
[1]

www.allitebooks.com

http://www.allitebooks.org

iOS Game Development
By Example

Learn how to develop an ace game for your
iOS device using Sprite Kit

Samanyu Chopra

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

iOS Game Development By Example

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2015

Production reference: 1240815

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-469-4

www.packtpub.com

Cover image by Raju Mondal (raju@daphnislabs.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Samanyu Chopra

Reviewers
Chady Kassouf

Joni Mikkola

Jayant Varma

Commissioning Editor
Dipika Gaonkar

Acquisition Editor
Subho Gupta

Content Development Editor
Akashdeep Kundu

Technical Editor
Tanmayee Patil

Copy Editor
Angad Singh

Project Coordinator
Milton Dsouza

Proofreader
Safis Editing

Indexer
Rekha Nair

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

About the Author

Samanyu Chopra is a developer, entrepreneur, and game developer with a
bank of experience in conceptualizing, developing, and producing computer and
mobile software. He has been programming since the age of 11. He is proficient
in programming languages such as JavaScript, Scala, C#, C++, Swift, and so on.
He has a wide range of experience in developing for computers and mobiles.
He has worked on a majority of game engines and mobile platforms, and also
has a strong proficiency in the Scala programming language.

He is the cofounder and CEO of Daphnis Labs, a mobile app and game development
studio. He has experience in managing development, leading the tech jargon, and
has published over 150 apps and games for himself and his clients. In his studio, he
leads a team of more than 20 members. He is known for executing eccentric projects
in the app and game development spaces. He also conducts mobile development
workshops at various engineering institutes.

He is ardent about his work, and his colleagues, students, and coworkers think of
him as a very dedicated and open-minded person. He is inclined toward investing
his time in the research and development of new technologies.

He is an avid traveler and adventurer and a very fun-loving and eccentric personality,
as described by the people around him. He has an undying love for travel, tech, and
comedy. He is inspired by all the people who have made a stand on their own from
scratch. He loves his family and dedicates his life to them.

www.allitebooks.com

http://www.allitebooks.org

You can know more about Daphnis Labs at www.DaphnisLabs.com. You can write a
tweet to him at @samdonly1 or find him on Facebook for any updates. You can also
reach him at samanyu@DaphnisLabs.com.

I would like to thank everyone at Packt Publishing who helped
in carving this book, including my acquisition editor, Subho Gupta,
content development editor, Akashdeep Kundu, technical editor,
Tanmayee Patil, and especially the reviewers. Writing this book
has been a remarkable experience for me and it wouldn't have
been possible without their support and guidance.

I would like to thank all the mentors that I've had over the years.
For this book, particularly, I would like to thank my dad, Mukul
Chopra, and the iOS lead in our company, Nitin Rajashekhar,
for their wisdom and support.

Finally, immense thanks to my family, friends, and team members
at Daphnis Labs, who supported me in making games along with
helping me teach game development to others. The conceptualization
of this book is the result of the motivation and inspiration provided
by them.

www.allitebooks.com

www.DaphnisLabs.com
http://www.allitebooks.org

About the Reviewers

Chady Kassouf is an independent iOS and web development expert. He started
programming 23 years ago and hasn't stopped ever since.

7 years ago, he decided to leave his job as a team leader at one of the leading digital
agencies to start his own business.

His interests outside of computers include arts, music, and fitness. He can be found
online at http://chady.net/.

Joni Mikkola is currently working on his next mobile game in Northern Finland.
He keeps his game developing stamina up to the mark by training regularly at the
gym and eating healthy. While developing games, he often reads books, plays the
piano, or bakes buns to keep ideas flowing and his mind focused. He is constantly
challenging the status quo, which in turn helps him learn new ways to create things.

He has developed games for over 4 years professionally, mostly for mobile platforms.
He targets casual games and focuses on creating simplistic designs. With one game
released, he is currently working on his next game, which will be released in late 2015
for the Android and iOS platforms.

www.allitebooks.com

http://chady.net/
http://www.allitebooks.org

Jayant Varma is the founder of OZ Apps (www.oz-apps.com), a consulting,
training, and development company that provides IT solutions (specialization
in mobile technology). He is an experienced developer with more than 20 years
of industry experience in several countries. He is also the author of a number of
books on iOS development, including Learn Lua for iOS Game Development, Apress.
2012, Xcode 6 Essentials, Packt Publishing. 2015, More iPhone Development with Swift,
Apress. 2015, More iPhone Development with Objective-C, Apress. 2015, and Pro Bash
Programming, Apress. 2015. He has been a university lecturer in Australia, where
he currently resides. He loves traveling and Europe is his favorite destination.

www.allitebooks.com

www.oz-apps.com
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents
Preface	 vii
Chapter 1: An Introduction to Sprite Kit	 1

What's new in iOS 8?	 1
Getting to know Swift	 2
Getting to know Sprite Kit	 2
Advantages of Sprite Kit	 3
Elements of Sprite Kit	 3

Scenes	 3
Nodes	 3
Actions	 4

Features of Sprite Kit	 4
Particle editor	 5
Texture atlas generator	 5
Shaders	 5
Lighting and shadows	 5
Physics	 6
The game loop	 6

Setting up a project	 7
The Hello World project	 7

Result	 11
Summary	 11

Chapter 2: Scenes in Sprite Kit	 13
Device orientation in Sprite Kit	 13
Orientation in our project	 14
Revisiting project elements	 14

AppDelegate.swift	 15
GameScene.sks	 15
GameScene.swift	 15

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

GameViewController.swift	 15
Main.storyboard	 15
LaunchScreen.xib	 16

Adjusting the project	 16
What is a scene?	 18
Coordinate system	 18
Creating a scene	 19
Creating a node tree	 20
Drawing order for a node tree	 20
Adding the first scene in our game	 22
Adding another scene to our game	 26
A transition from one scene to another	 27
Setting animation play during transition	 28
Creating transition objects	 28
Adding transition in our game	 30
Summary	 31

Chapter 3: Sprites	 33
SKSpriteNode	 33

Initializing a sprite	 34
The properties of SKSpriteNode	 35

Physical	 35
Texture	 36
centerRect	 36
Color	 38
Shader	 39

Adding a sprite without using textures	 39
Changing the color property	 40
Changing colorBlendFactor in MenuScene	 42
Changing the position of a sprite	 42
Resizing a sprite	 46

Working with texture objects	 47
What is a texture atlas?	 48

Preloading textures into memory	 52
Summary	 53

Chapter 4: Nodes in Sprite Kit	 55
All you need to know about nodes	 55

Using the SKNode object in the game	 57
Recognizing a node	 57
Initializing a node	 58
Building a node tree	 58

Table of Contents

[iii]

Actions on a node tree	 59
The coordinate system of a node	 60
Other functions and properties	 61

Creating subclasses for our Platformer game	 62
NodeMenuScene	 63

CropScene	 68
ShapeScene	 69
ParticleScene	 71
LightScene	 73
VideoNodeScene	 75

Summary	 78
Chapter 5: Physics in Sprite Kit	 79

Simulating physics in Sprite Kit	 80
SKPhysicsBody	 80

The initialization of volume-based physics bodies	 82
The initialization of edge-based physics bodies	 83
The behavior controller properties of a physics body	 83
The physical properties of a physics body	 84
Collision control properties and functions	 85
Forces and impulses	 86
The velocity of a physics body	 87
Using GameScene.swift to add physics bodies	 88

Summary	 97
Chapter 6: Animating Sprites, Controls, and SceneKit	 99

Animating nodes	 100
SKAction	 100
Adding a single action to a node	 100
Adding multiple actions to a node	 100

Creating actions	 101
Moving nodes using actions	 101
Rotating nodes using actions	 102
Changing the animation speed of a node	 102
Changing the scale position of a node	 103
Showing or hiding a node	 103
Changing the transparency of a node	 104
Changing the content of a sprite node	 104
Some other important actions	 106

Adding controls in Sprite Kit	 106
Node tapping and clicking	 107
Gesture recognitions (swiping in any direction, pinching, or rotating)	 107
Moving sprites with an accelerometer	 109

Table of Contents

[iv]

An introduction to SceneKit	 111
Adding animations and controls in our Platformer game	 111

Adding actions	 111
Transiting from GameScene to MenuScene	 113
Adding controls in our game	 114

Summary	 117
Chapter 7: Particle Effects and Shaders	 119

Particle effects	 119
The SKEmitter node	 120
Creating the particle effect	 121

Properties for determining a particle's lifetime	 122
Adding the particle effect in our Platformer game	 122

Adding the code to facilitate the particle effect	 126
Shaders	 128

A fact about using custom shaders	 129
The creation and initialization of new shader objects	 129
Uniform data in shaders	 129
Implementing shaders in the Platformer game	 130

Summary	 135
Chapter 8: Handling Multiple Scenes and Levels	 137

Optimizing game levels	 137
A strategy for multiple levels	 138

Core Data	 139
Adding levels in our Platformer game	 140

Adding the Level label	 140
Adding levels	 141

Adding the pause functionality	 144
Adding the NODE MENU button	 146
Summary	 148

Chapter 9: Performance Enhancement and Extras	 149
Performance enhancement	 150

Systemizing a game's content in the scene	 150
Performance enhancement by preloading textures	 151
Improving the drawing performance	 151
Improving performance with SKActions and constraints	 152
Improving the physics performance	 153
Improving shape's performance	 154
Improving effect's performance	 154
Improving lighting performance	 155

Measuring performance with instruments	 155

Table of Contents

[v]

A scoring system in a game	 157
Adding a scoring system in our Platformer game	 157

Creating the Score label	 157
Incrementing the score when required	 158
Saving the high score	 159
Creating the high score board	 165

Adding sound into a game	 168
Adding sounds into a Sprite Kit game	 168
Adding sound into our Platformer game	 169

Animation frames using SKTexture	 171
Adding the Run action texture to the player in the Platformer game	 171

Summary	 172
Chapter 10: Revisiting Our Game and More on iOS 9	 173

A recap on the development process of our Platformer game	 174
Working further on the Platformer game	 179
An introduction to Game Center	 180

The advantages of Game Center in a game	 180
Integrating Game Center in a game	 181

Working with Xcode	 182
Working with iTunes Connect	 186

What's new in iOS 9	 189
Summary	 189

Index	 191

[vii]

Preface
Sprite Kit is a set of tools to develop 2D games for the Apple iOS platform. Sprite Kit
provides powerful features for graphics and the animation of images having texture,
and so on. It is one of the best available game engines for iOS devices. It is very
simple and powerful, with full support provided by Apple, hence it is more reliable
and convenient than any third-party game engine available today.

The Integrated Development Environment (IDE), Xcode, provided by Apple for
app development can also be used for Sprite Kit game development. Objective-C
or Swift, either of the two programming languages can be used for Sprite Kit game
development. Sprite Kit is already being used by many developers for iOS game
development. There is a good amount of information available that focuses on Sprite
Kit set up and development. However, a structured and concise resource discussing
about the complete development process and feature set is not currently available.
This book explains the basics of Sprite Kit development and allows a beginner
to become skilled in Sprite Kit game development using the Swift programming
language with its complete set of development features. This book is a complete
guide for Sprite Kit and a perfect starting point for those wanting to set sail on the
iOS game industry.

What this book covers
Chapter 1, An Introduction to Sprite Kit, introduces you to the Sprite Kit game engine,
along with its various elements and features. It also helps in setting up a new Xcode
project for developing a Sprite Kit game.

Chapter 2, Scenes in Sprite Kit, explains an important topic in Sprite Kit, that is, scenes.
Along with this, there is a brief about the node tree drawing order.

Chapter 3, Sprites, explains sprites and their properties. It also applies some of the
properties in the example game.

Preface

[viii]

Chapter 4, Nodes in Sprite Kit, discusses about nodes and its subclasses in detail. It also
explains the implementation of various node subclasses in the example game.

Chapter 5, Physics in Sprite Kit, talks about physics simulation in a Sprite Kit game.
It explains the types of physics bodies. Physics capabilities are applied to the example
game in this chapter.

Chapter 6, Animating Sprites, Controls, and SceneKit, covers animating nodes and
adding controls to a Sprite Kit game. These features are added in the example game.
It also talks about SceneKit.

Chapter 7, Particle Effects and Shaders, discusses about particle effects and shaders,
along with their implementation in the example game.

Chapter 8, Handling Multiple Scenes and Levels, helps us understand the need for
different levels in a game. This chapter also explains how to create multiple scenes.

Chapter 9, Performance Enhancement and Extras, discusses in detail how to improve
the performance of a Sprite Kit game, along with performance measuring using
instruments. It also explains the scoring system, sound, and player running
animation in the example game.

Chapter 10, Revisiting Our Game and More on iOS 9, discusses the various steps
involved in the development of a game, and introduces readers to the Game
Center and discusses new features that will be introduced in iOS 9.

What you need for this book
Readers will require Xcode, which is the IDE provided by Apple for developing
software, and also the sample game for Mac OS X and iOS devices. An iOS-running
device will be helpful to the readers for running the example game that is being
developed in the book.

Who this book is for
This book is for beginners who want to start their game development odyssey on the
iOS platform. If you are an intermediate or proficient game developer hailing from a
different development platform, this book will be the perfect gateway into the Sprite
Kit engine. The reader does not need to have any prior knowledge of Sprite Kit, and
building games on the iOS platform.

Preface

[ix]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"To make a sprite in a game, we have to make an instance of the SKSpriteNode class."

A block of code is set as follows:

init(name: String){
 //it is designated initializer . initialization part

}
convenience init(){
 //Calling the Designated Initializer in same class
 self.init(name: "Hello")
}

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Untick the
Portrait checkbox and tick Landscape Left under the Device Orientation section."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[x]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from: https://www.packtpub.
com/sites/default/files/downloads/B04201_4694OS_Graphics.pdf.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

https://www.packtpub.com/sites/default/files/downloads/B04201_4694OS_Graphics.pdf
https://www.packtpub.com/sites/default/files/downloads/B04201_4694OS_Graphics.pdf
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xi]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.allitebooks.com

http://www.allitebooks.org

[1]

An Introduction to Sprite Kit
In this book we will be discussing about iOS game development using Sprite Kit.
We will be taking a fun approach and shall make an actual 2D platform game on the
iPhone in the process. We are going to develop a 2D (two dimensional) game; a game
which relies on only two coordinates. Some famous 2D games include Mario, Hill
Climb Racing, Angry Birds, Cut the Rope, and so on.

A 2D game only deals with two dimensions along x and y axes (left/right and up/
down) but not along the z axis (forward/backward). So basically, players cannot
rotate or move the camera freely in a 3D space to view objects from other angles and
perspectives. Although there are exceptions such as 2.5D games; we will be talking
about that in later chapters. So, let's not keep things waiting and dive into the book.

What's new in iOS 8?
You might be familiar with Apple's mobile operating system, popularly known as
iOS; the latest version of this operating system is iOS 8. This version has a lot of
new additions over its predecessor, iOS 7. Some of the additions in this version are
the introduction of the Swift programming language, loads of new API's, and most
importantly, improvements in Sprite Kit and its peripheral frameworks.

In this book, we will be using the Swift programming language over Objective-C.
Although, you can use Sprite Kit with either Objective-C or Swift, Swift offers much
easier syntax, and has a simpler learning curve.

An Introduction to Sprite Kit

[2]

Getting to know Swift
Swift is Apple's entirely new multi-paradigm programming language for developing
applications on Apple devices. Swift has been in development for 4 years, and was
announced in 2014 at the Worldwide Developer Conference (WWDC). Swift is
both, a scripting and programming language; it has the ability to return multiple
return values. Swift takes different constructs that are loved from many languages
including Objective-C, Rust, Haskell, Ruby, Python, C#, CLU, and more. It has type
safety feature that is, to prevent you passing string as int thus minimizing possible
errors in your code.

We will be discussing more about Swift, as and when required, in the further topics
covered.

Getting to know Sprite Kit
Sprite Kit is a framework from Apple, meant for developing 2D games for iOS
devices. It is one of the best ways to make games for iOS devices. It is easy to learn,
powerful and fully supported by Apple, which makes it more reliable to use than
third-party game development engines.

Sprite Kit was introduced in iOS 7 and allowed easy, fast game development; it has
similarities with Cocos2d, which is a popular library for game development. If you
are somewhat familiar with Cocos2d, Sprite Kit will be a breeze for you.

Sprite Kit provides various functionalities that are useful for games, such as graphics
rendering, animation utilities, sound playback, a particle system, and physics
simulation. In Sprite Kit, every node will have a property name and physics body,
which can consist of arbitrary shapes such as rectangles, polygons, circles, paths, and
so on. Sprite Kit provides a richer particle system, where any aspect can be changed
by code during the animation. In Sprite Kit's particle system, you can also add
custom actions to the particles created. In addition, Xcode provides built-in support
for Sprite Kit so that you can create complex special effects and texture atlases
directly in Xcode. This combination of framework and tools makes Sprite Kit a good
choice for games and other apps that require similar kinds of animation.

Because Sprite Kit supports a rich rendering infrastructure, and handles all of the
low-level work to submit drawing commands to OpenGL, you can focus your efforts
on solving higher-level design problems and creating your game functionality.

As Sprite Kit is a native framework of iOS, it provides in-built support for using the
particle effects, texture effects, and physics simulations. The performance of Sprite
Kit is better than other third-party frameworks/gaming engines, as it is a native
framework.

Chapter 1

[3]

Advantages of Sprite Kit
The main advantage of Sprite Kit is that it's built into iOS. There is no need to
download any other third-party libraries or depend on external resources to develop
2D games. Other iOS APIs such as, iAd, In-App purchases, and so on, can be easily
used without banking on extra plugins. You don't have to get familiar with any new
programming language, the languages supported for Sprite Kit can also be used
for app development on iOS. The best thing of all is that it is free, you get all the
functionalities of Sprite Kit at no cost. You can run your game on both Mac and iOS
without much effort, all you need to do is change its controls.

Elements of Sprite Kit
Now we are going to discuss some elements of Sprite Kit, which are essential for
game development. A game made in Sprite Kit consists of many scenes which are
made of nodes, and the functioning of a node in a scene is determined by actions.

Scenes
A level or environment in a game is termed as a scene. We make scenes as per our
requirement, such as menus, levels, and so on. So, there are different scenes for
different levels and also for different menus in a game. It's like a canvas where you
position your elements.

A scene in Sprite Kit is represented by an SKScene object. A scene holds sprites and
other contents to be rendered. To switch scenes, we can use the SKTransition class.

Nodes
Nodes are fundamental building blocks for all content in a scene. The SKScene class
is a descendant of the SKNode class, so a scene is a root node. The SKNode class does
not draw anything on scene by itself; we can think of it as a base class for other node
classes. There are node subclasses as follows:

•	 SKSpriteNode: This can be used for drawing textured sprites, playing video
content, and more

•	 SK3DNode: This can be used for rendering a Scene Kit scene as a 2D textured
image

•	 SKVideoNode: This can be used for playing video content
•	 SKLabelNode: This can be used for rendering a text string

An Introduction to Sprite Kit

[4]

•	 SKShapeNode: This can be used for rendering shape, based on a core
graphics path

•	 SKEmitterNode: This can be used for creating and rendering particles
•	 SKCropNode: This can be used for cropping child nodes using a mask
•	 SKEffectNode: This can be used for applying a core image filter to its

child node
•	 SKLightNode: This can be used for applying lighting and shadows to a scene
•	 SKFieldNode: This can be used for applying physics effects to a specific

portion of the scene

Actions
An action tells a node what to do and allows you to perform different things, such as:

•	 Moving nodes in any direction
•	 Making any node follow a path
•	 Rotating nodes
•	 Scaling of nodes
•	 Showing or hiding a node
•	 Changing the content of a sprite node
•	 Playing sound
•	 Removing nodes from a scene
•	 Performing action on a child's node, and so on

 To create a run action, first, create the action using the particular action class,
configure the properties for the created action, and call a run action by passing
action object as a parameter. When the scene processes the node, the actions of
that particular node will be executed.

Features of Sprite Kit
Sprite Kit provides many features to facilitate the development of a game. These
features can be used for enhancing the experience as well as performance of the
game. Let's discuss them in brief.

Chapter 1

[5]

Particle editor
This feature was introduced in iOS 7. Particle editor is used to add special effects
in a game, like adding a mist effect in a game scene. Here, we can customize many
things, such as:

•	 The number of particles
•	 Limit of particles allowed
•	 The color of particles
•	 The size of a particle
•	 The life of a particle
•	 The location of a particle in a scene, and so on

Texture atlas generator
Texture atlas generator combines all image files into one or more large images, in
order to improve performance. We will discuss this in detail in the later chapters.
It is recommended to use a lesser number of images to reduce draw calls (number
of images rendering on a scene).

Shaders
Shaders were introduced in iOS 8. They are used to produce a variety of special
effects; they calculate rendering effects on graphic hardware with a high degree of
flexibility, for example, we have seen ripple effects in many apps/games. Wherever
a user touches the screen, a ripple effect will be produced.

In Sprite Kit, shaders are represented by the SKShaderNode class object.

Lighting and shadows
Lighting and shadows were introduced in iOS 8. These effects are produced using
the SKLightNode class object. The SKLightNode object can:

•	 Spread a lighting effect at any desirable position on the scene
•	 Add lighting in any sprite
•	 Support colors and shadows

It's just a type SKNode, so we can apply any property that we apply to any SKNode.

An Introduction to Sprite Kit

[6]

Physics
Simulating physics in Sprite Kit can be achieved by adding physics bodies to
the scenes. A physics engine has the sole purpose of moving objects around in a
simulated world. The physics bodies take the properties of objects, such as mass,
shape material, current trajectory, and so on, and calculate a new position for all
those objects.

Every object on the Sprite Kit game scene will have a physics body. A physics body
object is connected to a node on the node tree of a particular scene. The scene will
simulate the effect of forces and collisions on those particular physics bodies that are
connected to the node tree, whenever the scene computes a new frame of animation.
We can apply a particular physics property on those nodes using their particular
physics properties such as gravity, mass, force, friction, and so on.

The game loop
Following is a frame life cycle diagram:

At the start, the update function is called to where we set up the logic of the game.
After that, the scene evaluates the actions. After the actions are evaluated, we get
a callback. After that, we set up physics, if any. When the physics simulation is
finished, we get another call with didSimulatePhysics. Then, we apply constraint
and get another callback, didApplyConstraints. The last callback method is
didFinishUpdate; we get it just before frame is completed and view is ready to
render. Finally SKView renders the scene; the frame is complete and it continues
60 times per second.

Chapter 1

[7]

Setting up a project
We have discussed many things about Sprite Kit, now it's time to see a project in
action and gain some practical knowledge.

The Hello World project
We'll need to create a new project to build Hello World. An Xcode project organizes
everything your app needs into one convenient place. Let's begin by creating a brand
new game project in Xcode by carrying out either of the first two points, and then
continuing as shown in the list:

1.	 Click on Create a new Xcode project on the welcome screen:

An Introduction to Sprite Kit

[8]

2.	 Instead, you can also select File | New | Project… from the file menu:

3.	 Select Game from the new project selection window:

Chapter 1

[9]

4.	 The next window asks you to customize options for your project. Fill out the
fields as shown in the following screenshot:

°° Product Name: It is the name of the game
°° Organization Name: If you are an individual, then your name, or the

name of the organization
°° Organization Identifier: A unique identifier of your organization
°° Bundle Identifier: It is a default ID generated automatically using

organization identifier and product name.
°° Language: The programming language you are using, that is,

Objective-C or Swift
°° Game Technology: The game framework being used, like Scene Kit,

Sprite Kit, Metal, and so on
°° Devices: The devices you want your game to run on; iPad, iPhone,

or both
°° These fields can be anything you want

5.	 Press Next and Xcode will ask where to save your new project. Choose a
directory and then click on Create.

www.allitebooks.com

http://www.allitebooks.org

An Introduction to Sprite Kit

[10]

6.	 After saving, it should open Xcode to your brand new Hello World project,
specifically to the project properties screen. On this screen, unselect the
Portrait option under Device Orientation. This file will be automatically
saved, so you won't have to do anything further:

Chapter 1

[11]

Result
Run the default game project by pressing ⌘ + R on your keyboard, or by clicking
on the little play button in the top left corner. If a simulator isn't present, Xcode will
download one for you before launching the app. The result will look as follows:

Summary
We also learned how to create a Sprite Kit project and run Hello World in it.

In the next chapter, we will be diving deeply into scenes, and also into adding scenes
to our Platformer game.

Chapter 2

[13]

Scenes in Sprite Kit
The Hello World game, made in the previous chapter. was the first step to Sprite Kit.
We also made acquaintance with the Swift programming language, which we are
going to use for iOS game development using Sprite Kit.

In this chapter, we will dive deep into various fundamentals of the Sprite Kit project
and also discuss in depth about scenes in a game. We are further going to continue
the development of the game, Platformer, and use it as a tool to learn Sprite Kit. We
will be learning about different auto generated files in an Xcode project and about
their importance. Only then will we be able to understand what scenes are, and
their importance in game development. Further we will also learn how nodes play
an important part in Sprite Kit and help us to improve optimization and control
of our game. In this chapter, we will also learn how to add more than one scene in
our game and successfully transit from one scene to another along with animating
various transition effects.

We will be learning all of this and testing our progress with development of the
game Platformer, so that by the end of the book, you are able make your own 2D
game from scratch. Let's get going!

Device orientation in Sprite Kit
There are two types of modes, namely portrait and landscape; you can select the
desired orientation for your game while setting up your project. Any time during
the development of your game, you can change the orientation under the properties
section of your Sprite Kit project. There are four types of orientations available:

•	 Portrait
•	 Upside Down
•	 Landscape Left
•	 Landscape Right

Scenes in Sprite Kit

[14]

You can select any of the orientations depending on your game. If you want to make
your game scene in portrait mode, you can select either Portrait or Upside Down
options. If want to make your game in landscape mode, you can select the Landscape
Left or Landscape Right option. If you want to make your game in both portrait and
landscape, then you can select both the options too. Caution, if you want to make your
game in both portrait and landscape mode, make sure that you have to handle the
positions of sprites in your game during runtime.

Orientation in our project
As we are making a Platformer game, it's better to opt for landscape mode. Although
you can select both Landscape Left and Landscape Right, it is better to opt for one
orientation for easier programming. Following are the steps to do the same:

1.	 Launch the Platformer project that we made in the last chapter, either by
double-clicking Platformer.xcodeproj from the directory of project, or
from your Xcode.

2.	 Click on the Project Navigator and then click Platformer, which is just under
it, on the left panel.

3.	 Untick the Portrait checkbox and tick Landscape Left under the Device
Orientation section:

Revisiting project elements
Now we are going to discuss about some auto-generated files in your Sprite Kit
project. They can be found on the left panel in your Xcode.

Chapter 2

[15]

AppDelegate.swift
This file is an entry point file to our game. Its existence is crucial when the game goes
from an active state to inactive state (or background state), in simple terms, when
there are some sorts of temporary interruptions (such as incoming phone calls or
SMS messages), or when the user force quits the application. The essence of this file
in a project comes when you have to perform any specific task between the transition
of active and inactive states, such as saving game data when the game is moving into
a background state due to a phone call.

GameScene.sks
This file is a static archive of your scene's content. This file presents a view in your
editor, it is used to save static content of a game such as spawning the position of a
player, level ending position, and so on. The main essence and importance of this file
is that it has worked towards helping you to separate the dynamic and static part of
a game. Now a developer does not need to write extra lines of code for specifying
trivial elements of a game such as spawning position, and so on.

GameScene.swift
This file contains the GameScene class which is a type of SKScene. An SKScene class
object is used to make a scene in a game. When we developed the "Hello World"
sample game in the previous chapter, the logic part was present inside this file.

GameViewController.swift
When a game starts, a default view is added to the game, which is controlled by the
game view controller. If the user wants to add scenes to the game, then it is added on
top of the view.

Main.storyboard
This is responsible for displaying content on the screen. A storyboard with a view
controller whose view is set to SKView is created, the scene then displays the content
of the Sprite Kit game. You can create additional view controllers and storyboards
along with applying transition between them.

Scenes in Sprite Kit

[16]

LaunchScreen.xib
New projects are created with this launch screen file. The Launch Screen uses size
classes to adapt to different screen sizes and orientations.

Adjusting the project
We are going to make some adjustments in the already-created project called
Platformer. Please follow the steps listed, in order to customize the project
according to our needs:

1.	 Delete the GameScene.swift and GameScene.sks files present in your project.
We will be recreating these files as per our need. Don't worry about the error,
we are going to fix it in the next step. GameScene.swift is the default scene
given by Xcode; we are deleting the default ones as we are going to create the
menu Scene before the game scene. Take a look at the next screenshot:

Chapter 2

[17]

2.	 Open GameViewController.swift and delete the code, as shown in the
following screenshot:

3.	 Delete the Spaceship image from Images.xcassets. Spaceship images are
not required in this project.

Now you will not see an error in your Xcode, and if you run Platformer, you will
see nothing. Well, that is not what we desire. Now, before getting your feet wet in
code, we need to know what we have done (almost nothing but deleting) so far:

•	 Extension SKNode: This extension is inserted by Sprite Kit presuming that
every game must have an initial scene, creating a GameScene.sks file. We do
not need this initial scene at the start of our Platformer game, as we will create
our own menu screen on start.

•	 If statement within viewDidLoad: As GameScene.sks file created by
extension SKNode is used in this statement.

Now we are going to create our own custom scene for this game, but before that, let's
now see what a scene really is.

Scenes in Sprite Kit

[18]

What is a scene?
A scene is basically a collection of different elements such as sprites, sounds, and so on,
in a logical way. Suppose we want to make a menu, we'll have to put some buttons,
background, and sounds in a manner that is positioned according to our needs.

A Scene object is a collection of nodes, but a scene itself acts as a node. Imagine a tree
of nodes having scene objects as its root. As all nodes in the scene are positioned in
defined coordinates, their linkage can be shown as:

Node (Content) à Descendant Node

This linkage of a node with its descendant(s) is very useful. Say, if you rotate a node
on the top of the tree, all the nodes will be subsequently rotated.

In technical terms, Scene is an SKScene object, which holds an SKNode object (such
as SKSpriteNode objects for sprites) inside a view (SKView object), so that we can
render and use them. Scene is itself an SKNode object, which acts as a root node and
attaches in an SKView object. Other objects required for that scene are added to this
node as a child node. A scene runs different kinds of actions and simulates physics
(if required), and then renders the node tree. A game consists of many scenes, and
we can make as many scenes required by sub-classing SKScene class. An SKView
object is required to display a scene.

Coordinate system
Everything in a game built in Sprite Kit is related to nodes, and it follows a node tree
structure where a scene is a root node and other nodes are child nodes of it. When
we put a node in the node tree, it uses its position property to place it within the
coordinate system provided by its parent.

As a scene is also a node, it is placed inside the view provided by the SKView object.
The code part which we deleted in viewDidLoad, GameScene, was added as a child
in the SKView object. A scene uses its parent SKView object coordination system
to render itself and the content within it. The coordinate system is the same as we
learned in basic mathematics.

Chapter 2

[19]

As the preceding diagram shows, if we move right from (0,0), then x will be positive,
and negative if we move left from (0,0). If we move up from (0,0), then y will be
positive, and negative if we move down from (0,0). Coordinate values are measured
in points and when the scene is rendered, it will be converted to pixels.

All the nodes in Sprite Kit will not draw the content. For example, SKSpriteNode is
used to draw sprites in a game, but SKNode class does not draw anything as SKNode
is a fundamental building block for most Sprite Kit content.

Creating a scene
When we create a scene, we can define many of its properties such as size, origin,
and so on. as we require in our game. A scene size defines the visible area in the
SKView object. Of course, we can put nodes outside this area, but they will be
totally ignored by the renderer.

However, if we try to change the position property of a scene, it will be ignored
by Sprite Kit because a scene is a root node in a node tree, its default value is
CGPointZero. But we can move scene origin by the anchorPoint property. Default
value for anchorPoint is (0.5,0.5), which indicates the center point of the screen.
By reassigning a new anchorPoint property, we can change the coordinate system
for its child. For example, if we set anchorPoint to (0,0), the child node of the
scene will start from the bottom left of the scene.

If we make the anchorPoint (0.5, 0.5) or the middle of the screen, the child node
of the scene will start from the middle of the screen. It totally depends on us and
what anchorPoint we choose as per our requirement.

www.allitebooks.com

http://www.allitebooks.org

Scenes in Sprite Kit

[20]

Creating a node tree
A node tree for a scene is created as a parent child relation. As a scene acts similar to
a root node, another node acts as a child to it. Following are some common methods
used to make a node tree:

•	 addChild: It adds a node to the end of the receiver's list of child nodes
•	 insertChild:atIndex: It inserts a child at a specific position in the receiver's

list of child nodes

If you want to remove a node from a node tree, you can use the following method:

•	 removeFromParent: It removes the receiving node from its parent

Drawing order for a node tree
When a node tree renders, all its children also render. First, the parent is rendered,
and then, its children, in the order they are added to parent. If you have many nodes
to render in a scene, it is a difficult task to maintain them in order. For this, Sprite Kit
provides a solution using the z position. You can set nodes to the z position by using
the zPosition property.

When you take the z position into account, the node tree will be rendered as follows:

•	 First of all, each node's global z position is calculated
•	 Then, nodes are drawn in order from smallest z value to largest z value
•	 If two nodes share the same z value, ancestors are rendered first, and siblings

are rendered in child order

As you've just seen, Sprite Kit uses a deterministic rendering order, based on the
height nodes and their positions in the node tree. But, because the rendering order
is so deterministic, Sprite Kit may be unable to apply some rendering optimizations
that it might otherwise apply. For example, it might be better if Sprite Kit could
gather all of the nodes that share the same texture and drawing mode and draw
them with a single drawing pass. To enable these sorts of optimizations, you have
to set the view's ignoresSiblingOrder property to true.

Chapter 2

[21]

When you ignore sibling order, Sprite Kit uses the graphics hardware to render
the nodes so that they appear in z-axis order. It sorts nodes into a drawing order
that reduces the number of draw calls needed to render the scene. But with this
optimized drawing order, you cannot predict the rendering order for nodes that
share the same z-axis index. The rendering order may change each time a new frame
is rendered. In many cases, the drawing order of these nodes is not important. For
example, if the nodes are at the same height but do not overlap on screen, they can
be drawn in any order.

So, we can use node tree-based rendering or depth-based rendering, just by setting
the ignoresSiblingOrder property to false or true. If we set it to true, we can set
z position, but if set to false, we have to be careful about sequence when adding child
node to parent node.

Following is a depiction of node-based rendering (parent child rendering):

Scenes in Sprite Kit

[22]

Next is a depiction of depth-based rendering (z position-based rendering):

Adding the first scene in our game
Now it is time to add a menu scene to our game. For this, select the Platformer
folder and right-click on this folder, select New File. Select iOS | Source | Swift File
and then Next. Inside Save As, give it the name MenuScene, and click on Create.

Click on your MenuScene.swift file. Now it's time to do some code stuff:

import SpriteKit
class MenuScene: SKScene
{
 //#1
 let PlayButton: SKSpriteNode
 let Background: SKSpriteNode
 //#2
 init(size:CGSize, playbutton:String, background:String)
 {
 PlayButton = SKSpriteNode(imageNamed: playbutton)
 Background = SKSpriteNode(imageNamed: background)
 super.init(size:size)
 }
 //#3

Chapter 2

[23]

 required init?(coder aDecoder: NSCoder)
 {
 fatalError("init(coder:) has not been implemented")
 }
 //#4
 override func didMoveToView(view: SKView)
 {
 addChildToScene();

 }
 //#5
 func addChildToScene()
 {
 PlayButton.zPosition = 1
 Background.zPosition = 0
 Background.size = CGSize(width:self.size.width,
 height:self.size.height)
 addChild(PlayButton)
 addChild(Background)
 }
 //#6
 override func update(currentTime: NSTimeInterval) {

 }
}

In the preceding code, we created a class MenuScene type of SKScene. SKScene is a
class used to create scene. Let's look out for some terminology used in this code:

•	 In the #1 code block (refer to the preceding code), we define two
SKSpriteNode references. One for play button and the other for background.
The let keyword denotes that once we assign a value to this reference, we
can't change it. If you want to change that, you should use the var keyword
instead of let.

•	 In the #2 code block (refer to the preceding code), we define an initializer
for this class. The initializer is used to create an instance of a particular type.
Inside this, we initialize PlayButton and Background. We give background
a full screen size by setting its size property. In the end, we call parent class
init by super.init.

•	 In the #3 code block (refer to the preceding code), we remove errors at
compile time. The required keyword denotes that every subclass of that class
must implement that initializer.

•	 In the #4 code block (refer to the preceding code), we override its parent class
method. The didMoveToView is called immediately after a scene is presented
by a view. We have called our custom method addChildToScene here.

Scenes in Sprite Kit

[24]

•	 In the #5 code block (refer to the preceding code), we define our
addChildToScene method. Inside this we did nothing but give z position
to PlayButton and defined size for Background. Remember, we can
use z depth to control which layer will render above what. If you have z
depth set to minimum, it will render first, and then to maximum. It means
that the lower the z depth, the lower it will be in a scene. That's why we
put the Background z depth lower than PlayButton, so that PlayButton
could render above Background. After that, we added PlayButton and
Background to scene.

•	 In the #6 code block (refer to the preceding code), we just override the update
method. The code for this method will be updated later.

Whoa! We have created our first scene. Now it's time to see what we have done. But
before that, we have to add this scene to the view, so that we can make it visible and
live. Open your GameViewController class and paste the code inside viewDidLoad
under super.viewDidLoad():

 let menuscene = MenuScene(size: view.bounds.size, playbutton:
"Play", background: "BG")
 let skview = view as SKView
 skview.showsFPS = true
 skview.showsNodeCount = true
 skview.ignoresSiblingOrder = true
 menuscene.scaleMode = .ResizeFill
 menuscene.anchorPoint = CGPoint(x: 0.5, y: 0.5)
 skview.presentScene(menuscene)

In this code, we created the menuscene instance and added it to the view. Play and BG
are the names of the PNG sprite, which we will add later. We have typecast view as
SKView and set some of its properties. If we want to see frame per second rate, we set
showFPS to true. Same goes for the counting node. If we set ignoresSiblingOrder
property to false, then it means that the nodes that are sharing the same z depth will
be rendered in parent to child preference.

This implies that the parent will render first and then its child. If we set it true,
then it means that all the nodes with the same z depth will render at the same time,
and not by some parent child preference. So to maximize the optimization, we will
just set this value to true; in simple terms, it's better to set this to true if you want
faster results.

.scaleMode is used to fill the scene inside a view. ResizeFill means that it will
resize itself to fill the whole view.

Chapter 2

[25]

Now, for the anchorPoint. It decides what would be a child's coordinate system
according to parent position. If we set it to .5, .5, that means that the nodes that
will be added to these scenes, will have their coordinate system starting from the
middle of the screen. You can choose whatever you are comfortable with.

In the last line, we just added menuscene to the view so that it could render.

Now, it's time to add some images to the project. The first question that comes to
mind is, "How one can maintain the quality of an image on various screen sizes?"

To optimize the quality of an image on large screen devices, we add the same image
in two different sizes, 1x—the original image—and 2x—double the size of the
original image, for better display quality on larger devices. iOS will automatically
select the appropriate image size.

Also, you can go for a 3x image size, for even
larger devices.

Two sets of image sizes are sufficient to cover most commonly used screen sizes.

Following are the steps to add images in the project:

1.	 Click on Images.xcassets | select New Image Set:

Scenes in Sprite Kit

[26]

2.	 After that, Name it BG, and drag and drop your background images
according to size. As shown in the next image:

3.	 Repeat the process for the set of play images.
4.	 Run it and see. You will see your background in full screen, with a Play

button in the middle of the screen. We can also control the Play button size,
as we did for Background.

Congratulations, you made your first scene. Now it's time to make another scene,
that is the GameScene, and also transition between Menuscene and Gamescene.

Adding another scene to our game
Create the GameScene file as we did for MenuScene:

import SpriteKit

class GameScene: SKScene
{

 let backgroundNode = SKSpriteNode(imageNamed: "BG")

 override func didMoveToView(view: SKView) {
 addBackGround()
}

 func addBackGround()
 {
 backgroundNode.zPosition = 0
 backgroundNode.size = CGSize(width:self.size.width,
 height:self.size.height)

Chapter 2

[27]

 addChild(backgroundNode)
 }

 override func update(currentTime: NSTimeInterval) {

 }

}

The code is self-explanatory, we added only a background to the GameScene, the
same as what we did for the MenuScene.

A transition from one scene to another
A transition is used to perform animation; while shifting from one scene to another,
an object called SKTransition is used to perform this action. As we know, scenes
are the basic building blocks of games. Transiting from one scene to another is often
necessary in a game at various instances such as:

•	 A loading scene, which is shown in a game while other objects are
being loaded

•	 A main menu scene, in which different options are shown to the user
•	 A level selection menu scene, to select different levels available
•	 A game play scene, which contains the main elements of the game
•	 A game over scene, to represent ending of the game, and so on

When you present a new scene in a view that is already presenting a scene, you have
the option of using a transition to animate the change from the old scene into the
new scene. Using a transition provides continuity, so that the scene change is not
abrupt and doesn't disturb the UI of the game.

When the transition occurs, the scene property is immediately updated to point to
the new scene. Then, the animation occurs. Finally, the strong reference to the old
scene is removed. If you need to keep the scene around after the transition occurs,
your game has to keep its own strong reference to the old scene.

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register
to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Scenes in Sprite Kit

[28]

Setting animation play during transition
Generally, when a transition occurs between two scenes, both the scenes are paused.
This implies that if any animation is being played in any one of the two scenes, it
will be paused until the transition has been completed. Sometimes, it is required
to complete the animation effect of one scene. The pausesIncomingScene and
pausesOutgoingScene properties on the transition object define which animations
are played during the transition.

Creating transition objects
Transitions are used by making SKTransition an object; some of the methods to do
that are as follows:

•	 class func crossFadeWithDuration(_ sec: NSTimeInterval) ->
SKTransition: This creates a cross fade transition; it takes the duration of
transition as its parameter and returns an SKTransition object.

•	 class func doorsCloseHorizontalWithDuration(_ sec:
NSTimeInterval) -> SKTransition: This creates a transition where the
new scene appears as a pair of closing horizontal doors; it also takes the
duration of transition as its parameter and returns an SKTransition object.

•	 class func doorsCloseVerticalWithDuration(sec: NSTimeInterval)
-> SKTransition: This creates a transition where the new scene appears as
a pair of closing vertical doors. It also takes the duration of transition as its
parameter and returns an SKTransition object.

•	 class func doorsOpenHorizontalWithDuration(_ sec:
NSTimeInterval) -> SKTransition: This creates a transition where the
new scene appears as a pair of opening horizontal doors. It also takes the
duration of transition as its parameter and returns an SKTransition object.

•	 class func doorsOpenVerticalWithDuration(_ sec: NSTimeInterval)
-> SKTransition: This creates a transition where the new scene appears as
a pair of opening vertical doors. It also takes the duration of transition as its
parameter and returns an SKTransition object.

•	 class func doorwayWithDuration(_ sec: NSTimeInterval) ->
SKTransition: This creates a transition where the previous scene disappears
as a pair of opening doors. The new scene starts in the background and
moves closer as the doors open. It also takes the duration of transition as its
parameter and returns an SKTransition object.

Chapter 2

[29]

•	 class func fadeWithColor(_ color: UIColor, duration sec:
NSTimeInterval) -> SKTransition: This creates a transition that first
fades to a constant color, and then fades to the new scene. It takes the
fade color and the duration of transition as parameters, and returns the
SKTransition as object.

•	 class func fadeWithDuration(_ sec: NSTimeInterval) ->
SKTransition: This creates a transition that first fades to black and then
fades to the new scene. It takes the duration of transition as its parameter and
returns an SKTransition object.

•	 class func flipHorizontalWithDuration(_ sec: NSTimeInterval)
-> SKTransition: This creates a transition where the two scenes are flipped
across a horizontal line running through the center of the view. It takes the
duration of transition as its parameter and returns an SKTransition object.

•	 class func flipVerticalWithDuration(_ sec: NSTimeInterval) ->
SKTransition: This creates a transition where the two scenes are flipped
across a vertical line running through the center of the view. It takes the
duration of transition as its parameter and returns an SKTransition object.

•	 class func moveInWithDirection(_ direction:
SKTransitionDirection, duration sec: NSTimeInterval) ->
SKTransition: This creates a transition where the new scene moves on top
of the old scene. It takes the direction of the move and the duration as its
parameters, and returns an SKTransition object.

•	 class func pushWithDirection(_ direction:
SKTransitionDirection, duration sec: NSTimeInterval) ->
SKTransition: This creates a transition where the new scene moves in,
pushing the old scene out of the view. It takes the direction of the push
and the duration of transition as its parameters, and returns an
SKTransition object.

•	 class func revealWithDirection(_ direction:
SKTransitionDirection, duration sec: NSTimeInterval) ->
SKTransition: This creates a transition where the old scene moves out of
the view, revealing the new scene underneath it. It takes the direction of
the reveal and the duration of transition as its parameters, and returns an
SKTransition object.

www.allitebooks.com

http://www.allitebooks.org

Scenes in Sprite Kit

[30]

Adding transition in our game
Now, open MenuScene. First, define the GameScene reference inside the MenuScene
class, before the init code block:

var gameScene : GameScene?
Add the following code below update function
override func touchesBegan(touches: NSSet, withEvent event: UIEvent)
{
 for touch: AnyObject in touches
 {
 let location = touch.locationInNode(self)
 let node = self.nodeAtPoint(location)
 if node.name == PlayButton.name
 {
 goToGameScene()
 }
 }
}

 func goToGameScene(){
 let transitionEffect =
 SKTransition.flipHorizontalWithDuration(1.0)
 gameScene = GameScene(size: self.size)
 gameScene!.anchorPoint = CGPoint(x: 0.5, y: 0.5)
 self.view?.presentScene(gameScene , transition:transitionEffect)

}

Inside didMoveToView, place the following line just under addChildToScene:

PlayButton.name = "PLAY"

If you run it now, you will see our menu scene with a play button and a background;
if you click outside the play button, nothing will happen. When you click on the play
button, you will see a smooth transition to the game scene.

In the preceding code, var is a keyword that means it can change its value. But what
is this ? symbol doing after GameScene?

The ? symbol means that the reference is optional. It means it can either have a value,
or it can be nil.

That's why we don't need to initialize it in the init code block.

Chapter 2

[31]

In PlayButton.name = "PLAY" we are just giving the SKSpriteNode object a name,
so that when we touch this sprite, we can verify it by name.

touchesBegan, is an override method which is used to identify when a touch event
is just beginning. In this method, we are getting a node at the touch position and
checking if the desired node is there. If the play SKSpriteNode is there, it will be
identified by its name and will call the goToGameScene method.

In goToGameScene method, we just added GameScene to the view with some
transition effect. Transitions are an SKTransition class instance. Here, we used
the flipHorizontalWithDuration transition effect.

You can also tweak and play with other transitions available.

In gameScene!.anchorPoint = CGPoint(x: 0.5, y: 0.5), we have put an
exclamation mark after GameScene. As we know that GameScene is optional, we
have to tell the compiler that we know it has a value, and that we are forcing the
it to unwrap its value. The ! symbol is used for force unwrapping optional values.

Summary
In this chapter, we learned about device orientation and about the different auto
generated files in a Sprite Kit project. Also, we studied scenes and saw how to create
them in a Sprite Kit project. Furthermore, we discussed about transitions between
scenes and their types.

In the next chapter, we will learn about sprites and texture atlases. Our Platformer
game will become much more exciting and interesting to play, as we move further.

[33]

Sprites
In the previous chapter, we set up our first scene, learned about the rendering
of nodes in a scene, added multiple scenes in a project, and learned about doing
transitions from one scene to another.

In this chapter, we will learn about sprites. A sprite is a two-dimensional image,
integrated into scene. A collection of sprites is called sprite sheet. Here we will learn
about how to add sprites in a game, positioning a sprite, texture atlases, and how
to transform a sprite in our game.

In Sprite Kit, a game is based on the node tree hierarchy. Scene acts as a root node
and other nodes added to it are child nodes. Once all nodes are rendered into scene,
we get the view. Sprites are also added to a game as a node; Sprite Kit provide us
SKSpriteNode class for this purpose. In the previous chapter, we added background
sprite and play button sprite by making the SKSpriteNode reference and adding it to
the respective scenes. Now we will discover more about what Sprite Kit provided us
in the SKSpriteNode class, and what else we can do with it.

SKSpriteNode
The SKSpriteNode class is a root node class which is used to draw texture images
with many customizations; it is inherited from the SKNode class. We can simply
draw an image, or we can add some effects, such as custom shader or shadows to it.
For this, we have to first know about the SKSpriteNode class and the functionality
it offers.

Sprites

[34]

Initializing a sprite
To make a sprite in a game, we have to make an instance of the SKSpriteNode class.
Sprite Kit provides us with many ways to initialize an instance of the SKSpriteNode
class. Some of them are as follows:

init(name: String){
 //it is designated initializer . initialization part

}
convenience init(){
 //Calling the Designated Initializer in same class
 self.init(name: "Hello")
}

In Swift, one has to initialize a class by making an object of structure. There are
two initializers provided for this purpose, that is, designated initializers and
convenience initializers.

Designated initializers perform actual initialization for class properties. Now the
question arises, "why convenience initializers are required?" During programming,
sometimes, convenience initializers are very useful as they require less input
parameters, and hand over actual initialization to designated initializers.

Some examples of initializers in Swift are as follows:

•	 convenience init(color color:UIColor!, size size: CGSize): This
is used to initialize a colored sprite. If you want to make a sprite without
using any texture and only by color, you can use this. It takes color and
size as a parameter and returns a newly initialized sprite object.

•	 convenience init(imageNamed name: String): This initializer assigns
texture to sprites. A sprite will be assigned texture from image name, which
initializes the color of a sprite to white.

•	 convenience init(texture texture: SKTexture!): This initializer takes
an existing texture sprite and returns a newly initialized sprite. The size of
the sprite is set to the dimensions of the texture, and the color of the sprite
is set to white (1.0, 1.0, 1.0).

•	 init(texture texture: SKTexture!,color color: UIColor!,size
size: CGSize): As explained earlier, this initializer requires convenience
initializers as its parameter, so this is a designated initializer. Now, our
Platformer game sprite will be initialized to the desired texture, color, and
size. It returns a newly initialized sprite.

Chapter 3

[35]

•	 convenience init(texture texture: SKTexture!,size size: CGSize):
This takes texture and size as parameters and returns a newly initialized sprite.

•	 convenience init(imageNamed name: String, normalMapped
generateNormalMap: Bool): This takes an image name and a Boolean
value as a parameter and returns a newly initialized object.

•	 convenience init(texture texture: SKTexture!,normalMap
normalMap: SKTexture?): This takes two textures as parameters, one
for sprite drawing and another for adding lighting behavior to the sprite.
It returns a newly initialized sprite.

After learning about initialization of SKSpriteNode, now it is time to get
ourselves familiar with some physical properties of SKSpriteNode, such as
size, anchorPoint, and so on.

The properties of SKSpriteNode
Let us discuss the properties of SKSpriteNode in the following sections.

Physical
Let us look at some physical properties of SKSpriteNode:

•	 size: This property determines the size of a sprite in points. In our GameScene
and MenuScene classes, we use this property in the background sprite to cover
the screen.

•	 AnchorPoint: An anchor point is a point of co-ordinate related to sprite. Say,
for example, co-ordinates for each corner of a sprite are (0,0), (1,0), (0,1),
and (1,1) representing corners bottom left, bottom right, top left, and top
right respectively. These points of reference can be assigned as anchor points
to draw a sprite on screen in respect. An assigned anchor point will position
a sprite on screen, accordingly.

For example, assume that our anchor point for a sprite is (0,0). If we
position this sprite on screen, it will place itself from co-ordinate (0,0),
that is, bottom left. To position a sprite from the centre, we need to assign
the anchor point co-ordinate (0.5, 0.5).

Sprites

[36]

But to add another node to this sprite, co-ordinate (0,0) of that node will be on
the sprite's anchor point. What happens when we add scene to the view is that,
co-ordinate (0,0) of scene, becomes the default anchor point.

Physical properties of a sprite were well discussed under size and anchorPoint.
Now it is time to discuss some properties which are related to texture in a sprite.

Texture
It is an optional property in the SKSpriteNode class; that means it can be nil or will
have texture. If it is nil, then the sprite will be drawn by using its color property
in a rectangular shape, otherwise the sprite will be drawn using this texture.

centerRect
This property is a very useful tool for creating rectangular buttons or any other
fixed size elements in scene. When you use the centerRect property, you are
actually controlling the scaling factor of texture for a rectangular portion specified
by coordinates.

By default, the rectangle covers the whole texture; that's why entire texture is
stretched. But if this rectangle covers only a portion of the texture, then the texture
could be visualized in a 3 * 3 grid, accounting this rectangle in the middle of the
grid and drawing a line from its every edge on each side.

Original image

If we try to stretch the texture in both directions, then it will follow the rules given
as follows:

•	 The middle portion of the grid will stretch on each side, horizontally
and vertically

•	 All 4 corner portions of the grid will not be stretched

Chapter 3

[37]

•	 The upper and lower middle parts of the grid will be stretched horizontally

Image stretched horizontally from the centre

•	 The left and right middle parts of the grid will be stretched vertically

Image stretched vertically from the centre

And, the following is another case where the image is stretched both vertically
and horizontally:

Image stretched both vertically and horizontally from the centre

This is a very useful property to achieve some specific behavior of texture, such as
making a health bar in the game, where we don't want to stretch the corner side of
the texture, so that if they are rounded, they should not be deformed.

Sprites

[38]

Color
SKSpriteNode has some color properties too. Let's read in detail about them:

•	 color: This property is used to give color to a sprite. For example, you
need to change the color of your sprite when the health bar is reduced to 50
percent, 25 percent, and so on.

•	 colorBlendFactor: This is used to control the color blending with the sprite
texture. It can have a value between 0.0 to 1.0 (inclusive); 0.0 is default.
If the value is 0.0, that means the color property is ignored and texture
values are used unmodified. If you increase the value, more color will be
added to the sprite. For example, we can use this property to blend more
color in our character with an increasing number of hits to the character:

Color effects due to change in value for colorBlendFactor

•	 blendMode: This property is used to blend sprites according to scene. Every
pixel color of a sprite and the color of the corresponding scene pixel under
it, is compared by Sprite Kit renderer to assign a resulting color to the sprite.
This property is very useful when you add a lighting effect or flash effect to
your scene.

In iOS 8, some lighting properties were added to generate a light and shadow effect
on the sprites. Let's have a look at them:

•	 lightingBitMask: This property is used to show a lighting effect on the
sprite, and is tested against light's categoryBitMask property by a logical
AND operation. If the value is nonzero, the sprite will light up, or else it will
remain unaffected by the light. Its default value is 0x00000000.

•	 shadowedBitMask: This determines whether the sprite will be affected by
the shadow generated by the light or not. This property is tested against
light's categoryBitMask property by a logical AND operation. If the value
is nonzero, the sprite will the drawn using a shadowed effect, or else it will
remain unaffected by the light. Its default value is 0x00000000.

Chapter 3

[39]

•	 shadowCastBitMask: This determines whether or not the sprite will
block the light and cast the shadow. This property is tested against light's
categoryBitMask property by a logical AND operation. If the value is
nonzero, the sprite will cast a shadow past itself, or else it will remain
unaffected by the light. Its default value is 0x00000000.

•	 normalTexture: A normal map texture is used when a sprite is lit, giving it
a more realistic look with shadows and spectacular highlights. The texture
must be a normal map texture.

Along with the lighting property, with iOS 8, the shader property was also introduced
to customize the rendering effects.

Shader
The shader property is exclusively discussed in Chapter 7, Particle Effects and Shaders.

These are SKSpriteNode properties, by which we can use sprites by customizing
them as we desire. The majority of a game consists of sprites, so it is important
to know these properties and how we can use them. Now, it is time to use these
properties in our game and see what effects they produce.

Adding a sprite without using textures
Mostly in a game, we add texture to our sprite, but we can also make a sprite without
using textures. A texture property is an optional property in the SKSpriteNode class.
If texture is nil, that means we have no texture to stretch, so the contract parameter is
ignored. Let's open our GameScene.swift file and make a variable of SKSpriteNode,
just below the backgroundNode declaration:

var spriteWithoutTexture : SKSpriteNode?

Now, with the preceding declaration, we have declared spriteWithoutTexture
as optional. Since we have declared it optional, texture need not require a value.
Now under didMoveToView, add following function:

 func addSpriteWithoutTexture(){
 spriteWithoutTexture = SKSpriteNode(texture: nil, color:
 UIColor.redColor(), size: CGSizeMake(100, 100))
 addChild(spriteWithoutTexture!)
 }

www.allitebooks.com

http://www.allitebooks.org

Sprites

[40]

After that, call this function inside didMoveToView(), below the addBackGround()
function:

addSpriteWithoutTexture()

Now tap on play and see what happens. In our GameScene there is no change. Well
that's not what we desire. Actually, we missed the z position of our texture. That's
why it is rendering behind the background and not showing to us. Add this line in our
addSpriteWithoutTexture() function, before addChild(spriteWithoutTexture!):

spriteWithoutTexture!.zPosition=1;

Run it. You will see a red square in the middle of the screen.

The code is self-explanatory. We made an instance of SKSpriteNode by instantiating
it. We are passing nil as parameter for texture, meaning we don't want texture for
this sprite. As we have made this sprite reference optional, we will have to unwrap it
before using any SKSpriteNode properties, and we do so by using the ! mark after
spriteWithoutTexture.

We can also initialize in another way. Delete the texture parameter from the
initialization part:

spriteWithoutTexture = SKSpriteNode(texture: nil, color:
UIColor.redColor(), size: CGSizeMake(100, 100))

Change the preceding initialization part as shown in the following:

spriteWithoutTexture = SKSpriteNode(color: UIColor.redColor(),
size: CGSizeMake(100, 100))

Run the code and it will produce the same result as the previous one. It automatically
assigns nil to texture, and initializes a sprite with a color and the specified bounds.
Let's do something interesting with it.

Changing the color property
We are going to use color property to change color when a user taps on this sprite.
For this, first give a name to spriteWithoutTexture, so that we can recognize a tap
on it:

spriteWithoutTexture!.name = "HELLO"

Add the following function in the GameScene.swift file to change color, as shown in
the following code:

var

Chapter 3

[41]

Now, we use the touchesBegan function to detect touch by a user (as it was used
previously in the MenuScene class):

override func touchesBegan(touches: NSSet, withEvent event:
UIEvent) {
 for touch: AnyObject in touches{ currentno = 0;
func changeColor(){
 switch(currentno%3){
 case 0:
 spriteWithoutTexture!.color = UIColor.redColor()
 case 1:
 spriteWithoutTexture!.color = UIColor.greenColor()
 case 2:
 spriteWithoutTexture!.color = UIColor.blueColor()
 default :
 spriteWithoutTexture!.color = UIColor.blackColor()

 }
}

 let location = touch.locationInNode(self)
 let node = self.nodeAtPoint(location)
 if node.name == spriteWithoutTexture!.name {
 currentno++
 changeColor()
 }
 }
}

Now, after running Xcode, click on the colorful area in GameScene. You will see that
area changing its color.

In this code, when a user taps on the sprite, it will add a value to the current one and
call the changeColor() function. In the changeColor() function, we have taken a
switch case to determine the color property of spriteWithoutTexture. In Swift,
switch case is used as in many other languages. We don't have to use the break
statement. Every switch statement must be exhaustive. That means, we have to make
every single case check for switch case. Hence, we have to write a default value for
every switch case.

If our texture is not nil, we can use the colorBlendFactor property to colorize
the texture. We can use it for a tinting effect, such as damage taken in the game;
colorBlendFactor is ignored if texture is nil. Its default value is 0.0, which means
that the texture should remain unmodified. When we increase the value, texture
color is replaced with the blended color.

Sprites

[42]

Changing colorBlendFactor in MenuScene
Let's add a tint to our play button. Open MenuScene and define a variable named
tintChanger inside the MenuScene class as optional Float, so that we won't need
to assign a value to it in the initializer:

var tintChanger : Float?

Add the following function in the MenuScene class:

func tintPlayButton(){
 if PlayButton.colorBlendFactor >= 1{
 tintChanger = -0.02
 }
 else if PlayButton.colorBlendFactor <= 0{
 tintChanger = 0.02
 }
 PlayButton.colorBlendFactor += CGFloat(tintChanger!)
}

Call it from the update function:

override func update(currentTime: NSTimeInterval) {
 tintPlayButton()
}

Now run Xcode. You will see the Play button appearing and disappearing
respectively.

In this code, we just make a Float type variable. In our tintPlayButton function,
we check if the value of its colorBlendFactor property is between 1 to 0.

Now let's give it a color, inside the addChildToScene function:

 PlayButton.color = UIColor.redColor()

Run it and you will see the Play button changing its color from the original one to
reddish. Now, it's time to see the position property in action.

Changing the position of a sprite
Now, have a look at the position property of SKSpriteNode. Let's open GameScene
again, as we are going to see the spriteWithoutTexture.position property and
the ways we can set it. Add this function below changeColor:

func changePosition(){
 switch(currentno%3){

Chapter 3

[43]

 case 0:
 spriteWithoutTexture!.position = CGPointZero

 case 1:
 spriteWithoutTexture!.position =
CGPointMake(self.size.width/2-spriteWithoutTexture!.size.width/2,
0)
 case 2:
 spriteWithoutTexture!.position = CGPointMake
 (-self.size.width/2+spriteWithoutTexture!.size.width/2, 0)
 default :
 spriteWithoutTexture!.position = CGPointMake(0, 0)

 }
}

And call it just below the changeColor() call.

changePosition()

Now if you will run it and tap inside your game scene, you will see
spriteWithoutTexture changing its position and toggling between them.

The most part of the code is the same as in changecolor(), except the position. In
case 0, we set its position to CGPointZero. Position is measured in the CGPoint
unit. CGPointZero is equivalent to CGPointMake(0, 0). The position of a sprite
depends on its anchorPoint as well as its parent anchorPoint.

As we define GameScene anchorPoint to (0.5 , 0.5), it means any other node
which will be added to GameScene will have the starting position(0,0), from
the middle of the screen. That's why the background and spriteWithoutTexture
(0,0) co-ordinate will be in middle of the screen.

Now, as we specified the anchorPoint of spriteWithoutTexture, it will take its
default value of (0.5,0.5). This means that its anchorPoint will be in the center
of it. Hence, in case 0, it is rendering in the middle of the screen symmetrically.
In case 1 and case 2, we just moved it to the right middle corner and left middle
corner of the screen.

Sprites

[44]

Let's try to change anchorPoint and see what happens. Add this line inside
addSpriteWithoutTexture:

spriteWithoutTexture!.anchorPoint = CGPointZero

Now run it.

Before tap

After tap

You will see that all the positions are not as they were before. Can you guess the
reason for this?

Chapter 3

[45]

In the preceding code line, we assigned the new value (0,0) to
spriteWithoutTexture, which will remove its default value (0.5,0.5). This means
that its anchorPoint will not start from its middle. It will start from the bottom left
of this. To visualize it, consider your sprite's top right corner as 1,1, and bottom left
corner as 0,0. Now if you will set anchorPoint to 0,0, it will be at the bottom left of
the sprite. If you will take it to 0,1, it will be at the top left. For 1,1, it will at the top
right and for 1,0, it will at the bottom right. You can change it to whatever value you
like, such as negative (-1,-2) and so on.

Now, we can see that setting anchorPoint becomes easy once we are familiar
with co-ordinate numbers on the screen. So, let's test ourselves by setting the
spriteWithoutTexture position to what it was before, using 0,0 as anchorPoint.
Replace the changePosition function from this:

func changePosition(){
 switch(currentno%3){
 case 0:
 spriteWithoutTexture!.position = CGPointMake
(-spriteWithoutTexture!.size.width/2,
-spriteWithoutTexture!.size.height/2)

 case 1:
 spriteWithoutTexture!.position =
CGPointMake(self.size.width/2-spriteWithoutTexture!.size.width,
-spriteWithoutTexture!.size.height/2)
 case 2:
 spriteWithoutTexture!.position = CGPointMake
(-self.size.width/2, -spriteWithoutTexture!.size.height/2)
 default :
 spriteWithoutTexture!.position = CGPointMake(0, 0)

 }
}

Add the following line inside the addSpriteWithoutTexture() function:

spriteWithoutTexture!.position = CGPointMake
(-spriteWithoutTexture!.size.width/2,

-spriteWithoutTexture!.size.height/2)

Now run it. You will see the same result as before, in your GameScene.

Sprites

[46]

In this code, we made a little adjustment. We want spriteWithoutTexture to be
positioned in the center. As its anchorPoint is (0,0), its bottom left corner will be in
the middle of the screen. So, to show it in the middle of the screen, we have to set its
position by subtracting half of each width and height with the middle screen points,
which are 0,0. Same goes for the left and right position of the sprite.

Now, just try to set MenuScene anchorPoint to (1,1), inside the
GameViewController.swift file, and try to adjust the button and background
position by yourself. If you are unable to do so, just add the following code inside
the addChildToScene function:

 Background.position = CGPointMake(-self.size.width/2,
-self.size.height/2)
 PlayButton.position = CGPointMake(-self.size.width/2,

-self.size.height/2)

Now, if you run this code, you will notice the same result as before. After positioning,
let's talk about resizing a sprite.

Resizing a sprite
As the SKSpriteNode class is inherited from the SKNode class, it also inherits xScale
and yScale properties from the SKNode class. In our scene, we have given the
background the same width as our view. We will achieve the same result as before,
if we use its original size and scale its width and height. Open the GameScene class
and update the addBackGround function as follows:

func addBackGround() {
 backgroundNode.zPosition = 0

 var scaleX = self.size.width/backgroundNode.size.width
 var scaleY = self.size.height/backgroundNode.size.height
 backgroundNode.xScale = scaleX
 backgroundNode.yScale = scaleY
 addChild(backgroundNode)
}

We have modified the function, addBackGround(). to enable our game to detect
the screen dimensions of our device. This gives portability to our game (for example,
the iPhone 5 and iPhone 6 have different screen dimensions). Now this function will
return two float values as the ratio of screen size and background size in both width
and height. After setting those to backgroundNode.xScale and backgroundNode.
yScale, if you run this code, you will get the same result as before.

Chapter 3

[47]

Working with texture objects
When a sprite is created, Sprite Kit creates a texture also. But sometime we require
texture to do some complex work, such as:

•	 Changing the sprite
•	 Animation
•	 Using the same texture between multiple sprites
•	 Rendering a node tree into a texture like a screen shot

To make this simple, Sprite Kit provides us the SKTexture class. We can make an
object of this class and use it as we want.

Open your MenuScene.swift file and make a reference of SKTexture:

let testingTexture : SKTexture

Now initialize it inside init code block

init(size:CGSize, playbutton:String, background:String) {
 PlayButton = SKSpriteNode(imageNamed: playbutton)
 Background = SKSpriteNode(imageNamed: background)
 MyPlayButton = SKSpriteNode(imageNamed: playbutton)
 testingTexture = SKTexture(imageNamed: playbutton)
 super.init(size:size)
}

Let's make a function call, generateTestTexture, and call it from didMoveToView:

override func didMoveToView(view: SKView) {
 addChildToScene();
 PlayButton.name = "PLAY"
 generateTestTexture()
}
 func generateTestTexture(){

 for var i = 0 ; i < 10; i++ {
 var temp = SKSpriteNode(texture: testingTexture)
 temp.xScale = 100/temp.size.width
 temp.yScale = 50/temp.size.height
 temp.zPosition = 2
 temp.position = CGPointMake(-self.size.width + CGFloat
(100 * i), -self.size.height/2)
 addChild(temp)
 }
}

Sprites

[48]

Run it and you will see many play textures in a sequence. We have made these using
only one texture. Earlier, we were making the SKSpriteNode object from an image
name, allowing Sprite Kit to create texture. Now we are assigning a texture to the
SKNode object, which was created by us. Now, as we have done many customizations
with sprites, let's have a look at the texture atlas.

What is a texture atlas?
A game's performance is dependent on the number of sprites used in it. The fewer
the number of sprites, the more performance it gives. For this purpose, Sprite Kit
provides texture atlases, which pack our image files automatically into one or more
large images.

It provides us with a way to improve the performance of our game by drawing
multiple images with a single draw call. When the game is in the development
phase, compiler goes through every folder to find the folders with the *.atlas
format. When those folders are identified, all of the images inside them are combined
into one or more large image files. So, if you want to use this, place your images
inside a folder and then rename it by suffixing .atlas to its name.

Now, we are going to add a player to GameScene. Let's take the player's all idle state
images to a folder, and name it idle.atlas.

Now in Xcode, in Project Navigator, right-click on your project and select Add
to Project:

Chapter 3

[49]

Select the directory (not the files) and click on Add. Defaults should be OK, but make
sure it's set to copy.

Now we are going to add a player to our GameScene. Open GameScene and create the
function, addPlayer:

func addPlayer(){
 var player = SKSpriteNode(imageNamed:"bro5_idle0001")

 player.position = CGPoint(x:0,y:0)
 player.zPosition = 2;
 self.addChild(player)
 }

www.allitebooks.com

http://www.allitebooks.org

Sprites

[50]

Comment on the addSpriteWithoutTexture function and call the addPlayer
function. Your function will look as follows:

override func didMoveToView(view: SKView) {
 addBackGround()
 //addSpriteWithoutTexture()
 addPlayer();
 }

Convert to comment tap part from touchesBegan in the code. So that we don't get
stuck if a touch occurs; otherwise the image of the player may obstruct the touch:

override func touchesBegan(touches: NSSet, withEvent event:
UIEvent) {
 for touch: AnyObject in touches{
 let location = touch.locationInNode(self)
 let node = self.nodeAtPoint(location)
 // if node.name == spriteWithoutTexture!.name {
 // currentno++
 // changeColor()
 // changePosition()

 //}
 }
 }

Now, run it and see. You will see the player in the middle of the screen.

In this code, we made a SKSpriteNode instance by passing an image name inside it.
It will search for the Atlas for that image. But if we have an identically named image
inside our project, this image will be loaded instead of the texture atlas. You have to
use whatever the name of your image is.

When we put images inside a folder with .atlas extension, Xcode generates one or
more big images by combining all the images into one.

1.	 To see that packed image, go to your Products folder in your project.
2.	 Right-click on the .app file there and click on Show in Finder, so that we can

go to its directory.
3.	 Now, right-click on the .app file and select Show Package Contents.

Chapter 3

[51]

4.	 After that, go to Contents | Resources | *.atlasc. Here you will see two
files, an image, and a plist. If you will look at the image, you will find that
images are combined into a texture, which has its height and width in the
power of 2. If you will open the plist, you will see that it contains the position
of images inside the packed texture, so that we can access them directly using
Texture Atlas.

You can access texture atlas also. Let's use TextureAtlas and do something on tap:

1.	 First of all make a texture atlas reference in GameScene:
let myAtlas = SKTextureAtlas(named:"idle.atlas")

2.	 After that, make a player reference outside of function so that we can use it in
another function too:
var player :SKSpriteNode?

3.	 Now edit the addPlayer function as follows:
 func addPlayer(){
 player = SKSpriteNode(texture:
 myAtlas.textureNamed("bro5_idle0001"))
 player!.position = CGPoint(x:0,y:0)
 player!.zPosition = 2;
 player!.name = "Player"
 self.addChild(player!)
 }

4.	 Make the function, changeSpriteFromTextureAtlas(), and call it from
touchesBegan. Now, it should look like the following lines:
override func touchesBegan(touches: NSSet, withEvent event:
UIEvent) {
 for touch: AnyObject in touches{
 let location = touch.locationInNode(self)
 let node = self.nodeAtPoint(location)
 if node.name == player!.name {
 currentno++
 changeSpriteFromTextureAtlas()
 }
 }
 }
 func changeSpriteFromTextureAtlas(){
 switch(currentno%3){
 case 0:
 player!.texture = myAtlas.textureNamed("bro5_
idle0001")

Sprites

[52]

 case 1:
 player!.texture = myAtlas.textureNamed("bro5_
idle0004")
 case 2:
 player!.texture = myAtlas.textureNamed("bro5_
idle0007")
 default :
 break

 }

 }

5.	 Now, run and tap on the player. You will see that the player changes its
sprite on tap.

We have created the SKTextureAtlas reference. We named it as atlas file and
added it to project. Now we can fetch the image from the texture atlas file. This is
the way through which we can directly access the texture atlas. Texture atlases are
very useful to make animation sequences or level generations from tiles. We will
talk about animation in further chapters.

Now, as we are using textures to make sprites, sometimes we might need to preload
textures into memory. Let's discuss this in detail.

Preloading textures into memory
Sprite Kit performs memory management very well. When a texture is needed to be
rendered in scene, but is not prepared, Sprite Kit loads it into memory, and uploads
it to the graphics hardware by converting it to a usable form. If many unloaded
textures are needed at once, it might slow down the game. To avoid this, we need
to preload textures before using them, especially in larger or more complex games.

This problem may arise when a user has to go from the level screen to the game
screen. As the game screen may have many textures, it will need to load and might
be slow due to the loading of texture. To avoid this, we can use the SKTexture
class preloadTextures(_:withCompletionHandler:) function. It takes an array
of SKTexture and a block, which is called after all the texture is loaded. So, we can
use this block to load a scene.

Chapter 3

[53]

For a small game, we can load all the textures at once, at game launch time. For a
larger game, we will need to split the textures into different levels according to scene
and other such criteria. The textures which are not useful to a level are discarded to
save memory. And if the game is too big, we will need to load textures dynamically
as the game runs.

As we load textures, we also need to remove the unnecessary textures from
memory too. When a texture is loaded into memory, it stays there until its reference
SKTexture object is deleted. To delete an SKTexture object, we have to remove the
reference from it; this will make the texture unload from the memory.

Summary
In this chapter, we read about sprites in detail. We learned about how to initialize
a sprite, and about the sizing and positioning of a sprite. We also learned about the
various color properties of the sprite. The lighting and shader properties were also
discussed. Finally, we discussed about the Texture object, usage of the texture atlas,
and preloading of the texture into memory.

In the next chapter, we will be learning about nodes and various other concepts of
the tree node structure.

[55]

Nodes in Sprite Kit
In the last chapter, we learnt about how to use sprites in a game in various ways.
We discussed about the physical properties of sprites, textures of sprites, and various
other properties, such as color property, lighting, shader, and so on. We also learned
about working with texture objects and had an introduction to texture atlases.

In the previous chapter, we implemented the SKSprite class which is a subclass of the
SKNode class; that's why SKSprite is a node itself, inheriting SKNode properties. In this
chapter, we will study about nodes, which play an important role in understanding the
tree structure of a game. Further, we will discuss about types of nodes in the Sprite Kit
and their uses in detail.

All you need to know about nodes
We have discussed many things about nodes so far. Almost everything you are
making in a game with Sprite Kit is a node. Scenes that we are presenting to view
are instances of the SKScene class, which is a subclass of the SKEffectNode class,
which is itself a subclass of the SKNode class. Indirectly, SKScene is a subclass of
the SKNode class.

As a game follows the node tree formation, a scene acts like a root node and the
other nodes are used as its children. It should be remembered that although SKNode
is a base class for the node you see in a scene, it itself does not draw anything. It only
provides some basic features to its subclass nodes. All the visual content we see in a
Sprite Kit made game, is drawn by using the appropriate SKNode subclasses.

Nodes in Sprite Kit

[56]

Following are some subclasses of SKNode classes, which are used for different
behaviors in a Sprite Kit-based game:

•	 SKSpriteNode: This class is used to instantiate a texture sprite in the game;
this is a familiar node class referred to frequently in Chapter 3, Sprites.
SKVideoNode, this class is used to play video content in a scene.

•	 SKLabelNode: This class is used to draw labels in a game, with many
customizing options, such as font type, font size, font color, and so on.

•	 SKShapeNode: This class is used to make a shape based on a path, at run time.
For example, drawing a line or making a drawing game.

•	 SKEmitterNode: This class is used for emitting particle effects in a scene,
with many options, such as position, number of particles, color, and so on.

•	 SKCropNode: This class is basically used for cropping its child nodes, using a
mask. Using this, you can selectively block areas of a layer.

•	 SKEffectNode: SKEffectNode is the parent of the SKScene class and
the subclass of the SKNode class. It is used for applying an image filter
to its children.

•	 SKLightNode: SKLightNode class is used to make light and shadow effects
in scene.

•	 SKFieldNode: This is a useful feature of Sprite Kit. You can define a portion
of scene with some physical properties, for example, in space game, having a
gravity effect on a black hole, which attracts the things which are nearby.

So, these are the basic subclasses of SKNode which are used frequently in Sprite Kit.
SKNode provides some basic properties to its subclasses, which are used to view a
node inside a scene, such as:

•	 position: This sets up the position of a node in a scene
•	 xScale: This scales in the width of a node
•	 yScale: This scales in the height of a node
•	 zRotation: This facilitates the rotation of a node in a clockwise or

anti-clockwise direction
•	 frame: frame is a rectangle containing the nodes content along with its

x-scale, y-scale and z-rotation properties, ignoring the nodes children

We know that the SKNode class does not draw anything by itself. So, what is the
use of it? Well, we can use SKNode instances to manage our other nodes in different
layers separately, or we can use them to manage different nodes in the same layer.
Let's take a look at how we can do this.

Chapter 4

[57]

Using the SKNode object in the game
Now, we will discover what the various aspects of SKNode are used for. Say you have
to make a body from different parts of sprites, such as a car. You can make it from
sprites of wheels and body. The wheels and body of a car run in synchronization
with each other, so that one controls their action together, rather than manage each
part separately. This can be done by adding them as a child of the SKNode class object
and updating this node to control the activity of the car.

The SKNode class object can be used for layering purposes in a game. Suppose we
have three layers in our game: the foreground layer, which represents foreground
sprites, the middle layer, which represents the middle sprites, and the background
layer which represents background sprites.

If we want a parallax effect in our game, we will have to update each sprite's position
separately or we can make three SKNode objects, referring to each layer, and add the
sprites to their respective nodes. Now we have to update only these three nodes'
position and the sprites will update their position automatically.

The SKNode class can be used to make some kind of check point in a game, which is
hidden but performs or triggers some event when a player crosses them, such as a
level end, bonus, or death trap.

We can remove or add the whole sub tree inside a node and perform the necessary
functions, such as rotating, scaling, positioning, and so on.

Well, as we described that we can use the SKNode object as checkpoints in the game,
it is important to recognize them in your scene. So, how we do that? Well the SKNode
class provides a property for this. Let's find out more about it.

Recognizing a node
The SKNode class provides a property with a name, to recognize the correct node.
It takes string as a parameter. Either you can search a node by its name or you can
use one of the two methods provided by SKNode, which are as follows:

•	 func childNodeWithName(name:String) -> SKNode: This function takes
the name string as a parameter, and if it finds a node with a specific name, it
returns that node or else it returns nil. If there is more than one node sharing
the same name, it will return the first node in the search.

Nodes in Sprite Kit

[58]

•	 func enumerateChildNodesWithName(name:String, usingBlock:((SKN
ode!,UnsafeMutablePointer<ObjCBool>)->Void)!): When you need all
the nodes sharing the same name, use this function. This function takes the
name and block as a parameter. In usingBlock, you need to provide two
parameters. One matching node, and the other a pointer of type Boolean. In
our game, if you remember, we used the name property inside PlayButton
to recognize the node when a user taps on it. It's a very useful property to
search for the desired node.

So, let's have a quick look at other properties or methods of the SKNode class.

Initializing a node
There are two initializers to make an instance of SKNode. Both are available in iOS 8.0
or later.

•	 convenience init (fileNamed filename: String): This initializer is
used for making a node by loading an archive file from main bundle. For
this, you have to pass a file name with an sks extension in the main bundle.

•	 init(): It is used to make a simple node without any parameter. It is useful
for layering purposes in a game.

As we already discussed the positioning of a node, let's discuss some functions and
properties that are used to build a node tree.

Building a node tree
SKNode provides some functions and properties to work with a node tree. Following
are some of the functions:

•	 addChild(node:SKNode): This is a very common function and is used
mostly to make a node tree structure. We already used it to add nodes to
scenes.

•	 insertChild(node:SKNode,atIndex index: Int): This is used when you
have to insert a child in a specific position in the array.

•	 removeFromParent(): This simply removes a node from its parent.
•	 removeAllChildren(): This is used when you have to clear all the children

in a node.
•	 removeChildrenInArray(nodes:[AnyObject]!): This takes an array of

SKNode objects and removes it from the receiving node.

Chapter 4

[59]

•	 inParentHierarchy(parent:SKNode) -> Bool: It takes an SKNode object
to check as a parent of the receiving node, and returns a Boolean value
according to that condition.

There are some useful properties used in a node tree, as follows:

•	 children: This is a read only property. It contains the receiving node's
children in the array.

•	 parent: This is also a read only property. It contain the reference of the
parent of the receiving node, and if there is none, then it returns nil.

•	 scene: This too is a read only property. If the node is embedded in the scene,
it will contain the reference of the scene, otherwise nil.

In a game, we need some specific task on a node, such as changing its position from
one point to another, changing sprites in a sequence, and so on. These tasks are done
using actions on node. Let's talk about them now.

Actions on a node tree
Actions are required for some specific tasks in a game. For this, the SKNode class
provides some basic functions, which are as follows.

•	 runAction(action:SKAction!): This function takes an SKAction class
object as a parameter and performs the action on the receiving node.

•	 runAction(action:SKAction!,completion block: (() -> Void)!):
This function takes an SKAction class object and a compilation block as
object. When the action completes, it calls the block.

•	 runAction(action:SKAction,withKey key:String!): This function
takes an SKAction class object and a unique key, to identify this action and
perform it on the receiving node.

•	 actionForKey(key:String) -> SKAction?: This takes a String key as a
parameter and returns an associative SKAction object for that key identifier.
This happens if it exists, otherwise it returns nil.

•	 hasActions() -> Bool: Through this action, if the node has any executing
action, it returns true, or else false.

•	 removeAllActions(): This function removes all actions from the receiving
node.

•	 removeActionForKey(key:String): This takes String name as key and
removes an action associated with that key, if it exists.

Nodes in Sprite Kit

[60]

Some useful properties to control these actions are as follows:

•	 speed: This is used to speed up or speed down the action motion. The default
value is 1.0 to run at normal speed; with increasing value, speed increases.

•	 paused: This Boolean value determines whether an action on the node
should be paused or resumed.

Sometimes, we require changing a point coordinate system according to a node
inside a scene. The SKNode class provides two functions to interchange a point's
coordinate system with respect to a node in a scene. Let's talk about them.

The coordinate system of a node
We can convert a point with respect to the coordinate system of any node tree. The
functions to do that, are as follows:

•	 convertPoint(point:CGPoint, fromNode node : SKNode) -> CGPoint:
This takes a point in another node's coordinate system and the other node
as its parameter, and returns a converted point according to the receiving
node's coordinate system.

•	 convertPoint(point:CGPoint, toNode node:SKNode) ->CGPoint: It
takes a point in the receiving node's coordinate system and the other nodes
in the node tree as its parameters, and returns the same point converted
according to the other node's coordinate system.

We can also determine if a point is inside a node's area or not.

•	 containsPoint(p:CGPoint) -> Bool: This returns the Boolean value
according to the position of a point inside or outside of a receiving node's
bounding box.

•	 nodeAtPoint(p:CGPoint) -> SKNode: This returns the deepest descendant
node that intersects the point. If that is not there, then it returns the receiver
node.

•	 nodesAtPoint(p:CGPoint) -> [AnyObject]: This returns an array of all
the SKNode objects in the subtree that intersect the point. If no nodes intersect
the point, an empty array is returned.

Apart from these, the SKNode class provides some other functions and properties too.
Let's talk about them.

Chapter 4

[61]

Other functions and properties
Some other functions and properties of the SKNode class are as follows:

•	 intersectsNode(node:SKNode) -> Bool: As the name suggests, it returns a
Boolean value according to the intersection of the receiving node and another
node from the function parameter.

•	 physicsBody: It is a property of the SKNode class. The default value is nil,
which means that this node will not take part in any physical simulation in
the scene. If it contains any physical body, then it will change its position and
rotation in accordance with the physical simulation in the scene.

•	 userData : NSMutableDictionary?: The userData property is used to
store data for a node in a dictionary form. We can store position, rotation,
and many custom data sets about the node inside it.

•	 constraints: [AnyObject]?: It contains an array of constraints
SKConstraint objects to the receiving node. Constraints are used to limit the
position or rotation of a node inside a scene.

•	 reachConstraints: SKReachConstraints?: This is basically used to make
restricted values for the receiving node by making an SKReachConstraints
object. For example, to make joints move in a human body.

•	 Node blending modes: The SKNode class declares an enum SKBlendMode
of the int type to blend the receiving node's color by using source and
destination pixel colors. The constant's used for this are as follows:

°° Alpha: It is used to blend source and destination colors by
multiplying the source alpha value

°° Add: It is used to add the source and destination colors
°° Subtract: It is used to subtract the source color from the destination

color
°° Multiply: It is used to multiply the source color by the destination

color
°° MultiplyX2: It is used to multiply the source color by the destination

color, and after that, the resulting color is doubled
°° Screen: It is used to multiply the inverted source and the destination

color respectively and it then inverts the final result color
°° Replace: It is used to replace the destination color by source color

•	 calculateAccumulatedFrame()->CGRect: We know that a node does not
draw anything by itself, but if a node has descendants that draw content,
then we may be required to know the overall frame size of that node. This
function calculates the frame that contains the content of the receiver node
and all of its descendants.

Nodes in Sprite Kit

[62]

Now, we are ready to see some basic SKNode subclasses in action. The classes we are
going to discuss are as follows:

•	 SKLabelNode

•	 SKCropNode

•	 SKShapeNode

•	 SKEmitterNode

•	 SKLightNode

•	 SKVideoNode

To study these classes, we are going to create six different SKScene subclasses in our
project, so that we can learn them separately.

Now, having learned in detail about nodes, we can proceed further to utilize the
concept of nodes in a game.

Creating subclasses for our Platformer
game
With the theoretical understanding of nodes, one wonders how this concept is
helpful in developing a game. To understand the development of a game using
the concept of Nodes, we now go ahead with writing and executing code for our
Platformer game.

Create the subclasses of different nodes in Xcode, following the given steps:

1.	 From the main menu, select New File | Swift | Save As | NodeMenuScene.
swift:
Make sure Platformer is ticked as the target. Now Create and Open and
make the NodeMenuScene class by subclassing SKScene.

2.	 Following the previous same steps as, make CropScene, ShapeScene,
ParticleScene, LightScene, and VideoNodeScene files, respectively.

3.	 Open the GameViewController.swift file and replace the viewDidLoad
function by typing out the following code:

override func viewDidLoad() {
 super.viewDidLoad()

 let menuscene = NodeMenuScene()

Chapter 4

[63]

 let skview = view as SKView

 skview.showsFPS = true
 skview.showsNodeCount = true
 skview.ignoresSiblingOrder = true
 menuscene.scaleMode = .ResizeFill

 menuscene.anchorPoint = CGPoint(x: 0.5, y: 0.5)
 menuscene.size = view.bounds.size
 skview.presentScene(menuscene)

 }

In this code, we just called our NodeMenuScene class from the GameViewController
class. Now, it's time to add some code to the NodeMenuScene class.

NodeMenuScene
Open the NodeMenuScene.swift file and type in the code as shown next. Do not
worry about the length of the code; as this code is for creating the node menu screen,
most of the functions are similar to creating buttons:

import Foundation
import SpriteKit

let BackgroundImage = "BG"
let FontFile = "Mackinaw1"

let sKCropNode = "SKCropNode"

let sKEmitterNode = "SKEmitterNode"

let sKLightNode = "SKLightNode"
let sKShapeNode = "SKShapeNode"
let sKVideoNode = "SKVideoNode"
class NodeMenuScene: SKScene {

 let transitionEffect = SKTransition.
flipHorizontalWithDuration(1.0)
 var labelNode : SKNode?
 var backgroundNode : SKNode?

Nodes in Sprite Kit

[64]

 override func didMoveToView(view: SKView) {
 backgroundNode = getBackgroundNode()
 backgroundNode!.zPosition = 0
 self.addChild(backgroundNode!)
 labelNode = getLabelNode()
 labelNode?.zPosition = 1
 self.addChild(labelNode!)

 }
 func getBackgroundNode() -> SKNode {
 var bgnode = SKNode()
 var bgSprite = SKSpriteNode(imageNamed: "BG")
 bgSprite.xScale = self.size.width/bgSprite.size.width
 bgSprite.yScale = self.size.height/bgSprite.size.height
 bgnode.addChild(bgSprite)
 return bgnode
 }
 func getLabelNode() -> SKNode {
 var labelNode = SKNode()
 var cropnode = SKLabelNode(fontNamed: FontFile)
 cropnode.fontColor = UIColor.whiteColor()
 cropnode.name = sKCropNode
 cropnode.text = sKCropNode
 cropnode.position =
CGPointMake(CGRectGetMinX(self.frame)+cropnode.frame.width/2,
CGRectGetMaxY(self.frame)-cropnode.frame.height)
 labelNode.addChild(cropnode)
 var emitternode = SKLabelNode(fontNamed: FontFile)
 emitternode.fontColor = UIColor.blueColor()
 emitternode.name = sKEmitterNode
 emitternode.text = sKEmitterNode
 emitternode.position =
CGPointMake(CGRectGetMinX(self.frame) + emitternode.frame.width/2
, CGRectGetMidY(self.frame) - emitternode.frame.height/2)
 labelNode.addChild(emitternode)

 var lightnode = SKLabelNode(fontNamed: FontFile)
 lightnode.fontColor = UIColor.whiteColor()
 lightnode.name = sKLightNode
 lightnode.text = sKLightNode
 lightnode.position = CGPointMake(CGRectGetMaxX(self.frame)
- lightnode.frame.width/2 , CGRectGetMaxY(self.frame) -
lightnode.frame.height)

Chapter 4

[65]

 labelNode.addChild(lightnode)

 var shapetnode = SKLabelNode(fontNamed: FontFile)
 shapetnode.fontColor = UIColor.greenColor()
 shapetnode.name = sKShapeNode
 shapetnode.text = sKShapeNode
 shapetnode.position =
CGPointMake(CGRectGetMaxX(self.frame) - shapetnode.frame.width/2 ,
CGRectGetMidY(self.frame) - shapetnode.frame.height/2)
 labelNode.addChild(shapetnode)

 var videonode = SKLabelNode(fontNamed: FontFile)
 videonode.fontColor = UIColor.blueColor()
 videonode.name = sKVideoNode
 videonode.text = sKVideoNode
 videonode.position = CGPointMake(CGRectGetMaxX(self.frame)
- videonode.frame.width/2 , CGRectGetMinY(self.frame))
 labelNode.addChild(videonode)

 return labelNode
 }
 var once:Bool = true
 override func touchesBegan(touches: NSSet, withEvent event:
 UIEvent) {
 if !once {
 return
 }
 for touch: AnyObject in touches {
 let location = touch.locationInNode(self)
 let node = self.nodeAtPoint(location)
 if node.name == sKCropNode {
 once = false
 var scene = CropScene()
 scene.anchorPoint = CGPointMake(0.5, 0.5)
 scene.scaleMode = .ResizeFill
 scene.size = self.size
 self.view?.presentScene(scene,
 transition:transitionEffect)
 }

 else if node.name == sKEmitterNode {
 once = false
 var scene = ParticleScene()
 scene.anchorPoint = CGPointMake(0.5, 0.5)
 scene.scaleMode = .ResizeFill

Nodes in Sprite Kit

[66]

 scene.size = self.size
 self.view?.presentScene(scene,
 transition:transitionEffect)
 }
 else if node.name == sKLightNode {
 once = false
 var scene = LightScene()
 scene.scaleMode = .ResizeFill
 scene.size = self.size
 scene.anchorPoint = CGPointMake(0.5, 0.5)
 self.view?.presentScene(scene ,
 transition:transitionEffect)
 }
 else if node.name == sKShapeNode {
 once = false
 var scene = ShapeScene()
 scene.scaleMode = .ResizeFill
 scene.size = self.size

 scene.anchorPoint = CGPointMake(0.5, 0.5)
 self.view?.presentScene(scene,
 transition:transitionEffect)
 }
 else if node.name == sKVideoNode {
 once = false
 var scene = VideoNodeScene()
 scene.scaleMode = .ResizeFill
 scene.size = self.size
 scene.anchorPoint = CGPointMake(0.5, 0.5)
 self.view?.presentScene(scene ,
 transition:transitionEffect)
 }
 }
 }
}

Chapter 4

[67]

We will get the following screen from the previous code:

The screen is obtained when we execute the NodeMenuScene.swift file

In the preceding code, after import statements, we defined some String variables.
We are going to use these variables as Label names in the scene .We also added our
font name as a string variable. Inside this class, we made two node references: one
for background and the other for those labels which we are going to use in this scene.
We are using these two nodes to make layers in our game. It is best to categorize the
nodes in a scene, so that we can optimize the code. We make an SKTransition object
reference of the flip horizontal effect. You can use other transition effects too.

Inside the didMoveToView() function, we just get the node and add it to our scene
and set their z position.

Now, if we look at the getBackgroundNode() function, we can see that we made a
node by the SKNode class instance, a background by the SKSpriteNode class instance,
and then added it to the node and returned it. If you see the syntax of this function,
you will see -> SKNode. It means that this function returns an SKNode object.

The same goes in the function, getLabelNode(). It also returns a node containing all
the SKLabelNode class objects. We have given a font and a name to these labels and
set the position of them in the screen. The SKLabelNode class is used to make labels
in Sprite Kit with many customizable options.

In the touchBegan() function, we get the information on which Label is touched,
and we then call the appropriate scene with transitions.

Nodes in Sprite Kit

[68]

With this, we have created a scene with the transition effect. By tapping on each
button, you can see the transition effect.

CropScene
In this scene, we are going to use the SKCropNode class object. This class is used to
mask one node on another. We are going to use our play sprite as a mask and our
background image as an image that is to be rendered according to the masking area.
Open the CropScene.swift file and type in the code, as shown next:

import Foundation
import SpriteKit
class CropScene : SKScene {
 var play : SKSpriteNode?
 override func didMoveToView(view: SKView) {
 play = SKSpriteNode(imageNamed: "Play")
 var crop = SKCropNode()
 crop.maskNode = play
 crop.addChild(SKSpriteNode(imageNamed: "BG"))
 addChild(crop)
 addBackLabel()
 }
 func addBackLabel() {
 var backbutton = SKLabelNode(fontNamed: FontFile)
 backbutton.fontColor = UIColor.blueColor()
 backbutton.name = "BACK"
 backbutton.text = "BACK"
 backbutton.position =
CGPointMake(CGRectGetMinX(self.frame) + backbutton.frame.width/2 ,
CGRectGetMinY(self.frame))
 self.addChild(backbutton)
 }
 var once:Bool = true
 override func touchesBegan(touches: NSSet, withEvent event:
 UIEvent) {
 for touch: AnyObject in touches {
 let location = touch.locationInNode(self)
 let node = self.nodeAtPoint(location)
 if node.name == "BACK" {
 if once {
 once = false
 let transitionEffect =
 SKTransition.flipHorizontalWithDuration(1.0)
 var scene = NodeMenuScene()

Chapter 4

[69]

 scene.anchorPoint = CGPointMake(0.5, 0.5)
 scene.scaleMode = .ResizeFill
 scene.size = self.size
 self.view?.presentScene(scene,
 transition:transitionEffect)
 }
 }
 }
 }
}

We will get the following screen, with the preceding code:

The preceding screen is obtained when we execute the Cropscene.swift file

In this code, we just added a label for the back press of the SKLabelNode class object.

In this class, we added play image to the mask node of the SKCropNode object and
added a background to this crop node. If you click on the SKCropNode label in the
NodeMenuScene, you will see that the play image is working as a mask over the
background image.

ShapeScene
Now, open the ShapeScene.swift file and add the following code to create the
SKShapeNode class:

import Foundation
import SpriteKit
class ShapeScene : SKScene {

Nodes in Sprite Kit

[70]

 override func didMoveToView(view: SKView) {

 var shape = SKShapeNode()
 var path = CGPathCreateMutable()
 CGPathMoveToPoint(path, nil, 0, 0)
 CGPathAddLineToPoint(path, nil, 10 , 100)
 CGPathAddLineToPoint(path, nil, 20, 0)
 CGPathAddLineToPoint(path, nil, 10, -10)
 CGPathAddLineToPoint(path, nil, 0, 0)
 shape.path = path
 shape.fillColor = UIColor.redColor()
 shape.lineWidth = 4
 addChild(shape)
 addBackLabel()
 }
 func addBackLabel() {
 var backbutton = SKLabelNode(fontNamed: FontFile)
 backbutton.fontColor = UIColor.blueColor()
 backbutton.name = "BACK"
 backbutton.text = "BACK"
 backbutton.position =
CGPointMake(CGRectGetMinX(self.frame) + backbutton.frame.width/2 ,
CGRectGetMinY(self.frame))
 self.addChild(backbutton)
 }
 var once:Bool = true
 override func touchesBegan(touches: NSSet, withEvent event:
 UIEvent) {
 for touch: AnyObject in touches {
 let location = touch.locationInNode(self)
 let node = self.nodeAtPoint(location)
 if node.name == "BACK" {
 if once {
 once = false
 let transitionEffect =
 SKTransition.flipHorizontalWithDuration(1.0)
 var scene = NodeMenuScene()
 scene.anchorPoint = CGPointMake(0.5, 0.5)
 scene.scaleMode = .ResizeFill
 scene.size = self.size
 self.view?.presentScene(scene,
 transition:transitionEffect)
 }
 }
 }
 }
}

Chapter 4

[71]

We will get the following screen with the previous code:

This screen is obtained when we execute the ShapeScene.swift file

The SKShapeNode class is basically used to make runtime graphics in scene. In this
example, we have created a drawing of four lines and then filled it with a color by
using the fillColor property.

ParticleScene
Now, open the ParticleScene.swift file and add the following code to create the
SKEmitterNode class:

import Foundation.
import SpriteKit
class ParticleScene : SKScene {
 var emitternode :SKEmitterNode?
 override func didMoveToView(view: SKView) {
 var path =
NSBundle.mainBundle().pathForResource("MagicParticle", ofType:
"sks")
 emitternode = NSKeyedUnarchiver.unarchiveObjectWithFile(path!)
as? SKEmitterNode
 self.addChild(emitternode!)
 addBackLabel()
 }
 func addBackLabel() {
 var backbutton = SKLabelNode(fontNamed: FontFile)
 backbutton.fontColor = UIColor.blueColor()
 backbutton.name = "BACK"

Nodes in Sprite Kit

[72]

 backbutton.text = "BACK"
 backbutton.position =
CGPointMake(CGRectGetMinX(self.frame) + backbutton.frame.width/2 ,
CGRectGetMinY(self.frame))
 self.addChild(backbutton)
 }
 var once:Bool = true
 override func touchesBegan(touches: NSSet, withEvent event:
 UIEvent) {
 for touch:AnyObject in touches {
 var location = touch.locationInNode(self)
 emitternode?.position = location
 let node = self.nodeAtPoint(location)
 if node.name == "BACK" {
 if once {
 once = false
 let transitionEffect =
 SKTransition.flipHorizontalWithDuration(1.0)
 var scene = NodeMenuScene()
 scene.anchorPoint = CGPointMake(0.5, 0.5)
 scene.scaleMode = .ResizeFill
 scene.size = self.size
 self.view?.presentScene(scene,
 transition:transitionEffect)
 }
 }
 }
 }
}

We get the following screen with the previous code:

This screen is obtained when we execute the ParticleScene.swift file

Chapter 4

[73]

We used the SKEmitterNode class object for the particle effect. Sprite Kit gives
you many predefined particle effects. You can customize them according to your
requirements. To make a particle effect, follow these steps:

1.	 Right click on project explorer, New File | Resource | SpriteKit Particle File.
2.	 Choose a particle template from the list and then click on Next.
3.	 Save As, name your particle system. We named it MagicParticle, in our

project. Make sure that in the Targets option, the Platformer (project) is
selected before you click on the Create button.

In the Project Navigator, on the left side of screen, you will see the MagicParticle.
sks file. If you click on this file, you can see the particle effect in the editor window.
Now, on the right side panel, many options are available for particle, color, shape,
and so on. You can select any value as per your liking.

LightScene
Now, open the LightScene.swift file and add the following code to create the
SKLightNode class:

import Foundation
import SpriteKit
class LightScene : SKScene {
 var lightNode : SKLightNode?
 override func didMoveToView(view: SKView) {
 var background = SKSpriteNode(imageNamed: "BG")
 background.zPosition = 0.5
 var scaleX = self.size.width/background.size.width
 var scaleY = self.size.height/background.size.height
 background.xScale = scaleX
 background.yScale = scaleY
 addChild(background)
 println(background.size)
 var playbutton = SKSpriteNode(imageNamed: "Play")
 playbutton.zPosition = 1
 playbutton.size = CGSizeMake(100, 100)
 playbutton.position = CGPointMake(-200, 0)
 addChild(playbutton)
 var playbutton2 = SKSpriteNode(imageNamed: "Play")
 playbutton2.zPosition = 1
 playbutton2.size = CGSizeMake(100, 100)
 playbutton2.position = CGPointMake(0, 100)
 addChild(playbutton2)

Nodes in Sprite Kit

[74]

 var playbutton3 = SKSpriteNode(imageNamed: "Play")
 playbutton3.zPosition = 1
 playbutton3.size = CGSizeMake(100, 100)
 playbutton3.position = CGPointMake(200, 0)
 addChild(playbutton3)
 lightNode = SKLightNode()
 lightNode!.categoryBitMask = 1
 lightNode!.falloff = 1
 lightNode!.ambientColor = UIColor.greenColor()
 lightNode!.lightColor = UIColor.redColor()
 lightNode!.shadowColor = UIColor.blueColor()
 lightNode!.zPosition = 1
 addChild(lightNode!)
 playbutton.shadowCastBitMask = 1
 playbutton2.shadowCastBitMask = 1
 playbutton3.shadowCastBitMask = 1
 background.lightingBitMask = 1;
 addBackLabel()
 }
 func addBackLabel() {
 var backbutton = SKLabelNode(fontNamed: FontFile)
 backbutton.fontColor = UIColor.blueColor()
 backbutton.name = "BACK"
 backbutton.text = "BACK"
 backbutton.position = CGPointMake(CGRectGetMinX(self.frame) +
backbutton.frame.width/2 ,
CGRectGetMinY(self.frame))
 backbutton.zPosition = 3
 self.addChild(backbutton)
 }
 var once:Bool = true
 override func touchesMoved(touches: NSSet, withEvent event:
 UIEvent) {
 for touch : AnyObject in touches {
 let location = touch.locationInNode(self)
 lightNode!.position = location
 let node = self.nodeAtPoint(location)
 if node.name == "BACK" {
 if once {
 once = false
 let transitionEffect =
 SKTransition.flipHorizontalWithDuration(1.0)
 var scene = NodeMenuScene()
 scene.anchorPoint = CGPointMake(0.5, 0.5)
 scene.scaleMode = .ResizeFill

Chapter 4

[75]

 scene.size = self.size
 self.view?.presentScene(scene,
 transition:transitionEffect)
 }
 }
 }
 }
}

We will get the following screen, using the preceding code:

The preceding screen is obtained when we execute the LightScene.swift file

In this class, we used a light source and set bitmasks to images. If you run the project,
you will see that the background color is being affected by the lighting source, and
other play images are casting shadows in the opposite direction. If you click on scene,
the lighting source will change its position and shadows will also change themselves
according to the source.

VideoNodeScene
Now, open the VideoNodeScene.swift file and add the following code to create the
SKVideoNode class:

import Foundation
import SpriteKit
import AVFoundation
class VideoNodeScene : SKScene {
 var playonce :Bool = false
 var videoNode : SKVideoNode?

Nodes in Sprite Kit

[76]

 override func didMoveToView(view: SKView) {
 var background = SKSpriteNode(imageNamed: "BG")
 background.zPosition = 0
 var scaleX = self.size.width/background.size.width
 var scaleY = self.size.height/background.size.height
 background.xScale = scaleX
 background.yScale = scaleY
 addChild(background)
 var fileurl =
NSURL.fileURLWithPath(NSBundle.mainBundle().pathForResource
("Movie", ofType: "m4v")!)
 var player = AVPlayer(URL: fileurl)
 videoNode = SKVideoNode(AVPlayer: player)
 videoNode?.size = CGSizeMake(200, 150)
 videoNode?.zPosition = 1
 videoNode?.name = "Video"
 self.addChild(videoNode!)
 addBackLabel()
 }
 func addBackLabel() {
 var backbutton = SKLabelNode(fontNamed: FontFile)
 backbutton.fontColor = UIColor.blueColor()
 backbutton.name = "BACK"
 backbutton.text = "BACK"
 backbutton.position =
CGPointMake(CGRectGetMinX(self.frame) + backbutton.frame.width/2 ,
CGRectGetMinY(self.frame))

 self.addChild(backbutton)
 }
 var once:Bool = true
 override func touchesBegan(touches: NSSet, withEvent event:
 UIEvent) {
 for touch: AnyObject in touches {
 let location = touch.locationInNode(self)
 let node = self.nodeAtPoint(location)
 if node.name == videoNode?.name {
 if !playonce {
 videoNode?.play()
 playonce = true
 }

 }
 if node.name == "BACK" {
 if once {

Chapter 4

[77]

 once = false
 let transitionEffect =
 SKTransition.flipHorizontalWithDuration(1.0)
 var scene = NodeMenuScene()
 scene.anchorPoint = CGPointMake(0.5, 0.5)
 scene.scaleMode = .ResizeFill
 scene.size = self.size
 self.view?.presentScene(scene,
 transition:transitionEffect)
 }
 }
 }
 }

}

We will get the following screen:

The preceding screen is obtained when we execute the LightScene.swift file

To use audio and video in our scene, we have imported AVFoundation into our code.
We have added a video file with the .m4v format in our project. We have used a
file named Movie.a4v for this project. So, we are done with the coding part for this
chapter. We learned six majorly used subclasses of SKNode.

Nodes in Sprite Kit

[78]

Summary
In this chapter, we learned about nodes in detail. We discussed many properties
and functions of the SKNode class of Sprite Kit, along with its usage. Also, we
discussed about the building of a node tree, and actions on a node tree. Now we are
familiar with the major subclasses of SKNode, namely SKLabelNode, SKCropNode,
SKShapeNode, SKEmitterNode, SKLightNode, and SKVideoNode, along with their
implementation in our game.

In the next chapter, we will learn the basics of adding physics simulation in a Sprite Kit
game. We will also learn about adding physics to the different nodes in our game.

[79]

Physics in Sprite Kit
In previous chapters, we had gone through essentials to develop a game in Sprite
Kit. Also, we have already developed starting scenes, which are different screen
views associated with menu items.

To recap the previous chapter, where we discussed about nodes in detail, we
studied the SKNode class and its associated properties and functions. Along
with this, we discussed about building a node tree and actions on a node tree.
We also applied major subclasses in our game, such as SKLabelNode, SKCropNode,
SKShapeNode, SKEmitterNode, SKLightNode, and SKVideoNode to create the menu
scene. Now, the time has come to venture further into Sprite Kit.

In the real world we are affected by many physical laws, such as mass, gravity,
velocity, and so on. To make a game more realistic, Sprite Kit provides us with
some classes and functions, which are used to make nodes act like bodies as in a
real environment. By applying these classes to characters, environment, and so on,
our game becomes realistic.

For example, in a platform game which involves a player walking on a road. It will
be better to have gravity, force, friction, and so on, being applied to the player, the
road or any other obstacle. Now, we are going to discuss about simulating physics
in our game Platformer.

Physics in Sprite Kit

[80]

Simulating physics in Sprite Kit
Most of the game engines have an inbuilt physics engine, and you can also add an
external physics engine to a game engine. Fortunately, Apple provides a physics
engine in Sprite Kit. In Sprite Kit, physics properties are applied by an object of the
class, SKPhysicsBody. As we have already learned that objects are connected to a
node in a node tree, physics simulation uses a node's orientation and position for
simulation. In Sprite Kit, when a game renders, each frame invokes some functions
in a cycle, as follows:

update
didEvaluateActions
didSimulatePhysics
didApplyConstraints
didFinishUpdate

After actions (such as image changing in a node for animation) SKScene simulates
physics to do all the actions, such as gravity on a physics body, velocity change,
collision between two physics bodies, and so on. If we go through our SKNode class,
we will see there is a property called physicsBody. It takes the SKPhysicsBody
object as a parameter and defines physics laws on those objects; it is obvious it
will be inherited from its subclasses, such as SKSpriteNode, SKEmitterNode,
SKVideoNode, and more. So, we can make any SKNode subclass a physics body
by setting the physicsBody property on it.

Now it is time to dive into some necessary documentation of the essential class
responsible for the physics behavior of a node in a scene. Let's discuss about the
SKPhysicsBody class.

SKPhysicsBody
A node's physicsBody property uses the SKPhysicsBody class object. In the life
cycle of a frame, the didSimulatePhysics function is called just after actions
are evaluated. The work of this function is to calculate the physical properties,
such as gravity, velocity, friction, restitution, collision, or other forces. After these
calculations are done, the positions and orientations of nodes are updated in the
update function. If we are going to apply some force on a node, it is necessary that
we assign the SKPhysicsBody object to that node first.

Sprite Kit provides us with two kinds of physics bodies:

•	 Volume-based: These are the kind of physics bodies that have mass
and volume

Chapter 5

[81]

•	 Edge-based: These are the kind of physics bodies that don't have mass
and volume

In volume-based bodies, we can control if it should be affected by gravity, friction,
collision, and so on, by setting it as static or dynamic. This property is very useful as
we can make a static platform or a moving object by just tweaking this property. These
bodies are defined within specified boundaries, such as circle, rectangle, polygon, and
so on. Irregular shapes are not allowed. For an irregular shaped body one can join
small volume-based bodies to achieve desired pattern for a physics object.

On the other hand, edge-based bodies are used to make volume-less spaces in the
game scene. That means they are not solid and allow other physics body inside their
own boundaries. Edge-based physics bodies are always treated as if their dynamic
property is false and could collide only with other volume-based physics bodies.
To understand the concept of edge-based body, think of a scene having clouds;
a cloud can never be solid, a volume-based physics object can enter into it.

A graphical example of volume-based and edge-based physics bodies

These two kinds of physics bodies are made by calling appropriate initialization of
SKPhysicsBody. We mostly use volume-based physics bodies in our scene.

As we define that, we need to instantiate the SKPhysicsBody class for making
volume-based or edge-based physics bodies.

Physics in Sprite Kit

[82]

The initialization of volume-based
physics bodies
Following are the initializers for volume-based physics bodies:

•	 init(circleOfRadius r: CGFloat) -> SKPhysicsBody: This initializer
is used to make a circular physics body. It takes radius as a parameter and
returns an SKPhysicsBody object. The center of gravity of this body lies in
the center of the receiving node, that is, the, node on which this function
is applied.

•	 init(circleOfRadius r: CGFloat,center center: CGPoint) ->
SKPhysicsBody: This initializer is very similar to the previous one except
in that it takes one more parameter, that is, the origin of the physics body.
We can shift our gravity or circular physics body's center with respect to
the receiving coordinate system assigned by this initializer.

•	 init!(rectangleOfSize s: CGSize) -> SKPhysicsBody: This initializer
is used to make rectangle shaped physics bodies. It takes a rectangle as a
parameter and returns an SKPhysicsBody object, containing its center on
the receiving node's center.

•	 init!(rectangleOfSize s: CGSize,center center: CGPoint) ->
SKPhysicsBody: This initializer is very similar to the previous one except in
that it takes one more parameter that is, origin of the physics body. We can
shift gravity on a rectangular physics body to the center with respect to the
receiving coordinate system assigned by this initializer.

•	 init(bodies bodies: [AnyObject]) -> SKPhysicsBody: This initializer is
used to make a new physics body by using the array of existing physics bodies.
For this we have to pass only volume-based physics body objects in the array.
The resultant area of the physics body from this initializer, is the union of the
other child physics body inside the array. As it uses the shapes of its children's
bodies, it means it can have spaces inside it, or even blank fields.

•	 init!(polygonFromPath path: CGPath!) -> SKPhysicsBody:
This initializer is used to make a polygon shaped physics body. It takes
a convex polygon path with counterclockwise winding as a parameter.

•	 init!(texture texture: SKTexture!,size size: CGSize) ->
SKPhysicsBody: This initializer is used to make a physics body using a texture.
This is used when we need a physics body shape as per the texture shape.
It is called per pixel physics and is very useful when the shape is neither
rectangular nor circular. It was introduced in iOS 8. In this initializer, a texture
and a size are used as parameters. First, texture is scaled to that size and then,
the shape of the newly created physics body is decided by all of the pixels
having a non-zero alpha value.

Chapter 5

[83]

•	 init!(texture texture: SKTexture!,alphaThreshold alphaThreshold:
Float,size size: CGSize) -> SKPhysicsBody: This initializer is very
similar to the previous one and was also introduced in iOS 8, except that it
takes one more argument, alpha, as parameter. We can define what should be
the alpha value below which the pixels will be ignored, in order to create the
new physics body. The rest of the process is the same as the previous one.

After this, let's have a look at how to create an edge-based physics body.

The initialization of edge-based physics bodies
Following is the list of initializers used to make an edge-based physics body:

•	 init (edgeLoopFromRect rect: CGRect) -> SKPhysicsBody: This
initializer takes a rectangle as a parameter and returns a new rectangular
edge-based physics body.

•	 init (edgeFromPoint p1: CGPoint, toPoint p2: CGPoint) ->
SKPhysicsBody: This initializer takes two points as parameters and returns
an edge-based physics body between those two points.

•	 init (edgeLoopFromPath path: CGPath!) -> SKPhysicsBody: This
initializer takes a path as a parameter and returns an edge-based physics
body based on that path. The path must not intersect itself. If the path is not
closed, it creates a loop by joining the first and the last point of that path
automatically.

•	 init (edgeChainFromPath path: CGPath!) -> SKPhysicsBody: This
initializer takes a path as a parameter and returns an edge chain-based
physics body based on that path. The path must not intersect itself.

These are the initialization processes for the physics body—both for volume-based
and edge-based ones. We can customize a physics body's behavior by tweaking
some of its properties.

The behavior controller properties of a
physics body
Following is the list of properties from which we can control the behavior of a
physics body:

•	 affectedByGravity: This is a Boolean value. It determines if a physics body
will be affected by gravity in the scene. Edge-based physics bodies simply
ignore this property as they are not affected by gravity. The default value
is true.

Physics in Sprite Kit

[84]

•	 allowsRotation: This is also a Boolean value. It determines if a physics
body will be affected by angular forces and impulses applied to it in
the scene. An edge-based physics body simply ignores this property.
The default value is true.

•	 dynamic: This is a Boolean value too. It determines if a physics body will be
moved by the physics simulation in the scene. Edge-based physics bodies
simply ignore this property. The default value is true.

These are the behavior controller properties for a volume-based physics body.
Along with this, a physics body has some of its own physical properties too.

The physical properties of a physics body
These are the properties possessed by a physics body. As you know, the velocity,
force, gravity, collision, and so on, depend upon the mass, density, area, and so on,
of a body.

Following is the list of physical properties of a physics body.

•	 mass: It is the mass of the body in kilograms.
•	 density: It is the density of the body in kilograms per square meter.

The density and mass properties are interrelated. One property is
recalculated every time the other is changed. The default value is 1.0.

•	 area: It is the area covered by the body. This is a read-only property
and is used to define the mass of the physics body with the help of the
density property.

•	 friction: It is used to determine how much friction force should be
applied to the other physics body in contact with the current body.
This property has a value between 0.0 and 1.0. The default value is 0.2.

•	 restitution: It is used to determine the bounciness of the physics body.
This property has a value between 0.0 and 1.0. The default value is 0.2.

•	 linearDamping: It is used to reduce the linear velocity of a physics body.
This property has a value between 0.0 and 1.0. The default value is 0.1.

•	 angularDamping: It is used to reduce the angular velocity of a physics body.
This property has a value between 0.0 and 1.0. The default value is 0.1.

These properties define the physical behavior of a physics body.

The SKPhysicsBody class provides some properties and functions for collision control.

Chapter 5

[85]

Collision control properties and functions
Physics bodies use some category for collision detection with other physics bodies.
Collision is very important in almost every game. When objects collide, there is a
change in the velocity and discretion of the object, which needs precise calculation
of the change in the physical parameters. We have to specify the category of the
physics bodies in our game. There is a limitation as we can only define 32 different
kinds of categories for the physics bodies in our game. We use these categories to
define whether a physics body should collide with another physics body or not.
This is very useful behavior and is used in a physics game in Sprite Kit.

Following is the list of collision control properties:

•	 categoryBitMask: This is a mask which defines the category of the physics
body. We can have up to 32 different categories. With the help of a category
bitmask, you can define which physics bodies should interact with each
other. This property is used along with contactTestBitMark.

•	 collisionBitMask: This property is used to define the categories of physics
bodies which could collide. It is used to determine whether a collision occurs
using an AND operation with the other physics body. If the result is a nonzero
value, this body will be affected by the collision, otherwise not. This helps you
skip collision calculations in case of a minute velocity change.

•	 usesPreciseCollisionDetection: Bool: If true, this body will be affected
by the collision, otherwise it will pass through the other body in a single frame.
A true value on either of the bodies will lead to a collision, which means
that more computation power will be used by Sprite Kit to detect collisions
and perform precise calculations. For very small and fast moving objects, this
property can be set to true, otherwise the default value is false.

•	 contactTestBitMask: This property defines which category a BitMask physics
body should notify the intersection with the receiving physics body through an
AND gate operation. If the value is non-zero, the SKPhysicsContact object is
created and passed to the physics world delegate.

•	 allContactedBodies() -> [AnyObject]: This is the function which is
used to determine if one or more bodies is in contact with the receiving
physics body. It simply returns an array of all physics body objects that
are in contact with the receiving physics body, that is, the body on which
this function is applied.

These collision control properties and functions determine the behavior of two or
more physics body collisions or contacts in a physics simulation. But sometimes
we need to give velocity or force to a physics body for some specific behavior.
The SKPhysicsBody class defines some functions which are used to apply force
and impulse on physics bodies for this purpose.

Physics in Sprite Kit

[86]

Forces and impulses
To move a space ship or a car, we need to apply force in the direction of motion;
to keep it moving one has to apply force continuously. Impulse is to change the
momentum of an object, for example, to fire a bullet, we need not apply any force
once it starts moving.

Following is the list of functions that are used to apply force and impulse on a
physics body:

•	 func applyForce(_ force: CGVector): This function is used to apply
a force on the receiving physics body. It takes force as a parameter and
accelerates the receiving physics body without any angular acceleration.

•	 func applyTorque(_ torque: CGFloat): This function is used to apply an
angular force on the receiving physics body. It takes torque as a parameter
and applies angular acceleration to the receiving physics body. It does not
apply any linear acceleration on the receiving physics body.

•	 func applyForce(_ force: CGVector,atPoint point: CGPoint):
This function is used to apply a force on the receiving physics body at a
specific point. As it is applied on a specific point on the physics body,
it could change both the angular and linear acceleration of the body.

•	 func applyImpulse(_ impulse: CGVector): This function is used to
apply an impulse to the center of gravity of the receiving physics body.
It takes impulse as a parameter and affects linear velocity, without
changing angular velocity.

•	 func applyImpulse(_ impulse: CGVector,atPoint point: CGPoint):
This function is used to apply an impulse on the receiving physics body at
the specific point. As it is applied on a specific point on the physics body, it
could change both angular and linear velocity of the receiving physics body.

•	 func applyAngularImpulse(_ impulse: CGFloat): This function is used
to apply an angular impulse on the receiving physics body. It takes impulse
as a parameter and applies angular velocity on the receiving physics body.
It does not apply any linear velocity on the receiving physics body.

Along with these functions, we also need to know the resultant velocity and
angular velocity of the physics body. For this purpose, the SKPhysicsBody class
has some properties.

Chapter 5

[87]

The velocity of a physics body
Following is the list of functions which are used to apply velocity on a physics body:

•	 velocity: It is used to determine the linear velocity of the physics body.
•	 angularVelocity: It is used to determine the angular velocity of the

physics body.
•	 resting: It determines if the physics object is at rest in the physics world.

This means that it is not taking part in physics simulation, until awakened
by a force or collision. This property helps reduce the calculation in physics
simulation, and thus, improves the performance.

•	 SKPhysicsBody: It provides us with some other important properties.
Other property joints, this property holds an array of SKPhysicsJoint
objects, which are connected to the receiving physics body.

•	 fieldBitMask: This property is applied on the physics body. Once this
body is inside of an SKFieldNode object, the fieldBitMask property will
perform a logical AND operation with the categoryBitMask property of
the field node. The field node's effect will be applied to this body in case
of a nonzero value.

•	 charge: It is used to calculate the electromagnetic field force of an
SKFieldNode object on the receiver's physics body.

•	 pinned: It determines whether the receiver will be fixed in position with
respect to its parent or not. Its default value is false. If it is true, then the
node can freely rotate around its position with respect to its parent, applying
physics to our Platformer game.

Now, we are going to continue with our Platformer game and implement various
physics engine capabilities in it. Before we start to apply physics in our game, we
need to first make sure that the menu scene that loads initially is MenuScene (as
discussed in Chapter 3, Sprites) and not NodeMenuScene. We will be implementing
the NodeMenuScene class when we discuss about shaders and particle emitters.

Please go over to the GameViewController.swift file and in the
GameViewController class, comment out the following:

let menuscene = NodeMenuScene()

Instead, write this:

let menuscene = MenuScene(size: view.bounds.size, playbutton: "Play",
background:"BG")

The above code will make your game load the MenuScene class. Now, head over to
the GameScene.swift file to add physics bodies in our game.

Physics in Sprite Kit

[88]

Using GameScene.swift to add physics
bodies
Start by opening your GameScene.swift file.

1.	 Edit the GameScene class declaration to add SKPhysicsContactSelegate
as the following:
class GameScene: SKScene, SKPhysicsContactDelegate

2.	 Then add the following code in it:
let backgroundNode = SKSpriteNode(imageNamed: "BG")
 var spriteWithoutTexture : SKSpriteNode?
 let myAtlas = SKTextureAtlas(named: "idle.atlas")
 var player:SKSpriteNode =
 SKSpriteNode(imageNamed:"bro5_idle0001@2x")
 var currentno = 0

 // SETTING UP "RUNNING BAR", "BLOCK 1", "Block 2
 let runningBar = SKSpriteNode(imageNamed:"bar")
 let block1 = SKSpriteNode(imageNamed:"block1")
 let block2 = SKSpriteNode(imageNamed:"block2")
 var origRunningBarPositionX = CGFloat(0)
 var maxBarX = CGFloat(0)
 var groundSpeed = 5
 var playerBaseline = CGFloat(0)
 var onGround = true

 // INITIALIZING PHYSICAL PROPERTIES VALUES
 var velocityY = CGFloat(0)
 let gravity = CGFloat(0.6)
 var blockMaxX = CGFloat(0)
 var origBlockPositionX = CGFloat(0)
 var blockStatuses:Dictionary<String,BlockStatus> = [:]

 //COLLISION TYPE BETWEEN "BLOCKS" AND "PLAYER"
 enum ColliderType:UInt32
 {
 case player = 1
 case Block = 2
 }

Chapter 5

[89]

If you have a look at the preceding code, you will see that we have added
three new images: one is running the bar on top, which our player will run
or appear to run, the other two are block1 and block2. These two images
are obstacles, with which our player will collide. Apart from this, we have
also initialized some physical property values such as velocity, gravity, and
so on. We also have defined an enum to control the collision type between
Blocks and Player.

3.	 Now, add this function to start the execution flow, and to define the contact
delegate to detect touch/contact on the screen (touch will help us determine
the jump intensity):
 override func didMoveToView(view: SKView)
 {
 self.physicsWorld.contactDelegate = self

 //#1
 addBackGround()
 addRunningBar()
 addPlayer()
 addBlocks()

 }

In the preceding code, the #1 code block is used for adding the background,
running bar, player, and blocks into the scene with the methods. And
also for setting up the physics properties, such as categoryBitMask,
ContactTestBitMask, CollisionBitMask, and so on.

4.	 Now, add the following function to generate blocks randomly, taking a
number between 50 and 200; this is used to randomly display blocks on
the screen:
func random() -> UInt32
 {
 var range = UInt32(50)..<UInt32(200)
 return range.startIndex + arc4random_uniform(range.
endIndex - range.startIndex + 1)
//CREATING BLOCKS FROM LIBRARY METHOD OF iOS
 }

5.	 Now, add the next function for using sprite without texture:
func addSpriteWithoutTexture()
 {
 spriteWithoutTexture = SKSpriteNode(texture: nil,
 color:UIColor.redColor(), size: CGSizeMake(100, 100))

Physics in Sprite Kit

[90]

 addChild(spriteWithoutTexture!)
 }

6.	 Add the next function to insert the background in the scene:
func addBackGround()
 {
 backgroundNode.zPosition = 0
 var scaleX =
 self.size.width/backgroundNode.size.width
 var scaleY =
 self.size.height/backgroundNode.size.height
 backgroundNode.xScale = scaleX
 backgroundNode.yScale = scaleY
 addChild(backgroundNode)
 }

7.	 Add the following function to define the physics property for the
player/character in our game:
func addPlayer()
 {

 player.zPosition = 2;
 player.name = "Player"

 // PHYSICS PROPERTIES FOR player
 self.playerBaseline = self.runningBar.position.y +
 (self.runningBar.size.height / 2) +
 (self.player.size.height / 2)
 self.player.position =
 CGPointMake(CGRectGetMinX(self.frame) +
 self.player.size.width + (self.player.size.width / 4),
 self.playerBaseline)
 self.player.physicsBody =
 SKPhysicsBody(circleOfRadius:
 CGFloat(self.player.size.width / 2))
 self.player.physicsBody?.affectedByGravity = false
 self.player.physicsBody?.categoryBitMask =
 ColliderType.player.rawValue
// Will become '1' because its defined in "ColliderType"
enum
 self.player.physicsBody?.contactTestBitMask =
 ColliderType.Block.rawValue
 self.player.physicsBody?.collisionBitMask =
 ColliderType.Block.rawValue

 self.addChild(player)
 }

Chapter 5

[91]

8.	 Now, set up the running bar; the bar on which the player will appear to run:
func addRunningBar()
 {
 self.runningBar.anchorPoint = CGPointMake(0, 0.5)
 self.runningBar.position =
CGPointMake(CGRectGetMinX(self.frame),CGRectGetMinY
(self.frame) + (self.runningBar.size.height / 2))
 self.origRunningBarPositionX =
 self.runningBar.position.x
 self.maxBarX = self.runningBar.size.width -
 self.frame.size.width
 self.maxBarX *= -1
 self.addChild(self.runningBar)
 }

9.	 Time to insert the following function to add the blocks in the game:
func addBlocks()
 {
 // PHYSICS PROPERTIES FOR BLOCK 1
 self.block1.position =
 CGPointMake(CGRectGetMaxX(self.frame) +
 self.block1.size.width, self.playerBaseline)
 self.block2.position =
 CGPointMake(CGRectGetMaxX(self.frame) +
 self.block2.size.width, self.playerBaseline +
 (self.block1.size.height / 2))
 self.block1.physicsBody =
 SKPhysicsBody(rectangleOfSize: self.block1.size)
 self.block1.physicsBody?.dynamic = false
 self.block1.physicsBody?.categoryBitMask =
 ColliderType.Block.rawValue
 self.block1.physicsBody?.contactTestBitMask =
 ColliderType.player.rawValue
 self.block1.physicsBody?.collisionBitMask =
 ColliderType.player.rawValue

 // PHYSICS PROPERTIES FOR BLOCK 2
 self.block2.physicsBody =
 SKPhysicsBody(rectangleOfSize: self.block1.size)
 self.block2.physicsBody?.dynamic = false
 self.block2.physicsBody?.categoryBitMask =
 ColliderType.Block.rawValue
 self.block2.physicsBody?.contactTestBitMask =
 ColliderType.player.rawValue

Physics in Sprite Kit

[92]

 self.block2.physicsBody?.collisionBitMask =
 ColliderType.player.rawValue

 self.origBlockPositionX = self.block1.position.x
//ORIGINAL BLOCK POSITION (0,0)
 self.block1.name = "block1" // SETTING BLOCK
 NAMES
 self.block2.name = "block2"

 // ADDING BLOCK 1 and BLOCK 2 to DICTIONARY
 BLOCKSTATUS
 blockStatuses["block1"] = BlockStatus(isRunning:
false, timeGapForNextRun: random(), currentInterval:
UInt32(0))
 blockStatuses["block2"] = BlockStatus(isRunning:
false, timeGapForNextRun: random(), currentInterval:
UInt32(0))

 self.blockMaxX = 0 - self.block1.size.width / 2

 self.addChild(self.block1)
 self.addChild(self.block2)
 }

10.	 Add the following function, which is called when the user touches the screen.
It leads the character to jump:
override func touchesBegan(touches: NSSet, withEvent event:
UIEvent) {
 for touch: AnyObject in touches
 {
 let location = touch.locationInNode(self)
 let node = self.nodeAtPoint(location)
 if node.name == player.name
 {
 currentno++
 //changeSpriteFromTextureAtlas()

 if self.onGround
 {
 self.velocityY = -18.0
 self.onGround = false
 }
 }
 }
 }

Chapter 5

[93]

11.	 Also add the next function, which is called when the screen touch is released.
It will bring down the character after the jump:
override func touchesEnded(touches: NSSet, withEvent event:
UIEvent)
 {
 if self.velocityY < -9.0 //SETTING VELOCITY FOR
 JUMP ACTION IS FINISHED
 {
 self.velocityY = -9.0
 }
 }

12.	 Add the next method to define actions to perform scene-specific updates that
need to occur before the scene's actions are evaluated:
override func update(currentTime: NSTimeInterval)
 {
 if self.runningBar.position.x <= maxBarX
 {
 self.runningBar.position.x =
 self.origRunningBarPositionX
 }

 // JUMP ACTION
 self.velocityY += self.gravity
 self.player.position.y -= velocityY
 if self.player.position.y < self.playerBaseline
// STOPPING PLAYER TO FALLDOWN FROM BASELINE
 {
 self.player.position.y =
 self.playerBaseline
 velocityY = 0.0
 self.onGround = true
 }
 //move the ground
 runningBar.position.x -=
 CGFloat(self.groundSpeed)
 blockRunner()

 }

Physics in Sprite Kit

[94]

13.	 Finally, add the following function to make the blocks run:
func blockRunner()
 {
 // LOOP FOR THE DICTIONARY TO GET BLOCKS
 for(block, blockStatus) in self.blockStatuses
 {
 var thisBlock = self.childNodeWithName(block)!
 if blockStatus.shouldRunBlock()
 {
 blockStatus.timeGapForNextRun = random()
 blockStatus.currentInterval = 0
 blockStatus.isRunning = true
 }

 if blockStatus.isRunning
 {

 if thisBlock.position.x > blockMaxX
// IF IT IS POSITIVE (KEEP MOVING BLOCKS FROM RIGHT TO
LEFT)
 {
 thisBlock.position.x -=
 CGFloat(self.groundSpeed)
 }
 else
// IF ITS TIME TO OFF THE SCREEN ie when BLOCKS should
DISAPPEAR
 {
 thisBlock.position.x =
 self.origBlockPositionX
 //blockStatus.isRunning = false
 }
 }
 else
 {
 blockStatus.currentInterval++
 }
 }
 }

14.	 Also create one more swift file by the name of BlockStatus.swift, in
Xcode. This file contains code to initialize and run the blocks:
class BlockStatus //
{
 var isRunning = false //CURRENTLY
 RUNNING ON SCREEN OR NOT

Chapter 5

[95]

 var timeGapForNextRun = UInt32(0) // HOW LONG WE
 IT SHOULD WAIT FOR NEXT RUN
 var currentInterval = UInt32(0) //TOTAL
 INTERVAL WAITED

 // INITIALIZING BLOCK STATUS
 init(isRunning:Bool, timeGapForNextRun:UInt32,
 currentInterval:UInt32) {
 self.isRunning = isRunning
 self.timeGapForNextRun = timeGapForNextRun
 self.currentInterval = currentInterval
 }

 // RUNNING BLOCKS
 func shouldRunBlock() -> Bool
 {
 return self.currentInterval >
 self.timeGapForNextRun
 }
}

15.	 Now go ahead and run the game; make sure to experiment with various
values to discover the behavior of your game. This will increase your
understanding of physics in Sprite Kit.

Physics in Sprite Kit

[96]

And following is the second image:

The preceding two screenshots display the character as static and blocks as moving.
We can also perform jumps by touching on the character on the screen:

Did you notice that the player is not running, but instead, the bar under the player
and the blocks colliding with it are moving. The character just appears to be running;
in this case, we have just implemented the velocity method of jumping, instead of
applying force in the y-direction.

Chapter 5

[97]

Summary
In this chapter, we discussed the physics engine. We learned about SKPhysicsBody.
Now we know very well about edge-based and volume-based physics bodies in
Sprite Kit. In our game, blocks coming towards the character are volume-based
bodies. We also learned about the various initialization methods for these kinds of
physics bodies. We learned how to apply the physics engine of Sprite Kit in a game,
so as to explore its features.

In the next chapter, we will learn about animating sprites in Sprite Kit and adding
various types of controls in our game. Also, we will discuss about collisions and
SceneKit integration through Sprite Kit.

[99]

Animating Sprites, Controls,
and SceneKit

In the previous chapter, we learned about physics engine in detail. We discussed
SKPhysicsBody, that is, edge-based and volume-based physics bodies. We also got
to know about the various initialization methods and physics properties, which
helped us in integrating physics into our Platformer game. Now we have a much
clear idea about how to simulate physics in a Sprite Kit game.

It is always good to have nice animated features in our game to enhance the user
experience; this Sprite Kit has the SKAction class, which helps us to apply actions
on nodes such as moving of nodes, rotating of nodes, scaling of nodes, and so on.
For example, using animations during player movement or depicting collisions
using animations, and so on. It's time for us to discuss about the SKAction class
and also about implementing animations in our Platformer game.

Along with animation, we are also going to discuss about how we can provide
controls in our game, such as having a reaction when the user taps on the screen or
using the accelerometer to respond to directions in a game. We will also implement
controls in our Platformer game and add a jump button to make the player jump over
the blocks.

Scene Kit is a 3D graphics framework provided by Apple, we can use SceneKit's 3D
elements in our Sprite Kit game to further enhance the gaming experience and have
a better gameplay if required. We are going to discuss about how we can integrate
SceneKit in a Sprite Kit game.

Animating Sprites, Controls, and SceneKit

[100]

Animating nodes
Animated pictures give a very dynamic and polished feel during a gameplay; it
is always preferred to have animations in our game. To add animations in Sprite
Nodes, we can use the SKAction class properties and methods, which add the
animations to the Sprite Kit nodes. Let's discuss about the SKAction class in detail.

SKAction
Properties and methods of the SKAction class help in providing the actions to the
nodes in a scene. Actions are used to change the arrangement and appearance of the
node to which they are attached. Actions in a node are executed when the scene runs
its nodes.

To assign an action we can call the particular SKAction class method as required.
Then, we can configure the properties of the actions. In the end, for the execution of
the action, we call the node object's runAction() method and pass the action's object.

Adding a single action to a node
There are two steps to add a single action to the node:

1.	 Creating an action: First of all, we create an action which can perform
a particular activity such as rotating, scaling, moving, and so on, on the
Sprite Kit node.

2.	 Executing an action: Finally, we run the action on the node by calling
the runAction() method on that node.

Adding multiple actions to a node
There are three steps involved in the process of adding multiple actions to the node:

1.	 Creating actions: Here, instead of creating a single action, we can create
multiple actions to perform different behaviors on the Sprite Kit node.

2.	 Creating action sequence: Here, we are going to create the order of execution
in which the actions should behave in the Sprite Kit node.

3.	 Executing the action: Finally, we are going to run the action by specifying
the action sequence in the runAction() method on the node.

Chapter 6

[101]

Creating actions
There are various types of actions which can be applied on a node to make it behave
differently, now we are going to study about most of them in detail.

Moving nodes using actions
The SKAction class provides various action methods for moving nodes on a scene.
They are as follows:

•	 func moveByX(x: CGFloat, y : CGFloat, duration sec:
NSTimeInterval): This will move the node to its new position. Here,
Delta of x, Delta of y, and duration in seconds are passed as parameters.

•	 func moveBy(delta: CGVector, duration sec: NSTimeInterval):
This will move the node relative to its current position. Here, Delta vector
pointing to a new position and duration in seconds are passed as parameters.

•	 moveTo(location: CGPoint, duration sec: NSTimeInterval): This will
move the node to a new position. Location of the new position and duration
in seconds are passed as parameters. Here location is a CGpoint value whose
default value is (0,0).

•	 func moveToX(x: CGFloat, duration sec: NSTimeInterval): This will
move the node horizontally. In this, the x value and the duration of the action
are passed as parameters.

•	 func moveToY(y: CGFloat, duration sec: NSTimeInterval): This will
move the node vertically along a relative path. In this, the y value and the
duration of the action in seconds are passed as parameters.

•	 func followPath(path: CGPath, duration sec: NSTimeInterval):
This will move the node along a relative path. path and sec are taken as
parameters, in which path is a CGpath value which is relative to the current
position of the node.

•	 func followPath(path: CGPath, speed: CGFloat): This will move the
node along a relative path at a specified speed. The unit of speed is points
per second.

•	 func followPath(path: CGPath, asOffset : Bool, orientToPath :
Bool, duration : NSTimeInterval): This function will move the node
along the path. In this function, we pass four parameters: one is the path on
which the node will move; the second is the offset parameter, which is either
true or false. true represents that the points in the path are relative offsets to
the initial position of the node, and on the other hand false represents that the
points are absolute in nature. orientToPath will be a Boolean property if the
true node can follow the path along the z axis.

Animating Sprites, Controls, and SceneKit

[102]

•	 func followPath(path: CGPath, asOffset : Bool, orientToPath :
Bool, speed : CGFloat): This function will move the node along the path
at a specified speed.

Rotating nodes using actions
The SKAction class provides various action methods for rotating nodes on a scene.
They are:

•	 func rotateByAngle(radians: CGFloat, duration sec:
NSTimeInterval): This functions helps in rotating the node at a specified
angle. It takes two parameters: one is the amount in which the node is to be
rotated in radians, and the other is the duration of the rotation in seconds.
This rotation is relative to the node.

•	 func rotateToAngle(radians: CGFloat, duration sec:
NSTimeInterval): This function helps in rotating the node to an absolute
angle, in the counterclockwise direction. It also takes two parameters: one is
the angle to rotate the node, which is measured in radians, and the other is
the duration of the animation in seconds.

•	 func rotateToAngle(radians: CGFloat, duration sec:
NSTimeInterval, shortestUnitArc shortestUnitArc: Bool):
This function helps in rotating the node to an absolute angle. It takes three
parameters: one is the angle to which the node is to be rotated, the second is
the duration in seconds, and the third is a Boolean value to assign whether
we want the smallest rotation path or not. If true, then the rotation will be in
the shortest direction, otherwise the rotation will be interpolated within the
discrete points.

Changing the animation speed of a node
The SKAction class provides various action methods for changing a node's
animation speed. They are as follows:

•	 func speedBy(speed: CGFloat, duration sec: NSTimeInterval):
With this function, we can control the speed of a node's actions. It takes
two parameters: one is the amount of speed to be added in the node,
and the other is the duration of the animation in seconds.

•	 func speedTo(speed: CGFloat, duration sec: NSTimeInterval):
With this function too, we can control the speed of the node's actions.
But instead of passing the parameter that adds its value to the previous
speed, this function changes the speed to the set value. The other
parameter passed is the duration of animation in seconds.

Chapter 6

[103]

Changing the scale position of a node
The SKAction class provides various action methods for scaling a node. They are
as follows:

•	 func scaleBy(scale: CGFloat, duration sec: NSTimeInterval):
With this function, you can change the xScale and yScale values of a node.
This function takes two parameters: one is the amount to be added in the x
and y values of the node, and the other is the duration of the animation.
This scaling applies to the current size.

•	 func scaleTo(scale: CGFloat, duration sec: NSTimeInterval):
With this function too, you can change the x and y values of a node. It takes
two parameters: one is the new value of the node's x and y values, and the
other is the duration of the animation.

•	 func scaleXBy (xScale: CGFloat, y yScale: CGFloat, duration
sec: NSTimeInterval): With this function, you can change the x and y values
of the node. Three parameters are passed in this function: first is the amount to
be added in the node's x value, second is the amount to be added in the node's
y value, and the third is the duration of the animation. This function is used
when you have to scale the x and y of a node with different values.

•	 func scaleXTo(xScale: CGFloat, y yScale: CGFloat, duration
sec: NSTimeInterval): With this function too, you can change the x and
y values of the node differently. But instead of passing the value to add
in the x and y, you can set the x and y scale to new values by passing the
respective parameters.

•	 func scaleXTo(scale: CGFloat, duration sec: NSTimeInterval):
With this function, you can only change the x value of a node to a new
value. It takes two parameters: one is the node's x value and the other is
the duration of the animation.

•	 func scaleYTo(scale: CGFloat, duration sec: NSTimeInterval):
With this function, you can only change the y value of a node to a new
value. It takes two parameters: one is the node's y value and the other is
the duration of the animation.

Showing or hiding a node
The SKAction class provides various action methods for hiding or showing a node
on a scene. Let's have a look at both of these functions:

•	 func unhide(): With this function, you can create an action to make a node
visible. This function was introduced in iOS 8.0.

Animating Sprites, Controls, and SceneKit

[104]

•	 func hide(): With this function, you can create an action to make a node
hidden. This function was introduced in iOS 8.0 as well.

Changing the transparency of a node
With the help of SKAction, you can also change the transparency of a node.
The following functions help you achieve this:

•	 func fadeInWithDuration(sec: NSTimeInterval): You can change the
alpha value of a node to 1.0 with this function. Only one parameter is passed
with this function, which is the duration of the animation.

•	 func fadeOutWithDuration(sec: NSTimeInterval): You can change the
alpha value of a node to 0.0 with this function. Only one parameter is passed
with this function, which is the duration of the animation.

•	 func fadeAlphaBy(factor: CGFloat, duration sec:
NSTimeInterval): With this function, you can control the amount of alpha
value to be added to the node. You pass two parameters in this function:
one is the amount to be added to the alpha value of the node, and the other
is the duration of the node.

•	 func fadeAlphaTo(alpha: CGFloat, duration sec: NSTimeInterval):
With this function, you can set a new alpha value for the node. Two
parameters are passed in this function: one is the node's new alpha value
and the other is the duration of the node.

Changing the content of a sprite node
With some SKAction functions, you can create actions to change the content of a
sprite node. Let's have a look at them:

•	 func resizeByWidth(width: CGFloat, height: CGFloat, duration:
NSTimeInterval): This function creates an action which adjusts the size of
a sprite node. This function takes three parameters: the first is the amount to
be added to the sprite's width, the second is the amount to be added to the
sprite's height, and the third is the duration of the animation.

•	 func resizeToHeight(height: CGFloat, duration:
NSTimeInterval): This function creates an action that changes the height
of a sprite to a new value. One parameter passed is the new height of the
sprite, and the second parameter is the duration of the animation.

Chapter 6

[105]

•	 func resizeToWidth(width: CGFloat, duration: NSTimeInterval):
This function creates an action that changes the width of a sprite to a new
value. One parameter passed is the new width of the sprite, and the second
parameter is the duration of the animation.

•	 func resizeToWidth(width: CGFloat, height: CGFloat, duration:
NSTimeInterval): This function creates an action that changes the width
and height of a sprite node to a new value. You can specify the new height
and width separately in this function. It takes three parameters: one is the
new width of the sprite, the second is the new height of the sprite, and the
third is the duration of the animation.

•	 func setTexture(texture: SKTexture): This function helps in creating
an action that changes the sprite's texture. Only one parameter is passed in
this function, which is the sprite's new texture.

•	 func setTexture(texture: SKTexture, resize: Bool): This function
helps in creating an action that changes the sprite's texture. Along with this,
you can also control whether the sprite should be resized to match the new
texture or not. The two parameters passed are the new texture to use on
the sprite and the Boolean to control the resizing.

•	 func animateWithTextures(textures: [AnyObject], timePerFrame
sec: NSTimeInterval): This function creates an action that animates
changes in a sprite's texture. When the action executes, the texture property
animates the array of the texture, which is passed as a parameter. The
action continues until all the textures in the array have finished animating.
Two parameters are passed in this function: one is the array of textures,
and the other is the time in which each texture in the array will be displayed.

•	 func animateWithTextures(textures: [AnyObject], timePerFrame
sec: NSTimeInterval, resize: Bool, restore: Bool): This function
creates an action which animates changes to the sprite's texture and can also
resize the sprite to the new texture, if required. It takes four parameters: one
is the array of textures that are used when animating the sprite, the second
is the time in which each texture will be displayed, the third is a Boolean
value to control the resizing of the sprite to match the new texture, and the
fourth is the restoring of the size of the sprite to the original texture size.

•	 func colorizeWithColor(color: UIColor, colorBlendFactor:
CGFloat, duration sec: NSTimeInterval): This function creates an
animation that animates a sprite's color and blend factor. Three parameters
are passed in this function: one is color for the new sprite, the second is the
new blend factor, and the third is the duration of the animation.

Animating Sprites, Controls, and SceneKit

[106]

•	 func colorizeWithColorBlendFactor(colorBlendFactor: CGFloat,
duration sec: NSTimeInterval): This function will create an animation
that animates the sprite's blend factor. It takes two parameters: one is the
new blend factor and the other is the duration of the animation.

Some other important actions
By now, we have discussed most of the important functions that are used to create
actions on a node. Now, we are going to have a look at some other important
functions used in creating actions on a node in Sprite Kit:

•	 func runAction(action: SKAction, onChildWithName name:
String): This function will create an action that will, in turn, run an
action on a node's child. You pass the action to execute and take the
name of the child object as parameters.

•	 func group(actions: [AnyObject]): You can run a collection of actions
in parallel, using this function's action. It takes an array of SKAction objects
as a parameter.

•	 func sequence(actions: [AnyObject]): You can run a collection
of actions sequentially, using this function's action. It takes an array of
SKAction objects as a parameter. The order of actions is the same as the
order of actions passed in the array.

•	 func repeatAction(action: SKAction, count count: Int): You
can create an action to repeat an action that is specified to repeat a number
of times. The action to repeat and the count of repetitions are passed as
parameters.

•	 func repeatActionForever(action: SKAction): It creates an action
that, in turn, repeats another action forever. It takes the action to repeat
as a parameter.

•	 func reversedAction(): With this action, you can reverse the behavior of
another action.

Adding controls in Sprite Kit
Adding controls in a Sprite Kit doesn't need any external predefined framework;
we can implement the controls in Sprite Kit using the following methods:

•	 Tapping
•	 Gesture recognitions (swiping in any direction, pinching, rotating)
•	 Moving sprites using the accelerometer

Chapter 6

[107]

Let's discuss each of the preceding controls in detail and also how we can implement
them in our game.

Node tapping and clicking
We have four override methods for handling touch events with a UIResponder class,
which is part of UIKit provided by Apple. Let's learn about them:

•	 func touchesBegan(touches:Set<NSObject>, withEvent
event:UIEvent): This method is called whenever a user touches the
view/window

•	 func touchesMoved(touches:Set<NSObject>, withEvent
event:UIEvent): This method is called whenever a user moves his finger
on the view/window

•	 func touchesEnded(touches:Set<NSObject>, withEvent
event:UIEvent): This method is called whenever a user removes the finger
from view/window

•	 func touchesCancelled(touches:Set<NSObject>!, withEvent
event:UIEvent!): This method is called whenever system events,
such as low memory warnings and so on, happen

To implement an action when someone taps on a node on the scene, we will first
get the tapped location on the scene, and if the tapped location is within the node's
co-ordinate axis points, then we can define the actions for that tap. This will be
implemented in the touchesBegan() method.

Sprite Kit includes a category in UITouch; this is one of its best features. UITouch comes
with two methods, namely, locationInNode() and previousLocationInNode().
These methods find the coordinates of a touch within an SKNode object's coordinate
system.

In our game, we will use it to find out where the touch happened within the scene's
coordinate system.

Gesture recognitions (swiping in any
direction, pinching, or rotating)
If you need to detect gestures in your game, such as taps, pinches, pans, or rotations,
it's extremely easy with Swift and the built-in UIGestureRecognizer classes.

Following is a code snippet for gesture recognitions in Swift; it will implement
swiping left, right, top, and bottom.

Animating Sprites, Controls, and SceneKit

[108]

First, we set up four functions, one for each direction, to handle whatever we want to
do when the user swipes the screen in those directions. Then, in the didMoveToView
statement, we create the UISwipeGestureRecognizer variables for each direction
and add them to the view. Notice the action: selector part of each, calls their
respective functions in the following code:

func swipedRight(sender:UISwipeGestureRecognizer){
 println("swiped right")
}

func swipedLeft(sender:UISwipeGestureRecognizer){
 println("swiped left")
}

func swipedUp(sender:UISwipeGestureRecognizer){
 println("swiped up")
}

func swipedDown(sender:UISwipeGestureRecognizer){
 println("swiped down")
}

override func didMoveToView(view: SKView) {

 /* Setup your scene here */

 let swipeRight:UISwipeGestureRecognizer =
 UISwipeGestureRecognizer(target: self, action:
 Selector("swipedRight:"))
 swipeRight.direction = .Right
 swipeRight.numberOfTouchesRequired = 1
 view.addGestureRecognizer(swipeRight)

 let swipeLeft:UISwipeGestureRecognizer =
 UISwipeGestureRecognizer(target: self, action:
 Selector("swipedLeft:"))
 swipeLeft.direction = .Left
 swipeRight.numberOfTouchesRequired = 1
 view.addGestureRecognizer(swipeLeft)

 let swipeUp:UISwipeGestureRecognizer =
 UISwipeGestureRecognizer(target: self, action:
 Selector("swipedUp:"))
 swipeUp.direction = .Up

Chapter 6

[109]

 swipeRight.numberOfTouchesRequired = 1
 view.addGestureRecognizer(swipeUp)

 let swipeDown:UISwipeGestureRecognizer =
 UISwipeGestureRecognizer(target: self, action:
 Selector("swipedDown:"))
 swipeDown.direction = .Down
 swipeRight.numberOfTouchesRequired = 1
 view.addGestureRecognizer(swipeDown)

Using the preceding code block, you can implement swipe control in a Sprite Kit game.
When the user swipes in a particular direction, the UISwipeGestureRecognizer will
recognize the direction of the user's swipe and the swipe gesture object will be added
to the gesture through the addGestureRecognizer() method. So, the particular object
will be sent for the function and the appropriate method will be called, and after that,
the respective actions will be executed as desired.

Moving sprites with an accelerometer
An accelerometer is a sensor that measures proper acceleration ("g-force"). Proper
acceleration is not the same as coordinate acceleration (rate of change of velocity).
A lot of games use an accelerometer as a controller. We can also use it in our Sprite
Kit game.

Let's have a look at how we can implement an accelerometer in a Sprite Kit game.
We will not be using an accelerometer in our Platformer game, but it would be good
to have knowledge of the same.

As a primary point, we need to read values from the accelerometer, so we need to
import the CoreMotion framework. Add the following line right after the import
SpriteKit line:

import CoreMotion

add the following properties.

var airplane = SKSpriteNode()
var motionManager = CMMotionManager()
var destX:CGFloat = 0.0

Animating Sprites, Controls, and SceneKit

[110]

The CMMotionManager object is the gateway to the motion services provided by iOS.
In the didMoveToView method, the custom code is executed. Let's have a look at it:

override func didMoveToView(view: SKView) {
 /* Setup your scene here */
 // 1
 airplane = SKSpriteNode(imageNamed: "Airplane")
 airplane.position = CGPointMake(frame.size.width/2,
 frame.size.height/2)
 self.addChild(airplane)
 if motionManager.accelerometerAvailable == true
{

 // 2motionManager.startAccelerometerUpdatesToQueue
(NSOperationQueue.currentQueue(), withHandler:{
 data, error in
 var currentX = self.airplane.position.x

 // 3
 if data.acceleration.x < 0 {
 self.destX = currentX + CGFloat(data.acceleration.x * 100)
 }
 else if data.acceleration.x > 0 {
 self.destX = currentX + CGFloat(data.acceleration.x * 100)
 }
 })
 }
 }

Please refer the comments in the preceding code to the following points:

1.	 The image will be loaded and centered in the main view.
2.	 The startAccelerometerUpdatesQueue method reads input from the

accelerometer and constantly gets new updates.
3.	 If the acceleration value is negative, the value is subtracted from the x

position, hence the airplane will move left. If the acceleration value is
positive, the value will be added to the x position.
The actual movement will be done on the update method, which will be
called at each frame.
override func update(currentTime: CFTimeInterval) {
 /* Called before each frame is rendered */
 var action = SKAction.moveToX(destX, duration: 1)
 self.airplane.runAction(action)
}

Chapter 6

[111]

A moveToX action is assigned to the airplane. This code will be a helpful reference
if you want to implement accelerometer for controlling a game. Now, let's read
about SceneKit.

An introduction to SceneKit
SceneKit is a framework that can be used to implement the features of 3D graphic
components into our iOS games. SceneKit provides a facility for integrating a high
performance rendering engine at a greater level. It also offers a facility for importing,
manipulating, and rendering 3D graphic assets.

It is fairly easy in iOS 8, to integrate SceneKit elements in a Sprite Kit game. First of
all, you just have to import the SceneKit framework in the required Sprite Kit class.
Then, you are all set to access all the methods and properties of SceneKit.

Adding animations and controls in our
Platformer game
After discussing about the SKAction class and various methods to add controls in
our game, it's time to revisit our Platformer game and implement some of them.

Adding actions
Now, it's time to add actions in our game. Let's start with adding animation to
the player and block collision. Until the last chapter, there was no collision effect
between the player and the blocks.

Here we will add collision between the block and the player. Along with this,
we can make the player die in an animated way. We can denote the animation
after the player and block collision as a player death animation.

First of all, we will update the maximum size of the X-axis for the blocks, because
currently, the blocks are being destroyed before the end of the running bar. Hence,
we will replace the respective code with an updated one.

Replace self.blockMaxX = 0 - self.block1.size.width / 2 with self.
blockMaxX = 0 - self.runningBar.size.width in the addBlocks() method,
in the GameScene.swift file.

Animating Sprites, Controls, and SceneKit

[112]

Now, we will work on the part where the block and the player collides. For this, we
will use a library method function, didBeginContact(), which is called when the
collision happens, as we have already set all the required physics properties such as,
contactTestBitMask, categoryBitMask, and collisionBitMask for the blocks and
the player in the addBlocks() method, in the GameScene.swift file.

Include the didBeginContact() method and add the following code, in which we
are defining actions when the player and the block collide:

func didBeginContact(contact: SKPhysicsContact)
 {

 var inOutActionWhenPlayerDied = SKAction.scaleBy(0.5,
 duration: 0.5)
 var upActionWhenPlayerDied =
 SKAction.moveToY(self.player.size.height * 4, duration: 2)
 var removeFromParent = SKAction.self.removeFromParent()

self.player.runAction(SKAction.sequence(
[inOutActionWhenPlayerDied,
inOutActionWhenPlayerDied.reversedAction(),
upActionWhenPlayerDied,removeFromParent]),
gotoMenuScreen)

 }

In the preceding function, we used inOutWhenPlayerDied for scaling a player by
multiplying a float value of 0.5 and also specifying the duration as 0.5 seconds. In
upActionWhenPlayerDied, we moved the player along the y-axis by multiplying the
player's height with a float value 4, with the duration of animation as 2 seconds.

After these animations, we should also remove the player from the scene, and also
from the node tree. This is taken care of by removeFromParent.

Next, we call the action in the desired sequence.

If you notice in the preceding function that we just added in our Platformer game, when
calling the sequence, we have also reversed an action by using reversedAction(). We
also call the gotoMenuScreen function in our sequence. Let's discuss about the same:

Chapter 6

[113]

This is how our game will look after adding this action sequence:

The animation for when the player collides with a block.

Transiting from GameScene to MenuScene
After the player's death, it is time to call the gotoMenuScreen() method for
transiting to the MenuScreen. Add the following function in the GameScene
class to do the same:

func gotoMenuScreen()
 {
 self.player.removeFromParent()

 let transitionEffect =
 SKTransition.doorsCloseHorizontalWithDuration(1.5)
 menuSceneInstance = MenuScene(size: self.size ,
 playbutton: "Play", background: "BG")
 menuSceneInstance!.anchorPoint = CGPoint(x: 0.5, y: 0.5)
 self.view?.presentScene(menuSceneInstance ,
 transition:transitionEffect)

 }

Animating Sprites, Controls, and SceneKit

[114]

A slight glimpse of the transition:

The door close transition after the player's death.

Adding controls in our game
For controlling the player, we can make him jump over the blocks and save him from
dying. Currently, this is being done by tapping on the player, but it is better to have
a button for this action.

To implement the JUMP button in our game, first we need to create a sprite node for
the JUMP button in the GameScene.swift file. Create a sprite node with the name,
btnjump, and then assign the node with an image for the button; we can call the
image jump. Add the following code for this feature:

var btnJump:SKNode = SKSpriteNode(imageNamed: "jump")

Now, we need to position our button on the GameScene. For this, we can add the
following code before the addBackground() function call in the didMoveToView()
method.

self.btnJump.position = CGPointMake(-(self.size.width/2.2),
-(self.size.height/4))
 self.addChild(btnJump)

Chapter 6

[115]

And now your didMoveToView() function should look like the following:

 override func didMoveToView(view: SKView)
 {
 self.physicsWorld.contactDelegate = self

 // JUMP BUTTON POSITION SETTING AND ADDING ONTO THE SCREEN
 self.btnJump.position = CGPointMake
 (-(self.size.width/2.2), -(self.size.height/4))
 self.addChild(btnJump)

 addBackGround()
 addRunningBar()
 addPlayer()
 addBlocks()
 //addSpriteWithoutTexture()
 }

Till now, we have just added the JUMP button on scene but we didn't define
the action of when the button will be clicked. So, let's write a block of code for
performing this action:

if self.btnJump.containsPoint(location)
 {
 println("tapped!")
 if self.onGround
 {
 self.velocityY = -18.0
 self.onGround = false
 }
 }

Add the preceding block of code in the touchesBegan method of GameScene.swift.
Now your touchesBegan() method function should look like the following:

override func touchesBegan(touches: NSSet, withEvent event:
UIEvent) {
 for touch: AnyObject in touches
 {
 let location = touch.locationInNode(self)
 let node = self.nodeAtPoint(location)
 if node.name == player.name
 {
 currentno++
 //changeSpriteFromTextureAtlas()

Animating Sprites, Controls, and SceneKit

[116]

 if self.onGround
 {
 self.velocityY = -18.0
 self.onGround = false
 }
 }

 // JUMP BUTTON ACTION
 if self.btnJump.containsPoint(location)
 {
 println("tapped!")
 if self.onGround
 {

 self.velocityY = -18.0
 self.onGround = false
 }
 }

 }
 }

Following is how the GameScene will look after adding the JUMP button:

The JUMP button now appears on the screen

Chapter 6

[117]

Now, if you run the game, there will be two major changes: one is the animation of
the player's death during collision with the blocks, and the other is the JUMP button
to make the player jump over the blocks.

Summary
In this chapter, we learned about the SKAction class in detail; this class is responsible
for creating actions for nodes. We also discussed about various types of controls by
which a Sprite Kit game can be played (such as, tapping, gesture recognition, and
accelerometer). We also read about SceneKit and how we can integrate SceneKit in a
Sprite Kit game. Now, our Platformer game has two new features. One is the player's
death animation and the other is the JUMP button to control the player's jump.

In the next chapter, we will learn about the particle system and shaders. Along with
this, we will also add particle effects in our Platformer game, to enhance gameplay
experience.

[119]

Particle Effects and Shaders
In the previous chapter, we discussed in detail how to animate nodes, controls,
the SceneKit method, and so on. We also discussed handling scene animations.
We learned the SKAction class properties and methods along with learning about
various controls by which a game can be played, such as gesture recognition
or accelerometer.

We added player animations, controls, and actions in our Platformer game, this has
made the game pretty fun to play and interesting to learn.

In this chapter, we will study particle effects and shaders in a Sprit Kit game. Particle
effect is a very exciting ability provided by Sprite Kit. We can generate particles using
the SKEmitterNode object; these particles create beautiful visual effects such as rain,
fire, bokeh, spark, and so on. Shaders were introduced in Sprite Kit with iOS 8. Shaders
are used to give customized special effects to scenes. The SKShader class is used to
include shaders in our Sprite Kit game.

Particle effects
Particle effects in games is a technique in which small sprites or other graphical
objects are used to simulate a diffused effect, for example, rendering of the
following effects by the particle system is very common:

•	 Fire
•	 Explosion
•	 Smoke
•	 Moving water
•	 Falling leaves
•	 Clouds

Particle Effects and Shaders

[120]

•	 Fog
•	 Snow
•	 Dust
•	 Meteors
•	 Stars
•	 Galaxies
•	 Trails

The entire behavior in particle effect is defined by the emitter node. A particle
in Sprite Kit is similar to a SKSpriteNode object where it renders a textured or
non-textured image that can be sized, colorized, or blended in the scene.

An example of different effects

The SKEmitter node
The SKEmitterNode object is a node that automatically creates and renders small
sprites. We can configure the emitter node properties from our Xcode itself. We use
the particle emitter editor for this purpose.

Chapter 7

[121]

We can use target nodes to change the destination of particles. Here is a sample code
snippet to demonstrate how we can implement the same.

// CREATING THE EMITTER NODE
var emitter:SKEmitterNode = (fileNamed: "PlayerCollide.sks")
// SETTING THE EMITTER POSITION AND NAME
emitter.position = CGPointMake(0,-40)
emitter.name = "playerCollide"
// SEND THE PARTICLES TO THE SCENE
emitter.targetNode = self.scene
// ADDING EMITTER NODE
self.addChild(emitter)

Let's discuss the properties and methods that are used while implementing Sprite
Kit's emitter node.

Creating the particle effect
Sprite Kit provides properties and variables to customize particle effects as per their
requirement in a game. Let's discuss these properties and variables:

•	 var particleBirthRate: In this property, you define the number of particles
created by the emitter every second. The default value of this is 0.0.

•	 func advanceSimulationTime(sec:NSTimeInterval): This method
helps you advance the emitter particle simulation. It takes time in seconds as
its parameter, which is the time required to simulate. Preferably, this method
is used to preoccupy an emitter node with particles after its addition to scene.

•	 var numParticlesToEmit: In this property, you define the number of
particles the emitter has to emit. By default, its value is 0, which means
that the emitter creates infinite particles.

•	 func resetSimulation (): This method removes all the particles and
restarts the simulation. Resetting the simulation clears its internal state.

•	 var targetNode: As discussed earlier, we can use targetNode to change
the destination of the particles. If the property is nil, then the particles are
treated to be children of the emitter node. When this property points to
the target node, then new particles are treated as if they are children of the
target node, but the previously generated particles are calculated based on
the emitter node's properties. Its default value is nil.

Particle Effects and Shaders

[122]

Properties for determining a particle's lifetime
This is the time for which the user-created particle will stay alive and functional.
When the lifetime drains out and drops below zero, the particle will be killed.

•	 var particleLifetime: This property determines the average lifetime
of a particle in seconds. Its default value is 0.0.

•	 var particleLifetimeRange: We specify a range in this property,
the lifetime of a particle is determined randomly within this range.

It's now time to add a particle effect in our Platformer game.

Adding the particle effect in our Platformer
game
Let's integrate particle effect at player collision in our Platformer game. We will make
a particle simulation at the time of collision between blocks and the player.

As an initial step for implementation, lets create a particle effect. Go to the Project
Navigator and add new File | SpriteKit Particle File | Spark | Create.

Chapter 7

[123]

You can choose from a list of particle templates, such as Snow, Bokeh, Fire, Rain,
Spark, and so on. Here we are using the Spark effect template:

Particle Effects and Shaders

[124]

Open the ParticleEffectPlayerCollide.sks file we just created. Particle effect
files are saved with the extension, .sks. You can change the different properties of
selected particle effects using the particle emitter editor, which you can access on
the right-hand side.

The particle emitter editor in Sprite Kit

Chapter 7

[125]

Let's discuss some of the properties, which are displayed on the SpriteKit Particle
Emitter panel:

•	 Particle Texture: You can select an image to be used for creating the particle.
For particle texture, images related to the project can also be used. To assign
the image, one must keep in mind that a complex and larger image will
require excessive use of resources. A simple and small image is advisable.

•	 Birthrate: This property is used to set the rate at which the emitter generates
the particles. If the birthrate is more than the particle effect, it will look more
intensive. So, it's always recommended to follow the lower birthrate for an
optimum frame rate.

•	 Lifetime: This property will define the total lifetime of the particle on
the screen. Here, Range refers to the random value from the first value
+ or - range.

•	 Position Range: This property will tell you how far from the origin emitter
node the effect should be, using X and Y co-ordinate values. Change in this
property affects the size of the emitter.

•	 Angle: This property will tell the angle in which the particle effect should
happen. This will also use the Start and Range values.

•	 Speed: This property will define the initial speed at which the effect should
happen. This will also use the Start and Range values.

•	 Acceleration: This property will take care of the acceleration at which the
particles should appear from the source emitter using X and Y coordinates.

•	 Alpha: This property will take care of the transparency of the effect. This will
also use the Start and Range values with a Speed.

•	 Scale: This property will define the Scale position for the texture/image that
is used for the effect. This will also use the Start, Range, and Speed values.

•	 Rotation: This property is used to define the Rotation speed for the particle
effect. This will also use the Start, Range, and Speed values.

•	 The Color Blend factor: This property is used to define the color that is used
in the particle effect lifetime. Where the particles may follow different colors
in their particle lifetime. This will use the Factor, Range, and Speed values
for defining the property.

Particle Effects and Shaders

[126]

Adding the code to facilitate the particle effect
Once you are done with setting up the desired properties, create a particle node
object (the SKEmitterNode object) in the GameScene.swift file:

var particlePlayerNode = SKEmitterNode(fileNamed:
"ParticleEffectPlayerCollide.sks")

Now, set the position in the didMoveToView() method and also hide the particle
node that is created. Finally, add the particle node into the player. Now the
didMoveToView() method should look like the following code:

override func didMoveToView(view: SKView)
 {
 self.physicsWorld.contactDelegate = self
 // JUMP BUTTON POSITION SETTING AND ADDING ONTO THE
 SCREEN
 self.btnJump.position = CGPointMake
(-(self.size.width/2.2), -(self.size.height/4))
 self.addChild(btnJump)

 //PROPERTIES FOR PARTICLE NODE CHAPTER 7
 self.particlePlayerNode.zPosition = 1
 self.particlePlayerNode.hidden = true

 addBackGround()
 addRunningBar()
 addPlayer()

 //ADDING PARTICLE NODE ON SCREEN (AS CHILD TO PLAYER)
 self.player.addChild(self.particlePlayerNode)

 addBlocks()
 //addSpriteWithoutTexture()
 }

Now, let's define when this particle effect should happen, un-hiding the
particlePlayerNode we created within the didBeginContact() method,
as this method will be called whenever the collision happens.

Chapter 7

[127]

The didBeginContact method should look as follows:

 func didBeginContact(contact: SKPhysicsContact)
 {
 // SHOWING PARTICLE EFFECT WHEN COLLISION HAPPENS
 self.particlePlayerNode.hidden = false

 var inOutActionWhenPlayerDied = SKAction.scaleBy(0.5,
 duration: 0.5)
 var upActionWhenPlayerDied =
 SKAction.moveToY(self.player.size.height * 4, duration: 2)
 var removeFromParent = SKAction.self.removeFromParent()

self.player.runAction(SKAction.sequence
([inOutActionWhenPlayerDied,
inOutActionWhenPlayerDied.reversedAction(),
upActionWhenPlayerDied,removeFromParent]),
gotoMenuScreen)

 }

This is how the collision will look with the particle effect:

Now, we have successfully added the particle effect in our Platformer game, and it's
time to discuss about shaders and how we can add them in our game.

Particle Effects and Shaders

[128]

Shaders
Shaders in Sprite Kit facilitate SKScenenode to appear with a special, customized,
drawing behavior. This can be achieved by creating the SKShader objects and
assigning a custom OpenGL ES fragment shader.

If a custom shader (the SKShader object) needs to provide a uniform shader, then
you need to create one or more SKUniform objects and associate them with your
shader objects. Shader programs are primarily divided into:

•	 Vertex shaders
•	 Fragment shaders

Let's discuss about both of these in detail:

•	 Vertex shaders: These shaders work on each vertex and most of the calculation
is done on the vertex part. They are set by Sprite Kit automatically. As the
computation of these shaders are mostly done on the vertex part, not much
of the CPU's resources are consumed in the formation.

•	 Fragment shaders: These shaders are written in OpenGL Shading Language.
As the name suggests, they work on each pixel. They use very heavy
computation and hence are avoided when too many shaders are required.

A graphical representation of the vertex and fragment shaders

Chapter 7

[129]

A fact about using custom shaders
Writing your own shaders is a complicated task if you have not done GLSL code
before, but it makes sense to add shader scripts to an existing Sprite Kit.

You can easily procure shader files online from various websites and start
working on them. From websites such as https://www.shadertoy.com/ or
www.glslsandbox.com, and so on, you will get a simple text file with the extension,
.fsh. Then you just have to add that shader code wherever you require.

Now, let's discuss about initialization and creation of new shader objects in our game.

The creation and initialization of new shader
objects
The methods are discussed as follows:

•	 Init! (name: string): This method initializes a new shader object by
utilizing a fragment shader from a file present in the app bundle with a
.fsh file extension. You pass the name of the file as a parameter and get
a newly initialized shader object as the return value.

•	 Init (source: String!, uniforms: [AnyObject]!): This method also
initializes a new shader object using the specified source. But along with that,
we can also set a list of uniforms to be added to the shader object. Uniforms
are the way to access the data in fragment shaders. Uniforms have the same
value for each pixel, for example, the size of the resulting image. We get an
initialized shader object with this initializer.

•	 Init (source: string!): This method initializes a new shader object with
the string that contains the initial source for the shader object.

Let's discuss about properties and methods which can be used for uniform data with
shader objects.

Uniform data in shaders
The methods are detailed as follows:

•	 addUniform(uniform: SKUniform): This method adds a uniform object to
the shader object. It takes the uniform object to be added as its parameter.

•	 removeUniformNamed(name: String): This method removes a uniform
object from the shader object.

https://www.shadertoy.com/
www.glslsandbox.com

Particle Effects and Shaders

[130]

•	 uniformNamed(name: String): This method returns the uniform object
resembling a particular uniform variable. If the uniform object is not found,
it returns nil.

•	 var uniforms: [AnyObject]: This property has a list of all uniforms
correlating with the shader.

To hold uniform data for a custom OpenGL SL shader, we use the SKUniform object.
The uniform data is usable for all shaders that include the uniform.

Implementing shaders in the Platformer game
Let's implement shaders in our Platformer game and understand the integration of
shaders much more closely.

1.	 Let's create a new SKScene in our game and load shaders there. We can have
a button on the menu scene, which can take us to this scene.

2.	 Now add a new swift file with the name, ShaderDemo.swift, into our project.
3.	 Create a SKSpriteKit node with the name ,box, and import an image,

box.png, of size 300 x 300 px. The box can be of any color but should only
have one single color in it with no design of any kind. We are using this
box image to add the shader effect inside the boundaries of the box. Also,
set the position of the box image within the didMoveToView() method of
ShaderDemo.swift:
let box = SKSpriteNode(imageNamed: "box")
 let location = CGPoint(x: CGRectGetMidX(self.frame), y:
CGRectGetMidY(self.frame))
 box.position = location
 self.addChild(box)

4.	 Next, we have to create the actual shader program, create a new empty
file with the name, blurShader.fsh. We can get the code for this shader
from any online resource. The following code has been fetched from
www.shadertoy.com. Thanks to the Shadertoy team and its contributors
for such a concise resource for us all. The blurShade.fsh file should look
like the following code:
void main() {
#define iterations 256

 vec2 position = v_tex_coord; // gets the location of
 the current pixel in the intervals [0..1] [0..1]

www.shadertoy.com

Chapter 7

[131]

 vec3 color = vec3(0.0,0.0,0.0); // initialize color to
 black

 vec2 z = position; // z.x is the real component z.y is
 the imaginary component

 // Rescale the position to the intervals [-2,1] [-1,1]
 z *= vec2(3.0,2.0);
 z -= vec2(2.0,1.0);

 //vec2 c = z;
 vec2 c = vec2(-0.7 + cos(u_time) / 3.0,0.4 +
 sin(u_time) / 3.0);

 float it = 0.0; // Keep track of what iteration we
 reached
 for (int i = 0;i < iterations; ++i) {

 z = vec2(z.x * z.x - z.y * z.y, 2.0 * z.x * z.y);
 z += c;

 if (dot(z,z) > 4.0) { // dot(z,z) == length(z) ^ 2
 only faster to compute
 break;
 }

 it += 1.0;
 }
 if (it < float(iterations)) {
 color.x = sin(it / 3.0);
 color.y = cos(it / 6.0);
 color.z = cos(it / 12.0 + 3.14 / 4.0);
 }

 gl_FragColor = vec4(color,1.0);
}

5.	 Now, we just need to create the SKShader object with the pattern.
Give blurshade.fsh as a file name and add it to the sprite node
in the didMoveToView() method:
let pattern = SKShader(fileNamed: "blurShade.fsh")
box.shader = pattern

Particle Effects and Shaders

[132]

6.	 As ShaderDemo.fsh is ready to run, let's also add a BACK button in the
shader scene for the user to go back to the previous screen. ShaderDemo.
swift should look like the following:
class ShaderDemo : SKScene
{
 var menuSceneInstance : MenuScene?
 override func didMoveToView(view: SKView)
 {
 let box = SKSpriteNode(imageNamed: "box")
 let pattern = SKShader(fileNamed: "blurShade.fsh")
 let location = CGPoint(x:
CGRectGetMidX(self.frame), y: CGRectGetMidY(self.frame))
 box.position = location
 box.shader = pattern
 self.addChild(box)
 addBackLabel()
 }
 override func touchesBegan(touches: NSSet, withEvent
event: UIEvent)
 {
 for touch: AnyObject in touches {
 let location = touch.locationInNode(self)
 let node = self.nodeAtPoint(location)
 gotoMenuScreen()
 }
 }
 func gotoMenuScreen()
 {
 let transitionEffect =
 SKTransition.flipVerticalWithDuration(2)
 menuSceneInstance = MenuScene(size: self.size ,
 playbutton: "Play", background: "BG")
 menuSceneInstance!.anchorPoint = CGPoint(x: 0.5, y:
 0.5)
 self.view?.presentScene(menuSceneInstance ,
 transition:transitionEffect)
 }
 func addBackLabel()
 {
 var backbutton = SKLabelNode(fontNamed: FontFile)
 backbutton.fontColor = UIColor.blueColor()
 backbutton.name = "BACK"
 backbutton.text = "BACK"

Chapter 7

[133]

 backbutton.position =
 CGPointMake(CGRectGetMinX(self.frame) +
backbutton.frame.width/2 , CGRectGetMinY(self.frame))
 backbutton.zPosition = 3
 self.addChild(backbutton)
 }
 }

The following image shows how the code shader effect will look:

7.	 Let's also set up a button in MenuScene.swift for the user to go to the
ShaderDemo scene. Following is the code for adding this button:

var shaderSceneInstance : ShaderDemo?
func addShaderSceneBtn()
 {
 var backbutton = SKLabelNode(fontNamed: FontFile)
 backbutton.fontColor = UIColor.blueColor()
 backbutton.name = "SHADOWS"
 backbutton.text = "SHADOW EFFECT"
 backbutton.position =
CGPointMake(CGRectGetMinX(self.frame) + backbutton.frame.width/2 ,
CGRectGetMinY(self.frame))
 backbutton.zPosition = 3
 self.addChild(backbutton)
 }

Particle Effects and Shaders

[134]

Now, the code is ready. For the sake of presentation, let's also add a transition for the
button to present a shader scene when it is clicked:

func goToShaderScene(){
 let transitionEffect =
 SKTransition.flipHorizontalWithDuration(1.0)
 shaderSceneInstance = ShaderDemo(size: self.size)
 shaderSceneInstance!.anchorPoint = CGPoint(x: 0.5, y: 0.5)
 self.view?.presentScene(shaderSceneInstance ,
 transition:transitionEffect)

 }

Call this method from the touchesBegan() method by checking a condition if
the node name equal to "SHADOWS" as we want both, the PLAY button and the
SHADOW EFFECT button on the menu screen:

override func touchesBegan(touches: NSSet, withEvent event:
UIEvent) {
 for touch: AnyObject in touches {
 let location = touch.locationInNode(self)
 let node = self.nodeAtPoint(location)
 if node.name == PlayButton.name {
 goToGameScene()
 //goToShaderScene()

 }
 else if node.name == "SHADOWS"
 {
 goToShaderScene()
 }
 }
 }
 func goToShaderScene(){
 let transitionEffect =
 SKTransition.flipHorizontalWithDuration(1.0)
 shaderSceneInstance = ShaderDemo(size: self.size)
 shaderSceneInstance!.anchorPoint = CGPoint(x: 0.5, y: 0.5)
 self.view?.presentScene(shaderSceneInstance ,
 transition:transitionEffect)

 }

Chapter 7

[135]

Now the file is ready to run as it should. The following screenshot shows how the
main menu screen will look:

Summary
In this chapter, we learned about the particle effect and shaders in detail. We discussed
about the SKEmitterNode object and the SKShader object, and how we can implement
them in our Platformer game. We have also discussed about adding OpenGL ES code in
our Sprite Kit project and how we can utilize shaders in our game. Now, our Platformer
game has a particle effect when the player collides with the block, and the shader scene
is a separate screen to display shader effects.

In the next chapter, we will add levels in our game, which will further enhance the
gameplay experience for the user and help them understand the game concepts in
more detail. We will also add a pause button that will pause the game when required.

[137]

Handling Multiple Scenes
and Levels

In the previous chapter, we discussed a very significant topic of Sprite Kit, that is,
particle effects and shaders. We also discussed about the SKEmitterNode object
and the SKShader object. We also implemented them in our Platformer game.
Implementation of shaders in our game was the most fun part.

In this chapter, we are going to discuss a very important aspect of a game, that is, the
addition of multiple levels. Having various levels in a game makes the game more
exciting as incrementing levels increases the complexity of the game, making it more
difficult to play. As various levels are added to the game, it also becomes important
to add a pause button, which will enable the game to pause whenever required.

Optimizing game levels
A game continuously running at the same difficulty will become monotonous, and
soon the user will lose interest in it. So, how can you make your game interesting,
exciting, and challenging? If your game keeps on increasing its difficulty and adds
new challenges for the user, it will remain interesting till the end.

Different levels in a game are nothing but sections or parts of the game. Normally, in
most of the games, the game scenes are divided into multiple levels. Levels divide a
game into small excerpts and only one level is loaded at a time. In a game, levels can
be denoted by different names, such as rounds, stages, chapters, acts, maps, worlds,
and so on. Different levels can be represented via names or numbers. In case of
representing a level by a numbering system, it is a clear analogy that the higher the
number, the greater the level.

Handling Multiple Scenes and Levels

[138]

The names of the levels are the first impressions of a game's level; it is advisable to
give a brief thought to this. Let's discuss about the naming of levels:

•	 Utilitarian: This mostly comprises of a number system or any other similar
analogy. This system gives an idea to the player about their progress.

•	 Location: This requires using the location of the level as the level name,
such as city, village, town, and so on. It gives an idea to the player about
what he/she will be seeing.

•	 Descriptive: These seem more like being chapters of a book. This includes
names such as airship fortress, green hill zone, pillar of autumn, and so on.

These are the three main ways in which you can name your game's level. Apart from
this, one more method can be to have puny names for the levels. It all depends on
you to name your level.

To complete a game level, the user has to pass through some constraints or
difficulties, such as reaching a certain score point or performing a specific task to
reach the next level. This is commonly known as game progression.

Programmers usually create different levels in one of the following two ways:

•	 A new scene for a new level: In this method, there is a new scene created
for each new level.

•	 Multiple levels in a single scene: If the new level does not have much
changes in the sprites or other game elements, we can also have the facility
of multiple levels in a single scene. For the games which preferably have
just one or two elements altered in each new level, single scene can be a
good option.

A strategy for multiple levels
The different levels in the game define the difficulty of the game, or some hold the
point at which the user currently should be, in the game.

In most games, level 1 will be the name of the first SKScene class for your first level.
There are also a number of good transitions to choose from when transiting from
one level to another or depicting any other effect, animation or information, as the
level increases.

We can either use an array or a dictionary to store player data, such as items,
health, levels achieved, and so on. Unless you have large amounts of data to be
saved, NSUserDefaults can be the best option.

Chapter 8

[139]

Core Data
For the larger data storage requirement of a game, we can use separate data files.
For such types of requirements, Apple provides a powerful tool, that is, Core Data.
This tool is very useful for storing level information, user information, and so on.

What is Core Data? It's a framework by Apple that acts as a bridge between your
game and SQLite and other storage environments. Just like SQL, you can have tables,
relationships, and queries. The advantages of Core Data over SQLite are that it requires
no syntax and represents objects and classes unlike in a relational database.

The important terms in Core Data are listed as follows:

•	 Managed object model: It is a tool that allows you to model classes (entities),
relationships, and queries. (This is used by the Core Data framework.)

•	 Managed objects [each row will be one object]: This refers to the objects
that are created in your game. These are your data classes, such as, player
information, level information, and so on. Each managed object represents
a row in your table (entity).

Handling Multiple Scenes and Levels

[140]

•	 Managed object context: This is an important object, since it manages all
the relationships between the context objects that are defined in the model.
It also keeps track of the status of the context objects. All interactions with
the underlying database are done through context. The managed object
context requests the persistent coordinator for data and tells it to save
data when necessary.

•	 Persistent store coordinator: Through the persistent store coordinator,
we provide a location on the device for data storage.

•	 Persistent object store: This is a data storage environment on the device.

Adding levels in our Platformer game
Let's add levels in our Platformer game. We are going to add the levels in a single
scene. For the change in difficulty of the level, we can increase the speed of the player
that is running and we can specify a distance after which the level will be increased.

Now, before we dive into adding levels in the game, first of all, we should know the
current level being played. Hence, we are going to add the Level label in the game
scene, so that the user can know about the current level being played.

Adding the Level label
The Level label is a simple text that will be displayed on the game scene and will
act as a bit of information to recognize the level which is being played. As discussed
earlier, you can have the name of the level as a number, location, or description.
A number, as a level identifier, is the most common etymology in games. In our
Platformer game, we are using numbers as level labels.

Add the following code in the GameScene.swift file. This code will add the level
label functionality in our game:

func addLevelLabel()
 {
 self.levelLabel.text = "Level: 1"
 self.levelLabel.fontSize = 30
 self.levelLabel.zPosition = 3
 self.levelLabel.position =
CGPointMake(CGRectGetMidX(self.frame) + scoreText.frame.width ,
CGRectGetMidY(self.frame) + levelLabel.frame.height * 4.2)
 self.addChild(self.levelLabel)
 }

Chapter 8

[141]

// ADDING LEVELS
 let levelLabel = SKLabelNode(fontNamed: "Chalkduster")
 var level = 1
addLevelLabel()

In the preceding code, we are adding the level label using SKLabelNode and applying
the font, chalkduster. The initial level is set to 1 and from there, it progresses.

This is how the game will look after adding the label to identify the Level: l:

Adding levels
As the game progresses, the difficulty level increases. Increase of the difficulty level
can be done based on any number of factors; we can increment the level when a
player crosses a specific number of blocks, or when the score reaches a certain limit,
or when the time increases.

In our Platformer game, we are going to increase difficulty levels based on the
number of blocks crossed. As a game progresses, we are going to identify the need
for a next level as shown as follows:

•	 Level 1: This level loads up at the start of the game
•	 Level 2: When the player jumps from the fifth block, we are going to start

the second level

Handling Multiple Scenes and Levels

[142]

•	 Level 3: When the player jumps from the tenth block, we are going to
start the third level

•	 Last level: When the player has jumped from 20 blocks, we are going to
introduce the last level of the Platformer game

With every increase in level, we will also increase the difficulty of the game. In our
game, we are going to increase ground speed, which will make the game more
difficult to play.

The functionality to add levels is to be added in the blockRunner method in the
GameScene.swift file. Following is the method with the functionality added:

func blockRunner()
 {
 // LOOP FOR THE DICTIONARY TO GET BLOCKS
 for(block, blockStatus) in self.blockStatuses
 {
 var thisBlock = self.childNodeWithName(block)!
 if blockStatus.shouldRunBlock()
 {
 blockStatus.timeGapForNextRun = random()
 blockStatus.currentInterval = 0
 blockStatus.isRunning = true
 }

 if blockStatus.isRunning
 {

 if thisBlock.position.x > blockMaxX // IF IT
 IS POSITIVE (KEEP MOVING BLOCKS FROM RIGHT TO LEFT)
 {
 thisBlock.position.x -=
 CGFloat(self.groundSpeed)

 }
 else // #1
 {
 thisBlock.position.x = self.origBlockPositionX
 blockStatus.isRunning = false
 self.numberOfBlocksCrosssed += 1
 self.levelLabel.text = "Level:
 \(String(self.level))"
 if self.numberOfBlocksCrosssed == 5
 {

Chapter 8

[143]

 self.level = level + 1
 self.groundSpeed = self.groundSpeed + 7
 }
 else if self.numberOfBlocksCrosssed == 10
 {
 self.level = level + 1
 self.groundSpeed = self.groundSpeed + 9
 }
 else if self.numberOfBlocksCrosssed == 20
 {
 self.level = level + 1
 self.groundSpeed = self.groundSpeed + 12
 }
 else if self.numberOfBlocksCrosssed > 20
 {
 println("Final Level")
 }
 }
 }
 else
 {
 blockStatus.currentInterval++
 }

 }

 }

In the preceding code, inside the else statement marked #1, the code to increase the
level is added. The code has a nested if, else if condition where we have checked
the number of blocks crossed, and based on that, we have increased the level and the
ground speed of the game.

There are four statements in the preceding code depicting the level and ground
speed increase. The second level starts once the player crosses 5 blocks, and the
ground speed also increases. Similarly, the level and ground speed increases after
10 and 20 blocks.

Now, we have successfully added the functionality to increase the level once a
certain number of blocks are crossed.

Handling Multiple Scenes and Levels

[144]

Following is how the Level: 2 label will look when the player crosses five blocks:

For games with a higher number of levels, it is advisable to make a
separate file for the level logic code. For example, if we had 10 different
levels in our game, then we too would have created a separate file.

Adding the pause functionality
To pause a game during gameplay is an important functionality. Our game will
benefit from the pause functionality; it will allow the player to continue from
where they left off previously.

Let's add the pause functionality:

1.	 Primarily, we'll create a Play/Pause button for GameScene and configure
the position and image for the button. We will add the following lines of
code inside the GameScene.swift class:
var pauseBtn:SKSpriteNode = SKSpriteNode(imageNamed:
"PLAY-PAUSE")

Chapter 8

[145]

2.	 Set the attributes of the pauseBtn label, such as size, position, and so on,
as we did earlier for the other labels in the addPlayPauseButton() method.
This is how it will look:
func addPlayPauseButton()
 {
 //self.runAction(sound)
 self.pauseBtn.name = "PAUSE"
 self.pauseBtn.zPosition = 3
 self.pauseBtn.position =
 CGPointMake(CGRectGetMaxX(self.frame) -
pauseBtn.frame.width/2 , CGRectGetMaxY(self.frame) -
pauseBtn.frame.height/2)
 self.addChild(pauseBtn)

 }

Please make sure that you call it from the didMoveToView() method also.

3.	 Now, we have to add the functionality to actually pause the game. We do
this by adding the following code in the touchesBegan() method:
if self.pauseBtn.containsPoint(location)
 {
 if(self.view?.paused == false)
 {
 println("Game Scene is Paused")
 self.view?.paused = true

 }
 else
 {
 println("Game Scene is Resumed")
 self.view?.paused = false
 }
 }

The preceding code will pause the game when the button is pressed, and if
the button is pressed again, the game will be resumed.

Handling Multiple Scenes and Levels

[146]

The following screenshot shows how the game will look after adding the pause
functionality; a pause button appears in the top right corner of the screenshot:

Notice the pause button in the top right corner; tapping this button will pause the game.

Adding the NODE MENU button
We have created a node menu scene that displays examples of the nodes in a game.
We are now going to add a button on the main menu, which will allow users to
access the node menu scene:

1.	 Firstly, we have to create an instance of NodeMenuScene in the beginning
with the following line of code:
var nodeMenuSceneInstance : NodeMenuScene?

2.	 Now, we have to set attributes of the NODE MENU button label, as we
did for the Level: label earlier. For this, add the following code in the
addNodeMenuSceneBtn() method and call it from the didMoveToView()
method also:
func addNodeMenuSceneBtn()
 {
 var backbutton = SKLabelNode(fontNamed:
 "Chalkduster")

Chapter 8

[147]

 backbutton.fontColor = UIColor.cyanColor()
 backbutton.name = "NODEMENU"
 backbutton.text = "NODE MENU"
 backbutton.position =
 CGPointMake(CGRectGetMaxX(self.frame) -
backbutton.frame.width/2 , CGRectGetMaxY(self.frame) -
backbutton.frame.width/8)
 backbutton.zPosition = 3
 self.addChild(backbutton)
 }

3.	 Now, add the following code in the touchesBegan() method to move for the
node menu scene with a tap of the NODEMENU button we have just created:
else if node.name == "NODEMENU"
 {
 goToNodeMenuScene()

 }

4.	 Create a transition from our present scene using the following code:

func goToNodeMenuScene()
 {
 let transitionEffect =
 SKTransition.flipHorizontalWithDuration(1.0)
 nodeMenuSceneInstance = NodeMenuScene(size:
 self.size)
 nodeMenuSceneInstance!.anchorPoint = CGPoint(x: 0.5,
 y: 0.5)
 self.view?.presentScene(nodeMenuSceneInstance ,
 transition:transitionEffect)
 }

In the preceding code, we created the method, goToNodeMenuScene(), and added
a transition effect for the scene to go from one to another with the effect of flipping
horizontally.

Handling Multiple Scenes and Levels

[148]

The following screenshot shows how the main menu will look, after the button to the
access node menu scene is created:

When someone taps on the button, NODE MENU, the node menu scene will open
on the screen.

Summary
In this chapter, we added difficulty levels in our Platformer game. We updated
our game by creating a level label and level increment functionality. An important
feature, PAUSE, is now provided. Also, we learned how to add a scene in our game
by integrating node menu scene through the NODE MENU button.

In the next chapter, we are going to discuss about performance enhancement
techniques, along with some important extras that are going to be added in our
Platformer game.

[149]

Performance Enhancement
and Extras

In the previous chapter, we discussed about adding multiple levels in our game;
adding multiple levels in a game is a normal functionality in most games. We also
added the functionality to show the current level of the game by using a level label.
Apart from this, we added a pause button and the button to access the node menu
scene from the main menu.

This chapter is one of the most essential chapters in this book; here we are going
to discuss about performance enhancement tips and tricks. Apart from this, we are
going to add some really important features in our game. These features are:

•	 The scoring system
•	 The sound
•	 The running animation of the player

Sound is an essential part of a game; it greatly enhances the overall gameplay
experience for the player. The scoring system helps the player to measure his or
her performance over time. Running texture produces a good animation effect in
the game, which increases the gameplay experience a lot. We are going to add all
of these features in this current chapter, along with discussing about some of the
important performance enhancement techniques for a Sprite Kit game.

Performance Enhancement and Extras

[150]

Performance enhancement
Running a game requires extensive usage of memory and other resources of the
device. This leads to accelerated drainage of the battery. We need to optimize the usage
of the device resources for games. A game requires higher frames per second, hence
more battery drainage occurs due to the excessive usage of the device resources. An
optimized game will lead to efficient use of the device resources, hence less battery
drainage. Following are listed some of the best practices to optimize the efficiency of
a game:

•	 Systemizing a game's content in the scene
•	 Improving the drawing performance
•	 Improving performance with SKAction and constraints
•	 Improving the physics performance
•	 Improving the shapes performance
•	 Improving the effects performance
•	 Improving the lighting

Now we are going to discuss each of the previously listed methods in detail.

Systemizing a game's content in the scene
As we know, scenes are the elementary building blocks in a Sprite Kit game.
A game can contain multiple scenes according to the requirements. A scene can
contain multiple nodes, where the nodes can perform particular actions. We have
a clear idea of how to create scenes, nodes, and actions for nodes. The challenging
task is designing the game's scene and transition in such a way that it should not
lower the game's performance.

One thing that should be kept in mind is that the scenes do not have a default
behavior, as the storyboards do in traditional iOS app. Instead, we define and
implement the behaviors for respective scenes, which may include the following:

•	 When to create new scenes
•	 Defining the content of the scene
•	 Defining when the transitions between the scenes should occur
•	 Defining the visual effect for transition
•	 Defining how the data is transferred from one scene to another

Chapter 9

[151]

Performance enhancement by preloading
textures
This is one of the most powerful ways of increasing the performance of a game.
Sprite Kit provides two methods for the same:

•	 func preloadWithCompletionHandler(completionHandler: () ->
Void): This method uses a function that is responsible for loading the atlas
textures into memory, which requires the parameter, completionHandler,
which is called after the task is completed.

•	 func preloadTextureAtlases(textureAtlases: [AnyObject]!,

•	 withCompletionHandler completionHandler: (() -> Void)!):
This method loads the textures of multiple atlases into memory and calls
a completion handler after the task is completed. The completion handler
expects two parameters: one is textureAtlases, which is an array of the
SKTextureAtlas objects, and the second parameter is completionHandler,
which is a block called after the texture atlases are loaded.

Using texture atlases will reduce draw call, subsequently reducing the usage of the
device resources. As of now, we have discussed some of the important techniques of
performance enhancement in a game. Now, it is time to discuss about some essential
elements of the game, such as scoring system, sounds, and so on.

Improving the drawing performance
The biggest part of building a node tree is organizing the graphical content that needs
to be drawn. We should take care of what needs to drawn first and what should be
drawn in the end. There are two factors which influence the drawing performance:

•	 Drawing order, by which the graphics are submitted to the engine
•	 Sharing of resources to accomplish the drawing

With respect to drawing order, you can set the sibling order of the node tree to
reduce the number of drawings submitted by ignoring the sibling order:

View.ignoreSiblingOrder = true

You can use depth order as the rule to batch them together, and texture maps to
optimize the batching further.

Performance Enhancement and Extras

[152]

Make sure to turn on the performance metrics, such as frames per second (FPS),
node count, draw count, and quad count. These metrics will help you determine
the performance of a game. Following are the codes that we can use to view the
performance metrics:

View.showsFPS = true // #1

View.showsNodeCount = true //#2

View.showsDrawCount = true //#3

View.showsQuadCount = true //#4

In reference to the preceding code block, let's discuss each of the metrics:

•	 In code #1, we are displaying the number of frames per second in the game
scene. The optimum FPS for a game is 60. By displaying the FPS in the game,
it becomes easy to measure the FPS.

•	 In code #2, we are displaying the number of SKNodes in a scene. The lesser
nodes we have in a scene, the better it performs. A game needs to have nodes
in order to have elements in the game, but we can measure the FPS and nodes
together to make sure how many nodes are producing the optimum FPS.

•	 In code #3, we are displaying the number of batches for the scene count, that
is, how many batches the scene is going to draw. The lesser draws your game
has, the better it performs.

•	 In code #4, we are displaying the quad count. Sprite Kit converts the node
tree into rendered passes. Each of these rendering passes is rendered
using quads. The lower the number of quads we have, the better the
game performance.

Improving performance with SKActions and
constraints
The main solution factor to increase the performance is by building the action
once and using it for the maximum number of times possible. Try to avoid the
custom animation code from the update() method. By using the SKAction and
SKConstraint classes, you can optimize the animation effects in a game.

Chapter 9

[153]

Improving the physics performance
Whenever SKScene computes a new frame of animation, it simulates the effects of
forces and collisions on physics bodies connected to the node tree. It computes a
final position, orientation, and velocity for each physics body.

With respect to improving the performance of the game, the dynamic objects cost
more than static objects, so if possible, we can set the following property, so that
the performance will be increased gradually.

Some guidelines for this are:

•	 You should use collision masks to group objects for performance
•	 You can use force fields to replace game logic
•	 You should turn on field debug drawing, if needed

Before assigning a specified boundary to a physics body, you must consider the most
efficient shape for your object. The shape of the boundary defines the number of
calculations/operations required to be performed by the device, costing efficiency.
The Circle is the cheapest, followed by the Rectangle, Polygon, Compound, and
Alpha Mask bodies in the order of increasing cost of computation.

The computation cost scale for different shapes of boundaries

Performance Enhancement and Extras

[154]

Improving shape's performance
The shape of an object node plays an important role with respect to game
performance. Where the performance will be increased if the node requires
a lesser number of computations.

In the same way as described in the physics performance topic, you can improve the
efficiency cost of shape nodes. The polygon is the cheapest in terms of performance
cost, followed by curves, linear stroke, stroked curve, and filled curve in the order
of increasing costs of computation.

The performance cost scale for shape nodes

Improving effect's performance
With respect to effects in Sprite Kit, SKEffectNodes are expensive, hence, use it
sparingly. It does its rendering off-screen and transfers to framebuffer, reducing
efficiency. It is better to use SKShaders when no off-screen pass is needed.

If the effects do not change much, it is better to rasterize such effects by using the
shouldRasterize property. If the shouldRastertize property is true, the effect
node caches the image for use in future frames.

Chapter 9

[155]

Improving lighting performance
Lighting is computed on a per pixel basis, hence the computation cost is proportional
to the amount of pixels lit. Ambient light does not cost in terms of computation power.
Computation cost of shadows is proportional to the number of lights, hence it is
advised to keep the number of shadows low.

Measuring performance with instruments
Instruments is a performance measuring and testing tool provided by Apple in
Xcode for the tracing and profiling of code. Instruments help in analyzing the
performance of code. There are lot of instruments that can be used for checking
performance issues, memory leaks, or other problems.

Once any issue gets identified, it becomes easy to rectify the issue. You can also see
how much our game caches, and based on that, make a decision about the assets in
the game.

You can access the instruments by navigating to Xcode | Open Developer Tool |
Instruments. Then, you can choose the appropriate instrument to move with. It is
better to have a look at the analysis in the initial phase of the development process,
by this, you can easily understand which inclusion in the code was responsible for
the error.

Instruments provide you with a list of trace templates. Trace templates are groups
of preconfigured instruments. Let's discuss each of the trace templates in detail:

Performance Enhancement and Extras

[156]

•	 Activity Monitor: The Activity Monitor is used to monitor the CPU, memory,
disk, and network usage statistics processes.

•	 Allocations: The allocation tool is used to track a process's anonymous virtual
memory and heap.
This tool also provides the class names and optionally retained/released
histories for objects.

•	 Automation: The automation template executes a script that simulates the UI
interaction for an iOS application, which is launched from the instruments.

•	 Cocoa Layout: The Cocoa Layout observes the changes to the
NSLayoutConstraint objects to help in determining when and where a
layout constraint went away.

•	 Core Animation: The Core Animation instrument measures application
graphics performance as well as CPU usage of a process, via time profiling.

•	 Core Data: This instrument template traces the Core Data filesystem activity,
including fetches, cache misses, and saved caches too. This was discussed in
Chapter 8, Handling Multiple Scenes and Levels.

•	 Counters: The Counters will collect the performance monitor counter (PMC)
events, using time or event-based sampling methods.

•	 Dispatch: This template will monitor the dispatch queue activity, and record
block invocations and their durations.

•	 Energy Diagnostics: This template will provide the diagnostics regarding
energy usage as well as the basic ON/OFF state of major device components.

•	 File Activity: This will monitor the file and directory activity, including the
file OPEN/CLOSE calls, file permission modifications, directory creation,
file moves, and so on.

•	 GPU Driver: This template is used to measure the GPU driver statistics and
it also samples active CPU usage.

•	 Leaks: The Leaks will measure the general memory usage; it periodically
scans if an object is created and not accessed and detects the resulting
memory loss.

•	 Network: The Network analyses, how your applications are using the
TCP/IP and UDP/IP connections, using the connections instrument.

•	 OpenGL ES Analysis: This template measures and analyses openGL
ES activity to detect openGL ES precision and performance problems.
It also offers recommendations for addressing these problems.

Chapter 9

[157]

•	 Sudden Termination: The Sudden Termination is used to analyze the
sudden termination support of a target process, reporting back traces of
file system accesses and sudden termination enabled/disabled calls.

•	 System Trace: This instrument provides system information such as process
name, number of threads generated, CPU usage by each thread, and so on.

•	 System Usage: This template is used to record the I/O system activity
related to files, sockets, and shared memory for a single process launched
via instruments.

•	 Time Profiler: The Time Profiler is used to perform the low-overhead
time-based sampling, where we can check the status of the processes
that are running on the system CPUs. Profiling is a means of measuring,
by which the output of a profiling session gives you an insight on what
parts of your code are used most often, and tells you which part of the
code can be improved.

•	 Zombies: If a game has removed an object, but at a later stage tries to access
that object, it will crash the game. The Zombies instrument keeps removed
objects as dead, and later on releases it whenever called by the game, hence,
avoiding a crash. This way, the Zombies instrument points out where the
game may crash. A debugger cannot pin-point this anomaly.

A scoring system in a game
Adding a scoring or points system in a game makes it more interesting and fun to
play. Having a scoring system in the game makes it easier for the players to measure
their performance, making the objective clear for the user.

It always makes sense to display the score somewhere on the main screen, so that the
player can have a look at the score while playing the game.

Adding a scoring system in our Platformer
game
In the first step of adding a scoring system in our game, we create a label node to
display the score to the player. The initial variable will be zero.

Creating the Score label
Let's add the following code snippet in the beginning of the GameScene class:

let scoreText = SKLabelNode(fontNamed: "Chalkduster")
 var score = 0

Performance Enhancement and Extras

[158]

In the preceding code, you are creating an SKLabelNode and assigning it to the font,
Chalkduster. Along with this, you are also initializing a variable score with the
value as zero.

Now, let's set the ScoreText label created above zero. Also, we can set the size
and position of the font in an addScoreLabel() method and we can call this from
didMoveToView() of GameScene:

func addScoreLabel()
 {
 self.scoreText.text = "Score: 0"
 self.scoreText.fontSize = 30
 self.scoreText.position =
CGPointMake(CGRectGetMinX(self.frame) + scoreText.frame.width /
1.8 , CGRectGetMidY(self.frame) + scoreText.frame.height * 4.2)
 self.addChild(self.scoreText)
 }

The preceding code will define the score text to Score: 0 and the font size to 30.
Along with this, we have also defined the position of the scoreText.

Following is how the game screen will look after implementing the Score label:

Incrementing the score when required
It is important to define when we have to increment the score in our game. The same
should also be displayed in the scoreText label we have created.

As our Platformer game deals with blocks, which act as an obstacle, it is better to
reward points to the player when he jumps over a block.

Chapter 9

[159]

Add the following lines of code in the blockrunner() method with the condition
that the blocks should successfully cross the player's X position without colliding
with him (the first else condition):

self.score = score + 10

self.scoreText.text = "Score: \(String(self.score))"

Now, to save the highest score and the user's name, we will use a special facility
provided by iOS to save frequently required data via NSUserDefaults, in the
following way:

self.highestScore = self.score
NSUserDefaults.standardUserDefaults().setObject(highestScore,
forKey:"HighestScore")
NSUserDefaults.standardUserDefaults().setInteger(highestScore,
forKey:"SCORE")

The preceding code is to be added just before the end of the if statement,
blockStatus.isRunning. The code will successfully increment score.
Now, it is time to save the high score.

Saving the high score
We will add a popup screen to save the high score when the user scores a high score.
To make this happen, firstly, we have to create a new scene, ScoreList.swift, and
call this scene when the player is out, that is, when the game is over.

In our didBeginContact() method, we have the following code line:

self.player.runAction(SKAction.sequence(
[inOutActionWhenPlayerDied,
inOutActionWhenPlayerDied.reversedAction(),
upActionWhenPlayerDied,removeFromParent]),gotoMenuScreen)

Replace the preceding lines with the following ones:

self.player.runAction(SKAction.sequence(
[inOutActionWhenPlayerDied,
inOutActionWhenPlayerDied.reversedAction(),
upActionWhenPlayerDied,removeFromParent]),
completion: gotoSavePlayerScreen)

The new lines add the ScoreList scene when the player dies.

Performance Enhancement and Extras

[160]

Now, we will create a new method called gotoSavePlayerScreen(), to check if the
current score is greater than the saved score. Then, the ScoreList scene should be
called, or else the main screen, that is, the MainMenu scene. The code for the same is
as follows:

func gotoSavePlayerScreen()
 {
 self.player.removeFromParent()

 println("The Saved Score Is: \(savedScore)")
 println("The Highest Score Is: \(highestScore)")

 if self.highestScore > savedScore
 {
 let transitionEffect =
 SKTransition.doorsCloseHorizontalWithDuration(1.5)
 highScorerListInstance = ScoreList
 (size: self.size) // , playbutton: "Play", background: "BG")
 highScorerListInstance!.anchorPoint = CGPoint(x: 0.5,
 y: 0.5)
 self.view?.presentScene(highScorerListInstance ,
 transition:transitionEffect)
 }

 else if self.highestScore <= savedScore

 {
 gotoMenuScreen()
 }
}

We have implemented the method to select the scene to open after game completion.
Now, let's construct the ScoreList scene.

Creating the scene to save the high score
Let's create the ScoreList scene to display a popup for saving the highest score.

Also, add a label to congratulate the user. Following is the code for same:

func congratsUserAndSaveScorerName()
 {
 var congratsUserLabel = SKLabelNode(fontNamed:
 "Chalkduster")
 congratsUserLabel.fontColor = UIColor.redColor()
 congratsUserLabel.name = "CONGRATS"

Chapter 9

[161]

 congratsUserLabel.color = UIColor.lightGrayColor()
 congratsUserLabel.text = "Congratulations!! "
 congratsUserLabel.position =
CGPointMake(CGRectGetMidX(self.frame), CGRectGetMidY(self.frame) +
congratsUserLabel.frame.height * 2)
 congratsUserLabel.zPosition = 3
 self.addChild(congratsUserLabel)
 }

We also need to add a CANCEL button if the user doesn't want to save the score
with a name. Add the following code from the didMoveToView() method of
ScoreList.swift, where the CANCEL button will take you to MenuScene:

func addCancelBtn()
 {
 var Cancelbutton = SKLabelNode(fontNamed: FontFile)
 Cancelbutton.fontColor = UIColor.blueColor()
 Cancelbutton.name = "CANCEL"
 Cancelbutton.text = "CANCEL"
 Cancelbutton.position =
CGPointMake(CGRectGetMinX(self.frame) +
Cancelbutton.frame.width/2 , CGRectGetMinY(self.frame))
 Cancelbutton.zPosition = 3
 self.addChild(Cancelbutton)
 }
func gotoMenuScreen()
 {
 self.playerNameTextField.removeFromSuperview()
 let transitionEffect =
 SKTransition.flipHorizontalWithDuration(1.0)
 menuSceneInstance = MenuScene(size: self.size ,
 playbutton: "Play", background: "BG")
 menuSceneInstance!.anchorPoint = CGPoint(x: 0.5, y: 0.5)
 self.view?.presentScene(menuSceneInstance ,
 transition:transitionEffect)

 }

Performance Enhancement and Extras

[162]

The preceding code adds a cancel button in blue color, and tapping on this button
takes the player to the MenuScene. Now, to handle the tapping on the CANCEL
button, add the following code within touches loop, inside the touchesBegan()
method of ScoreList.swift:

if node.name == "CANCEL"
{
 gotoMenuScreen()

}

The score list will have been successfully created. We have also added a cancel
button for the convenience of the user. Now, it is time to add a textbox in which
the player will add his/her name.

Adding a textbox to save player name
We need to display a textbox for the user to enter the player name that is to be saved.
Add the following code line to insert a textfield inside a frame:

let playerNameTextField = UITextField(frame: CGRectMake(50, 150, 250,
50))

The following method will make the textbox that is to be used:

func addPlayerNameTextBox()
 {
 playerNameTextField.center = CGPointMake(self.size.width /
 2, self.size.height / 2)
 playerNameTextField.backgroundColor = UIColor.whiteColor()
 playerNameTextField.placeholder = "Enter Your Name"
 playerNameTextField.borderStyle =
 UITextBorderStyle.RoundedRect
 self.view?.addSubview(playerNameTextField)
 }

Now, let's add a textFieldShouldReturn method of UITextFieldDelegate, to
make the keypad disappear after tapping the return key while entering the player
name in the textbox:

func textFieldShouldReturn(playerNameTextField: UITextField) -> Bool
 {
 println("Text Field Return Key")
 playerNameTextField.resignFirstResponder()
 return true

 }

Chapter 9

[163]

Now, add the UITextFieldDelegate delegate to the Scorelist class at the
beginning. This delegate enables the keyboard to appear.

The preceding snippet will successfully make the keyboard disappear once the
return key is pressed. Now, the next task will be to save the added name.

This is how the screen will look when the keyboard is opened

Saving the player name with high score
We will name the button ADD PLAYER. This button will make the name entered
by the user to get saved with the high score made. Firstly, create the following node,
named add-player, with the image:

let addPlayerButton = SKSpriteNode(imageNamed:"add-player")

Add the following code method to set the properties of the ADD PLAYER button.
Also, make sure to call the same from the didmoveToView() method:

func addScoresSceneBtn()
 {
 addPlayerButton.name = "SCORES"
 self.addPlayerButton.position =
CGPointMake(CGRectGetMidX(self.frame),CGRectGetMinY(self.frame)/3)
 self.addChild(self.addPlayerButton)
 }
declare the following variable before adding didMoveToView()
method

var highestScorerName:String = String()

Performance Enhancement and Extras

[164]

Add the following lines of code in the touchesBegan() method of ScoreList.swift,
as in the previous code, to handle the tap of the ADD PLAYER button within touches
loop:

if node.name == "SCORES"
 {
 if playerNameTextField.text.isEmpty
 {
 playerNameTextField.placeholder = "Please
 Enter the Player Name"
 }
 else
 {
 self.highestScorerName =
 self.playerNameTextField.text
NSUserDefaults.standardUserDefaults().setObject(highestScorerName,
forKey:"HighestScorerName")
 NSUserDefaults.standardUserDefaults().
synchronize()
 gotoMenuScreen()
 }
 }

We are also adding gotoMenuScene() to return to the main menu as we know.
Following is the code for it:

func gotoMenuScreen()
 {
 self.playerNameTextField.removeFromSuperview()
 let transitionEffect =
 SKTransition.flipHorizontalWithDuration(1.0)
 menuSceneInstance = MenuScene(size: self.size ,
 playbutton: "Play", background: "BG")
 menuSceneInstance!.anchorPoint = CGPoint(x: 0.5, y: 0.5)
self.view?.presentScene(menuSceneInstance ,
transition:transitionEffect)
 }

Chapter 9

[165]

Now, the work on SceneList.swift is complete. Time to work on the high score
board. The following screenshot shows how the screen will look:

Creating the high score board
So far, we have saved the name of the player who makes a high score, but we have
not made a score board to show the high score to the player. It is better to have access
to the score board right from the main menu, as it makes it convenient.

In our game, we are going to create a high score menu scene with a button on the
main menu to reach this screen.

Firstly, create a scene with the name, AddScoreScene.swift, to show the high score.

Now, create the method, showHeightestScorerName(),to display the name
of the player who scored the highest score, and also call the same from the
didMoveToView() method in the AddScoreScene.swift file:

var savedScorerName: String = String()
func showHeighestScorerName()
 {
if(NSUserDefaults.standardUserDefaults().objectForKey
("HighestScorerName")) == (nil)
 { savedScorerName = " "
 }

Performance Enhancement and Extras

[166]

 else
 { savedScorerName =
NSUserDefaults.standardUserDefaults().objectForKey
("HighestScorerName") as String
 println(savedScorerName)
 }
var highScorerNameLabel = SKLabelNode(fontNamed: "Chalkduster")
 highScorerNameLabel.fontColor = UIColor.blueColor()
 highScorerNameLabel.name = "HIGHESTSCORERNAME"
 highScorerNameLabel.color = UIColor.lightGrayColor()
 highScorerNameLabel.text = "High Scorer :
 \(savedScorerName)"
 highScorerNameLabel.position =
CGPointMake(CGRectGetMidX(self.frame), CGRectGetMidY(self.frame) +
(highScorerNameLabel.frame.height * 2))
 highScorerNameLabel.zPosition = 3
 self.addChild(highScorerNameLabel)
 }

We have displayed the name of the player with the highest score, now it is
time to show the highest score made by the player. For this, create the method,
showHeighestScores(), and also call the same from the didMoveToView()
method in the AddScoreScene.swift file. Following is the code to be added
in the showHeighestScores() method:

 func showHeighestScores()
 {
if(NSUserDefaults.standardUserDefaults().objectForKey
("HighestScore")) == (nil)
 {
 savedScore = 0
 }
 else
 {
 savedScore =
NSUserDefaults.standardUserDefaults().objectForKey("HighestScore")
as! Int
 println(savedScore)
 }

 var highScoreLabel = SKLabelNode(fontNamed: "Chalkduster")
 highScoreLabel.fontColor = UIColor.blueColor()
 highScoreLabel.name = "HIGHESTSCORE"
 highScoreLabel.color = UIColor.lightGrayColor()

Chapter 9

[167]

 highScoreLabel.text = "The Score is: \(savedScore)"
 highScoreLabel.position =
CGPointMake(CGRectGetMidX(self.frame), CGRectGetMidY(self.frame))
 highScoreLabel.zPosition = 3
 self.addChild(highScoreLabel)
 }

Now, it is time to add a back button, which will return the player to the main menu.
Add the following code to implement the back button functionality:

func addBackBtn()
 {
 var mainMenubutton = SKLabelNode(fontNamed: FontFile)
 mainMenubutton.fontColor = UIColor.blueColor()
 mainMenubutton.name = "MAIN MENU"
 mainMenubutton.text = "MAIN MENU"
 mainMenubutton.position =
 CGPointMake(CGRectGetMinX(self.frame) +
 mainMenubutton.frame.width/2 , CGRectGetMinY(self.frame))
 mainMenubutton.zPosition = 3
 self.addChild(mainMenubutton)
 }

var menuSceneInstance : MenuScene?
 func goToMenuScene()
 {
 let transitionEffect =
 SKTransition.flipHorizontalWithDuration(1.0)
 menuSceneInstance = MenuScene(size: self.size ,
 playbutton: "Play", background: "BG")
 menuSceneInstance!.anchorPoint = CGPoint(x: 0.5, y: 0.5)
 self.view?.presentScene(menuSceneInstance ,
 transition:transitionEffect)
 }

The preceding code has added the back button functionality; now we have to handle
the touch/tap on the button in the touchesBegan() method of AddScore.swift, as
we did earlier. Add the following code in the touchesBegan() method:

for touch: AnyObject in touches
 {
 let location = touch.locationInNode(self)
 let node = self.nodeAtPoint(location)
 if node.name == "MAIN MENU"
 {

Performance Enhancement and Extras

[168]

 goToMenuScene()
 }
 }

Following is how the high score board will look:

Finally, the high score screen is also complete. This concludes the integration of a
scoring system in our Platformer game.

Adding sound into a game
A game can only be complete with different music and sound effects. There can
be background music in the game along with sound effects at each action, such as,
when the user taps, we can play a sound, and later, we can play a sound when a
player hits an obstacle or some other element in the main game. We can also have
different music at different levels. Sound effects play a vital role in enhancing the
overall gaming experience, as they indulge the user in a holistic gaming experience.

Adding sounds into a Sprite Kit game
There are two ways to add sound effects in a Sprite Kit game:

•	 Using SKActions
•	 Using the AVFoundation framework

Adding sound effects using SKActions is not efficient, as compared to the
AVFoundation framework. SKActions has a lot of limitations, such as that one
cannot pause or play the sound in the middle of gameplay, and so on. Hence,
it is advisable to use AVFoundation.

Chapter 9

[169]

Adding sound into our Platformer game
Let's add sound effects in our Platformer game. We will be using the AVFoundation
framework to add sounds.

1.	 Firstly, add the framework by clicking on your project, and then, under the
General category, go to the Linked frameworks and Libraries section and
add the AVFoundation framework.

2.	 Now, add the following code to import the AVFoundation framework into
our GameScene.swift file:
Import AVFoundation

3.	 Add the AVAudioPlayerDelegate delegate to use specified properties and
methods of AVAudioPlayer in the GameScene class.

4.	 Now, create an instance of AVAudioPlayer for our GameScene file:
var avPlayer:AVAudioPlayer!

5.	 We are adding two sound files named game_music.mp3 and Strong_Punch-
Mike_Koenig-574430706.wav into our project (the WAV file format is
suitable for short sounds, and MP3 format is suitable for longer durational
sounds) and assign their names with two string variable as shown as follows:
let backgroundSound = "game_music"
 let gameOutSound = "Strong_Punch-Mike_Koenig-574430706"

6.	 Add the following method of code to make AVAudioPlayer get the specified
audio file and play the same:
func readFileIntoAVPlayer(soundName:String, ext:String)
 {
 var error: NSError?
 let fileURL:NSURL =
 NSBundle.mainBundle().URLForResource(soundName,
 withExtension: ext)!

 // the player must be a field. Otherwise it will be
 released before playing starts.
 self.avPlayer = AVAudioPlayer(contentsOfURL:
 fileURL, error: &error)
 if avPlayer == nil
 {
 if let e = error {
 println(e.localizedDescription)
 }
 }

Performance Enhancement and Extras

[170]

 if avPlayer.playing
 {
 avPlayer.stop()
 }

 println("playing \(fileURL)")
 avPlayer.delegate = self
 avPlayer.prepareToPlay()
 avPlayer.volume = 1.0
 avPlayer.play()

 }

In the preceding code, we are passing the sound name and the file format as
two parameters. The method will then play the sound file. If the user, while
playing sound on the device, starts the game, this code will stop the earlier
playing sound and then start the game sound.

7.	 As we want the background sound to be always running, we will call the
readFileIntoAVPlayer() method and pass backgroundSound and mp3
as parameters. Add the method in the beginning of the didMoveToView()
method of GameScene.swift. Following is the line to be added:
readFileIntoAVPlayer(backgroundSound, ext: "mp3")

The preceding line will play the background sound as the game starts.

8.	 We have also added another sound file for when the player dies. Now it is
time to add the code that will play the sound effect when the player dies.
Add the following lines of code in the beginning of the didBeginContact()
method of GameScene.swift:
avPlayer.stop()

readFileIntoAVPlayer(gameOutSound, ext: "wav")

In the preceding code, we are stopping the background sound in the player and
playing a new sound effect for the player's death by calling the same method as
before, but with different parameters.

Chapter 9

[171]

Animation frames using SKTexture
So far, we have used static images in our game, but if you will see, most of the games
have animated effects, such as player running effect, car running effect, or any other
effect that enhances the gameplay and creates a much better experience for all.

Adding the Run action texture to the player in
the Platformer game
We had earlier added an image atlas of the name, idle.atlas, which contained
similar images of the player standing position.

Now, we are going to add running texture images for the player, which will make it
look as though the player is running in the GameScene.

Firstly, add a texture image set called bro5_run.atlas, which we have provided.
The image atlas contains sets of seven images, which are sometimes also referred
to as a sprite sheet. In our case, it will be known as the player running sprite sheet.
These sets of images will be running one after the other at a fast rate of time inside
texture atlas.

Now, let's assign the texture image for the player. Add the following line of code in
the beginning of the didMoveToView() method:

player =
SKSpriteNode(texture:atlasForPlayerRun.textureNamed("bro5_run0001.
png"))

In the next step, we will add a method to create an SKAction for adding an
animated texture for the different textures of atlasForPlayerRun.atlas. Add the
following line of code by creating a runForwardTexture() method and call it from
didMoveToView(). Make sure to do this after you have added the texture image for
the player:

func runForwardTexture()
 {
 let hero_run_anim = SKAction.animateWithTextures([

 atlasForPlayerRun.textureNamed("bro5_run0002.png"),
 atlasForPlayerRun.textureNamed("bro5_run0002.png"),
 atlasForPlayerRun.textureNamed("bro5_run0003.png"),
 atlasForPlayerRun.textureNamed("bro5_run0004.png"),
 atlasForPlayerRun.textureNamed("bro5_run0005.png"),
 atlasForPlayerRun.textureNamed("bro5_run0006.png"),

Performance Enhancement and Extras

[172]

 atlasForPlayerRun.textureNamed("bro5_run0007.png")
], timePerFrame: 0.06)

 let run = SKAction.repeatActionForever(hero_run_anim)

 player.runAction(run, withKey: "running")

 }

The preceding code will have successfully implemented the running animation for
the player. The following screenshot shows how a sprite sheet looks:

The texture atlas for a running animation of the player

Summary
In this chapter, we have covered some important aspects of the game, along
with reading about performance improvements. Further, you can enhance the
performance of your game using performance measuring instruments provided
by Xcode. We also integrated the scoring system, sounds, and player running
animation in our platformer game.

In the next and final chapter of this book, we will discuss each element of our
Platformer game, take an in-depth look at the Game Center provided by Apple,
and discuss the newest additions in iOS 9 brought to us by Apple.

[173]

Revisiting Our Game and
More on iOS 9

Firstly, congratulations for overriding all the hurdles associated with the development
of a game and making it to the last chapter. Now you are in a strong position to
develop 2D games on your own, using the Sprite Kit game engine. In the previous
chapter, we read about performance enhancements and added some extra functionality
in our game, such as the scoring system, sounds, and player running animation.

In this chapter, we are going to finalize the game with a few final touches and discuss
formidable bonus items that make your game super awesome. We will also read about
integrating the game center to feed our game development experience to the fullest!

Revisiting Our Game and More on iOS 9

[174]

A recap on the development process of
our Platformer game
Let's recall the whole development process of our Platformer game by discussing each
of the scenes constructed, starting from the main menu:

•	 Main menu screen: This is the first screen we see, once we start the game.
We have four buttons on this screen. In the top left corner, you will see the
SCORE MENU button, which will take you to the high scoreboard. In the
top right corner, there is a button called NODE MENU, which will take you
to the node menu screen. In the bottom left corner, there is a button called
SHADOW EFFECT, which will display the shadow effect. Lastly, in the
centre of the screen, is the PLAY button. On tapping this button, you will
enter the game screen.

•	 Score menu screen: This screen is the high scoreboard. You can see the high
scorer's name and score on this screen. In the bottom left corner of the screen
is the MAIN MENU button, which will take you back to the main menu.

Chapter 10

[175]

•	 Node menu screen: This screen has various examples of nodes. You can see
five different buttons called SKCropNode, SKLightNode, SKEmitterNode,
SKShapeNode, and SKVideoNode. Along with these five buttons, there is
a BACK button to take you back to the main menu screen. Each of the node
buttons displays the respective example as the name of the button.

•	 SKCropNode screen: This screen shows an example of SKCropNode. You can
see the cropping of a node in this screen. Along with this, there is the BACK
button to go back to the node menu screen.

Revisiting Our Game and More on iOS 9

[176]

•	 SKLightNode screen: This screen shows an example of SKLightNode.
You can see a light in the centre of the screen, which you can drag to
see the changes in the shadow effect being created behind the images.

•	 SKEmitterNode screen: This screen presents an example of SKEmitterNode.
You can see emitted particles on this screen, and along with this, you can
also note the change in the number of nodes and fps on the screen, due to
the regular creation or destruction of the emitted particles.

Chapter 10

[177]

•	 SKShapeNode screen: This screen presents an example of SKShapeNode.
You can see a shape in this screen, and as set before, by pressing the BACK
button on the screen, you can go to the previous node menu screen.

•	 SKVideoNode screen: This screen shows an example of SKVideoNode. You
can see a video in the centre of the screen, and when you tap on the screen, it
will start playing. You can press the BACK button to go to the previous screen.

Revisiting Our Game and More on iOS 9

[178]

•	 Shadow effect screen: This screen shows the shadow effect. You can view
the shadow effect running in the middle of the screen, and like the emitter
node screen, you can note that the fps of this screen is changing due to the
shadow effect.

•	 Game screen: This is the game screen that has a JUMP and pause button.
If the player hits any obstacle, the game terminates and the score list screen
pops up.

Chapter 10

[179]

•	 Score list screen: This screen is displayed just after the game is over. It has
a Congratulations note and a textbox for entering the name of the player.
Once you have added the name of the player, you can tap on the ADD
PLAYER button to save the name of the player.

The preceding points briefly describe what each screen does and what elements are
present on each screen.

Working further on the Platformer game
By now, we have worked on every essential aspect that is provided by Sprite Kit for
game development. We have even integrated a scoring system, sound, and running
animation to enhance the gaming experience. However, there is still room for further
improvement; you can try out various effects and features, or just enhance the current
features and make your game more exciting. Here are some ideas that you can,
yourself, give a shot:

•	 Obstacles: Currently, we have only two types of obstacles; you can work
on adding more obstacles in the game and make the gameplay a little
more exciting.

•	 Levels: Currently, we have just three levels in the game, but you can
work on adding more levels and make the game more challenging as
the levels progress.

Revisiting Our Game and More on iOS 9

[180]

•	 Extra life: If the player hits an obstacle, the player dies; you can work on
giving an extra life to the player, and hence, increase the gameplay time too.

•	 Bonus points: One more idea could be to add some bonus points when the
player hits a special power-up. You can increase the score by an extra 100
or 200 points when the player hits this bonus item.

•	 Sounds: Our game currently has two sound effects: one is the background
sound, and the other is the player's death sound. You can add more sounds
in the game, such as different music for the menu and gameplay. Apart from
this, you can have separate music in the node menu screen, and so on.

These ideas are just a beginning; you can apply a whole lot of creativity to the game
and make it the next super hit title around.

An introduction to Game Center
Games on iOS and OS X platforms can utilize Apple's social gaming network
called Game Center. Game players can compare scores on a leaderboard, track
achievements, invite friends, or start a multiplayer game through auto-matching.
The Game Center is a part of the Game Kit, which has two other functionalities
apart from the Game Center.

The Game Center allows devices to connect to the Game Center service and
exchange information. The Game Center also makes sure to add the information
in the leaderboards and achievements. One can also play a multiplayer game using
the Game Center service.

The advantages of Game Center in a game
The Game Center handles user authentication, friends, leaderboards, achievements,
challenges, multiplayer, turn-based gaming, and invitations. In a way, it could be
said that game center provides us with server services that are related to social
interaction; something like its networking system. Some advantages of using the
Game Center are:

•	 No server side hassle: With Game Center you don't have to worry about
setting up your own servers. You can use the servers of Game Center for
most of the tasks required in a social game.

•	 User authentication: Game Center also helps in authenticating the user,
so you don't have to worry about duplicate IDs or any other such issues.

Chapter 10

[181]

•	 Friends: You can play games with friends; players can interact with other
players through an alias. Players can also set statuses, as well as mark other
players with friends.

•	 Multiplayer games: You can play multiplayer games via the Game Center.
Players can invite their friends or be connected to anonymous players across
the Game Center network.

•	 Turn-based gaming: With this feature, you can have a turn-based network
infrastructure. The match is played without all the players being connected
to the Game Center simultaneously; the players play with each other via a
turn-based method.

•	 Leaderboards: This allows the player to store the game scores at Game Center's
scoreboard. Each of the games will have a local and a network leaderboard,
where you can compare your score with local and global players.

•	 Achievements: Players can achieve various goals or accomplishments in a
game and unlock achievements to gain special bonuses.

•	 Challenges: This allows players to challenge other players and compete with
them for a score or an achievement.

Integrating Game Center in a game
Integrating Game Center in games is not hard, and on a macro level, consists of
two steps:

1.	 One, is the implementation and integration of all of the Game Center's
libraries that are required to be integrated in our game in Xcode.

2.	 The other step is to register the app on iTunes Connect, enable the Game
Center support, and set up any leaderboard and achievements required
in the game.

To integrate the Game Center in a Sprite Kit game, it is important to first have an
Apple ID, so that you can register the game with Apple. Apart from having an Apple
ID, it is also important to make some tweaks in the code and design to successfully
incorporate the Game Center in your game. For example, you will have to do the
sign-in (authentication) to the Game Center at game launch; if you wish to show
leaderboards in the game, it is better to show them in the game itself, and so on.

Now, let's discuss both these steps in more detail.

Revisiting Our Game and More on iOS 9

[182]

Working with Xcode
You have to perform activities, such as the creation or integration of an Apple ID, for
the game to be developed and to enable the Game Center in the Xcode. Let's have a
look at the process:

1.	 To add an Apple ID, first click on the Xcode menu, Preferences in your
Xcode. The Preferences windows will appear. At the top of the Preferences
window, there will be various tabs. Click on the Accounts tab.

Chapter 10

[183]

2.	 Now, go to the bottom left corner of the window and click on the button with
the + symbol to get a small menu having three options.

3.	 Out of the three options in the small menu, click on the add Apple ID option.
In the window that pops up, enter your Apple ID and Password and click on
the Add button.

Revisiting Our Game and More on iOS 9

[184]

4.	 Now you will get a summary of your Apple ID in the Accounts tab.

5.	 Now, in the project navigator, click on the project target.

Chapter 10

[185]

6.	 Under the General tab in the Identity section, there will be a drop-down
menu named Team. If you click on it, you will see the developer's name
inside it. It will confirm that the Apple ID has been successfully integrated.
Then, you have to click on it to make Xcode use your developer account.
Xcode to create the App ID automatically.

7.	 Now, click on the Capabilities tab that is just next to General. In the list of
all the provided capabilities, expand the Game Center one. Now, turn on
the switch on the right-hand side of the list.

The first step of Game Center integration in the game is complete. We have enabled
the Game Center in the game and also created an App ID to be used by iTunes
Connect in the next step.

Revisiting Our Game and More on iOS 9

[186]

Working with iTunes Connect
In this step, we are going to create a record in the iTunes Connect for a new
application, and then we will manage the Game Center part by creating leaderboards
and achievements.

1.	 Go to iTunes Connect and use your developer credentials to sign in.
Then click on the My Apps option, among all the options.

2.	 Then, on the upper right corner, there is a + button to add a new iOS app.

3.	 When you will click on the New iOS App button, you will get a popup
window, asking for information regarding the new iOS app. The details
asked are the Company Name, Name (app name), Version, Primary
Language, Bundle ID, and SKU.

°° Company Name is the company's or developer's name (it cannot
be changed later)

°° Next is the app name (Name), which cannot be longer than
255 characters

°° Next is the Primary Language in the app, which you can choose
from a drop-down

Chapter 10

[187]

°° The next option is the Bundle ID, which is a drop-down, and will
be having a bundle ID of the app, present in Xcode

°° After that, you can add the Version number to be shown in the
app store, and it should match the one used in Xcode

°° Finally, SKU is a unique ID for your app that is not visible on the
app store

4.	 After you click on Create in the New iOS App popup, you will reach a page
where you'll have to fill in details such as description, pricing, rating, and
other release related options. From the tabs, there will be an option called
Game Center. Click on that button to reach the Enable Game Center page.

Revisiting Our Game and More on iOS 9

[188]

5.	 As you just have a single game, click on Enable for Single Game, and then,
Game Center will become enabled for our game.

6.	 Under that, there will be an option to add the leaderboard and achievements;
you can add them as per your convenience.

Now, we are through with the second step of the Game Center integration, which
involves working with the iTunes Connect.

You have got a macro-level idea of what exactly has to be done to integrate the
Game Center in a Sprite Kit game.

Chapter 10

[189]

What's new in iOS 9
Apple announced iOS 9 in June 2015, and it will officially be released later this year.
It is proposed to have some new features for the Sprite Kit framework. A few of them
are mentioned in the following list:

•	 Metal rendering support: Metal provides lowest-overhead entry to the
Graphical Processing Unit (GPU). This enables us to maximize the graphics
and computational abilities of our apps and games. Metal has streamlined
APIs, multi-threading support, and precompiled shaders, which help make
our game or app superior in performance and efficiency.

•	 Improved scene editor and new action editor: The latest version of Xcode
now has a much improved scene editor and a new action editor. This will
help in designing scenes in Xcode in less time with less code work.

•	 Camera nodes: Camera node is an SKCameraNode object and helps in
specifying a position in the scene from which the scene can be rendered.
If we set the scene's camera property to the camera node, then the scene is
rendered using the camera node's property. This makes it even easier to
create 2D scrolling games, belt scrolling games, and so on. The camera node
in the scene determines which part of the scene's coordinate space should be
visible in the view.

•	 Positional audio: We can add spatial audio effects with this feature.
With this, the audio effects can track the position of the listener in a scene.
An SKAudioNode object is used for the positional audio effect.

These features are a few of the important features launched by Apple for the Sprite
Kit framework.

Summary
In this chapter, we discussed about our Platformer game and every aspect of it, starting
from the first chapter of this book to the most recent one. We also discussed how you
can apply new thoughts and ventures in this Platformer game and expand it further to
make it the next big hit in the Apple app store. Lastly, we studied about Game Center
and discussed in brief about its integration into a Sprite Kit game.

That being said, we are drawing the finishing line on our iOS game development
book with the thought that a list of new games will storm the App Store, and this
book will have been a great influence to the developers of those new platformer
games. I am hoping to see some exciting titles from you guys. Good luck!

[191]

Index
A
accelerometer

used, for moving sprites 109, 110
actions

about 4
creating 101
functions 106
used, for moving nodes 101
used, for rotating nodes 102

advantages, Game Center
achievements 181
challenges 181
friends 181
leaderboards 181
multiplayer games 181
server side hassle 180
turn-based gaming 181
user authentication 180

animation play
setting, during transition 28

AppDelegate.swift file 15

B
behavior controller properties,

of physics body
affectedByGravity 83
allowsRotation 84
dynamic 84

C
collision control properties

categoryBitMask 85
collisionBitMask 85

contactTestBitMask 85
usesPreciseCollisionDetection 85

color properties, SKSpriteNode class
blendMode 38
color 38
colorBlendFactor 38

controls
adding, in Sprite Kit 106

coordinate system 18, 19
Core Data tool

about 139
managed object context 140
managed object model 139
managed objects [each row will be

one object] 139
persistent object store 140
persistent store coordinator 140

custom shaders
using 129

D
development process, Platformer game

game screen 178
main menu screen 174
node menu screen 175
score list screen 179
score menu screen 174
shadow effect screen 178
SKCropNode screen 175
SKEmitterNode screen 176
SKLightNode screen 176
SKShapeNode screen 177
SKVideoNode screen 177

[192]

E
edge-based physics bodies

initializers 83
elements, Sprite Kit

action 4
nodes 3
scene 3

F
features, iOS 9

action editor 189
camera nodes 189
metal rendering support 189
positional audio 189
scene editor 189

features, Sprite Kit
about 4
game loop 6
lighting 5
particle editor 5
physics 6
shaders 5
shadows 5
texture atlas generator 5

fragment shaders 128
frames per second (FPS) 152
func hide() method 104
functions, SKNode 58
func unhide() method 103

G
game

Game Center 180
Game Center, advantages 180
Game Center, integrating 181
sound, adding into Platformer

game 168-170
sound, adding into Sprite Kit game 168
sprite, initializing in 34, 35

Game Center
about 180
advantages 180, 181
integrating 181
iTunes Connect, working with 186-188
Xcode, working with 182-185

game levels
creating, ways 138
descriptive 138
location 138
multiple levels, strategy 138
optimizing 137, 138
utilitarian 138

game loop 6
GameScene.sks file 15
GameScene.swift file 15
GameViewController.swift file 15
gotoSavePlayerScreen() method 160
Graphical Processing Unit (GPU) 189

H
Hello World project

result 11
setting up 7-10

high score
player name, saving by textbox

addition 162
saving 159, 160
saving, by creating scene 160-162
used, for saving player name 163, 164

I
initializers

in edge-based physics bodies 83
in SKNode 58
in Swift 34, 35
in volume-based physics

bodies 82
iOS 8

new features 1
iOS 9

features 189
iTunes Connect

working with 186-188

L
LaunchScreen.xib 16
level, Platformer game

adding 140-144
Level label, adding 140, 141

[193]

lighting properties, SKSpriteNode class
lightingBitMask 38
normalTexture 39
shadowCastBitMask 39
shadowedBitMask 38

M
Main.storyboard 15
memory

textures, preloading into 52, 53
methods

for changing animation speed 102
for changing node transparency 104
for changing sprite node content 105, 106
for hiding node 103
for moving nodes 101
for rotating nodes 102
for scaling node 103
for showing node 103

multiple actions
adding, to node 100
creating 100
executing 100
sequence, creating 100

N
node menu scene

accessing 146-148
about 63-68
CropScene 68, 69
LightScene 73-75
ParticleScene 71-73
ShapeScene 69-71
VideoNodeScene 75-77

nodes
about 3, 55
animating 100
animation speed, changing 102
coordinate system 60
coordinate system, functions 60
hiding 103
initializing 58
multiple actions, adding 100
recognition 57
scale position, changing 103
showing 103

single action, adding 100
SKAction 100
SKNode object, using in game 57
sprite node content, changing 104, 105
transparency, changing 104

node subclasses
SK3DNode 3
SKCropNode 4
SKEffectNode 4
SKEmitterNode 4
SKFieldNode 4
SKLabelNode 3
SKLightNode 4
SKShapeNode 4
SKSpriteNode 3
SKVideoNode 3

node tree
actions 59, 60
building 58
creating 20
order, drawing for 20-22

O
order

drawing, for node tree 20-22
orientation, for Platformer game 14

P
particle editor 5
particle effects

about 119, 120
adding, in Platformer game 122-125
creating 121
facilitating, by adding code 126, 127
func resetSimulation () property 121
properties, for determining lifetime 122
var numParticlesToEmit property 121
var particleBirthRate property 121
var particleLifetime property 122
var particleLifetimeRange property 122
var targetNode property 121

pause functionality
adding 144, 145

performance enhancement
about 150
by preloading textures 151

[194]

drawing performance, improving 151
effect's performance, improving 154
features, adding 149
game, best practices 150
game scene contents, systemizing 150
instruments, using 155-157
lighting performance, improving 155
physics performance, improving 153
shape's performance, improving 154
SKActions and constraints, using 152

performance monitor counter (PMC) 156
physical properties, of physics body

angularDamping 84
area 84
density 84
friction 84
linearDamping 84
mass 84
restitution 84

physical properties, SKSpriteNode class
AnchorPoint 35
size 35

physics
about 6
simulating, in Sprite Kit 80

physics bodies, Sprite Kit
edge-based 81
volume-based 80

physics performance
improving 153
improving, guidelines 153
specified boundary, assigning 153

Platformer game
actions, adding 111, 112
adjusting 16, 17
animations, adding 111
bonus points 180
controls, adding 111-117
development progress 174
extra life 180
levels 179
levels, adding 140
NodeMenuScene 63
obstacles 179
orientation 14
particle effects, adding 122-125
project elements 14, 15

Run action texture, adding to player 171
scene, adding in 22-26
scoring system, adding 157
shaders, implementing 130-135
sound, adding 169, 170
sounds 180
subclasses, creating 62, 63
transiting, from GameScene to

MenuScene 113
transition, adding in 30, 31
working on 179

project
setting up 7

project elements, Platformer game
AppDelegate.swift 15
GameScene.sks 15
GameScene.swift 15
GameViewController.swift 15

properties, SKSpriteNode class
centerRect 36, 37
color properties 38
lighting properties 38, 39
physical properties 35, 36
shader 39
texture 36

S
scene

about 3, 18, 33
adding, in Platformer game 22-26
creating 19
transiting 27

SceneKit 111
scoring system

adding, in Platformer game 157
high score board, creating 165-168
high score, saving 159, 160
scene, creating for saving high

score 160-162
score, incrementing 158, 159
score label, creating 157

shaders
about 5, 128
addUniform () method 129
custom shaders 129
fragment shaders 128

[195]

implementing, in Platformer game 130-135
methods, using 129
new shader objects, creating 129
new shader objects, initialization 129
removeUniformNamed() method 129
uniform data, holding 130
uniformNamed() method 130
URL 129, 130
var uniforms () method 130
vertex shaders 128

shadows 5
shouldRasterize property 154
showHeightestScorerName() method 165
single action

adding, to node 100
creating 100
executing 100

SKAction functions
about 101-105
for changing sprite node content 104

SKEmitter node 120
SKNode

actions 59
functions 57
properties 59-61
using, in game 57

SKPhysicsBody class
about 80
behavior controller properties,

of physics body 83
collision control functions 85
collision control properties 85
force, applying on physics body 86
GameScene.swift, used for adding physical

bodies 88-96
impulse, applying on physics body 86
initialization, of edge-based physics

bodies 83
initialization, of volume-based physics

bodies 82
physical properties, of physics body 84
velocity, applying on physics body 87

SKSpriteNode class
about 33
properties 35

SKTexture
Run action texture, adding in

Platformer game 171
used, for animation frames 171

SKView object 19
sprite

about 33
initializing, in game 34, 35

sprite, adding without texture
about 39, 40
colorBlendFactor, modifying in

MenuScene 42
color property, modifying 40, 41
position, modifying of sprite 42-46
sprite, resizing 46

Sprite Kit
about 2
advantages 3
clicking 107
controls, adding 106, 107
device orientation 13, 14
elements 3
features 4
func preloadTextureAtlases() method 151
func preloadWithCompletionHandler()

method 151
func touchesBegan method 107
func touchesCancelled method 107
func touchesEnded method 107
func touchesMoved method 107
gesture recognitions 107-109
node tapping 107
physics bodies 80, 81
physics, simulating in 80
sprites, moving with accelerometer 109-111
sprite sheet 33
sound, adding 168

strategy, multiple levels
Core Data tool, using 139, 140

subclasses, SKNode classes
SKCropNode 56
SKEffectNode 56
SKEmitterNode 56
SKFieldNode 56
SKLabelNode 56
SKLightNode 56

[196]

SKShapeNode 56
SKSpriteNode 56

subclass properties, SKNode classes
frame 56
position 56
xScale 56
yScale 56
zRotation 56

Swift
about 2
initializers 34, 35

T
texture atlas 48-52
textures

objects, working with 47
preloading, into memory 52, 53

transition
adding, in Platformer game 30, 31
animation play, setting during 28
objects, creating, methods 28, 29

V
vertex shaders 128
volume-based physics bodies

initializers 82, 83

X
Xcode

working with 182-185

Thank you for buying
iOS Game Development By Example

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Building Databases with
Redis [Video]
ISBN: 978-1-78328-411-5 Duration: 03:13 hours

Acquire practical experience and skills in designing
databases using Redis

1.	 Harness the power of the Redis to build
storages as per your needs.

2.	 Execute Redis commands and discover ways
to perform them on the database.

3.	 Filled with practical examples close to real-life
tasks and situations.

Rapid Redis [Video]
ISBN: 978-1-78439-545-2 Duration: 00:49 hours

Get to grips with Redis; an open source, networked,
in-memory, key-value data store that will solve all
your storage needs

1.	 Understand the difference between SQL
and NoSQL databases.

2.	 Use Redis interactively through its
command-line interface (CLI).

3.	 Understand the basic data structures of
Redis and their usage.

Please check www.PacktPub.com for information on our titles

Building Scalable Apps with
Redis and Node.js
ISBN: 978-1-78398-448-0 Paperback: 316 pages

Develop customized, scalable web apps through the
integration of powerful Node.js frameworks

1.	 Design a simple application and turn it into the
next Instagram.

2.	 Integrate utilities such as Redis, Socket.io, and
Backbone to create Node.js web applications.

3.	 Learn to develop a complete web application
right from the frontend to the backend in a
streamlined manner.

Redis Applied Design Patterns
ISBN: 978-1-78328-671-3 Paperback: 100 pages

Use Redis' features to enhance your software
development through a wide range of practical
design patterns

1.	 Explore and understand the design patterns
of Redis through a wide array of practical
use cases.

2.	 Learn about different data structures and the
latest additions to Redis.

3.	 A practical guide packed with useful tips to
help you use patterns in your application.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: An Introduction to Sprite Kit
	What's new in iOS 8?
	Getting to know Swift
	Getting to know Sprite Kit
	Advantages of Sprite Kit
	Elements of Sprite Kit
	Scenes
	Nodes
	Actions

	Features of Sprite Kit
	Particle editor
	Texture atlas generator
	Shaders
	Lighting and shadows
	Physics
	The game loop

	Setting up a project
	The Hello World project

	Result
	Summary

	Chapter 2: Scenes
	Device orientation in Sprite Kit
	Orientation in our project
	Revisiting project elements
	AppDelegate.swift
	GameScene.sks
	GameScene.swift
	GameViewController.swift
	Main.storyboard
	LaunchScreen.xib

	Adjusting the project
	What is a scene?
	Coordinate system
	Creating a scene
	Creating a node tree
	Drawing order for a node tree
	Adding the first scene in our game
	Adding another scene to our game
	A transition from one scene to another
	Setting animation play during transition
	Creating transition objects
	Adding transition in our game
	Summary

	Chapter 3: Sprites
	SKSpriteNode
	Initializing a sprite

	The properties of SKSpriteNode
	Physical
	Texture
	centerRect
	Color
	Shader

	Adding a sprite without using textures
	Changing the color property
	Changing colorBlendFactor in MenuScene
	Changing the position of a sprite
	Resizing a sprite

	Working with texture objects
	What is a texture atlas?

	Preloading textures into memory
	Summary

	Chapter 4: Nodes
	All you need to know about nodes
	Using the SKNode object in the game
	Recognizing a node
	Initializing a node
	Building a node tree
	Actions on a node tree
	The coordinate system of a node
	Other functions and properties

	Creating subclasses for our Platformer game
	NodeMenuScene
	CropScene
	ShapeScene
	ParticleScene
	LightScene
	VideoNodeScene

	Summary

	Chapter 5: Physics
	Simulating physics in Sprite Kit
	SKPhysicsBody
	The initialization of volume-based physics bodies
	The initialization of edge-based physics bodies
	The behavior controller properties of a physics body
	The physical properties of a physics body
	Collision control properties and functions
	Forces and impulses
	The velocity of a physics body
	Using GameScene.swift to add physics bodies

	Summary

	Chapter 6: Animating Sprites, Controls, and SceneKit
	Animating nodes
	SKAction
	Adding a single action to a node
	Adding multiple actions to a node

	Creating actions
	Moving nodes using actions
	Rotating nodes using actions
	Changing the animation speed of a node
	Changing the scale position of a node
	Showing or hiding a node
	Changing the transparency of a node
	Changing the content of a sprite node
	Some other important actions

	Adding controls in Sprite Kit
	Node tapping and clicking
	Gesture recognitions (swiping in any direction, pinching, or rotating)
	Moving sprites with an accelerometer

	An introduction to SceneKit
	Adding animations and controls in our Platformer game
	Adding actions
	Transiting from GameScene to MenuScene
	Adding controls in our game

	Summary

	Chapter 7: Particle Effects and Shaders
	Particle effects
	The SKEmitter node
	Creating the particle effect
	Properties for determining a particle's lifetime
	Adding the particle effect in our Platformer game
	Adding the code to facilitate the particle effect

	Shaders
	A fact about using custom shaders
	The creation and initialization of new shader objects
	Uniform data in shaders
	Implementing shaders in the Platformer game

	Summary

	Chapter 8: Handling Multiple Scenes and Levels
	Optimizing game levels
	A strategy for multiple levels
	Core Data

	Adding levels in our Platformer game
	Adding the Level label
	Adding levels

	Adding the pause functionality
	NodeMenuScene
	Summary

	Chapter 9: Performance Enhancement and Extras
	Performance enhancement
	Systemizing a game's content in the scene
	Performance enhancement by preloading textures
	Improving the drawing performance
	Improving performance with SKActions and constraints
	Improving the physics performance
	Improving shape's performance
	Improving effect's performance
	Improving lighting performance

	Measuring performance with instruments
	A scoring system in a game
	Adding a scoring system in our Platformer game
	Creating the Score label
	Incrementing the score when required
	Saving the high score
	Creating the high score board

	Adding sound in a game
	Adding sounds in a Sprite Kit game
	Adding sound in our Platformer game

	Animation frames using SKTexture
	Adding the Run action texture to the player in the Platformer game

	Summary

	Chapter 10
: Revisiting Our Game and More on iOS 9
	A recap on the development process of our Platformer game
	Working further on the Platformer game
	An introduction to Game Center
	The advantages of Game Center in a game
	Integrating Game Center in a game
	Working with Xcode
	Working with iTunes Connect

	What's new in iOS 9
	Summary

	Index

