a side note, it may be of importance to realize that the migration of your MVC 
application and database models do not necessarily happen at the same time. The 
migration project would grow too big if it was. You could, instead, use the old version of 
one next to the new version of the other as a more efficient strategy.

The only tight integration point of the database layer and the MVC is pagination. But you 
might be able to write a pagination adapter to overcome that. In general, if a component 
is interwoven with the MVC, it has to be migrated at the same time with Zend_Db only 
if you use paginators from ZF, as there is a coupling between the two. By exchanging the 
paginator adapter for a custom-built one, you can bridge that gap.

Your usage of Zend\Db may vary from plain and simple querying using the 
Zend\Db\Adapter\Adapter to using AbstractTableGateway or TableGateway and 
RowGateway, HydratingResultSet, Sql, and Expression objects.

The Model and Code Generation

Today, going loosely coupled is the mantra. To ensure maximum reuse of components 
for a database, you might end up with six classes per entity (more about those six classes 
later). If you have a database that describes two hundred different entities, that would 
mean you’d end up with twelve hundred classes to maintain.

Even with only twenty tables, manually maintaining one hundred and twenty classes is 
not a good idea. This is where code generation comes into play. Once you have a good 
picture of what your model classes should look like—because you tested a few of them—
you can generate the rest. My approach has been to write view scripts (ZF templates) for 
PHP code and render those to PHP files using Zend_View.

This will work equally well using Zend\View\View. To add to the fun, we have 
Zend\Db\MetaData, which provides information about your database and will prove 
useful when generating model classes. There is a component for, among other things, 
code generation, called Zend\Code. By looking at the code or the API documentation, 
you should be able figure out how it could help in generating model classes.

When generating code, you can use Symfony as an example. For every class, you create 
a base class and a custom class that inherits from it. The base class holds all of the 



Zend\dB

Zend Framework 1 to 2 migration guide 85

generated logic, which can be overridden in the custom class. The custom class, which is 
initially empty, is used in the code of your application (the code you write).

Each time your database changes, the base classes are regenerated, but the custom 
classes are left untouched. This way, your customizations will survive regeneration. For 
each model class that you generate, there is also a base class, so with twenty tables in 
your database, you are expected to have two hundred and forty classes, which you only 
customize when necessary.

Zend\Db

The six classes commonly in use when building your business model are the following:

• An object (#1) that talks to the database to read one or more records,
• An object (#2) that maps the fields from the record to an entity object (#3), and
• A service object (#4) that can get you one or many entities using method names 

that relate to the business logic.
• In addition, you will have an input filter (#5) and a form (#6).

Now, how does this translate to Zend\Db? Programmatically built queries abstract you 
away from the database system. If you use those in your objects that fulfil role 1 (talking 
to the database), you will be able to reuse these objects when you switch from one 
database system to another. I must admit, I haven’t seen this in real life. When a database 
system was swapped for another, this was part of a larger project where the codebase, as 
a whole, was also replaced.

A more realistic scenario for using different database systems is when you write an 
application that others may install on top of various database systems following their 
personal preference or needs. Then, the underlying database system is outside of your 
control, but your application will still be compatible if there is a database adapter for it. 
All that would have to change is the configuration of the adapter.

Then what about the objects that map the results coming from the database to the entity 
objects? With Zend\Db, by default, you get back a ResultSet object, which contains 
elements of the ArrayObject class. If you use a custom result set object, you can specify 
(in the constructor) which class the elements returned should have. So you can specify 
your own entity class, which means that your result set takes care of the mapping, with 
the actual mapping done by a hydrator.

Now, the general purpose of a mapper is to be independent of the field names and the 
way they are returned from the database. What kind of hydrator and result set would we 
need to accomplish that independence? A HydratingResultSet can take an instance of 
a hydrator (in our case, ObjectProperty) and an entity (PersonEntity) and will thus 
deliver hydrated PersonEntity instances while you loop over it in your code.



Zend Framework 1 to 2 migration guide86

Chapter 11 : the dataBase

This hydrator maps properties that match fields names. So if we want a hydrator that 
matches differing names, we need to do something extra. Although I am tempted to show 
you some examples right now, we should first take one step back and look at some simple 
and practical examples.

Zend\Db Examples

Let’s consider the PersonEntity from the forms chapter. How would we persist it to 
a database using Zend\Db? The easiest way is to use a concrete TableGateway. I risk 
repeating the manual here, but I think that you should be able to follow along with 
this, so I’ll hazard that. A concrete TableGateway should be instantiated with a table 
name and a database adapter. After that, it is ready to start interacting with that table. 
If MySQL is my example database system and my database is named book, then I need a 
person table in the book database:

CREATE TABLE `person` ( 
 `id` int(11) unsigned NOT NULL AUTO_INCREMENT, 
 `firstname` varchar(100) NOT NULL, 
 `lastname` varchar(100) NOT NULL, 
 PRIMARY KEY (`id`) 
) ENGINE=InnoDB DEFAULT CHARSET=utf8

The ImprovedFormController is now extended with two actions, a newAction 
and a saveAction. The newAction only serves to give the form a different 
action attribute, so it now posts to the saveAction. A database adapter is already 
configured for the application under the key Zend\Db\Adapter\Adapter. In 
order to add flexibility, the save action gets it using the alias Book\Db, which is 
defined in Book\Module::getServiceConfig() under the aliases key. I have 
changed the form2 route to a segment route that matches any action defined in the 
ImprovedFormController:

'form2' => array( 
   'type' => 'Zend\Mvc\Router\Http\Segment', 
   'options' => array( 
      'route'    => '/Form2[/:action]', 
      'defaults' => array( 
         'controller' => 'Book\Controller\Form2', 
         'action'     => 'index', 
      ), 
   ), 
),

The 'new' action reuses the template from the 'index' action so that it displays the 
form. When the form is submitted, it posts to the 'save' action, which populates the 
PersonEntity in the same way as in the 'process' action we used for the forms 
example. Next it tries to save the person to the database:



Zend\dB examples

Zend Framework 1 to 2 migration guide 87

if ($form->isValid()) { 
   $adapter = $this->getServiceLocator()->get('Book\Db'); 
   $personTable = new TableGateway('person', $adapter); 
   $personData = $person->getInputFilter()->getValues(); 
   $result = $personTable->insert($personData); 
} else { 
   $result = $form->getMessages(); 
}

The result is displayed in the save.phtml template:

<h1>The result of saving the person</h1> 
<?php echo var_dump($result) ?>

If invalid input is provided, the error messages are dumped to the output; otherwise, the 
number of affected rows (1) is displayed. If you wanted to know the ID of the person in 
the database, you’d call $personTable->getLastInsertValue().

Of course, you might want to check if the person entity already exists in the database 
before trying to insert it, so you can use the form for editing existing person entities. 
This is the normal, tedious process when dealing with database records. It means that the 
person entity will need to be extended with an ID property; otherwise, we can’t identify 
it. The same is true for the input filter and the form.

A Custom Table Object
Instead of using a concrete TableGateway object, you might want to use a custom table 
object. To make that easy, there is the AbstractTableGateway to extend from. In its 
most basic implementation, we need to set the $table property to person and add a 
constructor, which sets the adapter (see Listing 11.1).

Listing 11.1 PersonTable Class

<?php 
namespace Book\Table; 
 
use Zend\Db\TableGateway\AbstractTableGateway; 
 
class PersonTable extends AbstractTableGateway 
{ 
   protected $table = 'person'; 
 
   public function __construct($adapter) 
   { 
      $this->adapter = $adapter; 
   } 
}



Zend Framework 1 to 2 migration guide88

Chapter 11 : the dataBase

For demonstration purposes, I will create a PersonController and a segment 
route, which allows us to call any action on the PersonController at the URL 
/person[/:action]. The default index action will display our custom PersonForm 
again, while we reuse the template. The save action looks exactly like the one in the 
ImprovedFormController, except it uses our new PersonTable class to save the 
person entity. In this case, I have duplicated the template save.phtml into the directory 
view/book/person, so this action uses its own.

A RowGateway Saves Itself
When querying the table object in order to retrieve person entities, you get back a 
ResultSet with ArrayObject’s by default. By specifying a RowGatewayFeature, you 
can get back RowGateway objects, which are able to save or delete themselves. In other 
words, if you teach your table object about the primary key of the entities it handles, it 
will return result sets populated with row gateway objects which 
know where they live in the database.

To demonstrate this, we need 
an action on our controller: the 
detailsAction. It will simply 
display the firstname and 
lastname of the person and the 
object’s classname (Figure 11.1).

As you can see, the class name of the 
object returned from the details 
action is ArrayObject. This is the 
code of the details action:

$adapter = $this->getServiceLocator()->get('Book\Db'); 
$personTable = new PersonTable($adapter); 
$result = $personTable->select(array('id' => 1)); 
return array('person' => $result->current());

To add the capability to retrieve RowGateway objects from our table object, we have 
to add a RowGatewayFeature. To demonstrate this, I use a new person table object 
named PersonRowTable (see Listing 11.2), and I change the save action to use this class, 
instead.

Details
First name: Bart

Last name: McLeod

Class name ArrayObject.

FIGURE 11.1



Zend\dB examples

Zend Framework 1 to 2 migration guide 89

Listing 11.2 PersonRowTable Class

<?php 
namespace Book\Table; 
 
use Zend\Db\TableGateway\AbstractTableGateway; 
use Zend\Db\TableGateway\Feature\FeatureSet; 
use Zend\Db\TableGateway\Feature\RowGatewayFeature; 
 
class PersonRowTable extends AbstractTableGateway 
{ 
   protected $table = 'person'; 
 
   public function __construct($adapter) 
   { 
      $this->adapter = $adapter; 
      $this->featureSet = new FeatureSet(); 
      $this->getFeatureSet()->addFeature( 
         new RowGatewayFeature('id') 
      ); 
   } 
}

Now the output of the details action (Figure 11.2) shows that the array returned when 
querying through the table object gets us Zend\Db\RowGateway\RowGateway objects, 
which allow us to save the object back to the database.

This is only useful if you want to change the properties of the object from within your 
code after you retrieved it from the database. It does nothing magical to form input 
processing. If you get input from the form and want to know whether the record exists, 
you’ll still have to check to make sure that the 'id' property is not empty.

Details
First name: Bart

Last name: McLeod

Class name Zend\Db\RowGateway\RowGateway.

FIGURE 11.2



Zend Framework 1 to 2 migration guide90

Chapter 11 : the dataBase

Back to Hydrating
When we discussed the six different classes you might use per table to obtain a loosely 
coupled business model, I pointed at the possibility of using a hydrator as a mapper. 
If your field names match the names of your object properties, you may use a simple 
hydrator that ships with the Zend\StdLib in ZF2. It is used in conjunction with a 
HydratingResultset, which you may specify inside the constructor of your custom 
table object. Alternatively, you could use setter injection on the same object by defining a 
setter method for the $resultSetPrototype property.

For our examples, I will use the constructor and not even inject it. Instead, I’ll set it 
directly in the constructor of a new type of table object, the PersonHydratorTable. 
This cannot be used together with the RowGatewayFeature. The latter expects a regular 
result set to be returned from the table object, not a HydratingResultSet.

class PersonHydratorTable extends AbstractTableGateway 
{ 
   protected $table = 'person'; 
 
   public function __construct($adapter) 
   { 
      $this->adapter = $adapter; 
      $this->resultSetPrototype = 
          new HydratingResultSet( 
              new ObjectProperty(), new PersonEntity() 
          ); 
   } 
}

In the hydrate action of the personController, you will see the following code, which 
cause the fields of the form to be populated with the values of the PersonEntity object:

$id = (int) $this->getEvent()->getRouteMatch()->getParam('id'); 
$adapter = $this->getServiceLocator()->get('Book\Db'); 
$personTable = new PersonHydratorTable($adapter); 
$result = $personTable->select(array('id' => $id)); 
$person = $result->current(); 
$form->setHydrator(new ObjectProperty()); 
$form->bind($person);

Two things are essential in the previous code snippet. First of all, we use a 
PersonHydratorTable instance, which uses a HydratingResultSet internally. As 
a result, it returns a set of populated PersonEntity objects. In this case, because 
we use a single id in our query, it contains a single entity. Secondly, we set a simple 
ObjectProperty hydrator on the form and call its bind method while passing it the 
populated entity. Now the form will extract the values from the object by means of the 
hydrator, and thus, the result of the hydrate action will be a form with pre-filled values.



Zend\dB examples

Zend Framework 1 to 2 migration guide 91

In real-life code, if you wanted to handle fifty different entities, you would probably 
configure your controllers with pre-configured table objects (through setter injection), 
and you would probably introduce either a base controller or, possibly better, an Id 
plugin that would deliver the ID from the parameters. Or you might have just a single 
controller for handling entities, which figures out which entity it should handle by 
inspecting the route match. That is all up to you; I only hope to inspire by showing you 
some of the great possibilities available with Zend\Db.

Service Objects
We have looked at almost every object that a loosely coupled model should encompass. 
We have seen the table object, which talks to the database. We have seen the entity object 
and how we can use an out-of-the-box hydrator to act as a very simple mapper. We have 
seen the form and the input filter. We haven’t yet seen the service object, which can 
deliver one or more entities in a way that relates to your business domain. But you are 
good at that already, as it is your business domain.

Remember to give it a datasource. In our example, the datasource would be our table 
object. By using Zend\Db\Sql either directly or by calling $this->getSql() inside 
the table object, we can programmatically build queries. This gives you great power, 
especially if you need to change the query dynamically—for example, to set an offset and 
a limit.

By setting the datasource on the service object, the service object will not need to do 
much more than some post-processing on the data retrieved and map to methods on the 
datasource. The advantage is that if your datasource changes, ideally, you only have to 
write new datasource classes and configure your service objects with those.

The code consuming the services should be able to stay the same. Of course, this is only 
necessary if your datasource changes considerably—for example, from a database to a 
web service. When only the database system changes, all you should need to do is modify 
the adapter configuration.

We haven’t looked at complex mappers, but I have no doubt that you will be able to write 
your own hydrator once you get the basic concept.



Zend Framework 1 to 2 migration guide92

Chapter 11 : the dataBase



Zend Framework 1 to 2 migration guide 93

Chapter

12
Development 

Practices

Configuring Different Environments

In ZF1, we were used to have different sections in application.ini, like 
Production, Testing, and Development, and often a few personal developer 
sections, like 'dev_bart'. By setting an environment variable, you could 
easily distinguish between environments and, for example, load different 
database credentials. In ZF2, this is solved in a different manner.

Let’s take database configuration: Imagine you built a module that uses a MySQL database. 
You might have configured the database adapter with the key db_adapter_book inside 
your module configuration.



Zend Framework 1 to 2 migration guide94

Chapter 12 : deVelopment praCtiCes

Note: If you want to make your module reusable, you should consider not configuring your 
database adapter within your module, but instead let the users of your module decide 
how they configure the database and only provide them with guidance. This is how 
ZfcUser configuration works.

However, you may not want to be bothered with making your module reusable at 
all. You might just want to configure your database adapter. Now you might or might 
not be bothered by security issues, but you should be. Therefore, it is not a good idea to 
store valid credentials inside your module configuration, for those will end up in your 
versioning system, and that’s not where you want them from a security perspective. You 
still need a place to store an example configuration, which is tied to your module.

For the example configuration, the module is not a bad place at all. Once you have that, 
you will need a place to override it per environment.

Enter local.php and global.php
In your ZendSkeletonApplication you will find a directory called config/autoload. 
In there, you have a local.php and a global.php file. These are used to override 
module-specific settings for your environment. In global.php, you will store settings 
every module might need, whereas in local.php, you can override those, as well as 
settings from any module configuration. In addition, any file ending with local.php or 
global.php can be used in this way.

In our case, we can create book.local.php to override the database adapter 
configuration from the book module. Files ending with local.php will not be 
committed to git because of the default .gitignore file, thus keeping you from 
inadvertently adding those database credentials to version control. An example adapter 
configuration could look like this:

return array( 
   'service_manager' => array( 
      'factories' => array( 
         'db_adapter_book' => function ($sm) { 
            return new Zend\Db\Adapter\Adapter(array( 
               'driver'    => 'pdo_mysql', 
               'database'  => 'book', 
               'username'  => 'foouser', 
               'password'  => 'secret', 
               'hostname'  => 'localhost', 
            )); 
         }, 
      ), 
   ), 
);

You may override this for your local development in book.local.php.



ConFiguring diFFerent enVironments

Zend Framework 1 to 2 migration guide 95

Inheritance of Configuration
If we take the above code snippet, we should spot that there is a lot of duplication if we 
override this configuration. This is simply because most of it won’t change. For example, 
you might have three environments where only the password changes. We can solve 
this by configuring the parameters for the database adapter and overriding only the 
password.

// in local.php 
return array( 
   'view_manager' => array( 
      'display_exceptions'       => true, 
      'display_not_found_reason' => true, 
   ), 
   'db_password' => 'root', 
);

And in the database adapter configuration of the module:

'Zend\Db\Adapter\Adapter' => function ($sm) { 
   $config = $sm->get('Config'); 
   return new Adapter(array( 
      'driver'    => 'pdo_mysql', 
      'database'  => 'book', 
      'username'  => 'root', 
      'password'  => $config['db_password'], 
      'hostname'  => 'localhost', 
   )); 
},

It looks as if we now have a dependency on the db_adapter_book key or the 
Zend\Db\Adapter\Adapter key, but aliases come to the rescue. Say you want to use 
the Book module but already have a database adapter configured (db_foo), and you have 
installed all of the tables of the Book module in the same database that db_foo connects 
to.

In such a case, you would want to reuse the db_foo connection for the Book module. 
There are at least two ways in which this can be accomplished.



Zend Framework 1 to 2 migration guide96

Chapter 12 : deVelopment praCtiCes

Re-using a Database Adapter

The first way is to simply modify the configuration for db_adapter_book in 
book.global.php so that it gets the db adapter db_foo:

return array( 
   'service_manager' => array( 
      'factories' => array( 
         'db_adapter_book' => function ($sm) { 
            return $sm->get('db_foo'), 
         }, 
      ), 
   ), 
);

It is much simpler to just configure an alias, instead:

return array( 
   'service_manager' => array( 
      'aliases' => array( 
         'db_adapter_book' => 'db_foo', 
      ), 
   ), 
);

Note that when overriding the configuration for the database adapter in 
book.global.php, to reuse an existing adapter, you are telling the application to do 
this in every environment. In this case, you should not also override the database adapter 
configuration in book.local.php, unless you specifically want to use yet another 
adapter for that specific environment.

Configuring a Key

ZfcUser takes a slightly different approach. It lets you configure which configuration key 
you use for the database adapter that connects to the database where you installed the 
ZfcUser tables. If you configured it, it will use that as an alias, as in the above example; 
otherwise, it will use the key Zend\Db\Adapter\Adapter, assuming that you have 
configured it that way.

Third-party Modules

User management is probably one of the most common areas where we all write 
boilerplate code, instead of focusing on what matters in our business domain. This is a 
typical case where reusing modules that others have written can come to the rescue.



third-party modules

Zend Framework 1 to 2 migration guide 97

Zend Framework Commons is a group of developers who aim to create reusable modules. 
One of those modules is ZfcUser[1]. When doing a migration, you should keep an eye on 
already-existing modules. Wouldn’t it be nice if you could eliminate a lot of your own 
code and replace it with code that is maintained and tested by others?

Integrating ZfcUser
ZfcUser depends on ZfcBase. In order to use it, you can either install it with composer 
(and have the dependency installed automatically) or clone both repositories into 
vendor, as I have done:

sudo git clone https://github.com/ZF-Commons/ZfcUser.git 
sudo git clone https://github.com/ZF-Commons/ZfcBase.git

Both modules need to be enabled in the config/application.config.php 
configuration file. You also need to install a database table. The table structure is in the 
files that come with the ZfcUser module in the ZfcUser/data directory. You can also 
use your own database table and configure ZfcUser with the columns specific to your 
situation.

For my example Book module, I have simply created a book database schema in MySQL 
and loaded the ZfcUser/data/schema.mysql.sql file into that as follows:

mysql -uroot -proot book < schema.mysql.sql 

With the user table in place and the module enabled, all that needs to 
be done is to copy ZfcUser/config/zfcuser.global.php.dist to 
config/autoload/zfcuser.global.php. Next, configure a key for the database 
adapter, or you may configure the database adapter if you do not already have one 
configured. In the case of the Book module, a database adapter is configured for the book 
database as a service factory in Module::getServiceConfig():

// in array return from Module::getServiceConfig() 
// under the key 'factories' 
'Zend\Db\Adapter\Adapter' => function ($sm) { 
   return new Adapter(array( 
           'driver'    => 'pdo_mysql', 
           'database'  => 'book', 
           'username'  => 'root', 
           'password'  => 'root', 
           'hostname'  => 'localhost', 
   )); 
},

By configuring it with the key Zend\Db\Adapter\Adapter, it is immediately usable 
for ZfcUser. ZfcUser can easily be configured with a different key if it suits you 
better. Once the two modules are enabled, you can use all of the ready-made features of 
ZfcUser: you can login at http://book/user

[1] ZfcUser Documentation https://github.com/ZF-Commons/ZfcUser/wiki/

https://github.com/ZF-Commons/ZfcUser/wiki/


Zend Framework 1 to 2 migration guide98

Chapter 12 : deVelopment praCtiCes

To get the authentication from the ServiceManager:

$auth = $sm->get('zfcuser_auth_service');

Composer Installations

Many developers see the benefits of a dependency manager when doing installations. 
Composer is a dependency manager for PHP[2]. This means that if, for example, you 
download the ZendSkeletonApplication and run php composer.phar install 
from within it, it will download and install the ZF2 library for you. Equally, if you use 
it to install ZfcUser, it will install ZfcBase, as well, because ZfcUser depends on it. A 
composer installation is configured using a composer.json file. In the json file, you 
specify which version of the package you want. After that, you run:

php composer.phar install

That’s all there is to it. If you run the composer a second time, you need to run 
update, instead of install, because the composer locks the initial installation using a 
composer.lock file.

If the composer issues a warning that it is more than 30 days old, you should definitely 
follow its advice and run php composer.phar self-update first to avoid problems 
during subsequent installations.

The composer file in a standard ZendSkeletonApplication looks like this:

{ 
    "name": "zendframework/skeleton-application", 
    "description": "Skeleton Application for ZF2", 
    "license": "BSD-3-Clause", 
    "keywords": [ 
        "framework", 
        "zf2" 
    ], 
    "homepage": "http://framework.zend.com/", 
    "require": { 
        "php": ">=5.3.3", 
        "zendframework/zendframework": ">2.2.0rc1" 
    } 
}

[2] http://getcomposer.org/

http://getcomposer.org/


Composer installations

Zend Framework 1 to 2 migration guide 99

If we want to add ZfcUser, we should add this to the require section of the composer 
configuration.

    "require": { 
        "php": ">=5.3.3", 
        "zendframework/zendframework": ">2.2.0rc1", 
        "zf-commons/zfc-user": "dev-master" 
    }

Or use the following command to add it automatically:

composer require zf-commons/zfc-user:dev-master



The third edition of the popular Zend PHP 5 
Certification Study Guide, edited and produced by 
php[architect], provides the most comprehensive 
and thorough preparation tool for developers who 
wish to take the exam. Zend Certification is an 
industry-recognized benchmark used to validate 
PHP expertise while indicating a developer’s 
commitment to mastering the cra� and being a 
professional programmer.

This edition adds three new chapters and over 80 pages 
of new content, and covers new features added in PHP 
5.3, 5.4, 5.5, and 5.6, including namespaces, traits, 
variadics, generators, closures, and callbacks. The 
book is updated to provide a discussion of modern 
best practices when dealing with PHP variables and 
types, arrays, strings, databases, object-oriented 
programming and patterns, web security, XML, 
web services, and more.

Revised by PHP professional 
and Zend Certified PHP 5 
Engineer Davey Shafik, this 
edition is sure to be both 
a useful study guide and a go-to 
reference for PHP programmers 
everywhere.

Zend Certification
Study Guide
Third Edition

by Davey Shafik with Ben Ramsey

Purchase
http://phpa.me/zendcert3

http://phpa.me/zendcert3


Like this book?
You should check out our 

monthly magazine! 

magazine 

books

conferences

training

www.phparch.com

Each issue of 
php[architect] magazine 
focuses on important 
topics that PHP developers 
face every day. 

Topics such as frameworks, 
security, ecommerce, databases, 
scalability, migration, API 
integration, DevOps, cloud 
services, business development, 
content management systems, 
and the PHP community. 

 

Digital and Print+Digital 
Subscriptions

Starting at $49/Year

phparch.com/magazine

http://phparch.com/magazine


Zend Fram
ew

ork 1 to 2 M
igration Guide

Bart M
cLeod

Bart McLeod is a painter and sculptor and 
spends most of his time programming in PHP 
and JavaScript. He currently works as a self-
employed Zend Framework contributor, coach, 
developer, writer and speaker.  Bart holds �ive 
Zend Certi�ications: PHP 4, 5, 5.3 and ZF 1 and 
2. He blogs occasionally at spaceweb.nl and he 
tweets @bartmcleod. You may contact him by 
mail at mcleod@spaceweb.nl

Zend Framework 1 to 2 
Migration Guide

by Bart McLeod

Zend Framework 1 was one of the �irst major frameworks 
for PHP 5 and, for many, introduced object-oriented 
programming principles for writing PHP applications. 
Many developers looking to embrace a well-architected and 
supported framework chose to use it as the foundation for 
their applications. However, the �irst version was not without 
its faults. Zend Framework 2 is a signi�icant improvement 
over its predecessor. It re-designed key components, 
promotes the re-use of code through modules, and takes 
advantage of features introduced in PHP 5.3 such as 
namespaces.

The �irst release of ZF1 was in 2006. If you’re maintaining an application 
built on it, this practical guide will help you to plan how to migrate 
to ZF2. This book addresses common issues that you’ll encounter 
and provides advice on how best to update your application to take 
advantage of ZF2’s features. It also compares how key components—
including Views, Database Access, Forms, Validation, and Controllers—
have been updated and how to address these changes in your application 
code.

Written by PHP professional and Zend Framework contributor, coach, 
and consultant Bart McLeod, this book leverages his expertise to ease 
your application’s transition to Zend Framework 2.

www.phparch.com

ZF to

ZF2


	Cover
	Table of Contents
	Introduction
	Practical Guide

	Quick start: Zend_Tool versus ZendSkeletonApplication
	The Migration Process
	Example Projects

	Zend Framework 2 Overview
	Less Magic
	Modular
	Classmaps
	Name Changes
	Zend_Registry is Gone
	jQuery Integration is History

	Model View Controller
	Modules
	Event Driven

	Getting Started
	Why Are the Screens Different?
	Building Your Own Module

	Error Handling and Logging
	No ErrorController
	Simple Migration Steps for Error Handling
	Full Control Over Errors: ExceptionStrategy
	Logging

	Layout
	Changing the Default Layout
	Module-Specific Layouts

	The View
	Modifying the ViewModel
	Render a Different Template
	template_path_stack and template_map
	Nested View Models vs. Partials
	View Helpers
	The View has Grown Up with ZF2

	Controller Plugins & Translations
	Action Helpers
	A ZF2 Controller Plugin
	Translations

	Forms
	Decorators are Gone
	A Simple Form
	Converting the Form

	Data Validating and Filtering
	Filtering and Validating Our Data
	Putting Things Together

	The Database
	The Model and Code Generation
	Zend\Db
	Zend\Db Examples

	Development Practices
	Configuring Different Environments
	Third-party Modules
	Composer Installations




