
www.allitebooks.com

http://www.allitebooks.org


jBPM6 Developer Guide

Learn about the components, tooling, and integration 
points that are part of the JBoss Business Process 
Management (BPM) framework

Mariano Nicolas De Maio

Mauricio Salatino

Esteban Aliverti

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org


jBPM6 Developer Guide

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either expressed or implied. Neither the authors, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2009

Third edition: August 2014

Production reference: 1120814

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-661-4

www.packtpub.com

Cover image by Eugenio Dal Monte (e_dm@fastwebnet.it)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org


Credits

Authors
Mariano Nicolas De Maio

Mauricio Salatino 

Esteban Aliverti

Reviewers
Stefan Bunciak

Demian Calcaprina

Hassan Ebied

Peter Johnson

Toshiya Kobayashi

Marcelo Daniel Martini

Edem Morny

Antonio Mendoza Pérez

Acquisition Editor
Subho Gupta

Content Development Editor
Mohammed Fahad

Technical Editors
Pramod Kumavat

Pratik More

Mukul Pawar

Project Coordinators
Wendell Palmer

Akash Poojary

Copy Editors
Roshni Banerjee

Sarang Chari

Gladson Monteiro

Laxmi Subramanian

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexers
Hemangini Bari

Rekha Nair

Tejal Soni

Graphics
Ronak Dhruv

Valentina D'silva

Disha Haria

Abhinash Sahu

Production Coordinators
Manu Joseph

Nitesh Thakur

Shantanu Zagade

Cover Work
Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org


About the Author

Mariano Nicolas De Maio is a software engineer who graduated from the 
Argentinian Enterprise University (UADE). He has been working on Java-based 
projects and open source frameworks for over a decade. He became involved in the 
jBPM and Drools projects as a community contributor 4 years ago—first as a project 
architect for a company investigating the feasibility of a few rules and processes, 
and eventually as a community contributor on several components that are now part 
of the open source release components of jBPM, such as the jBPM5 JMS connectors 
for Human task services, the Infinispan implementations of Drools and the jBPM6 
persistence scheme, the Form Builder project and its initial migration to UberFire, 
the jBPM rollback API, and a number of bug fixes for the core components of several 
other projects.

For the last 3 years, he has been teaching and consulting for jBPM and Drools. 
Currently, he is the CTO at Plugtree (http://www.plugtree.com), a company  
that provides consultancy and training around the world on Drools, jBPM, and  
any artificial intelligence concept where they can lend a hand to different companies. 
Since then, he has provided both private and public training on both Drools and 
jBPM to a large number of companies all over the world.

He lives in Buenos Aires. He is happily married to Tamara and they are raising a 
beautiful baby daughter, Sofia. In his free time, he likes to work on contributions 
for the open source projects he is using. He also has a personal blog about jBPM, 
Drools, and Decision Management (http://marianbuenosayres.wordpress.com). 
You can find him through the official jBPM IRC channel #jbpm at http://webchat.
freenode.net, under the nickname mariano or mariano84.

Besides writing this book, he has previously collaborated in the review of several 
other books, including jBPM5 Developer Guide, Mauricio Salatino and Esteban Aliverti, 
Packt Publishing, and A Practical Guide to jBPM5: JBoss Business Process Management 
Framework, Venkataganesh Thoppae.

www.allitebooks.com

http://www.plugtree.com
http://marianbuenosayres.wordpress.com
http://webchat.freenode.net
http://webchat.freenode.net
http://www.allitebooks.org


Acknowledgments

First of all, I would like to thank my family. I dedicate this book to Tamara, my wife, 
and Sofia, my daughter. Their support through all the book writing process is what 
kept me going and confident. They are the most important part of my life.

I would also like to thank the excellent team at Packt Publishing, whose guidance 
throughout the book writing process has been invaluable.

I would also like to thank all the people I worked with at Plugtree and the JBoss 
community, with whom and for whom I had to investigate so many new features 
of this beautiful framework—which helped me gather the knowledge to write this 
book. A special thank you to Mauricio Salatino and Diego Naya, founder of Plugtree, 
for believing in me, and thanks to all the companies that pushed us to investigate 
new features every day—Multi-Support, iHealth, the Sura Group, and many others 
who prefer no mention, but are pushing the edge of technology in so many ways.

www.allitebooks.com

http://www.allitebooks.org


About the Author

Mauricio Salatino (a.k.a. Salaboy) has been an active part of the Java and open 
source software community for more than 9 years. He got heavily involved in the 
JBoss jBPM and Drools projects as a community contributor 6 years ago. After 
publishing his first book about jBPM for Packt Publishing, he was recognized  
as a valuable member of both projects at the JBoss Community Awards 2011.

He has participated in international conferences such as Java One, Rules Fest,  
Jazoon, JudCon, JBoss In Bossa, and RuleML as the main speaker. He is now a  
Drools and jBPM Senior Software Developer at Red Hat/JBoss, fully dedicated 
to move these projects forward. He is currently in charge of developing the next 
generation Business Process Management Suite, along with contributing to the 
evolution of the Drools and jBPM community projects.

He is now based in London. In his free time, he passionately promotes the open 
source projects he is using, and is very active in the community forums on these 
projects. He also runs his personal blog (http://salaboy.com) about jBPM, Drools, 
and artificial intelligence.

I would like to thank Mariano for updating the book to the latest 
version of jBPM, which is an invaluable asset for the whole jBPM 
and Drools Community.

www.allitebooks.com

http://salaboy.com
http://www.allitebooks.org


About the Author

Esteban Aliverti is an independent IT consultant and software developer 
with more than 8 years of experience in the field. He is a fervent open source 
promoter and developer with meaningful contributions to JBoss Drools and 
jBPM5 frameworks. After he got his software engineering degree in Argentina, 
he started working with local IT companies fulfilling different roles ranging from 
web developer to software architect. In 2009, while working for Plugtree, he was 
introduced to JBoss Drools and jBPM5 projects. Over the next 3 years, he became one 
of the lead consultants at Plugtree, providing services to its most important clients all 
around the world.

A former Professor of Java and object-oriented programming at Universidad de 
Mendoza, Argentina, he decided to continue with his passion for education outside 
the academic field by co-authoring jBPM5 Community Training and Drools 5 
Community Training online courses. The urge to transmit his knowledge and 
experience led him to participate as speaker and co-speaker in several international 
conferences, such as Java One Brazil, RuleML, October Rule Fest, and various Drools 
and jBPM summits.

In JUDCon 2012 and 2013, he was recognized as a JBoss Community Leader during 
the JBoss Community Recognition Awards, in acknowledgement of his contributions 
to Drools framework.

Currently located in Germany, he works as an independent Drools/JBPM consultant 
and developer. During his free time, he enjoys contributing to Drools and jBPM 
projects and helping other people to embrace these technologies. In addition, he has 
a personal blog (http://ilesteban.wordpress.com), which he uses to publish his 
work and discoveries in his journey through the open source world.

www.allitebooks.com

http://ilesteban.wordpress.com
http://www.allitebooks.org


About the Reviewers

Stefan Bunciak is a Quality Assurance Engineer for Red Hat JBoss Middleware, 
and is currently focusing his efforts on improving the quality of the SOA Governance 
solution within JBoss Fuse Service Works.

While trying to do his best as the Quality Assurance Engineer, he earned  
several professional certificates, including Red Hat Certified System Administrator 
(RHCSA),  Red Hat Certified JBoss Administrator (RHCJA), and ISTQB Certified 
Tester (CTFL). Furthermore, he took part in the Business Process Modeling and 
Analysis course held by Prof. Dr. Mathias Weske to deepen his knowledge  
regarding the BPM discipline.

Although he is not an experienced writer, he has found some free time and  
published several articles, which can be found at https://community.jboss.org/
people/sbunciak.

He currently lives in Brno, Czech Republic, where he also finished his Bachelor's  
and Master's degrees in Applied Informatics at Masaryk University.

Hassan Ebied has more than 9 years of experience in the field of software 
development, and has specialized in JEE applications, middleware integration, and 
SOA/EAI. He was introduced to BPM 3 years ago when he started using IBM BPM 
technologies starting from 7.5, 8.0, 8.5, IBM ILOG, JBoss jBPM, and Drools.

He has been working for well-known software companies in Egypt and the Gulf 
area, including RAYA Integration Services, Cairo; Diyar Middle East, Kuwait; and 
SAPiT, Cairo. Currently, he is working at SAPiT, a leading system integrator in the 
Gulf area, as a Senior BPM Specialist.

I would like to thank the team at Packt Publishing who gave me the 
opportunity and confidence to participate in the reviewing of this 
book. Also, a special thanks to my lovely wife Hala who always 
gives me smiles and pushes me forward. 

www.allitebooks.com

https://community.jboss.org/people/sbunciak
https://community.jboss.org/people/sbunciak
http://www.allitebooks.org


Peter Johnson has over 34 years of enterprise computing experience. He has 
been working with Java for 16 years, and for the last 12 years has been heavily 
involved in Java performance tuning. He is a frequent speaker on Java performance 
topics at various conferences, including the Computer Measurement Group annual 
conference, JBoss World, and Linux World. He is a moderator for the build tools 
and JBoss forums at Java Ranch. He is also the co-author of the book JBoss in Action, 
Manning Publications, and has been a reviewer on numerous books on topics ranging 
from Java to Windows PowerShell.

Toshiya Kobayashi is a support engineer at Red Hat, Inc. He has over 10 years 
of experience in Java and open source software. Since joining Red Hat, he has 
been supporting various technologies such as JBoss AS, Seam, SOA platform, and 
Portal. He has been focusing on the BRMS/BPM suite for over three years while 
contributing to Drools, jBPM, and Designer, among others.

He is also a subleader of Japan JBoss User Group and is happy to encourage open 
source community activities.

Marcelo Daniel Martini is a BPM consultant. He is responsible for sales and 
technical analysis and provides advice on technologies and patterns to implement a 
BPM Middleware/SOA. He is associated with BPM/SOA technologies such as jBPM, 
Bonita, Intallio, ProcessMaker, Activiti, Bizagi, Lombardi IBM, TIBCO BPM, and 
Oracle BPM/SOA/OSB (Fusion Middleware) 11g (Decision Tables, BPEL, Business 
Rules, ADF Task Forms for Human tasks, Mediator services, and Adapter services). 
He has also worked on the BPEL component of Oracle SOA Suite 11g. He was  
the Network Administrator for the Oracle database of the Ministry of Economy  
and Production.

At Garbarino S.A. (http://www.garbarino.com/), he worked with jBPM6 Business 
Process Management (BPM), WebLogic, BAM, and Confluence. Also, he worked 
on Drools, CEP, BPEL, and Oracle projects. At Grupo OSDE (http://www.osde.
com.ar/), he worked as the Drools Guvnor (Business Rules Manager) and on jBPM6 
and CEP projects as well. He was also involved in the implementation of Biometric 
Electoral Register in Bolivia. He is also a Java architect. He has worked at NEC 
(http://ar.nec.com/) on Biometrics projects. He worked at Prefectura Nacional 
Argentina (http://www.prefecturanaval.gov.ar/) on migrating of systems to  
BPM processes.

I would like to thank my family for always being by my side.

www.allitebooks.com

http://www.garbarino.com/
http://www.osde.com.ar/
http://www.osde.com.ar/
http://ar.nec.com/
http://www.prefecturanaval.gov.ar/
http://www.allitebooks.org


Edem Morny is a passionate consultant and evangelist of enterprise Java 
technologies who has over 8 years of experience in the enterprise Java field. He  
spent much of his career working for Genkey, architecting and leading a team in 
building its multimodal, multialgorithm, and fully clustered biometric deduplication 
product. This product has become the reference point for deduplication services 
by many African governments including Ghana, Cameroon, and Mozambique. 
He is now the co-founder and CTO of Queauji Consulting, an enterprise systems 
integration consultancy in Ghana, specializing in the healthcare sector.

He currently lives in Accra, Ghana. He is married with one little boy. He has also 
been a reviewer of three other books by Packt Publishing:

• JBoss Tools 3 Developer's Guide, Anghel Leonard
• JBoss AS 5 Development, Francesco Marchioni
• JSF 2.0 Cookbook, Anghel Leonard

Antonio Mendoza Pérez is a software developer with over 8 years of experience 
in designing and implementing Java Enterprise applications. Always curious to find 
out and try new ways to build software, three years ago, he grew interested in BPM 
technologies—in particular jBPM, which he immediately adopted in his projects, 
together with Drools. From then on, he has been passionately following the Drools 
world and its evolution. He is also interested in Scala, Groovy, and other JVM 
programming languages.

You can get in touch with him at https://www.linkedin.com/in/antmendoza  
or through his blog at http://antmendoza.com.

I would like to thank Mauricio Salatino for his guidance while I was 
taking my first steps with jBPM, as well as Naiba for her support 
during this review.

https://www.linkedin.com/in/antmendoza
http://antmendoza.com


www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to  
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub 
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print 
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at 
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a 
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book 
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view nine entirely free books. Simply use your login credentials  
for immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com




Table of Contents
Preface 1
Chapter 1: Why Do We Need Business Process Management? 7

Theoretical background 8
Introduction, analysis, and explanations of standard specifications 9
Technical details and common practices of jBPM6 9
The conceptual background of BPM 10

Business processes 11
Sequence of business activities 11

Naming our activities 12
Business users and business applications 13

Humans and systems behave differently 13
Humans and systems – classification strategies 14

Achieving a business goal 14
The BPM discipline 15

BPM stage 1 – discovering your business processes 16
BPM stage 2 – formalizing your new processes 18
BPM stage 3 – implementing your technical assets 19

The business entity model 20
Coordination and orchestration of activities 21

BPM stage 4 – runtime 22
BPM stage 5 – monitoring 23
BPM stage 6 – improvements 24

BPM applications in the real world 24
The BPMS check list 24
BPM APIs and common practices 26
BPM – adoption of standards 27

Summary 28



Table of Contents

[ ii ]

Chapter 2: BPM Systems' Structure 29
Components of a BPMS 30

The execution node 30
The semantic module 31
The process engine 31

Node instance structures 36
Components inside jBPM6 37
Transactions and persistence 38
Audit/History logs 39
Real-time dashboards 40
Data mining and data analysis tools 40
The KIE APIs 41
KIE services 42
The KIE module 42
The KIE container 43
The KIE base 43
The KIE session 44

External interactions 46
The Human task component 49
Human tasks – life cycle 50
Human tasks – APIs 50
The User/Group callback 51
The BPMS ecosystem 51
BPM and service-oriented architecture 52
Service orchestration 53

Enterprise Service Bus 54
Rule engines 55

Classic BPM system and rule engine integration 56
Event-driven architecture and complex event processing 58

Predictive analytics and decision management 60
Summary 63

Chapter 3: Using BPMN 2.0 to Model Business Scenarios 65
Introduction to BPMN 2.0 66

Process modeling compliance 67
BPMN 2.0 elements 68

Flow elements 68
Connecting elements 71
Data elements 72
Swimlanes 74
Artifacts 74

Task types in jBPM6 75
Subprocess types in jBPM6 76



Table of Contents

[ iii ]

Event subtypes 78
Boundary events 80
BPMN 2.0 81

Modeling business scenarios with BPMN 2.0 81
Technical perspective 85

Sprint management technical overview 85
Adding simple process data 90

Summary 94
Chapter 4: Understanding the KIE Workbench 95

What you need to start a jBPM6 environment 96
Running the KIE Workbench installer 97
What you will need to create the jBPM6 business processes 99

Workbench utilities 99
Process designer 102
Other knowledge asset editors 103

What you will need to run the jBPM6 business processes 107
Process runtime 107
Process UI 109
Task lists 111
Task forms 112

Summary 114
Chapter 5: Creating a Process Project in the KIE Workbench 115

An IDE to our knowledge 115
A variety of process designers 116

The BPMN 2.0 Eclipse editor 116
The Web Process Designer 117
The jBPM Eclipse plugin 118

Interacting with the Web Process Designer 118
Creating new processes 118

Implementing our first process 119
The Web Process Designer sections 120

The toolbar 120
The Shape Repository panel 120
The editing canvas 120
The Properties panel 121

Sprint management process design 122
Configuring the process properties 123
Configuring the event nodes 125
Configuring the task nodes 127

The Service tasks 133
Configuring gateway nodes 134
Configuring sequence flow elements 134



Table of Contents

[ iv ]

Accessing existing processes 135
Modifying and deleting existing processes 136
Testing the process definitions 136

Process simulations 137
Unit testing the process definition 137

Process modeling summary 138
The Web Process Designer advanced topics 139

Importing process definitions 139
Service tasks 140
Work Item definition editor 140
Using Work Item definitions in the process designer 142

Providing a runtime for our process 143
The project editor 143
Build and deploy 144
Configuring the deployment unit 144

Summary 145
Chapter 6: Human Interactions 147

Understanding human interactions 147
Human interactions inside our processes 148
WS-HT standard specification 149

Human tasks' life cycle 150
jBPM6 Human task component's overview 151

Human task component APIs 153
The task service 154
Adding a users and groups data source origin 158
Starting your task service 159
Connecting to the KIE session 159

Task-oriented user interfaces 161
Task lists 161
Task forms 162

Building your own extensions to Human tasks 165
Task life cycle event listeners 166
Task service interceptors 167
When to use task event listeners or interceptors 170
Task model provider 171

Summary 172
Chapter 7: Defining Your Environment with the Runtime Manager 173

Understanding the role of the runtime manager 174
Understanding the runtime environment 175

Registerable items factory 176
Defining our runtime environment 177

Runtime lifecycle management 178
The different implementations available 180



Table of Contents

[ v ]

Singleton Runtime Manager 181
The CDI injection 183

Per Request Runtime Manager 183
The CDI injection 185

Per Process Instance Runtime Manager 185
The CDI injection 188

The UI configuration of runtime managers 188
Configuring a KIE session for a KIE module 189
Configuring a runtime manager type 190

Creating your own runtime manager 192
Per Process Definition Runtime Manager 193

Summary 195
Chapter 8: Implementing Persistence and Transactions 197

Why do we need persistence and transactions? 198
Persisting long running processes 199
The server failover and distribution mechanism 200

Persistence in jBPM6 201
KieStoreServices – creating and loading KIE sessions 203
How does persistence work? 204
Persistence and transaction configuration for jBPM6 207
History logs – extending the basic functionality 211
Object marshalling strategies 213

Other persistence mechanisms 214
Infinispan persistence 214

Summary 216
Chapter 9: Integration with Other Knowledge Definitions 217

What is a rule? 218
Old-fashioned integration 218
The Drools rule engine 220

What Drools needs to work 221
Applying rules to our processes 223

Gateway conditions 224
Business Rule tasks 224
Ad hoc process instance evaluations 225
Runtime configurations to activate rules 227

Temporal reasoning and processes 228
Events and complex events 228
CEP 230
EDA 230
Drools Fusion functionalities 232

Event declarations 232
Temporal operators 234



Table of Contents

[ vi ]

Sliding windows 234
Drools Fusion in action 235

Summary 236
Chapter 10: Integrating KIE Workbench with External Systems 237

Defining your architecture 237
Scalability considerations 239

Extending the KIE Workbench architecture 242
Web service addition 242
Work item handler default configurations 244
Executor service commands 245
KIE Session Sharing Considerations 248

Remote engine invocations 249
REST interface 250
JMS interface 252

Deploying the KIE Workbench in the cloud 254
Summary 256

Appendix: The UberFire Framework 257
UberFire 257

Integrating components 258
The existing components and services 259

Extending and reusing the UberFire UI components 261
Model View Presenter 262
The workbench components 264

Workbench screens 264
Workbench pop ups 265
Workbench editors 266
Workbench perspectives 267

The lifecycle annotations 268
Creating a screen and a pop up 270
Creating a perspective 273
Integrating components with the existing workbenches 273

Summary 275
Index 277



Preface
jBPM6 Developer Guide was written to provide a comprehensive guide that helps 
you understand the main principles used by the jBPM6 project to build smarter 
applications using the power of business processes. This book covers important 
topics such as the BPMN 2.0 specification, the WS-HT specification, domain-specific 
runtime configurations, integration patterns, and tooling descriptions. All these 
topics are covered with a technical perspective that will help developers to adopt 
these technologies. The book is also targeted at topics that are not usually covered 
by BPM systems, such as business rules, complex event processing and tooling 
extension capabilities, which are introduced to demonstrate the power of mixing 
different business knowledge descriptions into one smarter, adaptive platform.

What this book covers
Chapter 1, Why Do We Need Business Process Management?, introduces the BPM 
discipline. This chapter will provide the basis for the rest of the book, by providing 
an understanding of why and how the jBPM6 project has been designed, and the 
path its evolution will follow.

Chapter 2, BPM Systems' Structure, explores what the main pieces and components 
inside a Business Process Management system are, in depth. This chapter introduces 
the concept of BPM system as the natural follow-up of an understanding of the 
BPM discipline. The reader will find a deep and technical explanation about how a 
BPM system core can be built from scratch and how it will interact with the rest of 
the components in the BPM system infrastructure. This chapter also describes the 
intimate relationship between the Drools and jBPM projects, which is one of the  
key advantages of jBPM6 in comparison with all the other BPM systems, as well  
as existing methodologies where a BPM system connects with other systems.

www.allitebooks.com

http://www.allitebooks.org


Preface

[ 2 ]

Chapter 3, Using BPMN 2.0 to Model Business Scenarios, covers the main constructs 
used to model our business processes, guiding you through an example that 
illustrates the most useful modeling patterns. The BPMN 2.0 specification has 
become the de facto standard for modeling executable business processes since it 
was released in early 2011, and is recommended to any BPM implementation, even 
outside the scope of jBPM6.

Chapter 4, Understanding the KIE Workbench, takes a look into the tooling provided by 
the jBPM6 project, which will enable you to both define new processes and configure 
a runtime to execute those processes. The overall architecture of the tooling provided 
will be covered in this chapter as well.

Chapter 5, Creating a Process Project in the KIE Workbench, dives into the required steps 
to create a process definition with the existing tooling, as well as to test it and run 
it. The BPMN 2.0 specification will be put into practice as you create an executable 
process and a compiled project where the runtime specifications will be defined.

Chapter 6, Human Interactions, covers the Human task component inside jBPM6, in 
depth. A big feature of the BPM system is the capability to coordinate human and 
system interactions. It also describes how the existing tooling builds a user interface 
using the concepts of task lists and task forms, exposing the end users involved 
in the execution of human tasks, coming from multiple process definitions, to a 
common interface.

Chapter 7, Defining Your Environment with the Runtime Manager, covers the different 
strategies provided to configure an environment to run our processes. You will 
explore the configurations for connecting external systems, Human task components, 
persistence strategies and the relation a specific process execution will have with an 
environment, as well as methods to define their own custom runtime configuration.

Chapter 8, Implementing Persistence and Transactions, covers the shared mechanisms 
between the Drools and jBPM projects used to store information and define 
transaction boundaries. When we want to support processes that coordinate  
systems and people over long periods of time, we need to understand how the 
process information can be persisted.

Chapter 9, Integration with Other Knowledge Definitions, gives a brief introduction to the 
Drools rule engine. It is used to mix business processes with business rules, to define 
advanced and complex scenarios. We also cover Drools Fusion, and an added feature 
of the Drools rule engine to add the ability of temporal reasoning, allowing business 
processes to be monitored, improved, and covered by business scenarios that require 
temporal inferences.



Preface

[ 3 ]

Chapter 10, Integrating KIE Workbench with External Systems, describes the ways 
in which the provided tooling can be extended with extra features, along with a 
description of all the different extension points provided by the API and exposed by 
the tooling. A set of good practices is described in order to give you a comprehensive 
way to deal with different scenarios a BPMS will likely face.

Appendix, The UberFire Framework, goes into detail about the based utility framework 
used by the KIE Workbench to define its user interface. You will learn the structure 
and use of the framework, along with a demonstration that will enable the extension 
of any component in the workbench distribution you choose.

What you need for this book
This is a developer guide, so the thing you will find most useful when you read this 
book is a computer beside you, where you can try the examples and open, compile, 
and test the provided projects. The main idea behind the book is to get you up to 
speed in the development of applications or tooling that use jBPM6, and for this 
reason the book spends a lot of time with code examples and unit tests to run.

Good programming skills are required to easily understand the examples presented in 
this book. Most of the chapters complement the covered topics with a set of executable 
Maven projects. A basic understanding of Maven, Java, and JUnit is required.

Who this book is for
This book is intended for Java developers and architects who want to start 
developing applications using jBPM6, as well as start working on top of the  
provided tooling, either using or extending it. jBPM6 is a very flexible framework, 
but with this flexibility comes architectural and design decisions that we need to 
make when we start using it. This book offers a complete reference to all of the 
components distributed with jBPM 6.1.0.Beta3 community version, and it can 
be used as reference material to guide a team of developers in building efficient 
solutions using business processes and other knowledge definitions such as  
business rules and complex event processing.

After reading this book, you will have a good understanding of the jBPM6 
architecture and components. jBPM6 is a Red Hat's lead open source community 
project and is fully supported through JBoss BPMS product. If you are interested 
in the BPMS product, you can find more details at http://www.redhat.com/
products/jbossenterprisemiddleware/business-process/.

http://www.redhat.com/products/jbossenterprisemiddleware/business-process/
http://www.redhat.com/products/jbossenterprisemiddleware/business-process/


Preface

[ 4 ]

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:  
"You can also run the server using the same command line by typing mvn exec:exec 
once the installation is done."

A block of code is set as follows:

public class RuleFlowProcessInstance implements ProcessInstance {
  public RuleFlowProcess getRuleFlowProcess() { ... }
  public int getState() { ... }
  public void setVariable(String name, Object value) { ... }
  public Collection<NodeInstance> getNodeInstances() { ... }
  public Object getVariable(String name) { ... }
}

When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

TaskService taskService = HumanTaskServiceFactory.
        newTaskServiceConfigurator().
        entityManagerFactory(emf).
        userGroupCallback(ugCallback).
        interceptor(priority, new UserLogInterceptor()).
        getTaskService();

Any command-line input or output is written as follows:

bin/standalone.sh --server-config=standalone-full.xml

New terms and important words are shown in bold. Words that you see on the screen, 
in menus or dialog boxes for example, appear in the text like this: "Once the Finish 
button is clicked on, we're directed to the project editor, where we can configure 
dependencies, KIE bases, KIE sessions, and all the project-relevant components."



Preface

[ 5 ]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to  
have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support


Preface

[ 6 ]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we  
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support


Why Do We Need Business 
Process Management?

We software developers are used to embracing new technologies. Every day, we 
have to learn new versions of frameworks to make best use of the features available 
in them. We deal with the frustration of learning new APIs, integrating them in our 
project's architecture, and taking advantage of the all-new functionality that these 
new components provide us. We thrive on that. The software industry continuously 
pushes us into innovating how we design and architect our software solutions, 
sometimes to the point of not just creating a new framework, but a new paradigm  
to enhance communication and descriptiveness of the company's internal sequence 
of activities and software, which we need to understand as developers.

Business Process Management (BPM) is one of those paradigms whose scope goes 
further from the development arena and into all sorts of company realms. BPM 
provides visibility about a company's business processes, allowing us to improve 
and speed them up to increase profits and reduce costs, consequently improving 
the way the company works. It is a discipline with its own objectives, life cycle, and 
best practices, and one of its biggest added values is the common language it defines 
between all its participants—the business process.

You will find in this chapter the starting point to define these business processes,  
and how they help in building solutions that drive a company in a way that helps  
it to adapt faster to the business reality.

We will review this paradigm and how it enriches what we already know about 
building solutions, along with the technical topics to put them in practice into the 
latest jBPM version. To do so, we will cover both theoretical topics that would 
apply to understanding any Business Process Management System (BPMS) and 
the technical topics to build highly adaptable applications using jBPM6. Important 
concepts and definitions are highlighted throughout this book to help you solve new 
problems as they are found.



Why Do We Need Business Process Management?

[ 8 ]

When you start embracing these new concepts, you'll find new ways of modeling 
situations, finding solutions, and building applications that will be of interest for 
many different people: the development team for integration purposes, the business 
analysts and managers for formalizing processes, the end users who will interact 
with the user interface, and pretty much anyone with an interest in the company 
processes. It is of great importance that you share this new knowledge with as many 
people in the organization as possible, because BPM is not just a development tool 
but a full company driver that will surely help your project and your company to be 
a success by establishing a common language between different areas of expertise.

BPM improves the quality and flexibility of the software solutions we build by 
helping the company to drive its business. BPM establishes a management strategy 
to establish an integral way of managing the company's activities, which allows 
different domains to concentrate on the efficiency of tasks in terms of time as well 
as costs. BPM allows a company to use an iterative cycle to continuously detect and 
improve both activities and processes as needed or desired by a company. Driving 
a successful BPM implementation requires a lot of learning, but we'll cover as much 
of that learning as possible in this book. I strongly recommend that you involve as 
many areas and roles as possible in your BPM implementations by taking advantage 
of the common language generated by the BPM methodology. Furthermore, sharing 
your experiences develops your professional skills and helps you to gather different 
perspectives and visions from the topics that you find relevant. So, let's get started!

The content of the book is divided into three different stages:

• Theoretical background
• Introduction, analysis, and explanations of standard specifications
• BPM APIs and common practices

Each stage focuses on different concepts.

Theoretical background
This stage will drive the language used when you discuss BPM-related topics. 
Important definitions that you will adopt will be explained, exemplified, and 
dissected. That makes this stage vital, as those definitions will relate to your 
everyday work and to the way you communicate with others in the project (and in 
the company). This is also the reason why it is important that the important aspects 
of BPM are discussed with your peers. You might constitute a new vocabulary out  
of them, and just like any vocabulary, it's important that it is shared by everyone.



Chapter 1

[ 9 ]

Each definition will be scoped to a particular context. I will first explain each concept 
in a very generic way, as it helps you to understand the reason and purpose of the 
concept without including any reference to implementation or technical details. 
In more technical sections, I will map these concepts to more technical terms with 
concrete references to jBPM6.

Introduction, analysis, and explanations 
of standard specifications
This stage will (hopefully) drive your architecture and integration strategies. 
Standard specifications are created to define a common baseline to be shared and 
applied in new developments, which is based on the collaboration and experience of 
many groups and companies to aid in integration with other systems. If you decide 
to change implementations, standards could help you a lot in not having to rework 
migrations from one implementation to another.

This book introduces two main standards specifications, Business Process 
Model and Notation Version 2.0 (BPMN 2.0) and the Web Service Human Task 
specification. Both are used by jBPM6 and reflect good practices to create industry 
accepted and interoperable applications.

We won't go into the full details of the specifications in this book. We'll cover the 
details regarding where jBPM6 is not 100 percent compliant with the standard 
specification and how to deal with those cases. The standard specifications are not 
included for being size restrictive. Reading them, however, is very good to gain 
perspective on common practices adopted in a wide range of industries. We will 
provide links to them as we dive into them.

Technical details and common practices 
of jBPM6
This stage will ultimately drive your implementations by covering a complete list 
of the most important technical topics inside jBPM6, which will be discussed and 
demonstrated in practice.



Why Do We Need Business Process Management?

[ 10 ]

We will begin with simple examples, and then the examples will gain complexity to 
reach real-life situations. All the source code used in the examples will be available to 
download and examine, but not all the lines of code will be explained. The technical 
sections of this book should be read with the source code available. The main 
idea is that you see the projects in your favorite IDE to practice just as if you were 
developing your own projects; this will help you to practice and get used to real 
development tools, projects, and errors.

This first chapter is focused on the whole conceptual background needed to get you 
started with jBPM6. Most of the concepts that will be introduced in the next section 
are related to the BPM discipline. These concepts are essential, and the clearer you 
understand them, the easier it will be to start with your first projects.

The conceptual background of BPM
In order to understand the concept that guides BPM, we must first begin by 
understanding all the concepts behind that name, and the first one we need to 
understand is the concept of process.

In the broadest sense, a process is a series of steps or transformations to achieve a specific 
objective in a particular context. Like any transformation, it needs to have something to 
transform and a well-defined desired output of the transformation.

For example, if we want to build a house, we need to follow a set of steps depending 
on the area of the house, the materials, any services available, and so on. The steps 
also depend on the outcome (house style) we want. Some of the steps can be done at 
the same time, while some need to wait for other steps to be finished.

The important thing is the coordination between those steps to perform the 
transformation in the way we intend to, and each step needs to be clear and concise. 
In short, for each transformation (process), we need to know all the steps required 
to achieve the required outcome (goal), which will be the desired result of a process. 
Usually, goals and objectives have the ultimate outcome of improving the revenue 
or production of a company, and can have multiple yet different end results, thereby 
improving the conditions of the business.

The knowledge of how to achieve the goal and the transformation steps are usually 
held by an expert in the context. I may probably have a basic idea about how to lift 
a few walls for a room, but for a real-life scenario, I may not be able to describe all 
the steps needed to make quality housing. If we really want to know about real-life 
processes, we need to talk to experts in that field. This expert knows how to deal 
with normal processes and also how to deal with specific or exceptional situations 
for a wide range of different houses and buildings.



Chapter 1

[ 11 ]

Business processes
The word business associated to the process definition can seem ambiguous, but it is 
mostly due to how abstract the concept of business really is. From a developer-friendly 
perspective, we can think of business as a particular domain or context, or group of 
contexts. It could be easily exchanged in this case for domain, field, company, company 
unit, and any lingo that specifies a defined area of work. Business processes need to be 
evaluated, analyzed, designed, modeled, and validated by people who understand the 
domain where those processes belong. Since there are different business roles within 
a company, each should know a different perspective of the same process. Then, the 
business process becomes a common point of interaction and a common language 
between those roles. Activities, decisions, events, and many different components  
will define the structure of the way a process that is relative to a business needs to  
be conducted.

It is important to notice that the goal of business processes is tightly associated to  
the business goals, objectives, and strategies. With all these considerations in mind, 
we can arrive to the following definition:

Business processes are a sequence of business activities done by business users and 
business applications (company or third-party systems) to achieve a business goal 
for the purpose of a specific increase in value from the business' perspective.

We'll analyze this definition in detail by splitting it into its three main concepts and 
covering them thoroughly.

Sequence of business activities
An activity is a black box piece of work that contributes directly to achieving 
a business goal. We surely need to understand how the activity is performed. 
However, as we say, it is a black box, because from the process' perspective, the 
only things important are the inputs it needs and the outputs produced. The activity 
performed can be very simple or very complex, depending on the perspective of the 
process definition.

What is considered an activity in one process perspective can be composed of a 
group of low-level processes, which are in turn composed of a series of simpler 
activities. For example, a high-level process in a car factory can have an activity 
called "Build the Car's Engine", but from a lower-level perspective, activities could 
be detailed to the point of just telling a robotic arm to activate the weld for a second 
(one minuscule step in the car's engine preparation). In other words, a business 
process can be composed of multiple subprocesses.

www.allitebooks.com

http://www.allitebooks.org


Why Do We Need Business Process Management?

[ 12 ]

Once you select a perspective or level for a particular process definition, you should 
stick to it for describing all activities regarding that specific process. You can call 
other lower-level processes from activities, so you can always go into more detail 
later. Besides, high-level strategic processes and low-level more technical processes 
will surely have different roles and experts behind them. A manager in a car factory 
might not be interested in having so much detail in their perspective, but an engineer 
would. Also, managers prefer to see the bigger picture, and tend to simplify their 
views to be able to cope with everything at once.

Usually, the low-level perspectives end up driving the operative end of the company, 
performing work such as the following:

• Handling customer information
• Documenting specific metadata
• Invoking service notifications

In the end, all processes are tied together by high-level perspective processes,  
which end up providing information for decision making, managing, and 
coordination. High-level processes usually aggregate information about the  
general performance, possible improvements, or any sort of relevant information  
for management. We will see examples of subprocesses, role assignment, and 
different activity type handling when we cover process writing in Chapter 3,  
Using BPMN 2.0 to Model Business Scenarios.

Naming our activities
The activity name is usually composed of the following:

• A verb
• A noun

Some examples of activity names are "Review Architectural Document", "Clean the 
Cutting Machine", "Analyze Client Risk", and so on.

It might seem a simple thing to put a name to an activity, but there are a few 
considerations to take beforehand. Remember that when you write a process, you are 
doing it from a particular perspective—whether it is a high level view of the whole 
company activity inside a process, or the flow of a very specific step performed by 
a company. Therefore, the activity name must make sense from that perspective. 
It wouldn't make much sense to name an activity "Rotate robotic arm elbow 45 
degrees" in a high-level process, because its point of view should be much more 
abstract and wide.



Chapter 1

[ 13 ]

Also, you should avoid any technical developer jargon in your activities' names. 
Remember that the process is thought to be a place for common language within a 
business or business unit, so the jargon used (if any) to write the process should be 
the jargon of that particular domain. It should be clearly understood by business 
users. In other words, try to avoid names such as the following:

• Call InternalWebService->getMyData()
• Execute batch command W-3302
• REST call to http://my.domain:8080/rest/esoteric-service

Also, try to avoid any terms that will make the process hard to read, like  
obfuscated IDs or out-of-scope terminology. Remember that depending on the 
process perspective, the people who will be interested in reading or updating  
such processes will be accustomed to different terminologies.

Business users and business applications
Business processes, at least when designed correctly, are not thought to be 
monolithic systems that cover everything, but coordination software between other 
systems (the business applications) and people (the business users). There are some 
differences in the way people and systems behave and also in the way they need to 
be coordinated.

Humans and systems behave differently
Human activities represent the human interactions in our processes. In the BPMN 2.0 
specification, they are called User tasks. Every time we have a person involved in  
our business processes, we will have a human activity in our processes to represent 
such interaction.

When we think of human interactions in our business process execution, we think of 
having a person or group of people involved in a set of activities that will produce 
a specific result; the human response time to complete such activities takes minutes, 
or hours, or days. So, the process engine must be prepared to handle such activities 
in a way it can wait for long periods of time for the result of the task by providing 
asynchronous management of those tasks in runtime configurations.

Systems, on the other hand, usually represent automatic responses. Compared to 
human activities, external system activities take very small amounts of time—usually 
ranging from milliseconds for the fastest cases to minutes for the slowest automated 
activities. Companies generally have a set of external systems exposed through  
well-defined interfaces that solve very specific problems. When we need one of  
these services' information, we can just call external systems (through service calls, 
event handling, or simple scripting) and get the results into the process.



Why Do We Need Business Process Management?

[ 14 ]

However, it is worth mentioning that systems may not provide automatic responses, 
or may take a long time to respond. Because of this, and for many other reasons  
we will mention later on, we should try to consider as many tasks in our process  
as asynchronous tasks.

Humans and systems – classification strategies
Systems can be classified based on their technical behavior as synchronous  
(the process engine will wait for the completion of a task, that is, a service  
invocation) or asynchronous (the system will continue its execution and wait 
for the external system to notify the process engine when the task is completed, 
that is, a thread-managed operation), while human interactions are intrinsically 
asynchronous. Also, systems can be classified, depending on their provider,  
as either internal or external third-party interactions.

Human interactions can be classified depending on the people involved in executing 
them. They can be performed by a specific role or group of roles within a company 
or domain, just one specific person, or maybe specified through a specific variable 
in the process. Examples of this classification would be the call center group of a 
company, customers, third-party users, and so on.

It's important to understand that these classifications are not important from the 
process engine perspective. All the engine will deal with is a name mapping of a 
particular group of activities to their implementation. The classification is useful 
mostly from the point of view of maintenance and documentation, which helps to 
know the ownership of each application/system in order to understand how the 
interaction will be made.

Achieving a business goal
The most important part of the business process definition is achieving a goal.  
It's the sole reason for the process' existence; without it, the process has no  
purpose at all. This should never be forgotten.

The business goal of a process shouldn't be disruptive or impossible to accomplish 
in any way in the selected business process perspective. Each business process 
definition must define a clear goal and all the activities must be defined in order  
to contribute to achieving said goal.



Chapter 1

[ 15 ]

Mixing goals and perspectives is a common mistake that you need to avoid when 
you model your first business processes. For example, when defining the process 
of building a car in an automated factory, we might use the same process to define 
the steps a robotic arm should follow to make a simple weld, overcomplicating 
the process. When this happens, it's recommended to split the business process 
definition into multiple well-scoped processes for the sake of understandability  
and maintainability.

One way of achieving this difficult task is to create a brief textual description of 
the process' main responsibility, its ownership, and the concrete goal that it was 
designed to achieve. This brief description can be used to train new people to 
understand why the process is useful to the company. You will also end up with a 
self-documented process that can be used by the company to improve quality levels.

The BPM discipline
Now that we have defined what a business process is, we can start understanding 
how to manage the way processes interact with our organization. To do so, we 
will define six different stages that involve business process discovery, modeling, 
formalizing, execution, monitoring, and improvement. They constitute an iterative 
lifecycle for our business processes and the way they relate to their context. The 
following figure shows all the relevant participants and the cyclic nature of BPM:

BPM cycle and its participants



Why Do We Need Business Process Management?

[ 16 ]

The BPM discipline's scope and main goal is to improve the current business 
situation by planning iterations to solve well-defined problems, and it is not  
about coding Java or software development at all. You may be wondering how  
BPM achieves such a difficult task and also how it is related to jBPM6.

After the first three chapters of this book, the content will be really technical. 
However, it will be clearly shown how all these concepts solve real-life situations. 
We will see that the jBPM6 project structure, APIs, and designs are backed up by 
these concepts, and you will understand the importance of knowing them for  
future designs.

The following sections describe the stages proposed by the BPM disciplines.  
These stages highlight the most important points that need to be understood  
to start using BPM systems.

BPM stage 1 – discovering your business 
processes
Discovery of new processes is started most of the time by business analysts.  
It involves a certain level of knowledge engineering; a branch of requirement 
gathering involved in correctly merging different knowledge representation 
strategies, such as business rules, process definitions, and so on, with the  
knowledge from domain experts.

This stage has added weight when you're implementing the first iteration of the 
BPM cycle, which is choosing a starting point to demonstrate the importance of BPM 
for the business. I recommend choosing a small process to start, with a noncritical 
objective from the business perspective, since the results of the first iteration will 
surely teach you a lot of ways to do it better in the next iteration. It is important to 
take time to evaluate the learned lessons at the end of each of the iterations.

You'll notice that business analysts alone are not enough to perform this stage. Most 
companies that reach a certain level of maturity on BPM end up having a Process 
Improvement department, which involves technical people and a project leader solely 
dedicated to discovering and improving company business processes. They also 
include or collaborate with business experts, sponsors, and BPM champions (highly 
ranked people in the company, by title or merit, who are dedicated to encouraging 
the use of BPM throughout the company). Making BPM an enterprise-wide discipline 
is extremely important to make it work successfully; therefore, communication and 
acceptance of all areas of the company involved in BPM becomes a priority.



Chapter 1

[ 17 ]

After identifying a goal to build a process around, this stage consists of performing 
interviews with business experts, representatives of operation, and anyone who is 
involved (or that should be involved) in the process. To achieve effective interviews, 
you have to prepare a questionnaire for each person/role involved in the process. 
Always target your questions to each role in the company. It is also advisable to have 
a wide set of questions to ask each interviewee as well as more specific questions,  
in case complex activities arise.

Some questions that I've found useful for these interviews are as follows:

• What is your role in process X?
• Which screens do you use to complete the activity X?
• Are you doing paper work? What kind of forms are you filling out?
• Is the activity related to the review of information sent by another person  

or system?
• Are you an expert of a specific topic? Are you the only one responsible for 

that activity? Are there more people trained for that specific activity?
• How many activities are you doing inside a specific business process?
• How many activities related to different business processes are you currently 

doing? (per day/week/month)
• Do you need to move information from one place to another by moving 

paper forms to different departments or using the postal service?
• Do you use e-mail/chat as a communication channel to send information to 

customers or to other business units?
• Do you interact directly with customers/clients face to face?
• Are you aware of the BPM practice and why the company wants to adopt it?
• Are you handling duplicate or unnecessary information?
• What are the well-known flaws of your activities?
• How do you deal with exceptional situations, missing pieces of information, 

or new cases?

If they answer that they do paper work, you should get a scanned version of all 
the forms that have to be filled out. If they are using different systems/screens/
applications, get those screenshots.

Always let interviewees know the goal of the process being analyzed and the 
purpose of improving the processes and how that would help them in their everyday 
work. This will increase collaboration on their side and reduce the stress associated 
with the fear of being scrutinized on work performance. You're not there to evaluate 
them, but to learn from them. Let them know that.



Why Do We Need Business Process Management?

[ 18 ]

The information the interviews provide will help you understand what is being  
done to achieve the business goal, and it will result in a list of all the activities  
that the company executes related to that particular process.

Once you have all the different answers, you will be able to cross-reference them to 
determine the main path of the business process at hand. An example that could be 
the outcome of this first stage can be seen in the following figure:

The preceding figure shows a brief graphical description of the relevant steps in 
approving a loan, but still doesn't adhere to any specific format. This is something  
to be dealt with in a later stage.

During this stage, you might also find new terms related to the activities in the process. 
Try to disambiguate those terms as much as possible by creating and updating a 
business dictionary with all the related terminology of the particular process.

Finally, find hidden activities related to company-wide processes (the most usual 
case is related to batch processes whose result end up impacting process activities). 
You'll need some expertise in the domain, which is why you need to check with 
domain experts to point out vocabulary inconsistencies, missing activities, and 
ambiguous terms, as well as to identify irrelevant business activities, duplicated 
activities, and so on.

BPM stage 2 – formalizing your new 
processes
When the business process, its owner, and the business goal have been identified, we 
can start working in a formal, unambiguous representation of the business process.

Formalizing processes is done using a predefined language. The purpose of the 
language is to be able to share the model with other people in a way that can only 
be understood in one way, as long as other people understand said language. There 
are many languages that have been designed over the last 20 years for this purpose; 
most of them are based on different graphical representations to help people quickly 
understand the activities needed to achieve the business goal.



Chapter 1

[ 19 ]

When picking a language, you should always consider the ones that define the 
most widely accepted standard to make sure that most people can understand it. In 
2014, the most widely accepted standard happens to be BPMN 2.0. We will learn the 
graphical representation and execution semantics of BPMN 2.0 in depth in Chapter 
3, Using BPMN 2.0 to Model Business Scenarios. For the time being, let's just say that 
it provides a widely accepted formal language to represent processes that is not just 
implemented by jBPM6, but by many other process engines. So, even if you decide to 
use another engine, writing your processes in BPMN 2.0 would still be a good idea.

In this stage, business analysts trained in BPMN 2.0 will model the business 
processes. They should choose the level of accuracy of the process representation, 
depending on the time and information available for this stage. Since BPM is an 
iterative discipline, they can improve on that accuracy in later iterations.

This stage is also a very good point to start testing our processes through 
simulations. By determining the resources assigned to our process activities (people, 
time, and money), we can predict in a statistical way which activities would consume 
the most of each resource and plan ahead on assigning appropriate resources based 
on those simulations.

The resulting artifacts from this stage will be the formalized process with a graphical 
representation that can be shared and understood by different roles in the company.

BPM stage 3 – implementing your technical 
assets
In the third stage, the Development team works with the Business Analyst team to 
add all the technical details that will allow the process to run.

By now, we have a very important asset already implemented, that is, the business 
process' formal representation. This will act as common ground for exchange of 
ideas, improvement, formalized contract between areas, and also as documentation 
of what is being done. For that reason, it is important to keep it safe, versioned,  
and centralized. For this purpose, we usually set up a knowledge repository to  
store them.



Why Do We Need Business Process Management?

[ 20 ]

Also, at this stage, the process definition needs to be enriched with all the  
information that its activities will handle and manipulate to achieve the business 
goal. There are different options to achieve this, and we'll discuss them in detail  
in the following sections.

The business entity model
We will select a model to work with, and our executable entity model will be created 
based on discovery stage results.

We usually have an inherited business model from legacy systems. When that's the 
case, you have three options:

• The first option is using the inherited model for your process activities.  
Its pros and cons are as follows:

 ° Pros: It is fast to implement, especially if the developers of your 
organization already know the model.

 ° Cons: Inherited models could carry an unnecessary complexity  
for the process' required level of data. Also, any change needed  
to be done to the process' internal model might impact a  
third-party project.

• The second option is storing external keys for the real entities inside your 
business process. The data will remain consistent and updated as long as it 
can be managed by a master data source from the process' engine point of 
view. Its pros and cons are follows:

 ° Pros: You can reuse your old model and even its persistence,  
and only store a key to get the related information when needed.

 ° Cons: If you store a key, you will need to query another data source 
every time the information is needed, and depending on the case,  
you might need to modify external information (with all the 
problems regarding permissions, communication, transactions,  
and so on). Depending on the amount of concurrent process 
executions, this could cause a performance issue.



Chapter 1

[ 21 ]

• The third option is creating an understandable wrapper model that abstracts 
the legacy model, data sources, and communication strategies required by 
your business processes' model objects. Its pros and cons are follows:

 ° Pros: You can map any outdated terms or concepts to a business 
process' relevant names and structures, and define underlying 
strategies to fetch information from external systems or to produce 
the needed data.

 ° Cons: Writing and maintaining the integrity of the wrapper model 
will take time, and an expert on both models will have to worry 
about keeping everything in sync.

Once you define and know how to get and update information from your business 
model, you will need to bind each bit of information with the correspondent activity 
in your process. We usually do this with an expression language that allows us to 
express, in a declarative way, the information that we need without saying where it 
can be obtained. One example of this could be #{ambulance.doctor.speciality}.

This expression will be evaluated at runtime, and an internal mechanism will be 
used to retrieve the information.

Coordination and orchestration of activities
The business process provides us with a set of activities that need inputs and 
produce outputs. As technical developers, we will have to provide technological 
assets to provide such functionality, from creating form renderers for human 
interactions to creating connectors to external web services and transformations for 
external models to our entity model. In Chapter 7, Defining Your Environment with 
the Runtime Manager, we will analyze all the technical requirements to implement 
user interfaces, and in Chapter 10, Integrating KIE Workbench with External Systems, 
we will review all the relevant details about system-to-system interactions and the 
mechanisms that we need to know in order to keep everything simple.

Having a clear vision of the components that we need to implement and having a 
standardized and conceptually coherent way of interaction will make our life easier, 
and we will end up with simple applications that are easy to maintain.

www.allitebooks.com

http://www.allitebooks.org


Why Do We Need Business Process Management?

[ 22 ]

By the time we finish this stage, our business processes will be executable. This will 
allow us to test, verify, validate, and simulate the process behavior. For the next 
iterations, this stage becomes unnecessary, and the only thing that changes between 
one implementation and another are the external systems' connectors as well as the 
technologies used to build frontends. All these topics will be covered in the jBPM6 
technical sections where the technical details that need to be considered and best 
practices will be introduced. Also, in this stage, we can start showing the progress of 
our process definition in playbacks, so all parties involved in the process discovery 
and formalizing can see that the goals of the business processes are achieved.

BPM stage 4 – runtime
At runtime, we will put our business process and assets in a production 
environment. For the first iterations, it will probably be a production-like 
environment (that is, a full development environment).

This is the point where we start training users to understand how to interact with the 
activities of the business processes. For doing so, it's a best practice to use a unified 
approach to build User Interfaces (UIs), because it simplifies training (the user will 
not need to adapt to different components). We will see about unified user interfaces 
in Chapter 6, Human Interactions.

During the first iteration of this stage, the runtime should be restricted to a few 
simple processes and to a small well known group of users. When we have already 
tested the processes doing the real work in this situation, we will be ready to handle 
bigger processes, bigger groups of people, and more critical tasks and business goals.

This stage is when we actually start detecting how our processes behave in the real 
world. We can measure how the model allows users to have information; if they 
need extra information, we can see which tasks can have an improved performance 
and many other things that start providing us with invaluable information for the 
next iteration. Always take notes of that information, as it will be very important for 
future process-related improvement.

The first step is the most difficult. After we learn to take them, pretty soon walking 
becomes a simple thing. The same thing happens when sending our processes to a 
production environment. The experience you gain from doing so is very useful, and 
following this book, I hope you can do it with the least amount of problems possible.



Chapter 1

[ 23 ]

BPM stage 5 – monitoring
Once we have finished the major steps of stage 4 and we have a stable enough 
runtime, we need to start concerning ourselves with the information that runtime 
gives us. Process execution can send many events to components that are external to 
the actual runtime. Those components can be fed to a dashboard-like tool to allow  
us to monitor process execution and actual performance metrics. This is a stage 
where the process simulation from stage 2 can be validated, and notes of the  
actual estimations should be taken for improvement of process simulations  
in the next iteration.

These dashboards are really important for key people who want to see snapshots 
of how the company is working in order to make the right decisions. As you can 
imagine, knowing the number of processes and activities that are completed per 
hour can be really helpful for planning, accepting new commitments of work from 
providers and customers, as well as measuring the company's growth rate. This is 
just one example of the things that you can do if you have the information available.

Monitoring is about real-time information analysis and display, but it should also 
be about flexibility. You might need to add new sources and types of metrics as fast 
as possible to measure them within the runtime. A related branch of studies called 
Business Activity Monitoring (BAM) defines best practices for doing so. Tools for 
BAM must be flexible enough to show information in such a dynamic manner. For 
example, a manager might want to see aggregated data from different sources when 
he asks for something like this:

"The average time of completion of one or a group of processes related to client X 
accounts in the last month."

We usually display this information in different widgets that are specially designed 
to show very simple values. These widgets provide an overview about what is 
happening in the company in just one screen where we can see multiple bar graphs, 
line graphs, and tables that let us quickly see what percentage of processes are in 
different stages throughout our process runtime environment.

The important thing about the monitoring stage is the externalization of information. 
These metrics can provide you with different perspectives to know which are  
the best places for improvement in your business processes and in your  
company altogether.



Why Do We Need Business Process Management?

[ 24 ]

BPM stage 6 – improvements
Now, we will bring together all the things that we learn from the other stages and 
plan accordingly to better our business processes in our next iteration. By the time 
we reach this stage, we have our process runtime (and business relevant metrics) 
running to provide us with relevant information about the processes' execution.  
We might also have learned about exceptional situations in our processes that 
weren't considered at first and their ad hoc solutions. We now know how to  
simulate our processes better. We might also have new questions for our  
business experts from what we learned.

In this stage, we take care of business changes that need to be reflected in our 
business processes. All their improvements, along with the planning generated from 
the learned lessons, is used as an input for the next iterations—starting again from 
stage 1 and completing the BPM cycle.

BPM applications in the real world
Once we understand the basic elements of the BPM discipline, we need to apply it to 
a real-world scenario in order to learn from involvement and acquire experience. To 
do so, the best way to go is to use Business Process Management System (BPMS) as 
an aid in most of the BPM discipline stages.

A BPMS helps in the BPM discipline in the same way an Enterprise Service Bus 
(ESB) helps in defining a service-oriented architecture (SOA). It provides a 
centralized environment to define, implement, and run business processes.

BPMS is a middleware component (a piece of software that allows us to create more 
software). It provides us with the tools to directly work on the specifics of our case, 
taking advantage of the already available functionality that is oriented to solve very 
specific tasks for each stage of the discipline. In the next section, we will see a list of 
things to take into account when we are evaluating a BPM system.

The BPMS check list
A BPM system must have a lot of different features to be a good asset for its users. 
For each individual stage of the cycle, you should find different tools or projects  
that you will need to evaluate before deciding to adopt them.



Chapter 1

[ 25 ]

For the Discovery stage, a BPMS should provide you with a way to gather business 
knowledge. The tools that are most useful for this stage are questionnaire builders, 
interview recording software, and other means to store and analyze information 
from interviewees and other sources to understand how things work in the 
company. Most of the open source projects provide a modeling tool without giving 
us the appropriate information gathering and analysis tools. This usually confuses 
new adopters, because they start working without figuring out first what they need 
to model and solve. You should be aware of this and be prepared to spend some time 
asking questions and analyzing the results.

The Formalization stage needs tools to model your business processes. The best ones 
nowadays should all support the BPMN 2.0 language to write these processes. Most 
of these tools are targeted to business analysts whose only technical requirement 
is understanding of the BPMN 2.0 language, so be prepared to provide training 
for the people involved in writing the processes. During the first iterations, the 
first processes are usually defined by people who already know how to write the 
processes and the implications of modeling an executable business process, and they 
can even use that writing time to transmit their knowledge.

Another thing to notice about the quality of a process editor is how it integrates with 
external configurations and modeling information, such as entity models and specific 
business-centric activity descriptions. Make sure that you're able to do those things 
when you evaluate a process editor.

The Implementation and Runtime stages are the ones where the most tools are 
usually found. They constitute the main component of a BPMS, that is, they provide 
an execution environment for your processes. From the software point of view, 
these two stages are well covered by the existing open source projects in the market. 
It's important to understand that a BPMS should allow the technical people of the 
company to directly interact with the process engine so that they can customize 
and extend the provided generic behavior. During these stages, we will see a strong 
relation of BPM with SOA-based applications. BPM can become a very important 
component in relation to web services, as a coordinator, and as a consumer; it can 
even be exposed itself as a web service. In Chapter 10, Integrating KIE Workbench with 
External Systems, we will see how to expose existing tooling through web services.

In the Monitoring and Improvement stages, you should concentrate on three things; 
the API provided to extract information about process executions from the runtime, 
how simple it is to create a new indicator, and the dashboard's visual flexibility.



Why Do We Need Business Process Management?

[ 26 ]

Most problems arise in the most decision-intensive stages, that is, stages 1, 5, and 
6. There is no current standard methodology to discover business processes. Since 
they are nontechnical tasks, the maturity of the software related to these stages is 
usually not great. Even if you have automated questionnaire forms, dashboards, and 
improvement planning software, you still need to analyze the data by people and 
make decisions. Also, to make those decisions, you need to learn about the company 
to do those tasks correctly.

BPM APIs and common practices
From a developer's perspective, most BPMS provides a set of API's to easily plug and 
integrate your applications with the process engine (irrespective of the technology 
or language that you use in your company's applications). BPMS also provide a 
clear description about the information they store by default, and how to extend and 
customize that information for specific domain analysis. This mechanism is usually 
designed to be generic and extensible.

The main differences that you can usually find between process engines are as follows:

• How flexible the core is in adopting new custom services
• How well documented the engine is
• How often releases are updated
• What standards the project implements
• How well it integrates with other technologies and frameworks
• How much support it receives, either paid or from the open source community

These items are a good starting point to evaluate and compare different Process 
Engines' features. After that is done, the next step is to analyze the available tools  
for each stage.

Tooling usually is heavily evaluated during the first phase of comparison  
between different projects, especially in case of integration projects. For real-life  
full implementations, it is always preferable to adapt the tools for a particular 
usage—after modest to extensive modifications are made to them. Usually, the 
desired output is to integrate it with existing applications and within company 
proprietary frameworks.



Chapter 1

[ 27 ]

From the process engine internal functionality perspective, it's easy to build tools 
and integrate them into your existing applications using the APIs provided. From 
the BPMS perspective, you should always check that the internal functionality from 
the process engine is easily exposed through a set of APIs, because the majority of 
closed source products don't expose the internal APIs to provide extension points, 
and this can make integration quite difficult to manage. BPM plays an important 
role in integration with other enterprise applications and providing service 
coordination. The more importance BPM gains for a company, the more it will be 
related to controlling different activities performed by many different applications 
in a company. The easier the said integration can be done, the better and less painful 
BPM adoption becomes.

To integrate tools, if it is in the interest of your company during evaluation time,  
you should check the following features:

• The amount of tooling available
• The number of features
• The flexibility of the results generated by the tooling
• The technology that the project uses to build the tooling
• The skills that you have over those frontend technologies
• The difficulty of extending or porting the tooling

Remember, you must be ready to change all project generic UIs/tools provided 
by the BPMS. You must know how they were built. A good measure of the tooling 
development quality is how easy it is to start extending the tooling projects.

BPM – adoption of standards
Last, but no less important, is the evaluation of how well the features of the selected 
BPMS relate to established standards. There are two standards you should check 
for current applications, the Web Service Human Task (WS-HT) standard and the 
BPMN 2.0 standard. The WS-HT standard defines two main features:

• A standard set of APIs (interfaces) to interact and manage human activities.
• A complete and flexible human activities life cycle. This life cycle defines the 

states through which a human interaction will transit during its life.

Also, the BPMN 2.0 standard defines a set of XML tags to describe business 
processes, their interactions with external systems, and their structures.



Why Do We Need Business Process Management?

[ 28 ]

The biggest advantage of having a set of standard API's is that the better the  
different implementations adhere to those standards, the easier it is to decouple  
the definitions of processes from the engine's internal functionality—this allows for 
the possibility of migrating to another technology if you ever wish to. We will learn 
more about BPMN 2.0 and human interactions in Chapter 3, Using BPMN 2.0 to  
Model Business Scenarios, and Chapter 6, Human Interactions, respectively.

Summary
Now that we've covered all these conceptual topics, we are finally at a point where 
we can start applying them to real-life projects. All the presented concepts in this 
chapter will be quite necessary over the next chapters to help you understand how 
and why the tools are designed the way they are.

In the following chapters, we will analyze how to implement and use tools that are 
related to the BPM realm. We will learn about leveraging rule engines, complex 
event processing, and other tools with the process engine to be able to solve real 
world problems.

We'll start by explaining how BPM systems are structured to provide an automated 
way of handling the BPM discipline stages, and how those tools are used to develop 
applications to help your company do its job.



BPM Systems' Structure
Business Process Management (BPM) systems are pieces of software created  
with the sole purpose of guiding your processes through the BPM cycle. They were 
originally monolithic systems in charge of every aspect of a process, where they  
had to be heavily migrated from visual representations to executable definitions. 
They've come a long way from there, but we usually relate them to the same 
old picture in our heads when a system that runs all your business processes is 
mentioned. Nowadays, nothing is further from the truth.

Modern BPM Systems are not monolithic environments; they're coordination  
agents. If a task is finished, they will know what to do next. If a decision needs  
to be made regarding the next step, they manage it. If a group of tasks can be 
concurrent, they turn them into parallel tasks. If a process's execution is efficient, 
they will perform the processing 0.1 percent of the time in the process engine and 
99.9 percent of the time on tasks in external systems. This is because they will have 
no heavy executions within, only derivations to other systems. Also, they will be 
able to do this from nothing but a specific diagram for each process and specific 
connectors to external components.

In order to empower us to do so, they need to provide us with a structure and 
a set of tools that we'll start defining to understand how BPM systems' internal 
mechanisms work, and specifically, how jBPM6 implements these tools.



BPM Systems' Structure

[ 30 ]

Components of a BPMS
All big systems become manageable when we divide their complexities into  
smaller pieces, which makes them easier to understand and implement. 
BPM systems apply this by dividing each function in a different module and 
interconnecting them within a special structure that (in the case of jBPM6) looks 
something like the following figure:

Reporting Tools/
Dashboards

Storage Storage

User
Storage

External Systems

Application /
Admin Tools

End Users Task List
Oriented UIs

APIs

Human task Service

Execution node

Semantic Module

Persistence
&

Transactions

Audit /
History Logs

Process Engine APIs

BPMN RuleFlow ...

Knowledge Modules

Task
Storage

Identitty
(Users/Groups)

BPMS' internal structure

Each component in the preceding figure resolves one particular function inside the 
BPMS architecture, and we'll see a detailed explanation on each one of them.

The execution node
The execution node, as seen from a black box perspective, is the component that 
receives the process definitions (a description of each step that must be followed; from 
here on, we'll just refer to them as processes). Then, it executes all the necessary steps 
in the established way, keeping track of each step, variable, and decision that has to be 
taken in each process's execution (we'll start calling these process instances). 



Chapter 2

[ 31 ]

The execution node along with its modules are shown in the following figure:

Execution node

Semantic Module

Process Engine APIs

Persistence
&

Transactions

Audit /
History Logs

The execution node is composed of a set of low-level modules: the semantic module 
and the process engine.

The semantic module
The semantic module is in charge of defining each of the specific language semantics, 
that is, what each word means and how it will be translated to the internal structures 
that the process engine can execute. It consists of a series of parsers to understand 
different languages; of these, we'll concentrate on BPMN2 in Chapter 3, Using BPMN 
2.0 to Model Business Scenarios.

It is flexible enough to allow you to extend and support multiple languages; it also 
allows the user to change the way already defined languages are to be interpreted 
for special use cases. It is a common component of most of the BPMSes out there, 
and in jBPM6, it allows you to add the extensions of the process interpretations to 
the module. This is so that you can add your own language parsers, and define your 
very own text-based process definition language or extend existing ones.

The process engine
The process engine is the module that is in charge of the actual execution of our 
business processes. It creates new process instances and keeps track of their state  
and their internal steps. Its job is to expose methods to inject process definitions  
and to create, start, and continue our process instances.

www.allitebooks.com

http://www.allitebooks.org


BPM Systems' Structure

[ 32 ]

Understanding how the process engine works internally is a very important task 
for the people involved in BPM's stage 4, that is, runtime. This is where different 
configurations can be used to improve performance, integrate with other systems, 
provide fault tolerance, clustering, and many other functionalities.

Fluent
API

Semantic
Module
Parsers

Process Engine

Process Definition Structures
startProcess(...)
createProcessInstance(...)
startProcessInstance(...)
sig alEvent(...)n
abortProcessInstance(...)
completeWorkItem(...)Process Instance Structures

Process
Engine
APIs

Process Engine structure

In the case of jBPM6, process definitions and process instances have similar 
structures but completely different objectives. Process definitions only show the 
steps it should follow and the internal structures of the process, keeping track of all 
the parameters it should have. Process instances, on the other hand, should carry all 
of the information of each process's execution, and have a strategy for handling each 
step of the process and keep track of all its actual internal values.

Process definition structures
These structures are static representations of our business processes. In Chapter 3, 
Using BPMN 2.0 to Model Business Scenarios, we will see how these representations 
can be written by technical people and different domain experts in detail; we  
do this using an XML standard called BPMN 2.0 for process definition and  
graphical representation.

However, from the process engine's internal perspective, these representations  
are far from the actual process structure that the engine is prepared to handle.  
In order for the engine to get those structures generated, it requires the previously 
described semantic module to transform those representations into the required 
object structure.



Chapter 2

[ 33 ]

The following figure shows how this parsing process happens as well as the  
resultant structure:

Process Modeler
(Graphical Notation)

Semantic
Module

generates
BPMN2 XML

creates

BPMN2
Parser

Process

Node

loads

1
*

Analyst

Using a process modeler, business analysts can draw business processes by 
dragging-and-dropping different activities from the modeler palette. For jBPM6, 
there is a web-based modeler designed to draw Scalable Vector Graphics (SVG) 
files; this is a type of image file that has the particularity of storing the image 
information using XML text, which is later transformed into valid BPMN2 files.

Note that both BPMN2 and jBPM6 are not tied up together. On one hand, the 
BPMN2 standard can be used by other process engine provides such as Activiti or 
Oracle BPM Suite. Also, because of the semantic module, jBPM6 could easily work 
with other parsers to virtually translate any form of textual representation of a 
process to its internal structures.

In the internal structures, we have a root component (called Process in our case, 
which is finally implemented in a class called RuleFlowProcess) that will contain  
all the steps that are represented inside the process definition.

From the jBPM6 perspective, you can manually create these structures using nothing 
but the objects provided by the engine. Inside the jBPM6-Quickstart project, you 
will find a code snippet doing exactly this in the createProcessDefinition() 
method of the ProgrammedProcessExecutionTest class:

//Process Definition
RuleFlowProcess process = new RuleFlowProcess();
process.setId("myProgramaticProcess");

//Start Task



BPM Systems' Structure

[ 34 ]

StartNode startTask = new StartNode();
startTask.setId(1);

//Script Task
ActionNode scriptTask = new ActionNode();
scriptTask.setId(2);
DroolsAction action = new DroolsAction();
action.setMetaData("Action", new Action() {
    @Override
    public void execute(ProcessContext context) throws Exception {
        System.out.println("Executing the Action!!");
    }
});
scriptTask.setAction(action);

//End Task
EndNode endTask = new EndNode();
endTask.setId(3);

//Adding the connections to the nodes and the nodes to the processes
new ConnectionImpl(startTask, "DROOLS_DEFAULT", 
        scriptTask, "DROOLS_DEFAULT");
new ConnectionImpl(scriptTask, "DROOLS_DEFAULT", 
        endTask, "DROOLS_DEFAULT");
process.addNode(startTask);
process.addNode(scriptTask);
process.addNode(endTask);

Using this code, we can manually create the object structures to represent the  
process shown in the following figure:

Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support


Chapter 2

[ 35 ]

This process contains three components: a start node, a script node, and an end  
node. In this case, this simple process is in charge of executing a simple action.  
The start and end tasks simply specify a sequence.

Even if this is a correct way to create a process definition, it is not the recommended 
one (unless you're making a low-level functionality test). Real-world, complex 
processes are better off being designed in a process modeler, with visual tools,  
and exported to standard representations such as BPMN 2.0. The output of both  
the cases is the same; a process object that will be understandable by the jBPM6 
runtime. While we analyze how the process instance structures are created and  
how they are executed, this will do.

Process instance structures
Process instances represent the running processes and all the information being 
handled by them. Every time you want to start a process execution, the engine will 
create a process instance. Each particular instance will keep track of all the activities 
that are being created by its execution.

In jBPM6, the structure is very similar to that of the process definitions, with one 
root structure (the ProcessInstance object) in charge of keeping all the information 
and NodeInstance objects to keep track of live nodes. The following code shows a 
simplification of the methods of the ProcessInstance implementation:

public class RuleFlowProcessInstance implements ProcessInstance {
  public RuleFlowProcess getRuleFlowProcess() { ... }
  public long getId() { ... }
  public void start() { ... }
  public int getState() { ... }
  public void setVariable(String name, Object value) { ... }
  public Collection<NodeInstance> getNodeInstances() { ... }
  public Object getVariable(String name) { ... }
}

After its creation, the engine calls the start() method of ProcessInstance. This 
method seeks StartNode of the process and triggers it. Depending on the execution 
of the path and how different nodes connect between each other, other nodes will get 
triggered until they reach a safe state where the execution of the process is completed 
or awaiting external data.

You can access the internal parameters that the process instance has through the 
getVariable and setVariable methods. They provide local information from the 
particular process instance scope.



BPM Systems' Structure

[ 36 ]

Node instance structures
jBPM6 uses a node-instance-based approach to determine what steps are being 
executed by the process instance. This means, for every active step in the process, 
a node instance object exists in the process instance. When the step is completed, 
the node instance is removed. This allows us to have a list of active steps in the 
process instance that are accessible by jBPM6 from the getNodeInstances method 
available from the NodeInstanceContainer interface. The following code shows a 
simplification of the methods of most of the node instance implementations:

public interface NodeInstance {
  public ProcessInstance getProcessInstance() { ... }
  public long getId() { ... }
  public long getNodeId() { ... }
  public void trigger(NodeInstance from, String type) { ... }
  public void cancel() { ... }
}

Here, you can see that node instance objects have methods to trigger the execution  
of a particular step or to cancel it from the outside. It also has an identifier for itself, 
the step definition, and the process instance it belongs to.

Finally, we can assert the internal status of the process instance by the getState 
method. Its implementation will return an integer value determined by constants  
in the ProcessInstance interface to any of the following states:

• STATE_PENDING: The process instance hasn't started yet
• STATE_ACTIVE: The process instance is running
• STATE_COMPLETED: The process instance has finished successfully
• STATE_ABORTED: The process instance has been forcefully finished
• STATE_SUSPENDED: The process instance is paused

Process instances are created based on the process definitions using a special 
ProcessInstanceFactory implementation. This implementation contains the logic 
on how to create and initialize process instances according to a particular process 
definition and environment configuration. Since this factory is internally used by the 
exposed runtime, let's start learning about the said runtime to get a better picture of 
using processes in jBPM6.



Chapter 2

[ 37 ]

Components inside jBPM6
In order to be able to use jBPM6, we need to create a specific runtime in which it  
can execute processes. Since Version 6, this runtime configuration has changed from 
being simple programmatic components to add BPMN files to a knowledge runtime 
to a complete API to create, interpret, and monitor Maven-based projects that 
contain BPMN resources in their structures. Maven is a Java-based tool for project 
integration, that is, from compilation to deployment time. It's widely supported 
by many different products that need to connect with specific deployments of 
objects, and this is why jBPM6 has embraced Maven as an internal representation 
of its modules. In order to provide ourselves with a runtime, we now need to 
obtain BPMN process definitions, rule definitions, and a full umbrella of different 
knowledge definitions from established structures.

There are enough components that surround jBPM6; it would take multiple books 
to cover each one of them in detail. There are planning frameworks for planning 
problems, probabilistic components, integrations with persistence frameworks, and 
many more that appear every day. We obviously won't be able to cover all of them, 
but we'll try to cover the ones that are most related to BPM systems in the following 
sections of this chapter.

A specific runtime allows you to have a wide variety of knowledge definitions to work 
together in a single environment. The following diagram shows how the runtime is 
constructed in an abstract way to allow us to understand how this is possible:

Storage

Applicati n /o
Admin Tools

Storage Storage
Reporting Tools/

Dashboards

Persistence &
Transactions

Audit / History
Logs

Semantic Knowledge
Based Module

Process Engine +
Rule Engine +
CEP Feature *

...

APIs
Human Task
ComponentAPIs

LDAP/ User
Repository

End
User
UIs

Maven
Repository

Declared
Model

Java
Model

XLS
(Decision Tables)

DRL
(rules)BPMN2

Knowledge JAR

Runtime Environment

User / Group
Callback



BPM Systems' Structure

[ 38 ]

As you may notice, the rule engine (Drools, www.drools.org), the process engine, 
and complex event processing (CEP) features are merged to work together. This is 
very useful when it comes to defining processes; it's because the decision points that 
would make a very complex process definition are sometimes complemented by 
other knowledge representations such as business rules and decision tables. Having 
all the features running in a single environment allows the engine to communicate 
decisions made by rules or processes in a very direct way. Because of these features, 
it is important that we understand the knowledge-centric APIs to know how to 
interact with processes. The following section will cover the most important  
concepts so you can start using and understanding these APIs.

Transactions and persistence
Transactions and persistence of the runtime status of the process execution engine 
are two extremely important topics to cover. BPM systems usually integrate 
systems and people to achieve a common goal. Deciding the next step could take 
milliseconds, but executing each step could take a lot more time. Persistence 
and transaction mechanisms allow for resource release in the process engine 
environment, load distribution, and fault recovery mechanisms.

Persistence is not meant, at least as provided by default, to make sessions and 
processes easily searchable from external tools. It is mostly used to provide a 
recovery strategy for the content that sessions and processes need in order to be able 
to continue them from different threads or even different servers. The persistence 
mechanisms, therefore, are simple serializations of the minimal content that the 
runtime needs to carry on the execution in a different environment.

Runtime Environment

Process
Engine APIs

Persistence &
Transactions

Storage

www.drools.org


Chapter 2

[ 39 ]

Persistence works by wrapping the KieSession object's methods in a transactional 
environment where KieSession and all its internal components can be persisted 
after every call that is made inside a transaction boundary defined by the application. 
This provides us with a mechanism to define the following:

• How to handle long-running processes
• How and when can we store information about the status of the process  

and the information that the process is handling
• How and when do we need to create, commit, or roll back the process  

engine transactions
• Which business exceptions can roll back or compensate the already  

executed business actions

All these topics and its configuration mechanisms will be discussed in detail  
in Chapter 8, Implementing Persistence and Transactions.

Persistence for a process's execution is thought to be a recovery point between 
different environments. It wasn't thought of as a tool that provides a history of the 
process's execution or much readable information from external tools, but just to 
store its current state. Completed process instances are deleted from the runtime's 
database to maintain it at a steady size. For the same reason, only running steps 
are stored, and everything with regards to the runtime is simply serialized to the 
database to make restoring the process instance as efficient as possible. To keep 
historical information about our process executions separately, we need to use the 
Audit/History logs.

Audit/History logs
To provide searchable historical data of the process executions, a specific  
component stores the changes of the different process instances, its steps,  
and its variables. This information is known as the history logs of the process  
engine. Business Activity Monitoring (BAM) tools and dashboards are some  
of the most common clients for the information generated by this component.  
They display different aggregations and compositions of that data to different  
people (developers and business analysts, among others). It is heavily used  
during state 5 (monitoring) of the BPM cycle.



BPM Systems' Structure

[ 40 ]

Some common applications that can be created using these components are  
as follows:

• Real-time dashboards
• Data-mining or data-analysis tools

Runtime Environment

Process
Engine APIs

Audit / History
Logs

Storage
Reporting Tools /

Dashboards

Real-time dashboards
The first line of analysis for the generated history logs are the real-time dashboards. 
They are usually composed of different widgets to display information from the last 
few hours to months of executions in our environment and present them in a way 
that assists users in making judgments about the environment's efficiency.

The jBPM6 BPM system provides a dashboard tool that we will start learning in 
Chapter 4, Understanding the KIE Workbench. In it, we can set different metrics and 
calculations that will define how the information will be aggregated and summarized 
for the end user. They provide tooling to make new indicators on the run and make a 
quick in-depth analysis of the historical information.

Data mining and data analysis tools
These kinds of tools provide a second level of analysis by allowing you to have  
huge amounts of information to be presented in a more detailed, cross-referenced 
way. Data mining and data analysis tools help us identify patterns, find hidden or 
hard-to-discover situations, and also improve the way information is being stored  
or generated.



Chapter 2

[ 41 ]

Real-time dashboards are thought to typically query the data storage too often and 
do a lot of in-memory calculations in order to present summarized information. Data 
mining tools, on the other hand, are prepared to query huge amounts of information 
just once in an offline fashion. Usually, this sort of analysis requires a restructuring of 
the available information into different structures that are easier to query from data 
mining tools.

The KIE APIs
As of Version 6, both jBPM and Drools (the parent project of jBPM that establishes 
an inference engine and runtime for both rules and processes) have changed their 
umbrella name from Drools/jBPM to KIE.

KIE stands for Knowledge Is Everything; this change was made to encompass all 
the new components that keep on getting added to the Drools and jBPM family, such 
as OptaPlanner for planning problems or Predictive Model Mark-up Language 
(PMML), an import functionality. It also uses the KIE name to group generic parts of 
the unified API, such as building, deploying, and loading knowledge-related projects.

The main aspect that you should pay attention to is that KIE runtimes work by 
taking the knowledge definitions not just from a group of knowledge files like 
previous versions did. They instead work by reading their knowledge definitions 
from the Maven-based JAR files (Maven: http://maven.apache.org) that could 
contain anything a JAR file could contain, from classes and configuration files to 
processes, rules, and much more. This means that building and loading applications 
can align with Maven and Maven repositories by adhering to a standardized  
way of managing code and configuration updates through JAR publications in 
specific repositories.

It also includes a declarative configuration in an XML file for KIE projects called 
kmodule.xml; for this configuration, we will create different components to define 
knowledge definitions and runtimes, along with the kbase and ksession tags. It 
must be located inside the META-INF folder. Here's an example of a kmodule.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<kmodule xmlns="http://jboss.org/kie/6.0.0/ kmodule">
   <kbase name="namedKieBase">
      <ksession name="ksession1">
   </kbase>
</kmodule>

www.allitebooks.com

http://maven.apache.org
http://www.allitebooks.org


BPM Systems' Structure

[ 42 ]

Before we get to understand this configuration, we need to cover what structures 
we will use to actually access the Maven dependencies that define our knowledge 
runtime. We will start with a few main concepts, as follows:

• KIE services
• The KIE module
• The KIE container
• The KIE base
• The KIE session

KIE services
In the KIE API, there are a lot of different services for the instantiation of components 
that could be implemented in different ways. Luckily, a helper method to access 
those instantiations is provided by the KieServices class, which serves as a simple 
starting point for the generation and access of the KIE components. It is accessible 
through the following method:

KieServices ks = KieServices.Factory.get();

This method will be used in the next pieces of code.

The KIE module
Any Maven dependency that contains a kmodule.xml file (like the one we showed 
at the beginning of this section) is considered a KIE module. They can be loaded 
from the classpath, dynamically from any knowledge resource, or can be built 
programmatically, shown as follows:

//Create a virtual file system for our generated project
KieFileSystem kfs = ks.newKieFileSystem();
//Write content in a maven project structure
kfs.write("src/main/resources/my-process.bpmn2", 
          getFile("my-process.bpmn2"));
//Set a specific maven release ID for a pom.xml in the file system
kfs.generateAndWritePomXML("com.wordpress.marianbuenosayres",  
  "test", "1.0-SNAPSHOT");
//Use a Kie Builder to generate a Kie Module
KieBuilder kbuilder = ks.newKieBuilder(kfs);

//build the content
kbuilder.buildAll();
KieModule kmodule = Kbuilder.getKieModule();



Chapter 2

[ 43 ]

In the previous code, you first created a filesystem representation where you will 
write a specific Maven module. This is pretty much the same method you should  
use when creating a new project using maven, but here you'll use the KIE API  
to do it for you. You then add a BPMN2 file to it (whose content will be loaded  
from the getFile (my-process.bpmn2) invocation) and set the release ID of  
the project (composed of the group ID, artefact ID, and version). Afterwards,  
a KieBuilder instance is used to build a specific KieModule object from that 
filesystem representation.

The KIE container
The KIE container provides an accessory to utilize the KIE module. It will provide 
versioning and building through maven, and you can dynamically update the 
version of a KIE container to work with other KIE modules.

From inside the KIE container, we will have access to the knowledge definitions  
and runtimes defined for each KIE module:

KieContainer kcontainer = ks.newKieContainer(
kmodule.getReleaseId());

You can also get the container from the current project classpath:

KieContainer defaultKcontainer =  
  ks.getKieClasspathContainer();

Then, you can get the default knowledge definitions and runtimes from the container:

//Getting default knowledge definitions from the container
KieBase kbase = Kcontainer.getKieBase();

//Creating knowledge runtimes directly from the container
KieSession ksession = Kcontainer.newKieSession();

The KIE base
A KIE base is a repository for a particular group of knowledge definitions. It will 
contain rules, processes, functions, and type models. They don't contain data. 
Runtime environments are created from KieBase and wrapped in the KieSession 
objects. They're represented in the kmodule.xml file by the kbase tag. Constructing 
a KieBase repository can be quite heavy, so if they're built programmatically, it's 
recommended to have them cached. They can be obtained from KieContainer by 
getting the default KIE base:

KieBase kbase = kcontainer.getKieBase();



BPM Systems' Structure

[ 44 ]

Alternatively, we can get a specific KieBase repository by name:

KieBase kbase = kcontainer.getKieBase("namedKieBase");

The KIE session
In contrast to the KieBase objects, KieSession objects store and execute all the 
runtime data. They're represented in the kmodule.xml file by the ksession tag.  
They can be created from KieBase or, as we saw in the The KIE container section, 
from the KieContainer object directly. This object is the point of contact to start, 
signal, and complete process instances:

KieSession namedKsession = kcontainer.newKieSession("ksession1");
KieSession newKsession = kbase.newKieSession();

There is another flavor of KieSession called StatelessKieSession that can run 
isolated one-time-use-and-dispose executions, but since they don't support process 
executions, we will skip them in this book.

From the process's perspective, we are interested in the following methods that are 
exposed by the KieSession interface:

public ProcessInstance startProcess(String  processId);
public ProcessInstance startProcess(String  processId,  
  Map<String, Object> params);
public void signalEvent(String type, Object event);
public void signalEvent(String type, Object event,  
  Long processInstanceId);

We will use these methods (and other services implemented with these methods) 
to interact with our process instances at the runtime. You can see a quick example 
of these configurations in the testKieAPIConfigurations method of the 
KieAPIProcessExecutionTest class, as shown in the following code:

KieServices ks = KieServices.Factory.get();
KieFileSystem kfs = ks.newKieFileSystem();
Kfs.write("src/main/resources/my-process.bpmn2",  
  getFile("my-process.bpmn2"));
kfs.generateAndWritePomXML(ks.newReleaseId(   
  "com.wordpress.marianbuenosayres", "test", "1.0"));



Chapter 2

[ 45 ]

So far, we have created a new filesystem to start writing our project programmatically. 
It will have one process (since it is a maven project, it should be located by default at 
src/main/resources); then, we set a group, artefact, and version for the POM file 
of the maven project. Once we've done this, we have to validate its content using a 
KieBuilder instance:

KieBuilder kbuilder = ks.newKieBuilder(kfs);
kbuilder.buildAll();

if (kbuilder.getResults().hasMessages(Level.ERROR)) {
  System.out.println("Errors compiling Kie Module");
  System.out.println(kbuilder.getResults().getMessages());
  throw new IllegalStateException("Errors compiling KieModule");
}
KieModule kmodule = kbuilder.getKieModule();
ks.getRepository().addKieModule(kmodule);

This will create a KieBuilder instance that will try to construct a KieModule object 
from a filesystem that contains maven files. If the building of the KieModule object 
encounters any errors, all messages related to the build will be printed through the 
system output, and an exception is thrown to stop the system from continuing with 
the load. Otherwise, we obtain the KieModule object from the KieBuilder instance 
and add it to the in-memory repository.

Once the module is added to the repository, we can use a KieContainer instance to 
obtain the knowledge definitions and knowledge runtimes that are defined in it:

KieContainer kcontainer = ks.newKieContainer( 
  kmodule.getReleaseId());
KieBase kbase = kcontainer.getKieBase()
KieSession ksession = kbase.newKieSession();

We obtain the default KieBase object for the container and create a simple stateful 
session from the said KieBase; we could have also requested it directly from the 
container. Once we have a session, we can use it to start process instances:

ProcessInstance pI = Ksession.startProcess("myDesignedProcess");



BPM Systems' Structure

[ 46 ]

Since the my-process.bpmn2 file contained a process definition with the 
myDesignedProcess ID, we can use that ID to create a new process instance.  
We store its reference in the pI variable. Since it is a completely automated process 
with no external interactions or wait states, the process instance will be completed  
by the time the variable is assigned. So there is nothing more you can do with it.

Now that we understand the core of the process engine, we can continue looking  
at how other components around the process engine fit inside jBPM6.

External interactions
As said before, good process engines are not meant to be monolithic software that 
manage everything inside; instead, they are coordination frameworks for people 
and other systems. One key component to achieve such a behavior is to provide 
a connector strategy to configure and/or code external interactions between the 
process and other systems.

From the runtime point of view, each one of these external interaction instances  
are called Work items. Work items are a representation of a specific step in a process 
execution. They will store the input and output information for each interaction and 
its state (pending, active, completed, or aborted).

However, information about the actual occurrence of the external interaction 
invocation is not enough. We need a way to create our own external interaction  
code to determine what to do for each particular case. To handle these interactions, 
you need to implement the WorkItemHandler interface, which is used to manage 
external interactions with other systems by providing a way to invoke them from 
inside the process:

public interface WorkItemHandler {
  public void executeWorkItem(WorkItem i, WorkItemManager m);
  public void abortWorkItem(WorkItem I, WorkItemManager m);
}

We can later on bind different types of tasks to different WorkItemHandler 
implementations by registering them in the KieSession exposed manager:

KieSession ksession = KieServices.Factory.get(). 
  getKieClasspathContainer().newKieSession();
Ksession.getWorkItemManager().registerWorkItemHanlder( 
  "mySpecificTask", new MySpecificWorkItemHandler());



Chapter 2

[ 47 ]

Inside the executeWorkItem method, you can define the interaction with your 
external system. You can continue with the execution after the method by calling  
the following method:

m.completeWorkItem(i.getId(), i.getResults())

You can make the process stay in a continued state. This invocation is the one thing 
in WorkItemHandler that will notify the engine that the step has been completed. 
If you don't call this method, the process will pause the execution of the process 
instance and reach a safe state after executing the executeWorkItem method. For the 
process to continue on to the next step, someone needs to invoke that method from 
outside using the KieSession exposed manager:

Ksession.getWorkItemManager().completeWorkItem(...);

The other method in WorkItemHandler, called abortWorkItem, gets invoked when a 
specific work item that is waiting for someone to call the completeWorkItem method 
is suddenly stopped. It can be used to clean up any elements that might be waiting 
for an external interaction.

You can find an example of creating, registering, and using WorkItemHandlers in 
the testExternalInterations methods of the ExternalInterationsProcess-
ExecutionTest class:

KieSession ksession = KieServices.Factory.get().
getKieClasspathContainer().newKieSession();
//My test implementations of WorkItemHandler
TestSyncWorkItemHandler handler1 = new TestSyncWorkItemHandler();
TestAsyncWorkItemHandler handler2 =  
  new TestAsyncWorkItemHandler();
Ksession.getWorkItemManager().registerWorkItemHandler( 
  "task1", handler1);
ksession.getWorkItemManager().registerWorkItemHandler( 
  "task2", handler2);

In the previous code block, we created a session from the default knowledge base of 
the classpath container. We also created two variables, handler1 and handler2, that 
hold special implementations of the WorkItemHandler interface created exclusively 
for this exercise. The first one stores the amount of invocations it gets and carries on 
with the process execution, as shown in the following code:

public class TestSyncWorkItemHandler implements WorkItemHandler {

  private int invocationCount = 0;



BPM Systems' Structure

[ 48 ]

  public void executeWorkItem(WorkItem item,  
    WorkItemManager manager) {
    this.invocationCount++;
    manager.completeWorkItem(item.getId(), null);
  }

  public void abortWorkItem(WorkItem item,  
    WorkItemManager manager) {
  }

  public int getInvocationCount() {
    return invocationCount;
  }
}

The second one stores the work item that invoked it, but doesn't complete itself.  
So, it leaves the process instance in a wait state, as shown in the following code:

public class TestAsyncWorkItemHandler implements WorkItemHandler {

  private WorkItem item;

  public void executeWorkItem(WorkItem item,  
    WorkItemManager manager) {
    this.item = item;
  }

  public void abortWorkItem(WorkItem item,  
    WorkItemManager manager) {
  }

  public WorkItem getItem() {
    WorkItem retval = item;
    item = null;
    return retval;
  }
}

Notice that the handler will only return each work item once. After that, all 
invocations of the getItem method will return null until executeWorkItem  
is called again by the process engine.



Chapter 2

[ 49 ]

Have these implementations of WorkItemHandler registered in the session when we 
execute a process composed of a call that is firstly identified by task1 and secondly 
by task2; the execution will stop in the second task and wait for signals to carry on:

ProcessInstance pI = ksession.startProcess( 
  "myExternalInteractionsProcess");
Assert.assetEquals(ProcessInstance.STATE_ACTIVE, pI.getState());
Assert.assertEquals(1, handler1.getInvocationCount());
WorkItem item = handler2.getItem();
Assert.assertNotNull(item);

Now that we have the reference to the work item, we can use it to tell the session to 
carry on with the process's execution:

Ksession.getWorkItemManager().completeWorkItem(item.getId(), null);

We will cover a lot more about using work item handlers later on in this book. 
However, one of the provided WorkItem handlers has one particular importance: the 
external system it communicates with allows you to interact with human beings. It is 
registered in the exposed manager with the key Human Task. We will fully cover the 
configuration of this handler in Chapter 7, Defining Your Environment with the Runtime 
Manager, along with the runtime manager in detail. Let's first discuss the system 
behind it and its components.

The Human task component
The Human task component (also referred to as a task service) is, from the process 
engine's perspective, a service just like any other to which each process instance 
coordinates deferred calls (that is, when the task service is invoked, the process 
reaches a wait state until the service says it can continue).

The particularity of this service is what it is prepared to do. It allows you to manage 
tasks that reflect any sort of human interaction. The process engine interacts with it 
when a process instance reaches a User task to notify the service of new tasks that 
different people in a domain will have to execute. After that, it is the responsibility  
of the Human task component to make sure that all tasks fall into the right hands.

To do so, it will need to interact with three other components:

• The User/Group callback to get access to the company's users
• A persistence to store the internal state of tasks



BPM Systems' Structure

[ 50 ]

• End user UIs to show information related to tasks that each user must do, 
and forms to allow them to do so

Process Engine +
Rule Engine +
CEP Feature *

...

APIs
Human Task
ComponentAPIs

End
User
UIs

LDAP/ User
Repository

User / Group
Callback

Storage

The task service exposes a set of APIs that obey a specific life cycle. We will proceed 
to explain both.

Human tasks – life cycle
In the preceding diagram, the Human task component box represents the core of 
the human task service. It provides methods to create tasks, assign them, start them, 
complete them, and much more. We'll learn more about the different stages in a 
human task's life cycle in Chapter 6, Human Interactions. At the moment though, it 
will provide different statuses for our tasks, depending on their assignment, who 
can work on them, and whether they've already been started, claimed, skipped, or 
completed. All these statuses are based on an industry-based, strong standard called 
Web Service Human Task (WS-HT). It provides core definitions to structure our 
tasks and define their stages.

Human tasks – APIs
The Human task component exposes a set of APIs that are also based on the WS-HT 
standard specification, which is defined in the https://incubator.apache.org/
hise/WS-HumanTask_v1.pdf. The API's responsibility is to provide us with a way 
to handle human tasks from the user interfaces in a task-list-oriented way. Those 
APIs are also used by the process engine to create tasks and register themselves for 
listening to changes on each task (specifically, completion, failure, or skipping of the 
tasks that the process engine created).

https://incubator.apache.org/hise/WS-HumanTask_v1.pdf
https://incubator.apache.org/hise/WS-HumanTask_v1.pdf


Chapter 2

[ 51 ]

It is important to understand at this point that the Human task component  
itself doesn't need to understand anything about processes. It merely provides  
a framework to work with human tasks. It is the process engine that will depend  
on this component if it has processes with human tasks defined in them.

User UIs will use the APIs provided by the task service to provide task lists with 
relevant tasks for different groups and users and also to populate and complete 
forms that represent tasks performed by people.

The User/Group callback
The Human task component will assign tasks to different groups and users depending 
on the potential users, groups, and administrators defined for each task. Those groups 
and users need to be defined within some specific security context. In order to provide 
such understanding to the Human task component regardless of the way your domain 
validates users and groups, the API provides a UserGroupCallback interface. The 
User/Group callback is a component in jBPM6 to abstract the way your company 
stores and accesses your business users. This will allow us to write our process 
definition's human tasks by already assigning specific user and group IDs, knowing 
that later on the end user UIs will be able to map the logged-in user's ID to obtain all 
the tasks assigned to him or her and his or her groups. The User/Group callback is  
an interface that defines the following three methods:

public interface UserGroupCallback {
  boolean existsUser(String userId);
  boolean existsGroup(String groupId);
  List<String> getGroupsForUser(String userId,  
    List<String> groupIds,List<String> allExistingGroupIds);
}

With this simple interface, the Human task component can easily understand how to 
manage user assignment for all different tasks. We'll learn more about the different 
implementations of the User/Group callback (and how to plug them in) in Chapter 6, 
Human Interactions.

The BPMS ecosystem
BPM systems can be very useful as enterprise-wide development tools. However, 
they are usually just one system among many others that piece together the 
enterprise architecture of a company. We will cover some of the most common or 
most related components to BPM systems in this section. We'll cover what they are 
and how they relate to BPM systems. I strongly recommend that you learn more 
about the ones you feel would be most useful for your particular case. Their use will 
allow you to build more robust and scalable applications with preexisting solutions.

www.allitebooks.com

http://www.allitebooks.org


BPM Systems' Structure

[ 52 ]

BPM and service-oriented architecture
SOA has been around for quite some time now. It is a software design principle 
based on creating discrete pieces of software that expose an application's 
functionality as services to other systems. It promotes the creation of highly 
decoupled and self-contained units of functionalities called services. They can  
live alone without external requirements, and they expose well-defined interfaces  
to access a specific functionality.

When you create a new application, you can use the previously exposed  
services. This will allow pieces of software to be decoupled, easily maintained  
and reused, and exchanged in an easier way than if they were embedded in an 
existing application.

Management
Application

Continuous
Integration

Use case
Service

Clients
Service

Accountant
Service

Statistics
Service

Auditing
Service

Developer
Support

Application

As you can see in the preceding figure, we can create applications by composing and 
reusing different sets of services. Each service provides a specific functionality that 
each application uses. In this example, we can see how both the use case service and 
Auditing service are being used by two different applications.

BPM systems relate to service-oriented architectures by either BPM systems exposing 
services (that can be called by other applications to handle the creation of the process 
and signaling) or by handling service executions with processes. Since services are to 
be considered as external interactions, we can create WorkItemHandlers to invoke 
different kinds of services.



Chapter 2

[ 53 ]

Service orchestration
So far, we've mentioned processes that call services as a way to relate BPMS and 
SOA. However, we need to differentiate that from a separate concept called service 
orchestration and Web Services Business Process Execution Language (WS-BPEL). 
WS-BPEL is an orchestration language for services that are exposed using web 
services. It was only meant to work with web services to manage the sequence  
in which they are to be called for a specific purpose. BPM systems go beyond that  
to create a process that can orchestrate many different things, one of which can be 
web services.

When we talk about BPM systems guiding services, we usually mean a business 
process that, during its execution, will call one or more web services to obtain or 
change specific results.

Continuous
Integration

Use case
Service

Clients
Service

Accountant
Service

Statistics
Service

Auditing
Service

Developer
Support

Application

Gather
Requirement

Determine
Points

Develop Process
Commit

Test

Report

+ +

compiled

error

developer

When we talk about service orchestration, however, it usually means the far  
more narrow-scoped concept of providing a sequence for web services alone.  
In this book, we will only cover topics related to BPM systems and not these  
kinds of service orchestrations.



BPM Systems' Structure

[ 54 ]

Enterprise Service Bus
Enterprise Service Bus (ESB) is another SOA-related technology that is meant 
to provide a common point for a service's publication, discovery, and (from an 
infrastructure point of view) coordination of services. It hides the low-level complexity 
of connecting to different services while providing a centralized infrastructure for 
them. It is highly recommended that you use an ESB as part of an SOA implementation 
because it simplifies integration problems and centralizes the monitoring of services.

ESBs and BPM systems are not exclusive tools; they are quite the opposite.  
Using ESBs simplifies connectivity issues when dealing with external interactions  
in business processes; they do so by providing a common place for service discovery. 
Also, BPM systems can be integrated as services exposed in ESBs.

Most ESBs provide an integration with jBPM6 by means of two different 
frameworks: Spring (http://www.spring.io), a framework for component 
integration and initialization, and Camel (http://camel.apache.org), a framework 
for service interconnection through endpoint declarations. Both (Spring and Camel) 
are supported by most of the latest ESB tools, and the KIE projects provide two 
projects to expose KieSessions through both the aforementioned frameworks:  
kie-spring and kie-camel.

The full picture could be a combination of process interactions (for services and 
human tasks) and the BPM system and service interactions wrapped with the ESB; 
this allows different system providers to just worry about writing new services,  
new processes, or new versions of both.

The business process flows will describe how the work is being done in the company 
and not the technical details required for sending information from one place to 
another. This is later provided by the actual implementation of WorkItemHandlers 
in the runtime configuration; this is possible thanks to the semantics proposed by 
business process modeling languages such as BPMN2, which will be introduced in 
Chapter 3, Using BPMN 2.0 to Model Business Scenarios.

Business experts appear in this scenario as users of the BPM systems in the roles of 
business process creators, editors, and auditors. Meanwhile, other roles don't need to 
interact with the processes nor the services, but only with the tasks assigned to them. 
In a scenario like this, it is the process's responsibility (and not the responsibility 
of specific applications) to access the services and exchange information with them 
through Service tasks, a component we will see in detail in Chapter 3, Using BPMN 
2.0 to Model Business Scenarios.

http://www.spring.io
http://camel.apache.org


Chapter 2

[ 55 ]

Continuous
Integration

Use case
Service

Clients
Service

Accountant
Service

Statistics
Service

Auditing
Service

BPMS

Business Process 1

User
Task

Service
Task

Business Process 2

User
Task

Service
Task

Service
Task

Enterprise Service Bus

Developer
Support

Application

Management
ApplicationTask Lists

developer tester manager

Business
Analyst

Rule engines
Business processes are good to express a sequence of activities in a visually simple 
way. However, sometimes, specially when we want to express complex business 
logic for specific decisions, writing business process can become too complex and 
cryptic; also, depending on the number of decisions that are taken, they could make 
our processes look like a labyrinth. To implement complex business logic inside 
activities or the business logic surrounding all the processes, we can use a declarative 
expression language that writes those decisions as business rules.

The Drools rule engine, which will be introduced in detail in Chapter 9, Integration 
with Other Knowledge Definitions, allows us to define business rules using the Drools 
Rule Language (DRL). DRL is an expressive declarative language to define business 
situations and a way to interact with them. There are mappings that can be created 
by transforming from natural language to DRL in order to make them user friendly 
to read and write by business analysts.



BPM Systems' Structure

[ 56 ]

A DRL-based business rule looks like the following:

rule "Driver License only for apt applicants over 18 y.o."
when
  $a: Applicant(age > 18)
  $md: MedicalRevision(
    applicant == $a,
status == "Approved")
  then
  startProcess("driverLicenceProcess", $a);
   end

Rules are described using two main sections: one for finding the conditions and the 
other for the consequences that will follow when those conditions are met. The first is 
called a conditional section, Left-Hand Side (LHS), or simply "the when part". It will 
wait for all the conditions to be true to activate the rule. In the case of the previously 
defined rule, it will wait for an Applicant object to exist with an age over eighteen. 
When found, it will search for a MedicalRevision object related to that applicant 
that has been approved. Once both are found, it goes to the then part of the rule—the 
consequence section or Right-Hand Side (RHS) of the rule—to execute the actions 
associated with that condition. In this case, it will call a previously defined function 
to start a specific process for that applicant.

This rule is very simple, but in an environment where many rules exist, each rule 
distinguishes a very specific decision of the business logic. Together, very complex 
decisions can be made using highly decoupled rules. The rule engine will be in 
charge of matching all of these rules against the current state of the world in the  
most efficient way possible. Rule engines were specially designed to evaluate a  
huge number of rules at the same time without any impact on performance.

BPM systems have an intimate relationship with business rule engines to determine 
decisions at specific points of process executions and to govern process executions 
themselves. In the following section, we'll see different ways in which BPM systems 
and rule engines integrate.

Classic BPM system and rule engine integration
BPM systems rely on rule engines to take complex decisions based on business logic 
expressed in a declarative way. For most BPM systems, this rule engine execution 
was handled through external calls to the rule engine that resided outside the BPM 
systems (sometimes in a completely different server). Doing it like that involved a 
lot of work. BPM systems had to gather information to send to the rule engine and 
prepare it for transmission. 



Chapter 2

[ 57 ]

Then, when the rule engines were executed, the results would have to be 
retransmitted to the BPM system as well. This could become more complicated 
if you also wanted to invoke your BPM system from inside your business rules. 
This is because in that case, you would also have to implement external calls to the 
BPM system from inside the rule engine. The more the communication between 
components, the higher the risk of communication problems between runtimes.

Gather
Requirement

Determine
Points

Develop Validate
Development

Process Engine

Rule Engine

Points
Determination

Rules

analyst

Security
Rules

Development
Validation

Rules

developer

Due to this communication overload, just a small percentage of the rule engine's 
capabilities were usually used. Most interactions were intended to be stateless to 
facilitate testing, and therefore only small, well-scoped problems were solved at a 
time by the rule engine.

For jBPM6, integration with the Drools rule engine happens seamlessly. The process 
engine is in fact a rule engine as they are both running on the same environment. 
This allows you to handle complex stateful scenarios with ease using rules, from 
simple validations to handling process activity monitoring and decision management 
based on rules. Every process instance that is running in the same KIE session 
will share the same rule-based memory, state, and data, and have special rules to 
determine situations that cross-reference many different process instances. This 
would be impossible to do in a stateless environment where each process instance 
would be completely isolated from other executions. With those functionalities 
running for us, we can create smarter and more flexible processes that at the same 
time are easier to read, thanks to being able to take all complex decisions using rules. 
This means that we need to only worry about the sequence of activities from the 
process's perspective.



BPM Systems' Structure

[ 58 ]

Event-driven architecture and complex event 
processing
Event-driven architecture (EDA) allows developers to construct highly decoupled 
systems composed of single function components that interact through events and 
manage complex situations by aggregation of more components in the architecture. 
It is another way of building scalable applications that are different from SOA, but 
both methodologies complement each other depending on the desired result and the 
path of the growth of our systems.

The components proposed by EDA are divided in four different elements: event 
producers, event processing agents, event consumers, and event channels. Event 
producers are in charge of generating events that will be consumed, composed, 
aggregated, and analyzed by event processing agents (EPAs). EPAs can also 
generate high-level events based on composition or aggregations of other events.  
The resulting object is called a complex event. Event consumers will usually 
consume these generated events, but they can also consume the ones generated by 
the producers. Event channels merely represent communication structures to send 
data between producers, consumers, and EPAs.

To relate it to our BPM systems, we could consider the process engine, an event 
producer, which will produce a new event every time a process is created or 
completed. An event consumer in this scenario would be a process-monitoring 
dashboard that handles warnings when the process engine is performing in a 
non-sustainable way. One or more event-processing agents would be in charge 
of monitoring when specific scenarios that could indicate such behavior present 
themselves. One of such cases could be the process creation to completion ratio 
given by all the events produced in the last few hours. When it exceeds a particular 
threshold, we should send alerts to the dashboard.

It is important to notice the decoupled nature of event-driven architectures.  
Event producers, consumers, and processing agents don't need to know about  
the existence of each other. They all work and are able to exist separately,  
without any other dependency than the possibly shared event definitions.

The Drools rule engine allows you to create rules that perform complex event 
processing, therefore producing event-processing agents. Since jBPM6 is seamlessly 
integrated with Drools, if we chose both technologies to construct our EDA, the 
event channel could simply be the internal memory of KieSession (called the 
working memory). 



Chapter 2

[ 59 ]

More examples on this topic will be provided in Chapter 9, Integration with Other 
Knowledge Definitions.

Event Channel
<<application bus>>

Event Producer
<<Any Event>>

Process Engine

Event
Processing

Agent

Event Producer
<<Process Instance

Completion>>

Event Producer
<<Process Instance

Creation>>
Process Monitoring Dashboard

Event Consumer
<<Usage Alerts>>

WHEN

THEN

there are timestwo
more Process Instance
Creation event than Processs
Instance Completion events
within 2 hours

generate a new usage
alert with priority 3

The biggest added value of the EDA infrastructure is the concept of event-processing 
agents. When they generate complex events from different sources, they usually do 
it by using a complex event-processing framework, such as the Drools rule engine to 
handle different stream of events and define filters and conditions.

We can leverage the power of an event-processing agent to influence our business 
process's execution, create new process instances based on the aggregation and 
correlation of events that come from different sources, or even notify external 
applications or users about the completion of a business process under a set of specific 
circumstances. In Chapter 9, Integration with Other Knowledge Definitions, we will see 
how we can use the Drools rule engine (and particularly a set of APIs called Drools 
Fusion) to integrate complex event-processing features with our BPM systems.



BPM Systems' Structure

[ 60 ]

In the next figure, we see a combination of process engine and event-processing 
agents from the perspective of a particular process; combined, they can model  
very complex business scenarios.

External
Systems

Applications

+
Service

Task
User
Task

BPMS

Business Process 1

User
Task

Service
Task

Business Process 2

User
Task

Service
Task

Service
Task

Business Process 3

Event
Processing

Agents

ESB

Sensors

Predictive analytics and decision 
management
Predictive analytics is a highly recurring concept that surrounds decision 
management systems. It is based on analyzing the information exposed by 
knowledge-based services and finding missing cases, detecting projections  
in the values of variables, and expanding the universe of information by  
cross-referencing other sources of information.

In order to analyze this information to obtain such insights, events from different 
sources (including process executions from BPM systems), that is, from real-time 
production environments, are fed into a simulation environment. Here, queries are 
raised and data analysis conducted to test different scenarios to see which ones have 
a better coverage of all the cases. 



Chapter 2

[ 61 ]

The information obtained is later used to feed new knowledge definitions to 
production environments. This cycle is known as the decision analysis cycle.

Change
Knowledge

Create
Simulation
Scenarios

Refine
Knowledge

Evaluate
Results

Update
Models

Decision

Action

Information

Reaction ANALYSISRUNTIME

Decision analysis cycle, encompassing both runtime and analysis

BPM systems assist in decision management by providing a way to define 
business processes that are both very visual and faster to update than other system 
implementations. Of all the possible forms of quickly representing and adapting 
knowledge, business processes are the most descriptive way to provide a sequence 
of steps. They provide a great added value to the decision management software by 
allowing them to inject new process definitions to increase the number of decisions 
that can be taken or handled.

At the same time, decision management provides a great added value to BPM 
systems by providing feedback for a new process's discovery and analysis tools to 
detect cases not yet covered by processes, allowing process quality to be improved.

The analytics of production data is a very powerful tool that can be used in 
three different stages of the BPM cycle. In stage 5 (monitoring), it is involved in 
collecting information from runtime environments to create a data source for future 
investigation. In stage 6 (improvements), analytics is heavily involved in finding new 
cases not previously covered by the existing runtime. Finally, for stage 1 (discovery), 
simulation environments play a fundamental part in understanding the impact 
of new processes or modifications to existing processes in the real-time existing 
production environment.



BPM Systems' Structure

[ 62 ]

At the moment, there aren't any tools inside the KIE suite to create these decision 
analytics directly, but new features are added constantly to the existing suite. So, I 
wouldn't be surprised if by the time this book is published, some form of tooling to 
do this analysis is introduced to the suite as a new experimental feature, probably as 
an add-on to be adopted in the future.

BPMS

Business Process 1

User
Task

Service
Task

Business Process 2

User
Task

Service
Task

Service
Task

ANALYTICS SIMULATION ENVIRONMENT

Real-time
Production

Data

Test
Scenarios

New
Knowledge

Processes and
Knowledge
Repository

Knowledge
Analyst

process
definitions

events

As you can see in the preceding figure, events from the BPM system can be fed  
to the decision software analysis tools, and the acquired information can be used to 
define new business processes or improve existing ones. Thanks to the simulation 
tools, new processes can be tested with existing data to see whether they will meet 
the discovered scenarios.

There is a lot more content regarding decision management software, and 
unfortunately we can't fit it all in this book. The tooling provided by jBPM6 can be 
connected to decision management in one way or another, and during the course of 
this book, whenever we start explaining each tool in detail, we will mention how it 
can connect to the decision management software. For the moment, let's just explain 
that it provides a methodology to provide fast and continuous improvement  
of knowledge definitions in order to drive smarter actions in all our systems 
(including our BPM systems).



Chapter 2

[ 63 ]

Summary
In this chapter, we have covered all the components that create a BPM system  
and also how the said components are implemented for jBPM6. We've started 
learning APIs that use the said components. In further chapters, we will go deeper 
into the configuration and coding details to fully cover the components discussed  
in this chapter.

There are a lot of architectures and design components that can be mixed with  
BPM systems. We will continue by solving problems with the described tools  
and concepts to learn where to apply them and mention good connection points to 
other architectures or concepts. Learning more about technologies that BPM systems 
relate to will help you enrich your design and implementations, by providing you 
with a whole set of middleware solutions.

To download the source code used in this and the following chapters, go to  
http://github.com/marianbuenosayres/jBPM6-Developer-Guide.  
You will find a folder for each chapter that contains the source code that  
we see in each code section.

In the next chapter, we will discuss in detail how to write and use BPMN2  
files to define our business processes, and explore more examples regarding  
process executions.

http://github.com/marianbuenosayres/jBPM6-Developer-Guide




Using BPMN 2.0 to Model 
Business Scenarios

After learning about the BPM discipline, we understand that we need to have  
a formal language to express our business processes. This language will help us  
in defining a well-established sequence for the decisions our organization makes.  
We want to make sure such definitions are as powerful as possible, so we want  
the formal language to be extensible. We also want the freedom to choose our  
BPM system regardless of our definitions as much as possible, so we want the  
formal language to follow widely accepted standards. For all these reasons, in this 
chapter we focus on BPMN 2.0, a standard, flexible language that is supported by 
jBPM6 and many other providers as the current de facto language for executable 
business processes.

We will introduce a real-life use case to demonstrate best practices and design 
strategies based on managing requirements in a Sprint Development use case,  
where we will perform the following operations:

• Introduce the BPMN 2.0 standard specification
• Model different elements of our business processes
• Create an example to run our processes

We will be covering most of the most common constructs required to model and 
build real-life processes. You might already have a particular use case, so if you  
do, try to use such constructs and best practices for your particular scenario.  
The concepts we'll learn in this chapter apply for virtually any domain.



Using BPMN 2.0 to Model Business Scenarios

[ 66 ]

Introduction to BPMN 2.0
The idea behind BPMN Version 2.0 is to provide a standard way to both represent the 
visual structure of a business process and its execution semantic, all in the same file, 
while also providing a mapping between both. This way, the gap between business 
analysts drawing a new business process and the business process actually running 
in an execution environment is significantly reduced. This also provides a common 
ground for technical people and business people to share ideas. The purpose of 
this chapter, and of the BPMN standard, is to make process diagrams (such as the 
following diagram), something that can be easily read and understood by different 
groups of people:

Identify
Payment
Method

Prepare
Package for
Customerevent

Cash

Accept
Cash

Reject
Check

Process
Credit Card

end2 join
+

Check

Credit Card

split
+

end1

The standard was formally released in January 2011, and it is a result of the 
collaboration between companies such as Oracle, IBM, Red Hat, Intalio, and many 
others within the Object Management Group (OMG). They combine almost 20 years 
of business process standardization experience in this standard. This specification 
(Version 2.0) is divided into four sections that allow different vendors to comply  
with one or more of the following compliance types:

• Process modeling
• Process execution
• Collaboration modeling
• Choreography modeling

In this book, we will cover only process modeling and process execution because 
jBPM6 focuses only on those areas.



Chapter 3

[ 67 ]

Process modeling compliance
Process modeling only needs to worry about the visual representation of the business 
process to comply with that part of the BPMN 2.0 standard. This usually provides 
graphical tools to draw/model business processes and collaboration diagrams.  
The specification defines two types of business processes:

• Non-executable
• Executable

Modeling tools only need to model non-executable processes, but they can also  
add all the details necessary to make the process definitions they create executable  
in different environments.

Non-executable processes are something to still take into account. In a sense, all 
processes start as non-executable processes until all the details necessary for their 
proper execution are added in a BPMS environment. Non-executable processes  
can also be very useful for documentation, sketching, and as common ground to 
discuss the internal processes of an organization.

If we want to model executable processes, the specification creates a subcategory  
(such as a subclass) of this compliance type called Common Executable Conformance, 
covering the minimum requirements for an execution environment for executable 
business processes. These requirements are as follows:

• The data types and data models that will be related with our business 
processes must be XML schemas

• The default service interfaces must be WSDL service definitions
• The default data access language must be XML Path Language (XPATH),  

a query language used to select nodes from an XML

Of course, different vendors can decide how to cover these requirements—
by changing technology stacks on different points or adding new possible 
implementations. It is a good point of comparison between vendors to see  
what features each vendor implements and how they implement them.



Using BPMN 2.0 to Model Business Scenarios

[ 68 ]

BPMN 2.0 elements
Now, we will explain all the different components that the BPMN 2.0 standard 
defines for process modeling and execution. We will also mention how jBPM6 
adheres to this standard. For the full specification of BPMN Version 2.0, you can  
visit http://www.omg.org/spec/BPMN/2.0.

In the next section, we will use those concepts to define example processes that  
will help us fully understand how all the concepts work together.

The specification divides elements in the process definition as follows:

• Flow elements
• Connecting elements
• Data
• Swimlanes
• Artifacts

Flow elements
Flow elements are one of the most important elements, as they are in charge of 
defining behavior. The specification defines three types of different flow elements: 
events, activities, and gateways. Each is in charge of very different kinds of steps, 
and therefore all very necessary to define a complete business process.

Events

Events represent a capture of a particular occurrence that interests the process. They 
are usually caused by an external cause or trigger. They're represented with a circle 
and, depending on the type of the border and its contents, the behavior that events 
expect to trigger. In the following diagram, we see an example of different BPMN 
events with types and subtypes:

Start
Event

Intermediate
Event

End
Event

Terminate
End

Event

Intermediate
Timer
Event

Signal
Start
Event

http://www.omg.org/spec/BPMN/2.0


Chapter 3

[ 69 ]

There are three main types of events:

• Start events: These events are drawn with a single, thin border line.  
They represent an external interaction that causes the beginning of a  
business process instance.

• Intermediate events: These events are drawn with double, thin border  
line. They are in charge of catching external events or throwing events,  
even outside the process instance scope. They can influence the flow of  
the process, but they cannot start it nor end it.

• End events: These events represent the end of a process instance or the  
end of an execution path inside a process instance. It is always sent and  
never received from outside the process instance scope.

For each main type of event (start event, intermediate event, and end event), there 
are many subtypes defined by the specification. For example, the last three events 
in the previous diagram are specific subtypes. The terminate end event marks that 
all the active execution paths in the process instance must finish, as long as one 
path reaches said node. The intermediate timer event will wait for a given amount 
of time before continuing with the execution flow. Finally, the start signal event 
will start a new process instance when an external signal of a specific kind is sent 
to the runtime environment. There are many more; but for the first examples we'll 
see, these will suffice. Support for a wide variety of all three main types of events  
is provided by jBPM6.

Activities

Activities define a piece of work that is being done inside the process scope. They 
could be atomic or nonatomic activities, depending on whether they can be further 
divided into more activities or not. For such purposes, the standard defines three 
different types of activities: tasks, subprocesses, and call activities. These are 
represented as boxes in the following diagram:

Generic Task User Task Subprocess
Iterative Embedded

Subprocess
+



Using BPMN 2.0 to Model Business Scenarios

[ 70 ]

As seen in the preceding diagram, a rounded rectangle defines a task, which can 
have different subtypes. An icon on the top-left corner can define different types  
of atomic activities, such as User tasks (a human should provide a specific input 
in these kind of tasks), a Script task (when a particular piece of script needs to 
be executed), a generic task (it will have no icon and is thought to be defined in 
runtime), or many more.

When the rounded rectangle has a particular sign on the bottom, the activity is 
considered as a subprocess, which means that it can be decomposed into different 
activities. Depending on the sign, it can mean that the round rectangle will contain 
many subactivities that are just not relevant to the current process definition's 
scope. This can be executed once (when it is a plus sign) or many times (when three 
parallel lines are on the bottom). Usually, these subactivities are embedded inside the 
subprocess activity box.

Finally, if we want to invoke a process definition defined outside the scope of the 
current process, we use call activities. This encourages reutilization and transfers  
the control of the execution to the activity being called. Call activities are defined  
by a thicker border line, like the third rectangle from left in the previous diagram.

All of these types of activities, tasks, subprocesses, and call activities are supported 
by the jBPM6 process designer at runtime.

Gateways

Gateways control the divergence and convergence of sequence flows in a process. They 
are represented by a rhombus, and the drawing inside the rhombus determines the 
different types. The following diagram shows examples of different BPMN gateways:

++ ++
Exclusive
Gateway

Parallel
Gateway

Inclusive
Gateway

Event-based
Gateway

Complex
Gateway

BPMN2 gateways have one outgoing connection and many incoming connections 
(when a gateway is diverging), or many outgoing connections and one incoming 
connection (when a gateway is diverging). The most commonly used gateways are  
as follows:

• Exclusive (or XOR-based) gateway: This is marked with an X sign and 
it allows only one outgoing execution path to be executed, depending on 
conditions defined in the outgoing flows. When converging, it carries on 
whichever path reached it, because it expects one flow to be executing only.



Chapter 3

[ 71 ]

• Parallel (or AND-based) gateway: This is marked with a plus sign and 
allows us to define concurrent paths. When diverging, it creates a new 
execution path for each outgoing connection; when converging, it waits  
for all connections to finish and carry on with one execution path.

• Inclusive (or OR-based) gateway: This is a less restrictive version of the 
exclusive gateway. It allows one or more paths to continue when diverging, 
depending on conditions defined in the outgoing flows. When converging,  
it should wait for all active paths to finish before continuing  
with a single execution path.

• Event-based gateway: This defines a branching point in the process where 
we should wait for one of many different events before continuing with 
the process execution. Event-based gateways allow the process to make a 
decision on which path to follow based on the event received first.

• Complex gateway: This allows us to define a more complex condition, 
where 1 to n branches should be able to continue. When joining branches, 
we can also decide whether to wait for one or more execution paths before 
continuing with the next activity of the process.

Complex gateways are the only ones not supported by jBPM6. Also, for converging 
gateways, only exclusive and parallel gateways are supported.

Connecting elements
To define the sequence between flow objects, we use sequence flows. They are 
represented as arrows, and the specification defines three types of sequence flows  
to specify different behaviors to propagate the execution. The following diagram 
shows different sequence flows:

Uncontrolled
Sequence

Flow

Conditional
Sequence

Flow

Default
Sequence

Flow



Using BPMN 2.0 to Model Business Scenarios

[ 72 ]

The different sequence flows are defined as follows:

• Uncontrolled sequence flow: This is the most common sequence flow.  
It represents a connection between two flow objects, with an origin and  
a destination.

• Conditional sequence flow: This evaluates an expression to determine 
whether it should continue to the next flow object or not. The expression is 
evaluated at runtime when the process is being executed, usually involving a 
check on a process variable.

• Default sequence flow: This is used in inclusive/exclusive/complex 
gateways. It determines the flow that will be selected if no other path 
matches the specific criteria.

Sequence flows are the standard way of providing a sequence in business processes, 
and they are fully supported by jBPM6.

Finally, the relationship between these data components, the process, and its flow 
objects is done using message flows. They represent an association between a data 
object and a flow object. The specification mandates that message flows don't affect 
the process execution flow, and they only provide a way to share information between 
a source and a target. The specification also allows transformations to be applied by 
using expressions, as shown in the following diagram:

Message Flow

Data elements
Data elements represent information that will be manipulated by the process instance 
during its execution. BPMN 2.0 allows us to define this information graphically and to 
specify where the data will be used. Data objects can be divided into the following:

• Data objects
• Data inputs and data outputs
• Data stores
• Properties (no visual representation)



Chapter 3

[ 73 ]

Data objects are the most basic representation of a piece of information used in a 
process. They can be added to processes and subprocesses and can be associated with 
their life cycle. That means, when our processes are instantiated, we can instantiate our 
data objects as well. We can mark data objects to be a single instance or a collection,  
as shown in the following diagram:

single
instance

collection data
input

data
output

Input Output

The other two types in the preceding diagram are also data objects, but they are 
called data inputs and data outputs. They map specifically to inputs or outputs  
of a specific activity.

Data stores are used to interact with information outside the scope of the  
process. They represent external sources of information that are not instanced  
by the process, but that the process execution can access nonetheless, that is,  
a database. The following diagram shows the Data Store:

Data Store

Properties include data objects, but those that have no visual representation.  
They are pieces of information that can be associated with processes and flow 
objects. Depending on where the properties are defined, some parts of the process 
can or cannot access said properties. Process properties can be made accessible to all 
the activities inside the said process. Activity properties can only be accessed inside 
the same activity.

Data stores and data objects are supported by the jBPM6 parser, but no runtime 
configuration is provided for them. Data objects are mapped in jBPM6 as process 
variables. Activities' inputs, outputs, and process variables, are usually represented 
as properties, mainly because jBPM6 doesn't support message flows to correlate 
specific data objects to inputs or outputs of a specific component.



Using BPMN 2.0 to Model Business Scenarios

[ 74 ]

Swimlanes
Swimlanes are defined to organize and categorize the activities that belong to a 
process. Using swimlanes, we can denote responsibility from a role or a business unit 
to a set of activities. Most of the time, they are used to improve process readability.

From the jBPM6 implementation, swimlanes are used to define a particular group 
of User tasks (see the Task types in jBPM6 section later in this chapter) that should be 
performed by the same user. In the following example, Task 3 has to be performed 
by the same user who executed Task 2:

N
am

e

Start

Task 1

Task 2 Task 3

Artifacts
Artifact elements add additional information to diagrams. They're used to improve 
documentation aspects and the specification defines two types of artifacts: Groups 
and Text annotations.

Groups are used to encapsulate a group of tasks together by any sort of criteria.  
They don't affect the flow of the process. Text annotations allow us to add notes 
to our process diagrams, such as comments inside our process, as shown in the 
following diagram:

group A

Text Annotation

Since they don't affect process execution, jBPM6 skips them from its internal parsing.



Chapter 3

[ 75 ]

Task types in jBPM6
As we previously mentioned, one of the most important types of flow objects is 
the activity. Each activity will represent a task related to our business scenario. 
The specification provides a set of specific tasks that can be used to define different 
behaviors. This section covers the most commonly used tasks that we need to know in 
order to start modeling our business scenario. The task types shown in the following 
diagram will be described in this section:

Abstract
Task

Service
Task

User
Task

Business
Rule Task

Script
Task

The tasks in the preceding diagram are defined as follows:

• Abstract task: This is the base type of all the other tasks in BPMN 2.0. 
According to the specification, this task is abstract and we should never  
use it in our processes. However, jBPM6 uses it as an extension point to 
introduce new task definitions. We will see how this is achieved in more 
detail in Chapter 5, Creating a Process Project in the KIE Workbench.

• Service task: This allows us to represent interactions with external 
automated systems. Each time our business process needs to interact  
with a service or procedure, we will use a service task. The service task 
element defines an attribute called implementation, which is used to  
specify the underlying implementation of the service that we are calling.

• User task: This represents a human interaction. Each time we want to 
represent a person doing an activity, we use a User task to model this 
situation. Because User tasks represent a human interaction, we need  
to provide a way to assist the performer during this interaction. The  
jBPM6-based BRMS provides a task list-oriented user interface that  
assists each user during these interactions. We will take a close look  
at this approach in Chapter 6, Human Interactions.



Using BPMN 2.0 to Model Business Scenarios

[ 76 ]

• Business Rule task: This allows us to interact with a Business Rule Engine 
(BRE) to do some business logic evaluation. The interaction with the BRE 
usually involves sending information to the Engine, which will be evaluated 
by a set of business rules and a result will be returned. In the case of jBPM6, 
integration with a business rule engine is already part of the process engine, 
so this integration becomes simple.

• Script task: This allows us to execute a script that can be specified in various 
languages. A script basically represents a set of actions that we can code using 
a scripting language. For jBPM6, the supported languages are Java and MVEL 
(http://mvel.codehaus.org).

Subprocess types in jBPM6
Activities can represent aggregations of multiple other flow paths, called subprocesses. 
The reason behind grouping particular parts of a process together could be hiding or 
grouping additional levels of a business process in detail or specifying a completely 
different way to manage those paths. In the following diagram, we can see different 
icons that are used to define some of these subprocess types:

Subprocess
Sequential MI
Subprocess

Parallel MI
Subprocess

Loop
Subprocess

Ad Hoc
Subprocess

Compensation
Subprocess

A basic subprocess (in its collapsed view) will be marked by a plus sign at the 
bottom. This is just to define that there is a different process definition inside this 
box. This type alone gives us a lot of power, because it lets us define a process 
definition hierarchy to define from the most atomic activities of our company to  
the general company drivers, all with different levels of processes.

http://mvel.codehaus.org


Chapter 3

[ 77 ]

Alongside the basic subprocess, there are other types of subprocesses. The most 
common ones are as follows:

• Multiple instance (MI) subprocesses: They define a subprocess that  
should be instantiated and executed multiple times from the external 
process instance. It comes in two flavors: Parallel (marked by three vertical 
lines at the bottom) and Sequential (marked by three horizontal lines 
instead). The iteration is done over a collection-based process variable in 
the external process instance. Both types are supported by jBPM6, but they 
are both treated as sequential.

• Ad-hoc subprocesses: This type of subprocesses is peculiar as it only 
contains activities, and there is no sequence defined. Every activity 
included in the subprocess can be executed in any order as long as specified 
completion conditions are fulfilled. Actually, the internal activities of an 
ad hoc subprocess might not even have to be executed at all to fulfill said 
conditions, making the whole subprocess optional. They are represented 
with a tilde (~) marker at the bottom and are supported by jBPM6 through 
the dynamic node utilities:
//We need to start with a KieSession:
KieSession ksession = ...
//We start a specific process instance:
ProcessInstance pI = ksession.startProcess(
"dynamic-process");
    //If the first node we wait at is an ad hoc subprocess,
    //the following code will return a node for it:
    DynamicNodeInstance node = (DynamicNodeInstance)
      ((WorkflowProcessInstance) pI).
      getNodeInstances().iterator().next();
DynamicUtils.addDynamicWorkItem(node, ksession, 
"Human Task", null);

In the previous example, we used the DynamicUtils class to generate an 
execution of one of the tasks in the ad hoc process called "dynamic-process".

• Loop subprocesses: Similar to multiple instance subprocesses, the loop 
subprocesses will repeat themselves over and over again in sequence until 
a condition is met that stops the loop. The main difference with multiple 
instance subprocesses is that this type of subprocess is not dependent on 
a collection-based variable, but only on a specific finish condition. It is not 
supported by jBPM6.



Using BPMN 2.0 to Model Business Scenarios

[ 78 ]

• Compensation subprocesses: This is a specialized version that only 
happens when a specific kind of event called compensation is triggered. 
Compensation events are thrown when a process has done something that 
it shouldn't, but still has a chance of completing successfully. Compensation 
subprocesses are related to undoing steps that were already successfully 
completed, because their results and possibly side effects are no longer 
needed and need to be reversed. They are supported by jBPM6.

The subprocess types explained here are also usable in common 
activities. I've decided to explain them as subprocesses because that's 
where most of them make more sense. You can have a multiple instance 
User task activity defined, and it would still be perfectly standard.

Event subtypes
Events, as we saw earlier in this chapter, trigger or capture situations of special 
interest to our process, depending on their type (start, end, or intermediate catch or 
throw). Depending on what the situation is, we need to define specific subtypes of 
events that define different situations. There are too many subtypes to explain them 
all in this book. In the following diagram, we see a few of the most commonly used 
event subtypes:

Terminate
End

event

Message
Intermediate

Catch
event

Message
Intermediate

Throw
event

Signal
End

event

Escalation
Intermediate

Catch
event

Error
End

event

Timer
Intermediate

Catch
event

Signal
Start
event

Compensation
Intermediate

Throw
event



Chapter 3

[ 79 ]

Among the subtypes that we can distinguish in the previous diagram, the following 
events are present:

• Signal events: These events are used to send and receive signals. Signals are 
generic, simple forms of communication. They can be sent between activities 
and even be shared between different process definitions. They don't have a 
specific recipient, so any other component in the same runtime can receive 
a signal by just defining that they are listening. The jBPM6 API can send 
signals to a process from outside its scope using the signalEvent method:
KieSession ksession = ...;
ksession.signalEvent("signalName", null);

• Timer events: These events are triggered by a defined timer. They must have 
exactly one element of the type timeDate (to determine the specific date at 
which the event should be triggered), timeDuration (to specify after how 
much time it should trigger the event), or timeCycle (to specify intervals at 
which the event should repeatedly fire). All three are supported by jBPM6.

• Message events: They are similar to a signal event, except they are directed 
to a single receiver. It has an attribute called messageRef that defines a 
message to be sent. From the jBPM6 perspective, however, it can be received 
by any number of listeners, and handles itself through the signalEvent 
method as well. The code is as follows:
KieSession ksession = ...;
ksession.signalEvent("Message-messageRefName", null);

• Error events: These events are prepared to handle specific errors that occur 
in a process execution. They can be used as end events to terminate a flow 
indicating an error occurred or used to catch specific errors. They can even  
be used to start a subprocess.

• Compensation events: These events are used to compensate for errors  
that occurred in the flow of a process. If you find yourself in a situation that 
shouldn't be happening, you can trigger a compensation event to notify the 
specific compensation handler (a catching compensation event) that an action 
should be taken to amend the execution somehow.

• Escalation events: These events are similar in implementation to compensation 
events. They mark a situation that cannot be handled anymore by the current 
process execution. The only difference with escalation events is that some 
higher scope of process execution (that is, a parent process) should handle the 
specific situation that fired the escalation event. That is why they can only use 
start and throw escalation events inside subprocesses.



Using BPMN 2.0 to Model Business Scenarios

[ 80 ]

• Terminate events: Processes can have multiple flows running in the same 
process definitions. The process instance is not considered completed until 
all active execution flows reach an end event. Terminate events are used 
to avoid this, since process instances are completed as soon as any of the 
execution paths of a process reach a terminate end event.

There are a few more that aren't covered by jBPM6 much or very widely used,  
so we skipped them from this book. We encourage you to look into the specification 
if you're interested in other types of events.

Boundary events
Boundary events are a very practical combination of two flow objects, activities,  
and events. When you assign an intermediate catch event to the border of an activity 
box, you determine events specific for that activity only. They are very useful for 
controlling the flow of tasks and subprocesses alike. The following diagram shows  
a few examples:

Activity A

Escalation Error Timer
Signal

Activity B Activity C

Escalated
Activity

Manage
Error

Timeout
Activity

Signaled
Activity

As the preceding diagram shows, you can capture escalations, errors, signals, and 
many other types of events being sent from an activity and divert flow accordingly. 
You can even have multiple boundary events on a single activity box. In the case of 
the preceding diagram, depending on whether Activity C sends a signal before or 
after a specific amount of time passes since the activity started, the flow might be 
diverted to two different steps.

The activity can still have a regular outgoing flow. For the first case in the preceding 
diagram, if no escalation is sent from Activity A, the process could continue through 
a sequence flow attached to the activity box directly.

Boundary events are a good way to manage alternate flows. Like all other components 
that add complexity to our processes, we must make sure that we don't make the 
process too complicated to be easily maintained.



Chapter 3

[ 81 ]

BPMN 2.0
Now that we had a brief overview of the different elements that compose the BPMN 
2.0 specification, we can start seeing how they can be combined to define our own 
business processes. To do so, we have a couple of scenarios to analyze where we will 
see the different modeling options we have to execute them. We will also take a look 
at the XML generated by the modeler tool.

Modeling business scenarios with  
BPMN 2.0
Translating our business scenarios into business processes that are modeled with 
BPMN 2.0 is a very sensitive task. Modeling our business processes using the correct 
elements sounds simple, but we really need to understand the technical implications 
that our decisions at the modeling stage will have when we want to execute our 
process definitions. So let's get started with a real example.

We will use the development life cycle, a case we are familiar with, as an example for  
the first scenario we will be covering. The business goal of this process is to manage 
the release management cycle in the most efficient way. We will start in the simplest 
way possible, and then increasingly add complexity to make it more complete:

New Requirement

Assign
Story Points

Code
Requirement

Compile
Project to

Maven

Deploy
Compiled
Project

Business Rules -
Determine story
points by length
and specific
terminology

Developer -
Interpret
requirement and
develop code to
cover it

Continuous
Integration
server -
compile project
and make artifacts

Continuous
Integration
server -
Deploy project in
test environment

This process, shown in the previous diagram, describes the standard activities 
defined for a project development (or, at least, its happy path) from the moment 
the development starts to the moment the requirement is done and deployed. As 
you may know, the activities inside this process will be executed each time a new 
requirement arrives at the development group. As you can see, we will consider  
that the process ends when the requirement is deployed in a test environment.



Using BPMN 2.0 to Model Business Scenarios

[ 82 ]

As you can see in the process diagram, the first flow object that will be executed 
is a start event. This start event will contain information about the requirement 
specification that we will use to understand the context and complete the following 
activities accordingly. Once we receive the start event, we will use the information to 
execute a Business Rule task that will be in charge of assigning story points depending 
on the length of the requirement specification and whether or not it contains specific 
keywords that will be used to define its complexity. Once the story points are assigned, 
we will notify a developer in order to start working on the requirement. The developer 
will be in charge of coding the specified requirement. Once the coding is done, a 
continuous integration system has to compile the project where the development was 
done and then another activity has to use a similar system to deploy the project in a 
test environment.

This is a very simple representation of the proposed business scenario, but we need 
to start from somewhere. We need to be sure that we gather the correct information 
about the activities that are being executed. We need to be sure that we represent the 
activities that really matter from the development area's perspective. Modeling these 
scenarios is not about how the process will be executed but about which activities 
are relevant for modeling within the business processes. We will use this simple 
representation as a kick-start process to represent the situation more accurately.

At this point, we can create a brief description of the resources that our business 
processes are using. Also, we can see that the process requires the interaction of one 
human role: the developer. We are interacting with the rule engine to carry out the 
story point assignment; this means that we will need to have a set of business rules 
that evaluate the requirement and the development area's context in order to assign 
story points. We are also sending notifications to the continuous integration system 
using a connector to the Continuous Integration (CI) server that is being used 
in order to know when to build and deploy components. Using this information, 
we can easily define the business requirements in terms of resources and system 
interactions. After defining these requirements, when the processes get executed we 
can quickly define the metrics to understand how the process works in its context.

We will be able to analyze whether we will need to hire more developers, or whether 
we need to improve our continuous integration system to accept more requests 
because too many requirements are being developed too quickly.



Chapter 3

[ 83 ]

The second version of our process could look like what is shown in the  
following diagram:

New Requirement

Assign
Story Points

Develop
Requirement

Code

Compile
Project to

Maven

Deploy
Compiled
Project

Business Rules -
Determine story
points by length
and specific
terminology

Developer -
Interpret
requirement and
develop code to
cover it

Continuous
Integration
server -
Compile project
and make artifacts

Continuous
Integration
server -
Deploy project in
test environment

+ +
Compile

OK?

Mail System -
notify the
developer

Notify
Developer of

Errors

As we can see from the preceding diagram, we are adding two exclusive gateways. 
One of them, marked with the Compile OK? name, will evaluate whether the 
compilation was successful or not. Based on the evaluation from the compilation 
activity, we will continue with the happy path if the path of execution has no errors 
or exceptions, and produces the expected successful output. If errors are found, it 
will send a notification to the developer that corrections need to be made, go back to 
the other exclusive gateway (the one that converges) and continue into the same path 
two steps behind. We need to evaluate whether this gateway will add unnecessary 
complexity to our model or whether it will help us to better reflect what is happening. 
Once again, we need to be able to decouple how we are representing the business 
scenario and the technical implications that our model will have when we want to 
run it. We will see that these kinds of exceptional paths can also be solved technically 
without adding more flow objects to our business processes diagram. We need to 
find the right balance between the technical decisions and what the process diagram 
represents for the business scenario.



Using BPMN 2.0 to Model Business Scenarios

[ 84 ]

A third option for our business process could be the following:

This third option includes three intermediate catching events. Two of them are 
boundary events (they're attached to the border of an activity to capture such  
events from inside the activity) and are error boundary events. They change  
the way the process was working by going through the notification path if the 
compilation or the deployment throws an error.

Also, a signal event is being captured in the bottom part in order to notify the 
developer when a particular requirement is cancelled and then terminate the  
process instance. We are assuming that we will receive an external stimulus that 
notifies us if the requirement is cancelled. The notification can contain information 
about this cancellation event, for example, the reason for the cancellation. The Notify 
Developer of Requirements change activity for the mail system will be created only 
at that point. Once again, we need to properly identify whether this addition adds 
too much complexity to the process diagram.

A good practice is to validate each of these improvements with the business users 
who are executing activities. As a rule of thumb, we need to keep the process 
diagram as clean and simple as possible.



Chapter 3

[ 85 ]

Technical perspective
Once we understand each scenario, we can start thinking about the technical 
implications that our models will have. We can start analyzing which technical 
details we need to add in order to automate our business processes. In this section, 
we will start analyzing the technical assets that will be generated when we model 
our business process diagram in a BPMN2 tool that allows us to export the model  
as an XML file.

Let's start modeling the first version of the sprint management scenario.

Sprint management technical overview
As we have the initial description of our business process, we can go ahead and 
model it inside our business process designer tool. If we do that in jBPM6 web 
designer (which will be introduced in Chapter 5, Creating a Process Project in the  
KIE Workbench) or in any other BPMN2 tool, we will get something like the  
following diagram:

New Requirement

Assign
Story Points

Develop
Requirement

Code

Compile
Project into

Maven

Deploy
Compiled
Project

This process definition only contains the activities and flow objects as we described 
them previously. We haven't added any technical detail or data mappings yet. We 
first need to work on the completion of the model and reach a state where we are 
satisfied with what the process represents, in this case, for the development area.

If we analyze the XML generated by this simple model, we will see how each task 
is being represented inside the XML file. You can find it in the code section in the 
chapter-03/BPMN2-scenarios/src/main/resources/sprintManagement-V1.
bpmn2 file. The code is as follows:

<bpmn2:definitions ...>

  <bpmn2:process id="sprintManagementV1" name="Sprint Management" 
isExecutable="true">
    <bpmn2:startEvent id="_1" name="New Requirement">
      <bpmn2:outgoing>_1_2</bpmn2:outgoing>
    </bpmn2:startEvent>
    <bpmn2:businessRuleTask id="_2" name="Assign Story Points">
      <bpmn2:incoming>_1_2</bpmn2:incoming>



Using BPMN 2.0 to Model Business Scenarios

[ 86 ]

      <bpmn2:outgoing>_2_3</bpmn2:outgoing>
    </bpmn2:businessRuleTask>
    <bpmn2:userTask id="_3" name="Develop Requirement Code">
      <bpmn2:incoming>_2_3</bpmn2:incoming>
      <bpmn2:outgoing>_3_4</bpmn2:outgoing>
    </bpmn2:userTask>
    <bpmn2:task id="_4" drools:taskName="compiler" 
name="Compile Project into Maven">
      <bpmn2:incoming>_3_4</bpmn2:incoming>
      <bpmn2:outgoing>_4_5</bpmn2:outgoing>
    </bpmn2:task>
    <bpmn2:task id="_5" drools:taskName="deployer" 
name="Deploy Compiled Project">
      <bpmn2:incoming>_4_5</bpmn2:incoming>
      <bpmn2:outgoing>_5_6</bpmn2:outgoing>
    </bpmn2:task>
    <bpmn2:endEvent id="_6" name="">
      <bpmn2:incoming>_5_6</bpmn2:incoming>
    </bpmn2:endEvent>

    <bpmn2:sequenceFlow id="_1_2" sourceRef="_1" targetRef="_2"/>
    <bpmn2:sequenceFlow id="_2_3" sourceRef="_2" targetRef="_3"/>
    <bpmn2:sequenceFlow id="_3_4" sourceRef="_3" targetRef="_4"/>
    <bpmn2:sequenceFlow id="_4_5" sourceRef="_4" targetRef="_5"/>
    <bpmn2:sequenceFlow id="_5_6" sourceRef="_5" targetRef="_6"/>
  </bpmn2:process>

</bpmn2:definitions>

After cleaning up the XML code a little bit to remove autogenerated IDs (from 
something such as _F3AE87C3-F49B-4F0D-A2AA-E2F015188093 to _1) and removing 
the graphical layout and extra information, we get a clean description of the activities 
contained inside our process.

We can clearly see that the XML file structure begins with a <bpmn2:definitions> 
tag. This tag is in charge of containing our process definitions. This tag includes 
numerous references to OMG BPMN 2 schemas and namespaces that I have 
omitted. These schemas will be used to validate that our BPMN2 file is compliant 
with the BPMN2 specification, along with all the extensions (provided by a specific 
jBPM6 namespace) to provide vendor specific components to the XML file. I've 
cleaned up some global definitions and simulation information that can be included 
outside of the process definitions because we don't need them right now. Inside the 
definitions tag we will include our process definition tags.



Chapter 3

[ 87 ]

The <bpmn2:process> tag requires us to assign an ID to the process; depending on 
the tooling, it will either let us create an executable process or not. In this case, the 
isExecutable attribute is set to true by the tooling by default.

Once we are inside the process tag, we can start defining our flow objects. Keep in 
mind that sometimes we may find that our activities are defined out of order inside 
the XML file. We don't need to worry about this, but it's good to understand how the 
activities are correlated. For this example, I've ordered the XML file so we can easily 
identify the activity sequence.

The first flow object that we found inside our process is <bpmn2:startEvent>. This 
is a very simple tag that represents the start event in our process. Notice that within 
the startEvent tag, we will find a referent to the outgoing sequence flow that will 
be in charge of propagating the execution to the businessRuleTask tag.

The <bpmn2:businessRuleTask> tag represents the interaction with the rule engine. 
As you may notice, inside this tag, there is no reference at all to how this interaction 
will happen or what information needs to be sent to the rule engine to be evaluated. 
As you can see, this tag also allows us to assign a name to this activity, which is 
Assign Story Points in this case.

The next activity in the process is the <bpmn2:userTask> tag, which contains the 
attribute name set to Develop Requirement Code. Until this point, we are only 
saying that there will be a human interaction. However, the process definition 
doesn't include any reference to any role in charge of performing the task or to any 
information that needs to be exchanged in order to complete the activity. We will 
need to include all this information in order to have a fully executable process.

The <bpmn2:task> tag represents the interaction with an external system (external 
from the process engine perspective). In this case, the tasks named Compile Project 
into Maven and Deploy Compiled Project will be in charge of contacting a specific 
service that the development area uses to compile and deploy assets automatically. 
This generic task will identify the specific external system connection by an attribute 
called drools:taskName, which will define a key to register a software component  
to handle the external system communication later on at runtime.

Next, the <bpmn2:endEvent> tag is defined. It represents the end of our  
business process.

Finally, we find all the sequence flows; they join all the activities in a sequence. Note 
that each sequenceFlow element specifies its id, sourceRef, and targetRef values.



Using BPMN 2.0 to Model Business Scenarios

[ 88 ]

So far, we have a very basic XML representation of our activities. Now, it's not just a 
diagram. We have a formalized description of the activities that we have included in 
our process and that can be used by technical people to add all the details needed to 
execute this process.

Once we reach this state, a business analyst can start adding information about data 
that will flow throughout the activities. Technical roles will be in charge of adding 
the information about the external systems that will be contacted.

Version 2 of this process will include an XOR Exclusive Diverging gateway that will 
be in charge of analyzing whether a compilation was successful. If not, a notification 
will be sent to the developer that created the code and an XOR Exclusive Converging 
gateway will create a new User task to develop the required code, as shown in the 
following diagram:

New Requirement

Assign
Story Points

Develop
Requirement

Code

Compile
Project into

Maven

Deploy
Compiled
ProjectCompile OK?+ +

Notify
Developer of

Errors

The following XML snippet from the chapter-03/BPMN2-scenarios/src/main/
resources/sprintManagement-V1.bpmn2 file shows:

<bpmn2:exclusiveGateway id="_8" name="Compile OK?" 
gatewayDirection="Diverging">
  <bpmn2:incoming>_4_8</bpmn2:incoming>
  <bpmn2:outgoing>_8_5</bpmn2:outgoing>
  <bpmn2:outgoing>_8_9</bpmn2:outgoing>
</bpmn2:exclusiveGateway>
<bpmn2:exclusiveGateway id="_7" name="" 
gatewayDirection="Converging">
  <bpmn2:incoming>_9_7</bpmn2:incoming>
  <bpmn2:incoming>_2_7</bpmn2:incoming>
  <bpmn2:outgoing>_7_3</bpmn2:outgoing>
</bpmn2:exclusiveGateway>

As you can see, two outgoing sequence flows are referenced from the diverging  
flow object, and two incoming sequence flows are referenced from the converging 
flow object.



Chapter 3

[ 89 ]

Version 3 of the process includes an intermediate signal catch event definition, 
which is used to wait for an external notification. This notification will be generated 
if the requirement development is cancelled. It also has two error boundary event 
definitions that will be used when compilation or deployment throws an error.  
All these components are shown in the following diagram:

The intermediate signal catch event is represented by the following XML snippet:

  <bpmn2:intermediateCatchEvent id="_D" name="Cancel  
    Req.">
    <bpmn2:outgoing>_D_E</bpmn2:outgoing>
    <bpmn2:signalEventDefinition id="_D1"  
      signalRef="reqCancelled"/>
  </bpmn2:intermediateCatchEvent>

As you can see, this event flow object doesn't have any information about the  
event type; it just has a reference name for the signal name. It doesn't have the 
information that this event will contain (and that needs to be propagated to the 
process context) either.

One of the error boundary events is represented by the following XML snippet:

  <bpmn2:boundaryEvent id="_A" name="" attachedToRef="_4">
    <bpmn2:outgoing>_A_C</bpmn2:outgoing>
    <bpmn2:errorEventDefinition id="_A1" 
    errorRef="java.lang.RuntimeException"/>
  </bpmn2:boundaryEvent>

As you can see, this event is attached to another component (in this case, the compile 
task) to receive events from it. It holds a reference to the error type that will be 
handled through this particular connection.



Using BPMN 2.0 to Model Business Scenarios

[ 90 ]

Adding simple process data
In this section, we will add more information to our process diagram so that we  
are able to execute it. We will need to specify the information that will be required  
by the process to start, the information that will be required and generated by the 
human interactions, and the information that will be sent to the external services  
that will be used by the process.

We will use the first and simplest version of the process to easily understand how we 
can technically define the information exchange that will be required to accomplish 
the process' business goal.

This information will be provided to the start event and will represent the information 
sent by the product managers to the system. Because this information needs to be 
stored inside our process, we will define what we call process variables. These process 
variables (or process properties) are defined within the <bpmn2:process> tag,  
but outside any other task, as it is shown in the following code:

<bpmn2:property id="project" 
itemSubjectRef="_projectItem"/>
<bpmn2:property id="reqDescription"
 itemSubjectRef="_reqDescriptionItem"/>
<bpmn2:property id="storyPoints" 
itemSubjectRef="_storyPointsItem"/>
<bpmn2:property id="developerId" 
itemSubjectRef="_developerIdItem"/>
<bpmn2:property id="compiled" 
itemSubjectRef="_compiledItem"/>
<bpmn2:property id="deployed" 
itemSubjectRef="_deployedItem"/>

These process variables (called project, reqDescription, storyPoints, 
developerId, compiled, and deployed) represent the information that will be 
carried out by the process activities. We need to define all the information that 
we want to handle at the process level. These properties will not have any visual 
representation in our diagram, but we can usually define them in our modeling  
tool within the Properties panel.

Note that a process variable is composed of an id and an itemSubjectRef 
reference. The id parameter represents the name of the variable. We will use the 
value of id to reference the process variable in different activities in our process. 
The itemSubjectRef parameter is used to reference a type of information that was 
externally defined. Since BPMN2 is language-independent, we cannot make direct 
references to Java types.



Chapter 3

[ 91 ]

For this reason, we use the following item definitions:

<bpmn2:itemDefinition id="_projectItem" 
structureRef="String"/>
<bpmn2:itemDefinition id="_reqDescriptionItem" 
structureRef="String"/>
<bpmn2:itemDefinition id="_storyPointsItem" 
structureRef="Integer"/>
<bpmn2:itemDefinition id="_developerIdItem" 
structureRef="String"/>
<bpmn2:itemDefinition id="_compiledItem" 
structureRef="Boolean"/>
<bpmn2:itemDefinition id="_deployedItem" 
structureRef="Boolean"/>

These item definition tags can be understood as type imports in Java. We are defining 
a name for all the items of type String, Boolean, or Integer in this case. We are using 
basic types for our first executable version, but these item definitions can be of any 
type as long as you provide a full class name.

With these two steps, defining the itemDefinition parameters and our process 
variables, we have defined placeholders for information. Now when we start our 
process, we can fill some of these buckets that will be accessible for all the activities 
inside our process. Let's analyze what exactly we have defined. The process will 
maintain the following information:

• The project name
• The requirement description
• The story points (integer value)
• The developer ID
• Requirement compiled (true/false)
• Requirement deployed (true/false)

Some of these variables will be filled when the process starts. The project name  
and the requirement description will be provided when a new instance of the  
process needs to be created. The rest of the activities in the process will generate  
all the other information.

After the execution of the first activity in our process, the rule engine will fill the 
process variable called story points. We will see how this happens later on.



Using BPMN 2.0 to Model Business Scenarios

[ 92 ]

The userTask instance in our process, called Develop Requirement Code, will 
require us to map information from the process scope to the userTask scope. We will 
be narrowing down the process information to just the information required by this 
task to work. This userTask instance will be in charge of creating the required code.

For this simple example, and to get the first version of this process working, we 
will execute the data assignments inside the userTask object. To see the complete 
mapping, open the process definition called sprintManagement-V1.bpmn2 and look 
for userTask. It can be found in the chapter-03/BPMN2-scenarios/src/main/
resources folder of the code section. The code is as follows:

<bpmn2:userTask id="_5" name="Develop Requirement Code">
  ... 
</bpmn2:userTask>

To understand—without all the visual clutter—what is going on inside the variable 
mappings, let's analyze the following XML structure:

<bpmn2:userTask id="_3" name="Develop Requirement Code">
  <bpmn2:incoming>_2_3</bpmn2:incoming>
  <bpmn2:outgoing>_3_4</bpmn2:outgoing>
  <bpmn2:ioSpecification id="_3a">
    <bpmn2:dataInput id="_3_requirementInput" name="requirement"/>
    <bpmn2:dataInput id="_3_complexityInput" name="complexity"/>
    <bpmn2:dataOutput id="_3_ActorIdOutput" name="ActorId"/>
    <bpmn2:inputSet id="_3b">
      <bpmn2:dataInputRefs>
        _3_requirementInput
      </bpmn2:dataInputRefs>
      <bpmn2:dataInputRefs>
        _3_complexityInput
      </bpmn2:dataInputRefs>
    </bpmn2:inputSet>
    <bpmn2:outputSet id="_3c">
      <bpmn2:dataOutputRefs>
        _3_ActorIdOutput
      </bpmn2:dataOutputRefs>
    </bpmn2:outputSet>
  </bpmn2:ioSpecification>
  <bpmn2:dataInputAssociation id="_3d">
    <bpmn2:sourceRef>reqDescription</bpmn2:sourceRef>
    <bpmn2:targetRef>_3_requirementInput</bpmn2:targetRef>
  </bpmn2:dataInputAssociation>
  <bpmn2:dataInputAssociation id="_3e">



Chapter 3

[ 93 ]

    <bpmn2:sourceRef>storyPoints</bpmn2:sourceRef>
    <bpmn2:targetRef>_3_complexityInput</bpmn2:targetRef>
  </bpmn2:dataInputAssociation>
  <bpmn2:dataOutputAssociation id="_3f">
    <bpmn2:sourceRef>_3_ActorIdOutput</bpmn2:sourceRef>
    <bpmn2:targetRef>developerId</bpmn2:targetRef>
  </bpmn2:dataOutputAssociation>
</bpmn2:userTask>

Inside the <bpmn2:ioSpecification> tag, we will define the information that will 
be injected and generated inside our flow object. Using the bpmn2:dataInput and 
bpmn2:dataOutput tags, we define the variables that will be available in the activity 
context. From a business perspective, we can say that the bpmn2:ioSpecification 
tag represents the information that will be required to execute the interaction. If we 
are talking about a User task, this information will be probably displayed to the user 
so that he or she can work with it. If it is an external system, it will probably be used 
as parameters to invoke them.

The bpmn2:inputSet and bpmn2:outputSet tags represent the list of variables that 
will be expected inside the activity context. This looks redundant, but don't worry: 
most of the time, all of this XML code will be generated automatically by the tooling. 
We, as developers, just need to know its structure.

The bpmn2:dataInputAssociation and bpmn2:dataOutputAssociation tags 
are where the magic happens. In this section, we will map the information from 
our process scope to the activity internal variables and vice versa. In this case, the 
bpmn2:dataInputAssociation tag is copying the information from the process 
variable called reqDescription to the task input called _3_requirementInput. 
Note that the information will be copied and not moved. Inside the flow object, 
we will be able to modify this information without affecting the process scope 
information. If we want to modify or add more information to our process scope 
variables, we need to create a bpmn2:dataOutputAssociation tag that will be in 
charge of copying information from inside the activity scope to the process scope. 
In this case, we are copying the content of the _3_ActorIdOutput variable in the 
activity scope to a variable called developerId in the process scope. This action  
will override the value of the developerId variable with the content generated 
inside the activity object.

When we want to map information for an abstract task (or any other task type), 
we use the same XML structures and rules. You can take a look at the complete 
process and how all the variables are mapped by looking at the file called 
sprintManagement-V1.bpmn2.



Using BPMN 2.0 to Model Business Scenarios

[ 94 ]

The following diagram shows where the data is generated or moved:

project
reqDescription

New Requirement

Assign
Story Points

Code
Requirement

Compile
Project to

Maven

Deploy
Compiled
Project

storyPoints developerId compiled deployed

The data inputs are omitted in all the activities and only the necessary information is 
copied for each task. At this point, don't worry if you feel a little bit confused by all 
the XML elements we have to use in order to define a business process. Most of the 
times, these processes are designed using a visual tool. We will cover one of these 
tools in Chapter 5, Creating a Process Project in the KIE Workbench, and it will introduce 
a step-by-step tutorial on how we can model this process (all three different versions) 
in it.

Summary
In this chapter, we learned the basic flow objects that we can use to model our 
process diagrams. We have also covered an introduction on how to add the initial 
technical details required to define information needed by our process definition's 
data interchange. This interchange is a requirement of every business situation,  
and hopefully this introduction has given you an insight on how BPMN2 covers  
the many necessities that BPM systems have.

The next two chapters will introduce the tooling provided by jBPM6 to model and 
execute our business processes. Knowing the tooling that the project provides will 
not only help us to get a complete overview of how we can implement the BPM 
discipline, but also provide you with many ideas for applying them to your own 
business domains.



Understanding  
the KIE Workbench

By now, you hopefully have a clear understanding of the BPM system structure,  
the language that we will use to define our business processes, and we already  
had a sneak preview of the jBPM6 project APIs and how BPMN 2.0 is used to 
describe processes.

Now, it is time to take a look at the tooling provided by the jBPM6 project.  
The jBPM6 tooling projects contain both a platform to integrate multiple forms of 
knowledge (information), as well as functionality to extend and run said commands. 
This knowledge can be in the form of processes, rules, decision tables, and so  
on. Because of that, it has been encapsulated under the concept of Knowledge  
Is Everything (KIE) and exposed in a workbench-like web interface called the  
KIE Workbench.

A workbench, in this context, means a piece of software that allows both file 
management and application functionalities. In this sense, the KIE Workbench 
provides knowledge asset file management (to design processes, data models, and 
other knowledge components) and process and rule runtimes. It also allows us to 
configure external communications (a topic we will cover in detail in Chapter 10, 
Integrating KIE Workbench with External Systems). In this chapter, we will study the 
tools provided by this workbench and their relationship with jBPM6.

This chapter starts by describing the tools provided by the workbench and describes 
how to implement your own domain-specific tooling from scratch, keeping in mind 
the important concepts to have on a full workbench. After we understand the tooling 
components, we will discuss how to extend the already provided workbench to add 
our own extra components.



Understanding the KIE Workbench

[ 96 ]

In this chapter, we will cover the following topics:

• How to set up the environment to start working with jBPM6
• The workbench description and how to start working with processes in it
• The workbench internal architecture

What you need to start a jBPM6 
environment
Before we start with the descriptions of each specific component, I would like to 
mention that in order to install and use the workbench, we need to have the basic 
knowledge of how to work with Java and Maven. The installation procedure is very 
simple, but we need to have a set of tools previously installed in our environment to 
be able to install and run the KIE workbench. The prerequisites are the following:

• JDK 6 or higher, which can be found at http://www.oracle.com/
technetwork/java/javase/downloads/index.html

• Apache Ant 1.9.x, which can be found at http://ant.apache.org/
bindownload.cgi

• Apache Maven 3.1.x, which can be found at http://maven.apache.org/
download.cgi

• <JAVA_HOME>/bin, <M2_HOME>/bin, and <ANT_HOME>/bin added to the PATH 
system variable

Once we have these tools installed and ready to be used, we can run the KIE 
Workbench installer that you can find in the code section under the name  
kie-wb-installer. This section will cover the following topics:

• Installing the KIE Workbench
• What you will need to create the jBPM6 business processes
• What you will need to run the jBPM6 business processes

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://ant.apache.org/bindownload.cgi
http://ant.apache.org/bindownload.cgi
http://maven.apache.org/download.cgi
http://maven.apache.org/download.cgi


Chapter 4

[ 97 ]

Running the KIE Workbench installer
KIE Workbench installation is quite simple. All components are part of a single WAR 
file, with very few customized configurations needed outside of it. The required 
steps are as follows:

1. Download the WAR file of the workbench and an application server.
2. Install the application server and place the WAR file in the  

standalone/deployments folder.
3. Add users to the application server configuration.

So we created a special Maven project to do those steps for us, by just invoking mvn 
clean install from the chapter-04/kie-wb-installer folder of the code section 
of this book. You can also run the server using the same command line by typing mvn 
exec:exec once the installation is done.

If you prefer to download it and install it manually, all you have to do is look for 
the WAR file published in http://repository.jboss.org/nexus under the org.
kie:kie-wb-distribution-wars:6.1.0.Beta3:jboss-as7 release ID and add it 
to a JBoss Application Server 7.1 installation. You can download JBoss Application 
Server from www.jboss.org. After you have installed the JBoss Application Server 
following the instructions on the site, all you have to do is put the WAR file in the 
standalone/deployments folder, change its name to kie-wb.war, and start the 
server with the following command:

bin/standalone.sh --server-config=standalone-full.xml

One good thing about this installer is that it will need all the prerequisites we listed 
in the previous section. So, it is also a test that all prerequisites are properly installed.

http://repository.jboss.org/nexus
www.jboss.org


Understanding the KIE Workbench

[ 98 ]

Installation could take a while to finish (it will download approximately 500 MB 
from the JBoss Maven repository), but once it is finished and the application  
server is running, you will be able to access the workbench from the URL  
http://localhost:8080/kie-wb, and log in typing the user mariano and  
password mypass. This username and password can be changed by using the  
bin/add-user.sh command from the JBoss Application Server and creating a  
user with an admin role for the Application realm. Once logged in, you will  
see the following page:

Notice the top navigation bar (the one in black). We will be using it to access  
all the functionality of the KIE Workbench. We have different functions to manage 
process-related project authoring and deployment tasks, process runtime, tasks 
assigned to a user, and even dashboards about the execution of our environment.  
We will be explaining the ones more related to running the process in the next  
few sections.



Chapter 4

[ 99 ]

What you will need to create the jBPM6 
business processes
One set of tools that we will need is the one related to creating new processes  
that we can execute later on. To do so, we need a new set of high-level tools (editors, 
validation tools, and different types of connectors) as well as low-level functionality 
(such as filesystem management and publication services for the runtime to grab 
finished components). The tools most related to process generation are as follows:

• Workbench utilities: In order to define special configurations that our 
business processes will need to be executed in the way we want, we need 
special utilities that will allow us to define the execution configuration that 
the runtime will have to use, such as external connectors for invoking other 
systems, special listeners to expose information about our processes to 
monitoring tools, and strategies to define the isolation level of processes.  
All these components will be discussed throughout this book as we get to 
each specific component.

• A process designer: This is the tool you will use to create executable 
processes. It could go from a simple notepad application to directly write 
XML-based BPMN files, and even to a full visual diagram tool to visually edit 
all the contents of your process. Luckily for us, the jBPM6 process designer is  
closer to the latter option.

• Knowledge asset editors: In order to create all of the process runtime 
elements that define our domain, most of the time, business processes alone 
won't be enough to define all the runtime. We will need data modelers to 
generate the data components that will be used by the processes, rule editors 
for complex decisions, or work item definitions to extend the possible types 
of tasks that a process could use.

Workbench utilities
The KIE Workbench provides a series of utilities that allow us to create a detached 
communication between the process definition and the process execution. In order to 
do so, it provides a very specific structure that will look quite familiar to developers. 
Let's first explore how the process definitions (and other types of knowledge assets) 
are grouped in the KIE Workbench.



Understanding the KIE Workbench

[ 100 ]

The Workbench groups process in Maven-based projects. Each Maven project is 
an individual, self-sufficient unit containing information about the know-how to 
compile, deploy, run, and test itself and can declare dependencies to other modules 
in their pom.xml file. Each project is part of a repository, and each repository belongs 
to an organizational unit. The end picture for this structure looks something like 
what is shown in the following diagram:

The configurations we will be most interested in tweaking when using the KIE 
Workbench to define our projects are the ones directly associated with our project. 
To edit those properties, we must go to the perspective available by clicking on the 
navigation bar option Authoring | Project Authoring. There, we can create a new 
project (clicking on Project) in a particular repository by selecting the option from 
the second menu bar, the one under the black menu bar, called New Item. A project 
creation wizard will guide us in configuring a Maven release ID for the project. Have 
a look at the following screenshot:



Chapter 4

[ 101 ]

Once the Finish button is clicked on, we're directed to the project editor, where we 
can configure dependencies, KIE Bases, KIE Sessions, and all the project-relevant 
components. The project editor groups all responsibilities to define dependencies, for 
project runtime configurations, and to allow the user to build and deploy the project 
in a Maven repository.

The same options are available when selecting an already existing project by clicking 
on the Tools | Project Editor option that appears under the navigation bar in the 
Project Authoring perspective, as shown in the following screenshot:

In the preceding screenshot, we can see that we have different types of settings for 
our project. We are mostly interested in the Knowledge bases and sessions item of 
the settings list box, because it will allow us to configure where and how the business 
processes that we will define will end up exposed to the runtime.

Each Maven project that we define in the KIE Workbench encloses a particular 
configuration for one or more types of runtime. Each runtime definition will have its 
own KIE Bases, KIE Sessions, and special configurations for each one to work in the 
way we expect them.

Keep track of how to get to the knowledge settings of our project for now, because 
we will use it later. But first, before we configure how to expose our process 
definitions, we need first to learn how to define them. To do so, let's take a look  
at the jBPM6 Process Designer.



Understanding the KIE Workbench

[ 102 ]

Process designer
The process designer is started whenever we choose to create a business process 
(by selecting the New Item | Business Process option in the project authoring 
perspective), or open one that we previously created from the Project Explorer view 
(the one on the left-hand side of the Project Authoring perspective). It should be a 
tool flexible enough to allow users to create their own specific types of extensions to 
the BPMN2 standard, but strict enough to allow the generated process definition to 
still comply with the standard. That way, the generated process will be able to run 
the process runtime with jBPM6 the way the user wants, and at the same time, it will 
be able to run in any other type of process runtime that is compliant with BPMN2.

To achieve this level of flexibility, enough configurations should be allowed so that 
every implementation parameterization can be added to the business processes being 
defined. In order to keep the structure of the process in a tidy but efficient way, the 
process designer provides an attribute panel to define specific parameters for all the 
components in the diagram, from a specific sequence flow to the process itself.

In the following screenshot, we see a brief glimpse of the process designer UI present 
in the Workbench:



Chapter 4

[ 103 ]

In the preceding screenshot, we can see a few of the characteristics available for the 
designer. We can see the diagram definition, the properties of a selected node (the 
terminate event) in the panel to the right-hand side corner of the editor, and we can 
see that we can change the type of the selected node as well. At the top of the editor, 
we can see a series of icons with many different functions: save, cut, copy, paste, 
delete, undo, redo, and a few others that we will cover in more detail in the next few 
chapters. This section is called the action bar of the process designer. We can also see 
other sections, such as the Metadata tab, at the bottom, where we can put specific 
information about our knowledge asset, such as version history and item description. 
Also, the canvas has tabulation at the top, dividing the Process Modelling view from 
another called Simulation Results, which will be explained in detail in Chapter 5, 
Creating a Process Project in the KIE Workbench.

There are more attributes to the process designer that, at this moment, are going to 
distract us from getting a full perspective of the Workbench, which is why we will 
leave the full induction to the designer for Chapter 5, Creating a Process Project in the 
KIE Workbench.

Other knowledge asset editors
In order to be able to create executable processes, we will end up needing more than 
just the process definitions. Process definitions will be dependent, at least in runtime, 
of a specific data model, handlers for specific tasks, and even rules to make complex 
decisions at particular points. In order to be able to run such complex processes we 
will need a way to define all these components along with the business processes. 
The KIE Workbench provides us with many different editors that cover all  
these necessities.

All types of knowledge definitions that we will need to create will be accessible later 
on from the Project Explorer view on the right-hand side of the project authoring 
perspective, and can be created from the display view after clicking on the New 
Item option. Each type of knowledge asset has a different structure, and due to size 
restrictions in the book, we won't be able to explain every single one. However,  
we will cover the ones most related to process definitions and runtimes.



Understanding the KIE Workbench

[ 104 ]

The first things that a growing process definition will need are work item 
definitions. Work item definitions are specific mappings added to abstract tasks 
in BPMN2 in order to determine some form of special behavior that a given task 
should have. They have predefined inputs and outputs that suggest a way of 
communicating with the task, a given name to map it to a specific implementation, 
and (for the purpose of diagramming) they have a display name and an (optional) 
icon. In the KIE Workbench, work item definitions are written in a special scripting 
language called MVEL (http://mvel.codehaus.org), and the given editor  
provides a few helper buttons to create the needed script faster, as shown in  
the following screenshot:

But work item definitions are just the beginning of the needed components. Also, 
depending on the type of tasks we use from the BPMN2 standard, we might need 
to create rules for Business Rule tasks, or classes to be used for data objects. The KIE 
Workbench provides a way to define both types of assets, through the different rule 
editors and the data modeler, as shown in the following screenshot:

http://mvel.codehaus.org


Chapter 4

[ 105 ]

In the preceding screenshot, we see a business rule opened from the Guided  
Rule Editor window, which allows us to define a rule in natural language.  
It will be based on a Java-based model, created with the data modeler shown  
in the following screenshot:



Understanding the KIE Workbench

[ 106 ]

Finally, we need a way to define all configurations to the runtime that will be specific 
for a particular process definition or group of process definitions. Now that we 
have seen how to define processes, we can go back to the project editor and see the 
configuration behind the Knowledge bases and sessions option, as shown in the 
following screenshot:

In the view shown in the preceding screenshot, we can define different KIE bases  
for our project. We can make one of them the default one and decide which packages 
to include inside them. The packages will represent the different folders that we 
create in our project and where we might add processes, work item definitions,  
rules, or anything else. In this way, we can have multiple KIE bases in one project 
with different process definitions working inside each one.

Each KIE base will have a series of KIE sessions associated, and we will be able to 
configure them to work in multiple ways. We will see the different configurations 
for KIE sessions when we see the interaction of processes and other knowledge 
definition types in Chapter 9, Integration with Other Knowledge Definitions.



Chapter 4

[ 107 ]

This is the point where the process definition environment ends and the process 
runtime begins. The next step is to click on the Build & Deploy button in the  
project editor to make the project and all its configurations available for the runtime. 
I understand that you would have preferred to start defining your own processes, 
but don't despair. We will start doing so as soon as we start with Chapter 5, Creating a 
Process Project in the KIE Workbench. For now, we need to concentrate on understanding 
how all components are interconnected.

Process defining components only need to worry about the process until it is 
deployed in a Maven repository. Later on, each process runtime should be concerned 
with having the corresponding version of a Maven dependency running inside.

What you will need to run the jBPM6 business 
processes
Now, that we have the workbench running, we need to understand how its 
execution components are used. There are many components inside the runtime 
part of the workbench, ranging from dashboard indicators to asynchronous task 
management tools, but the ones we will focus on (and about which we will be going 
into the most detail) are the ones needed to get process executions running. In order 
for process instances to be able to interact with people, the workbench needs the 
following tools:

• User configuration: This tool is used to define roles and authentication  
(to which you can add users with the JBoss command line add-user.sh  
or add-user.bat)

• Process Runtime: This tool is used to execute processes
• Process UI: This tool is used to interact with the executions
• Human Task List: This tool is used to see assigned and potential  

human tasks
• Human Task Forms: This tool is used to perform said human tasks

Process runtime
The process runtime is the internal configuration that the workbench must provide 
to create and execute process instances. In order to do so, it must provide external 
system connectors to connect to other systems and human tasks. This configuration 
should be something that can be easily extended over time.



Understanding the KIE Workbench

[ 108 ]

The KIE Workbench provides this extension capacity through the project authoring 
perspective, which allows us to manage all our knowledge through KIE modules. 
Once we have all the business processes and other knowledge assets we need in our 
project, we can open the Tools | Project Editor option from the second navigation 
bar in the project authoring perspective. This would open the editor shown in the 
following screenshot:

In the preceding screenshot, we selected the Evaluation project in the Project 
Explorer view, by clicking first on the jbpm-playground repository and then in the 
Evaluation project. Once in the project editor (which will open once you select the 
Evaluation project), we click on the Build & Deploy button to actually compile the 
project content and publish it on an internal Maven repository.

Once a project is deployed, it becomes a component in the engine that feeds 
process definitions that can be executed to our environment. We call this engine 
configuration the process runtime. In a sense, the process runtime is just a 
preconfigured environment for jBPM6 to execute processes already connected  
to all external systems and humans.



Chapter 4

[ 109 ]

A process runtime should be configurable, that is, we should be able to include all 
the different configurations to make sure the environment is going to run the process 
definitions in the way we want. To do so, we can edit the kmodule.xml file of the 
projects we are creating. To do so, we need to select the Project Settings: Project 
General Settings to see a drop-down menu and select Knowledge Base Settings 
inside the Project Editor tool. The following screenshot shows the Knowledge Base 
Settings editor:

The process runtime can be configured in this editor to have special external 
connectors and can be later on exposed to many other servers using the runtime 
engine and runtime manager interfaces, which are discussed in detail in Chapter 7, 
Defining Your Environment with the Runtime Manager.

Process UI
Having the process runtime allows our processes to be able to execute in the backend 
of our workbench. In order to interact with said workbench directly, we need a 
special UI to access all the methods involved in process execution. For that, the  
KIE Workbench provides a few entries in the Process Management navigation  
bar option. We'll discuss each one of them.



Understanding the KIE Workbench

[ 110 ]

Only when we have successfully deployed a KIE module, can we see its process 
definitions in the Process Definitions List perspective (found inside the Process 
Management navigation bar option). In the following case, we see the process 
definitions available in the demo/jbpm-playground-Evaluation project.  
The following screenshot shows the Process Definitions perspective in the  
KIE Workbench:

In the list shown in the preceding screenshot, we can see an icon (the magnifying 
glass icon) to see the process details (its human tasks, the users and the roles 
assigned to them, the process ID, and so on) and another icon (the play button 
icon) to start the process (which will provide a previously defined form to fill the 
data necessary to begin the process). When we press the play icon, it will show 
us the following form to start a process instance of the Evaluation process. After 
completing the form and pressing the large play button, we will have created a new 
process instance as shown in the following screenshot:



Chapter 4

[ 111 ]

This interface allows us to see the different process definitions available to start 
them, but we still need an interface to see the currently running process instances 
and its internal state. For that, there is another option in the Process Management 
navigation bar option, called Process Instances. In the following screenshot, we can 
see the task initiated by completing the form in the preceding screenshot:

The UI allows us to filter process instances by their state, see their details, send 
signals to them, or abort them. But this is mostly an administrative topic to handle 
process systems. End users would mostly interact with the tasks assigned to them,  
or their roles. To do so, the workbench needs a way to show:

• A collection of all the different human tasks with which a user can interact
• A particular form to interact with each one of the said human tasks

For that purpose, the workbench provides us with task lists and task form interfaces.

Task lists
It is important that all asynchronous tasks (that the process runtime is waiting to be 
completed) have a way to be managed from external tools. The case of human tasks 
is special, because they won't be handled by an automatic external system, but by 
people who need a UI to interact with said tasks. For that purpose, the workbench 
provides a way to see tasks that are either owned by the current user or could be 
assigned to the current user in the form of lists. On this view, we can perform a series 
of different actions on each task: claim them, release them, and start them, which are 
all explained in detail in Chapter 6, Human Interactions. Task lists can be generic, but 
for some special cases, we might want to make them more specific to show special 
data of certain types of tasks. 



Understanding the KIE Workbench

[ 112 ]

In the following screenshot, which can be accessed using the main toolbar  
option Tasks | Tasks List, we will find several views for task lists dedicated  
to personal tasks:

To see tasks assigned to your user, created from the Evaluation 
process definition, you will need to complete the Employee field of 
the start process form with your user ID. Otherwise, the task will be 
assigned to some other user that you will have to log in with in order 
to see the Self Evaluation task assigned to him or her.

And when we click on the play button in one of those tasks, we go ahead to the next 
important UI point for human tasks, the Task Forms option.

Task forms
Task forms can be generic, based on task input and output information (elements 
described in Chapter 3, Using BPMN 2.0 to Model Business Scenarios), but should be 
dependent on each specific task to provide the most interaction help to the end user, 
because sometimes input/output information is not enough to infer the expected 
user interaction. Once a task is started, we can click on it to see its details, and we 
can have access in the workbench to the specific task form by clicking on the Work 
button. Have a look at the following screenshot:



Chapter 4

[ 113 ]

From the view shown in the preceding screenshot, we can save the progress of the 
task, release it to the group, and complete it. Some generic abilities enabled for all 
tasks involve attaching documents and adding comments. Both are provided in 
the task details as well at a click on the Attachments or Comments buttons. At this 
point, if you go back to the Process Instances view, you will see that the process 
instance is in another stage because you completed the specific task.

Using these components, we will have enough user interfaces to work with any 
process we might encounter. We will use this chapter as a guide to start creating  
the managing processes in Chapter 5, Creating a Process Project in the KIE Workbench.

All these components are bonded together in the KIE Workbench thanks to a 
particular framework called UberFire that allows us to have a configurable and 
extensible workbench environment. We will dedicate Appendix, The UberFire 
Framework, to discussing its structure and use, which will become useful if you 
wish to extend the jBPM6 provided tooling for your own personal customization. 
This is an advanced topic, but will give you a full control over how to use the KIE 
Workbench to fit it best to your company.



Understanding the KIE Workbench

[ 114 ]

Summary
The KIE Workbench provides a wide variety of functionalities, from process 
definition to process execution and any other functionality you can find useful 
related to the BPM discipline. It also allows a very simple way to extend itself,  
in order to add even more functionality to it. There is so much to show for it that 
we had to skip the least relevant topics. Still, we hope you learned how to use and 
configure the KIE Workbench to get the most out of it.

We went out of topic from jBPM6 a bit, but the added value these applications and 
their extension points provide to the BPM discipline is so large that I hope you find 
the detour worth your while.

In the next chapter, we will learn how to write our own business processes using the 
KIE Workbench process designer.



Creating a Process Project in 
the KIE Workbench

Even if jBPM6 uses BPMN 2.0, an XML-based standard, to define its processes, it's 
just not practical to write such files with a simple text editor. We need a way to 
define our process in a user-friendly environment that will aid both technical and 
non-technical people who know about the specifics of the steps involved in a process 
to define a process definition.

The BPMN 2.0 specification not only defines the behavior syntax for our processes, 
but also the look and feel for the process diagrams as well. This chapter will  
show you a step-by-step approach to learn how to use the jBPM6 Web Process 
Designer that lives inside the KIE Workbench to define BPMN 2.0 files using a 
diagram-writing UI. In this chapter, we will learn:

• To define our processes
• To test our processes with simulations
• To extend the BPMN 2.0 model to add our own types of tasks

An IDE to our knowledge
The main purpose of BPMN 2.0 is to provide business process representations  
that can be understood without the need for technical skills. Its concepts are 
not technical at all. There are abstract representations for when tasks need to be 
performed, decisions should be taken, and information needs to flow from one  
point to another—not tied to any technical implementation at the business  
process definition level.



Creating a Process Project in the KIE Workbench

[ 116 ]

The implementation, however, handles specific technical concepts that allow  
BPMN 2.0 to define connections to specific components in order to make it run on 
defined runtimes. These connections have several complex parts intrinsic to a technical 
implementation that require a deep understanding of IT. BPMN 2.0 needs to provide 
a way to work with these two perspectives, and this is why jBPM6 adds specific 
extensions provided by the tooling to configure all the specific components needed  
to define and run our process inside the jBPM6 runtime.

In this way, we can say that the graphical representation of the diagram is a business 
perspective of the process designer, while the specifics of configuring its properties 
and validating the process rely on a more technical profile.

A variety of process designers
When we start using jBPM6, one of the most confusing things is the fact that we have 
three different process designers to choose from. For those who are new to jBPM6 or 
who have used previous versions of it, it can be very confusing. Let's take a look at 
all the available options.

The BPMN 2.0 Eclipse editor
This is a graphical modeling tool for the creation and editing of processes in BPMN 
2.0 (shown in the following screenshot), distributed as a plugin in the Eclipse IDE. 
If you wish to edit your BPMN 2.0 files from your own IDE, it is perhaps the best 
alternative to do so. Have a look at the following screenshot:



Chapter 5

[ 117 ]

It has extended support for the BPMN 2.0 specification and for some jBPM6-specific 
characteristics. However, it is not fully integrated to jBPM6 runtime configurations, 
so some of the components that we might create with this editor might not be 
supported by the runtime afterwards. It is recommended to be used as a portable 
tool for IDEs to see process definitions exported from other designers (something we 
will see in more detail later in this chapter), but not for creating them from scratch.

The Web Process Designer
The jBPM6 Web Process Designer is an adaptation and almost complete reconstruction 
of an open source web editor capable of creating a full BPMN 2.0 diagram called Oryx. 
This project has been adapted, reconfigured, extended, and adapted again to the new 
web-based workbench applications provided for jBPM6 distribution into a completely 
new tool, and is now called the jBPM6 Web Process Designer. It is embedded in the 
workbench structures of UberFire and works as another editor for projects in the KIE 
Workbench, as shown in the following screenshot:

Today, the Web Process Designer is the official process editor that comes with the 
KIE Workbench. This designer is heavily maintained at the moment, with new 
features and bug fixes being implemented on a regular basis to keep track with 
all the jBPM6 changes. Because it is the designing tool most aligned with jBPM6 
features, for the rest of this chapter, we are going to cover the usage of this editor.



Creating a Process Project in the KIE Workbench

[ 118 ]

The jBPM Eclipse plugin
The jBPM Eclipse plugin was the first plugin supplied with the early versions of 
jBPM5. This plugin was a straightforward migration from the already existing  
Drools Flow Eclipse plugin. When Drools Flow was rebranded into jBPM5, the 
decision was to stop supporting the RuleFlow (RF) proprietary language for  
process definitions and embrace the new BPMN 2.0 standard instead. This editor is 
now officially discontinued. No new features have been introduced in it for a long 
time. You can still use this editor to create really simple processes, but its usage is 
strongly discouraged.

Interacting with the Web Process Designer
The KIE Workbench comes with the latest stable version of the Web Process 
Designer. After the JBoss instance is launched (see Chapter 4, Understanding the  
KIE Workbench), we will have to access the process designer by going to the 
Authoring | Project Authoring perspective and interact with an existing  
project to work with its process definitions (and other types of knowledge).

In this section, we are going to explain how to create, modify, and delete processes in 
the KIE Workbench. After these three operations are explained, we will be ready to 
cover the different features provided by the Web Process Designer in detail as well as 
how we can use them to define some of the processes that have already been covered 
in previous chapters of this book.

Creating new processes
In Chapter 4, Understanding the KIE Workbench, we had a glimpse of how to list the 
processes residing in a project folder. We used the playground repositories and 
project already provided by the KIE Workbench by default as a demo. But of course, 
before we can list the processes of a project, we need to create them. If we want to 
create a new process, we need to go to the New Item action toolbar option of the 
Project Authoring perspective and select the Business Process option.

Before the new process is created, we need to provide some information using the 
pop-up window that is opened, shown in the following screenshot. It will provide 
us with a textbox for selecting a name for our process. It is also going to give us a 
Virtual File System (VFS) path for the folder where the process will be created.

The KIE Workbench will store all knowledge assets we create in a VFS, 
which for the current version is implemented in Git repositories.



Chapter 5

[ 119 ]

Please enter the resource name when this screen pops up.

The name we choose for the business process must be unique among all the assets in 
the same folder, as it's going to be used by the KIE Workbench to internally identify 
the process. Once we have selected a suitable name, sprintManagement, for our first 
process definition, we can create the new process by clicking on the Ok button. This 
will create an empty process definition and invoke the Web Process Designer so that 
we can start working.

Implementing our first process
Now that we know how to create and access our processes in the KIE Workbench, 
it's time to create a new process using the Web Process Designer. The process we are 
going to implement is the sprint management process introduced in Chapter 3, Using 
BPMN 2.0 to Model Business Scenarios. We are going to use this process to learn not 
only about its specific implementation, but also to cover the different features present  
in the process editor.

In the previous section, we created the sprintManagement process. The KIE 
Workbench will now display the Web Process Designer tool, and we can start  
using it. But before we start implementing the process, let's do a quick revision  
of the different sections we have in the Web Process Designer as well as its features.



Creating a Process Project in the KIE Workbench

[ 120 ]

The Web Process Designer sections
The Web Process Designer's UI contains four main sections: a toolbar at the top, 
Shape Repository as an accordion panel on the left-hand side, an editing canvas at 
the center, and a Properties panel as an accordion panel on the right-hand side of  
the editor. Let's analyze the main purpose of each one of these sections.

The toolbar
The toolbar is the topmost part of the designer panel; it contains different options 
to allow us quick access to most of the features present in it as well as other useful 
options regarding the layout of the process and its elements. The toolbar also has 
some other important features that we are going to cover in this chapter, such as 
importing process definitions or running simulations. So, feel free to play around 
with what's in the toolbar until you get used to the options that you have and  
where they are.

The Shape Repository panel
The Shape Repository collapsible panel contains the palette of BPMN 2.0 elements 
used to construct business processes. In this palette, you will find all of the BPMN 
2.0 elements (described in Chapter 3, Using BPMN 2.0 to Model Business Scenarios) 
grouped according to their type. Sometimes, having all of the available elements in 
the palette is not the best thing. After you have designed a couple of processes, you 
will notice that most of the time you are using only a subset of these elements. This 
is why in the Shape Repository panel, there are two different library sets: Full and 
Simple. You can switch from one perspective to the other by using the drop-down 
list present at the top of the Shape Repository panel. There is also a third option 
called RuleFlow, used to create files with the legacy description language for process 
definitions in jBPM6, but it is an outdated format that no longer has support in the 
project, so we will skip it in this book.

At the bottom section of the Shape Repository panel, we'll find the Workflow 
Patterns panel with some predefined process flow structures to help you design  
your own processes faster and in a standardized manner.

The editing canvas
The editing canvas is perhaps the most important part of the Web Process Designer. 
It is where we are going to design our processes using the elements present in the 
Shape Repository panel.



Chapter 5

[ 121 ]

When we drag-and-drop an element from the Shape Repository panel into  
the editing canvas, the element is added; we can change its position by simply 
dragging-and-dropping it around the canvas. Each element in the canvas has a  
context menu that we can access by clicking on the element. Using this menu  
(shown in the next screenshot with all the different icons that will appear around  
a task when we click on it), we can do different things such as creating new linked 
elements without using Shape Repository, changing the type of the element,  
accessing the process dictionary, editing its associated task form (if we are in a  
User task), or seeing the portion of BPMN 2.0 generated by the element. Have a  
look at the following screenshot:

By default, the editing canvas comes with a preloaded Start Event, so you could start 
writing a process without the need to access Shape Repository at all. Some elements, 
such as sequence flows, have dockings that you can use to bind those elements to 
some other shape in the editing canvas.

In the upper-left corner of the editing canvas, we can see the process name, version, 
and ID. In the north, south, east, and west areas of the editing canvas, we can  
find little yellow arrows that will only appear when we move the mouse over  
their region. We can use these arrows to increase or decrease the total area of  
the editing canvas.

The Properties panel
When a BPMN 2.0 element is selected in the editing canvas, its properties are 
displayed in the right-hand side collapsible panel of the Web Process Designer.  
This Properties panel is very synced up with the properties supported by jBPM6, 
and to the greatest extent, to the core BPMN 2.0 specification.



Creating a Process Project in the KIE Workbench

[ 122 ]

Not all the elements have the same properties set, which is why the Properties panel 
adapts its content to the element currently selected in the editing canvas. If multiple 
elements are selected in the editing canvas, only the properties that the selected 
elements have in common will be displayed. In that case, changing the value of a 
property will modify the property value in all of the selected elements.

Properties can be of different data types: String, Boolean, complex, and so on. 
Depending on the type of the property being modified, the Properties panel can 
display different editors, such as a text area, a checkbox, a pop-up form, and so on.

Sprint management process design
Now that we have a better understanding of the tool, we can create a definition of 
the sprint management process introduced in Chapter 3, Using BPMN 2.0 to Model 
Business Scenarios. To explain the biggest variety of elements, we will use the third 
version of the process we defined, which is the most complex. Please refer to Chapter 
3, Using BPMN 2.0 to Model Business Scenarios, if you need to refresh any information 
about what the process definition contains. The idea is to know how to create the 
diagram shown in the following figure:

We'll continue working on the sprintManagement process definition. We will 
move the cursor over the predefined start node and select the Task option from its 
contextual menu (which should be the small rectangle with the rounded corners). 
This option will add a new task that is connected to the Start Event node in the 
editing canvas. We can repeat these steps, adding gateways (rhomboids) and 
sequence flows (arrows) when needed, by clicking on the rhomboid and rectangle 
icons on the context menu we previously described and by clicking-and-dragging on 
the arrow icon to create sequence flows connecting existing objects. Finally, we can 
create an End event node by clicking on the circle icon of the context menu with the 
thicker border.



Chapter 5

[ 123 ]

When getting to the point where we need catching events and boundary events, we 
can search for them in Shape Repository by clicking on the left-hand side accordion 
panel, selecting from the different menus available (Tasks, Gateways, Intermediate 
Catch Events, and so on), and dragging-and-dropping a specific element into the 
editing canvas. We can drop the boundary events on the border of each task (you 
will see that the border of the task becomes green to indicate you can drop the 
catching event as a boundary event). Later on, selecting those intermediate events 
will allow us to continue adding components from their respective contextual  
menus of each element in the editing canvas.

Configuring the process properties
We will start our process definition configuration by populating the mandatory 
attributes of the process itself. To do this, we have to click on the background of  
the editing canvas and go to the Properties panel, located at the right-hand side  
of the designer in an accordion panel. Each process definition has the following 
jBPM6-related properties:

Property Description
AdHoc This Boolean property identifies whether this process is ad hoc or not. Ad 

hoc processes are special processes where the internal nodes don't have 
to be connected to each other, and the flow between the nodes is handled 
by an external component (either rules or specific user interactions). In 
our case, we will leave it as it is by default (false).

Executable The BPMN 2.0 specification defines two types of processes—executable 
and nonexecutable. Of course, because the main idea of the process 
designer is to create executable BPMN 2.0 processes, the value of this 
property is true by default.

Globals Using this property, we can define Drools global variables to share 
information amongst processes as well as among global services that  
can be later invoked inside the process.
When we want to edit the value of this property, a drop-down menu 
appears, and when we try to open it, there will be a pop up containing  
an editor for global variables.

ID This property identifies the ID attribute of the generated <process> 
BPMN 2.0 element. The ID of the process must be unique inside a KIE 
base, as it is used at runtime to identify a process definition.

Imports Just as in Java, when we're dealing with a process definition, we need to 
import all the different classes we want to use in our process.

Variable 
Definitions

This property defines the variables available in the process. Variables are 
important for maintaining internal values, sharing information between 
nodes, and getting some kind of result from the process execution.



Creating a Process Project in the KIE Workbench

[ 124 ]

Now that we have a clear idea of the properties a process has, we can see some extra 
details about some of them.

For example, the ID of the process has quite an important role. As it will identify the 
process definition inside a KIE base, we are going to depend on it to start a process 
or to define a Call Activity node (reusable subprocess). In our case, we will set the ID 
for this process as sprintManagement-V1.

Finally, we need to define the process variables required by this definition by editing 
the Variable Definitions property of our process. When we click on the list box 
display of the property value, an editor will show us the dialog box as shown in the 
following screenshot, where we can add, remove, and define the name and type 
of our process variables. In the process we are designing, we need six variables: 
project, reqDescription, and developerId of type String; compiled and 
deployed of type Boolean; and storyPoints of type Integer. The final result  
should be as shown in the following screenshot:

Once we have the process configured, we need to review each of the nodes it has in 
order to configure their properties.



Chapter 5

[ 125 ]

Configuring the event nodes
The Start Event node represents the beginning of the process. From all the different 
Start Event types that we can use, we will use the None Start Event node, because 
in jBPM6, you have to use this type of Start Event when your process is going to be 
explicitly started using its ID, as the following line of code does:

Ksession.startProcess("id.of.the.process");

The properties present in this node relevant to the jBPM6 runtime are as follows:

Property Description
DataOutput This property defines all the output variables of the node. 

Each variable has a type (Java class) and a name.
Specifically, in the case of the None Start Event node, this 
property has no meaning. The property exists for this node 
because it is used by other Start Event subtypes (that is, 
Signal Start Event, where it is used to hold a reference to 
the Signal event and the information it contains).

DataOutputAssociations This is the way we assign data from the different 
DataOutput variables to process variables. The type of 
DataOutput must be assignable to the process variable 
type. This property is present in each node that has a 
DataOutput property.
The editor will have to create DataOutput. Associations 
require a dedicated section, as it is probably the most 
complex property editor in the process designer. We are 
going to learn how to use it later in this chapter.

Given that this None Start Event node doesn't have any properties that affect its 
behavior during execution, we are not going to modify any of them.

After the Start Event node is invoked, a process execution will be started. During the 
process execution, we might capture two other types of events, Signal Intermediate 
Catch events (the circle with a triangle inside it at the bottom of the diagram) and 
Error Boundary events (the two circles with the lightning-like icon, located at the 
border of two of the tasks we defined).



Creating a Process Project in the KIE Workbench

[ 126 ]

Intermediate Signal Event nodes have to wait for an event to arrive in order to 
continue their execution. Events can be broadcast from another process or from 
the Java application. Using them allows us to create more maintainable and robust 
processes. The properties we can configure a Signal Intermediate Catch event are  
as follows:

Property Description
DataOutput Just like the DataOutput property explained for start 

nodes, this property is used to specify the output variables 
in this node. In jBPM6, the only output variable you can 
define is event. This variable will contain the event object.

DataOutputAssociations Just like Start events, we have this property to map the 
output variable of this event to a process variable.

SignalRef This is the key name of the event type that the node is 
waiting for. It is just a string that must be used when you 
want to signal the event.

In our scenario, the event we are going to be waiting for is the manual cancellation 
of the requirement, which is why we need to change the SignalRef property to 
reqCancelled. To do so, we select the event and then click on the Properties panel, 
where we will see the properties of the event selected. In this case, we don't want to 
know anything else from the event, so we are not going to define any DataOutput 
or DataOutputAssociations property in this node. The only other change we are 
going to make to this node is to add a meaningful name to it so that users reviewing 
this process can easily understand what event the node is waiting for. The value we 
are going to set for the Name property is: Req. Cancelled.

The Error Boundary events that we defined for two of our tasks show that we want 
to handle exceptions being thrown inside the execution of said tasks as part of the 
sequence of steps in this process. Just like the Signal events, they have DataOutput 
and DataOutputAssociations to capture the event being sent. In them, you define 
a single variable with any name that you can map to a process variable to keep 
the exception as a variable in subsequent nodes. For our case, we are not going to 
configure those properties.

The one property we are going to configure is the ErrorRef property. In it, you must 
write the fully qualified name of the exception you expect to capture. In jBPM6, it 
must be a single specific type (not a generic super class of the exception, but the 
actual exception), and it must have a fully qualified name even if you added the 
exception type to the Imports property in the process properties. For our case,  
we will type java.lang.RuntimeException in said property.



Chapter 5

[ 127 ]

The last event nodes that we will configure in our process are the End Event nodes, 
which represent the end of the execution path on the process. We can configure 
them for many different purposes, but in our case, we will use only a type that will 
terminate the complete process instance (the Terminating End event), regardless 
of how many pending execution paths may still exist for both execution paths that 
diverge from the first parallel gateway.

Configuring the task nodes
The task nodes in BPMN 2.0 are where concrete actions take place. The steps that are 
required to achieve our process' goal are going to be defined using task nodes.

The BPMN 2.0 specification provides eight task types (Abstract task, Service task, 
Send task, Receive task, User task, Manual task, Business Rule task, and Script task), 
and jBPM6 supports all of them.

We will focus on the valid set of properties that affect each of the different tasks 
supported by jBPM6, but we are not going to cover the detailed behavior of the  
tasks at runtime.

In the Web Process Designer, all of the different types of tasks are implemented by 
just one element in the Shape Repository panel—Task. The TaskType property of 
each node is going to specify its concrete type. An empty value for TaskType (the 
default value in the Web Process Designer) identifies an abstract task.

Each task type has a different set of attributes that we can use to configure it. The 
Web Process Designer will automatically show only the valid attributes for each 
specific task type. The following table explains the valid properties for each type:

Abstract task
Property Description
Name The name for the task that will be shown in the box.
DataInputSet The input variables of the node.
DataOutputSet The output variables of the node.
Assignments The assignments between the process variables and the input and 

output variables of the node.
On Entry 
Actions

A piece of Java code that is invoked before the node gets executed. All 
of the process variables are available in this piece of code. This is an 
extension of BPMN 2.0 provided by jBPM6, and not part of the standard.

On Exit 
Actions

A piece of Java code that is invoked after the node gets executed.  
All of the process variables are available in this piece of code. This  
is an extension of BPMN 2.0 provided by jBPM6, and not part of  
the standard.



Creating a Process Project in the KIE Workbench

[ 128 ]

Abstract tasks are used by jBPM6 as an extension point for plugging in our  
business-related logic. DataInputSet, DataOutputSet, Assignments, On Entry 
Action, and On Exit Action are the properties common to all other types of tasks 
and have the same behavior for all of them. We will omit them in the next tables and 
concentrate exclusively on the extra properties that each task type has:

Business Rule task
Property Description
Ruleflow Group This property is used to specify the group of rules that must be 

executed when the process execution reaches this node.

In jBPM6, the Drools rule engine performs rule execution. These two frameworks, 
jBPM6 and Drools, are so well integrated that the switch from one engine to the other 
is seamless for the user. Actually, the switch has never existed since both engines 
share the same core.

The following table shows the Send task's special properties:

Send task
Property Description
MessageRef The name of the message being sent.

DataInputSet is especially important for the Send task, as it will map the message to 
be sent from the process variable.

The following table shows the Receive task's special properties:

Receive task
Property Description
MessageRef The name of the message for which the node is waiting.

DataOutputSet is especially important for the Receive task, as it will map the 
message received.



Chapter 5

[ 129 ]

The following table shows the Script task's special properties:

Script task
Property Description
Script This property defines the piece of code we want executed when  

the process execution reaches this node. Inside this piece of code,  
we have access to all of the process variables and the special 
variable kcontext.

Script 
Language

This defines the language used in the Script property. This 
language could be Java or MVEL, which is a scripting language  
that runs on top of the JVM.

Business users do not commonly use Script tasks, but they are really helpful for 
technical people. By adding Script tasks to a process, we can easily modify the 
behavior of our processes without modifying any Java class. We can use this type of 
task to add logs, messages, or to perform data transformation tasks in our processes. 
As a rule of thumb, Script tasks shouldn't contain business logic inside them. 
Abstract tasks, Human tasks, and Service tasks are better places to implement this 
kind of logic. Let's start with the Service tasks as shown in the following table:

Service task
Property Description
Service 
Interface

If the jBPM6 predefined handler for this task type is used 
(ServiceTaskHandler), this property should be the fully 
qualified name of the class we want to use as a service; and  
each time this task is executed, a new instance will be created 
through reflection.

Service 
Operation

This property identifies the name of the method we want to invoke 
in the Interface object.

User tasks are the ones that should be performed by humans:

User task
Property Description
Actors A comma-separated list of actor IDs or an expression of the form 

#{<expression>} that evaluates to a string object. In the default 
Human task implementations of jBPM6, this property defines the 
possible owners of a task.

Groups A comma separated list of group IDs or an expression of the form 
#{<expression>} that evaluates to a string object. In the default 
Human task implementations of jBPM6, this property defines the 
actor's groups that can own this task.



Creating a Process Project in the KIE Workbench

[ 130 ]

User task
Property Description
Task Name This is the name of the user task. In the default Human task 

implementations of jBPM6, this property defines the task name  
that should be displayed to the user.

Comment In the default Human task implementations of jBPM6, this property 
defines a comment for the task.

Priority In the default Human task implementations of jBPM6, this property 
defines the priority of the task.

Skippable In the default Human task implementations of jBPM6, this property 
defines whether this task can be skipped or not.

Notifications In the default Human task implementations of jBPM6, this property 
defines a set of time rules for sending specific e-mail notifications to 
other users or groups when a task has not been started or completed 
within a specific amount of time.

Reassignment In the default Human task implementations of jBPM6, this property 
defines a set of time rules for automatically reassigning this task to 
another user or group when a task has not been started or completed 
within a specific amount of time.

The properties of the User task are tightly related to the default Human task 
implementation of jBPM6. This implementation is going to be introduced and 
explained in Chapter 6, Human Interactions.

Manual tasks have the same attributes explained for an Abstract task. The variables 
you can define in the DataInputSet and DataOutputSet properties depend on the 
handlers you register for Send, Receive, User, and Manual tasks. We have discussed 
work item handlers in Chapter 2, BPM Systems' Structure. User tasks will have 
work item handlers defined with the key Human Task, Manual tasks with the key 
Manual Task, Send tasks with the key Send Task, and Receive tasks with the key 
Receive Task—all configurable from the runtime configuration of the different 
WorkItemHandler implementations, which we have seen in Chapter 2, BPM  
Systems' Structure.



Chapter 5

[ 131 ]

Going back to our process, we have six different tasks to define—one Business 
Rule task (assign story points), one User task (develop requirement code), and four 
Abstract tasks (notify developer of errors, notify developer of requirement changes, 
compile project to Maven, and deploy compiled project). Let's now configure this 
process definition to achieve the goal defined in Chapter 3, Using BPMN 2.0 to Model 
Business Scenarios.

For the first task, the first thing we need to do is change its TaskType property to a 
Business rule. A little icon similar to a table will appear in the node. We then need  
to change the Ruleflow Group property. This property defines the group of rules 
to be executed when this node is reached. The value we need for this property is 
assign-story-points. Finally, we will assign "story points" to the Name property.

Regarding the second task, we need to configure it as a User task using its TaskType 
property. A small icon of a person will appear in the node. The Name and Task Name 
properties for this task should be set to "Develop Requirement Code". For the Groups 
property, we will use "developers"; this represents the possible users that could own 
this task (the ones that belong to the developers group).

Now, it's time to configure the input and output variables for this task. As you may 
recall from the original definition in Chapter 3, Using BPMN 2.0 to Model Business 
Scenarios, this task has two input variables: complexity of type Integer and 
requirement of type String. With the DataInputSet property editor, we can  
define these input variables to look like the following screenshot:



Creating a Process Project in the KIE Workbench

[ 132 ]

The GroupId input is automatically generated by the editor when you fill the 
Groups property in the Properties panel for a User task. A similar thing is done 
for the Actors property with the ActorId input and output. We will use this to 
our advantage and define ActorId as a data output to obtain the actual user that 
performed the User task, as shown in the following screenshot:

Once we have defined all of our input and output variables, we need to make 
assignments between the process variables (or fixed values) and the input variables 
of the task as well as assignments between the output variables of the task and 
the process variables. This operation is performed in the editor available for the 
Assignments property of the task. Using this editor, try to create the configuration  
as shown in the next screenshot. You will find the From Object fields and the To 
Object fields that provide you with selectable options. To see all the options needed, 
you will need to complete the Variable Definitions property of the process,  
as we have seen in the Configuring the process properties section. Have a look at  
the following screenshot:



Chapter 5

[ 133 ]

Before we continue, let's explore this editor in greater detail. An assignment is 
composed of three columns: From Object, Assignment Type, and either  
To Object or To Value.

For input assignments—which means the value we want to assign to one of the input 
variables of the task—we have to decide whether we want to assign a fixed value to 
it or if we want to map a process variable to it.

In the case of a fixed value, in the From Object column, we have to select the input 
variable that we want to assign from the drop-down list that contains all of the data 
input and output variables and process variables. The Assignment Type value 
required to assign a fixed value to a variable is is equal to. The third part of the 
assignment when we are assigning fixed values to an input variable is defined in the 
To Value column, where we have to enter the value we want to assign to the input 
variable. If what we want to do is map an existing process variable into one of the 
input variables of the task, we need to select the process variable first in the From 
Object column. Then, we have to select is mapped to for the next column, and 
finally, we have to select the task's input variable that we want to be assigned in  
the To Object column.

For output assignments, in the From Object column, we have to select the  
output variable we want as the source of the assignation. In the Assignment Type 
column, is mapped to is the only valid value, as we can't map an output variable  
to a fixed value. Because we can't use is equal to as the Assignment Type column, 
the only column we can use for the third part of the assignment is the To Object 
column, where we have to select the process variable we want to use as the target  
of the assignment.

The Service tasks
All the other tasks in our process are Abstract tasks. We'll learn how jBPM6 uses 
these tasks as an extension point after we see another editor later in this chapter, so 
for the moment, we will only configure them as Script tasks, selecting that option in 
their Task Type property. For the properties of these tasks, we will edit the Script 
property and just write a simple piece of code to see whether the node is executed:

System.out.println(kcontext.getNodeInstance().getNodeName());

This will print out the node name through system output when the node is reached. 
This can be done quite fast if you select all the tasks where you want to edit the 
same property. The Properties panel will show only common properties between 
those tasks and allow you to change their values at the same time. Skip adding the 
boundary events until we explain custom task types.



Creating a Process Project in the KIE Workbench

[ 134 ]

Configuring gateway nodes
In the case of gateways, there are not too many properties we can configure.  
The behavior of a gateway is determined by its type, which we have implicitly 
defined by selecting the specific gateway we want to use—XOR, also known  
as exclusive.

The Web Process Designer supports four types of gateway nodes, exclusive (XOR), 
parallel (AND), inclusive (OR), and event-based gateway nodes, and the properties 
they can have are as follows:

Property Description
Name This property shows the name of the gateway. It is only used to 

display a label in the node.
Default gate For exclusive and inclusive gateways only, this property allows us 

to select the default sequence flow that will be executed if all of the 
other outgoing sequence flows of the gateway evaluate to false.

We are not going to set the value of any of those properties for our gateways, 
because they are there just to provide converging points, not to diverge flows. 
Configuring diverging flows from a gateway is done inside the sequence flows.

Configuring sequence flow elements
Sequence flows are the elements used to connect the Activities, Events, and 
Gateways in our processes. Only the following two sequence flows' properties  
have an impact on the jBPM6 engine:

Property Description
Condition 
expression

For sequence flow elements coming from a diverging inclusive 
gateway or a diverging exclusive gateway, this property defines the 
condition that needs to be evaluated. Depending on its result, the 
execution will either continue through this flow or not. Inside the 
condition expression code, we can access all of the variables defined  
in our process.
The process designer provides a guided editor to write conditions 
based on process instance variable evaluations, but if you wish to 
write something more complex, it has a Script tab where you can  
write more complex scripts in a sentence of the following form:

return <expression resolving to Boolean>;



Chapter 5

[ 135 ]

Property Description
Condition 
expression 
language

Three different languages are allowed in the condition expression 
property: Java, MVEL, and Drools. We can use this property to specify 
the language we want to use.
If Java or MVEL is selected, the condition expression must be valid 
Java code or MVEL script, respectively. Other than the process 
variables, a special variable with the name kcontext can be used to 
get extra information about the process instance.
If we use Drools as the condition expression language, the syntax we 
have to use in the condition expression is Drools' DRL. Basically, we 
have to define a constraint using DRL that will evaluate to true  
or false.

As we are not using any diverging inclusive or exclusive gateway in the process that 
we are designing, there is no need to modify either of these properties in any of the 
sequence flows we have.

Accessing existing processes
Before we can open an existing process in the KIE Workbench, we first need to  
find it. In the KIE Workbench, there are two different ways to search for an existing 
process: through the Project Explorer section in the Project Authoring perspective's 
left-hand side or through the Search… textbox on the right-hand side of the  
action toolbar.

The Project Explorer will give us (by default) an accordion-based view of all possible 
assets, split by asset type. Processes will reside in the Business Processes tab. We 
can change this by clicking on the gear button next to the Project Explorer title and 
selecting the Repository View option to see all files with their extension type and to 
browse subfolders.

If you're not sure where you stored the process you're searching for, you can use the 
Search… textbox to search by the name or part of the process name. A list with links 
to different matches will appear in the editor panel. Each one will have an Open 
button that we can use to open the desired process in the Web Process Designer.



Creating a Process Project in the KIE Workbench

[ 136 ]

Modifying and deleting existing processes
Once we have a process opened in the Web Process Designer, we can start working 
on it. For the rest of this chapter, we are going to cover the most important options 
and features to do this editing. When we want to save the changes we have made 
in a process, we have to use the disk icon that appears on the topmost bar of the 
process designer panel, and we can select Save to store changes, Enable autosave to 
continuously store any changes we make, or Delete to remove the process from the 
project (shown in the following screenshot):

Clicking on Delete removes the asset from the project, but older 
versions will still be stored in the internal Git repository and can be 
recovered through Git external tools. The KIE Workbench exposes all 
Git repositories at port 9418 by default.

Testing the process definitions
By now we should have a process definition ready to be executed in the jBPM6 
engine if we've correctly followed all of the steps so far. We should save the process 
by clicking on the Save button at the top-left corner of the designer screen and 
clicking on the Save option when the drop-down menu appears. We have two ways 
to test our processes: running process simulations in the designer or writing a unit 
test in Java code.



Chapter 5

[ 137 ]

Process simulations
The Properties panel provides different sets of properties for different situations. By 
now, we are familiar with the core properties (the ones shown by default), but there 
are also extra properties for the least common core properties, graphics properties for 
color selections, and another set for statistical analysis of process models over time, 
the simulation properties. On these properties, we will define statistical information 
for our processes, tasks, and flows, which will later on allow us to determine the 
costs of our process executions, possible bottlenecks, statistical distribution, and 
likeliness of each path to execute.

We won't be able to get into the details of all of the simulation properties, but we 
will mention that they allow us to configure how much time each task can take with 
properties that will be determined by the statistical distribution of each task. Also, 
for diverging flows, they will allow us to determine the probability of following 
each different path. After that configuration is done for each task, we can execute 
simulations by clicking on the simulations icon shown in the following screenshot, 
and by configuring two parameters—the number of instances that will be simulated 
to run, and at an interval of time (specified by a number and a time unit).

The results of the simulations will be then shown in the Simulations tab, located 
in the top-left corner of the editing canvas. Simulation results include graphics and 
tables, with probabilities of each path, associated costs for each task, and resource 
utilization and idle times.

Unit testing the process definition
If we look for a project called process-examples inside the chapter-05 folder, 
we'll see that it contains a test file called SprintManagementV1Test.java. It uses a 
file called sprintManagementV1.bpmn2 that contains the definition of the process. 
So, basically, the test will execute the process definition to check that everything is 
working as expected. If you want, you can take a look at the source code of the test. 
We will now look at the important parts of the SprintManagementV1Test class, 
where we test how the process we just defined executes in the following code:

KieSession ksession = createKieSession();
TestAsyncWorkItemHanlder h1 = new TestAsyncWorkItemHandler();



Creating a Process Project in the KIE Workbench

[ 138 ]

TestAsyncWorkItemHanlder h2 = new TestAsyncWorkItemHandler();
TestAsyncWorkItemHanlder h3 = new TestAsyncWorkItemHandler();
ksession.getWorkItemManager().registerWorkItemHandler(
    "Human Task", h1);
ksession.getWorkItemManager().registerWorkItemHandler(
    "compiler", h2);
ksession.getWorkItemManager().registerWorkItemHandler(
    "deployer", h3);
Map<String, Object> params = new HashMap<String, Object>();
params.put("project", "MyProject");
params.put("reqDescription", "My new Requirement");
ProcessInstance instance = ksession.startProcess(
    "sprintManagement-V1", params);

In the preceding code, we first created our session (using the APIs we saw in  
Chapter 2, BPM Systems' Structure), named ksession, and we registered work item 
handlers for it. The main process activity starts when we call the startProcess 
method, which receives the process ID we defined and a map of parameters  
(whose keys, you might notice, were described in the Variable Definitions 
property of our process). This is the most basic API we will need on the runtime  
to start a process instance.

Process modeling summary
Up to this point, we have learned to create and manage process definitions in the 
KIE Workbench. We have also covered the steps required to design a process from 
scratch using the elements available in the Web Process Designer's palette. We have 
covered the most frequently used elements that jBPM6 supports, but we still might 
need to get a better understanding of the rest of the nodes. I strongly recommend 
reading the jBPM6 user guide, especially the chapter on the Web Process Designer.  
It can be found at http://docs.jboss.org/jbpm/v6.0.1/userguide/.

Also, for a full reference of all the designer features, you should refer to its 
documentation at http://docs.jboss.org/jbpm/v6.0.1/userguide/chap-
designer.html.

http://docs.jboss.org/jbpm/v6.0.1/userguide/
http://docs.jboss.org/jbpm/v6.0.1/userguide/chap-designer.html
http://docs.jboss.org/jbpm/v6.0.1/userguide/chap-designer.html


Chapter 5

[ 139 ]

The Web Process Designer advanced 
topics
Even if the functionalities already covered in this chapter are enough to create a 
process, the Web Process Designer has some other features that will make life easier. 
These features include things like importing existing process definitions into the 
designer, validating our processes, creating custom task nodes, and so on.

Let's cover these features now to improve our productivity in the designer.

Importing process definitions
Sometimes, we already have a process definition outside of the KIE Workbench 
that we want to modify. One example is all of the .bpmn2 files that come with the 
source code of this book; another example would be if someone e-mails us a process 
definition that they are working on. The Web Process Designer has a feature to allow 
importing these files and creating a visual representation. In the toolbar, there's the 
Import Definition menu that we can use if we want to import an existing process 
definition. The supported languages are BPMN 2.0 and JSON. The latter is the 
internal representation used by the Web Process Designer to maintain the definition 
of the process while we edit. There is a third option, Migrate jPDL 3.2 to BPMN2, 
that is used to migrate jBPM Process Definition Language (the proprietary language 
jBPM used until version 4 of the product) to BPMN2 files.

When we select one of the options in this menu, a pop-up window will open that lets 
us browse for the file containing the definition we want to import. We can also paste 
the definition of the process directly into the text area of the window. The editor will 
prompt you on whether you want to overwrite your existing process. If you choose 
to do so, the diagram will be overwritten. If you choose not to do so, the imported 
process will be pasted on top of your already-existing process definition.



Creating a Process Project in the KIE Workbench

[ 140 ]

Regardless of how we choose to import a definition, the process definition will be 
displayed in the editing canvas. If an error occurs in the importing process, a generic 
error message will be displayed in the designer.

Service tasks
As we now know, the BPMN 2.0 specification defines eight different task types that 
we can use in our processes. We also know that jBPM6 uses Abstract tasks as a way 
of extending the process definition functionality to fulfill our business needs (even if 
we are not aware of the specifics yet). But there is one thing that makes this extension 
mechanism possible; we need to define a specific task type. These predefined task 
types will then be made available through the Shape Repository panel in the Service 
Tasks tab.

For this purpose, jBPM6 allows us to create a definition of a task and then reuse  
it in our processes without having to redefine it every time we want to use it.  
The definition of this task is created in the KIE Workbench, outside of the Web 
Process Designer.

Let's take the example of the "Notify Developer of Requirement Changes" task that we 
are using in the sprint management process. This task can be changed from a Script 
task to a Service task. To do so, all we have to do is go to the action toolbar in the 
Project Authoring perspective of the KIE Workbench and select Create New | Work 
Item Definition. Work Item is the technical name for what are called Service tasks in 
the Web Process Designer. They are also referred to as domain-specific tasks.

Work Item definition editor
A complete description of this editor is outside the scope of this book. We are only 
going to give a brief overview of this feature. For further information, you can refer 
to the jBPM6 documentation: http://docs.jboss.org/jbpm/v6.0/userguide/
jBPMDomainSpecificProcesses.html

http://docs.jboss.org/jbpm/v6.0/userguide/jBPMDomainSpecificProcesses.html 
http://docs.jboss.org/jbpm/v6.0/userguide/jBPMDomainSpecificProcesses.html 


Chapter 5

[ 141 ]

The editor is basically a text area where we can write the structure of a Work Item 
definition. The format of this structure is similar to JSON syntax, but in reality is 
MVEL syntax.

A Work Item definition is composed of the following five sections:

• Name: This section will define the key for registering work item handlers  
in jBPM6 runtime.

• Parameters: These are the input variables of the resulting task. Each 
of the elements in this array is going to be a variable definition in the 
DataInputSet property of the task.

• Results: This section is the same as parameters but for output variables.  
Each of the elements in this array is going to be a variable declaration in  
the DataOutputSet property of the resulting task.

• Display name: This section is the name that the resulting task is going to 
have in the Web Process Designer's Service task palette.



Creating a Process Project in the KIE Workbench

[ 142 ]

• Icon: This property defines the icon that the Web Process Designer is going 
to use for the resulting task. The icon must be specified as a URL and is 
going to be used both in the Web Process Designer's palette and in the task 
representation inside the editing canvas.

Using Work Item definitions in the process 
designer
For each Work Item definition, the Web Process Designer is going to add a new 
element to the Shape Repository panel, under the Service Tasks option. Only the 
Work Item definitions belonging to the same project (where the project is being 
edited) are going to be used by the process designer. All of the Work Item  
definitions are placed inside the Full perspective, under the Service Tasks tab.

As this book is being written, a better editor for Work Item definitions 
than the one shown in the previous screenshot is being created. The 
current editor has a problem that causes any problem in the structure of 
the MVEL description of Work Item definitions to break the Service task 
importing, leaving only messages in the server log about any problems 
parsing the Work Item definitions file. The future editor will have a 
friendlier UI, which will be less error prone and will avoid this problem.



Chapter 5

[ 143 ]

In the preceding screenshot, we can see two domain-specific tasks—Notifier  
and Compiler.

In order to see the domain-specific tasks we have created, we need to 
close the process we are designing and reopen it. If we still can't see our 
saved Work Item definitions (or the Service Tasks tab), review the last 
logs of the server to check whether there were any errors parsing the 
Work Item definitions.

In the properties of these new tasks, we can check that the DataInputSet and 
DataOutputSet variables are prepopulated with the values we have defined  
in the Work Item definition.

Providing a runtime for our process
Process definitions are not considered standalone components in the KIE 
Workbench, but part of a project instead. These projects contain all the configurations 
to provide a runtime environment for our processes, and in order to get the most out 
of the KIE Workbench, we need to know how to configure a runtime for them. To 
do so, we need to edit certain properties of the project, deploy it, and decide in what 
manner we are going to run our processes.

The project editor
From the Tools option in the action toolbar of the Project Authoring perspective,  
we have one of the tools we can use to configure our runtime in the KIE 
Workbench—the Project Editor tool. In it, we can define through user-friendly 
tools all the KIE Module and Maven project-related components, such as project 
dependencies and knowledge base and session configuration.

From a process runtime point of view, this is where we should start working to 
check that our processes will have all the extra components they will need to work 
inside the KIE Workbench directly, such as Work Item handler configurations, 
dependencies where rules or other processes might be defined that our process 
definition needs to run properly, whether it should run with persistence or not,  
and so on.

The full extent of this configuration exceeds the scope of this book. To get a full 
explanation of this editor, visit the jBPM6 documentation.



Creating a Process Project in the KIE Workbench

[ 144 ]

Build and deploy
Once all the components in our project are ready to be compiled, all the required 
dependencies are defined, and all knowledge configurations have been settled, we 
need to create a compiled unit with the project assets. In our project, where we only 
have a process definition with a very basic data model (which doesn't define extra 
classes), we have reached said state, so we're ready to compile the project. For that, 
the project editor comes with its own toolbar with a Build & Deploy button:

Upon clicking on this button, the project editor will try to compile all the project 
assets into a JAR file and deploy it to the local Maven repository. From then  
onwards, we are just one configuration away from having a running environment  
for our process definition.

Configuring the deployment unit
Once the KIE Module project is compiled and installed in the Maven repository, we 
can define an environment for it to run in a standardized way. This environment will 
be available from the Deploy | Deployments perspective in the KIE Workbench, 
and it is called Deployment Unit.

A deployment unit is a specific configuration based on a KIE Module that will define 
one KIE base, one KIE session, and one runtime manager type to define a way to run 
process instances. A project might define multiple KIE bases or KIE sessions. Even 
if it defines just one of each, you still might want to create different configurations 
whether you share statuses between different process instances or not. Deployment 
units allow you to configure these components to define the exact configuration in 
which specific instances will run later on.

To configure a deployment unit, you need four things: a KIE Module, identified by 
a Maven release ID, composed of group, artifact, and version, that can be defined 
in the project editor seen in the previous chapter, a specific KIE base name (can be 
default), a specific KIE session name (can also be default), and a runtime manager 
type (can be singleton, by process or by request). We'll look at runtime managers  
in more detail in Chapter 7, Defining Your Environment with the Runtime Manager.



Chapter 5

[ 145 ]

Summary
In this chapter, we covered the main characteristics and features of the Web Process 
Designer. We learned how to create and manipulate process definitions and other 
related assets in the KIE Workbench and how to design our processes.

Using one of the processes introduced in Chapter 3, Using BPMN 2.0 to Model Business 
Scenarios, as a guideline, we have reviewed the different BPMN 2.0 elements and 
properties that we might use if we want to create an executable version of that 
process in jBPM6. While designing the process, we learned about some of the most 
frequently used BPMN 2.0 elements as well as the properties required by the jBPM6 
engine for execution.

This chapter introduced some executable examples that we can use to test not only 
the processes introduced by this chapter, but also any other process we might create 
using these tools.

Now, we should be familiar not only with the Web Process Designer's UI, but also 
with the underlying BPMN 2.0 code it generates.

Let's move on to some of the most advanced topics of jBPM6, such as runtime 
managers, Human tasks, and persistence management.





Human Interactions
Business processes express the way an organization works toward a well-defined 
business goal. Both humans and systems play important roles in reaching this goal. 
We need an understanding of interactions between people and an organization's 
business processes and how responsibilities are assigned and managed for different 
human interactions involved in those processes.

This chapter will focus on understanding the framework provided by the BPM 
discipline—and the jBPM6 framework—to handle human interactions. We will also 
introduce the Web Service Human Task (WS-HT) standard specification that has 
been created to standardize the information, life cycle, and interaction with software 
components specialized in managing human interactions.

In this chapter, you will learn the following topics:

• The role that human tasks play in the BPM discipline
• How jBPM6 handles human interactions at the code level
• User interfaces of KIE Workbench specialized in human interactions

Understanding human interactions
Many studies have been made to improve human-to-system interactions in the 
software industry. We will see how the BPM discipline approaches these interactions 
in a way that distils decades of experience. Some changes will be introduced to how 
we think and design user interfaces, from thinking about standalone applications to 
integration components. First, we need to take a look at the context in which Human 
tasks take place inside business processes.



Human Interactions

[ 148 ]

Human interactions inside our processes
Modeling business processes using the BPMN 2.0 standard notation allows you to 
define many different types of activities. Two of the most frequently used activities are 
User tasks to handle human interactions and Service tasks to handle external system 
interactions. Our processes will be in charge of coordinating system-to-system and 
human-to-system interactions to guide an organization's day-to-day activities.

From a BPM discipline perspective, the distinction exists to guarantee a higher  
level of descriptive content in our process diagrams. At an interaction level, both 
human and system interactions are the same: something that happens outside the 
process scope.

When a User task is reached in one of our processes, a new User task will be created 
and handed to the correspondent business actors. At that point, we will create a new 
task in another system—the Human task component. This system is the main focus 
of this chapter and will have the responsibility of notifying the users and handling 
interactions with the newly created task along with its status changes.

User tasks contain information that is relevant in the context of a specific process' 
execution, which will allow the user to execute the task. Also, an actor will need to 
handle more than one task at a time, and the contextual information, including the 
type and/or name of the task, will differentiate each task from the rest.

Depending on the number of business processes in which the actor is involved, there 
will be different types of tasks that the user must be ready to execute. The ability of 
a user to perform a certain job will be determined easily through his/her user role. 
However, the processes themselves might be a component that the end user will not 
be interested in. In the same way as that of the process engine that sees the Human 
task as merely an external interaction, the Human task only sees the process engine 
as its origin and as a listener for the changes in its status.

At this point, we need to have a list of user interaction components to manage 
notifications, displaying, interaction, and completion of Human tasks. Both humans 
and the process engine itself will interact with those components at runtime.

Many different vendors have implemented these mechanisms in many different ways. 
Eventually, a standard specification appeared that formalized these mechanisms as 
well as the task's life cycle for all human interactions. The following section introduces 
this standard called the WS-HT standard specification. For further details, you can 
review the WS-HT specification definition in a PDF format at http://docs.oasis-
open.org/bpel4people/ws-humantask-1.1.pdf.

http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.pdf
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.pdf


Chapter 6

[ 149 ]

WS-HT standard specification
OASIS Group is an international consortium that drives open source adoption of 
standards. It has defined the WS-HT specification to standardize human interactions, 
their structure and information, and make them interoperable between different 
vendors. The WS-HT specification serves as a guideline of the features that every 
human component should have; it is based on industrial best practices and on the 
most implemented end user features. Being compliant with this kind of specification 
will help you to replace components provided by one vendor with the components 
of another vendor without affecting other components, as long as both vendors 
apply the same standards.

Most BPM systems architectures provide a built-in component that is in charge of 
handling human interactions. This becomes a problem when trying to expose human 
interactions to other systems, besides the BPM system. It is because of this reason 
that even if jBPM6 provides a built-in Human task component, it can be created as a 
standalone component, accessible through external services. The overall structure  
for a jBPM6 BPM system core, considering only the main components relevant to  
our current scenario, looks like the following figure:

In the preceding figure, we can see that external components can interact with any 
of the components related to jBPM6, regardless of whether we're talking about 
processes, rules, or human interactions. The sort of information exposed through the 
listeners in the Human task engine is, however, closely related to the task's internal 
life cycle. We'll now provide an overview of it.



Human Interactions

[ 150 ]

Human tasks' life cycle
The WS-HT specification defines a detailed and complete set of states that every  
task can be in as well as operations allowed to change a task from one status to the 
next. These states are designed to cover almost every possible scenario related to 
Human tasks.

These statuses also cover what we call Group tasks, which are assigned to a group 
instead of a particular person. Business processes can create these tasks, and anyone 
who belongs to the defined groups can complete them. When tasks are created, 
every person in the group who wishes to complete them will have to claim each task 
in order to work on it. Claimed tasks are assigned to the claimer only, and no one 
else can claim that task. If the claimer of the task cannot work on it, he or she has the 
option to release it.

The following graph represents the possible states and transitions of a task according 
to the specification:



Chapter 6

[ 151 ]

When you invoke a specific task operation on a particular task instance, you can 
change the internal status on said task. If you call an invalid operation for the  
current state of the task, the Human task component will throw an exception.

Usually, when our business process creates a User task, it will be set up at the 
Created state. If the task has no direct assignment (that is, the process or the task 
definition doesn't contain information about who is in charge of it), the task will be 
placed at the Ready state until someone can claim it.

A task in the Ready state still needs a potential owner of the task to claim it. Potential 
owners can both claim it into the Reserved state and release it back into the Ready 
state. At this point, the task will be ready and waiting for a user assignment.

A task in the Reserved state is only available for one user, so it is ready to be started 
by the claimer. The claimer, once ready to begin working on the task, can start 
it by moving it to the InProgress state. The task will usually remain in that state 
until the user in charge of that task completes it, moving it to the Completed state. 
Alternatively, we can suspend or stop the task, which means that we need to resume 
it or start it again.

In situations where a task cannot be successfully completed, we can use four other 
close strategies for the tasks. If it cannot be successfully completed, the Fault task 
operation moves the task to the Failed state. This is usually done when the user in 
charge of the task doesn't have all the information or the means that is required to 
finish the task. Error, Exit, and Obsolete are used when there is an error inside the 
task or the task is no longer needed.

Determining who is the right person to complete a specific task is the responsibility 
of the Human task service, and it will do it based on the input information received 
from the task creation process. Now that we understand the states that a task can be 
in, we can get into the API side to understand how these operations translate to code 
invocations and how this extra information is shared between processes and tasks. 
The following section introduces the Human task component provided in jBPM6 by 
showing us an example of how to create Human tasks.

jBPM6 Human task component's 
overview
Based on the WS-HT specification, the current version of the Human task component 
is composed of multiple projects that can be found inside the master Git repository, 
where you can download the full code of the jBPM project. The following link will 
allow you to see the source code directly from the browser:

https://github.com/droolsjbpm/jbpm/tree/master/jbpm-human-task

https://github.com/droolsjbpm/jbpm/tree/master/jbpm-human-task 


Human Interactions

[ 152 ]

From the architectural perspective, this component can be configured to run in 
different ways, depending on your application needs. Because the Human task 
component is a very simple and lightweight component, the simplest way to start 
using it is to embed it in the same runtime with the process engine.

The following figure describes the different interactions with the Human  
task component:

This option instantiates the Human task component inside your application. The 
Human task component is a service that is implemented using Java Persistence API 
(JPA) to persist information in a database. This implies adding special configurations 
to our application to make it work: a persistence provider must be specified (which 
by default is hibernate in jBPM6) and a persistence unit must be defined in order 
for JPA to understand specific objects as database table mappings.

An application that holds the Human task component as a library inside it will have 
a way to access information on our Human tasks from a database. As a con, we will 
need to add the database access configurations inside our application; if we have 
multiple applications embedding the Human task component features, we will have 
to maintain all the configurations for every application, which increases complexity.

The second option is to use this component as an external component.  
Our application will have to configure how to connect to the Human task 
component—located in a different server—through some specific communication 
protocol. In Chapter 10, Integrating KIE Workbench with External Systems, we will see 
ways in which KIE Workbench provides such an external Human task component 
and process engine.



Chapter 6

[ 153 ]

The following figure shows how communication would happen with an external 
Human task component:

Before we get into any more details regarding how to externalize the Human task 
component, we should probably get into more detail about how it is implemented, 
its internal elements, and its exposed APIs.

Human task component APIs
For this particular case, we've extended the process definition with which we started 
working in the previous chapters. We added two new User tasks to test and bug fix 
the requirement, and we added a model class to it called requirement to handle all 
process variables, data inputs, and outputs.

The following screenshot shows the process definition we will be using in this chapter:

With these modifications, we now have two different groups in charge of Human 
tasks, namely, developers, and testers. This will enrich the process enough to give  
us a playroom for the next configuration steps.



Human Interactions

[ 154 ]

The task service
The Human task component in jBPM6 follows the guidance of the WS-HT standard 
specification to construct a service that is accessible by both people and the process 
engine. This specification defines specific calls that must be made to switch the  
state of Human tasks. The main API for the Human task service is defined in the 
org.kie.api.task.TaskService interface, as shown in the following code:

public interface TaskService {
    ...
    void claim(long taskId, String userId);
    void start(long taskId, String userId);
    void delegate(long taskId, String usrId, String tgtUsrId);
    void fail(long taskId, String usrId, Map faultData);
    void skip(long taskId, String usrId);
    void forward(long taskId, String usrId, String tgtEntityId);
    void complete(long taskId, String usrId, Map outputData);
    List<TaskSummary> getTasksAssignedAsPotentialOwner(
            String userId, String language);
    List<TaskSummary> getTasksOwned(
            String userId, String language);
    ...
}

This is just a simplification with the most used methods of the TaskService 
interface. The behavior they provide is guided by the graph of the Human tasks'  
life cycle that we saw in the Human tasks' life cycle section. In order to use it,  
we must initialize an implementation of it.

In order to have our Human task component available inside our classpath, we 
need to add the dependencies necessary to get the task service classes working. In a 
Maven-based project, we can add those dependencies by adding the following three 
dependencies to your own Maven-based project's pom.xml file, just like the project in 
the code section of this book, which is in the chapter-06/human-task-components-
api folder:

<dependency>
  <groupId>org.jbpm</groupId>
  <artifactId>jbpm-kie-services</artifactId>
  <version>6.1.0.Beta3</version>
</dependency>
<dependency>
  <groupId>org.jbpm</groupId>
  <artifactId>jbpm-human-task-core</artifactId>
  <version>6.1.0.Beta3</version>



Chapter 6

[ 155 ]

</dependency>
<dependency>
  <groupId>org.jbpm</groupId>
  <artifactId>jbpm-human-task-audit</artifactId>
  <version>6.1.0.Beta3</version>
</dependency>

Once we have these dependencies in our project, we can configure the persistence 
unit that will be used by our Human task component's implementation.

As previously mentioned, the Human task component is basically a JPA-backed 
application that will handle the stateful nature of Human tasks with a database.  
For it to work, it needs a persistence unit configured in the META-INF/persistence.
xml file in our classpath, pointing to all the database entity class mappings and 
data source configurations. In the human-task-components-api project inside this 
chapter's code, you will find the persistence.xml file in the src/main/resources 
folder. The content of this file is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0"
        xmlns="http://java.sun.com/xml/ns/persistence" 
        xmlns:orm="http://java.sun.com/xml/ns/persistence/orm"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        ...>
  <persistence-unit name="org.jbpm.services.task"
          transaction-type="JTA">
  <provider>org.hibernate.ejb.HibernatePersistence</provider>
  <jta-data-source>jdbc/testDS</jta-data-source>
  <mapping-file>META-INF/Taskorm.xml</mapping-file>
  <class>org.jbpm.services.task.impl.model.AttachmentImpl</class>
  <class>org.jbpm.services.task.impl.model.ContentImpl</class>
  <class>org.jbpm.services.task.impl.model.BooleanExpressionImpl
  </class>
  <class>org.jbpm.services.task.impl.model.CommentImpl</class>
  <class>org.jbpm.services.task.impl.model.DeadlineImpl</class>
  <class>org.jbpm.services.task.impl.model.DelegationImpl</class>
  <class>org.jbpm.services.task.impl.model.EscalationImpl</class>
  <class>org.jbpm.services.task.impl.model.GroupImpl</class>
  <class>org.jbpm.services.task.impl.model.I18NTextImpl</class>
  <class>org.jbpm.services.task.impl.model.NotificationImpl
  </class>
  <class>org.jbpm.services.task.impl.model.EmailNotificationImpl
  </class>
  <class>



Human Interactions

[ 156 ]

    org.jbpm.services.task.impl.model.EmailNotificationHeaderImpl
  </class>
  <class>org.jbpm.services.task.impl.model.PeopleAssignmentsImpl
  </class>
  <class>org.jbpm.services.task.impl.model.ReassignmentImpl
  </class>
  <class>org.jbpm.services.task.impl.model.TaskImpl</class>
  <class>org.jbpm.services.task.impl.model.TaskDataImpl</class>
  <class>org.jbpm.services.task.impl.model.UserImpl</class>
  <class>org.jbpm.services.task.audit.impl.model.BAMTaskSummaryImpl
  </class>
    <properties>
      <property name="hibernate.dialect" 
              value="org.hibernate.dialect.H2Dialect" />
      ...
    </properties>
  </persistence-unit>
</persistence>

Also, the said persistence unit will need a transactional data source to work against 
the database. In our test file called HumanTaskSampleTest.java, you will find its 
configuration in the method marked by the @Before annotation called setUp. This is 
a JUnit (http://junit.org/) markup to let the test runtime know that this method 
will initialize components for every test run:

@Before
public void setUp() {
    this.ds = new PoolingDataSource();
    this.ds.setUniqueName("jdbc/testDS");
    this.ds.setClassName("org.h2.jdbcx.JdbcDataSource");
    this.ds.setMaxPoolSize(3);
    this.ds.setAllowLocalTransactions(true);
    this.ds.getDriverProperties().setProperty("URL", 
            "jdbc:h2:mem:db");
    this.ds.getDriverProperties().setProperty("user", "sa");
    this.ds.getDriverProperties().setProperty("password", "sasa");
    this.ds.init();
}

The test will start a Bitronix (http://www.bitronix.be) transactional data  
source to be used by the persistence unit. Bitronix is the framework that defines  
the PoolingDataSource class, which is used to wrap a data source with a  
transaction manager.

http://junit.org/
http://www.bitronix.be


Chapter 6

[ 157 ]

In order for all these components to compile, we will need to add a few extra 
dependencies to our pom.xml file. We do this so that our classpath can have the JPA 
APIs, an implementation of those APIs (we will use hibernate for our case), and the 
Bitronix transaction manager dependency as well, as shown in the following code:

<dependency>
  <groupId>org.hibernate.javax.persistence</groupId>
  <artifactId>hibernate-jpa-2.0-api</artifactId>
  <version>1.0.1.Final</version>
</dependency>
<dependency>
  <groupId>org.hibernate</groupId>
  <artifactId>hibernate-entitymanager</artifactId>
  <version>4.2.0.Final</version>
</dependency>
<dependency>
  <groupId>org.hibernate</groupId>
  <artifactId>hibernate-core</artifactId>
  <version>4.2.0.Final</version>
</dependency>
<dependency>
  <groupId>org.codehaus.btm</groupId>
  <artifactId>btm</artifactId>
  <version>2.1.3</version>
</dependency>

Finally, because we will be working with an H2 database as the persistence accessed 
through JPA, we will also need to add the H2 dependency:

<dependency>
  <groupId>com.h2database</groupId>
  <artifactId>h2</artifactId>
  <version>1.2.128</version>
</dependency>

Once we have started our data source and configured our persistence unit, we can 
start the JPA persistence by just creating an EntityManagerFactory object with the 
persistence unit name, as follows:

EntityMananagerFactory entityManagerFactory = Persistence.
        createEntityManagerFactory("org.jbpm.services.task");



Human Interactions

[ 158 ]

Adding a users and groups data source origin
Another thing we need to configure before we create and use our task service is 
a way for it to understand who the valid users are and the groups they belong to. 
Depending on the way your software or organization defines these structures, you 
might need to connect to one of the many different identity software components. 
These range from something as simple as a file with users and roles to a database or 
to an LDAP or Active Directory (AD) server.

As this configuration can be so varied, the Human task component provides a 
specific interface (with multiple available implementations) to connect itself to  
any of these data sources called UserGroupCallback:

public interface UserGroupCallback {
    boolean existsUser(String userId);
    boolean existsGroup(String groupId);
    List<String> getGroupsForUser(String userId, 
        List<String> groupIds, 
        List<String> allExistingGroupIds);
}

For our test case, we will use a properties file, and an implementation called 
JBossUserGroupCallbackImpl, which will allow us to define our users and  
groups at runtime through a Properties object:

Properties userGroups = new Properties();
userGroups.setProperty("john", "developers");
userGroups.setProperty("mary", "testers");
JBossUserGroupCallbackImpl userGroupCallback = 
        new JBossUserGroupCallbackImpl(userGroups);

There are other implementations of this interface that are already available for 
use, such as DBUserGroupCallbackImpl that allows you to configure a couple of 
queries to validate users and groups, or LDAPGroupCallbackImpl that can be used 
to connect to an LDAP/AD server to validate users and groups. You can even 
implement your own to connect to any legacy system you might have to validate 
users within your organization.



Chapter 6

[ 159 ]

Starting your task service
Finally, once we have our JPA persistence started and our identity data source 
configured, we can start our task service. Doing so is very simple, and the Human 
task component provides a factory class called HumanTaskServiceFactory to 
quickly create a task service instance, as follows:

TaskService taskService = HumanTaskServiceFactory.
        newTaskServiceConfigurator().
        entityManagerFactory(entityManagerFactory).
        userGroupCallback(userGroupCallback).getTaskService();

At this point, we can start using our task service that is backed up by JPA-based 
persistence, which is connected to our users and groups' data source. This task 
service will give us the possibility to create new tasks; interact with them, one user 
at a time; complete them; and so on. The next step in our configuration will be to 
connect it to the actual process runtime.

Connecting to the KIE session
By now, we have a task service instance running against a database and a user 
data source. We now need to connect it to the process runtime so that each process 
instance can create tasks in the Human task component and the Human task 
component can notify the process runtime when a Human task has been completed.

The connector, as we saw in Chapter 2, BPM Systems' Structure, is based on the 
WorkItemHandler interface, and for our particular case, it is going to be the 
NonManagedLocalHTWorkItemHandler implementation, as shown in the  
following code:

WorkItemHandler htHandler = new NonManagedLocalHTWorkItemHandler(
        ksession, taskService);
ksession.getWorkItemManager().registerWorkItemHandler(
        "Human Task", htHandler);

Using the Human Task reserved key, we can register a work item handler specific 
to handling User tasks. In this opportunity, the instance we selected is prepared to 
create a new task every time a process instance enters a new task. At the same time, 
this handler will register a listener on the task service to receive notification when the 
created task is completed, skipped, or failed, in order to call the completeWorkItem 
method on the work item manager.



Human Interactions

[ 160 ]

The most interesting thing about the interaction between the process runtime and the 
task service is that it minimizes the interaction with the process runtime. The more 
the systems take care of notifying the process instance that it should continue, the 
less you have to do it. You'll find out that the only interaction with the KIE session 
for the test available in human-task-components-api is to start the process; all 
the subsequent activities are handled directly through the task service. We request 
specific tasks available for a developer or a tester and complete them using the 
available methods:

List<TaskSummary> tasks = taskService.
        getTasksAssignedAsPotentialOwner("john", "en-UK");
TaskSummary firstTask = tasks.iterator().next();
taskService.claim(firstTask.getId(), "john");
taskService.start(firstTask.getId(), "john");
Map<String, Object> results1 = new HashMap<String, Object>();
results1.put("reqResult", req);
taskService.complete(firstTask.getId(), "john", results1);

The calls that we see in the preceding code snippet are made after a process is started 
to get the tasks available for the user, john (one of the developers defined in the user 
data source). Once we have the task available, we claim it, start it, and complete it. 
After this is done, the process will be notified about the task completion and it will 
move to the next wait state. This will be a User task owned by testers, so mary will be 
able to get a task now to work on, as follows:

List<TaskSummary> marysTasks = taskService.
        getTasksAssignedAsPotentialOwner("mary", "en-UK");
TaskSummary marysTask = marysTasks.iterator().next();
taskService.claim(marysTask.getId(), "mary");
taskService.start(marysTask.getId(), "mary");
Map<String, Object> results2 = new HashMap<String, Object>();
req.addBug("bug 1");
results2.put("reqResult", req);
taskService.complete(marysTask.getId(), "mary", results2);

As you can see, these interactions are done exclusively through the Human task 
component. This translates to an actual application where you have people who only 
need to worry about working directly with Human tasks and let the application run 
the process in the background, creating new tasks according to what the process 
dictates. The interfaces needed for such a user perspective of the process runtime is 
defined in the following section.



Chapter 6

[ 161 ]

Task-oriented user interfaces
A good way to finish the understanding of APIs provided by the Human task 
component is to understand what kind of generic UIs will relate to it. These  
task-oriented user interfaces should be generic enough to work for any kind  
of User task, but descriptive enough to show sufficient information to the users  
to determine the task they should be working with.

These screens will contain and handle Human tasks in two different ways usually:

• Through the task lists
• Through the task forms

Task lists
When a user needs to check pending tasks, they need a screen that displays these 
tasks and have an initial interaction with them. The list should contain enough 
information to understand the pending task, but the information should be  
generic enough to be available for most of the tasks.

The Tasks List view provided by tools such as KIE Workbench allows the user to 
choose which tasks in the list to start working on first. A Tasks List view is an entry 
point for users to understand what needs to be done. Users should have enough 
information from the list to understand the nature of the tasks at hand and be able  
to prioritize them in order to know which one to do first.

Some of the common pieces of information displayed in the Tasks List view are  
as follows:

• Task Name: This is a short and descriptive name of the task.
• Priority: This can help us sort tasks depending on their urgency.
• Status: A task could be in many different statuses and available to a user. 

It could be reserved to that user, ready for one of its groups, or in progress 
when it is already started.

• Created On: This is the date when the task was created.
• Due On: This is the date and time for when the task is due.
• Description: This is some textual description of the task that can contain 

contextual information to clarify its purpose.
• Last Update: This is the last date when it was modified.

The Human task component clients should build a UI to represent this information 
for many tasks at a time; they should do this to let the users decide which task to 
work on.



Human Interactions

[ 162 ]

This view, whether you use KIE Workbench or a custom UI, should be generic 
enough to show information of any kind of tasks. However, when we have to work 
on a specific task, standardization becomes complicated, and specialization is what 
we will need for each specific task. To provide said specialization for each task type 
at a time, we will use task forms.

A Tasks List screen looks like the following screenshot in KIE Workbench, where we 
can see some of the properties we previously mentioned:

Task forms
Once we are able to view, discriminate, and prioritize the pending tasks, we need a 
way to work with the full representation of each task, one task at a time.

Each type of task needs to have a different task form that enables user interaction. 
These forms can be created from the process designer's contextual menu in KIE 
Workbench. This menu will allow us to create and edit both the forms used by  
User tasks as well as the form that can be used to create a new process instance,  
as we can see in the following screenshot:



Chapter 6

[ 163 ]

Each specific User task should have a specialized task form to show the exact 
information the user needs to perform their job. The task forms usually have  
the following requirements:

• Reviewing and approving information
• Gathering information required by the task
• Doing manual work and reporting the outcome

Each task form needs to be created to handle the information managed on each task. 
An example of a task form is shown in the following screenshot:

The Hiring a Developer task form provides the user with all the components to 
determine the name of the developer to be hired. Like almost all the task forms, 
this one contains information that is only relevant to the specific domain of this 
task. When the user needs to do the real work, they need specific tools to make the 
decisions involved in said job. However, when it comes to listing tasks, we want 
to be able to assess multiple cases simultaneously. The formula to get both the 
things working in the same environment is to provide abstract task lists and specific 
domain task forms. The other cool thing about task forms is that multiple processes 
that require this functionality can reuse them.



Human Interactions

[ 164 ]

Keeping an external reference inside the process can be enough for most cases. There 
is no need to keep all the content of a document as a process variable, especially if 
there are external services to access, query, or even modify the said documents from 
outside the process scope. You will find it a common practice to keep documents in 
a content repository and have a process variable that points to the actual document. 
If for some reason the business process requires some bits of information from inside 
the document to make some decisions, you can usually store the metadata about the 
document inside the repository and use that information inside the process' context.

Web Process Designer also provides us with an option in the aforementioned menu 
to automatically generate all the task forms. This will create a generic implementation 
of the task forms. The main responsibility of generic implementations of task forms 
is to get the task's input and output information. Based on this mapping, provided 
by the BPMN file, we can construct a dynamic form that will display all of the input 
and provide simple form fields to fill all of the task output. The kinds of output a 
mechanism like this could handle are as follows:

• Text input fields
• Password/hidden text fields
• Calendar components to handle dates
• Select lists (list of values)
• Multiselection lists
• Checkboxes/radio buttons

The previously mentioned visual components are available in most of the UI-related 
frameworks. They can be enough to start working on a generic initial form display, 
but eventually, we will want to provide as much real-world information to the end 
user as they need to do their job more efficiently. This is one of the most important 
steps toward improving the performance of business processes. Depending on the 
nature of the task, we need to create custom components to deal with the interactions 
of domain-specific users.

External components can be used to render our forms, so we need to search and 
decide which component is best for each one of our forms' needs. Also, each of these 
task forms can be handled as a knowledge asset, which will be used as a bridge 
between the process and the users. The eventual task form that the user sees is the 
combination of a form definition used as a template and input data from the task to 
populate the said template.

We need to understand that this is just one possible solution to enable the user 
interaction. We need to be open minded about how we can expose the task lists  
and task forms so that users can easily access the information required to complete 
their tasks.



Chapter 6

[ 165 ]

The following are some of the things that we can do to improve how the end users 
access the information related to Human tasks:

• Provide mobile implementations for task lists and task forms
• E-mail-based services
• SMS-based services
• Social networking client interfaces (such as Twitter and Facebook 

implementations)
• Excel-based task forms

The more options the users have to work on their tasks, the easier it is for them to 
adapt to the new services provided by the process engine.

The following section discusses how we can extend the functionality of the Human 
task component.

Building your own extensions to Human tasks
Now that we've understood the APIs provided by the Human task component,  
we can start discussing the possible extension points that the API provides to allow 
users to extend its functionality and connect the component to other tools. This 
proves most useful when you think of the Human task component as a piece of a 
big puzzle, for example, the overall enterprise architecture of an organization. In 
such contexts, the possibility of handling human tasks is not the only thing that is 
important, but how information from those tasks can also impact other components.

The main responsibility of the Human task component is to handle the life cycle of 
tasks, and leave many connection points for other pieces of software to be notified 
about the changes in said life cycle or affect it in a simple way. In the following 
subsections, we will see some details on how to configure different pieces of  
software that can provide a lot of added value to you. We will concentrate on  
three main extension points:

• Task life cycle event listeners
• Task service interceptors
• Task model providers



Human Interactions

[ 166 ]

Task life cycle event listeners
In jBPM6, the task service provides a configuration facility to expose the behavior 
of tasks to external components. This configuration allows you to construct all sorts 
of publishing for task operations. In a way, every time a task is changed from one 
state to another, the current status of said task could be exposed. This is achieved 
through a specific listener class called TaskLifeCycleEventListener that can be 
implemented in virtually any way you see fit, as shown in the following code:

public interface TaskLifeCycleEventListener extends EventListener {
    public void beforeTaskActivatedEvent(TaskEvent event);
    public void beforeTaskAddedEvent(TaskEvent event);
    //omitted methods
    public void afterTaskActivatedEvent(TaskEvent event);
    public void afterTaskAddedEvent(TaskEvent event);
    //omitted methods
}

In the current status of the API, the methods provided by this listener interface allow 
you to implement your own code before and after any changes made to a task. The 
TaskEvent class used to describe the occurrence of each event gives you a reference 
to the task instance and a TaskContext object that will hold a few useful references, 
as shown in the following code:

public interface TaskContext extends Context {
  TaskPersistenceContext getPersistenceContext();
  void setPersistenceContext(TaskPersistenceContext context);
  UserGroupCallback getUserGroupCallback();

}

A TaskPersistenceContext object gives you data access methods to query and/or 
change the task persistence, especially tasks, groups, users, and task data. It also has 
methods to control the status of the database connection and the transaction, so they 
do provide a lot of power when deciding to alter the persistence of our model.

In the project human-task-extension-points, you will find a test file called 
HumanTaskListenersTest.java. In this file, you will find an example of using a 
listener to keep an in-memory list of all the activities done in the tasks. We create 
a special listener implementation called LogTaskChangeListener and add a very 
simple TaskLog object for each after method of the listener, as follows:

public void afterTaskClaimedEvent(TaskEvent event) {
    logs.add(new TaskLog(event.getTask().getId(), "TaskClaimed"));
}



Chapter 6

[ 167 ]

After this, we provide a get method for the logs we create and validate it from  
the test.

The process of configuring listeners for the Task Service can be done through the 
HumanTaskServiceFactory class, as shown in the following code snippet:

TaskService taskService = HumanTaskServiceFactory.
        newTaskServiceConfigurator().
        entityManagerFactory(emf).
        userGroupCallback(ugCallback).
        listener(new LogTaskChangeListener()).
        getTaskService();

You can also add a new listener to an existing task service instance by executing the 
following code:

( (EventService<TaskLife cycleEventListener>) taskService)
    .registerTaskEventListener(listener)

The preceding code section first casts the taskService instance to an EventService 
interface and then registers the listener. The HumanTaskServiceFactory helper class 
will do this for us if we use it to build the task service.

However, sometimes configuring information about the tasks themselves is  
not enough. We might be interested in not just the task change, but any sort of 
invocation for the Human task component. For those cases, the Human task 
component provides another set of interactions called interceptors, which  
will be discussed in the following section.

Task service interceptors
One more extension point provided by the Human task component is what is  
called the interceptors. In order to explain the nature of interceptors, we must  
first understand the way that the task service is internally implemented, and  
to do so, we will need to explain the command pattern.



Human Interactions

[ 168 ]

The command pattern is based on having every method in a particular service 
represented by the exact same call to a command object. An adapter class between 
the interface and the invocation of those command objects need to be created. The 
resulting class structure for the task service implemented through a command 
pattern looks like the following screenshot:

In the preceding class diagram, we can see that the addTask method is translated to a 
command invocation as follows:

public void addTask(Task task) {
    Command<Void> cmd = new AddTaskCommand(task);
    return commandService.execute(cmd);
}

A similar structure is followed for every single method invocation in the task service 
API. As you can see, the commandService.execute() method invocation will be the 
one done for every method.

The next step to understand the interceptors is to understand the CommandService 
class. This class will have the responsibility of invoking the actual execute method 
in the Command object. The idea behind the interceptors is that you can decorate the 
class by creating wrappers for it. Each one of the wrappers can invoke special pieces 
of code before and/or after the method invocation. The result is the creation of 
different components that can do anything you want before or after every method 
that is called on top of the task service.



Chapter 6

[ 169 ]

The following sequence diagram shows how the interceptor pattern allows you to 
add steps before and after the execution of commands:

Now that we have understood a bit more about what the interceptors do and how 
they influence the behavior of a command pattern's application, we can get into the 
details of specific interceptors you can build for the task service, how to configure 
them, and what classes constitute our model to create these interceptors.

Interceptors for the task service can extend an abstract class with some helper 
methods called AbstractInterceptor. It provides basic implementations for  
all the methods, except for the execute method, and provides an executeNext 
method to invoke the next interceptor in line. With it, it becomes very simple to 
create a new interceptor.

In the project, human-task-extension-points, you will find that we created an 
interceptor called UserLogInterceptor. It is just for demonstration purposes. The 
main activity it provides around every method is the process of finding out whether 
it is a user-related operation according to the type of the invoked command. If it is, it 
stores a log of the operation that is called, inferred from the command name as well. 
The execute method for UserLogInterceptor looks like the following code:

public <T> T execute(Command<T> command) {
    String userId = getUserId(command);
    String operation = getOperationName(command);



Human Interactions

[ 170 ]

    if (userId != null) {
        logs.add(new OperationLog(userId, operation));
    }
    return executeNext(command);
}

Later on, in the HumanTaskInterceptorTest class, we can see that we register it  
and check its logs after every user action to see that they are correctly populated.  
The HumanTaskServiceFactory class provides a method to configure interceptor 
objects inside your task service's implementation. The code to configure them looks 
like the following code snippet:

TaskService taskService = HumanTaskServiceFactory.
        newTaskServiceConfigurator().
        entityManagerFactory(emf).
        userGroupCallback(ugCallback).
        interceptor(priority, new UserLogInterceptor()).
        getTaskService();

In the preceding code, the priority variable is an integer that defines in what  
place this interceptor will be in the chain of interceptors that a task service  
instance could have.

It is not recommended to add a new interceptor to an already existing 
task service, due to it being an internal component of the implementation 
of the TaskService interface.

When to use task event listeners or interceptors
Whether to use interceptors or task life cycle event listeners is a tough discussion,  
but the best rule of thumb to make a decision in that aspect is to consider  
transaction management.

Task life cycle event listeners provide a simple connection point. However, this 
extension point is usually detached from the invocation stack. It will be solely 
invoked from inside the task service when the task service finds a change in a  
task. It is great to connect external systems to the internal information of the task,  
but not a great place to make once-per-method-invocation operation inside the  
task service.



Chapter 6

[ 171 ]

Interceptors, on the other hand, will be invoked for each method's invocation and 
will be able to wrap a lot more of execution than each method of the listener; for one 
invocation in a task service method, many different task life cycle event listeners 
might be fired, all detached from one another. However, the interceptor will be able 
to handle what happens before and after that whole invocation and even take care of 
exception handling if some of the actions taken in the proprietary code need to roll 
back the task service operation if there is an error.

For some cases, using both on a single class could be an alternative. For example, let's 
consider a cache for tasks. Whenever a task is changed, we want to mark it to update 
the cache. However, we don't want the cache to be updated until we finish the 
method's invocation. A good way to manage such a case would be to implement an 
interceptor to handle the cache update and a life cycle event listener to control which 
tasks are being changed by a particular method's invocation in the task service.

Many more possible cases might trigger the necessity of one over the other. The 
important thing to understand is that they are not mutually exclusive, and each deal 
with a different aspect of the task management, something we can take advantage of.

Task model provider
One final extension point that we will discuss in this chapter is the possibility  
of changing the JPA entity model used by the application. This will be an  
advanced feature that users can use that will allow people to add extra attributes 
(and therefore, extra columns) to the domain model to make it easier for you to 
create your own queries on the persistence.

You could have the possibility of adding, for example, an external entity ID passed to 
the task as a data input to your task objects. Later on, you could use this ID to create 
queries with your particular model, provided that they are both working in the same 
persistence unit.

This is possible because no components of the core of the Human task component 
construct any of the model objects directly. Instead, they use a factory called 
TaskModelFactory. This factory provides a concrete implementation of the 
interfaces that compose the core model of the task service, as follows:

public void TaskModelFactory {
    public Task newTask();
    public TaskData newTaskData();
    public Content newContent();
    //omitted methods
}



Human Interactions

[ 172 ]

The TaskModelFactory class has an implementation called JPATaskModelFactory 
that defines JPA-based implementations for the interfaces defined in the model. 
What the task model provider does is that it discovers the JPATaskModelFactory 
implementation through Java's ServiceLoader and uses it to create its  
own components.

Therefore, you can configure the actual TaskModelFactory class that your project 
will use by adding a file called META-INF/services/org.kie.internal.task.
api.TaskModelFactory, with the actual name of the implementation in it. You can 
see an example of this configuration in the human-task-extension-points project 
in the code section of this book, which just defines the default implementation class 
for the interface. If any of its methods is constructed to return a different type of 
object, it will replace the actual JPA implementation by the one you need. The only 
thing you will have to be careful is to make sure you replace the classes that will be 
persisted in the META-INF/persistence.xml file as well as in the newly registered 
implementation of the TaskModelFactory interface.

Summary
In this chapter, we discussed the main points of providing human interactions.  
They are not necessarily tied to a business process execution and can be 
independently created by any other application. We have learned how we  
can configure the Human task component to interact with the process runtime,  
how users interact with it through task lists and task forms, and how we can  
extend it to provide the functionality we need.

The next chapter will show how the Human task component can be provided in a 
common frame of execution with the process runtime called the runtime engine, how 
it is configured, and how we can construct our own runtime engine for any special 
cases we might have in our organization.



Defining Your Environment 
with the Runtime Manager

By now, we have seen the two main components of a jBPM6 runtime, the KIE 
session and the Human task service. These components are provided as the basic 
components needed to run process interactions between humans and systems. As the 
responsibilities of the process runtime grows, connectors to external systems should 
be added to transform the process engine into a highly configurable enterprise 
integration platform, where coordination between different systems can be easily 
managed in a business-friendly way.

The entire configuration involved in creating a runtime for the process engine,  
the Human task component, and all the external systems connectors could become 
cumbersome if not managed in a single place. In this chapter, we will learn about the 
runtime manager component, which is designed to create a bridge between all the 
components and configurations involved in a process execution. This component can 
be used to create a full runtime for the process engine. For this chapter, our goals will 
be as follows:

• Understand the role of the runtime manager in the jBPM6 architecture
• Get familiar with the available runtime managers and interfaces
• Start extending the API to create our own custom runtime managers



Defining Your Environment with the Runtime Manager

[ 174 ]

Understanding the role of the runtime 
manager
The runtime manager's main role in an application is to provide an application-wide 
point to access process runtimes (all the necessary interconnected services to execute 
a process execution within a specific domain). The nature of those runtimes and  
how many different runtimes can exist in a particular domain is a decision that 
each of the runtime manager implementations available has to make. By default, 
a runtime will be composed of two main components: the KIE session where the 
process is executed and the Human task component where human tasks will be 
handled. Both are grouped and returned from the runtime manager through the 
RuntimeEngine interface:

public interface RuntimeManager {
    RuntimeEngine getRuntimeEngine(Context<?> context);
    void disposeRuntimeEngine(RuntimeEngine engine);
    String getIdentifier();
    void close();
}

public interface RuntimeEngine {
    KieSession getKieSession();
    TaskService getTaskService();
}

Runtime managers will return a specific number of runtime engines, depending 
on their specific nature. There is a singleton implementation that will return a 
single session for all required runtimes in an application, no matter how many you 
ask. On the other hand, there is a runtime manager for each process instance that 
will provide a separate session for each process instance started in the runtime. 
The following diagram shows how the classes involved in the runtime manager 
component interact with each other:



Chapter 7

[ 175 ]

Determining what type of runtime manager we should use for our environment is a 
complex decision that involves an equilibrium between synchronization of operations 
and the number of concurrent calls that can be performed by a BPM environment at 
the same time. We will try to explain the advantages and disadvantages of each type of 
runtime manager as we explain them. Regarding the architectural decisions on which 
runtime manager to use, we will see a few considerations to help us in Chapter 10, 
Integrating KIE Workbench with External Systems.

The nature of the KIE sessions will impact the amount of information shared 
between process instances and how recoverable that information will be by other 
threads later on. The KIE sessions have a memory group called working memory, 
which groups a set of objects that will be evaluated by business rules. If you feed 
information to this working memory from the process instance or decide to fire rules 
during the process execution, depending on the level of isolation of the KIE session, 
the working memory might contain objects from a single process instance or many.

Rules evaluate this working memory to find patterns between different objects. 
Depending on what a business rule states, you might want to match different  
objects that come from different process instances, or isolate them on the instance 
level/request level of each process. For these cases, the runtime manager provides  
different alternatives to access a process instance in different session environments.

Understanding the runtime environment
Runtime managers provide you with a strategy to access different levels of 
isolation for your runtime, but it depends on another component to define all the 
configurations that allow the runtime to run in a specific way. The component that 
allows you to define these configurations is called the runtime environment, which 
is a grouping of all the different elements required for the process runtime. In the 
runtime environment, you can configure several things:

• Whether your engine will use persistence (we will see persistence 
configurations in detail in Chapter 8, Implementing Persistence and Transactions) 
or if it will run in memory only

• The knowledge definitions you will use in the runtime
• The specific user group callback object to connect the Human task component 

to a user and groups data source

The following code section defines the RuntimeEnvironment interface:

public interface RuntimeEnvironment {
    KieBase getKieBase();
    Environment getEnvironment();
    KieSessionConfiguration getConfiguration();



Defining Your Environment with the Runtime Manager

[ 176 ]

    boolean usePersistence();
    RegisterableItemsFactory getRegisterableItemsFactory();
    UserGroupCallback getUserGroupCallback();
    ClassLoader getClassLoader();
    void close();
}

As you can see, there are methods to provide all the different components involved 
in providing the necessary information to the runtime to run correctly, including  
the KIE session configuration properties, class loaders, and runtime connectors, 
which are defined inside the registerable items factory. This is explained in the  
next section.

Registerable items factory
The runtime environment has a particular subcomponent that takes care of 
registering all the different connectors to external systems. This subcomponent  
is called RegisterableItemsFactory, and it provides a contract for the process 
engine to populate its work item handlers and different listener types for process  
and rule executions:

public interface RegisterableItemsFactory {
  Map<String, WorkItemHandler> getWorkItemHandlers(
            RuntimeEngine runtime);
  List<ProcessEventListener> getProcessEventListeners(
            RuntimeEngine runtime);
  List<AgendaEventListener> getAgendaEventListeners(
            RuntimeEngine runtime);
  List<WorkingMemoryEventListener> getWorkingMemoryEventListeners(
            RuntimeEngine runtime);
}

As you might have noticed already, external connectors can be implemented in a 
bidirectional way—both to expose the internal functionality of the engine to the rest 
of the application components and to configure signaling methods from external 
components back into the engine. It is because of this reason that listeners and work 
item handlers are provided with a reference to the runtime engine, so you can pass it 
on to your own connectors whenever they might need them.



Chapter 7

[ 177 ]

Defining our runtime environment
Another thing to notice is that all these interfaces (except for RuntimeManager) define 
just getters for different components that the runtime will need at specific instances 
of rules and processes execution paths. You can implement your own to return the 
different implementations you wish as you see fit. However, the jbpm-runtime-
manager project provides two implementations: SimpleRuntimeEnvironment and 
DefaultRuntimeEnvironment.

The SimpleRuntimeEnvironment implementation provides setters as well as getters 
for all the configuration components, or enough setters to create the configuration 
components based on simpler parameters. The DefaultRuntimeEnvironment instance 
extends the first implementation to add the most usual configurations as a default 
template. This default configuration will provide a persistent environment for sessions 
to be created, with history logs and the Human task component preconfigured.

Since persistence will be covered in detail in Chapter 8, Implementing Persistence 
and Transactions, we will save it for later use and just focus on working with 
SimpleRuntimeEnvironment for now. However, in order to simplify the 
code a little, we will not use it directly, but through a builder class called 
RuntimeEnvironmentBuilder. In the following code snippet, we can see how  
this builder class will let us initialize a RuntimeEnvironment instance really fast:

SimpleRegisterableItemsFactory factory = 
        new SimpleRegisterableItemsFactory();
factory.addWorkItemHandler("Human Task", MyWIHandler.class);
RuntimeEnvironment environment = RuntimeEnvironmentBuilder
        .Factory.get().newEmptyBuilder()
        .userGroupCallback(userGroupCallback)
        .knowledgeBase(kbase)
        .registerableItemsFactory(factory)
        .get();

As you can see in the previous code, we can provide our own implementations  
of different components to a RuntimeEnvironment instance really fast without 
creating multiple lines of code to invoke each of the setters provided by a  
specific implementation.



Defining Your Environment with the Runtime Manager

[ 178 ]

You might have also noticed the SimpleRegisterableItemsFactory 
implementation that we used to register a work item handler type (by a class name) 
to its correspondent key. While the API provides two different implementations 
of the RuntimeEnvironment interface, it also provides several different 
implementations or the RegisterableItemsFactory implementation that we  
can use in different situations. The different implementations available are:

• SimpleRegisterableItemsFactory: This implementation defines type 
setters for work item handlers and listeners. When a runtime engine asks for 
the implementations, it will try to build the different handlers. It will create 
each of the specified types looking for a constructor with a KieSession 
parameter, a TaskService parameter, a RuntimeEngine parameter, or no 
parameter at all.

• DefaultRegisterableItemsFactory: This implementation extends 
the previous one to provide default listeners and work item handlers. 
Particularly, it will create a Human task component work item handler  
and listeners to trigger rules from processes and keep history logs in a 
persistent environment.

• KModuleRegisterableItemsFactory: This implementation extends the 
previous one to add any configuration defined in the kmodule.xml file of a 
specific KieModule object. It is constructed with a KieContainer reference 
and a session name from which to obtain the correspondent mappings.

• InjectableRegisterableItemsFactory: This implementation extends the 
default implementation to discover the different configuration components 
from CDI injection.

Now that we understand how the environment for a runtime manager is configured, 
and before we start working with the actual RuntimeEngine implementations, we 
need to understand how the lifecycle of the runtime is expected to be executed.

Runtime lifecycle management
We have already reviewed the idea behind the runtime manager and the runtime 
engine to understand their purpose. The runtime engine is a grouping of all the 
running configurations connected together that are provided by the runtime 
manager. We now need to understand how these components reside in the server 
and at what times they must be created or discarded. First of all, let's discuss the 
runtime manager's lifecycle.



Chapter 7

[ 179 ]

The runtime manager usually behaves like a singleton in an application; we just need 
one instance of it. From that one instance, we will construct one or many runtime 
engines. So, it is important that even if we create many different runtime managers, 
they all behave in the same manner; otherwise, we might have different behaviors 
depending on how many runtime managers we have.

In the next section, we will see how different implementations of the runtime 
manager interface provide solutions for this problem. Whichever implementation  
we choose, the behavior against the obtained RuntimeEngine instance is the same  
as explained in the following sequence diagram:

The RuntimeManager implementation will return a specific runtime engine, 
depending on the RuntimeManager type and the Context parameter we pass to it:

RuntimeManager manager = ...;
RuntimeEngine engine = manager.getRuntimeEngine(
        EmtpyContext.get());

Once we receive a RuntimeEngine instance, we will be able to interact with its 
subcomponents using the following options:

• We can use the KIE session to start processes, fire rules, and send signals.  
The code is as follows:
engine.getKieSession().startProcess("procId");
engine.getKieSession().fireAllRules();
engine.getKieSession().signalEvent("signalX", null);



Defining Your Environment with the Runtime Manager

[ 180 ]

• We can use the task service to interact with human tasks. The code is  
as follows:
List<TaskSummary> tasks = engine.getTaskService().
        getTasksOwned("john", "en-UK");
Long taskId = tasks.iterator().next().getId()
engine.getTaskService().start(taskId, "john");

The RuntimeEngine interface could also be extended to add other interactions if 
necessary for a particular domain.

When we're done using RuntimeEngine in the current transaction or thread,  
we let RuntimeManager know whether it can try to free resources by calling  
the disposeRuntimeEngine method:

manager.disposeRuntimeEngine(engine);

Once we do that, the engine instance will be rendered unusable. If we want 
to interact with the processes or tasks, we will need to get another instance of 
RuntimeEngine.

Now that we understand the lifecycle of both the RuntimeManager and 
RuntimeEngine instances, we can discuss the different types of runtime  
managers available for use in the jBPM6 code base.

The different implementations available
The RuntimeManager and RuntimeEngine are interfaces that can be implemented 
in any way a specific domain requires. There is no correct way of using the runtime 
managers, because the specifics of what your organization is trying to accomplish 
will determine whether a KIE session should be shared between different processes 
or not. Nevertheless, the jBPM6 project provides a number of implementations for 
the most common situations.

Depending on which implementation of the runtime manager we use, we will 
need to request a RuntimeEngine instance with different parameters. The runtime 
manager provides the getRuntimeEngine method to obtain a RuntimeEngine 
instance using a Context object as a parameter. This Context object will have 
the responsibility of identifying the actual instance of the KIE session and other 
configuration components for our runtime that we need for each different context.



Chapter 7

[ 181 ]

The following implementations of the RuntimeManager interface are already 
provided in jBPM6:

• Singleton Runtime Manager
• Per Process Instance Runtime Manager
• Per Request Runtime Manager

We will discuss each one in detail, learn how they can be used, and see the different 
types of Context objects that should be used to obtain the RuntimeEngine instances 
from each one of them.

Singleton Runtime Manager
The Singleton Runtime Manager makes sure a single KIE Session is used for all 
interactions with the runtime engine, as shown in the following diagram:

The jBPM6 code base provides a factory method to create a Singleton Runtime 
Manager. A code section from the singleton-runtime-manager project for this 
chapter where this factory method is being used is shown here:

RuntimeManager manager = RuntimeManagerFactory.
        Factory.get().
        newSingletonRuntimeManager(
                runtimeEnvironment, "node-identifier");

As you can see, it receives two parameters. The second one is optional, and it 
identifies a runtime manager uniquely. Given that runtime managers should behave 
as singletons, the factory keeps a register of all runtime managers until they're closed 
to make sure that you cannot instantiate the same runtime manager twice.



Defining Your Environment with the Runtime Manager

[ 182 ]

The get factory method mentioned before will instantiate a 
SingletonRuntimeManager object. This object stores a file with the KIE session ID 
that should be used. Every time a new instance of SingletonRuntimeManager is 
created, it checks if that file is already created. This session ID is later on retrieved 
from the database, or if persistence is not being used, from an in-memory HashMap.

Each time a runtime engine is created, a reference to a TaskService instance is also 
created. Since the TaskService instance acts as a stateless service with only the 
persistence keeping state information, no distinction is made between the different 
built-in runtime managers when it comes to creating the Human task component.

The Singleton Runtime Manager will require a context parameter to retrieve the 
RuntimeEngine instance. Since there is no distinction required between different 
environments (because they all share the same KIE session), we can use an 
EmptyContext instance or null parameters to retrieve the runtime engine:

RuntimeEngine engine = manager.getRuntimeEngine(
        EmptyContext.get());

With SingletonRuntimeManager, every RuntimeEngine instance returned will have 
the same KIE session object. This has its own advantages and disadvantages.

On the one hand, all processes that will be running on the same session can interact 
with each other through the rule engine memory, and feed combined rule executions 
with data. This allows you to have many processes interacting with each other 
as well as with rules, letting the processes remain simple enough, and complex 
decisions being handled by rules. Also, it allows for performance monitoring rules  
to be written and executed on the same environment as the processes are running.

On the other hand, having rules sharing information between different process 
instances can also lead to complications, particularly if we want to write rules that 
take into account only the objects of a specific process instance in a Business Rule 
task. Also, when persistence and concurrent invocations of process instances are 
being used, all of them will be derived form the same session that will have to 
execute them one at a time. This could lead to performance degradation.



Chapter 7

[ 183 ]

The CDI injection
The jBPM6 project provides CDI annotations to directly inject a 
SingletonRuntimeManager instance in your managed beans. To distinguish it 
from other types of runtime managers, you should mark it with both the @javax.
inject.Inject annotation and the @org.kie.internal.runtime.manager.cdi.
qualifier.Singleton annotation. That way, the CDI initialization will know to 
inject a singleton runtime manager instance without having to declare its specific 
type. It can mark a RuntimeEnvironment instance as well:

@Inject @Singleton
RuntimeManager manager;
@Inject @Singleton
RuntimeEnvironment environment;

Remember that CDI is called upon initialization, so always inject the manager but 
not the RuntimeEngine instance.

Per Request Runtime Manager
The Per Request Runtime Manager does the opposite of the singleton instance; 
it creates a new KIE session the first time a request is made in a particular thread. 
Each runtime engine returned from the manager will have a new KIE session for the 
duration of the thread, as the following diagram depicts:

The jBPM6 code base provides a factory method to create a Per Request Runtime 
Manager. A code section from the per-request-runtime-manager project for this 
chapter where that factory method is being used is shown here:

RuntimeManager manager = RuntimeManagerFactory.
        Factory.get().
        newPerRequestRuntimeManager(
                runtimeEnvironment, "node-identifier");



Defining Your Environment with the Runtime Manager

[ 184 ]

As you can see, it receives two parameters. The second one is optional, and it 
identifies a runtime manager uniquely, in the same way as we explained for the 
Singleton Runtime Manager.

The get factory method instantiates a PerRequestRuntimeManager object.  
This object will keep a ThreadLocal reference pointing to the KIE session in one 
particular thread. If it is a nonpersistent environment, the reference will be lost the 
moment the runtime engine is disposed of. This doesn't make much sense unless you 
run fully-synchronous, automatic processes that will be completed the moment they 
return from the startProcess method invocation, or in a single code block.

However, if you are in a persistent environment, all references to long-lived process 
instances will be kept in the database, as well as any process instance reference that 
is waiting for a specific signal. In these cases, the Per Request Runtime Manager 
provides the most isolation regarding execution of processes and rules. All rules  
will be fired with only the data that is present in the process instance or explicitly 
added to the working memory before calling a process related invocation in the  
KIE session.

The Per Request Runtime Manager will require a context parameter to retrieve the 
RuntimeEngine instance associated to a specific process instance ID. However, in  
the same way as the Singleton Runtime Manager, it will not condition the KIE 
Session to be used (in this case, it will always be a new one), so we can use the 
EmptyContext instance:

RuntimeEngine engine = manager.getRuntimeEngine( 
        EmptyContext.get());
ProcessInstance pInst = engine.getKieSession(). 
        startProcess("procId");
Long procInstId = pInst.getId();
manager.disposeRuntimeEngine(engine);

The PerRequestRuntimeManager injection provides enough isolation of processes to 
guarantee the highest scalability possible, but the rules associated with the process 
execution cannot take advantage of gathering cross-process instance information. 
Information that could be used in cross referencing complex events fired by different 
process instances will not be available, because every time a new KIE session is 
created, the working memory is initialized from scratch.



Chapter 7

[ 185 ]

The CDI injection
The jBPM6 project provides CDI annotations for the PerRequestRuntimeManager 
injection in managed beans. To distinguish it from other types of runtime managers, 
you should mark it with both the @javax.inject.Inject annotation and the @org.
kie.internal.runtime.manager.cdi.qualifier.PerRequest annotation. CDI 
initialization will inject a runtime manager instance per request without having to 
declare its specific type. It can mark a RuntimeEnvironment instance as well:

@Inject @PerRequest
RuntimeManager manager;
@Inject @PerRequest
RuntimeEnvironment environment;

Remember that CDI is called upon initialization, so always inject the manager but 
not the RuntimeEngine instance.

If you use a Per Process Instance or Per Request Runtime Manager, 
never inject KIE sessions or Human task service objects as CDI 
beans. They will be managed by the runtime manager and different 
KIE session instances and services could be created. Instead, you 
should only inject the manager and request sessions and services 
from a specific runtime engine.

Per Process Instance Runtime Manager
The Per Process Instance Runtime Manager takes care of registering the specific 
KIE session where a process was created. Each runtime engine returned from the 
manager will later on use the same session that created a specific process instance,  
as shown in the following diagram:



Defining Your Environment with the Runtime Manager

[ 186 ]

The jBPM6 code base provides a factory method to create a Per Process Instance 
Runtime Manager. A code section from the per-process-instance-runtime-
manager project for this chapter where this factory method is being used is  
shown here:

RuntimeManager manager = RuntimeManagerFactory.
        Factory.get().
        newPerProcessInstanceRuntimeManager(
                runtimeEnvironment, "node-identifier");

As you can see, it receives two parameters. The second one is optional, and identifies 
a runtime manager uniquely, in the same way as we explained for the Singleton 
Runtime Manager.

The get factory method instantiates a PerProcessInstanceRuntimeManager 
object. This object will keep a reference of which session started which process 
instance. If it is a nonpersistent environment, the reference will be kept in an internal 
HashMap. If it is uses persistence, the reference is kept on a JPA-managed table called 
ContextMappingInfo as well, but is cached internally to minimize database use.

The PerProcessInstanceRuntimeManager will require a context parameter to 
retrieve the RuntimeEngine instance associated to a specific process instance ID.  
If we want to start using a new KIE session, we can request a runtime engine with  
a fresh session by using the EmptyContext instance. This is usually the practice to 
start a new process:

RuntimeEngine engine = manager.getRuntimeEngine( 
        EmptyContext.get());
ProcessInstance pInst = engine.getKieSession(). 
        startProcess("procId");
Long procInstId = pInst.getId();
manager.disposeRuntimeEngine(engine);

However, if we want to retrieve the same session that started a previous process 
instance, we can retrieve it with the process instance ID and the help of a context 
class called ProcessInstanceIdContext:

Long procInstId = ... // process instance ID provided by code
RuntimeEngine engine2 = manager.getRuntimeEngine(   
        ProcessInstanceIdContext.get(procInstId));
engine2.getKieSession().getProcessInstance(procInstId);



Chapter 7

[ 187 ]

Even if the PerProcessInstanceRuntimeManager object can return a new session 
for each process instance we manually start, this is not mandatory. There is no 
limitation to the number of process instances a KIE session could use. Also, process 
instances started by internal process signaling and subprocesses will end up sharing 
the same KIE session. Nevertheless, each new process instance will register a new 
mapping between the KIE session and the new process instance, which means that 
you can use the ProcessInstanceIdContext to retrieve the specific KIE session.

Also, if you wanted to explicitly create a process instance in the same session where 
another one resides, you could just get the RuntimeEngine instance using the process 
instance ID of the previous process instance and start the new process in its session:

RuntimeEngine engine = manager.getRuntimeEngine(
        EmtpyContext.get());
ProcessInstance inst1 = engine.getKieSession().
        startProcess("procId");
Long oldProcInstId = inst1.getId();
manager.disposeRuntimeEngine(engine);
RuntimeEngine reuseEngine = manager.getRuntimeEngine( 
        ProcessInstanceIdContext.get(oldProcInstId));
ProcessInstance inst2 = reuseEngine.getKieSession().
        startProcess("procId");

This allows for a greater control over which process instances are executed in 
each session. We can have several groups of process instances running in parallel 
in multiple KIE sessions that can run in multiple threads, which allows for better 
performance and scalability. Process instances inside the same session can share 
events and rule data between each other.

However, we must understand that process instances residing in a different KIE 
session will not have this data available unless we explicitly share it through our 
own code. We must explicitly search for KIE sessions using process instance IDs, 
which means that we must store other details associated to the mapping we want 
to keep elsewhere. The Per Process Instance Runtime Manager is a component that 
sacrifices a little of this ease of use in exchange for better performance (by providing 
the possibility of having multiple sessions).



Defining Your Environment with the Runtime Manager

[ 188 ]

The CDI injection
CDI annotations are provided as well for PerProcessInstanceRuntimeManager.  
To distinguish it from other types of runtime managers, you should mark it with 
both the @javax.inject.Inject annotation and the @org.kie.internal.runtime.
manager.cdi.qualifier.PerProcessInstance annotation. CDI initialization will 
inject a PerProcessInstanceRuntimeManager instance without having to declare its 
specific type. It can mark a RuntimeEnvironment instance as well:

@Inject @PerProcessInstance
RuntimeManager manager;
@Inject @PerProcessInstance
RuntimeEnvironment environment;

Remember that CDI is called upon initialization, so always inject the manager but 
not the RuntimeEngine instance.

For the RuntimeEnvironment injected instance in CDI, you could  
use multiple annotations for the different runtime manager types.  
The following code is completely valid and often used in test cases:

@Produces

@Singleton @PerProcessInstance @PerRequest

public RuntimeEnviornment createEnv() {

    return RuntimeEnvironmentBuilder.Factory.get().

        newDefaultBuilder().get();

}

The UI configuration of runtime managers
The KIE Workbench (which we explained in Chapter 4, Understanding the KIE 
Workbench), among its functionalities, provides a runtime environment for process 
executions. It uses the provided runtime manager implementations to allow the user 
to configure how each module they create is going to be executed. In order to do 
so, you must follow specific steps to provide the workbench with all the necessary 
information. You will have to perform the following operations:

• Configure a KIE session for a specific project and deploy it
• Configure a runtime manager type for the specific deployment

We'll provide a step-by-step guide to be able to do so.



Chapter 7

[ 189 ]

Configuring a KIE session for a KIE module
Every provided instance of the runtime manager depends on a KIE session being 
defined and the Human task component being available. The KIE Workbench 
provides a running instance of the task service, but the KIE session requires a KIE 
module to be configured inside a project before being available for use. In this 
section, we will go into detail about defining our knowledge bases and sessions  
in a project inside the KIE Workbench.

First of all, we need to go to the Project Editor. You can find it in the Project 
Authoring perspective under Authoring, and then navigating to Tools | Project 
Editor. There, you will have a drop-down list from where you will be able to select 
the option Knowledge bases and sessions as shown in the following sessions:

When you select the Knowledge bases and sessions option, the project editor 
contents will change to show a series of user friendly form components to define a 
kmodule.xml file inside the project. We will use it to define a KIE base with the name 
kbase1 and a stateful KIE session called ksession1. Any name we want to use will 
do, as we will only use them as a reference later on.

Make sure you mark the KIE base as default by selecting it and clicking on the Make 
Default button; for the moment, let's leave the rest of the configuration as is. The KIE 
session menu is to the bottom-right corner of the project editor.



Defining Your Environment with the Runtime Manager

[ 190 ]

After you finish editing the ksession1 components (you can edit its preconfigured 
work item handlers and listeners as well), you can click on the Build & Deploy 
button to make the deployment available for the runtime configuration components:

Once the Build & Deploy stage is finished and the compilation is successful, we can 
go to Deploy | Deployments, because by default the KIE Workbench will initialize 
a Singleton Runtime Manager for the default KIE session of the default KIE base of 
every deployed project. This is shown in the following screenshot:

Configuring a runtime manager type
We can delete the existing deployment units by clicking on the Delete action button 
to the right of each row, or create new ones by clicking on the New Deployment 
Unit button on the header of the table. When we click on the New Deployment Unit 
button, a pop up will guide us to select a specific release of a project, a KIE base, 
and a KIE session from that project, and also to select the type of provided runtime 
manager that we will use to operate with the KIE session:



Chapter 7

[ 191 ]

Once we complete all the fields and click on the Deploy Unit button, we will see the 
unit details available as a new row in the deployment units table as shown in the 
following screenshot:

By default, the KIE Workbench will allow you to have one runtime manager per  
KIE session definition. If you define multiple different sessions, you should be  
aware that the place where they will be used (from the KIE Workbench perspective) 
is the Process Definitions and Process Instances perspectives. In these 
perspectives, you will have access to the process definitions from which you  
can start process instances.



Defining Your Environment with the Runtime Manager

[ 192 ]

Having a specific runtime manager configured for a specific KIE session 
configuration will allow us to not only run a process in the KIE Workbench, but also 
to customize it with the specific configuration we chose. We can configure our KIE 
session name to run on a specific KIE base with many rules and processes together 
and to run them all in a single KIE session or in multiple ones.

You have to make sure that for the same KIE Workbench installation, if you have 
multiple deployment units, you can only access a process definition from one of 
them, which is a limitation of the tooling. The API has access to anything you want, 
though. If you wish to have any kind of runtime manager in different parts of your 
application for the same KIE session configuration, you just have to provide the 
proper CDI annotations to use the one you prefer.

You could also extend the available runtime managers to provide different strategies 
for KIE session and Human task component initialization. We will discuss that topic 
in the next section.

Creating your own runtime manager
The provided runtime manager implementations are enough to start working with 
jBPM6 without going into the details of how components are created. However, 
several organizations reach a point where they need to define specific sharing 
between processes in a simple way to allow special process instance collaborations 
through rules. One example of this would be writing monitoring rules that count 
how many process instances of a specific domain are being created within the last 
hour that are not yet finished, and take actions when that number reaches high 
values. This is something that can be easily written in the internal Drools Rule 
Language (DRL), as shown in the following DRL code:

rule "too many processes"
when 
    $n: Number(intValue > 1000) from accumulate(
        $p: WorkflowProcessInstance() over window:time(1h)
        eval($p.getVariable("domainXProcess") != null)
    )
then 
    externalService.sendWarning("Too many processes created in the 
last hour: " + $n);
end

In order for this rule to work, all process instances that have the domainXProcess 
variable assigned should reside in the same working memory, and therefore, in the 
same KIE session.



Chapter 7

[ 193 ]

Also, they might need specific levels of isolation determined by external policies. 
For example, a company working on legal processes might want to make sure that 
all rules and processes that make legal decisions for a specific client remain isolated 
with respect to the client. Since the runtime manager is the one that creates the KIE 
session and the Human task service, it is the perfect place to decide whether to share 
an existing session or create a new one, based on context information.

The main components that we will need to provide to create our own runtime 
manager are as follows:

• A RuntimeManager interface implementation
• A Context interface implementation to pass the domain key we will use

We'll discuss how to provide said components for a Per Process Definition Runtime 
Manager implementation.

Per Process Definition Runtime Manager
In the custom-per-process-runtime-manager project, we've provided an 
implementation of a runtime manager that will store a KIE session for each process 
definition. By default, when you use this runtime manager, it will use the same 
KIE session for all instances of a specific process definition. The implementation is 
composed of three custom classes:

• ProcessDefContext: This class defines the context key to be the String 
representation of the process definition ID

• PerProcessDefinitionRuntimeManager: This class implements 
RuntimeManager to register the KIE session of each process definition

• CustomRMFactory: This class provides a factory method to create the specific 
runtime manager for us

Other classes are also used, but they are part of the already available 
implementation. Most of them are explained through comments in the provided 
runtime manager implementation code, and we will learn about them as we get  
into detail about how this runtime manager works.

We've based this custom implementation on PerProcessInstanceRuntimeManager, 
with some modifications on top of it. They work by getting a local or database 
mapping from the specific context ID to a KIE session ID. If the mapping is found, 
the same session is reloaded. Otherwise, a new session is created. The mapping is 
retrieved from an interface called Mapper, which acts as a Data Access Object for the 
relation between KIE session IDs and context IDs. 



Defining Your Environment with the Runtime Manager

[ 194 ]

The mapping, however, is not stored immediately after the creation of the 
KIE session; it is stored when a process instance is created, if not present. To 
connect that functionality with the internal functions of the KIE session, we 
provide an implementation of the ProcessEventListener interface called 
MaintainMappingListener, which stores the relation before the process  
instance is created. The overall class structure looks like the one shown in  
the following diagram:

The Mapper interface, as you can see, has two different implementations depending 
on whether you use database persistence or not. The MaintainMappingListener 
implementation will use the reference to said Mapper object to store the reference:

public void beforeProcessStarted(ProcessStartedEvent event) {
    String processId = event.getProcessInstance().getProcessId();
    if (mapper.findContextId(ksessionId) == null) {
        mapper.saveMapping(
                ProcessDefContext.get(processId), ksessionId);
    }
}

After the KIE session, the getRuntimeEngine method in the RuntimeManager 
interface, which is either created or loaded, creates a new TaskService instance 
using the same methods we saw in Chapter 6, Human Interactions. The context domain 
(a process definition ID) has no relevance for the Human task component, so no 
special treatment is done to keep different instances for each task service. However, 
this could be easily done and kept under a mapping as well through a custom 
mechanism to have a full separation of runtime functionality.



Chapter 7

[ 195 ]

The resulting functionality is a KIE session that is registered on a by-process-definition 
basis, making a runtime structure similar to the one shown in following figure:

Later on, we can construct a new Per Process Definition Runtime Manager by calling 
the factory method in the CustomRMFactory class, as shown in the following code:

RuntimeManager manager = CustomRMFactory.getInstance().
        newPerProcessDefinitionRuntimeManager(
                environment, "node-ID");

Summary
In this chapter, we saw how to use and create runtime managers, runtime engines, 
and how they affect the way processes can interact with each other. We learned the 
consequences of both KIE session sharing and isolation from a process execution 
perspective. Also, we learned how to define the environment configurations to start 
our runtime.

The following chapter will show us how to configure persistence mechanisms for 
our KIE sessions in order to keep database copies of our processes' current execution 
paths for reuse and concurrency.





Implementing Persistence 
and Transactions

In real-life scenarios, we need to have process instances running for many hours, 
days, or even years. If we want to be able to run processes for such a long time, we 
cannot rely on something as volatile as the memory of a server to keep track of all 
our process instances statuses. We need a way to provide persistence for them.

This chapter focuses on providing a persistence and transaction mechanism to 
our process engine environment, which will allow us to store enough information 
about our executions to be able to recreate them afterwards. This feature brings 
the possibility of having more than one thread or server trying to access the same 
persisted runtime environment at the same time. So, we will also learn how to 
generate a transaction around said persistence to make sure no concurrency  
issues occur.

Persistence and transactions are topics that are hard to handle for newcomers, mostly 
because they entail a lot of different configuration points that need to be carefully 
orchestrated to get the expected behavior from our application. Once you have 
finished this chapter, you will learn about the following:

• How the jBPM6 persistence works
• How to configure all the different components of the persistence  

and transaction
• Why we need transactions in our systems



Implementing Persistence and Transactions

[ 198 ]

Why do we need persistence and 
transactions?
So far, we've dealt with very short-lived processes. Running inside a JUnit test, 
process instances last very few milliseconds, and having them in memory is 
sufficient for those environments. However, in real-life situations, we don't usually 
create interactions between systems and humans without having long wait states 
in between. This is especially relevant for the case of processes with human tasks, 
where users backed up with too much work might have a pending task assigned to 
them for hours, days, or even more. For each of the processes in your environment, 
you should be able to determine whether it should be a persistent or a nonpersistent  
process depending on how long-lived each of its process instances will be. From this 
perspective, you will find these two top-level categories:

• In-memory processes
• Long running processes (also known as persistent processes)

In-memory processes are usually short-lived processes that perform entirely 
automatic synchronous interactions. Depending on the complexity of each automatic 
interaction, some processes might take longer to complete than others, but with 
this type of process, in general, a range that might go from a few seconds to a few 
minutes is more likely.

Long-running processes, on the other hand, might take several minutes to complete 
the fastest process instance—with more real values ranging from hours to even years, 
depending on the nature of the process. Keeping an in-memory reference for such 
processes becomes impractical and even impossible to guarantee in some cases. For 
such processes, we need a persistence mechanism to keep a recoverable reference to 
the process whenever it is needed.

Several questions will help you determine whether your process will need to be 
persisted or not:

• Does your process interact with other components? How slow are they? 
How prone to failure are they? If external interactions are really slow and 
asynchronous by nature, or prone to errors and retries, then a persistent 
process will be able to handle it better than an in-memory process.

• Should the process be able to recover from a failure state? If we should 
manually recover from an error state, we will need to keep a reference  
of the process to recover it later on.

• Does the process interact with humans? Human interactions are intrinsically 
slow from a computer perspective. Persistent processes should be used 
whenever human interactions are involved.



Chapter 8

[ 199 ]

• Does the process have a high demand? This might imply that we need 
to handle the process in a distributed environment. A persistent process 
will allow you to retrieve an existing process from any other system with 
connection to the database.

Persistence of the process' internal state needs a set of characteristics that we need 
to understand in order to take full advantage of the mechanism. We'll proceed to 
explain each component of the persistence to make it as clear as possible to configure 
it in the way that best suits your needs.

Persisting long running processes
The main reason we need to persist processes is because they are yet to be finished. 
From a process' perspective, we say that the process is still active, which means 
its business goal hasn't been accomplished yet. This means that the process is still 
running from its internal perspective; however, from a more technical view (and if 
we are using asynchronous work item handlers), the process is going to be waiting 
for some external interaction, either a human interaction or a system interaction.  
To understand these wait states, consider the following process flow:

As you can see in the preceding process definition flow, the first thing a process 
instance will do is execute the Start event, and then the User task User Interaction 1 
will be started. However, since it is an actual human interaction, it will be waiting  
for the user to complete said task before continuing with the execution. As we saw  
in Chapter 6, Human Interactions, this will leave the process instance in an active  
state, and wait for the user interaction to be finished to continue with the process 
execution. The following process flow shows how this interaction will look from a 
technical perspective:



Implementing Persistence and Transactions

[ 200 ]

As you can see, there are four time lapses to which we should pay attention in 
the previous process definition section. The first one, t1, starts when we call the 
startProcess method on a KIE session object. Once it reaches the start of a User 
task, it will return control to the invoking thread, and wait for the User task to be 
finished. This could take a really long time, and we don't want to have to depend 
entirely on memory until a user decides to finish the task. This is one of the reasons 
persistence is needed for jBPM6.

Persistence is also needed for external system interactions, because of two  
main characteristics:

• An external system interaction might take a lot of processing time. This could 
be because it's using a slow, overused system. The problem is we might have 
many different process invocations waiting for the next state in a single BPM 
system, and if we leave all waiting states on external interactions in memory, 
we might exceed the BPM system capacity.

• The external system could fail and need a retry at some other time. This is 
mostly a consideration for asynchronous external interactions rather than for 
persistence. However, while the process instance is waiting to do a retry at a 
given time, we can release resources from the server if we store those process 
instances now and reload them later on.

Now that we have understood that we might need to store and reload our process 
instances at different time intervals, we have to deal with another particular 
problem: making sure two different threads don't try to access the same process 
instance at the same time, causing an internal conflict. The solution for said problem 
is also the solution to some other much more important issues, which we will discuss 
in the next subsection.

The server failover and distribution 
mechanism
Whenever we have generic systems that might cover very diverse cases of our 
organization, it becomes more and more important that we have a way to scale up 
such applications. In order to do so for a BPM system, process persistence is the  
key. This is because it will not only release precious memory resources when not 
needed, but also allow the creation of different nodes in a High Availability grid 
managing said processes if they have more idle time, all synchronized through  
the database.



Chapter 8

[ 201 ]

However, this carries another issue that we should discuss: the possibility that two 
different servers (or even two different threads in the same server) may try to access 
and change the same process instance simultaneously. This can be solved in the 
same server with very simple in-memory synchronization mechanisms. However, 
when you have different servers competing for the same process instance, we need 
something more powerful, that is, transaction management.

Transaction management allows us to make sure that different servers will not work 
on the same process instance at the exact same time, and persisted process instances 
will not be persisted if a runtime error occurs (a possibility provided by the rollback 
capacity of transactions).

Now that we understood the necessity of persistence and transactions in a BPM 
system, it's time to analyze how these components are provided in jBPM6.

Persistence in jBPM6
The persistence and transaction mechanisms in jBPM6 are not considered to be  
an externally consultable source of information; they provide a quick store and 
recovery mechanism, mainly to have a high-performance distributed platform.  
This means that the simplest way to configure the persistence in jBPM6 will have  
two characteristics:

• Only enough information to recreate the runtime is persisted. This means 
that we will have limited information about our process instances; only 
currently running processes will be stored, and only the information of the 
currently active nodes and used variables will be available. The rest of  
the information can be persisted as well, but through other mechanisms  
(see the History logs – extending the basic functionality section further in  
this chapter).

• The runtime information is persisted in the fastest way possible: serialized 
information in a byte array structure. This makes information for the basic 
persistence mechanism hard to read from external tools.

The persistence and transaction mechanisms for jBPM6 are directly applied from 
the KIE session. This means that not only the process runtime has a persistence 
mechanism for jBPM6, but also the rule runtime. This is because the same 
mechanism that is used by Drools to store content in a database is extended  
by jBPM6 to also store process instance information.



Implementing Persistence and Transactions

[ 202 ]

This is the best way to guarantee that the exact same environment that started 
running a process in one server or thread will be the one that will continue running 
it in another place. This is especially important if you're using rules that are invoking 
references to different process instances. We will see some examples of such types of 
rules in Chapter 9, Integration with Other Knowledge Definitions.

The configuration needed to create and load a JPA persistent KIE session with 
persistent process instances converges in code similar to the following:

KieServices ks = KieServices.Factory.get();
Environment env = ks.newEnvironment();
EntityManagerFactory emf = ...;
TransactionManager tm = ...;
env.set(EnvironmentName.ENTITY_MANAGER_FACTORY, emf);
env.set(EnvironmentName.TRANSACTION_MANAGER, tm);
KieBase kbase = ks.getKieClasspathContainer().getKieBase();

The preceding code section performs a series of steps needed to configure a 
persistent environment and load a KIE knowledge base. These components will 
be used while creating (and further down the line, loading) a KIE session that is 
persisted in a JPA persistence unit.

For brevity reasons, we skipped the creation of some of the components,  
such as the JPA EntityManagerFactory object, and the initialization of 
TransactionManager, leaving only the code relevant for the configuration  
of the Environment variable. If you want to see a full example of this  
code, it's available in the JPAPersistentProcessTest.java file in the  
persistent-process-examples project.

You can see that we have set special entries in the environment variable for the entity 
manager factory and transaction manager. These are the most basic properties a 
persistent environment defined with JPA will need. Later on, the KIE components 
will use the specified environment to determine how the persistence is configured in 
your environment.

Also, we are defining the KIE knowledge base. This is because, as we mentioned 
earlier, the persistence is only going to store minimal information for the runtime 
to be reloaded in another context. For this reason, the persistence mechanisms don't 
have the trouble of serializing the full knowledge base, and it must be provided each 
time we create or reload a persistent KIE session.



Chapter 8

[ 203 ]

KieStoreServices – creating and loading KIE 
sessions
Once all environment components are created, we will not directly create the 
persistent KIE session implementation. Instead, we will use a special service to 
handle that creation for us. As a matter of fact, we will not even load the special 
service class directly; we will use the KieServices helper class to load it for us,  
as shown in the following line of code:

KieStoreServices kstore = KieServices.Factory.get().
        getStoreServices();

The KieStoreServices interface will define two methods—one to create a  
new persistent KIE session and another to load an existing one, as shown in  
the following code:

KieSession ksession = kstore.newKieSession(kbase, null, env);
Integer sessionId = ksession.getId();
...
//on a different part of your code
KieSession reloadedKsession = kstore.loadKieSession(sessionId,  
  kbase, null, env);

The KIE session ID is the only data that the application will need to remember to 
retrieve the same KIE session later on. Depending on how much we wish to reuse the 
KIE session, we might consider temporarily storing the ID, or maybe even registering 
it in a database reference or file to be reused all the time.

The actual implementation behind the KieStoreServices interface knows we have 
to use JPA to persist our runtime and create all the necessary components to make  
a persistent KIE session. In order to have the specific implementation of the service  
in the classpath, we will need to add a dependency to our projects that holds  
that implementation:

<dependency>
    <groupId>org.jbpm</groupId>
    <artifactId>jbpm-persistence-jpa</artifactId>
    <version>6.1.0.Beta3</version>
</dependency>



Implementing Persistence and Transactions

[ 204 ]

Different forms of persistence can be provided behind the KieStoreServices 
interface. Since the KieServices helper class will try to load the actual valid class 
from the service loader, we could implement our own persistence strategy and hide 
it behind the same interfaces, minimizing the changes needed in existing code to 
start using a different persistence mode. The runtime manager (explained in the 
previous chapter) uses the KieStoreServices class behind the scene so that users 
don't have to use it directly, and it will work for any part of the jBPM6 code that uses 
persistent processes.

How does persistence work?
So far, we've seen how to start a persistent KIE session using helper classes  
from the jBPM6 API. We are now going to take some time to understand the 
components that are generated by those helper classes. Understanding the internal 
composition of a persistent KIE session will help you understand how and when 
the persistence is being used, and it will help you to easily detect problems in your 
persistence configuration.

Persistence is provided to a KIE session is through a specific set of adapters that use a 
command pattern implementation. Command pattern shows that every operation is 
encapsulated by a single contract (specifically, a Command interface with an execute 
method). Using this contract, you can implement different Command objects for all 
the different methods of a class (in our case, the KIE session). Then, you can decorate 
every method invocation by just deriving each command execution through another 
class, called a CommandService, which will have the responsibility of knowing what 
you have to do before and/or after each command execution.

An example of how this is done to provide a persistent KIE session can be seen in  
the following class diagram:



Chapter 8

[ 205 ]

Here, we can see that we have two implementations of a KieSession interface: 
StatefulKnowledgeSessionImpl, which is the real implementation of a KIE  
session, and CommandBasedStatefulKnoweldgeSession, which is the command 
pattern adaptation of the KIE session interface. The latter will implement each 
method by creating a specific Command object and assigning its execution to a 
CommandService object.

The actual implementation used by the JPA persistent KIE session is called 
SingleSessionCommandService, and it provides a wrapper around the KIE  
session command execution that creates a database transaction before the  
command execution, serializes the actual KIE session object to a persistent  
object, and commits the transaction.

The SingleSessionCommandService session doesn't directly implement the 
transaction management, but it has an Interceptor list that defines all the  
different method decorations needed, similar to the way the Human task  
component explained in Chapter 6, Human Interactions uses.

Eventually, the interaction between persistence and the KIE session activity happens 
on a per-method invocation basis, as shown in the following diagram:



Implementing Persistence and Transactions

[ 206 ]

We can infer the following points from the preceding diagram:

• The runtime won't be stored at every single change, but after a specific 
method invocation is completed. This means our runtime will only be storing 
itself when its internal execution reaches a static return point. Think of it as a 
very complex, configurable state machine, which will only be persisted after 
it reaches a defined state.

• Every process in the runtime will be persisted only when it reaches a 
safe state. That means, if we have multiple automatic steps and a few 
asynchronous steps in a process, the process runtime will only be  
persisted at the asynchronous step's wait states.

Internally, the JPA persistence strategy will store the process runtime separated in 
three different entities:

• SessionInfo: This class is a serialization of the KIE session, and it is persisted 
exclusively from the command pattern whenever a method on the persistent 
KIE session is invoked. It basically stores a byte array with the deserialized 
information of the KIE session at a particular state and an integer ID.

• ProcessInstanceInfo: This class is a serialization of a specific process 
instance's runtime information. It stores a byte array with the deserialized 
information of the process instance runtime, its ID, state, and pending event 
information. There is a special manager class used by the persistent KIE 
session, called JPAProcessInstanceManager, which takes care of notifying 
the persistence of any changes the KIE session does to each process instance's 
internal status.

• WorkItemInfo: This class stores information about a specific state in a 
process instance. It specifically stores a byte array with the input and 
output information of a step, its ID, a process instance it references, and the 
particular step's internal state flag. There is a special manager class used by 
the persistent KIE session, called JPAWorkItemManager, which takes care of 
notifying the persistence of any changes in each step done by the KIE session.

In order for the JPA to be able to perform all the required steps to actually store  
the content of the KIE session and its components in a database, it requires  
certain configurations:

• JPA implementations and jBPM6-related dependencies
• A data source with access to an existing database
• A persistence unit with all the entity mappings
• A transaction manager configuration

We'll see all these configurations in detail during the next section of this chapter.



Chapter 8

[ 207 ]

Persistence and transaction configuration  
for jBPM6
In order to configure the JPA persistence in our environment so that jBPM6  
can create and load persistent KIE sessions and process instances, we need to 
configure a set of components and tie them together.

The first components we will need are the JAR files in our classpath to be able to use 
JPA directly from our code, and also directly from jBPM6. The dependencies we will 
use will be implementing JPA 2.0, and the Maven references to the relevant JAR files 
can be found in the persistent-process-examples project's pom.xml file:

<!-- JPA 2.0 standard library -->
<dependency>
    <groupId>org.hibernate.javax.persistence</groupId>
    <artifactId>hibernate-jpa-2.0-api</artifactId>
    <version>1.0.1.Final</version>
</dependency>
<!-- Hibernate implementation of the JPA 2.0 standard library -->
<dependency>
    <groupId>org.hibernate</groupId>
    <artifactId>hibernate-core</artifactId>
    <version>4.2.3.Final</version>
</dependency>
<!-- JPA management in jBPM6 -->
<dependency>
    <groupId>org.jbpm</groupId>
    <artifactId>jbpm-persistence-jpa</artifactId>
    <version>6.1.0.Beta3</version>
</dependency>
<!-- in-memory database -->
<dependency>
    <groupId>com.h2database</groupId>
    <artifactId>h2</artifactId>
    <version>1.2.128</version>
</dependency>
<!-- simple transaction manager -->
<dependency>
    <groupId>org.codehaus.btm</groupId>
    <artifactId>btm</artifactId>
    <version>2.1.4</version>
</dependency>



Implementing Persistence and Transactions

[ 208 ]

As you can see, each dependency has a different purpose. The hibernate-jpa-
2.0-api defines the interfaces (the internal contract) of the JPA 2.0 specification. 
The actual implementation of said specification is provided by the hibernate-
core dependency. We also need to provide a dependency for our data source and 
transaction manager (in our case, a simple test case, we can use h2 as an in-memory 
database and btm for the transaction manager). The jBPM6 management of the JPA 
persistence is done thanks to the classes we previously mentioned implemented in 
the jbpm-persistence-jpa dependency.

Once we have the dependencies, we need to define the required component 
configuration for each one of them. Let's start with JPA/hibernate, where the 
configuration we will need to add is the specific persistence unit that defines entities 
that should be mapped to our database. The most basic content that needs to be 
added to the META-INF/persistence.xml file in our classpath, as shown in the 
following code:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0" ...>
  <persistence-unit name="org.jbpm.persistence.jpa" 
                    transaction-type="JTA">
    <provider>org.hibernate.ejb.HibernatePersistence</provider>
    <jta-data-source>jdbc/testDS</jta-data-source>
    <mapping-file>META-INF/JBPMorm.xml</mapping-file>
    <class>org.drools.persistence.info.SessionInfo</class>
    <class>org.drools.persistence.info.WorkItemInfo</class>
    <class>
      org.jbpm.persistence.processinstance.ProcessInstanceInfo
    </class>
    <class>
      org.jbpm.persistence.correlation.CorrelationPropertyInfo
    </class>
    <class>
      org.jbpm.persistence.correlation.CorrelationKeyInfo
    </class>
    <properties>
      ...
    </properties>
  </persistence-unit>
</persistence>

Let's take some time to understand this file. It follows the JPA 2.0 standard XML 
notation to define five entities (SessionInfo, WorkItemInfo, ProcessInstanceInfo, 
CorrelationPropertyInfo, and CorrelationKeyInfo), a provider (which is 
defined in the hibernate-core dependency, called HibernatePersistence),  
and a JTA data source (which we will implement using btm).



Chapter 8

[ 209 ]

Since we are using JTA to define a transaction manager for our data sources, we need 
to define a JNDI registry where the transactions are discovered. We can define that 
easily by having a jndi.properties file within our classpath that defines, in our 
case, the btm naming registry, with the following content:

java.naming.factory.initial=bitronix.tm.jndi.BitronixInitial 
  ContextFactory

From then onward, all other components are defined in our case through code. 
Specifically, we will start a data source, use btm to start a transaction manager 
around that data source, and start an entity manager factory (a class used by  
JPA to interact with our database in runtime).

From inside our test cases, we define a method marked with the @Before JUnit 
annotation in our JPAPersistentProcessTest class by using the following content:

private PoolingDataSource ds = null;
...
@Before
public void startUp() throws Exception {
    ds = new PoolingDataSource();
    ds.setUniqueName("jdbc/testDS");
    ds.setClassName(
            "bitronix.tm.resource.jdbc.lrc.LrcXADataSource");
    ds.setAllowLocalTransactions(true);
    ds.setMaxPoolSize(3);
    ds.getDriverProperties().put("driverClassName",
            "org.h2.Driver");
    ds.getDriverProperties().put("Url", "jdbc:h2:mem:mydb");
    ds.getDriverProperties().put("password", "sasa");
    ds.getDriverProperties().put("user", "sa");
    ds.init();
}

The preceding code section will do two different things. First, which is easy to infer, 
is the creation of the PoolingDataSource class (a data source class provided by 
btm). What is hard to understand first-hand is that this is not our real data source, 
but just a wrapper that we will use to provide transaction management around the 
LrcXADataSource class (the actual in-memory database data source). Secondly, the 
preceding code section will also publish the created data source in the JNDI context. 
That way, the persistence unit that we previously configured in the persistence.
xml file is going to be able to take the connection from the jta-data-source 
parameter configuration:

<jta-data-source>jdbc/testDS</jta-data-source>



Implementing Persistence and Transactions

[ 210 ]

This way, the persistence unit will be using the specific data source information 
that we define in our unit test. We just need to make sure that we create the 
data source wrapper before instantiating the persistence unit's entity manager 
factory. This is something that the code you create to start the persistence unit 
needs to do beforehand, and it is the main reason we create the persistence unit's 
EntityManagerFactory object in the test method, and start the data source wrapper 
in the @Before section:

@Test
public void testPersistentKieSessionInstantiation() throws Exception {
    KieServices ks = KieServices.Factory.get();
    KieStoreServices kstore = ks.getStoreServices();
    Environment environment = ks.newEnvironment();
    EntityManagerFactory emf = Persistence.
        createEntityManagerFactory("org.jbpm.persistence.jpa");
    TransactionManager tm = TransactionManagerServices.
        getTransactionManager();
    environment.set(EnvironmentName.ENTITY_MANAGER_FACTORY, emf);
    environment.set(EnvironmentName.TRANSACTION_MANAGER, tm);
    KieBase kbase = ks.getKieClasspathContainer().getKieBase();
    KieSessionConfiguration ksconf = ks.
        newKieSessionConfiguration();
    KieSession ksession = kstore.newKieSession(
        kbase, ksconf, environment);
...
}

We will go into detail about each of the steps we saw in the previous code section,  
in the order they appear:

• We created the data source wrapper to handle the connection transactions 
for us. This initialization code is usually provided by the JEE container or 
by a context initialization framework such as CDI or Spring. We will need 
to obtain a TransactionManager object once we have initialized this. In our 
case, we do it with the following code:
TransactionManager tm = TransactionManagerServices.
    getTransactionManager();

• We first created the EntityManagerFactory object by calling the  
following code:
EntityManagerFactory emf = Persistence.
    createEntityManagerFactory(
    "org.jbpm.persistence.jpa");



Chapter 8

[ 211 ]

• We provided both the transaction manager and the entity manager factory to 
an Environment variable, as shown in the following code:
Environment env = KieServices.Factory.get().
    newEnvironment();
env.set(EnvironmentName.TRANSACTION_MANAGER, tm);
env.set(EnvironmentName.ENTITY_MANAGER_FACTORY, emf);

Once we have this information, we simply use the previously explained 
KieStoreServices interface to access a persistent KIE session.

While all these components will provide enough information to make a KIE session 
recoverable from another thread or server node, it is just the most basic information 
we can store inside a database. If we want to store and/or retrieve extra information, 
such as specific tables related to our domain model or statistical information, we can 
extend our configuration in multiple ways. We will concentrate on two of the most 
popular components for extending the persisted information:

• History logs: This component is used to store extra historical information 
about our process executions

• Object marshalling strategies: This component is used to store extra entities 
in specific ways in our model

History logs – extending the basic 
functionality
We previously mentioned that jBPM6 stores the minimal information to be able to 
recover a KIE session and its process executions in another place. Most of the time in 
productive environments, we want to keep information that is not directly required 
by the runtime, but is instead used by KPIs. These KPIs can be used to know about 
which tasks took longer, how many process instances are completed or pending,  
and many other inquiries.

In order to provide that information to the database and also to publish any piece of 
process information to external tools, we will use a specific implementation of the 
ProcessEventListener interface.



Implementing Persistence and Transactions

[ 212 ]

Process event listeners will expose all the process execution information through 
different methods that expose process starts, completions, and node and variable 
changes. We explored them previously in Chapter 7, Defining Your Environment 
with the Runtime Manager. In this case, we use the interface as a connection point 
to expose all that information in a different set of entities: the NodeInstanceLog, 
ProcessInstanceLog, and VariableInstanceLog classes. All the information can 
be checked later through a series of services. Summarizing all things needed to work 
with the history logs, we need the following four components:

• The jbpm-audit dependency added to the classpath:
<dependency>
    <groupId>org.jbpm</groupId>
    <artifactId>jbpm-audit</artifactId>
    <version>6.1.0.Beta3</version>
</dependency>

• The history log entities added to the persistence unit (the three classes 
enumerated previously, ProcessInstanceLog, NodeInstanceLog,  
and VariableInstanceLog)

• Adding the specific ProcessEventListener implementation to our  
KIE session:
ksession.addEventListener(
    AuditLoggerFactory.newJPAInstance(environment));

• Instantiating and using the audit log service to query the generated  
history logs:

AuditLogService service = new JPAAuditLogService(emf);

Once we have a version of the AuditLogService class (and some process executions 
to feed the history logs), we can start checking some of its information directly from 
the already provided methods:

List<ProcessInstanceLog> findProcessInstances();
List<ProcessInstanceLog> findProcessInstances(String procId);
List<ProcessInstanceLog> findActiveProcessInstances(
    String procId);
List<NodeInstanceLog> findNodeInstances(long processInstanceId);
List<VariableInstanceLog> findVariableInstances(
    long processInstanceId, String variableId);
...

You can also extend these methods quite easily, since they're only JPA queries 
executed against the existing entities. You can see an example of using the audit 
service in the testHistoryLogs() method of the JPAPersistentProcessTest class.



Chapter 8

[ 213 ]

Object marshalling strategies
Object marshalling strategies are used to configure our persistent KIE session to 
understand that specific objects are going to be persisted or loaded into the KIE 
session in a very specific way. By default, the persistent KIE session will try to 
serialize every object in the working memory, process variables, and task inputs  
and outputs to a series of byte arrays. However, if you have a specific way of storing 
certain objects in a data storage, you can use a persistence strategy to let the KIE 
session know how to persist such objects. This is a very common way of simplifying 
interaction- and domain-based monitoring of the process engine. To be able to 
provide such functionality, the Drools and jBPM6 API define an interface called 
ObjectMarshallingStrategy to specify different strategies of storing your model:

public interface ObjectMarshallingStrategy {
    boolean accept(Object object);
    void write(ObjectOutputStream os, Object object);
    Object read(ObjectInputStream os);
    byte[] marshal( Context context, ObjectOutputStream os,
                    Object object);
    Object unmarshal( Context context, ObjectInputStream is,
                      byte[] object, ClassLoader classloader );
    Context createContext();
}

The implementations are rather simple. The accept method will determine whether 
a specific object is suitable for the specific persistence strategy. If accepted, writing 
and reading the objects will involve two things:

• Storing or reading an ID or any other way of referencing the object in the 
provided byte array

• Reading and/or writing the object in a specific persistence strategy

There are a few implementations provided and they are ready to be utilized. The 
SerializablePlaceholderResolverStrategy implementation is the one used 
by default, and it simply attempts to write the full object to the byte array. The 
JPAPlaceholderResolverStrategy implementation is used to read objects from a 
JPA database. It only stores the ID in the byte array, and it doesn't store the objects 
if something changes. We extend it in the testProcessModelStorage method of 
the JPAPersistentProcessTest class by creating the JPAReadAndWriteStrategy 
object and adding it to the corresponding environment variable:

Environment environment = kservices.newEnvironment();
...
environment.set(EnvironmentName.OBJECT_MARSHALLING_STRATEGIES, 



Implementing Persistence and Transactions

[ 214 ]

    new ObjectMarshallingStrategy[] {
        new JPAReadAndWriteStrategy(emf), 
        new SerializablePlaceholderResolverStrategy(
            ClassObjectarshallingStrategyAcceptor.DEFAULT)
});

This configuration works by providing an array of the ObjectMarshallingStrategy 
objects, and the engine will try to find the first strategy in the provided array that 
accepts each specific object and uses it to persist or read the correspondent objects. 
This configuration needs to be the same when restoring a specific KIE session; 
otherwise, you might get marshalling problems.

Other persistence mechanisms
The KieStoreServices interface can be implemented in any way for any type 
of persistence you can imagine. The JPA persistence is currently the most robust 
implementation available, but there is also another implementation available on 
top of Infinispan (http://infinispan.org). Also, any other KieStoreServices 
implementation could be registered and used directly from the KieServices helper 
class by just registering the actual implementation through the following code:

ServiceRegistryImpl.getInstance().registerLocator( 
  KieStoreServices.class, new Callable<KieStoreServices>() {
    @Override
    public KieStoreServices call() throws Exception {
        return (KieStoreServices) Class.forName(
                "path.to.my.Impl").newInstance();
    }
});

Let's take a moment to review the Infinispan persistence usage with a small  
code example.

Infinispan persistence
Similar to the JPA persistence provided for jBPM6, there is another experimental 
implementation provided by the code base that allows you to store and load the 
contents of persistent KIE sessions in an Infinispan cache. This implementation uses 
the exact same command pattern to wrap every KIE session method execution with  
a transaction; however, instead of using the data access objects provided for JPA,  
it uses new ones created to work directly with Infinispan.

http://infinispan.org


Chapter 8

[ 215 ]

There is a project provided to see the Infinispan persistence implementation in action 
in the infinispan-persistence-examples project. The following code examples 
are taken from the InfinispanPersistentProcessTest class.

There are three main differences between the JPA-based and the Infinispan-based 
KieStoreServices implementations:

• The dependency needed in the classpath is as follows:
<dependency>
    <groupId>org.kie</groupId>
    <artifactId>jbpm-infinispan-persistence</artifactId>
    <version>6.1.0.Beta3</version>
</dependency>

• The configuration of an Infinispan configuration (provided in our example in 
the infinispan.xml file) is as follows:
<infinispan ...>
  ...
  <namedCache name="jbpm-configured-cache">
    <eviction strategy="NONE" />
    <transaction ...
        transactionManagerLookupClass="
            org.infinispan.transaction.lookup.
            BitronixTransactionManagerLookup"/>
     ...
  </namedCache>
</infinispan>

• The configuration parameters needed in the environment variable are  
as follows:
KieServices ks = KieServices.Factory.get();
DefaultCacheManager cm = 
    new DefaultCacheManager("infinispan.xml");
Environment env = ks.newEnvironment();
env.set(EnvironmentName.ENTITY_MANAGER_FACTORY, cm);
env.set(EnvironmentName.TRANSACTION_MANAGER, 
    new JtaTransactionManager(
        TransactionManagerServices.getTransactionManager().
            getCurrentTransaction(),
        TransactionManagerServices.
            getTransactionSynchronizationRegistry(),
        TransactionManagerServices.
            getTransactionManager()));
env.set(EnvironmentName.PERSISTENCE_CONTEXT_MANAGER, 
    new InfinispanProcessPersistenceContextManager(env));



Implementing Persistence and Transactions

[ 216 ]

As you can see, the environment uses many more components. This is because the 
Infinispan connection is still experimental and default configurations are not yet 
fully supported from the initializing code. It forces us to be much more verbose, but 
still in a manageable way. The main new components added to the environment that 
we need to discuss are as follows:

• JtaTransactionManager: The TRANSACTION_MANAGER key had a simple 
TransactionManager implementation in the JPA examples. This is 
because the actual JPA implementation would create this instance of 
JtaTransactionManager as a wrapper to be used directly by the command 
pattern in order to manage transactions that could have been started by 
external components. This component has to be manually created for the 
Infinispan implementation.

• PERSISTENCE_CONTEXT_MANAGER: This is a special object that, in the JPA 
examples, is automatically created as a JPAPersistenceContextManager 
object. If we manually create an object in that key, it is not overridden by 
the underlying implementation. Therefore, we override it with a specific 
Infinispan implementation in our case.

After these changes are made, we can use the create and load methods of the 
persistent KIE session directly from the relevant KieStoreServices instance. 
Persistence in Infinispan is still just a serialization strategy, and it is not yet 
recommended for production environments. However, it can be easily  
extended to provide extra functionality for NoSQL adopters.

Summary
Persistence is an excellent way to maintain and resolve long running processes,  
as well as to release resources from an environment when they're not needed.  
We've seen that persistence is not a way to provide searchable information, but a 
way to provide a recovery point that is not directly readable by people. However, 
we've also seen that we can provide such functionality either by enabling object 
marshalling strategies and history logs, or by implementing our own strategies or 
persistence mechanism.

During the next chapter, we will understand how jBPM6 integrates with other types 
of entities, such as rules, events, and complex event processing, a concept we started 
discussing in Chapter 2, BPM Systems' Structure.



Integration with Other 
Knowledge Definitions

In this chapter, we will cover the different aspects of collaboration between processes 
and other forms of knowledge, particularly rules and events. We will also discuss 
the importance of rules in the business domain and define what business rules are. 
To understand how business rules work in jBPM6, we will need to understand 
how a rule engine works and how it interacts with the jBPM6 process engine, while 
comparing the way this interaction occurs for jBPM6 and other BPM frameworks.  
We will discuss all these aspects with a group of examples that will be easy enough 
to integrate into multiple business scenarios, as well as flexible enough to be 
extended to cover very complex situations.

After we gain some practice in the rules realm, we will introduce more complex 
concepts, such as adding temporal information into our rules to define events, time 
correlation between them, and inferences to detect more complex, indirect events. 
This will allow us to understand the full power of the rule engine and, in particular, 
how jBPM6 uses its runtime internally to run both rules and processes from the same 
set of APIs.

The topics you will learn in this chapter are as follows:

• How the Drools rule engine is related to jBPM6
• How to apply business rules to business processes and vice versa
• How to define events and temporal rules
• How to configure our environment to be able to detect complex  

event situations



Integration with Other Knowledge Definitions

[ 218 ]

What is a rule?
The first thing we need to define in a clear manner before proceeding is what rules 
are. A rule, from the rule engine's perspective, is a constraint within a particular 
domain that will evaluate to true or false. When specific components within 
the domain evaluate the constraint of a specific rule to be true, we say that the 
particular rule is activated. When activated rules are fired (an operation that is 
usually separated from the activation of a rule), a particular action—specified within 
the rule—will be taken. Depending on the syntax, a rule structure can vary from 
implementation to implementation. However, the general structure of a rule will 
always be similar to the following code:

rule "rule name"
/* optional rule attributes */
when 
     /* a specific set of constraints in our domain */
then
    /* a specific set of actions to be taken when 
       the constraints evaluate to true */
end

A single rule by itself doesn't provide much value to describe a complex decision. 
Nevertheless, a group of (many) rules will be far more descriptive. The rule engine 
responsibility is to evaluate all rules together for a group of objects in the most 
efficient way possible.

A business process can invoke groups of rules to make complex decisions in specific 
parts of its execution. At the same time, a rule can have specific actions that start, 
signal, or interact in some way with an existing process instance. This integration 
between rules and processes is managed in a special way with jBPM6, which we  
will discuss in the next section.

Old-fashioned integration
A rule engine can become extremely useful when evaluating situations that would 
become very difficult to determine through a business process, either because the 
situation is too complex to make a clear diagram out of the sequence of steps required 
to evaluate the decision, or because the sequence itself is not relevant to the evaluation 
itself. In the past, adopting the process engine and the rule engine technologies was 
complicated due to the integration work required to make both engines share the 
necessary information to operate as expected. As the rule engine and the process 
engine were completely different applications, communication protocols had to be 
established between each other. This usually caused a few problems:



Chapter 9

[ 219 ]

• Communication protocols between both engines could fail, creating  
a whole new group of issues that needed to be tested for a specific 
implementation of our business domain—even if both engines were  
running in the same environment.

• Interaction between rules and processes implied specific mappings of both 
the location of the other system, as well as the required inputs and expected 
outputs of process and rule executions. This is because every piece of 
relevant data needs to be sent back and forth between each engine.

• Transaction management could become a difficult issue to handle, because 
all transactions should be considered from a business perspective and have 
to be cross-engine execution.

• If you need both processes invoking rules as well as rules invoking 
processes, handling the communication could become troublesome and 
hard to maintain, and can increase the possibility of error due to increased 
complexity in the communication.

The overall intercommunication architecture needed to have both the rule  
engine and the process engine collaborating with each other, as shown in  
the following figure:

In the preceding figure, every arrow you see is a potential communication  
problem. This is not an issue with jBPM6 and Drools, because the rule and process 
engine are the same thing. You can seamlessly invoke rule executions from a process 
instance, and a rule can trigger a specific signal or interact with a particular process 
instance—all without creating any intercommunication mechanism between both 
components, unless a clear separation of both engines is desired. This simplifies the 
initial adoption of rules and processes interactions.



Integration with Other Knowledge Definitions

[ 220 ]

The Drools rule engine
Drools is a rule engine framework that provides the possibility of creating rules in a 
script language called Drools Rule Language (DRL) and running the rules inside an 
in-memory inference engine that provides great performance. Rule languages have a 
declarative nature, which means that the next action to be taken is determined by the 
input data that triggers specific conditions in the rules, unlike the imperative nature 
of languages such as Java, where the next action to be taken is determined by the 
sequence of actions written in the code.

Rules written in DRL follow a very specific syntax for constraints and a configurable 
syntax for the actions of the rule (which we will keep as plain Java for simplicity). 
The constraint part of the rule shouldn't be interpreted as regular imperative code 
such as a Java code, where we specifically tell the system what to do at a particular 
point in time. Instead, it should be considered as a declarative statement, similar to a 
SQL query, where we will search anything that matches a specific criterion. For every 
match, we will execute the consequence of the rule (the "then" part of the rule). The 
structure of a DRL rule is similar to the following code:

rule "prioritize requirements with lots of bugs"
lock-on-active
when
    r: Requirement(bugs.size() > 3)
then
    r.setPriority(20 / r.getBugs().size());
    update(r);
end

In the preceding rule, we searched for all Requirement objects that have a bugs 
list with more than three elements. For each one of them, we set the priority to a 
calculated value and update the reference in the rule engine memory to evaluate 
other possible rules. The lock-on-active attribute is there to make sure we don't 
re-evaluate the same rule for the same object after we update it.



Chapter 9

[ 221 ]

The power of rules grows as we add more rules. The internal algorithm of the rule 
engine (called PHREAK on the current version) will optimize the structure of all 
rules and make sure that all added objects evaluate rules in the shortest execution 
path possible. Afterwards, using rules is very simple, and it uses the same runtime 
component we already learned in order to use processes, that is, the KIE session:

KieServices ks = KieServices.Factory.get();
KieSession ksession = ks.getKieClasspathContainer().newKieSession();
ksession.insert(new Requirement("req1", "description"));
...
ksession.fireAllRules();

The preceding code uses two new methods: insert (that adds objects to the rule 
engine memory for evaluation) and fireAllRules (that executes all the rules  
that are ready to be triggered by the engine). The full code can be seen in the 
drools-simple-example project in the chapter's code bundle.

The preceding code uses the same API that is used to invoke process executions 
through the startProcess method. However, some configuration considerations 
need to be taken to have both processes and rules interacting together. The next 
sections explain those considerations in detail.

What Drools needs to work
To start with, all that Drools needs to work is a KIE session. In order for it to work  
with rules, we need to include the DRL files in the KIE base that will be used,  
either through the kmodule.xml configuration or through the programmatic API.

The following four methods are the most important calls that we need to know in the 
KIE session to interact with the rules:

• FactHandle insert(Object fact)

• FactHandle update(FactHandle handle, Object fact)

• void delete(FactHandle handle)

• int fireAllRules()



Integration with Other Knowledge Definitions

[ 222 ]

The first three methods allow you to insert, update, and remove objects from the 
rule execution memory. The FactHandle class is a reference to the internal status of 
an object in said memory. Finally, the  fireAllRules method allows you to fire any 
rules that matched any rule constraints for the inserted objects.

Every time we add, change, or remove objects from the internal memory of the KIE 
session, evaluations of these objects are created that determine what rules should 
execute. The  fireAllRules method later invokes the following flow of execution:

The previously mentioned methods are enough to interact with the rules. However, 
to simplify process and rule interaction, we will see a few other components of the 
DRL language and the KIE session.

The DRL language allows us to define attributes to our rules. Three of these 
attributes allow us to define groupings for our rules in order to activate small  
groups of rules at a time instead of activating all of them at the same time.  
These attributes are as follows:

• agenda-group: This attribute has a string parameter. It defines a group of 
rules that can be manually set through code using the following method:
ksession.getAgenda().getAgendaGroup("group-x").setFocus();

When this group is activated, only the rules inside of it will be matched  
or fired.



Chapter 9

[ 223 ]

• activation-group: This attribute is similar to the agenda group, except it 
marks a group of rules where only one should be executed. The decision of 
which rule is executed is determined by the conflict resolution strategy of the 
rule engine.

• ruleflow-group: This attribute is the one we will see the most. It determines 
a group of rules that will not be activated manually, but instead will be 
activated by a specific process instance execution. It is one of the most  
used points for process/rule interaction.

Another component that we previously mentioned in Chapter 8, Implementing 
Persistence and Transactions, is called event listeners. There are three types of event 
listeners we can add to a KIE session through the addEventListener method:

• ProcessEventListener: This event listener, as previously mentioned, 
exposes methods to add specific hooks to all changes in a process instance 
internal state

• AgendaEventListener: This event listener exposes methods to notify when 
a match to a rule constraint is detected or negated, changes in the activated 
groups of rules, and when each rule is fired within the KIE session

• RuleRuntimeEventListener: This event listener allows us to follow all 
changes done to the objects in the rule execution memory (insertions, 
updates, and deletions)

Now that we have mentioned these components, we can see them in action in the 
process-rules-examples project in the next section.

Applying rules to our processes
Invoking business rules from inside a business process and vice versa can provide  
a lot of power to our knowledge representation. Both components deal with 
decisions in two very different ways; rules provide simple ways of representing 
complex solutions, where the order to find said solution is not always relevant. 
Processes, on the other hand, focus on the order of the steps that need to be taken  
to reach a goal.

Inside jBPM6, you can invoke rules and processes or even perform nested 
invocations, where rules invoke processes that can then invoke other rules  
with very little configuration.

We will start by learning the different ways to execute rules in our business 
processes. In the process-rules-examples project, you will find a test that will be 
used in the rest of this section called RulesAndProcessesTest, where processes are 
invoked from rules and rules from processes as well.



Integration with Other Knowledge Definitions

[ 224 ]

Gateway conditions
The simplest way to define conditions in our processes is inside an exclusive or 
inclusive gateway's outgoing sequence flows. Inside sequence flows, you can 
determine a condition expression to decide whether that flow should be followed 
or not. This condition is defined as Java code by default in the web process designer 
used in Chapter 3, Using BPMN 2.0 to Model Business Scenarios. However, if you select 
Drools in the expression language attribute of the sequence flow, you can define 
a condition expression that will be evaluating the rule memory with a DRL-based 
condition. This is quite useful to evaluate complex conditions, but it depends on that 
all the relevant objects being "inserted" in the KIE session's rule memory.

Business Rule tasks
The most common way of invoking rules from a process is through Business Rule 
tasks, which was explained briefly in Chapter 3, Using BPMN 2.0 to Model Business 
Scenarios. In a Business Rule task, you will have to define two important things: input 
mappings for the task that will determine what process variables should be made 
available in the KIE session's rule memory, and a RuleFlow Group attribute that 
will define what group of rules are to be invoked. In the RulesAndProcessesTest 
class, we invoke a process with a Business Rule task, such as the one shown in the 
following diagram:



Chapter 9

[ 225 ]

The preceding process diagram has a Business Rule task called prioritize 
requirement. The task has an input mapping of a Requirement object, such as the 
one we saw in the model of Chapter 6, Human Interactions, and Chapter 7, Defining 
Your Environment with the Runtime Manager. It also defines establish-reqs-
priority as the RuleFlow Group attribute value. This attribute will define that 
when the process instance reaches the prioritize requirement task, only rules that 
define the same RuleFlow group variable will be activated. You can see examples of 
such rules in the reqRules.drl file. The following code snippet is a small skeleton of 
a rule that defines such group:

rule "prioritize requirements"
    lock-on-active
    ruleflow-group "establish-reqs-priority"
    when
        r: Requirement(priority == -1)
    then
       r.setPriority(5);
end

As you can see in the examples, you can have multiple rules that evaluate the model 
and change values to different objects in it. The output of the rules in a Business Rule 
task is usually a modification or addition in the model that will be easily checked 
by a gateway later on. In our case, the elements we check in each of the gateways' 
outgoing connections is the requirement's priority value, and determine two paths 
based on the values of the priority.

Ad hoc process instance evaluations
Ad hoc processes are processes whose sequence of actions cannot be predefined. 
When we define an ad hoc process, we do know what tasks will be needed to be 
performed, but the order and sequence of said tasks is either too complex to be 
defined in a flow or too variable to be considered fixed. As a diagram, they just seem 
as a bag of tasks with no connection between them. The following diagram shows a 
representation of the adhocProcess.bpmn2 file:



Integration with Other Knowledge Definitions

[ 226 ]

In jBPM6, ad hoc processes are supported in a way that makes it similar to a Business 
Rule task: the name of the ad hoc process will be a ruleflow group that will be 
activated when you reach the start the process. Using rules, you can determine 
which task needs to be created and you can start one of those tasks manually using 
a class called DynamicUtils. You can also determine the conditions to exit the ad 
hoc process using rules. In the process-rules-examples project, you can find a test 
called AdHocProcessTest, which uses this functionality to run an ad hoc subprocess 
called adHocProcess and uses the rules defined in the ad-hoc-sub ruleflow group to 
determine the next task. The rules are defined in a file called adhocRules.drl, and 
on finding specific conditions, fires a new work item to execute a specific task within 
the ad hoc process as the following rule shows:

rule "init rule"
salience 100
ruleflow-group "ad-hoc-sub"
when
    wf: WorkflowProcessInstance($nodes: nodeInstances)
    dn: DynamicNodeInstance() from $nodes
    eval(wf.getVariable("processVar1") == null)
then
    System.out.println(drools.getRule().getName());
    KieRuntime kr = kcontext.getKnowledgeRuntime();
    Map params = new HashMap();
    params.put("inVar1", wf.getVariable("processVar1"));
    params.put("TaskName", "decide what's next");
    DynamicUtils.addDynamicWorkItem(dn, kr, "Human Task", params);
end

In the preceding rule, we are looking for a process instance, which has an active 
dynamic node (which is jBPM6's internal representation for an ad hoc process) 
and has no process variable assigned with the name processVar1. This is done 
by checking for the WorkflowProcessInstance objects we might have in the rule 
engine memory, and checking whether its nodeInstances attribute (which we will 
assign to a $nodes variable) contains a DynamicNodeInstance object. Finally, we 
evaluate whether a process variable is not yet present in the process instance. When 
those conditions are met, we start a dynamic Human task (with a WorkItemHandler 
registered in the KIE session with the Human Task key). It is a responsibility of the 
"then" part of this rule to provide all the information to the work item generated, 
including all parameters and references to the KIE session and the node.



Chapter 9

[ 227 ]

One more important step to know is which is the best way to start a process or 
invoke a process signal inside a rule consequence. To do so, we need to understand a 
specific predefined variable in the rules consequence called kcontext. This variable 
will have a reference to the KIE session so that we can use it to invoke our process 
executions. Using this variable, we can also call all the process related methods in the 
KIE session, such as signalEvent, getProcessInstance, abortProcessInstance, 
and so on.

Runtime configurations to activate rules
Even though rules and processes share the same runtime, they have very different 
memory scopes. The process instance memory (called process variables) and the rule 
memory (called working memory) do not share information unless it is specified 
that they should do so. In order to communicate information back and forth from 
the process memory to the rule memory, we need to configure event listeners to 
populate relevant information changes from one component to the other. Luckily  
for us, if we want to automatically add a process instance to the working memory 
(and communicate its internal changes to it for reevaluation when necessary),  
you can add a particular event listener called RuleAwareProcessEventLister:

ksession.addEventListener(new RuleAwareProcessEventLister());

This listener will make sure that when a process instance is added, changed, or 
removed, it gets inserted, updated, or deleted from the rule memory. Note that it 
finishes with the word Lister and not Listener. This is not a typo in the book, but in 
the code itself, and it has been maintained like this for backward compatibility issues.

Another important configuration that we need to be aware of is related to the use 
of ruleflow groups. Whenever we enter a Business Rule task or an ad hoc process, 
the KIE session will not fire all the rules associated with those ruleflow groups 
automatically. All it will do is notify the internal structure of the KIE session that the 
ruleflow group is activated, and the user needs to decide whether and when they 
should fire all the rules. In the majority of cases, we want to fire all rules activated 
in a ruleflow group when we reach a Business Rule task or an ad hoc subprocess. 
In order to do so, we have a method in the AgendaEventListener interface to 
take specific actions after a ruleflow group is activated, and we can invoke a 
fireAllRules method inside it:

ksession.addEventListener(new DefaultAgendaEventListener() {
    public void afterRuleFlowGroupActivated 
      (RuleFlowGroupActivatedEvent event) {
        KieSession kses = (KieSession) event.getKieRuntime();
        kses.fireAllRules();
      }
});



Integration with Other Knowledge Definitions

[ 228 ]

With these event listeners, rules from a ruleflow group can be invoked and fired 
from a process instance.

On a side node, the previous event listener implementation is built in the  
jBPM6 code, in a class called org.jbpm.process.instance.event.listeners.
TriggerRulesEventListener. However, the previous anonymous class was left 
intentionally to show that you can create your own event listeners as you see fit,  
and don't need to stick to built-in event listeners.

This covers the main interactions between rules and processes. The next section deals 
with some advanced rule concepts that allow for tracking different operations along 
a specific timeline.

Temporal reasoning and processes
Business rules allow us to define smarter processes depending on the contextual 
information we feed the rule execution engine. The combination of rules and 
processes is a very powerful mix that provides a way of merging specific sequence 
of actions with reactive behavior in a very performant way. It is now time to start 
learning about involving temporal information inside our rules definitions.

Adding temporal information such as fact time correlation, streams of data, or any 
live data will add a lot of power to your rule executions and their capacity to infer 
information from the real world. These procedures are encompassed in complex 
event processing (CEP), a methodology to infer complex situations out of simple 
ones, and Event-driven Architecture (EDA), which allows for a natural growth of 
applications that use CEP. We will see each of these concepts in detail.

Events and complex events
Before understanding CEP, we need to understand a series of other concepts tightly 
related to it. The first and most important concept we need to define is an event. 
From a temporal Business Rule perspective, we will define an event as any fact  
(an object in the rule memory) that has temporal constraints of some sort: a  
moment in which it occurred, an optional duration, and a life cycle.

Events can be anything that holds a relation to a specific point in time. A temperature 
measuring could be used as a fact, but it can be treated as an event if we consider 
at what time that measuring was taken. A phone call can have a price, a receiver, 
or a caller, but if we add data of the exact moment it happened or how long the call 
lasted, it can be treated as an event. Events usually represent things that already 
happened, so from a logical perspective, they should be immutable. The Drools 
framework doesn't enforce this to facilitate all kinds of use cases to be represented, 
including the possibility of mutable events.



Chapter 9

[ 229 ]

Now that we clearly understand what an event is, and know how to define it in a 
DRL, we can work our way into defining a complex event. We will define a complex 
event as an aggregation, composition, or abstraction of other events, which can be 
simple events or complex events themselves, called component events. The concept 
implies that from some basic information about the world represented in events, we 
can define specific inferences that will be treated themselves as events.

Let's review an example of a complex event to understand how complex events can 
be composed of simple events. Imagine if we had a lot of seismic meters all over a 
city. Each measurement will tell us whether we have an earthquake, with intensity 
and location. But more importantly, it will have a timestamp to let us know at what 
moment in time the earthquake happened. Each seismic measure is our simple event.

Let's imagine that we detect a lot of very small earthquakes, not enough to disturb 
any buildings, but we detect that they all happen in a straight line through the 
city—one after the other, with maybe 2 or 3 seconds time difference. With temporal 
reasoning, we might make an inference and say that probably a very large object is 
moving through the city. This inferred event is our complex event, as explained in 
the following diagram:

seismic event
2.0 richter
45.2314,62.3245
12:04:02

seismic event
2.1 richter
45.2315,62.3245
12:04:04

seismic event
2.0 richter
45.2316,62.3245
12:04:06

seismic event
2.0 richter
45.2317,62.3245
12:04:08

LARGE MOVING OBJECT COMPLEX EVENT

However, we won't stop there. Let's assume that we also have other meters around 
the city and we can detect fires and loud noises—thanks to the power of social 
media, we might even be measuring twitter messages to determine the general sense 
of alarm of a particular area. If we translate all that information into a fire spreading 
through the same general zone, at the same speed as our first complex event, we 
might consider the possibility (as bizarre as it might seem at the beginning) that 
Godzilla is going through the city. This Godzilla event would be a complex event  
as well, inferred from other complex events.

Once we detect our complex events, we will not want to stop at just the detection.  
99 percent of the time, we will want to take a reactive action towards those events. 
For that particular case, we fall into the realm of CEP.



Integration with Other Knowledge Definitions

[ 230 ]

CEP
Now that we understand the concept of complex events, we need a way to actually 
correlate events, infer those events, and take specific actions from all the different 
correlations between events. Event processing is based on providing analysis and 
tracking tools of different events from different sources.

CEP extends that definition to add the possibility of combining said events into 
complex events by utilizing analysis tools, and later on using these events to feed 
more complex situations. Drools provides such a mechanism through business rules 
writing and execution. Rules provide a very quick and performing way to infer 
events and act accordingly, which is why it has been widely used by many  
real-time applications that need to have the fastest reaction possible.

CEP is all about analyzing events and reacting as soon as a situation of interest is 
found. Events might be coming from different sources, with different structures, and 
at different moments in time. It is the responsibility of the CEP agent to both define 
a structure of processing behind the specific data (in case of Drools, that structure is 
defined using rules) as well as a way to introduce information to the runtime  
(in case of Drools, through event insertion in the rule memory).

CEP agents are one piece of a system that will need to produce events, and usually 
the outputs of the rules will be fed to some other component that is prepared to 
consume said outputs. These components have been abstracted and defined within 
an Event-driven architecture (EDA).

EDA
When working with events, we usually end up splitting the components involved in 
the event management into three main categories:

• Components that are creating specific, simple events
• Components that are processing simple events into complex ones
• Components that are waiting for specific events

EDA defines a decoupled way to build an infrastructure based on these three 
components, along with a way to communicate events between them. The  
following diagram depicts all the components in an EDA working together:



Chapter 9

[ 231 ]

The main components the architecture proposes are event producers, event 
consumers, event processing agents, and event channels.

The sole responsibility of event producers is to generate streams of events. It is 
anything that emits any sort of information, regardless of how complex or basic the 
information might be. It can go from simple sensors to user interfaces to complex 
applications that can send very specific notifications. If it can send an event to an 
external scope, it is an event producer.

Event producers will need means to propagate their events to other components of 
the EDA. Event channels are the component through which event producers will be 
able to do so. Anything from a protocol definition to the logical representation of a 
wire between a sensor and a computer could be considered an event channel, as long 
as events are transmitted through that mean.

Usually, event producers send events to a series of event processing agents, which 
are software components in charge of consuming one group or many groups of 
events as inputs and produce complex events as outputs. These event processing 
agents will connect with each other depending on the type of events they consume  
or produce to form an event processing network.

The final outcome of this network is usually a final set of events, which are not 
needed to infer any other events, but are to be directly used by other components. 
These components that are waiting for specific events are called event consumers. 
They can be any component interested in receiving a notification of a state—from an 
application to a dashboard to a machine-state-based piece of hardware waiting  
for instructions.

One big advantage to these types of architecture is that event producers, consumers, 
and processing agents don't need to know each other. This allows EDA-influenced 
applications to grow in a nonintrusive way, even along with other architectures 
(such as service-oriented architecture) without breaking its structure, but rather 
enriching its functionality.



Integration with Other Knowledge Definitions

[ 232 ]

The importance of these concepts in BPM relates to the fact that thanks to Intermediate 
Catch and Throw events, business processes can also be consumers and producers of 
these sorts of events. Considering that signaling can be done back and forth from rules 
to processes, these concepts add a lot of value for inferring the state of the world and 
notifying this to our processes. At the same time, process instances themselves could 
be treated as events. All these possibilities will be explored in the next section when  
we will discuss how CEP can be implemented with jBPM6 and Drools.

Drools Fusion functionalities
The Drools framework has a lot of different operators, functions, and special syntax 
that could cover another book by itself. They deal with comparing different objects 
within the rule runtime memory. In this section, we'll concentrate to discuss the 
module more related to temporal reasoning, which is called Drools Fusion.

Drools Fusion is not a separate dependency of Drools, but just a logical separation 
to keep CEP-related documentation separate from the general body of knowledge 
of Drools Expert, the main rule engine project. It comprises a way to declare facts as 
events, temporal operators to compare them, splitting of the rule runtime memory by 
stream origin, and the possibility of using sliding windows to see the last events that 
match a specific condition. Let's discuss each of these concepts in detail.

Event declarations
In the DRL language, you need to declare our events from a specific imported object 
type, or you can even construct them directly. In the process-cep-examples project, 
you will find a cepRules.drl file that defines one of these event types with the 
following syntax:

declare ProcessEvent
    @role(event)
    processId: String
    state: Integer
    reqVariable: Object
end



Chapter 9

[ 233 ]

Defining the @role annotation, we can tell the engine that a particular object type 
should be treated as a fact (the default scenario) or an event (with time association). 
A Drools event can have other attributes that will add special metadata to an object 
type. We'll enumerate them as follows:

• @timestamp: This attribute receives one parameter, which should be the 
name of an attribute in the object type. This attribute should contain a  
Date object, which specifies the time at which the event happened. This  
is an optional annotation; because if it is not present, the moment the  
event is added to the rule memory will be taken as the moment the  
event actually happened.

• @duration: This attribute receives one parameter, which should be the name 
of a long value determining the number of milliseconds the event lasted. This 
is an optional attribute, as events are considered punctual by default (that is, 
they only existed in a specific moment). For example, if we consider a phone 
call to be an event, the moment between answering the phone and hanging 
up are very important components to treat the phone call as a temporally 
defined object.

• @expires: The "expires" annotation receives a time-based string to determine 
that after a specific amount of time, events added to the rule memory should 
be automatically evicted.

An example of the preceding annotations could be similar to the following  
code section:

declare PhoneCall
    @role(event)
    @timestamp(callStartDate)
    @duration(callDuration)
    @expires(4h30m)
end

The preceding code section defines that a PhoneCall object (that could be an 
imported class) should be treated as an event, its callStartDate attribute should 
mark when it started, its callDuration attribute should mark its duration, and it 
should be automatically evicted after 4 hours and 30 minutes from the rule memory.



Integration with Other Knowledge Definitions

[ 234 ]

Once we define the events we are going to use, we will be able to compare them 
based on the time of their occurrence. We can do so using the temporal operators 
provided by Drools Fusion.

Temporal operators
Temporal operators are extensions to the DRL language that allow us to directly 
compare the timestamp of objects that we have declared as events. James F. Allen 
defines 13 temporal operators, some of which only make sense with interval events. 
These operators are after, before, coincides, during, finishes, finishedby, 
includes, meets, metby, overlaps, overlappedby, starts, and startedby.

As an example, after is used to define, obviously, that the timestamp of one event is 
after the other event's timestamp. Temporal operators can receive parameters within 
brackets; in case of the after operator, they indicate that the first event happened 
at least a certain time after the second event, and if it has a second parameter, this 
indicates that the second event happened within a range after the first event. The 
following code is an example of a rule condition using the after operator:

when
    p1: ProcessEvent($processId1 : processId)
    p2: ProcessEvent(this after[3m] p1, processId == $processId1)
...

In the preceding example, we are first detecting an event of type ProcessEvent and 
then trying to find another one that has the same processId attribute and happened 
at least 3 minutes after the first one. In ProcessCEPTest, you can see an example of a 
code running this structure in the testAfterRule test method.

Sliding windows
Another important concept behind Drools Fusion CEP functionalities are sliding 
windows. They define an interval of interest in which we want to start filtering or 
grouping our events. It comes in two flavors, windows of length and windows of 
time. The best way to explain them both is with a simple example:

    HeartBeatEvent() over window:time(15s)

The preceding code should be read as follows: get all HeartBeatEvents that have 
happened in the last 15 seconds. Another example could be:

    TemperatureEvent() over window:length(5)

The preceding code should be read as follows: get the last five TemperatureEvents 
that have been added to the rule runtime memory.



Chapter 9

[ 235 ]

Drools Fusion in action
Now that we have seen all the components needed to define temporal reasoning 
in our business rules, we need to start considering the different configurations 
required to make our CEP business rules run smoothly, as well as how to integrate 
them with our business processes. All considerations needed to run simple 
business rules together with business processes apply to Drools Fusion (that is, 
having the RuleAwareProcessEventLister listener and the custom listener 
AgendaEventListener to fire rules added to the KIE session configuration). We will 
now concentrate on the extra features needed to configure temporal-based rules for 
our runtime.

The first consideration that we need to take into account is a special configuration we 
need to add to the KIE base that we build our KIE session from, to be able to manage 
the concept of now (used for sliding windows) and get an understanding of events 
as such, instead of just facts. This special configuration is called the STREAM mode, 
and by default, the rule engine works in the CLOUD mode. The STREAM mode 
provides a way for the engine to understand the concept of time and events and keep 
a reference of when are events added to the rule engine memory. The CLOUD mode 
doesn't understand these concepts and treats all elements added to the rule engine 
memory as simply facts, with no temporal data associated to them. The STREAM 
mode can be configured to the KIE base programmatically as follows:

    KieServices ks = KieServices.Factory.get();
    KieBaseConfiguration kbconf = ks.newKieBaseConfiguration();
    kbconf.setOption(EventProcessingOption.STREAM);
    KieBase kbase = ks.getKieClasspathContainer().newKieBase(kbconf);

The KIE base can also be configured through the kmodule.xml file with  
the eventProcessingMode attribute of the kbase tag. Please refer to the  
process-cep-examples project to see a full example of such a configuration.

Another configuration item, related in this case to the KIE session object, is the clock 
type. By default, the KIE session will understand how much time goes by between 
events by the internal clock of the computer it is running in. This might be good for 
productive environments, but it is definitely problematic for rule testing purposes.

During a test, we might want to debug our code, and if we depend on the internal 
clock of the computer to determine time correlations, we might find ourselves 
breaking rule conditions by debugging the code. Also, if we want to test a rule that 
correlates two events with a big time difference between insertions, we would need  
a lot of time to test it.



Integration with Other Knowledge Definitions

[ 236 ]

In order to avoid this problem, the KIE session can be configured to run with a 
pseudo clock, that is, an implementation which will have to be advanced at will.  
In order to configure it, you can use the following code:

    KieSessionConfiguration ksconf =  
      ks.newKieSessionConfiguration();
    ksconf.setOption( 
      ClockTypeOption.get(ClockType.PSEUDO.getId()));
    KieSession ksession = kbase.newKieSession(ksconf, null);

You can also configure the KIE session clock using the kmodule.xml file by writing 
clockType="pseudo" in the ksession tag. Later on, you can access the clock and 
advance its time with the following code:

    SessionPseudoClock clock = ksession.getSessionClock();
    clock.advanceTime(3, TimeUnit.MINUTES);
    clock.advanceTime(5, TimeUnit.DAYS);
    ...

Finally, the last configuration we'll mention here is regarding when to fire the rules. 
So far, all examples we saw involve firing rules when a process changes state, which 
adds new events to the KIE session. What about the case where you need to trigger a 
rule when no new event is added? For example, if you're monitoring the heartbeats 
of a patient, not having any events for 15 seconds could mean a heart attack event. 
For these cases where rules should be constantly evaluated, there is a method called 
fireUntilHalt in the KIE session. This method will continuously evaluate rules 
that match, and change sliding windows as time advances. The method will hang the 
thread, and you can cancel it from another thread or from a specific rule by calling 
the halt method on the KIE session object.

Summary
In this chapter, we saw how to use business rules and CEP integrated with jBPM6 to 
produce smarter applications and processes. Business rules can be used in multiple 
ways to assist our business processes when event reaction analysis is required.  
They can also manage some of the business process executions.

The next chapter will focus on integrating all of the seen components into a solid 
architecture, and you will learn how to add processes, rules, and events to an 
enterprise infrastructure. We will see the sprint management application,  
which shows all three technologies (business processes, business rules,  
and CEP) in action.



Integrating KIE Workbench 
with External Systems

In the previous chapters, we learned the specifics of using jBPM6 as an API, both by 
itself and integrated with other components such as business rules. We also learned 
about the tooling available in jBPM6, and how it is used. In this chapter, we will 
focus on the previously mentioned tools, not from an end user perspective, but as  
an administrator with the job of deciding whether this is the right tooling for our 
project or company.

Understanding architectures implies getting answers to two main questions: "how is 
an application composed?" and "why is it composed in such way?" We will have to 
understand all the internal components proposed by the KIE Workbench in order to 
evaluate them accordingly, and to define whether their purpose will meet our needs.  
We will split the chapter into the following sections:

• Understanding the internal components of a jBPM6 project architecture
• How the KIE Workbench is applied to those architectural components
• Steps and examples on how to extend the KIE Workbench to meet our needs 

of BPMS middleware components

Defining your architecture
In order to define the architecture for a BPM system, we first need to understand  
the necessities such systems will have. There are many considerations to take  
into account when defining these requirements, and we will try to explain the  
main ones here.



Integrating KIE Workbench with External Systems

[ 238 ]

First of all, the main purpose of the BPM systems is to provide an environment 
where process definitions can quickly change to adapt to a changing complex 
situation of the company domain, and how it will change to drive the company to 
its goals. This means we need a way to quickly define the change in our processes, 
in a manner that it can be notified and impacted quickly in the runtime. In order to 
provide a quick way to change the representation of our knowledge, we will use a 
repository strategy to quickly change content as well as to keep track of the changes 
introduced to the knowledge definitions used.

Secondly, we need to understand that even if initially just one or a few applications 
will use the BPM system, it will grow to be the centric point of access for all the 
company process definitions and runtimes. In order to cover such growth, the BPM 
system needs to provide a strategy to be distributed between multiple nodes. In 
order to provide such functionality, we need to handle our process instances through 
a persistence that should be synchronized with transactions. This can be done by 
using another repository strategy: in the KIE Workbench case, this is done with a  
JPA database.

One final concept we need to cover in a BPM system is the possibility of running 
as many tasks as possible in an asynchronous fashion. This will result in a more 
manageable environment, where threads are not just spawned on demand, but rather 
managed according to the environment capabilities. In the KIE Workbench (and any 
other jBPM6-based environment), there is a component called ExecutorService, 
which provides a org.kie.internal.executor.api.Command interface to give 
asynchronous executions seamlessly, in a way that it can handle failure retrial and 
thread pool management. Allocating how many threads can be used at the same  
time from processes will limit the chances of a BPM server from crashing due to 
excessive calls.

The overall structure of our BPM system architecture will look like the following 
diagram, considering the integration of all the mentioned components:



Chapter 10

[ 239 ]

In order to make such an environment scalable, we need to be more specific about 
the particular strategy we pick to solve our nonfunctional requirements. These 
considerations will be covered in the following section.

Scalability considerations
Scalability is something to always consider when defining the internal components 
of a BPMS, mainly because it will be used or evolved into middleware that will 
later on be used by several other applications in our company, usually exceeding 
the initially defined requirement for the application. Even if you use it from your 
applications, the more you end up needing management in your BPM cycle, the 
more you need your processes to exist in an isolated, reusable environment where 
said life cycle is more controlled and configurable.

Once you reach this plateau where all your processes are managed through a 
common BPM system, you will feel the weight of many projects depending on the 
BPMS. Every application that needs to define a process execution and dynamic 
knowledge creation will at least consider the possibility of using the BPMS you will 
be defining now. You need to find a way to manage an ever growing demand for 
environment capacity.

Not only this, but also because of the dynamic nature of defining correlations 
between applications, the BPMS will have a responsibility to become an application 
coordinator. This would put a BPM system in two complex situations: at one side, 
it should be prepared to handle multiple requests, and at the same time, it should 
be able to quickly distribute them among many other applications without losing 
performance. This can be quite challenging if special considerations are not made 
in advance. The following correlation diagram, regardless of a good management, 
could transform a BPM system into a bottleneck in the overall enterprise architecture:



Integrating KIE Workbench with External Systems

[ 240 ]

The KIE Workbench was created with such considerations in mind. The persistence 
for the process runtime is managed in a transactional fashion because it might need 
us to distribute the work across many servers. The process definition repository 
is defined as a virtual filesystem in order to manage the possibility of being shared 
between many nodes using the same APIs. Even the jBPM6 executor service is 
implemented using a database to manage queued tasks, considering the possibility 
of any other server in a grid being able to handle the tasks created by another node 
as soon as a thread is made available.

When defining architectures for our BPM systems, we need to take those 
considerations into account as a bare minimum, for they represent the natural 
progression of using the BPM discipline, even for projects that might start as 
modestly as having a few automated processes embedded in a single application.

Taking each of our nonfunctional requirements into account, we need to see whether 
the KIE Workbench (as it is distributed) or similar architectures are well-suited for 
our case. If not, do not despair as jBPM6 is—in its very core—just a process engine 
with configurable extensions to plug any sort of external system or functionality,  
and embeddable in any other kind of Java-based system.

We can use event listeners to publish auditing information to external systems and 
components, regarding the internal execution of our jBPM6 process engine. We 
can also configure work item handlers and executor commands to customize the 
way our tasks are executed. There are even pluggable systems for every internal 
component used in the KieServices class. If we change our classpath to have the 
Drools persistence JAR for Infinispan instead of the ones that implement JPA, we 
can change the way our system persists runtime information at its very core. Any 
different configurations can be thought of and created for any kind of environment 
specification. The following diagram shows a few different architectures based on 
distinct requirements:



Chapter 10

[ 241 ]

In the preceding diagram, we can see a few possible combinations. The first one to 
the left-hand side of the diagram shows the configuration as it is available in the KIE 
Workbench using a Virtual File System (VFS) for knowledge definitions, a database 
to persist runtime information, and a REST interface to expose information to clients. 
At the center, we see a possible alternative where we use a NoSQL persistence for 
both our runtime and definitions, and a JMS broker to communicate with clients.

Finally, we see the simplest configuration, where definitions are stored in a plain 
filesystem as files, access is provided through the jBPM6 API, and no persistence is 
configured. This is the least scalable scenario, but it is also a possibility that might be 
fit for the simplest cases.

In the next section, we will discuss how we can start changing the KIE Workbench to 
adapt its internal architecture to our specific needs.



Integrating KIE Workbench with External Systems

[ 242 ]

Extending the KIE Workbench 
architecture
The KIE Workbench was thought to be a pluggable, extensible development 
environment and runtime for our jBPM6 applications. We will start discussing some 
of the most requested changes required for enterprise use, in order to serve as both 
utilities for your necessities and inspiration towards which changes can be applied to 
the application to make a customized version of it.

We will discuss the following integration topics:

• Adding a SOAP web service interface to the KIE Workbench to expose jBPM6 
as web services

• Adding custom work item handlers that will be the default for all the 
runtimes managed in the KIE Workbench

• Remote invocations considering preexisting services and the runtime  
engine API (covered in Chapter 7, Defining Your Environment with the  
Runtime Manager)

• Considerations about deploying in the cloud, with specific demonstrations 
for deploying in OpenShift (http://www.openshift.com)

All integrations that follow are inside a KIE Workbench distribution project called 
kie-wb-edition, available in the chapter's code bundle. It is a Maven project 
prepared to use the assembly plugin to modify the original KIE Workbench, 
prepared to run on JBoss Application Server, in order to have our own extra modules 
and modifications to its internal configuration files. Checkout the assembly-kie-
wb-edition.xml file under src/main/assembly/ to see what changes are being 
introduced in the project. We will go through each one of them in detail as we 
explain the reason and structure of each configuration.

Web service addition
One very common request that most companies have due to internal policies is to 
provide a SOAP-based web service interface to interact with the BPM system. The 
KIE Workbench provides a RESTful interface by default, mainly because it can be 
accessed through web service clients as well as from other tools, such as JavaScript 
client APIs or mobile devices. Adding a SOAP-based web service, however, is far 
simpler than it would seem.

http://www.openshift.com


Chapter 10

[ 243 ]

In the code bundle of this chapter, there is a project called web-service-module. 
Inside this project, you will find the definition for a simple web service. It uses a 
rather simple interface, which, for the simplicity of demonstration, only exposes 
two important methods: the startProcess and signalEvent methods of the KIE 
session. It defines a JAX-WS-based web service that will interact directly with a 
runtime engine (specified by the release ID passed as a parameter to the web  
service invocations).

Its configuration is rather simple. To have it added to our KIE Workbench, we need 
to do the following two things:

1. Add the compiled JAR file from the web-service-module project to the lib 
folder under WEB-INF of the KIE Workbench.

2. Add the corresponding servlet mapping to the WEB-INF/web.xml file of the 
KIE Workbench:
<servlet>
    <display-name>rmWebService</display-name>
    <servlet-name>rmWebService</servlet-name>
    <servlet-class>com.wordpress.marianbuenosayres. 
        service.RuntimeManagerWebService</servlet-class>
</servlet>
<servlet-mapping>
    <servlet-name>rmWebService</servlet-name>
    <url-pattern>
        /RuntimeManagerWebServiceImpl
    </url-pattern>
</servlet-mapping>

Once that configuration is added to the application, we will have the web service 
exposing our internal services. As the web service is going to look for any runtime 
manager configured in the same environment from the specified release ID in the 
invocation, we will need no extra configuration to run its code. The signalEvent 
method of the RuntimeManagerWebServiceImpl class can be simplified into the 
following code snippet:

public void signalEventAll(String releaseId, String signalRef) {
    RuntimeEngine engine = RuntimeManagerRegistry.
        getManager(releaseId).getRuntimeEngine(
            EmptyContext.get());
    if (engine != null) {
        engine.getKieSession().signalEvent(signalRef, null);
    }
}



Integrating KIE Workbench with External Systems

[ 244 ]

As shown in the preceding code snippet, when we have a preexisting runtime 
manager, we get a runtime engine from it and fire the signalEvent method to 
its KIE session object. These configurations, as we mentioned previously, are 
automatically added to a WAR file when compiling the kie-wb-edition project.

Work item handler default configurations
This is a powerful trick for reconfiguring our KIE Workbench environment to have 
our own default work item handlers, and it works for both the KIE Workbench as 
well as for any other jBPM6- or Drools-based application that uses a KIE session. 
There is a configuration file, called drools.session.conf, which defines the 
internal configurations of some of the components in a KIE session. By default,  
this drools.session.conf file has the following content inside the classpath:

drools.workItemHandlers = CustomWorkItemHandlers.conf

What this configuration has is a set of default values for our KIE session 
configuration objects. The drools.workItemHandlers property will allow us to 
define an MVEL file path, relative to the drools.session.conf file, which will 
contain a map of our WorkItemHandler instances indexed by their registry key. This 
MVEL map will be used by the KIE sessions constructed in its specific environment 
to prepopulate its work item handlers. We will use it, along with specific work item 
handlers added to our classpath, to do the following:

• Override existing configurations for task behavioral definitions
• Make our own configurations for new task types

We can make use of work item handlers to create interactions with pretty much any 
form of external system. Also, by adding the jbpm-workitems dependency to our 
project, we can create or extend from a wide range of previously existing work item 
handlers that allow us to access web services, RSS feeds, interact with filesystems, 
FTP servers, databases, Java beans, and many more components, as follows:

<dependency>
    <groupId>org.jbpm</groupId>
    <artifactId>jbpm-workitems</artifactId>
    <version>6.1.0.Beta3</version>
</dependency>

This dependency is available inside the KIE Workbench libraries, so you can use them 
to extend configurations without even writing a new WorkItemHandler definition.



Chapter 10

[ 245 ]

We have defined a CustomWorkItemHandlers.conf file with extra features for our 
custom KIE Workbench edition. In it, you can find definitions that come from the 
project custom-work-item-handlers. There is one more component in the said 
project that implements the org.kie.internal.executor.api.Command interface, 
which we are going to discuss in detail in the next section.

Executor service commands
Configuring WorkItemHandlers is a great way of creating interactions with external 
systems. However, the more complex those interactions are, the more time the thread 
that interacts with the process will be waiting for the task to finish. This is a natural 
consequence of complex executions; they do take time. However, having a behavior 
that is detached from the actual process execution in our tasks will allow us to invoke 
more process executions with fewer resources. In order to provide this detached, 
asynchronous management of tasks, we will use the following three components:

• The org.kie.internal.executor.api.Command interface, which provides a 
new way of writing external interactions

• The ExecutorService class, which creates a managed thread pool for 
executing the said commands

• The AsyncWorkItemHandler class, which ends up connecting the process 
execution with the ExecutorService method in an asynchronous fashion

The Command interface is a very simple one. It provides an execute method that will 
receive a Context object and return an ExecutionResults object, as follows:

public interface Command {
    ExecutionResults execute(Context ctx) throws Exception;
}

The interface isn't just meant to work with WorkItemHandlers, but with anything 
that requires a pluggable and pooled asynchronous behavior. In order to use it as 
an interaction with process tasks, we will have a variable in the context marked by 
the key workItem to access the parameters of the task. The custom-work-item-
handlers project in this chapter's code bundle defines a very simple command for 
handling a specific domain task:

public ExecutionResults execute(CommandContext c)throws Exception{
    WorkItem wi = (WorkItem) context.getData("workItem");
    Object domainXParameter = wi.getParameter("domainXParameter");
    //Your specific domain operations should go here
    ExecutionResults results = new ExecutionResults();
    results.setData("domainXResult", domainXParameter);
    return results;
}



Integrating KIE Workbench with External Systems

[ 246 ]

As you can see, the ExecutionResults object has a setData method where we can 
add specific output for our commands. The specific work item handler prepared to 
pass tasks to the executor service, called AsyncWorkItemHandler, will take these 
parameters to match each result with a task output.

Overall, the ExecutorService object, the specific handlers, and the command it 
will use can all be specified through a single line of code. This is clearly visible in the 
CustomWorkItemHandlers.conf file that can be found in the kie-wb-edition project:

[
...
  "DomainX" : new com.wordpress.marianbuenosayres.handlers.
        DomainXWorkItemHandler(),
  "DomainXAsync" : new org.jbpm.executor.impl.wih.
       AsyncWorkItemHandler(
           org.jbpm.executor.ExecutorServiceFactory.
               newExecutorService(
                   javax.persistence.Persistence.
                       createEntityManagerFactory(
                           "org.jbpm.domain")
               ),
           "com.wordpress.marianbuenosayres.handlers." +
                "DomainXExecCommand"
      )
]

The line for using the AsyncWorkItemHandler component looks a bit complicated, 
but it does a lot in a single line. First, it creates a JPA persistence manager, then it 
creates the executor service, and then it passes it to the AsyncWorkItemHandler 
component along with the name of the Command class to execute its tasks.

The main advantage of using the executor service is that it provides the possibility 
of handling many more concurrent calls that interact with process executions. 
Whenever we invoke an interaction with a process instance (without the executor 
service strategy), we will be hanging a thread until the automatic tasks involved 
in said process are finished or reach a wait state. So, if we have 10 users invoking 
processes with a task as the first step that takes 2 seconds to process, we will have  
10 threads hung up for 2 seconds each.



Chapter 10

[ 247 ]

With the executor service, this is far more manageable, because passing tasks to the 
executor service takes barely any time, and it will queue tasks for deferred execution 
until a thread inside its pool is made available. This translates to a far more scalable 
situation for our previous case, because we will have 10 threads hung up for very 
few milliseconds (the time it takes to queue a task), and then a limited number of 
threads solving elements from that queue. The following diagram shows how a 
server that uses the executor service (at the bottom of the diagram) scales better on 
high concurrency situations than the one that solves tasks using a synchronous work 
item handler (at the top of the diagram):



Integrating KIE Workbench with External Systems

[ 248 ]

The preceding diagram shows how, even with fewer threads, the response time 
decreases because the actual tasks are not being finished by the BPM system 
invocation. Instead, they're just queued for another group of threads to actually 
perform them. This strategy with an executor service will even provide a retry 
mechanism if the tasks fail, because it can be configured to retry each command a 
number of times if they throw an exception, or even leave them in a pending state 
until a solution to the failure can be found.

This management issue becomes much more important when those 10 invocations 
a second become a hundred, or a thousand. The processes that use an asynchronous 
mechanism, such as the executor service, will scale far better when high concurrency 
is used.

KIE Session Sharing Considerations
Finally, another consideration to have when running on highly concurrent 
environments is one further consequence of sharing a KIE session between many 
process instances. Due to the way the persistence is configured (See Chapter 8, 
Implementing Persistence and Transactions), it will be able to recover and continue the 
KIE session execution from another thread, but only one thread at a time will be 
able to manage invocations to a KIE session. This is because they will edit the same 
tuple in the database (for the SessionInfo table) and internal locks on the database 
connection configuration will either throw an exception or lock the tuple in the 
database. Either way, only one thread will successfully access a KIE session at  
a time to avoid data change collisions.

When considering high concurrency environments, we will need to take this 
situation into account, as two process instances that share the same KIE Session 
won't be able to execute from two different threads at the same time. On a single 
standalone server, this could be managed with a synchronized block around a KIE 
session method invocation; however, with multiple nodes, this could become a 
problem that could occur a certain number of times.

In order to avoid this error, the implementation of the persistence for Drools 
provides an OptimisticLockRetryInterceptor component, that when a 
concurrent modification problem arises, hangs the latest thread and retries the 
execution milliseconds afterwards. This usually saves the few cases where this 
problem could happen if you don't share the session too much. However, in order 
to avoid having this situation too often, we will need to consider partitioning our 
KIE sessions in a specific way, and try to see whether a per-process instance runtime 
manager could fit our needs.



Chapter 10

[ 249 ]

Remote engine invocations
Once we have a BPM system component to centralize our process engine, we will 
need a standard way to access that environment. It is important to expose such 
environments in order to not clutter other systems with complicated or dependency 
loaded APIs.

We've seen how to add a web service component to expose the KIE Workbench's 
internal components through a SOAP-based web service, but there are more 
standard ways of accessing our environment, which are preconfigured in the KIE 
Workbench. Those mechanisms also come with client components, based on the 
RuntimeEngine interface, for which implementations are provided to access the 
internal runtime engines of the KIE Workbench through the following two protocols:

• A RESTful HTTP interface
• JMS command invocations through Queues

The following diagram shows how these different ways of connecting external 
systems to the KIE Workbench are implemented:



Integrating KIE Workbench with External Systems

[ 250 ]

As the preceding diagram shows, the RemoteRuntimeEngine object takes advantage 
of the command pattern-based KIE session and task service to expose the exact 
same API by implementing a remote way to execute the commands. Using the 
RemoteCommandExecutor object, it can send XML serializations of each command 
through different protocols, and as long as a server is prepared to receive them, 
interaction between the client and server could be done through the same API you 
would use to run the process engine locally.

In order to use these remote APIs, you need to add the kie-services-client 
dependency to your projects, as follows:

<dependency>
    <groupId>org.kie.remote</groupId>
    <artifactId>kie-services-client</artifactId>
    <version>6.1.0.Beta3</version>
</dependency>

We will go into detail on how to use each one of these remote invocation strategies in 
the following sections.

REST interface
The simplest way to communicate with the KIE Workbench is through the REST 
interface. A group of REST service classes expose a series of URLs to access different 
runtime engines inside the KIE Workbench. The following table shows some of  
the URLs:

URL Functionality
/rest/runtime/{deployment-id}/
process/{process-id}/start

This URL allows you to start a process 
instance. Here, the parameters are passed 
through the body.

/rest/runtime/{deployment-id}/
process/instance/{process-
instance-id}/abort

This URL allows you to send the abort 
signal to a running process instance.

/rest/runtime/{deployment-id}/
process/instance/{process-
instance-id}/signal/{signal-ref}

This URL allows you to send a specific 
signal to a running process instance.

/rest/runtime/{deployment-id}/
signal/{signal-id}

This URL sends a signal to the whole 
KIE session instead of just one process 
instance.

/rest/runtime/{deployment-id}/
workitem/{workitem-id}/complete

This URL allows the user to complete a 
work item remotely. Here, the parameters 
are sent through the body.



Chapter 10

[ 251 ]

URL Functionality
/rest/runtime/{deployment-id}/
workitem/{workitem-id}/abort

This URL allows the user to abort a work 
item remotely.

/rest/runtime/{deployment-id}/
execute

This URL allows the user to execute a 
command sent through the post body.

/rest/runtime/{deployment-id}/
process/instance/{process-
instance-id}/variable/{var-name}

This URL retrieves the value of a variable 
for a specific process instance.

/rest/runtime/{deployment-id}/
process/instance/{process-
instance-id}

This URL retrieves a specific process 
instance.

/rest/task/{task-id}/{operation} This URL allows you to perform multiple 
different operations on top of the task 
service (claim, activate, complete, and 
so on). Here, the parameters are sent 
through the post body.

/rest/task/query This URL allows you to perform queries 
on top of the task service database.

/rest/task/{task-id}/content This URL retrieves the contents of a task 
(its task inputs, outputs, and errors).

/rest/task/{task-id}/content/
{content-id}

This URL retrieves a specific content of 
one specific task.

/rest/task/bam/history/clear This URL clears the audit information of 
the task database.

/rest/runtime/{deployment-id}/
process/history/clear

This URL clears the audit information of 
the process database.

/rest/runtime/{deployment-id}/
process/history/instances

This URL retrieves historical information 
of all completed and running process 
instances.

/rest/runtime/{deployment-id}/
history/instance/{process-
instance-id}

This URL retrieves all historical info 
about one specific process instance.

/rest/runtime/{deployment-id}/
history/instance/{process-
instance-id}/node

This URL retrieves all historical info 
about nodes of one specific process 
instance.

/rest/runtime/{deployment-id}/
history/instance/{process-
instance-id}/variable

This URL retrieves all historical info 
about variables of one specific process 
instance.

/rest/deployment This URL show all the deployments that 
are available.

/rest/deployment/{deployment-id}/
deploy

This URL updates a deployment.



Integrating KIE Workbench with External Systems

[ 252 ]

URL Functionality
/rest/deployment/{deployment-id}/
undeploy

This URL removes a deployment.

/rest/deployments This URL shows all the deployments that 
are available.

The most important URL exposed is probably the "execute" URL: /rest/runtime/
{deployment-id}/execute. Through this URL, using the command pattern, every 
single function in the KIE session and the task service can be implemented using the 
same API. This is the one used by the implementation at the kie-services-client 
dependency to expose the RemoteRuntimeEngine class. The following code snippet 
shows how to build a REST remote runtime engine:

RuntimeEngine engine = RemoteRestRuntimeEngineFactoryBuilderImpl.
    newBuilder().addUrl(new URL("http://localhost:8080/kie-wb")).
    addDeploymentId("org.jbpm:HR:1.0").addUserName("mariano").
    addPassword("mypass").build().newRuntimeEngine();

You can see that we are passing four elements to the 
RemoteRestRuntimeEngineFactoryBuidlerImpl class: a URL for the KIE 
Workbench, a release ID for identifying a runtime manager, and a username and a 
password to log in to the application and pass credentials to what I will do on top of 
the created RuntimeEngine.

Once the RuntimeEngine object is created, we can use it as any other RuntimeEngine 
we built in our local environment. Internally, it will create commands for every 
method invoked in the KIE session and task service, serialize them into XML,  
and send them through the execute URL.

You can find an example in the remote-invocations project, in the 
SignalEventAppREST class. You can run it directly from the remote-invocations 
path by typing the following command:

mvn -Prest

JMS interface
Another way of accessing the KIE Workbench runtime engines is through the JMS 
implementations. It uses a set of queues to send serialized versions of the command 
objects for task service and KIE session method executions. These commands, 
whether they are sent to the task service or the KIE session, are sent through two 
different queues: jms/queue/KIE.TASK or jms/queue/KIE.SESSION queues, 
respectively. Responses are handled through the jms/queue/KIE.RESPONSE queue.



Chapter 10

[ 253 ]

These are the default configurations in the KIE Workbench application, but  
they can be changed in the bpms-jms.xml file under the WEB-INF/ folder of  
the KIE Workbench.

There is another queue we haven't mentioned because, for the moment, it is not 
managed by the RemoteRuntimeEngine interface. This queue is the audit queue.  
It manages requests for the AuditLogService interface, to access the history logs 
from outside applications.

In order to create code that could manage messages for the first three queues in  
a standard way, we must create the runtime engine through the provided API,  
as shown in the following code snippet:

InitialContext ctx = new InitialContext();
QueueConnectionFactory connFactory = (QueueConnectionFactory) 
    ctx.lookup("jms/RemoteConnectionFactory");
Connection conn = connFactory.createConnection(
    "mariano", "mypass");
Session session = conn.createSession(true, 
    Session.AUTO_ACKNOWLEDGE);
Queue ksQueue = (Queue) ctx.lookup("jms/queue/KIE.SESSION");
Queue taskQueue = (Queue) ctx.lookup("jms/queue/KIE.TASK");
Queue respQueue = (Queue) ctx.lookup("jms/queue/KIE.RESPONSE");
RuntimeEngine engine = RemoteJmsRuntimeEngineFactoryBuilderImpl.
    newBuilder().addDeploymentId("org.jbpm:HR:1.0").
    addConnectionFactory(connFactory).addKieSessionQueue(ksQueue).
    addTaskServiceQueue(taskQueue).addResponseQueue(respQueue).
    addUserName("mariano").addPassword("mypass").
    build().newRuntimeEngine();

The preceding code snippet does a lot more configuration, mainly to access all the 
JMS components needed. We first need to connect to an initial context to gain access 
to our JMS ConnectionFactory and Queues, and then we pass those to the factory 
along with a release ID, a username, and a password.

You will need to have the jndi.properties file in your classpath with 
all the configurations needed to access a remote JMS environment. You 
can find one with all such configurations to connect to a JBoss Application 
Server 7.1 remote JMS factory in the remote-invocations project.



Integrating KIE Workbench with External Systems

[ 254 ]

There is an example provided in the SignalEventAppJMS class of the remote-
invocations project. You can run it directly from the remote-invocations  
path by typing the following command:

mvn –Pjms

Due to default permission configurations in JBoss Application Server 7.1, 
you need to have the guest role added to the user with which you log 
in to the KIE Workbench. You can do so by editing the application-
roles.properties file under standalone/configuration, 
changing mariano=admin to mariano=admin,guest.
Also, if you want to run the remote-invocations demo, you will also need 
to add the mariano user, with password mypass, to the application 
realm using the add-user.sh or add-user.bat script of the JBoss 
Application Server.

Deploying the KIE Workbench in the 
cloud
One trendy topic nowadays is the possibility of deploying different middleware 
solutions in the cloud, in order to relieve a company from the burden of managing 
hardware administration and allocation for their enterprise and development 
configurations. The KIE Workbench is a project that was developed with the  
cloud in mind, and evolved to be deployable within a cloud server.

The KIE Workbench is a web application and can run on any type of server. 
However, it is mainly tested on top of JBoss Application Server 7.1, the current 
production-ready Application Server from Red Hat. Because of that, the newest 
distributions are quickly available to run on JBoss-based cloud providers. This is the 
reason for having the cloud-based distribution of the KIE Workbench prepared to 
run on OpenShift (http://www.openshift.com), a multiplatform (of which one of 
them is JBoss) cloud service. We will see how to configure a running KIE Workbench 
on said cloud provider.

First, we will need to register on OpenShift by clicking on the SIGN UP button 
on the top-right corner of the OpenShift website. This button will take us to a 
registration screen, as shown in the following screenshot:

http://www.openshift.com


Chapter 10

[ 255 ]

Once the registration is done and confirmed, we need to click on the Add 
Application button, which will take us to the cartridge selection screen. Cartridges 
are components installed into an environment to provide a specific functionality, 
such as a JBoss environment, a MySQL database, and so on. In our case, we're going 
to focus on two options that install KIE Workbench-like web applications on a server 
such as JBoss Application Server, described in the following list:

• The JBoss Business Process Management Suite Cartridge: This is the Red 
Hat maintained cartridge to access the product version of the KIE Workbench 
(called Red Hat BPMS). It requires a paid subscription to work properly, as it 
consumes a lot of resources.

• Use a custom cartridge: At the bottom of the page, you will see a text field 
that you can complete with a specific URL. We can select our manually 
created cartridges there. I've created a special cartridge to run the community 
version of this project, and if you type https://raw.githubusercontent.
com/marianbuenosayres/openshift-cartridge-kiewb/master/
metadata/manifest.yml into the text field and click on Next, you will see 
the page to configure the name of your application. We will select a name for 
it, a domain, and click on the Create Application button at the bottom of the 
page, as shown in the following screenshot:



Integrating KIE Workbench with External Systems

[ 256 ]

The application will take some time to be created. Once it is available, you should 
be able to access the application through the provided URL, and depending on 
the cartridge you used, a link will appear to access the BPMS, or an automatic 
redirection will take you to the KIE Workbench.

Summary
BPM adoption is a tough job, but its rewards are enormous. Not only has the speed 
of development dramatically increased, but the amount of intercommunication 
between technical groups and domain experts has increased significantly through 
a common language. No organization has ever regretted learning BPM, much less 
adopting it in their everyday activities.

In this chapter, we have learned about the architecture considerations of using jBPM6 
as a BPM system, the different integration facilities the KIE Workbench provides, 
how to access it from outside tools, and even how to deploy it in the cloud. It is up 
to the end user to determine the best way to make use of these components to link 
jBPM6 to the existing enterprise infrastructure, but it is my honest hope that now  
you will have all the tools to make the right decision.

After all that we have covered in this book, I hope you have all the necessary tools to 
get started with jBPM6. It is such a big project that it is almost impossible to fit every 
single detail in just one book. For that reason, I strongly recommend going iteratively 
increasing the complexity of your projects, based on what you have seen in this book. 
I also recommend joining the community; it is by far the best way to learn about 
the project state and future directions. It is a very open group, and about half of the 
contributions made to the project are from people like you, who started learning 
about jBPM6.

This book will be used as a foundation to write more advanced articles describing 
extra topics, so keep an eye on my blog (http://marianbuenosayres.wordpress.
com). Feel free to contact me through comments on my blog or using the community 
jBPM IRC channel. Don't be shy, and keep in touch!

http://marianbuenosayres.wordpress.com
http://marianbuenosayres.wordpress.com


The UberFire Framework
We have seen the different components of the KIE workbench throughout the book. 
This appendix will explain how all its components are bonded together through 
the UberFire framework, which allows us to have a configurable and extensible 
workbench environment. We will dedicate this appendix to discussing its structure 
and use, which will become useful if you wish to extend the tooling provided by 
jBPM6 for your own personal customization. This is an advanced topic, but will give 
you a full control over how to use the KIE workbench to fit it best to your company.

UberFire
UberFire is a JBoss-based framework developed and maintained by the Drools  
and jBPM team. UberFire creates a rich client platform built on top of GWT  
(http://www.gwtproject.org) and Errai (http://erraiframework.org). It is 
also the technology on top of which the KIE workbench project is built. It provides 
a series of components for a pluggable user administration, virtual file system 
management, and configurable perspectives and user interfaces. It is thought  
of as a work on top of an application server, and depends on JEE6 specifications 
(such as CDI, for dependency injection).

UberFire defines a few default implementations for a few of its services, but 
they are all highly configurable. For example, for user management, they use 
a user properties file as default, but the KIE workbench uses Java as a service 
implementation configured with a file in the classpath at META-INF/services/org.
uberfire.security.auth.AuthenticationSource with the actual implementation 
to use for authentication.

We will discuss only a few of the components of UberFire here due to the need of 
perhaps a full book to cover every component. However, if you wish to go deeper 
into the framework utilities, visit http://www.uberfireframework.org.

http://www.gwtproject.org
http://erraiframework.org
http://www.uberfireframework.org


The UberFire Framework

[ 258 ]

Some of the most important functionalities that UberFire provides from our 
perspective are follows:

• Integration of components
• Existing components and services used by jBPM6
• How to extend and reuse components

As I'm writing this book, UberFire is still in Alpha state, so some things 
might change in the near future. I'll try to cover the most important 
architecture components of UberFire you will more likely use, and that 
are less likely to change in the future.

Integrating components
As we mentioned before, UberFire is heavily dependent on GWT and Errai, 
integrated internally through a series of CDI injected events that each  
component either fires or captures to decide actions that need to be taken.

Context and Dependency Injection (CDI) is a standard defined by Java Enterprise 
Edition 6 to compose different components based on their types, names, and specific 
centralized configurations. The idea behind it is remove the need of writing legacy 
code to initialize and bind together different implementations of components,  
but allow them to be managed through specific annotations in classes and  
by configuration files.

Google Web Toolkit (GWT) is a framework created by Google that is used to define 
smart user interfaces using Java code, which are later (during project compilation) 
translated into JavaScript in order to run in a web browser without the need of 
having any plugins installed. Its goal is to enable productive development of  
high-performance web applications without the developer having to be an  
expert in browser quirks, Ajax requests, and JavaScript.

The main problem that a GWT translation of Java to JavaScript has is that it doesn't 
translate everything. There is a point where you have to split which classes run in the 
client as JavaScript and which classes run in the server as Java. Connectivity between 
the server and client don't take advantage of other frameworks such as CDI to inject 
communication stubs.

That's where Errai comes in. Errai provides several GWT extensions for UI 
templating, binding, and server communication through simple events. Errai allows 
users to define CDI annotations on GWT code and provides a way to translate those 
annotations and use them even if the actual component implementations are only 
server-side (that means, they weren't translated to JavaScript).



Appendix

[ 259 ]

This allows components to directly communicate using events irrespective of 
whether they were server components or client components that will later on be 
translated to JavaScript. The level of unification in the design that this framework 
allowed made UberFire an incredibly powerful framework.

Thanks to all the already existing components in the workbench and the fact that all 
communication can be handled through events, extending components to listen to 
new events is very simple and new components that interact with other actions taken 
by the user or the server can be written with very loose coupled code.

The existing components and services
There are many existing components in the UberFire framework, and covering them 
all will take a book by itself. We will explore the most important components from the 
BPM perspective, and how they help in the generation of a BPM system for jBPM6.

Some of the backend features that UberFire has that are important for jBPM6 are  
as follows:

• Security framework: UberFire security is highly pluggable and assumes 
very little by default. Any class that implements the org.uberfire.
security.auth.AuthenticationSource interface can tell the framework 
which credentials are valid and which are not. The framework comes with 
a starter set of AuthenticationSource implementations, but you can 
implement your own, add it to your workbench class path, and configure 
it using Java's standard ServiceLoader facility, by simply writing the full 
class name in the META-INF/services/org.uberfire.security.auth.
AuthenticationSource file. If you want more than one authentication 
source at a time, list each fully qualified class name on its own line in the 
file; if your AuthenticationSource implementation also implements 
RoleProvider, then it can also provide role authorization.

• Virtual File System API: UberFire provides a configurable virtual file 
system and an implementation of said configurations using Git software 
configuration management (http://git-scm.com). This allows UberFire to 
store not only the knowledge assets created with the KIE workbench, but also 
perspective definitions and geometries for users' customized layouts. The 
interface provided for the virtual file system is created by backporting the 
NIO.2 API defined for Java 8 (https://jcp.org/en/jsr/detail?id=203) 
into the code base of UberFire. Just as the security framework, it can 
be configured using Java's standard ServiceLoader facility by writing 
content to the META-INF/services/org.uberfire.java.nio.file.spi.
FileSystemProvider file. However, this isn't a recommended practice 
unless you know exactly what you're doing.

http://git-scm.com
https://jcp.org/en/jsr/detail?id=203


The UberFire Framework

[ 260 ]

Thanks to these backend features, a lot of other features can be easily provided. 
Among the frontend features, we have the following:

• Perspective generation: Perspectives provide a powerful mechanism for 
task-oriented interaction with resources, multi-tasking, and information 
filtering. It provides the possibility of having different visual components 
arranged in multiple different ways with little or no code at all.

• Flexible layout: This, combined with the perspective generation utilities, 
provides the final user with a way of defining a particular view for him or 
her that can be utilized later on in future when he or she logs in. Thanks to 
the filesystem and security management features combined, the UberFire 
framework can internally store the preferences for each user's perspectives.

• Event intercommunication between components: Thanks to Errai and CDI, 
all components (both client and server side) can easily interact using events.

Event intercommunication is a very important and simple-to-use component that 
generates events that can be shared by the client and server. The first thing we need 
to do is to define our event objects. Let's examine how we defined NewMessageEvent 
in our uberfire-demo-api project:

@org.jboss.errai.common.client.api.annotations.Portable
public class NewMessageEvent implements Serializable {
    public NewMessageEvent() { … }
    …
}

In the previous code fragment, which we reduced to the most important sections, 
you can see that our event doesn't have to extend any specific class. All it needs is  
a @Portable annotation from Errai to be shared between client and server. Inside  
the event, any kind of serializable information can be placed to be shared between  
a client and server.

Later on, these events are captured or fired by specific instances, but the 
configuration to use them is almost trivial. In the following code fragment, we 
see how the MessageListViewImpl class in the uberfire-demo-client project 
listens for NewMessageEvent firings and how it fires another type of event called 
NotificationEvent:

public class MessageListViewImpl … {
    …
    @javax.inject.Inject
    public javax.enterprise.event.Event<NotificationEvent> 
notification;
    …



Appendix

[ 261 ]

    public void requestCreated(@javax.enterprise.event.Observes 
NewMessageEvent e ){
        …
    }

    public void displayNotification( String text ) {
        notification.fire( new NotificationEvent( text ) );
    }
   …
}

As you can see, all it took to listen to event firings was the creation of a method that 
had a parameter with the @Observes annotation. In the previous code fragment,  
the method is called requestCreated.

Meanwhile, we need two things to fire events:

• A javax.enterprise.event.Event object
• A fire method needs to be invoked with a new event instance

In the previous code fragment, the fire method is invoked from inside the 
displayNotification method. Using the Event object is quite simple. Thanks to 
CDI and Errai, we don't need to do anything else than to inject the instance with 
the @Inject annotation, and then let the framework take care of creating the actual 
object and setting it to any component.

Extending and reusing the UberFire UI 
components
One of the greatest advantages of the KIE workbench adoption of UberFire is not the 
components it provides, but how easy it is to integrate new custom components into 
an existing workbench.

Since all of the jBPM6 tooling is based on UberFire, adding new components 
becomes a great advantage for adopters of the tooling. It is also a very significant 
improvement from the previous versions, where the jBPM tooling was very difficult 
to change due to its complexity and highly-coupled code. In this version, adding new 
components is very easy, and we will show how to create new screens for an existing 
workbench and how to integrate them together.



The UberFire Framework

[ 262 ]

Model View Presenter
Before we fully dive into the code, we need to understand how it is composed and 
designed. UberFire component design is based on a very useful design pattern used 
for building user interfaces called Model View Presenter (MVP). MVP is based on a 
highly used pattern called Model View Controller (MVC), but is devoid of one of  
its biggest issues, regarding component intercommunication. The idea behind MVP 
is twofold:

• Each component in a user interface project should have three classes with 
very specific responsibilities:

 ° Model: This will handle all the business logic detached  
from presentation

 ° View: This will handle visual representations of data regardless  
of the business logic that created it

 ° Presenter: This will manage communication between two and  
more components

• Each different MVP group should communicate with other components  
(and, to some measure, even with itself) by listening and firing events

This creates a very distinctive structure of classes that can be easily changed, to 
provide different representations by allowing them to be completely detached from 
the business logic and from other visual components. The following diagram of MVP 
shows the basic interactions that happen with this pattern:



Appendix

[ 263 ]

In the preceding figure, we can see how the classes inside one single MVP group 
interact on the left and how multiple MVP groups interact with each other on the 
right. We can see how communication is always managed through an event bus 
that distributes events to their relevant listeners, even with multiple MVP groups. 
This allows the application to grow exponentially without having to increase the 
complexity of its already existing components. Each MVP group only has to worry 
about the events that they care about.

This presents a significant improvement over MVP's predecessor pattern, called 
MVC. It is similar to MVP, except that it doesn't adopt intercommunication using an 
event bus. Without said component, each MVC group (as opposed to MVP) should 
know any other MVC group that requires notification of a particular action, and 
communication between controllers becomes hard to maintain. In the following 
figure, we can see an example of this with only five different MVC and MVP  
groups. Views and models were removed to reduce complexity.

Model View Controller versus Model View Presenter intercommunication channels

As you can see, no matter how many presenters exist, or what events they await, 
existing presenters that fire said events don't have to change to adjust to a growing 
component. With controllers, on the other hand, complexity can grow exponentially.

Now that we understand MVP and its advantages, we will make an example 
component using the UberFire framework and the MVP pattern.



The UberFire Framework

[ 264 ]

The workbench components
In this section, we will learn how to configure our own visual components inside an 
UberFire-based application. In order to understand how to build them, we need to 
understand which types are available, and what are they used for. In the following 
subsections, we will discuss four of UberFire's most used components for defining 
user interfaces:

• Workbench screens
• Workbench pop ups
• Workbench editors
• Workbench perspectives

Once we get to know how they work and what they do, we will learn how to build 
our own user interfaces. Each visual representation in our demonstration will be 
based on the MVP pattern, and will be marked by annotations added to the Presenter 
class. All the components we will describe here are going to be implemented in the 
code files of this book in the appendix/uberfire-demo folder.

Workbench screens
Workbench screens are pieces of visual representation that are fitted in a particular 
window. From a UI point of view, they are nonfloating components that fit in the 
display window of the web application. They are simple UI containers, so they can 
define virtually anything inside them. Classes that should be used as workbench 
screens in the UberFire framework are marked with a class-level annotation and a 
couple of method-level annotations, as shown in the following code fragment:

@Dependent
@WorkbenchScreen(identifier = "myParticularScreenID")
public class MyParticularScreenPresenter {
    …
    @WorkbenchPartTitle
    public String getTitle() {
        return "My Particular Screen";
    }
    …
    @WorkbenchPartView
    public IsWidget getView() {
        …
    }
    …



Appendix

[ 265 ]

    @WorkbenchMenu
    public WorkbenchMenuBar getBar() {
        …
    }
}

There is a lot to comment about the annotations used in the preceding code 
fragment. Let's analyze them briefly:

• @Dependent: This annotation is not part of UberFire API, but a part of CDI. 
CDI marks this class as a dependent scoped CDI bean that should be freshly 
instantiated every time a new instance is called for. This annotation is in 
contrast with @ApplicationScoped, which marks a CDI bean that should  
be created only one time over the life of the application.

• @WorkbenchScreen: This annotation is used to declare that the class defines a 
screen in the application. It has one attribute called identifier that defines 
a unique name for this screen, which is used later for external reference by 
other components.

• @WorkbenchPartTitle: This annotation denotes the method that returns the 
screen's title. Every screen must have a @WorkbenchPartTitle method.

• @WorkbenchPartView: This annotation denotes the method that returns  
the panel's view. The view can be any class that extends GWT's Widget  
class or implements GWT's IsWidget interface (a basic interface to  
refer to a UI component built in GWT). Every screen must have an  
@WorkbenchPartView method.

• @WorkbenchMenu: This is an optional annotation to mark a method that  
will return a menu for the specific screen. It helps to make all menus in 
all screens appear in a similar fashion. The returned type of the annotated 
method should be an instance of the org.uberfire.client.workbench.
widgets.menu.WorkbenchMenuBar class.

Using these annotations, we can define different components in any part of the code, 
without the need to depend on specific aggregations or class hierarchies and still add 
new screens in an easy way.

Workbench pop ups
Workbench pop ups are very similar to workbench screens, with the single difference 
of appearing on a pop-up window instead of as a part of a composite screen. Pop ups 
will become modal from the UberFire perspective, not letting the user click on any 
other component of the particular screen until the pop up is closed.



The UberFire Framework

[ 266 ]

It also requires a @WorkbenchPartTitle and a @WorkbenchPartView annotation to 
register a title and a view for the pop up and an identifier to invoke it from outside, 
just like screens. Because those methods can be implemented by any class, creating 
widgets that could be used both from a screen or a pop up becomes very simple.  
This is shown in the following code example:

@Dependent
@WorkbenchPopup(identifier = "myOwnPopupID")
public class MyOwnPopupPresenter {
    …
    @WorkbenchPartTitle
    public String getTitle() {
        return "My Own Popup";
    }
    …
    @WorkbenchPartView
    public IsWidget getView() {
        …
    }
}

As you can see from the comparison of the last two code fragments, workbench 
screens and pop ups are virtually the same except for the final layout in the  
UberFire framework.

Workbench editors
Workbench editors are special kinds of UI components that perform some kind 
of editing functionality for a specific file type or group of file types. It extends the 
functionality of common screens to associate the opening of an editor with a specific 
file that needs to be stored on the server side. They provide some extra needed 
configuration to bind a specific editor with a particular file and file type. Here's  
an example:

@WorkbenchEditor(identifier = "myEditorForTypeX",  
        supportedTypes = { XClientType.class })
public class MyEditor {
    @WorkbenchPartTitle
    public String getTitle() {
        return "MyEditor";
    }
    @WorkbenchPartView
    public IsWidget getEditorView() {
        …
    }



Appendix

[ 267 ]

    @OnStartup
    public void onStart(final Path path) {
        …
    }
    …
}

In the preceding code, there are a few things that are different from  
workbench screens:

• @WorkbenchEditor: This annotation is used to declare that the class defines 
an editor in the application. It has two attributes—one called identifier 
that defines a unique name for this editor and for external reference by other 
tools and another called supportedTypes, which should receive an array of 
all file types that the editor can work with. File types are represented using 
the org.uberfire.client.workbench.type.ClientResourceType class 
that can be extended to add support for new file types.

• @OnStartup: This is one of UberFire's lifecycle annotations. They are better 
explained in the next subsection. It marks a method that will be called when 
the editor is created. For the special case of editors, the annotated method 
can receive a parameter of type org.uberfire.backend.vfs.Path, which 
denotes the file with which the editor will be working.

Workbench perspectives
UberFire workbench UI components are arranged as Workbench | Perspective | 
Panel | Workbench screen. Perspectives dictate the position and size of workbench 
panels, and therefore provide a place to put our workbench screens and editors. 
Defining a perspective is very simple:

@ApplicationScoped
@WorkbenchPerspective(
    identifier = "myCustomPerspective",
    isDefault = false)
public class CustomPerspective {

    @Perspective
    public PerspectiveDefinition getPerspective() {
        final PerspectiveDefinition p = 
            new PerspectiveDefinitionImpl(
                PanelType.ROOT_LIST);
        p.setTransient(true);
        p.setName(getClass().getName());



The UberFire Framework

[ 268 ]

        p.getRoot().addPart(
            new PartDefinitionImpl(
                new DefaultPlaceRequest("myParticularScreenID")
             )
         );
        return p;
    }
}

The preceding code defines a perspective that will contain our previously defined 
screen with the identifier "myParticularScreenID". The necessary components  
of a perspective are as follows:

• @WorkbenchPerspective: This annotation is used to declare that the class 
defines a perspective in the application. It has two attributes—one called 
identifier that defines a unique name for this perspective and for external 
reference by other tools and another called isDefault, which determines 
whether it should be opened by default when the workbench loads.  
Only one default perspective is allowed in each workbench.

• @Perspective: This annotated method must return an org.uberfire.
workbench.model.PerspectiveDefinition object. These objects will allow 
different layout dispositions to be formed in a tree-like structure, and they will 
reference different screens by their identifier using a PlaceRequest object.

In this way, when the workbench opens a perspective, it will know that it should 
open a series of particular screens, all referenced by an ID and placed in special 
places of the open window.

The lifecycle annotations
All the visible UberFire components (perspectives, editors, pop ups, and screens) 
are defined in a way that makes them very detached from any core UberFire 
functionality. All you have to do is annotate certain methods to let UberFire  
connect them for you to all the right places. However, we just started with 
configuration annotations, and we still have to see a very important group  
of annotations that are used to define what to do on specific events that the 
workbench will send to your components.

Whenever a perspective changes, a screen is created, an editor is closed, or when the 
workbench needs to shut down, we need a way to tell our components how to react 
or even pass specific information about the event. For events as common as opening, 
closing, or focusing on a component, UberFire provides us with a series of lifecycle 
annotations that are visible in the following diagram:



Appendix

[ 269 ]

The annotations shown in the preceding diagram are as follows:

• @OnStartup: When the component is initialized, methods marked with this 
annotation are called. For workbench editors, the method should have a VFS 
path object as a parameter and for all other workbench parts it should have 
zero parameters. It is commonly used to initialize server components.

• @OnOpen: When the workbench component is displayed, this method will 
be called. The method should have zero arguments and return void, and is 
commonly used to start visual representations.

• @OnFocus: Methods annotated with this will be called when the  
workbench component receives focus. It should also have zero  
arguments and return void.

• @OnLostFocus: Whenever the user clicks on another component, the current 
one will lose focus and the method annotated with this will be called.

• @OnMayClose: Methods annotated with this should return a Boolean value. 
They should decide whether the component is in a state where it can be 
closed or not. Based on that, the workbench will decide whether to continue 
closing the component.

• @OnClose: When a component is closed, the method annotated with this will 
be called—usually to clean visual resources.

• @OnShutdown: This annotation is called to release resources on both the 
client and server side regarding the current component.

Using these annotations, we can define user interactions that are very detached from 
the actual workbench's final implementation. This helps a lot in making scalable UI 
components with a lot of embedded functionality.



The UberFire Framework

[ 270 ]

Creating a screen and a pop up
Now that we have seen all the UberFire annotation components, we can start seeing 
in detail the components created in the uberfire-demo project provided with  
the book.

In our example, we create a user interface to show a very simple functionality; a 
screen that shows us a list of messages with a pop up that allows us to create a new 
message. Messages are stored as simple String elements. The project is divided into 
three subprojects:

• uberfire-demo-api: This subproject defines a service interface for reading 
all messages and adding a new one (called DemoServiceEntryPoint) 
and an event type for sending a new message back and forth (called 
NewMessageEvent). You can see in the code that the event class is marked 
with the @Portable annotation, to make it accessible through both Java and 
GWT JavaScript code. Also, the service interface is marked with the @Remote 
annotation, which lets Errai know that the GWT code will try to invoke it.

• uberfire-demo-backend: This subproject defines an implementation for 
the service interface defined in the uberfire-demo-api project. The 
implementation is based on holding a list in memory and adding values 
to it. What's really interesting about it is that it's marked with a @Service 
annotation that lets Errai know this is an implementation for an Errai  
server-side service.

• uberfire-demo-client: This subproject defines the user interfaces. Here's 
where we will use most of the UberFire components previously explained.

For this example, uberfire-demo-client is the subproject that will be most useful 
for us. We have created two components in it, a screen (to display a message list) 
and a popup (to create a new message). Let's take a look at specific utilities that the 
Message List screen uses by looking at a code fragment of MessageListPresenter:

@Dependent
@WorkbenchScreen(identifier = "uberFireDemo.MessageListScreen")
public class MessageListPresenter {
    public interface MessageListView extends 
                UberView<MessageListPresenter> {
        void displayNotification(String text);
        DataGrid<String> getDataGrid();
    }
    @Inject
    private PlaceManager placeManager;



Appendix

[ 271 ]

    @Inject
    private MessageListView view;
    …
    @WorkbenchMenu
    public Menus getMenus() {
       return MenuFactory
           .newTopLevelMenu(constants.NewMessage())
           .respondsWith(new Command() {
               @Override
               public void execute() {
                   placeManager.goTo(
                       new DefaultPlaceRequest(
                           "uberFireDemo.NewMessagePopup" ) );
               }
           }).endMenu().build();
    }
  }
}

There are a few components in this code fragment that we still haven't seen and are 
very useful when working with UberFire components:

• UberView interface: This is an extension of the IsWidget interface, which 
adds a method to initialize a view based on a presenter object. You can see 
that we extend it to add methods that will be useful for our specific case.

• Injection of MessageListView instance: This is because the view object is 
also generated and injected through Errai and CDI. As you can see in the 
code, the view implementation is template-based and we're working with 
an HTML file (MessageListViewImpl.html). The templating is handled by 
mappings between both the files marked by data-field attributes in the 
HTML file, and @DataField annotated attributes in the Java class.

• WorkbenchMenu generation: This is to show how we can create menus that 
have any commands we wish. In the preceding code, we show how to use a 
very useful utility called PlaceManager (which is also injected through Errai 
and CDI), which is a utility manager to tell the workbench to go to another 
particular view or to get parameters from the current URL. In our case, we're 
using it to go to the popup for creating a new message.

The code in the view implementation is then only an initialization and exposure of 
GWT components (in our case, those components are just a table with strings in it).



The UberFire Framework

[ 272 ]

The other component, the pop up, has a very similar structure. Let's analyze this 
code fragment of the NewMessagePresenter class:

@Dependent
@WorkbenchPopup(identifier = "uberFireDemo.NewMessagePopup")
public class NewMessagePresenter {

    ...
    @Inject
    private Caller<DemoServiceEntryPoint> demoService;
    @Inject
    private Event<NewMessageEvent> newMsgEvent;
    …
    public void sendMessage(String message) {
        this.demoService.call( new RemoteCallback<Void>() {
            @Override
            public void callback( Void response ) {
                //send event
                newMsgEvent.fire(
                    new NewMessageEvent( view.getMessage() ) );
            }
        } ).sendMessage( message );
    }
}

For brevity's sake, we removed the most similar parts to the previous component. 
Let's discuss what's new in this class:

• Caller: This interface is a wrapper from Errai to handle server-side service 
invocations as an asynchronous communication. As we have mentioned, 
GWT code will be translated by a compiler into JavaScript code. This means 
that service calls will eventually be made through JavaScript using Ajax, 
and their behavior should be asynchronous. Later on, in the sendMessage 
method, we will learn how we use that wrapper with a RemoteCallback 
parameter to handle the response.

• Event: This interface is a way to let Errai handle event firing. We're using it 
to communicate with the message list presenter in a detached fashion.



Appendix

[ 273 ]

Creating a perspective
Creating a perspective is done exactly as explained before. In our case, we create a 
perspective to include only our message list screen. Here's the code found in our 
MessageListPerspective class:

@ApplicationScoped
@WorkbenchPerspective(
    identifier = "uberFireDemo.MessageListPerspective", 
    isDefault = false)
public class MessageListPerspective {
    @Perspective
    public PerspectiveDefinition getPerspective() {
        final PerspectiveDefinition p = 
            new PerspectiveDefinitionImpl(PanelType.ROOT_LIST);
        p.setTransient(true);
        p.setName("My Customized panel of Messages");
        p.getRoot().addPart(new PartDefinitionImpl(
            new DefaultPlaceRequest(
                "uberFireDemo.MessageListScreen")));
        return p;
    }
}

As you can see, all we do is create a method annotated with @Perspective to return 
a PerspectiveDefinition instance that will have our message list screen in it, and 
we mark it to not be the default perspective.

Integrating components with the existing 
workbenches
Workbenches are Maven-based web projects that depend extensively on UberFire 
and its internal configurations to work. Due to UberFire being in an alpha state, 
workbench definition is something that might still change a lot. It is because of this 
reason that we will not see how to create our own workbenches in detail. Instead, we 
are going to see the necessary steps to add new components built with UberFire in an 
already existing workbench. This is less prone to change to keep compatibility with 
already defined components. If you wish to build your own workbench from scratch, 
visit http://www.uberfireframework.org for more help with that aspect.

Review the jbpm-console-ng-showcase project inside the uberfire-demo folder. 
This is one workbench already available in the open source jBPM6 repositories to 
which we have added uberfire-demo as an extra component.

http://www.uberfireframework.org


The UberFire Framework

[ 274 ]

The steps taken to add new components to an UberFire based workbench are  
as follows:

1. The first step needed to let GWT compile our Java components into 
JavaScript modules in the workbench is to add the component release IDs 
to the workbench as dependencies. In this case, we can do this by adding 
uberfire-demo-client and uberfire-demo-backend dependencies into  
a particular workbench's pom.xml file.

2. Maven will trigger the GWT code translation to JavaScript, but will need to 
know all the dependencies that need to be translated to JavaScript. To do 
so, we need to add two compileSourcesArtifact tags to the GWT Maven 
plugin configuration—one for uberfire-demo-api, and one for uberfire-
demo-client.

3. GWT uses special XML files to define modules and dependencies between 
them. We have defined two of them in our demonstration projects 
(UberfireDemoAPI.gwt.xml and UberfireDemoClient.gwt.xml). In order 
to make the GWT code know that it will use those modules, we need to make 
the specific workbench GWT XML file that has those modules (and any other 
we define) as dependencies, using the inherits tag:
<inherits name="path.to.my.UberfireModule"/>

4. GWT projects define one class as an entry point for all incoming user calls 
(marked with the @EntryPoint annotation) where we will need to add some 
form of linking to our components. In the case of our jbpm-console-ng-
showcase project, we added a navigation bar item called MY ADDED ITEMS in 
the ShowcaseEntryPoint class.

5. Thanks to the project being a Maven-based GWT web project, we can test it 
directly by running the following command from the uberfire-demo/jbpm-
console-ng-showcase folder:

mvn clean install gwt:run

By running the web project like this, you will be using a 
special plugin component for quick development of GWT 
applications, and you will need a plugin in your navigator to 
see the application running. In order to not need this plugin, 
you will need to do a full compilation of the GWT application 
to JavaScript. You can do this by passing the system property 
Dfull to the maven command previously mentioned. Now, 
the WAR file compiled will be runnable without that extra 
plugin, but in order to run it you'll need to deploy it in an 
application server.



Appendix

[ 275 ]

As this book is being written, there are three Drools and jBPM6-related workbench 
applications that you can use to add your own components:

• org.drools...drools-wb-webapp for Drools 6 UI components
• org.jbpm...jbpm-console-ng-showcase for jBPM6 UI components
• org.kie...kie-wb-webapp for both Drools and jBPM6 UI components  

at the same time

All of them could be extended to add new UberFire components in the way we 
explained in this section.

Summary
The UberFire framework provides a wide variety of functionalities to explain the 
definition and execution environment for different types of applications, which 
makes it so suitable for defining the UI to apply the BPM discipline. We hope 
you learned how to use, configure, and possibly extend the KIE workbench by 
understanding its base frameworks to get the most out of it.





Index
Symbols
@ApplicationScoped annotation  265
@Dependent annotation  265
@duration annotation  233
@expires annotation  233
@OnClose annotation  269
@OnFocus annotation  269
@OnLostFocus annotation  269
@OnMayClose annotation  269
@OnOpen annotation  269
@OnShutdown annotation  269
@OnStartup annotation  267, 269
@Perspective annotation  268
@role annotation  233
@timestamp annotation  233
@WorkbenchEditor annotation  267
@WorkbenchMenu annotation  265
@WorkbenchPartTitle annotation  265
@WorkbenchPartView annotation  265
@WorkbenchPerspective annotation  268
@WorkbenchScreen annotation  265

A
AbstractInterceptor method  169
Abstract task

about  75
properties  127

accept method  213
action bar, process designer  103
Active Directory (AD) server  158
activities, flow elements  69, 70
activity  11
Actors property  129
AdHoc property  123

ad-hoc subprocesses  77
advanced topics, Web Process Designer

process definitions, importing  139
Service tasks  140
Work Item definition editor  140, 141
Work Item definitions, using in Process 

Designer  142, 143
AgendaEventListener  223
Apache Ant 1.9.x

URL  96
Apache Maven 3.1.x

URL  96
artifact elements  74
attributes, DRL

activation-group  223
agenda-group  222
ruleflow-group  223

B
backend features, UberFire

security framework  259
virtual file system API  259

Bitronix
URL  156

boundary events  80
BPM

about  7, 8
analysis  9
conceptual background  10
cyclic nature  15
standard specifications  9
theoretical background  8, 9

BPM APIs
common practices  26



[ 278 ]

BPM applications, in real world
BPM APIs  26
BPMS check list  24, 25
common practices, BPM APIs  26
standards  27

BPM discipline
about  15, 16
business entity model  20
business processes, discovering  16-18
coordination  21
goal  16
improvements  24
monitoring  23
orchestration  21
processes, formalizing  18, 19
runtime  22
scope  16
stages  16
technical assets, implementing  19

BPMN 2.0
about  9, 66, 115, 116
business scenarios, modeling with  81-84
elements  68
overview  81
process modeling compliance  67
URL, for specification  68

BPMN 2.0 Eclipse editor  116, 117
BPMS architecture

execution node  30
BPMS check list  24, 25
BPMS ecosystem  51
BPM system architecture

defining  237, 238
scalability considerations  239-241

BPM systems
about  7, 24, 29
architecture  30
components  30
decision management  61
predictive analytics  60

business activities
naming  12, 13
sequence  11, 12

Business Activity Monitoring (BAM)  23, 39
business applications  13

business entity model
about  20
external keys, storing  20
inherited model  20
understandable wrapper model  21

business goal
about  14
achieving  14, 15

business process discovery  15
business processes

about  11
human activities  13
human interactions  13
types  67

business processes, types
executable  67
non-executable  67

Business Process Management. See  BPM
Business Process Management systems. See  

BPM systems
Business Rule Engine (BRE)  76
business rules

processes, adding  228
temporal reasoning, defining  228

business rules, invoking
about  223
Ad hoc process instance  

evaluations  225, 226
Business Rule tasks  224, 225
gateway conditions  224
runtime configurations  227

Business Rule task
about  76
properties  128

business scenarios
modeling, with BPMN 2.0  81-84

business users  13

C
Caller interface  272
callStartDate attribute  233
Camel

URL  54
CDI  258



[ 279 ]

CDI injection, Per Process Instance Runtime 
Manager  188

CDI injection, Per Request Runtime  
Manager  185

CDI injection, Singleton Runtime  
Manager  183

CEP  38, 228-230
cloud

KIE Workbench, deploying in  254-256
CLOUD mode  235
CommandBasedStatefulKnoweldgeSession  

205
command pattern  168, 204
CommandService class  168
Comment property  130
Common Executable Conformance  67
compensation events  79
compensation subprocesses  78
Completed state  151
complex event processing. See  CEP
complex events  229
complex gateway  71
components integration, UberFire

CDI  258
GWT  258

conceptual background, BPM
about  10
business activities  11
business applications  13
business processes  11
business users  13

conditional sequence flow  72
condition expression language property  135
condition expression property  134
Context and Dependency Injection. See  CDI
Created state  151
custom extensions, building to Human tasks

about  165
task life cycle event listeners  166, 167
task life cycle event listeners, using  170, 171
task model provider  171, 172
task service interceptors  167-170
task service interceptors, using  170, 171

CustomRMFactory class  193

D
data analysis tools  40, 41
data elements  72
data inputs  73
data mining tools  40, 41
data objects  73
DataOutputAssociations property  125, 126
DataOutput property  125, 126
data outputs  73
data stores  73
decision management  61, 62
Default gate property  134
default sequence flow  72
dependent scoped CDI bean  265
deployment unit

about  144
configuring  144

distribution mechanism  201
domain-specific tasks  140
DRL

about  55, 192, 220
attributes, defining  222
business rule  56
Left-Hand Side (LHS)  56
Right-Hand Side (RHS)  56

Drools Fusion
about  232
functionalities  232
implementing  235, 236

Drools Fusion functionalities
about  232
event declarations  232, 233
sliding windows  234
temporal operators  234

Drools rule engine
about  38, 55, 220, 221
prerequisites  221-223
rules  220
rules, applying to processes  223

Drools Rule Language. See  DRL
drools.workItemHandlers property  244
DynamicUtils class  226



[ 280 ]

E
EDA  58, 228, 230
editing canvas, Web Process  

Designer UI  120
elements, BPMN 2.0

about  68
artifacts  74
connecting  71, 72
data elements  72, 73
flow elements  68
swimlanes  74

End Event nodes  127
end events  69
Enterprise Service Bus (ESB)  24, 54
EPAs

about  58
BPM systems, relating to  58

Errai
about  258
URL  257

Error Boundary events  125, 126
error events  79
ErrorRef property  126
Error state  151
escalation events  79
event-based gateway  71
event consumers  231
event declarations, Drools Fusion  

functionalities  232
Event-driven architecture. See  EDA
Event interface  272
event listeners

AgendaEventListener  223
ProcessEventListener  223
RuleRuntimeEventListener  223

event processing agents. See  EPAs
event processing network  231
events, flow elements

end events  69
intermediate events  69
start events  69

event subtypes
about  78
compensation events  79

error events  79
escalation events  79
message events  79
signal events  79
terminate events  80
timer events  79

exclusive (or XOR-based) gateway  70, 134
Executable property  123
executeWorkItem method  47
execution node

about  30
process engine  31
semantic module  31

executor commands  240
Exit state  151
external interactions

about  46-49
APIs, Human task  50
BPMS ecosystem  51
custom external interaction, creating  46
EDA  58
event processing  58
Human task component  49
life cycle, Human task  50
rule engines  55
service orchestration  53
SOA  52
User/Group callback  51
Work items  46

external keys storage, business entity model
cons  20
pros  20

F
FactHandle class  222
Failed state  151
features, UberFire

event intercommunication between  
components  260

flexible layout  260
perspective generation  260

fireAllRules method  222
fireUntilHalt  236
flow elements

about  68



[ 281 ]

activities  69, 70
events  68, 69
gateways  70

functionalities, UberFire  258

G
gateways, flow elements  70
getRuntimeEngine method  194
Git

URL  259
Globals property  123
Google Web Toolkit. See  GWT
groups  74
Groups property  129
GWT

about  258
challenges  258
URL  257

H
Hiring a Developer task  163
history logs, process engine

providing  39
human interactions

about  13, 147
and system behavior  13, 14
classification strategies  14
Human tasks' life cycle  150, 151
in business processes  148
WS-HT standard specification  149

Human task component
about  49
APIs  50, 51
life cycle  50

Human task component APIs
about  153
KIE session, connecting to  159, 160
process definition  153
task service  154-157
task service, starting  159
users and groups data source origin,  

adding  158
Human tasks' life cycle  150, 151

I
ID property  123
Imports property  123
inclusive (or OR-based) gateway  71, 134
Infinispan persistence

about  214-216
URL  214

inherited model
cons  20
pros  20

Injection of MessageListView instance  271
InProgress state  151
interceptor pattern  169
interceptors  167
intermediate events  69

J
Java  76
Java 8

URL  259
Java Persistence API (JPA)  152
JBoss Application Server

URL  97
JBoss Business Process Management  

Suite Cartridge  255
JBossUserGroupCallbackImpl  158
jBPM6

common practices  10
components  36
persistence  201, 202
persistence configuration  207-211
process designers  116
process engine  32
subprocess types  76-78
task types  75
technical details  9
transaction configuration  207-211

jBPM6 business processes, creating
knowledge asset editors  103



[ 282 ]

prerequisites  99
process designer  102
Workbench utilities  99

jBPM6 business processes, executing
prerequisites  107

jBPM6 documentation
URL  140

jBPM6 environment
requisites  96

jBPM6 Human task component overview
about  151-153
custom extensions, building  165
Human task component APIs  153
interactions  152
task-oriented user interfaces  161
URL, for source code  151

jBPM6-related properties, process definition
AdHoc  123
Executable  123
Globals  123
ID  123
Imports  123
Variable Definitions  123

jBPM Eclipse plugin  118
JDK 6

URL  96
JMS interface  252-254
JPA-based KieStoreServices  

implementations
Infinispan-based KieStoreServices  

implementations, differences  215, 216
JPAPlaceholderResolverStrategy  

implementation  213
JtaTransactionManager  216
JUnit

URL  156

K
KIE  41, 95
KIE base  43
KIE container  43
KIE module

about  42
KIE session, configuring for  189, 190

KIE services  42
KIE session  44, 45

KIE session, runtime manager
about  174
configuring, for KIE module  189, 190

KieStoreServices interface  203
KIE Workbench

about  95, 188
deploying, in cloud  254, 256
installing  97, 98
prerequisites  96
process, creating  118, 119
process designer UI  102
process, implementing  119

KIE Workbench architecture, extending
about  242
executor service commands  245-248
KIE session sharing considerations  248
web service, adding  242-244
work item handler default  

configurations   244
KIE Workbench utilities

about  99
process definitions  99-101

knowledge asset editors
about  99, 103-106
Guided Rule Editor  105

knowledge engineering  16
Knowledge Is Everything. See  KIE

L
lifecycle annotations

@OnClose  269
@OnFocus  269
@OnLostFocus  269
@OnMayClose  269
@OnOpen  269
@OnShutdown  269
@OnStartup  269

lifecycle, runtime manager  179
loop subprocesses  77

M
Maven

about  37
URL  41



[ 283 ]

message events  79
MessageRef property, Receive task  128
MessageRef property, Send task  128
Model  262
Model View Controller (MVC)  262
Model View Presenter. See  MVP
multiple instance (MI) subprocesses

about  77
parallel  77
sequential  77

MVEL
about  104
syntax  141
URL  76, 104

MVP
about  262
diagrammatic representation  262
features  262
versus, MVC  263

N
Name property  134
NodeInstanceLog  212
node instance structures

about  36
audit/history logs  39
data analysis tools  40
data mining tools  40
jBPM6 components  36
KIE APIs  41
persistence  38
real-time dashboards  40
transactions  38

Notifications property  130
Notify Developer of Requirements  

change activity  84

O
Object Management Group (OMG)  66
object marshalling strategies  213
Obsolete state  151
OpenShift

URL  242, 254
OptaPlanner  41
Oryx  117

P
parallel (or AND-based) gateway  71, 134
Per Process Definition Runtime  

Manager  193-195
Per Process Instance Runtime  

Manager  
about  185-187
CDI injection  188

Per Request Runtime Manager
about  183, 184
CDI injection  185

persistence
about  38
characteristics  200
need for  198

persistence configuration, jBPM6  207-211
PERSISTENCE_CONTEXT_MANAGER  216
persistence, jBPM6

about  201, 202
characteristics  201
KieStoreServices  203

persistence mechanisms
about  214
Infinispan persistence  214

persistent KIE session
creating  203
example  204, 205
history logs  211, 212
loading  203
object marshalling strategies, using  213, 214
starting  204, 205

perspective, UberFire UI components
creating  273

PHREAK  221
pop up, UberFire UI components

creating  270
predictive analytics  60
Predictive Model Mark-up  

Language (PMML)  41
Presenter  262
prioritize requirement task  225
Priority property  130



[ 284 ]

process
about  10
creating  118, 119
implementing  119
persisting  199

process data, sprint management technical 
overview  90-94

ProcessDefContext class  193
process definition flow  199, 200
process definition repository  240
process definition structures  32, 34
process designer

about  99, 102, 103
action bar  103

process designers, jBPM6
BPMN 2.0 Eclipse editor  116
jBPM Eclipse plugin  118
Web Process Designer  117

process engine
about  31, 38
process definition structures  32, 34
process instance structures  35

ProcessEventListener  223
Process Improvement department  16
ProcessInstanceFactory implementation  36
ProcessInstanceInfo class  206
ProcessInstanceLog  212
ProcessInstance object

implementing  35
process instance structures  35
process modeler  33
process modeling compliance, BPMN 2.0  67
process runtime

about  107-109
ProcessInstanceInfo class  206
SessionInfo class  206
WorkItemInfo class  206

process UI  107-111
properties, Abstract task

Assignments  127
DataInputSet  127
DataOutputSet  127
Name  127
On Entry Actions  127
On Exit Actions  127

properties panel, Web Process  
Designer UI  121

properties, Script task
Script  129
Script Language  129

properties, Service task
Service Interface  129
Service Operation  129

properties, Signal Intermediate Catch events
DataOutput  126
DataOutputAssociations  126
SignalRef  126

properties, Start Event node
DataOutput  125
DataOutputAssociations  125

properties, User task
Actors  129
Comment  130
Groups  129
Notifications  130
Priority  130
Reassignment  130
Skippable  130
Task Name  130

pseudo clock  236

R
Ready state  151
real-time dashboards  40
Reassignment property  130
Receive task

MessageRef property  128
RegisterableItemsFactory implementation

DefaultRegisterableItemsFactory  178
InjectableRegisterableItemsFactory  178
KModuleRegisterableItemsFactory  178
SimpleRegisterableItemsFactory  178

remote engine invocations
about  249, 250
JMS interface  252-254
REST interface  250-252

Reserved state  151
REST interface  250-252
rule  218
rule engine

about  38
BPM system, integrating  56, 57



[ 285 ]

integration issues  218, 219
Ruleflow Group property,  

Business Rule task  128
RuleFlow (RF) proprietary language  118
RuleRuntimeEventListener  223
runtime environment

about  175, 176
defining  177
RegisterableItemsFactory  

implementation  178
runtime, for process

Build & Deploy button  144
deployment unit, configuring  144
project editor  143
providing  143

runtime manager
about  173, 174
creating  192, 193
KIE session  174, 175
lifecycle  179, 180
Per Process Definition Runtime  

Manager  193-195
runtime environment  175
UI configuration  188

Runtime Manager interface, jBPM6
Per Process Instance Runtime  

Manager  185-187
Per Request Runtime Manager  183, 184
Singleton Runtime Manager  181, 182

RuntimeManager interface, jBPM6  181
runtime manager type

configuring  190, 191

S
scalability considerations, BPM system 

architecture  239-241
Scalable Vector Graphics (SVG) files  33
screen, UberFire UI components

creating  270
Script Language property  129
Script property  129
Script task

about  76
properties  129

semantic module  31

Send task
MessageRef property  128

sequence flow
about  121, 134
Condition expression  134
Condition expression language  

property  135
conditional sequence flow  72
default sequence flow  72
uncontrolled sequence flow  72

server failover  200
Service Interface property  129
Service Operation property  129
service orchestration

about  53
ESB  54

service-oriented architecture. See  SOA
Service task

about  75
properties  129

SessionInfo class  206
Shape Repository, Web Process  

Designer UI  120
signal events  79
Signal Intermediate Catch events

about  125
properties  126

SignalRef property  126
simulation properties  137
SingleSessionCommandService session  205
Singleton Runtime Manager

about  181, 182
CDI injection  183

Skippable property  130
sliding windows, Drools Fusion  

functionalities  234
SOA

about  24, 52, 231
BPM systems, relating to  52

Spring
URL  54

sprint management process design
about  122
event nodes, configuring  125, 126
existing processes, accessing  135
existing processes, deleting  136
existing processes, modifying  136



[ 286 ]

gateway nodes, configuring  134
process definitions, testing  136-138
process modeling summary  138
process properties, configuring  123, 124
process simulations  137
sequence flow elements, configuring  134
Service tasks  133
task nodes, configuring  127-133
working on  122

sprint management technical overview
about  85-89
simple process data, adding  90-94

standard specifications, BPM
BPMN 2.0  9

Start Event node  
about  125
properties  125

start events  69
StatefulKnowledgeSessionImpl  205
STREAM mode  235
subprocess types, jBPM6

about  76
ad-hoc subprocesses  77
compensation subprocesses  78
loop subprocesses  77
multiple instance (MI) subprocesses  77

swimlanes  74
system behavior

classification strategies  14

T
task forms

about  107, 112, 113, 162, 164
form fields  164

TaskLifeCycleEventListener class  166
task life cycle event listeners  166
task lists  111
TaskModelFactory class

about  172
JPATaskModelFactory implementation  172

task model provider  171, 172
Task Name property  130
task nodes  127
task-oriented user interfaces

about  161

task forms  162-165
tasks list  161

task service interceptors  167
Tasks List view

about  161, 162
Created On  161
Description  161
Due On  161
Last Update  161
Priority  161
Status  161
Task Name  161

TaskType property  127
task types, jBPM6

about  75
Abstract task  75
Business Rule task  76
Script task  76
Service task  75
User task  75

technical perspective
about  85
sprint management technical  

overview  85-89
temporal operators, Drools Fusion  

functionalities
about  234
after  234
before  234
coincides  234
during  234
finishedby  234
finishes  234
includes  234
meets  234
overlappedby  234
overlaps  234
startedby  234
starts  234

temporal reasoning, defining
about  228
CEP  230
complex events  229
Drools Fusion functionalities  232
EDA  230-232
events  228



[ 287 ]

terminate events  80
Terminating End event  127
testKieAPIConfigurations method

configurations  44
text annotations  74
theoretical background, BPM  8
timer events  79
toolbar, Web Process Designer UI  120
transaction configuration, jBPM6  207-211
transactions

about  38
need for  198

U
UberFire

about  113, 257
backend features  259
components  259
components integration  258
features  260
functionalities  258
services  259
URL  257, 273

UberFire based workbench
components, adding  274, 275

uberfire-demo-api project
about  270
MessageListViewImpl class, listening for 

NewMessageEvent firings  260
NewMessageEvent, defining  260
NotificationEvent, firing  260

uberfire-demo-backend project  270
uberfire-demo-client project  270
uberfire-demo project

uberfire-demo-api  270
uberfire-demo-backend  270
uberfire-demo-client  270

UberFire UI components
about  261
integrating, with workbenches  273
lifecycle annotations  268
Model View Presenter  262
perspective, creating  273
pop up, creating  270
screen, creating  270
workbench components  264

UberView interface  271
UI configuration, of runtime manager

KIE session, configuring  189, 190
runtime manager type, configuring  190-192

uncontrolled sequence flow  72
understandable wrapper model

cons  21
pros  21

user configuration  107
User/Group callback  51
User Interaction 1 task  199
User Interfaces (UIs)  22
UserLogInterceptor  169
User task

about  75
properties  129

V
Variable Definitions property  123
VariableInstanceLog  212
View  262
Virtual File System (VFS)  241

W
Web Process Designer

about  117
advanced topics  139
features  119
interacting with  118

Web Process Designer UI
about  120
editing canvas  120
properties panel  121
Shape Repository  120
toolbar  120

Web Service Human Task (WS-HT)
about  27, 50, 147, 149
features  27
URL  148

Web Services Business Process Execution 
Language. See  WS-BPEL

workbench  
about  95
integrating with  273



[ 288 ]

workbench components
about  264
workbench editors  266
workbench perspectives  267
workbench pop ups  265
workbench screens  264

workbench editors
@OnStartup  267
@WorkbenchEditor  267
about  266

WorkbenchMenu generation  271
workbench perspectives

@Perspective  268
@WorkbenchPerspective  268
about  267, 268

workbench pop ups  265, 266
workbench screens

@Dependent  265
@WorkbenchMenu  265
@WorkbenchPartTitle  265

@WorkbenchPartView  265
@WorkbenchScreen  265
about  264

Work Item definition
display name section  141
icon section  142
name section  141
parameters section  141
results section  141

WorkItemHandler method  47
WorkItemInfo class  206
Work items  46
WS-BPEL  53

X
XML Path Language (XPATH)  67
XOR Exclusive Converging gateway  88
XOR Exclusive Diverging gateway  88



Thank you for buying  
jBPM6 Developer Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective 
MySQL Management" in April 2004 and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more specific and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality, 
cutting-edge books for communities of developers, administrators, and newbies alike.  
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order  
to continue its focus on specialization. This book is part of the Packt Open Source brand,  
home to books published on software built around Open Source licenses, and offering 
information to anybody from advanced developers to budding web designers. The Open 
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty 
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should 
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like 
to discuss it first before writing a formal book proposal, contact us; one of our commissioning 
editors will get in touch with you. 
We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.

www.packtpub.com


jBPM5 Developer Guide
ISBN: 978-1-84951-644-0              Paperback: 364 pages

A Java developer's guide to the JBoss Business 
Process Management framework

1. Learn to model and implement your business 
processes using the BPMN2 standard notation.

2. Model complex business scenarios in order 
to automate and improve your processes 
with the JBoss Business Process Management 
framework.

3. Understand how and when to use the different 
tools provided by the JBoss Business Process 
Management platform. 

jBPM Developer Guide
ISBN: 978-1-84719-568-5             Paperback: 372  pages

A Java developer's guide to the JBoss Business 
Process Management framework

1. Thoroughly understand how the jBPM 
framework works.

2. Build custom Java Enterprise solutions using 
the jBPM framework.

3. No experience with jBPM required.

4. Helpful guidance on converting a business 
analyst's spec into complete, working software.

Please check www.PacktPub.com for information on our titles



Business Process Management 
with JBoss jBPM 
A Practical Guide for Business Analysts
ISBN: 978-1-84719-236-3            Paperback: 220  pages

Develop business process models for implementation 
in a business process management system

1. Map your business processes in an efficient, 
standards-friendly way.

2. Use the jBPM toolset to work with business 
process maps, create a customizable user 
interface for users to interact with the process, 
collect process execution data, and integrate 
with existing systems.

3. Use the SeeWhy business intelligence toolset 
as a Business Activity Monitoring solution, 
to analyze process execution data, provide 
real-time alerts regarding the operation of the 
process, and for ongoing process improvement.

Oracle BPM Suite 11g: Advanced 
BPMN Topics
ISBN: 978-1-84968-756-0             Paperback: 114 pages

Master advanced BPMN for Oracle BPM Suite 
including inter-process communication, handling 
arrays, and exception management

1. Cover some of the most commonly 
misunderstood areas of BPMN.

2. Gain the knowledge to write professional 
BPMN processes.

3. A practical and concise tutorial packed with 
advanced topics which until now had received 
little or no documentation for BPM Suite 
developers and architects.

Please check www.PacktPub.com for information on our titles


	Cover

	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Author
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Why Do We Need Business Process Management?

	Theoretical background
	Introduction, analysis, and explanations of standard specifications
	Technical details and common practices of jBPM6
	The conceptual background of BPM
	Business processes
	Sequence of business activities
	Naming our activities

	Business users and business applications
	Humans and systems behave differently
	Humans and systems – classification strategies

	Achieving a business goal

	The BPM discipline
	BPM stage 1 – discovering your business processes
	BPM stage 2 – formalizing your new processes
	BPM stage 3 – implementing your technical assets
	The business entity model
	Coordination and orchestration of activities

	BPM stage 4 – runtime
	BPM stage 5 – monitoring
	BPM stage 6 – improvements

	BPM applications in the real world
	The BPMS check list
	BPM APIs and common practices
	BPM – adoption of standards

	Summary

	Chapter 2: 
BPM Systems' Structure
	Components of a BPMS
	The execution node
	The semantic module
	The process engine


	Node instance structures
	Components inside jBPM6
	Transactions and persistence
	Audit/History logs
	Real-time dashboards
	Data mining and data analysis tools
	The KIE APIs
	KIE services
	The KIE module
	The KIE container
	The KIE base
	The KIE session

	External interactions
	The Human task component
	Human tasks – life cycle
	Human tasks – APIs
	The User/Group callback
	The BPMS ecosystem
	BPM and service-oriented architecture
	Service orchestration
	Enterprise Service Bus

	Rule engines
	Classic BPM system and rule engine integration

	Event-driven architecture and complex event processing

	Predictive analytics and decision management
	Summary

	Chapter 3: 
Using BPMN 2.0 to Model Business Scenarios
	Introduction to BPMN 2.0
	Process modeling compliance
	BPMN 2.0 elements
	Flow elements
	Connecting elements
	Data elements
	Swimlanes
	Artifacts

	Task types in jBPM6
	Subprocess types in jBPM6
	Event subtypes
	Boundary events
	BPMN 2.0

	Modeling business scenarios with 
BPMN 2.0
	Technical perspective
	Sprint management technical overview
	Adding simple process data


	Summary

	Chapter 4: 
Understanding 
the KIE Workbench
	What you need to start a jBPM6 environment
	Running the KIE Workbench installer
	What you will need to create the jBPM6 business processes
	Workbench utilities
	Process designer
	Other knowledge asset editors

	What you will need to run the jBPM6 business processes
	Process runtime
	Process UI
	Task lists
	Task forms


	Summary

	Chapter 5: 
Creating a Process Project in the KIE Workbench
	An IDE to our knowledge
	A variety of process designers
	The BPMN 2.0 Eclipse editor
	The Web Process Designer
	The jBPM Eclipse plugin

	Interacting with the Web Process Designer
	Creating new processes


	Implementing our first process
	The Web Process Designer sections
	The toolbar
	The Shape Repository panel
	The editing canvas
	The Properties panel


	Sprint management process design
	Configuring the process properties
	Configuring the event nodes
	Configuring the task nodes
	The Service tasks

	Configuring gateway nodes
	Configuring sequence flow elements
	Accessing existing processes
	Modifying and deleting existing processes
	Testing the process definitions
	Process simulations
	Unit testing the process definition

	Process modeling summary

	The Web Process Designer advanced topics
	Importing process definitions
	Service tasks
	Work Item definition editor
	Using Work Item definitions in the process designer

	Providing a runtime for our process
	The project editor
	Build and deploy
	Configuring the deployment unit

	Summary

	Chapter 6: 
Human Interactions
	Understanding human
 interactions
	Human interactions inside our processes
	WS-HT standard specification
	Human tasks' life cycle


	jBPM6 Human task component's overview
	Human task component APIs
	The task service
	Adding a users and groups data source origin
	Starting your task service
	Connecting to the KIE session

	Task-oriented user interfaces
	Task lists
	Task forms

	Building your own extensions to Human tasks
	Task life cycle event listeners
	Task service interceptors
	When to use task event listeners or interceptors
	Task model provider


	Summary

	Chapter 7: 
Defining Your Environment with the Runtime Manager
	Understanding the role of the runtime manager
	Understanding the runtime environment
	Registerable items factory
	Defining our runtime environment

	Runtime lifecycle management

	The different implementations available
	Singleton Runtime Manager
	The CDI injection

	Per Request Runtime Manager
	The CDI injection

	Per Process Instance Runtime Manager
	The CDI injection


	The UI configuration of runtime managers
	Configuring a KIE session for a KIE module
	Configuring a runtime manager type

	Creating your own runtime manager
	Per Process Definition Runtime Manager

	Summary

	Chapter 8: 
Implementing Persistence and Transactions
	Why do we need persistence and transactions?
	Persisting long running processes
	The server failover and distribution mechanism

	Persistence in jBPM6
	KieStoreServices – creating and loading KIE sessions
	How does persistence work?
	Persistence and transaction configuration 
for jBPM6
	History logs – extending the basic functionality
	Object marshalling strategies

	Other persistence mechanisms
	Infinispan persistence

	Summary

	Chapter 9: 
Integration with Other Knowledge Definitions
	What is a rule?
	Old-fashioned integration
	The Drools rule engine
	What Drools needs to work
	Applying rules to our processes
	Gateway conditions
	Business Rule tasks
	Ad hoc process instance evaluations
	Runtime configurations to activate rules


	Temporal reasoning and processes
	Events and complex events
	CEP
	EDA
	Drools Fusion functionalities
	Event declarations
	Temporal operators
	Sliding windows
	Drools Fusion in action


	Summary

	Chapter 10: 
Integrating KIE Workbench with External Systems
	Defining your architecture
	Scalability considerations

	Extending the KIE Workbench architecture
	Web service addition
	Work item handler default configurations
	Executor service commands
	KIE Session Sharing Considerations

	Remote engine invocations
	REST interface
	JMS interface

	Deploying the KIE Workbench in the cloud
	Summary

	Appendix: 
The UberFire Framework
	UberFire
	Integrating components
	The existing components and services

	Extending and reusing the UberFire UI components
	Model View Presenter
	The workbench components
	Workbench screens
	Workbench pop ups
	Workbench editors
	Workbench perspectives

	The lifecycle annotations
	Creating a screen and a pop up
	Creating a perspective
	Integrating components with the existing workbenches

	Summary

	Index



