
www.allitebooks.com

http://www.allitebooks.org

jMonkeyEngine 3.0
Cookbook

Over 80 practical recipes to expand and enrich
your jMonkeyEngine skill set with a close focus
on game development

Rickard Edén

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

jMonkeyEngine 3.0 Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: August 2014

Production reference: 1060814

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-647-8

www.packtpub.com

Cover image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Rickard Edén

Reviewers
Abner Coimbre

Benjamin Jakobus

Nicolas Legeay

Nicholas Mamo

Glauco Márdano

Commissioning Editor
Rebecca Youé

Acquisition Editor
Rebecca Youé

Content Development Editor
Manasi Pandire

Technical Editors
Manal Pednekar

Anand Singh

Ankita Thakur

Copy Editors
Gladson Monteiro

Adithi Shetty

Stuti Srivastava

Laxmi Subramanian

Project Coordinator
Aaron. S. Lazar

Proofreaders
Simran Bhogal

Ameesha Green

Paul Hindle

Indexer
Priya Subramani

Graphics
Abhinash Sahu

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

Sushma Redkar

www.allitebooks.com

http://www.allitebooks.org

About the Author

Rickard Edén is a Java and Android development consultant, game developer, and lifelong
game enthusiast, based in Gothenburg, Sweden. Having worked in the past as a designer in
the gaming industry, Rickard has worked on a number of different genres and picked up tricks
of the trade from many disciplines. He has a pragmatic approach to programming and has
developed games for many years using jMonkeyEngine.

It is now his intention to help other developers by sharing what he's learned so far with
this book.

Writing this book has been a tremendous experience, and it certainly could
not have been possible without other people clearing the way.

If I have been the storyteller, the heroes of the book are the people who
have created jMonkeyEngine. From its first incarnation until now, the third,
when it's a fully fledged game development environment.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Abner Coimbre, before becoming a technical reviewer for this book, was a lead developer
for an educational game funded by the National Science Foundation (NSF Award No.
0835990) where he used jMonkeyEngine to achieve most of the technical milestones that
were required for the project. At the time of this writing, he is a system software engineer at
NASA, working with a Command and Control System. His home page is abnercoimbre.com.

Sending out warm regards to some of the principal investigators while
I was working for the National Science Foundation: Dr. Agustin Rullán,
Dr. Bienvenido Vélez, Dr. Cristina Pomales, and Dr. Félix Zapata. It was
awesome working with you guys. I appreciate the guidance and scoldings of
Linda Crawford, an amazing mentor and human being. I thank all the staff
involved in the making of this book, particularly Aaron. S. Lazar for putting
up with my erratic work schedule. And, of course, I thank the author many
times over for having written a book that will truly help people leverage the
interesting features that jMonkeyEngine provides.

Benjamin Jakobus graduated with a BSc in Computer Science from University College
Cork, after which he cofounded an Irish start-up. He returned to the university one year later
and obtained an MSc in Advanced Computing from Imperial College, London, after which he
took up a position as a software engineer in IBM, Ireland. He currently lives in Brazil where
he is pursuing a PhD at PUC-Rio.

www.allitebooks.com

abnercoimbre.com
http://www.allitebooks.org

Nicolas Legeay discovered jMonkeyEngine in 2004, during his studies, when he had to
choose an environment to elaborate on and develop a 3D online game project that he had
to execute on his own.

It has been really exciting for him to be here at the start of this wonderful engine, and Nicolas
then developed several projects with it, to explore all the possibilities that JME allowed then.

Originally a software developer, Nicolas had the opportunity to discover quality assurance in
the industrial sector of the rail in 2006.

Over the QA activity, he especially appreciates test automation. His professional experience
helped him acquire a proven expertise in this practice. Indeed, in charge of elaborating test
strategies in various contexts, test automation always proved a relevant choice; also, he knew
when to use the most adapted tools.

Being tech-savvy, Nicolas succeeded in elaborating innovative ways to build automata, such
as image recognition and CAPTCHA hacking, making him a very well-appreciated resource
regarding his highly sought skills.

Nicolas has had the privilege to work with various and prestigious companies, such as
National Opera of Paris, France and PMU, France, on big and crucial projects.

Nicholas Mamo, born in Malta in 1996, is a full-time student and a freelance writer.
He is a self-taught game developer and has been developing games at Nyphoon Games
since 2008, regularly blogging about his projects on nyphoon.com. His articles have been
published on Eye For Games, IGDA, and Tuts+, among others. Nicholas is also passionate
about football and his opinion pieces have appeared on a number of websites.

Glauco Márdano is 23 years old, and graduated in Systems Analysis. He works as a Java
programmer in a private company in Brazil. He has studied a lot about game programming
just for fun, and he dreams of building his own business someday.

He was also the technical reviewer for jMonkeyEngine 3.0 Beginners Guide and Augmented
Reality for Android Application Development for Packt Publishing.

Well, I'd like to thank everybody from jMonkeyEngine's forum, because I've
learned a lot from them; the forum is very active. I'd also like to thank Aaron.
S. Lazar from Packt Publishing for his help while reviewing this book.

www.allitebooks.com

nyphoon.com
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: SDK Game Development Hub	 7

Introduction	 7
Setting up a project	 8
Importing a model	 9
Using Scene Composer	 9
Modifying heightmaps with Terrain Editor	 12
Adding a sky box and lighting	 14
Adding water using a filter	 16
Adding some ambient audio	 18
Creating bitmap fonts with Font Creator	 20
Retrieving an attachment node	 21
Using ParticleEmitter – Soaring Birds	 22
An advanced ParticleEmitter class	 25

Chapter 2: Cameras and Game Controls	 31
Introduction	 31
Creating a reusable character control	 32
Attaching an input AppState object	 37
Firing in FPS	 40
Firing non-instant bullets	 42
Creating an RTS camera AppState object	 45
Selecting units in RTS	 50
Making the camera follow units	 54
Following a character with ChaseCamera	 56
Adding a game controller or joystick input	 58
Leaning around corners	 60
Detecting cover automatically in a third-person game	 63

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Chapter 3: World Building	 69
Introduction	 69
Using noise to generate a terrain	 70
Lighting your world and providing it with dynamic lights	 72
Deforming a terrain in real time	 75
Automating trees' distribution	 77
Endless worlds and infinite space	 80
Flowing water with cellular automata	 84
The essentials of a cube-based world	 89

Chapter 4: Mastering Character Animations	 97
Introduction	 97
Previewing animations in SDK	 98
Creating an animation manager control	 99
Extending the animation control	 101
Handling jump animations	 105
Creating a custom animation - leaning	 106
Creating a subanimation	 110
Lip syncing and facial expressions	 111
Eye movement	 114
Location-dependent animation – edge check	 116
Aligning feet with ground – inverse kinematics	 119

Chapter 5: Artificial Intelligence	 123
Introduction	 123
Creating a reusable AI control class	 124
Sensing – vision	 128
Sensing – hearing	 130
Decision making – Finite State Machine	 131
Creating the AI using cover	 136
Generating NavMesh in SDK	 138
Pathfinding – using NavMesh	 140
Controlling groups of AI	 143
Pathfinding – our own A* pathfinder	 148

Chapter 6: GUI with Nifty GUI	 153
Introduction	 153
Initializing Nifty and managing an options menu	 154
Loading the screen	 158
Creating an RPG dialog screen	 161
Implementing a game console	 164

iii

Table of Contents

Handling a game message queue	 166
Creating an inventory screen	 168
Customizing the input and settings page	 172
Using offscreen rendering for a minimap	 175

Chapter 7: Networking with SpiderMonkey	 181
Introduction	 181
Setting up a server and client	 182
Handling basic messaging	 183
Making a networked game – Battleships	 185
Implementing a network code for FPS	 194
Loading a level	 204
Interpolating between player positions	 205
Firing over a network	 207
Optimizing the bandwidth and avoiding cheating	 209

Chapter 8: Physics with Bullet	 213
Introduction	 213
Creating a pushable door	 214
Building a rocket engine	 217
Ballistic projectiles and arrows	 220
Handling multiple gravity sources	 222
Self-balancing using RotationalLimitMotors	 226
The principles of a bridge-building game	 229
Networked physics	 234

Chapter 9: Taking Our Game to the Next Level	 241
Introduction	 241
Creating a muzzle flash using ParticleEmitter	 242
Creating a trigger system	 245
Creating a timer trigger	 249
Adding an interaction trigger	 252
Controlling AI with triggers	 253
Creating a dynamic skybox with a moving sun	 255
Improving a scene with postprocessing filters	 260
Performing complex movements with MotionPaths	 262
Cutscenes using cinematics	 264
Using a positional audio and environmental effects	 268

iv

Table of Contents

Appendix: Information Fragments	 271
Introduction	 271
Downloading the plugins	 271
Enabling nightly builds	 272
Adding Bullet physics to the application	 272
Jaime animation frames for phonemes	 272
The AnimationEvent patch	 273
The ImageGenerator class	 274
The CellUtil class	 275

Index	 277

Preface
The overall goal of this book is to provide you with an extensive toolbox of hands-on
development tips for jMonkeyEngine that will help you be well prepared for a wide
range of projects.

The recipes are written from a practical point of view, and I strived to make sure that each
recipe has an outcome that can be used directly in a game. An exception to this is Chapter 7,
Networking with SpiderMonkey, where we will start from the absolute ground level and work
ourselves upwards. Chapter 1, SDK Game Development Hub, also stands out as it contains
a few more general tips applicable to development in general.

Due to the variation in game projects, another principle has been used to create recipes
that have a wide usage potential. Some of the more advanced recipes are exceptions to
this rule. They have a more narrow use but contain techniques that can be applied to other
implementations. FPS, RTS, and RPG games will be explored in many of the recipes. Naturally,
within these genres, games differ widely as well, but hopefully you will find that the examples
can be used in your game project with a minimum amount of modification.

In general, I hope that this book will provide you with many tips on how to overcome common
hurdles in game projects so that you can focus on the creative parts that make your game
stand out.

Common development concepts in
jMonkeyEngine
Some common development concepts in jMonkeyEngine are as follows:

ff Spatial: Central to all things in the scene graph is the Spatial. In jMonkeyEngine, it's
an abstract class, defining translation (location), rotation, and scale of an object.
Imagine it as a purely logical object without a physical body. A Spatial is extended
into either a Geometry or Node.

Preface

2

ff Geometry: This extends Spatial. This class is what gives a Spatial its physical
presence in the world. It has a Mesh defining its form and shape, and a Material,
telling us what the surface of the Mesh looks like.

ff Node: This extends Spatial. It can have several children attached, and can in turn
be attached to a parent. Since it's a Spatial, it has a translation, rotation, and scale,
which it will propagate to its children. Unlike a Geometry, it can't have a Mesh. It
doesn't have a visible presence in itself.

ff Transforms: Translation, rotation, and scale are commonly referred to as a Spatial's
transforms. A Spatial has both local and world transforms. The local transform is
always in relation to its parent (if any). The world transform is the absolute transform
with all possible parent transforms propagated together. As an example, imagine your
own local translation being the position you have on Earth. Your world translation
could be your local translation added to the Earth's local translation in its orbit
around the Sun. Normally, you will only work with local transforms. World transforms
are handled by the engine.

ff Mesh: This is made up of triangles. In a Mesh, you will find long lists called buffers
detailing the points of these triangles (vertices), how the surfaces of these triangles
are made (indices), their colors, normal, and other data. Normally, you will load
a model from disk, not having to care about what it looks like on this level, but
some recipes will create meshes from scratch, and I recommend having a basic
understanding of meshes when you do 3D game development.

ff Material: This defines the surface of the Mesh. It's backed by a Material Definition
(MatDef), usually containing a vertex shader and a fragment shader. The complexity
stretches from simply setting a color or texture for a mesh, to ones that alter the
shape of the Mesh. You will get far by using jMonkeyEngine's predefined MatDef.

These are some of the basic must-know concepts of the engine. The following concepts can
be considered nice-to-know. I know from experience that these are the ones you wish you had
known when your applications were in the process of being developed. They will also be used
quite frequently throughout the chapters of this book:

ff AppState: This is an object that affects the behavior of the whole application,
and you can, for example, use them to specify logic for different parts of the
application. An example could be if you have a game that is played out both on
a campaign map and on the ground, both player input and game logic would
probably differ quite a lot. By using the AppState class, you can manage the
code more easily and avoid monstrous classes.

ff Control: Like AppState, this is a good way to manage your code. The Control
affects the Spatial it's attached to, and is commonly used to give Spatials special
functionalities. You will see several examples of Control behavior in many of the
chapters, so if you prefer learning-by-doing, you're in for a treat.

Preface

3

What this book covers
Chapter 1, SDK Game Development Hub, will take a tour around the SDK, always with the
game in mind. Learn about built-in functions and plugins that make your life easier.

Chapter 2, Cameras and Game Controls, contains a number of concrete ways to use cameras
and control avatars for a variety of game types.

Chapter 3, World Building, explores different methods you can use to create and modify
environments for games.

Chapter 4, Mastering Character Animations, enables you to learn all you need to know about
controlling character animations.

Chapter 5, Artificial Intelligence, contains a look at the basics and common challenges of AI
for games.

Chapter 6, GUI with Nifty GUI, contains techniques to develop a lot of the common user
interfaces a game needs.

Chapter 7, Networking with SpiderMonkey, is an introduction to UDP/TCP networking for
games in jMonkeyEngine.

Chapter 8, Physics with Bullet, will teach you the Bullet implementation and how to apply it
to your games.

Chapter 9, Taking Our Game to the Next Level, will tell you what to do when your game
mechanics are in and the game is playable. Still, you will feel the game lacks something.
This chapter shows different methods to advance your game further in quality.

Appendix, Information Fragments, contains some generic pieces of code and instructions that
can be used across chapters. It also has some full-code segments for recipes that are too long
to include in the chapters themselves.

What you need for this book
This book will assume that you already have some experience with either jMonkeyEngine
or similar scene-graph-based engines. If you're completely new to this, we'll go through
some common concepts in the following pages to give you a basic introduction to 3D game
development. If you'd like more in-depth descriptions of these (and other) concepts, I
recommend reading and performing the tutorials found at hub.jmonkeyengine.org.

hub.jmonkeyengine.org community hub

Preface

4

Who this book is for
This book is ideal for intermediate to advanced users of the jMonkeyEngine 3.0 game
development engine.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Start by creating a new class called GameCharacterControl, which extends
BetterCharacterControl."

A block of code is set as follows:

public void update(float tpf) {
 super.update(tpf);
 Vector3f modelForwardDir =
 spatial.getWorldRotation().mult(Vector3f.UNIT_Z);
 Vector3f modelLeftDir =
 spatial.getWorldRotation().mult(Vector3f.UNIT_X);
 walkDirection.set(0, 0, 0);

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

camLocation.setY(checkHeight() + camDistance);
cam.setLocation(camLocation);

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Go to the File menu and
select Import Model."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

5

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams used in
this book. The color images will help you better understand the changes in the output. You
can download this file from https://www.packtpub.com/sites/default/files/
downloads/6478OS_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/support, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will be
uploaded to our website, or added to any list of existing errata, under the Errata section of
that title.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/6478OS_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/6478OS_ColoredImages.pdf
http://www.packtpub.com/support

Preface

6

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
SDK Game

Development Hub

This chapter contains the following recipes:

ff Setting up a project
ff Importing a model
ff Using the Scene Composer
ff Modifying heightmaps with Terrain Editor
ff Adding a sky box and lighting
ff Adding water using a filter
ff Adding some ambient audio
ff Creating bitmap fonts with Font Creator
ff Retrieving an attachment node
ff Using ParticleEmitter—Soaring Birds
ff An advanced ParticleEmitter class

Introduction
Welcome to the first chapter of this book! In this chapter, we'll go through various functions
of the SDK. These are the features that make the development process accessible to people
other than programmers. You can also, in many cases, get quick visual results by just
tweaking values and without having to launch an application. In short, it's a development
hub because you will return and use these functions from time to time in your project. On the
difficulty scale, these recipes lean towards the easy side, with little or no programming. The
exception is the last part of the chapter where modifying the core packages is necessary to
achieve the results we want.

www.allitebooks.com

http://www.allitebooks.org

SDK Game Development Hub

8

Setting up a project
The jMonkeyEngine SDK is based around the NetBeans environment. Users familiar with
the NetBeans environment will probably have little trouble finding their way around the
jMonkeyEngine SDK. For those with no previous experience, some pointers on how to
get started might be in place. In this recipe, we'll create a project that can access the
jMonkeyEngine test-data library. By doing so, we will have some assets available from
the start that can be used to try out many of the recipes.

Getting ready
Before setting up a project, we need to download the SDK. Doing so is as easy as going to
http://hub.jmonkeyengine.org/downloads/ and selecting a suitable package for
your operating system.

After downloading and installing the package, we're ready to go!

How to do it...
We can set up a project by performing the following steps:

1.	 First of all, find the Projects window.

2.	 Right-click somewhere inside it and select New Project.

3.	 In the window that appears, select JME3 from Categories and BasicGame
from Projects.

4.	 On the next screen, choose a suitable name for the project and click on Finish
to create it.

5.	 The project should now appear in the Projects window. Right-click on it and select
Properties from the menu.

6.	 Select the Libraries option, click on the Add Library… button, and find the
jme3-test-data library from the list.

How it works...
When the project is created, it sets up the basic necessities for a jMonkeyEngine project.
You will get a Project Assets folder where any content can be placed in its subfolders. It also
creates the Main.java file based on the SimpleApplication class. This is the starting
point for your application.

http://hub.jmonkeyengine.org/downloads/

Chapter 1

9

Importing a model
Let's start off with a pretty basic scenario. We have this model, which we've exported from a
3D modeling package, and we would like to use it for our game. The first thing we need to do
is convert it to the format that jMonkeyEngine 3 uses internally (.j3o). The recommended
format to use is .blend coming from the open source modeling package Blender for which
the SDK has extensive support. Another common format is .obj for static models and
Ogre-mesh XML files.

How to do it…
We can import a model by performing the following steps:

1.	 Go to the File menu and select Import Model.

2.	 Next, we need to choose the project we would like to import.

3.	 After selecting the actual model to be imported, we get to preview the model and can
make sure that all the assets are properly used.

4.	 Finally, we select where to place it in the Project Assets folder structure.

How it works…
The importer converts the model to the internal .j3o format. This is a binary format, which
means it becomes nonreadable (compare it with a .obj file, which can be edited in Notepad).
The compactness of a binary file is necessary to keep memory consumption low. It becomes
impossible to edit externally, though, so keeping the original files organized is a good idea!

Using Scene Composer
Here, we'll go through the basics of using Scene Composer in the SDK. Scene Composer is a
place where we can preview objects, prepare them for in-game usage, and combine them to
form scenes. Further usage includes viewing a model's skeleton and bones setup or playing
animations. You can also apply materials, lighting, and set some basic geometry data.

Getting ready
Having some models to play around with will be useful if you want to create an interesting
scene. We will use the Jaime model from the test-data library. You can find it in the Jaime
folder inside Models and copy it to your project.

SDK Game Development Hub

10

How to do it…
Let's start by creating a scene we can use to test our recipes later.

1.	 Right-click on the Scenes folder inside Project Assets, select New, and
then select Empty jME3 Scene. The scene will open automatically in the
SceneComposer window.

2.	 A scene is just an empty node, and needs to be populated to be useful. To have
something to look at, let's add the Jaime model to the scene. Find it in the folder
structure, right-click on Jaime.j3o, and select Link in SceneComposer. The
SceneComposer window looks as follows:

3.	 Now, most likely, all we can see is a blue, wire-frame box. This is because there are
no lights in the scene. At the top-left part of the screen, there is a button with a light
bulb on it.

4.	 By clicking on it, we should get PointLight following the camera; it is not part of the
scene, however.

Linking versus adding
Adding means you add an instance of the object itself to the
scene. This can then be modified separately to the original
object.
Linking means you add a reference to the object in the scene.
Apart from making the scene smaller, any modifications to the
original object will also affect the objects in the scene.

5.	 Basic camera orientation in the scene includes dragging with the left mouse button
to rotate the camera. Dragging with the right mouse button pressed moves the
camera sideways, up, and down. The mouse wheel zooms in and out.

6.	 The second icon in the top bar of the SceneComposer window is the Move icon.
By clicking on it, you will see three different colored planes by Jaime. These will be
highlighted as you move your mouse over them. If you press the left mouse button
while they're highlighted, you will move the object in the dimensions of that plane.

Chapter 1

11

7.	 The same rules apply to the next icon, Rotation. Note, though, that scaling is uniform
across all the axes.

If you want to have total control over your transformations, you can
use the Properties window to set the exact values for translation,
rotation, and scale.
If you'd like to have an in-depth knowledge of the SDK, have a look
at the videos on http://hub.jmonkeyengine.org.

How it works...
Scene Composer runs an instance of a jME application and what you see is very much what
you will get when watching the scene in the game (minus the camera light). Use it to preview
and tweak your assets before bringing them inside your application.

There's more…
Now that we have a scene, what's needed to load it into an application? Just the following
lines of code are needed, really:

Spatial scene = assetManager.loadModel("Scenes/TestScene.j3o");
rootNode.attachChild(scene);

Add the preceding code in the simpleInitApp() method of Main.java.

http://hub.jmonkeyengine.org

SDK Game Development Hub

12

Modifying heightmaps with Terrain Editor
In Terrain Editor, we find a number of functions that let us modify a heightmap-based terrain,
something which is used in many games.

A heightmap, in its simplest form, is a 2D array (the dimensions representing x and y
coordinates) usually storing floats that represent height values. These can be saved as
grayscale images where brighter areas correspond to higher ground and, reversibly, darker
areas correspond to lower ground.

The terrain fields of jMonkeyEngine have much more information to help you create a visually
appealing terrain. Things like vertex normal data and color and texture data are available for
modification through the API, for daring programmers.

A heightmap

How to do it...
We will begin by creating a terrain for the scene before exploring how to modify it. To do this,
perform the following steps:

1.	 First, we either create a new scene or load a scene we've worked with previously.

2.	 In the SceneExplorer window, right-click on the main scene node and select Add
Spatial and then Terrain...

3.	 To edit the terrain, we have to find the scene j3o file in the Projects window. It should
be present in the Scenes folder inside Project Assets. Right-click on the scene file
and select Edit Terrain.

Chapter 1

13

4.	 Now, we have a flat and nice terrain. While it's perfectly functional, let's explore
the functions in the TerrainEditor window. These functions are shown in the
following screenshot:

5.	 Next to the Add Terrain icon, you have the raise/lower terrain icon. This icon uses
the values of Radius and Height/Weight sliders to modify the terrain. Try it out and
see how it can be used to create hills and valleys. The Level terrain icon can be used
to create flat areas in the terrain. It works by right-clicking on an area, the height of
which you would like to have as a reference, and then holding the left mouse button
and flattening out the terrain at the selected height, creating plateaus.

If you're going to use this as a test bed for the other chapters, try to
keep the area just around Jaime at the default height, for now. This is
because we don't have any logic to keep it at the actual ground level,
and we would like to see what is going on in the recipes.

6.	 While the terrain comes with basic texturing, we might want to do something
more interesting. First of all, we need to add another texture layer. This is done
with the icon that looks like a plane with a plus sign on top (the Add another
texture layer icon).

7.	 After clicking on it, there should be another row in the Painting window, below it.
Clicking on the Texture field will bring up a selector with all the textures available
to the project. Select a suitable texture among the available ones.

8.	 Now, to paint, click on the button with a spray can on it. You can now paint by holding
the left mouse button over the terrain, and erase by pressing the right mouse button.
Like most of the other functions in the TerrainEditor window, it uses the Radius and
Height/Weight values.

When painting a terrain by hand, it is a good idea to have a reference
image of the terrain type at hand. That way we can, for example,
see how grass grows on slopes, or snow gathers on mountains, and
produce more realistic results. Always start by painting in broad
strokes, gradually painting with smaller and smaller brushes.

SDK Game Development Hub

14

How it works...
The function of most of the buttons is pretty self-explanatory, but let's look at what happens
when either of them are applied.

A little bit of smoothing is something that might be needed after generating a heightmap
using an automated tool. In such a case, you most likely won't use a brush, though, but rather
a filter that will apply it evenly across the whole of the heightmap. The brush might instead be
used to smooth out an area where a game character is supposed to move to make it a better
game experience. It might also be that the ground of an area is of a type that would most
likely be smoother than the surroundings, like a beach among rocky cliffs.

Level terrain has similar uses. If we need sufficient space to place a large building for example,
it is the best way to ensure that no part of the building ends up floating or submerged beneath
the ground.

Adding a sky box and lighting
Sky boxes or sky domes are small pieces of every day magic in games. They're used to create
a mood-setting backdrop for scenes and are excellent for making areas seem larger than
they are.

Sky boxes consist of six textures, rendered on the inside of a cube, much like wallpapers.
Perceived as enclosing the world, they actually don't need to be very big since they are
rendered first in the queue. This means everything else will be drawn on top of them.

How to do it…
The recipe will consist of two sections, where the first section will create a sky box from six
textures. After this, we will add sun-like light using Directional Light.

1.	 In the SceneExplorer window, right-click on your scene and select Add Spatial.. and
then Skybox...

2.	 There are two options here: either we can load six independent textures or one
texture with all the six textures prebaked. This particular recipe uses the six Lagoon
textures from the test-data/Textures/Sky folder.

3.	 After this, we should now see a moody, watery scene surrounding the terrain.

4.	 The terrain and skybox don't blend together very well. First and foremost the lighting
is wrong. The only light in the scene is a white light coming from the camera's origin.
To get a more natural light in this outdoor scene, we can add Directional Light.

5.	 Again, right-click on the scene in the SceneExplorer window. Now, select Add Light..
and then select Directional Light. Things just got a lot brighter! It doesn't look better,
however. We need to adjust the light to suit the scene.

Chapter 1

15

6.	 We can see the DirectionalLight element in the SceneExplorer window. Select it and
bring up the Properties window. There are just two settings: Color and Direction.

7.	 By clicking on the box next to the color values, we see several options to set the
color. We can use an image editor and the colorpicker function near the sun to get a
suitable color. Grab the RGB values and insert them in that tab. This way, we know
that we get a color that matches the scene's sun.

8.	 Turning off the camera light (the light bulb in the top-left corner) will help us see the
blue-tinted color from the light we just added.

It's often a good rule of thumb to have a little less tint than what might
first seem like a suitable one. It usually feels more natural in the end.
Show it to someone else and see if they think it's "too much". As a
developer, your judgment can be "tainted", as you get used to a scene,
and it's easy to overdo things like lighting.

9.	 There's one more thing to do to make the scene and sky box blend better together.
The shadows on the terrain are at wrong places in relation to the sun in the scene.
The default setting for Directional Light is to shine in from the southwest direction
and about 45 degrees downwards. This particular sky box has the main source of
light coming from the northeast direction. Flipping the minus sign on the x and z
values in the Direction property seems to make the shadows look more natural.

What you see of a sky box can alter the perception of immersion,
greatly. Generally, the player should not see anything below the horizon
for it to look believable. You will notice this if you zoom in and out of the
scene. As you're close to the ground, it will feel much more natural.

How it works...
The reason sky boxes work is because of how the rendering of the scenegraph happens. Objects
can be sorted into different lists or buckets, to help the rendered in drawing. A sky box is sorted
into the Bucket.Sky list, which is drawn first in every rendering cycle. This is why everything
else (normally in the Bucket.Opaque list) appears to be in front of it. You can achieve the
same effect for any object by calling Geometry.setQueueBucket (Bucket.Sky).

You can achieve the same effect on other objects by changing the
QueueBucket renderers as follows:

Geometry.setQueueBucket(Bucket.Sky);

SDK Game Development Hub

16

There's more…
If you look closely at Jaime (or any other object you added to the scene) with the camera light
turned off, you will notice that the side not facing the light will be completely dark. Unless this
is a place devoid of atmosphere, radiance, diffusion, and reflection of other surfaces, one
should have given all sides some basic lighting. This is emulated in games by using ambient
lighting. It lights all the faces evenly and is added by selecting the scene in the SceneExplorer
window and choosing Add Light.

You can select the same color as Directional Light, but make it much darker to get something
that will look natural. If you're really serious, and have a somewhat uniform ground color, you
can try to blend in a little bit of the ground color, as well.

Adding water using a filter
When it comes to bang-for-the-buck visuals in jMonkeyEngine, there is little that trumps using
a water filter. It is very impressive and yet easy to do. Having water in the scene will greatly
enhance the mood of our test scene. You can view the great looking water with little efforts
in the following screenshot:

Getting ready
The scene used should have some height differences (or we will end up with all water or
all ground). If no terrain is available or if it needs adjustments, check out the Modifying
heightmaps with Terrain Editor recipe in this chapter.

If there isn't already an Effects folder in your Projects Assets folder, add it.

Chapter 1

17

How to do it…
We can add water using a filter by performing the following steps:

1.	 Right-click on the Effects folder under Project Assets, select New, and then select
Empty FilterPostProcessor file. You might have to select New, Other..., and then
click on Filters to find it.

2.	 Name it Water and click on Finish.

3.	 Right-click on the newly created Water.j3f file and open it.

4.	 We are now moved to the FilterExplorer window. From here, we can create, add, and
modify scene-wide effects, choosing from a number of premade ones. Right-click on
the Water filter and select Add Filter and then Water.

5.	 To see filters in the SceneComposer window, we need to click on the Eye icon shown
in the following screenshot. This should give the scene a whole new look. Do it and
see the scene transform.

6.	 A few properties need to be modified in order to make the water appear smoothly.
The Properties window for the WaterFilter element can seem a bit overwhelming. For
now, let's change the Water Height parameter. The filter will create foam wherever it
meets the land and finds a good separation or where the shore height is essential.
The sweet spot is dependent on the scene but starts out with -2 units. Changing the
following values will affect the appearance along the shoreline:

7.	 There are also Light Direction and Light Color properties in there. Let's copy the
values from our Directional Light element here to make them match. You will find
them by moving to the SceneExplorer window, selecting the Directional Light
element, and looking in the Properties window.

www.allitebooks.com

http://www.allitebooks.org

SDK Game Development Hub

18

8.	 Lastly, we need to add the following lines to the simpleInit method of our
test application:
FilterPostProcessor processor = (FilterPostProcessor)
assetManager.loadAsset("Effects/Water.j3f");
viewPort.addProcessor(processor);

How it works...
Post filters are rendered last as a screen effect in the rendering stage and applied to
the entire scene. There are many ready-made filter variants made by the jME team and
community that you can use to change how a scene appears. Filter Explorer is a great
way to set up and test these before applying them to your game.

Adding some ambient audio
Audio is an extremely important moodsetter in games, and any other cross-media product,
which is often overlooked. Bad audio can just as easily break immersion as good audio can
improve it.

We're going to add some ambient audio to our scene to help set the mood. Since the sky box
we use is a rather gloomy and watery scene, we're going to add the sound of ocean waves
crashing against the shore.

Ambient sounds can either be sounds you hear throughout a whole scene, such as the
buzzing of traffic in a city, or local to a specific place, the sound of a waterfall, and so on. In
this case, we can picture our scene as a small island, and thus the waves should be heard
wherever you go.

As it happens, there is a suitable .ogg file in the Environments folder inside Sound. If we
have added the jme3-test-data library to our project, we can access it easily.

The SDK can handle both .ogg or uncompressed .wav files. The .ogg format is open and
free, meaning you won't need any license to use it. This is not necessarily the case with other
compression types.

How to do it…
If we've made the previous recipes, we might already have seen the audio node. The following
steps will help show us how to add one to the scene:

1.	 We can find the audio node by right-clicking on a spatial, in this case the main scene
node, and selecting Add Spatial and then Audio Node.

2.	 Next, select it and look at the Properties window.

Chapter 1

19

3.	 The first important thing to look at is the Audio Data parameter. In the drop-down
menu, the SDK will automatically show the files in the Sounds folder under Project
Assets, so we should see Ocean Waves.ogg here. Unchecking the Positional
checkbox means there will be no falloff in volume as you move around.

4.	 Also check the Looping box to make sure the sound doesn't end when it's finished
playing one time.

5.	 It's currently not possible to hear the sound in the SDK itself, so we need to start an
application to do so. Fortunately, only one line of code is needed to start the sound
in our simpleInitApp method. The only catch here is that we need to cast the
scene object in an AudioNode instance first. After having loaded the scene, add
the following lines of code:
Node scene = (Node) assetManager.loadModel
("Scenes/TestScene.j3o");
rootNode.attachChild(scene);
((AudioNode)scene.getChild("AudioNode")).play();

6.	 The sound we added is a very powerful sound and may be a bit overwhelming for our
scene. Playing with the Volume property of the AudioNode element can be used to
tone down the effect a bit.

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

How it works...
The AudioNode element has a position in the 3D world since it extends Spatial and can
hence be made to be heard only from certain places. It can also easily be made to follow
objects around. In addition to volume and falloff, audio can also be modified during runtime
by area effects such as reverb.

To learn more about how effects can be used to modify audio, check out Chapter 9, Taking
Our Game to the Next Level.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

SDK Game Development Hub

20

Creating bitmap fonts with Font Creator
The Font Creator plugin is a really nifty tool for any game creator and is easily overlooked
unless mentioned. By using it, you can create a bitmap font using any system font you have
available. Refer to the Downloading the plugins section in Appendix, Information Fragments,
to know how to download a plugin.

How to do it…
We can create bitmap fonts with Font Creator by performing the following steps:

1.	 Right-click on the Fonts folder under Interface in our Project Assets folder. Select
New and then select Other.... Font is located in the GUI folder.

2.	 Next, we choose the font we would like to use from the available system fonts.

3.	 In the Configure Font part, we can make adjustments before actually creating the
bitmap. It's recommended to use a power-of-two number for the size.

A higher resolution will make the text more detailed, but it will at
the same time take up more memory, not only for the bitmap image
itself but also for the text generated. Consider the application
requirements or do some testing. You can also try to adjust the size
of the font to fit the bitmap.

4.	 Once we have our font, there are a couple of ways we can use it. First of all, if we
want to replace the default font used by the application, we have to name the font
Default.fnt and make sure it's placed inside the Fonts folder under Interface.
This is what the application is looking for during startup.

5.	 Another way to use the custom font is to load it in the application by using the
following code:
BitmapFont myFont = assetManager.loadFont("Interface/Fonts/MyFont.
fnt");

6.	 It can then be used to create text that can be placed anywhere on the screen, as
shown in the following code:
BitmapText text = new BitmapText(myFont, false);
hudText.setText("Text!");
hudText.setColor(ColorRGBA.Red);
guiNode.attachChild(hudText);

Chapter 1

21

How it works...
The BitmapText class is spatial, and needs to be attached to a node in order to be
displayed. The most common node is probably the guiNode. Spatials added to the guiNode
will be positioned according to the screen space and projected without depth. For this reason,
using the guiNode is suitable for HUD items. Setting the localTranslation parameter to
(0, 0, 0) will make the text appear in the bottom-left corner of the screen. Instead of using
(screenWidth, 0, screenHeight), we will place it in the top-right corner.

Retrieving an attachment node
In many games, the characters can be customized to carry different equipment or clothes. In
these situations, jMonkeyEngine's Attachments node is extremely useful. It lets us choose a
bone and creates a node for us that will follow that particular bone's movement and rotation,
without any further work from our side.

Getting ready
We'll need a rigged model with SkeletonControl. Fortunately, the Jaime model is already
rigged and animated. We'll also need something to attach to it. What goes well with monkeys
if not bananas?

How to do it…
1.	 Open the model in the SceneComposer window by right-clicking on it in Projects and

selecting Edit in SceneComposer.

2.	 Expand the SkeletonControl class. Located under Root is a Bone called
IKhand.R, as shown in the following screenshot:

3.	 Right-click on IKhand.R and select Get attachment Node.

SDK Game Development Hub

22

4.	 We should now see a node called IKhand.R_attachnode created at the top level of
the hierarchy. Attach the banana to the node by dragging it into the SceneExplorer
window. The banana should now appear in Jaime's hand.

The banana will not fit perfectly in this recipe. To achieve a perfect fit,
the best way will be to create an actual bone, just for attachments,
in the modeling program of our choice. Since the attached item is
attached using the model's center point, we can expect to have to
tweak the position of the items as well.

5.	 To prove that the banana will actually follow the movement of the model, we can
play an animation. Select AnimControl in the SceneExplorer window and look at
the Properties window. Choose an animation from the drop-down menu.

How it works...
When we first call getAttachmentsNode on a Bone object, it will create a new node. It will
then keep track of it and update its translation, rotation, and scale according to the values of
the Bone object. It works as a regular node in most regards, with the difference being that it
follows the IKhand.R bone's movements during animations. It is very handy, isn't it?

There's more…
All this is, of course, possible to do using code as well. Just like in the SDK, we use the
following SkeletonControl class to achieve this:

mySpatial.getControl(SkeletonControl.class).getAttachmentsNode("my
bone");

Using ParticleEmitter – Soaring Birds
Particle Emitters, in general, are good in order to create an atmosphere in the games. The
most common case is probably for smoke or fire and explosions. Particles can, however,
be used for many interesting things. In this recipe, we're going to explore that by tuning a
ParticleEmitter to create birds sailing through the sky.

The particles are still sprites, 2D images, so they will work best either far up in the sky, or
below us.

Chapter 1

23

The recipe will be divided into two parts. The first one contains setting up the
ParticleEmitter class in the SDK and writing the ParticleInfluencer interface.
The second part includes changing the way the ParticleEmitter class behaves and
extending our ParticleInfluencer interface to take advantage of this:

Getting ready
First of all, we need a suitable bird texture. There's one supplied with the project in the Birds
folder inside Textures, which will be fine if the birds are supposed to be far away. Up close, it
will not suffice though.

How to do it…
The first section will describe how to set up a material we can use. This consists of the
following steps:

1.	 We're going to start by creating a material to supply to the ParticleEmitter class.
Create a new material in the Materials folder by right-clicking and selecting New…
and then Empty Material File.

2.	 Rename it to something suitable, for example, Birds.j3m.

3.	 Now, we can open it and are automatically moved to the Material Editor window.

4.	 Here, we set the Material Definition value to Common/Matdefs/Misc/Unshaded.
j3md.

5.	 The only thing we need to change is the ColorMap value, which should be pointed
to our birds texture.

SDK Game Development Hub

24

Now, we come to the configuration of the ParticleEmitter class. This section consists of
the following steps:

1.	 Let's begin by creating a new scene and opening it in the SceneExplorer window.
Right-click and select Add Spatial.. and then Particle Emitter. A default smoke
puffing the ParticleEmitter object is created.

2.	 Now, we can bring up the Properties window and start tweaking it.

3.	 First of all, we set the material to our newly created material for the birds. Don't worry
if it looks terrible!

4.	 Looking at the Images X property, we can see that it's set to 15 by default. This is
the amount of horizontal "frames" in the texture. If we look at the birds texture, we
can see that it's only four frames, so let's change that value. The particles are already
looking better.

5.	 High Life and Low Life define the maximum or minimum lifespan of a particle.
We can assume that the birds should soar across the sky for a while, so let's change
it to 30 and 25 respectively.

6.	 There are an awful lot of birds now. Setting Num Particles to 50 will make
more sense.

7.	 Start Size and End Size affect the size of the particles over time. These should
be set to 1 for our birds. They shouldn't inflate.

8.	 For now, let's increase the radius of the emitter to get a better view. It's a sphere by
default and the last value is the radius. Set it to 30.

9.	 If we take a look at the birds now, they still just float in space. This is very unbird-like.

10.	 Let's scroll down a bit to the ParticleInfluencer class. The
ParticleInfluencer class has an opportunity to alter a particle's velocity when
it's created, decreasing uniformity. The DefaultParticleInfluencer class can
set an initial velocity, and a variation, from 0 to 1.

11.	 Set the InitialVelocity parameter to 3.0, 0.0, 0.0 and the
VelocityVariation to 1.0 to give the particles some individuality.

12.	 To make the birds look in the direction they're flying, check the Facing Velocity box.

New settings won't take effect immediately, but only when a new
particle is generated. If you want to speed up the process, click on the
"Emit All" button to emit all the new particles with the new settings.

Chapter 1

25

How it works...
A ParticleEmitter can be described as a cheap way to draw many identical or near-identical
bitmaps. Particle Emitters have a single mesh that stores all its particles. As opposed to
drawing each particle individually, it renders them all at once. This is considerably cheaper.
The drawback is, of course, that they all look the same.

There's more…
There is another thing we can do to improve the appearance of the generated birds. Since we
are expecting to look at them from either above or below, it makes sense to flatten the shape
of the emitter to be more of a plane. Let's revisit the Emitter Shape property and make a
box instead of a sphere, as shown in the following code:

[Box, -30.0, -1.0, -30.0, 30.0, 1.0, 30.0]

The numbers define the extremes of a box, that is, Xmin, Ymin, Zmin and Xmax, Ymax, and Zmax. In
other words, we have created a box that is 60 units wide and long and only 2 units high.

An advanced ParticleEmitter class
Soaring birds are nice but it's easy to feel that the result of the previous recipe could
have been much better if the birds were better animated. If you've worked with the
ParticleEmitter class before or have been observant of the birds, you will know that
particles can actually be animated although they only cycle through every frame once per
lifetime. This is much too slow for the birds.

In this recipe, we're going to look at what's needed to make the birds flap their wings. It's not
as simple as it sounds and requires modifying the ParticleEmitter code and writing our
own ParticleInfluencer class.

If we have a look at the ParticleEmitter class to see what we need to do, we can see that
there is an updateParticle method that seems like a good place to start. This is called for
every particle in each update cycle. One thing that is less obvious at first is that since we have
the same ParticleInfluencer instance affecting all particles, it also needs to be updated
separately for each frame. To achieve the latter, we can use a control.

Getting ready
To be able to modify the ParticleEmitter class, we need the source. This means we have
to check it out from the repository. If you're not comfortable with this, you can still do the first
part and learn more about the ParticleInfluencer instance.

SDK Game Development Hub

26

After having checked out the source code for jMonkeyEngine from the repository, it should be
opened as a project in the SDK.

Build it and then change the reference in the properties for this project to use the .jar files
from the source code project instead of the supplied jMonkeyEngine.jar files.

How to do it…
In the first section, we'll create a new ParticleInfluencer instance. This consists of the
following steps:

1.	 The first thing we'll do is create a new class called BirdParticleInfluencer and
have it extend the DefaultParticleInfluencer class. Since the flat particles
point in the direction they're flying, it sometimes looks weird when they have a
Y-velocity. We're going to fix that by not allowing the particles to have any velocity in
the y axis. We override the influenceParticle method and set the Y-velocity to 0.
After this we need to normalize the velocity, as shown in the following code:
public void influenceParticle(Particle particle, EmitterShape
emitterShape) {
 super.influenceParticle(particle, emitterShape);
 particle.velocity.setY(0);
 particle.velocity.normalizeLocal();
}

2.	 We can now replace the ParticleInfluencer interface in the ParticleEmitter
element's Property window with our own.

3.	 That was the easy part, and that's how far we get without modifying the engine. In
the next section, we will extend the current ParticleEmitter instance to animate
particles continuously. This will consist of the following steps:

1.	 Let's start by making our ParticleInfluencer interface ready to update
the particles in every frame. Let's start by making our ParticleInfluencer
interface ready to update the particles in every frame. We're going to add two
methods to it. The first one is for updating the particle, and the second one is
for updating the influencer itself, as shown in the following code:
public void influenceRealtime(Particle particle, float tpf);
public void update(float tpf);

2.	 In our BirdParticleInfluencer class, we're going to need some new
fields. The maxImages property keeps track of how many images there are
in a cycle. The animationFps property defines how fast the animation
should run. These two properties should be added to the class's read/write/
clone methods as well to ensure that they're saved properly. The time and
increaseFrames are runtime properties only:
private int maxImages = 1;

Chapter 1

27

private float animationFps = 10f;
 private float time = 0f;
 private int increaseFrames;

3.	 Now, let's go to our update method. This is the method that runs once every
frame. We add functionality to check whether it's time to change the frame
in the particle or not. The logic goes like this: when the current passed time
is larger than the time between frames, increase the frame index by one.
Using a while loop rather than an if statement allows us to compensate for
low frame rate, by skipping several frames, if necessary, to keep up with the
frames per second:
public void update(float tpf){
 super.update(tpf);
 float timeBetweenFrames = 1f / animationFps;
 time += tpf;
 increaseFrames = 0;
 while (time > timeBetweenFrames){
 increaseFrames++;
 time -= interval;
 }
}

4.	 In influenceRealtime, which is the method that is run once per particle
and frame, all we do is tell it to increase the imageIndex value if needed,
making sure not to exceed the maximum images in the cycle:
public void influenceRealtime(Particle particle, float tpf)
{
 super.influenceRealtime(particle, tpf);
 if(increaseFrames > 0){
 particle.imageIndex = (particle.imageIndex +
increaseFrames) % maxImages;
 }
}

5.	 That's the influencer part. Let's make sure influenceRealtime is called
from the ParticleEmitter class. At the end of the updateParticle
method, add the following code:
particleInfluencer.influenceRealtime(p, tpf);

Unfortunately, we also need to comment out the following line:

//p.imageIndex = (int) (b * imagesX * imagesY);

www.allitebooks.com

http://www.allitebooks.org

SDK Game Development Hub

28

In the last section of the recipe, we will create a control that will update the
ParticleInfluencer class. This consists of the following steps:

1.	 We create a new class called BirdParticleEmitterControl and make it extend
AbstractControl. The important bit here is the controlUpdate method where
we in turn call the update method of the ParticleEmitter instance:
public void controlUpdate(float tpf){
 super.update(tpf);
 if(spatial != null && spatial instanceof ParticleEmitter){
 ((ParticleEmitter)spatial).getParticleInfluencer().
 update(tpf);
 }
}

2.	 Apart from that, we also need to add the following code for it to work properly:
public Control cloneForSpatial(Spatial spatial) {
 return new BirdParticleEmitterControl();
}

3.	 To affect the birds by our changes, we need to do a few more things. First, we need
to open the birds scene in the SceneComposer window.

4.	 Selecting the Emitter element, we need to choose Add Control.. and then select
Custom Control. Our newly created control should be available in the list.

5.	 Now, we need to load the scene inside an application. We just load the scene and
move it up into the sky by using the following code:
public void simpleInitApp() {
 Node scene = (Node) assetManager.loadModel("Scenes/ParticleTest.
 j3o");
 scene.setLocalTranslation(0, 60, 0);
 rootNode.attachChild(scene);
}

How it works...
Particle emitters are normally limited in what control you have over the particles. The
ParticleInfluencer class gives us some basic control during particle creation.

Since the birds are flat planes, they look best when viewed straight on. This creates a problem
when we have said that they should always point in the direction they're flying if they're moving
along the y axis.

The influenceParticle method is a method implemented from the
ParticleInfluencer interface and it is called upon the creation of every new particle.
Since the DefaultParticleInfluencer instance is already applying a velocity with
variation, we just needed to remove any Y-velocity.

Chapter 1

29

In the ParticleEmitter class, we commented out a line in the update method. That's the
current animation logic that will override our changes every time. A workaround would be to
let the ParticleInfluencer class keep track of the current frame, but that would make
all the birds have the same frame. Another alternative would be to move it to one of the other
ParticleInfluencer classes.

By using the control pattern to update the ParticleInfluencer class, we can offset some
code and keep minimum changes in the ParticleEmitter class.

Unfortunately, the changes we made to the ParticleEmitter class won't be picked up
by Scene Composer, as it uses its own compiled classes. So to see it, we had to start an
application and load the scene there.

There's more…
The birds now continuously flap their wings like many small birds do when flying. Larger birds
tend to glide more, with only an occasional flap. They also fly in straight lines.

The influenceRealtime method we created opens up new possibilities to create better
looking particles.

An additional touch would be to implement logic to have the birds both soar and flap
interchangeably, and circle around a point or change their direction. Are you up for it?

2
Cameras and

Game Controls

This chapter contains the following recipes:

ff Creating a reusable character control
ff Attaching an input AppState object
ff Firing in FPS
ff Firing non-instant bullets
ff Creating an RTS camera AppState object
ff Selecting units in RTS
ff Making the camera follow units
ff Following a character with ChaseCamera
ff Adding a game controller and joystick input
ff Leaning around corners
ff Detecting cover automatically in a third-person game

Introduction
This chapter is about controlling avatars and cameras for various game types. Whether your
game is a first person shooter (FPS), role playing game (RPG), or real-time strategy (RTS)
game, you'll learn some tricks that will help you get past tricky obstacles.

The chapter will rely heavily on the ActionListener and AnalogListener
interfaces. These are essential when listening for the player input in jMonkeyEngine. The
ActionListener interface will pick up any binary input such as keyboard keys or mouse
buttons. The AnalogListener interface listens for mouse and joystick movements and
other input that is either on or off.

Cameras and Game Controls

32

Creating a reusable character control
To start off the chapter, we will create a class that we can use for various character-controlled
purposes. The example describes an FPS character, but the method is the same for any
player-controlled character.

The Control class we'll build will be based on BetterCharacterControl. It might be
a good idea to have a look at the class or the TestBetterCharacter example from the
jMonkeyEngine test package if you want to find out how this works. Another good starting
point would be the input examples from the same package.

Getting ready
The BetterCharacterControl class is based on physics and requires a BulletAppState
class to be set up in the application. The steps required to do this are described in the The
ImageGenerator class section in Appendix, Information Fragments. To find out more about
bullet and physics, refer to Chapter 8, Physics with Bullet.

How to do it...
Perform the following set of steps to create a reusable character control:

1.	 Start by creating a new class called GameCharacterControl, which extends
BetterCharacterControl. This class also needs to implement ActionListener
and AnalogListener. The idea here is to feed this class with actions that it can
handle. To control the movement of a character, use a series of Booleans as follows:
boolean forward, backward, leftRotate, rightRotate, leftStrafe,
rightStrafe;

2.	 Also, define a float field called moveSpeed, which will help you control how much the
character will move in each update.

The control Booleans you added are set in the implemented onAction method. Note
that a key will always trigger !isPressed when released (note that a key always triggers
isPressed == false when released):

public void onAction(String action, boolean isPressed, float tpf)
{
 if (action.equals("StrafeLeft")) {
 leftStrafe = isPressed;
 } else if (action.equals("StrafeRight")) {
 rightStrafe = isPressed;

 } else if (action.equals("MoveForward")) {
 forward = isPressed;

Chapter 2

33

 } else if (action.equals("MoveBackward")) {
 backward = isPressed;

 } else if (action.equals("Jump")) {
 jump();
 } else if (action.equals("Duck")) {
 setDucked(isPressed);

 }
}

3.	 Now that you have handled the key input, put the control Booleans to be
used in the update method. You might recognize the code if you've looked at
TestBetterCharacter. The first thing it does is get the current direction the
spatial object is facing in order to move forward and backwards. It also checks
which direction is left for strafing, as follows:
public void update(float tpf) {
 super.update(tpf);
 Vector3f modelForwardDir =
 spatial.getWorldRotation().mult(Vector3f.UNIT_Z);
 Vector3f modelLeftDir = spatial.getWorldRotation().
 mult(Vector3f.UNIT_X);
 walkDirection.set(0, 0, 0);

4.	 Depending on your Booleans, the following code modifies walkDirection.
Normally, you would multiply the result by tpf as well, but this is already handled
in the BetterCharacterControl class as follows:
if (forward) {
 walkDirection.addLocal(modelForwardDir.mult(moveSpeed));
} else if (backward) {
 walkDirection.addLocal(modelForwardDir.negate().
 multLocal(moveSpeed));
}
if (leftStrafe) {
 walkDirection.addLocal(modelLeftDir.mult(moveSpeed));
} else if (rightStrafe) {
 walkDirection.addLocal(modelLeftDir.negate().
 multLocal(moveSpeed));
}

5.	 Finally, in the setWalkDirection method, apply walkDirection as follows:
BetterCharacterControl.setWalkDirection(walkDirection);

Cameras and Game Controls

34

6.	 The preceding code handles moving forward, backward, and to the side. The turning
and looking up and down actions of a character is normally handled by moving the
mouse (or game controller), which is instead an analog input. This is handled by the
onAnalog method. From here, we take the name of the input and apply its value to
two new methods, rotate and lookUpDown, as follows:
public void onAnalog(String name, float value, float tpf) {
 if (name.equals("RotateLeft")) {
 rotate(tpf * value * sensitivity);
 } else if (name.equals("RotateRight")) {
 rotate(-tpf * value * sensitivity);
 } else if(name.equals("LookUp")){
 lookUpDown(value * tpf * sensitivity);
 } else if (name.equals("LookDown")){
 lookUpDown(-value * tpf * sensitivity);
 }
}

7.	 Now, start by handling the process of turning the character left and right. The
BetterCharacterControl class already has nice support for turning the
character (which, in this case, is the same thing as looking left or right), and you can
access its viewDirection field directly. You should only modify the y axis, which
is the axis that goes from head to toe, by a small amount as follows:
private void rotate(float value){
 Quaternion rotate = new
 Quaternion().fromAngleAxis(FastMath.PI * value, Vector3f.
 UNIT_Y);
 rotate.multLocal(viewDirection);
 setViewDirection(viewDirection);
}

8.	 In order to handle looking up and down, you have to do some more work. The idea is
to let the spatial object handle this. For this, you need to step back to the top of
the class and add two more fields: a Node field called head and a float field called
yaw. The yaw field will be the value with which you will control the rotation of the
head up and down.

9.	 In the constructor, set the location of the head node. The location is relative to the
spatial object to an appropriate amount. In a normally scaled world, 1.8f would
correspond to 1.8 m (or about 6 feet):
head.setLocalTranslation(0, 1.8f, 0);

Chapter 2

35

10.	 Next, you need to attach the head node to spatial. You can do this in the
setSpatial method. When a spatial is supplied, first check whether it is a Node
(or you wouldn't be able to add the head). If it is, attach the head as follows:
public void setSpatial(Spatial spatial) {
 super.setSpatial(spatial);
 if(spatial instanceof Node){
 ((Node)spatial).attachChild(head);
 }
}

11.	 Now that you have a head that can rotate freely, you can implement the method that
handles looking up and down. Modify the yaw field with the supplied value. Then,
clamp it so that it can't be rotated more than 90 degrees up or down. Not doing this
might lead to weird results. Then, set the rotation for the head around the x axis
(think ear-to-ear) as follows:
private void lookUpDown(float value){
 yaw += value;
 yaw = FastMath.clamp(yaw, -FastMath.HALF_PI, FastMath.HALF_PI);
 head.setLocalRotation(new Quaternion().fromAngles(yaw, 0, 0));
}

12.	 Now, we have a character that can move and rotate like a standard FPS character.
It still doesn't have a camera tied to it. To solve this, we're going to use the
CameraNode class and hijack the application's camera. CameraNode gives you the
ability to control the camera as if it were a node. With setControlDir, we instruct
it to use the location and rotation of spatial as follows:
public void setCamera(Camera cam){
 CameraNode camNode = new CameraNode("CamNode", cam);
 camNode.setControlDir(CameraControl.ControlDirection.
 SpatialToCamera);
 head.attachChild(camNode);
}

Cameras are logical objects and are not part of the scene graph.
The CameraNode keeps an instance of Camera. It is a Node
and propagates its own location to the Camera. It can also do the
opposite and apply the Camera's location to CameraNode (and
thus, any other spatial object attached to it).

Cameras and Game Controls

36

13.	 To use GameCharacterControl in an application, add the following lines of code in
the simpleInit method of an application. Instantiate a new (invisible) Node instance
that you can add to the GameCharacterControl class. Set the application's camera
to be used as a character, and add it to physicsSpace as follows:
Node playerNode = new Node("Player");
GameCharacterControl charControl = new GameCharacterControl(0.5f,
2.5f, 8f);
charControl.setCamera(cam);
playerNode.addControl(charControl);
charControl.setGravity(normalGravity);

bulletAppState.getPhysicsSpace().add(charControl);

How it works...
The BetterCharacterControl class of jMonkeyEngine already has a lot of the
functionalities to handle the movement of a character. By extending it, we get access
to it and we can implement the additional functionality on top of it.

The reason we use Booleans to control movement is that the events in onAction and
onAnalog are not fired continuously; they are fired only when they're changed. So, pressing a
key wouldn't generate more than two actions, one on pressing it and one on releasing it. With
the Boolean, we ensure that the action will keep getting performed until the player releases
the key.

This method waits for an action to happen, and depending on the binding parameter, it will
set or unset one of our Booleans. By listening for actions rather than inputs (the actual key
strokes), we can reuse this class for non-player characters (NPCs).

We can't handle looking up and down in the same way as we perform sideways rotations. The
reason is that the latter changes the actual direction of the movement. When looking up or
down, we just want the camera to look that way. The character is usually locked to the ground
(it would be different in a flight simulator, though!).

As we can see, the BetterCharacterControl class already has ways to handle jumping
and ducking. Nice!

There's more...
Let's say we would rather have a third-person game. How difficult would it be to modify this
class to support that? In a later recipe, we will look at jMonkeyEngine's ChaseCamera class,
but by inserting the following two lines of code at the end of our setCamera method, we will
get a basic camera that follows the character:

camNode.setLocalTranslation(new Vector3f(0, 5, -5));
camNode.lookAt(head.getLocalTranslation(), Vector3f.UNIT_Y);

Chapter 2

37

It's all handled by CamNode, which offsets the camera's location in relation to its own (which
follows the head node). After moving CamNode, we make sure that the camera also looks at
the head (rather than the default forward).

Attaching an input AppState object
In this recipe, we will make an AppState object, which will handle the player input for
a character. It's a great way to add functionality to the application in a modular way. The
AppState object we create here could easily be added during the game and removed or
disabled during cut scenes or while in the game menu.

Getting ready
We won't require any special assets for this recipe, but it will be beneficial to have a
basic understanding of how AppState works and its purpose in jMonkeyEngine. This
particular implementation of the recipe will use the character-control class created in the
previous example. It can still be used to manipulate a spatial object directly without the
GameCharacterControl class. This recipe will provide pointers on where to do this.

How to do it...
To attach an input AppState object, perform the following steps:

1.	 Start off by creating a class called InputAppState, extending AbstractAppState,
and implementing ActionListener and AnalogListener.

2.	 The InputAppState class needs a couple of fields to be functional. First of all,
we're going to keep a reference to the application's InputManager in a field
called inputManager. We're also adding a GameCharacterControl field called
character. This can be replaced by any spatial. Lastly, we're going to have a
value that controls the sensitivity of the analog controls. We do this with a float called
sensitivity. Add getters and setters for character and sensitivity.

3.	 Next, we'll set up the kinds of input we're going to handle. Strings are used by
jMonkeyEngine for the mappings, but enums can be easier to manage across
classes. Here, we'll use an enum and supply the name of the value as the mapping.
We use it to create some basic FPS controls as follows:
public enum InputMapping{
 RotateLeft, RotateRight, LookUp, LookDown, StrafeLeft,
 StrafeRight, MoveForward, MoveBackward;
}

www.allitebooks.com

http://www.allitebooks.org

Cameras and Game Controls

38

4.	 We create a method called addInputMappings to add these to inputManager
and make sure it listens to them. To do this, we supply the name of the enum value
as the mapping and bind it to a certain input as follows:
private void addInputMappings(){
 inputManager.addMapping(InputMapping.RotateLeft.name(), new
 MouseAxisTrigger(MouseInput.AXIS_X, true));
 inputManager.addMapping(InputMapping.RotateRight.name(), new
 MouseAxisTrigger(MouseInput.AXIS_X, false));
 inputManager.addMapping(InputMapping.LookUp.name(), new
 MouseAxisTrigger(MouseInput.AXIS_Y, false));
 inputManager.addMapping(InputMapping.LookDown.name(), new
 MouseAxisTrigger(MouseInput.AXIS_Y, true));
 inputManager.addMapping(InputMapping.StrafeLeft.name(), new
 KeyTrigger(KeyInput.KEY_A), new KeyTrigger(KeyInput.KEY_
 LEFT));
 inputManager.addMapping(InputMapping.StrafeRight.name(), new
 KeyTrigger(KeyInput.KEY_D), new KeyTrigger(KeyInput.KEY_
 RIGHT));
 inputManager.addMapping(InputMapping.MoveForward.name(), new
 KeyTrigger(KeyInput.KEY_W), new KeyTrigger(KeyInput.KEY_UP));
 inputManager.addMapping(InputMapping.MoveBackward.name(), new
 KeyTrigger(KeyInput.KEY_S), new KeyTrigger(KeyInput.KEY_
 DOWN));

}

It's okay to assign several keys to the same mapping. For example,
this recipe assigns both the arrow keys and the classical WASD
pattern to the movement keys.

5.	 Finally, in the same method, we tell InputManager to listen to the commands,
or it won't actually fire on any of the inputs:
for (InputMapping i : InputMapping.values()) {
 inputManager.addListener(this, i.name());
}

6.	 Now, once AppState is attached, it runs the initialize method (in a thread-safe
way). Here, we get the reference to the application's InputManager object and run
the addMappings method we just created, as follows:
public void initialize(AppStateManager stateManager, Application
app) {
 super.initialize(stateManager, app);
 this.inputManager = app.getInputManager();
 addInputMappings();
}

Chapter 2

39

7.	 Once InputManager detects any of the actions and sends them our way, we will
just forward them to the GameCharacterControl object by applying the sensitivity
value to the analog input as follows:
public void onAnalog(String name, float value, float tpf) {
 if(character != null){
 character.onAnalog(name, value * sensitivity, tpf);
 }
}

public void onAction(String name, boolean isPressed, float tpf) {
 if(character != null){
 character.onAction(name, isPressed, tpf);
 }
}

8.	 We're actually almost done with this recipe. We just need to make sure that we reset
everything when AppState is not to be used anymore. We do this by overriding the
cleanup method. Here, we remove all the mappings and remove this instance from
listeners of inputManager as follows:
public void cleanup() {
 super.cleanup();
 for (InputMapping i : InputMapping.values()) {
 if (inputManager.hasMapping(i.name())) {
 inputManager.deleteMapping(i.name());
 }
 }
 inputManager.removeListener(this);
}

How it works...
The AppState object works with the application in a way that is similar to how Control
works with spatial. They give extended functionalities in a modular way. Once it has
been attached to stateManager, its update method will be called every cycle. This
gives us access to the application's thread as well. It also has the stateAttached and
stateDetached methods, which can be used to turn functionality on and off easily.

Cameras and Game Controls

40

Firing in FPS
There are several ways to perform firing, and the requirements depend heavily on the type
of game. This recipe will start off with the basics, which can then be extended to support the
different forms of firing. We'll create the necessary functionalities to fire instant bullets; they
are performance-friendly and suitable for a fairly close-quarters FPS.

Getting ready
This example will be based on GameCharacterControl and InputAppState from the
Creating a reusable character control and Attaching an input AppState object recipes of this
chapter, respectively. Familiarity with the recipes is beneficial. Further, we'll use the Ray class
in combination with CollisionResults to check whether the bullet has hit anything or not.

Rays can be imagined as infinite lines and are very common in game development. This
is a fast way of detecting intersections with game objects and is thus suitable for instant
firing. The targets might consist of any kind of spatial. In this case, it's a bunch of spheres
generated by the recipe's test class.

We will let the InputAppState class handle the firing logic, and the GameCharacterControl
class will keep track of cool down time of the weapon, or how long it takes between each shot.
The reason we don't keep everything in AppState is that this way, the class can be used for
things other than the player's character.

How to do it...
We will start by making some updates to the GameCharacterControl class. For the
GameCharacterControl class, we introduce two new variables, cooldownTime
and cooldown:

1.	 The first is the time between shots.

2.	 The second is the current countdown until the character can fire again. We need to
add a getter for cooldown and the value itself is set in the following onFire method:
public void onFire(){
 cooldown = cooldownTime;
}

3.	 Lastly, in the update method, we need to subtract cooldown by tpf if it's more
than zero.

Chapter 2

41

In InputAppState, we also have to make some changes:

1.	 We begin by introducing a List<Geometry> called targets. This is the list of
things the fired rays will check for collisions against. In the addInputMapping
method, add another mapping for Fire. A suitable button is the left mouse button.
This is implemented as follows:
inputManager.addMapping(InputMapping.Fire.name(), new
MouseButtonTrigger(MouseInput.BUTTON_LEFT));

2.	 In the onAction method, change the logic slightly. We add a new check for the fire
action and we put the existing logic inside the else clause. We're telling character
to handle all actions, except when we fire. This is implemented as follows:
if (name.equals("Fire")) {
 if (isPressed && character.getCooldown() == 0f){
 fire();
 }
} else {
 character.onAction(name, isPressed, tpf);
}

3.	 Now, create a new method called fire. This is where we're going to add most of the
new functionalities. Inside this, we first define a new Ray class that we place at the
camera's location (if it is an FPS), and we set the direction to be the same as the
camera's direction, as shown in the following code:
Ray r = new Ray(app.getCamera().getLocation(), app.getCamera().
getDirection());

4.	 Then, create a new CollisionResults instance, which we will use to keep track
of collisions. We parse through the target list to see whether Ray collides with any of
them. All collisions are stored in the CollisionResults instance as follows:
CollisionResults collRes = new CollisionResults();
for(Geometry g: targets) {
 g.collideWith(r, collRes);
}

5.	 Afterwards, check whether there have been any collisions. If so, get the nearest one
and display the location as follows:
if(collRes.size() > 0){
 System.out.println("hit " + collRes.getClosestCollision().
 getContactPoint());
}

6.	 Finally, call the character's onFire method, character.onFire();.

Cameras and Game Controls

42

How it works...
With this implementation, we handle most of the actual logic that happens when firing inside
InputAppState. The GameCharacterControl class is left to keep control of whether
firing is possible or not. Some further work on this could have the character play an animation
and keep track of the ammunition.

The Ray object we're using is being fired out of the camera. This makes it easy to set both the
location and direction. This would be the case for a game in iron sights or sniper mode. If you
want to fire from the hip, for example, it would be slightly more complicated.

Rays are normally very fast. Using them can, however, become performance-demanding in
large game worlds with complex collision shapes. This is one reason for keeping track of the
items to be checked against in a list rather than using the whole rootNode. In other cases,
it's good to first filter down the list, maybe based on the distance from the player.

The CollisionResults class stores collisions between spatial or ray. It contains a list
of CollisionResult objects, which in turn has a number of useful methods for determining
where a collision has occurred and between what.

Firing non-instant bullets
In the previous recipe, we implemented a basic form of firing that will work for many cases.
The exit velocity for a bullet is usually around 300 m/s (or close to 1000 feet/s) and might
seem near-instant at close range. For ranges over 30 m (approximately 90 feet), the delay
starts to get noticeable though, and more realistic games might need another model. In this
recipe, we'll look into a type of bullet that travels in the game world. It's still an invisible bullet,
but it can easily be visualized if required.

Getting ready
This recipe can be seen as a more advanced version of the previous recipe and won't require
many changes to what we did there but will mainly contain additions. Almost all of the
functionalities will be implemented in a new class, called Bullet (not to be confused
with the physics engine with the same name that we use in a Chapter 8, Physics with Bullet).

Chapter 2

43

How to do it...
Perform the following steps to fire non-instant bullets:

1.	 Let's begin by defining our Bullet class. The worldPosition and direction
variables are used by the Ray class as a starting position each step it takes. The
RANGE field is a static field that defines the maximum range, inside which the bullet
will be effective. The distance variable is the distance the bullet has traveled since
it was instanced. It also needs to keep track of whether it's alive or not, for cleanup
reasons. It should be said that this particular bullet is rather slow and short lived.
private Vector3f worldPosition;
private Vector3f direction;
private float speed = 10;
private Ray ray;
private final static int RANGE = 10;
private float distance;
private boolean alive = true;

2.	 To avoid unnecessary object creation, we instance Ray in the constructor as follows,
which we'll reuse throughout the lifespan of the bullet:
ray = new Ray(origin, direction);
ray.setOrigin(worldPosition);

3.	 It's in the update method that most of the work is done. At the beginning, we set the
ray's origin to be the current position of the bullet. The direction will stay the same,
so no need to change that. We do, however, need to set limit factorized by the time
passed for the update (tpf). The limit is also the distance the bullet has traveled
since the last update, so we use this to update the current position of the bullet:
ray.setLimit (speed * tpf);
distance += ray.limit;
worldPosition.addLocal(direction.mult(ray.limit));

4.	 If the total distance is longer than the range, the bullet can be considered beyond its
effective range. We set alive to false as follows so that it can be removed:
if(distance >= RANGE){
 alive = false;
}

Cameras and Game Controls

44

5.	 The Bullet class also has a checkCollision method. It takes a list of targets
as input and tries a collision between each of them and the ray. If any collision is
detected, alive will be set to false and the closest CollisionResult will be
returned to the calling method as follows:
public CollisionResult checkCollision(List<Collidable> targets){
 CollisionResults collRes = new CollisionResults();
 for(Collidable g: targets){
 g.collideWith(ray, collRes);
 }
 if(collRes.size() > 0){
 alive = false;
 return collRes.getClosestCollision();
 }
 return null;
}

6.	 Next, we'll add some code to the application class. It needs to keep track of
List<Collidable>, called targets and List<Bullet>, called bullets.

7.	 The simpleUpdate method updates the movement of all bullets by calling their
update method before seeing whether any collisions have occurred or not. Any depleted
bullets are removed in a way that avoids ArrayIndexOutOfBounds exceptions:
Bullet b = bullets.get(i);
b.update(tpf);
CollisionResult result = b.checkCollision(targets);
if(result != null){
 System.out.println("hit " + result);
}
if(!b.isAlive()){
 bullets.remove(b);
 bulletAmount--;
 if(i > 0){
 i--;
 }
}

8.	 Create a fire() method that creates a new bullet by using the camera's location
and direction as follows:
bullets.add(new Bullet(cam.getLocation().clone(), cam.
getDirection().clone()));

Chapter 2

45

9.	 The method is called from the InputAppState's onAction method, which is similar to
how it looked in the previous recipe:
if (isPressed && character.getCooldown() == 0f){
 ((CharacterInputTest_Firing_NonInstant) app).fire();
 character.onFire();
}

How it works...
The Bullet class can almost be seen as a slow ray. The Ray instance we have in Bullet is
mostly out of convenience, since it's already prepared to collide with targets. By incrementing
the position of the ray and having a short limit for it, we have a Ray instance that takes little
steps forward in the game world, checking for collisions in each update.

If a collision has occurred, the returned CollisionResult contains information about
where the collision has occurred, with what, and whether it can be used to build further
functionalities.

Creating an RTS camera AppState object
In this recipe, we'll try to mimic the camera and controls that are common in RTS games.
The camera will mostly look down on the scene, and aside from basic movement and rotation
of the camera, there will also be automatic scrolling when the mouse reaches the edges of
the screen.

Getting ready
We're going to set up the camera and camera handling in this recipe. Loading a scene
to make sure the camera works as expected would be helpful.

How to do it...
To create an RTS camera AppState object, perform the following steps:

1.	 We start by creating a class that implements the AnalogListener and
ActionListener interfaces so that we can receive user input from the
mouse and keyboard. We'll use these to control the camera as follows:
public class RTSCameraAppState extends AbstractAppState implements
AnalogListener, ActionListener{

Cameras and Game Controls

46

2.	 Next, we'll define what controls we'll handle. Using an enum will keep things tidy, so
type the following code snippet:
public enum InputMapping{
MoveLeft, MoveRight, MoveUp, MoveDown,
 RotateLeft, RotateRight;
}

The following screenshot shows you the difference between the camera's position
above the ground (half circle) and the camera's focus point (at the center):

3.	 We then set up some things in the initialize method. Rather than
having a completely top-down perspective, we give the camera a little tilt with
lookAtDirection and a unit vector. Then, we move the camera further away
from the ground with the camDistance variable. There is a reason we do this
and don't simply set the camera's location. By doing it this way, we can more easily
get the location the camera is looking at. This will come in handy if we want to add
more advanced features:
private Vector3f camLocation = new Vector3f(0, 20, 0);
private Vector3f lookAtDirection = new Vector3f(0, -0.8f, -0.2f);

public void initialize(AppStateManager stateManager, Application
app) {
 this.cam = app.getCamera();
 cam.lookAtDirection(lookAtDirection, Vector3f.UNIT_Y);
 camLocation.set(cam.getDirection().mult(-camDistance));
 cam.setLocation(camLocation);
 this.inputManager = app.getInputManager();
 addInputMappings();
}

Chapter 2

47

4.	 Lastly, add the keys that we'll listen to inputManager:
private void addInputMappings(){
 inputManager.addMapping(InputMapping.MoveLeft.name(), new
 KeyTrigger(KeyInput.KEY_A), new KeyTrigger(KeyInput.KEY_
 LEFT));
 inputManager.addMapping(InputMapping.MoveRight.name(), new
 KeyTrigger(KeyInput.KEY_D), new KeyTrigger(KeyInput.KEY_
 RIGHT));
...[repeat for all keys]... InputMapping.MoveDown.
name(),InputMapping.RotateLeft.name(),InputMapping.RotateRight.
name()});
}

5.	 Now to the onAction method, where any calls to these mappings will end up. Since
we have an enum, we can use a switch to see what kind of input it is and set our
Booleans accordingly:
public void onAction(String name, boolean isPressed, float tpf) {
 InputMapping input = InputMapping.valueOf(name);
 switch(input){
 case MoveUp:
 moveUp = isPressed;
 break;
 [repeat for all actions] case RotateRight:
 rotateRight = isPressed;
 break;
 }
}

6.	 Let's have a look at the update method, where we will put these Booleans to use.
An update method is called automatically every frame, and we also get to know how
much time (in seconds) has passed since the last update, in tpf. We start by storing
the camera's current location and initialize a Vector3f object, which we'll use for
our movement delta as follows:
public void update(float tpf) {
 super.update(tpf);
 camLocation = cam.getLocation();
 Vector3f tempVector = new Vector3f();

7.	 Next, we look to see if any of our movement Booleans are true and apply this to
tempVector as follows:
if(moveUp){
 tempVector.addLocal(0, 0, 1f);
} else if(moveDown){
 tempVector.addLocal(0, 0, -1f);
}
if(moveLeft){

www.allitebooks.com

http://www.allitebooks.org

Cameras and Game Controls

48

 tempVector.addLocal(1f, 0, 0);
} else if (moveRight){
 tempVector.addLocal(-1f, 0, 0);
}

8.	 To keep the movement speed constant, regardless of the frame rate, we multiply
tempVector by the tpf, and then we also multiply it by our moveSpeed variable.
Then, we add it to camLocation as follows:
tempVector.multLocal(tpf).multLocal(moveSpeed);
camLocation.addLocal(tempVector);

9.	 At the end of the method, we set the camera's location to the modified stored
location as follows:
cam.setLocation(camLocation);

10.	 If we try AppState now, we would be able to scroll across the scene with our keys.
We still have mouse controls and rotation to take care of.

11.	 Let's begin with rotation. We will handle it through a method called rotate. The
supplied value is our rotateSpeed variable, from which we'll extract a Quaternion
rotated around the y axis. We then multiply the Quaternion with the camera's rotation
as follows:
private void rotate(float value){
 Quaternion rotate = new Quaternion().fromAngleAxis(FastMath.PI *
 value, Vector3f.UNIT_Y);
 rotate.multLocal(cam.getRotation());
 cam.setRotation(rotate);
}

12.	 Furthermore, we need to make a few alterations to the update method. First,
we look to see whether the user has pressed any of the rotation keys and call the
rotate method:
if(rotateLeft){
 rotate(rotateSpeed);
} else if (rotateRight){
 rotate(-rotateSpeed);
}

13.	 The next piece is a bit trickier, and we perform it just above the line where we multiply
tempVector by moveSpeed (highlighted). We multiply tempVector by the camera's
rotation to make sure that we get the movement across the correct axes. Then, since
the camera is slightly tilted, we negate any movement along the y axis. The best way
to understand what would happen is to probably remove this line and try it out
as follows:
cam.getRotation().multLocal(tempVector);
tempVector.multLocal(1, 0, 1).normalizeLocal();
tempVector.multLocal(tpf).multLocal(moveSpeed);

Chapter 2

49

14.	 That's rotation taken care of! It's pretty common in RTS or top-down games to scroll
by moving the mouse to the extremes of the screen. So, let's add functionalities for
that. The following code snippet should be added in the update method above the
rotation checks:
Vector2f mousePos2D = inputManager.getCursorPosition();
if(mousePos2D.x > 0 && mousePos2D.x < cam.getWidth() / 10f){
 tempVector.addLocal(1f, 0, 0);
} else if(mousePos2D.x < cam.getWidth() && mousePos2D.x > cam.
getWidth() - cam.getWidth() / 10f){
 tempVector.addLocal(-1f, 0, 0);
}
if(mousePos2D.y > 0 && mousePos2D.y < cam.getHeight() / 10f){
 tempVector.addLocal(0, 0, -1f);
} else if(mousePos2D.y < cam.getHeight() && mousePos2D.y > cam.
getHeight() - cam.getHeight() / 10f){
 tempVector.addLocal(0, 0, 1f);
}

How it works...
The AppState object listens for the input from the player via InputManager and
applies it to the application's camera. In just one short class, we've produced an RTS-like
camera behavior.

Lastly, in this recipe, we added functionalities to pan the camera if the mouse cursor was
near the edges of the screen. We used InputManager.getCursorPosition(), which
is a very convenient method that returns the position of the mouse in the screen space. The
bottom-left part of the screen has an x,y coordinate of 0,0. The top-left part of the screen has
an x, y coordinate that is the same as the height and width of the screen in pixels. The next
if statements check whether the cursor is in the 10 percent of the outermost portion of the
camera (which in this case is the same as the screen) and modify tempVector accordingly.

There's more...
That's nice and all, but if we have terrain in our scene, which is not flat, the camera might very
well end up below the ground level. How can we remedy this? An easy way is to use ray casting
to check for the height of the terrain where the camera is looking. This can be implemented
as follows:

1.	 First, we need to make sure the terrain has CollisionShape:
terrain.addControl(new RigidBodyControl(0));

2.	 By supplying 0 to RigidBodyControl, we say that it doesn't have any mass
(and it won't be affected by gravity, if there were any). Since we're not supplying
CollisionShape, MeshCollisionShape will be created. Since the terrain is
of an irregular shape, a primitive (such as a box) isn't usable.

Cameras and Game Controls

50

3.	 Next, we need to create a field for the terrain in AppState and a setter as well.

4.	 To actually find out the height of the terrain, we create a method called
checkHeight, which returns the height as float.

5.	 Inside checkHeight, we shoot Ray, which originates from the camera's location in
the direction the camera is facing. An alternative could be to shoot it down to get the
height directly below the camera, as follows:
Ray ray = new Ray(cam.getLocation(), cam.getDirection());
CollisionResults results = new CollisionResults();terrain.
collideWith(ray, results);

6.	 If we get a result from our ray, we get the y value from the collision point and return it
as follows:
height = results.getClosestCollision().getContactPoint().y;

7.	 Now, in the update method, just above the line where we set the location, we call
the checkHeight method. Be sure to apply the camDistance variable in order to
get the correct offset! This is implemented as follows:
camLocation.setY(checkHeight() + camDistance);
cam.setLocation(camLocation);

Selecting units in RTS
In this recipe, we'll show you how the selection of units in an RTS can work and also
implement functionalities to show you when a unit has been selected. We'll use AppState,
which handles mouse selection and we will also create a new Control class to be used by
any spatial we want to be made selectable. In the recipe, Control will display a marker at
the feet of the selected spatial, but it can easily be extended to do other things as well.

Getting ready
This recipe will work fine if you have already started creating a game where you would like
to select things by clicking on them or if you've completed the previous recipe. The least
you will need for this recipe is a scene with something to click on. In the text, we will refer to
TestScene, which was created in Chapter 1, SDK Game Development Hub, and the Jaime
model which is used in it. It is assumed that you have some experience in action handling. If
not, it's recommended that you refer to the Attaching an input AppState object recipe of this
chapter to get an introduction to it.

Chapter 2

51

How to do it...
Perform the following steps to select units in RTS:

1.	 Let's start by creating the Control class and name it SelectableControl. It should
extend AbstractControl.

2.	 The class only has two fields: selected, which keeps track of whether the spatial
field is selected or not (duh), and marker, which is another spatial field to show
when selected is true.

3.	 The only logic in the class is in the setSelected method; we let it handle attaching
or detaching the marker:
public void setSelected(boolean selected) {
 this.selected = selected;
 if (marker != null) {
 if (this.selected) {
 ((Node) spatial).attachChild(marker);
 } else {
 ((Node) spatial).detachChild(marker);
 }
 }
}

The method assumes that the spatial is actually a Node. If it
is not a Node, the class can do other things, such as changing
the color parameter of Material to indicate that it is selected.

4.	 We might want to display different markers for different types of selections, so let's
make it flexible by adding a setter method for the marker.

5.	 Now, we create a new AppState class called SelectAppState. It should extend
AbstractAppState and implement ActionListener to receive mouse
click events.

6.	 We'll add two fields, one static string to represent the mouse click, and a
List<Spatial> called selectables where it will store anything that is
selectable, as follows:
private static String LEFT_CLICK = "Left Click";
private List<Spatial> selectables = new ArrayList<Spatial>();

7.	 The initialize method should look familiar if you've read any of the other
game control recipes. We add a mapping for LEFT_CLICK and register it with
the application's InputManager to ensure it listens for it.

Cameras and Game Controls

52

8.	 The only thing the onAction method will currently do is to trigger the onClick
method when the left mouse button is pressed.

9.	 Mouse selection (or picking) works by shooting Ray from the position of the mouse
cursor into the screen. We begin by getting the position of the mouse cursor on the
screen as follows:
private void onClick() {
 Vector2f mousePos2D = inputManager.getCursorPosition();

10.	 Then, we get the position this represents in the game world as follows:
Vector3f mousePos3D = app.getCamera().
getWorldCoordinates(mousePos2D, 0f);

11.	 Now, we can see what direction this would be by extending the position deeper into
the camera's projection, as follows:
Vector3f clickDir = mousePos3D.add(app.getCamera().
getWorldCoordinates(mousePos2D, 1f)).normalizeLocal();

The following figure shows you how BoundingVolume, in the shape of a box, can
enclose the character:

12.	 We define Ray using mousePos3D as the origin and clickDir as the direction and
a CollisionResults instance to store any collisions that will occur.

13.	 Now, we can define a for loop that goes through our selectables list and checks
whether Ray intersects with any of BoundingVolumes. The CollisionResults
instance adds them to a list, and we can then retrieve the closest collision which, for
most cases, is the most relevant one, as follows:
for (Spatial spatial : selectables) {
 spatial.collideWith(ray, results);

Chapter 2

53

}

CollisionResult closest = results.getClosestCollision();

It's a good idea to have a look at the CollisionResults
class as well as CollisionResult, as these classes
already keep track of many useful things that will save
valuable coding time.

14.	 After this, we can parse through our selectable list to see whether the spatial
that was clicked on has any of the items in the list. If it is, we call the following code:
spatial.getControl(SelectableControl.class).setSelected(true);

15.	 Depending on the requirements, we might want to deselect all other spatials at this
point. If we're using nodes, we might also need to see whether it is any of the spatial's
children that were hit by the ray as well.

16.	 To test this, we can use the same class used in the previous recipe, with a few
additional lines.

17.	 First of all, we need to create and attach SelectAppState as follows:
SelectAppState selectAppState = new SelectAppState();
stateManager.attach(selectAppState);

18.	 Create SelectableControl and something that can be used as a marker (in this
case, it will be a simple Quad).

19.	 Lastly, we need to add SelectableControl to our Jaime model, and then add
Jaime as a selectable to AppState as follows:
jaime.addControl(selectableControl);
selectAppState.addSelectable(jaime);

20.	 If we now run the example and click on Jaime, the Quad should be rendered near
his feet.

How it works...
This example shows you one of the strengths of using Control and AppState, as it's easy to
add functionalities to a spatial object as long as the logic is kept modular. Another (although
possibly less effective) way of performing the selection would be to run a collision check against
all spatial objects in a scene and use Spatial.getControl (SelectableControl.
class) to see whether any of the spatials should be possible to select.

In this recipe, the items in the selectables list extend the Spatial class, but the only
actual requirement is that the objects implement the Collidable interface.

Cameras and Game Controls

54

When shooting the ray, we get the position of the mouse cursor from InputManager. It's a
Vector2f object, where 0,0 is the bottom-left corner, and the top-right corner equals the
height and width of the screen (in units). After this, we use Camera.getWorldCoordinates
to give us a 3D position of the mouse click (or any position on the screen). To do this, we must
supply a depth value. This is between 0, which is closest to the screen, and 1f, into infinity.
The direction would then be the difference between the nearest and farthest value, and it
would be normalized.

Making the camera follow units
This recipe will cover some principles on how to make the camera follow something in the
game world. While it might seem like an easy task at first, there are some tricky bits too.

Getting ready
The recipe will build upon the Creating an RTS camera AppState object recipe of this chapter.
All of the steps described in this recipe will be applied to AppState.

How to do it...
To make the camera follow units, perform the following steps:

1.	 We start by adding two new variables, which we'll use for the new functionality. A
Vector3f variable, called targetLocation, will be used to track the target, and a
Boolean variable called follow, will be used to declare whether the camera should
track the target or not. These are set from external classes.

2.	 Out of convenience, we also define a final Vector3f variable, called UNIT_XZ, which
we set to(1f, 0, 1f). We'll use this to convert 3D positions to 2D.

3.	 Then, we need to add some functionality in the update method just before cam.
setLocation(camLocation);.

4.	 First, we add a check to see whether the camera has been moved by the player. If so,
we turn off the tracking as follows:
if(tempVector.length() > 0){
 follow = false;
}

5.	 Since the camera is up in the air and the target is (most likely) on the ground, we
transform the camera's location to a position on the same horizontal plane as the
target. The targetLocation vector is pretty simple to handle. We just flatten it
by zeroing on the Y value as follows:
Vector3f targetLocation2D = targetLocation.mult(UNIT_XZ);

Chapter 2

55

6.	 The camera is a bit trickier; since we're interested in the target's position in relation
to the point the camera is looking at, we need to first find out where it is looking. First,
we get the relative position of the point the camera is looking at by multiplying the
height with the direction as follows:
Vector3f camDirOffset = cam.getDirection().mult(camDistance);

7.	 Then, we add it to the camera's location (you can say that we project it on the ground)
to get its world position. Finally, we flatten this as well with UNIT_XZ as follows:
Vector3f camLocation2D = camLocation.add(camDirOffset).
 multLocal(UNIT_XZ);

8.	 We're using a linear interpolation that moves the camera's focus point 30 percent
closer to the target location each cycle. Then, we reverse the addition we did earlier
(or unproject) to get a new 3D position for the camera. The distance check is optional,
but since we're going to use interpolation, we might save a few calculations by only
interpolating if the distance is above a certain threshold as follows:
if(targetLocation2D.distance(camLocation2D) > 0.01f){
 camLocation2D.interpolate(targetLocation2D, 0.3f);
 camLocation.set(camLocation2D);
 camLocation.subtractLocal(camDirOffset);

9.	 To show that these changes work, we need to change a few things in our test
application. We can grab Jaime from our scene and use his translation as the target
location. We use worldTranslation and not localTranslation in this case:
appState.setTargetLocation(jaime.getWorldTranslation());
appState.setFollow(true);

10.	 Then, in the update method of the test case, we make him slowly move along the x
axis as follows:
jaime.move(0.2f * tpf, 0, 0);

11.	 While running the application, we should see the camera follow Jaime until we move
it manually.

How it works...
Another way of handling it would be not to move the camera during the input but the actual
point it looks at, and have the camera troll along. No matter which way you choose to do it
though, practicing and thus getting a better understanding of these trigonometric problems is
always a good idea.

Cameras and Game Controls

56

Since we're using linear interpolation here, camLocation2D will never actually reach
targetLocation; it'll just get infinitely closer. This is why an if statement can be useful in
these cases to see whether it's worth actually changing the distance or not. Finding the right
threshold to break off is empiric and varies from case to case.

Following a character with ChaseCamera
In this recipe, we'll explore jMonkeyEngine's ChaseCamera class. This camera is a bit
different from the previous cameras we've explored since we don't have direct control over
its position. It is not like the camera-on-a-stick method we tried in the Creating a reusable
character control recipe. While it still follows and looks at the character, it can float around
the character more freely and also be controlled by the player.

The default control for the camera is to hold down the left mouse button and drag it to rotate
the camera around the character. This is a very common control pattern in third-person games
on consoles, where you rotate the camera with the left stick and control the character with
the right.

We will implement a behavior where the character moves in the direction the camera is
facing rather than the direction the character is facing when you press the forward key.
This is common in console games.

Getting ready
Out of convenience, we'll extend, or modify, the GameCharacterControl class from earlier.
This way, we'll get some of the basic functionality and save some time.

How to do it...
To start off, we can create a new SimpleApplication class in which we'll apply the
following steps:

1.	 To initialize the camera, you supply the application's camera, spatial, to be
followed, and the input manager, as follows:
ChaseCamera chaseCam = new ChaseCamera(cam, playerNode,
inputManager);

2.	 The ChaseCamera class has lots of settings to suit different kinds of games. To start
off, we turn off the need to hold down the left mouse button to rotate the camera.
It's not something we want for this recipe. This is implemented as follows:
chaseCam.setDragToRotate(false);

Chapter 2

57

3.	 We do, however, want smooth movement for the camera. For this, type the following
line of code:
chaseCam.setSmoothMotion(true);

4.	 By default, the camera will focus on the origin point of spatial, which in this case,
would be Jaime's feet. We can easily make it look at a higher-up point, such as
waist.chaseCam.setLookAtOffset(new Vector3f(0, 1f, 0));.

5.	 Next, we set some distance restrictions for the camera. There is no guarantee
that it will stay within those boundaries though. It especially seems to violate
minDistance:
chaseCam.setDefaultDistance(7f);
chaseCam.setMaxDistance(8f);
chaseCam.setMinDistance(6f);

6.	 The ChasingSensitivity method defines how quickly the camera will follow
spatial. If it's 1, it will follow slowly and if it's 5, it will follow quickly. We want the
camera to be pretty responsive in this recipe:
chaseCam.setChasingSensitivity(5);

7.	 The following RotationSpeed method defines how quickly the camera moves when
moving it:
chaseCam.setRotationSpeed(10);

8.	 Now, we have a basic setup for ChaseCamera. Let's see what we need to do to the
GameCharacterControl class to suit this kind of game.

9.	 We can easily apply the behavior where forward is the direction of the camera by
replacing the two lines, and setting modelForwardDir and modelLeftDir in
the update method:
Vector3f modelForwardDir = cam.getRotation().mult(Vector3f.
 UNIT_Z).multLocal(1, 0, 1);
Vector3f modelLeftDir = cam.getRotation().mult(Vector3f.UNIT_X);

10.	 Since we don't directly control the characters' view direction anymore, we can
set it to always be the last direction the character faced (when moving) as follows:
viewDirection.set(walkDirection);

11.	 At the end of the method, we mustn't forget to apply it to PhysicsCharacter
as follows:
setViewDirection(viewDirection);

www.allitebooks.com

http://www.allitebooks.org

Cameras and Game Controls

58

How it works...
The ChaseCamera class is a convenient class that offloads a lot of camera handling from
the coder. It has a lot of settings that can be tweaked to get the desired behavior. Camera
tweaking is a delicate and time-consuming matter, and if you're working in a team, this is
something a designer might do if the properties would be exposed in a text file and loaded
during startup.

There's more…
If you press forward and then rotate the camera, the character will move in that direction,
instead. In many games of this type, however, the character would keep running in the
direction it had before the player rotated the camera. We can apply this behavior to our
character with a few tweaks.

To do this, we need to change modelForwardDir and modelLeftDir into private fields in
the class. Then, we make sure we only update these when the character isn't receiving any
input from the player. In this recipe, this would mean an if statement, as follows:

if(!forward && !backward && !leftStrafe && !rightStrafe){
 modelForwardDir = cam.getRotation().mult(Vector3f.UNIT_Z).
 multLocal(1, 0, 1);
 modelLeftDir = cam.getRotation().mult(Vector3f.UNIT_X);
}

Adding a game controller or joystick input
So far, we've used the mouse and keyboard for input. It's the most common way to handle
controls on a PC, but let's explore the game controller and joystick support in jMonkeyEngine
a bit. Writing code for a game controller is not very difficult. The tricky part is being agnostic
enough to support the wide range of devices out there. Gone are the days when a joystick
only had four directions and a fire button.

Getting ready
Like in many recipes in this chapter, we'll use InputAppState from the Attaching an input
AppState object recipe. This recipe will be fine to apply to any input handling class. Naturally,
some kind of input device is necessary as well.

Chapter 2

59

How to do it...
To add a game controller or joystick input, perform the following steps:

1.	 First of all, any controllers that the system recognizes will be available through
inputManager.getJoysticks(). We'll create a new method called
assignJoysticks() where we apply this.

2.	 These controllers might turn up differently, in no particular order. It also seems as
if they can sometimes show duplicate axes or some axes as separate controls. How
can we handle this? The safest way might just be to have a for loop, parsing all
controllers and trying to map them to the controls as follows:
Joystick[] joysticks = inputManager.getJoysticks();
 if (joysticks != null){
 for(Joystick j : joysticks) {
 for(JoystickAxis axis : j.getAxes()){

3.	 A difference between keyboard and mouse mapping is that we don't actually
need to add new mappings to InputManager. Instead, we tell the joystick what
actions to emit. In this case, it's the x axis on the left stick that is assigned the
strafing action as follows:
axis.assignAxis(InputMapping.StrafeRight.name(), InputMapping.
StrafeLeft.name());

The x and y axes are often simple to map, usually on the left
stick on the controller. The right one might not be as obvious. In
this example, it's mapped to the rotation-X and rotation-Y axes,
but might be mapped to the z axis, or rotation-Z as well.

4.	 In the same way, we can assign buttons to emit specific actions:
button.assignButton("Fire");

How it works...
A joystick is an input device, just like the mouse or keyboard. While there is a way to map the
actions in the same way, with InputManager.addMapping(), the recommended way is
to do the reverse and assign actions to the joystick instead. Remember that InputManager
still needs to listen to the mappings.

Cameras and Game Controls

60

Mapping buttons is even trickier than axes. First of all, there are two types of buttons, analog
and digital. On a controller, usually the lower-right and left buttons controlled by the index
fingers are analog, whereas all other buttons usually are digital. In jMonkeyEngine, everything
analog is an axis. So, you will find that most likely, these will be reported as an axis.

On my controller, a Razer Hydra, left and right triggers are reported
as the z axis.

As if that's not enough, all you have to work with is a button index. Fortunately, with most
game controllers emulating one of the big brands of console makers, some kind of standard
can be expected. However, there are exceptions, and for any serious game, an interface
where the user can remap their device is a must.

There's more…
There's a good, visual test example in the jMonkeyEngine project called TestJoystick,
where you can instantly see the mapping of the attached controller and the corresponding
action of each input.

The following figure shows you a view in the TestJoystick example:

Leaning around corners
If you're making a sneaker or tactical shooter game, a common feature is to be able to lean
around corners. This is used to scout without being seen or shooting without exposing yourself
too much. In this recipe, we'll develop a way to do this with our GameCharacterControl
class. We will implement functionalities to both handle leaning with keys (such as the
shoulder buttons on a gamepad) and freeform leaning with the mouse.

Chapter 2

61

Getting ready
This recipe will expand on the GameCharacterControl and InputAppState classes from
the beginning of the chapter, but it should be easy to adapt to your own project. It is mostly
used in FPS games, and this is what we will build it for.

Leaning in this example will emulate the player character moving the upper body. To achieve
this and to save us some calculations on how much the camera should be offset when
leaning, we will use the built-in behavior of spatials and how translation and rotation is
propagated through in a node.

How to do it...
1.	 First of all, we need a new Node instance called centerPoint in our

GameCharacterControl. This will be the origin of our leaning, so to speak:
private Node centerPoint = new Node("Center");

2.	 We set the translation to be pretty much in the center of the character's body
(half the distance to the camera). We also attach the head node to centerPoint.
In the setSpatial method, we add the following lines of code:
if(spatial instanceof Node){
 ((Node)spatial).attachChild(centerPoint);
 centerPoint.setLocalTranslation(0, 0.9f, 0);
 centerPoint.attachChild(head);
}

The following figure shows you the relation between the head and
centerPoint nodes:

Cameras and Game Controls

62

3.	 We continue to follow the pattern we have used in GameCharacterControl and
use Booleans to define whether an action should happen and then handle any
changes in the update method. So, let's start by adding three new Booleans to
handle leaning as follows:
private boolean leanLeft, leanRight, leanFree;

4.	 Now, before we add the actual leaning functionality, we need to introduce two more
fields. The leanValue field stores the current amount of leaning for the character.
We use the maxLean field to have some kind of limit to how much the player can
lean. This is in radians and is set to corresponding 22.5 degrees. Sounds too little?
Feel free to experiment using the following lines of code:
private float leanValue;
private float maxLean = FastMath.QUARTER_PI * 0.5f;

5.	 In the onAction method, we make sure that we handle the corresponding input.
Again, after setting the Booleans like this, make sure our actions stay on until the
key is released:
if (binding.equals("LeanLeft")){
 leanLeft = value;
} else if (binding.equals("LeanRight")){
 leanRight = value;
} else if (binding.equals("LeanFree")){
 leanFree = value;
}

6.	 Applying the leaning value is pretty straightforward. We do this in a method called
lean, which takes a float value as the input. First, we clamp leanValue to make
sure we don't exceed our maxLean value. Then, we set the rotation along the z axis
to the negative value as follows:
private void lean(float value){
 FastMath.clamp(value, -maxLean, maxLean);
 centerPoint.setLocalRotation(new Quaternion().fromAngles(0, 0,
 -value));
}

7.	 One bit left now, and that's where to call this method from. In the update method, we
add two blocks of code. This reads as: if the button for leaning left is pressed and the
leaning value is less than the maximum leaning value, lean more. Otherwise, if the
button for free leaning is not pressed and the lean value is more than 0, lean less:
if(leanLeft && leanValue < maxLean){
 lean(leanValue+= 0.5f * tpf);
} else if(!leanFree && leanValue > 0f){
 lean(leanValue-= 0.5f * tpf);
}

8.	 This code block then needs to be mirrored to lean in the other direction.

Chapter 2

63

9.	 That's it for controlling leaning with buttons only. To add leaning using the mouse
when leanFree is pressed, the onAnalog method needs a bit of work as well. We
need to hijack the RotateLeft and RotateRight inputs when leanFree is set
to true. The character shouldn't turn then, but it should lean instead. This is easily
done with an if statement. We apply the lean value instantly in this case. The code
we added previously in the update method will take care of returning the leaning to
zero when the button is released:
if(leanFree){
 if (name.equals("RotateLeft")) {
 leanValue += value * tpf;
 } else if (name.equals("RotateRight")) {
 leanValue -= value * tpf;
 }
 lean(leanValue);
}

10.	 We already have InputAppState, which handles our input, so let's add a few
more buttons to it. Three more values to our InputMapping enum are LeanLeft,
LeanRight, and LeanFree.

11.	 Then, we assign those to Q and E keys to lean left and right, and V for free, or
analog leaning.

How it works...
This is an easy way to handle leaning since we have very few calculations to do. The scene
graph takes care of that for us. This works for the same reason; the turning of the head
node in the Creating a reusable character control recipe could control the camera, which is
normally not available in the scene graph. By attaching the head node to the center point
(which, in turn, is attached to the main player node), any rotation or movement that the node
does will be propagated to the head node, and thus, the camera.

Detecting cover automatically in a
third-person game

Cover shooters is an ever-popular genre in today's console games. How does one code a system
that recognizes and allows players to take cover? There are several ways to do this, but basically,
there are two main branches, each with their benefits and drawbacks. The first branch is one
where a level designer places logical cover items around the environments or where they are
baked into models by an artist. This could be as simple as a bounding volume, or it could be
complex with directional data as well. This has a benefit for the programmer in that it's easy to
recognize when a player is inside them by comparing bounding volumes. Another benefit is that
the designer has full control over where there is cover and where there isn't. A drawback is that
it is labor-intensive for the designer or artist and might be inconsistent to the player.

Cameras and Game Controls

64

The method we'll implement is one where there is no pregenerated cover, and it's checked in
runtime. No additional work is required for a designer or artist, except that the models that
are used need to be of a certain height to be recognized as cover (and work with animations).

Normally, there are two different kinds of cover: a low cover that characters can crouch behind
and shoot over. The other one is full height cover, where characters stand next to the edge
of it and shoot around the corner. In some games, it's only possible to use full height covers
where it's also possible to shoot from them, such as corners.

Once the character is in cover, certain movement restrictions usually apply. In most games,
the player can move sideways along the cover. In some games, moving backwards will release
the character from the cover, while in others, you have to toggle the cover button. We'll
implement the latter.

Getting ready
Let's define in more detail what we'll implement and how. We'll use Rays to detect whether
the player is covered or not and KeyTrigger to toggle the entering or exiting cover. If you're
not familiar with the concept of Rays, you can, for example, have a look at the Firing in FPS
or Selecting units in RTS recipes in this chapter. Cover can be anything in the scene above a
certain height. All of the action in this recipe will be handled by GameCharacterControl
from the Following a character with ChaseCamera recipe. There are two separate areas we
need to look at. One is the cover detection itself, and the other is related to how the character
should behave when in cover.

How to do it...
To implement automatic cover detection, perform the following steps:

1.	 There are a few new fields we need to introduce to keep track of things. It's not
enough to simply send one ray from the center to detect the cover, so we'll need to
cast from the edges or near edges of the player model as well. We call this offset
playerWidth. The inCover variable is used to keep track of whether the player
is in cover mode or not (toggled). The hasLowCover and hasHighCover variables
are set in the cover-detection method and are a way for us to know whether the
player is currently within limits of a cover (but not necessarily in the cover mode). The
lowHeight and highHeight variables are the heights where we'll cast Ray from in
order to check for cover. The structures variable is everything we should check for
cover against. Don't supply rootNode here or we'll end up colliding with ourselves:
private float playerWidth = 0.1f;
private boolean inCover, hasLowCover, hasHighCover;
private float lowHeight = 0.5f, highHeight = 1.5f;
private Node structures;

Chapter 2

65

2.	 Now let's move to the fun part, which is detecting cover. A new method called
checkCover needs to be created. It takes Vector3f as the input and is the
position from where the rays originate need to be originated.

3.	 Next, we define a new Ray instance. We don't set the origin yet; we just set the
direction to be the same as the character's viewDirection and a maximum
length for it (and this may vary depending on the context and game) as follows:
Ray ray = new Ray();
ray.setDirection(viewDirection);
ray.setLimit(0.8f);

4.	 We define two integer fields called lowCollisions and highCollisions
to keep a track of how many collisions we've had.

5.	 Next, we populate a new field called leftDir. This is the direction that is to the left
of the character. We multiply this by playerWidth to get the left extreme to look for
cover in, as follows:
Vector3f leftDir = spatial.getWorldRotation().
getRotationColumn(0).mult(playerWidth);

6.	 We'll start by checking for low covers and set y to lowHeight as follows:
leftDir.setY(lowHeight);

7.	 Then, we create a for loop that sends three Rays: one at the left extreme of the
player, one in the center, and one to the right. This is done by multiplying leftDir
with i. The loop must then be duplicated for the upper Rays as well:
for(int i = -1; i < 2; i++){
 leftDir.multLocal(i, 1, i);
 ray.setOrigin(position.add(leftDir));
 structures.collideWith(ray, collRes);
 if(collRes.size() > 0){
 lowCollisions++;
 }
 collRes.clear();
}

8.	 In order to be considered to be inside range of a cover, all three (left, middle, and
right) Rays must hit something. A high cover always has a low cover as well, so we
can check to see whether we've hit the low cover first. If we did, we do one more
Ray check to find out the normal of the actual triangle hit. This will help us align
the model with the cover:
if(lowCollisions == 3){
 ray.setOrigin(spatial.getWorldTranslation().add(0, 0.5f, 0));
 structures.collideWith(ray, collRes);

 Triangle t = new Triangle();
 collRes.getClosestCollision().getTriangle(t);

Cameras and Game Controls

66

9.	 The opposite of the triangle's normal should be the character's new viewDirection:
viewDirection.set(t.getNormal().negate());

10.	 Finally, we check whether we also have high cover and set the hasLowCover and
hasHighCover fields accordingly.

11.	 To restrict movement, the onAction method needs some modifications. The first
criterion we check is whether the toggle cover button is pressed. If we're already
in cover, we'll release the character from the cover. If we're not in cover, we check
whether it's possible to go into cover:
if(binding.equals("ToggleCover") && value){
 if(inCover){
 inCover = false;
 } else {
 checkCover(spatial.getWorldTranslation());
 if(hasLowCover || hasHighCover){
 inCover = true;
 }
 }

12.	 In the following bracket, we limit movement to left and right if we're inside cover. If
neither of the preceding statements applies, movement should be handled as usual.
If we didn't want the player to be able to move inside cover, we'd be done by now.

13.	 Since we want to mimic popular cover-based games though, we have some more
work ahead of us.

14.	 At the top of the update method, we have code to set the direction of the character
based on the camera's rotation. We need to change this a bit, since once the
character is inside cover, it should move based on the direction of the cover rather
than the camera. To achieve this, we add a !inCover criterion to the original if
statement, since outside cover, this should work like it worked previously.

15.	 Then, if we are in cover, we base modelForwardDir and modelLeftDir on the
rotation of the spatial, as follows:
modelForwardDir = spatial.getWorldRotation().mult(Vector3f.
UNIT_Z);
modelLeftDir = spatial.getWorldRotation().mult(Vector3f.UNIT_X);

16.	 Once the movement has been applied to the walkDirection vector but before it is
applied it to the character, we check whether the character will still be inside cover
after moving:
if(walkDirection.length() > 0){
 if(inCover){
 checkCover(spatial.getWorldTranslation().add(walkDirection.
 multLocal(0.2f).mult(0.1f)));
 if(!hasLowCover && !hasHighCover){

Chapter 2

67

 walkDirection.set(Vector3f.ZERO);
 }
 }

17.	 We add the current walkDirection vector to the position of the player and check
for cover at that position. If there is none, the movement is not allowed and we set
walkDirection to 0.

18.	 Now all that's needed is a new mapping for ToggleCover, which is added
to InputAppState:
inputManager.addMapping(InputMapping.ToggleCover.name(), new
 KeyTrigger(KeyInput.KEY_V));

How it works...
Each time the player presses the ToggleCover key or button, a check will be run to see
whether there is cover within range. Three rays are cast forward from a low height, one at
the left edge of the model, one from the center, and one from the right. Since leftDir is
multiplied by -1, 0, and 1 on the x and z axes, we get the offset to the left- and right-hand
side of the center position. To be considered inside cover, all three must have collided with
something. This ensures that the player model is wholly covered.

The Ray won't stop just because it collides with something, and if the cover is thin, it might
continue through the back side of it, generating additional collisions. We only want to count
one collision per ray, though (the closest), which is why we only increase lowCollisions
by one.

The high cover is checked after the low cover, because in general, there is never any cover
that only covers the upper body.

Once it's decided that the character is inside cover and the player wants to move, we need
to check whether the player will still be inside cover at the new position. This is so that
the player doesn't accidentally exit cover and end up getting killed. To avoid unnecessary
performance hits, we don't want to do this every frame. We do this only if there has actually
been some movement happening.

See also
ff To get the most out of this, we will need suitable animations. Refer to Chapter 4,

Mastering Character Animations, to get a few ideas on how to do this.

3
World Building

In this chapter, we'll go through some of the fundamentals behind generating a code-based
world and its lighting before we go beyond the basics and discuss more advanced techniques.

This chapter contains the following recipes:

ff Using noise to generate a terrain

ff Lighting your world and providing it with dynamic lights

ff Deforming a terrain in real time

ff Automating trees' distribution

ff Endless worlds and infinite space

ff Flowing water with cellular automata

ff The essentials of a cube-based world

Introduction
In Chapter 1, SDK Game Development Hub, we used Terrain Editor to manually create a
heightmap and Scene Composer to put things together into scenes. Those were the two ways
of creating worlds in jMonkeyEngine. In this chapter, we'll look into creating worlds using
code or procedural generation. This can often be very quickly set up, but getting it right (and
performant) can be tricky. To achieve this, we will make use of techniques such as custom
meshes and batching. Batching is a method of taking several geometries using the same
Material instance and creating one mesh out of all their meshes. This can significantly
improve the performance of the application.

World Building

70

Using noise to generate a terrain
While noise is unwanted in many occasions, it is a great tool for procedural generation and
has many uses. In this recipe, we'll explore jMonkeyEngine's FractalSum class and generate
an image based on the output. This can be used as a heightmap for a terrain, but we are not
limited by that. With some tweaking, we could get a basis to cover a forest or city.

Getting ready
This recipe relies on a way to output an image. Either use your own method to do this or refer
to the The ImageGenerator class section in Appendix, Information Fragments, which provides
an example of how to do it.

How to do it...
To generate a heightmap, perform the following steps:

1.	 We will start by creating a class called NoiseMapGenerator.

2.	 In its constructor, define a new FractalSum instance and store it in a field
called fractalSum.

3.	 Next, create a public method called generateNoiseMap that takes an integer
parameter called size, a float parameter called frequency, and an integer
parameter called octaves as inputs.

4.	 Inside the method, configure fractalSum with some of the values and set the
amplitude to 0.5f as follows:
fractalSum.setFrequency(frequency);
fractalSum.setAmplitude(0.5f);
fractalSum.setOctaves(octaves);

Chapter 3

71

5.	 Then, define a 2D float array called terrain. Its dimension should be [size] x [size].

6.	 Now, create a double for loop statement and parse through the size of both
dimensions. Inside the loop, we get the value from fractalSum, which is based on
your x and y coordinates; add 0.5f to the value. Clamp it to get a value between 0f
and 1f and set the value in the terrain array as follows:
for(int y = 0; y < size; y++){
 for(int x = 0; x < size; x++){
 float value = fractalSum.value(x, 0, y) + 0.5f;
 value = FastMath.clamp(value, 0f, 1f);
 terrain[x][y] = value;
 }
}

7.	 When you're done, call the ImageGenerator class to create the PNG image for us
as follows:
ImageGenerator.generateImage(terrain);

How it works...
With this simple implementation, and by using the supplied ImageGenerator class, we have
the basics for a heightmap. We can see the result in our Projects folder under assets/
Textures/heightmap.png. It's an image that shifts smoothly between bright and dark
areas; here, bright areas represent a high terrain and dark areas, a low terrain. Bright pixels
have values that are close to 1, whereas dark pixels have values close to 0. Normally, noise
outputs values between -1 and 1. This is why we change the amplitude to 0.5f so that it yields
a range between -0.5 and 0.5, and then we add 0.5 to the result.

A noticeable problem is that no matter how much we change the speed and frequency of the
noise, the same kind of rolling hills landscape will appear, only in different scales. By changing
the octaves' value, we will generate noise in several iterations with decreasing amplitude. The
value of each pixel for each iteration is multiplied with the previous one. The result is called
fractal noise. Using octaves is a way of adding detail by iterating over the result with different
frequencies. For each iteration, the frequency is doubled and the amplitude is halved.

Frequency can be thought of as a scale value where a higher frequency will generate more
and smaller features. Having a higher frequency on its own will make peaks and valleys occur
more frequently.

A normalization process is not strictly needed for a heightmap, unless we want to save
it as an image. Also, if we were generating a large number of heightmaps (for example,
during the runtime for a game), we would not want to normalize the terrain based on
a particular heightmap's minimum and maximum values or we would end up with very
similar and hilly landscapes.

World Building

72

There's more...
Now that we have generated a heightmap and exported it to an image, we can actually use it
as a base in Terrain Editor. The process is similar to the one where we created a terrain for our
scene in Chapter 1, SDK Game Development Hub.

After creating a new scene (by all means, we can use an existing scene as well) and opening
it, we can right-click on the main node in the SceneExplorer window and select Add Spatial..
and then select Terrain...

It's important that we select the same total size as that of the pixels of our image. Then, in
the Heightmap screen, we choose Image Based from the HeightMap drop-down menu and
select our image.

The Roughness slider will define how much the heightmap will be smoothed out before it is
added. A higher smoothness will remove finer details, and this is a must if we want to have
characters that will run or drive on top of it.

The Height Scale option will define the maximum altitude that the heightmap can have and
scale it accordingly.

Lighting your world and providing it with
dynamic lights

This recipe will mostly be theories on different lighting types, but we'll also explore a way to
easily control the movement of lights.

The four main types of lights that we can use to light up our world are as follows:

ff Ambient Light: This lights up everything in the scene evenly. It's good for avoiding
anything to be in a pitch-black state, but it doesn't create any shadows or nuances.
Adding a too bright ambient light will give the world a bland look, while giving it a
touch of color can set the mood.

ff Directional Light: This shines from a particular direction with perfectly parallel rays
and without any falloff. This is usually used to simulate a sun, a bright source of light
located far away.

ff Point Light: This shines equally in every direction but with a falloff, meaning this will
eventually stop illuminating the surroundings. Usually, this forms most of the light
sources in a game scene.

ff Spot Light: This is exactly as it sounds. This produces a cone-shaped light in a
specific direction from a specific location, and its light will eventually fall off. It has
more settings than its sibling light types. Technically, it is more advanced than point
lights and requires additional calculations in the shader to see what it illuminates.

Chapter 3

73

A spotlight with the same spotInnerAngle and spotOuterAngle parameters will have a
light cone that looks like this:

The spotInnerAngle and spotOuterAngle parameters define the size of the light cone
that spotlight produces and both are set in radians. The spotInnerAngle parameter defines
how far out the cone will shine at its maximum radiance. The spotOuterAngle parameter
then defines how far the total extent of the radiance should be before it's been completely
extinguished. Having a greater value for the spotOuterAngle parameter will produce a
softer edge on the spotlight. A spotlight with a small spotInnerAngle parameter and a
high spotOuterAngle parameter will have softer edges, as shown in the following image:

To ensure an object is affected by the lights in a scene, it must have a Material class that
supports it. For most game objects, the default choice is the Lighting material. It supports
a variety of lighting types from per pixel to lightmaps and vertex lighting. The latter two are
optional but have their uses.

A lightmap is essentially an extra texture where lighting has been pre-rendered. Its resolution
can rarely match real-time lighting, but from another perspective, it is very fast since lighting
doesn't have to be calculated at runtime; also, it can be used for static scenes.

World Building

74

Normally, lighting is calculated on a per-pixel basis. This means that for each pixel visible on
the screen, the processor has to calculate how it is affected by the available light sources. It
is fairly expensive and even more so with many light sources, but it produces a more realistic
result. Vertex lighting instead means that lighting is calculated for each vertex on a model. For
low poly models, this is much faster although not as detailed. The quality will suffer noticeably
when it is near the object, but it can give good enough results for objects some distance away.

How to do it...
Now that we have the basics covered, let's explore a pattern that allows us to move lights
using objects in the scene graph:

1.	 First, create a new PointLight class called pointLight and set radius to 40.

2.	 Then, call rootNode.addLight(pointLight) to add it to the scene graph.

3.	 Now, create a new CameraNode called camNode and then call camNode.
setControlDir(CameraControl.ControlDirection.CameraToSpatial);
before attaching it to the rootNode.

4.	 Next, create a new LightControl called lightControl, supplying pointLight
to it to indicate that this is the light to control, as shown in the following code:
LightControl lightControl = new LightControl(pointLight);

5.	 We set controlDir to be LightControl.ControlDirection.SpatialToLight.
This means that the Spatial camNode will control the light's position:
lightControl.setControlDir(LightControl.ControlDirection.
SpatialToLight);

6.	 Finally, we add lightControl to camNode.

7.	 To test this out, we can load Sponza (Models/Sponza/Sponza.j3o) from the
jMonkeyEngine's test-data library and apply the Lighting material to it.

How it works...
Lights are not Spatials in the scene graph, and it can be tricky to move them around. It
can be added to nodes but then it will only illuminate the node (and its children) that it is
added to. The LightControl class bridges the gap since it can be added as a control to
Spatial, and it controls the position (and direction of a light). In this recipe, we used it so
that the light will follow the camera around using a CamNode, but it works just as well for any
other spatial.

Chapter 3

75

There's more…
We touched on Ambient Light and Directional Light in the Adding a sky box and lighting
recipe from Chapter 1, SDK Game Development Hub. In the Creating a dynamic sky box
with a moving sun recipe from Chapter 9, Taking Our Game to the Next Level, we create
Directional Light to simulate a day and night cycle.

Deforming a terrain in real time
A deformable terrain is something that can have a serious effect on the gameplay, or it can
simply be a cosmetic bonus. It can be used for impact craters or games that require excavation.

We'll base the deformation around the Control class pattern as this allows us to offset the
code in a manageable and reusable way. The recipe will trigger the deformation based on a
mouse click, and it will use a ray to detect the collision point.

Getting ready
To get up and running quickly, unless there already is an application to apply this to,
TestTerrain.java from the jMonkeyEngine's test cases will provide a good start for what
we need. This example will expand on the code provided in that application, but it should
work perfectly well with any terrain-based application.

How to do it...
With a base application already set up, we can get straight to the creation of the
Control pattern:

1.	 Create a new class called DeformableControl that extends AbstractControl.
It needs one private terrain field called terrain.

2.	 Override the setSpatial method and cast Spatial to fit your terrain field; use
terrain = (Terrain) spatial; to do this.

3.	 Create a method called deform that takes the 2D location, the radius of the
deformation, and the force as an input. Also, declare two lists that we'll use in
the heightPoints and heightValues methods, as follows:
public void deform(Vector2f location, int radius, float force) {
 List<Vector2f> heightPoints = new ArrayList<Vector2f>();
 List<Float> heightValues = new ArrayList<Float>();

World Building

76

4.	 Now, we should create a nested for loop statement where we can iterate from
-radius to +radius in both x and y (z to be correct). See how far from the center
the point is and calculate the height to change at that location. The decrease of the
force of the impact will be proportional to how far out it is from the center. Then,
save the point in the heightPoints list and the new height in the heightValues
list as follows:
for(int x = -radius; x < radius; x++){
 for(int y = -radius; y < radius; y++){
 Vector2f terrainPoint = new Vector2f(location.x + x,
 location.y + y);
 float distance = location.distance(terrainPoint);
 if(distance < radius){
 float impact = force * (1 - distance / radius) ;
 float height = terrain.getHeight(terrainPoint);
 heightPoints.add(terrainPoint);
 heightValues.add(Math.max(-impact, -height));
 }
 }
}

5.	 To wrap up the method, we need to apply the new heights. First, unlock the terrain
and then lock it again as follows:
terrain.setLocked(false);
terrain.adjustHeight(heightPoints, heightValues);
terrain.setLocked(true);

6.	 Since we normally work with 3D vectors rather than 2D vectors, it can be a good idea
to also create a convenience method called deform, which takes Vector3f as the
input. It converts this input to Vector2f and in turn calls the other deform method
as follows:
public void deform(Vector3f location, int radius, float force){
 Vector2f pos2D = new Vector2f((int)location.x, (int)location.z);
 deform(pos2D, radius, force);
}

7.	 Now, trigger the deformation from a method in our application. Firstly, it should create
a new ray instance that originates from the camera, as shown in the following code:
Ray ray = new Ray(cam.getLocation(), cam.getDirection());

8.	 Next, create a new CollisionsResults object and check whether the ray intersects
the terrain. If there is a collision, call deform on the terrain's DeformableControl
object by supplying the contactPoint parameter of the collision as follows:
CollisionResults cr = new CollisionResults();
terrain.collideWith(ray, cr);
CollisionResult collision = cr.getClosestCollision();

Chapter 3

77

if(collision != null){
 terrain.getControl(DeformableControl.class).deform(coll.
 getContactPoint(), 30, 30f);
}

How it works...
When deforming the terrain, we collect all the points we want to modify and the new heights
in lists; then, we collectively update the terrain based on them. There is an adjustHeight
method to update a single point as well, but it is assumed that it's faster using a list.

Locking the terrain means faster rendering. Whether to lock the terrain or not depends on the
implementation. If it is a terrain that is changed with every frame, it probably doesn't need to
be locked. On the other hand, if it changes only occasionally, it should probably be locked.

The formula that is used to calculate the change in height is deltaHeight = force * (1 -
distance / radius). This means that the change in height will be highest when it is closest
to the center; it will then fall off linearly as the distance increases and we get closer to the
edge of the radius. A variation worth exploring is to use the root with deltaHeight = force *
FastMath.sqrt(1 - distance / radius) instead. This will provide a rounder shape to the terrain.

Automating trees' distribution
Placing trees and bushes in an editor is fine for many types of games. There are many cases
where you need objects to be in a very specific spot. When it comes to large-scale outdoor
games, you might want to have a way of placing common objects in an automatic way, at least
as a base. An artist or designer might then move items around to suit the needs of the game.

In this recipe, we'll create one such way that places trees using noise. Once the base is in,
we'll take a look at how the pattern can be varied with different settings.

How to do it...
To produce automatic trees' distribution, perform the following steps:

1.	 We get right to the center of the things. Create a new class called TreeControl that
extends AbstractControl.

2.	 Add a TerrainQuad field called terrain, a FractalSum field called fractalSum,
a Spatial field called treeModel, and a BatchNode field called treeNode.

3.	 Override the setSpatial method. Here, we declare treeNode.

World Building

78

4.	 Then, assuming that the supplied Spatial is a Node class, parse its children looking
for a Spatial that is an instance of TerrainQuad. Once found, set it to terrain
as follows:
for(Spatial s: ((Node)spatial).getChildren()){
 if(s instanceof TerrainQuad){
 this.terrain = (TerrainQuad) s;

5.	 Using terrain's terrainSize, create a nested for loop statement that parses from
its negative height and width to its positive.

6.	 Inside this loop, grab a value from the fractalSum class based on the x and y
coordinates. Then, look for the corresponding terrain height at that location
as follows:
float value = fractalSum.value(x, 0, y);
float terrainHeight = terrain.getHeight(new Vector2f(x, y));

7.	 Now, we need to decide how many trees we want. The FractalSum class generates
a value between -1 and 1. Start by saying that any value above 0.5 should generate a
tree and create an if statement accordingly.

8.	 If this is fulfilled, start by cloning treeModel. Set its localTranslation to the x
and y coordinates and the current terrainHeight field before attaching it to the
treeNode field:
Spatial treeClone = treeModel.clone();
Vector3f location = new Vector3f((x), terrainHeight, (y));
treeClone.setLocalTranslation(location);
treeNode.attachChild(treeClone);

9.	 After parsing the whole terrain, tell the treeNode field to batch its contents to
optimize the performance and then attach it to the supplied Spatial.

10.	 Now, create an application class to test this. It's recommended that you use a test
case such as TestTerrainAdvanced to get a start.

11.	 Create a new Node class called worldNode, which we attach to rootNode and then
attach the terrain to.

12.	 Then, create a new TreeControl class and load and set a suitable model that we
can use as treeModel.

13.	 Finally, add the TreeControl class to worldNode.

After running the application, we will see trees spread out across the terrain—in valleys as
well as on top of the mountains. Depending on the environment, trees might not grow on
mountains. If we don't want this, we can add a simple check in the TreeControl class. By
adding a field called treeLimit, we can clamp the growth of the tree above a certain height;
also, make sure the terrainHeight field is lower than the value supplied from fractalSum.

Chapter 3

79

How it works...
In this example, we let the noise do most of the work for us. All we did was parse through
the terrain, and at regular intervals, check whether the noise value at that point indicated
whether a tree should be placed.

The noise provides an almost endless amount of variation to our distribution of vegetation
and an equally endless amount of tweaking possibilities.

The drawback of using these automatic generation techniques is that we don't have proper
control over them, and changing a value ever so slightly might have a large impact on the
terrain. Also, even if the generation process is cheap and can be repeated deterministically,
we will have to start storing the data as soon as we want to modify it in any way.

There's more...
With the current settings, the example distributes trees across a landscape in a seemingly
random pattern. At first glance, it might look natural but trees rarely are so evenly distributed
as this. Outside of a forest, you will usually find trees clumped together. We can easily achieve
this with noise by changing the frequency. The following examples show how changing the
frequency can change the pattern:

ff A frequency of 0.5 produces a very noisy and fairly uniform pattern, as shown in the
following screenshot:

World Building

80

ff With a frequency of 0.1, we can distinguish different patterns as follows:

ff A frequency of 0.02 yields even less but larger clumps of vegetation as follows:

Endless worlds and infinite space
There's really no such thing as endless or infinite in computer-generated worlds. Sooner or
later, you're going to hit one limit or the other. However, there are some techniques that will
get you further than others. The normal approach when creating a game is to move the player
around the game world. Those who have tried to, for example, make a space exploration game
in this way have noticed that pretty soon problems with regards to float numbers appear.
This is because float values are not evenly spaced. As their values increase, their precision
decreases. Using doubles rather than floats will only delay what's inevitable.

If you can't even have a solar system as a human-scaled game world, how can you then have a
whole galaxy? As an old saying goes, "If Mohammed won't come to the mountain, the mountain
must come to Mohammed." That is exactly the solution to our first problem! By making the
game world move around the player, we ensure that the precision remains high. This is great
for large-scale game worlds. The drawback is that it requires a different architecture. Switching
how the game world is generated or loaded during the mid-development stage can be a huge
task. It's better to decide this during the design phase.

Chapter 3

81

Another problem is the sheer size of the worlds. You can't simply store all the terrain-based
game world of a decent size in the memory at once. We can solve this problem by loading
world data on demand and throwing it away when we don't need it any more. This recipe will
use a simple method to generate the world on demand, but the principle can be applied to
other methods, such as generating a heightmap or loading the world from a storage device.

How to do it...
Dynamic world loading can be created with the following steps:

1.	 Create a new class called EndlessWorldControl. It should extend
AbstractControl and implement ActionListener.

2.	 We need to add a couple of fields to it as well. First of all, we need to keep track
of the application's camera and store it in a parameter called cam. The class also
requires a Geometry parameter called currentTile to represent the currently
centered game area. A Material parameter called material will be used on
the geometries and a HashMap<Vector2f, Geometry> parameter called
cachedTiled will store the entire currently active game world.

3.	 The class implements ActionListener and will handle movements based on
user input. To do this, add four Booleans as well: moveForward, moveBackward,
moveLeft, and moveRight.

4.	 In the onAction method, add the following code to set the Booleans based on
the input:
if (name.equals("Forward")) moveForward = isPressed;
else if (name.equals("Back")) moveBackward = isPressed;
else if (name.equals("Left")) moveLeft = isPressed;
else if (name.equals("Right")) moveRight = isPressed;

5.	 In the controlUpdate method, move the tiles based on the direction of the camera
and the Booleans you just created. First, get the current forward direction of the
camera and the direction which is to the left of it. Then, multiply it by tpf to get
an even movement and an arbitrary value to increase the speed of the movement
as follows:
Vector3f camDir = cam.getDirection().mult(tpf).multLocal(50);
 Vector3f camLeftDir = cam.getLeft().mult(tpf).
multLocal(50);

6.	 Using this, call a method called moveTiles if any movement should occur as follows:
if(moveForward) moveTiles(camDir.negate());
else if (moveBackward) moveTiles(camDir);
if(moveLeft) moveTiles(camLeftDir.negate());
else if (moveRight) moveTiles(camLeftDir);

World Building

82

7.	 Now, add the moveTiles method that takes a Vector3f object called amount as
the input. First, parse through the values of the cachedTiles map and apply the
amount value as follows:
for(Geometry g: cachedTiles.values()){
 g.move(amount);
}

8.	 Then, create an Iterator object and iterate through cachedTiles again; stop if
any of the tiles contain Vector3f.ZERO, which is the location of the camera. This
is our new currentTile object. This can be implemented as follows:
Vector2f newLocation = null;
Iterator<Vector2f> it = cachedTiles.keySet().iterator();
while(it.hasNext() && newLocation == null){
 Vector2f tileLocation = it.next();
 Geometry g = cachedTiles.get(tileLocation);
 if(currentTile != g && g.getWorldBound().contains(Vector3f.ZERO.
add(0, -15, 0))){
 currentTile = g;
 newLocation = tileLocation;
 }
}

9.	 The location of this tile will be used to decide which other tiles should be loaded.
Pass this to two new methods: updateTiles and deleteTiles.

10.	 First, we take a look at the updateTiles method. It takes a Vector2f parameter
called newLocation as the input. Create a nested for loop that goes from x-1 and
y-1 to x+1 and y+1.

11.	 Check whether cachedTiles already has the tile with newLocation and x and y
combined. If it doesn't, we create a new tile and apply BoundingBox of the same
size as the tile:
Vector2f wantedLocation = newLocation.add(new Vector2f(x,y));
if(!cachedTiles.containsKey(wantedLocation)){
 Geometry g = new Geometry(wantedLocation.x + ", " +
wantedLocation.y, new Box(tileSize * 0.5f, 1, tileSize * 0.5f));

12.	 We set location to be the delta distance from newLocation. If currentTile is not
null, we add its localTranslation too:
Vector3f location = new Vector3f(x * tileSize, 0, y * tileSize);
if(currentTile != null){
 location.addLocal(currentTile.getLocalTranslation());
}
g.setLocalTranslation(location);

Chapter 3

83

13.	 Finally, attach g to the control's spatial and put g in the cachedTiles map with
wantedLocation as the key.

14.	 Now, for the deleteTiles method, it also takes a Vector2f parameter called
newLocation as the input.

15.	 Like the updateTiles method, iterate through the cachedTiles map. Look for
those tiles that are now more than two tiles away in either direction and add their
location to a list called tilesToDelete:
Iterator<Vector2f> it = cachedTiles.keySet().iterator();
List<Vector2f> tilesToDelete = new ArrayList<Vector2f>();
while(it.hasNext()){
 Vector2f tileLocation = it.next();
 if(tileLocation.x>newLocation.x + 2 || tileLocation.
 x<newLocation.x - 2 || tileLocation.y>newLocation.y + 2 ||
 tileLocation.y<newLocation.y - 2){
 tilesToDelete.add(tileLocation);
 }
}

16.	 When you're done, simply parse through the tilesToDelete list, remove the tile
from cachedTiles, and detach it from Spatial.

17.	 There is one more thing we need to do before leaving the class. In the setSpatial
method, we should add a call to updateTiles, supplying Vector2f.ZERO to it
to initialize the generation of the tile.

For a larger implementation, we might want to introduce an AppState instance
to handle this, but here we will manage it with a test application.

18.	 First of all, we need to disable flyCam with flyCam.setEnabled(false) and
possibly move the camera to some distance from the ground.

19.	 Then, create a Node class called worldNode and an EndlessWorldControl
instance called worldControl. Attach worldNode to rootNode and supply the
worldControl object with a material before adding it to worldNode and setting
the camera.

20.	 Finally, set up some keys to control the movement and add the worldControl
object as a listener; refer to the following code on how to do this:
inputManager.addMapping("Forward", new KeyTrigger(KeyInput.KEY_
UP));
inputManager.addMapping("Back", new KeyTrigger(KeyInput.KEY_
DOWN));
inputManager.addMapping("Left", new KeyTrigger(KeyInput.KEY_
LEFT));
inputManager.addMapping("Right", new KeyTrigger(KeyInput.KEY_
RIGHT));
inputManager.addListener(worldControl, "Forward", "Back", "Left",
"Right");

World Building

84

How it works...
The process that we follow is that if a movement occurs, the moveTiles method will first
move all the tiles to cachedTiles. It then checks to see whether there's a new tile that
should be the center or whether it should be currentTile. If this happens, other tiles must
be checked to see which ones should be kept and which ones need to be generated. This
happens in the updateTiles method. Last in the chain is the deleteTiles method that
checks which tiles should be removed because they are too far away.

If we print out the translation of the tiles, we can see that they are never very far from the
center of their parent node. This happens because when we generate the tiles, we place them
relative to currentTile. Since currentTile is also based on a relative position, things
never move very far. It's almost like a conveyor belt.

Flowing water with cellular automata
Cellular automata is an n-dimensional set of cells that interact together with a given set of
rules. Over time, these interactions have given way to patterns, and modifying the rules will
modify the pattern. The most famous example is probably Conway's Game of Life where cells
based on an extremely simple rule set create the most amazing, evolving patterns. In games,
cellular automata is usually found simulating liquids in a tile– or block–based game worlds.

In this recipe, we'll explore such a liquid system based on a 2D grid. Since it's 2D, there can
be no true waterfalls, but it can still be applied to a heightmap (which we'll show) to create
natural-looking rivers.

Performance becomes an issue with large cellular automata, which will become evident as
they're scaled up. To counter this, we'll also look at a couple of different techniques to keep
the resource consumption down. The following image shows water running down the slope
of a mountain:

Chapter 3

85

Getting ready
This recipe requires height differences to make it interesting. A heightmap will work very well.

The model we'll develop will evolve around cells that are defined by two parameters: the height
of the ground it resides on and the amount of water in it. If the height and amount of water
combined are higher than a neighboring cell, water will pour out of it and into its neighbor.
To make sure the cells are updated simultaneously, all of the water pouring into a cell will be
stored in a separate field and applied at the end of the update cycle. This ensures that water
can only move one tile through the field in one update. Otherwise, the same unit of water
might travel across the whole grid in one update as we loop through the tiles.

The example mentions a CellUtil class. The code for this can be found in the The CellUtil
class section in Appendix, Information Fragments.

How it works...
The following steps will produce flowing water:

1.	 First of all, let us create a class that contains the cell logic. We can call it WaterCell.
It needs a float field called amount, another float field called terrainHeight, and
one integer field for the current direction of the flow. It should also store any incoming
water in a float field called incomingAmount.

2.	 In addition to the normal getter and setter for amount, add a method called
adjustAmount that takes a float variable called delta as the input. The delta
variable should be added to amount.

3.	 Create a method called compareCells that will move the water between cells. It
takes another cell (where the water is coming from) as the input.

4.	 The first thing the method does is checks the difference in height between the two
cells as follows:
float difference = (otherCell.getTerrainHeight() + otherCell.
getAmount()) - (terrainHeight + amount);

5.	 The method will only move the water in one way: from the supplied cell to this cell so
it will only act if the difference is positive (and higher than an arbitrary small amount).

6.	 If so, it takes half of the difference since this would even out the amount between the
two cells. Before applying it, make sure we don't move more water than there already
is in the originating cell:
 amountToChange = difference * 0.5f;
 amountToChange = Math.min(amountToChange, otherCell.
 getAmount());

7.	 Add the calculated result to the incomingAmount field (we don't update the amount
for this until everything has been calculated).

World Building

86

8.	 However, we must deduct the same amount from the originating cell or there would
be a never-ending supply of water. It's done like this:
otherCell.adjustAmount(-amountToChange);

9.	 Finally, return the deducted amount from this method.

10.	 We can leave this class for now and focus on creating a control that will use
this class. Create a new class called WaterFieldControl that extends
AbstractControl.

11.	 It needs two integer fields to control the width and height of the field as well as a 2D
array of WaterCell called waterField. To display it, we'll add a Node class called
water and a Material class called material.

12.	 The setSpatial method should be overridden and the spatial variable passed
has to be an instance of Node. Look for a terrain among its children; once found,
populate waterField with WaterCells, applying the height of the terrain for
each tile as follows:
for(int x = 0; x < width; x++){
 for(int y = 0; y < height; y++){
 WaterCell cell = new
 WaterCell();cell.setTerrainHeight(((Terrain)s).getHeight(new
 Vector2f(x, y)));
 waterField[x][y] = cell;
 }
}

13.	 Now, create a new method called updateCells. For this example, define a source of
water that will never run out right from the beginning by setting the amount of water
in one of the middle tiles as 1.

14.	 Then, parse through each cell in the waterField array in a nested for loop.

15.	 If the cell has an amount that is larger than 0, we can go on and check where we
should start moving the water. Start with the cell's direction, and if there is water left
after checking one direction, continue to look through the other seven directions.
This is what the implementation might look like:
WaterCell cell = waterField[x][y];
 float cellAmount = cell.getAmount();
 if(cellAmount > 0){
 int direction = cell.getDirection();
 for(int i = 0; i < 8; i++){
 int[] dir = CellUtil.getDirection((direction + i) %
 8);

Chapter 3

87

16.	 For each of these directions, we must first check that it is a valid location within the
field. Then, retrieve the neighboring cell and call compareCells to try to dump water
in it. If this try is successful, set the direction of the neighborCell object to the
tested direction to represent the flow of water, as follows:
WaterCell neighborCell = waterField[x+dx][y+dy];
if(cell.getAmount() > 0.01){
 floatadjustAmount = neighborCell.compareCells(cell);
 if(adjustAmount > 0){
 neighborCell.setDirection(CellUtil.getDirection(dx,
 dy));
 }
}

17.	 Before you exit the method, parse through the waterField array once again.
This time add incomingWater to the current amount of the cell and then set
incomingWater to 0.

18.	 To handle the display of the result, create a new method called createGeometry.

19.	 The first thing we need to do is check whether the Spatial of the control has a child
called Water. If it does, detach it.

20.	 Next, define a new Node class called water. Its name should be Water as this is an
identifier in this example:
water = new Node("Water");

21.	 Again, parse the waterField array. If any cell's amount is more than 0, you should
add a Geometry object that represents it.

22.	 We're going to add some logic to the getGeometry method to avoid recreating
the Geometry field unnecessarily. First of all, set geometry to null if the amount
value is 0.

23.	 Otherwise, if geometry is null, create a new geometry instance with a box-like
shape as follows:
geometry = new Geometry("WaterCell", new Box(1f, 1f, 1f));

24.	 To adapt it to the amount of water we have, scale the resulting cube by typing the
following code:
geometry.setLocalScale(1, 1f + amount, 1);

25.	 After this, return the geometry field, which might be null.

26.	 Coming back to the WaterFieldControl class, if the returned geometry variable
is not null, set its location and attach it to the water node as follows:
g.setLocalTranslation(x, -1f + cell.getTerrainHeight() + cell.
getAmount() * 0.5f, y);
water.attachChild(g);

World Building

88

27.	 Apply the material to the water node and then batch it to increase the performance
before attaching it to the control's spatial, as follows:
water = GeometryBatchFactory.optimize(water, false);
water.setMaterial(material);
((Node)spatial).attachChild(water);

28.	 To finish things off, update the controlUpdate method to call updateCells and
createGeometry.

29.	 Now this can be used with a few lines in the application class. First of all, create
a new WaterFieldControl class that we'll add to a Node class that contains a
Terrain instance.

30.	 Next, we need to create the material for the water. This can be as simple as
creating a Material instance with Unshaded MaterialDefinition and
applying a blueish color to it or an advanced custom shader. It is then applied
to the WaterFieldControl class via the setMaterial method.

How it works...
The beauty of cellular automata is the simplicity with which they work. Each cell has a
very basic set of rules. In this example, each cell wants to even out the water level with a
neighboring cell. As we go through iteration, the water moves downhill.

It's usually fairly easy to get the automation up and running, but it can take a while to get
everything right. For example, even if each cell's amount is updated correctly, we will get
weird oscillating water effects if the flow's direction doesn't work correctly. The reason is that
there would be a preferred direction the water will take in a new cell. This direction might be
the opposite of where it came from, making it want to move back to the cell it came from.
Picking a random direction might work in that case, but it makes it more difficult to predict the
behavior. This is why we use the direction of the water in the cell it came from. Naturally, the
water will have some momentum and will continue to flow until it is stopped.

One thing that can be tricky to grasp at first is the reason why we don't update the water
amount directly. The reason is that if water moves from cell x to cell x+1, that water would
instantly become available for x+1 once the update method reaches there; also, it could
be moved to x+2 and so on. We can't think of the water as real time, and that's why we first
perform an outgoing operation on all the cells before we apply the incoming water. We also
don't change the amount in the cell we're currently checking for the same reason. Instead,
we move any water left in a cell to the incomingWater field.

Chapter 3

89

The main challenge with the method is usually related to performance. Calculating can be
expensive and rendering even more so. With a system like this, it's ever-changing and we
might be forced to recreate the mesh in every frame. Rendering each cell on its own quickly
becomes impossible, and we must use batching to create a single mesh. Even this is not
enough, and in this example, we store the cell's geometry field so we don't have to recreate
it unless the water level is 0 in a cell. We also scale the cell's geometry field if the water level
changes as this is much quicker than creating a new Mesh class for it. The drawback is the
additional memory that is used by storing it.

We also made it optional to update the water in every frame. By lowering it to a set amount
of updates every second (in practice, its own frame rate), we could severely lessen the impact
of the performance. This could also be taken further by only updating parts of the water
field with every update, but efforts must be taken to conserve the amount of the water. We
could also separate the field into smaller batches and check whether any of these need
to be reconstructed.

There are ways to take this example further for those who wish. One could play around with
the amount of water that each cell shares. This will make it more expensive to calculate but
might give a smoother result. It's also possible to add pressure as a parameter, making it
possible for water to move up the slopes. Evaporation might be a way to remove water from
the system and clean up any puddles left by the main flow.

The essentials of a cube-based world
In this recipe, we'll build a small framework to generate optimized cube meshes, which can
be used to create large-scale worlds. This framework will consist of an AppState object to
handle user actions, a class called CubeWorld that will store the terrain data, and a class
called CubeCell that will store the data for individual cells. In addition, there is a CubeUtil
class that will help us to generate meshes.

Getting ready
This is an advanced recipe that requires an understanding the generation of a basic terrain,
which can be found earlier in the chapter, and the building blocks of meshes and
how to create custom meshes.

Before we begin, we will create a class called CubeUtil and populate it with some shaped
data that we will need later. Since each of the cells is of a box shape, we can borrow some
fields from the Box and AbstractBox classes and save some time in setting it up. Just copy
the GEOMETRY_INDICES_DATA, GEOMETRY_NORMALS_DATA, and GEOMETRY_TEXTURE_
DATA fields to the CubeUtil class.

World Building

90

At the bottom of the class, there is a method called doUpdateGeometryVertices that
contains a float array. Copy this float array too and call its vertices. This array contains data
for the 24 vertices needed to create a cube with normal. It in turn relies on references to
eight original vertex positions. We can get these from the AbstractBox class and the
computeVertices method. The Vector3f center referenced here can be replaced with
Vector3f.ZERO. The xExtent, yExtent , and zExtent parameters can be replaced
with 0.5f to get a square box with 1f sides.

How to do it...
We start by creating the object that contains the cell data. This will have the following
seven steps:

1.	 First, create a new class called CubeCell.

2.	 It contains a Mesh field call mesh, an array of six Booleans called neighbors, and
another Boolean called refresh.

3.	 In addition, there is enum called Type where we can put names such as Rock, Sand,
and Grass. Then, add a Type field called type.

4.	 Create a method called hasNeighbor that takes an integer parameter as an input
and return the corresponding Boolean from the array.

5.	 Then, add a method called setNeighbor that takes both an integer parameter
called direction and a Boolean parameter called neighbor as the input. If
the current Boolean at the position of the direction is not the same as that of
the neighbor, store the neighbor at that location and set refresh to true.

6.	 Add a method called requestRefresh that sets refresh to true.

7.	 For a mesh, add a getMesh method, and inside this, call a method called
CubeUtil.createMesh if the mesh is null or refresh it if it is true. This
will also set refresh to false as follows:
if(mesh == null || refresh){
 mesh = CubeUtil.createMesh(this);
 refresh = false;
}
return mesh;

Now, let's return to the CubeUtil class where we add some helper methods to generate the
world. This section has the following steps:

1.	 First, add a createMesh method that takes a CubeCell parameter as the input.
This method will create a mesh for the cell, and here you'll use the data we set up
in the Getting Ready section of this recipe.

2.	 First of all, place the vertex data in the mesh with the following line of code:
m.setBuffer(VertexBuffer.Type.Position, 3, BufferUtils.
createFloatBuffer(vertices));

Chapter 3

91

3.	 Add indices to the sides of the mesh that are exposed and check the neighbors to
see which ones these are. Then, add six indices (for two triangles) for each mesh
to a list using GEOMETRY_INDICES_DATA, as follows:
List<Integer> indices = new ArrayList<Integer>();
for(intdir = 0; dir < 6; dir++){
 if(!cube.hasNeighbor(dir)){
 for(int j = 0; j < 6; j++){
 indices.add(GEOMETRY_INDICES_DATA[dir * 6 + j]);
 }
 }
}

4.	 To add these to the mesh, first convert them into an array. Then, set the array as the
index buffer, as follows:
m.setBuffer(VertexBuffer.Type.Index, 1, BufferUtils.
createIntBuffer(indexArray));

5.	 For texture coords and vertex normals, simply use the data we have already set up
as follows:
m.setBuffer(VertexBuffer.Type.TexCoord, 2, BufferUtils.
createFloatBuffer(GEOMETRY_TEXTURE_DATA));
m.setBuffer(VertexBuffer.Type.Normal, 3, GEOMETRY_NORMALS_DATA);

6.	 Now, return the mesh to the calling method.

7.	 Add one more method called generateBlock to the CubeUtil class and create a
3D array of CubeCell and return it. The principle for it is the same as the heightmap
we created in the Using noise to generate a terrain recipe, except here we use three
dimensions instead of two. The following code with generate a CubeCell class in
a 3D pattern:
CubeCell[][][] terrainBlock = new CubeCell[size][size][size];
for(int y = 0; y < size; y++){
 for(int z = 0; z < size; z++){
 for(int x = 0; x < size; x++){
 double value = fractalSum.value(x, y, z);
 if(value >= 0.0f){
 terrainBlock[x][y][z] = new CubeCell();
 }
 }
 }
}

World Building

92

We can now look at how to tie these two classes together and start generating some cubes.
This will be performed in the following steps:

1.	 We turn our attention to the CubeWorld class that will hold the information about all
our cubes. It has a Node field called world, an integer file called batchSize, and
array of Material called materials and, for this example, a single CubeCell[]
[][] array called terrainBlock.

2.	 After initializing the worldNode class in the constructor, create a public method
called generate. Inside this, call CubeUtil.generateBlock(4, batchSize)
and store it in terrainBlock.

3.	 Then, call and create another method called generateGeometry that will put all the
CubeCell classes together into a Node class.

4.	 First, check whether the worldNode class already has a node with a given name. If
it does, detach it. In either case, create a new BatchNode field with the same
name we checked for.

5.	 Now, parse through the whole of the terrainBlock array and all the locations
where there is a CubeCell class; we will check 6 directions (either side of it). For
each side, check whether there is a neighbor there; there will be one if the position
is not null. In that case, call setNeighbor on the cell you're checking for and supply
the direction of the current as follows:
 for(int y = 0; y < batchSize; y++){
 repeat for x and z
 if(terrainBlock[x][y][z] != null){
 for(inti = 0; i < 6; i++){
 Vector3f coords = CubeUtil.directionToCoords(i);
 if(coords.y + y > -1 && coords.y + y < batchSize){
 repeat for x and z
 if(terrainBlock[(int)coords.x + x][(int)coords.y
 y][(int)coords.z + z] != null){
 terrainBlock[x][y][z].setNeighbor(i, true);
 } else {
 terrainBlock[x][y][z].setNeighbor(i, false);
 }
 }
 }
 }
 }

6.	 The next step is to create geometries for the CubeCell instances. Do this by again
parsing through the terrainBlock field, and where the corresponding CubeCell
is not null, create a new Geometry class by calling the CubeCell'sgetMesh'
method. Then, move it to the right position using x, y, and z that we're iterating over,
and apply a material and attach it to the batch node as follows:
Geometry g = new Geometry("Cube", terrainBlock[x][y][z].getMesh()
);

Chapter 3

93

g.setLocalTranslation(x, y, z);
g.setMaterial(materials[0]);
node.attachChild(g);

7.	 Finally, in the generateGeometry method, call node.updateModelBound() and
node.batch() to optimize it before attaching it to worldNode.

8.	 The basic of the generation process is now in place, and you can create a new class
called CubeWorldAppState that extends AbstractAppState. In this case, add a
CubeWorld field called cubeWorld.

9.	 Override the initialize method and declare a new cubeWorld instance.

10.	 Then, load a new material based on the Lighting material's definition
and supply it to cubeWorld. After this, call cubeWorld and generate and attach
worldNode through its getter method.

11.	 Also, add a light to see anything since we're using the Lighting material.

12.	 Now, create an application where we attach this Appstate instance and we should
see our block of CubeCell in the world. It's static, however, and it's very common
to want to change the world.

Let's see how we can add the functionality to pick up and place blocks. The following figure is
of a resulting terrain block:

1.	 Begin in CubeWorldAppState by implementing ActionListener to handle user
input. Add a CubeCell field called takenCube to store a CubeCell field that has
been picked up.

2.	 Add mappings to inputManager to pick up and place a CubeCell field. Use the left
and right mouse button as shown in the following lines of code:
inputManager.addMapping("take", new MouseButtonTrigger(MouseInput.
BUTTON_LEFT));
inputManager.addMapping("put", new MouseButtonTrigger(MouseInput.
BUTTON_RIGHT));

World Building

94

3.	 Then, create a method called modifyTerrain that takes a Boolean called
pickupCube as the input.

4.	 To control what is picked up or aimed at, use a pattern that we have established in
the Firing in FPS recipe of Chapter 2, Cameras and Game Controls. Use a ray that
originates from the camera and moves toward the camera's direction.

5.	 Now, collide it with the worldnode class of cubeWorld. If it collides with
something and the distance is lower than two (or some other arbitrary number)
and pickupCube is true, we will pick up a cube. Get the worldTranslation
vector of the geometry that the ray has collided with. Then, call a method called
changeTerrain in cubeWorld. We'll create the method in a short while. Now,
supply it with the coordinates of the geometry it collides with and the currently
empty takenCube field as follows:
if(coll != null && coll.getDistance() < 2f && pickupCube){
 Vector3f geomCoords = coll.getGeometry().getWorldTranslation();
 takenCube = cubeWorld.changeTerrain(geomCoords, takenCube);
}

6.	 If instead, there is no collision or the collision is too far away, and at the same time
pickupCube is false and takenCube is not null, try to place takenCube in the
world. Since we don't have a collision point, move some way along the direction
of the camera and round it off to the nearest integer. Then, call cubeWorld.
changeTerrain again with the coordinates along with takenCube, as follows:
Vector3f geomCoords = cam.getLocation().add(cam.getDirection().
mult(2f));
geomCoords.set(Math.round(geomCoords.x), Math.round(geomCoords.y),
Math.round(geomCoords.z));
takenCube = cubeWorld.changeTerrain(geomCoords, takenCube);

7.	 In the onAction method, add the logic for the corresponding key press and call
modifyTerrain, supplying either true if we're picking up or false if we're instead
trying to place a CubeCell field.

8.	 In the CubeWorld class, create this changeTerrain method that takes a Vector3f
parameter called coords and a CubeCell parameter called blockToPlace as the
input. The Coords parameters represent the location of a CubeCell instance. The
changeTerrain method returns a CubeCell instance.

9.	 The first thing we will do is define a CubeCell field called changedBlock where we
store the incoming blockToPlace.

Chapter 3

95

10.	 Then, do a check to make sure the supplied coordinate is within the bounds of the
terrainBlock array and then check whether changedBlock is null. If it is, pick
up the CubeCell instance from this location and populate changedBlock with the
CubeCell instance. Then, set the location's CubeCell to null as follows:
if(changedBlock == null){
 changedBlock = terrainBlock[x][y][z];
 terrainBlock[x][y][z] = null;
}

11.	 If instead the CubeCell instance at this location is null (we already know that
changedBlock is not null), set the CubeCell instance over here to changedBlock
and changedBlock to null. Also, call requestRefresh on the CubeCell instance
to force it to update the mesh, as follows:
else if(terrainBlock[x][y][z] == null){
 terrainBlock[x][y][z] = changedBlock;
 terrainBlock[x][y][z].requestRefresh();
 changedBlock = null;
}

12.	 Finally, if there has been a change made, call generateGeometry and return
changedBlock to the calling method.

How it works...
This recipe is mostly about creating meshes that are as optimized as possible. Cubes are
great building blocks, but each has 12 triangles, and rendering them all for hundreds or
thousands will quickly slow down most systems. In the first part of the recipe, we implemented
functionalities to create meshes that only had the exposed sides of the cube's generated
triangles. We found this out by checking which of the positions next to the cube were
occupied by other cubes.

Once all the cubes were generated, we added them to BatchNode and batched it to create
one mesh for all the cubes. Even if the polygon count is the same, decreasing the number
of objects greatly enhances the performance.

Having a single mesh means we can't change a single object in the mesh without regenerating
the whole batch. If we plan to scale this up and generate a whole world, we need to keep the
size of the batch to a size where we can regenerate it without creating slowdowns. Exploring
a way to generate it on a separate thread might be a good next step.

4
Mastering Character

Animations

In this chapter, we'll cover the following topics:

ff Previewing animations in SDK

ff Creating an animation manager control

ff Extending the animation control

ff Handling jump animations

ff Creating a custom animation – leaning

ff Creating a subanimation

ff Lip syncing and facial expressions

ff Eye movement

ff Location-dependent animation – edge check

ff Inverse kinematics – aligning feet with ground

Introduction
In this chapter, we'll take a closer look at skeleton-based animations. These are central
features in many games, and having a good framework can save a lot of time (and money)
in a project.

For those who are completely new to the subject of animations, it's recommended that you
have a look at the jMonkeyEngine tutorials and Hello Animation in particular at http://hub.
jmonkeyengine.org/wiki/doku.php/jme3:beginner:hello_animation.

http://hub.jmonkeyengine.org/wiki/doku.php/jme3:beginner:hello_animation
http://hub.jmonkeyengine.org/wiki/doku.php/jme3:beginner:hello_animation

Mastering Character Animations

98

Previewing animations in SDK
Before digging into the code, let's just briefly see how we can use SDK to see the animations
that are supplied with a model.

How to do it...
Perform the following steps to see the animations that are supplied with the model:

1.	 Find the model in the Projects window. Right-click on it and select Edit in
SceneComposer and you will get the following screenshot:

2.	 Find the SceneExplorer window and open the model's node. Look for AnimControl
as seen in the preceding screenshot.

3.	 Open the AnimControl window and you will see the list of animations that are
available. Then, navigate to the Properties window to select any of the animations
and play them in the model, as shown in the following screenshot:

How it works...
The SceneExplorer window not only shows all the spatials that belong to a node, but also the
controls that are attached to any spatial. Apart from adding new controls, it's also possible to
change them. In the case of AnimControl, it's possible to set the current animation so it is
played instantly. To stop playing it, we can select null.

Chapter 4

99

Creating an animation manager control
We will create a control that will handle the animations of a character. It will follow
jMonkeyEngine's control pattern and extend AbstractControl. We won't actually use most
of the functions of AbstractControl right away, but it's a neat way to offset some of the
code from a possible Character class. It will also be easy to add functionalities later on.

How to do it...
To create a control that will handle the animations of a character, perform the following steps:

1.	 Create a class called CharacterAnimationManager and have it extend
AbstractControl. This class should also implement AnimEventListener,
which AnimControl uses to tell our class when animations have finished playing.

2.	 We're going to map Jaime's animations into an enum. This is so we don't have to do
a lot of string comparisons. While we're at it, we'll add some basic logic to the enum
as well. The name of the animation, whether the animation should loop or not, and
the time AnimControl should take to blend to a new animation using the following
code:
public enum Animation{
 Idle(LoopMode.Loop, 0.2f),
 Walk(LoopMode.Loop, 0.2f),
 Run(LoopMode.Loop, 0.2f),
 ...
 SideKick(LoopMode.DontLoop, 0.1f);

 Animation(LoopMode loopMode, float blendTime){
 this.loopMode = loopMode;
 this.blendTime = blendTime;
 }
 LoopMode loopMode;
 float blendTime;
}

We need two fields as well: an AnimControl field called animControl and an
AnimChannel called mainChannel.

3.	 We set these in the setSpatial method, as shown in the following code. Don't
forget to add the class to the AnimControl field as a listener, or we won't receive
any calls when animations are finished:
public void setSpatial(Spatial spatial) {
 super.setSpatial(spatial);
 animControl = spatial.getControl(AnimControl.class);

Mastering Character Animations

100

 mainChannel = animControl.createChannel();
 animControl.addListener(this);
}

4.	 We define a new method called setAnimation in the following code. Inside this,
we set the supplied animation to be mainChannel as the current one if it's not the
same as the one playing now. We also set loopMode according to how it's defined in
the enum:
public void setAnimation(Animation animation) {
 if(mainChannel.getAnimationName() == null || !mainChannel.
getAnimationName().equals(animation.name())){
 mainChannel.setAnim(animation.name(), animation.blendTime);
 mainChannel.setLoopMode(animation.loopMode);
 }
}

5.	 In the onAnimCycleDone method, we create a control so that all animations that
don't loop return to the idle animation, with the exception of JumpStart, which
should switch to Jumping (as in midair) as shown in the following code:
public void onAnimCycleDone(AnimControl control, AnimChannel
channel, String animName) {
 if(channel.getLoopMode() == LoopMode.DontLoop){
 Animation newAnim = Animation.Idle;
 Animation anim = Animation.valueOf(animName);
 switch(anim){
 case JumpStart:
 newAnim = Animation.Jumping;
 break;
 }
 setAnimation(newAnim);
 }
}

6.	 That's all that's needed to create a class that manages animations! To set this up
from an application, we just need to load a model in the application and add the
following line:
jaime.addControl(new AnimationManagerControl());

How it works…
The AnimControl class is responsible for playing and keeping track of the animations.
AnimChannel has a list of Bones that the animation should affect.

Since we let the enum decide the animation parameters for us, we don't need much code
in the setAnimation method. We do however need to make sure we don't set the same
animation if it is already playing or it could get stuck, repeating the first frame in a loop.

Chapter 4

101

The onAnimCycleDone method is called from AnimControl whenever an animation
reaches the end. Here, we decide what will happen when this occurs. If the animation is not
looping, we must tell it what to do next. Playing the idle animation is a good choice.

We also have one special case. If you look at the animation list, you will notice that Jaime's
jump animation is split into three parts. This is to make it easier to handle jumps of different
lengths or the falling animation.

We will tell AnimControl to change the animation to a jumping action once JumpStart
is done. We never change to JumpEnd once the jumping action has taken place however.
Instead, this should be called from elsewhere when Jaime hits the ground after he jumps. How
this is measured is dependent on the game logic, but since we're using the Control pattern,
we could use controlUpdate to check Jaime's whereabouts.

Extending the animation control
In the previous recipe, we built the basics for an animation by managing the Control class.
This would be fine for many types of games, but for a game where a character is in focus, let's
say an FPS, we would want a more detailed control. This is where the concept of AnimChannel
comes in handy. AnimChannel is a way of dividing a skeleton into different groups of bones
and applying an animation only to them. As we will find out in this recipe, this means we can
have different animations playing on different parts of the body at the same time.

Applying animations only to certain channels can help reduce the workload
tremendously for a character-focused game. Let's say we're making an
FPS or RPG where the character can wield a number of different items and
weapons, both one– and two–handed. Making full-body animations for all the
combinations, including standing, walking, running, and more, is not feasible.
If instead, you are able to apply the weapon animation only to the upper body
and a walk animation to the lower body, you get a lot more freedom.

This recipe will also describe some other tricks that might help in developing the game.

How to do it...
We can have different animations playing on different parts of the body at the same time by
performing the following steps:

1.	 First of all, we'll implement the ActionListener and AnalogListener interfaces
in our animation's manager class. This will allow us to receive input directly from an
input-handling class and decide which animations to play.

Mastering Character Animations

102

2.	 Next, we define two AnimChannels: one for the upper body called upperChannel
and one for the lower called lowerChannel. We also create a Channel enum to
easily choose whether to play an animation in a separate channel or the whole body,
as shown in the following code:
public enum Channel{
 Upper, Lower, All,
}

�� The SceneExplorer can be used to find suitable bones as shown in the
following screenshot:

3.	 In the setSpatial method, we create the upper and lower channels in
AnimControl. We let AnimChannel add all the bones recursively using
the addFromRootBone method, as shown in the following code:
public void setSpatial(Spatial spatial) {
super.setSpatial(spatial);
 animControl = spatial.getControl(AnimControl.class);
 upperChannel = animControl.createChannel();
 lowerChannel = animControl.createChannel();
 upperChannel.addFromRootBone("spine");
 lowerChannel.addBone("Root");
 lowerChannel.addFromRootBone("pelvis");

4.	 In the same method, add this instance as AnimEventListener to AnimControl
to receive events when animations change or cycle, as shown in the following code:
animControl.addListener(this);

Chapter 4

103

5.	 To be able to set specific animations from other classes, we add a method called
setAnimation, which takes an animation and Channel (enum) as the input, as
shown in the following code:
public void setAnimation(Animation animation, Channel channel){
 switch(channel){
 case Upper:
 setAnimation(animation, upperChannel);
 break;
 ...
 }
}

6.	 In the onAction method, the control can receive input directly from InputListener
and apply the logic on its own before setting the animation, as shown in the
following code:
public void onAction(String name, boolean isPressed, float tpf) {
 if (name.equals("StrafeLeft")) {
 leftStrafe = isPressed;
 }
 ...
 } else if (name.equals("Jump") && isPressed) {
 jumpStarted = true;
 setAnimation(Animation.JumpStart);
 }
 if(jumpStarted || firing){
 // Do nothing
 } else if(forward || backward || rightStrafe || leftStrafe) {
 setAnimation(Animation.Walk);
 } else {
 setAnimation(Animation.Idle);
 }
}

7.	 Finally, to test the concept of AnimChannels, we can implement ActionListener
in our SimpleApplication instance and bind some keys to it, as shown in the
following code:
public void onAction(String name, boolean isPressed, float tpf) {
 if (name.equals("Anim1") && isPressed) {
 jaime.getControl(AnimationChannelsControl.class)
.setAnimation(Animation.Walk, Channel.All);
 }
...
}

Mastering Character Animations

104

8.	 As an example of how the concept of AnimChannels can be used to create new
animations out of combined ones, create a new application and set the walk
animation on Jaime's lowerChannel while applying the jumping animation on
upperChannel. Jaime will now commence a zombie walk impression.

How it works...
We can see that the Animation enum has had a field called key added. This is not
necessary but is part of a way to not have to hard-code animation names.

By using the addFromRootBone method, the channel will automatically add all the bones
recursively, starting with the bone that is supplied first. After adding spine to upperChannel,
it will continue down the chain, adding shoulders, neck, arms, and hands, as shown in the
following screenshot:

Different animations applied to the upper and lower parts of the body

Since we implemented ActionListener, there's also an onAction method in the class,
which can receive an input from a number of external sources, such as InputListener.
This also means it can apply logic by itself before deciding on what to play and not simply
being an animation-playing control. We can recognize the pattern used here from the
GameCharacterControl class from Chapter 2, Cameras and Game Controls.

By supplying a Properties file that maps the animation names, it's possible to use models
with different naming conventions. It's also easier for a designer or artist to try out a number
of different animations without consulting a programmer to make changes.

Chapter 4

105

Handling jump animations
In this recipe, we'll show how the jumping animation can be handled in the animation
manager control from previous recipes. Why does this require its own recipe? Animation-wise,
jumping is usually a set of sequenced animations. If we look at Jaime, for example, there's
JumpStart, Jumping, and JumpEnd. Normally, sequenced animations can be handled in
the onAnimCycleDone method; when one animation ends, it can trigger the next. Jumping is
different though since the middle jumping animation is indefinite and is on a loop. How long
it plays depends on how long the character is in the air, which is driven by the gameplay or
its physics.

How to do it...
You can handle jumping animations by performing the following steps:

1.	 For this, we'll need to add two more Booleans to our animation control:
jumpStarted and inAir.

2.	 We trigger the first part of the animation in the onAction method, as shown in the
following code. The jumpStarted Boolean is used to let the class know that other
animations should not start while the character is the jumping state:
public void onAction(String binding, boolean value, float tpf) {
 if (binding.equals("Jump") && value) {
 jumpStarted = true;
 setAnimation(Animation.JumpStart);
 }
}

3.	 The onAnimCycleDone method should switch animations back to the jumping
action once JumpStart has finished playing. We also set inAir to true, as shown
in the following code:
public void onAnimCycleDone(AnimControl control, AnimChannel
channel, String animName) {
 if(channel.getLoopMode() == LoopMode.DontLoop){
 Animation newAnim = Animation.Idle;
 Animation anim = Animation.valueOf(animName);
 switch(anim){
 case JumpStart:
 newAnim = Animation.Jumping;
 inAir = true;
 break;
 }
 setAnimation(newAnim, channel);
 }
}

Mastering Character Animations

106

4.	 The controlUpdate method is suitable to check whether the character has landed
after jumping (or falling). We check this directly in BetterCharacterControl and
change the animation if it is back on the ground, as shown in the following code:
protected void controlUpdate(float tpf) {
 if(inAir){
 BetterCharacterControl charControl =spatial.getControl(BetterC
haracterControl.class);
 if(charControl != null && charControl.isOnGround()){
 setAnimation(Animation.Idle);
 jumpStarted = false;
 inAir = false;
 }
 }
}

How it works...
The implementation relies on the listener pattern where this control receives a notification
of user actions from an external input class. In this project, we have a separate class that
controls the character.

This onAnimCycleDone method is called by the AnimControl method when an animation
has finished with one cycle (both looping and non-looping animations). Normally, when an
animation ends, we'll want to switch to the idle animation to stop it from freezing. When
JumpStart is finished, however, the character is most likely in midair and thus switches to
a suitable looping animation. The inAir Boolean is used so the class knows it should start
checking for when the character lands again.

Depending on the size of a project, the control class for the character and this
animation-managing class might be merged into one. This should make some things
easier, while the class itself might get bulky as more functions are implemented.

The controlUpdate class is called automatically with every tick, and here we can see
whether the character is still airborne. In this implementation, BetterCharacterControl
is used, and it has a method to see whether it is on ground. Jaime has a JumpEnd animation,
but idle seems to work better with some blending.

Creating a custom animation - leaning
Custom animation is the concept of directly manipulating the bones of a character's skeleton
to create animations. We will explore this by making a control that can be used together with
Chapter 2, Cameras and Game Controls. Together with this recipe, leaning can be used on
characters other than the player and in networked games.

Chapter 4

107

Jaime leaning to the left

As in Chapter 2, Cameras and Game Controls, we have two ways to handle leaning: one is
by using a key to lean toward the left and another to lean toward the right. The second one
is to press a button and lean in any direction using the mouse, which is more common in
computer games.

Getting ready
The control we are going to build will share some code with the recipe from Chapter 2,
Cameras and Game Controls. The shared code will be explained there to save space, and it
will most likely be used in tandem with this recipe, so being familiar with it is helpful.

How to do it...
1.	 We start by creating a new class that extends AbstractControl and implements

Action- and AnalogListener.

2.	 Next, we define some values that will help us control the leaning. The leanValue is
the current amount of leaning that is applied. There needs to be a limit on how much
the character can lean, which is set in maxLean. For this example, it's 45 degrees in
either direction. The two Booleans leanLeft and leanRight define whether we're
currently leaning in either direction using keys, and leanFree defines whether the
mouse is used. The leaningBone is the bone that we'll modify, and we'll also store
the bone's original rotation in boneRotation and use it as a base when leaning.

Mastering Character Animations

108

3.	 When the control is added to a spatial, we need to look for a bone to apply the
leaning to. We select spine as leaningBone, and clone its current rotation, as
shown in the following code:
public void setSpatial(Spatial spatial) {
 super.setSpatial(spatial);
 Bone spine = spatial.getControl(SkeletonControl.class).
getSkeleton().getBone("spine");
 if(spine != null){
 leaningBone = spine;
 boneRotation = leaningBone.getLocalRotation().clone();
 }
}

4.	 The onAction method will receive the input and should set the controlling Booleans,
namely, leanLeft, leanRight, and leanFree. The onAnalog option receives the
mouse input when leanFree is active.

5.	 In the controlUpdate method, we check to see whether any leaning is to be
applied, first to the left and then similarly to the right. If leanValue is near 0f, we
will round it off to 0. If this happens, we give the control back to AnimControl, as
shown in the following code:
protected void controlUpdate(float tpf) {
 if(leanLeft && leanValue < maxLean){
 leanValue += 0.5f * tpf;
 } else if(!leanFree && leanValue > 0f){
 leanValue -= 0.5f * tpf;
 }
 [mirror for right]
 if(leanValue < 0.005f && leanValue > -0.005f){
 leanValue = 0f;
 }
 if(leanValue != 0f){
 lean(leanValue);
 } else {
 leaningBone.setUserControl(false);
 }
}

6.	 In the lean method, which applies the leaning to the bone, the first thing we do is
clamp the value to be inside the allowed threshold. Next, we call setUserControl
on the bone to let it know that it shouldn't apply animations before creating a new
Quaternion class based on the original rotation, as shown in the following code:
private void lean(float value){
 FastMath.clamp(value, -maxLean, maxLean);

Chapter 4

109

 leaningBone.setUserControl(true);
 Quaternion newQuat = boneRotation.add(new Quaternion().
fromAngles(-FastMath.QUARTER_PI * 0.35f, 0, -value));
 newQuat.normalizeLocal();
 leaningBone.setLocalRotation(newQuat);
}

How it works...
When selecting a bone to apply the leaning to, it should be close to the base of the upper
body of the character. On Jaime, the spine is a suitable bone.

When Bone.setUserControl(true) is called, we tell the bone that no animations should
be applied and that we will handle any rotation or translation manually. This has to be called
before we set the rotation, or an exception will be thrown. Likewise, when we're done, we need
to call setUserControl(false) to give the control back to the user (or no animation would
be played).

Manually controlling bones is powerful and can be useful for many different applications, such
as precision aiming and head tracking. Getting everything right can be tricky, however, and
most likely it's not something that you will do frequently.

This class can be used separately from Chapter 2, Cameras and Game Controls, or they can
be merged together. The benefit of having them separate is that we can also apply them
separately. For example, the player's own character in a FPS won't need this control since you
would never see it lean anyway. In this case, it's all about the camera. However, other players
in the same (networked) FPS will need it, as would AI enemies who might use the same
character control class.

To learn more about how leanValue is used and applied, have a look at the Leaning around
corners recipe of Chapter 2, Cameras and Game Controls.

There's more...
If we're using an imported model and don't have access to a list of the bones, how do
we know which bone to use? One simple way is to open the model in Scene Explorer. In
SkeletonControl, we can see all the bones the character has but not their relative position on
the model. By right-clicking and selecting Get attachment node, a new node will be created;
also, by selecting it, we can see where it's located on the model. For more information on
attachment nodes, have a look at the Retrieving an attachment node recipe of Chapter 1,
SDK Game Development Hub.

Mastering Character Animations

110

Creating a subanimation
In this recipe, we're going to use SceneComposer to create subanimations. As the name
implies, they're derived from an animation. Subanimations can be a good way to squeeze
some extra out of stock models that don't have the exact animations you want, or if the
modeler has gone home for the day. In this particular application, we'll prepare for the next
recipe, which is about lip syncing. The Extract sub animation window in SDK looks, as shown
in the following screenshot:

Getting ready
The biggest caveat when creating subanimations is that the jMonkeyEngine API uses relative
time when interacting with models, while subanimations are created on a frame basis. So, the
easiest way to find out which frames to extract is to open the model in an external editor and
look at it in parallel.

How to do it...
Extracting a subanimation can be done by performing the following steps:

1.	 With the model opened in the Scene Composer, we expand AnimControl.

2.	 Now, we can see all the animations that are currently available. We right-click on
an animation we would like to create a subanimation out of and choose the option,
Extract Sub-animation.

3.	 Enter a start and end frame and it's done. The new animation is now available in the
AnimControl option.

Chapter 4

111

How it works...
An animation in jMonkeyEngine consists of a number of BoneTracks. Each of these has an
array of floats with the times for the animations, an array of Vector3f with the positions of
the bones, array of Quaternions with rotations, and another array of Vector3f's with scales.
Each instance of the arrays contains information about a frame.

A subanimation is a copy of an excerpt from all the BoneTracks in the parent animation.

Lip syncing and facial expressions
This recipe handles two important parts of making characters seem alive and sentient.
Technically, they can be handled using AnimChannel, but they still deserve their own
mention as they have some special requirements.

Lip syncing revolves around something called Phoneme, which is the distinct shape the
mouth takes when making certain sounds. The number of phonemes a character has varies
according to different needs, but there is a basic set that is used to create believable mouth
movements.

Finally, we'll use jMonkeyEngine's Cinematics system to apply them in sequence and have the
character speak (mime) a word. Cinematics is jMonkeyEngine's scripting system, and it can
be used both to create in-game-scripted events and cutscenes. It is covered in more depth in
Chapter 9, Taking Our Game to the Next Level.

We'll follow the control pattern in this recipe, and control can be merged into another
animation controller or be kept alone.

Getting ready
Having a model with phoneme animations ready or creating them in an external modeling
program is preferred. It's perfectly all right if the animations are one-frame static expressions.

If the previous options are not available, one method is to use the SDK's functionality to
create subanimations. A version of Jaime with phoneme animations is supplied with the
project for the sake of this recipe. For those interested in going through the process of
creating subanimations themselves, there is a list of the ones used in the Enabling nightly
builds section in Appendix, Information Fragments.

Mastering Character Animations

112

How to do it...
All the required functionalities can be implemented in a single class by performing the
following steps:

1.	 To start off, we create a new class called ExpressionsControl that extends
AbstractControl.

2.	 Inside this, we add AnimControl named animControl, one AnimChannel called
mouthChannel, and another AnimChannel called eyeBrowChannel.

3.	 We define an enum to keep track of the phonemes that the controller supports.
These are some of the most common ones, plus a RESET option for a neutral
mouth expression, as shown in the following code:
public enum PhonemeMouth{
 AAAH, EEE, I, OH, OOOH, FUH, MMM, LUH, ESS, RESET;
};

4.	 We create another enum to set the expressions of the eyes, which is a simple way
of adding emotions to what the character says, as shown in the following code:
public enum ExpressionEyes{
 NEUTRAL, HAPPY, ANGRY;
};

5.	 In the setSpatial method, we create AnimChannel for mouth animations and
one for the eyes, then we add suitable bones to each of these, as shown in the
following code. The list of bones available can be seen in SkeletonControl in
SceneComposer.
mouthChannel = animControl.createChannel();
mouthChannel.addBone("LipSide.L");
...

6.	 Since the animations we'll use might just be one or a few frames each, we can set
LoopMode to Loop or Cycle. The speed has to be higher than 0 or blending won't
work. Set these for both AnimChannels.

7.	 Then, we have two setter methods to directly set an expression or phoneme in the
control. The naming convention might differ depending on the assets, and it's good
to have a small blending value:
public void setPhoneme(PhonemeMouth p){
 mouthChannel.setAnim("Phoneme_" + p.name(), 0.2f);
}
public void setExpression(ExpressionEyes e){
 eyeBrowChannel.setAnim("Expression_" + e.name(), 0.2f);
}

Chapter 4

113

8.	 We can reuse any test class we might have from other recipes and just apply some
new code to it as seen in the following code snippet. We set up a simple cinematic
sequence that makes Jaime say (or mime) Hello and look happy.

When this recipe was written, the following AnimationEvent constructor
did not exist and AnimChannels were not applied properly. A patch has
been submitted but may not have made it into a stable build. If required, the
patch can be found in the The AnimationEvent patch section in Appendix,
Information Gathering. It can also be acquired by turning on nightly builds in
the SDK.

public void setupHelloCinematic() {
 cinematicHello = new Cinematic((Node)jaime, 1f);
 stateManager.attach(cinematicHello);
 cinematicHello.addCinematicEvent(0.0f, new AnimationEvent(jaime,
"Expression_HAPPY", LoopMode.Cycle, 2, 0.2f));
 cinematicHello.addCinematicEvent(0.1f, new AnimationEvent(jaime,
"Phoneme_EEE", LoopMode.Cycle, 1, 0.1f));
 cinematicHello.addCinematicEvent(0.2f, new AnimationEvent(jaime,
"Phoneme_LUH", LoopMode.Cycle, 1, 0.1f));
 cinematicHello.addCinematicEvent(0.3f, new AnimationEvent(jaime,
"Phoneme_OOOH", LoopMode.Cycle, 1, 0.1f));
 cinematicHello.addCinematicEvent(0.7f, new AnimationEvent(jaime,
"Phoneme_RESET", LoopMode.Cycle, 1, 0.2f));

 cinematicHello.setSpeed(1.0f);
 cinematicHello.setLoopMode(LoopMode.DontLoop);
 cinematicHello.play();
}

How it works...
The technical principles behind the phonemes are not that different from animating other
parts of the character. We create AnimChannels, which handles different sets of bones. The
first tricky bit is to organize the channels if you want to be able to control different parts of
the body at the same time.

Mastering Character Animations

114

The pipeline for how to apply the phonemes can also be difficult. The first step will be to not
set them directly in the code. It's not implausible that changing the expression of the character
could be called directly from the code on certain events. Doing so for each phoneme in a
sentence would be very cumbersome. Using the cinematics system is a good start as it would
be relatively simple to write a piece of code that parses a text file and creates a cinematic
sequence from it. Timing is really crucial, and it can take a lot of time to get the movements
synced with sound. Doing it in a format that allows you to have a quick iteration is important.

Another more complex way would be to build up a database that maps words and phonemes
and automatically applies them in a sequence.

The absolutely simplest approach is to not really care about lip syncing and just apply a
moving mouth animation whenever the character speaks.

Eye movement
Eye contact is an important factor to make characters feel alive and aware of yours and other
things' presence. In this chapter, we'll make a control that will follow a spatial with its eyes, as
shown in the following screenshot:

How to do it...
Eye tracking can be implemented in a single control using the following steps:

1.	 We begin by creating a new class called EyeTrackingControl that extends
AbstractControl.

2.	 It needs two Bone fields: one called leftEye and another called rightEye.
Furthermore, we should add a spatial called lookAtObject and a related
Vector3f called focusPoint.

3.	 In the setSpatial method, we find and store the bones for leftEye
and rightEye.

Chapter 4

115

4.	 We also need a method to set lookAtObject.

5.	 With this done, we add most of the other functionalities to the controlUpdate
method. First of all, we need to take control of the bones or we won't be able to
modify their rotation, as shown in the following code:
if(enabled && lookAtObject != null){
 leftEye.setUserControl(true);
 rightEye.setUserControl(true);

6.	 Next, we need to establish the lookAtObject position that is relative to the eyes.
We do this by converting the position to model space and storing it in focusPoint,
as shown in the following code:
focusPoint.set(lookAtObject.getWorldTranslation().
subtract(getSpatial().getWorldTranslation()));

7.	 Subtracting the eye position from Vector3f gives us the relative direction:
Vector3f eyePos = leftEye.getModelSpacePosition();
Vector3f direction = eyePos.subtract(focusPoint).negateLocal();

8.	 We create a new Quaternion and have it look in the direction of the direction
vector. We can apply this on our eyes after modifying it a bit as its 0-rotation is up:
Quaternion q = new Quaternion();
q.lookAt(direction, Vector3f.UNIT_Y);
q.addLocal(offsetQuat);
q.normalizeLocal();

9.	 Then, we apply it by using setUserTransformsWorld. Finally, we give the control
of the bones back to the system using the following code:
leftEye.setUserTransformsWorld(leftEye.getModelSpacePosition(),
q);
rightEye.setUserTransformsWorld(rightEye.getModelSpacePosition(),
q);
leftEye.setUserControl(false);
rightEye.setUserControl(false);

How it works...
The actual code is a fairly straightforward trigonometry, but knowing what values to use and
the flow of doing it can be tricky.

Once the class receives an object to look at, it subtracts the model's worldTranslation
from lookAtObjects so they end up in a coordinate system that is relative to the model's
origo point also called modelspace.

Mastering Character Animations

116

Using setUserTransformsWorld also sets the position, but since we supply its current
modelSpacePosition, no change will be applied.

Actually, the direction of each eye should be calculated separately for the result to be
entirely correct.

There's more...
By now, the character has a very intent stare at the camera. This is an improvement, but it
can be made more lifelike. Something that may not be so obvious is that we rarely look at the
same point all the time even if we look at the same object. We can emulate this behavior by
adding a random bit of flickering to the control:

private float flickerTime = 0f;
private float flickerAmount = 0.2f;
private Vector3f flickerDirection = new Vector3f();

By introducing these three fields, we have a base for what we want to do:

flickerTime += tpf * FastMath.nextRandomFloat();
if(flickerTime > 0.5f){
 flickerTime = 0;
 flickerDirection.set(FastMath.nextRandomFloat() * flickerAmount,
FastMath.nextRandomFloat() * flickerAmount, 0);
}
direction.addLocal(flickerDirection);

This piece of code goes in the middle of the controlUpdate method, right after calculating
the direction. What we do is we increase flickerTime until it reaches 0.5f (note that this
is not in seconds since we apply a random number). Once this happens, we randomize
flickerDirection based on flickerAmount and reset flickerTime.

With each consecutive update, we will apply this to the calculated direction and slightly offset
the focus point.

Location-dependent animation – edge check
In certain games, players traverse dangerous areas where a fall off from a ledge could lead
to their deaths. Sometimes, in these games, the player is not meant to fall off and their
movement is restricted when they are close, or the player gets an extra warning before
they plummet.

The control we'll develop can be used for any of those things, but since this chapter is about
animations, we'll use it to play a special animation when the player gets too close to the edge.

Chapter 4

117

Getting ready
The recipe will use similar patterns that have been used before in this chapter and we'll also
use the animation manager control from earlier in the chapter. Any animation control will be
fine to use, but it should have separate channels for the upper and lower parts of the body.

How to do it...
We can implement almost everything we need in a single class as follows:

1.	 We begin by creating a class called EdgeCheckControl, which extends
AbstractControl and contains the following fields, as shown in the following code:
private Ray[] rays = new Ray[9];
private float okDistance = 0.3f;
private Spatial world;
private boolean nearEdge;

2.	 We define the nine rays that will be used for collision detection. In the setSpatial
method, we instantiate them and aim them downwards, as shown in the
following code:
for(int i = 0; i < 9; i++){
 rays[i] = new Ray();
 rays[i].setDirection(Vector3f.UNIT_Y.negate());
}

3.	 In the controlUpdate method, we begin by placing one of the rays at the center
of the character, as shown in the following code:
Vector3f origo = getSpatial().getWorldTranslation();
rays[0].setOrigin(origo);

4.	 We step around the character, placing the remaining rays in a circular shape. For
each, we see whether it collides with something using the checkCollision
method. If it doesn't, we don't need to check the rest and can exit the loop using
the following code:
float angle;
for(int i = 1; i < 9; i++){
 float x = FastMath.cos(angle);
 float z = FastMath.sin(angle);
 rays[i].setOrigin(origo.add(x * 0.5f, 0, z * 0.5f));

 collision = checkCollision(rays[i]);
 if(!collision){
 break;

Mastering Character Animations

118

 }
 angle += FastMath.QUARTER_PI;
}
private boolean checkCollision(Ray r){
 CollisionResults collResuls = new CollisionResults();
 world.collideWith(r, collResuls);
 if(collResuls.size() > 0 && r.getOrigin().distance(collResuls.
getClosestCollision().getContactPoint()) > okDistance){
 return true;
 }
 return false;
}

5.	 In the last step in this method, we call the animation manager and tell it to play or
stop playing the near-edge animation, as shown in the following code. We do this
based on whether all the collisions have been detected or not, making sure we only
send any change in state:
if(!collision && !nearEdge){
 nearEdge = true; spatial.getControl(AnimationManagerControl.
class).onAction("NearEdge", true, 0);
} else if(collision && nearEdge){
 nearEdge = false; spatial.getControl(AnimationManagerControl.
class).onAction("NearEdge", false, 0);
}

6.	 Switching to our animation manager class, we modify it accordingly. The state is
stored here so it can be used to see what other animations are allowed to be played,
as follows:
if (binding.equals("NearEdge")) {
 nearEdge = value;
 if(nearEdge){
 setAnimation(Animation.Jumping, Channel.Upper);
 }
}

How it works...
With each update, the nine rays we create are placed in a circle around the character, with
one in the center.

They will check for collisions with a surface below them. If any of them (this might be changed
to two or three) does not hit something within okDistance, it will be reported as the character
being close to a dangerous edge.

Chapter 4

119

The okDistance has to be set to something suitable, higher than a step on a stair, probably
at a height where the player could take damage.

When this happens, the animation manager will be called with the NearEdge action set to
true. This will apply the jumping animation (wild flaying of the arms) to the upper body of
the character while still allowing other animations to be played on the lower part.

The NearEdge Boolean is used to make sure that we only send the call to the animation
manager once.

When doing collision checks, one should be careful about the amount and shape of the objects
that are being collided. If the world is large or constructed from complex shapes (or even worse,
if it has MeshCollisionShape), we should try to find optimized ways of applying the method.
One way could be to separate the world into parts and have an auxiliary method to select which
part to collide against. This method might use contains on BoundingVolume to see the part
the player is located in.

Aligning feet with ground – inverse
kinematics

Inverse kinematics is now a common part of animation systems in games and is a topic that
might cover a chapter on its own. In this recipe, we'll look at placing a character's feet in
accordance to the ground below. This is useful where an animation would otherwise place
them in the air or on sloped ground.

Normally, animations work according to forward kinematics; that is, when a bone near the
root of the skeleton rotates, it affects the bones further down the chain. As the name implies,
Inverse Kinematics starts at the other end.

Here, we strive toward a desired position for the tip of a chain of bones, and bones further up
the chain try to align themselves to suit this.

The most straightforward implementation of this rotates the bones by a small amount on all
the axes. It then checks which of the rotations brings the tip closest to the desired position.
This is repeated for all the bones in the chain and iterated until it has come close enough.

Getting ready
A model with SkeletonControl is needed for this recipe, and it's recommended that you be
familiar with its setup. At the time of writing this recipe, the resident monkey, Jaime, is used.

This recipe uses an experimental feature that at the time of writing this is not part of a core
build. To use it, you can build jMonkeyEngine yourself from the sources. You can also get it by
enabling nightly builds. Refer to Appendix, Information Fragments, to find out how to change
this setting.

Mastering Character Animations

120

How to do it...
Perform the following steps to get the basic IK functionality:

1.	 Let's begin by creating a new class that extends AbstractControl, and define a list
that will contain the bones we want to use as tip bones.

2.	 In the setSpatial method, we add both the feet and toe bones to the list. We also
supply some values that KinematicRagdollControl should work with when
applying the IK and tell it which bones to work with, as shown in the following code:
setupJaime(spatial.getControl(KinematicRagdollControl.class));
 spatial.getControl(KinematicRagdollControl.class).
 setIKThreshold(0.01f); spatial.getControl(KinematicRagdollContr
ol.class).
 setLimbDampening(0.9f);
 spatial.getControl(KinematicRagdollControl.class)
 .setIkRotSpeed(18);

3.	 We create a method called sampleTargetPositions that goes through each
of our targets and finds a position the control should try to reach, as shown in the
following code:
public void sampleTargetPositions(){
 float offset = -1.9f;
 for(Bone bone: targets){
 Vector3f targetPosition = bone.getModelSpacePosition().
add(spatial.getWorldTranslation());
 CollisionResult closestResult = contactPointForBone(targetPosi
tion, offset);
 if(closestResult != null){
 spatial.getControl(KinematicRagdollControl.class).
setIKTarget(bone, closestResult.getContactPoint().addLocal(0,
0.05f, 0), 2);
 }
 }

4.	 Finally, in the created method, we call KinematicRagdollControl and tell it to
switch to the Inverse Kinematics mode:
spatial.getControl(KinematicRagdollControl.class).setIKMode();

5.	 To make it reusable, we use the setEnabled method to clear things up when the
control is not in use; we make it apply IK when it's enabled again:
if(enabled){
 sampleTargetPositions();
} else {

Chapter 4

121

 spatial.getControl(KinematicRagdollControl.class).
removeAllIKTargets();
 spatial.getControl(KinematicRagdollControl.class).
setKinematicMode();
}

How it works...
The list we defined contains the bones that we want to have at the end of the chain. These
are the bones that the control will try to get as close to the target position as possible. To get
the feet at a suitable angle, we not only need the feet but also the toe bones. By trying to align
both the feet and the toe bones, we get a better approximation of the ground below.

Unlike most of our controls, we don't actually do anything in the controlUpdate method.
This is because the actual alignment is passed on to KinematicRagdollControl. Instead,
we do a check each time the control is enabled and see what positions it should try to reach.

For each of the tip bones, we shoot a ray straight up, using an offset to start some way below
the ground. The reason we don't just use the bones' position and check below it is because
we can't be sure that the model is completely above the ground. Animations might very well
push body parts inside the ground, and if we then shot a ray downwards, we wouldn't hit what
we want.

Once a target position is found, we supply the bone to KinematicRagdollControl. Along
with this is also an integer that defines how long the chain of bones should be that it can
modify when trying to reach the target.

There are some more values we supply to KinematicRagdollControl. The IKThreshold
value is the distance from the target point where it is okay for it to stop trying.

LimbDampening can be used to effect how much a bone should move in relation to others.
Imagine we're stretching out for something on our desk. Our forearms are most likely to
perform bigger movements (rotation-wise) than our upper arms. If limbDampening is lower
than 1.0, the bones higher up in the chain (and likely bigger) will move less with each update
than those closer to the tip bone.

IKRotSpeed defines the rotation steps the control should apply with each turn. A higher
value means it'll get closer quicker, but it also means the margin of error becomes higher.

All these values require tweaking to get them right for the application. Implementation is just
the first step. The KinematicRagdollControl method also needs some setting up, most
importantly, it needs to know the bones it should be able to control.

Mastering Character Animations

122

There's more...
If we've implemented the recipe thus far, we can see that the result is not what we expected.
On wobbly legs, resembling rubber or cooked spaghetti, our character slowly adjusts to the
ground below it.

The most disturbing thing is probably that the legs seem to go in any direction. Fortunately,
this can be remedied with some tweaking. The KinematicRagdollControl function has
a method called setJointLimit, which does what it says. It can set the limits to how much
rotation can be applied on each axis of a bone. Getting it right for all the bones will take some
time though.

5
Artificial Intelligence

In this chapter, we'll cover the following recipes:

ff Creating a reusable AI control class

ff Sensing – vision

ff Sensing – hearing

ff Decision making – Finite State Machine

ff Creating the AI using cover

ff Generating NavMesh in SDK

ff Pathfinding – using NavMesh

ff Controlling groups of AI

ff Pathfinding – our own A* pathfinder

Introduction
Artificial Intelligence (AI) is an extremely vast field. Even for games it can be very diverse,
depending on the type of game and requirements.

Many developers enjoy working with AI. It gives you a sense of creating something alive,
something intelligent, and rational. A good question to ask before designing AI for a game is
what the expected behavior should be, from a player's perspective. In an FPS, it might be the
case that the AI can separate the friend from the foe, find cover when attacked, flee when
injured, and not get stuck on things as they move around. AI in an RTS might need to not only
evaluate the current situation, but also plan ahead and divide resources between aggressive
and defensive behavior. A group of soldiers and a tactical shooter might have advanced and
dynamic group behavior. Another option is to have individual behaviors that still make them
appear to work together, to the player.

Artificial Intelligence

124

The recipes in this chapter will, in most cases, work with isolated functionality, but revolve
around a central AI control class. As such, the results might not always be impressive on their
own, but at the same time, it should be quite easy to combine several of them into a more
powerful AI.

Creating a reusable AI control class
In this recipe, we will create a control that is going to steer an AI character. Using Control to do
this is beneficial since it can add the AI functionality and be used together with other Controls
in the game. We can use GameCharacterControl from Chapter 2, Cameras and Game
Controls for both the player and AI characters by adding AIControl to its spatial. To get a
quick and visual result, we'll apply it to the bullet-based BetterCharacterControl class
in this recipe.

How to do it...
We need to perform the following steps to get a basic, but functional attacking (or following) AI:

1.	 We begin by creating a new class called AIControl, extending AbstractControl.
The core of the recipe will be based around an enum (enumeration) called state.
For now it only needs two values: Idle and Follow.

2.	 Add fields for BetterCharacterControl, called physicsCharacter, Booleans
forward and backwards, a Vector3f field for walkDirection, and another
for viewDirection. If it's going to follow something, it also needs a target field,
which can be Spatial.

3.	 The bulk of the logic is carried out in a switch statement in the controlUpdate
method, as shown in the following code. The first case is Idle. In this case, the AI
shouldn't do anything:
switch(state){
 case Idle:
 forward = false;
 backward = false;
 break;

4.	 In the Follow case, we should first check whether target is set. If there is
a target, we find the direction to the target and make the AI face it by setting
viewDirection, as shown in the following code:
case Follow:
 if(target != null){
 Vector3f dirToTarget = target.getWorldTranslation().
subtract(spatial.getWorldTranslation());
 dirToTarget.y = 0;
 dirToTarget.normalizeLocal();
 viewDirection.set(dirToTarget);

Chapter 5

125

5.	 We check the distance to the target. If it's more than 5 the AI will try to get closer. If
the distance instead is less than 3, it will try to back up a bit. The AI can also lose
track of the target if it is more than 20 units away. In this case, it also changes state
to Idle, as shown in the following code:
if (distance > 20f){
 state = State.Idle;
 target = null;
} else if(distance > 5f){
 forward = true;
 backward = false;
} else if (distance < 3f){
 forward = false;
 backward = true;
} else {
 forward = false;
 backward = false;
}

6.	 When it comes to movement, we can get the forward facing direction with the
following line of code:
Vector3f modelForwardDir = spatial.getWorldRotation().
mult(Vector3f.UNIT_Z);

7.	 Depending on whether forward or backward is true, we can multiply this value
with a suitable movement speed, and the call setWalkDirection on the
BetterCharacterControl class with the result shown in the following code:
if (forward) {
 walkDirection.addLocal(modelForwardDir.mult(3));
} else if (backward) {
 walkDirection.addLocal(modelForwardDir.negate()
 .multLocal(3));
}
physicsCharacter.setWalkDirection(walkDirection);

8.	 Finally, we should also call setViewDirection, as shown in the following code:
physicsCharacter.setViewDirection(viewDirection);

Artificial Intelligence

126

How it works…
Using BetterCharacterControl, we get a lot of functionality for free. We only need a
couple of Booleans to keep track of movement, and two Vector3f instances for directions.
Target is what the AI will focus on (or follow, for now).

If we're familiar with TestBetterCharacter from jMonkeyEngine's test examples, we
can recognize the movement handling from that class. For now, we only use the forward/
backward functionality. It is a good idea to keep the rotation code as well, just in case we
would like it to turn more smoothly in the future. The walkDirection vector is 0 by default.
It can either be sent as it is sent to physicsCharacter, in which case the character will
stop, or be modified to move in either direction. The viewDirection vector is simply set to
look at the target for now, and passed on to physicsCharacter.

The logic in the Follow case mentioned previously is mostly there to have something to test
with. Even so, it's AI behavior that seems to be sufficient for many MMOs. Once a target has
been acquired, it will try to keep itself at a certain distance. It can also lose track of the target
if it gets too far away. In this case, it falls back to the Idle state.

There's more…
By linking this recipe together with Chapter 4, Mastering Character Animations, we can easily
make Jaime play some animations while he's moving.

Start by adding the AnimationManagerControl class to the AI character using the
following code:

aiCharacter.addControl(new AnimationManagerControl());

We need to tell it to play animations. In AIControl, find the forward and backwards brackets
inside the controlUpdate method and add the following lines:

if (forward) {
 ... spatial.getControl(AnimationManagerControl.class).setA
nimation(AnimationManagerControl.Animation.Walk);
 } else if (backward) {
 ... spatial.getControl(AnimationManagerControl.class).setA
nimation(AnimationManagerControl.Animation.Walk);
 } else {
spatial.getControl(AnimationManagerControl.class).setAnimation(Animati
onManagerControl.Animation.Idle);
}

Chapter 5

127

There's more…
Let's create a test case world we can use for both this and many of the following recipes. First
we need a world with physics:

BulletAppState bulletAppState = new BulletAppState();
stateManager.attach(bulletAppState);

We will need some kind of object to stand on. The PhysicsTestHelper class has a few
example worlds we can use.

We load up good old Jaime. Again, we use the BetterCharacterControl class since
it offloads a lot of code for us. Since the Bullet physics world is different from the ordinary
scenegraph, Jaime is added to physicsSpace as well as to the rootNode, as shown in
the following code:

bulletAppState.getPhysicsSpace().add(jaime);
rootNode.attachChild(jaime);

We also need to add our newly created AI control using the following code:

jaime.addControl(new AIControl());

There's one more thing we need to do for this to work. The AI needs to track something. The
easiest way we can get a moving target is to add a CameraNode class and supply cam from
the application, as shown in the following code:

CameraNode camNode = new CameraNode("CamNode", cam);
camNode.setControlDir(CameraControl.ControlDirection.CameraToSpatial);
rootNode.attachChild(camNode);

We set camNode to be the target, as shown in the following code:

jaime.getControl(AIControl.class).setState(AIControl.State.Follow);
jaime.getControl(AIControl.class).setTarget(camNode);

If we're familiar with cameras in OpenGL, we know they don't really have a physical existence.
A CameraNode class in jMonkeyEngine gives us that. It tracks the camera's position and
rotation, giving us something easy to measure. This will make it easier for us when we want
the AI to follow it, since we can use the convenience of it being spatial.

For this reason, we can set CameraNode to be its target.

Artificial Intelligence

128

Sensing – vision
No matter how clever our AI is, it needs some senses to become aware of its surroundings. In
this recipe, we'll accomplish an AI that can look in a configurable arc in front of it, as shown
in the following screenshot. It will build upon the AI control from the previous recipe, but the
implementation should work well for many other patterns as well. The following screenshot
shows Jaime with a visible representation of his line of sight:

How to do it...
To get our AI to sense something, we need to modify the AIControl class from the previous
recipe by performing the following steps:

1.	 We need to define some values, a float called sightRange, for how far the AI can
see, and an angle representing the field of view (to one side) in radians.

2.	 With this done, we create a sense() method. Inside we define a Quaternion
called aimDirection that will be the ray direction relative to the AI's
viewDirection field.

3.	 We convert the angle to a Quaternion and multiply it with viewDirection to get
the direction of the ray, as shown in the following code:
rayDirection.set(viewDirection);
aimDirection.fromAngleAxis(angleX, Vector3f.UNIT_Y);
aimDirection.multLocal(rayDirection);

Chapter 5

129

4.	 We check whether the ray collides with any of the objects in our targetableObjects
list using the following code:
CollisionResults col = new CollisionResults();
for(Spatial s: targetableObjects){
 s.collideWith(ray, col);
}

5.	 If this happens, we set the target to be this object and exit the sensing loop, as shown
in the following code. Otherwise, it should continue searching for it:
if(col.size() > 0){
 target = col.getClosestCollision().getGeometry();
 foundTarget = true;
 break;
}

6.	 If the sense method returns true, the AI now has a target, and should switch to the
Follow state. We add a check for this in the controlUpdate method and the
Idle case, as shown in the following code:
case Idle:
 if(!targetableObjects.isEmpty() && sense()){
 state = State.Follow;
 }
break;

How it works...
The AI begins in an idle state. As long as it has some items in the targetableObjects list,
it will run the sense method on each update. If it sees anything, it will switch to the Follow
state and stay there until it loses track of the target.

The sense method consists of a for loop that sends rays in an arc representing a field
of view. Each ray is limited by sightRange and the loop will exit if a ray has collided with
anything from the targetableObjects list.

There's more…
Currently, it's very difficult to visualize the results. Exactly what does the AI see? One way of
finding out is to create Lines for each ray we cast. These should be removed before each new
cast. By following this example, we will be able to see the extent of the vision. The following
steps will give us a way of seeing the extent of an AI's vision:

1.	 First of all, we need to define an array for the lines; it should have the same capacity
as the number of rays we're going to cast. Inside the for loop, add the following
code at the start and end:
for(float x = -angle; x < angle; x+= FastMath.QUARTER_PI * 0.1f){
if(debug && sightLines[i] != null){

Artificial Intelligence

130

 ((Node)getSpatial().getParent()).
detachChild(sightLines[i]);
}
...Our sight code here...
if(debug){
 Geometry line = makeDebugLine(ray);
 sightLines[i++] = line; ((Node)getSpatial().getParent()).
attachChild(line);
}

2.	 The makeDebugLine method that we mentioned previously will look like the
following code:
private Geometry makeDebugLine(Ray r){
 Line l = new Line(r.getOrigin(),
 r.getOrigin().add(r.getDirection().mult(sightRange)));
 Geometry line = new Geometry("", l);
 line.setMaterial(TestAiControl.lineMat);
 return line;
}

This simply takes each ray and makes something that can be seen by human eyes.

Sensing – hearing
The hearing we'll implement is one of the more basic models you can have. It's not as
direct as vision, and requires a different approach. We'll assume that hearing is defined by
hearingRange, and that the hearing ability has a linear fall off to that radius. We'll also
assume that the sound emits something (in this case, footsteps), the volume of which is
relative to the object's velocity. This would make sense in a stealth game, where sneaking
should emit less sound than running. Sound is not blocked by obstacles or modified in any
other way, apart from the distance between the target and the listener.

How to do it...
We will start by defining a class that all objects emitting sounds will use. This will require the
following steps to be performed:

1.	 We create a class called SoundEmitterControl, extending AbstractControl.
2.	 It needs three fields, a Vector3f called lastPosition, a float for noiseEmitted,

and another float called maxSpeed.
3.	 In the controlUpdate method, we sample the velocity the spatial has. This is the

distance between the current worldTranslation and lastPosition. Divided by
tpf (time-per-frame) we get the distance per second, as shown in the following code:
float movementSpeed = lastPosition.distance(spatial.
getWorldTranslation()) / tpf;

Chapter 5

131

4.	 If it's actually moving, we see how much it moves compared to maxSpeed.
Normalized between 0 and 1, this value becomes noiseEmitted, as shown
in the following code:
movementSpeed = Math.min(movementSpeed, maxSpeed);
noiseEmitted = movementSpeed / maxSpeed;

5.	 Finally, we set lastPosition to current worldTranslation. Now we will
implement the changes to detect sound in AIControl. This will have five steps. We
start by defining a float called hearingRange. In the sense() method, we parse
the list of targetableObjects and see if they have SoundEmitterControl. If
any does, we check the distance between it and the AI using the following code:
float distance = s.getWorldTranslation().distance(spatial.
getWorldTranslation());

6.	 We get the noiseEmitted value from SoundEmitterControl and see how much
is picked up by the AI, as shown in the following code:
float distanceFactor = 1f - Math.min(distance, hearingRange) /
hearingRange;
float soundHeard = distanceFactor * noiseEmitted;

7.	 If the threshold of 0.25f is exceeded, the AI has heard the sound and will react.

How it works...
The SoundEmitterControl class is meant to define how much sound a moving character
makes. It does this by measuring the distance traveled each frame, and translates it to speed
per second by dividing by the time-per-frame. It's been adapted slightly to work for the free-
flying camera used in the test case. That's why maxSpeed is set to 25. It uses maxSpeed to
define how much noise the spatial is causing, on a scale of 0 to 1.

In the AI control class, we use the sense() method to test whether the AI has heard anything.
It has a hearingRange field, with the range falling in a linear fashion from the location of the
AI. Outside this range, no sound would be detected by the AI.

The method measures the distance from the sound emitting spatial, and factors this with the
noise value it emits. For this example, a threshold of 0.25 is used to define whether the sound
is loud enough for the AI to react.

Decision making – Finite State Machine
Decision making for AI can be handled in many different ways, and one common way is to use
a Finite State Machine (FSM). An FSM contains a number of predefined states. Each state
has a set of functionality and behavior tied to it. Each state also has a number of conditions
for when it can change to another state.

Artificial Intelligence

132

In this recipe, we'll define a state machine that will emulate a common AI behavior in games.
In fact, it will be more advanced than many games, which usually have AI that can only either
move around on a path, or attack. Our AI will have three states, Patrol, Attack, and Retreat,
as shown in the following diagram:.

State diagram

The PatrolState will be the default and fallback state. It will perform random movement
and will switch to AttackState if it spots an enemy.

The AttackState will handle firing and ammunition and will attack a target as long as
it's visible and it has ammunition left. Then it will either return to PatrolState or flee
using RetreatState.

The RetreatState will try to get away from a target for a set amount of time. After this, it will
return to PatrolState, forgetting any fears it might previously have had.

All of our states will extend an abstract class called AIState, which we will also create in this
recipe. This class in turn extends AbstractControl.

Worth noting is that all AI decision making and actions are handled from within the states. The
states only relies on the AI control class to supply it with sensing updates (although this could
also be handled by the states themselves).

How to do it...
We will start by creating the AIState class. This will have two steps, as follows:

1.	 We add a field to store AIControl and give it two abstract methods called
stateEnter and stateExit.

2.	 These should be triggered when enabling and disabling the class, respectively. We
override setEnabled to achieve this, as shown in the following code:
public void setEnabled(boolean enabled) {
 if(enabled && !this.enabled){
 stateEnter();

Chapter 5

133

 }else if(!enabled && this.enabled){
 stateExit();
 }
 this.enabled = enabled;
}

With AIState done, we can look at the first behavior, PatrolState. We can implement this
by performing the following steps:

1.	 First of all we add a Vector3f field called moveTarget. This is the position it will try
to reach, relative to the current position.

2.	 We add an if statement with three outcomes in the controlUpdate method,
which is the main bulk of the logic in the class. The first clause should disable it
and enable the AttackState if AIControl has found a suitable target using
the following code:
if(aiControl.getTarget() != null){
 this.setEnabled(false);
 Vector3f direction = aiControl.getTarget().
getWorldTranslation().subtract(spatial.getWorldTranslation());
 this.spatial.getControl(BetterCharacterControl.class).
setViewDirection(direction);
 this.spatial.getControl(AttackState.class).setEnabled(true);
}

3.	 If its location is close enough to the moveTarget vector, it should pick a new one
nearby, as shown in the following code:
else if(moveTarget == null || this.spatial.getWorldTranslation().
distance(moveTarget) < 1f){
 float x = (FastMath.nextRandomFloat() - 0.5f) * 2f;
 moveTarget = new Vector3f(x, 0, (1f - FastMath.abs(x)) - 0.5f).
multLocal(5f);
 moveTarget.addLocal(this.spatial.getWorldTranslation());
}

4.	 Otherwise, it should keep moving towards the target, as shown in the following code:
else {
 Vector3f direction = moveTarget.subtract(this.spatial.
getWorldTranslation()).normalizeLocal();
 aiControl.move(direction, true);
}

5.	 Finally, in the stateExit method, we should make it stop moving using the
following code:
aiControl.move(Vector3f.ZERO, false);

Artificial Intelligence

134

That's one state out of three; let's look at the AttackState. We can implement this by
performing the following steps:

1.	 The AttackState keeps track of values related to firing. It needs to have a float for
fireDistance, which is how far the AI can fire; an integer called clip, which is how
many rounds it has in the current clip; another integer called ammo, which defines
how many rounds it has in total; and finally, a float called fireCooldown, which
defines the time between each shot the AI fires.

2.	 In the stateEnter method, we give the AI some ammunition. This is mostly for
testing purposes, as shown in the following code:
clip = 5;
ammo = 10;

3.	 In the state's controlUpdate method, we do a number of checks. First we check
whether clip is 0. If this is true, we check whether ammo is also 0. If this is also true,
the AI must flee! We disable this state and enable RetreatState instead using the
following code:
if(clip == 0){
 if(ammo == 0){
 this.setEnabled(false);
 this.spatial.getControl(RetreatState.class).setEnabled(true);
 }

4.	 If the state still has ammo, it should refill the clip. We also set a longer time until it
can fire again, as shown in the following code:
else {
 clip += 5;
 ammo -= 5;
 fireCooldown = 5f;
}

5.	 In the main if statement, if the state has lost the target, it should disable the state
and switch to PatrolState, as shown in the following code:
else if(aiControl.getTarget() == null){
 this.setEnabled(false);
 this.spatial.getControl(PatrolState.class).
 setEnabled(true);
}

6.	 If it still has a target and is in a position to fire, it should fire, as shown in the
following code:
else if(fireCooldown <= 0f && aiControl.getSpatial().
getWorldTranslation().distance(aiControl.getTarget().
getWorldTranslation()) < fireDistance){

Chapter 5

135

 clip--;
 fireCooldown = 2f;
}

7.	 Finally, if it is still waiting for the weapon to cool down since the last shot, it should
keep waiting, as shown in the following code:
else if(fireCooldown > 0f){
 fireCooldown -= tpf;
}

The third and final state for our AI is RetreatState. We can implement this by performing
the following steps:

1.	 Like the PatrolState, it should have a moveTarget field that it tries to reach.

2.	 We also add a float called fleeTimer that defines for how long it will try to get away.

3.	 In its controlUpdate method, if fleeTimer has not reached 0 yet, and it still feels
a threat, it will pick a location opposite from the target and move towards it, as shown
in the following code:
Vector3f worldTranslation = this.spatial.getWorldTranslation();
if (fleeTimer > 0f && aiControl.getTarget() != null) {
 if (moveTarget == null || worldTranslation.distance(moveTarget)
< 1f) {
 moveTarget = worldTranslation.subtract(aiControl.getTarget().
getWorldTranslation());
 moveTarget.addLocal(worldTranslation);
 }
 fleeTimer -= tpf;
 Vector3f direction = moveTarget.subtract(worldTranslation).
normalizeLocal();
 aiControl.move(direction, true);
}

4.	 Otherwise, it's all clear, and it will switch to PatrolState.

How it works...
The first thing we did was define an abstract class called AIState. It's convenient to
use the control pattern since it means we have access to the spatial and familiar ways
to attach/detach states and turn them on and off.

The stateEnter and stateExit methods are called when the state is enabled and
disabled, and happens on transition from and to other states. The class also expects
there to be some kind of AI control class.

Artificial Intelligence

136

The first state extending AIState was the PatrolState. Its update method has three
outcomes. If the AI has spotted something it can attack, it will change to the AttackState.
Otherwise, if it's close to the place it has selected to move to, it will select a new target. Or, if
it still has some way to go, it will just continue moving towards it.

The AttackState has a bit more functionality, as it also handles firing and ammunition
management. Remember, if it has come here, the AI has already decided it should attack
something. Hence, if it has no ammunition, it will switch to the RetreatState (although
we generously give it some ammo every time it enters the state). Otherwise, it will attack or
try attacking.

The RetreatState only has one goal: to try to get as far away from the threat as possible.
Once it has lost sight of the target, or has fled for the specified amount of time, it will switch
to PatrolState.

As we can see, the logic is all contained within the associated state, which can be very
convenient. The flow of the states will also always make sure the AI ends up in the
PatrolState in the end.

Creating the AI using cover
Having AI using cover is a huge step towards making characters seem more believable and it
usually makes them more challenging as they don't die as quickly.

There are many ways to implement this functionality. In the simplest form, the AI is not aware
of any cover. It's simply scripted (by a designer) to move to a predefined favorable position
when they spot an enemy. A player playing the sequence for the first time can't possibly
notice the difference between an AI taking the decision by itself. Hence, the task of creating
a believable AI (for that situation) is accomplished.

A much more advanced way would be to use the same principles for cover, which was
established in Chapter 2, Cameras and Game Controls. However, evaluating options also
becomes far more complex and unpredictable. Unpredictable AI might be good from the
player's perspective, but it's a nightmare from a designer's perspective.

In this recipe, we'll go for a middle ground. First of all, we will base the AI on the FSM created
in the previous recipe, and add a new state that handles finding cover. We will then add cover
points to a scene, from which the AI can pick a suitable one and move there before attacking.

State diagram

Chapter 5

137

How to do it...
Let's begin by defining a class called CoverPoint, extending AbstractControl by
performing the following steps:

1.	 For now we can add a Vector3f called coverDirection. With getters and setters,
that's all that's needed.

2.	 We create a class called SeekCoverState, extending our AIState class from the
previous recipe.

3.	 It needs a list of CoverPoints called availableCovers, and a CoverPoint
called targetCover.

4.	 In the stateEnter method, it should look for a suitable cover point. We can do this
with the following piece of code. It parses the list and takes the first CoverPoint
where the dot product of the direction and coverDirection is positive:
for(CoverPoint cover: availableCovers){
 if(aiControl.getTarget() != null){
 Vector3f directionToTarget = cover.getSpatial().
getWorldTranslation().add(aiControl.getTarget().
getWorldTranslation()).normalizeLocal();

 if(cover.getCoverDirection().dot(directionToTarget) > 0){
 targetCover = cover;
 break;
 }
 }
}

5.	 In the controlUpdate method, the AI should move towards targetCover if it
has one.

6.	 Once it gets close enough, targetCover should be set to null, indicating it should
switch to AttackState.

7.	 When this happens, stateExit should tell the AI to stop moving.

8.	 After adding the new state to the AI control class, to let it know it has the ability to
seek cover, we also need to modify other states to enable it.

9.	 Most suitable is PatrolState, where it can switch to SeekCoverState instead
of AttackState when it spots a target.

10.	 If we have a test case for the Finite State Machine, all we would now need to do is
to add some CoverPoints to a scene and see what happens.

Artificial Intelligence

138

How it works...
The CoverPoint class we created adds the behavior to any Spatial instances to act as a
cover. In a game, you would most likely not see the CoverPoint spatial, but it's good for debug
and editing purposes. The concept can be expanded to cover other types of interest points for AI,
as well as modified to handle volumes, rather than points using the spatial's geometry.

Once the SeekCoverState is enabled, it will try to find a suitable cover point that's
relative to the target's position (at that time). It does this using the dot product between
coverDirection and the direction to the target. If this is positive, it means the target
is in front of the cover, and it picks this as targetCover.

When the AI reaches this, it sets targetCover to null. This means that when
controlUpdate is called the next time, it will exit the state and enable AttackState
instead. In a real game, the AI would most likely use some kind of navigation or pathfinding
to get there. You can get an introduction to navigation in the next recipe. There is also the
Pathfinding: Our own A* pathfinder recipe that covers implementing pathfinding later in
the chapter.

With the current implementation of the AI, the result might be a bit erratic, since it doesn't
remember the target's position. It might very well be that it doesn't see the target once it
reaches the cover and instantly switches to PatrolState.

Generating NavMesh in SDK
Automatic NavMesh generation is a feature of the SDK available in the SceneExplorer. The
NavMesh, as its name implies, is a mesh in which pathfinding can be applied to have AIs
navigate through the game world. The generator takes a set of input values and, based on
these, will create a mesh that stretches around obstacles. It can be seen as painted lines
that the AI can use to know where it's safe to walk.

NavMesh on top of the terrain

Chapter 5

139

Getting ready
The feature is available through a plugin, which we have to download first. Refer to the
Downloading the plugins section in Appendix, Information Fragments.

How to do it...
1.	 Once the plugin has been downloaded, we can open any scene in the

SceneComposer window, as shown in the following screenshot:

2.	 In the SceneExplorer window, right-click on the top node, and navigate to Add
Spatial.. | NavMesh.. to bring up the options window.

3.	 The simplest procedure from here is to click on Finish and see what happens.

4.	 A geometry called NavMesh will shortly appear in the list, and selecting it will display
its reach. Blue lines indicate navigable paths.

5.	 If we're happy with it (which might be difficult to say if it's the first time we see one),
we save the scene.

How it works...
The method by which the generator works is controllable by the large number of settings
available. It can be difficult to know how they all affect the result, and what kind of result
we're after, anyway. The best way is simply to test different parameters until a desired result
is achieved. Each line is a path the pathfinder can follow, and there should be no isolated
islands. The less lines there are in the mesh, the more restricted the AI will be. Remember,
that different settings are optimal for different scenes.

Artificial Intelligence

140

Pathfinding – using NavMesh
Pathfinding can be done in many different ways, and in this recipe we'll look at how to use
the NavMesh generated in the previous recipe for pathfinding. We'll use jMonkeyEngine's AI
plugin, which has a pathfinder designed to navigate NavMeshes.

We achieve this using the Control pattern, and will also implement a way to generate paths in
a thread-safe way separate from the main update thread, to not impact the performance of
the application.

Getting ready
We'll need a scene with a NavMesh geometry in it. We also need to download the AI library
plugin. Instructions on how to download a plugin in the SDK can be found in the Downloading
the plugins section in Appendix, Information Fragments. The plugin is called jME3 AI
Library. Once we have downloaded the plugin, we need to add it to the project. Right-click
on the project and select Properties, then select Libraries, and then select Add Library....
Select jME3 AI Library and click on Add Library.

How to do it...
We start by defining the class that will generate the paths for us. This part will be implemented
by performing the following steps:

1.	 We create a new class called PathfinderThread, which extends the Thread class.

2.	 It needs a couple of fields, a Vector3f called target, a NavMeshPathfinder
called pathfinder, and two Booleans, pathfinding and running, where
running should be set to true by default.

3.	 The constructor should take a NavMesh object as input, and we instantiate the
pathfinder with the same, as shown in the following code:
public PathfinderThread(NavMesh navMesh) {
 pathfinder = new NavMeshPathfinder(navMesh);
 this.setDaemon(true);
}

4.	 We override the run method to handle pathfinding. While running is true, the
following logic should apply:
if (target != null) {
 pathfinding = true;
 pathfinder.setPosition(getSpatial().
 getWorldTranslation());
 boolean success = pathfinder.computePath(target);

Chapter 5

141

 if (success) {
 target = null;
 }
 pathfinding = false;
}

5.	 If target is not null, we set pathfinding to true.

6.	 Then we set the start position of the pathfinder to the AI's current position, as shown
in the following code:
pathfinder.setPosition(getSpatial().getWorldTranslation());

7.	 If the pathfinder can find a path, we set target to null.

8.	 In either case, pathfinding is done, and pathfinding is set to false.

9.	 Finally, we tell the thread to sleep for one second until trying again, as shown in the
following code:
Thread.sleep(1000);

That's the first step of the pathfinding handling. Next, we'll define a class that will use this.
This will be implemented by performing the following steps:

1.	 We create a new class that extends AbstractControl called
NavMeshNavigationControl.

2.	 It needs two fields, a PathfinderThread called pathfinderThread and a
Vector3f called waypointPosition.

3.	 Its constructor should take a node as input, and we use this to extract a NavMesh
from, and pass it on to pathfinderThread, which is instantiated in the constructor
as follows:
public NavMeshNavigationControl(Node world) {
 Mesh mesh = ((Geometry) world.getChild("NavMesh")).getMesh();
 NavMesh navMesh = new NavMesh(mesh);
 pathfinderThread = new PathfinderThread(navMesh);
 pathfinderThread.start();
}

4.	 Now, we create a method to pass a position it should pathfind to using the
following code:
public void moveTo(Vector3f target) {
 pathfinderThread.setTarget(target);
}

5.	 The controlUpdate method is what does the bulk of the work.

6.	 We start by checking whether waypointPosition is null.

Artificial Intelligence

142

7.	 If it is not null, we project waypointPosition and the spatials worldTranslation
onto a 2D plane (by removing the y value), to see how far apart they are as follows:
Vector2f aiPosition = new Vector2f(spatialPosition.x,
spatialPosition.z);
Vector2f waypoint2D = new Vector2f(waypointPosition.x,
waypointPosition.z);
float distance = aiPosition.distance(waypoint2D);

8.	 If the distance is more than 1f, we tell the spatial to move in the direction of the
waypoint. This recipe uses the GameCharacterControl class from Chapter 2,
Cameras and Game Controls:
if(distance > 1f){
 Vector2f direction = waypoint2D.subtract(aiPosition);
 direction.mult(tpf);
 spatial.getControl(GameCharacterControl.class).
setViewDirection(new Vector3f(direction.x, 0, direction.y).
normalize());
 spatial.getControl(GameCharacterControl.class).
 onAction("MoveForward", true, 1);
}

9.	 If the distance is less than 1f, we set waypointPosition to null.

10.	 If waypointPosition is null, and there is another waypoint to get from the
pathfinder, we tell the pathfinder to step to the next waypoint and apply its value
to our waypointPosition field as shown in the following code snippet:
else if (!pathfinderThread.isPathfinding() && pathfinderThread.
pathfinder.getNextWaypoint() != null && !pathfinderThread.
pathfinder.isAtGoalWaypoint()){
 pathfinderThread.pathfinder.goToNextWaypoint();
 waypointPosition = new Vector3f(pathfinderThread.pathfinder.
getWaypointPosition());
}

How it works...
The PathfinderThread handles pathfinding. To do this in a thread-safe way, we use
the pathfinding Boolean to let other threads know it's currently busy, so that they don't try
to read from the pathfinder.

Target is the position the pathfinder should try to reach. This is set externally and will be used
to indicate whether the thread should attempt to pathfind or not. This is why we set it to null
once pathfinding is successful.

Chapter 5

143

We keep the thread running all the time, to avoid having to initialize it every time. The thread
will wake up once a second to see whether there is any pathfinding to perform. If the delay
was not there, it would use up resources, unnecessarily.

This class uses the waypointPosition field to store the current waypoint we're trying to
reach. This is so that we don't need to look it up in the pathfinder every time, and thus risk
interrupting an ongoing pathfinding. It also allows the AI to keep moving even if it's currently
contemplating a new path.

The controlUpdate method first checks whether the waypointPosition is null. Null
indicates it has no current goal, and should go to the pathfinder to see whether there is a
new waypoint for it.

It can only get a new waypoint if pathfinderThread currently is not actively pathfinding
and if there is a next waypoint to get.

If it already has a waypointPosition field, it will convert both the spatials position and the
waypointPosition to 2D and see how far apart they are. This is necessary as we can't
guarantee that NavMesh is exactly on the same plane as the spatial.

If it finds out that the distance is further than 1f, it will find out the direction to the
waypointPosition field and tell the spatial to move in that direction. Otherwise
(if it's close enough), it will set the waypointPosition field to null.

Once it has reached the final waypoint, it will tell the spatial to stop.

Controlling groups of AI
In this recipe, we'll kill two birds with one stone and implement both an interface for group AI
management and look at weighted decision making.

In many ways, the architecture will be similar to the Decision making – Finite State Machine
recipe. It's recommended to have a look at it before making this recipe. The big difference
from the normal state machine is that instead of the states having definite outcomes, an AI
Manager will look at the current needs, and assign units to different tasks.

This recipe will also make use of an AIControl class. This is also an extension of the
AIControl that can be found in the Creating a reusable AI control class recipe.

As an example, we'll use resource gathering units in an RTS. In this simplified game, there
are two resources, wood and food. Food is consumed continuously by the workers and is
the driving force behind the decision. The AI Manager will try to keep the levels of the food
storage at a set minimum level, taking into account the current consumption rate. The scarcer
the food becomes, the more units will be assigned to gather it. Any unit not occupied by food
gathering will be assigned to wood gathering instead.

Artificial Intelligence

144

How to do it...
We'll start by defining a GatherResourceState class. It extends the same AIState we
defined in the Decision making – Finite State Machine recipe. This will be implemented by
performing the following steps:

1.	 First of all it needs access to the AIControl called aiControl.

2.	 It needs two additional fields, a Spatial defining something to pick up called
resource, and an integer called amountCarried.

3.	 In controlUpdate method, we define two branches. The first is for if the unit
isn't carrying anything, amountCarried == 0. In this case, the unit should
move towards resource. Once it gets close enough, it should pick up some, and
amountCarried should be increased, as shown in the following code:
Vector3f direction = resource.getWorldTranslation().subtract(this.
spatial.getWorldTranslation());
if(direction.length() > 1f){
 direction.normalizeLocal();
 aiControl.move(direction, true);
} else {
 amountCarried = 10;
}

4.	 In the other case, amountCarried is more than 0. Now, the unit should move
towards the HQ instead. Once it's close enough, finishTask() is called.

5.	 The finishTask method calls the AI Manager via aiControl to increase the
resource amount that the state handles with the supplied amount as follows:
aiControl.getAiManager().onFinishTask(this.getClass(),
amountCarried);
amountCarried = 0;

6.	 Finally, we create two new classes that extend this class, namely GatherFoodState
and GatherWoodState.

With the new state handled, we can focus on the AIControl class. It will follow the pattern
established elsewhere in the chapter, but it needs some new functionality. This will be
implemented by performing the following three steps:

1.	 It needs two new fields. The first is an AIAppState called aiManager. It also needs
to keep track of its state in an AIAppState called currentState.

2.	 In the setSpatial method, we add the two gathering states to our control, and
make sure they're disabled, as shown in the following code:
this.spatial.addControl(new GatherFoodState());
this.spatial.addControl(new GatherWoodState());

Chapter 5

145

this.spatial.getControl(GatherFoodState.class).setEnabled(false);
this.spatial.getControl(GatherWoodState.class).setEnabled(false);

3.	 We also add a method to set the state, setCurrentState. Sidestepping
conventions, it should not set an instance of a state, but enable an existing state
the AI control class has, while disabling the previous state (if any), as shown in the
following code:
public void setCurrentState(Class<? extends AIStateRTS> newState)
{
 if(this.currentState != null && this.currentState.getClass() !=
newState){
 this.currentState.setEnabled(false);
 }
 this.currentState = state;
 this.currentState.setEnabled(true);
}

Now we have to write a class that manages the units. It will be based on the AppState
pattern, and consists of the following steps:

1.	 We begin by creating a new class called AIAppState that extends
AbstractAppState.

2.	 It needs a List<AIControl> of the units it controls, called aiList. We also
add Map<Class<? extends AIStateRTS>, Spatial> called resources
that contains the resources in the world that can be gathered.

3.	 It then needs to keep track of its stock of wood and food. There are also fields for
the current foodConsumption value per second, minimumFoodStorage it would
like to keep, and a timer for how long before it wants to reevaluate its decisions.

4.	 The update method is pretty simple. It starts by subtracting foodConsumption
from the storage. Then, if timer has reached 0, it will call the evaluate method,
as shown in the following code:
food -= foodConsumption * tpf;
food = Math.max(0, food);
timer-= tpf;
if(timer <= 0f){
 evaluate();
 timer = 5f;
}

5.	 In the evaluate method, we begin by establishing the food requirement, as shown
in the following code:
float foodRequirement = foodConsumption * 20f +
minimumFoodStorage;

Artificial Intelligence

146

6.	 Then we decide how urgent food gathering is, on a factor of 0.0 - 1.0, as shown in the
following code:
float factorFood = 1f - (Math.min(food, foodRequirement)) /
foodRequirement;

7.	 Now we decide how many workers should be assigned to food gathering by taking
that factor and multiplying it by the total amount of workers, as shown in the
following code:
int numWorkers = aiList.size();
int requiredFoodGatherers = (int) Math.round(numWorkers *
factorFood);
int foodGatherers = workersByState(GatherFoodState.class);

8.	 We create a helper method, called workersByState, that returns the number of
workers assigned to a given state, as shown in the following code:
private int workersByState(Class<? extends AIStateRTS> state){
 int amount = 0;
 for(AIControl_RTS ai: aiList){
 if(ai.getCurrentState() != null && ai.getCurrentState().
getClass() == state){
 amount++;
 }
 }
 return amount;
}

9.	 Comparing the current gathers with the required amount, we know whether to
increase or decrease the number of food gatherers. We then set the state to change
according to whether more or less food gatherers are required, as shown in the
following code:
int foodGatherers = workersByState(GatherFoodState.class);
int toSet = requiredFoodGatherers – foodGatherers;
Class<? extends AIStateRTS> state = null;
if(toSet > 0){
 state = GatherFoodState.class;
} else if (toSet < 0){
 state = GatherWoodState.class;
 toSet = -toSet;
}

Chapter 5

147

10.	 We can create another method, called setWorkerState, that loops through aiList
and calls setCurrentState of the first available worker. It reruns true if it has
successfully set the state of a unit, as shown in the following code:
private boolean setWorkerState(Class<? extends AIStateRTS> state){
 for(AIControl_RTS ai: aiList){
 if(ai.getCurrentState() == null || ai.getCurrentState().
getClass() != state){
 ai.setCurrentState(state);
 ((GatherResourceState)ai.getCurrentState()).
 setResource(resources.get(state));
 return true;
 }
 }
 return false;
}

11.	 The example implementation also requires that we set the resource for that state in
the form of a spatial. This is so that the units know where they can pick up some of the
resource. It can be set somewhere in the application, as shown in the following code:
aiAppState.setResource(GatherFoodState.class, foodSpatial);
aiAppState.setResource(GatherWoodState.class, woodSpatial);

How it works...
At the beginning of the game, we add one green food resource, and one brown wood resource,
some distance away from the HQ (at 0,0,0). The AIAppState starts by looking at the current
food storage, seeing it's low, it will assign an AI to go to the food resource and bring back food.

The AIAppState evaluate method starts by establishing the need for food gathering. It does
this by dividing the food stores by the current requirement. By setting the food in the algorithm
to not be able to exceed the requirement, we make sure we get a figure between 0.0 and 1.0.

It then takes the amount of units available, and decides how many of those should be
gathering food, based on the factorFood figure, rounding it off to the nearest integer.

The result is compared to how many are currently on a food gathering mission, and adjusts
the number to suit the current need, assigning them to either food or wood gathering.

The worker AI is completely controlled by the state they're set to by the manager, and in this
recipe, all they can do is move to one resource or the other. They have no idle state, and are
expected to always have some task.

The two states we use in the recipe are actually the same class. Both resources are gathered
in the same way, and GatherFoodState and GatherWoodState are only used as
identifiers. In a real game, they might well behave differently from each other. If not, it might
be a good idea to use a parameterized version of GatherResourceState instead.

Artificial Intelligence

148

There's more
This recipe only has two different states, where one is the deciding one. What do we do if we
have, let's say five equally important resources or tasks to consider? The principles are very
much the same:

ff Begin by normalizing the need for each task between 0.0 and 1.0. This makes it
easier to balance things.

ff Next, add all the values together, and divide each value by the sum. Now, each value
is balanced with each other, and the total of all values is 1.0.

In this recipe, the evaluation is done continuously, but it might just as well be applied when an
AI has finished a task, to see what it should do next. In that case, the task could be picked at
random among the distributed values to make it more dynamic.

Pathfinding – our own A* pathfinder
Using the built-in functions of the NavMesh package might be enough for some, but in many
cases we need customized pathfinding for our projects. Knowing how to implement, or even
better, understanding A* (a-star) pathfinding, can take us a long way in our AI endeavors. It's
easy to implement and very versatile. Correctly set up, it will always find the shortest path (and
pretty fast too!). One of the drawbacks is that it can be memory-intensive in large areas if not
kept in check.

A* is an algorithm that finds the shortest path in a graph. It's good at finding this quickly using
heuristics, or an estimation of the cost to get from a position in the graph to the goal position.

Finding a good value for the heuristic (H) is very important in order to make it effective. In
technical terms, H needs to be admissible. This means that the estimated cost should never
exceed the actual cost.

Each position, called a node, will keep track of how the cost from the starting node to itself,
using the current path. It will then choose the next node to go to base on this, cost plus the
cost to the next node plus the estimated cost to the goal node.

A* could be said to work something like this; imagine that we're trying to find our way to a
castle, through a maze. We're at an intersection, and can choose either the left path or the
right path. We can see the castle in the distance to our left. We don't know anything about
either path beyond the point where we're standing, but at least, taking the left path brings
us closer to the castle, so it's natural to test that path.

Chapter 5

149

Now, it could very well be that the left path is wrong, and much longer. That's the reason it
also keeps track of how far it's travelled along the path. This is called G. The longer it travels
along a path, the higher G will become. If the path also starts to deviate from the way to
the castle, H will rise again. At some point G plus H might be higher than it would be at the
entrance to the right path at the intersection. Then it will hop back to that point and see
where the other path leads, until the point where G plus H along that path is higher.

This way, the AI using A* knows it's always traveled the shortest path once it exits the maze.

In this recipe, we'll use an estimated cost to the goal, H, that is the distance as-the-bird-flies
between two nodes. This will guarantee that H is admissible and always equal to or less than
the actual distance to travel.

We'll use the distance between nodes to calculate the cost to travel between them. This will be
a lot to take in, but once done, we have a pathfinder we can use for many different applications.

How to do it...
We'll start by defining the node object, in a bean pattern. This will be implemented by
performing the following steps:

1.	 We create a new class called WaypointNode that extends AbstractControl.

2.	 It needs three integers, f, h, and g.

3.	 We also have to add two Booleans, open and closed, to aid the pathfinder, a list
of other nodes, called connections, it's current position stored in Vector3f and
another node as parent.

Now we can create the pathfinder itself. This will be implemented by performing the following
steps. We create a new class called AStarPathfinder.

1.	 The pathfinder class needs a list of nodes, called openList, which are the nodes
currently considered.

2.	 It has to know of the startNode and goalNode.

3.	 The pathfind method is the heart of the class. We can take a look at it in full,
before explaining it, as shown in the following code:
private void pathfind() {
 openList.add(startNode);
 WaypointNode current;
 while(!openList.isEmpty()) {
 current = openList.get(0);
 for (WaypointNode neighbor : current.getConnections()) {
 if (!neighbor.isClosed()) {
 if (!neighbor.isOpen()) {
 openList.add(neighbor);

Artificial Intelligence

150

 neighbor.setOpen(true);
 setParent(current, neighbor);
 } else if (current.getG() + neighbor.getPosition().
distance(goalNode.getPosition()) < neighbor.getG()) { // new path
is shorter
 setParent(current, neighbor);
 }
 }
 }
 openList.remove(current);
 current.setClosed(true);
 if (goalNode.isClosed()) {
 break;
 }
 // sort list
 Collections.sort(openList, waypointComparator);
 }
 backtrack();
}

4.	 It should begin by adding the startNode to openList.

5.	 Next, we define a while loop that always picks the first node in openList.

6.	 Inside this loop, we create another for loop that iterates through all the currently
selected connected nodes, called neighbors.

7.	 If the neighboring node is not in openList, it should be added there. It should
also set the current node to parentNode of the neighbor node, as shown in
the following code:
openList.add(neighbor);
neighbor.setOpen(true);
neighbor.setParent(current);

8.	 While doing this, g of the neighbor should be set to current node's G plus the distance
between the two nodes, as shown in the following code:
neighbor.setG(current.getG() + (int) (current.getPosition().
distance(neighbor.getPosition()) * multiple));

9.	 Also, if H has not already been calculated for neighbor, it should, by measuring
the distance between neighbor and goalNode. F should be updated by adding
G and H together, as shown in the following code:
if(neighbor.getH() == 0){
 neighbor.setH((int) (neighbor.getPosition().distance(goalNode.
getPosition()) * multiple));
}
neighbor.updateF();

Chapter 5

151

10.	 It might also be that a shorter path has been discovered since neighbor was
calculated. In this case, the neighbor should be updated again with the current
node as parent. Do that and repeat the previous two steps.

11.	 If neighbor is closed, it shouldn't do anything with it.

12.	 Once the neighbors have been parsed, the current node should be removed from
openList. openList should then be reordered according to the total cost, F, of
the nodes.

13.	 The looping of openList should exit, either when it's empty, or when the goalNode
has been reached, which is indicated by when it's closed.

14.	 When the pathfinding is done, the shortest path can be extracted by going through
the parent nodes starting with the goalNode, as shown in the following code.
Reversing the resulting list will yield the best path, from startNode to goalNode.
This can be implemented as follows:
private void backtrack() {
 List<WaypointNode> path = new ArrayList<WaypointNode>();
 path.add(goalNode);
 WaypointNode parent = goalNode;
 while (parent != null) {
 parent = parent.getParent();
 path.add(parent);
 }
}

How it works...
The node bean that we created stores information about the state of the node, which is set
by the pathfinder as it passes, or considers passing a node. The g value is the total cost to
this node, along the current path, from the starting node. h is the estimated value left to the
goalNode. In this recipe, it's the shortest distance possible. To be the most effective, it should
be as close to the actual distance as possible, without exceeding it. This is to guarantee that it
finds the shortest path. F is simply g and h added together, becoming the total estimated cost
of the path using this node, and is the value used by the algorithm to consider.

These values are stored as integers, rather than floats. This is better both for memory and
processing purposes. We get around lower-than-one distances by multiplying them with 100.

It also keeps track of whether it's currently open or closed. It's quicker to query the node itself,
than seeing if the list contains it. The node actually has three states, either open, closed, or
the standard, neither which is when it has not yet been considered for the path. The parent of
a node defines from which other node the path came to this node.

Artificial Intelligence

152

openList contains all the nodes the pathfinder is currently considering. It starts with only
the startNode, adding all its neighbors, since none are either open or closed at this stage.
It also sets the parent of the node, calculates the cost to get to this node, and estimates the
cost left to the goal (if it has not been calculated before). It only needs to do this once per
node, as long as the goal is not moving.

Now, openList has a few new nodes to work with, and the current node is removed from
the list. At the end of the while loop, we sort openList according to f-cost of the nodes,
so that it always starts looking at the node with the lowest total cost. This is to make sure it
doesn't spend any unnecessary time looking at paths which are not optimal.

The algorithm can be considered to be successful once the goalNode has been put in
openList and is set to closed. We can't end searching just because the goalNode enters
openList. Since we also reconsider nodes if we find a shorter path to the node, we want to
check all the goalNodes neighbors as well before ending the search.

If there is no path available to the goalNode, openList will become empty before the
goalNode is closed, and the search will fail.

6
GUI with Nifty GUI

First of all, what is Nifty GUI? It's not the only GUI available in jMonkeyEngine, but it is the
one that is officially supported. It is not developed by the jMonkeyEngine team but is an
independent open source effort that has implementations in other engines as well.

In this chapter, we'll cover the following topics:

ff Initializing Nifty and managing an options menu

ff Loading the screen

ff Creating an RPG dialog screen

ff Implementing a game console

ff Handling a game message queue

ff Creating an inventory screen

ff Customizing the input and settings page

ff Using offscreen rendering for a minimap

Introduction
Nifty GUI is operated using screens. A screen could be, for example, an in-game (HUD)
heads-up display or the same game's main menu. Screens are built using XML and Nifty's
own set of tags. On each screen, there can be layers that are drawn on top of each other
according to their order.

On a screen, objects cascade similarly as on a web page, that is, from top to bottom or left
to right, depending on the settings. The following code is an example of what a simple screen
might look like:

<nifty xmlns="http://nifty-gui.sourceforge.net/nifty-1.3.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

GUI with Nifty GUI

154

 xsi:schemaLocation="http://nifty-gui.sourceforge.net/nifty-
1.3.xsd http://nifty-gui.sourceforge.net/nifty-1.3.xsd">
 <useStyles filename="nifty-default-styles.xml" />
 <useControls filename="nifty-default-controls.xml" />

 <registerSound id="showWindow" filename="Sound/Effects/Beep.ogg" />

 <screen id="main" controller="gui.controller.MainScreenController">
 <layer id="layer0" childLayout="absolute" backgroundColor="#000f">
 <!-- add more content -->
 </layer>
 </screen>
</nifty>

Each screen has a Controller class tied to it. This is the link between the XML and Java
that allows Nifty to control functions in the code and the other way around.

Another important concept is Controls (not to be confused with Controller classes or
jMonkeyEngine's Control interface). Using Controls is a very convenient way to make screen
files smaller and create reusable components. Anyone familiar with, for example, components
in JSF will see the similarities. It's highly recommended that you become accustomed to using
these early on, or screen files will quickly become unmanageable.

A UI's implementation is often very specific to the game in question. This chapter will try to
show and explain the different functions and effects available in Nifty GUI. Even if the title of
a recipe does not appeal to you, it could still be worth to glance through the content to see
whether it covers some features that could be suitable for your project.

Initializing Nifty and managing an options
menu

To start things off, let's begin with a simple recipe that will provide us with the basics of
setting up the application to use Nifty GUI and tell us how to manage the options menu.
An options menu is usually found in games; it acts as a link between different screens. For
this reason, it's suitable to create it using the control pattern so it can be easily handled
across screens.

We'll initialize Nifty GUI inside AppState to offset it from the main application code and then
access the application from Nifty and control Nifty through code.

Getting ready
Let's look at how to initialize Nifty in an application. We start off by defining a new
AppState to handle our Nifty functions. We can call it NiftyAppState and have
it extend AbstractAppState.

Chapter 6

155

In the initialize method, we need to create the Nifty display with the following line of
code, giving Nifty access to various functionalities within the application and telling it to
render o in the GUI view:

NiftyJmeDisplay niftyDisplay = new NiftyJmeDisplay(app.
getAssetManager(),
 app.getInputManager(),
 app.getAudioRenderer(),
 app.getRenderManager().getPostView("Gui Default"));

We should also store the Nifty instance in the class for use later, using niftyDisplay.
getNifty(). With this done, we need to add niftyDisplay as a processor to the same
view we just specified, using the following code:

app.getRenderManager().getPostView("Gui Default").
addProcessor(niftyDisplay);

The last thing that needs to be done before Nifty could show anything is to tell it what to draw.
We do this with nifty.fromXml and pass the XML file to be used as well as the name of the
screen (if several screens are stored in the same XML).

How to do it...
We start by defining the XML files for our options menu and the screen that will contain it.
Perform the following steps to do this:

1.	 First of all, we should create a new file called optionsMenu.xml. It should reside in
the Interface/Controls folder.

2.	 The first tag we need to have is a <nifty-controls> tag to let Nifty know that the
elements inside should be parsed as controls.

3.	 Then, we add <controlDefinition name="options">, which is the actual
options menu instance.

4.	 This is where the actual layout starts, and it does so with a <panel> element, as
shown in the following code:
<panel id="optionsPanel" childLayout="vertical"
width="40%" height="60%" align="center" valign="center"
backgroundColor="#333f">

5.	 At the top, we'll have <panel> that will include <control name="label">
element with text="Options".

GUI with Nifty GUI

156

6.	 To the right of this panel, there should be a small button with the familiar x to close
the menu and an interact element to call a method in the Controller class, as
shown in the following code:
<control name="button" id="closeButton" align="right" label="x"
height="30px" width="30px" >
 <interact onClick="toggleOptionsMenu()"/>
</control>

7.	 After this, we can have as many <control name="button"> elements we want
for our options menu to work. There should at least be one that calls quit() in the
Controller class to stop the application.

8.	 Now, we can define a screen to contain our options menu. If we right-click on the
Projects window and select New/Empty Nifty GUI file, we will get a basic setup
for a screen.

9.	 Clean out everything between the <layer> tags, and change the controller of the
<screen> element to gui.controls.NiftyController.

10.	 Next, we need to define what styles to include using the <useStyles> tag, which
should appear before the <screen> element.

11.	 We add <useControls filename="nifty-default-controls.xml" /> to
include access to basic nifty controls such as buttons, and we should add another
<useControls> tag for our options menu. These should also be added before the
<screen> element.

Now, we can start looking at the Controller code for this. Perform the following five steps to
do this:

1.	 We should define a class that implements the ScreenController interface, which
will become the link between the GUI and the code. We can make it abstract and call
it NiftyController.

2.	 It should have two protected fields, namely, Nifty nifty and Screen screen,
which will be set from the values provided in the bind method.

3.	 We also need a Boolean field called optionsMenuVisible.

4.	 We need to add methods for each of the methods specified in the optionsMenu.xml
file, and toggleOptionsMenu() should either show or hide the menu depending on
whether optionsMenuVisible is true or not. A handy way to get hold of an element
is by using the following code:
nifty.getCurrentScreen().findElementByName("options");

5.	 Then, we can call either hide() or show() on the element to control visibility.

Chapter 6

157

Normally, the application is shut down when Esc is pressed. Let's make the options menu
handle this instead; this consists of the following four steps:

1.	 Start by deleting the related mapping by adding the following line to the
NiftyAppState initialization method:
app.getInputManager().deleteMapping(SimpleApplication.INPUT_
MAPPING_EXIT);

2.	 Now, we need to add our own mapping for the Esc key, as shown in the
following code:
app.getInputManager().addMapping("TOGGLE_OPTIONS", new
KeyTrigger(KeyInput.KEY_ESCAPE));
app.getInputManager().addListener(this, "TOGGLE_OPTIONS");

3.	 The NiftyAppState method also needs to implement ActionListener and
handle the key press:
public void onAction(String name, boolean isPressed, float tpf) {
 if(name.equals(TOGGLE_OPTIONS) && isPressed){
 ((NiftyController)nifty.getCurrentScreen().
getScreenController()).toggleOptionsMenu();
 }
}

4.	 With the normal shut down routine removed, we need to add functionality inside
NiftyController to handle this instead. Since this class will be shared by the
screens, we provide the application with static access and a setter method. The
quit method just has to call app.stop() to shut it down.

How it works...
Nifty was initialized inside AppState to offset the code from the main application and make
it more modular. This also made it easier to add some more general functionalities related
to controlling the GUI.

Every nifty Controller class must implement the ScreenController interface for Nifty
to be able to find it. Since some functions will be shared across the screens, we created an
abstract class called NiftyController to avoid duplicating the code. Apart from handling
the generic Options menu, it was also given access to the application itself.

The link between the XML file and the Controller class doesn't need to be specified beyond
providing the qualified name of the controller in the screen. Likewise, Nifty will find methods
automatically using the name provided in the interact tag of ButtonControl.

GUI with Nifty GUI

158

The <panel> elements are versatile objects that can be used for many parts of the layout
and can contain most other types of layout items.

It's OK to contain several <controlDefinition> elements within a <nifty-controls> tag.

There's more…
It's very easy to use a properties file to back a Nifty file for localization purposes, as given
in the following points:

ff First of all, the following tag needs to be present to link the properties file:
<resourceBundle id="localization" filename="packagename.filename"
/>

ff It can be called, for example, from a label control:
<control name="label" text="${localization.STR_HELLO_WORLD}"/>

Loading the screen
In this recipe, we'll develop a loading screen along with a controller for the game. It'll cover the
most important aspects of the loading screen, such as showing a text and image for what it's
loading and an indicator that shows the system is working.

Before starting this, it's recommended that you have a basic understanding of how to set up
Nifty in an application and how to create screens and controllers. Have a look at the previous
recipe, Initializing Nifty managing an options menu, if you are unsure about this.

How to do it...
We begin by creating the XML for the loading screen. Perform the following nine steps to
do this:

1.	 Create a new file called loadingScreen.xml and load Nifty-default-styles
and Nifty-default-controls. Optionally, we can also include optionsMenu
from the previous recipe.

2.	 The first element we need is a <screen> element:
<screen id="loadingScreen" controller="gui.controller.
LoadingScreenController">

3.	 Inside this, we define a <layer> element:
<layer id="layer0" childLayout="center" backgroundColor="#000f">

Chapter 6

159

4.	 Inside this <layer> element, we define <panel> that will contain our layout. Note
that we set visible to false:
<panel id="loadingPanel" childLayout="vertical" visible="false">

5.	 Since we want a smooth transition to the screen, we'll add a fade effect to this panel:
<effect>
 <onShow name="fade" start="#00" end="#ff" length="500"
inherit="true"/>
 <onEndScreen name="fade" start="#ff" end="#00" length="200"
inherit="true"/>
</effect>

6.	 To add a movie-style and non-interactive feel to it, we will have three <panel>
elements inside this file. At the top and bottom, there will be two black bars
captioning the loading image, which will appear in the central panel.

7.	 Inside the topPanel element, we define <control name="label"> that will
contain the name of the scene that is being loaded.

8.	 The bottomPanel element will have an animated indicator that will show the system
hasn't frozen. We will define another panel inside this, aligned to the right of the
screen. We will use an imageSizePulsate effect to animate this and have it
fade in as well, as shown in the following code:
<effect>
 <onShow name="fade" start="#00" end="#ff" length="1000"/>
 <onShow name="imageSizePulsate" startSize="100%" endSize="50%"
pulsator="SinusPulsator" activated="true" timeType="infinite"/>
</effect>

9.	 Optionally, we can also add another <layer> tag beside the previous one that will
contain the options control from the previous recipe.

Now, we have a complete XML. Let's have a look at the controller for this. We will create it by
performing the following seven steps:

1.	 We begin by creating a new class called LoadingScreenController that extends
the NiftyController class we created in the previous recipe.

2.	 We define two strings, loadingText and loadingScreen, and setters for these
as well.

3.	 Next, we override the onStartScreen() method and add the following three lines
to it:
screen.findNiftyControl("caption", Label.class).
setText(loadingText); screen.findElementByName("central
Panel").getRenderer(ImageRenderer.class).setImage(nifty.
createImage(loadingScreen, true));
screen.findElementByName("loadingPanel").setVisible(true);

GUI with Nifty GUI

160

4.	 The controller is now done. However, there are some more things we need to do
before we can look at it.

5.	 First, we need to add the screen to Nifty. If we have the NiftyAppState
method from the previous recipe, we should add the following line just after
the nifty.fromXml call:
nifty.addXml("Interface/Screens/loadingScreen.xml");

6.	 We can also add a convenience class to access nifty.gotoScreen().

7.	 Now, before calling gotoScreen("loadingScreen") from our main class, we can
add the following lines to set lodingText and loadingImage:
((LoadingScreenController)niftyState.getNifty().
getScreen("loadingScreen").getScreenController()).
setLoadingText("Loading Test Scene"); ((LoadingScreenController)
niftyState.getNifty().getScreen("loadingScreen").
getScreenController()).setLoadingImage("Interface/Image/
loadingScreen.png");

How it works...
Most of the work in this recipe consists of getting the XML layout right. It's a good idea to
sketch it on paper first and visualize the flow of the elements.

The reason the fade effect is shorter is because by the time it fades out, the game is ready to
be played and the player doesn't need to wait longer than necessary. When the loading screen
is first shown, the player has to wait for the game to load.

There is a reason why we set loadingPanel to visible="false" at the beginning and
used onShow rather than onScreenStart effects. The onStartScreen method in the
controller is called after the screen has been started and onScreenStart effects have been
fired (and completed). This means that any fading will occur before we set the images, and
they would pop into existence after some time has passed. Since the onShow effects are
called once the element becomes visible, we get around that problem this way.

Another possible gotcha here, especially if we use a test case to show the screen, is
that we can't call nifty.gotoScreen just after initializing NiftyAppState. Since the
AppState initialization method is called in a thread-safe way, it doesn't run until the next
update cycle. This means that if we try to change the screens on the next line, we will get
NullPointerException.

Chapter 6

161

Creating an RPG dialog screen
As the title implies, we'll explore a method to create a dialog screen, similar to those found in
many RPGs. It'll display an image of the character being talked to, but this could be replaced
by using some clever camera work to zoom in on a character instead.

It will use a Nifty ListBox to display the player's available dialog options and a listener to find
out the result of the player's choice.

There most likely has to be some dialog tree system that backs the implementation. For this
example, we'll use a template class called DialogNode. This will have information about a
character's name, image, and what it says. It also contains the player's options as a string
array, as shown in the following screenshot. What's missing from it is the callbacks for each
option. It will, however, be possible to call it from the controller's listener method.

How to do it...
Before we work on the screen, we should define a new reusable Nifty control to contain the
character information of the character the player is talking to; perform the following steps
to do this:

1.	 Create a new file called characterDialogControls.xml with the
<nifty-controls> tag, and inside it, create a new <controlDefinition
name="characterControl"> class.

2.	 The layout for this is fairly simple; it needs one <panel> element that contains
another <panel> for the character image and a <control name="label">
element for the name.

GUI with Nifty GUI

162

Now, let's build the dialog screen. We do this by performing the following nine steps:

1.	 Create a new file called dialogScreen.xml and load nifty-default-
styles and nifty-default-controls. It should also load the
characterDialogControls.xml file. We can also include optionsMenu
from the previous recipe.

2.	 The first element we need is a <screen> element:
<screen id="dialogScreen" controller="gui.controller.
DialogScreenController">

3.	 Inside this, we define a <layer> element:
<layer id="layer0" childLayout="center" backgroundColor="#0000">

4.	 Inside the <layer> element, we define <panel>, which will contain the rest of
our layout:
<panel id="dialogPanel" childLayout="vertical" visible="false">

5.	 We'll add a short fade effect to this panel as well:
<effect>
 <onShow name="fade" start="#00" end="#ff" length="200"
inherit="true"/>
 <onEndScreen name="fade" start="#ff" end="#00" length="200"
inherit="true"/>
</effect>

6.	 The dialog panel will have four <panel> elements inside it. At the top and bottom, we
should add two thin panels with black background to give it a cinematic feel.

7.	 The upper part of the two central panels will contain the characterControl we
just created:
<control name="characterControl" id="character"/>

8.	 The lower one will have a listbox that contains the player's dialog options:
<control id="dialogOptions" name="listBox" vertical="off"
horizontal="off" displayItems="3" selection="Single"/>

9.	 If we also want support for the options menu, it should go in a separate layer to make
it show on top of the rest of the GUI.

The controller code for it can be created by performing the following 12 steps:

1.	 Begin by defining a new class called DialogScreenController that extends
NiftyController or implements ScreenController if an abstract Controller
class is not available.

2.	 Next, we add two fields: one for the current DialogNode, dialogNode, and a
reference to ListBox in the XML called dialogOptions.

Chapter 6

163

3.	 The onStartScreen() method should be overridden; here, it should set
dialogOptions by calling screen.findNiftyControl:
dialogOptions = screen.findNiftyControl("dialogOptions", ListBox.
class);

4.	 Finally, onStartScreen should also call onDialogNodeChanged() if
dialogNode is set.

5.	 Now, we need to define the method called onDialogNodeChanged that will apply
the dialog information to the layout.

6.	 We should begin this by setting the name of the character; again, we will use
screen.findNiftyControl to do this:
screen.findNiftyControl("characterName", Label.class).
setText(dialogNode.getCharacterName());

Likewise, the dialog text is set in the same manner.

7.	 To set the image, we need to create NiftyImage and pass it on to ImageRenderer
of an element using the following code:
screen.findElementByName("characterImage").
getRenderer(ImageRenderer.class).setImage(nifty.
createImage(dialogNode.getCharacterImage(), true));

8.	 Next, we clear dialogOptions and use dialogOptions.addItem to apply the
values available in DialogNode.

9.	 Finally, we call dialogOptions.refresh() and screen.layoutLayers() and
set the dialogPanel element to be visible.

10.	 To find out which item is pressed in dialogOptions, we add a listener method to
the class:
public void onDialogOptionSelected(final String id, final
ListBoxSelectionChangedEvent event)

11.	 Then, we add an annotation to let it know which element to listen to:
@NiftyEventSubscriber(id="dialogOptions")

12.	 Using event.getSelectionIndices(), we can find out which item the player
has pressed.

How it works...
Getting the layout exactly as we want can be tricky sometimes, but in general, it's important to
know that Nifty really likes the width and height to be defined.

GUI with Nifty GUI

164

Using the ListBox here gives us a lot for free since it handles a dynamic number of options,
and callbacks to the code are easily handled with the listener method. By default, it
has scrollbars and handles multiple selection, which is why we explicitly defined it to be
selection="Single" and used vertical="off" and horizontal="off" to turn off
the scrollbars. It also supports item selection by using the up, down, and Enter keys.

The listener method in the controller can be referred to as anything; what Nifty looks for is the
annotation and the method's parameters. From here, we can call the next DialogNode or
other code based on the player's choices.

Implementing a game console
A console can be a very powerful tool that allows a player to have control over game functions
that might either not have a functional UI yet, or where setting up a UI is simply not be feasible
due to its complexity.

This recipe will implement a console in the main screen from the first recipe in this chapter
and also use the Move effect to slide it in and out of view. Moreover, it will describe how
to use console commands to let the player control the game functions.

How to do it...
Just as before, we begin by defining a control that will host the console. It can be done by
performing the following four steps:

1.	 Inside the <nifty-controls> tags, we add a new <controlDefinition
name="consoleControl"> class.

2.	 Then, we add a small console, aligning it with the bottom of the screen:
<control id="console" name="nifty-console" lines="10" width="100%"
valign="bottom" backgroundColor="#6874" visible="true">

3.	 To spice up the simple console, we give it a Move effect when it's being shown
or hidden:
<effect>
 <onShow name="move" mode="fromOffset" offsetY="100" length="300"
inherit="true"/>
 <onHide name="move" mode="toOffset" offsetY="100" length="200"
inherit="true"/>
</effect>

4.	 In mainScreen.xml, we add controlDefinition inside a new layer:
<layer id="consoleLayer" childLayout="center"
backgroundColor="#0000">
 <control name="consoleControl"/>
</layer>

Chapter 6

165

That's it for XML hacking. Now, we can turn our attention to the NiftyController class
from the Initializing Nifty and managing an options menu recipe and add a console to handle
to it. This can be done by performing the following 10 steps:

1.	 We need to add a new field, Console console, and bind it using the following code:
nifty.getScreen("main").findNiftyControl("console", Console.
class);

2.	 Next, we add a method about the output text to the console from external sources.
We call it outputToConsole, and it takes a string as an input. It then calls
console.output to display the message.

3.	 Another new method is toggleConsole(). It should check whether console.
getElement() is visible or not and then hide or show it accordingly.

4.	 Then, we add a subscriber method that will receive anything entered in the
console. It needs the @NiftyEventSubscriber annotation with the console
as its ID. It also needs a method declaration that looks like the following code:
public void onConsoleCommand(final String id, final
ConsoleExecuteCommandEvent command)

5.	 Define a new class called HideCommand that implements ConsoleCommand.

6.	 Add a field NiftyController controller together with a setter method to the
HideCommand class.

7.	 In the implemented execute method, we call controller.toggleConsole().

8.	 Going back to NiftyController, we instantiate a new HideCommand method and
set the controller.

9.	 We then create a new ConsoleCommands instance and call registerCommand;
thereafter, we supply/hide the instance and call commandText, and HideCommand
as ConsoleCommand.

10.	 Finally, we call enableCommandCompletion(true) in the ConsoleCommands
instance.

How it works...
In this recipe, we implemented two ways of handling the input in the console. The most
straightforward way is the onConsoleCommand method where we get the raw input and
can do whatever we want with it.

The more intricate way of doing this is using ConsoleCommands. With this, we get a nice
layered pattern to handle the input. Once the console is shown or hidden, it will quickly slide
in or out of the screen with the move effect. It will move the offsetY distance, and based on
the mode, it will either move to that offset or from it. The inherit="true" value ensures
that child elements move together with the component in question.

GUI with Nifty GUI

166

Handling a game message queue
It is possible to relay most game-related information to the player using a console. However,
it's a very basic form of communication. Modern players often expect more graphical ways of
receiving information. In this recipe, we'll explore one way of doing this using Nifty. We'll create
a dynamic message queue with messages moving in from the right of the screen and fading
out once clicked.

It actually doesn't require that many lines of code.

How to do it...
The XML for this recipe can be completed by performing the following five steps:

1.	 We start by defining a new <controlDefinition name="gameMessage">.

2.	 Inside this, we should add a panel element, and inside this panel element, add two
<control name="label"> elements with the ID #title and other contents.

3.	 The panel should also have two effects, one onShow trigger and one onHide trigger
with move and fade effects respectively, as shown in the following code:
<onShow name="move" mode="fromOffset" offsetX="1500" length="100"
inherit="true"/>
<onHide name="fade" start="#ff" end="#00" length="100"
inherit="true"/>

4.	 In addition to the gameMessage control, we can define another control to be our
messageQueue element. It just needs a horizontally aligned panel, spanning the
whole screen.

5.	 To make them align with each other, the messageQueue control is added to the
mainScreen.xml file inside the same layer as the console.

Inside MainScreenController, we need to do the following changes:

6.	 First, add a new int field called messageIndex.

7.	 Then, we need two methods. One of these is called addMessage that should take a
string as an input.

8.	 Inside the addMessage method, we define a ControlBuilder method called
messageBuilder. This will create gameMessage controls:
messageBuilder = new ControlBuilder("gameMessage") {{
 id("message"+messageIndex);
 interactOnClick("removeMessage("+messageIndex+")");
}};

Chapter 6

167

9.	 After calling the build method on this and supplying the messageQueue element
as the parent, we can call element.findNiftyControl to set the title and the
text on the labels inside the gameMessage control.

10.	 Then, we call element.show() and increase messageIndex for the next message.

11.	 The second method we create is removeMessage. It takes a string called id as
the input.

12.	 Inside this, we use screen.findElementByName to find the message, and
call hide.

13.	 While doing this, we supply a new EndNotify object, which in its perform message
should call markForRemoval() on the message and also layoutElements() on
the parent messageQueue control.

How it works...
Once the addMessage method is called in the Controller class, ControlBuilder creates
a new gameMessage instance. The interactOnClick element tells gameMessage to call
removeMessage when clicked, supplying its index as id.

After its built and added to messageQueue, we populate the title and content elements of the
message. Using # in the ID of these elements is preferred by Nifty for non-unique IDs.

The gameMessage instance is not visible upon creation, and we call show() to make it play
the onShow effect we defined.

The Move effect is set up to have offsetX, which is outside of the screen. If it's too low, there
will be a pop effect as it comes into existence. It's set to reach the target position in 100 ms.
Messages will stack up nicely without any additional work when they are added.

The messages are set to disappear when clicked, as defined in the builder, through the
interactOnClick method. Instead of just removing them, we want to play a short
fade effect to make the transition smoother. Simply hiding them won't be enough in this
case either. Since they still occupy a position in the messageQueue panel, the remaining
messages won't align properly.

Hence, we want to call markForRemoval on the gameMessage element. Doing this
instantly, however, would remove it before our hide effect is played. This why we supply an
EndNotify object that is handled once the hide effect is done with playing; then, we add
the markForRemoval call in here instead.

GUI with Nifty GUI

168

There's more…
Let's say we would like to be able to show messages in a window, either when clicking the
message in the queue, or any time. In that case, we can use Nifty's window control.

We can define a new controlDefinition in our gameMessageControls.xml file and
call it messageWindow. Inside this, we'll add <control name="window">, inside which we
can add any content we'd like. For now, we can settle with <control name="label"> for
text content and a short fade effect when showing or hiding the window.

Then, we can copy the addMessage method to MainScreenController, and instead of
having ControlBuilder make gameMessage, we can tell it to build a messageWindow
window instead.

We don't need an interactOnClick element, as the window can be closed by default.
Instead, we can use it to set the title of the window:

set("title", "Window"+windowIndex);

Windows are also draggable by default, but the parent element must have
childLayout="absolute" for it to work, as it lets the element decide its position itself.

Creating an inventory screen
In this recipe, we'll create an inventory screen, which is very common, mostly in RPGs.
To do this, we'll use the Droppable and Draggable components in Nifty and create an
InventoryItem class to help us differentiate different the types of items (and hence, where
they can be attached). This time, we'll use both XML to create the static components and the
Java Builder interface to build the inventory (or backpack) slots. The reason is that in many
games, the amount of inventory a character has varies.

How to do it...
We begin by creating the controls, which are the key components of this method. This can be
done by performing the following four steps:

1.	 First, we create a new controls file, inventoryControls.xml, with the
<nifty-controls> tag.

2.	 Inside this, we first define <controlDefinition name="itemSlot"> with the
following content:
<control name="droppable" backgroundColor="#fff5" width="64px"
height="64px" margin="1px" childLayout="center"/>

3.	 Then similarly, we create a draggable control to be the item, and name it
<controlDefinition name="item" >.

Chapter 6

169

4.	 This item contains both the draggable component and a label with the item's name:
<control name="draggable" backgroundColor="#aaaf" width="64px"
height="64px" childLayout="center" valign="top">
 <text id="#itemLabel" text="" color="#000f" valign="center"
width="100%" style="nifty-label"/>
</control>

Next, we can turn our attention to the screen itself. It can be created by performing the
following five steps:

1.	 First, we make sure that the styles we want to use are loaded, and add our
inventoryControls.xml file is loaded with <useControls>.

2.	 Then, we add a <screen> element with a link to our controller file:
<screen id="inventoryScreen" controller="gui.controller.
InventoryScreenController">

3.	 Inside this, we need a <layer> element:
<layer id="layer0" childLayout="center" backgroundColor="#0000">

4.	 Inside the <layer> element, we need a <panel> element that will contain the rest
of our layout:
<panel id="inventoryPanel" childLayout="horizontal">

5.	 The next element is a panel that will keep our dynamically created itemSlots:
<panel id="inventorySlots" childLayout="horizontal"/>

The following screenshot shows us the dynamically created item slots:

After this, we create a simple representation of a humanoid with two hands and
feet, using the itemSlot control. We use align and childLayout to make the
components appear where we want them to.

GUI with Nifty GUI

170

6.	 First, add a panel to contain the components:
<panel id="characterPanel" childLayout="vertical">

7.	 Then, add the head using the following command:
<panel id="character" backgroundColor="#000f" childLayout="center"
align="center" valign="top">
 <control name="itemSlot" id="Head"/>
</panel>

8.	 Add one left and right hand using the following command:
<panel id="hands" backgroundColor="#000f" childLayout="horizontal"
width="25%" align="center" valign="bottom">
 <control name="itemSlot" id="HandLeft" align="left" />
 <panel width="*" height="1px"/>
 <control name="itemSlot" id="HandRight" align="right" />
</panel>

9.	 Finally, we have one itemSlot for the legs/feet:
<panel id="legs" backgroundColor="#000f" childLayout="horizontal"
align="center" valign="bottom">
 <control name="itemSlot" id="Foot"/>
</panel>

With the XML elements done, we can turn to the Java code. The following nine steps
are necessary:

1.	 We create a class called InventoryItem. This has an enum (enumeration) for
different body parts: head, hand, foot, and a name.

2.	 Next, we'll create the Controller class, InventoryScreenController, and
have it extend NiftyController; also, implement DroppableDropFilter.

3.	 We need to add a map to contain our InventoryItems, with the name as
the key. It can be called itemMap.

4.	 The bind method should be overridden, and in here, we should find different
DropControls in the InventoryScreen and add this class as a filter using
the following code:
screen.findNiftyControl("HandLeft", Droppable.class).
addFilter(this);

Now, we can generate the item slots in the inventory in a 5 x 5 grid.

5.	 We define two builders: ControlBuilder for the itemSlot controls and
PanelBuilder to make columns that will contain five itemSlots each.

Chapter 6

171

6.	 We can use a for loop to iterate five times over the following block:
panelBuilder = new PanelBuilder("") {{
 id("inventoryColumn"+posX);
 childLayoutVertical();
}};
panelBuilder.build(nifty, screen, screen.findElementByName("invent
orySlots"));

7.	 While still inside this for loop, we run another for loop, generating the five
item slots for that column:
slotBuilder = new ControlBuilder("itemSlot") {{
 id("itemSlot"+index);
}};
Element e = slotBuilder.build(nifty, screen, screen.findElementByN
ame("inventoryColumn"+posY));

8.	 For each of the item slots, we also need to add the following class as a DropFilter:
e.findNiftyControl("itemSlot"+index, Droppable.class).
addFilter(this);

9.	 The implemented method that is accepted needs some logic. Once an item has been
dropped on an itemSlot, we should check whether it's allowed, and we can do it
with the following lines of code:
InventoryItem item = itemMap.get(drgbl.getId());
if(drpbl1.getId().startsWith(item.getType().name()) || drpbl1.
getId().startsWith("itemSlot")){
 return true;

With the item slots done, we can generate some items for testing.

10.	 First we use a for loop to create 10 InventoryItems with different types
and names.

11.	 For each of these, we create a Nifty control using ControlBuilder and the
item control we defined earlier, as shown in the following code:
itemBuilder = new ControlBuilder("item") {{
 id("item"+index);
 visibleToMouse(true);
}};
Element e = itemBuilder.build(nifty, screen, screen.findElemen
tByName("itemSlot"+index)); e.findElementByName("#itemLabel").
getRenderer(TextRenderer.class).setText(item.getName());

12.	 Then, we put each of the inventory items in the itemMap with the ID of the control as
the key. This ensures we can easily find out the link to the inventory item where a nifty
item has been dragged or dropped.

GUI with Nifty GUI

172

How it works...
The Java Builder interface we use to create item slots takes a while to get used to, but it's a
really powerful tool when we have the need to create nifty elements dynamically. In this case,
we still use a predefined control. This saves us a couple of lines of code and allows someone
else than a coder to edit the layout and style of the component since it's exposed in the
XML file.

By default, a Droppable control will always accept the Draggable control that is being
dropped. The accept method in DroppableDropFilter enables us to define what
should be accepted or not. It's illustrated in this recipe by only accepting InventoryItems
of a certain type. The method parameters for the accept method can be described, as the
first Droppable is the control that the draggable control is being picked up from. The
Draggable control is the item that is being moved. The second Droppable control is the
target where Draggable has been dropped.

At the time of writing this, the first Droppable control tends to be null
the first time a Draggable control is being moved.

Customizing the input and settings page
Just about every modern game lets the player customize the input according to their own
preferences. This recipe will rely on jMonkeyEngine to do the work for us, and we will use Nifty
GUI as a visual aid. We'll use RawInputListener to work out which keys have been pressed
and divide them between key codes and characters using the Keyboard class.

Getting ready
The recipe will depend on there being some bindings in InputManager. If you already have a
game, this would not be a problem. If not, it will describe how to add a couple of bindings for
the example to work.

How to do it...
Following the pattern from previous recipes, we'll start defining the controls, then move on to
the screen, and finally work on the controller. Adding the controls and screen will consist of
the following eight steps:

1.	 Inside a <nifty-control> tag, we define a new <controlDefinition
name="keyBindingControl">.

Chapter 6

173

2.	 Here, we'll add a horizontal spanning panel with some margin to the edges of its
container and enough height to contain text:
<panel childLayout="horizontal" width="80%" height="25px"
backgroundColor="#666f" marginLeft="10px" marginRight="10px"
marginTop="4px" align="center" >

3.	 This panel will have three elements. The first is a label control that contains
the text for the key binding, as shown in the following code:
<control name="label" id="#command" width="150px" text=""/>

4.	 Then, it will have a button to change the binding, displaying the current key:
<control name="button" id="#key" width="100px" valign="center"/>

5.	 In between them, it will have a simple panel with width="*".

6.	 Now, we can define another <controlDefinition name="settingsControl">
that will contain a number of our keyBindingControls.

7.	 This will contain a panel, and inside this, four keyBindingControls for each
moving direction. The IDs of these controls should be representative of the direction
and end with a key as follows:
<control name="keyBindingControl" id="forwardKey"/>

8.	 The following points are needed for the screen:

�� The ID should be settings, and controller should be gui.controller.
SettingsController

�� The settingsControl class we just created should be added inside a
layer element

That's all with regards to XML. To create the Controller class, perform the following steps:

1.	 As usual, we create a new class that extends NiftyController. We call it
SettingsController.

2.	 We'll have Element fields for each of the key bindings we would like to track and one
Element field for the current selectedElement.

3.	 In addition, we should add Map<Integer, String> called mappings where we
can keep the relations between key inputs and input bindings.

4.	 From here, we should call a bindElements method, which we'll define as well.

5.	 Inside this, we'll add the current key bindings to the mappings map using the key
code as key and the actual binding as the value. This can usually be found in the
class that handles the input.

GUI with Nifty GUI

174

6.	 Next, for each of the keys we would like to handle, we find the reference in the
settings screen and populate their values accordingly. For example, for the forward
key use the following code:
forwardMapping = screen.findElementByName("forwardKey");
forwardMapping.findNiftyControl("#command", Label.class).
setText("MoveForward");
forwardMapping.findNiftyControl("#key", Button.class).
setText(Keyboard.getKeyName(KeyInput.KEY_W));

7.	 Next, we define a new inner class called KeyEventListener that implements
RawInputListener.

8.	 In onKeyEvent, add an if statement for if the incoming KeyInputEvent
is pressed and selectedElement is not null.

9.	 Here, we add a reference to the yet-to-be-created changeMapping method and add
the following line:
selectedElement.findNiftyControl("#key", Button.class).
setText(Keyboard.getKeyName(evt.getKeyCode()));

10.	 Finally, we should set selectedElement to null.

Now, we can turn our attention to the changeMapping method.

11.	 This method has the pressed key code as an input parameter, and we use this to see
whether we already have a binding in our mappings map. If inputManager of the
application also has this, we should delete the old binding.

12.	 Next, we need to iterate through all the values in our mappings map and check
whether any of the bindings match the one that the selected element is handling.
If you find a match, it should be deleted.

13.	 Finally, we create a new KeyTrigger class using keyCode and add it to
inputManager using addMapping.

The last thing we need to do in this class is add an event subscriber to the buttons in
keyBindingControls.

14.	 We define a new method, keyClicked(String id, ButtonClickedEvent
event), and give it the following annotation:
@NiftyEventSubscriber(pattern=".*Key#key")

15.	 When the button is clicked, the corresponding element should be selected, so we
use event.getButton().getElement().getParent() to find out which one
that is.

Chapter 6

175

How it works...
This recipe explains that when a button that represents a key binding is clicked, the
corresponding element is selected. By using a pattern in the annotation for the keyClicked
method, rather than an ID, we can capture all the keys using the wildcard.*. This is also why
the naming of the elements is important.

Once an element is selected, KeyEventListener will start to listen for a key to be pressed
on the keyboard. We set the text of the button to be the text representation of the key. In many
cases, we can use the getKeyChar method of KeyInputEvent for this; however, not all
the methods have a character like representation, hence the use of the Keyboard class and
getKeyName method instead. This method tends to output a string representation instead.

The changeMapping method first sees whether there is a current binding for the key pressed
and deletes it if that is the case. This is not enough, however, since we also need to delete any
previous bindings for that input. This is why we also iterate over the current mappings to see
whether any of them match the binding that this key press was for; if yes, it deletes them too.

There's more...
This recipe uses a static representation of the different input bindings. This would most likely
be fine for many games, but modern first person shooters for example, can have 20 and more
key bindings; adding all of these manually to the XML can be cumbersome and not good from
a maintenance perspective. In this case, it might be better to use the Java Builder interface
described in the Creating an inventory screen recipe to let Java do the repetitious work.

Using offscreen rendering for a minimap
There are generally two ways of creating minimaps. One way is to let an artist draw a
representation of the map, as shown in the following screenshot. This usually ends up
beautifully as it gives considerable freedom to the artist when it comes to style. The method
is not that viable during development when scenes might be changing a lot, or for games with
procedural content where the end result is not known beforehand.

Minimap with unit marker

GUI with Nifty GUI

176

In those cases, taking a snapshot of the actual scene can be very helpful. The resulting image
can then be run through various filters (or shaders during rendering) to get a less raw look.

In this recipe, we'll achieve this by creating a new ViewPort port, and FrameBuffer to
store a snapshot of a camera. Finally, we'll create NiftyImage out of it and display it as
a GUI element.

How to do it...
We're going to start by creating a Util class to handle the rendering of our minimap. This will
consist of the following 15 steps:

1.	 Define a new class called MinimapUtil.

2.	 It will only have one static method, createMiniMap, with the following declaration:
public static void createMiniMap(final SimpleApplication app,
final Spatial scene, int width, int height)

3.	 The first thing we do is create a new camera called offScreenCamera with the
same width and height that were supplied to the method.

4.	 The camera should have the parallel projection set to true, and a frustrum that spans
between 1 and 1000 in depth, -width to width, and -height to height, as
shown in the following code:
offScreenCamera.setParallelProjection(true);
offScreenCamera.setFrustum(1, 1000, -width, width, height,
-height);

5.	 It should be located at some distance above the scene and rotated downwards, as
shown in the following code:
offScreenCamera.setLocation(new Vector3f(0, 100f, 0));
offScreenCamera.setRotation(new Quaternion().fromAngles(new
float[]{FastMath.HALF_PI,FastMath.PI,0}));

6.	 Next, we create a new ViewPort by calling the application's RenderManager and
its createPreView method using offScreenCamera:
final ViewPort offScreenView = app.getRenderManager().
createPreView(scene.getName() + "_View", offScreenCamera);
offScreenView.setClearFlags(true, true, true);
offScreenView.setBackgroundColor(ColorRGBA.DarkGray.
mult(ColorRGBA.Blue).mult(0.3f));

7.	 Now, we need a Texture2D class to store the data in, so we create a class called
offScreenTexture with the same width and height as before and set MinFilter
to Trilinear:
final Texture2D offScreenTexture = new Texture2D(width, height,
Image.Format.RGB8);
offScreenTexture.setMinFilter(Texture.MinFilter.Trilinear);

Chapter 6

177

8.	 A FrameBuffer class is needed as a medium for the data, so we create one with the
same width and height, and 1 sample, as shown in the following code:
FrameBuffer offScreenBuffer = new FrameBuffer(width, height, 1);

9.	 We set DepthBuffer to be Image.Format.Depth and offScreenTexture to be
ColorTexture:
offScreenBuffer.setDepthBuffer(Image.Format.Depth);
offScreenBuffer.setColorTexture(offScreenTexture);

10.	 Then, we set outPutFrameBuffer of offScreenView to be offScreenBuffer:
offScreenView.setOutputFrameBuffer(offScreenBuffer);

11.	 Unless the scene we supplied already has some lights, we should add at least one
Light class to it.

12.	 Then, we attach the scene to offScreenView:
offScreenView.attachScene(scene);

13.	 To store the texture, we can add it to AssetManager with the following line:
((DesktopAssetManager)app.getAssetManager()).addToCache(new
TextureKey(scene.getName()+"_mini.png", true), offScreenTexture);

14.	 Now, we can do the actual rendering by calling the application's renderManager
and renderViewPort methods:
app.getRenderManager().renderViewPort(offScreenView, 0);

15.	 After this, we're done and can call removePreview to discard offScreeenView:
app.getRenderManager().removePreView(offScreenView);

With the Util class done, we can create a screen Controller class. Perform the following
additional six steps to do this:

1.	 Create a new class called GameScreenController that extends
NiftyController.

2.	 For now, it only needs one public method called createMinimap that takes a scene
as the input.

3.	 The first thing the createMinimap method should do is call
MiniMapUtil.createMinimap.

4.	 With the scene rendered, we can create NiftyImage with the nifty.
createImage method.

GUI with Nifty GUI

178

5.	 Then, we can apply the image to our minimap element in the Nifty screen with the
following line:
screen.findElementByName("minimap").getRenderer(ImageRenderer.
class).setImage(image);

6.	 Now, all we need to do is add a panel element called minimap to a screen that uses
GameScreenController as the controller.

How it works...
Offscreen rendering is just what it sounds like. We render something in a view that is not
related to the main view that the player sees. To do this, we set up a new viewport and
camera. It's not possible to render something directly to a texture, which is why FrameBuffer
is used as the medium.

Once the texture object is created and added to the asset manager, it's possible to keep
changing it if we would like to at a later stage. It's even possible to have a live view of the
scene in the minimap, although this would probably cost unnecessary resources. In this case,
we remove the view as soon as we've rendered it once.

The example is limited in some sense, like it expects that there is a correlation between the
size of the scene and the size of the minimap.

Nifty uses its own image format, NiftyImage, so we need to convert the image we saved;
however, Nifty's createImage will automatically find the texture in the asset manager based
on the name (key).

There's more…
Usually, on a minimap, players will want some kind of indication about their (and others)
whereabouts. Let's implement that in the minimap we just created:

1.	 First of all, we need to change the minimap element in our screen a bit. We set
childLayout to absolute and add another panel inside it called playerIcon
with a small width and height.

2.	 Next, we add a new Element field called playerIcon to the
GameScreenController and use findElementByName in the bind
method to set it.

3.	 Then, we add another method called updatePlayerPosition with two integers,
x and y, as the input.

Chapter 6

179

4.	 This method should use setConstraintX and setConstraintY on the
playerIcon element to set the position. Those methods take SizeValue
as the input, and we supply the x and y values with the "px" definition.

5.	 Finally, in the same method, we need to call layoutElements() on the
minimap element to make it update its child elements.

For other things, such as visible enemies, we can use the builder interface to create them as
and when we need them and then use markForRemoval to remove them when they're not
needed anymore. An example of this process can be seen in the Handling a game message
queue recipe.

7
Networking with

SpiderMonkey

This chapter will be all about using the networking engine of jMonkeyEngine, SpiderMonkey,
to take our games beyond the isolation of our own computers to the Internet. Don't worry if
you're not well versed in networking, we'll take it from the very beginning.

This chapter contains the following recipes:

ff Setting up a server and client

ff Handling basic messaging

ff Making a networked game – Battleships

ff Implementing a network code for FPS

ff Loading a level

ff Interpolating between player positions

ff Firing over a network

ff Optimizing the bandwidth and avoiding cheating

Introduction
Data sent over the network is organized in packets, and protocols handle them differently.
Packets can look different depending on protocols, but they contain the data itself along with
control information, such as addresses and formatting information.

Networking with SpiderMonkey

182

SpiderMonkey supports both TCP and UDP. In SpiderMonkey, TCP is referred to as reliable.
TCP is reliable because it verifies each network packet sent, minimizing problems due to
packet loss and other errors. TCP guarantees that everything arrives safely (if at all possible).
Why ever use anything else then? For speed. Reliability means that TCP can be slow. In some
cases, we're not dependent on every packet reaching the destination. UDP is more suitable
for streaming and low-latency applications, but the application will have to be prepared to
compensate for the unreliability. This means that when a packet is lost in FPS, the game
needs to know what to do. Will it just stop in its tracks, or stutter along? If a character is
moving and the game can predict the movement between the messages that arrive, it will
create a smoother experience.

Learning how to use the API is fairly easy, but we will also see that networking is not
something you add to a game; the game needs to be adapted for it from the planning stage.

Setting up a server and client
In this recipe, we'll look at the absolute minimum in order to get a server and client up and
running and be able to talk to each other.

This is accomplished in just a few lines of code.

The server and client will share some common data that we'll store inside a properties
file for easy access and external modification. First and foremost, the client must know the
address of the server, and both server and client need to know which port to listen on and
connect to. These would most likely be editable from within a game.

How to do it...
Perform the following steps to set up a server and client:

1.	 In the constructor of the server class, we start by loading the properties file.
Once done, we can initialize the server with the following lines of code:
server = Network.createServer(Integer.parseInt(prop.
getProperty("server.port")));
server.start();

In the static block, we must also make sure that the server doesn't shut down
immediately.

2.	 The client is set up in a similar way, shown as follows:
client = Network.connectToServer(prop.getProperty("server.
address"), Integer.parseInt(prop.getProperty("server.port")));
client.start();

Chapter 7

183

3.	 To verify that a connection has taken place, we can add ConnectionListener to
the server, as follows:
public void connectionAdded(Server server, HostedConnection conn)
{
 System.out.println("Player connected: " + conn.getAddress());
}

4.	 If we connect to the server again, we should see the message printed in the server's
output window.

How it works...
The Network class is the main class used when setting up and connecting our components.
This particular method is the simplest way to create a server, simply stating a port to listen to.
Let's set different ports for TCP and UDP and supply the name and version of the server.

The connectToServer method creates a client and connects it to the specified address
and port. Like in the server case, there are other convenient methods in Network that let us
specify more parameters if we want.

That's actually all that's needed. When running the two programs in parallel, we should
see the client connected to the server. There is no verification, however, that anything has
happened. That's why we added ConnectionListener at the end. It's an interface with
two methods: connectionAdded and connectionRemoved. These methods will be
called whenever a client connects or disconnects. These methods gave the server a way to
communicate to us that a connection has happened. These methods will be sources for a
chain of events in more advanced recipes.

Once the server is started, it begins to listen for incoming connections on the specified port.
If the network address is considered the street name, the port will be the door that will be
opened and made passable. So far, a mere handshake between the server and client has
been made at the doorstep.

Handling basic messaging
So far, we've learned the basics to set up a server and connecting a client. However, they don't
do much, so let's look into what it takes to get them to communicate with each other.

Getting ready
In SpiderMonkey, communication is handled via messaging and the message interface. When
a server sends a message, it uses the broadcast() method, while a client uses send().
The side that is supposed to receive the message has to have a suitable MessageListener
class. To try all these things out, let's have our server greet the connecting player by sending
them a message, which will be displayed once received.

Networking with SpiderMonkey

184

How to do it...
Perform the following steps to connect and handle basic messaging:

1.	 We begin by defining our message. It's a simple serializable bean with just one field,
as shown in the following code snippet:
@Serializable()
public class ServerMessage extends AbstractMessage{
 private String message;

 public String getMessage() {
 return message;
 }

 public void setMessage(String message) {
 this.message = message;
 }
}

2.	 Next, we create a class that implements MessageListener. It's a very simple class
that will print the message to the console when received, as follows:
public class ServerMessageHandler implements
MessageListener<Client>{

 public void messageReceived(Client source, Message m) {
 ServerMessage message = (ServerMessage) m;
 System.out.println("Server message: " + message.
getMessage());
 }
}

3.	 We instantiate ServerMessageHandler and add it to the client, telling it to only
listen for ServerMessages, as follows:
ServerMessageHandler serverMessageHandler = new
ServerMessageHandler();
client.addMessageListener(serverMessageHandler, ServerMessage.
class);

It is also possible to let ServerMessageHandler handle all incoming messages
by using the following line of code:

client.addMessageListener(serverMessageHandler);

Chapter 7

185

4.	 We now tell the server to create a message and send it to all the players when
someone connects:
ServerMessage connMessage = new ServerMessage();
String message = "Player connected from: " + conn.getAddress();
connMessage.setMessage(message);
server.broadcast(connMessage);

5.	 There is one more thing we need to do. All the message classes used need to be
registered before being used. We do this before the application starts, as follows:
public static void main(String[] args) throws Exception {
 Serializer.registerClass(ServerMessage.class);

How it works...
Spending time and defining what messages should contain is a good way to get a grip of the
project as a lot of the architecture will revolve around them. The message we created in this
recipe is called ServerMessage, because it is used to send a lot of information from the
server to the client.

The next class we created was MessageListener. The only thing it does upon receiving the
message is print it to the console. We added it to the client, and also stated that it should
specifically listen for ServerMessages.

By default, calling broadcast will send the message to all the connected clients. In this
case, we just want to send a message to a specific client or a group of clients (like a team).
Broadcast can also be called with Filter. It can also send messages to a specific channel,
to which a team or group of players might be assigned.

Making a networked game – Battleships
In the previous recipes, we looked at how to set up a server, and connect and handle basic
messaging. In this recipe, we'll reinforce this knowledge and expand it by adding server
verification and applying it to a real game.

A turn-based board game is perhaps not what you would normally develop using a 3D game
SDK, but it's a very good game to learn networking. The Battleships game is a good example
not only because the rules are simple and known to many but also because it has a hidden
element, which will help us understand the concept of server verification.

If you're unfamiliar with the Battleships game, visit http://
www.wikipedia.org/wiki/Battleship_(game).

http://www.wikipedia.org/wiki/Battleship_(game)
http://www.wikipedia.org/wiki/Battleship_(game)

Networking with SpiderMonkey

186

Since we're mainly interested in the networking aspects of the game, we'll skip some of the
verification normally needed such as looking for overlapping ships. We also won't write any
graphical interface and use the command prompt to obtain input. Again, to focus on the
networking API, some of the plain Java logic for game rules won't be explained.

The game will have a client and server class. Each class will have a MessageListener
implementation and share messages and game objects.

Getting ready
It is highly recommended to familiarize yourself with the content of the previous recipes in the
chapter, if you haven't already.

The amount of messages will increase greatly compared to the previous recipes. Since
both the server and client need to keep a track of the same messages and they need to be
registered in the same order, we can create a GameUtil class. It has a static method called
initialize(). For every new message type we create, we add a line like this:

Serializer.registerClass(WelcomeMessage.class);

The game revolves around a couple of objects that we'll define before getting into the
networking aspect.

We need a Ship class. For this implementation, it only needs the name and segments fields.
We add methods so that once a tile containing Ship is hit, we can decrease the segments.
When segments reach zero, it's sunk. Likewise, Player can be a simple class, with only an ID
necessary for identification with the server, and the number of ships still alive. If the number
of ships reaches zero, the player loses.

Many of the message types extend a class called GameMessage. This class in turn extends
AbstractMessage and needs to contain the ID of the game, and state that the message
should be reliable, thus using the TCP protocol.

How to do it...
We start by setting up a Game class. This will consist of the following six steps:

1.	 First of all, the Game class needs an ID. This is used by the server to keep track of
which game messages to relate to (since it supports many games at the same time),
and will also be used as a reference for other things.

2.	 The Game class needs the two Player objects, player1 and player2, as well as
the ID of the player whose turn it currently is. We can call that currentPlayerId.

3.	 The Game class needs two boards; one for each player. The boards will be made of
2D Ship arrays. Each tile where there is a segment of a ship has a reference to the
Ship object; the others are null.

Chapter 7

187

4.	 An integer status field lets us know what state the game currently is in, which is
useful for message filtering. We can also add constants for the different statuses
and set a default status, as follows:
public final static int GAME_WAITING = 0;
public final static int GAME_STARTED = 1;
public final static int GAME_ENDED = 2;
private int status = GAME_WAITING;

5.	 Now, we add a placeShip method. The method in this implementation is simplified
and only contains verification that the ship is inside the board, as follows:
public void placeShip(int playerId, int shipId, int x, int y,
boolean horizontal){
 Ship s = GameUtil.getShip(shipId);
 Ship[][] board;
 if(playerId == playerOne.getId()){
 board = boardOne;
 playerOne.increaseShips();
 } else {
 board = boardTwo;
 playerTwo.increaseShips();
 }
 for(int i = 0;i < s.getSegments(); i++){
 [verify segment is inside board bounds]
 }
}

6.	 The other method that does some work in the Game class is applyMove. This takes
FireActionMessage as input, checking the supplied tile to see whether there is
a ship in that spot. It then checks whether the supposed ship is sunk, and whether
the player has any ships left. If a ship is hit, it returns the Ship object to the calling
method, as follows:
public Ship applyMove(FireActionMessage action){
 int x = action.getX();
 int y = action.getY();
 Ship ship = null;
 if(action.getPlayerId() == playerOne.getId()){
 ship = boardTwo[x][y];
 if(ship != null){
 ship.hit();
 if(ship.isSunk()){
 playerTwo.decreaseShips();
 }
 }
 } else {

Networking with SpiderMonkey

188

 [replicate for playerTwo]
}
 if(playerTwo.getShips() < 1 || playerOne.getShips() < 1){
 status = GAME_ENDED;
 }
 if(action.getPlayerId() == playerTwo.getId()){
 turn++;
 }
 return ship;
}

Now, let's have a look at the server side of things. In the previous chapters, we had a look at
connecting the clients, but a full game requires a bit more communication to set things up as
we will see. This section will have the following eight steps:

1.	 Since the server is meant to handle several instances of a game at once, we'll define
a couple of HashMaps to keep a track of the game objects. For each game we create,
we put the Game object in the games map with the ID as a key:
private HashMap<Integer, Game> games = new HashMap<Integer,
Game>();

2.	 We'll also use Filters to only send messages to players in a related game. To do
this, we store a list of HostedConnections, with each being an address to a client,
with the game ID as a key:
private HashMap<Integer, List<HostedConnection>> connectionFilters
= new HashMap<Integer, List<HostedConnection>>();

3.	 Since we're continuously giving out a new player ID and increasing the value of the
game ID, we'll have two fields for that as well: nextGameId and nextPlayerId.

4.	 Everything starts with a connecting client. Like in the Setting up a server and client
recipe, we use ConnectionListener to handle this. The method either adds the
player to an existing game, or creates a new one if none are available. Regardless of
whether a new game is created or not, the addPlayer method is called afterwards,
as shown in the following code snippet:
public void connectionAdded(Server server, HostedConnection conn)
{
 Game game = null;
 if(games.isEmpty() || games.get(nextGameId - 1).getPlayerTwo()
!= null){
 game = createGame();
 } else {
 game = games.get(nextGameId - 1);
 }
 addPlayer(game, conn);
}

Chapter 7

189

5.	 The createGame method creates a new game object and sets the correct ID. After
placing it in the games map, it creates a new List<HostedConnection> called
connsForGame and adds it to the connectionFilters map. The connsForGame
list is empty for now, but will be populated as players connect:
private Game createGame(){
 Game game = new Game();
 game.setId(nextGameId++);
 games.put(game.getId(), game);
 List<HostedConnection> connsForGame = new
ArrayList<HostedConnection>();
 connectionFilters.put(game.getId(), connsForGame);
 return game;
}

6.	 The first thing the addPlayer method does is create a new Player object and then
set the ID of it. We use WelcomeMessage to send the ID back to the player:
private void addPlayer(Game game, HostedConnection conn){
 Player player = new Player();
 player.setId(nextPlayerId++);

7.	 The server broadcasts this message using the client's connection as a filter, ensuring
it's the only recipient of the message, as follows:
 WelcomeMessage welcomeMessage = new WelcomeMessage();
 welcomeMessage.setMyPlayerId(player.getId());
 server.broadcast(Filters.in(conn), welcomeMessage);

8.	 It then decides whether the player is the first or second to connect to the game,
and adds the player's HostedConnection instance to the list of connections
associated with this game, as shown in the following code snippet:
 if(game.getPlayerOne() == null){
 game.setPlayerOne(player);
 } else {
 game.setPlayerTwo(player);
 }
List<HostedConnection> connsForGame = connectionFilters.get(game.
getId());
connsForGame.add(conn);

9.	 It then creates a GameStatusMessage object, letting all players in the game know
the current status (which is WAITING) and any player information it might have, as
shown in the following code snippet:
 GameStatusMessage waitMessage = new GameStatusMessage();
 waitMessage.setGameId(game.getId());
 waitMessage.setGameStatus(Game.GAME_WAITING);

Networking with SpiderMonkey

190

 waitMessage.setPlayerOneId(game.getPlayerOne() != null ? game.
getPlayerOne().getId() : 0);
 waitMessage.setPlayerTwoId(game.getPlayerTwo() != null ? game.
getPlayerTwo().getId() : 0);
 server.broadcast(Filters.in(connsForGame), waitMessage);
}

We're going to take a look at message handling on the client side and see how its
MessageListener interface will handle incoming WelcomeMessages and game updates:

1.	 We create a class called ClientMessageHandler, which implements
MessageListener. First, we will walk through the part handling the start of a game.

2.	 The thisPlayer object has already been instanced in the client, so all we need
to do when receiving WelcomeMessage is set the player's ID. Additionally, we can
display something to the player letting it know the connection is set up:
public void messageReceived(Client source, Message m) {
 if(m instanceof WelcomeMessage){
 WelcomeMessage welcomeMess = ((WelcomeMessage)m);
 Player p = gameClient.getThisPlayer();
 p.setId(welcomeMessage.getMyPlayerId());
}

3.	 When a GameStatusMessage is received, we need to accomplish three things. First,
set the ID of the game. Knowing the ID of the game is not necessary for the client in
this implementation, but can be useful for communication with the server:
else if(m instanceof GameStatusMessage){
 int status = ((GameStatusMessage)m).getGameStatus();
 switch(status){
 case Game.GAME_WAITING:
 if(game.getId() == 0 &&
 ((GameStatusMessage)m).getGameId() > 0){
 game.setId(((GameStatusMessage)m).getGameId());
 }

4.	 Then, we set the playerOne and playerTwo fields by simply checking whether they
have been set before or not. We also need to identify the player by comparing the IDs
of the players in the message with the ID associated with this client. Once found, we
let him or her start placing ships, as follows:
if(game.getPlayerOne() == null && ((GameStatusMessage)
m).getPlayerOneId() > 0){
 int playerOneId = ((GameStatusMessage)m).getPlayerOneId();
 if(gameClient.getThisPlayer().getId() == playerOneId){
 game.setPlayerOne(gameClient.getThisPlayer());
 gameClient.placeShips();

Chapter 7

191

 } else {
 Player otherPlayer = new Player();
 otherPlayer.setId(playerOneId);
 game.setPlayerOne(otherPlayer);
 }

}
game.setStatus(status);

5.	 When TurnMessage is received, we should extract activePlayer from it and set
it on the game. If activePlayer is the same as thisPlayer of gameClient, set
myTurn to true on gameClient.

6.	 The last message to be handled by the class is the FiringResult message.
This calls applyMove on the game object. Some kind of output should be tied
to this message telling the player what happened. This example game uses
System.out.println to convey this.

7.	 Finally, initialize our ClientMessageHandler object in the constructor of the client
class, as follows:
ClientMessageHandler messageHandler = new
ClientMessageHandler(this, game);
client.addMessageListener(messageHandler);

With the received messages handled, we can look at the logic on the client side and the
messages it sends. This is very limited as most of the game functionality is handled by
the server.

The following steps show how to implement the client-side game logic:

1.	 The placeShip method can be written in many different ways. Normally,
you will have a graphical interface. For this recipe though, we use a command
prompt, which breaks down the input to x and y coordinates and whether the
ship is placed horizontally or vertically. At the end, it should send five instances
of PlaceShipMessages to the server. For each added ship, we also call
thisPlayer.increaseShips().

2.	 We also need a method called setMyTurn. This uses the command prompt to
receive x and y coordinates to shoot at. After this, it populates FireActionMessage,
which is sent to the server.

3.	 For PlaceShipMessage, create a new class and have it extend GameMessage.

4.	 The class needs to contain the ID of the player placing the ship, coordinates, and
orientation of the ship. The ID of the ship refers to the position in the following array:
private static Ship[] ships = new Ship[]{new Ship("PatrolBoat",
2), new Ship("Destroyer", 3), new Ship("Submarine", 3), new
Ship("Battleship", 4), new Ship("Carrier", 5)};

Networking with SpiderMonkey

192

5.	 We create another class called FireActionMessage, which also extends
GameMessage.

6.	 This has a reference to the player firing and an x and y coordinate.

Message handling on the server is similar to the one on the client. We have a
ServerMessageHandler class implementing the MessageListener interface.
This has to handle receiving messages from the player placing ships, and firing.

1.	 Inside the messageReceived method, catch all PlaceShipMessages. Using the
supplied gameId, we get the game instance from the server's getGame method and
call the placeShip method. Once this is done, we check to see whether both players
have placed all their ships. If that is the case, it's time to start the game:
public void messageReceived(HostedConnection conn, Message m) {
 if (m instanceof PlaceShipMessage){
 PlaceShipMessage shipMessage = (PlaceShipMessage) m;
 int gameId = shipMessage.getGameId();
 Game game = gameServer.getGame(gameId);
 game.placeShip(…);
 if(game.getPlayerOne().getShips() == 5 && game.getPlayerTwo()
!= null&& game.getPlayerTwo().getShips() == 5){
 gameServer.startGame(gameId);
 }

2.	 In the startGame method, the first thing we need to do is send a message to let the
players know the game is now started. We know what clients to send the message to
by getting the list of connections from the connectionFilters map as follows:
public Game startGame(int gameId){
 Game game = games.get(gameId);
 List<HostedConnection> connsForGame = connectionFilters.
get(gameId);
 GameStatusMessage startMessage = new GameStatusMessage();
 startMessage.setGameId(game.getId());
 startMessage.setGameStatus(Game.GAME_STARTED);
 server.broadcast(Filters.in(connsForGame), startMessage);

3.	 After this, we decide which player will have the first move and send TurnMessage
to the players, as follows:
 int startingPlayer = FastMath.nextRandomInt(1, 2);
 TurnMessage turnMessage = new TurnMessage();

 server.broadcast(Filters.in(connsForGame), turnMessage);
 return game;
}

Chapter 7

193

4.	 Now, we need to define TurnMessage. It is another simple message, only containing
the ID of the player whose turn it currently is and extending GameMessage.

5.	 Back in ServerMessageListener, we make it ready to receive
FireActionMessage from a player. We begin by verifying that the playerId of
the incoming message matches with the current player on the server side. It can
be implemented as follows:
if(m instanceof FireActionMessage){
 FireActionMessage fireAction = (FireActionMessage) m;
 int gameId = fireAction.getGameId();
 Game game = gameServer.getGame(gameId);
 if(game.getCurrentPlayerId() ==
 fireAction.getPlayerId()){

6.	 Then, we call applyMove on the game, letting it decide whether it's a hit or not. If it's
a hit, the ship will be returned. It can be implemented by typing the following code:
 Ship hitShip = game.applyMove(fireAction);

7.	 We go on and create a FiringResult message. This is an extension of
FireActionMessage with additional fields for the (possible) ship being hit. It should
be broadcasted to both the players letting them know whether the action was a hit
or not.

8.	 Finally, we switch the active player and send another TurnMessage to both the
players as follows:
 TurnMessage turnMessage = new TurnMessage();
 turnMessage.setGameId(game.getId());
 game.setCurrentPlayerId(game.getCurrentPlayerId()
== 1 ? 2 : 1);
 turnMessage.setActivePlayer(game.
getCurrentPlayerId());
 gameServer.sendMessage(turnMessage);
 }

9.	 This flow will continue until one of the players has run out of ships. Then, we
should simply send GameStatusMessage with the END status to the players
and disconnect them.

How it works...
When a player launches the client, it will automatically connect to the server defined in the
properties file.

The server will acknowledge this, assign a user ID to the player, and send back
WelcomeMessage containing the ID. The job of WelcomeMessage is to confirm the connection
to the client, and let the client know its given ID. In this implementation, it is used for future
communication from the client. Another way of filtering incoming messages would be possible
using the HostedConnection instance, as it holds a unique address to the client.

Networking with SpiderMonkey

194

When the first player connects, a new game will be created. The game is put in the WAITING
status until two players have connected, and both have placed their ships. For each player
connecting, it creates a GameStatusMessage letting all players in the game know the
current status (which is WAITING) and any player information it might have. The first player,
PlayerOne, will receive the message twice (again when PlayerTwo connects), but it doesn't
matter as the game will be in the WAITING status until both players have placed their ships.

The placeShip method is simplified and doesn't contain all the verification that you will
normally have in a full game. Make sure that the the server checks whether a ship is outside
the board, or overlapping, and make sure it's of the right type, length, and so on and send a
message back if it is wrong. This method simply checks that the ship is inside bounds and
skips it if it isn't. Verification can also be done on the client, but to limit exploitation, it has
to be done on the server as well.

The starting player will be selected randomly and sent in a TurnMessage to both
players stating who begins. The player is asked to enter a set of coordinates to fire
at and FireActionMessage is sent to the server.

The server verifies the player and applies it to the board. It then broadcasts a FireResult
message to all players with information about the action, and whether any ships are hit. If
the attacked player still has ships left, it becomes his or her turn to fire.

Once a player has run out of ships, the game ends. The server broadcasts a message to all
the clients and disconnects them.

The clients have very little information about the other player. The benefit of this is that it
makes cheating much more difficult.

Implementing a network code for FPS
Networked FPS games are a genre of games that never seem to lose popularity. In this recipe,
we'll look at the basics to get a server and multiple clients up and running. We will emulate a
server with a persistent environment, where players can connect and disconnect at any time.

We have the benefit of using some of the code generated in earlier chapters. The code we'll
use requires some changes to be adapted to a networked game, but it will again show the
benefit of using jMonkeyEngine's Control and AppState classes.

Getting ready
Good recipes to read up on before this are the previous recipes in this chapter (especially
Making a networked game – Battleships, on which the architecture relies heavily) and also the
Creating a reusable character control recipe from Chapter 2, Cameras and Game Controls, as
we will use a similar pattern here for our NetworkedPlayerControl implementations. To
avoid repetition, this recipe will not show or explain all of the regular gameplay code.

Chapter 7

195

How to do it...
We begin by defining a few classes that will be used commonly across both server and client:

1.	 First off, we define a class called NetworkedPlayerControl extending
AbstractControl. We will use this both as an identifier for a player object
and as a control for the spatial representation of the player.

2.	 The class will be extended in further recipes, but for now it should keep track of an
integer called ID.

3.	 It also needs an abstract method called onMessageReceived, taking
PlayerMessage as input. This is the method that our message handlers will call
to apply changes. In ServerPlayerControl, the message will contain the actual
input from the player, whereas ClientPlayerControl simply replicates what has
happened on the server.

4.	 Now, we define a class called Game, which will be shared by both the client
and server.

5.	 We add a HashMap object called players, where playerId is the key and
NetworkedPlayerControl is the value. It keeps track of the players.

We will need a couple of new messages for this example. All messages are assumed to be in
a bean pattern with getters and setters. We define the messages with the following steps:

1.	 We create a base message to be used for player-related information and call it
PlayerMessage, extending AbstractMessage. This only needs an integer
called playerId.

2.	 We create the first message that extends PlayerMessage. It is called
PlayerActionMessage and handles player input. This should be set to be reliable
as we don't want to ever miss a player's input.

3.	 Since player input can either be a key press or mouse click, it needs to have both a
Boolean value called pressed and a float value called floatValue.

4.	 In addition, we also have to add a String value called action.

5.	 We extend PlayerMessage in another class called PlayerUpdateMessage. This
will be used to distribute player location information from the server to the clients.
This should not be reliable to avoid unnecessary delays.

6.	 It has a Vector3f field called position and a Quaternion field called
lookDirection.

Networking with SpiderMonkey

196

With the messages defined, let's see what the server code looks like:

1.	 We define a new class called FPSServer, which extends SimpleApplication.

2.	 It needs to keep track of the following fields. Apart from the Server field, it also
keeps track of the next ID to give to a connecting player, a Game, and a Map of
all the currently connected players, with their connection as the key:
private Server server;
private int nextPlayerId = 1;
private Game game;
private HashMap<HostedConnection, ServerPlayerControl> playerMap =
new HashMap<HostedConnection, ServerPlayerControl>();

3.	 Like in the previous recipe, we use a class called GameUtil to register all our
message classes. We also set frameRate to 30 fps. This might be different
depending on the game type. Finally, we start the application in the headless
mode, to save resources as follows:
public static void main(String[] args) throws Exception{
 GameUtil.initialize();
 FPSServer gameServer = new FPSServer();
 AppSettings settings = new AppSettings(true);
 settings.setFrameRate(30);
 gameServer.setSettings(settings);
 gameServer.start(JmeContext.Type.Headless);
}

4.	 We initialize the server as in the Making a networked game ‑ Battleships recipe and
create a ConnectionListener instance to look for connecting and disconnecting
players. This will call addPlayer and removePlayer respectively, when players
connect or disconnect.

5.	 In the addPlayer method, we create a new ServerPlayerControl instance,
which is the server-side implementation of NetworkedPlayerControl, and
assign an ID to it for easier reference, as follows:
private void addPlayer(Game game, HostedConnection conn){
 ServerPlayerControl player = new ServerPlayerControl();
 player.setId(nextPlayerId++);
 playerMap.put(conn, player);
 game.addPlayer(player);

6.	 Then, we create a spatial for it so that it has a reference in the scene graph (and
thus, it will be automatically updated). This is not only for visual representation,
but we are dependent on it to update our method, as follows:
 Node s = new Node("");
 s.addControl(player);
 rootNode.attachChild(s);

Chapter 7

197

7.	 For any future communication with the server, the client will supply its playerId
in all messages, so the server sends the assigned ID back to the client in
WelcomeMessage. It broadcasts the message using the client's connection
as a filter, as follows:
 WelcomeMessage welcomeMessage = new WelcomeMessage();
 welcomeMessage.setMyPlayerId(player.getId());
 server.broadcast(Filters.in(conn), welcomeMessage);

8.	 Then, we send information about all the other players to the player that joins,
as follows:
 Collection<NetworkedPlayerControl> players = game.getPlayers().
values();
 for(NetworkedPlayerControl p: players){
 PlayerJoinMessage joinMessage = new PlayerJoinMessage();
 joinMessage.setPlayerId(p.getId());
 server.broadcast(Filters.in(conn), joinMessage);
 }

9.	 Lastly, the server sends a message to all the other players about the new player,
as follows:
 PlayerJoinMessage joinMessage = new PlayerJoinMessage();
 joinMessage.setPlayerId(player.getId());
 server.broadcast(joinMessage);
}

10.	 The removePlayer method works similarly, but it only has to send a message
to each player currently connected about the disconnected player. It also uses
PlayerJoinMessage but it sets the leaving Boolean to true to indicate the
player is leaving, not joining the game.

11.	 Then, the server will continuously send location and rotation (direction) updates to
all players. Since we set fps to 30, it will try to do this every 33 ms as follows:
public void simpleUpdate(float tpf) {
 super.simpleUpdate(tpf);
 Collection<NetworkedPlayerControl> players = game.getPlayers().
values();
 for(NetworkedPlayerControl p: players){
 p.update(tpf);
 PlayerUpdateMessage updateMessage = new PlayerUpdateMessage();
 updateMessage.setPlayerId(p.getId());
updateMessage.setLookDirection(p.getSpatial().getLocalRotation());
updateMessage.setPosition(p.getSpatial().getLocalTranslation());
 updateMessage.setYaw(p.getYaw());
 server.broadcast(updateMessage);
 }
}

Networking with SpiderMonkey

198

12.	 We also create a ServerMessageHandler class that implements
MessageListener. It's a short class in this case, which will only listen to messages
extending PlayerMessage and pass it on to the correct NetworkedPlayerControl
class to update it. In this recipe, this will mean the input coming from the player,
as follows:
public void messageReceived(HostedConnection source, Message m) {
 if(m instanceof PlayerMessage){
 PlayerMessage message = (PlayerMessage)m;
 NetworkedPlayerControl p = game.getPlayer(message.
getPlayerId());
 p.onMessageReceived(message);
 }
}

13.	 For the server-side implementation of the NetworkedPlayerControl class, we
extend it to a new class called ServerPlayerControl.

14.	 Similar to the GameCharacterControl class from Chapter 2, Cameras and Game
Controls, we will use a set of Booleans to keep track of the input, as follows:
boolean forward = false, backward = false, leftRotate = false,
rightRotate = false, leftStrafe = false, rightStrafe = false;

15.	 In the implemented onMessageReceived method, listen for PlayerMessages. We
don't know if it will contain Boolean or float values, so we look for both, as follows:
public void onMessageReceived(PlayerMessage message) {
 if(message instanceof PlayerActionMessage){
 String action = ((PlayerActionMessage) message).getAction();
 boolean value = ((PlayerActionMessage) message).isPressed();
 float floatValue = ((PlayerActionMessage) message).
getFloatValue();

16.	 Then, we apply the values as shown in the following code snippet:
if (action.equals("StrafeLeft")) {
 leftStrafe = value;
} else if (action.equals("StrafeRight")) {
 rightStrafe = value;
}
...
else if (action.equals("RotateLeft")) {
 rotate(floatValue);
} else if (action.equals("RotateRight")) {
 rotate(-floatValue);
 }

Chapter 7

199

17.	 In the overridden controlUpdate method, we then modify the position and rotation
of the spatial based on the input, just like we did in the Creating a reusable character
control recipe of Chapter 2, Cameras and Game Controls.

The client is simple in many ways, since it basically only does two things. It takes a player's
input, sends it to the server, receives updates from the server, and applies them as follows:

1.	 We begin by creating a new class called FPSClient extending
SimpleApplication.

2.	 In the constructor, we read the network properties file and connect to the server,
as follows:
Properties prop = new Properties(); prop.load(getClass().
getClassLoader().getResourceAsStream("network/resources/network.
properties"));
 client = Network.connectToServer(prop.getProperty("server.
name"), Integer.parseInt(prop.getProperty("server.version")),
prop.getProperty("server.address"), Integer.parseInt(prop.
getProperty("server.port")));

3.	 Just as with the server, we register all the message classes before launching
the application.

4.	 The application should have a reference to a Node class called playerModel,
which will be the visual representation of the players in the game. There should
also be a ClientPlayerControl class called thisPlayer.

5.	 In the simpleInitApp method, we attach InputAppState. This has the same
functionality as the one in the Creating an input AppState object recipe of Chapter 2,
Cameras and Game Controls. The only difference is it will benefit from having
a direct way of reaching the client to send messages:
public void simpleInitApp() {
 InputAppState inputAppState = new InputAppState();
 inputAppState.setClient(this);
 stateManager.attach(inputAppState);

6.	 Next, we create playerGeometry to be used for all the players in this example,
as follows:
 Material playerMaterial = new Material(assetManager, "Common/
MatDefs/Misc/Unshaded.j3md");
 playerGeometry = new Geometry("Player", new Box(1f,1f,1f));
 playerGeometry.setMaterial(playerMaterial);

Networking with SpiderMonkey

200

7.	 We also turn off the application's flyByCamera instance and create a new game
object, which we will populate when we receive information from the server,
as follows:
 getFlyByCamera().setEnabled(false);
 game = new Game();

8.	 Lastly, we create a new ClientMessageListener object and add it to the client, as
shown in the following code snippet:
ClientMessageHandler messageHandler = new
ClientMessageHandler(this, game);
client.addMessageListener(messageHandler);

9.	 In the createPlayer method, we create a new ClientPlayerControl instance
and also a Node instance, which we attach to the scene graph, as follows:
ClientPlayerControl player = new ClientPlayerControl();
player.setId(id);
final Node playerNode = new Node("Player Node");
 playerNode.attachChild(assetManager.loadModel("Models/
Jaime/Jaime.j3o"));//
playerNode.addControl(player);

10.	 Since we don't know when this method will be called, we make sure that we attach
the spatial in a thread-safe way. This can be implemented as follows:
enqueue(new Callable(){
 public Object call() throws Exception {
 rootNode.attachChild(playerNode);
 return null;
 }
});

11.	 Finally, we return the created ClientPlayerControl instance to the
calling method.

12.	 We add a new method called setThisPlayer. This method will be called when the
player's WelcomeMessage is received. Inside this, we create CameraNode, which
will be attached to the player, as follows:
public void setThisPlayer(ClientPlayerControl player){
 this.thisPlayer = player;
 CameraNode camNode = new CameraNode("CamNode", cam);
 camNode.setControlDir(CameraControl.ControlDirection.
SpatialToCamera);
 ((Node)player.getSpatial()).attachChild(camNode);
}

Chapter 7

201

13.	 We also have to override the destroy method to make sure we close the connection
to the server when the client is shutdown. This can be implemented as follows:
public void destroy() {
 super.destroy();
 client.close();
}

14.	 Now, we need to create the client representation of NetworkedPlayerControl
and extend it in a class called ClientPlayerControl.

15.	 It has a Vector3f field called tempLocation and a Quaternion field called
tempRotation. These are used to hold received updates from the server. It can
also have a float field called yaw for head movement.

16.	 In the onMessageReceived method, we only look for PlayerUpdateMessages
and set tempLocation and tempRotation with the values received in the
message, as follows:
public void onMessageReceived(PlayerMessage message) {
 if(message instanceof PlayerUpdateMessage){
 PlayerUpdateMessage updateMessage = (PlayerUpdateMessage)
message;
 tempRotation.set(updateMessage.getLookDirection());
 tempLocation.set(updateMessage.getPosition());
tempYaw = updateMessage.getYaw();
 }
}

17.	 We will then apply the temp variable values in the controlUpdate method:
spatial.setLocalTranslation(tempLocation);
spatial.setLocalRotation(tempRotation);
yaw = tempYaw;

Just like on the server side, we need a message handler listening for incoming messages.
To do this, perform the following steps:

1.	 We create a new class called ClientMessageHandler, which implements
MessageListener<Client>.

2.	 The ClientMessageHandler class should have a reference to FPSClient in a
field called gameClient and Game itself in another field called game.

3.	 In the messageReceived method, we need to handle a number of messages.
The WelcomeMessage is most likely to arrive first. When this happens, we create
a player object and spatial and assign it to be this client's player, as follows:
public void messageReceived(Client source, Message m) {
 if(m instanceof WelcomeMessage){

Networking with SpiderMonkey

202

 ClientPlayerControl p = gameClient.
createPlayer(((WelcomeMessage)m).getMyPlayerId());
 gameClient.setThisPlayer(p);
 game.addPlayer(gameClient.getThisPlayer());

4.	 The PlayerJoinMessage is received both when player joins and leaves a game.
What sets it apart is the leaving Boolean. We call both the game and gameClient
methods based on whether the player is joining or leaving, as shown in the following
code snippet:
PlayerJoinMessage joinMessage = (PlayerJoinMessage) m;
int playerId = joinMessage.getPlayerId();
if(joinMessage.isLeaving()){
 gameClient.removePlayer((ClientPlayerControl) game.
getPlayer(playerId));
 game.removePlayer(playerId);
} else if(game.getPlayer(playerId) == null){
 ClientPlayerControl p = gameClient.createPlayer(joinMessage.
getPlayerId());
 game.addPlayer(p);
}

5.	 When the PlayerUpdateMessage is received, we first find the corresponding
ClientPlayerControl class and pass on the message to it, as follows:
 } else if (m instanceof PlayerUpdateMessage){
 PlayerUpdateMessage updateMessage = (PlayerUpdateMessage) m;
 int playerId = updateMessage.getPlayerId();
 ClientPlayerControl p = (ClientPlayerControl) game.
getPlayer(playerId);
 if(p != null){
 p.onMessageReceived(updateMessage);
 }

How it works...
The server is running in the headless mode, which means it won't do any rendering and there
will be no graphical output, but we still have access to the full jMonkeyEngine application. In
this recipe, one server instance will only have one game active at a time.

We instantiate all network messages inside a class called GameUtil, since they have to be
the same (and serialized in the same order) on the client and server.

The client will try to connect to the server as soon as it launches. Once connected, it will
receive playerId from the server via WelcomeMessage, as well as PlayerJoinMessages
for all other players that are already connected. Likewise, all other players will receive
PlayerJoinMessage with the new player's ID.

Chapter 7

203

The client sends any actions the players perform to the server using PlayerActionMessage,
which applies them to its instance of the game. The server, which runs at 30 fps,
will send positions and directions of each player to all the other players, using
PlayerUpdateMessages.

The InputAppState class on the client is very similar to the one in Chapter 2, Cameras and
Game Controls. The only difference is that instead of directly updating a Control instance,
it creates a message and sends it to the server. In the onAction class, we set the Boolean
value of the message, whereas in onAnalog (to look and rotate), floatValue will be used
instead, as shown in the following code snippet:

public void onAction(String name, boolean isPressed, float tpf) {
 InputMapping input = InputMapping.valueOf(name);
 PlayerActionMessage action = new PlayerActionMessage();
 action.setAction(name);
 action.setPressed(isPressed);
 action.setPlayerId(client.getThisPlayer().getId());
 client.send(action);
}

In the event of a player leaving the game, PlayerJoinMessages will be sent to the other
players, with leaving set to true.

The NetworkedPlayerControl class is an abstract class, and doesn't do much on
its own. You might recognize the implementation of ServerPlayerControl from
GameCharacterControl, and they function similarly, but rather than receiving the input
directly from the user, ServerPlayerControl gets it via a networked message instead.

Both the client and server implementation of NetworkedPlayerControl use the
tempRotation and tempLocation fields to which they apply any incoming changes.
This is so we don't modify the actual spatial transforms outside the main loop.

We shouldn't be fooled by the relative simplicity of this recipe. It merely shows the basics of
a real-time networked environment. Making a full game creates much more complexity.

See also
ff If you'd like to see an example of a full real-time game, have a look at the full source

of MonkeyZone at http://hub.jmonkeyengine.org/wiki/doku.php/
jme3:advanced:monkey_zone. It features not only human players, but also
networked AI.

http://hub.jmonkeyengine.org/wiki/doku.php/jme3:advanced:monkey_zone
http://hub.jmonkeyengine.org/wiki/doku.php/jme3:advanced:monkey_zone

Networking with SpiderMonkey

204

Loading a level
No matter if it's an FPS, RTS, or driving game we're making, we'll want to be able to load
different kinds of environments for the players to roam around in. How can we do that easily?

In this recipe, we'll add functionalities to the networked FPS game we outlined previously
in this chapter. The principle will work for any kind of already networked game, although it
might differ depending on how the game implements the level. Here, we'll assume it uses
jMonkeyEngine scenes or .j3o scenes.

How to do it...
Perform the following set of steps to load a level:

1.	 We start by defining a new message class: LoadLevelMessage. It extends
GameMessage since it might be useful to know the gameId. Apart from that,
it has one field levelName.

2.	 We'll add the same field to our Game class so that it can keep track of which level
it's running.

3.	 Next, let's create a levelNode field on our server, which we can load our level into,
as follows:
private Node loadLevel(String levelName){
 return (Node) assetManager.loadModel("Scenes/"+levelName +
".j3o");
}

4.	 Then, we create a small method that will load the level from a predefined path,
as follows:
levelNode = loadLevel("TestScene");
rootNode.attachChild(levelNode);
game.setLevelName("TestScene");

5.	 Inside the simpleInitApp method, we'll tell the application to load TestScene
from Chapter 1, SDK Game Development Hub:
LoadLevelMessage levelMessage = new LoadLevelMessage();
levelMessage.setLevelName(game.getLevelName());
server.broadcast(Filters.in(conn), levelMessage);

6.	 Finally, inside the addPlayer method, we need to create and send the message to
the connecting client. That's all for the server side of things.

Chapter 7

205

7.	 In the client, we create a levelNode field and a loadLevel method, but it's a little
bit different:
public void loadLevel(final String levelName){
 enqueue(new Callable(){
 public Object call() throws Exception {
 if(rootNode.hasChild(levelNode)){
 rootNode.detachChild(levelNode);
 }
 levelNode = (Node)
 assetManager.loadModel("Scenes/"+levelName +
 ".j3o");
 rootNode.attachChild(levelNode);
 return null;
 }
 });
}

8.	 We need to make sure we manipulate the scene graph at the correct moment in time
so that we can detach and attach the node inside an enqueue block.

9.	 Finally, we make sure MessageListener picks up LoadLevelMessage as follows:
else if (m instanceof LoadLevelMessage){
 gameClient.loadLevel(((LoadLevelMessage)m).getLevelName());
 game.setLevelName(((LoadLevelMessage)m).getLevelName());
}

10.	 That's it! When we connect to the server again, we should see a familiar scene.

How it works...
When a client joins, the server creates a LoadLevelMessage class and populates it with the
name of the level currently loaded. The server doesn't supply the level itself, but the client must
have the levels supplied previously. The LoadLevelMessage class only provides a name in
this case, which is probably enough in many cases. For some games, it's a good idea to support
a custom path when loading levels, since it allows for greater customization options.

Interpolating between player positions
If we were to only run our game in a LAN environment, we would probably never expect
low latency or any significant packet loss. While many are blessed even with good Internet
connections nowadays, from time to time, problems still happen. One of the tricks to try to
mitigate these problems is to use interpolation for entities on the client side.

This means that rather than just applying the position and rotation the client gets from the
server, the client will move towards the target position and rotation in steps.

Networking with SpiderMonkey

206

How to do it...
Perform the following steps to interpolate between the player positions:

1.	 To simulate some network problems, set framerate on the server to 10.

2.	 If you connect to the server now, the movement will be noticeably jerky.

3.	 We replace the contents of the controlUpdate method of
ClientPlayerControl with the following lines to apply the interpolation:
float factor = tpf / 0.03f; spatial.setLocalTranslation(spatial.
getLocalTranslation().interpolateLocal(tempLocation, factor));
spatial.setLocalRotation(spatial.getLocalRotation().slerp(spatial.
getLocalRotation(), tempRotation, factor));

4.	 When we connect again and compare the experience, it will be much smoother.

How it works...
To simulate an environment with problems such as packet loss, we changed the FPS on the
server to 10. Instead of sending out the 30 updates per second it did before, it will only send
one every tenth of a second. This is not the same as 100 ms of latency, since it says nothing
about the turnaround time. It's more as if two out of three updates were lost on the way, a
66 percent packet loss.

Previously, the client simply took the values it got from the server and applied them to the
local players. Using interpolation, the player's position and rotation will move towards the
latest actual position and rotation in steps every update.

We implemented the interpolation by first determining the interpolation factor. This was done
by dividing tpf by the amount of time (roughly, in seconds) we would like the interpolation
to take. The actual time will be longer since the steps become shorter with each update.

We then input this value and use the interpolation method of Vector3f and the slerp
method of Quaternion to move them towards the actual values.

This is done by using a factor based on the tpf value provided in the update method.
By doing so, the interpolation time will be roughly the same regardless of the frame rate.
We should be aware that this in reality becomes latency, a delay between the action and
appearance, as we have added a slight delay to when the player reaches the actual position.

Chapter 7

207

Firing over a network
An FPS wouldn't be a shooter unless there's actually some shooting possible. We'll look at
an example with visible, non-instant bullets. For this, we'll be able to reuse some code from
Chapter 2, Cameras and Game Controls. The recipe won't describe the actual collision as this
is already described in that chapter.

How to do it...
Perform the following steps to fire over a network:

1.	 To start off, we create a new message, called BulletUpdateMessage to send
updates on bullet positions. It only needs two fields: a Vector3f field for position
and a Boolean field for whether it's alive or not.

2.	 We'll add a check in the messageReceived method of ServerMessageHandler
to see whether a player is firing. Any action verification we want to do should happen
prior to this:
if(message.getAction().equals("Fire") && message.isPressed()){
 server.onFire(p);
}

3.	 We find out the direction the player is facing and create a new ServerBullet
instance. It's assigned the next available object ID and added to the bullets list,
as follows:
public void onFire(NetworkedPlayerControl player){
 Vector3f direction = player.getSpatial().getWorldRotation().
getRotationColumn(2);
 direction.setY(-player.getYaw());
 ServerBullet bullet = new ServerBullet(player.getSpatial().
getWorldTranslation().add(0, 1, 0), direction);
 bullet.setId(nextObjectId++);
 bullets.add(bullet);
}

4.	 Now, we need to add another code block to the simpleUpdate method to
maintain the bullets and send out messages, as follows:
int nrOfBullets = bullets.size();
for(int i = 0; i < nrOfBullets; i++){
 ServerBullet bullet = bullets.get(i);
 bullet.update(tpf);
 BulletUpdateMessage update = new BulletUpdateMessage();
 update.setId(bullet.getId());

Networking with SpiderMonkey

208

 update.setPosition(bullet.getWorldPosition());
 update.setAlive(bullet.isAlive());
 server.broadcast(update);
 if(!bullet.isAlive()){
 bullets.remove(bullet);
 nrOfBullets--;
 i--;
 }
}

5.	 In a for loop, we first update the bullet, and then create a new
BulletUpdateMessage, which is sent to all players. If the bullet
is out of range, it is removed from the list. This is implemented as follows:
if (m instanceof BulletUpdateMessage){
 BulletUpdateMessage update = (BulletUpdateMessage) m;
 ClientBullet bullet = gameClient.getBullet(update.getId());
 if(bullet == null){
 bullet = gameClient.createBullet(update.getId());
 }
 bullet.setPosition(update.getPosition());
 if(!update.isAlive()){
 gameClient.removeBullet(update.getId(), bullet.getSpatial());
 }
}

6.	 On the client side, we write a new method that creates a new bullet, once it
receives information from the server:
public ClientBullet createBullet(int id){
 final ClientBullet bulletControl = new ClientBullet();
 final Spatial g = assetManager.loadModel("Models/Banana/banana.
j3o");
 g.rotate(FastMath.nextRandomFloat(), FastMath.nextRandomFloat(),
FastMath.nextRandomFloat());
 g.addControl(bulletControl);
 bullets.put(id, bulletControl);
 rootNode.attachChild(g);
 return bulletControl;
}

7.	 Then, we need a removeBullet method once we receive the information from
the server.

Chapter 7

209

How it works...
Like in the previous recipes, it's the server that is in control of things. The client merely
says it wants to fire and any checks happen on the server side (although it's fine to mimick
verification on the client side to save bandwidth). The recipe doesn't contain any specific
verifications (a player can fire at any time), but this is explained more in Chapter 2, Cameras
and Game Controls.

Unlike in Chapter 2, Cameras and Game Controls, we can't use the camera as input; instead,
we use the direction of the firing player and apply the yaw for up and down tilt.

Bullets are different on the server and client side. On the server, they are merely logical
objects. Like the non-instant bullets from the Firing non-instant bullets recipe of Chapter 2,
Cameras and Game Controls, they work like slow rays, moving through the world until they
hit something or move out of range.

On the client, the bullet is a bit different from the server side, and is based on the control
pattern. The client finds out about the bullet in ClientMessageHandler, as the first update
is received. It sees if ClientBullet exists already, and if not, it will create a new one. All
ClientBullet does then is update the position in the controlUpdate method.

It's not the actual fire message that creates the bullets, but the first time a
BulletUpdateMessage is received on the client. The client will keep updating the Bullet's
position, much like the player positions, until a message says it's no longer alive. At this point,
it will be removed.

The recipe currently sends all bullets to all players. As with players, this could (and probably
should) be based on a need-to-know basis to avoid cheating (and excessive bandwidth usage).

Optimizing the bandwidth and avoiding
cheating

It can be summarized as follows: the less information a client has, the less opportunity
there is of exploiting said information for cheating. Also, the less information a client needs,
the less bandwidth is required.

Previously, we've generously sent information about every player, every update cycle. In this
recipe, we'll change that so that the server checks what players can be seen by others, and
only send that information.

We'll build this on top of the Implementing a network code for FPS recipe.

We need to add some complexity to the simpleUpdate method of the server application.
So, instead of sending information about all players to everybody, we need to check who
should receive what.

Networking with SpiderMonkey

210

How to do it...
Perform the following steps to optimize a bandwidth:

1.	 First of all, we'll add a visible field to our PlayerUpdateMessage. This is so that a
client knows when a player has disappeared from the view.

2.	 On the server side, we need to change two classes. First, our
ServerPlayerControl needs to maintain a list of player IDs it currently sees.

3.	 Before we do our checks, we need to make sure all the players are updated:
Collection<NetworkedPlayerControl> players = game.getPlayers().
values();
 for(NetworkedPlayerControl p: players){
 p.update(tpf);
 }

4.	 Next, we iterate through our playerMap object. Here, we add a simple range check
to see whether a player is visible or not, and lastly broadcast the information to the
relevant players, as follows:
Iterator<HostedConnection> it = playerMap.keySet().iterator();
while(it.hasNext()){
 HostedConnection conn = it.next();
 ServerPlayerControl player = playerMap.get(conn);
 for(NetworkedPlayerControl otherPlayer: players){
 float distance = player.getSpatial().getWorldTranslation().
distance(otherPlayer.getSpatial().getWorldTranslation());
 PlayerUpdateMessage updateMessage = null;
 if(distance < 50){
 updateMessage = createUpdateMessage(otherPlayer);
 player.addVisiblePlayer(otherPlayer.getId());
 } else if (player.removeVisiblePlayer(otherPlayer.getId())){
 updateMessage = createUpdateMessage(otherPlayer);
 updateMessage.setVisible(false);
 }
 if(updateMessage != null){
 server.broadcast(Filters.in(conn), updateMessage);
 }
}

5.	 That's all for the server side. On the client side, we need to add a visible field to
ClientPlayerControl.

Chapter 7

211

6.	 The second change we make is in ClientMessageHandler. We check whether the
player is supposed to be visible, and whether it's attached to the scene graph or not:
if(p.isVisible() && p.getSpatial().getParent() == null){
 gameClient.getRootNode().attachChild(p.getSpatial());
} else if (!p.isVisible() && p.getSpatial().getParent() != null){
 gameClient.getRootNode().detachChild(p.getSpatial());
}

How it works...
By using this principle, each client will only receive updates on other relevant players. We
can't, however, just stop sending updates about certain players without also letting the client
know why, or they would just freeze in their last known position. That's why the last message
the server sends about a player is with visible set to false. However, to do so, the server
must keep track of when a player has disappeared, and not just when it's not visible. That's
why each ServerPlayerControl class needs to keep track of which players it saw the last
update in its visibleList.

This recipe focused on the networking aspects of visibility and how and when to send updates.
A proper game (at least an FPS) will need to keep track of obscured players as well, not only
how far away they are.

Optimization can be done in different ways, and it all comes down to the application. An MMO
may for example not be as dependent on frequent updates. In a game like that, network
updates can be done with less frequency, if a player is further away, and instead rely on
good interpolation to avoid jerkiness.

If we're using interpolation, and not absolute updates, we should also turn off interpolation
when visible switches from false to true, to avoid players possibly gliding to the new position.
We can also turn off updates when visible is false.

See also
ff The Sensing – vision recipe in Chapter 5, Artificial Intelligence, which provides an

idea on how to implement sight on the server

8
Physics with Bullet

This chapter contains the following recipes:

ff Creating a pushable door

ff Building a rocket engine

ff Ballistic projectiles and arrows

ff Handling multiple gravity sources

ff Self-balancing using RotationalLimitMotors

ff The principles of a bridge-building game

ff Networked physics

Introduction
Using physics in games has become very common and accessible, thanks to open source
physics engines, such as Bullet. jMonkeyEngine supports both the Java-based jBullet and
native Bullet in a seamless manner.

jBullet is a Java-based library with JNI bindings to the original Bullet based
on C++. jMonkeyEngine is supplied with both of these, and they can be used
interchangeably by replacing the libraries in the classpath. No coding change
is required. Use jme3-libraries-physics for the implementation of
jBullet and jme3-libraries-physics-native for Bullet. In general,
Bullet is considered to be faster and is full featured.

Physics can be used for almost anything in games, from tin cans that can be kicked around
to character animation systems. In this chapter, we'll try to reflect the diversity of these
implementations.

Physics with Bullet

214

All the recipes in this chapter will require you to have a BulletAppState class in the
application. To avoid repetition, the process of doing this is described in the Adding Bullet
physics to the application section in Appendix, Information Fragments.

Creating a pushable door
Doors are useful in games. Visually, it is more appealing to not have holes in the walls but
doors for the players to pass through. Doors can be used to obscure the view and hide what's
behind them for a surprise later. In extension, they can also be used to dynamically hide
geometries and increase the performance. There is also a gameplay aspect where doors are
used to open new areas to the player and give a sense of progression.

In this recipe, we will create a door that can be opened by pushing it, using a HingeJoint
class.

This door consists of the following three elements:

ff Door object: This is a visible object

ff Attachment: This is the fixed end of the joint around which the hinge swings

ff Hinge: This defines how the door should move

Getting ready
Simply following the steps in this recipe won't give us anything testable. Since the camera has
no physics, the door will just sit there and we will have no way to push it. If you have made
any of the recipes that use the BetterCharacterControl class, many of them in Chapter
2, Cameras and Game Controls, we will already have a suitable test bed for the door. If not,
jMonkeyEngine's TestBetterCharacter example can also be used.

How to do it...
This recipe consists of two sections. The first will deal with the actual creation of the door and
the functionality to open it. This will be made in the following six steps:

1.	 Create a new RigidBodyControl object called attachment with a small
BoxCollisionShape. The CollisionShape should normally be placed inside the
wall where the player can't run into it. It should have a mass of 0, to prevent it from
being affected by gravity.

2.	 We move it some distance away and add it to the physicsSpace instance, as shown
in the following code snippet:
attachment.setPhysicsLocation(new Vector3f(-5f, 1.52f,
 0f));
bulletAppState.getPhysicsSpace().add(attachment);

Chapter 8

215

3.	 Now, create a Geometry class called doorGeometry with a Box shape with
dimensions that are suitable for a door, as follows:
Geometry doorGeometry = new Geometry("Door", new
 Box(0.6f, 1.5f, 0.1f));

4.	 Similarly, create a RigidBodyControl instance with the same dimensions, that
is, 1 in mass; add it as a control to the doorGeometry class first and then add it to
physicsSpace of bulletAppState. The following code snippet shows you how
to do this:
RigidBodyControl doorPhysicsBody = new RigidBodyControl(new
 BoxCollisionShape(new Vector3f(.6f, 1.5f, .1f)), 1);
bulletAppState.getPhysicsSpace().add(doorPhysicsBody);
doorGeometry.addControl(doorPhysicsBody);

5.	 Now, we're going to connect the two with HingeJoint. Create a new HingeJoint
instance called joint, as follows:
new HingeJoint(attachment, doorPhysicsBody, new
 Vector3f(0f, 0f, 0f), new Vector3f(-1f, 0f, 0f),
 Vector3f.UNIT_Y, Vector3f.UNIT_Y);

6.	 Then, we set the limit for the rotation of the door and add it to physicsSpace
as follows:
joint.setLimit(-FastMath.HALF_PI - 0.1f, FastMath.HALF_PI +
 0.1f);
bulletAppState.getPhysicsSpace().add(joint);

Now, we have a door that can be opened by walking into it. It is primitive but effective.
Normally, you want doors in games to close after a while. However, here, once it is opened,
it remains opened. In order to implement an automatic closing mechanism, perform the
following steps:

1.	 Create a new class called DoorCloseControl extending AbstractControl.

2.	 Add a HingeJoint field called joint along with a setter for it and a float variable
called timeOpen.

3.	 In the controlUpdate method, we get hingeAngle from HingeJoint and store it
in a float variable called angle, as follows:
float angle = joint.getHingeAngle();

4.	 If the angle deviates a bit more from zero, we should increase timeOpen using tpf.
Otherwise, timeOpen should be reset to 0, as shown in the following code snippet:
if(angle > 0.1f || angle < -0.1f) timeOpen += tpf;
else timeOpen = 0f;

Physics with Bullet

216

5.	 If timeOpen is more than 5, we begin by checking whether the door is still open. If
it is, we define a speed to be the inverse of the angle and enable the door's motor to
make it move in the opposite direction of its angle, as follows:
if(timeOpen > 5) {
 float speed = angle > 0 ? -0.9f : 0.9f;
 joint.enableMotor(true, speed, 0.1f);
 spatial.getControl(RigidBodyControl.class).activate();
}

6.	 If timeOpen is less than 5, we should set the speed of the motor to 0:
joint.enableMotor(true, 0, 1);

7.	 Now, we can create a new DoorCloseControl instance in the main class, attach
it to the doorGeometry class, and give it the same joint we used previously in the
recipe, as follows:
DoorCloseControl doorControl = new DoorCloseControl();
doorControl.setHingeJoint(joint);
doorGeometry.addControl(doorControl);

How it works...
The attachment RigidBodyControl has no mass and will thus not be affected by external
forces such as gravity. This means it will stick to its place in the world. The door, however, has
mass and would fall to the ground if the attachment didn't keep it up with it.

The HingeJoint class connects the two and defines how they should move in relation to
each other. Using Vector3f.UNIT_Y means the rotation will be around the y axis. We set
the limit of the joint to be a little more than half PI in each direction. This means it will open
almost 100 degrees to either side, allowing the player to step through.

When we try this out, there may be some flickering as the camera passes through the door.
To get around this, there are some tweaks that can be applied. We can change the collision
shape of the player. Making the collision shape bigger will result in the player hitting the wall
before the camera gets close enough to clip through. This has to be done considering other
constraints in the physics world.

You can consider changing the near clip distance of the camera. Decreasing it will allow things
to get closer to the camera before they are clipped through. This might have implications on
the camera's projection.

One thing that will not work is making the door thicker, since the triangles on the side closest
to the player are the ones that are clipped through. Making the door thicker will move them
even closer to the player.

Chapter 8

217

In DoorCloseControl, we consider the door to be open if hingeAngle deviates a bit more
from 0. We don't use 0 because we can't control the exact rotation of the joint. Instead we use
a rotational force to move it. This is what we do with joint.enableMotor. Once the door is
open for more than five seconds, we tell it to move in the opposite direction. When it's close
to 0, we set the desired movement speed to 0. Simply turning off the motor, in this case, will
cause the door to keep moving until it is stopped by an external force.

Once we enable the motor, we also need to call activate() on RigidBodyControl or it
will not move.

Building a rocket engine
A rocket engine is crucial for most space-based games and many 2D games as well. In this
recipe, we'll cover the minimum that is required to create a thruster that can be used in many
different contexts. The following figure shows a thruster with ParticleEmitter:

Getting ready
For this recipe, we need to make sure that we see the debug shapes of physics. To do this, we
need to call the bulletAppState.setDebugEnabled(true); statement.

Physics with Bullet

218

How to do it...
We will begin by setting up some things that are not strictly needed for the rocket engine but
will aid the testing. Perform the following steps to build a rocket engine:

1.	 First of all we add a floor mesh. For this, we create a new Node class called ground.

2.	 To do this, we add RigidBodyControl with PlaneCollisionShape. The plane
should face upwards like floors normally do, as follows:
RigidBodyControl floorControl = new RigidBodyControl(new
 PlaneCollisionShape(new Plane(new Vector3f(0, 1, 0), 0)),
 0);
ground.addControl(floorControl);
floorControl.setPhysicsLocation(new Vector3f(0f, -10, 0f));

3.	 We then attach them both to rootNode of the application and physicsSpace of
bulletAppState.

4.	 Finally, we need to add a key to control the booster. For this, we implement an
AnalogListener interface in our application.

5.	 Then, add the application to inputManager along with a mapping object called
boost that is bound to the Space bar:
inputManager.addListener(this, "boost");
inputManager.addMapping("boost", new
 KeyTrigger(KeyInput.KEY_SPACE));

6.	 Most of this recipe will be implemented in a class that extends
SimpleApplication.

7.	 We begin by defining a Node class called spaceShip that will be our spaceship's
representation.

8.	 We then create a RigidBodyControl instance with BoxCollisionShape and
add it to the spaceShip node as follows:
RigidBodyControl control = new RigidBodyControl(new
 BoxCollisionShape(new Vector3f(1, 1, 1)), 1);
spaceShip.addControl(control);

9.	 Now, we create another Node, which will be our thruster. Give it the name Thruster
to be able to identify it more easily later, as follows:
Node thruster = new Node("Thruster");

10.	 We set localTranslation of this so that it will end up at the bottom of the
spaceship, as shown in the following line of code:
thruster.setLocalTranslation(0, -1, 0);

Chapter 8

219

11.	 Then, we attach it to the spaceShip node.

12.	 Now, we have to attach the spaceShip node to both the rootNode and
physicsSpace of bulletAppState.

13.	 To control the thruster and make it more reusable, we will create a class called
ThrusterControl, extending AbstractControl.

14.	 It'll have one field, a Spatial field called thruster, that will store the
thruster node.

15.	 We will override the setSpatial method and set it by calling
getChild("Thruster") on the supplied spatial.

16.	 Lastly, we define a new method called fireBooster().

17.	 Inside this, we subtract the thruster's location from the spaceship's location and store
it in a new Vector3f field called direction as follows:
Vector3f direction =
 spatial.getWorldTranslation().subtract(thruster.getWorldTra
 nslation());

18.	 Then, we find the RigidBodyControl class in the spatial and call applyImpulse
with the direction vector. We use the inverted direction as the relative position that
the impulse should originate from. This can be implemented as follows:
spatial.getControl(RigidBodyControl.class).applyImpulse(dir
 ection, direction.negate());

19.	 In the application class, we have to make it call the fireBooster method. We
do this in the onAnalog method that was added when we implemented the
AnalogListener interface:
if(name.equals("boost") && value > 0){
 spaceShip.getControl(ThrusterControl.class).fireBooster();
}

How it works...
The graphics in this recipe are very minimalistic and mostly rely on the debug mode
of BulletAppState to draw them. The physics shapes don't normally have a visual
representation since they're not part of the scene graph. Using the debug mode can be
very useful during early prototypes.

The RigidBodyControl instance of the spaceship makes sure it's affected by gravity and
other forces.

The sole purpose of a thruster is to be able to easily retrieve the position that is relative to the
spaceship from where the boosting force needs to be applied. This is why we place it at the
bottom of the spaceship. The benefit of using the Control pattern to control a Thruster
is that we can apply it to other geometries easily (and even use it in SceneComposer).

Physics with Bullet

220

The fireBooster method of ThrusterControl takes the position of spaceShip and
subtracts the position of the thruster node to get the direction of the force to apply. The
relative position of the force is the direct opposite of this direction.

Ballistic projectiles and arrows
Applying physics to arrows can greatly improve the appearance and gameplay of a medieval
or fantasy game. Setting up arrows that are affected by gravity is fairly simple; this recipe,
however, will also set the arrows up in a way that they always face the direction they're
traveling in, making them more realistic. The following figure shows one of the arrows in flight:

Getting ready
For this recipe, we need to make sure that we see the debug shapes of physics. To do this,
we need to call the bulletAppState.setDebugEnabled(true); statement.

How to do it...
In this recipe, we'll create three classes. Let's begin by looking at the Arrow class, which
contains most of the new functionalities. This will be done in the following eight steps:

1.	 We create a new class called Arrow, extending Node.

2.	 Its constructor takes two Vector3f variables as parameters. One of these is for the
starting location of the arrow and one for the initial velocity, as shown in the following
line of code:
public Arrow(Vector3f location, Vector3f velocity)

3.	 Inside the constructor, we define a Geometry instance for the body of the arrow with
a box mesh as follows:
Box arrowBody = new Box(0.3f, 4f, 0.3f);
Geometry geometry = new Geometry("bullet", arrowBody);

Chapter 8

221

4.	 Then, we set localTranslation of Geometry so that one of its ends touches the
center point of the node as follows:
geometry.setLocalTranslation(0f, -4f, 0f);

5.	 We set localTranslation of this Arrow as the supplied location.

6.	 Next, we create CollisionShape. This will represent the head of the arrow and can
be SphereCollisionShape, as follows:
SphereCollisionShape arrowHeadCollision = new
 SphereCollisionShape(0.5f);

7.	 Now, we define RigidBodyControl based on CollisionShape, as follows:
RigidBodyControl rigidBody = new
 RigidBodyControl(arrowHeadCollision, 1f);

8.	 We set LinearVelocity of RigidBodyControl to be the supplied velocity and
add it as a Control to Arrow, as follows:
rigidBody.setLinearVelocity(velocity);
addControl(rigidBody);

This would be enough for the arrow to follow the laws of physics; however, it will always face
the forward direction. By adding another control, we can make it face the direction of the
velocity. To do this, perform the following steps:

1.	 Create another class called ArrowFacingControl, extending AbstractControl.

2.	 We add a Vector3f field called direction.

3.	 In the controlUpdate method, we get linearVelocity from
RigidBodyControl of the spatial and normalize it. We then store it in direction
as follows:
direction =
 spatial.getControl(RigidBodyControl.class).getLinearVelocit
 y().normalize();

4.	 Then, call the spatial and tell it to rotate to the supplied direction vector as follows:
spatial.rotateUpTo(direction);

5.	 In the constructor of the Arrow class, we add an instance of this control, as follows:
addControl(new ArrowFacingControl());

Physics with Bullet

222

The last section handles the firing of the arrow from SimpleApplication. This can be done
with the following steps:

1.	 First of all, we need to implement ActionListener in the application.

2.	 Add the ActionListener class to inputManager as a listener, together with a key
for firing arrows, as follows:
inputManager.addListener(this, "fire");
inputManager.addMapping("fire", new
 KeyTrigger(KeyInput.KEY_SPACE));

3.	 In the onAction method, call a new method called fireArrow when the fire
button is released. This can be implemented as follows:
if (action.equals("fire") && !isPressed) fireArrow();

4.	 The fireArrow method should begin by instancing a new Arrow instance and
applying a (preloaded) material to it, as follows:
Arrow arrow = new Arrow(new Vector3f(0f, 6f, -10f), new
 Vector3f(0.5f, 0.5f, 0.0f).mult(50));
arrow.setMaterial(matBullet);

5.	 We attach it to rootNode as well as to physicsSpace, as shown in the following
code snippet:
rootNode.attachChild(arrow);
getPhysicsSpace().add(arrow);

How it works...
The Arrow object has two major components. One is Geometry, which is a simple elongated
box. The other is CollisionShape for the head of the arrow, which is the only thing that
will look for collisions. The geometry is conveniently moved so that its tip will be at the
(0,0,0) position of the Arrow node. It is convenient since it means we don't have to do any
conversions in ArrowFacingControl but can use rotateUpTo with the actual velocity
(direction) of the arrow.

Handling multiple gravity sources
Some games require handling gravity from multiple variable sources. In this recipe, we'll handle
this and create a simple miniature solar system to demonstrate it using ThrusterControl
from the Building a rocket engine recipe. To (greatly) simplify the relation between the planets,
they won't affect each other with their gravity, but only the ship. It will also be made in a
2D-asteroids-like fashion, although the gravity would still apply for a 3D game.

We'll add some basic controls to rotate the ship to the left and right, and you can use the
thruster to make the ship move forward.

Chapter 8

223

How to do it...
Apart from ThrusterControl, we'll create two more small classes and an application class
that joins everything together. Let's start with a class that represents the player's ship. This
will consist of the following six steps:

1.	 Create a new class called SpaceShip, which has a Node field called shipNode in it.

2.	 In the constructor, we set up the physics for it by creating a new RigidBodyControl
instance with BoxCollisionShape. To create it in a way that it is affected by
gravity, we also give it a mass of 1 that will be supplied in the constructor as follows:
RigidBodyControl control = new RigidBodyControl(new
 BoxCollisionShape(new Vector3f(1, 1, 1)), 1);
shipNode.addControl(control);

3.	 Now, we create a Node instance called thruster. We also set the name of Node to
Thruster for the control to find it automatically, as shown in the following line
of code:
Node thruster = new Node("Thruster");

4.	 We set localTranslation to be at one of the sides of the spaceship and attach it
to shipNode, as follows:
thruster.setLocalTranslation(-1, 0, 0);
shipNode.attachChild(thruster);

5.	 Then, we rotate the ship's spatial so that it's facing sideways:
shipNode.rotate(0, FastMath.PI, 0);

6.	 Finally, we add a new ThrusterControl instance to the spaceship's spatial.

That's it for the SpaceShip class. Now, we create a class for our planets, as follows:

1.	 We start off by defining a class called StellarBody, which extends
AbstractControl. The StellarBody class has four float fields: size, speed,
orbit, and cycle.

2.	 The constructor takes three of these (size, speed, and orbit) as the input, as
shown in the following code:
public StellarBody(float orbit, float speed, float size)

3.	 We override the setSpatial method and add RigidBodyControl to the supplied
spatial with SphereCollisionShape, using size as the radius and 0 for mass:
RigidBodyControl rigidBody = new RigidBodyControl(new
 SphereCollisionShape(size), 0f);
rigidBody.setGravity(Vector3f.ZERO);
spatial.addControl(rigidBody);

Physics with Bullet

224

4.	 In the controlUpdate method, we make it move along its orbit by increasing the
speed of the cycle by multiplying it by tpf, as follows:
cycle += (speed * tpf) % FastMath.TWO_PI;

5.	 Then, we set the actual position of the planet along the orbit using the sin and cos
methods of the FastMath class:
float x = FastMath.sin(cycle);
float z = FastMath.cos(cycle);

6.	 We multiply the result by the orbit and set localTranslation of the spatial to the
new location as follows:
spatial.setLocalTranslation(x * orbit, 0, z * orbit);

7.	 Then, we also need to set physicsLocation of RigidBodyControl to the
same location.

8.	 We need a new method, getGravity, that will take the position of the ship as an
input Vector3f.

9.	 The method begins by subtracting the input position by worldTranslation, to get
the position of the ship relative to the StellarBody class, as follows:
Vector3f relativePosition = spatial.getWorldTranslation().
subtract(position);

10.	 The result is normalized and then modified by a formula to get a suitable gravity. This
value is returned to the calling method, as follows:
relativePosition.normalizeLocal();
return relativePosition.multLocal(size * 1000 /
 relativePosition.lengthSquared());

To test all of this, we need to add a few things to SimpleApplication. To do this, perform
the following set of steps:

1.	 First of all, we implement AnalogListener.

2.	 We add an ArrayList<StellarBody> list called gravitationalBodies.

3.	 In the simpleInitApp method, we should begin by initializing bulletAppState
and set up some controls for the spaceship. We add actions to rotate the spaceship
to the left and right as well as fire the ship's thruster, as follows:
String[] mappings = new String[]{"rotateLeft",
 "rotateRight", "boost"};
inputManager.addListener(this, mappings);
inputManager.addMapping("boost", new
 KeyTrigger(KeyInput.KEY_SPACE));

Chapter 8

225

inputManager.addMapping("rotateLeft", new
 KeyTrigger(KeyInput.KEY_LEFT));
inputManager.addMapping("rotateRight", new
 KeyTrigger(KeyInput.KEY_RIGHT));

4.	 Since it's a 2D representation, we move the camera some distance up and make it
look as if it is at the center of the world. This can be implemented as follows:
cam.setLocation(new Vector3f(0, 300f, 0));
cam.lookAt(Vector3f.ZERO, Vector3f.UNIT_Y);

5.	 We create an instance called ship of SpaceShip and attach its geometry to
rootNode and physicsSpace of bulletAppState.

6.	 Now we can create a number of StellarBody instances using the following steps:

1.	 For each instance, we should create a Geometry class with a Sphere
shape that will have the same radius as the size we will supply to the
StellarBody control.

2.	 The Geometry class should both be attached to rootNode and
physicsSpace of bulletAppState.

3.	 We add StellarBody as a control to the Geometry class and the
gravitationalBodies list.

7.	 Inside the update method, we have to take into account the gravity of the
StellarBody instances.

8.	 First, we define a new Vector3f instance called combinedGravity.

9.	 Then, we loop through our gravitationalBodies list and apply the following line
of code to apply the gravity to combinedGravity:
combinedGravity.addLocal(body.getGravity(ship.getSpatial().
 getWorldTranslation()));

10.	 Finally, we call the ship.setGravity(combinedGravity); statement.

How it works...
Due to the extreme difficulty in creating a stable solar system with more than three bodies,
StellarBody controls the need to have a static orbit around the center of the system. Using
0 as mass ensures that they aren't affected by gravity. The orbit field represents the orbit's
distance from the center of the system, and it will rotate around the center using speed as a
factor. The cycle field stores information on how far along its orbit it has come, and will reset
once it reaches two PI (a full circle).

Physics with Bullet

226

The getGravity method returns the gravity relative to the position that is supplied, which
in this case is the location of the ship. It first determines the direction and then applies the
gravity based on the distance between the two.

By using the gravitationalBodies list, we have a dynamic way to simply add up all the
gravitational forces in the system to a single Vector3f object, which we then apply to the
spaceship in the update method of the application.

Self-balancing using RotationalLimitMotors
Many games today use a blend of animations and physics to create realistic movement.
For animated characters, this revolves around balance. It could take the shape of a runner
who leans inwards through a curve to counter the centrifugal force. Creating a system like
this is not easy and requires a lot of tweaking. In this recipe, we'll look into some of the
fundamentals of this, and we'll create a new Control class that will try to balance itself
using the rotational motors of SixDofJoint.

Six Degrees of Freedom (SixDof) relates to the six ways the joint can rotate:
+x, -x, +y, -y, +z, and -z. One way it differs from a point2point joint is that
in addition, it also has motors for each axis, which makes it possible for it to
also apply force.

How to do it...
To simulate balancing, we will begin by creating the upper body of a stickman-shape figure
with a torso and two rigid arms. To do this, perform the following set of steps:

1.	 First of all, we should set up an application with BulletAppState.

2.	 In the simpleInitApp method, we create a small square Box Geometry to be the
waist of the character. It can be 0.25f in all the axes.

3.	 We add RigidBodyControl to it with 0 in mass since it shouldn't move.

4.	 Then, we create an oblong box to be the torso and place it above the waist. It should
have RigidBodyControl with 1 in mass and BoxCollisionShape should be of
the same size as the geometry:
torso = new Geometry("Torso", new Box(0.25f, 2f, 0.25f);
RigidBodyControl torsoRigidBody = new RigidBodyControl(new
 BoxCollisionShape(...), 1f);
...
torsoRigidBody.setPhysicsLocation(new Vector3f(0, 4.25f,
 0));

Chapter 8

227

5.	 Next, we create SixDofJoint between the waist and torso and afterwards add it
to physicsSpace as follows:
SixDofJoint waistJoint = new SixDofJoint(waistRigidBody,
 torsoRigidBody, new Vector3f(0, 0.25f, 0), new
 Vector3f(0, -2.25f, 0f), true);

6.	 We should limit the joint so that it can't rotate on any axes other than the x
axis, and it shouldn't be able to rotate too much. We can use the following
setAngularLowerLimit and setAngularUpperLimit methods for this:
waistJoint.setAngularLowerLimit(new Vector3f(-
 FastMath.QUARTER_PI * 0.3f, 0, 0));
waistJoint.setAngularUpperLimit(new
 Vector3f(FastMath.QUARTER_PI * 0.3f, 0, 0));

7.	 Next, we create one of the arms.

8.	 We create one of the arms by placing it at the same location as that of the torso and
giving it a size of Vector3f(0.25f, 0.25f, 2f), making it stretch out sideways,
as shown in the following code snippet:
leftArm = new Geometry("Left Arm", new Box(0.25f, 0.25f,
 2f);
RigidBodyControl leftArmRigidBody = new
 RigidBodyControl(new BoxCollisionShape(...), 1f);
...
leftArmRigidBody.setPhysicsLocation(new Vector3f(0, 4.25f,
 0));

9.	 We create another SixDofJoint for it using the pivot points of Vector3f(0,
2.5f, 0.25f) and Vector3f(0, 0, -2.5f), offsetting it some distance
to the side of the torso's spatial.

10.	 Then, we set the angular limits of the joint to Vector3f(0, 0, 0) and
Vector3f(FastMath.QUARTER_PI, 0, 0).

11.	 We repeat the previous three steps to create the opposite arm, but we'll reverse the
offset values to make the arm protrude in the opposite direction of the torso.

We now have the basics done for our recipe. Running it should show the character slumping
to one side with the arms stretched out to the sides. Now, we can begin with balancing by
performing the following steps:

1.	 We create a new class called BalanceControl, extending AbstractControl.

2.	 It should have a SixDofJoint field called joint and a RotationalLimitMotor
field called motorX.

3.	 Create a setJoint method.

Physics with Bullet

228

4.	 Inside this method, after setting the joint, we also populate motorX with one of the
RotationalLimitMotor instances, as follows:
motorX = joint.getRotationalLimitMotor(0);

5.	 Inside the controlUpdate method, we get bodyA from the joint and store it in
PhysicsRigidBody. This is the torso:
PhysicsRigidBody bodyA = joint.getBodyA();

6.	 We get the current rotation of bodyA to see how much it pivots. We then convert the
rotation to angles and store them as follows:
float[] anglesA = new float[3];
bodyA.getPhysicsRotation().toAngles(anglesA);

7.	 We then store angles[0] in a float variable called x.

8.	 If x is more than 0.01f or less than -0.01, we should start motorX and rotate it to
compensate for the pivot, as follows:
motorX.setEnableMotor(true);
motorX.setTargetVelocity(x*1.1f);
motorX.setMaxMotorForce(13.5f);

9.	 Otherwise, we turn off the motor as follows:
motorX.setTargetVelocity(0);
motorX.setMaxMotorForce(0);

How it works...
Running the result, we should see the stickman desperately trying to stay upright while flailing
his arms up and down. The reason is that getting the forces right when balancing can be very
difficult. With values that are too high, the stickman will constantly overshoot the target and
instead rotate in the other direction. With values that are too low, it won't have the strength
to get upright. With some further tweaking to targetVelocity and maxMotorForce, we
might be able make him stable.

We started by creating the basic shape of a figure that would try to keep the balance. The
waist was made to not be affected by the physics, so it could be a solid point. We then added
a torso and two arms, resulting in a center of mass somewhere in the upper part of the torso.
By placing each of the body parts at some distance from each other with the joints, we give
them more freedom of movement.

The BalanceControl class we created has one simple strategy. It looks for the torso
(bodyA)'s rotation along the x axis, and tries to keep it as close to 0 as possible. If it notices
that it's anything but near 0, it will try to move the arms, shifting the center of the mass to
the opposite direction.

Chapter 8

229

Despite the low number of components, getting it all to balance out is really difficult! Having
more components, such as a whole human skeleton, requires a much more advanced
strategy, with body parts moving in a synchronized fashion, rather than they trying to do
so individually.

The principles of a bridge-building game
Variants of bridge-building games have been around for a long time. The classical Bridge
Builder is a 2D physics game where the player is required connect beams to create a bridge
strong enough for a train (or some other moving object) to pass.

This recipe will describe most of the core functionalities needed to create such a game,
including making the objects stay 2D and not wander off on the z axis.

We'll have some basic controls for the game:

ff Left-click will select a previously built node in the bridge

ff Right-click will add a new node or connect two previously built ones

ff The Space bar will turn on the physics

The following figure shows a bridge:

Getting ready
Before we begin with more physics-related functions, we should set up the basic application.

First of all, we create a new class that extends SimpleApplication.

Later on, we're going to use the following two lists:

private List<Geometry> segments;
private List<Point2PointJoint> joints;

Physics with Bullet

230

We also need some strings as input mappings: LEFT_CLICK, RIGHT_CLICK, and
TOGGLE_PHYSICS.

We add a RigidBodyControl field called selectedSegment that will contain the last
selected segment in the game.

Since we're strictly making a 2D game, we should change the camera to be orthographic.
This can be done by performing the following steps:

1.	 Disable flyCam.

2.	 Find out the aspect ratio by dividing the cam width by its height and storing it.

3.	 Set cam.parallelProjection to true.

4.	 Then, change frustrum of the camera to suit and orthographic view as follows:
cam.setFrustum(1, 1000, -100 * aspect, 100 * aspect, 100, -
 100);

5.	 We move it some way along the z axis and rotate it back towards the center,
as follows:
cam.setLocation(new Vector3f(0, 0, 20));
cam.setRotation(new Quaternion().fromAngles(new float[]{0,-
 FastMath.PI,0}));

Now, we can initialize bulletAppState as we usually do. Turn on the debug mode, and most
importantly, set speed to 0. We don't want any physics on while we build the bridge.

The world needs a gap to be bridged. So, for this, we'll use RigidBodyControl to represent
two cliffs, one on either side, as follows:

1.	 Create one RigidBodyControl instance for each side and give it
BoxCollisionShape with a size of Vector3f(75f, 50f, 5f) and 0 mass.

2.	 Place one of them at Vector3f(-100f, -50f, 0) and the other one at
Vector3f(100f, -50f, 0).

3.	 Then, add them to physicsSpace.

How to do it...
We're going to start by creating two methods that will help us add new bridge segments to
the game:

1.	 We define a method called createSegment that takes a Vector3f parameter
called location as the input.

2.	 The first thing we do is set the z value of location to 0. This is because we're
making a 2D game.

Chapter 8

231

3.	 Then, we create a new RigidBodyControl instance called newSegment. We add
SphereCollisionShape to it and then add newSegment to physicsSpace. It's
important that it has some mass. This can be implemented as follows:
RigidBodyControl newSegment = new RigidBodyControl(new
 SphereCollisionShape(1f), 5);
bulletAppState.getPhysicsSpace().add(newSegment);

4.	 Now, we create a Geometry instance based on a Sphere shape with the
same radius as RigidBodyControl. We will use this as a target for mouse clicks.

5.	 The Geometry object needs modelBound for which we'll use
BoundingSphere. The radius may be bigger than RigidBodyControl.

6.	 The RigidBodyControl object is added to Geometry as a control and we use the
setPhysicsLocation method to move it to the to the supplied location, as follows:
geometry.addControl(newSegment);
newSegment.setPhysicsLocation(location);

7.	 The Geometry object is then added to the segments list we defined earlier and then
it is attached to rootNode.

8.	 If selectedSegment is not null, we will call a method we will define next:
createJoint(selectedJoint, newSegment);

9.	 Lastly, in the createJoint method, we set selectedSegment to be newSegment.

10.	 Now, we can define the createJoint method. It takes two RigidBodyControl
parameters as the input, as shown in the following code:
createJoint(RigidBodyControl body1, RigidBodyControl body2)

11.	 First, we find out the location that should be the pivot point of body2. This is the
same as physicsLocation of body2 subtracted from physicsLocation of
body1, as follows:
Vector3f pivotPointB = body1.getPhysicsLocation().subtract(body2.
getPhysicsLocatio
 n());

12.	 Then, we define Point2PointJoint by joining the two segments. The vectors
supplied mean that body2 will pivot in a way that is relative to body1; we do this
using the following code:
Point2PointJoint joint = new Point2PointJoint(body1, body2,
 Vector3f.ZERO, pivotPointB);

13.	 We then add the newly created joint to the joints list and to physicsSpace.

Physics with Bullet

232

We're now getting to the controls of the application and need another method to help us.
The method will check whether a mouse click has hit any segment and return it. To do this,
perform the following steps:

1.	 We define a new method called checkSelection, which returns
RigidBodyControl.

2.	 Inside this method, we create a new Ray instance, which will have the current mouse
cursor's location as the origin; the following code tells you how to do this:
Ray ray = new Ray();
ray.setOrigin(cam.getWorldCoordinates(inputManager.getCurso
 rPosition(), 0f));

3.	 Since the view is orthographic, we let the direction be Vector3f(0, 0, -1f).

4.	 Now, we define a new CollisionResults instance to store any segments that Ray
collides with.

5.	 The next thing we do is parse through the segment's list and check whether the ray
hits any of them.

6.	 If it does, we're done, and then return RigidBodyControl of segment to the
calling method.

We defined a couple of input mappings earlier. Now, we can all implement the functionality
for them in the onAction method by performing the following steps:

1.	 If the left mouse button is clicked, we should call checkSelection. If the returned
value is not null, we should set selectedSegment to that value, as follows:
if (name.equals(LEFT_CLICK) && !isPressed) {
 RigidBodyControl newSelection = checkSelection();
 if (newSelection != null) {
 selectedSegment = newSelection;
 }
}

2.	 If the right mouse button is clicked, we should also call checkSelection. If the
returned value is not null and it's not selectedSegment, we call createJoint
with selectedSegment and the value of checkSelection to create a link
between selectedSegment and the segment returned from the method, as shown
in the following code snippet:
else if (name.equals(RIGHT_CLICK) && !isPressed) {
 RigidBodyControl hitSegment = checkSelection();
 if (hitSegment != null && hitSegment != selectedSegment) {
 createJoint(selectedSegment, hitSegment);
 }

Chapter 8

233

3.	 Otherwise, if we didn't hit anything, we call createSegment with the position of the
mouse cursor to create a new segment at that location as follows:
createSegment(cam.getWorldCoordinates(inputManager.getCurso
 rPosition(), 10f));

4.	 If the Space bar has been pressed, all we need to do is set the speed of
bulletAppState to 1 to start the physics.

We're almost done with our simulation now, but we need to do a few more things. This last
section will handle the update method and what happens when the physics is running and
the bridge is being tested:

1.	 In the update method, we parse through all the items in the segment list and set the
z value of linearVelocity to 0, as follows:
Vector3f velocity =
 segment.getControl(RigidBodyControl.class).getLinearVelocit
 y();
velocity.setZ(0);
segment.getControl(RigidBodyControl.class).setLinearVelocit
 y(velocity);

2.	 After this, we parse through all the items in the joint's list. For each, we should check
whether the joint's appliedImpulse value is higher than a value, let's say 10. If it is,
the joint should be removed from the list as well as from physicsSpace, as follows:
Point2PointJoint p = joints.get(i);
 if (p.getAppliedImpulse() > maxImpulse) {
 bulletAppState.getPhysicsSpace().remove(p);
 joints.remove(p);

 }

How it works...
The createSegment method creates a new bridge segment that is sphere shaped, both in
physicsSpace and the visible world. This is the part that has a mass and can be selected
by clicking on it, since Ray only collides with spatials.

The createJoint method creates the visible connection between the newly created
segment, and the currently selected one. It does this using Point2PointJoint. This
is different from, for example, HingeJoint, since it's not fixed in space, when several
Point2Pointjoints are connected and you have something that resembles a bridge.

Physics with Bullet

234

The mouse selection is covered more in depth in other chapters, but it works by shooting
Ray from the mouse's position on the screen, inwards into the game world. Once Ray hits
Geometry (which has BoundingSphere that is slightly larger than the visible mesh for
increased selectability), the corresponding RigidBodyControl will be selected.

There's no challenge in a bridge-building game if the segments don't have a maximum force
they can handle before they break. This is what we take care of in the update method where
we check appliedImpulse on each segment. If it goes above a certain threshold, it can
be considered to be overloaded and removed, often with disastrous results. We also set
linearVelocity along the z axis on each segment to 0 since it's a 2D game and we don't
want anything to move to the depth layer.

We start the game with the physics simulation off by setting the speed of bulletAppState
to 0. Without doing so, building the game will get tricky pretty fast as everything will fall
down. Pressing the Space bar will start the physics, and let the player know whether their
engineering skills are up to par.

There's more…
There are a couple of things missing from the recipe to make it a full-blown bridge builder.
First of all, there is usually a limit to the length the segments can have. There might also
be a grid structure along which they have to be placed.

It's also quite easy since the bridge currently only has to support its own weight. In a full
game, the difficulty is usually increased by adding a heavier object that needs to pass the
bridge to complete the level.

Add some monetary constraints to this or a varied terrain and you have a challenging game.

Networked physics
This recipe will go into something of a final frontier in game development. The topic is
extremely application-dependent, and it is difficult to get right. Hopefully, after going through
this recipe, you will have a basic framework in place that can be adapted to specific projects.

Getting ready
This recipe is for those who have a fundamental understanding of both Chapter 7, Networking
with SpiderMonkey, and Chapter 8, Physics with Bullet. This recipe will describe how to
implement networked physics in the networked fps that was discussed previously in the book.
Since this is built on top of the existing framework, an AppState pattern has been chosen to
isolate as much of the physics code as possible. There will be some overlapping, though.

Chapter 8

235

Physics can be expensive as it is and has its own problems and requirements. Sending
translations and rotations for objects over the network with every tick will seriously affect
the bandwidth load. The ground rule is this: send only what you must.

Divide physics objects into those that you're interested in sharing and those that you don't.
In most games, this means separating those that affect the gameplay and those that don't.

For example, a meter-sized crate that can be climbed upon will definitely affect the gameplay.
It has to be networked.

A bucket that can be kicked or small debris from an explosion do not affect the gameplay
and should only have local physics. It doesn't matter if they show up in different places for
different players.

The second part of the rule is this: send only when you must. There's no point in sending an
update for an object that is not moving.

How to do it...
Based on the first rule, we'll start by defining a new Control class for our networked
physics objects:

1.	 We create a new class called PhysicsObjectControl that extends
AbstractControl.

2.	 It should have two fields: a Boolean field called serverControlled and
an integer field called id.

We now define a network message to handle updates to objects with physics:

1.	 Let's call it PhysicsObjectMessage and have it extend AbstractMessage.

2.	 There are three mandatory fields for it; they are as follows:

�� The first is an integer field called objectId

�� It also needs a Vector3f field called translation

�� Finally, we add a Quaternion field called rotation

3.	 Don't forget to add the @Serializable annotation, and add it to the list of
messages in the GameUtil class!

4.	 The last common implementation we do is for the Game class where we add a list of
Spatials called physicsObjects; the following code tells us how to do this:
private Map<Integer, Spatial> physicsObjects = new
 HashMap<Integer, Spatial>();

Physics with Bullet

236

Now, we can dig into the server-side implementation by performing the following steps:

1.	 We contain most of the code in a new AppState class called
ServerPhysicsAppState. This AppState class will contain the reference
to the BulletAppState class, and it will handle the initialization.

2.	 Inside its initialize method, it should add the loaded level to physicsSpace
as follows:
bulletAppState.getPhysicsSpace().add(server.getLevelNode().
 getChild("terrain-
 TestScene").getControl(PhysicsControl.class));

3.	 A strategy is needed to collect all the objects that should be affected by server
physics and assign them to PhysicsObjectControl (unless this has been done in
SceneComposer already). Objects that should have server physics should also have
serverControlled set to true and a unique ID, which is known by both the client
and the server. The resulting spatials should be stored in the physicsObject class
map, as follows:
bigBox.addControl(new PhysicsObjectControl(uniqueId));
bigBox.getControl(PhysicsObjectControl.class).setServerCont
 rollled(true);
physicsObjects.put(uniqueId, bigBox);

4.	 In the update method of ServerPhysicsAppState, we parse through
the values of the physicsObject map. If any of the item in physicsObjects has
PhysicsObjectControl that isServerControlled() and their isActive() is
true, a new PhysicsObjectMessage should be created as follows:
PhysicsObjectMessage message = new PhysicsObjectMessage();

5.	 It should have the ID of PhysicsObjectControl as objectId and
physicsLocation and physicsRotation of RigidBodyControl; refer
to the following code:
message.setObjectId(physicsObject.getControl(PhysicsObjectC
 ontrol.class).getId());
message.setTranslation(physicsObject.getControl(RigidBodyCo
 ntrol.class).getPhysicsLocation());
message.setRotation(physicsObject.getControl(RigidBodyContr
 ol.class).getPhysicsRotation());

6.	 The message is then broadcasted to the clients.

Chapter 8

237

We'll revisit the server code in a bit, but first let's look at what is needed for the client to
receive messages.

1.	 First of all, the client has to have BulletAppState set up.

2.	 Next, it needs to have knowledge of the objects to be handled by the server physics.
If the objects are gathered from the scene, a strategy is needed to make sure the IDs
are the same, or they're read in the same order.

3.	 They should then be stored in the Game class as on the server.

4.	 The second thing is a change to ClientMessageHandler. If the message
is an instance of PhysicsObjectMessage, it should get the physicsObject Map
from the Game class as follows:
Map<Integer, Spatial> physicsObjects =
 game.getPhysicsObjects();

5.	 A spatial should then be selected based on the objectId in the message
as follows:
int objectId = physicsMessage.getObjectId();
Spatial s = physicsObjects.get(objectId);

6.	 The rotation and translation should be applied as physicsLocation and
physicsRotation respectively on the spatial's RigidBodyControl:
PhysicsObjectControl physicsControl = s.getControl(PhysicsObjectCo
ntrol.class);
if(physicsControl.getId() == objectId){
 s.getControl(RigidBodyControl.class).setPhysicsLocation(phy
 sicsMessage.getTranslation()); s.getControl(RigidBodyControl.
class).setPhysicsRotation(phy
 sicsMessage.getRotation());
}

7.	 Now, the pipeline for transmitting physics updates from the server to the clients
should work. If we run it, not much is happening. This is because the players in the
implementation in Chapter 7, Networking with SpiderMonkey, weren't using physics.
They were simply coded to stick to the surface of the terrain. We can change the
player's representation to handle this.

8.	 In ServerPlayerControl, we add a BetterCharacterControl field
called physicsCharacter and a Boolean field called usePhysics.

9.	 Next, we override the setSpatial method, and perform a check to see whether the
spatial supplied has BetterCharacterControl. If it does, usePhysics should
be set to true and the local physicsCharacter field should be set to spatial
as follows:
if(spatial.getControl(BetterCharacterControl.class) !=
 null){
 usePhysics = true;

Physics with Bullet

238

 physicsCharacter =
 spatial.getControl(BetterCharacterControl.class);
}

10.	 Finally, in the controlUpdate method, we check whether usePhysics is true. If
it is, rather than updating the spatial like we normally do in the method, we should
instead set walkDirection of physicsCharacter to the local one and set
viewDirection to the forward vector of its rotation as follows:
if(usePhysics){
physicsCharacter.setWalkDirection(walkDirection.multLocal(5
 0));
physicsCharacter.setViewDirection(tempRotation.getRotationC
 olumn(2));
}

11.	 In our server's main class, inside the addPlayer method, we should now
add BetterCharacterControl to the player's spatial before we add
ServerPlayerControl, as shown in the following code snippet:
Node playerNode = new Node("Player");
playerNode.addControl(new BetterCharacterControl(0.5f, 1.5f,
 1f));
playerNode.addControl(player);
rootNode.attachChild(playerNode);
stateManager.getState(ServerPhysicsAppState.class).addPlaye
 r(player.getPhysicsCharacter());

12.	 There also needs to be some logic to add and remove BetterCharacterControl
from physicsSpace as it joins and leaves the game.

How it works...
The first thing we did in the recipe was to lay some ground work by defining a new control
called PhysicsObjectControl to be applied to the objects that should be handled
by bullet physics. This control can either be added at runtime; alternatively, if Scene
Composer is used to lay out levels and scenes, it can be added to the objects beforehand.
It's recommended that you define which ones should be handled by the server by setting
serverControlled on the relevant objects before they're being added to the scenes. The
ID should then be set in a deterministic way on both the client and the server when they parse
the scene for the objects.

Chapter 8

239

The architecture to handle the physics might very well look different in another
implementation, but here, the AppState pattern was used so that it could be easily added as
an extension to the existing framework from Chapter 7, Networking with SpiderMonkey. In this
chapter, we didn't use any physics for the players but simply checked the height of the terrain
to find out where the ground was. Hence, we added an optional BetterCharacterControl
instance to the player—again, a change that would still make it compatible with the previous
implementation. However, this was only added on the server side. For client-side physics, a
similar change would have to be made there.

The server will check every update and see whether any of the objects with
serverControlled enabled is active and will send any updates to the clients. Actually, you
could leave out the physics all together on the client and simply update the spatial's rotation
and translation, if you wanted. This would lower the requirements on the client's hardware,
but this will only work if all of the physics are handled by the server of course.

There's more…
There is an opportunity here to introduce a third state on PhysicsObjectControl; a
state in which the object is affected but not controlled by the server. This could be used for
objects that are important in their initial state; however, once they've been moved, it's no
longer important that all the clients have the same information, for example, a door that at
some points get blown off its hinges. In this case, a new message type can be introduced
that will apply an impulse or force to an object from the server side. Once the object has been
activated, the client can take care of the calculations, lowering the network load.

9
Taking Our Game to the

Next Level

In this chapter, we'll cover the following topics:

ff Creating a muzzle flash using ParticleEmitter

ff Creating a trigger system

ff Creating a timer trigger

ff Adding an interaction trigger

ff Controlling AI with triggers

ff Creating a dynamic skybox with a moving sun

ff Improving a scene with postprocessing filters

ff Performing complex movements with MotionPaths

ff Cutscenes using cinematics

ff Using a positional audio and environmental effects

Introduction
So the core mechanics are in and the game is playable, yet it still feels like the game lacks
something. In this chapter, we will explore different methods to enhance games and fuse
together some of the recipes from other chapters.

Taking Our Game to the Next Level

242

Creating a muzzle flash using
ParticleEmitter

Weapons of some sort are a common feature of many games and muzzle flashes greatly
enhance the appearance and feeling when you fire. This recipe will show a way to create
good-looking muzzle flashes by tweaking a ParticleEmitter's properties. The following
screenshot shows a texture with four muzzle flashes:

Getting ready
There are two things needed before we can begin work on the ParticleEmitter:

ff First of all we need a texture for the muzzle flash. This can have anything from one to
several images of muzzle flashes. The texture should be gray scaled. We'll add color
using ParticleEmitter.

ff Secondly, we need to create a Material using the texture by performing the
following steps:

1.	 Right-click on your project's material folder and select New.../Empty
Material file.

2.	 Select Particle.j3md as Material Definition.
3.	 Then select the muzzle flash texture as Texture.

How to do it...
Now, we can begin creating the muzzle flash emitter:

1.	 Navigate to the Emitters folder in the project and select New.../Empty jme3 Scene.
We should now have a fresh scene.

2.	 Right-click on the main node in the SceneExplorer window and select
Add Spatial/Particle Emitter.

Chapter 9

243

3.	 Select the emitter instance and open the Properties window.

4.	 Make sure the Shadow Mode option is Off and Queue Bucket is Transparent.

5.	 Then, select the muzzle flash material we created in the Geometry/Material section.

6.	 Make the Emitter shape really small, for example, something like [Sphere, 0.0,
0.0, 0.0, 0.05].

7.	 Num Particles should be 1, and Particles Per Sec should be 0.0.

8.	 Set Start Color to something like [1.0, 1.0, 0.4, 1.0] and End Color to
[1.0, 0.6, 0.2, 0.7].

9.	 Both Start Size and End Size should be 1.0.

10.	 High Life and Low Life should be 0.15.

11.	 Gravity and Face Normal should be [0.0, 0.0, 0.0].

12.	 Check the Facing Velocity box and set the Initial Velocity to[0.0, 0.0, 1.0].

13.	 Images X and Images Y should reflect the number of frames in the texture
we created.

14.	 We can now test the emitter by clicking on the Emit! button.

All these values can be seen in the following screenshot:

Taking Our Game to the Next Level

244

How it works...
The muzzle flash works pretty much like a normal ParticleEmitter with a couple of exceptions.
Instead of outputting a constant stream of particles, it will only emit one. This is because Num
Particles is set to 1, meaning only one particle can be alive at any given time. Particles Per
Sec is 0.0 so it won't continuously emit anything.

The colors are set to be yellowish, turning a bit orange and fading slightly at the end of the
lifetime; the lifetime being very short in this case, only 0.15 seconds.

A muzzle flash is emitted in one direction only. This is why we set Facing Velocity to true
so that the particle will point in the direction of the velocity.

Getting it to appear in the correct position in relation to the weapon can require a bit of
tweaking. Using Local Translation can help us in this.

To use the muzzle flash on a weapon, open the target in Scene Composer and then choose
Link in Scene on the muzzle flash. This way the original file can be modified and the changes
will automatically appear in the places its being used.

There's more...
Now that we have the muzzle flash and added it to a weapon, we can create a control in
order to use it within the game by performing the following steps:

1.	 Create a new class called WeaponControl extending AbstractControl.

2.	 Add a ParticleEmitter field called muzzleFlash.

3.	 In the setSpatial method, check whether the supplied spatial has a suitable
child, either by type or name (requires that the muzzle flash has a fixed name),
and set the muzzleFlash field:
muzzleFlash = (ParticleEmitter) ((Node)spatial).
getChild("MuzzleFlash");

4.	 Now, we create a publicly available onFire method and add the following:
if(muzzleFlash != null){
 muzzleFlash.emitAllParticles();
}

This control should then be added to the weapon spatial inside the game and onFire
should be called whenever the weapon fires. The class is suitable to play sounds and
keeps track of ammunition as well.

Chapter 9

245

Creating a trigger system
Almost all story-driven games require some kind of system to trigger some sort of event for
example, dialogs, enemies, or doors opening. Unless the game is very small, you generally
don't want to hardcode these. The following recipe will describe a trigger system, which
can be used for almost any type of game from FPSs to RTSs and RPGs.

We'll start out by laying the ground work with an AppState controlling all the script objects and
the basic functionality of a Trigger class. Then, we'll look into how to actually activate the
trigger and use it for something.

Getting ready
Before we start with the actual implementation, we create a small interface that we will use
for various scripting scenarios. We call it ScriptObject and it should have the following
three methods:

void update(float tpf);
void trigger();
voidonTrigger();

How to do it...
Now, we can implement the ScriptObject in a class called Trigger. This will have
six steps:

1.	 Add the following fields to the Trigger class:
private boolean enabled;
private float delay;
private boolean triggered;
private float timer;
private HashMap<String, ScriptObject> targets;

2.	 The enabled and delay fields should have getters and setters and targets should
have a addTarget and removeTarget method publically available.

3.	 In the trigger method, we add the following functionality:
If enabled is false it shouldn't do anything.
Otherwise timer should be set to 0 and triggered to true.

4.	 If the script is enabled in the update method, we should perform the following steps:

1.	 If triggered is true and delay is more than 0, the timer should be
increased by tpf.

2.	 Then if the timer is more than or equal to delay, it should call onTrigger().

Taking Our Game to the Next Level

246

5.	 If delay is 0 and triggered is true, the timer should also call onTrigger().

6.	 In the onTrigger method, we should parse through all the values of targetsMap
and call the trigger on them. Then triggered should be set to false.

Now, perform the following set of steps to control the Trigger class.

1.	 We define a new class called ScriptAppState, which extends
AbstractAppState.

2.	 It should have a List<ScriptObject> called scriptObjects, together with
methods to add and remove ScriptObjects from List.

3.	 In the update method, if isEnabled() is true, it should parse scriptObjects
and call an update on all of the ScriptObjects.

Now, we have a flexible system where one ScriptObject can trigger another. We're still
lacking input and output effects though. One common way to trigger events is when a player
enters an area. So let's go ahead and add that functionality by performing the following steps:

1.	 Create a new class called EnterableTrigger, which extends Trigger.

2.	 This trigger needs a Vector3f field called position to define its place in the
physical world along with a getter and setter.

3.	 Add a BoundingVolume field called volume. In the setter method for this,
we should call volume.setCenter(position).

4.	 Also, it needs a List<Spatial> called actors along with add and remove methods.

5.	 Now, we should override the update method and then call the trigger if any item in
the actors list is inside volume:
if(isEnabled() && volume != null && actors != null){
 for(int i = 0; i<actors.size(); i++){
 Spatial n = actors.get(i);
 if(volume.contains(n.getWorldTranslation())){
 trigger();
 }
 }
}

6.	 We've taken care of the triggering now. Let's actually do something with that trigger
by creating a new class called SpawnTarget, implementing ScriptObject.

7.	 Like the EnterableTrigger class, the SpawnTarget class needs a position
field and also a Quaternion field called rotation.

8.	 The SpawnTarget class also requires a Spatial field called target and a Boolean
field called triggered to know whether it's been triggered yet or not.

9.	 We should also add a Node field called sceneNode to attach the target to.

Chapter 9

247

10.	 In the trigger method, we should check whether it has been triggered already. If
not, we should set triggered to true and call onTrigger.

11.	 The onTrigger method should apply the position and rotation to the target and
attach it to the sceneNode. Depending on the implementation, we might want to
subtract the worldTranslation and worldRotation values from the values
we apply:
target.setLocalTranslation(position);
target.setLocalRotation(rotation);
sceneNode.attachChild(target);

Let's have a look at another common game object that can be picked up. In many games,
characters can pick up various power-up weapons or other items simply by walking over
them. This section will have the following eight steps:

1.	 We create a new class called Pickup extending Trigger.
2.	 Like EnterableTrigger, the Pickup class needs a position and a

List<Spatial> called actors. We also need to add a Spatial field called
triggeringActor and a float called triggeringDistance.

3.	 For this class, we also need something to pick up, represented here by an interface
called Pickupable. In addition, we need to keep track of whether it's been picked
up by a Boolean called pickedUp.

4.	 The difference between the previous ScriptObjects we've worked with and the
current ScriptObjects is that the one in this recipe should be visible in the world,
represented by a Spatial called model.

5.	 In the update method, we should check whether the Pickup object is enabled and
not pickedUp.

6.	 To make it stand out a bit in the game world, we rotate the model a little bit by
applying the model.rotate(0, 0.05f, 0) value.

7.	 Still inside the if clause, we check that actors is not null and parse through the
list. If any of the actors is inside the radius of the triggerDistance, we set it
to be triggeringActor and call the trigger method:
for(int i = 0; i<actors.size(); i++){

 Spatial actor = actors.get(i);
 if((actor.getWorldTranslation().distance(position)
<triggerDistance)){
 triggeringActor = actor;
 trigger();
 }
}

8.	 Finally, in the onTrigger method, we should set pickedUp to true, detach model
from scene graph and call pickupObject.apply(triggeringActor) to have it
apply whatever the Pickupable object is supposed to do.

Taking Our Game to the Next Level

248

How it works...
The Trigger class has a fairly simple functionality. It will wait for something to call its
trigger method.

When this happens, it will either trigger all the connected ScriptObjects immediately or if a
delay is set, it will start counting until the time has passed and then execute the trigger. Once
this is done, it will be set up so it can be triggered again.

The ScriptAppState state is a convenient way to control the scripts. Since the AppState is
either disabled or not attached to the stateManager, no call to update in ScripObjects
is made. This way, we can easily disable all the scripting if we want to.

To create a working example with Trigger, we extended it into a class called
EnterableTrigger. The idea with the EnterableTrigger class was that if any of
the supplied actor spatials enter its BoundingVolume instance, then it should trigger
whatever is connected to it.

The basic Trigger method doesn't have the need for a position as it is a purely logical object.
The EnterableTrigger object, however, has to have a relation to the physical space as it
needs to know when one of the actors has entered its BoundingVolume instance.

This is true for SpawnTarget as well, which in addition to a location should have a rotation,
to rotate a potential enemy in a certain direction. Spawning characters or items in games is
commonly used to control the gameplay flow and save some performance. The SpawnTarget
option allows this kind of control by adding new spatials only when triggered.

The strategy for how to perform spawning might differ depending on the implementation but
the way described here assumes it involves attaching the target Spatial to the main node
tree, which would generally activate its update method and controls.

Likewise, the rootNode of the scene graph is not necessarily the best choice to attach the
target to and depends a lot on the game architecture. It could be any Spatial.

Lastly, in this recipe, we created a Pickup object, which is very common in many games. These
can be anything from items that increase health instantly or weapons or other equipment that
are added to an inventory. In many cases, it's similar to the EnterableTrigger except it only
requires a radius to see whether someone is within the pickup range or not. We keep track of
the actor that enters it so that we know who to apply the pickup to. In this recipe, the pickup is
represented by an object called Pickupable.

Once it's picked up, we set pickedUp to true so that it can't be picked up again and detach
the model from the node tree to make it disappear. If it is a recurring power up, a delay can be
used here to make it available again after some time.

Chapter 9

249

Pickups in games usually stand out from other objects in the game world to draw attention
to them. How this is done depends on the game style, but here we apply a small rotation
to it in each call to the update method.

Since Pickup also extends Trigger, it's possible to use it to trigger other things as well!

Creating a timer trigger
In the Creating a trigger system recipe, we laid the foundation for a Trigger system as well
as created some basic implementations. A timer can be very useful when creating complex
scripts that rely on timing or sequenced events. Not only does it do the obvious (trigger
the blast of the door and then the soldiers running through) but it can also work as a relay
trigger in case many things should be triggered at the same time. In this recipe, we'll create
this Timer object as well as an actual implementation of it where it triggers an explosion
with several components. To save some time, we'll use the TestExplosion test from
jMonkeyEngine to get ParticleEmitters set up and the timing for free. We'll also create
a new ScriptObject called PlayEffect, which controls the particle emitters.

How to do it...
To be able to control a ParticleEmitter object from our script system, we need a new
class to handle the ParticleEmitter object:

1.	 Start by creating a new class called PlayEffect, which implements ScriptObject.

2.	 The PlayEffect class needs a Boolean called emitAllParticles, a
ParticleEmitter field called effect, and a Boolean to control whether
it's enabled or not (default it to true).

3.	 The trigger method should call onTrigger if the object is enabled.

4.	 The onTrigger method should enable effect and if emitAllParticles is true,
it should call emitter.emitAllParticles().

Apart from the setter methods, this is all that's needed for the PlayEffect class. Now, we
can look at the Timer class by performing the following steps:

1.	 We create a new class called Timer, which implements ScriptObject.

2.	 It will use a simple callback interface to keep track of events:
public interface TimerEvent{
 public Object[] call();
}

3.	 It needs two Boolean fields. One called enabled and another called running.
It also needs to keep track of time with three floats called time, lastTime,
and maxTime.

Taking Our Game to the Next Level

250

4.	 Finally, we will store the events in HashMap<Float, TimerEvent>.

5.	 We need a method to add events to the timer. Call it addTimerEvent and add
inputs for time in seconds to execute the event, as well as a TimerEvent object
with the code to execute it. After TimerEvent is placed in the timerEvents map,
we check whether the supplied time value is higher than the current maxTime and
set maxTime to time if true, as shown in the following code:
public void addTimerEvent(float time, TimerEvent callback){
 timerEvents.put(time, callback);
 if(time >maxTime){
 maxTime = time;
 }
}

6.	 The trigger method should call onTrigger, if it is enabled.

7.	 The onTrigger method should set time to 0 and set running to true.

8.	 The update method should first check whether the Timer is enabled and running.

9.	 If it is, tpf should be added to the time.

10.	 Inside the same statement, we then create an iterator based on keySet of
timerEvents and parse through it. If the key (a float) is more than lastTime and
less or equal to the current time, we should get the corresponding value from the
timerEvents map and execute it. Otherwise, if the key is less than lastTime,
we should just continue using the following code:
Iterator<Float> it = timerEvents.keySet().iterator();
while(it.hasNext()){
 float t = it.next();
 if(t >lastTime&& t <= time){
 TimerEvent event = timerEvents.get(t);
 if(event != null){
 event.call();
 }
 } else if(t <lastTime){
 continue;
 }
}

11.	 Outside of the previous loop, we check if time is more than maxTime, in which case,
we should set running to false.

12.	 Finally in the update method, we set lastTime to be equal to time.

Chapter 9

251

With the basic logic done, let's take a look at how we can use the timer for something real and
use it to trigger an explosion by performing the following steps:

1.	 Copy the TestExplosion class from jMonkeyEngine's test package and strip it from
everything except the methods that create ParticleEmitters and the lines in
simpleInitApp, which uses them and sets up the camera.

2.	 Then, create a PlayEffect instance for each of ParticleEmitters and set the
effect accordingly with emitAllParticles set to true.

3.	 Create a new Timer instance called explosionTimer.

4.	 Add a new TimerEvent at time 0 where it triggers the flash, spark, smoke,
debris, and shockwave effects, by calling trigger() on each of the
PlayEffects, as shown in the following code:
explosionTimer.addTimerEvent(0, new Timer.TimerEvent() {

 public Object[] call() {
 flashEffect.trigger();
 sparkEffect.trigger();
 ...
 return null;
 }
});

5.	 Then, add another TimerEvent at time 0.05f, which triggers the flame and
roundSpark effects.

6.	 The last TimerEvent should happen at time 5f and should call stop() on all of
the effects.

7.	 Finally, we create a ScriptAppState instance to which we add explosionTimer
and then add it to stateManager using the following code:
ScriptAppStateappState = new ScriptAppState();
stateManager.attach(appState);
appState.addScriptObject(explosionTimer);

8.	 Now, we can trigger explosionTimer. It should perform the explosion in the same
way as TestExplosion does.

How it works...
Once triggered, Timer works by checking the time that has passed since it was started
(time). It then checks each of the events in the timerEvents map to see whether their
execution time is anywhere between the current time and the last time (lastTime). The
maxTime option is used by the Timer to know when it has executed the last of its events and
can switch itself off. If the Timer was only meant to be used once, the events can simply be
removed from the timerEvent map. This way it can be reused.

Taking Our Game to the Next Level

252

The PlayEffect instance has a fairly simple functionality to turn it on and off. Since
ParticleEmitters can be used in two ways, fire all their particles at once, or emit a
continuous stream of particles, it needs to know which way to fire it.

In the example application, we create ScriptAppState since it's needed to update the
Timer with the passed time. We don't need to add the PlayEffect instances since they
don't use the update method.

Adding an interaction trigger
Another common trigger is the one where an action from the player is required. For example,
you can use it to open a door, or access an in-game store system or dialog.

How to do it...
1.	 We begin by creating a new class called InteractionTrigger, which extends

Trigger and also implements ActionListener.

2.	 The InteractionTrigger class needs a Vector3f field called position, a
BoundingVolume field called volume, a Spatial field called player, and a
boolean field called inside.

3.	 Furthermore, the InteractionTrigger class needs access to the application's
guiNode, which we store in a Node field with the same name and a BitmapText field
called interactionPrompt. The text will be displayed when interaction is possible.

4.	 We also have to define a static string called INTERACTION_KEY = "Interact"
either in this class or the input manager class

5.	 The update method will check whether the player is inside BoundingVolume. If it
is and inside is false, it will show interactionPrompt. On the other hand, if
inside is true and the player is not inside BoundingVolume, it will remove it,
as shown in the following code:
Boolean contains = volume.contains(player.getWorldTranslation());
if(!inside && contains){
 guiNode.attachChild(interactionPrompt);
} else if (inside && !contains){
 guiNode.detachChild(interactionPrompt);
}
inside = contains;

6.	 In the implemented onAction method, we check for when the key corresponding
to INTERACTION_KEY is released. Then, we see whether the trigger is enabled
and whether inside is true or not. If both are true, we call trigger().

Chapter 9

253

7.	 Some logic outside the class is required to get the trigger to work. Apart from
supplying guiNode and BitmapText to the trigger, the INTERACTION_KEY
needs to be bound to inputManager. This can be done with the following line:
inputManager.addMapping(INTERACTION_KEY, new KeyTrigger(KeyInput.
KEY_SPACE));

8.	 The InteractionTrigger instance also needs to be added as a listener
to inputManager:
inputManager.addListener(interactionTrigger, mappingNames);

How it works...
The InteractionTrigger instance has several things in common with EnterableTrigger,
which we created in the Creating a trigger system recipe, and it also has a new functionality.
Rather than firing the trigger as soon as the player enters it, it sets the inside flag, which
defines whether it's possible to interact with it or not. It also displays a text on the GUI for
the player.

Once the InteractionTrigger receives a call to its onAction method from
InputManager, it checks whether inside is true and calls trigger. To brush up your
knowledge on how input is handled, check out Chapter 2, Cameras and Game Control.

Controlling AI with triggers
Chapter 5, Artificial Intelligence, deals with several methods to control AI in games. As we
learned in that chapter, control and predictability are very important. Even if we have the
smartest AI in the world, as programmers, we want to be able to know that the AI will perform
a certain action at a certain time. This is where triggers can be extremely useful. In fact,
with a good trigger system there might not be need for much AI at all.

One example of trigger usage might be a warehouse where guards are in a patrolling state.
Once the player reaches a certain area (maybe where they should not go), an alarm is
triggered. At this point, we also want the guards to switch to a more aggressive state.

Getting ready
This recipe will link the trigger system we created previously in the chapter with the
StateMachine-based AIControl class from the Decision making – Finite State Machine
recipe in Chapter 5, Artificial Intelligence. Even if you haven't followed the recipes in Chapter 5,
Artificial Intelligence, but have a different class controlling AI, it should be quite easy to adapt
this recipe to accommodate that class.

Taking Our Game to the Next Level

254

How to do it...
As with the previous examples, we begin by creating a new class that extends the
ScriptObject interface. We can call it AIScriptControl.

1.	 It needs to have an AIControl field called aiControl and a Class<AIState>
field called targetState.

2.	 It might also have a Spatial called target.

3.	 Finally, we add a Boolean called enabled.

4.	 In its trigger method, we should call onTrigger if enabled is true.

5.	 In the onTrigger method, we apply targetState to aiControl:
aiControl.setState(targetState);

6.	 If target is not null, we call aiControl.setTarget(target).

7.	 The StateMachine for the AIControl we created was a closed system and it didn't
need any external input to change the states. Now, we need to be able to trigger it
externally so let's add a setter method in the AIControl. Create a new method
called setState, which takes a Class<AIState> called state as an input
parameter.

8.	 Inside, we check whether spatial has the supplied state, and enable it if possible:
if(spatial.getControl(state) != null){
spatial.getControl(state).setEnabled(true);
}

How it works...
This recipe follows the pattern we established in the Creating a trigger system recipe. In the
onTrigger method, we apply targetState, which will change the behavior and actions of
the AI. For example, it can change from PatrolState to AttackState. We only supply the
class type and not a whole instance of the class since the AI should already have the state
and it might be configured already. In this way, we tell the AI to simply change the state if it is
available. We also have a target field, in case the new state requires that.

There's more...
It doesn't have to end with that. We can, for example, with some modification trigger the
AI to start walking a path, turn in a certain direction, or take cover and other things. This
functionality can either be built into this class or be made as separate classes.

Chapter 9

255

To explore an example in detail, let's have a look at what will be needed to have the AI move
to a specific location once AIScriptControl is triggered.

1.	 We will need an AIState, which handles moving to a set location. Chapter 5,
Artificial Intellegence, explains this. The SeekCoverState can easily be modified
to only have a target field rather than a list to choose from.

2.	 We will need something to function as a waypoint or target. Again, the CoverPoint
control from the same recipe can function as a waypoint too. It can also be extended
so that using cover at WayPoint is an option within the class.

3.	 Finally, we will need to pass WayPoint to the state. Since we're not supplying
a whole class, we can't set it in AIState itself. One way would be to pass it through
the setTarget method of AIControl.

Creating a dynamic skybox with a
moving sun

We covered how to create static skyboxes in Chapter 1, SDK Game Development Hub. While
they are fine for many implementations, some games require day and night cycles.

Getting ready
This recipe will show us how to create a moving sun, which can be superimposed on a regular
skybox. In this case, a neutral skybox without any protruding features such as mountains will
work best. We'll also learn how to make a sky that changes color during the day. In this case,
no skybox is required.

We will also need a texture that should have a transparent background with a filled, white
circle in it, as shown in the following figure:

Taking Our Game to the Next Level

256

How to do it...
1.	 We begin by creating a new application class extending SimpleApplication.

2.	 In the simpleInitApp method, we first need to create Geometry for the sun:
Geometry sun = new Geometry("Sun", new Quad(1.5f, 1.5f));

3.	 We need to set some rendering hints on it, as shown in the following code:
sun.setQueueBucket(RenderQueue.Bucket.Sky);
sun.setCullHint(Spatial.CullHint.Never);
sun.setShadowMode(RenderQueue.ShadowMode.Off);

4.	 Now, we can load a Material instance based on the unshaded material definition.

5.	 For ColorMap, we load the texture with the white circle in it and apply the texture.
Then, for Color we can set an almost white color with a tint of yellow in it. We also
have to enable alpha in the material:
sunMat.getAdditionalRenderState().setBlendMode(RenderState.
BlendMode.Alpha);
sunMat.setTexture("ColorMap", assetManager.loadTexture("Textures/
sun.png"));
sunMat.setColor("Color", new ColorRGBA(1f, 1f, 0.9f, 1f));

So, the basic Geometry is set up and we can create a Control class to move the sun across
the sky by performing the following steps:

1.	 Create a class called SunControl, which extends AbstractControl.

2.	 It should have a float field called time, a reference to the application camera
called cam, a Vector3f field called position, and a DirectionalLight field
called directionalLight.

3.	 In the controlUpdate method, we start by finding the x and z positions based on
the time and multiply the result to move it some distance away. We can also make
the sun move up and down by doing the same for the y value:
float x = FastMath.cos(time) * 10f;
float z = FastMath.sin(time) * 10f;
float y = FastMath.sin(time) * 5f;
position.set(x, y, z);

4.	 Then, we should set localTranslation of the sun. Since we want it to appear to
be very far away, we add the camera's location. This way it will always appear to be
the same distance from the camera:
spatial.setLocalTranslation((cam.getLocation().add(position)));

Chapter 9

257

5.	 We also want the sun to always face the camera. This is easily done by calling the
following code:
spatial.lookAt(cam.getLocation(), Vector3f.UNIT_Y);

6.	 If the directionalLight field is set, we should also set its direction. We
get the direction by inverting position, as shown in the following code:
directionalLight.setDirection(position.negate());

7.	 Finally, we increase the time value by a factor of tpf (depending on how fast
we want the sun to move). Since two PI in radians make up a circle, we start
over once time exceeds that value, using the following code:
time += tpf * timeFactor;
time = time % FastMath.TWO_PI;

8.	 Going back to the application class, we add the control to the Geometry sun
and Geometry to the scene graph:
sun.addControl(sunControl);
rootNode.attachChild(sun);

The previous implementation can be enough for many games but it can be taken much
further. Let's explore how to make the sun color dynamic based on its height above the
horizon and how to also have a dynamic sky color by performing the following steps:

1.	 First of all, let's introduce two static ColorRGBA fields in the SunControl class
called dayColor and eveningColor. We also add another ColorRGBA field
called sunColor.

2.	 In the controlUpdate method, we take the y value of the sun and divide it so
that we get a value between -1 and 1, and store this as the height.

3.	 ColorRGBA has a method to interpolate two colors that we can use to get a
smooth transition during the day:
sunColor.interpolate(eveningColor, dayColor, FastMath.
sqr(height));

4.	 After this, we set the color of directionalLight to the same as sunColor
and also set the material's Color parameter to the same:
directionalLight.setColor(sunColor);
((Geometry)spatial).getMaterial().setColor("Color", sunColor);

Taking Our Game to the Next Level

258

Handling the sky color will take a bit more work. To do this, perform the following steps:

1.	 We begin by creating a new class called SkyControl extending AbstractControl.
2.	 Like SunControl, the SkyControl class needs a Camera field called cam. It

also needs a ColorRGBA field called color and three static ColorRGBA fields
for different times in the day:
private static final ColorRGBA dayColor = new ColorRGBA(0.5f,
0.5f, 1f, 1f);
private static final ColorRGBA eveningColor = new ColorRGBA(1f,
0.7f, 0.5f, 1f);
private static final ColorRGBA nightColor = new ColorRGBA(0.1f,
0.1f, 0.2f, 1f);

3.	 The SkyControl class needs to know about the sun's location so we add a
SunControl field called sun.

4.	 In the controlUpdate method, we set the localTranslation of the spatial to
the location of the cam.

5.	 Next, we get the sun's height and if it is higher than 0, we interpolate the color
between eveningColor and dayColor. Otherwise, we interpolate between the
eveningColor and nightColor instead. Then, we set the resulting color in the
sky's material's Color parameter, as shown in the following code:
if(sunHeight> 0){
 color.interpolate(eveningColor, dayColor, FastMath.
pow(sunHeight, 4));
} else {
 color.interpolate(eveningColor, nightColor, FastMath.
pow(sunHeight, 4));
}
((Geometry)spatial).getMaterial().setColor("Color", color);

6.	 Going back to the application class, we create a box shaped Geometry called sky

7.	 for the control with 10f sides.

8.	 Like the sun geometry, sky should have the Sky QueueBucket, ShadowMode.
Offand CullHint.Never settings applied to it.

9.	 In addition, we should call getAdditionalRenderState and set FaceCullMode
to FaceCullMode.Off.

How it works...
Always causing the geometries of this recipe follow the camera around is one of the parts that
make this recipe work. The other trick is using the Sky QueueBucket. The Sky QueueBucket
can be thought of as lists of items to be rendered. Everything in the Sky bucket is rendered
first. Because it's rendered first, other things will be rendered on top of it. This is why it appears
to be far away even though it's really close to the camera.

Chapter 9

259

We also use the direction of the sun from the camera for DirectionalLight in the scene,
making it follow the sun as it moves across the sky.

When updating the control, we handle the movement of the sun using the time value, which
increases with each update. Using FastMath.sin and FastMath.cos for the x and z
values, we get it to move in a circle around the camera. Using FastMath.sin again for the y
value will move it in an arc above (and below) the horizon. By multiplying the y value, we can
get it to rise higher in the sky.

The resulting position was added to the camera's location to always make the sun centered
around the camera. Since the sun is a simple quad, we also had to rotate it to face the
camera with every update.

We went on to change the color of the sun based on the height above the horizon. We used
the interpolate method of ColorRGBA to do this. Interpolation requires a value between 0.0
and 1.0. That's why we needed to divide the y value by the max y value (or amplitude) in the
case where we've multiplied it earlier to get a higher arc in the sky.

The movement of the box simulating the sky is similar. We just keep it centered around
the camera so that even if it's a small box, it appears to cover the whole sky. Normally, we
wouldn't see the sides of the box when we're inside it so we set FaceCullMode to Off
to always make it render the sides.

SkyControl was fitted with three instances of ColorRGBA: dayColor with a bluish tint,
eveningColor with orange, and nightColor almost black. The SunControl was supplied
to the control and used to interpolate between the colors based on the height of the sun.
Anything above 0.0f is considered day.

In this implementation, the whole sky changes color with the sun. Any further development of
SkyControl could include a more complex shape, such as a cylinder or sphere where only
the vertices on the same side as the sun change color. Clouds can be implemented and they
also use a quad that moves in the xz-plane.

Another improvement would be to have a night-time, star-filled skybox outside of the box
we made and fade the alpha value of nightColor to let it gradually shine through the
night time.

There's more...
If we try the recipe with the unshaded material definition for the sky, it will work well in most
cases. However, when it comes to the postprocessor water filter, it will not pick up the sky
color properly. To achieve this, we will have to make some modifications to its material.
We don't need to actually change any of the .vert or .frag files, but can create a new
Material Definition (.j3md) file.

Taking Our Game to the Next Level

260

To make things as easy as possible, we can copy the Unshaded.j3md file. Refer to the
following code within the Unshaded.j3md file:

VertexShader GLSL100: Common/MatDefs/Misc/Unshaded.vert

Replace the previous line with the following line:

VertexShader GLSL100: Common/MatDefs/Misc/Sky.vert

This means we'll be using the vertex shader normally used by the Sky material to handle the
positions of the vertices for the renderer.

We also need to change the WorldParameters segment to contain the following:

ViewMatrix
ProjectionMatrix
WorldMatrix

Improving a scene with postprocessing
filters

In the Creating dynamic skybox with moving sun recipe, we created a dynamic skybox that
has many applications. It's possible to improve the appearance of this (and any other) scene
significantly with postprocessing filters. They are called postprocessing filters because they are
applied after the scene has already been rendered. This also makes them affect everything in
the scene.

We also covered how to create an advanced postfilter in Chapter 1, SDK Game Development
Hub.

How to do it...
The sun we have is now moving across the sky. It has very sharp edges and we can use a
bloom filter to smooth it out a bit. Perform the following steps to improve a scene with the
help of postprocessing filters:

1.	 First of all, we need to create a new FilterPostProcessor instance called
processor.

2.	 Add this to the main view port, by calling viewPort.addProcessor(processor)
from within the application.

3.	 Then, we create a new bloom filter called bloomFilter. The default settings will
produce a decent result, but it might be worth playing around a bit with the settings.

4.	 Add the bloomFilter to processor.addFilter(bloomFilter) and try
it again.

Chapter 9

261

5.	 Then, we create a new LightScatteringFilter instance called
lightScatteringFilter and add it again to processor.addFilter(lightSc
atteringFilter).

6.	 This is dependent on a position for the light to scatter, so we need to make it aware
of the sun's location. We can achieve this by adding a new field for the filter in the
SunControl class from the last recipe along with a setter.

7.	 Then in the controlUpdate method, once we have updated position, we
add the following code:
lightScatteringFilter.setLightPosition(position.mult(1000));

8.	 We still have some tweaking to do as it will now also apply the effect when the sun
is below the ground. To mitigate this, we can disable the filter during nighttime:
if(y > -2f){
 if(!lightScatteringFilter.isEnabled()){
 lightScatteringFilter.setEnabled(true);
 }
 lightScatteringFilter.setLightDensity(1.4f);
} else if(lightScatteringFilter.isEnabled()){
 lightScatteringFilter.setEnabled(false);
}

How it works...
The FilterPostProcessor acts as a container for the filters and applies them to the
rendered result. Several filters can be added to the same processor and the order matters.
If we add LightScatteringFilter before bloomFilter, we will get bloom applied to
the light scattering and vice versa.

The bloomFilter works by blurring the image slightly and intensifying colors, making the
result appear a bit softer. Bloom filters work best with tweaking and shouldn't just be slapped
on to the scene. It's easy to be impressed by the initial effect and leave it at that but it should
always be adapted to the art style of the game. A fantasy game in an enchanted forest might
get away with more bloom than a hard-boiled cyberpunk shooter.

The LightScatteringFilter instance does two things. Firstly, it creates a halo of rays
emanating from the direction of the light source. Secondly, if the camera is pointing towards
the light source, it will whiteout the image increasingly, simulating glare.

In a normal skybox, the sun would be static but in this example the sun keeps moving.
By supplying the filter to SunControl, we could keep the logic to update the position within
that class. We will also get some weird effects as the glare will still show. The easy way out is
to simply turn off the effect as the sun gets below the horizon.

Taking Our Game to the Next Level

262

Performing complex movements with
MotionPaths

Players in games have been obliged to jump on moving platforms since the dawn of gaming.
Even with the incredibly advanced games of today, it's not uncommon to encounter this most
primitive game mechanic albeit with better graphics. There's also a popular retro genre that
calls for the same, not the least for mobile games.

How do we do that in jMonkeyEngine? One way is, of course, to simply use move or
setLocalTranslation on geometries. This can quickly get complex if we want to make
sequenced paths. A better option is to use MotionPaths and MotionEvents.

A MotionPath object is basically a set of waypoints through which an object will move in an
interpolated way meaning the movement will be smooth. The MotionEvent is the control class
defining when and how the object should move along the MotionPath object. It can define how
an object should be rotated along the path and if and how the path should be cycled through.

In this recipe, we'll check out how to use them for a game, which could be a side-scrolling 2D
game, but the same principles can be used to create advanced cinematic cutscenes.

How to do it...
Let's begin by creating a platform object to move, by performing the following steps:

1.	 We define a new Geometry called platform and apply the Unshaded material to it,
as shown in the following code:
platform = new Geometry("Platform", new Box(1f, 0.1f, 1f));
platform.setMaterial(new Material(assetManager, "MatDefs/Misc/
Unshaded.j3md"));

2.	 Then, we attach the platform object to rootNode.

3.	 Next, we define a new MotionPath object called path.

4.	 We add 8 waypoints in a circular pattern, using the following code:
for(inti = 0 ; i< 8; i++){
 path.addWayPoint(new Vector3f(0, FastMath.sin(FastMath.QUARTER_
PI * i) * 10f, FastMath.cos(FastMath.QUARTER_PI * i) * 10f));
}

5.	 Then, we call path.setCycle(true) to make it connect the first and
last waypoints.

6.	 Now, we can define a new MotionEvent called event and supply platform and
path in the constructor.

Chapter 9

263

7.	 We call event.setInitialDuration(10f) and setSpeed(1f).

8.	 Finally, we call event.setLoopMode(LoopMode.Loop).

Debug MotionPath with red waypoints

9.	 Optionally, we can visualize the path by calling the following method:
path.enableDebugShape(assetManager, rootNode);

10.	 Now, all we need to do is call event.play() to start the event!

How it works...
The for loop creates eight waypoints along a circle at 45 degrees distance from each other.
However, to make a complete circle the first and last waypoints need to be connected or the
path will stop at the final one. This is why setCycle(true) must be set. This is treated as
the ninth waypoint at the same position as the first.

MotionEvent's initialDuration is the time it should take to complete the path. The speed
defines the factor at which the initialDuration should be completed. So, setting the
speed to 2f will halve the actual time it takes for the object to complete its movement. The
loopMode, not surprisingly, defines whether the object should stop once it has completed
the path, or continue. There's also an option to make it go back the same path again with
LoopMode.Cycle. This is not related to MotionPath's setCycle method.

While this recipe doesn't explore the option, it's possible to have the spatial in MotionPath
perform various types of rotation. By default, no rotation will be applied. By calling
setDirectionType it is possible to, for example, let the object follow the path's rotation
(face the direction of the path) or rotate by a fixed amount or always face a certain point.
Some of the direction types require a rotation to be supplied with the setRotation method.

Taking Our Game to the Next Level

264

There's more...
Now, the object is moving along its given path and we can add several platforms moving in
different patterns. Let's say we want something to happen once a platform reaches the end
of its path. Maybe it should start the next one or trigger one of our ScriptObjects from the
previous recipes.

In that case, we can use MotionPathListener. This is an interface with a callback method
called onWayPointReached, which will be called every time the path passes a waypoint.
It will supply both the MotionEvent and the index of the waypoint. If we want to trigger
something at the end of the path, it might look like the following code snippet:

path.addListener(new MotionPathListener() {
 public void onWayPointReach(MotionEvent control,
intwayPointIndex) {
 if (path.getNbWayPoints() == wayPointIndex + 1) {
 nextMotionEvent.play();
 }
 }
});

Cutscenes using cinematics
The previous recipe explored the possibilities of using MotionPaths to move objects around.
One step up from that and a way to organize many events in a sequence is cinematics. It can
be used both to create in-game scripted events and advanced cutscenes. The power of a well-
scripted in-game event should not be underestimated but neither should the time it takes to
get one right.

In this recipe, we'll explore the possibilities of the Cinematics system by creating a cutscene
using content that we have created before.

Getting ready
Some basic knowledge of MotionPaths and MotionEvents is required. Checking out the
Performing complex movements with MotionPath recipe should provide enough information
to get started. A new class that is introduced is the Cinematic class. This works as a
sequencer or manager of many events firing them at set times. The events don't just have to
be MotionEvents but could be AnimationEvents dealing with skeleton-based animations,
SoundEvents, and even GuiEvents. It can also manage several cameras and switch
between them.

Before starting the actual implementation of a cinematic scene, it's good to have some kind
of script describing what is going to happen. This will help organize the cinematic event and
will save time in the end.

Chapter 9

265

This recipe will use the TestScene from Chapter 1, SDK Game Development Hub. We can
also use the animated sky box from earlier in this chapter. It will display Jaime walking from
his initial position to stand by the edge of the water looking into the horizon. While he's
walking, several switches between panning cameras will occur.

Using an empty node as a waypoint

Finding out good waypoints for characters and cameras can be difficult enough and it's not any
easier if you have to do it all in code. A trick is to use the SceneComposer to create markers
much like real movie makers use tape to designate where actors should move. Right-clicking
on the scene node and selecting Add Spatial.../New Node will give us an invisible marker.
Give this a recognizable name and drag it into place by using the Move function.

How to do it...
So now that we have a scene prepared with some waypoints we can get to work with
implementing the cutscene itself by performing the following steps:

1.	 We start by loading a scene where the Cinematic will be played out. The scene
reference will be used in several places, so it is a good idea to store it in a field.

2.	 We'll also create a Spatial field called Jaime, the main actor and either load or
extract him from the scene (depending on the setup).

3.	 Now, we can create a MotionPath instance called jaimePath for Jaime. Since we
created Nodes for each waypoint in SceneComposer, we can get their location from
the scene by using:
jaimePath.addWayPoint(scene.getChild("WayPoint1").
getWorldTranslation());

Taking Our Game to the Next Level

266

4.	 We go on and create a MotionEvent called jaimeMotionEvent using jaimePath
and initialDuration of 25 seconds:
jaimeMotionEvent = new MotionEvent(jaime, jaimePath, 25f);

5.	 It's also preferable if Jaime faces in the direction of the path he travels along, so we
also set directionType to MotionEvent.Direction.Path.

Before we get too far, we want to check out that the path Jaime follows is alright. Therefore,
we should go ahead and create a Cinematic instance at this point. To do this, perform the
following steps:

1.	 Doing this is as simple as supplying it with a scene, which will affect rootNode
together with the total duration of the cinematic:
cinematic = new Cinematic(scene, 60f);

2.	 After that, we add MotionEvent with the following line; 0 being the time it should
start at:
cinematic.addCinematicEvent(0, jaimeMotionEvent);

3.	 We also need to add cinematic to the stateManager of the application with
stateManager.attach(cinematic).

4.	 Calling cinematic.play() at this point should display Jaime sliding along the path.

Once we're happy with it, we can go on and do the camera work as follows:

1.	 The Cinematic instance will create a CameraNode for us if we call cinematic.
bindCamera("cam1", cam), so let's do that for our first camera. The string is the
reference that Cinematic will know the camera by.

2.	 It will be a camera that pans so we create a MotionPath instance and a
MotionEvent instance for it. Again, we can get the waypoints of the camera path
from the scene. Since the Node we added in SceneComposer by default snaps
to the ground, we need to add between 1.5f and 2.0f to the y axis to get it to a
suitable height.

3.	 The camera should look at a fixed point as it pans, so we set directionType of
camera's MotionEvent to LookAt and then also set the direction it should look at
with cam1Event.setLookAt where the first Vector3f is the location to look at
and the second is Vector3f, which is up in the world:
cam1Event = new MotionEvent(camNode, camPath1, 5f); cam1Event.
setDirectionType(MotionEvent.Direction.LookAt);
cam1Event.setLookAt(Vector3f.UNIT_X.mult(100), Vector3f.UNIT_Y);

4.	 With that done, we can test the first camera pan. We do that by calling the
following code:
cinematic.activateCamera(0, "cam1");

Chapter 9

267

5.	 The next camera will get its own MotionPath and MotionEvent instances and can
similarly get its own CameraNode. It's perfectly fine to use the same physical camera
for both of the CameraNodes.

Now, we can start doing something about the lack of animation in the scene.

1.	 The first thing Jaime does in the scene is walk towards the beach. We can create
a new AnimationEvent instance that uses the Walk animation:
AnimationEventwalkEvent = new AnimationEvent(jaime, "Walk",
LoopMode.Loop);

2.	 We then add it to cinematic at 0 seconds:
cinematic.addCinematicEvent(0, walkEvent);

3.	 Jaime should stop when he reaches the last waypoint, which is also when the
jaimeMotionEvent ends. So we create another AnimationEvent with the idle
animation and add it at the end of the duration of the jaimeMotionEvent.

At the time of writing this, it seems the cinematic doesn't end the animation
when it starts a new one, so we have to do something to stop it ourselves.
Using a MotionPathListener, we can check when the final waypoint is reached
and manually stop the walking animation:

jaimePath.addListener(new MotionPathListener() {
 public void onWayPointReach(MotionEventmotionControl,
intwayPointIndex) {
 if(wayPointIndex == 2){
 walkEvent.stop();
 }
 }
});

How it works...
The Cinematic acts as a sequencer for all the different events and apart from firing events
at the defined intervals, we can instead use cinematic.enqueueCinematicEvent. Doing
so will start the supplied event just after the previous one is done. This can be useful if we
want to trigger a series of animations right after each other. Cinematics can also be set to
loop or cycle just like MotionEvents and you don't need to start them at time 0.

In conclusion, using cinematics is not particularly technical. It's just difficult to get all the
positions, angles, and timings right, especially since there's no intelligence or collision
involved in the script. Once you get it right, however, the result will be extremely rewarding.

Taking Our Game to the Next Level

268

Using a positional audio and environmental
effects

Audio is an incredibly powerful mood setter and should not be overlooked in a game. In this
recipe, we'll go through how to make the most of your sound assets using runtime effects
and settings. If you're simply looking for omnipresent sounds or the basics on how to play
them, check out Chapter 1, SDK Game Development Hub.

This recipe will do well in an FPS, where you have a number of footstep sounds that are
played when the player moves around. However, the principle is true for any short sound
that is played often enough to sound repetitive.

We'll approach this recipe in two steps:

1.	 First, we will learn how to vary a basic, repetitive sound. We can achieve this by
varying the sound's pitch and using LowPassFilter.

2.	 In the second step, we'll use reverb to vary it further, depending on the scene.

How to do it...
First of all, we need some basics set up.

1.	 We create a new application extending SimpleApplication, and add an
AudioNode field called audioNode.

2.	 In addition to this, we need to keep track of passed time with a float field
called time and another float field called pauseTime, which we set to 0.7f.

3.	 In the simpleInitApp method, we create a new audioNode instance:
new AudioNode(assetManager, "Sound/Effects/Foot steps.ogg");

4.	 We override the simpleUpdate method and begin by checking whether time
is more than pauseTime.

5.	 If it is, we should set a new float called pitch. This should have a value of
1f +- 10%, which can be achieved with the following code:
FastMath.nextRandomFloat() * 0.2f + 0.9f.

6.	 Then, we call audioNode.setPitch(pitch) to set it.

7.	 Since this particular sound file plays four footsteps in sequence, we tell the node
to not start from the beginning and only play the last of the footsteps by skipping
forward in time, using the following code:
audioNode.setTimeOffset(2.0f);
audioNode.playInstance();

Chapter 9

269

8.	 Before exiting the if statement, we set time to 0.

9.	 Finally, we shouldn't forget to increase time by tpf.

10.	 Try running the application now. We should hear the same sound over and over again
but with a slight variation.

11.	 We can use LowPassFilter to further vary the sound. We instantiate it by supplying
a float for the general volume, and another for the high frequency volume. To get the
most variation, we can supply two random values between 0f and 1f:
LowPassFilter filter = new LowPassFilter(FastMath.
nextRandomFloat(), FastMath.nextRandomFloat());

12.	 Then, we call audioNode.setDryFilter(filter) before
audioNode.playInstance().

13.	 When we play it again, we should hear a slightly more varied sound that from time to
time gets more muffled.

Reverb is another parameter we can use for our sounds. But unlike the previous examples,
this should not be randomized each time we play it (or randomized at all!). We can add reverb
using the following steps:

1.	 Create a new instance of Environment in the simpleInitApp method using one
of the premade static ones in the Environment class and telling the application's
audioRenderer to use it:
Environment env = Environment.Cavern;
audioRenderer.setEnvironment(env);

2.	 Running the application again with this environment should give each footstep
a huge echo.

How it works...
In the first part of the recipe, we varied a single sound by changing its pitch slightly every time
it was played. This will still sound repetitive and it is recommended to have several premade
variants of a sound and use it in combination with this technique to get more out of them.

At the time of writing this, filters are not developed past LowPassFilter and have a limited
use. It can still be used to cut the dryness of the sound and make it more muffled, as if heard
through a wall, for example.

Having a sound file with a sequence of footsteps, like the one in the test-data library is fine
for some types of games. They work best when you know how far a character will move each
time, such as in an RTS or turn-based game. In an FPS, however, where we don't know how
fast or far a player decides to move, it's better to have footstep sounds split up and played
individually based on movement speed.

Taking Our Game to the Next Level

270

Using an Environment class is a great way to add immersion to sounds without having to
bake the effect into the sound file. Controlling the effect unless it's level-wide can be a bit
trickier. For example, you may want more reverb outside than in a furnished room. One way
could be to use the trigger system from earlier in the chapter and big bounding volumes
triggering a change in environment as the player enters their area.

In this example, we used the setDryFilter method of the audioNode. This will not modify
any reverb coming from the environment. To do that, we have to use setReverbFilter.

There's more
The recipe has covered playing audio originating from the player. It is almost as easy doing
this for other entities in the scene. Since AudioNode extends Node, it has a position in
the scene graph. Attaching an AudioNode instance to the scene graph will play the sound
using its worldTranslation field, just like how a model will be shown at that location.

Apart from setting localTranslation, we also need to make sure that the positional
Boolean in AudioNode is true (which it is by default). We're also only allowed to use
mono channel sounds when using positional audio.

Information Fragments

Introduction
This appendix contains various bits of code and procedures that are too generic to appear
in regular chapters. They are used across several chapters but are presented here to avoid
repetition.

This appendix covers the following topics:

ff Downloading the plugins

ff Enabling nightly builds

ff Adding Bullet physics to the application

ff Jaime animation frames for phonemes

ff The AnimationEvent patch

ff The ImageGenerator class

ff The CellUtil class

Downloading the plugins
Go to the Tools menu and select Plugins. In the Available Plugins tab, look for the plugin you
would like to install, check the box next to it, and select Install.

Information Fragments

272

Enabling nightly builds
Nightly builds will give you the latest updates from the jMonkeyEngine repository, but it
should be mentioned that these are unstable. From time to time, functions may be broken,
and there is no guarantee at all that they can be built. To enable nightly builds, perform the
following steps:

1.	 In the SDK, go to the Tools menu and select Plugins.

2.	 Go to the Settings tab and check the jMonkeyEngine SDK Nightly (Breaks!)
checkbox.

3.	 To look for updates, go to the Help menu and select Check for updates.

Adding Bullet physics to the application
This section provides a description of the basic steps to add bullet physics to
an application.

In the simple InitApp method of the application, add the following lines of code:

BulletAppState bulletAppState = new BulletAppState();
stateManager.attach(bulletAppState);

To get a basic ground and some items to play with, add the following code:

PhysicsTestHelper.createPhysicsTestWorldSoccer(rootNode, assetManager,
bulletAppState.getPhysicsSpace());

Objects that require physics should both be attached to the scene graph and have a
RigidBodyControl object, which is added to physicsSpace of bulletAppState.

Jaime animation frames for phonemes
The following list provides a number of frames found among Jaime's animations that are
suitable for use as phonemes. They can be useful for those who wish to build up a library:

ff To find the AAAH phoneme, use frame 30 of the Punches animation

ff To find the EEH phoneme, use frame 4 of the Wave animation

ff To find the I phoneme, use frame 9 of the Wave animation

ff To find the OH phoneme, use frame 22 of the Taunt animation

ff To find the OOOH phoneme, use frame 15 of the Wave animation

ff To find the FUH phoneme, use frame 7 of the Taunt animation

Appendix

273

ff To find the MMM phoneme, use frame 1 of the Wave animation

ff To find the LUH phoneme, use frame 21 of the Punches animation

ff To find the EES phoneme, use frame 22 of the Wave animation

ff To find the RESET phoneme, use frame 0 of the Wave animation

The AnimationEvent patch
The following code snippet shows the patch needed for the Lip syncing and facial expressions
recipe of Chapter 4, Mastering Character Animations. Apply this to the file in your project.
If you're applying it manually, the constructor must be added to AnimationEvent, and
the following lines of code have to go into the initEvent method just after cinematic.
putEventData(MODEL_CHANNELS, model, s);:

int numChannels = model.getControl(AnimControl.class).
getNumChannels();
for(int i = 0; i < numChannels; i++){
 ((HashMap<Integer, AnimChannel>)s).put(i, model.
 getControl(AnimControl.class).getChannel(i));
}

The full patch is:

Index: AnimationEvent.java
===
— AnimationEvent.java (revision 11001)
+++ AnimationEvent.java (working copy)
@@ -221,6 +221,24 @@
 initialDuration = model.getControl(AnimControl.class).getAnimationLen
 gth(animationName);
 this.channelIndex = channelIndex;
}
+
+/**
+ * creates an animation event
+ *
+ * @param model the model on which the animation will be played
+ * @param animationName the name of the animation to play
+ * @param channelIndex the index of the channel default is 0. Events
on the
+ * @param blendTime the time during the animation are going to be
blended
+ * same channelIndex will use the same channel.
+ */

Information Fragments

274

+public AnimationEvent(Spatial model, String animationName, LoopMode
loopMode, int channelIndex, float blendTime) {
+this.model = model;
+this.animationName = animationName;
+this.loopMode = loopMode;
+initialDuration = model.getControl(AnimControl.class).getAnimationLen
gth(animationName);
+this.channelIndex = channelIndex;
+this.blendTime = blendTime;
+}

/**
* creates an animation event
@@ -264,11 +282,16 @@
Object s = cinematic.getEventData(MODEL_CHANNELS, model);
if (s == null) {
s = new HashMap<integer , AnimChannel>();
+int numChannels = model.getControl(AnimControl.class).
getNumChannels();
+for(int i = 0; i < numChannels; i++){
+ ((HashMap<Integer, AnimChannel>)s).put(i, model.
getControl(AnimControl.class).getChannel(i));
+}
cinematic.putEventData(MODEL_CHANNELS, model, s);
 }

Map</integer><integer , AnimChannel> map = (Map</integer><integer ,
AnimChannel>) s;
this.channel = map.get(channelIndex);
+
if (this.channel == null) {
if (model == null) {
 //the model is null we try to find it according
to the name

The ImageGenerator class
The ImageGenerator class is used in the Using noise to generate a terrain recipe of
Chapter 3, World Building. The code to create this class is as follows:

public class ImageGenerator {

 public static void generateImage(float[][] terrain){
 int size = terrain.length;

Appendix

275

 int grey;

 BufferedImage img = new BufferedImage(size, size, BufferedImage.
 TYPE_INT_RGB);
 for(int y = 0; y < size; y++){
 for(int x = 0; x < size; x++){
 double result = terrain[x][y];

 grey = (int) (result * 255);
 int color = (grey << 16) | (grey << 8) | grey;
 img.setRGB(x, y, color);

 }
 }

 try {
 ImageIO.write(img, "png", new File("assets/Textures/heightmap.
 png"));
 } catch (IOException ex) {
 Logger.getLogger(NoiseMapGenerator.class.getName()).
 log(Level.SEVERE, null, ex);
 }
 }
}

The CellUtil class
The CellUtil class is used in the Flowing water with cellular automata recipe of
Chapter 3, World Building. The code to create this class is as follows:

public class CellUtil {

 private static int[][] directions = new int[][]{{0,-1},{1,-
 1},{1,0},{1,1},{0,1},{-1,1},{-1,0},{-1,-1}};
 public static int getDirection(int x, int y){
 witch(x){
 case 1:
 switch(y){
 case -1:
 return 1;
 case 0:
 return 2;
 case 1:
 return 3;

Information Fragments

276

 }
 break;
 case -1:
 switch(y){
 case -1:
 return 7;
 case 0:
 return 6;
 case 1:
 return 5;
 }
 break;
 case 0:
 switch(y){
 case -1:
 return 0;
 case 0:
 return -1;
 case 1:
 return 4;
 }
 break;
 }
 return -1;
 }

 public static int[] getDirection(int dir){
 return directions[dir];
 }
}

Index
Symbols
(HUD) heads-up display 153
.j3o format 9
.ogg format 18

A
accept method 172
addFromRootBone method 104
adding

versus linking 10
adjustHeight method 77
admissible 148
advanced ParticleEmitter

using 25-29
AI

about 123
controlling, with triggers 253, 254
creating, cover used 136, 137
senses, hearing 130, 131
senses, vision 128-130

AI, decision making
FSM, using 131-136

AIState class
creating 132

AI states
Attack 132
Patrol 132
Retreat 132

ambient audio
adding 18, 19

ambient light 72
ammo 134
AnalogListener interface 31

animation control
extending 101-104

AnimationEvent patch 273
animationFps property 26
animation manager control

creating 99, 100
animations

previewing, in SDK 98
A* Pathfinder

implementing 148-152
application

bullet physics, adding to 272
AppState object 39
arrows 220-222
Artificial Intelligence. See AI
attachment node

obtaining 21, 22
AttackState 132
audio effect

creating 268-270
AudioNode 19

B
ballistic projectiles 220-222
bandwidth

optimizing 209-211
basic messaging

handling 183-185
Battleships, networked game

making 185-194
URL 185

BetterCharacterControl class 34
bitmap fonts

creating, with Font Creator 20
BitmapText class 21

278

bloomFilter
working 261

bridge building game
basic controls 229
principles 229-234

broadcast() method 183
bullet physics

adding, to application 272

C
camDistance variable 46
camera

handling 54, 55
cellular automata

about 84
water, flowing with 84-89

CellUtil class
creating 275

changeMapping method 175
changeTerrain method 94
character

following, with ChaseCamera 56-58
ChaseCamera class

about 58
character, following with 56-58

ChasingSensitivity method 57
checkHeight method 50
cinematics

about 111
used, for creating cutscenes 264-267

client
setting up 182, 183

client-side game logic
implementing 191

CollisionResults class 42
CollisionsResults object 76
compareCells method 85
complex movements

performing, with MotionPaths 262, 263
connectToServer method 183
Controller class

creating 173
controller code

creating 162

controlUpdate method 28, 81, 106
Coords parameters 94
cover

detecting 63-67
full height cover 64
low cover 64
used, for creating AI 136, 137

createJoint method 233
createSegment method 233
CubeCell class 89
cube meshes

generating 89-95
CubeUtil class 89
CubeWorld class 89
custom animation

creating 106-109
cutscenes

creating, cinematics used 264-267

D
DefaultParticleInfluencer class 24
deform method 75
deleteTiles method 83, 84
directional light 72
distance variable 43
door

attachment 214
Door object 214
elements 214
hinge 214

dynamic skybox
creating, with moving sun 255-260

dynamic world loading
creating 81-84

E
edge check

implementing 116-118
environmental effect

creating 268-270
example code

downloading 19
eye movement

implementing 114-116

279

F
facial expressions 111-114
filter

used, for adding water 16-18
finishTask method 144
Finite State Machine. See FSM
fireBooster method 220
fire() method 44
first person shooter. See FPS
Font Creator

bitmap fonts, creating with 20
FPS

about 31
firing 40-42
network code, implementing for 194-203

fractal noise 71
FractalSum class 78
frequency 71
frequency change

example 79
FSM

using 131-136
full height cover 64

G
GameCharacterControl class 40
game console

implementing 164, 165
game controller

adding 58-60
game message queue

handling 166-168
generateNoiseMap 70
getGeometry method 87
getGravity method 226
groups, AI

controlling 143-147

H
hasHighCover variable 64
hasLowCover variable 64
hearing 130, 131
heightmap

about 12

generating 70, 71
modifying, with Terrain Editor 12-14

Height Scale option 72
Hello Animation

URL 97
heuristics 148
highCollisions field 65
highHeight variable 64

I
IKRotSpeed 121
IKThreshold value 121
ImageGenerator class

creating 274
inCover variable 64
influenceParticle method 28
influenceRealtime method 29
input

customizing 172-175
input AppState

attaching 37, 38
InputAppState class 40
InputManager.getCursorPosition() method 49
interaction trigger

creating 252, 253
inventory screen

creating 168-172
Inverse Kinematics functionality

obtaining 119-122

J
Jaime animation frames

used, for phonemes 272
jBullet 213
jMonkeyEngine tutorials

URL 97
joystick input

adding 58-60
jump animations

handling 105, 106

K
KinematicRagdollControl function 122

280

L
lean around corners feature

using 60-63
leanValue field 62
level

loading 204, 205
light

adding 14-16
LightControl class 74
lightmap 73
LightScatteringFilter 261
light types

about 72
ambient light 72
directional light 72
point light 72
spot light 72

LimbDampening 121
linking

versus adding 10
lip syncing 111-114
lowCollisions field 65
low cover 64
lowHeight variable 64

M
managing options menu

initializing 154-158
Material parameter 81
maxImages property 26
maxLean field 62
maxTime option 251
mini map

offscreen rendering, used for 175-179
model

importing 9
modelspace 115
modifyTerrain method 94
MonkeyZone

URL 203
MotionEvent 262
MotionPaths

complex movements, performing
with 262, 263

movement of lights
controlling 72-74

moveSpeed 32
moveTiles method 82
multiple gravity sources

handling 222-225
muzzle flash emitter

creating 242
muzzle flashes

creating, ParticleEmitter used 242-244

N
NavMesh

using 140-143
NavMesh generation

in SDK 138, 139
network

firing over 207-209
network code

implementing, for FPS 194-203
networked physics

implementing 234-239
network message

defining 235
Nifty GUI

about 153
initializing 154-158

nightly builds
enabling 272

node 148
node object

defining 149
noise

used, to generate terrain 70-72
non-instant bullets

firing 42-45

O
offscreen rendering

about 178
used, for mini map 175-179

onAction method 81
onAnalog method 34
onAnimCycleDone method 105
outputToConsole method 165

281

P
ParticleEmitter

used, for creating muzzle flashes 242-244
using 22-25

ParticleEmitter class
configuring 24

ParticleInfluencer class 28
ParticleInfluencer instance

creating 26
Pathfinding 140
PatrolState 132
Phoneme 111
phonemes

Jaime animation frames, used for 272
player positions

interpolating between 205, 206
plugins

downloading 271
point light 72
postprocessing filters

scene, improving with 260, 261
project

setting up 8
pushable door

creating 214-217

R
RANGE field 43
real-time strategy. See RTS
RetreatState 132
reusable AI control class

creating 124-127
reusable character control

creating 32-37
rocket engine

building 217-220
role playing game (RPG) 31
rotate method 48
RotationalLimitMotors

used, for self-balancing 226-229
RotationSpeed method 57
Roughness slider 72
RPG dialog screen

creating 161-164

RTS
about 31
units, selecting 50-54

RTS camera AppState
creating 45-50

S
scene

improving, with postprocessing
filters 260, 261

Scene Composer
using 9-11

screen
about 153
loading 158-160

SDK
advanced ParticleEmitter 25-29
ambient audio, adding 18, 19
animations, previewing 98
attachment node, obtaining 21, 22
bitmap fonts, creating with

Font Creator 20, 21
filter used, for adding water 16, 17
heightmaps, modifying with Terrain

Editor 12-14
light, adding 14-16
model, importing 9
NavMesh generation, using 138, 139
ParticleEmitter, using 22-25
project, setting up 8
Scene Composer, using 9-11
sky box, adding 14-16
URL 8

SelectAppState 51
self-balancing

creating, RotationalLimitMotors
used 226-229

server
setting up 182, 183

ServerMessage 185
server-side implementation 236
setSpatial method 83
settings page

customizing 172-175

282

simpleInitApp method 19
simpleUpdate method 44
Six Degrees of Freedom (SixDof) 226
SkeletonControl class 22
sky box

adding 14-16
SpawnTarget option 248
SpiderMonkey 182
spotInnerAngle parameter 73
spot light 72
spotOuterAngle parameter 73
stateAttached method 39
stateDetached method 39
status field 187
subanimation

creating 110
extracting 110, 111

T
targetLocation variable 54
TCP

versus UDP 182
terrain

deforming 75-77
generating, noise used 70-72

Terrain Editor
heightmaps, modifying with 12-14

TestJoystick 60
Texture field 13
Timer object

creating 249-251
toggleConsole() method 165
tree distribution

automating 77-79
treeLimit field 78
treeNode field 78

triggered explosion
implementing 249-251

triggers
AI, controlling with 253, 254

trigger system
creating 245-248

U
UDP

versus TCP 182
units

selecting, in RTS 50-54
update method 27, 47, 252
updateParticle method 25
updateTiles method 82
Util class

creating 176

V
vertex lighting 74
vision 128-130
Volume property 19

W
walkDirection vector 67
water

adding, filter used 16-18
flowing, with cellular automata 84-89

WaterFieldControl class 88
while loop 27

Y
yaw field 34

Thank you for buying

jMonkeyEngine 3.0 Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

jMonkeyEngine 3.0
Beginner's Guide
ISBN: 978-1-84951-646-4 Paperback: 352 pages

Develop professional 3D games for desktop, web, and
mobile, all in the familiar Java programming language

1.	 Create 3D games that run on Android devices,
Windows, Mac OS, Linux desktop PCs, and in
web browsers—for commercial, hobbyists, or
educational purposes.

2.	 Follow end-to-end examples that teach essential
concepts and processes of game development,
from the basic layout of a scene to interactive
game characters.

3.	 Make your artwork come alive and publish your
game to multiple platforms, all from one unified
development environment.

Augmented Reality for
Android Application
Development
ISBN: 978-1-78216-855-3 Paperback: 130 pages

Learn how to develop advanced Augmented Reality
applications for Android

1.	 Understand the main concepts and architectural
components of an AR application.

2.	 Step-by-step learning through hands-on
programming combined with a background of
important mathematical concepts.

3.	 Efficiently and robustly implement some of the
main functional AR aspects.

Please check www.PacktPub.com for information on our titles

Monkey Game Development
Beginner's Guide
ISBN: 978-1-84969-203-8 Paperback: 402 pages

Create monetized 2D games deployable to almost
any platform

1.	 Create eight fun 2D games.

2.	 Understand how to structure your code, your data
structures, and how to set up the control flow of a
modern 2D game.

3.	 Learn how to deploy your games to iOS, Android,
XNA (Xbox, Windows Phone 7), and desktop
platforms (Windows, OS X).

Unity 3.x Game Development
by Example Beginner's Guide
ISBN: 978-1-84969-184-0 Paperback: 408 pages

A seat-of-your-pants manual for building fun, groovy
little games quickly with Unity 3.x

1.	 Build fun games using the free Unity game engine
even if you've never coded before.

2.	 Learn how to "skin" projects to make totally
different games from the same file – more games,
less effort!

3.	 Deploy your games to the Internet so that your
friends and family can play them.

4.	 Packed with ideas, inspiration, and advice for your
own game design and development.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: SDK Game Development Hub
	Introduction
	Setting up a project
	Importing a model
	Using Scene Composer
	Modifying heightmaps with Terrain Editor
	Adding a sky box and lighting
	Adding water using a filter
	Adding some ambient audio
	Creating bitmap fonts with Font Creator
	Retrieving an attachment node
	Using ParticleEmitter – Soaring Birds
	An advanced ParticleEmitter class

	Chapter 2: Cameras and
Game Controls
	Introduction
	Creating a reusable character control
	Attaching an input AppState object
	Firing in FPS
	Firing non-instant bullets
	Creating an RTS camera AppState object
	Selecting units in RTS
	Making the camera follow units
	Following a character with ChaseCamera
	Adding a game controller or joystick input
	Leaning around corners
	Detecting cover automatically in a
third-person game

	Chapter 3: World Building
	Introduction
	Using noise to generate a terrain
	Lighting your world and providing it with dynamic lights
	Deforming a terrain in real time
	Automating trees' distribution
	Endless worlds and infinite space
	Flowing water with cellular automata
	The essentials of a cube-based world

	Chapter 4: Mastering Character Animations
	Introduction
	Previewing animations in SDK
	Creating an animation manager control
	Extending the animation control
	Handling jump animations
	Creating a custom animation - leaning
	Creating a subanimation
	Lip syncing and facial expressions
	Eye movement
	Location-dependent animation – edge check
	Aligning feet with ground – inverse kinematics

	Chapter 5: Artificial Intelligence
	Introduction
	Creating a reusable AI control class
	Sensing – vision
	Sensing – hearing
	Decision making – Finite State Machine
	Creating the AI using cover
	Generating NavMesh in SDK
	Pathfinding – using NavMesh
	Controlling groups of AI
	Pathfinding – our own A* pathfinder

	Chapter 6: GUI with Nifty GUI
	Introduction
	Initializing Nifty and managing an options menu
	Loading the screen
	Creating an RPG dialog screen
	Implementing a game console
	Handling a game message queue
	Creating an inventory screen
	Customizing the input and settings page
	Using offscreen rendering for a minimap

	Chapter 7: Networking with SpiderMonkey
	Introduction
	Setting up a server and client
	Handling basic messaging
	Making a networked game – Battleships
	Implementing a network code for FPS
	Loading a level
	Interpolating between player positions
	Firing over a network
	Optimizing the bandwidth and avoiding cheating

	Chapter 8: Physics with Bullet
	Introduction
	Creating a pushable door
	Building a rocket engine
	Ballistic projectiles and arrows
	Handling multiple gravity sources
	Self-balancing using RotationalLimitMotors
	The principles of a bridge-building game
	Networked physics

	Chapter 9: Taking Our Game to the Next Level
	Introduction
	Creating a muzzle flash using ParticleEmitter
	Creating a trigger system
	Creating a timer trigger
	Adding an interaction trigger
	Controlling AI with triggers
	Creating a dynamic skybox with a
moving sun
	Improving a scene with postprocessing filters
	Performing complex movements with MotionPaths
	Cutscenes using cinematics
	Using a positional audio and environmental effects

	Appendix: Information Fragments
	Introduction
	Downloading the plugins
	Enabling nightly builds
	Adding Bullet physics to the application
	Jaime animation frames for phonemes
	The AnimationEvent patch
	The ImageGenerator class
	The CellUtil class

	Index

