
www.allitebooks.com

http://www.allitebooks.org

jQuery for Designers
Beginner's Guide
Second Edition

Design interactive websites to improve user experience
by using the popular JavaScript library

Natalie MacLees

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

jQuery for Designers Beginner's Guide
Second Edition

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2012

Second edition: July 2014

Production reference: 1220714

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-453-5

www.packtpub.com

Cover image by Suresh Mogre (suresh.mogre.99@gmail.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Natalie MacLees

Reviewers
Olivier Pons

M. Ali Qureshi

Dan Wellman

Acquisition Editor
Vinay Argekar

Content Development Editor
Neeshma Ramakrishnan

Technical Editors
Pramod Kumavat

Pooja Nair

Mukul Pawar

Copy Editors
Janbal Dharmaraj

Deepa Nambiar

Alfida Paiva

Project Coordinators
Priyanka Goel

Danuta Jones

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Indexers
Hemangini Bari

Mehreen Deshmukh

Rekha Nair

Tejal Soni

Priya Subramani

Graphics
Valentina D'silva

Production Coordinators
Pooja Chiplunkar

Manu Joseph

Cover Work
Pooja Chiplunkar

www.allitebooks.com

http://www.allitebooks.org

About the Author

Natalie MacLees is a frontend web developer and UI designer, and the founder and
principal of the interactive agency Purple Pen Productions. She founded and runs the jQuery
LA users' group and together with Noel Saw, she heads the Southern California WordPress
user's group, organizing WordPress meetups, help sessions, and workshops. She was the lead
organizer for WordCamp Los Angeles 2013 and 2014 and organized the first annual Website
Weekend LA. She's also the founder of the Los Angeles chapter of Girl Develop It, bringing
affordable and accessible coding classes to the community.

She makes periodic appearances on the WPwatercooler podcast and co-hosts the WP Unicorn
Project podcast with Suzette Franck. She makes her online home at nataliemac.com.

Her obsession with the Web began when she bought her first computer in 1996 and promptly
used it to build her first website. She spends the few moments she manages to be offline each
day watching baseball, crafting, reading, baking, belly dancing, collecting Hello Kitty items,
and avoiding avocados and olives at all costs.

www.allitebooks.com

nataliemac.com
http://www.allitebooks.org

Acknowledgments

Gracious thanks first and foremost to John Resig and the rest of the jQuery team for creating
and sharing such a useful and elegant library with the rest of us.

A big thank you to Marlene Angel, Ninno DePatrick, Ed Doolittle, Crystal Ehrlich, Suzette Franck,
Teresina Goheen, LeHang Huynh, Michelle Kempner, Mark Tapio Kines, Chloë Nguyễn, Mario
Noble, Joss Rogers, Noel Saw, Kimberly Wilkinson, and Tammy Wilson for their support, advice,
and cheerleading—I couldn't ask for better friends.

Thank you to Beebe Lee and Brittany Brooks, my Purple Pen support team.

Thank you to my sisters, Stefanie Elder and Bethany MacLees, for being properly impressed
that somebody wanted me to write a book. Thank you to my mom, Patricia Demby, and
stepfather, John Demby, for being proud of me no matter what.

Thank you to all members of our local WordPress and jQuery communities including Dre
Armeda, Lucy Beer, Andrew Behla, Glenn Bennett, Stephen Carnam, Jason Cosper, Ryan
Cowles, Joe Chellman, Gregory Dahl, Greg Douglas, Brandon Dove, Chris Ford, Gregg Franklin,
Megan Gray, Lane Halley, John Hawkins, Susie Karasic, Chris Lema, Paul Lumsdaine, Kari Leigh
Marucchi, Karim Marucchi, Karen McCamy, Andrei Mignea, Troy Miles, Konstantin Obenland,
Joseph Karr O'Connor, David Oshima, Sé Reed, Andy Roberts, Mike Schroder, Adam Silver,
Verious Smith, Jason Tucker, Nathan Tyler, Alex Vasquez, Sarah Wefald, Steve Zehngut, Jeffery
Zinn, and too many others to count or mention.

And finally, thank you to Diane Colella Jones for believing in me, even before I did.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Olivier Pons is a developer who's been building websites since 1997. He's a teacher
at IngeSup (École Supérieure d'Ingénierie Informatique; for more information visit
http://www.ingesup.com/ and http://www.y-nov.com), at the University
of Sciences (IUT) in Aix-en-Provence/France, and École d'Ingénieurs des Mines de
Gardanne, where he teaches HTML, CSS, jQuery/jQuery Mobile, PHP, MVC fundamentals,
WordPress, Symfony, Linux basics, and advanced VIM techniques. He has already done
some technical reviews, including the books Ext JS 4 First Look, Packt Publishing and
jQuery Mobile Web Development Essentials Second Edition, Packt Publishing, among others.
In 2011, he left a full-time job as a Delphi and PHP developer to concentrate on his own
company, HQF Development (http://hqf.fr). He currently runs a number of websites,
including http://www.benativo.fr, http://www.inesushi.com, http://www.
papdevis.fr, and http://olivierpons.fr, his own web development blog. He works
as a consultant, teacher, project manager, and sometimes a developer.

M. Ali Qureshi, who is a web developer based in Lahore, Pakistan, has been involved
in web development in 2001. Having worked in a number of companies in different
capacities, he is aware of how project goals are achieved efficiently. Ali founded PI Media
(http://parorrey.com) in 2002 and has developed creative, interactive, and usable web
solutions, making them a successful technology investment for clients. He has also worked
on a number of successful products and authored WordPress plugins and themes and
osCommerce and PrestaShop add-ons.

Apart from PI Media, Ali currently works as a software architect for E2ESP (http://e2esp.
com)and ConvoSpark (http://convospark.com). He regularly makes contributions to the
latest tips and trends in web design, PHP, WordPress and CMS development, Flash ActionScript,
and Facebook App Development on his blog http://parorrey.com/blog/.

Ali has previously reviewed jQuery Mobile Web Development Essentials, Packt Publishing.
When not working, he spends his time blogging and exploring new technologies. He is an avid
sports fan and especially likes watching cricket. Pakistan and Australia are his favorite teams.

www.allitebooks.com

http://www.ingesup.com/
http://www.y-nov.com
http://hqf.fr
http://www.inesushi.com
http://www.papdevis.fr
http://www.papdevis.fr
http://olivierpons.fr
http://parorrey.com
http://e2esp.com
http://e2esp.com
http://convospark.com
http://parorrey.com/blog/
http://www.allitebooks.org

Dan Wellman is an author and software engineer based in the south coast of the UK.
By day, he works for the Skype division at Microsoft bringing web-based audio and video
calling to the world. By night, he writes books and tutorials for many online digital media
outlets including Nettuts, Infinite Skills, and many others. He has written seven books
so far, mostly centered on jQuery and jQuery UI.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
�� Fully searchable across every book published by Packt

�� Copy and paste, print and bookmark content

�� On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Designer, Meet jQuery	 7

What is jQuery?	 7
Why is jQuery awesome for designers?	 8

It uses CSS selectors you already know	 8
It uses HTML markup you already know	 8
Impressive effects in just a few lines of code	 9
Huge plugin library available	 9
Great community support	 10

JavaScript basics	 10
Progressive enhancement and graceful degradation	 10
Gotta keep 'em separated	 11

Content	 11
Presentation	 11
Behavior	 11

Designer, Meet JavaScript	 12
Variables	 12
Objects	 12
Functions	 14

Downloading jQuery and getting set up	 15
Time for action – downloading and attaching jQuery	 15
Another option for using jQuery	 19
Your first jQuery script	 20
Time for action – getting ready for jQuery	 20
Adding a paragraph	 21
Time for action – adding a new paragraph	 22
Summary	 23

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Enhancing Links	 25
Simple tabs	 25
Time for action – creating simple tabs	 26
Designer, meet plugins	 38

Choosing a plugin	 39
Simple custom tooltips	 39
Time for action – simple custom tooltips	 40
Customizing PowerTip's appearance	 44
Time for action – customizing PowerTip	 44
Enhancing navigation with tooltips	 50
Time for action – building a fancy navigation bar	 50
Showing other content in tooltips	 53
Time for action – showing custom content in tooltips	 54
Summary	 61

Chapter 3: Making a Better FAQ Page	 63
Marking up the FAQ page	 63
Time for action – setting up the HTML file	 64
Time for action – moving around an HTML document	 67
Sprucing up our FAQ page	 70
Time for action – making it fancy	 70
We're almost there!	 72
Time for action – adding some final touches	 72
Summary	 75

Chapter 4: Building an Interactive Navigation Menu	 77
The horizontal drop-down menu	 78
Time for action – creating a horizontal drop-down menu	 78
The vertical fly-out menu	 85
Time for action – creating a vertical fly-out menu	 85
Customizing the navigation menu	 86

:hover and .sfHover	 87
Cascading inherited styles	 88

Styling the :focus pseudoclass	 89
Time for action – customizing Superfish menus	 90
The hoverIntent plugin	 94
Time for action – incorporating custom animations	 95
Summary	 96

Table of Contents

[iii]

Chapter 5: Showing Content in Lightboxes	 97
A simple photo gallery	 98
Time for action – setting up a simple photo gallery	 98
Customizing Colorbox's behavior	 104
Time for action – using a custom transition	 105
Time for action – setting a fixed size	 106
Time for action – creating a slideshow	 107
Fancy login	 110
Time for action – creating a fancy login form	 110
Video player	 118
Time for action – showing a video in a lightbox	 118
A one-page web gallery	 122
Time for action – creating a one-page web gallery	 122
Summary	 124

Chapter 6: Creating Slideshows and Sliders	 125
Planning a slideshow or slider	 126
A simple crossfade slideshow	 126
Time for action – creating a simple crossfade slideshow	 126
Using the Basic Slider plugin	 132
Time for action – building a Basic Slider	 132
Creating a Cycle2 slideshow	 139
Time for action – building a slideshow with Cycle2	 140
The Cycle2 carousel	 151
Time for action – building a Cycle2 carousel	 151
Combining a carousel with a slideshow	 162
Time for action – creating the carousel controller	 162
Time for action – adding the slideshow	 172
Time for action – connecting the carousel and the slider	 178
Summary	 183

Chapter 7: Working with Responsive Designs	 185
Using FitVids for responsive videos	 186
Time for action – resizing videos	 186
Responsive menus	 193
Time for action – making our menu responsive	 193
Creating a tiled layout	 206
Time for action – creating a masonry layout	 207
Time for action – creating a tiled layout with different width items	 215
Summary	 217

Table of Contents

[iv]

Chapter 8: Getting the Most from Images	 219
Lazy loading images	 219
Time for action – lazy loading images	 220
Creating zoomable images	 226
Time for action – creating zoomable images	 227
Time for action – creating multiple zoomable images	 231
Using fullscreen backgrounds	 233
Time for action – creating a fullscreen background image	 234
Time for action – creating a fullscreen slideshow	 240
Summary	 242

Chapter 9: Improving Typography	 243
Sizing headlines perfectly	 243
Time for action – sizing headlines to the screen width	 244
Creating bold text blocks	 247
Time for action – creating a bold text block with SlabText	 248
Styling individual letters	 255
Time for action – using Lettering.js to style letters	 255
Setting text on a curve	 261
Time for action – setting text on a curve with the ArcText plugin	 261
Summary	 266

Chapter 10: Displaying Data Beautifully	 267
A basic data grid	 268
Time for action – creating a basic data grid	 268
A customized data grid	 271
Time for action – customizing the data grid	 272
Showing graphs and charts	 279
Time for action – showing data in graphs and charts	 279
Time for action – creating a pie chart	 288
Time for action – calculating the ideal size for charts and graphs	 295
Summary	 299

Chapter 11: Reacting to Scrolling	 301
Setting up the document	 301
Time for action – setting up the HTML file	 302
Time for action – setting up HTML for Scrollorama	 307
Time for action – creating a parallax effect	 311
Time for action – creating a horizontal animation	 319
Time for action – adding navigation to sections of the page	 320
Summary	 329

Table of Contents

[v]

Chapter 12: Improving Forms	 331
An HTML5 web form	 331
Time for action – setting up an HTML5 web form	 332
Setting focus	 342
Time for action – setting focus to the first field	 342
Validating site visitor entry	 343
Time for action – validating form values on the fly	 344
Improving the appearance	 350
Time for action – improving form appearance	 350
Time for action – adding Fancyform to style the unstyleable	 355
Summary	 368

Appendix: Pop Quiz Answers	 371
Index	 375

Preface
This book is intended for designers who have a basic understanding of HTML and CSS,
but want to advance their skill set by learning basic JavaScript. It's not necessary that you
understand JavaScript well. Even if you've never attempted to write JavaScript before, this
book will guide you through the process of setting up basic JavaScript and accomplishing
common tasks such as collapsing content, drop-down menus, and slideshows; all thanks to
the jQuery library.

What this book covers
Chapter 1, Designer, Meet jQuery, is an introduction to the jQuery library and JavaScript.
You'll learn about jQuery's rise to fame, why it's so great for designers, and how it can help
you create some fancy special effects without having to learn a lot of code. This chapter
also includes a gentle and small introduction to JavaScript, progressive enhancement,
and graceful degradation, and guides you through writing your first JavaScript code.

Chapter 2, Enhancing Links, walks you through some basic enhancements to links. You'll
learn how to use jQuery to turn a list of links into a tabbed interface. Then, we'll take our
first look at jQuery plugins where you'll learn to add custom tooltips to your links using the
jQuery PowerTip plugin.

Chapter 3, Making a Better FAQ Page, will introduce you to collapsing and showing content,
as well as creating simple animations and traversing an HTML document to move from one
element to another. In this chapter, we'll set up a basic FAQ list, then work to progressively
enhance it to make it easier for our site visitors to use.

Preface

[2]

Chapter 4, Building an Interactive Navigation Menu, guides you through setting up fully
functioning and visually stunning drop-down and fly-out menus. We'll walk through the
complex CSS required to get these types of menus working, use the Superfish plugin to
fill in features missing from pure CSS solutions, and then take a look at customizing the
appearance of the menus.

Chapter 5, Showing Content in Lightboxes, will walk you through showing photos and
slideshows in a lightbox using the Colorbox jQuery plugin. Once we get the basics down,
we'll also take a look at using the Colorbox plugin to create a fancy login, play a collection
of videos, and even set up a single-page website gallery.

Chapter 6, Creating Slideshows and Sliders, walks you through setting up a simple crossfade
slideshow without a plugin. Then, we'll take a look at the Basic Slider plugin to create a
simple slideshow with controls. Finally, we'll take a look at the Cycle2 plugin, a flexible and
customizable option that can be used to create sliders, slideshows, and carousels.

Chapter 7, Working with Responsive Designs, will dive deep into jQuery techniques for
responsive designs. This includes fitting videos to the viewport, turning a drop-down
menu into a responsive menu, and building a tiled layout for displaying image galleries.

Chapter 8, Getting the Most from Images, walks you through a few techniques to work with
images in a more effective way. We'll take a look at lazy-loading images so that images are
only loaded if our site visitor scrolls to them. We'll add an image zoom capability and finally,
we'll take a look at creating fullscreen background images and slideshows for our pages.

Chapter 9, Improving Typography, shows you techniques to deal with typography effectively
in responsive designs. We'll take a look at the FitText plugin to fit headlines to the width of
the browser window, the SlabText plugin to create multiline headlines, the Lettering.js plugin
to fine-tune kerning and to apply special effects, and finally, the ArcText plugin to set a text
on a curve.

Chapter 10, Displaying Data Beautifully, takes a look at the important task of displaying data
in an easy-to-understand way for your site visitors. First of all, we'll take a look at turning an
ordinary HTML table into an interactive data grid with the DataTables plugin. Then, we'll look
at turning HTML tables into charts and graphs that communicate our data clearly to our site
visitors in an accessible and progressively enhanced way.

Chapter 11, Reacting to Scrolling, dives into the fun task of scrolling animations and parallax
effects. We'll use the Scrollorama plugin to create a parallax effect, trigger animations on
scroll, and activate a navigation bar that reacts to us scrolling down the page.

Preface

[3]

Chapter 12, Improving Forms, takes a look at how forms can be improved. This chapter
walks you through setting up an HTML form properly using some of the latest HTML5 form
elements. Then, we enhance the form by placing the cursor in the first field and validating
the site visitor's form entries. Finally, we take a look at the FancyForm jQuery plugin, which
allows us to style even the most stubborn and challenging form elements to achieve a
consistent look for our forms across browsers.

What you need for this book
You'll need a text editor to create HTML, CSS, and JavaScript files. Some great free options
available are TextWrangler for Mac or Notepad++ for Windows. There are many other
options available, and you are free to use your favorite text editor for any of the examples
in this book. My personal favorite is Sublime Text, which is easy to work with and has a very
nice feature set. If you haven't tried it before, I encourage you to download an evaluation
copy for free to give it a try.

You'll also need a browser. My personal favorite is Google Chrome, which includes some
really helpful built-in debugging tools for both CSS and JavaScript. Again, you are free to
use your favorite browser for the examples in the book.

If you want to create images for your own designs, then Adobe Photoshop and Adobe
Illustrator will be helpful, though they are not strictly necessary. All images needed to
set up the examples used in this book are included in the sample code.

jQuery and jQuery plugins are being updated all the time. As new browsers are released
with new support and capabilities, and as JavaScript, HTML, and CSS are further developed,
new versions of jQuery and plugins are released to keep pace with the change. On one hand,
this is a great news—jQuery and accompanying plugins get faster and more powerful all
the time. On the other hand, it can be tough to keep up with all the changes. All versions
of the plugins referenced were current at the time of writing the book, but you might find
some differences when you work through the exercises. Plugin developers are usually very
good at documenting the changes and updates, so don't be afraid to read through the
documentation so you can understand what's changed and what adjustments you might
need to make.

Who this book is for
This book is for designers who know the basics of HTML and CSS, but want to extend their
knowledge by learning how to use JavaScript and jQuery.

Preface

[4]

Conventions
In this book, you will find several headings that appear frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1.	 Action 1

2.	 Action 2

3.	 Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple-choice questions intended to help you test your own understanding.

Have a go hero – heading
These are practical challenges that give you ideas for experimenting with what you have
learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: "This returns the <body>
tag wrapped in a jQuery object."

A block of code is set as follows:

var x = 5;
var y = 2;
var z = x + y;

Preface

[5]

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

<head>
 <title>Practice Page</title>
 <link rel="stylesheet" href="styles/styles.css"/>
</head>

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Just go to your browser's
File menu and choose Save Page As... or right-click on the page and select Save As...."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

www.allitebooks.com

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.allitebooks.org

Preface

[6]

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from the following link:

https://www.packtpub.com/sites/default/files/downloads/4535OS_
ColoredImages.pdf

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we
would be grateful if you would report this to us. By doing so, you can save other readers from
frustration and help us improve subsequent versions of this book. If you find any errata, please
report them by visiting http://www.packtpub.com/submit-errata, selecting your book,
clicking on the errata submission form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded to our
website, or added to any list of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

https://www.packtpub.com/sites/default/files/downloads/4535OS_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/4535OS_ColoredImages.pdf
http://www.packtpub.com/submit-errata

1
Designer, Meet jQuery

You might have heard quite a lot about jQuery over the past couple of years.
It has quickly become one of the most popular code packages in use on the
Web today. And you might have wondered what all the fuss was about.

Whether you've tried to figure out JavaScript before and have thrown up your
hands in frustration or have been too intimidated to even give it a go, you'll find
that jQuery is a wonderfully approachable and easy-to-understand way to get
started with JavaScript.

In this chapter, we will cover the following topics:

�� What jQuery is and why it's ideal for designers

�� Progressive enhancement and graceful degradation

�� JavaScript basics

�� Downloading jQuery

�� Your first jQuery script

What is jQuery?
jQuery is a JavaScript library. This means that it's a collection of reusable JavaScript code
that accomplishes common tasks. Since web developers often find themselves solving the
same problems over and over again, it makes sense to collect useful bits of code into a single
package that can be included and used in any project. The creators of jQuery have written
code to smoothly and easily handle the most common and most tedious tasks we want to
accomplish with JavaScript, and they've ironed out all the little differences that need to be
worked out to get the code working in different browsers.

Designer, Meet jQuery

[8]

It's important to remember that jQuery is JavaScript, not a language of its own. It has
all the same rules and is written the same way as JavaScript. Don't let this frighten you
away—jQuery really does make writing JavaScript much easier.

jQuery's official tagline is "write less, do more." This is an excellent and accurate description
of the jQuery library—you can really accomplish amazing things in just a few lines of code.
My own unofficial tagline for jQuery is "find stuff and do stuff to it", because finding and
manipulating different parts of an HTML document is extremely tedious with raw JavaScript
and requires lines and lines of code, while jQuery makes that same task painless and quick.
Thanks to jQuery, you can not only quickly create a drop-down menu but you can also create
one that's animated and works smoothly in many different browsers.

Why is jQuery awesome for designers?
So what is it about jQuery that makes it so easy to learn, even if you have limited or no
experience with JavaScript?

It uses CSS selectors you already know
The first thing you'll often do in a jQuery script is select the elements you'd like to work with.
For example, if you're adding some effects to a navigation menu, you'll start by selecting the
items in the navigation menu. The tools you use for this job are selectors—ways to select
certain elements on the page you want to work with.

jQuery borrowed selectors from CSS all the way up through CSS3, and they work even in
browsers that don't support CSS3 selectors just yet.

Even though CSS offers a pretty robust set of selectors, jQuery adds a few more of its own to
make accessing just the elements you need easy.

If you already know how to do things with CSS, such as make all the first-level headings blue
or make all the links green and underlined, you'll easily learn how to select the elements
you'd like to modify with jQuery.

It uses HTML markup you already know
If you want to create new elements or modify existing elements with raw JavaScript, you
better crack your knuckles and get ready to write lots and lots of code—and it won't make
much sense either.

Chapter 1

[9]

For example, if we wanted to append a paragraph to our page that says This page is
powered by JavaScript, we need to first create the paragraph element, then assign the text
that should be inside the paragraph to a variable as a string, and finally append the string to
the newly created paragraph as a text node. And after all this, we'd still have to append the
paragraph to the document. Phew! (Don't worry if you didn't understand all of that—it was
just to illustrate how much work and code it requires to do something simple.)

With jQuery, adding a paragraph to the bottom of our page is as simple as the following line
of code:

$('body').append('<p>This page is powered by jQuery.</p>');

That's right! You just append a bit of HTML directly to the body, and you're all set. I bet
that without understanding JavaScript at all, you can read the line of code and grasp what
it's doing. This code is appending a paragraph that reads This page is powered by
jQuery. to the body of the HTML document.

Impressive effects in just a few lines of code
You've got better things to do than sit and write lines and lines of code to add fade-in and
fade-out effects. jQuery provides you with a few basic animations and the power to create
your own custom animations right out of the box. Let's say, we wanted to make an image
fade into the page; we will use the following code line for this:

$('img').fadeIn();

Yep, that's it! We use one little line of code in which I select the image and then tell it to fade
in. Later in the chapter, you'll see exactly where this line of code will go in your HTML page.

Huge plugin library available
As I said earlier, web developers often find themselves solving the same problems over
and over again. You're most likely not the first person who wants to build a rotating image
slideshow, an animated drop-down menu, or a news ticker.

jQuery has an impressively large library of scripts available freely—scripts to create tooltips,
slideshows, news tickers, drop-down menus, date pickers, character counters, and on and
on. You don't need to learn how to build all these things from scratch; you just have to learn
how to harness the power of plugins. We'll be covering some of the most popular jQuery
plugins in this book, and you'll be able to apply what you've learned to use any plugin in the
jQuery plugin library.

Designer, Meet jQuery

[10]

Great community support
jQuery is an open source project, which means that it's being collectively built by a team of
super-smart JavaScript coders and is freely available for anyone to use. The success or failure
of an open source project often depends on the community behind the project, and jQuery
has a large and active community that supports it.

This means that jQuery itself is being constantly improved and updated. And on top of that,
there are thousands of developers out there who are creating new plugins, adding features
to existing plugins, and offering support and advice to newcomers. You'll find new tutorials,
blog posts, and podcasts on a daily basis for just about anything you want to learn.

JavaScript basics
In this section, we're going to cover a few basics of JavaScript that will make things go more
smoothly. We're going to look at a little bit of code and step through how it works. Don't be
intimidated; this will be quick and painless, and then we'll be ready to get on with actually
doing something with jQuery.

Progressive enhancement and graceful degradation
There are a few different schools of thought when it comes to enhancing your HTML pages
with JavaScript. Let's talk about some of the things we should consider before we dive into
the cool stuff.

Progressive enhancement and graceful degradation are essentially two sides of the
same coin. They both mean that our page with its impressive JavaScript animations and
special effects will still work for users who have less capable browsers or devices. Graceful
degradation means that we create our special effect and then make sure it fails gracefully if
JavaScript is not enabled. If we take the progressive enhancement approach, we'll first build
out a bare bones version of our page that works for everyone, and then enhance it by adding
our JavaScript special effects. I tend to favor the progressive enhancement approach.

Why should we care about users who don't have JavaScript enabled? Well, some of the
Web's biggest users and search engines have either no JavaScript capabilities or very limited
JavaScript capabilities. When search engines are crawling and indexing your pages, they will
not have access to all of the content and features that are being added to your pages by
JavaScript. This is often referred to as dynamic content, and it can't be reliably indexed or
found by search engines if it can't be reached with JavaScript disabled.

Chapter 1

[11]

We're also in an era where we can no longer count on users who access the web pages we
build with a conventional desktop or laptop computer. We're quick to think of smartphones
and tablets as the next candidates, and while they are very popular, they still account for a
tiny fraction of Internet access. People are accessing the Web from gaming consoles, feature
phones, e-book readers, internet-enabled televisions, a huge variety of mobile devices, and
dozens of other ways. Not all of these devices are capable of executing JavaScript, and some of
them don't even have color screens! Your number one priority should be making sure that your
content is available to anyone who asks for it, no matter what device they happen to be using.

Gotta keep 'em separated
To accomplish this task of making our content available to as wide an audience as
possible, we have to think of our web pages in three separate and distinct layers:
content, presentation, and behavior.

Content
Content is the meat of our web page. It's the text or audio or video content that we're most
interested in presenting on our page; so this is where we start.

Mark up your content with clean and simple HTML code. Use HTML elements the way they
were intended to be used. Mark up headings with heading tags, paragraphs with paragraph
tags, lists with list tags, and save tables for tabular data.

Browsers have built-in styles for these basic HTML tags—headings will be of a larger type
and will probably look bold. Lists will have bullets or numbers. It might not look very fancy,
but it's readable and accessible to anyone.

Presentation
The presentation layer is where we start to get fancy. This is where we introduce CSS and
start applying our own styles to the content we've created. As we style our page, we might
find that we have to go back into our HTML code and add some new containers and markup
to make things such as multicolumn layouts possible, but we should still strive to keep our
markup as simple and as straightforward as we can.

Behavior
Once our page has all of our content properly marked up and is styled to look the way we
like, we can think about adding in some interactive behavior. This is where JavaScript and
jQuery come in. This layer includes animations, special effects, AJAX, and so on.

Designer, Meet jQuery

[12]

Designer, Meet JavaScript
JavaScript is a powerful and complex language. You can work with it for 10 years and still
have more to learn. However, don't let that frighten you away. You don't have to know
everything about it to be able to take advantage of what it has to offer. In fact, you just have
to get down to a few basics.

This section introduces some JavaScript basics and JavaScript syntax. Don't be scared away
by that developer word, syntax. Syntax just means the rules for writing a language, much like
we have rules of grammar to write English.

Variables
Let's start with something simple:

var x = 5;

This is a "sentence" in JavaScript. In English, we end a sentence with a period or maybe a
question mark or an exclamation mark. In JavaScript, we end our sentences with a semicolon.

In this sentence, we're creating a variable (var), x. A variable is just a container for holding
something. In this case, x holds the number 5.

We can do math with JavaScript as shown in the following code snippet:

var x = 5;
var y = 2;
var z = x + y;

Just like algebra, our variable z now holds the value of the number 7 for us.

However, variables can also hold things other than numbers. For example:

var text = 'A short phrase';

Here, we've named our variable text and it's holding some alphabetical characters for us.
This is called a string. A string is a set of alphanumeric characters.

Objects
Objects might be the hardest thing for a newcomer in JavaScript to grasp, but that's often
because we overthink it, convinced it has to be more complicated than it actually is.

An object is just what it sounds like—a thing, anything, just as a car, a dog, and a coffee
maker are objects.

Chapter 1

[13]

Objects have properties and methods. A property is a characteristic of an object. For
example, a dog could be tall or short, have pointy ears or floppy ears, and could be brown or
black or white. All of these are properties of a dog. A method is something an object can do.
For example, a dog can run, bark, walk, and eat.

Let's take my dog, Magdelena von Barkington, as an example to see how we'd deal with
objects, properties, and methods in JavaScript:

var dog;

Here, I've created a variable dog that I'm using as a container to hold my dog, mostly
because I don't want to have to type out her full name each time I refer to her in my code.
Now, let's say I wanted to get my dog's color:

var color = dog.color;

I created a container called color and I'm using it to hold my dog's color property—color
is now equal to my dog's color.

Now, I've trained my dog very well and I'd like her to roll over. The following line of code
shows how I'd tell her to roll over with JavaScript:

dog.rollOver();

The rollOver() method is something that my dog can do. After my dog rolls over, I might
like to reward her with a treat. The following line of code shows how my dog eats a treat
with JavaScript:

dog.eat('bacon');

Wait, what's going on here? Let's take it one step at a time. We have dog, which we know
is a container for my dog, Magdelena von Barkington. We have the eat method, which
we know is something that my dog can do. However, my dog can't just eat—she has to eat
"something". We can use some extra code inside the parentheses to say what it is that she is
eating. In JavaScript, we call the code inside the parentheses an argument. In this case, my
lucky dog is eating bacon. So in JavaScript, we'd describe this bit of code by saying we are
passing bacon to the eat() method of the dog object.

So you see, objects aren't so difficult—they're just things. Properties are like
adjectives—they describe traits or characteristics of an object. Methods are like
verbs—they describe actions that an object can do.

Designer, Meet jQuery

[14]

Functions
A function is a bit of reusable code that tells JavaScript to do something. For example, have a
look at the following code:

function saySomething() {
 alert('Something!');
}

This function tells JavaScript to pop up an alert box that says Something!. We always start
a function with the word function and then we name our function. This is followed by a
set of parentheses and a set of curly brackets. The lines of instruction go inside the curly
brackets.

Now, my saySomething() function won't actually do anything until it's called, so I need to
add a line of code to call my function, as follows:

function saySomething() {
 alert('Something!');
}
saySomething();

You might wonder what those parentheses are for. Do you remember how we could pass
arguments to a method by including them in parentheses? We used the following line of code:

dog.eat('bacon');

In this case, we passed bacon to say what the dog was eating. We can do the same thing for
functions. In fact, methods actually are functions; they're just functions that are specialized
to describe what an object can do. Let's look at how we modify our saySomething()
function so that we can pass text to it, as follows:

function saySomething(text) {
 alert(text);
}
saySomething('Hello there!');

In this case, when I wrote the saySomething() function, I just left a generic container in
place. This is called a parameter. In JavaScript, we'd say the saySomething() function
takes a text parameter, as I've called my parameter text. I chose the name text because
it's a short and handy descriptor of what we're passing in. We can pass in any bit of text to
this function, so text is an appropriate name. You can name your parameter anything you'd
like, but you'll make your code easier to read and understand if you apply some sensible
rules when you're selecting names for your parameters. A parameter behaves very much
like a variable—it's just a container for something.

Chapter 1

[15]

Downloading jQuery and getting set up
We're ready to include the magic of jQuery into a project, but first, we need to download it
and figure out how to get it attached to an HTML page. Here, we'll walk through getting a
sample HTML file started and all the associated files and folders we'll need to work through
a sample project. Once we're finished, you can use these files as a template for all the future
exercises in the book.

Time for action – downloading and attaching jQuery
Earlier, I described the three layers of an HTML document: content, presentation, and
behavior. Let's take a look at how to set up our files in these three layers, as follows:

1.	 First, let's set up a folder on your hard drive to hold all of your work as you work
through the lessons in this book. Find a good place on your hard drive and create a
folder called jQueryForDesigners.

2.	 Create a folder called images in the jQueryForDesigners folder to hold any
images we'll use.

3.	 Next, create a folder called styles. We'll use this folder to hold any CSS files we
create. Inside the styles folder, create an empty CSS file called styles.css.

The styles represent our presentation layer. We'll keep all of our styles in this file to
keep them separate.

There is a standard CSS style sheet that we'll start with for each exercise in this
book, which applies some basic colors and typography. You'll find the CSS code
that should be included with all examples in the sample code for the book.

4.	 Next, create a folder called scripts to hold our JavaScript and jQuery code. Inside
the scripts folder, create an empty JavaScript file called scripts.js.

The JavaScript we write here represents our behavior layer. We'll keep all of our
JavaScript in this folder to keep it separate from the other layers.

5.	 Now, inside the jQueryForDesigners folder, create a new HTML page—very basic
with the following code:
<!DOCTYPE html>
<html>
 <head>
 <title>Practice Page</title>
 </head>
 <body>

www.allitebooks.com

http://www.allitebooks.org

Designer, Meet jQuery

[16]

 <!-- Our content will go here -->
 </body>
</html>

Save this file as index.html. The HTML file is our content layer and is arguably
the most important layer, as it's likely to be the reason site visitors are coming to
our website at all.

6.	 Next, we'll attach the CSS and JavaScript files that we created to our HTML page.
In the head section, add a line of code to include the CSS file, as follows:
<head>
 <title>Practice Page</title>
 <link rel="stylesheet" href="styles/styles.css"/>
</head>

Then, head down to the bottom of the HTML file, just before the closing </body>
tag, and include the JavaScript file as follows:
 <script src="scripts/scripts.js"></script>
 </body>
</html>

As these files are just empty placeholders, attaching them to your HTML page won't
have any effect. However, now, we have a place to write our CSS code and JavaScript
that will come handy when we're ready to dive into an exercise.

It's perfectly fine to self-close a <link> element, but a <script>
element always needs a separate closing </script> tag. Without it,
your JavaScript won't work.

The following screenshot is what my folder looks like at this point:

Chapter 1

[17]

7.	 Now, we have to include jQuery in our page. Head over to http://jquery.com
and hit the Download jQuery button.

This will take you to the Download page where you'll see that you've got quite a few
options to download jQuery these days.

As of April 2013, you officially have two versions of jQuery to choose from.
In developer speak, these versions are called branches. To easily understand
which branch you should use, keep this rule in mind. The 2.x branch of jQuery
no longer has support for Internet Explorer (IE) 6, 7, or 8. If you're working on
a project that will need to work in these older versions of IE, then you'll need
to work with the 1.x branch of jQuery. If you don't need to support these older
versions of IE, then you can choose to work with the 2.x branch. All the code files
in this book will use the 2.x branch, since my philosophy with web development
is to look forward, not back. However, all of the code samples will work fine with
either the 1.x branch or the 2.x branch of jQuery.
Note that the jQuery team will be discontinuing support for IE6 and IE7, even in
the 1.x branch, with the jQuery 1.12 release in 2014.

On the Download page, in the section for your selected branch, you'll see several
files available for download: a compressed version and an uncompressed version,
a map file, and release notes. The only file we need to be concerned with is the
compressed, production version.

Downloading the example code
You can download the example code files for all Packt books
you have purchased from your account at http://www.
packtpub.com. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and
register to have the files e-mailed directly to you.

http://jquery.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Designer, Meet jQuery

[18]

8.	 Clicking on the link for the compressed, production version of your selected branch
of jQuery will open the production jQuery file in your browser window, and it looks a
bit scary, as shown in the following screenshot:

9.	 Don't worry, you don't have to read it and you definitely don't have to understand
it. Just go to your browser's File menu and choose Save Page As... or right-click on
the page and select Save As.... Then, save the file to your hard drive, inside the
scripts folder we created. By default, the script will have the version number
in the filename. I'm going to go ahead and rename the file to jquery.js to keep
things simple.

10.	Now, we just have to include our jQuery script in our page—just like we included our
empty JavaScript file. Go to the bottom of your practice HTML file, just before the
<script> tag we created earlier, and add a line to include jQuery, as follows:

 <script src="scripts/jquery.js"></script>
 <script type="text/javascript"
 src="scripts/scripts.js"></script>
</body>
</html>

Chapter 1

[19]

You won't notice any changes to your HTML page; jQuery doesn't do anything on its
own. It just makes its magic available for you to use.

What just happened?
We learned how to set up our files and folders to work through the practice exercises in this
book. We also learned how to select and download the correction version of jQuery and get
it attached to our HTML page. Now we're all set to start coding pages and adding jQuery
magic to them.

Pop quiz – setting up a new project
Q1. Which of the following is the content layer of a project?

1.	 HTML

2.	 CSS

3.	 JavaScript

Another option for using jQuery
There is nothing wrong with downloading and using your own copy of jQuery, but you do
have another option available that can help to improve the performance of your websites.
That's to use a CDN-hosted copy of jQuery.

In case you don't know, a CDN is a Content Delivery Network. The premise behind a CDN is
that files download faster from servers that are physically closer to a site visitor's location.
So, for example, if you're in Los Angeles, California, a copy of jQuery that's on a server in
Phoenix, Arizona will download faster than a copy that's on a server in New York City. To help
this along, a CDN has a copy of the same file on lots of different servers all around the world.
Each time a site visitor requests a file, the CDN smartly routes their request to the closest
available server, helping to improve response times and overall site performance.

It won't make much of a difference for the relatively simple examples and pages that we'll
build in this book, but for a public-facing website, using a CDN-hosted copy of jQuery can
make a noticeable difference. There are a few options out there, but the most popular by far
is Google's Ajax API CDN. You can get the information on the latest version available and the
correct URL at http://code.google.com/apis/libraries/devguide.html#jquery.

http://code.google.com/apis/libraries/devguide.html#jquery

Designer, Meet jQuery

[20]

There are several CDN-hosted copies of jQuery available. You can find
out about these on jQuery's Download page (http://jquery.com/
download/). Just scroll down to the section titled Using jQuery with a
CDN to find all your current options.

If you'd like to use the Google CDN-hosted version of jQuery in your files, it's as simple
as adding the following line of code to your HTML file, instead of the line we used in the
previous section to include jQuery:

<script src
 ="http://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js">
 </script>

No downloading the file, no saving your own copy; you can just point your <script> tag
directly at the copy of jQuery stored on Google's servers. Google will then take care of
sending jQuery to your site visitors from the closest available server. Not only that, but as
Google's CDN is so popular, there's a good chance that your site visitor has already visited
another site that's also using a Google CDN-hosted copy of jQuery and that they'll have
jQuery cached in their browser. This means that your site visitor won't have to download
jQuery at all—it's already saved in their browser and available to be used. How's that for
improving performance?

Your first jQuery script
Alright, now that you understand a few basic things about JavaScript and know how to get
your files and folders set up to build a sample exercise, let's build our first simple example
page and make it do something fancy with jQuery.

Time for action – getting ready for jQuery
Perform the following steps to start with your first jQuery script:

1.	 Set up your files and folders just like we did in the previous exercise. Inside the
<body> tags of the HTML document, add a heading and a paragraph, as follows:
<body>
<div class="content">
 <h1>My First jQuery</h1>
 <p>Thanks to jQuery doing fancy JavaScript stuff is easy.</p>
</div>
</body>

Feel free to add some CSS code to the styles.css file in the styles folder. Style
this however you'd like.

http://jquery.com/download/
http://jquery.com/download/

Chapter 1

[21]

2.	 Next, open up that empty scripts.js file we created earlier and add this bit of
script to the file:

$(document).ready();

What just happened?
Let's take this statement one thing at a time—first, the dollar sign. Really? What's this doing
in JavaScript?

The $ here is just a variable—that's all. It's a container for the jQuery function. Remember
how I said we might use a variable to save ourselves a few keystrokes? The clever writers of
jQuery have provided the $ variable to save us from having to write out jQuery every
time we want to use it. The following code does the same thing that the preceding script did:

jQuery(document).ready();

Except that it takes longer to type. jQuery uses the $ sign as its short name because it's
unlikely that you'd call a variable $ on your own as it's an uncommon character. Using an
uncommon character reduces the chance that there will be some sort of conflict between
some other JavaScript being used on a page and the jQuery library.

So, in this case, we're passing document to the jQuery (or $) function because we want to
select our HTML document as the target of our code. When we call the jQuery function,
we get a jQuery object. In JavaScript, we'd say that the jQuery function returns a jQuery
object. The jQuery object is what gives the jQuery library its power. The entire jQuery
library exists to give the jQuery object lots of properties and methods that make our lives
easier. We don't have to deal with lots of different sorts of objects; we just have to deal with
the jQuery object.

The jQuery object has a method called ready. In this case, the ready method will be called
when the document is loaded into the browser and is ready for us to work with. We can pass
a function to the ready method to say what should happen. So $(document).ready()
just indicates when the document is ready.

Adding a paragraph
Now, we're all set to do something when the document is ready, but what is it that we'll do?
Let's add a new paragraph to our page.

Designer, Meet jQuery

[22]

Time for action – adding a new paragraph
Perform the following steps to add a new paragraph to our page:

1.	 We need to tell jQuery what to do when the document is ready. Since we want
something to happen, we'll pass in a function like this:
$(document).ready(function(){
 // Our code will go here
});

We'll write what's going to happen inside this function.

What about the line that starts with //? That's one way of writing a comment in
JavaScript. The // sign tells JavaScript to ignore everything else on that line because
it's a comment. Adding comments to your JavaScript is a great way to help yourself
keep track of what's happening on what line. It's also great for helping along other
developers who might need to work on your code. It can even be great for helping
yourself if you haven't looked at your own code in a few months.

2.	 Next, we'll add what we want the function to do as soon as the document is ready:

$(document).ready(function(){
 $('body').
 append('<p>This paragraph was added with jQuery!</p>');
});

What just happened?
Our new function is using the jQuery function again, as follows:

$('body')

Remember I said that jQuery uses CSS selectors to find stuff? This is how we use those CSS
selectors. In this case, we want the <body> tag, so we'll going to pass body to the jQuery
function. This returns the <body> tag wrapped in a jQuery object. Handily, the jQuery
object has an append method that lets us add something new to the page, as follows:

$('body').append();

All we have to do is call the append method and pass in the paragraph we want to add to
the page. In quotes, pass a line of HTML:

$('body').append('<p>This paragraph was added with jQuery!</p>');

Chapter 1

[23]

That's it! Now, when you load the page in a browser, you'll see the heading followed by two
paragraphs—jQuery will add the second paragraph as soon as the document is loaded in
the browser. The following screenshot shows the page loaded in the browser:

Have a go hero – adding more content
Try adding the following bit of HTML to the bottom of the document with jQuery:

<div><p>This was added with jQuery too!</p></div>

Style it with CSS so that it stands out.

Summary
In this chapter, you have been introduced to the jQuery library and have learned a few things
about it. We covered a bit of JavaScript basics and then we learned how to set up our files
and folders for the exercises in this book. Finally, we set up a simple HTML page that took
advantage of jQuery to add some dynamic content. Now, let's take a look at how we can
make links more powerful with jQuery by creating tabs and custom tooltips.

2
Enhancing Links

We take links for granted these days, but the truth of the matter is that
the humble link revolutionized documents and made the Web as we know
it today possible. Being able to link a reader directly to another document or to
another place within a document was not possible before.

For this reason, you can say that hyperlinks are the backbone of the
Internet—without them, search engines wouldn't be possible, nor would
most websites. Let's take a look at some of the ways we can make links
work even harder for us.

In this chapter, we will cover the following topics:

�� How to turn a list of links into simple tabs

�� How to customize tooltips

Simple tabs
If we have a large amount of information to present that might not be relevant to all site
visitors, we can compress the amount of space the information takes by hiding selected bits
of information until the user requests it. One of the most common ways of making all the
information available but hidden until requested is tabs. Tabs echo the real-world example
of a tabbed notebook or labeled folders in a filing cabinet, and are easy for site visitors to
understand. Believe it or not, they're also easy to implement with jQuery.

www.allitebooks.com

http://www.allitebooks.org

Enhancing Links

[26]

The following screenshot gives us an idea of what our page will look like after we've
created our tabs:

Time for action – creating simple tabs
Perform the following steps to turn a list of links into tabs:

1.	 We'll get started with our basic HTML file and associated folders, like we created in
Chapter 1, Designer, Meet jQuery. Inside the <body> tag, we'll start by setting up
a simple example that will work even for users with JavaScript disabled. We'll put a
list of anchor links to different areas of the page at the top and then wrap each of
our content sections in a div block with an ID, as shown in the following code:
<header class="content">
 <h1>Noble Gases</h1>
 <p>Odorless, colorless, monatomic gases with
 very low chemical reactivity</p>
</header>

<ul id="tabs">
 He
 Ne
 Ar

Chapter 2

[27]

 Kr
 Xe
 Rn

<div id="he">
 <h2>Helium</h2>
 <p>Info about helium here.</p>
</div>

<div id="ne">
 <h2>Neon</h2>
 <p>Info about neon here.</p>
</div>

<div id="ar">
 <h2>Argon</h2>
 <p>Info about argon here.</p>
</div>

<div id="kr">
 <h2>Krypton</h2>
 <p>Info about krypton here.</p>
</div>

<div id="xe">
 <h2>Xenon</h2>
 <p>Info about xenon here.</p>
</div>

<div id="rn">
 <h2>Radon</h2>
 <p>Info about radon here.</p>
</div>

Note that we added an id value of tabs to the list of links. This will make it easy
to select the list with CSS for styling and with JavaScript to create the tab behavior.

If you view this HTML in a browser, you'll see a list of links at the top of the page,
which when clicked on the ID, jumps down to the appropriate section of the page
so that the site visitor can easily find each section without scrolling on their own.
We've basically created a clickable table of contents for our page.

Enhancing Links

[28]

2.	 Next, we want to style our page a bit so that it looks nice for those site visitors who
have JavaScript disabled. We only want these styles to apply to the page if JavaScript
is disabled, so let's learn a handy technique. Add a class of jsOff to the <body>
tag, as follows:
<body class="jsOff">

Now, you can reference this class in your CSS file to write styles for site visitors
who have JavaScript disabled, using the following code:
.jsOff ul#tabs {
 line-height: 1.5;
 margin: 1.125em 0;
}

Feel free to experiment with your CSS file and style the table of contents the way
you want like for the no-JavaScript case.

3.	 Now, we want to enhance this for our site visitors that have JavaScript enabled. We'll
start by adding a class name to each of the <div> blocks that contain our sections
of content—this will make it easier for us to select just the pieces of the page we
want with jQuery and will also make it easier for us to further style our tabs with
CSS. Have a look at the following code:
 <ul id="tabs">
 He
 Ne
 Ar
 Kr
 Xe
 Rn

 <div id="he" class="content tab-section">
 <h2>Helium</h2>
 <p>Info about helium here.</p>
 </div>

 <div id="ne" class="content tab-section">
 <h2>Neon</h2>
 <p>Info about neon here.</p>
 </div>

 <div id="ar" class="content tab-section">
 <h2>Argon</h2>
 <p>Info about argon here.</p>
 </div>

Chapter 2

[29]

 <div id="kr" class="content tab-section">
 <h2>Krypton</h2>
 <p>Info about krypton here.</p>
 </div>

 <div id="xe" class="content tab-section">
 <h2>Xenon</h2>
 <p>Info about xenon here.</p>
 </div>

 <div id="rn" class="content tab-section">
 <h2>Radon</h2>
 <p>Info about radon here.</p>
 </div>

Here, we used the class of content to apply document-wide styles to the tabbed
sections. We also added the tab-section class for styles specific to just the tabbed
sections. The following screenshot shows what we've got so far:

Enhancing Links

[30]

4.	 Now, we'll go back to the jsOff class we added to the <body> tag. Remember
how we wrote some CSS styles that applied only when our site visitor has JavaScript
disabled? Now, we can use some jQuery magic to change this class for site visitors
who have JavaScript enabled.

jQuery makes it easy for us to add or remove classes from elements. In this case,
we want to remove the jsOff class from the <body> section. To do this, we'll use
jQuery's removeClass() method. Then, we will add a new class called jsOn to the
<body> section. To do this, we'll use jQuery's addClass method.

Open the scripts.js file inside your scripts folder and write a document ready
statement, as shown in the following code, just like we did in Chapter 1, Designer,
Meet jQuery:
$(document).ready(function(){
 // Our code will go here
});

Inside the document ready statement, write the following code to remove the
jsOff class:
$(document).ready(function(){
 $('body').removeClass('jsOff');
});

Next, we need to write the following code to add the new jsOn class:
$(document).ready(function(){
 $('body').removeClass('jsOff');
 $('body').addClass('jsOn');
});

This code will work, but jQuery actually makes it a little bit easier for us. We can
write less code! As we're working with the <body> element both times, we can
actually write both of these methods on one line, as follows:
$(document).ready(function(){
 $('body').removeClass('jsOff').addClass('jsOn');
});

Now we can use the jsOn class to write CSS just for those site visitors who have
JavaScript enabled.

5.	 We'll make use of the new jsOn class to hide all of our tab-section <div>
elements. Inside the styles.css file, add the following CSS code to hide all
the sections as soon as our page loads:
.jsOn .tab-section {
 display: none;
}

Chapter 2

[31]

Now, when we reload the page, we'll only see our table of contents as shown in the
following screenshot:

6.	 Now, let's write some CSS styles to get the list of links to look like tabs. Open the
styles.css file that's inside your styles folder and add some CSS styles.
As we want these styles to be applied only for site visitors with JavaScript enabled,
we'll use the jsOn class in our selectors. Feel free to customize the CSS code to suit
your own taste. I have customized it as follows:
.jsOn ul#tabs {
 background: #a0d468;
 border-top-left-radius: 7px;
 border-top-right-radius: 7px;
 font-size: 1.5em;
 margin: 1.5em 0 0 0;
}

.jsOn ul#tabs:after {
 clear: both;
 content: '';
 display: table;
}

Enhancing Links

[32]

.jsOn ul#tabs li {
 display: block;
 float: left;
}

.jsOn ul#tabs a {
 border-right: 1px solid #8cc152;
 color: white;
 display: block;
 padding: 0.5em 1.125em;
 text-decoration: none;
}

.jsOn ul#tabs li:first-child a {
 border-top-left-radius: 7px;
}

.jsOn ul#tabs a:hover {
 background: #8cc152;
}

.jsOn .tab-section {
 background: white;
 color: #444;
 padding: 2em;
}

.jsOn .tab-section h2 {
 margin-top: 0;
}

Note that this sample CSS uses several CSS3 properties that, at the time of
publication, are not supported by all browsers. Feel free to add in vendor prefixes
to get these styles working in more current browsers if you wish. Have a look at the
following screenshot:

Chapter 2

[33]

Browser support for new features

If you're curious to know what browser support is available for different
new CSS3 properties you might like to use in your CSS, a great resource to
check out is http://caniuse.com. It's kept up to date and will give you
detailed information about which browsers support each new property.

7.	 Next, let's get our tabs working. When a site visitor clicks on a tab, we want to show
the appropriate section of content. First, we have to select the element or elements
that we want to work with. In this case, we want to do something when our site
visitor clicks on a link inside the element with the id value of tabs. We can
select these links as follows:
$(document).ready(function(){
 $('body').removeClass('jsOff').addClass('jsOn');

 $('#tabs a')
});

8.	 Now, we've got the links and we want to do something when these links are clicked.
jQuery makes this easy for us with the on() method, which looks like the following
code snippet:
$(document).ready(function(){
 $('body').removeClass('jsOff').addClass('jsOn');

 $('#tabs a').on();
});

In this case, we want to do something when our site visitor clicks on one of the tab
links. In JavaScript, the click is called an event. There are all sorts of events: clicking
on an element, moving the mouse over an element, changing the text in a form
field, submitting a form, and so on. We just have to tell jQuery which event we're
working with. In this case, it's click:
$('#tabs a').on('click');

Now, jQuery knows that we want to do something when the user clicks on a tab link,
but we haven't said what we want to do. We can say what should happen with a
function, as follows:
$('#tabs a').on('click', function(){
 // Event code will go here
});

In JavaScript, this function is called an event handler. That makes sense, right?
It's the code that handles an event.

http://caniuse.com

Enhancing Links

[34]

9.	 Remember how the page worked when JavaScript was disabled? The list of links
appeared at the top of the page, and clicking on one of them would jump to the
corresponding section of the page. As we're going to hide and show those bits of
content depending on which link was clicked, we need to make sure that we cancel
the default action—we don't want the page to jump. The following code is how we
cancel the browser's default reaction to an event:
$('#tabs a').on('click', function(e){
 e.preventDefault();
});

We have to pass our event inside the parentheses of the function shown in the
preceding code. You may call this what you want. Sometimes, developers will
name it e, event, or evt. Then, inside our function, we call the preventDefault
method for the event. If you load the page in a browser at this point, you'll see that
clicking on the links does nothing—the default action has been cancelled. Now, we
have to write a function to specify what should happen instead.

10.	 When a site visitor clicks on a table of contents link, we want to select the appropriate
section and show it. To do this, we'll use hash, or the part of the href attribute that
includes the # symbol:
$('#tabs a').on ('click', function(e){
 $(this.hash).show();
 e.preventDefault();
});

When we pass this.hash to the jQuery function, the this keyword we're dealing
with is the link that was just clicked on and this.hash is the value of the href
attribute starting with the # symbol and continuing to the end. For example, if a site
visitor were to click on the He tab, passing this.hash to the jQuery function is the
same as writing the following line of code:
$('#he');

Of course, we've done it in a much more flexible way and our code will work for
any tab linked to any section of the site. So, for example, if I wanted to remove the
Rn tab or expand my list to include the halogens in addition to the noble gases,
I wouldn't have to update JavaScript, only the HTML markup itself—JavaScript is
flexible enough to adjust to changes.

Chapter 2

[35]

11.	 If you reload the page in the browser at this point, you'll see that when you click on
one of the tab links, the associated section becomes visible. We're making progress!
However, if you keep clicking on links, the sections just keep showing up, and after
clicking on all the links, all the sections are visible—this not what we want. We'll
have to hide the visible section and show only the section we want. Let's add a line
to our code, as follows, to select the visible <div> with the class of tab-section
and hide it before we show the new section:
$('#tabs a').on('click', function(e){
 $('.tab-section:visible').hide();
 $(this.hash).show();
 e.preventDefault();
});

You're probably familiar with pseudoclass selectors in CSS—they're often used
to select the hover, visited, and active states of links (a:hover, a:visited, and
a:active). jQuery makes a few additional pseudoclass selectors available to us.
There are pseudoclass selectors for buttons, empty elements, disabled form fields,
checkboxes, and so on. You can check out all the available selectors for jQuery in the
jQuery documentation at http://api.jquery.com/category/selectors/.
Here, we're using the :visible pseudoclass to select the .tab-section that's
currently visible. Once we've selected the visible .tab-section, we hide it and
then find the correct tab-section and show it.

12.	Now, if you load this in a browser, you'll see that there's something missing; we
should highlight the currently selected tab to make it obvious which one is selected.
We can do that by adding a CSS class to the current tab. Go back to your scripts.
js file and add a bit of code to add a class to the current tab and remove the class
from any non-current tabs as follows:
$('#tabs a').on ('click', function(e){
 $('#tabs a.current').removeClass('current');
 $('.tab-section:visible').hide();
 $(this.hash).show();
 $(this).addClass('current');
 e.preventDefault();
});

First, we'll find the tab that has the current class and remove this class. Then,
we'll get the tab that was just clicked and add the current class to it. In this way,
we make sure that only one tab will be marked as the current tab at any given time.

www.allitebooks.com

http://api.jquery.com/category/selectors/
http://www.allitebooks.org

Enhancing Links

[36]

The $(this) element is the jQuery way of referring to the jQuery object that
we're currently working with. In this case, we're selecting all the tab links and we've
attached this function to be called whenever our site visitor clicks on a link. When a
site visitor clicks on a link, we want to work with the link that was clicked. A simple
and quick way of referring to the current link is to use $(this).

13.	Next, we'll add some styles in our CSS file for our new class. Open styles.css and
add a bit of CSS to distinguish the currently selected tab. I'm styling mine as follows,
but feel free to customize the style to suit your own tastes:
.jsOn ul#tabs a.current {
 background: #4fc1e9;
}

14.	Now our tabs are working the way we expect, and the only thing left to do is to
make the first tab active and show the first content section when the page is first
loaded instead of leaving them all hidden. We've already written the function to
do this, so now all we have to do is call it for our first tab, as shown in the following
code snippet:
$('#tabs a').on ('click', function(e){
 $('#tabs a.current').removeClass('current');
 $('.tab-section:visible').hide();
 $(this.hash).show();
 $(this).addClass('current');
 e.preventDefault;
}).filter(':first').click();

Chapter 2

[37]

The jQuery object's filter method will allow us to filter a previously selected set
of elements. In this case, we're dealing with all of the <a> tags inside the tags
with the #tabs ID. We bind a click function to all of these links, then we'll filter
out just the first link using the :first pseudoclass made available to us in jQuery,
and tell jQuery to click on the first tab for us. This will run our function, adding the
current class to the first link and showing the first .tab-section—just the way
we'd expect the page to look when we load it, as seen in the following screenshot:

What just happened?
We set up a set of simple tabs with jQuery. For site visitors with JavaScript disabled, the
tabs will function like a table of contents at the top of the document, jumping them to the
various sections of content when they're clicked. For site visitors with JavaScript enabled,
the sections of content will be completely hidden until needed. Clicking on each tab reveals
the content associated with that tab. This is a great way to save space in a UI, making all the
content available on demand in a small space.

We used our jsOn class name to hide the tab contents to be sure that users without
JavaScript enabled would still be able to access all of our content.

Enhancing Links

[38]

Pop quiz – working with events
Q1. Which of the following are the examples of events in JavaScript?

1.	 Clicking on a link

2.	 Entering a value in a form input

3.	 Moving the mouse over an image

4.	 Pressing a key on the keyboard

5.	 All of the above

Q2. What is an event handler?

1.	 The site visitor that decides which button to click

2.	 A bit of code that is run in response to an event

3.	 The site visitor submitting a form

Designer, meet plugins
We've already talked about how programmers solve the same problems over and over again.
It's these common tasks that jQuery simplifies so that we can accomplish these tasks with a
minimum amount of code. What about the tasks that are only somewhat common, like the
ability to customize the appearance of tooltips?

That's where the jQuery community becomes important. Developers in the jQuery
community write code that extends the functionality of jQuery to simplify tasks that are
only somewhat common. These bits of code are called plugins, and they are used in
conjunction with the jQuery library to make coding complex interactions, widgets, and
effects as simple as using the features already built into jQuery.

You'll find a library of hundreds of jQuery plugins on the official jQuery site at
http://plugins.jquery.com. In addition to this, there are literally thousands more
available from sites across the Web for just about any task you want to accomplish.

To create custom-designed tooltips, we'll be using Steven Benner's jQuery PowerTip plugin.
You'll learn how to install the plugin on your page and how to configure the CSS code and
options to make your tooltips look and work the way you want.

http://plugins.jquery.com

Chapter 2

[39]

Choosing a plugin
Recently, the jQuery team has started supporting a small number of official jQuery plugins,
and you can use them confidently, knowing that they have the same level of expertise,
documentation, and support behind them that jQuery itself has. All other jQuery plugins
are provided by various members of the jQuery community, and those authors are solely
responsible for the documentation and for their own plugins. Writing and providing jQuery
plugins is a bit of a free-for-all, and sadly, you will come across a fair number of jQuery plugins
that are poorly documented, poorly supported, and even worse, poorly written. What kinds of
things should you, as a newcomer to jQuery, look for when choosing a plugin?

�� A recent update to the plugin: Frequent updates mean that a plugin is well supported
and that the author is keeping the plugin up to date as jQuery and browsers evolve.
You'll even sometimes find other community members making contributions and
updates to a plugin, as is the case with the jQuery PowerTip plugin.

�� Thorough and easy-to-understand documentation: Before attempting to download
and use a plugin, take a look through the plugin's documentation and make sure
that you understand how to implement the plugin and how to use the options that
the plugin makes available to you.

�� Browser support: Great plugins generally have the same browser support as the
jQuery library.

�� Working demo: Most plugins will offer one or more working demos of their plugin
in action. Check out the demo(s) in as many different browsers as possible to make
sure that the plugin works as advertised.

�� Reviews and ratings: You won't find reviews and ratings for all plugins, but if you can
find some, they can be helpful indicators of the quality and reliability of the plugin.

Simple custom tooltips
Browsers automatically create tooltips when you include the title attribute on your HTML
element. Titles are usually used on links and images, but they can be added to nearly every
type of HTML element. When your site visitors hover their mouse cursor over an element
with a title attribute or move focus to the item by tabbing to it using the keyboard, the
tooltip will appear—usually as a small yellow box that appears to be floating over the page.

Tooltips are a great way to add a little additional information to your page. Screen reader
software reads out tooltip text for site visitors with disabilities who are using assistive
technology, making them useful for enhancing accessibility. Furthermore, the title
attributes on images and links can help search engines index your content more effectively.

Enhancing Links

[40]

I hope I've convinced you that the title attributes are great for enhancing both the
usability and the accessibility of your site. The only problem with tooltips is that they
can't be customized in any way. Each browser has its own style of tooltip and that style is
not accessible via CSS. This is fine, but sometimes, it's nice to have more control over the
appearance of tooltips.

Time for action – simple custom tooltips
We'll start off by creating a simple replacement for the browser's default tooltips that we can
style any way we'd like. Perform the following steps:

1.	 Set up a basic HTML file and associated files and folders like we did in Chapter 1,
Designer, Meet jQuery. Our HTML file should contain a list of images with the title
attributes as follows:
<div class="content">
 <h2 id="pb-gallery">Photo Gallery</h2>
 <ul class="gallery">
 <img src="images/bridge.jpg" title
 ="One of many bridges in Pittsburgh"/>
 <img src="images/downtown.jpg" title
 ="Downtown Pittsburgh with bridges"/>
 <img src="images/icecream.jpg" title
 ="A great way to beat the summer heat"/>

</div>

Feel free to use CSS to style this list in the way like. If you open the page in a
browser and move your mouse over the images, you'll see the text that's
contained in the title attributes displayed as tooltips. Where the tooltip appears
and what it looks like will depend on your browser, but here's how it looks in mine
(Google Chrome on Mac OS):

Chapter 2

[41]

2.	 Now, let's spruce that up a bit by replacing the default browser tooltip with our
own styled one, at least for our site visitors that have JavaScript enabled. First, we'll
need a copy of Steven Benner's jQuery PowerTip plugin. It's available on GitHub
at http://stevenbenner.github.io/jquery-powertip/. The GitHub page
has a list of features, some sample demos, the documentation you'll need to learn
to use the plugin, and a link to the files available for download. Click on the green
Download button to download a ZIP file that consists all the files you'll need. For
this, have a look at the following screenshot:

http://stevenbenner.github.io/jquery-powertip/

Enhancing Links

[42]

3.	 Unzip the file you downloaded and examine its contents. Inside, you'll find a css
folder with several .css files, an examples folder with a few working examples
for you to look at, two JavaScript files, and a LICENSE.txt file. Have a look at the
following screenshot:

Let's start with all the CSS files. You'll find two files named jquery.powertip.css
and jquery.powertip.min.css. These two files are the default tooltip styles for
this plugin and have exactly the same content. The difference between them is that
the second file is minified, making it smaller and ideal for use in production. The
other file is a development version that we could easily edit ourselves or use as an
example if we wanted to write our own custom styles for our tooltips.

The rest of the CSS files are assorted styles and color schemes for the tooltips. If you
look closely, you'll see the names of colors in the filenames, for example, jquery.
powertip-purple.css or jquery.powertip-blue.css. Each of these files also
have a minified production version and a development version. All of these styles
are prewritten and available to you to use in your project.

You can select one of these CSS files and attach it to your page. Copy jquery.
powertip.css to your own styles folder and then attach the file to your HTML
document in the <head> section, as follows:

<head>
 <title>Chapter 2: jQuery for Designers</title>
 <link rel="stylesheet" href="styles/styles.css">
 <link rel="stylesheet" href="styles/jquery.powertip.css">
</head>

Chapter 2

[43]

4.	 Next, let's look at the JavaScript files. We have jquery.powertip.js and
jquery.powertip.min.js. Just like the CSS files, these are two different versions
of the same file, and we simply have to choose one and attach it to our HTML
document. The first file, jquery.powertip.js, is the development version of
the file and the largest at 35 KB. The second file is minified and is just 9 KB. As we
don't need to edit the plugin itself and are going to use it as it is, let's select the
smaller minified version. Copy jquery.powertip.min.js to your own scripts
folder and attach it at the bottom of your HTML file, between jQuery and your own
scripts.js file. This is shown in the following code:
<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.powertip.min.js"></script>
<script src="scripts/scripts.js"></script>
</body>
</html>

5.	 The last thing we need to do is call the plugin code. Open your scripts.js file and
add the following document ready statement and function:
$(document).ready(function(){

});

6.	 Inside the function, select the images inside the list and call the powerTip method
on these links, as shown in the following code:

$(document).ready(function(){
 $('.gallery img').powerTip();
});

Now, when you view the page in the browser and move your mouse over the images
with the title attributes, you'll see the PowerTip-styled tooltips instead of the
browser's default tooltips, as seen in the following screenshot:

Enhancing Links

[44]

The default style for PowerTip tooltips is a slightly transparent black tooltip that
appears directly above the item you're hovering your mouse over. These tooltips
will appear with this same style, no matter which browser and operating system
we're using, except that the tooltip will be opaque in browsers that don't support
RGBA colors for transparency.

What just happened?
We downloaded the jQuery PowerTip plugin and attached one CSS file and one JavaScript
file to our HTML document. Then, we added just a couple lines of jQuery code to activate the
custom tooltips.

We selected all the images in the gallery list. We did this by taking advantage of jQuery's
CSS selectors:

$('.gallery img')

Once we've selected all the images, all that was left to do was call the powerTip method
that the PowerTip plugin provided for us. The powerTip method takes care of all the
actions that need to be performed to replace the default tooltip with a custom one. But
what if we want to alter the style or placement of the tooltips? Let's take a look at how we
can customize the tooltips.

Customizing PowerTip's appearance
The default PowerTip style displays the tooltip centered above the item that we're hovering
our mouse over. The PowerTip plugin offers lots of options to customize where the tooltip
appears and what it looks like. It does so in a straightforward and easy-to-understand way.

Time for action – customizing PowerTip
Let's take a look at some of the options we have to customize PowerTip and how we can use
them. We'll keep working with the files we set up in the preceding example:

1.	 Let's say that we want to change the position of the tooltip. PowerTip gives us
plenty of options to position tooltips on our page, as follows:

Chapter 2

[45]

How do we tell PowerTip where we want our tooltips to appear? Let's go back to
that line of code in our scripts.js file where we called the powerTip method to
create the custom tooltips:
$('.gallery img').powerTip();

Remember in Chapter 1, Designer, Meet jQuery, we talked about how we can pass
things to methods and functions by putting them inside the parentheses? We had
the example dog.eat('bacon');, where we wanted to say that the dog was
eating bacon. So, in JavaScript, we passed bacon to the eat method of the dog.

Well, in this case, we can pass a set of options to the powerTip method to define
where our tooltips are placed, among other things. To define the position of our
tooltips, we'll set the placement option to the direction we want (n, ne, ne-alt, e,
se, se-alt, s, sw, sw-alt, w, nw, or nw-alt). We just have to make the following
simple modification to our code:
$('.gallery img').powerTip({placement: 'sw-alt'});

In this example, we'll place the tooltips underneath the image we're hovering over
and anchor them to the bottom-left (or south-west) corner.

You'll notice that each of the four corner options for PowerTip have an additional alt
placement option. The default corner option will display the tooltip anchored to your
chosen corner and the tooltip itself to the side of the item you're hovering over.

www.allitebooks.com

http://www.allitebooks.org

Enhancing Links

[46]

The alt option for each corner also displays the tooltips anchored to your chosen
corner, but shows the tooltip directly above or below the item you're hovering over
rather than to the side, as shown in the following screenshot:

As our images are side-by-side in this example, the alt placement option makes
more sense, so that's the one we'll use.

2.	 Depending on the width of our browser window and the layout of our content,
our chosen placement for the tooltips might sometimes result in the tooltip being
displayed completely or partly out of view. Luckily, the developers of this plugin have
anticipated this possibility and have provided us with an option to make sure that the
tooltips are always visible. It's called Smart Placement, and we can enable this option
by setting the smartPlacement option to true, as shown in the following code:
$('.gallery img').powerTip({smartPlacement: true});

What if you need to pass more than one option to the powerTip method? To pass
more than one option, you just have to separate the options with a comma. So, we
can define our tooltip position and turn on Smart Placement as follows:

$('.gallery img').powerTip({placement:
 'sw-alt', smartPlacement: true});

Chapter 2

[47]

Now, you can see that if I were setting a dozen or more options, this line of code
would get long and hard to read. For this reason, it's a common practice to break
options out on separate lines as follows:
$('.gallery img').powerTip({
 placement: 'sw-alt',
 smartPlacement: true
});

The content is the same, it's just that it's easier for us humans to read and
understand the code when it's broken into lines this way. A computer doesn't
care one way or the other.

Be careful not to add an extra comma after the last option/value pair.
Most browsers will handle this gracefully, but IE will throw a vague error
and your JavaScript won't work at all. It can be a frustrating problem to
try and track it down.

3.	 In addition to changing the position of the tooltip, we can use CSS to change
the appearance of the tooltip itself. If you wanted to use one of the alternate
color schemes that was included with PowerTip, you'd just have to swap the style
sheet in your HTML document with the one you wanted to use. That's
very simple and straightforward.

However, we can also write our own CSS styles for our tooltips. To get started,
we'll examine the jquery.powertip.css file that was included with the
PowerTip download. The following code is an example from this file that shows
how the colors and styles are specified:
#powerTip {
 cursor: default;
 background-color: #333;
 background-color: rgba(0,0,0,.8);
 border-radius: 6px;
 color: #fff;
 display: none;
 padding: 10px;
 position: absolute;
 white-space: nowrap;
 z-index: 2147483647;
}

#powerTip:before {
 content: "";
 position: absolute;
}

#powerTip.n:before,#powerTip.s:before {

Enhancing Links

[48]

 border-right: 5px solid transparent;
 border-left: 5px solid transparent;
 left: 50%;
 margin-left: -5px;
}

#powerTip.n:before {
 border-top: 10px solid #333;
 border-top: 10px solid rgba(0,0,0,.8);
 bottom: -10px;
}

#powerTip.s:before {
 border-bottom: 10px solid #333;
 border-bottom: 10px solid rgba(0,0,0,.8);
 top: -10px;
}

You'll notice that there's quite a lot of code using the :before and :after CSS
pseudoclasses, and you might wonder what exactly is going on with that. This is a
clever CSS technique to create triangle shapes without relying on images. This code
creates the triangle-shaped connector between the tooltip and the item you're
hovering your mouse over. If you'd like to learn more about this technique, there's
an excellent tutorial with plenty of explanations at http://konigi.com/tools/
css-tooltips-and-speech-bubbles.

4.	 By examining the CSS code, you can see that all we need to do to create our own
color scheme is replace all the color definitions in this file with a color of our own
choosing. I'm going to choose a melon orange shade, which is #fc6e51 as a hex
color and 252, 110, 81 as an RGB color. The RGB color is important because
we can use it to create an RGBA color that is transparent.

To switch to a new color scheme, all we need to do is go through the jquery.
powertip.css file and switch the color values to the newly selected values.
An example from the new CSS is shown in the following code:
#powerTip {
 cursor: default;
 background-color: #fc6e51;
 background-color: rgba(252, 110, 81, 0.8);
 border-radius: 6px;
 color: #fff;
 display: none;
 padding: 10px;
 position: absolute;
 white-space: nowrap;
 z-index: 2147483647;
}

http://konigi.com/tools/css-tooltips-and-speech-bubbles
http://konigi.com/tools/css-tooltips-and-speech-bubbles

Chapter 2

[49]

#powerTip:before {
 content: "";
 position: absolute;
}

#powerTip.n:before, #powerTip.s:before {
 border-right: 5px solid transparent;
 border-left: 5px solid transparent;
 left: 50%;
 margin-left: -5px;
}

#powerTip.n:before {
 border-top: 10px solid #fc6e51;
 border-top: 10px solid rgba(252, 110, 81, 0.8);
 bottom: -10px;
}

#powerTip.s:before {
 border-bottom: 10px solid #fc6e51;
 border-bottom: 10px solid rgba(252, 110, 81, 0.8);
 top: -10px;
}

Similarly, go on replacing the color values throughout the entire file. Now, when
you preview the tooltip in the browser, you'll see an orange tooltip, as shown in
the following screenshot:

You can take the customization as far as you want. You can modify the border radius,
add a gradient, add a text shadow and/or a box shadow, change the text color, add a
border, and so on.

Enhancing Links

[50]

What just happened?
We learned how we can adjust the positioning of our tooltips, how we can use other options
provided by the PowerTip plugin, and we created our own custom style for the tooltips. You
can use any CSS styles you like to customize the appearance of the tooltips; there's virtually
no limit to the possibilities of styles for your tooltips.

Enhancing navigation with tooltips
Once you know how to make custom tooltips, you'll find that there are many possible uses
for them. Let's take a look at enhancing a standard navigation bar with custom tooltips using
the PowerTip plugin.

Time for action – building a fancy navigation bar
Let's take a look at how we can use custom-designed tooltips to add a little progressively
enhanced punch to a basic navigation bar. We'll continue working with the files we've set up
in the last two custom tooltips examples. Perform the following steps:

1.	 Let's get started by adding a navigation bar to the top of our HTML page. While
we're at it, let's go ahead and also add a header to the top of the page:
<header class="content">
 <h1>Pittsburgh, Pennsylvania</h1>
 <p>City of Bridges, Steel City, City of Champions,
 The 'Burgh</p>
</header>

<nav>

 <a href="#pb-gallery" title
 ="View photos of Pittsburgh">Photo Gallery
 <a href="#pb-about" title
 ="Read about Pittsburgh">About
 <a href="#pb-geography" title
 ="Learn about Pittsburg's geography">Geography
 <a href="#pb-moreinfo" title
 ="Get more info about Pittsburgh">More Information

</nav>

We've made sure to include the title attributes on each link. For the purpose of
this example, these are internal links that will jump to different sections within this
HTML document.

Chapter 2

[51]

2.	 Next, we'll add some CSS styles to our navigation bar. If you prefer a different
style, feel free to customize the CSS code to suit your own taste. Have a look at
the following code:
nav {
 margin: 2em 0;
}

nav ul {
 background: #fff;
 border-radius: 7px;
 text-align: center;
}

nav li {
 display: inline-block;
}

nav a {
 display: block;
 color: #444;
 padding: 1.5em;
 text-decoration: none;
 text-transform: uppercase;
}

nav a:hover {
 color: #a0d468;
}

Now, we have a navigation bar horizontally across our page, as shown in the
following screenshot:

When you move your mouse over the links in this navigation bar, the browser's
default tooltips appear. We'll replace those boring browser tooltips with friendly
looking conversation bubbles above the navigation bar.

Enhancing Links

[52]

3.	 Next, open your scripts.js file so that we can call the powerTip method and
pass in our customizations. Hey, wait a minute—we're already calling the powerTip
method in scripts.js. Yes, you're right, we are. However, we're going to learn
how to call it again and have two different tooltip styles in one single document.

Let's get started by adding a comment for ourselves to help us keep track of what
we're doing in our code, as follows:

$(document).ready(function(){
 /* Add text tooltips to photo gallery */
 $('.gallery img').powerTip({
 placement: 'sw-alt'
 });
});

4.	 Now that we can easily keep track of the code for our photo gallery tooltips, let's go
ahead and add a comment and selector and call to powerTip for the navigation:
$(document).ready(function(){

 /* Add tooltips to navigation */
 $('nav a').powerTip();

 /* Add text tooltips to photos */
 $('.gallery img').powerTip({
 placement: 'sw-alt'
 });
});

Open up the HTML file in a browser to take a look and you'll see that we now have
orange tooltips that appear directly above each of our navigation items, as seen in
the following screenshot):

This is okay, but as the navigation items turn green when they are hovered over, it
would be better if these tooltips were green. Let's see how we can change the style.

Chapter 2

[53]

5.	 If you'll recall from jquery.powertip.css, all the styles we wrote for our tooltips
were based on the #powerTip ID, which was assigned to our tooltips by the
PowerTip plugin. We have a configuration option to change the ID, which will allow
us to write some new CSS code to create a new tooltip style. Let's start by modifying
the ID of the tooltips that are displayed on our navigation bar, as follows:
$('nav a').powerTip({
 popupId: 'navTip'
});

6.	 Next, we can open jquery.powertip.css and add some new styles for navTip.
#navTip {
 cursor: default;
 background-color: #a0d468;
 border-radius: 6px;
 color: #fff;
 display: none;
 padding: 10px;
 position: absolute;
 white-space: nowrap;
 z-index: 2147483647;
}

Similarly, go on styling those however you want. Now, when we move our mouse
over the navigation, green tooltips will be displayed.

What just happened?
We reviewed how to create and attach a custom-styled tooltip to our HTML document.
We learned how to include two different tooltip styles in the same document. Now, we
have orange tooltips that are displayed below the photos in our photo gallery and green
tooltips that are displayed above our navigation bar. Let's find out what else we can do
with PowerTip.

Showing other content in tooltips
So far, we've seen how we can customize the appearance and position of the tooltips that
the PowerTip plugin helps us create. However, we've only used these tooltips to display
text, namely, the text we've placed inside an element's title attribute. We have a lot more
powerful options though. We can load just about any content we want in our tooltips. Let's
take a look at how we can load content from somewhere else in the HTML document into
our tooltips.

Enhancing Links

[54]

Time for action – showing custom content in tooltips
Perform the following steps to load custom content into your tooltips:

1.	 We'll keep working with the document that we've been building over the past few
tooltip tutorials. The first thing we want to add is some new content. First, we'll
create some blocks of helpful content at the bottom of our HTML page, as shown
in the following code:
<h2 id="pb-moreinfo">More Information</h2>
<ul class="info-boxes">
 <li id="info-box-bridge">
 <div class="info-box-container">

 <div class="info-box-content">
 <p>One of many bridges in Pittsburgh</p>
 </div>
 </div>

 <li id="info-box-downtown">
 <div class="info-box-container">

 <div class="info-box-content">
 <p>Downtown
Pittsburgh</p>
 </div>
 </div>

 <li id="info-box-icecream">
 <div class="info-box-container">

 <div class="info-box-content">
 <p>Ice cream beats the summer heat</p>
 </div>
 </div>

We're including some images and a bit of text about each one. Next, we'll style this
with CSS as follows:
Ul.info-boxes li {
 display: inline-block;
 margin-right: 1em;
}

Chapter 2

[55]

.info-box-container {
 width: 200px;
}

.info-box-container img {
 border-top-left-radius: 7px;
 border-top-right-radius: 7px;
}

.info-box-content {
 background: white;
 border-bottom-left-radius: 7px;
 border-bottom-right-radius: 7px;
 color: #444;
 line-height: 1.5;
 padding: 1em;
 text-align: center;
}

.info-box-content p {
 margin: 0;
}

Now, if we look at this page in a browser, we'll see the information boxes lined up
and nicely styled at the bottom of the page, as shown in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Enhancing Links

[56]

2.	 Next up, we'll add a couple of paragraphs of text that link to these information
boxes. Add this text above the information boxes so that they are displayed
between the photo gallery and the information boxes, using the following code:
<h2 id="pb-about">About Pittsburgh</h2>
<p>Pittsburgh is the second-largest city in the US Commonwealth
 of Pennsylvania and the county seat of Allegheny County.

 Downtown Pittsburgh
 retains substantial economic influence,
 ranking at 25th in the nation for jobs within
 the urban core and 6th in job density.</p>

<h2 id="pb-geography">Geography</h2>
<p>Pittsburgh is known colloquially as "The City of Bridges"
 and "The Steel City" for its
 many bridges
 and former steel manufacturing base.</p>
<p>Conditions are often humid, and combined with the 90°F
 (occurring on an average of 8.4 days per annum),
 a considerable
 heat index
 arises.</p>

We need an easy way to select and interact with the links to the information boxes,
so we've added a CSS class of info-box to each one.

3.	 Now, what we'll do is load the corresponding information box in the tooltip when
each of these links is hovered over. Pretty cool, right?

First, we'll have to associate each of the links with the corresponding information
box. We can do this by adding an HTML5 data attribute to each link, as shown in
the following code snippet:
<a href="#info-box-downtown" class="info-box"
 data-powertiptarget="info-box-downtown">
 Downtown Pittsburgh

The documentation on the PowerTip plugin explains that the plugin will look for
a data attribute named powertiptarget. If the attribute exists, then PowerTip
will pull in the content from the element with that ID and display it in the tooltip.

Chapter 2

[57]

Let's talk about the data attributes. They can be used to attach all different
sorts of hidden information to the HTML elements, which we can then use in
JavaScript to achieve all sorts of special effects. You start a data attribute with
data-. After this, you name the data attribute. In this case, we knew from the
PowerTip documentation that the attribute should be named powertiptarget.
In other cases, you'll be able to name your data attributes whatever you wish.
Picking names that make logical sense will help you and others make sense of your
code more easily—in much the same way that picking logical names for JavaScript
variables helps your code make sense.

When we hover over this link, we want to display the information box that we've
given the ID of info-box-downtown, so this is the value we'll assign to the
powertiptarget data attribute.

4.	 Next up, we're ready to jump back into scripts.js. Add a new line inside your
document ready statement and comment it so that you remember this is the code
to add the information box tooltips, as shown in the following code:
$(document).ready(function(){
 /* Add tooltips to navigation */
 $('nav a').powerTip({
 popupId: 'navTip'
 });

 /* Add text tooltips to photos */
 $('.gallery img').powerTip({
 placement: 'sw-alt'
 });

 /* Add new content to text links */
 $('.info-box').powerTip();
});

Enhancing Links

[58]

If you view the page in a browser, you'll see that the data attributes we applied
to our links are already working; if you hover over one of the links, you'll see
the corresponding information box displayed in a tooltip, as shown in the
following screenshot:

That's a good start, but we'll want to change some of the PowerTip configuration
options and also the style of the tooltip.

5.	 We'll tackle the configuration options first. We'd like the information box tooltip
to show to the right of the links unless they don't fit on the screen. We'd like to
write some new CSS styles, and we'd like to allow our site visitors to move their
mouse over the information boxes. The following code shows what we'll add as
configuration options:
$('.info-box').powerTip({
 placement: 'e',
 mouseOnToPopup: true,
 smartPlacement: true,
 popupId: 'infoTip'
});

Setting the placement option to e will make the tooltips display on the right-hand
(or east) side of the links. We can make sure the tooltips are visible even for links
near the right-hand side of the screen by setting smartPlacement to true. We
can use an option called mouseOnToPopup and set it to true to allow site visitors
to move their mouse onto the tooltip—this feature is particularly useful for those
cases where we might have links or other interactive content included in our tooltip
content. Finally, as we want to write some new CSS styles for the tooltip, we're going
to set a new ID for the tooltips, for which we've chosen the infoTip ID.

6.	 Now, the only thing left to do is to write some new CSS styles for the tooltips. We're
going to change the background color to white and make sure the text can wrap.
Feel free to style your tooltips the way you want. The following code is a sample
from the example code included with the book:

Chapter 2

[59]

/* Info box tooltips */
#infoTip {
 cursor: default;
 background-color: #fff;
 border-radius: 7px;
 box-shadow: 0 0 15px rgba(0,0,0,0.5);
 color: #444;
 display: none;
 padding: 0;
 position: absolute;
 z-index: 2147483647;
}
#infoTip:before {
 content: "";
 position: absolute;
}
#infoTip.n:before, #infoTip.s:before {
 border-right: 5px solid transparent;
 border-left: 5px solid transparent;
 left: 50%;
 margin-left: -5px;
}
#infoTip.n:before {
 border-top: 10px solid #fff;
 bottom: -10px;
}
#infoTip.s:before {
 border-bottom: 10px solid #fff;
 top: -10px;
}

Now, if you view the page in a browser, you'll see that the tooltips have their own
style and are displayed where we specified, as seen in the following screenshot:

Enhancing Links

[60]

Also, if the link gets too close to the right, PowerTip will figure out how to adjust the
placement of the tooltip to make sure it's visible, as seen in the following screenshot:

Also, if you move your mouse over the tooltip, you'll see it stays open to allow you
to interact with any content that might be inside.

7.	 Now, there's just one issue with our page: for users with JavaScript disabled, we
set up the links to jump down the page so that the relevant associated content was
visible on the screen. Now that our tooltips are working, this behavior feels a little
odd; if the content is already visible, why jump down the page to it?

We can fix that by canceling the browser's default behavior when a link is clicked.
Go back to scripts.js and adjust your JavaScript as follows:
$('.info-box')
 .on('click', function(e) {
 e.preventDefault();
 })
 .powerTip({
 placement: 'e',
 mouseOnToPopup: true,
 smartPlacement: true,
 popupId: 'infoTip'
 });

There are a few things going on here. Let's start by talking about how .on and
.powerTip are divided in separate lines. For the most part, JavaScript doesn't care
about white space, so we're free to format our code the way we want. Computers
don't have any issues parsing or reading our code even if it's sloppy and the
indentations don't line up. When our code is broken up onto separate lines, as
shown in the preceding code snippets, it's easier for us humans, who might want
to read or edit the code, to read and understand. We don't have to go searching
through one long line of code for what we're looking for because, believe it or not,
all this code is technically just one line of JavaScript.

Chapter 2

[61]

It's easy for us to see that we're working with some HTML element that has a CSS
class of info-box. We've got a function to tell the browser what to do when
someone clicks on this HTML element, and we're setting up the powerTip method
to display tooltips.

Next, let's talk about chaining. You can see in the preceding code that we're only
referring to the HTML element with the class of info-box once, but we're writing
two bits of code for it. jQuery allows us to do this with the feature called chaining.
Most jQuery functions (but not all) can be chained. For example, consider the
following line of code:
$('.foo').hide().addClass('bar').show();

This line of code will select an HTML element with a class of foo, hide it, add a new
CSS class to it, and then show it again. You can see how this chaining feature would
allow us to save quite a lot of typing.

What just happened?
We learned how we can pull in content from elsewhere on the page to be displayed inside
our tooltips. Being able to display the title attributes in a more attractive way is definitely
a nice feature, but the PowerTip plugin is even more powerful than that. By adding HTML5
data attributes to our elements, we can specify any content to be displayed inside our
tooltips: links, images, text, icons, and so on. We learned how to allow site visitors to move
their mouse over the tooltips to interact with the content there. Also, we saw how we can
stop the browser from jumping down the page when the links are clicked by preventing the
default events from happening in response to actions.

Have a go hero – create clickable tooltips for an image gallery
Set up an image gallery of a set of images of your choice. When each image is hovered over,
show a tooltip that provides a short description and links to an article on Wikipedia for more
information. Style the image gallery and tooltips the way you like.

Summary
In this chapter, we learned how to take basic links—the backbone of the Internet—and
enhance them to add some new behaviors and capabilities. We learned how to turn a list of
links into a tabbed interface and how to create customized tooltips for links. We also learned
how to load in any kind of content into those tooltips; we are no longer limited to displaying
simple text in them. Next up, let's take a look at how we can combine link customization with
some other behaviors to create an interactive FAQ page.

3
Making a Better FAQ Page

The Frequently Asked Questions (FAQ) page has been a mainstay of all types of
websites since the dawn of the Web. It's used as a marketing page, as an attempt
to reduce the number of calls or e-mails to a customer service department and as
a helpful tool for site visitors to learn more about the company or organization
they're dealing with or the products or services they're interested in purchasing.

Though we'll be building an FAQ page, for this example, the expand and
collapse techniques will be useful in many different situations—a list of events
with event details, a listing of staff or members with bios, a list of products with
details—any situation where a listing of items should be quick and easy for
site visitors to scan, but where more information should be readily and easily
available upon demand when they find the thing they're looking for.

In this chapter, you'll learn:

�� How to traverse an HTML document with jQuery

�� How to show and hide elements

�� How to use simple jQuery animations

�� How to easily toggle a class name for an element

Marking up the FAQ page
We'll get started by taking some extra care and attention with the way we mark up our FAQ list.
As with most things that deal with web development, there's no right way of doing anything, so
don't assume this approach is the only correct one. Any markup that makes sense semantically
and makes it easy to enhance your list with CSS and JavaScript is perfectly acceptable.

Making a Better FAQ Page

[64]

Time for action – setting up the HTML file
Perform the following steps to get the HTML file set up for our FAQ page:

1.	 We'll get started with our sample HTML file and associated files and folders, like we
set up in Chapter 1, Designer, Meet jQuery. In this case, our HTML page will contain
a definition list with the questions inside the <dt> tags and the answers wrapped
in the <dd> tags. By default, most browsers will indent the <dd> tags, which means
the questions hang into the left margin, making them easy to scan. Inside the
<body> tag of your HTML document, add a heading and a definition list as shown in
the following code:
<h1>Frequently Asked Questions</h1>
<dl>
 <dt>What is jQuery?</dt>
 <dd>
 <p>jQuery is an awesome JavaScript library</p>
 </dd>

 <dt>Why should I use jQuery?</dt>
 <dd>
 <p>Because it's awesome and it makes writing
 JavaScript faster and easier</p>
 </dd>

 <dt>Why would I want to hide the answers to my
 questions?</dt>
 <dd>
 <p>To make it easier to peruse the list of available
 questions - then you simply click to see the answer
 you're interested in reading.</p>
 </dd>

 <dt>What if my answers were a lot longer and more
 complicated than these examples?</dt>
 <dd>
 <p>The great thing about the <dd>
 element is that it's a block level element
 that can contain lots of other elements.</p>
 <p>That means your answer could contain:</p>

Chapter 3

[65]

 Unordered
 Lists
 with lots
 of items
 (or ordered lists or even another
 definition list)

 <p>Or it might contain text with lots of
 special
 formatting.</p>
 <h2>Other things</h2>
 <p>It can even contain headings.
 Your answers could take up an entire screen or
 more all on their own - it doesn't matter since
 the answer will be hidden until the user wants
 to see it.</p>
 </dd>

 <dt>What if a user doesn't have JavaScript enabled?</dt>
 <dd>
 <p>You have two options for users with JavaScript
 disabled - which you choose might depend on the
 content of your page.</p>
 <p>You might just leave the page as it is - and
 make sure the <dt> tags are styled in a
 way that makes them stand out and easy to pick
 up when you're scanning down through the page.
 This would be a great solution if your answers
 are relatively short.</p>
 <p>If your FAQ page has long answers,
 it might be helpful to put a table of contents
 list of links to individual questions at the top
 of the page so users can click it to jump directly
 to the question and answer they're interested in.
 This is similar to what we did in the tabbed example,
 but in this case, we'd use jQuery to hide the table
 of contents when the page loaded since users with
 JavaScript wouldn't need to see the table of
 contents.</p>
 </dd>
</dl>

Making a Better FAQ Page

[66]

2.	 You can adjust the style of the page however you'd like by adding in some CSS styles.
The following screenshot shows how the page is styled in the example code included
with the book:

For users with JavaScript disabled, this page works fine as is. The questions hang
into the left margin and are bolder and larger than the rest of the text on the page,
making them easy to scan.

What just happened?
We set up a basic definition list to hold our questions and answers. The default style of the
definition list lends itself nicely to making the list of questions scannable for site visitors
without JavaScript. We can enhance that further with our own custom CSS code to make the
style of our list match our site.

As this simple collapse-and-show (or accordion) action is such a common
one, two new elements have been proposed for HTML5: <summary> and
<details> that will enable us to build accordions in HTML without the
need for JavaScript interactivity. However, at the time of writing this, the new
elements are only supported in Webkit browsers, which require some finagling
to get them styled with CSS, and are also not accessible. Do keep an eye on
these new elements to see if more widespread support for them develops. You
can read about the elements in the HTML5 specs (http://www.whatwg.
org/specs/web-apps/current-work/multipage/interactive-
elements.html). If you'd like to understand the elements better, the HTML5
Doctor has a great tutorial that explains their use and styling at http://
html5doctor.com/the-details-and-summary-elements/.

http://www.whatwg.org/specs/web-apps/current-work/multipage/interactive-elements.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/interactive-elements.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/interactive-elements.html
http://html5doctor.com/the-details-and-summary-elements/
http://html5doctor.com/the-details-and-summary-elements/

Chapter 3

[67]

Time for action – moving around an HTML document
Perform the following steps to move from one element to another in JavaScript:

1.	 We're going to keep working with the files we set up in the previous section. Open
up the scripts.js file that's inside your scripts folder. Add a document ready
statement, then write a new empty function called dynamicFAQ, as follows:
$(document).ready(function(){
});

function dynamicFAQ() {
 // Our function will go here
}

2.	 Let's think through how we'd like this page to behave. We'd like to have all the
answers to our questions hidden when the page is loaded. Then, when a user finds
the question they're looking for, we'd like to show the associated answer when they
click on the question.

This means the first thing we'll need to do is hide all the answers when the page
loads. We can do this just like we did with the tab exercise in the Chapter 2,
Enhancing Links. Get started by adding a class jsOff to the <body> tag, as follows:
<body class="jsOff">

Now, inside the document ready statement in scripts.js, add the line of code
that removes the jsOff class and adds a class selector of jsOn:
$(document).ready(function(){
 $('body').removeClass('jsOff').addClass('jsOn');
});

Finally, in the styles.css file, add this bit of CSS to hide the answers for the site
visitors who have JavaScript enabled:
.jsOn dd {
 display: none;
}

Making a Better FAQ Page

[68]

Now if you refresh the page in the browser, you'll see that the <dd> elements and
the content they contain are no longer visible (see the following screenshot):

3.	 Now, we need to show the answer when the site visitor clicks on a question. To do
that, we need to tell jQuery to do something whenever someone clicks on one of
the questions or the <dt> tags. Inside the dynamicFAQ function, add a line of code
to add a click event handler to the <dt> elements, as shown in the following code:
function dynamicFAQ() {
 $('dt').on('click', function(){
 //Show function will go here
 });
}

When the site visitor clicks on a question, we want to get the answer to that
question and show it because our FAQ list is set up as follows:
<dl>
 <dt>Question 1</dt>
 <dd>Answer to Question 1</dd>
 <dt>Question 2</dt>
 <dd>Answer to Question 2</dd>
 ...
</dl>

We know that the answer is the next node or element in the DOM after our
question. We'll start from the question. When a site visitor clicks on a question, we
can get the current question by using jQuery's $(this) selector. The user has just
clicked on a question, and we say $(this) to mean the question they just clicked
on. Inside the new click function, add $(this) so that we can refer to the clicked
question, as follows:

$('dt').on('click', function(){
 $(this);
});

Chapter 3

[69]

4.	 Now that we have the question that was just clicked, we need to get the next thing,
or the answer to that question so that we can show it. This is called traversing the
DOM in JavaScript. It just means that we're moving to a different element in
the document.

jQuery gives us the next method to move to the next node in the DOM. We'll select
our answer by inserting the following code:

$('dt').on('click', function(){
 $(this).next();
});

5.	 Now, we've moved from the question to the answer. Now all that's left to do is show
the answer. To do so, add a line of code as follows:
$('dt').on('click', function(){
 $(this).next().show();
});

6.	 If you refresh the page in the browser, you might be disappointed to see that
nothing happens when we click the questions. Don't worry—that's easy to fix. We
wrote a dynamicFAQ() function, but we didn't call it. Functions don't work until
they're called. Inside the document ready statement, call the function as follows:
$(document).ready(function(){
$('body').removeClass('jsOff').addClass('jsOn');
dynamicFAQ();
});

7.	 Now, if we load the page in the browser, you can see that all of our answers are
hidden until we click on the question. This is nice and useful, but it would be even
nicer if the site visitor could hide the answer again when they're done reading it to
get it out of their way. Luckily, this is such a common task, jQuery makes this very
easy for us. All we have to do is replace our call to the show method with a call to
the toggle method as follows:

$('dt').on('click', function(){
 $(this).next().toggle();
});

Now when you refresh the page in the browser, you'll see that clicking on the
question once shows the answer and clicking on the question a second time hides
the answer again.

Making a Better FAQ Page

[70]

What just happened?
We learned how to traverse the DOM—how to get from one element to another. Toggling
the display of elements on a page is a common JavaScript task, so jQuery already has built-in
methods to handle it and make it simple and straightforward to get this up and running on
our page. That was pretty easy—just a few lines of code.

Sprucing up our FAQ page
That was so easy, in fact, that we have plenty of time left over to enhance our FAQ page to
make it even better. This is where the power of jQuery becomes apparent—you can not only
create a show/hide FAQ page, but you can make it a fancy one and still meet your deadline.
How's that for impressing a client or your boss?

Time for action – making it fancy
Perform the following steps to add some fancy new features to the FAQ page:

1.	 Let's start with a little CSS code to change the cursor to a pointer and add a little
hover effect to our questions to make it obvious to site visitors that the questions
are clickable. Open up the styles.css file that's inside the styles folder and add
the following bit of CSS code:
.jsOn dt {
 cursor: pointer;
}

.jsOn dt:hover {
 color: #ac92ec;
}

We're only applying these styles for those site visitors that have JavaScript enabled.
These styles definitely help to communicate to the site visitor that the questions are
clickable. You might also choose to change something other than the font color for
the hover effect. Feel free to style your FAQ list however you'd like. Have a look at
the following screenshot:

Chapter 3

[71]

2.	 Now that we've made it clear that our <dt> elements can be interacted with, let's
take a look at how to show the answers in a nicer way. When we click on a question
to see the answer, the change isn't communicated to the site visitor very well; the
jump in the page is a little disconcerting and it takes a moment to realize what just
happened. It would be nicer and easier to understand if the questions were to
slide into view. The site visitor could literally see the question appearing and would
understand immediately what change just happened on the screen.

jQuery makes that easy for us. We just have to replace our call to the toggle
method with a call to the slideToggle method:
$('dt').on('click', function(){
 $(this).next().slideToggle();
});

Now if you view the page in your browser, you can see that the questions slide
smoothly in and out of view when the question is clicked. It's easy to understand
what's happening when the page changes, and the animation is a nice touch.

3.	 Now, there's just one little detail we've still got to take care of. Depending on how
you've styled your FAQ list, you might see a little jump in the answer at the end of
the animation. This is caused by some extra margins around the <p> tags inside
the <dd> element. They don't normally cause any issues in HTML, and browsers
can figure how to display them correctly. However, when we start working with
animation, sometimes this becomes a problem. It's easy to fix. Just remove the
top margin from the <p> tags inside the FAQ list as follows:

.content dd p {
 margin-top: 0;
}

If you refresh the page in the browser, you'll see that the little jump is now gone and
our animation smoothly shows and hides the answers to our questions.

Making a Better FAQ Page

[72]

What just happened?
We replaced our toggle method with the slideToggle method to animate the showing
and hiding of the answers. This makes it easier for the site visitor to understand the change
that's taking place on the page. We also added some CSS to make the questions appear to be
clickable to communicate the abilities of our page to our site visitors.

We're almost there!
jQuery made animating that show and hide so easy that we've still got time left over to
enhance our FAQ page even more. It would be nice to add some sort of indicator to our
questions to show that they're collapsed and can be expanded, and to add some sort of
special style to our questions once they're opened to show that they can be collapsed again.

Time for action – adding some final touches
Perform the following steps to add some finishing touches to our FAQ list:

1.	 Let's start with some simple CSS code to add a small arrow icon to the left side of
our questions. Head back into style.css and modify the styles a bit to add an
arrow as follows:
.jsOn dt:before {
 border: 0.5em solid;
 border-color: transparent transparent transparent #f2eeef;
 content: '';
 display: inline-block;
 height: 0;
 margin-right: 0.5em;
 vertical-align: middle;
 width: 0;
}

.jsOn dt:hover:before {
 border-left-color: #ac92ec;
}

You might be wondering about this sort of odd bit of CSS. This is a technique to
create triangles in pure CSS without having to use any images. If you're not familiar
with this technique, I recommend checking out appendTo's blog post that explains
pure CSS triangles at http://appendto.com/2013/03/pure-css-triangles-
explained/.

http://appendto.com/2013/03/pure-css-triangles-explained/
http://appendto.com/2013/03/pure-css-triangles-explained/

Chapter 3

[73]

We've also included a hover style so that the triangle will match the text color when
the site visitor hovers his/her mouse over the question. Note that we're using the
jsOn class so that arrows don't get added to the page unless the site visitors have
JavaScript enabled. See the triangles created in the following screenshot:

2.	 Next, we'll change the arrow to a different orientation when the question is opened.
We'll create a new CSS class open and use it to define some new styles for our CSS
arrow using the following code:
.jsOn dt.open:before {
 border-color: #f2eeef transparent transparent transparent;
 border-bottom-width: 0;
}
.jsOn dt.open:hover:before {
 border-left-color: transparent;
 border-top-color: #ac92ec;
}

Just make sure you add these new classes after the other CSS
we're using to style our <dt> tags. This will ensure that the
CSS cascades the way we intended.

3.	 So we have our CSS code to change the arrows and show our questions are open,
but how do we actually use that new class? We'll use jQuery to add the class to our
question when it is opened and to remove the class when it's closed.

jQuery provides some nice methods to work with CSS classes.

Making a Better FAQ Page

[74]

The addClass method will add a class to a jQuery object and the removeClass
method will remove a class. However, we want to toggle our class just like we're
toggling the show and hide phenomenon of our questions. jQuery's got us covered
for that too. We want the class to change when we click on the question, so we'll
add a line of code inside our dynamicFAQ function that we're calling each time a
<dt> tag is clicked as follows:
$('dt').on('click', function(){
 $(this).toggleClass('open');
 $(this).next().slideToggle();
});

Now when you view the page, you'll see your open styles being applied to the <dt>
tags when they're open and removed again when they're closed. To see this, have a
look at the following screenshot:

4.	 However, we can actually crunch our code to be a little bit smaller. Remember
how we chain methods in jQuery? We can take advantage of chaining again.
We have a bit of redundancy in our code because we're starting two different lines
with $(this). We can remove this extra $(this) and just add our toggleClass
method to the chain we've already started as follows:

$(this).toggleClass('open').next().slideToggle();

This helps keep our code short and concise, and just look at what we're accomplishing
in one line of code!

Chapter 3

[75]

What just happened?
We created the CSS styles to style the open and closed states of our questions, and then
we added a bit of code to our JavaScript to change the CSS class of the question to use our
new styles. jQuery provides a few different methods to update CSS classes, which is often a
quick and easy way to update the display of our document in response to input from the site
visitor. In this case, since we wanted to add and remove a class, we used the toggleClass
method. It saved us from having to figure out on our own whether we needed to add or
remove the open class.

We also took advantage of chaining to simply add this new functionality to our existing line
of code, making the animated show and hide phenomenon of the answer and the change of
CSS class of our question happen all in just one line of code. How's that for impressive power
in a small amount of code?

Summary
In this chapter, you learned how to set up a basic FAQ page that hides the answers to the
questions until the site visitor needs to see them. Because jQuery made this so simple, we had
plenty of time left over to enhance our FAQ page even more, adding animations to our show
and hide phenomenon for the answers, and taking advantage of CSS to style our questions
with special open and closed classes to communicate to our site visitors how our page works.
And we did all of that with just a few lines of code!

Next, we'll learn how to build an interactive drop-down navigation menu.

4
Building an Interactive

Navigation Menu

In 2003, an article published on A List Apart (http://alistapart.com)
called Suckerfish Dropdowns showed how HTML and CSS alone (with just a little
JavaScript help for IE 6) can be used to build a complex multilevel drop-down
menu. The Suckerfish name derived from the gorgeously designed demo of the
technique, which featured illustrations of remoras and sharksuckers. While useful,
the original requires that the site visitors not move their mouse outside the menu
area while navigating or the menu disappears. Over the years, the Suckerfish
Dropdowns article has inspired a lot of spinoffs—Sons of Suckerfish, Improved
Suckerfish, and so on—that attempt to address the shortcomings of the original.
Because jQuery can make everything better, we'll build on this idea using the
Superfish jQuery plugin to make the menu easier to use.

The developer of the Superfish plugin, Joel Birch, says that most support issues
with the plugin come from people not understanding the CSS for the menu.
To be sure you have a firm grasp on the CSS, I highly recommend reading
the original Suckerfish Dropdowns article on A List Apart at http://www.
alistapart.com/articles/dropdowns.

To get started with this plugin, we'll be building on a basic Suckerfish menu—as
this menu only requires CSS, we still get an interactive menu if we have JavaScript
disabled. The menu is just improved for users with JavaScript enabled.

http://alistapart.com
http://www.alistapart.com/articles/dropdowns
http://www.alistapart.com/articles/dropdowns

Building an Interactive Navigation Menu

[78]

In this chapter, we'll learn:

�� How to use the Superfish jQuery plugin to create a horizontal drop-down menu

�� How to create a vertical fly-out menu with the Superfish plugin

�� How to customize the drop-down and fly-out menus created with the Superfish plugin

The horizontal drop-down menu
The horizontal drop-down menu was for a long time a common item in desktop software but
challenging if not impossible to implement in websites until first CSS and, later, JavaScript
finally arrived on the scene to make them possible.

Time for action – creating a horizontal drop-down menu
Let's take a look at how we can use the Superfish plugin to enhance a CSS horizontal
drop-down menu:

1.	 To get started, we'll create a simple HTML page and the associated folders and files
like we created in Chapter 1, Designer, Meet jQuery. To get started, we won't attach
the styles.css file to our page. We'll add that in later. The body of our HTML file
will contain a heading and a navigation menu that consists of nested unordered lists,
as follows:
<div class="content">
<h1>Butterflies</h1>
</div>

<ul id="sfNav" class="sf-menu">
 Papilionidae

 Common Yellow Swallowtail
 Spicebush Swallowtail
 Lime Butterfly
 Ornithoptera

 Queen Victoria's Birdwing
 Wallace's Golden Birdwing
 Cape York Birdwing

Chapter 4

[79]

 Pieridae

 Small White
 Green-veined White
 Common Jezebel

 Lycaenidae

 Xerces Blue
 Karner Blue
 Red Pierrot

 Riodinidae

 Duke of Burgundy
 Plum Judy

 Nymphalidae

 Painted Lady
 Monarch
 Morpho

 Sunset Morpho
 Godart's Morpho

 Speckled Wood

 Hesperiidae

 Mallow Skipper
 Zabulon Skipper

Building an Interactive Navigation Menu

[80]

Note that we've added an id variable of sfNav and a class of sf-menu to the
 element that contains our menu. This will make it easy for us to select and
style the menu the way we'd like. If you view your page in the browser, it will look
something like the following screenshot:

As you can see, we've organized our links into a hierarchy. This is useful to find the
information that we want, but it takes up quite a lot of space. This is where we can
use a technique of hiding extra information until it's needed.

2.	 Next, we need a copy of the Superfish plugin. Head over to http://plugins.
jquery.com/superfish/, where you'll find Joel Birch's Superfish plugin available
for download along with links to documentation and examples. Superfish is available
in the official jQuery plugin repository, as shown in the following screenshot:

http://plugins.jquery.com/superfish/
http://plugins.jquery.com/superfish/

Chapter 4

[81]

You can download a copy of the plugin by clicking on the orange Download now
button in the black box on the right-hand side corner of the page. By clicking on
this button, you will download a ZIP file to your computer. We'll open that up and
take a look in a minute.

3.	 In the black box on the right-hand side corner, you'll also find links to more
information about the plugin. If you follow the Read the Docs link, you'll find
the documentation that explains how to use the Superfish plugin.

At the bottom of the Getting Started tab, you'll find the plugin's Quick Start
Guide, where you can see that there are three simple steps to implement the
Superfish plugin:

1.	 Write the CSS to create a Suckerfish-style drop-down menu.

2.	 Link to the superfish.js file.

3.	 Call the superfish() method on the element that contains your menu.

Building an Interactive Navigation Menu

[82]

4.	 Now let's unzip that file we downloaded and take a look inside. There are a lot of
files in there, and not all of them make sense.

Don't be intimidated by those extra files that you don't quite understand. Files
such as bower.json, Gruntfile.coffee, package.json, and superfish.
jquery.json are all for more advanced developers—you don't have to give
them a second thought at this point, but if you realize that you actually kind of
like working with JavaScript, you might one day investigate things such as Grunt,
CoffeeScript, and Bower.

In fact, the only folders we need to pay attention to here are dist and examples.
In the examples folder, you'll find a couple of HTML files with working examples
of Superfish. Go ahead and open those in the browser if you'd like to take a look.

Inside the dist folder, you'll find the JavaScript files required to get Superfish
drop-down menus working along with some sample CSS files.

We'll use those sample CSS files to get started quickly. We'll look at customizing
the appearance of our menu later, but for now, we'll go ahead and use the CSS
included with the plugin.

5.	 Inside the dist folder, the first file we'll need is the superfish.css file from
the css folder. Copy this file to your own styles folder.

Chapter 4

[83]

6.	 Next, we'll edit our HTML file to include the superfish.css file in the head of
the document:
<head>
 <title>Chapter 4: jQuery for Designers</title>
 <link rel="stylesheet" href="styles/superfish.css"/>
</head>

7.	 Now, if you refresh the page in a browser, you'll see that the long list of nested
 elements has become a working Suckerfish drop-down menu, as shown
in the following screenshot:

When you move your mouse over the first link, the nested element becomes
visible. If you move your mouse down to the last link in the drop-down menu, the
 element nested at the third level becomes visible.

Building an Interactive Navigation Menu

[84]

Keep in mind that all of this is accomplished without JavaScript—just CSS. If you
spend a few moments using the menu, you'll probably quickly recognize some
shortcomings. First, if you want to move your mouse from the Ornithoptera link
to the Cape York Birdwing link, your natural inclination is to move your mouse
diagonally. However, as soon as your mouse leaves the blue menu area, the
menu closes and disappears. You have to adjust to move your mouse directly
right onto the submenu, then down to the link you're interested in.

This is awkward and makes the menu feel fragile. If your mouse moves even 1 pixel
outside the menu, the menu collapses and disappears. Another problem is that the
menu opens as soon as the mouse hovers over it. If you are moving your mouse
over the menu moving from one part of the page to another, the menu opens and
closes quickly, which can be distracting and unexpected.

This is a great place for jQuery to step in to make things a bit better and more usable.

8.	 Go back to the files we downloaded, and find the superfish.js file inside the js
folder. Copy it to your own scripts folder, and then attach the Superfish plugin to
the HTML page at the bottom of the file, between jQuery and the scripts.js file:
 <script src="scripts/jquery.js"></script>
 <script src="scripts/superfish.js"></script>
 <script src="scripts/scripts.js"></script>
 </body>
</html>

9.	 Next, open your scripts.js file and we'll write the code to call the superfish()
method. As usual, we'll get started with the document ready statement so that our
script runs as soon as the page is loaded into the browser:
$(document).ready(function(){
 // Our code will go here.
});

Chapter 4

[85]

10.	Looking at the documentation for the Superfish plugin, we see that we only have to
select the element that contains our menu and then call the superfish() method.
Inside our ready() method, we'll add the following code:
$(document).ready(function(){
 $('#sfNav').superfish();
});

Now, if you refresh the page in the browser, you'll see the menu still looking very
similar, but with much improved behavior. The Superfish JavaScript and CSS work
together to add arrows to the menu items that have nested children. If you move
your mouse away from the menu, it does not disappear immediately, making it
possible to move the mouse diagonally to nested menu items. There's also a subtle
fade in animation when the menu items appear. And a background color change to
each menu item on hover, making it easy to see which item is currently active.

What just happened?
We set up a navigation menu that consists of a set of nested lists, forming a hierarchy.
Next, we attached a CSS file to add simple drop-down functionality to our menu. However,
this CSS-only menu had a few shortcomings. So we attached the Superfish plugin to take
care of those and make our menu more user friendly.

The vertical fly-out menu
We saw how the addition of the Superfish plugin enhanced the user experience of our
drop-down menu, but what if we wanted to create a vertical fly-out menu instead?

Time for action – creating a vertical fly-out menu
Switching from a horizontal drop-down menu to a vertical fly-out menu couldn't be easier.
We'll use the same HTML markup and our JavaScript code will stay the same. The only
difference we'll need to make is to add some new CSS to make our menu display vertically
instead of horizontally. We can keep working with the same files we used in the last
example. Perform the following steps to create a fly-out menu:

1.	 In the css folder of the Superfish download, you'll find a file named superfish-
vertical.css. Copy that file to your own styles folder. In the head section of
the HTML file, we'll attach the new CSS file, after superfish.css, as shown in the
following code:
<link rel="stylesheet" href="styles/superfish.css"/>
<link rel="stylesheet" href="styles/superfish-vertical.css"/>

Building an Interactive Navigation Menu

[86]

2.	 Now, inside your index.html file, find the element that holds the entire
menu and add a class of sf-vertical:
<nav>
 <ul id="sfNav" class="sf-menu sf-vertical">
 Papilionidae

Now refresh the page in a browser; you'll see that the menu displays vertically
with flyouts:

What just happened?
The only difference between the horizontal drop-down menu and the vertical fly-out menu is
the CSS file and a class name added to the menu container. By simply adding a new CSS file,
it's possible to create a vertical fly-out menu instead of a horizontal drop-down menu.

Customizing the navigation menu
The included CSS with the Superfish plugin makes creating an interactive navigation menu
quick and simple, but a soft blue menu isn't going to fit into every design, so let's customize
the menu.

We're going to take a look at how we can customize the look of the menu by writing our own
CSS, customize the animation to show the nested menus, and enhance the hover behavior of
the menu.

Chapter 4

[87]

We're going to get started by writing some CSS code to create a custom look for our menus.
We're going to use the Suckerfish Dropdown approach to create a menu that will work for our
site visitors who don't have JavaScript enabled. We're going to create a simple white menu
with drop-downs in green with rounded corners, as shown in the following screenshot:

Here are some things to keep in mind as you write custom CSS for a drop-down or fly-out menu.

:hover and .sfHover
In the CSS file provided with the Superfish plugin, you'll see that the :hover pseudoclass
is always used together with the .sfHover class. So you'll see the following lines in the
.css file:

.sf-menu li:hover > ul,

.sf-menu li.sfHover > ul {
 display: block;
}

Prior to IE 7, the IE browsers did not support the :hover pseudoclass for elements other
than links (<a>). The plugin dynamically added and removed this class from list items that
were hovered over to enable the drop-down menus to work in all the versions of IE.

Building an Interactive Navigation Menu

[88]

These days, usage of IE 6 has fallen off to tiny proportions for most websites and it's often
not worth the extra effort required to make sure your pages look and work perfectly in this
outdated browser.

Just in case you do find yourself in the unenviable position of having to write code that
works in IE 6, you'll want to make sure that you include the .sfHover class in your CSS file.
However, if you don't need to support IE 6, then you can safely skip including the extra lines
in your CSS file.

Cascading inherited styles
It's the very nature of CSS for styles to cascade down the DOM and be applied to all
children of the selector as well as the selector itself. So, write code to style the list items
of the first-level menu as follows:

ul.sf-menu li {
 background: #cc0000; /* Dark red background */
}

All of the elements in your menu are going to have a dark-red background, no matter
which level of the menu they appear in. If you want to apply different styles to different menu
levels, you'll have to override the cascade in other lines of code. For example, if I wanted to
make the second-level menu have a dark-blue background, I'd add the following snippet of
CSS after the preceding code:

ul.sf-menu li li {
 background: #0000cc; /* Dark blue background */
}

This means for an inside another , the background will be blue. Keep in mind that
now this style will in turn cascade down to other menu levels, so if you want a dark-green
background for the third-level menu, you'll need to add another bit of CSS as follows:

ul.sf-menu li li li {
 background: #00cc00; /* Dark green background */
}

In some cases, making use of direct descendent selectors in your CSS file can help to prevent
you from having to write too many lines of CSS overriding styles written for elements higher
up in the DOM. For example, consider the following code:

ul.sf-menu > li {
 background: #cc0000; /* Dark red background */
}

Chapter 4

[89]

This bit of CSS takes advantage of a direct descendent selector (>). The dark-red background,
in this case, will only apply to elements nested directly inside the element with a
class of .sf-menu. It will not cascade down to the second- or third-level menus.

Pop quiz – understanding the cascade in CSS
Go through the following CSS code for a nested list navigation menu:

ul { background: #3BAFDA; }

ul li { background: #4FC1E9; }

ul > li { background: #AC92EC }

ul li li { background: #967ADC; }

Q1. What color will the background of the second level of links be?

1.	 #3BAFDA

2.	 #4FC1E9

3.	 #AC92EC

4.	 #967ADC

Styling the :focus pseudoclass
You won't want to leave out anyone who chooses to navigate your page with their keyboard
rather than their mouse, so you'll want to make sure that each time you style the :hover
pseudoclass for links, that you also write styles for the :focus pseudoclass. This will make
it possible for a site visitor to easily see what link is currently selected. Style both the :hover
and :focus pseudoclasses as follows:

.sf-arrows > li > .sf-with-ul:focus:after,

.sf-arrows > li:hover > .sf-with-ul:after {
 border-top-color: white;
}

Note that it's not necessary to write the :focus styles for list items. List items don't receive
focus by using the Tab key on the keyboard, so adding extra styles for them won't have any
effect. You only have to worry about the :focus styles for links.

Building an Interactive Navigation Menu

[90]

Time for action – customizing Superfish menus
Customizing a Superfish menu mostly involves writing your own CSS code to style the menu
the way you'd like. The following steps show how we'll create a custom look for the menu:

1.	 If you remember some web basics, you'll remember that CSS stands for Cascading
Style Sheets. This cascading feature is what we'll focus on here. Any styles we write
for the top level of our menu are going to cascade down to the other levels of the
menu. We have to remember this and handle all the cases where we'd rather stop
a style from cascading downward.

We'll keep working with the same index.html file, but we won't need the
superfish.css or superfish-vertical.css files any longer. We'll now attach
our styles.css file to the index.html file to apply all of our default styles.
Let's get started by writing some general styles for the menu container and other
elements. Place the following code inside your styles.css file:
/* General */

nav {
 margin: 2em 0;
}

.sf-menu {
 background: white;
 border-radius: 7px;
}

.sf-menu:after {
 clear: both;
 content: '';
 display: table;
}

Here we're just giving our navigation menu some breathing room with a generous
margin and giving the menu a white background and round corners. However, what's
that last bit, with the :after pseudoclass in the selector?
We're going to float our list items inside our navigation bar. We have to make sure
we clear the floats so that the background color we've set is visible. This method
of using the :after pseudoclass and setting the clear, content, and display
attributes is clean and simple, which doesn't require any extra markup and works
well across many browsers.

2.	 Next, let's style the top level of our menu. Add the following code to your styles.
css file:
/* Level 1 */

.sf-menu li {

Chapter 4

[91]

 position: relative;
 white-space: nowrap;
}

.sf-menu li:hover {
 background: #a0d468;
}

.sf-menu a {
 color: #444;
 display: block;
 padding: 1.5em 1em;
 position: relative;
 text-decoration: none;
}

.sf-menu a:hover {
 background: #a0d468;
 color: white;
}

.sf-menu > li:first-child,

.sf-menu > li:first-child a {
 border-top-left-radius: 7px;
}

.sf-menu > li {
 float: left;
}

We're adding a green background to the menu items on hover and changing the
font color from a dark grey to white. We're also adding the corner radius to the
first item to make sure the menu bar still has a top-left rounded corner when
the first item is hovered over.

3.	 Next, let's take a look at how we'll style the second level of our menus. Add the
following CSS code to your styles.css file to style the second level:
/* Level 2 */

.sf-menu ul {
 background: #a0d468;
 border-bottom-right-radius: 7px;
 border-bottom-left-radius: 7px;

Building an Interactive Navigation Menu

[92]

 display: none;
 left: 0;
 min-width: 12em;
 position: absolute;
 top: 100%;
 z-index: 99;
}

.sf-menu ul li:hover {
 background: #8cc152;
}

.sf-menu ul a:hover {
 background: #8cc152;
}

.sf-menu li:hover > ul {
 display: block;
}

.sf-menu ul > li:last-child,

.sf-menu ul > li:last-child a {
 border-bottom-left-radius: 7px;
 border-bottom-right-radius: 7px;
}

The items in this menu level have a green background and turns to a darker green
on hover. We have also added rounded corners to the bottom, which requires us
then to add rounded corners to the last item in each nested element.

4.	 Finally, we still have a third level of menu to style. Add these styles to your
styles.css file:
/* Level 3 */

.sf-menu ul ul {
 background: #8cc152;
 border-top-right-radius: 7px;
 top: 0;
 left: 100%;
}

.sf-menu ul ul li:hover {
 background: #7bb140;
}

Chapter 4

[93]

.sf-menu ul ul a:hover {
 background: #7bb140;
}

.sf-menu ul ul > li:first-child,

.sf-menu ul ul > li:first-child a {
 border-top-right-radius: 7px;
}

.sf-menu ul ul > li:last-child,

.sf-menu ul ul > li:last-child a {
 border-bottom-right-radius: 7px;
}

This third level has a background color that's just a shade darker than the level before,
and when hovered, turns another shade darker. The progression to darker shades of
green helps to communicate the relationships between the items in our menu.

5.	 The last thing we need to do is write some styles to add arrows to our menu items
if they have submenu items hiding underneath them. These styles are only used if
JavaScript is enabled, but they're one more little thing Superfish does to make our
menus more user-friendly. We'll use the same CSS triangle technique that we've seen
a couple of times already. Add the following CSS code to your styles.css file:
/* Extras */

.sf-arrows .sf-with-ul {
 padding-right: 2.5em;
}

.sf-arrows .sf-with-ul:after {
 border: 5px solid transparent;
 border-top-color: #444;
 content: '';
 height: 0;
 margin-top: -3px;
 position: absolute;
 right: 1em;
 top: 50%;
 width: 0;
}

.sf-arrows > li > .sf-with-ul:focus:after,

.sf-arrows > li:hover > .sf-with-ul:after {

Building an Interactive Navigation Menu

[94]

 border-top-color: white;
}

.sf-arrows ul .sf-with-ul:after {
 margin-top: -5px;
 margin-right: -3px;
 border-color: transparent;
 border-left-color: #e7f2dc;
}

.sf-arrows ul li > .sf-with-ul:focus:after,

.sf-arrows ul li:hover > .sf-with-ul:after {
 border-left-color: white;
}

And take a deep breath, because we've finally reached the end of the CSS code to
create a custom style for the menu. The bonus of this CSS code is that it will work
even without JavaScript enabled. The Superfish plugin just enhances the menu and
makes it more usable.

What just happened?
We wrote custom CSS to style our menu to match a design that we created. We had to dig
into the cascading feature of CSS and decide which styles should cascade down through all
levels of the menu and which should not. Just be patient and keep the cascade in mind as
you work down through the levels of the menu.

The hoverIntent plugin
Earlier, I pointed out that one problem with our menu was how quickly the menu reacted to
the mouseover event. Any time the mouse is moved over the menu, the nested menus open.
While that might seem like a good thing at first, it might be disconcerting or surprising to site
visitors if they are simply moving their mouse on the screen and aren't intending to use the
drop-down or fly-out menus.

The Superfish plugin has built-in support for the hoverIntent plugin. The hoverIntent plugin
sort of pauses the mouseover event and makes the page wait to see if the mouse slows down
or stops on an item to make sure it's what the site visitor intended to do. That way if the site
visitor just happens to roll their mouse over the drop-down menu on their way to something
else on the page, the submenus won't start appearing, throwing them into confusion.

Chapter 4

[95]

If you'll recall, the hoverIntent plugin was actually included in the ZIP file when we
downloaded the Superfish plugin. To take advantage of the hoverIntent plugin, perform the
following steps:

1.	 In the Superfish download, locate the hoverIntent.js file inside the js
folder and copy the file to your own scripts folder.

2.	 Next, we need to attach the hoverIntent plugin to our HTML page.

Don't forget to keep dependencies in mind when attaching multiple
JavaScript files to a page. All jQuery plugins depend on jQuery to operate,
so jQuery needs to be attached to your page before any plugins. In this
case, the Superfish plugin depends on the hoverIntent plugin, so we need
to make sure hoverIntent is added to our page before the Superfish plugin.

Add the new <script> tag to the bottom of your page with the other scripts
as follows:
<script src="scripts/jquery.js"></script>
<script src="scripts/hoverIntent.js"></script>
<script src="scripts/superfish.js"></script>
<script src="scripts/scripts.js">
</script>
</body>
</html>

Now if you refresh the page in a browser, you'll see that there's a short pause when
your mouse moves over the menu before the nested submenu appears. And if you
run your mouse across the page quickly, crossing the menu, no unwanted submenus
appear on the page.

Time for action – incorporating custom animations
Next, a sliding animation would be better suited to our menu style. The default animation
is to fade the submenus in. We can override this default behavior and replace it with a
sliding animation.

1.	 Fading the menu in means that the menu opacity is animating from 0 percent to
100 percent. We'd rather animate the height of the submenu, so that the submenu
slides into view. To do that, open up your scripts.js file and customize the
animation value inside the superfish() method as follows:
 $(document).ready(function(){
 $('#sfNav').superfish({
 animation: {height:'show'}
 });
 });

Building an Interactive Navigation Menu

[96]

Just adding a value here will override the default behavior of the plugin and replace
it with the animation we choose instead.

Now when you refresh the page in a browser, you'll see the submenus slide into
view instead of fade in, which is a much more fitting animation for the CSS We've
used to style the menus.

What just happened?
We took advantage of one of the customization options for the Superfish plugin to change
the show animation of the nested subnavigation links. There are more customization options
covered in the documentation of the Superfish menu.

Have a go hero – further customizing the Superfish menu
Review the styles that make a CSS-only drop-down menu work and look through the
documentation for the Superfish plugin. Design and build your own custom drop-down
or fly-out menu. Try using the different customization options for the Superfish plugin
that are outlined in the documentation.

Summary
Whew! That was a lot of work we just did, but I have to say we have a pretty impressive
navigation menu to show for our efforts. We learned how to use the Superfish jQuery plugin
to produce horizontal drop-down menus or vertical fly-out menus. Also, we learned how to
fully customize the look and feel of our menu to fit our site design perfectly. Being able to
hide subsections of the site until they're needed makes a complex navigation structure less
overwhelming for your site visitors. It's simple and clear to see what the main sections of
the site are, and they can easily drill down to just the content they want.

Next, we'll take a look at displaying content in lightboxes.

5
Showing Content in Lightboxes

It's become common to see galleries of photos displayed in lightboxes on the
Web. Lightboxes can be useful for other things too—playing videos, showing
additional information, displaying important information to site visitors, or
even showing other websites. In this chapter, we'll see how to use the flexible
and adaptable Colorbox plugin to create lightboxes for a variety of purposes.

An example of an image shown in a lightbox is depicted in the following screenshot:

Showing Content in Lightboxes

[98]

In this chapter, we'll take a look at how to use the Colorbox plugin to do the following:

�� Create a simple photo gallery

�� Customize photo gallery settings

�� Build a fancy login box

�� Play a collection of videos

�� Create a one-page website portfolio

A simple photo gallery
A simple photo gallery is probably the most common use for lightboxes. We'll set up a page
that shows thumbnails of each photo and displays the full-size image in a lightbox when the
thumbnail is clicked. To get started, you'll need a series of photographs with smaller-sized
thumbnails of each.

Time for action – setting up a simple photo gallery
We'll walk through the creation of a simple photo gallery with the Colorbox plugin:

1.	 We'll get started by setting up a basic HTML page and associated files and folders
just like we did in Chapter 1, Designer, Meet jQuery. The body of the HTML
document will contain a heading and a list of thumbnails as shown in the
following code:
<div class="content">
 <h1>Ireland</h1>
</div>
<ul class="thumb-list">
 <a href="images/cemetary.jpg" title="Celtic Cemetary with
Celtic Crosses" rel="ireland"><img src="images/thumbs/cemetary.
jpg" alt="Celtic Cemetary"/>
 <a href="images/cliffs-of-moher.jpg" title="Cliffs of
Moher" rel="ireland"><img src="images/thumbs/cliffs-of-moher.jpg"
alt="Cliffs of Moher"/>
 ...

Note that we've wrapped each thumbnail in a link to the full-size version of the
image. If you load the page in a browser, you'll see that the page works for users
with JavaScript disabled. Clicking on a thumbnail opens the full-sized image in the
browser. The back button takes you back to the gallery.

Chapter 5

[99]

Note that we've also included a title attribute on each link. This is helpful for our
site visitors as it will show a short description of the image in a tooltip when they
hover over the thumbnail with their mouse, but it will also be used later on for the
Colorbox plugin. We've also included a rel attribute on each link and set its value to
ireland. This will make selecting our group of links to Ireland's images easy when
we're ready to add the Colorbox plugin's magic.

2.	 Next, we'll add a bit of CSS to lay our images out in a grid. Open styles.css and
add the following styles:
.thumb-list {
 margin: 2em 0;
 text-align: center;
}

.thumb-list li {
 display: inline-block;
 padding: 0.5em;
}

Refresh the page and you will see something like the following screenshot:

Feel free to play around a bit with the CSS to create a different layout for your image
thumbnails if you'd like.

Showing Content in Lightboxes

[100]

3.	 Now, let's add the jQuery magic. We're going to use Jack Moore's Colorbox plugin.
Head over to http://jacklmoore.com/colorbox to find the downloads,
documentation, and demos. You'll find the download link near the top of the page.
Just click on the big blue Download link to download a ZIP file.

4.	 Unzip the folder and take a look inside it. You'll not only find the plugin script file but
a lot of other goodies as well.

http://jacklmoore.com/colorbox

Chapter 5

[101]

The plugin code itself is contained in the two JavaScript files—you'll find both the
development and minified versions. Each of the five example folders contains an
example file (index.html) that shows the plugin in action. Why five different
folders you might ask? Each folder contains the same basic example but with five
different styles for Colorbox. These same examples can be viewed on the Colorbox
website by clicking the numbers in the View Demos section on the website.

Right out of the box, the plugin's developers provide us with five different
possibilities for our Colorbox's look and feel. And if that's not enough choice,
they've also included a colorbox.ai (Adobe Illustrator) file that contains all the
image assets used to create these five different looks. You can customize them
to your heart's content and then export your new fully customized look from
Illustrator to create your own appearance. Changing colors and special effects is
straightforward enough, but remember that if you change the size and shape of
the image assets, you'll have to touch up the accompanying CSS file to
accommodate the new sizes.

The content folder contains the image assets that make the examples work.
We again see the .json files for Bower—you can safely ignore those for now.
If you find that you really like working with jQuery and want to move on to more
advanced techniques, you can explore Bower. We've also got a README file and an
i18n folder—this is for internationalization or translating the plugin so that it can
be used on sites written in languages other than English.

5.	 Try out each of the different examples, either on the website or using the example
files included in the ZIP download file. Note that the appearance, size, and
placement of the back and forward buttons, the close button, the caption, and the
pagination indicator (Image 1 of 3), among others, are all controlled via CSS—not
the plugin code itself. This makes it very easy to customize the look and feel; it's all
done via CSS rather than in JavaScript.

6.	 Copy jquery.colorbox-min.js from the Colorbox download to your
own scripts folder.

Showing Content in Lightboxes

[102]

7.	 We'll get started by choosing one of the provided CSS styles. Pick your favorite, then
copy and paste its CSS file to your own styles folder. Open up the images folder for
that CSS skin and copy and paste the images from that folder to your own images
folder. Once you've chosen a style, your own setup should look like the one shown in
the following screenshot:

The index.html file contains the HTML with thumbnail images that link to full-
sized versions. The images folder contains the images provided with your chosen
Colorbox skin, along with your own images for the slideshow, both the thumbnail
and full-sized versions. The scripts folder contains jQuery (jquery.js) and the
Colorbox plugin script (jquery.colorbox-min.js). The styles folder contains
the CSS file for the Colorbox skin you chose.

8.	 We do have to open up colorbox.css to make a minor set of edits. In the example
files, the CSS file is not in a styles or css folder, but rather sits at the top level
alongside the index.html file. We've chosen to follow our preferred convention
and store our CSS in our styles folder. This means that we'll have to open the
colorbox.css file and update the references to the images in the CSS. We'll have
to modify file paths that look like this:

Chapter 5

[103]

#cboxTopLeft{
 width: 21px;
 height: 21px;
 background: url(images/controls.png) no-repeat -100px 0;
}

The new file paths should look like this:
#cboxTopLeft{
 width: 21px;
 height: 21px;
 background:url(../images/controls.png) no-repeat -100px 0;
}

We're just telling the CSS to go up one level and then look for the images folder.
You should be able to replace all of these quickly by using the Find and Replace
functionality of your text editor.

9.	 Next, open up your index.html file and attach the colorbox.css file in the head
section, before your own styles.css:
<head>
 <title>Chapter 8: Showing Content in Lightboxes</title>
 <link rel="stylesheet" href="styles/colorbox.css"/>
 <link rel="stylesheet" href="styles/styles.css"/>
</head>

10.	Then, head down to the bottom of the file, just before the closing </body> tag and
attach the Colorbox plugin, after jQuery and before your own scripts.js file:
<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.colorbox-min.js"></script>
<script src="scripts/scripts.js"></script>

11.	Now, remember the rel="ireland" attribute we included on each of our links?
We're going to use that in our JavaScript to select all of our Ireland image links for
the Colorbox plugin. Open your scripts.js file and write the attribute selector
to select all links with a rel attribute equal to ireland inside the document's
ready statement:
$(document).ready(function(){
 $('a[rel="ireland"]')
});

Showing Content in Lightboxes

[104]

12.	The only thing left to do is call the colorbox() method on those links—the
Colorbox plugin will take care of everything else for us.

$('a[rel="ireland"]').colorbox();

Now, if you open the page in the browser and click on one of the thumbnail images,
you'll see the full-size image open up in a Colorbox. You can navigate through all
of the full-size images without having to close the lightbox, thanks to the back
and forward buttons. You can also move between the images by pressing the left
and right arrow keys on your keyboard. The pagination indicator helps you to see
where you are in the collection of photos. You'll also notice that the title attribute
included on each link gets reused as an image caption for each image. The Colorbox
can be closed by clicking on the close button, clicking outside the Colorbox, or by
hitting the Esc key on your keyboard. All in all, it's a pretty nice experience right out
of the box.

What just happened?
We used the Colorbox jQuery plugin to turn a list of links to images into a lightbox that
allows site visitors to navigate through the full-size images without leaving the page.
We used the title attribute of the links to provide captions for the images. We used one
of the five Colorbox styles provided with the plugin to create a nicely designed lightbox.

Customizing Colorbox's behavior
If you take a look through the Settings section of the Colorbox website, you'll see that you
have plenty of options to customize how Colorbox behaves. Let's take a look at how we can
put some of these options to use. For this section, we'll keep working with the files we set up
in the previous section.

Transition
First up, we'll try out the different transition effects that are available. The default transition
is elastic. If your full-size images are all different sizes, you'll see that Colorbox uses a nice
resizing animation to transition between them. The other options for transitions are fade
and none. Let's take a look at how we can modify the transition.

Chapter 5

[105]

Time for action – using a custom transition
Follow these steps to change the default transition between images:

1.	 For this example, we'll take a look at how to use the fade transition. Open your
scripts.js file. All we have to do is pass the fade value for transition to the
colorbox() method as follows:
$(document).ready(function(){
 $('a[rel="ireland"]').colorbox({transition:'fade'});
});

Note that we've added some curly braces inside the parentheses. Inside these
curly braces, we can pass in key/value pairs to customize different aspects of the
Colorbox. In this case, the key is transition and the value is 'fade'.

If you reload the page in the browser, click one of the thumbnails, and then click the
next and previous buttons to flip through the images; you'll see that the Colorbox
fades out and then back in between each image.

2.	 What if we decided that we'd rather get rid of the transitions altogether? We'd
simply have to change the value for the transition key to 'none'.
$(document).ready(function(){
 $('a[rel="ireland"]').colorbox({transition:'none'});
});

Now, if you refresh the page in the browser, you'll see that the images change
without any transition effect between them.

What just happened?
We saw how to take advantage of one of the available settings with the Colorbox plugin and
modified the transition between images as our site visitor moves through them.

Fixed size
In a case where the photos you're loading into the Colorbox are of widely varying sizes,
you might decide that all the resizing is distracting to the site visitors and that you want to
set a fixed size for the Colorbox. That's easy to do as well, by passing in a couple more key/
value pairs. Looking through the documentation, you'll see that there are many settings
to control the width and height of the Colorbox. To keep things simple, we're going to use
width and height.

Showing Content in Lightboxes

[106]

Time for action – setting a fixed size
Follow these steps to set a fixed width and height for the Colorbox:

1.	 Open up your scripts.js file. We're going to make a few changes to our code to
set a fixed width and height for the Colorbox:
$('a[rel="ireland"]').colorbox({
 transition: 'none',
 width: '90%',
 height: '70%'
});

2.	 Now, if you refresh the page in the browser window, you'll see that the Colorbox
remains the same size. No matter what size the images or the browser window is,
Colorbox will always fill 90 percent of the width and 70 percent of the height of the
browser window. The images inside resize proportionally to fit into the available
space if they are too large.

3.	 You can set a fixed width and height in pixels or percentages. Percentage height and
width are useful in responsive designs. You can be sure that your site visitor will see
the entire image, no matter what size their screen happens to be.

What just happened?
We set the width and height settings to percentage values. This is a really helpful option
if you have large photos that could potentially be larger than your site visitor's browser
window. Setting the width and height values to percentage values ensures that in this
case, the Colorbox will be 90 percent of the width and 70 percent of the height of your site
visitor's browser window, no matter what size the browser window happens to be. This way,
if the browser window is small, your site visitor will be able to see the complete photo.

Colorbox also provides some other settings for the width and height:

�� innerWidth/innerHeight: These keys provide the width and height values for the
content inside the Colorbox instead of for the Colorbox itself. This can be helpful
in cases where you know the exact width and height of the actual content, for
example, a video player.

Chapter 5

[107]

�� initialWidth/initialHeight: Colorbox is very flexible and can be used for a
variety of different content (as we'll see shortly). Setting an initialWidth and
initialHeight set of values allows you to control the size of the Colorbox before
any content is loaded in. If you load in content via AJAX, it can take a few moments
to load into the Colorbox. Setting initialWidth and initialHeight allows you
to specify how large the Colorbox should be while you wait for the content to be
loaded in.

�� maxWidth/maxHeight: These keys allow you to set a maximum width and
maximum height for the Colorbox. If the content is smaller, then the box will appear
smaller on the screen. However, when you're loading larger content, it won't exceed
the maxWidth and maxHeight values you specify. For example, if you want to set
up a Colorbox for images in a variety of sizes, you can allow Colorbox to be resized
with fade or elastic transitions between images, but set maxWidth and maxHeight
to be sure that larger images won't exceed the visitor's browser window.

Creating a slideshow
Colorbox also provides us with an option to automatically cycle through all the images so
that the visitor doesn't have to continually click on the next button to see them all.

Time for action – creating a slideshow
We'll keep working with the files we created in the previous section. Here's how we can turn
our lightbox image gallery into a slideshow:

1.	 Open scripts.js. We're going to add another key/value pair to our settings.
To create a slideshow inside our Colorbox, set the slideshow key to true:
$('a[rel="ireland"]').colorbox({
 transition: 'none',
 width: '90%',
 height: '70%',
 slideshow: true
});

Showing Content in Lightboxes

[108]

Now, if you refresh the page in the browser, you'll see that after you open the
Colorbox, it automatically cycles through the images, using whichever transition effect
you've chosen. A link is provided so that site visitors can stop the slideshow at any
time. You will see your Colorbox similar to the one shown in the following screenshot:

2.	 Colorbox provides a few more keys that we can use to control the slideshow. We can
provide a value for slideshowSpeed to set the number of milliseconds for which
each photo will be displayed. If we don't want the slideshow to automatically play,
we can set slideshowAuto to false. We can change the text that appears in the
link to start and stop the slideshow by passing in values for the slideshowStart
and slideshowStop keys respectively. This would all look like the following code:

$('a[rel="ireland"]').colorbox({
 transition: 'none',
 width: '90%',
 height: '60%',
 slideshow: true,
 slideshowSpeed: 2000,
 slideshowAuto: false,
 slideshowStart: 'Let\'s get started!',
 slideshowStop: 'Ok, that\'s enough.'
});

Chapter 5

[109]

With this code, we've set up our slideshow to show each photo for 2 seconds (2000
milliseconds), to not start the slideshow automatically, and to customize the text on the
links that start and stop the slideshow.

Note that each key/value pair is separated by a comma, but that there's no comma after the
last key/value pair. No comma after the last one is only important for Internet Explorer—if
you accidentally put a comma after the last key/value pair in Internet Explorer, it will throw
an error and none of your JavaScript will work. Other browsers will ignore that last comma
and continue to work gracefully.

Always test your work in Internet Explorer before you
make it available to the public.

Let's talk for a minute about the \' set of characters that appear in the text we're using for
the link to start and stop the slideshow. Since these are strings, we have to wrap them in
quote marks; either 'single' quotes or "double" quotes will work, and which one you
choose is a matter of personal preference. We have to tell JavaScript that these are part of
my string and not characters that JavaScript should pay attention to. In JavaScript-speak this
is called escaping those characters.

Consider the following line:

slideshowStart: 'Let's get started!'

When JavaScript got to the ' character in Let's, it would get confused because it would
think that it had reached the end of the string and wouldn't know what to make of the rest
of that line of text. It would throw an error.

In this case, if our personal preference were for using double quotes to write strings, we
wouldn't have to do anything at all. The following line of code would be perfectly acceptable:

slideshowStart: "Let's get started!"

Since we're using double quotes around our string, there's no chance that JavaScript will
accidentally read it as the end of our string. Once JavaScript sees an opening " character, it
will automatically look for the matching ending " character.

Now that we've got our slideshow customized, refresh the page in the browser and click on
one of the image thumbnails to open the Colorbox. The only visible difference is the addition
of the Let's get started link. Clicking on it kicks off the slideshow and switches the link to say
Ok, that's enough so that we can stop the slideshow.

Showing Content in Lightboxes

[110]

What just happened?
We saw how to create and customize a slideshow. We did this by taking the simple lightbox
photo gallery we created and customizing it by passing a series of key/value pairs to the
colorbox() method.

Fancy login
It's nice enough to be able to use a lightbox to display images, galleries, and slideshows, but
Colorbox is more capable and flexible than that. In this section, we'll take a look at how to
show a login form in a Colorbox. Note that our login form isn't hooked up to anything and
won't actually function in the sample case. However, this same technique can be applied to a
dynamic site to allow your site visitors to view the login form in a lightbox.

Time for action – creating a fancy login form
Follow these steps to create a login form in a lightbox:

1.	 We'll get started by setting up an HTML page and the associated files and folders,
like we did in Chapter 1, Designer, Meet jQuery. Our HTML page will contain a
header that displays a login form as shown in the following code. It's common for
sites to allow people to log in from any page on the site.
<header id="page-header">
 <h1>Ireland: The Emerald Isle</h1>
 <form action="#" id="login-form">
 <div><label for="username">Username:</label> <input
type="text" id="username"/></div>
 <div><label for="password">Password:</label> <input
type="password" id="password"/></div>
 <div><input type="submit" value="Log In"/></div>
 </form>
</header>

2.	 Next, we'll open styles.css and add some CSS so that the header is displayed
with the title on the left and the form on the right:
#page-header {
 background: white;
 color: #444;
 border-radius: 7px;
 overflow: hidden;
}

#page-header h1 {
 background: #fc6e51;
 color: white;

Chapter 5

[111]

 float: left;
 font-size: 1.5em;
 padding: 0.5em 0 0.5em 1em;
 width: 35%;
}

#login-form {
 float: right;
 line-height: 2.75em;
 padding: 0 1em 0 0;
}

#page-header #login-form div {
 display: inline;
}

#login-form input[type='text'],
#login-form input[type='password'] {
 width: 8em;
}

#login-form input[type='submit'] {
 background: #333;
 border: 0 none;
 border-radius: 7px;
 color: white;
 cursor: pointer;
 padding: 0.25em 1em;
}

#login-form input[type='submit']:hover {
 background: #fc6e51;
}

#login-link {
 display: block;
 float: right;
 line-height: 2.75em;
 padding-right: 1em;
}

input {
 font-family: inherit;
 font-size: inherit;
}

If you view the page in a browser, you'll see this:

Showing Content in Lightboxes

[112]

This is perfectly acceptable for users without JavaScript enabled—they'll be able to
log in to the site from any page. However, it is a bit cluttered, so if our site visitor has
JavaScript enabled, we'll want to hide the login form and show it in a Colorbox when
the site visitor is ready to log in.

3.	 Next, we'll get ready to use the Colorbox plugin the same way we did in the previous
section. Choose one of the provided styles for Colorbox and attach its style sheet
to the head section of our document, move all the required images to your image
directory and update the path to the images in the CSS, and attach the Colorbox
plugin at the foot of the document, between jQuery and our scripts.js tag.

4.	 Once all that's out of the way, we're ready to write our JavaScript. Open up
scripts.js and write your document ready statement:
$(document).ready(function(){
 //Our code goes here
});

5.	 The first thing we need to do is hide the login form. We're going to do that using
JavaScript rather than CSS because we do want the login form to be visible for
the site visitors who don't have JavaScript enabled. We want to hide the form
immediately as soon as the page is loaded, so we'll write our hidden code inside
the ready() method for the document:
$(document).ready(function(){
 var form = $('#login-form');
 form.hide()
});

You'll notice that we created a variable called form and used it to store the jQuery
selector for the form. We're going to have to refer to the login form several times
in our code. We could write $('#login-form') each time we want to select the
login form, but each time, jQuery would have to look through the DOM of the page
to find it again. If we store it in a variable, our code will run faster and be more
efficient since jQuery will not have to find the login form each time we refer to it.
In JavaScript-speak, we'd call this caching a selector.

If you refresh the page in the browser, you'll see that the login form
has disappeared.

6.	 However, now, we need a way to show it to the site visitors so they can log in to the
site. We'll use jQuery to add a login link to the page, which will appear right where
the form was:
$(document).ready(function(){
 var form = $('#login-form');
 form.hide()
 form.before('Login');
});

Chapter 5

[113]

We're already referring to the form again by inserting the login link before the form.
We already included some styles in the CSS to style the link and display it where
we'd like. If you refresh the page in the browser, you'll see that the login form has
been replaced with a login link.

7.	 However, clicking on the login link doesn't do anything. Let's fix this by adding in
some Colorbox magic. We'll select our login link and call the colorbox() method
as shown in the following code:
$(document).ready(function(){
 var form = $('#login-form');
 form.hide()
 form.before('Login');
 $('#login-link').colorbox();
});

Refresh the page in the browser and try clicking the link. We just get an empty
Colorbox without any content inside. Hmmm. This is not really what we had in mind,
right? We have to tell Colorbox that we want to load up some content that's already
on the page.

8.	 We already put the reference to the login form in the href attribute of the link,
so we'll use that to our advantage. We'll pass a couple of key/value pairs to the
colorbox() method to tell Colorbox that we want to load some content that's
already on the page, and we'll also tell Colorbox exactly which content we want
to show:
$(document).ready(function(){
 var form = $('#login-form');
 form.hide();
 form.before('Login');
 $('#login-link').colorbox({
 inline: true,
 content: $(this).attr('href')
 });
});

Refresh the page in the browser and you'll see that the Colorbox opens, but it
appears to be empty. This is because we hid our form. It's been loaded into the
Colorbox, but it's hidden from view.

Showing Content in Lightboxes

[114]

9.	 We'll use another key/value pair to tell Colorbox to show the form when the
Colorbox opens:
$(document).ready(function(){
 var form = $('#login-form');
 form.hide()
 form.before('Login');
 $('#login-link').colorbox({
 inline: true,
 content: $(this).attr('href'),
 onOpen: function() { form.show(); }
 });
});

The onOpen tag is one of the keys provided by the Colorbox plugin. It allows us
to write a function that will be run when the Colorbox opens. In this case, we're
searching the form and showing it. Now, if you refresh the page in the browser,
you'll be able to see the form in the Colorbox as shown in the following screenshot:

10.	This looks good enough, and we'll touch this up with a bit of CSS in a moment to
make it look even better. But what happens when you close the Colorbox? That
pesky login form is visible again in the header. So we'll pass another key/value pair
to our colorbox() method to hide the form when the Colorbox closes:
$(document).ready(function(){
 var form = $('#login-form');
 form.hide()
 form.before('Login');
 $('#login-link').colorbox({

Chapter 5

[115]

 inline: true,
 content: $(this).attr('href'),
 onOpen: function() { form.show(); },
 onCleanup: function() { form.hide(); }
 });
});

This new function will hide our form when we close the Colorbox. This will ensure
the form doesn't show up in the header again.

11.	Now, let's make our login form look a bit friendlier. Open up styles.css and add
some CSS that will style the login form only when it appears inside the lightbox:
#cboxContent #login-form {
 line-height: 1.25;
 padding: 0.5em 1em;
}

#cboxContent #login-form div {
 padding: 0.25em 0;
}

#cboxContent #login-form div:after {
 clear: both;
 content: '';
 display: table;
}

#cboxContent input[type='text'],
#cboxContent input[type='password'],
#cboxContent input[type='submit'] {
 font-size: 1.25em;
 padding: 0.25em;
 width: 90%;
}

12.	We also want to make the login form box a bit wider, so we're going to pass a width
key to the colorbox() method:
$(document).ready(function(){
 var form = $('#login-form');
 form.hide()
 form.before('Login');
 $('#login-link').colorbox({
 width: '400px',

Showing Content in Lightboxes

[116]

 inline: true,
 content: $(this).attr('href'),
 onOpen: function() { form.show(); },
 onCleanup: function() { form.hide(); }
 });
});

Now, if you refresh the page in the browser, you'll see that the Colorbox is indeed
400 pixels wide, and our login form has taken on the nice chunky appearance we
wanted with our CSS, but there's still a bit of a problem. Our form is too tall for the
Colorbox, as shown in the following screenshot:

The Colorbox script hasn't realized that our form has a different set of CSS once it's
displayed inside the Colorbox—it's still expecting the form to be of the same height
it was when it was displayed in the header. However, that form is much smaller. If
you take your mouse over the login form and scroll down, you'll see the rest of the
login form is there—we just can't see it.

13.	We don't want any scrolling in our Colorbox, so we'll turn that off and we'll tell the
Colorbox to resize itself to its content instead by passing a couple more key/value
pairs to the colorbox() method:

$(document).ready(function(){
 var form = $('#login-form');
 form.hide()
 form.before('Login');
 $('#login-link').colorbox({
 width: '400px',
 inline: true,
 scrolling: false,

Chapter 5

[117]

 content: $(this).attr('href'),
 onOpen: function() { form.show(); },
 onComplete: function() { $.colorbox.resize(); },
 onCleanup: function() { form.hide(); }
 });
});

The scrolling key allows us to turn off any scrolling inside the Colorbox, and
the onComplete key is a callback function that's called as soon as the content loads
into the Colorbox. As soon as the content loads into the Colorbox, we're going to
call a method that the Colorbox plugin has made available to us in order to resize
the Colorbox to accommodate its content.

Now, if you refresh the page in the browser, you'll see the Colorbox slide open to a
larger height to accommodate the new CSS for our form. Perfect!

What just happened?
We learned how to take a simple header login form and change it to a login link that opens
a login form in a Colorbox when clicked. We worked through any potential problems caused
by this approach by passing in callback functions as values for keys specified in the Colorbox
plugin documentation. We learned how to call functions to run when the Colorbox opens,
when the content is loaded into the Colorbox, and when the Colorbox closes. We learned
that we can force the Colorbox to resize to accommodate its current contents by calling the
$.colorbox.resize() method.

Showing Content in Lightboxes

[118]

Video player
Colorbox is flexible enough to be used to display a video player as content. We'll link out to a
YouTube video, then add some Colorbox magic to display the video in a Colorbox.

In this section, we'll dive into using AJAX for the first time. In case you aren't familiar, AJAX is
a method that is used to fetch some new content from the server and displays it to the site
visitor without having to completely refresh the page. As the browser only gets and displays
just the bit of information the site visitor needs, it's often much faster and snappier than
loading a whole new page.

Just a quick note before we dive into AJAX for the first time. Modern browsers have several
security rules for AJAX requests. You won't be able to simply view your ajaxified HTML
files in a browser as we've been doing up until this point. In order to view AJAX in action,
you'll either have to upload your files to a server before viewing them, or you'll have to
set up a server on your own computer. For an easy and hassle-free way to set up a server
on your own computer, I highly recommend DesktopServer from ServerPress. You can
learn more and download DesktopServer from http://serverpress.com/products/
desktopserver/. DesktopServer works for both Windows and Mac users.

Time for action – showing a video in a lightbox
Follow these steps to set up Colorbox to play a set of videos:

1.	 We'll get started as we usually do, by setting up a basic HTML file and the associated
files and folders, just like we did in Chapter 1, Designer, Meet jQuery. In the body of
our HTML document, we're going to include a link to a YouTube video:
<p>
 <a href="http://www.youtube.com/embed/wsRk0TXYXuA?autoplay=1"
id="video-link">Watch the video
</p>

Note a couple of things about my video link. First, I'm using the embed URL for the
video rather than the link to YouTube's video page. For users without JavaScript
enabled, this will take them to a standalone video player page on YouTube's site.
For users with JavaScript enabled, it will ensure that only the video player is loaded
into the Colorbox rather than the full YouTube video page. Second, I'm adding a
parameter to the URL for the video, setting autoplay to 1. This is how you can
make embedded YouTube videos play automatically when the site visitor views your
page. It's generally a bad idea to have a video autoplay, but in this case, the user will
have already clicked a link that says Watch the video, so it seems like a safe bet that
they'll be expecting a video to play once they've clicked that link.

http://serverpress.com/products/desktopserver/
http://serverpress.com/products/desktopserver/

Chapter 5

[119]

2.	 Next, just as with the other Colorbox examples so far, you'll need to attach your
chosen Colorbox skin's CSS file in the head of your document; make sure the images
are available, update the path to the images in the CSS if necessary, and finally
attach the Colorbox plugin in the foot of the document.

3.	 Now, we'll open up our scripts.js file and get set to write our custom JavaScript.
We'll get started with the document ready statement:
$(document).ready(function(){});

4.	 Next, we'll select the video link and call the colorbox() method:
$(document).ready(function(){
 $('#video-link').colorbox();
});

However, if we refresh the page in a browser and attempt to view the video, we get
an error. This is because we're attempting to load in the video via AJAX, and because
of browser-security restrictions, we can't make asynchronous requests to a different
server. In this case, we're trying to make a call to http://youtube.com, but that's
not where our Colorbox page is hosted, so the browser blocks our request.

5.	 Luckily, we can create an iframe and load our external content into the iframe. Also,
luckily, Colorbox provides a way for us to do this very easily. We'll just pass a key/
value pair to the colorbox() method, setting iframe to true as shown in the
following code:
$('#video-link').colorbox({
 iframe: true
});

Now, our video loads into the Colorbox, but the Colorbox has no idea how large our
video might be, so we can't see it.

6.	 We'll have to tell Colorbox how big we expect our video player to be. We'll do this by
passing in key/value pairs for the innerWidth and innerHeight properties. We're
using innerWidth and innerHeight rather than width and height in this case
because we're passing in values that specify how large we want the video player (or
content) to be, rather than how large we want the Colorbox to be.
$('#video-link').colorbox({
 iframe: true,
 innerWidth: 640,
 innerHeight: 390
});

Since we didn't specify a unit of measurement for our width and height,
Colorbox will assume we meant pixels. The video player will be 640 pixels
wide and 390 pixels tall.

http://youtube.com

Showing Content in Lightboxes

[120]

7.	 We can also use Colorbox to create a way for users to easily view several
videos. Let's go back into index.html and add a list of favorite videos to our
page instead of just one link to a video. We'll use a rel attribute that is set to
favorites for each one and provide a title attribute so our videos will display
a caption underneath:
<h3>Favorite Videos</h3>

 <a href="http://www.youtube.com/embed/wsRk0TXYXuA?autoplay=1"
title="Kid Snippets: Salesman" rel="favorites">Salesman

 <a href="http://www.youtube.com/embed/IhK5lY1Phm8?autoplay=1"
title="Kid Snippets: Basketball Class" rel="favorites">Basketball
Class

 <a href="http://www.youtube.com/embed/zG6NbAd8r2Q?autoplay=1"
title="Kid Snippets: Blind Date" rel="favorites">Blind Date

8.	 The only update we have to make to our JavaScript in scripts.js is to update the
selector. Instead of selecting one single link by ID, we're going to select our set of
favorite links by their rel attribute:
$('a[rel="favorites"]').colorbox({
 iframe: true,
 innerWidth: 640,
 innerHeight: 390
});

If you view the page in the browser, you'll see that you have a caption under the
video and next and previous buttons that allow you to navigate between the videos
without closing the Colorbox.

9.	 The only thing that's a bit awkward is that our pagination indicator says Image 1 of
3 when we're showing videos, not images. Luckily, Colorbox provides a way for us to
customize this text with the current key:

$('a[rel="favorites"]').colorbox({
 iframe: true,
 innerWidth: 640,
 innerHeight: 390,
 current: 'Video {current} of {total}'
});

Chapter 5

[121]

Now, our pagination indicator correctly reads Video 1 of 3. Our site visitors can
easily move from video to video without having to close the Colorbox, and each
video displays a caption.

What just happened?
We learned how to create both a standalone video player and a multiple video player inside
a Colorbox. We learned how to pass in key/value pairs to tell Colorbox to load in external
content in an iframe, working around cross-domain AJAX restrictions. We also learned
how to modify the pagination indicator text to fit our current content type. We used the
innerWidth and innerHeight keys to set the video player's size.

Pop quiz – loading content into Colorbox
Which content type loads in an external link into a Colorbox?

1.	 iframe

2.	 Inline

3.	 HTML

4.	 Photo

Showing Content in Lightboxes

[122]

A one-page web gallery
Next up, we'll take a look at how we can create a single-page web gallery to show off your
favorite sites or all the incredible sites you've designed yourself. Note that this example
makes use of AJAX, so you'll either have to load your pages on a web server or create a web
server on your own computer to see it in action.

Time for action – creating a one-page web gallery
Follow these steps to create a one-page web gallery:

1.	 We'll get started by setting up a basic HTML file and the associated files and folders,
just like we did in Chapter 1, Designer, Meet jQuery. Inside the body of our HTML
document, we'll create a list of links to the sites we want to include in our design
gallery, as shown in the following code:
<h3>One-Page Web Design Gallery</h3>

 Packt
Publishing
 NatalieMac</
a>
 Google

Note that we've added a rel attribute equal to gallery to each link.

2.	 Now, just as with the other Colorbox examples, choose a style and attach the style
sheet in the header of the document, make all the necessary images available to
your page, update the path to the images in the CSS if necessary, and attach the
Colorbox plugin at the bottom of the page.

3.	 Next, we'll open our scripts.js file and add our document ready statement:
$(document).ready(function(){});

4.	 Next, we'll select all links with the rel attribute equal to gallery and call the
colorbox() method:
$(document).ready(function(){
 $('a[rel="gallery"]').colorbox();
});

Chapter 5

[123]

5.	 Just as we did with the video example, we'll set the iframe key to true since
we're loading in content from other domains. We'll also set the width and height
attributes of the Colorbox to 90% so that it takes up nearly the entire browser
window. Finally, we'll adjust the pagination indicator text to read Website instead
of Image:

$('a[rel="gallery"]').colorbox({
 iframe: true,
 width: '90%',
 height: '90%',
 current: 'Website {current} of {total}'
});

Now, if you refresh the page in the browser, you can see that clicking one of the links
opens a Colorbox and loads that website into the Colorbox. A site visitor can interact
with the loaded website just as they would if they had loaded it into a separate
browser window, browsing through pages, and so on. When finished with one site,
they can click the next arrow to visit the next website in the list and then hit the
Esc key on the keyboard, or click the close button or click anywhere outside the
Colorbox to close the Colorbox when they're finished. The Colorbox output will be
as shown in the following screenshot:

Showing Content in Lightboxes

[124]

Note that it is possible for website owners to block your ability to load their
sites into an iframe. If you have set up a local server using Desktop Server,
MAMP, or WAMP, then you might notice that the Google example won't load
into your page. It will, however, load if you upload your code to an external
server. Be sure to test all the sites you want to use in your web gallery to
ensure that they work as expected.

What just happened?
We used most of what we learned to create a Colorbox video player to display external
websites inside a Colorbox. This allows our site visitor to browse through a collection of
websites without ever leaving our page. We once again told Colorbox to load our content
into an iframe to work around cross-domain AJAX restrictions. We customized the pagination
indicator text and set the width and height for our Colorbox.

Have a go hero – create a custom Colorbox
Create your own custom style and layout for Colorbox, including your own custom overlay
pattern. Try moving the next and previous buttons, the caption, and the close button to
different areas in the Colorbox.

Summary
We've seen several uses for the adaptable and flexible Colorbox plugin, which can be used
to display any kind of content in a lightbox. It can be used to create browsable image
galleries, give access to forms and video players without cluttering up the page with
clunky UI elements, and even to create a browsable website gallery. The Colorbox plugin is
completely styled with CSS, making it possible for the lightbox to have any appearance you
can dream of. The plugin even includes vector image assets that can be used as a starting
point to create your own lightbox design. The behavior of the lightbox can be modified by
passing a series of key/value pairs to the colorbox() method, making the Colorbox plugin
suitable for any possible lightbox use.

Next up, we'll take a look at another common website task, that is, creating slideshows.

6
Creating Slideshows

and Sliders

Traditionally created in Flash, slideshows and sliders are a great way to show
off photos, products, illustrations, portfolios, and more. Hands-down, creating
slideshows is one of the most common tasks for jQuery developers. In this
chapter, we'll take a look at how to create a simple slideshow from scratch and
then we'll take a look at the Basic Slider plugin to add some more features to a
slideshow. Finally, we'll take a look at the powerful and flexible Cycle2 plugin,
which can be used to create many different types of slideshows and sliders.

In this chapter, we'll cover:

�� How to plan a slideshow

�� How to write a simple crossfading slideshow from scratch

�� How to create a simple slideshow with controls using the Basic Slider plugin

�� How to use the Cycle2 plugin to create animated slideshows

�� How to create carousels with the Cycle2 plugin

�� How to use the Cycle2 plugin to create a combination carousel/slideshow

Creating Slideshows and Sliders

[126]

Planning a slideshow or slider
There are a few things to consider when you're preparing to build a jQuery slideshow
or slider.

1.	 First, you have to decide what the experience will be for users who have JavaScript
disabled. The priority of the various pieces of content in the slideshow should be
your guide. If the slideshow is simply featuring bits of content available elsewhere
on the site, then it should be sufficient to simply show one featured photo or slide.
If the slideshow is the only way to access the content, then you'll have to be sure to
make that content available for users without JavaScript enabled. We'll take a look
at both strategies in the various examples in this chapter.

2.	 Second, you have to determine the ideal size for your slideshow. The size and aspect
ratio of the slideshow could be determined by the content, by the page layout, or
even by the browser window's size. If your slideshow or slider contains only images,
cropping all images to a certain size is simple enough, but what if your slideshow
or slider also contains video, text, buttons, or other elements? Plan how these
elements will appear on the page.

3.	 Next, you need to consider whether your site visitors need to have any kind of
control over the slideshow or slider. Sometimes, it's handy to simply have a set of
images on automatic rotation. At other times, it's helpful to allow site visitors to
pause the slideshow or manually move forward and backward through a slider.

A simple crossfade slideshow
In this section, you'll learn how to build a simple crossfade slideshow. This type of slideshow
is ideal for identically-sized images and can be displayed as a single image when JavaScript
is disabled. Finally, this type of slideshow offers no control over the slideshow to your site
visitors. They cannot pause the slideshow or manually move through the slides.

Time for action – creating a simple crossfade slideshow
Follow these steps to create a simple crossfading slideshow from scratch:

1.	 We'll get started by creating a basic HTML document and the associated files and
folders just like we did in Chapter 1, Designer, Meet jQuery. In the body of the HTML
document, include a list of images. Each list item will contain an image, which can
optionally be wrapped in a link. In the sample code for the book, the images are
cropped to 800 pixels by 450 pixels. Here's what the HTML looks like:
<ul id="crossfade">

Chapter 6

[127]

...

2.	 Next, we'll write a few lines of CSS to style the slideshow. A slideshow shows just
one image at a time, and the easiest way to show only one image is to stack the
images on top of one another. If the site visitor has JavaScript disabled, they'll just
see the last slide in the list. Add the following lines of code in the styles.css file:
#crossfade {
 height: 450px;
 overflow: hidden;
 position: relative;
 width: 800px;
}

#crossfade li {
 height: 450px;
 position: absolute;
 width: 800px;
}

If you view the page in a browser, you'll see that the last item in the slideshow is
visible, but none of the other items are—they are all stacked beneath the last item.
This is what our experience will be for site visitors with JavaScript disabled.

3.	 Next, open up scripts.js and we'll get started with writing our JavaScript code.
This script will be a little bit different from the scripts that we've set up before.
Instead of something happening just once when the document loads or when a site
visitor clicks on a link, we actually want to set up a function that will happen on a
timer. For example, if we want each slide of our slideshow to be visible for three
seconds, we'll have to set up a function to switch slides, which gets called every
three seconds.

We've already got our slides stacked up on top of one another on the page with the
last item on top. Think about how you handle a stack of photographs. You view the
photograph on top, and then move it to the bottom of the stack to view the second
photo. Then, you move the second photo to the bottom to view the third photo and
so on. We're going to apply the same principle to our slideshow.

Inside scripts.js, create a function called slideshow. This is the function that
we'll call every three seconds when we want to switch photos.

function slideshow() {
}

Creating Slideshows and Sliders

[128]

4.	 The first thing we need to do inside our function is select the first photo in the stack:
function slideshow() {
 $('#crossfade li:first')
}

5.	 Now that we've got the first photo in the stack, we just need to move it to the
bottom of the stack to make the next photo visible. We can do that by using jQuery's
appendTo() method. This will remove the first photo from the beginning of the list
and append it to the end of the list.
function slideshow() {
 $('#crossfade li:first').appendTo('#crossfade');
}

6.	 Our photo-flipping function is ready. Now, all we have to do is some initial setup
as soon as our page loads. Then, we'll set up a call to our photo-flipping function
every three seconds. We'll get that started by calling the ready() method on
the document.
$(document).ready(function(){
 // Document setup code will go here
});

function slideshow() {
 $('#crossfade li:first').appendTo('#crossfade');
}

7.	 As soon as our document is ready, we want to prepare our slideshow. We'll start by
selecting all the photos in the slideshow.
$(document).ready(function(){
 $('#crossfade li')
});

8.	 Next, we want to hide all the photos in the slideshow.
$(document).ready(function(){
 $('#crossfade li').hide();
});

9.	 Then, we'll filter that list of photos to get just the first one:
$(document).ready(function(){
 $('#crossfade li').hide().filter(':first');
});

Chapter 6

[129]

10.	Finally, we'll make that first photo visible. All other photos will remain hidden:
$(document).ready(function(){
 $('#crossfade li').hide().filter(':first').show();
});

11.	At this point, if you refresh the page in the browser, you'll see that the last
slide visible without JavaScript enabled is now hidden and the first slide in the
list is now visible instead. Now, all that's left to do is to call our photo-flipping
function every three seconds. To do this, we'll use a JavaScript method called
setInterval(). This allows us to call a function at regular intervals. We pass two
values to setInterval: the name of the function to be called and the number of
milliseconds that should elapse between calls to the function. For example, to call
the slideshow function every 3 seconds (or 3000 milliseconds), we'd write:
$(document).ready(function(){
 $('#crossfade li').hide().filter(':first').show();
 setInterval(slideshow, 3000);
});

12.	Now, we're calling our photo-flipping function every three seconds, so you'd expect
that if you refresh the page in the browser, you'd see the photos change every
three seconds, but that doesn't appear to be the case. Reviewing the code, it's easy
to see what's gone wrong; even though the actual order of the stack of photos
is changing every three seconds, all the photos except the first one are invisible.
Whether the first photo is on top or not, it's the only photo visible, so it appears that
our slideshow isn't changing. We'll have to go back to our slideshow function and
modify it to make the current photo invisible and make the next photo in the stack
visible. Since we want the photos to switch with a nice, slow crossfading effect, we'll
call the fadeOut() method to fade the first photo to be transparent, and we'll pass
'slow' to that method to ensure it takes its time:
function slideshow() {
 $('#crossfade li:first').fadeOut('slow').appendTo('#crossfade');
}

13.	Now, we need to move to the next photo in the list, which is currently invisible, and
make it opaque. We're going to use the next() method to get the next item in the
list and then call the fadeIn() method to make it appear. Once again, since we
want a slow effect, we'll pass 'slow' to the fadeIn() method:
function slideshow() {
 $('#crossfade li:first').fadeOut('slow').next().
 fadeIn('slow').appendTo('#crossfade');
}

Creating Slideshows and Sliders

[130]

14.	We've gotten ourselves into a little bit of trouble with our chaining of jQuery
methods. We started with the first photo in the stack, faded it out, then moved
to the second photo in the stack and faded it in. Now, however, when we call
the appendTo() method, we're appending the second photo in the stack to the
end—we're moving the second photo in the stack to the bottom instead of the
first one. Luckily, jQuery provides a method for us to return to our original
selection—the end() method. We can call the end() method after fading in the
second photo to make sure that it's the first photo that's getting appended to the
bottom of the photo stack:
function slideshow() {
 $('#crossfade li:first').fadeOut('slow').next().
 fadeIn('slow').end().appendTo('#crossfade');
}

15.	Finally, let's do a bit of cleaning up. If you take a look at the code we've written,
you'll see that we've selected #crossfade several different times. Let's cache that
selector in a variable so we don't have to keep re-querying the document to find it.
The final bit of code after cleanup will look like this:

$(document).ready(function(){
 slides = $('#crossfade');

 slides.find('li').hide().filter(':first').show();
 setInterval(slideshow, 3000);
});

var slides;

function slideshow() {
 slides.find('li:first').fadeOut('slow').next().
 fadeIn('slow').end().appendTo(slides);
}

What just happened?
If you refresh the page in the browser, you'll see that you've got a nice crossfading slideshow.
As one photo fades out, the next photo fades in, smoothly transitioning between each
photo. Since we're constantly moving the top photo in the stack to the bottom, we'll never
reach the end of the slideshow, just as you can continuously flip through a stack of photos:

Chapter 6

[131]

We set up a slideshow function that selected the first photo in the stack, faded it out, and
moved it to the bottom of the stack. Simultaneously, we're finding the second photo in the
stack and fading it in. We used the power of jQuery chaining to accomplish all of that in one
line of code.

We set up a timer for 3 seconds and called our photo-flipping function at the end of each
3-second interval.

Finally, we did a bit of setup work as soon as the document is loaded, hiding all the photos
and then making the first one visible. This will ensure that the photos are always displayed
in order in our slideshow.

Next up, let's take a look at using a plugin that will give us some nice options for
our slideshow.

Pop quiz – working with jQuery chaining
Q1. In a long chain of jQuery methods, how do you return to the original selector after it's
been filtered?

1.	 Use the original() method.

2.	 Start a new line of code that starts with the original selector.

3.	 Use the end() method.

4.	 Use the prev() method.

Creating Slideshows and Sliders

[132]

Using the Basic Slider plugin
Our simple slideshow is nice and will be adequate for some situations, but we often want
or need more features and flexibility out of our sliders and slideshows. There's no shortage
of jQuery plugins out there to create sliders and slideshows. To avoid adding lots of unused
code to projects, try to find the simplest slider that will do the job.

The Basic Slider, documented at and available for download at http://www.basic-
slider.com/, is a relative newcomer to the scene. It's flexible, simple to use, and easy
to style. It's a great fit for responsive designs. It can hold any kind of content, so we're not
limited to images. We could use text, videos, images with text, or any other combination we
can think up. The Basic Slider has got about a dozen options you can adjust, and for many
projects, you'll find that's more than enough.

Time for action – building a Basic Slider
Follow these steps to create a slider using the Basic Slider plugin:

1.	 We'll get started by writing our HTML markup. Looking at the documentation for
the Basic Slider plugin, we see that the plugin requires an unordered list wrapped
in a <div> element. Each of our slides is going to contain a photo with a headline
overlay, and each slide is going to link to pages with more information about what's
contained in that slide. Here's what our markup looks like:
<div id="slider">
 <ul class="bjqs">

 <div class="headline">
 <h2>Agua Azul</h2>
 <p>Tumbalá, Chiapas, Mexico</p>
 </div>

 <div class="headline">
 <h2>Burney Falls</h2>
 <p>Shasta County, California, USA</p>
 </div>

 ...

</div>

Chapter 6

[133]

It might surprise you to see that with the new HTML5 specification, we're allowed to
wrap links (<a>) around block-level elements such as <div> and <h2>. This makes it
easy to make the whole slide clickable.

2.	 Next up, we're going to write some CSS to style the slides, and we'll want to give
some thought to site visitors with JavaScript disabled while we do so. In this
particular case, we'll show all of the slides for customers who happen to have
JavaScript disabled. First up, we'll place the headline on top of the photos with a
few lines of CSS in styles.css:
ul.bjqs li {
 margin-bottom: 1em;
 position: relative;
}

ul.bjqs li .headline {
 background: rgba(0,0,0,0.5);
 left: 0;
 padding: 1em 2em 1em 3em;
 position: absolute;
 top: 2em;
 z-index: 9999;
}

.headline h2 {
 color: white;
 font-size: 2em;
 line-height: 1.125;
}

.headline p {
 line-height: 1.5;
}

Creating Slideshows and Sliders

[134]

Now, if you view the page in the browser, you'll see each of our slides in a single
column down the page, each with a styled headline over the photo:

3.	 Now that we have our non-JavaScript case built, let's go ahead and progressively
enhance it to build a more interactive experience for users who do have
JavaScript. We'll get started by heading over to http://basic-slider.com
and downloading the Basic Slider plugin ZIP file. Unzip the file and find the bjqs-
1.3.min.js file inside the js folder. Copy this file to your own scripts folder,
and then attach it to the HTML file in the footer between jQuery and the scripts.
js file:
<script src="scripts/jquery.js"></script>
<script src="scripts/bjqs-1.3.min.js"></script>
<script src="scripts/scripts.js"></script>
</body>
</html>

4.	 The Basic Slider plugin comes with a small, simple CSS file of the styles that are
required for the slider to work. Inside the plugin folder, you'll find a file named
bjqs.css. Copy that file to your own styles folder and then attach it in the
<head> section of your HTML document, before your own styles.css file:
<title>Chapter 6: jQuery for Designers</title>
<link rel="stylesheet" href="styles/bjqs.css">
<link rel="stylesheet" href="styles/styles.css">

5.	 If you head back to the browser now and refresh the page, you might see something
you didn't expect; all the slides that will make up our slideshow have disappeared. A
quick look in the bjqs.css file reveals that the list that holds our slideshow is
being set to display: none;.

http://basic-slider.com

Chapter 6

[135]

This is a necessary part of getting our slider to work, but what about our users
without JavaScript? We can pull out the trick of adding a class to the <body> tag
that we can use in CSS to write different styles for our page, depending on whether
or not JavaScript is available. Add a class of jsOff to the <body> tag:
<body class="jsOff">

Then, open up your scripts.js file and add the necessary code to change this
class if JavaScript is enabled:
$(document).ready(function(){
 $('body').removeClass('jsOff').addClass('.jsOn');
});

With all that out of the way, we can open up styles.css and write some code
just for users without JavaScript to be sure they can see our slides:
.jsOff ul.bjqs {
 display: block;
}

Now, all of our slides are visible for site visitors who have JavaScript disabled,
and we haven't interfered with the CSS that the Basic Slider plugin is relying on
to work correctly.

6.	 Now we can jump into making the slideshow work for our site visitors who have
JavaScript enabled. Open up scripts.js, select the <div> that wraps the
slideshow , and call the bjqs() method
$(document).ready(function(){
 $('body').removeClass('jsOff').addClass('.jsOn');

 $('#slider').bjqs();
});

If you refresh the page in the browser now, you'll see that our slideshow is working,
though it's not the right size, and the style isn't very attractive.

Creating Slideshows and Sliders

[136]

Let's see what we can do to get those details fixed.

7.	 First, let's set some options for the bjqs() method. We can tell the width and
height of our slides to the Basic Slider:
$('#slider').bjqs({
 height: 450,
 width: 800
});

This set of pixel sizes works well as long as we're dealing with a design that's a fixed
size. But many modern websites are responsive, meaning the design responds to the
size of the browser window by adjusting element sizes and layout. If we want to use
our slider inside a responsive design, the Basic Slider makes it really easy. We'll just
add a responsive option and set it to true:
$('#slider').bjqs({
 height: 450,
 width: 800,
 responsive: true
});

Now if you refresh the page in the browser, you'll see the slides are now the correct
size. If you make the window narrower, the slides resize to fit.

Chapter 6

[137]

8.	 Now, let's jump into writing some CSS to make our slideshow even better. First
up, while the slideshow itself shrinks to fit the size of the window as the browser
window gets narrower, the slideshow is cropping the images. Instead, let's resize the
images so that they're still fully visible inside the slideshow. Here's the code we can
use to fit those images to the slideshow:
.bjqs img {
 height: auto;
 max-width: 100%;
}

9.	 Next, those next and previous buttons are just link text laid directly over the photos,
and they look a bit lost. Let's add a bit of CSS to style those nicely:
.bjqs-prev a,
.bjqs-next a {
 background: rgba(0,0,0,0.5);
 color: white;
 padding: 1em;
 text-decoration: none;
}

10.	The page numbers underneath the slider are handy to let site visitors get to any of
the slides in the show, but let's replace them with dot indicators. Here's the CSS we
can use to accomplish this:
ol.bjqs-markers {
 margin: 1em 0;
}

ol.bjqs-markers li {
 border: 1px solid black;
 border-radius: 50%;
 display: inline-block;
 line-height: 1;
 margin: 0 2px;
 padding: 1px;
}

ol.bjqs-markers li a {
 background: rgba(0,0,0,0.5);
 border-radius: 50%;
 display: block;
 height: 0.6em;
 overflow: hidden;
 text-indent: -9999em;
 width: 0.6em;
}

ol.bjqs-markers li.active-marker a {
 background: #a0d468;
}

Creating Slideshows and Sliders

[138]

Now, if you refresh the page in the browser, you'll see a neat row of dots beneath
the slideshow. Clicking on any dot will navigate you to that corresponding slide.

11.	One final thing to touch up is that as the window gets narrower, the headline text
stays huge and dominates the photo. Let's adjust this to reduce the text size on
smaller screens so that more of the photo is visible. Here's what we'll add to the
bottom of the CSS to accomplish this:

@media screen and (max-width: 650px) {
 .bjqs {
 font-size: 0.7em;
 }
}

This bit of code just shrinks the font size for the slider text when the window is
narrower than 650 pixels wide. We'll use 650 pixels because it's around that width
that the text starts to feel much too large for the images. Now, when you make the
browser window narrower, you'll see that the text snaps to a smaller size and fits
nicely on the smaller photos.

Chapter 6

[139]

What just happened?
We used the Basic Slider plugin to create a slideshow. Even though this plugin is lightweight
and basic, we saw how we can use the available options combined with some fancy CSS work
to customize the slider. Even though the Basic Slider is a pretty basic slider plugin, it has just
the right options to make it a great choice for a variety of projects. It's also easy to customize
and style with CSS.

But what about those cases where we need more options? Let's take a look at the flexible
Cycle2 plugin, which gives us dozens of options.

Have a go hero – customize the Basic Slider
Design and build your own custom version of the Basic Slider. Try a different size, different
transition effects, and different layouts for the content inside each slide. Use numbered
pagination and style the next and previous buttons as you like.

Creating a Cycle2 slideshow
Let's take a look at how to put the Cycle2 plugin from M. Alsup to good use. Cycle2 provides
some nice transition effects between slides and offers lots of configuration options. The
Cycle2 plugin is flexible and can hold many types of content. It can even gracefully handle
content of different sizes and/or different aspect ratios, which the two sliders we've built so
far could not.

Creating Slideshows and Sliders

[140]

There are options to include controls for your site visitors to move forward and backward,
to pause the slideshow when the mouse is hovered over it, and to add pagination to allow
site visitors to move easily to a specific slide. Additionally, there are options to allow touch
gestures, to animate different transition effects, to include pagination or thumbnail navigation,
and more. Compared to the Basic Slider, Cycle2 has dozens of more options. Cycle2 even has its
own plugins that we can add to get more functionality, making it super flexible and adaptable
to many different situations. In fact, in the rest of this chapter, we'll look at building three very
different types of sliders and slideshows, all with the Cycle2 plugin.

Unlike most other plugins, the Cycle2 plugin relies almost entirely on HTML markup. Apart
from attaching Cycle2 and any of its plugins to your page, you often don't have to open a
single JavaScript file or write a single line of JavaScript.

Time for action – building a slideshow with Cycle2
Follow these steps to build your first Cycle2 slideshow:

1.	 We'll get started by creating a basic HTML document and associated files and
folders just like we did in Chapter 1, Designer, Meet jQuery. In the body of the HTML
document, we'll create a container <div> and then wrap the markup for each slide
in a <div>:
<div class="cycle-slideshow">
 <div class="slide">

 </div>
 <div class="slide">

 </div>
 ...
</div>

Notice that we've used a class cycle-slideshow on the container <div> and
then a class slide on the <div> elements that contain the markup for each of our
individual slides. These are important for the Cycle2 plugin. Remember that this
plugin requires us to write little or no JavaScript at all—instead, it relies on HTML
markup, classes, and attributes so we have to be precise.

Chapter 6

[141]

2.	 Now, we'll use the technique we've used before to make sure our slideshow content
looks great even for our site visitors who have JavaScript disabled. First, add the
jsOff class to the <body> tag:
<body class="jsOff">

Next, open up your scripts.js file and add the line of jQuery that will remove
that class for our site visitors who actually do have JavaScript enabled:
$(document).ready(function(){
 $('body').removeClass('jsOff').addClass('jsOn');
});

In this case, the slideshow is simply visually highlighting content that's available
elsewhere on the page and that the slideshow images won't actually provide a lot of
value for site visitors with JavaScript disabled. We'll just hide the slideshow for those
visitors. Add these styles in styles.css:
.jsOff .cycle-slideshow {
 display: none;
}

3.	 Now that we've taken care of site visitors without JavaScript, let's get the slideshow
working for those who do have it. We need to download the Cycle2 plugin. We'll find
that in the jQuery plugins repository at http://plugins.jquery.com/cycle2/.
Click on the large orange Download now button. Save the file to your own
scripts folder.

4.	 Now, we need to attach the script to our HTML page. At the bottom of the HTML
file, after jQuery, add a <script> tag to include the Cycle2 plugin:
<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.cycle2.min.js"></script>
<script src="scripts/scripts.js"></script>
</body>
</html>

5.	 Next, we need to let the Cycle2 plugin know which elements are wrapping our
individual slides. By default, Cycle2 assumes that our slideshow is made up of
just images, but we've wrapped each of our images in a link and in a <div>
block with the class slide. To let Cycle2 know what our slide container is, we'll just
add a data attribute named data-cycle-slides to the slideshow container.
The value for that attribute is a jQuery selector. Find the <div> block with the
cycle-slideshow class in your HTML file and add the appropriate data attribute:
<div class="cycle-slideshow" data-cycle-slides="> div.slide">

http://plugins.jquery.com/cycle2/

Creating Slideshows and Sliders

[142]

In this case, I'm using the direct descendent selector (>) to find all the <div>
element with a class of slide.

If you refresh the page in the browser, you'll see that the slideshow now works. It's
just that simple to get the Cycle2 plugin set up and working. We've created a simple
image slideshow with a fading transition. That's perfectly acceptable, but Cycle2
gives us lots of additional options, so let's see how to add additional features and
adjust the settings.

6.	 Since each of the slides links the site visitors to a page with more information, let's
pause the slideshow when site visitors hover over the slideshow with their mouse.
This will ensure that they always get sent to the page they intended. We just have to
add another data attribute to the slideshow container. Since we'll be adding a few of
these, let's start breaking them up for easy readability:
<div class="cycle-slideshow"
 data-cycle-slides="> div.slide"
 data-cycle-pause-on-hover="true"
</div>

In this case, we're adding a data attribute called data-cycle-pause-on-hover,
and we're setting the value equal to true. Refresh the page in the browser and try
to hover your mouse over the slideshow. You'll see that the slideshow pauses until
you move your mouse elsewhere.

7.	 Next, let's add some next and previous controls so that our site visitors can move
through the slideshow at their own pace. Inside the <div> element with the class
cycle-slideshow, but before our first <div> with the class slide, we'll add two
new <div> elements:
<div class="cycle-slideshow"
data-cycle-slides="> div.slide"
data-cycle-pause-on-hover="true">

Chapter 6

[143]

<div class="cycle-prev"></div>
<div class="cycle-next"></div>
 <div class="slide">
 ...

The Cycle2 plugin will automatically look for <div> elements with the classes
cycle-next and cycle-prev and enable those as controls for the slideshow. It's
then up to us to style those with CSS to appear how and where we want them. You
can also place content inside those <div> elements, irrespective of whether you'd
like to type words or include images. We'll use CSS-generated content here.

We'll place the next and previous button on top of the slideshow on the left and
right sides. Here's the CSS we'll use to accomplish that. First, we'll limit the width
of the slideshow to the width of the largest item, which in this case is 800 pixels:
.cycle-slideshow {
 max-width: 800px;
}

Next, we'll style and position the controls:
.cycle-prev,
.cycle-next {
 cursor: pointer;
 font-size: 6em;
 margin-top: -0.6em;
 opacity: 0.4;
 position: absolute;
 text-shadow: 0 0 4px rgba(0,0,0,0.8);
 top: 50%;
 transition: opacity 0.3s;
 z-index: 102;
}

.cycle-prev:hover,

.cycle-next:hover {
 opacity: 0.9;
}

.cycle-prev {
 left: 0.1em;
}

.cycle-prev:before {
 content: '\276E';
}

Creating Slideshows and Sliders

[144]

.cycle-next {
 right: 0.1em;
}

.cycle-next:before {
 content: '\276F';
}

We're using the :before pseudoclass to add an angle bracket to the controls,
so now the site visitors can use these to move forward or backward through
the slideshow.

8.	 We've made it easy to move forward and backward through the slideshow for our
site visitors on desktop devices, but what about those on touch-enabled devices?
They don't get the benefit of pausing the slideshow on hover, so control over the
slideshow is even more important for them. They can surely use those next and
previous buttons just like everybody else, but we can also provide them with the
ability to move through the slideshow by swiping across the screen. To enable the
swiping motion for touch-enabled devices, we just have to add a data-cycle-
swipe attribute and set it to true:
<div class="cycle-slideshow"
 data-cycle-slides="> div.slide"
 data-cycle-pause-on-hover="true"
 data-cycle-swipe="true">

Chapter 6

[145]

9.	 Now, it would be nice to provide a bit more information about each of our slides.
Let's include an overlay that contains a title and a line or two with description about
each one. First, we'll add the data to each slide. We'll do this by adding the data-
cycle-title and data-cycle-desc attributes to each of the slides:
<div class="slide" data-cycle-title="Agua Azul"
 data-cycle-desc="Tumbalá, Chiapas, Mexico">

</div>

It's important to add these two data attributes to the container of each slide rather
than to an element inside the container. Go through each of the slides and add
these two data attributes.

10.	We've got the data, so now we just need a place to display it. Inside the <div>
element with the class as cycle-slideshow, but before the first <div> element
with the class slide, add a <div> element with class cycle-overlay, as shown
in the following code:
<div class="cycle-slideshow"
 data-cycle-slides="> div.slide"
 data-cycle-pause-on-hover="true"
 data-cycle-swipe="true" >
 <div class="cycle-prev"></div>
 <div class="cycle-next"></div>
 <div class="cycle-overlay"></div>
 <div class="slide" data-cycle-title="Agua Azul" data-cycle-
desc="Tumbalá, Chiapas, Mexico">
...

Refresh the page in the browser, and you'll see that the title and description that
we added to each slide element now appears beneath the slideshow.

11.	That's a good start, but let's style the overlay with a bit of CSS to display it on top
of the slideshow:
.cycle-overlay {
 background: rgba(0,0,0,0.6);
 bottom: 0;
 left: 0;
 position: absolute;
 right: 0;
 z-index: 101;
}

Creating Slideshows and Sliders

[146]

12.	Using Chrome's web tools, we can see the markup created by the Cycle2 plugin to
display the title and description. Each line is simply wrapped in a <div> element
without a class or an id value.

While we could technically use CSS pseudoclasses or advanced CSS selectors to
select each of those <div> elements individually, it would make our CSS much
easier to write if we had some control over that markup and could wrap the title in a
heading tag and the description in a paragraph tag.

Good news! Cycle2 does give us a way to specify which HTML tags should be used to
mark up the overlay content by passing an HTML template in a data attribute. We'll
use the data-cycle-overlay-template attribute and we'll pass it the markup
we'd like to use for our overlays:
<div class="cycle-slideshow"
 data-cycle-slides="> div.slide"
 data-cycle-pause-on-hover="true"
 data-cycle-swipe="true"
 data-cycle-overlay-template="<div class='headline'>
 <h2>{{title}}</h2><p>{{desc}}</p></div>">

You can see that we've used the {{title}} token to show Cycle2 where to display
the bit of content we've designated as the title and then the {{desc}} token to tell
Cycle2 where to display the bit of content that makes up the description for each
slide. Now, we can jump back over to our styles.css file and write a bit of CSS to
style this new markup:
.headline {
 color: white;
 padding: 1em;
}

Chapter 6

[147]

.headline h2 {
 color: white;
 font-size: 2em;
 line-height: 1.125;
}

.headline p {
 font-style: italic;
 line-height: 1.5;
}

This gives us a gorgeous-looking result that anyone would be proud of:

Our slideshow is looking pretty good, but we've got a few more tricks up our sleeves
that we can use to make it even better:

13.	While the fading transition animation is nice, let's use something a bit fancier. On
the Demos page at http://jquery.malsup.com/cycle2/demo/, you can view
the different transitions that are available for the Cycle2 plugin. Let's take a look at
how to use and customize the tile transition.

http://jquery.malsup.com/cycle2/demo/

Creating Slideshows and Sliders

[148]

First, we have to download the Tile Transition plugin and attach it to our page.
The optional plugins for Cycle2 are not found in the jQuery plugins' repository like
the core plugin—they need to be downloaded from the Cycle2 download page
at http://jquery.malsup.com/cycle2/download/. Head over there and
find the link for the Production version of the Tile Transition plugin in the table of
transition plugins.

Save the file to your own scripts folder. Then, open up your HTML file and attach
the Tile Transition plugin at the bottom of the file, after the Cycle2 plugin, as shown
in the following code:
<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.cycle2.min.js"></script>
<script src="scripts/jquery.cycle2.tile.min.js"></script>
<script src="scripts/scripts.js"></script>
</body>
</html>

14.	Next, we have to tell our slideshow to use the newly available tile transition. To do
that, we'll add another data attribute to the parent container of our slideshow. In
your HTML file, find the <div> element with cycle-slideshow as the class value,
and add the data-cycle-fx attribute set to tileSlide:
<div class="cycle-slideshow"
 data-cycle-slides="> div.slide"
 data-cycle-pause-on-hover="true"
 data-cycle-swipe="true"
 data-cycle-overlay-template="<div class='headline'>
 <h2>{{title}}</h2><p>{{desc}}</p></div>"
 data-cycle-fx="tileSlide">

http://jquery.malsup.com/cycle2/download/

Chapter 6

[149]

Refresh the page in the browser, and you'll see that the transition between slides
now uses the sliding tile transition.

If you prefer, you could switch that to a blinds-style transition by specifying
tileBlind as the value for the data-cycle-fx attribute:

<div class="cycle-slideshow"
 data-cycle-slides="> div.slide"
 data-cycle-pause-on-hover="true"
 data-cycle-swipe="true"
 data-cycle-overlay-template="<div class='headline'>
 <h2>{{title}}</h2><p>{{desc}}</p></div>"
 data-cycle-fx="tileBlind">

15.	By default, the tile transition breaks each slide into seven vertical tiles. However,
we have the option to change both the number of tiles and the orientation of the
tiles by adding a few more data attributes to our slideshow. Here, we're using 13
horizontal tiles in a blinds animation:
<div class="cycle-slideshow"
 data-cycle-slides="> div.slide"
 data-cycle-pause-on-hover="true"
 data-cycle-swipe="true"
 data-cycle-overlay-template="<div class='headline'>
 <h2>{{title}}</h2><p>{{desc}}</p></div>"
 data-cycle-fx="tileBlind"
 data-cycle-tile-count="13"
 data-cycle-tile-vertical="false">

Experiment with the available options for the slideshow transition and find one you
like best. Feel free to experiment with some of the other transition plugins as well.

Creating Slideshows and Sliders

[150]

16.	Now that we have a fancy transition effect in place for the slides, notice the way
the text in the overlay changes. It waits until the animated transition is complete,
and then just snaps to the new value when the next slide is displayed. Let's
animate that too.

Luckily, Cycle2 makes that easy to do too! There's another optional plugin for Cycle2
called Caption2 that allows us to control the transitions for the overlay. Head to the
downloads page for Cycle2 (http://jquery.malsup.com/cycle2/download/)
and click on the link to download the Production version of the Caption2 plugin.
Save the file to your own scripts folder, then open your HTML file and attach the
new plugin in the footer:

<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.cycle2.min.js"></script>
<script src="scripts/jquery.cycle2.tile.min.js"></script>
<script src="scripts/jquery.cycle2.caption2.min.js"></script>
<script src="scripts/scripts.js"></script>
</body>
</html>

17.	Next, we'll add some data attributes to our slideshow to control the transitions for
the overlay. We have to tell our slideshow to use the Caption2 plugin, so we'll start
by adding the data-cycle-overlay-plugin attribute equal to caption2:

<div class="cycle-slideshow"
 data-cycle-slides="> div.slide"
 data-cycle-pause-on-hover="true"
 data-cycle-swipe="true"
 data-cycle-overlay-template="<div class='headline'>
 <h2>{{title}}</h2><p>{{desc}}</p></div>"
 data-cycle-fx="tileSlide"
 data-cycle-tile-count="9"
 data-cycle-caption-plugin="caption2">

If you refresh the page in the browser, you'll see that the entire overlay now fades
out as soon as the slide transition begins and then fades back in with the new value.
Let's allow the translucent black background for the overlay to stay in place and
for just the text itself to fade out and back in. To achieve this, we'll add another
data attribute to the slideshow to specify which element in the overlay should be
animated:
<div class="cycle-slideshow"
 data-cycle-slides="> div.slide"
 data-cycle-pause-on-hover="true"
 data-cycle-swipe="true"

http://jquery.malsup.com/cycle2/download/

Chapter 6

[151]

 data-cycle-overlay-template="<div
class='headline'><h2>{{title}}</h2><p>{{desc}}</p></div>"
 data-cycle-fx="tileSlide"
 data-cycle-tile-count="9"
 data-cycle-caption-plugin="caption2"
 data-cycle-overlay-fx-sel=">div">

Now, if you refresh the page in the browser, you'll see that the overlay container
stays visible, but just the text inside fades out and back in with each slide transition.
This helps the slideshow feel more cohesive and makes it feel as if the overlay is a
part of the slideshow.

We've already seen quite a lot of what the Cycle2 plugin can do, but we've barely scratched the
surface! Let's next take a look at how we can create an image carousel with the Cycle2 plugin.

The Cycle2 carousel
Cycle2 is flexible; you're not limited to simple slideshows. You can put Cycle2 to use to create
a carousel that shows multiple images at one time. Let's take a look at how we might create
a carousel of thumbnail images.

Time for action – building a Cycle2 carousel
Follow these steps to create a carousel with the Cycle2 plugin.

1.	 We'll get started, as we usually do, with using the HTML document and associated
files and folders just like we did in Chapter 1, Designer, Meet jQuery. First up, we'll
get the HTML markup for our carousel set up. Our HTML markup will be similar
to the markup for the slideshow we set up in the previous example. We need
a container <div> to hold the slideshow. Then, we also need individual <div>
elements inside the external container for each individual slide or image that will
appear in our slideshow:
<div class="cycle-slideshow">
 <div class="slide">

 </div>
 <div class="slide">

 </div>

Creating Slideshows and Sliders

[152]

 <div class="slide">

 </div>
 ...
</div>

Our markup here is similar to the previous example but a bit simpler. Since we're
using thumbnail images, we aren't going to be using text overlays. So we can skip
the extra data attributes for those.

2.	 Now, we'll take just a moment to consider those users who have JavaScript
disabled. Our thumbnails are linking them off to more information about each
of those slides, so let's show them these images as a grid. First, add the jsOff
class to the <body> tag:
<body class="jsOff">

Next, let's pop into our styles.css file and write a bit of code that's going to
display those thumbnails nicely for site visitors without JavaScript:
.jsOff .cycle-slideshow .slide {
 display: inline-block;
 padding: 0.5em;
}

The users with JavaScript disabled will see the page as shown in the
following screenshot:

Chapter 6

[153]

It's nothing extra fancy, but these visitors can still see the thumbnail images and can
click on each one to see more information, so it fulfills our purpose. They'll never
know what they're missing. Finally, we have to open our scripts.js file and add a
bit of code to remove the jsOff class for site visitors who do have JavaScript enabled:
$(document).ready(function(){
 $('body').removeClass('jsOff').addClass('jsOn');
});

This isn't anything we haven't seen before. With the non-JavaScript case out of the
way, let's take a look at creating and animating our carousel for everyone else.

3.	 First up, let's download and attach the Cycle2 plugin to our HTML page. This is
available for download in the jQuery plugin repository or also from the download
page of the Cycle2 documentation (http://jquery.malsup.com/cycle2/
download/). Save the file to your scripts.js folder and then attach it in the
footer of your HTML document after jQuery but before your scripts.js file:
<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.cycle2.min.js"></script>
<script src="scripts/scripts.js"></script>

Now, you might expect to see a thumbnail-sized slideshow if you refresh the page in
the browser at this point, but that's not the case. This is because Cycle2, by default,
expects a collection of images inside the parent container, but we've wrapped each
of our images in a link and a <div> element with the slide class. We just have to
tell Cycle2 that we're using this alternate markup. In the HTML file, find the <div>
element with the cycle-slideshow class and add the correct data attribute as
shown in the following code:
<div class="cycle-slideshow"
 data-cycle-slides="> div.slide">
 <div class="slide">
 ...

Creating Slideshows and Sliders

[154]

Just like we did last time, we'll break the data attributes out onto individual lines to
make them easier to read. Here, we've added the data-cycle-slides attribute
and set the value equal to the selector for each of our individual slides. The
thumbnail-sized slideshow will look like the one shown in the following screenshot:

Now, if you refresh the page in the browser, you'll see that you have a thumbnail-
sized slideshow. Let's turn that into a carousel.

4.	 We need to add a Cycle2 plugin—the Carousel Transition plugin. Don't forget that
while the Cycle2 plugin itself is available in the jQuery plugins' repository, the
additional plugins that add the functionality are not. Additional Cycle2 plugins are
only available from the Cycle2 downloads page at http://jquery.malsup.com/
cycle2/download/. Head over there and find and download the Production
version of the Carousel Transition plugin. Save it to your own scripts folder.

5.	 Next, open up index.html and attach the carousel plugin at the bottom of the file,
after the Cycle2 plugin, but before your scripts.js file:
<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.cycle2.min.js"></script>
<script src="scripts/jquery.cycle2.carousel.min.js"></script>
<script src="scripts/scripts.js"></script>
</body>
</html>

6.	 Now, we need to add a data attribute to our slideshow container, so Cycle2 knows
we want to use a different transition effect. Find the <div> element with the
cycle-slideshow class and add the data-cycle-fx attribute set to carousel:
<div class="cycle-slideshow"
 data-cycle-slides="> div.slide"
 data-cycle-fx="carousel">

http://jquery.malsup.com/cycle2/download/
http://jquery.malsup.com/cycle2/download/

Chapter 6

[155]

Now, if you refresh the page in the browser, you'll see that you have a carousel, as
shown in the following screenshot:

You'll see that the carousel automatically advances one image every second or
so. That's nice, but it would be even nicer to put 100 percent of the control of the
carousel in the hands of our site visitors.

7.	 Let's disable the automatic animations. This way, site visitors won't be distracted
by the images marching across their screen unexpectedly. To do this, we just have
to add a data attribute. Find the <div> element with the class cycle-slideshow
and add the data-cycle-timeout attribute in it. We can use this attribute on any
Cycle2 slideshow to specify how long to wait between animations. In this case, we
don't want any animations at all, so we'll set it equal to 0:
<div class="cycle-slideshow"
 data-cycle-slides="> div.slide"
 data-cycle-fx="carousel"
 data-cycle-timeout="0">

8.	 Now that we've removed the automatic animations, our site visitors have no way to
access any of the slides that aren't visible on page load. Let's fix this by adding some
previous and next buttons.

By default, if we add the same code we added last time for the next and previous
buttons, they'll both be shown under the carousel as they are in the demos on the
Cycle2 documentation site:

Creating Slideshows and Sliders

[156]

That's okay, but we're designers! Let's place our buttons to the left and right of
the slideshow. Also, let's use graphic images instead of text. Here's the look we're
going for:

Can you push Cycle2 that far and customize it to such an extent? You bet you can!
Let's see how to accomplish this.

9.	 First up, we have to add some space around the slideshow to make room for
the buttons. We also need a way to position those buttons on either side of the
slideshow. To accomplish this, we'll wrap a new <div> element around the entire
slideshow:
<div class="slideshow-wrap">
 <div class="cycle-slideshow"
 data-cycle-slides="> div.slide"
 data-cycle-fx="carousel"
 data-cycle-timeout="0"
 >
 <div class="slide">

 </div>
 ...
 </div>
</div>

Then, jump over to styles.css and style that new container:
.slideshow-wrap {
 position: relative;
}

That's all we need to set the position attribute to relative so that we can easily
position items inside the container.

Chapter 6

[157]

10.	Next, we need to add some space on the left and right sides of the slideshow so
we've got space to include the buttons. In the styles.css file, add a margin to
the div element that contains the slideshow:
.cycle-slideshow {
 margin: 0 3.5em 0 3em;
}

Don't forget the users with JavaScript disabled. The margin won't be necessary for
them, so let's remove that for the no-JavaScript case:

.jsOff .cycle-slideshow {
 margin: 0;
}

11.	Now that we've made space for them, let's add our next and previous buttons.
We don't want them to be inside the slideshow because we need more control.
Instead, we'll place them after the slideshow, but inside that wrapper <div>
element we added:
<div class="slideshow-wrap">
 <div class="cycle-slideshow"
 data-cycle-slides="> div.slide"
 data-cycle-fx="carousel"
 data-cycle-timeout="0"
 >
 <div class="slide">

 </div>
 ...
 </div>
 <div id="prev"><div class="button-wrap"></div></div>
 <div id="next"><div class="button-wrap"></div></div>
</div>

Notice that we're adding another <div> element inside those next and previous
buttons. We'll use that to style the buttons just the way we'd like. Now, we've
got our next and previous buttons, but because they're not inside the slideshow,
Cycle2 doesn't even know about them yet. We just have to tell Cycle2 that we'd
like to use those new <div> elements as the next and previous buttons. We'll do
that by adding a couple of more data attributes to the <div> element with the class
cycle-slideshow:
<div class="cycle-slideshow"
 data-cycle-slides="> div.slide"
 data-cycle-fx="carousel"

Creating Slideshows and Sliders

[158]

 data-cycle-timeout="0"
 data-cycle-next="#next"
 data-cycle-prev="#prev">

We'll use the data-cycle-next and data-cycle-prev data attributes and set
them to be equal to selectors for whatever elements we'd like to use as the next and
previous buttons.

12.	Now, our next and previous buttons work to control the slideshow in theory, but
as we haven't styled them with CSS yet, we can't actually see them to click and try
them out.

Before we get started with styling those buttons, let's remember our visitors without
JavaScript again. Those buttons won't be of any help to them, so let's tuck them out
of view:
.jsOff #next,
.jsOff #prev {
 display: none;
}

Now, we can get to work on styling our previous and next buttons for everyone else.
First, set the size and position of each of the buttons:
#next,
#prev {
 bottom: 0;
 cursor: pointer;
 overflow: hidden;
 position: absolute;
 top: 0;
 width: 3em;
}

#next {
 right: 0;
}

#prev {
 left: 0;
}

This bit of code absolutely positions the buttons to either the left or the right of
the slideshow, in the space we created for them when we added a margin to the
slideshow container. It also sets the width of the buttons to 3em and makes them
equal in height to the height of the slideshow.

Chapter 6

[159]

13.	Now, remember that extra button-wrap container we placed inside each of our
buttons? We're going to use that to create the half-circle buttons. Here are the
styles to apply:
.button-wrap {
 background: #4fc1e9;
 border-radius: 50%;
 bottom: 0;
 position: absolute;
 top: 0;
 width: 6em;
}

#next .button-wrap {
 right: 0;
}

#prev .button-wrap {
 left: 0;
}

Let's take a look at this to be sure you understand what's going on. First up, we're
setting the background color as bright blue. By setting the border-radius value
to 50%, we're creating a circle shape. Next, we absolutely position the blue circle
and set its width to twice the width of the parent container. Essentially, we're
creating a complete circle but only showing half of the circle. The circle, along with
its attributes, is diagrammatically shown as follows:

<div class="button-wrap">

<div id="next"><div id="prev">

14.	Now, let's add a hover style and make the blue part a slightly darker shade when the
buttons are hovered over:
#next .button-wrap:hover,
#prev .button-wrap:hover {
 background: #38afda;
}

Creating Slideshows and Sliders

[160]

That's simple enough—it's just a simple background color change. But what if
we wanted a quick animation from color to color? All we have to do is go back to
the CSS element where we originally defined the background color and add a CSS
transition property:
.button-wrap {
 background: #4fc1e9;
 border-radius: 50%;
 bottom: 0;
 position: absolute;
 top: 0;
 transition: background-color 0.3s;
 width: 6em;
}

Now, if you hover over the buttons, you'll see an animation that takes 0.3 seconds
to change from the default background color to the hover background color.

15.	Our carousel is looking pretty good so far, but we do need to add some arrows to
those buttons to make their functionality clearer. Remember that clever technique
for creating triangles with CSS? We'll put that to use here again. Let's define a
slightly transparent white triangle for each button:
#next .button-wrap:before,
#prev .button-wrap:before {
 border-style: solid;
 content: '';
 margin-top: -0.866em;
 position: absolute;
 top: 50%;
}

#next .button-wrap:before {
 border-width: 0.866em 0 0.866em 1em;
 border-color: transparent transparent transparent
rgba(255,255,255,0.5);
 right: 1em;
}

#prev .button-wrap:before {
 border-width: 0.866em 1em 0.866em 0;
 border-color: transparent rgba(255,255,255,0.5) transparent
transparent;
 left: 1em;
}

Chapter 6

[161]

We're absolutely positioning the arrow to appear in the middle of our half-circle
button, and then adjusting the border widths and colors to produce the triangle.

16.	The only thing left to do is to add a hover effect to the triangles. Since the button
color is changing, we can emphasize that difference by also changing the triangles
to be less transparent when hovered over:

#next .button-wrap:hover:before {
 border-left-color: rgba(255,255,255,0.8);
}

#prev .button-wrap:hover:before {
 border-right-color: rgba(255,255,255,0.8);
}

Again, if we wanted to animate that color change, we can use the CSS transition
property. But since we now have two things changing, we could actually just make
a simple change to the transition line we wrote earlier to animate both the button
background color and the triangle color:
.button-wrap {
 background: #4fc1e9;
 border-radius: 50%;
 bottom: 0;
 position: absolute;
 top: 0;
 transition: all 0.3s;
 width: 6em;
}

Rather than animating only the background color, we've animated anything that
might change—this will cover the background animation for the button itself as well
as the arrow color. If we changed other properties when hovered over, those would
be animated as well.

We've created a very nice carousel, but we could definitely improve upon it. What if our
carousel were just a tool to navigate a set of full-size images? Let's take a look at how we
can combine a carousel and a slideshow.

Creating Slideshows and Sliders

[162]

Combining a carousel with a slideshow
Not only can you include more than one Cycle2 slideshow on a single page, you can also
set up those slideshows to "talk" to one another. Let's take a look at how we can set up a
carousel to act as a controller for a slideshow. Here's an example of what we'll be building:

Clicking on one of the thumbnails in the carousel will load the full-size version of that image
in the slideshow section.

Setting up the carousel
To make this a little bit easier to digest, we're going to break the process of creating the
carousel/slideshow combo into three pieces. In this first piece, we'll get the carousel set up
and working and look at the special considerations we have to make to ensure that it will
work flawlessly with our slideshow component.

Time for action – creating the carousel controller
Follow these steps to create a Cycle2 carousel that can act as a controller for a slideshow:

1.	 First, we'll create the carousel. Once we have that on the page and it's functioning,
we'll add the slideshow and then connect them together.

Here's the HTML markup we'll use for the slideshow:
<div id="carousel">
 <div class="cycle-slideshow">

Chapter 6

[163]

 <div>

 <img src="images/AguaAzul-thumb.jpg" width="140"
height="100">

 </div>
 <div>

 <img src="images/BurneyFalls-thumb.jpg" width="140"
height="100">

 </div>
 <div>

 <img src="images/Deer_Leap_Falls-thumb.jpg" width="140"
height="100">

 </div>
 </div>
</div>

We'll wrap the entire slideshow in a <div> element with the ID of carousel. We'll
use this <div> element for styling purposes and also in our JavaScript to allow us to
select items in the carousel or the slideshow without having to select both.

This markup is a bit different than the markup we used for our last carousel. Rather
than linking to a page with more information about each image, we're going to link
the thumbnail-size of the image to the full-size image.

2.	 Now, let's take a minute to consider how our page will work for site visitors who
don't have JavaScript enabled. The basic functionality we're looking for is to view
the full size of each image when we click on the thumbnail. That's easy enough to
handle, and the HTML markup we've set up for the carousel will already handle that.

Add the jsOff class to your <body> tag. Then, open up the styles.css file and
style the carousel thumbs:
.jsOff .cycle-slideshow div {
 display: inline-block;
 padding: 0.5em;
}

Creating Slideshows and Sliders

[164]

Now, if you refresh the page in the browser, you'll see that you have a grid of
thumbnails, as shown in the following screenshot:

Visitors without JavaScript will see a grid of thumbnails. When they click on a
thumbnail, they'll see the full-size version of that image. They can then use the
back button on the browser to return to this page and view the next thumbnail.

3.	 Now that we have those site visitors taken care of, let's dive into the interactive
version for the site visitors that do have JavaScript. Open the scripts.js file and
add a bit of code that we've seen several times now to remove the jsOff class and
replace it with a jsOn class:
$(document).ready(function(){
 $('body').removeClass('jsOff').addClass('jsOn');
});

4.	 Next, we'll attach the JavaScript files that we'll need in order to get the carousel
working. Just as with the previous carousel, we'll need the Cycle2 plugin itself and
the Carousel Transition plugin. Place both of those files into your scripts folder.
Then, head down to the bottom of the HTML file and attach those scripts after
jQuery but before your scripts.js file:
<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.cycle2.min.js"></script>
<script src="scripts/jquery.cycle2.carousel.min.js"></script>
<script src="scripts/scripts.js"></script>
</body>
</html>

Chapter 6

[165]

5.	 Now, let's add the data attributes to the <div> element that contains our carousel
to get it working just the way we need. We'll need the data-cycle-slides
attribute so that Cycle2 knows what markup we're using for our individual slides,
and we'll need to specify that we want to use the carousel transition effect with the
data-cycle-fx attribute:
<div class="cycle-slideshow"
 data-cycle-slides="> div"
 data-cycle-fx="carousel">

If you refresh the page in the browser, you'll see that we're on our way—we now
have a functioning carousel:

Now, let's modify the carousal to suit our needs. For that, perform the
following steps:

6.	 First, we don't want the carousel to advance automatically, so add the
data-cycle-timeout attribute and set this to 0:
<div class="cycle-slideshow"
 data-cycle-slides="> div"
 data-cycle-fx="carousel"
 data-cycle-timeout="0">

This will prevent the default automatic advance through the slides.

7.	 Now that we've taken the default animation away, we need to provide a way for our
site visitors to get to all the slides in the carousel. We'll add a previous button and a
next button. First, add the HTML markup for the buttons. These should be inserted
after the closure of the <div> element with the class cycle-slideshow but
before the closure of the <div> element with the ID carousel:
<div id="carousel">
 <div class="cycle-slideshow"
 data-cycle-slides="> div"
 data-cycle-fx="carousel"
 data-cycle-timeout="0">
 <div>

Creating Slideshows and Sliders

[166]

 <img src="images/AguaAzul-thumb.jpg"
 width="140" height="100">

 </div>
 ...
 </div>
 <div class="cycle-prev cycle-button">
 <div class="button-wrap"></div>
 </div>
 <div class="cycle-next cycle-button">
 <div class="button-wrap"></div>
 </div>
</div>

8.	 Next, we have to tell Cycle2 which elements on our page will be acting as our next
and previous buttons. We can do that by adding two additional data attributes to
our carousel:
<div class="cycle-slideshow"
 data-cycle-slides="> div"
 data-cycle-fx="carousel"
 data-cycle-timeout="0"
 data-cycle-prev="#carousel .cycle-prev"
 data-cycle-next="#carousel .cycle-next">

The value of these data attributes is the jQuery (or CSS) selector for the elements.
Now, these two new HTML elements are activated as next and previous buttons, but
we can't see them on our HTML page yet since we haven't applied any CSS styles.

9.	 We'll apply similar styles as we did in the last carousel example. In styles.css,
let's add a margin to the carousel to make room for the next and previous buttons
on either side:
#carousel .cycle-slideshow {
 margin: 0 3.5em;
}

Now that we've got space for them, we can position our next and previous buttons
on either side of the carousel:

#carousel {
 margin: 1em 0;
 position: relative;
}

.cycle-button {
 bottom: 0;

Chapter 6

[167]

 cursor: pointer;
 overflow: hidden;
 position: absolute;
 top: 0;
 width: 3em;
}

.cycle-next {
 right: 0;
}

.cycle-prev {
 left: 0;
}

10.	Now, we can style the <div> element with the button-wrap class that's inside
each of our button containers:
.button-wrap {
 background: #4fc1e9;
 border-radius: 50%;
 bottom: 0;
 position: absolute;
 top: 0;
 transition: all 0.3s;
 width: 6em;
}

.cycle-next .button-wrap {
 right: 0;
}

.cycle-prev .button-wrap {
 left: 0;
}

Just like we did last time, we're using the technique of creating a circle with CSS and
then only showing 50 percent of the circle to create a half-circle-shaped button.
Next, we'll change the background color of those buttons when our site visitor
hovers over them:

.cycle-button .button-wrap:hover {
 background: #38afda;
}

Creating Slideshows and Sliders

[168]

11.	 We'll use the same CSS technique we used last time to add triangles to these buttons:
.cycle-button .button-wrap:before {
 border-style: solid;
 content: '';
 margin-top: -0.866em;
 position: absolute;
 top: 50%;
}

.cycle-next .button-wrap:before {
 border-width: 0.866em 0 0.866em 1em;
 border-color: transparent transparent transparent
rgba(255,255,255,0.5);
 right: 1em;
}

.cycle-prev .button-wrap:before {
 border-width: 0.866em 1em 0.866em 0;
 border-color: transparent rgba(255,255,255,0.5) transparent
transparent;
 left: 1em;
}

Also, just like last time, we'll add a hover style to these new triangles as well:
.cycle-next .button-wrap:hover:before {
 border-left-color: rgba(255,255,255,0.8);
}

.cycle-prev .button-wrap:hover:before {
 border-right-color: rgba(255,255,255,0.8);
}

If you refresh the page in the browser, you'll see that we now have a working
carousel that looks pretty similar to the carousel we built the first time.

Chapter 6

[169]

We do need to make a few changes to our carousel now to get it ready for acting as
the controller for the slideshow. It's just a few more data attributes that we need to
add to the slideshow.

12.	However, let's take a minute to think about our users without JavaScript. They won't
get any use from the next and previous buttons, and it's probably best to just hide
those from them:
.jsOff .cycle-button {
 display: none;
}

When we're connecting a carousel with a slideshow, we have a few things to
consider that we wouldn't have to think about if we were only building a carousel.
The first problem we have to solve is what we'll call the indexing problem. Let me
explain what that problem is, and then explain how we can solve it.

The carousel and slideshow we're working within the code examples for this book
each contain eight different slides. If we create a carousel with thumbnails and
then a slideshow with full-size images and put those images in exactly the same
order, then we can use a simple index association to match the thumbnails with the
full-size images. In other words, we know that if the site visitor clicks on the first
thumbnail in the carousel, we should show them the first image in the slideshow.
When they click on the third thumbnail in the carousel, we should show them the
third image in the slideshow, and so on. So what's the problem?

If you click on the next button on this carousel repeatedly, you'll see that the set of
slides inside it loops—you can repeatedly click on the next button until you return to
the first slide.

We didn't have to do any extra work to make that happen—this is a feature that the
developer of the Cycle2 plugin thought out and made happen for us. However, this
feature works by creating some extra copies of the slides inside the carousel and
then using jQuery to cleverly move them around as needed so that it appears that
the carousel just moves infinitely. However, Cycle2 slideshows only show one slide at
a time, so there's no need to add extra copies of the individual slides to make them
work. The fact that the carousel has extra slides while the slideshow does not can
make things difficult when we want to build a combo.

The eight slides we're placing into the carousel become 41 slides when Cycle2
finishes making all of its magic happen on the page. If the site visitor clicks on the
fifteenth image in the carousel, we don't have a fifteenth image in the slideshow to
send them off to, and our carousel/slideshow combo breaks.

Creating Slideshows and Sliders

[170]

13.	Luckily, we can solve this problem really easily by telling our carousel not to loop
infinitely, by adding a data attribute called data-allow-wrap:
<div class="cycle-slideshow"
 data-cycle-slides="> div"
 data-cycle-fx="carousel"
 data-cycle-timeout="0"
 data-cycle-prev="#carousel .cycle-prev"
 data-cycle-next="#carousel .cycle-next"
 data-allow-wrap="false">

Now, because our carousel isn't wrapping infinitely, there's no need for Cycle2 to
create extra copies of our slides, and we can easily associate thumbnails in the
carousel with images in the slideshow.

14.	However, if you click the next button on the carousel repeatedly, you'll see that
the thumbnails keep moving over, until there's just one image left, as shown in the
following screenshot:

This feels really awkward, so let's force the carousel to always show us five slides.
We can do that with another data attribute:
<div class="cycle-slideshow"
 data-cycle-slides="> div"
 data-cycle-fx="carousel"
 data-cycle-timeout="0"
 data-cycle-prev="#carousel .cycle-prev"
 data-cycle-next="#carousel .cycle-next"
 data-allow-wrap="false"
 data-cycle-carousel-visible="5">

Now, once our final thumbnail is visible, the carousel stops advancing
forward. Nice, except that the thumbnails are all bunched up, as shown
in the following screenshot:

Chapter 6

[171]

Luckily, that's an easy fix for this too. If we just add the data-cycle-carousel-
fluid data attribute and set it to true, Cycle2 will take care of spacing out our five
thumbnails to fill the space nicely:
<div class="cycle-slideshow"
 data-cycle-slides="> div"
 data-cycle-fx="carousel"
 data-cycle-timeout="0"
 data-cycle-prev="#carousel .cycle-prev"
 data-cycle-next="#carousel .cycle-next"
 data-allow-wrap="false"
 data-cycle-carousel-visible="5"
 data-cycle-carousel-fluid="true">

This gives us a nice result, as shown in the following screenshot, and it's
responsive too!

Now that we've got our carousel set up and working, let's layer in the slideshow component.

Adding the slideshow
Congratulations to us! We've got a gorgeous-looking carousel set up and working, and we've
already solved some of the problems we might encounter when connecting our carousel and
our slideshow together.

With the carousel out of the way, let's dive into adding the slideshow component. After this,
we'll connect them so they work together.

Creating Slideshows and Sliders

[172]

Time for action – adding the slideshow
Follow these steps to set up the slideshow component of our carousel/slideshow combo:

1.	 As usual, we'll get started with the HTML markup for our slideshow. Since we want
the slideshow to be visible above the carousel, we'll place the slideshow into the
code before the carousel code. Everything will work just fine if you choose to do
things the other way around. Here's the HTML structure for the slideshow:
<div id="slideshow">
 <div class="cycle-slideshow">
 <div data-cycle-title="Agua Azul"
 data-cycle-desc="Tumbalá, Chiapas, Mexico">
 </div>
 <div data-cycle-title="Burney Falls"
 data-cycle-desc="Shasta County, California, USA">
 </div>
 <div data-cycle-title="Deer Leap Falls"
 data-cycle-desc="Dingmans Ferry, Pennsylvania, USA">
 </div>
 ...
 </div>
</div>

We're including the data-cycle-title and data-cycle-desc attributes in the
container for each of the slides because we want to use those later on to show an
overlay just like we did when we built our previous slideshow.

We've also wrapped the entire slideshow in a <div> element with the ID of
slideshow to make it easy to select elements inside the slideshow for either CSS
or JavaScript purposes.

2.	 We don't want the slideshow and the carousel to butt up against one another, so
we'll go into styles.css and add a bit of space around both the components:
#carousel,
#slideshow {
 margin: 1em 0;
 position: relative;
}

Chapter 6

[173]

Also, we've added a margin on the left and right sides of the carousel to make
room for the next and previous buttons. To keep things nicely aligned, we should
add this same margin around the slideshow portion. Find the line in styles.css
where you added the left and right margin around the carousel and apply the same
style to the slideshow:

#carousel .cycle-slideshow,
#slideshow .cycle-slideshow {
 margin: 0 3.5em;
}

3.	 Now, just like we always do, we'll take a moment now to think about how this
slideshow should look and behave for site visitors without JavaScript. For the
visitors who do have JavaScript, we're loading up the full-size version of the image
in the slideshow when they click on the thumbnail. A similar behavior that we can
accomplish for visitors without JavaScript would be what we already built in the
carousel section—we'll show them a grid of images that link to the full-size version
of the images. For this, it would make sense to just hide the slideshow portion of
our combo altogether for users without JavaScript. Add this to styles.css:
.jsOff #slideshow {
 display: none;
}

4.	 Our slideshow won't work until we tell Cycle2 the markup for our slides. Just like
we've done before, we'll add the data-cycle-slides attribute:
<div class="cycle-slideshow"
 data-cycle-slides="> div">

Now, if you refresh the page in the browser, you'll see that we have a
working slideshow.

Creating Slideshows and Sliders

[174]

5.	 Just like with the carousel, we don't want automatic animation to happen since we
want our site visitors to have complete control over the slideshow. We'll use the
data-cycle-timeout data attribute to turn that off:
 <div class="cycle-slideshow"
 data-cycle-slides="> div"
 data-cycle-timeout="0">

6.	 Next, let's get the overlay with the title and description working for our slideshow.
We'll add a <div> element to contain our overlay at the bottom of our slideshow
after the closure of the <div> element with the class cycle-slideshow, but
before the closure of <div> element with the ID slideshow:
<div id="slideshow">
 <div class="cycle-slideshow"
 data-cycle-slides="> div"
 data-cycle-timeout="0">
 <div data-cycle-title="Agua Azul"
 data-cycle-desc="Tumbalá, Chiapas, Mexico">
 </div>
 <div data-cycle-title="Burney Falls"
 data-cycle-desc="Shasta County, California, USA">
 </div>
 ...
 <div id="overlay" class="cycle-overlay"></div>
</div>

Now, we just have to tell Cycle2 that this is the container we'd like to use for the
overlay. We'll do that with a data attribute:
<div class="cycle-slideshow"
 data-cycle-slides="> div"
 data-cycle-timeout="0"
 data-cycle-overlay="#overlay">

Chapter 6

[175]

If you refresh the page in the browser now, you'll see that the text we specified as
the data-cycle-title and data-cycle-desc attributes on each slide are now
displayed below the slideshow, as shown in the following screenshot:

7.	 Next, we need to style that text. Just like last time, we want to specify a different
bit of HTML to be used to mark up that text because the default markup is a bit
challenging to style with CSS. We'll pass the data-cycle-overlay-template
attribute with the HTML we want to use:
<div class="cycle-slideshow"
 data-cycle-slides="> div"
 data-cycle-timeout="0"
 data-cycle-overlay="#overlay"
 data-cycle-overlay-template="<div class='headline'>
 <h2>{{title}}</h2><p>{{desc}}</p></div>">

Then, we'll jump back over to styles.css and add some CSS to style that overlay:
.cycle-overlay {
 bottom: 0;
 left: 0;
 position: absolute;
 right: 0;
 z-index: 101;
}

Creating Slideshows and Sliders

[176]

.headline {
 background: rgba(0,0,0,0.6);
 color: white;
 margin: 0 4em;
 padding: 1em;
}

.headline h2 {
 color: white;
 font-size: 2em;
 line-height: 1.125;
}

.headline p {
 font-style: italic;
 line-height: 1.5;
}

Now, if you refresh the page in the browser, you can see that the overlay is close to
the final position we want, but it seems just a bit off:

This is happening because our image isn't centered inside the stage area of the
slideshow. Let's take a look at how we can fix that.

Chapter 6

[177]

8.	 Cycle2 has a Center plugin that will allow us to center content vertically, horizontally,
or both inside the slideshow area. This can be one method of nicely handling slides
that are of different sizes or aspect ratios. In this case, we want to bump the images
of the slideshow over so that they're centered. Head to the Cycle2 downloads
page (http://jquery.malsup.com/cycle2/download/) and download the
Production version of the Center plugin and save it to your scripts folder. Then,
attach it at the bottom of index.html:

<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.cycle2.min.js"></script>
<script src="scripts/jquery.cycle2.carousel.min.js"></script>
<script src="scripts/jquery.cycle2.center.min.js"></script>
<script src="scripts/scripts.js"></script>
</body>
</html>

Now, we just have to add a data attribute to the slideshow to tell Cycle2 that we
want to horizontally center the slides:
<div class="cycle-slideshow"
 data-cycle-slides="> div"
 data-cycle-timeout="0"
 data-cycle-overlay="#overlay"
 data-cycle-overlay-template="<div
class='headline'><h2>{{title}}</h2><p>{{desc}}</p></div>"
 data-cycle-center-horz="true">

If you refresh the page in the browser, you'll see that the overlay now matches up
with our slides because our slides are properly centered in the stage area.

Now, our slideshow and our carousel look good; the only thing left to do is get them talking
to each other.

http://jquery.malsup.com/cycle2/download/

Creating Slideshows and Sliders

[178]

Connecting the carousel and the slider
In this final section, we'll take a look at how to connect the carousel with the slider so
that clicking on a thumbnail in the carousel loads up the full-size version of the image in
the slideshow. Once that's finished, we'll make some final adjustments that will add some
nice touches.

Time for action – connecting the carousel and the slider
Follow these steps to connect the carousel and the slider:

1.	 We've done a lot so far with Cycle2 without writing much jQuery to make it
all happen. We've finally found something we want to do with Cycle2 that will
require us to write a few lines of jQuery. We want to load the full-size image in the
slideshow when our site visitor clicks on the thumbnail in the carousel. So we'll get
started with scripts.js by selecting all the slides in the carousel. Add the code
to select those inside the document ready method, after the bit of code that we're
using to change the <body> class:
$(document).ready(function(){
 $('body').removeClass('jsOff').addClass('jsOn');

 $('#carousel .cycle-slide');
});

This little bit of code won't change anything on our page, but now we've got all the
thumbnails in the carousel and we can work with them. The cycle-slide class is
added to each individual slide in a slideshow by the Cycle2 plugin.

2.	 We want the slides in the slideshow to change when the site visitor clicks on those
thumbnails in the carousel, so we need to add a click event to those thumbnails:
$(document).ready(function(){
 $('body').removeClass('jsOff').addClass('jsOn');

 $('#carousel .cycle-slide').on('click', function(){
 // here's what happens when we click on a thumbnail
 });
});

Now, we're all set to take some action when our site visitor clicks on a thumbnail,
so let's think about what we need to do.

Chapter 6

[179]

3.	 Each of our thumbnails is wrapped in a link to the full-size image, but we don't want
to send people off to that link if they have JavaScript enabled. The first thing we'll do
is cancel this default action:
$('#carousel .cycle-slide').on('click', function(e){
 e.preventDefault();
});

Notice that we made a change at the end of the first line. We added an e argument
inside the parentheses after my function. Recall that this is the event that we're
working with.

Then, inside the function, we can call a method of that event to change what
happens. We're calling a method called preventDefault() that cancels the
default action. In this case, it will prevent the opening of the full-size image in the
browser window. We want to write our own action that will happen when a site
visitor clicks, so we don't want that default action to happen.

If you refresh the page in the browser now and click on one of the thumbnails in the
carousel, you'll see that nothing happens. Let's write a new action.

4.	 When a site visitor clicks on one of the carousel thumbnails, the first thing we need
to do is figure out the index of the thumbnail. Remember earlier we talked about
how there are eight slides in the carousel and eight slides in the slideshow? When
we click on the third thumbnail, we want to show the third image in the slideshow.
In order to be able to that, we need to know what is the number of the thumbnail
the site visitor clicked. This number is called the index.

So, the next step of our action is figuring out the index of the thumbnail that the site
visitor clicked. We'll set up a variable for that and call it index:
$('#carousel .cycle-slide').on('click', function(e){
 e.preventDefault();
 var index;
});

Remember, a variable is just an empty container. We've created an empty container
named index. Now, let's figure out how to put the index of the thumbnail into
that container.

5.	 The Cycle2 plugin actually gives us a pretty nice way to figure out which thumbnail
was clicked. The thumbnail gets stored as data attached to the carousel container.
So, the first thing we'll do is select the carousel container:
$('#carousel .cycle-slide').on('click', function(e){
 e.preventDefault();
 var index = $('#carousel .cycle-slideshow');
});

Creating Slideshows and Sliders

[180]

6.	 Now that we've got that container, we just need to access the data that's attached
to it. To do that, we'll use jQuery's data() method, and we'll use cycle.API that
the Cycle2 plugin has provided us:
$('#carousel .cycle-slide').on('click', function(e){
 e.preventDefault();
 var index = $('#carousel .cycle-slideshow').
 data('cycle.API');
});

The cycle.API is just a programmer-speak for some handy bits of information that
the Cycle2 plugin makes available to us. This is also the information that Cycle2 and
the Cycle2 plugins themselves use to make the magic happen. You can take a look at
the assorted information available to us by looking at the Cycle2 API documentation
page at http://jquery.malsup.com/cycle2/api/advanced.php

Now, chances are that there's going to be a lot of information there that you
don't understand—that's okay. We'll just need to understand some of it to get the
functionality we want.

7.	 In this case, the bit of information we'd like to get from Cycle2 is the index of the
thumbnail that was clicked. We'll ask for that with the getSlideIndex() method:
$('#carousel .cycle-slide').on('click', function(e){
 e.preventDefault();
 var index = $('#carousel .cycle-slideshow').
 data('cycle.API').getSlideIndex(this);
});

It's not terribly important to understand exactly how this works. Just know that
when a thumbnail in the carousel is clicked, we now know exactly which slide it was.

8.	 Now that we've got the index of the clicked thumbnail, we have to figure out how to
tell the slideshow to show that slide. We also have to tell the carousel that we want
that thumbnail to be moved to the prime position. That is refreshingly easy. We'll
get started by selecting the slideshows:
$('#carousel .cycle-slide').on('click', function(e){
 e.preventDefault();
 var index = $('#carousel .cycle-slideshow').data('cycle.API').
getSlideIndex(this);
 $('.cycle-slideshow');
});

http://jquery.malsup.com/cycle2/api/advanced.php

Chapter 6

[181]

9.	 Now, we can call the cycle() method and tell it what we'd like to do. In this case,
we want to tell the slideshow to go to the slide that matches the index:
$('#carousel .cycle-slide').on('click', function(e){
 e.preventDefault();
 var index = $('#carousel .cycle-slideshow').data('cycle.API').
getSlideIndex(this);
 $('.cycle-slideshow').cycle('goto', index);
});

That's it, just a couple of lines of code. If you refresh the page in the browser, you'll
see that when you click on one of the thumbnails, it loads up the full-size version of
that image in the slideshow and also moves that thumbnail to the first position as
long as we're not too close to the end.

Now, let's take a look at a few things we can do to make the experience of using our
slideshow/carousel combo even better.

10.	 It's not terribly clear which thumbnail in the carousel represents the currently
selected thumbnail. We can fix that with a bit of CSS. Open styles.css and
add a few lines to style the thumbnails:
#carousel .cycle-slide img {
 border: 2px solid transparent;
 display: block;
 opacity: 0.7;
}

#carousel .cycle-slide-active img {
 border-color: #38AFDA;
 opacity: 1;
}

In this case, we are fading out the thumbnails that aren't selected and then showing
the selected thumbnail at full opacity and with a blue border. By assigning a 2px
transparent border to the unselected thumbnails, we assure that there won't be any
awkward 2px jumping when the border is applied. Rather than adding and removing
the border, we're just changing the color of the border.

Creating Slideshows and Sliders

[182]

And where does that cycle-slide-active class come from? It's added for us
by the Cycle2 plugin. Refresh the page, and your slideshow should look like the
following screenshot:

Now, it's easy to identify at a glance which thumbnail is selected.

11.	Remember how we removed the infinite looping of the carousel? We had to do that
in order to make the carousel work as a controller for the slideshow, but we're not
doing a very good job of communicating to our site visitor that they've reached the
end of the carousel and further clicking isn't going to advance them any further.

We can fix that by adding some CSS styles for disabled carousel buttons. In styles.
css, add an alternate style for the buttons if they're disabled:
.cycle-button.disabled {
 opacity: 0.5;
}

In this case, we'll to fade those out to communicate that they're no longer active.
The disabled class is added to those buttons for us by the Cycle2 plugin.

Chapter 6

[183]

12.	Finally, our slideshow/carousel combo doesn't currently behave very nicely when
we have a narrower window, like our site visitors might have on a tablet or a mobile
phone. Let's shrink the images nicely to fit in the space available:

In styles.css, add this bit of code:
.cycle-slideshow img {
 height: auto;
 max-width: 100%;
}

Refresh the page in the browser and make the window narrower. You'll see that our
slideshow now behaves pretty nicely and fits inside the screen.

Phew! That was quite a lot of work and it was pretty involved! But you made it
through. Thanks for sticking with me.

Summary
In this chapter, we took a look at five different ways in which we can deal with slideshows
and sliders on websites. We started off by building a simple crossfading slideshow from
scratch without using a plugin. Next, we took a look at implementing the Basic Slider, which
while being basic, has enough options and the ability to change its appearance via CSS,
making it a great fit for many different types of projects.

For those projects that require fancy transition effects and even more options, we worked
through three different types of sliders that we can build with the Cycle2 plugin. This flexible
and extensible plugin will come in handy for many different types of slideshows on many
different projects.

Next, we'll take a look at some techniques to use when working with responsive designs.

7
Working with Responsive Designs

The last couple of years have seen a rise in the popularity of an approach
to designing websites called responsive design. Coined by Ethan Marcotte,
the term refers to websites that respond to the viewport size of your website
visitor. You can learn more about responsive design in Marcotte's article at
http://alistapart.com/article/responsive-web-design. Whether
site visitors are viewing your website on a mobile device, a tablet, a netbook,
or a huge desktop screen, the website detects the viewport size and responds
by adjusting layouts, font sizes, image sizes, and more to optimize the website
for that particular viewport size.

While most of the magic of responsive design happens with media queries
and other CSS, JavaScript can help to enhance the experience even further for
our website visitors. Some elements and layouts aren't easily adapted to the
viewport size with just CSS. JavaScript can fill in and help us take our responsive
designs to the next level.

In this chapter, we'll cover the following topics:

�� Using the FitVids plugin to fit video players to the viewport

�� Turning a drop-down menu into a responsive menu

�� Building a tiled layout to display image galleries in responsive designs

http://alistapart.com/article/responsive-web-design

Working with Responsive Designs

[186]

Using FitVids for responsive videos
Video players are one of the handful of elements on a website that don't readily respond to
being resized easily with just CSS. However, video players are so popular that we need a way
to fit those into our responsive designs.

jQuery and the FitVids plugin come to the rescue. This simple little script automatically sizes
your videos to fit inside any container, whether that's a page or a column on your site.

Time for action – resizing videos
Perform the following steps to make your videos respond to the viewport size:

1.	 We'll get started as we usually do by creating a basic HTML document and the
associated files and folders just like we did in Chapter 1, Designer, Meet jQuery.
In the body of the HTML document, we'll create a few sections. In each section,
we'll include a place to put a video, a title, and a short description, as shown in
the following code:
<div class="content">
 <h1>Favorite Videos</h1>
 <section>
 <div class="video">
 </div>
 <div class="description">
 <h1>Maru Being Maru</h1>
 <p>A video of Maru, the cutest cat in Japan,
 playing with a box.</p>
 </div>
 </section>
 <section>
 <div class="video">
 </div>
 <div class="description">
 <h1>Candy apple shaped soft candy</h1>
 <p>RRCherryPie demonstrates how to use a candy kit to
 make adorable candy that looks like miniature candy
 apples.</p>
 </div>
 </section>
</div>

Chapter 7

[187]

2.	 Next, we want to add our videos. I'm going to choose one video from Vimeo and
one video from YouTube. Feel free to select your favorite videos to use for this
example. Each video service offers a way to embed videos by copying and pasting
a short bit of code. Just copy the following code to embed your selected video into
the <div> element with class of video:
<div class="video">
 <iframe src="//player.vimeo.com/video/5056857" width="500"
 height="333" frameborder="0" webkitallowfullscreen
 mozallowfullscreen allowfullscreen></iframe>
</div>
<div class="description">
 <h1>Maru Being Maru</h1>
 <p>A video of Maru, the cutest cat in Japan,
 playing with a box.</p>
</div>

If you want to view your videos while working on files on your own
computer, you'll have to make a small adjustment to the provided
embed code for both Vimeo and YouTube. Both services remove the
http: protocol from the beginning of the src attribute to ensure
that their videos can be embedded without any issues on both secure
(https) and unsecure (http) websites. To view your videos on local
files, you just have to restore http: as follows:

<iframe src="http://player.vimeo.com/
video/5056857"
 width="500" height="333" frameborder="0"
 webkitallowfullscreen mozallowfullscreen
 allowfullscreen></iframe>

This will enable you to view the videos while looking at your local files.

3.	 Next, let's add some styles to nicely display our videos and descriptions. As we'll be
making our videos responsive, let's go ahead and style the layout to be responsive,
starting with the mobile layout first. At narrow screen widths, we'll want the
description to be displayed below the video. Open your styles.css file and add
the few lines shown in the following code snippet to style your section elements:
.content section {
 margin: 1em 0;
}

.content section h1 {

Working with Responsive Designs

[188]

 font-size: 1.5em;
 margin: 0 0 0.5em 0;
}

section .video {
 box-sizing: border-box;
}

section .description {
 box-sizing: border-box;
 padding: 0.5em 0 0 0;
}

We're going to add just a bit of space around each section by adding a top and
bottom margin. Then, we'll include some simple styles for the video title and
description. Now, view the page in the browser and make the browser window
narrow to test your layout. You should see something like the following screenshot:

Our text is doing just what we wanted and is wrapping to fit within the browser
window. The videos aren't resizing correctly though. That's okay—we'll take care
of those later after we've set up our responsive layout in CSS only.

Chapter 7

[189]

4.	 Next, we'll add some media queries to the CSS files so that when the screen
gets wider, the text will appear next to the videos rather than underneath them.
In your styles.css file, add the following styles:
@media (min-width: 24em) {
 section .video {
 float: left;
 width: 50%;
 }
 section .description {
 float: right;
 padding: 0 0 0 1em;
 width: 50%;
 }
}

@media (min-width: 36em) {
 section .video {
 width: 75%;
 }
 section .description {
 width: 25%;
 }
}

When the screen is at least 24 em wide, we'll divide the screen in two equal-width
(50%) columns—one column will hold our video and another column will hold
the title and description for the video. We're working with ems rather than pixels
because we need a flexible unit when working with responsive designs. Ems or
rems are better suited to responsive designs than pixel measurements.

When the screen is even wider, at least 36 em wide, we'll let the video take up
75 percent of the width and leave 25 percent for the title and description.

The only thing we need to do to our CSS code now is to make sure that we're
containing the floats inside each section. That's easy enough to do—just add the
following code snippet to your styles.css file:
.content section:after {
 clear: both;
 content: '';
 display: table;
}

Working with Responsive Designs

[190]

Now if you open the page in a browser and adjust the width from narrow to wide,
you'll see the layout adjusted as shown in the following screenshot:

However, our videos aren't adjusting correctly, which is frustrating. In fact, the
videos are often covering up the text because they're too wide for the layout.

5.	 We'll use the FitVids jQuery plugin to resize the videos so that they fit correctly
inside our responsive layout. First of all, we need to download the plugin. You won't
find FitVids inside the jQuery plugin repository, but it is hosted on GitHub. There's a
brief page with some demos at http://fitvidsjs.com; scroll down the page to
find the link to download the plugin from GitHub. Follow that link, then click on the
Download Zip button.

http://fitvidsjs.com

Chapter 7

[191]

6.	 Unzip the folder and take a look at the files inside. The following screenshot shows
the contents of the folder:

This is a pretty simple plugin, so there's not a whole lot here. We've already seen
the bower.js file in other plugins and know that we can safely ignore that. There's
a README file with some information about the plugin. The CONTRIBUTING file has
some information for developers who might want to contribute towards making the
plugin better. That leaves us with the tests.html file and jquery.fitvids.js.
The HTML file, as you can probably guess, is just a file with several different videos
embedded from different video services to show them working inside a responsive
design. The JavaScript file is our plugin. Copy jquery.fitvids.js to your own
scripts folder.

7.	 Next, we'll attach the plugin to our HTML page. At the bottom of the file,
add a <script> tag to include the plugin after jQuery, but before your own
scripts.js file:
<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.fitvids.js"></script>
<script src="scripts/scripts.js"></script>
</body>
</html>

8.	 Finally, we have to write a bit of JavaScript to tell FitVids to resize our videos
correctly. Open your scripts.js file and add the document ready statement:
$(document).ready(function(){
 // Our code will go here
});

Working with Responsive Designs

[192]

9.	 A quick look at the documentation for the video shows us that we need to select
whatever HTML element it is that contains our video or videos and then call the
fitVids() method. We've wrapped each of our videos in a div element with
class of video, so this is what we'll select. Use the following code to select the
correct element and call the fitVids() method:

$(document).ready(function(){
 $('.video').fitVids();
});

Now, if you refresh the page in the browser and try resizing the window to different
widths, you'll see that the videos resize correctly to fit within the responsive layout
that we've created, as shown in the following screenshot:

What just happened?
We used the FitVids jQuery plugin to resize videos embedded from Vimeo and YouTube to
fit within a responsive layout. Now, no matter what width our screen is, the videos display at
the perfect size, and the plugin is both small and easy to use. After setting up a responsive
layout, include the plugin file, select the HTML element that contains your videos, and then
call the fitVids() method. The plugin takes care of everything else to make the videos
resize fluidly to fit within a responsive layout.

Pop quiz – choosing breakpoints for responsive design
Q1. Which of the following is the best approach to choosing breakpoints for a
responsive design?

1.	 Set breakpoints to the pixel widths of the most popular devices.

2.	 Always use the same three breakpoints for consistency across websites.

3.	 Set breakpoints where your content starts to look and feel awkward.

4.	 Choose breakpoints at random.

Chapter 7

[193]

Responsive menus
In Chapter 4, Building an Interactive Navigation Menu, we made great use of the Superfish
plugin to create animated drop-down and fly-out menus. The gorgeous menus we can
create with Superfish are nice, but they're not going to work very nicely for us if we're
making a responsive design. On wider screen sizes, the menus will work great, but as we
start to use smaller screens like those found on mobile devices, we'll lose all the benefits
of the Superfish plugin.

A convention is quickly being established for responsive menus: on screen sizes too small
to display a full menu bar, the menu is collapsed to a single three-line character (☰),
sometimes accompanied by the word Menu. This character is most often referred to as
a hamburger, but might also be called a same-o or navigation drawer. When the hamburger
is clicked, the menu opens and is available for exploration to our site visitor.

We'll take a look at how we can combine the MeanMenu jQuery plugin with Superfish to
create a menu that works well, no matter what screen size our site visitors are using.

Time for action – making our menu responsive
We'll get started with the custom-designed menu we created in the section The hoverIntent
plugin of Chapter 4, Building an Interactive Navigation Menu. Then, we'll perform the
following steps to make that menu work for responsive designs:

1.	 We're going to use the MeanMenu plugin from MeanThemes to make our menu
responsive. The MeanMenu plugin is available from GitHub at https://github.
com/weare2ndfloor/meanMenu. Head over there and find the Download Zip
button in the right-hand side column to download a ZIP file of all the files we'll
need to get the MeanMenu working.

2.	 Now that we've downloaded that ZIP file, let's open it up and take a look at
what's inside:

https://github.com/weare2ndfloor/meanMenu
https://github.com/weare2ndfloor/meanMenu

Working with Responsive Designs

[194]

This is pretty straightforward. We have a demo HTML file to show us the MeanMenu
plugin in action. There's a copy of the GPL license. There are the JavaScript and CSS
files for the menu, along with a minified copy of each. And finally, there's a README
file with some documentation.

3.	 First of all, we'll get the JavaScript we need copied to our own project and attached
to our HTML file. Copy jquery.meanmenu.min.js to your own scripts folder,
then attach it at the bottom of your HTML file before your own scripts.js file,
as follows:
<script src="scripts/jquery.js"></script>
<script src="scripts/hoverIntent.js"></script>
<script src="scripts/superfish.js"></script>
<script src="scripts/jquery.meanmenu.min.js"></script>
<script src="scripts/scripts.js"></script>
</body>
</html>

4.	 Next, we need some CSS code to style the menu. We're going to end up with three
different types of CSS code:

�� The first one is CSS that applies to our menu items at all times. These items
are things such as font-family, background-color, color, and so on.
Our menu is going to have the .sf-menu class at all times, so we can use
that to prepend our selectors for CSS that should always apply.

�� Then, we have CSS that only applies to our menu on smaller screens where
the menu is collapsed to a hamburger. The MeanMenu plugin adds a class
of mean-container to the <body> tag when the MeanMenu is displayed.
We can use that class to prepend our selectors for CSS that should only
apply to the collapsed menu.

�� And lastly, we have CSS that only applies to our menu on larger screens
where the full menu bar is visible. We can add a CSS class of super-nav to
the <nav> tag that wraps our menu. Then we can use this class to prepend
our CSS selectors for the full menu to be sure they only apply when the full
menu is visible. This is achieved as follows:

<nav class="super-nav">
 <ul id="sfNav" class="sf-menu">
 Papilionidae
 ...

</nav>

Chapter 7

[195]

5.	 Let's get started by taking the styles we've already written for our menu and
dividing them up into universal navigation styles and styles used only for wider
screens where the full menu is visible. These styles will replace the styles we've
already written in our CSS file to style our menu. The following styles are the
universal styles for the menu:
.sf-menu {
 background: white;
}

.sf-menu:after {
 clear: both;
 content: '';
 display: table;
}

Next, we have some universal styles for the first level of the menu:
.sf-menu li {
 position: relative;
}

.sf-menu li:hover {
 background: #a0d468;
}

.sf-menu a {
 color: #444;
 display: block;
 padding: 1.5em 1em;
 position: relative;
 text-decoration: none;
}

.sf-menu a:hover {
 background: #a0d468;
 color: white;
}

The following are some universal styles for the second level of the menu:
.sf-menu ul {
 background: #a0d468;
 z-index: 99;
}

Working with Responsive Designs

[196]

.sf-menu ul li:hover {
 background: #8cc152;
}

.sf-menu ul a:hover {
 background: #8cc152;
}

.sf-menu li:hover > ul {
 display: block;
}

Finally, we have some universal styles for the third level of the menu:

.sf-menu ul ul {
 background: #8cc152;
}

.sf-menu ul ul li:hover {
 background: #7bb140;
}

.sf-menu ul ul a:hover {
 background: #7bb140;
}

6.	 Next up, we'll get those styles that apply just to the large-screen version of our
menu. We'll start off with general menu styles, as follows:
nav.super-nav {
 margin: 2em 1em;
}

.super-nav .sf-menu {
 border-radius: 7px;
}

Then, we'll write some styles for the first level of the navigation. Notice how each
selector includes the .super-nav class at the beginning to make sure these styles
only apply when the full menu is visible:
.super-nav .sf-menu li {
 white-space: nowrap;
}

Chapter 7

[197]

.super-nav .sf-menu > li:first-child,

.super-nav .sf-menu > li:first-child a {
 border-top-left-radius: 7px;
}

.super-nav .sf-menu > li {
 float: left;
}

Next up, we have some styles for the second level of the navigation:
.super-nav .sf-menu ul {
 border-bottom-right-radius: 7px;
 border-bottom-left-radius: 7px;
 display: none;
 left: 0;
 min-width: 12em;
 position: absolute;
 top: 100%;
}

.super-nav .sf-menu ul > li:last-child,

.super-nav .sf-menu ul > li:last-child a {
 border-bottom-left-radius: 7px;
 border-bottom-right-radius: 7px;
}

Then, we have some styles for the third level:
.super-nav .sf-menu ul ul {
 border-top-right-radius: 7px;
 top: 0;
 left: 100%;
}

.super-nav .sf-menu ul ul > li:first-child,

.super-nav .sf-menu ul ul > li:first-child a {
 border-top-right-radius: 7px;
}

.super-nav .sf-menu ul ul > li:last-child,

.super-nav .sf-menu ul ul > li:last-child a {
 border-bottom-right-radius: 7px;
}

Working with Responsive Designs

[198]

Finally, we have some styles for the extras—mainly the arrows that show whether
a menu item is hiding a submenu:

.super-nav .sf-arrows .sf-with-ul {
 padding-right: 2.5em;
}

.super-nav .sf-arrows .sf-with-ul:after {
 border: 5px solid transparent;
 border-top-color: #444;
 content: '';
 height: 0;
 margin-top: -3px;
 position: absolute;
 right: 1em;
 top: 50%;
 width: 0;
}

.super-nav .sf-arrows > li > .sf-with-ul:focus:after,

.super-nav .sf-arrows > li:hover > .sf-with-ul:after {
 border-top-color: white;
}

.super-nav .sf-arrows ul .sf-with-ul:after {
 margin-top: -5px;
 margin-right: -3px;
 border-color: transparent;
 border-left-color: #e7f2dc;
}

.super-nav .sf-arrows ul li > .sf-with-ul:focus:after,

.super-nav .sf-arrows ul li:hover > .sf-with-ul:after {
 border-left-color: white;
}

7.	 Now, the only thing left to style is the collapsed menu that will be visible only on
narrower screens. For that, we can use the CSS code that was supplied with the
MeanMenu plugin as a template and just customize it to suit our needs.

Chapter 7

[199]

As we're going to change the styles quite a lot to fit our design, we'll copy the
MeanMenu CSS code to our own styles.css file, and then modify it to suit
our needs. Starting from the CSS code provided with a jQuery plugin is a great way
to customize the appearance without having to do all the legwork of figuring out
what styles are needed on your own. We'll start by writing some general styles for
the MeanMenu container, as follows:
a.meanmenu-reveal {
 display: none;
}

.mean-container .mean-bar {
 background: white;
 padding: 0.222em 0;
 min-height: 2.531em;
 position: relative;
 width: 100%;
 z-index: 999999;
}

We'll hide the button to reveal the menu and then use JavaScript later to only
show it when we need it.

8.	 Now we'll style the reveal button to look just the way we'd like:
.mean-container a.meanmenu-reveal {
 color: #444;
 cursor: pointer;
 display: block;
 font-size: 18px;
 height: 1.5em;
 line-height: 1.5;
 padding: 13px 13px 11px 13px;
 position: absolute;
 right: 0;
 text-decoration: none;
 text-indent: -9999em;
 top: 0;
 width: 1.5em;
}

.mean-container a.meanmenu-reveal span {
 background: #444;
 display: block;
 height: 0.198em;
 margin-top: 0.198em;
 width: 100%;
}

Working with Responsive Designs

[200]

9.	 Next, we'll write some styles for the different levels of the menu, when the mobile
version is visible:
.mean-container .mean-nav {
 background: white;
 margin-top: 2.25em;
 width: 100%;
}

.mean-container .mean-nav ul {
 width: 100%;
}

.mean-container .mean-nav ul li {
 position: relative;
 width: 100%;
}

.mean-container .mean-nav ul li:after {
 clear: both;
 content: '';
 display: table;
}

.mean-container .mean-nav ul li a {
 border-bottom: 1px solid rgba(160, 212, 104, 0.3);
 color: #444;
 display: block;
 padding: 1em 5%;
 text-align: left;
 text-decoration: none;
 width: 90%;
}

.mean-container .mean-nav ul li:hover a,

.mean-container .mean-nav ul li a:hover {
 color: white;
}

.mean-container .mean-nav ul li li a {
 border-bottom: 1px solid rgba(255,255,255,0.5);
 padding: 1em 10%;
 width: 80%;
}

Chapter 7

[201]

.mean-container .mean-nav ul li.mean-last a {
 border-bottom: none;
 margin-bottom: 0;
}

.mean-container .mean-nav ul li li li a {
 width: 70%;
 padding: 1em 15%;
}

.mean-container .mean-nav ul li li li li a {
 width: 60%;
 padding: 1em 20%;
}

.mean-container .mean-nav ul li li li li li a {
 width: 50%;
 padding: 1em 25%;
}

10.	Now, we can write some styles for the reveal and hide buttons for the menu:
.mean-container .mean-nav ul li a.mean-expand {
 border: none;
 height: 1.688em;
 padding: 0.75em;
 position: absolute;
 right: 0;
 text-align: center;
 top: 0;
 width: 1.688em;
 z-index: 2;
}

.mean-container .mean-nav ul li a.mean-expand:hover {
 background: none;
}

.mean-container .mean-push {
 clear: both;
 float: left;
 width: 100%;
}

Working with Responsive Designs

[202]

11.	Finally, we'll finish up with some general styles for the mobile menu:
.mean-nav .wrapper {
 width: 100%;
}

.mean-container .mean-bar, .mean-container .mean-bar * {
 box-sizing: content-box;
}

12.	Phew! That was a lot of CSS, but really these plugins do their job so well, most of the
work in getting these menus to work is getting all the CSS code properly sorted out.
Now that we've got that out of the way, let's open up our scripts.js file and add
a line to call the meanmenu() method for our menu, as follows:
$(document).ready(function(){
 $('#sfNav').superfish({
 animation: {
 height: 'show'
 }
 });

 $('nav').meanmenu();
});

Now, if you refresh the page in the browser and make the window narrow,
you'll see that the Superfish navigation bar disappears and is replaced by a
hamburger menu, as shown in the following screenshot:

Chapter 7

[203]

Clicking on the hamburger opens up the menu for further exploration, as follows:

13.	Now, let's take a look at how we can use some of the options supplied with the
MeanMenu plugin to adjust our menu to work just the way we'd like.

First of all, let's figure out how narrow the screen will look when the MeanMenu
plugin kicks in. By default, MeanMenu will replace the full navigation when the
screen is 480 pixels wide or less. However, our menu is pretty wide and starts to
wrap to a new line way before that. Testing out the menu by adjusting the browser
width, we can see that we'll need MeanMenu to replace the full navigation bar for
screens that are about 880 pixels or narrower.

Working with Responsive Designs

[204]

Each navigation bar is unique, so it's important to test your navigation
bar, and in fact, all of your content, to see at which screen widths it starts
to look or feel awkward. Rather than setting breakpoints at the widths of
specific devices that happen to be popular right now, use your design and
content to determine where the breakpoints should be placed. This way,
your design will remain fresh, relevant, and usable no matter which devices
and screen sizes are popular in the following year or in the next five years.

To adjust the width for MeanMenu, we'll use the meanScreenWidth option,
as follows:

$('nav').meanmenu({
 meanScreenWidth: '880'
});

14.	Next up, the MeanMenu plugin uses a hamburger as the symbol that will
open the menu, and then a letter X as the character that will close the menu.
The multiplication symbol (×) is more aesthetically pleasing, so let's switch the
close symbol. We can use the meanMenuClose option to set the close symbol to
whatever character we'd like, as shown in the following code:
$('nav').meanmenu({
 meanScreenWidth: '880',
 meanMenuClose: '\xD7'
});

Wait, \xd7? What is that? It's a peculiar JavaScript way of writing special characters
such as the multiplication sign. How are you supposed to know what that special
code is? Head on over to http://www.charbase.com/ and do a quick search for
the character you're looking for. A search for multiplication easily turns up our
multiplication sign and you can see that a JavaScript Escape value is listed. You just
have to copy and paste it into your JavaScript to produce the special character.

On the left, you can see the menu with the letter X as the close symbol, and on the
right with the multiplication sign. The difference is subtle, but the multiplication
symbol feels more like a close button.

http://www.charbase.com/

Chapter 7

[205]

15.	Finally, as the hyphen (-) character used to collapse submenu items is a bit too small,
let's replace it with an em dash to make it a larger and more noticeable target.
We can use the meanContract option to set this:

$('nav').meanmenu({
 meanScreenWidth: '880',
 meanMenuClose: '\xD7',
 meanContract: '\u2014'
});

Again, we're using the special JavaScript Escape for that character. The following
screenshot shows the difference between using a hyphen (-) and an em dash (—):

You can see that the em dash is significantly larger than the hyphen, and makes
it easier to tap or click on the character to collapse the submenus again. Now
the menus work well for all site visitors, no matter what screen size they happen
to be using.

What just happened?
We took our custom, animated drop-down menu that we created in Chapter 4, Building an
Interactive Navigation Menu, and updated it to make it ideal for use in responsive designs.
We used the MeanMenu plugin to help us handle the transition between the full menu and
the responsive menu. The responsive menu is replaced with a hamburger icon, which when
clicked or tapped opens the full menu.

Have a go hero – create a custom menu
Now that you've seen how to work with MeanMenu and Superfish, design and build your
own custom menu. Customize the appearance, the animations, the size at which it collapses
to the mobile menu, and so on.

Working with Responsive Designs

[206]

Creating a tiled layout
In a tiled layout, or a masonry layout, HTML elements are fit together like bricks in a
wall rather than the strict grid layouts we can create with just CSS. With CSS,
we're limited to layouts as shown in the following figure:

This is a perfectly acceptable way to lay out our content; our site visitors can view all of the
content without a problem. However, if we add JavaScript to the mix, we can improve those
layouts a bit by making them fit together as shown in the following figure:

Chapter 7

[207]

Tiled layouts or masonry layouts can help to close up gaps left by items of different heights.
Tiled layouts are great for situations where our site visitors are browsing through lots of
graphical content—such as a photo gallery. They're less ideal for situations where site visitors
might be looking for something specific or where the content is less graphical—such as a list
of search results.

To accomplish our tiled layout, we'll be using the excellent Masonry library by
David DeSandro.

Time for action – creating a masonry layout
Perform the following steps to create a tiled layout:

1.	 We'll get started by creating a basic HTML document and the associated files and
folders just like we did in Chapter 1, Designer, Meet jQuery. In the body of the
HTML document, we'll set up a container with a series of repeating elements inside.
We'll use a list () as the container and individual list items () inside for the
repeating elements. Inside each list item, we'll place an image and some text that
describes that image, as follows:
<div class="content">
 <h1>Cats of the World</h1>
</div>

<ul class="container">

 <li class="cat">
 <figure>

 <figcaption>
 <h2>Siamese</h2>
 </figcaption>
 </figure>
 <div class="info">
 <div class="traits">
 <dl>
 <dt>Country</dt>
 <dd>Thailand</dd>
 </dl>
 <dl>
 <dt>Coat</dt>
 <dd>Short</dd>
 </dl>
 <dl>

Working with Responsive Designs

[208]

 <dt>Pattern</dt>
 <dd>Colorpoint</dd>
 </dl>
 </div>
 </div>

 ...

We're using an HTML5 <figure> element to hold the image itself and a caption
for the image inside a <figcaption> element. Next, we created an area where
we can share some more details about the image.

Create at least a dozen similar list items inside the container so that you'll be able to
see the difference made once we apply the Masonry script.

2.	 Next, we'll style our list items. Open up your styles.css file and add the
following lines:
.cat {
 background: white;
 border-radius: 5px;
 color: #434a54;
 margin: 5% 0;
 vertical-align: top;
 width: 100%;
}

We're going to style our layout responsively, starting with mobile layout first.
At small screen sizes, we want each list item to fill the width of the screen.

3.	 Next, we'll add a media query to display the items in two columns for slightly
wider screens. Add the following code snippet to your styles.css file:
@media (min-width:30em) {
 .container {
 font-size: 0.75em;
 }
 .cat {
 display: inline-block;
 margin: 3% 1%;
 width: 44%;
 }
}

First, we'll make the font size a bit smaller to make sure that our text fits into the
narrow columns. Next, we set our individual items to display: inline-block,
which lines them up, add a bit of a margin, and set a width.

Chapter 7

[209]

4.	 Next, let's create a three-column layout for wider screens. Add the following code
snippet to your styles.css file:
@media (min-width:45em) {
 .cat {
 margin: 2% 1%;
 width: 30%;
 }
}

Since the display: inline-block declaration will still apply at this width, all we
have to do is adjust the width and margins of our individual items.

5.	 Finally, if the screen is wide enough, we can set the font size back to full size.
Add the following code snippet to your styles.css file:
@media (min-width:60em) {
 .container {
 font-size: 1em;
 }
}

Now, if you view your page in the browser and change the width of the window,
you'll see the layout changes from one column, at narrow widths, to two columns,
as the window gets wider, to three columns, as it gets even wider. Have a look at the
following screenshot:

However, our images are overflowing their containers and the text isn't very
readable. Let's style those items next.

Working with Responsive Designs

[210]

6.	 We're going to position the image caption over the image and ensure that the
images don't overflow their containers. Add the following code snippet to your
styles.css file:
.cat img {
 border-radius: 5px 5px 0 0;
 height: auto;
 width: 100%;
}

.cat figure {
 position: relative;
}

.cat figcaption {
 background: linear-gradient(to bottom,
 rgba(0,0,0,0.65) 0%,rgba(0,0,0,0) 100%);
 border-radius: 5px 5px 0 0;
 position: absolute;
 top: 0;
 width: 100%;
}

.cat figcaption h2 {
 color: white;
 font-size: 2.25em;
 margin: 0;
 padding: 0.25em;
}

As we can't be sure that all the images will be dark enough at the top for a
white headline to be visible, we'll add a dark gradient as a background on the
<figcaption> element to make sure the text is visible. Then, we'll position
the caption at the top of each image. If you refresh the page in a browser now,
the layout is easier to see:

Chapter 7

[211]

7.	 Next up, let's style the text underneath each image. To make sure it's flexible, we'll
use a table-like layout. Add the following code snippet to your styles.css file:
.cat .info {
 display: table;
 width: 100%;
}

.cat .traits {
 display: table-row;
}

.cat .traits dl {
 display: table-cell;
 line-height: 1.125;
 padding: 1em 0.5em;
 text-align: center;
 vertical-align: top;
 width: 33%;
}

.cat .traits dt {
 color: #aab2bd;
 font-size: 0.75em;
}

.cat .traits dd {
 font-size: 1.125em;
}

This lines up our three bits of information about each image in a neat row under the
image, as shown in the following screenshot:

Working with Responsive Designs

[212]

Because we've set the widths in percentages, this row of text will flex with our
layout and always fit nicely into three columns beneath the image.

At this point, we have a responsive grid layout that's perfectly acceptable for
our site visitors who may not have JavaScript enabled. Next, let's take a look at
using JavaScript to switch this to a tiled layout for those site visitors who do have
JavaScript enabled.

8.	 We're going to use the Masonry library. Masonry is not a jQuery plugin—it will
work with or without jQuery. In our case, we're going to use jQuery because it
makes it just a bit easier to work with. First of all, head over to http://masonry.
desandro.com/ to get the documentation and download for Masonry. To
download the file we need, click on the Download masonry.pkgd.min.js button.

This opens the JavaScript file right in your browser window. You can right-click on
it and then click on Save As or from the File menu, click on Save to save the file to
your own scripts folder.

9.	 Next, we need to attach the Masonry file to our HTML file. At the bottom of the
document, add the file between jQuery and your own scripts.js file, using the
following highlighted line of code:
<script src="scripts/jquery.js"></script>
<script src="scripts/masonry.pkgd.min.js"></script>
<script src="scripts/scripts.js"></script>

10.	Now open your scripts.js file and add the document ready statement,
as follows:
$(document).ready(function(){
 // Our code will go here
});

11.	When we use Masonry with jQuery, it can work just like a jQuery plugin—we can
select an element, then call the masonry() method on that element. The element
we select is the container of all of our items. In our case, it's the element with
a class selector of container. Select that element and call the masonry() method,
as follows:
$(document).ready(function(){
 $('.container').masonry();
});

http://masonry.desandro.com/
http://masonry.desandro.com/

Chapter 7

[213]

12.	While that's technically all we need to get a tiled layout to work, David DeSandro,
Masonry's author, recommends that we always set two options that will help
Masonry perform better. These two options are columnWidth and itemSelector.
The columnWidth option sets a width for the columns in the layout and
itemSelector helps Masonry identify which items we want to tile in our layout.
The itemSelector option is easy enough—we want to use the list items inside our
container, to which we've assigned a class selector of cat. Add this option to your
scripts.js file, as follows:
$(document).ready(function(){
 $('.container').masonry({
 itemSelector: '.cat'
 });
});

13.	However, this columnWidth option is a little more problematic as we're using
a responsive layout—we don't want to set a fixed width for our items. Luckily,
Masonry makes this easy too. We can use an item inside our list to set the
columnWidth option—Masonry will then calculate the width of all items based on
whatever width our selected item is. Go back to your list of items in the HTML file
and select a list item—the first item is as good as any; as in this case, all of our items
are of the same width. Now, add a class of gridsize to that item, as follows:
<ul class="container">

 <li class="cat gridsize">
 ...

14.	Now, we can tell Masonry to use the width of that item to calculate our
columnWidth option:
$(document).ready(function(){
 $('.container').masonry({
 columnWidth: '.gridsize',
 itemSelector: '.cat'
 });
});

Working with Responsive Designs

[214]

Now if you refresh the page in the browser, you'll see that the grid layout has
been transformed into a responsive tiled layout:

What's more, Masonry has a lovely transition animation that floats the items
to their new positions after we resize the browser window.

What just happened?
We took an ordinary CSS grid layout and transformed it into a tiled layout with the help
of the Masonry JavaScript library. Items now move upward to fill in vertical gaps, which
helps to make a grid of items of different heights appear more pleasing to the eye. The
Masonry library makes creating these layouts super-simple, especially when we pair it with
the jQuery library. For site visitors without JavaScript enabled, the items will appear in a
usable CSS grid layout.

Creating a tiled layout with items of different widths
The tiled layout we created works well as long as all of our items have the same width,
but what if our elements have different widths? Let's take a look at how we'd go about
setting up such a layout.

We're going to keep working with the tiled layout example we set up in the section
Time for action – creating a masonry layout.

Chapter 7

[215]

Time for action – creating a tiled layout with different
width items

Perform the following steps to take the tiled layout we've already created and to make it
work for items with different widths:

1.	 First, we need to create items of different widths. A few of the items in the layout
have images that are landscape rather than portrait orientation, which means those
items appear particularly small in the layout. Let's make those the width of two
columns so they stand out more. Go back to the HTML file for the list of items and
add a class of w2 to each item that will now be two columns wide:
<li class="cat w2">
 <figure>

 <figcaption>
 <h2>Himalayan</h2>
 </figcaption>
 </figure>
 <div class="info">
 ...
 </div>

2.	 Next, open your styles.css file and style these items with a wider width. As all
items are of full width at narrow screen sizes, we only have to add the new width for
wider screens inside our media queries as follows:
@media (min-width:30em) {
 .container {
 font-size: 0.75em;
 }
 .cat {
 display: inline-block;
 margin: 3% 1%;
 width: 44%;
 }
 .cat.w2 {
 width: 89%;
 }
}

Working with Responsive Designs

[216]

Where did we get that value of 89%? We want our block to be as wide as two
columns. Each of our columns is 44 percent wide, so two of them would be 88
percent wide. However, there is also a 1 percent margin between the single width
images, so 44 percent + 1 percent + 44 percent = 89 percent. For the widest screens,
have a look at the following code:
@media (min-width:45em) {
 .cat {
 margin: 2% 1%;
 width: 30%;
 }
 .cat.w2 {
 width: 61%;
 }
}

Again, we're making the width double and accounting for the 1 percent margin,
so 30 percent + 1 percent + 30 percent = 61 percent.

3.	 Finally, we just have to make sure that the item we're using to define the
columnWidth option is a single-column item rather than one of the new
two-column wide items. Make sure that you've selected an item that doesn't
have the w2 class to have the gridsize class, as follows:

<li class="cat gridsize">
 ...

<li class="cat w2">
 ...

Now, if you refresh the page in the browser, you'll see that a handful items are two
columns wide rather than one at wider screen sizes:

Chapter 7

[217]

What just happened?
We took the tiled layout that we already created and modified it so that not all of our items
share the same width. Now we can see how Masonry fills in gaps and creates a pleasing
layout even if our items share different widths as well as different heights. All we needed to
do was select a handful of our items and modify their width in the CSS code—Masonry takes
care of the rest.

Summary
In this chapter, we took a look at some jQuery plugins and one JavaScript library that can
make it just a little bit better to work with responsive designs. First, we took a look at how
we can use the FitVids jQuery plugin to make the videos resize correctly inside responsive
designs. Then we took our animated drop-down menu originally created in Chapter 4,
Building an Interactive Navigation Menu, and made it work inside responsive designs with
the help of the MeanMenu plugin. Finally, we took at look at how to build responsive tiled
layouts with the help of the Masonry JavaScript library.

Next up, we'll look at some different ways that jQuery can help us work with images in a
better way, including images inside responsive layouts.

8
Getting the Most from Images

Working with images in a responsive design world has presented a whole
new set of challenges and opportunities. We need to balance optimizing
performance along with taking advantage of new capabilities and gorgeous
image display on retina screens with minimizing bandwidth for those on slower
connections. It's a great idea to have several tools in your toolbox that will help
you work with images in a robust and flexible way. We'll be looking at a few
tools to deal with images.

In this chapter, we'll cover the following topics:

�� Using lazy loading of images so that images are only downloaded if they're scrolled
into view

�� Using image zoom to allow site visitors to enlarge the part of an image they're most
interested in

�� Using fullscreen background images and slideshows

Lazy loading images
Imagine you want to build a responsive page with many big, gorgeous images. What are the
things you need to consider to be sure that the page is as flexible and optimized as possible?
First, it would be nice if we only loaded the images when needed; if a page has twenty large
images but a site visitor never scrolls down the page to see more than the first two or three of
them, why load all twenty? Second, it would be great if we could load high-resolution images
for those who use retina displays to ensure that the images look as clear and crisp as possible.

Getting the Most from Images

[220]

There are a few proposals in the works within the upcoming HTML5 specification that will
build some of this functionality into HTML. At the time of writing this book, nothing has
been decided for sure, though many different solutions have been proposed. In the
meantime, we can build websites that address these issues with jQuery, using the Unveil
plugin from Luís Almeida.

It's important that this is one case where we cannot use progressive
enhancement. If we create a page with several image tags, we can't prevent
those images from loading with jQuery—all the images will load no matter
what. So for this example, we're going to use the principle of graceful
degradation. The page will still work for users with JavaScript disabled—
when they view the page, we'll load the regular resolution of each image.

Time for action – lazy loading images
Perform the following steps to create a page of images that load the correct resolution only
when needed:

1.	 We'll get started by creating a basic HTML document and associated files and
folders just like we did in Chapter 1, Designer, Meet jQuery. Inside the body of the
HTML document, we'll add a series of images using the new HTML5 figure and
figcaption elements, as shown in the following code:
<figure>

 <figcaption>
 <a href="http://www.public-domain-image.com/
 wallpapers-public-domain-images-pictures/
 a-bench-for-resting.jpg.html" title
 ="A bench for resting">A bench for resting
 by Steve Hillebrand, U.S. Fish and Wildlife Service
 </figcaption>
</figure>

Note that we've used a small, animated .gif image as a placeholder rather than
the image we actually want to display. We'll be replacing this later with the actual
image. You'll want to add at least four or five images to the page to appreciate the
effect that Unveil makes possible.

Chapter 8

[221]

2.	 Next, we need to add some information about the paths to the regular resolution
and high-resolution images. We'll use the new HTML5 data attributes to add this
data to our placeholder image, as follows:
<figure>
 <img src="images/loading.gif" data-src="images/
 bench.jpg" data-src-retina="images/bench-2x.jpg" />
 ...
</figure>

Add a data-src attribute that contains the path to the regular resolution image.
If you also have a high-resolution image suitable for retina displays, you can
add the path to this image inside a data-src-retina attribute. Note that
the high-resolution image is optional—Unveil will work just fine if you exclude
high-resolution images.

3.	 Now, we can add a bit of CSS to style our images. Open up your styles.css file
and add the following styles:
figure {
 margin: 2.531em auto;
 max-width: 800px;
 text-align: center;
}

figcaption {
 line-height: 1.125;
 padding: 0.75em 0 1.5em 0;
}

figure img {
 border-radius: 5px;
 display: inline-block;
 height: auto;
 max-width: 100%;
}

Getting the Most from Images

[222]

This bit of code just centers the list of images on the page and adds some spacing
between each image and caption pair. If you look at the page in a browser at this
point, you'll just see the loading image repeated down the page, each with a caption
beneath, as shown in the following screenshot:

4.	 Now, we need to add the jQuery plugin and the code that will replace these
.gif images with the actual images. The Unveil plugin is hosted on GitHub at
https://github.com/luis-almeida/unveil—just as we've done before
with plugins hosted on GitHub, click on the Download ZIP button in the right-hand
side column.

Unzip the folder and take a look inside it. You should recognize what's inside by
now—bower.json for those using Bower, an img directory and index.html file
to demo the plugin at work, a jQuery file, a README.md file with information about
the plugin, and then the development and production versions of the Unveil plugin ,
as shown in the following screenshot:

Chapter 8

[223]

jQuery and jQuery plugins are being updated all the time. As new browsers
are released with new support and capabilities, and as JavaScript, HTML, and
CSS are further developed, new versions of jQuery and plugins are released
to keep pace with the change. On one hand, this is a great news—jQuery and
accompanying plugins get faster and more powerful all the time. On the other
hand, it can be tough to keep up with all the changes. All versions of the plugins
referenced were current at the time of writing the book, but you might find
some differences when you work through the exercises. Plugin developers are
usually very good at documenting the changes and updates, so don't be afraid
to read through the documentation so you can understand what's changed and
what adjustments you might need to make.

5.	 Copy jquery.unveil.js to your own scripts folder. Then, attach it in
your HTML file at the bottom, between jQuery and your own scripts.js file,
as follows:
<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.unveil.js"></script>
<script src="scripts/scripts.js"></script>

6.	 Now, we're ready to put the script into action. Open your scripts.js file and add
the document ready statement:
$(document).ready(function(){
 // Our code will go here
});

7.	 Inside the document ready statement, add the following line of code to select the
images and call the unveil() method:
$(document).ready(function(){
 $('img').unveil();
});

In this case, our page is very simple and we want to select all the images on the
page. You might find yourself in situations where you want to select just the images
inside a certain container, or images with a certain class assigned to them. Just
adjust your selector accordingly.

Getting the Most from Images

[224]

If you refresh the page at this point, you'll see that the loading animations are
replaced with either the regular or high-resolution images, depending on whether
you're currently using a retina display, as shown in the following screenshot:

8.	 So far, our page appears to be working pretty well, but there are a few things we can
do to make it even better. First, what about the users who have JavaScript disabled?
The way the page is set up now, they'll only see the loading animations. Let's get
that fixed so that it gracefully degrades.

After each image, add a <noscript> element. Inside the tags, we'll add a regular
old HTML image tag, as follows:
<figure>
 <img src="images/loading.gif" data-src
 ="images/bench.jpg" data-src-retina
 ="images/bench-2x.jpg" />
 <noscript></noscript>
 ...
</figure>

Now, visitors who have JavaScript disabled can see our images, but they'll also see
the loading .gif image above each one. Let's hide these images for them.

Chapter 8

[225]

9.	 Inside the HTML document, add a class selector of jsOff to the body tag, using
the following line of code:
<body class="jsOff">

Then, in the styles.css file, add a bit of CSS to hide those loading .gif images if
the body has the jsOff class, as shown in the following code:
.jsOff figure > img {
 display: none;
}

Finally, inside the scripts.js file, add a bit of code to remove this class from the
body—the code in the class will only run if JavaScript is enabled:
$(document).ready(function(){
 $('body').removeClass('jsOff');
 $('img').unveil();
});

Now, our page degrades gracefully for those site visitors who don't have JavaScript
enabled—they'll see the list of images just fine. The majority of users will benefit
from having the correct resolution of image loaded and improved performance from
the images only loaded when and as needed, but those without JavaScript will never
know what they're missing. For them, the experience will seem complete.

10.	We can also take the effect one step further for those site visitors who have
JavaScript enabled. We can fade in the image rather than just popping them onto
the page. The unveil() method will let us set some options.

First, we can set a threshold option—how far from appearing on the screen should
an image be before we start the process of downloading and displaying it? Let's
set a threshold of 200 pixels—when an image is 200 pixels from appearing on the
screen, we'll start loading it:
$('img').unveil(200);

Next, we can write a function to be called when it's time to unveil or load an image.
The following code shows what we'll do to fade an image in:
$('img').unveil(200, function(){
 $(this).hide().fadeIn();
});

This bit of code will select the image tag and hide it, then fade in the real image as
soon as it's loaded. If you refresh the page in the browser now, you'll see the images
fade on to the page rather than just appear.

Getting the Most from Images

[226]

What just happened?
We set up a page with many large images so that it only loaded the images when needed,
thereby helping to improve performance and reduce the load on our server. We are also
loading a high-resolution version of our image for those site visitors who might be using a
retina display capable of displaying our images at a higher resolution. We used the Unveil
plugin by Luís Almeida to accomplish all of that in just a few lines of code. Note that the
images load very quickly, even if they're large, when you're viewing a page on your own
computer. To get a real feel for the difference this plugin makes, you might want to try
uploading your page to a server and accessing it via the Web.

Pop quiz – building accessible pages
Q1. We've learned about both progressive enhancement and graceful degradation. Why are
these principles important when working with JavaScript?

1.	 They allow site visitors with disabilities to access and use the pages we build.

2.	 They allow search engines to correctly index the pages we build.

3.	 They allow site visitors on less-capable devices to use the pages we build.

4.	 They allow site visitors with JavaScript disabled to access and use the pages
we build.

5.	 All of the above.

Creating zoomable images
Sometimes, we include a small image to maintain a nice layout and fit more content on the
screen, but our site visitors might want to see a larger image to see more details. One way
of handling this is showing the full-size image in a lightbox, like we did in Chapter 5, Showing
Content in Lightboxes. However, another option we have is to zoom in on the image right
where it is. Our site visitor can move their mouse to move around the image to see the
details. On touch screens, they can use their finger to drag over the image and zoom in.

To accomplish this, we'll use the jQuery Zoom plugin by Jack Moore. You might recognize
Jack Moore's name; he is also the author of the Colorbox plugin we used in Chapter 5,
Showing Content in Lightboxes.

Chapter 8

[227]

Time for action – creating zoomable images
Perform the following steps to create zoomable images on your HTML pages:

1.	 We'll get started by creating a basic HTML document and the associated files and
folders just like we did in Chapter 1, Designer, Meet jQuery. You'll need two sizes
of the same image—I've found that if the smaller image is approximately one-third
the size of the larger image, the zoom functionality works very well. Inside the body
of the HTML document, we'll add an image and some information about the image,
as follows:
<article>
 <figure>
 <img src="images/aster.jpg" height="1004" width
 ="1024" alt="Aster">
 </figure>
 <div class="flower-info">
 <h2>Aster</h2>
 <p>Aster is a genus of flowering plants in the family
 Asteraceae. Its circumscription has been narrowed,
 and it now encompasses around 180 species, all but
 one of which are restricted to Eurasia; many species
 formerly in Aster are now in other genera of the tribe
 Astereae.</p>
 </div>
</article>

2.	 Next, we'll style this HTML document. For small screens, we'll show the image
with the information underneath. For wide screens, we'll show the image on the
left-hand side and the text on the right-hand side of the screen. Open your
styles.css file and add the following styles:
article {
 margin: 2.25em 0;
}

article:after {
 clear: both;
 content: '';
 display: table;
}

figure {
 margin: 0 0 1em 0;
 max-width: 100%;
}

Getting the Most from Images

[228]

figure img {
 height: auto;
 max-width: 100%;
}

@media (min-width:36rem) {
 figure {
 float: left;
 margin: 0 2.25em 0 0;
 max-width: 50%;
 }
}

.flower-info {
 overflow: hidden;
}

article h2 {
 font-size: 2.25em;
 line-height: 1.125;
 margin: 0 0 0.75em 0;
}

article p {
 line-height: 1.5;
 margin: 0 0 1.5em 0;
}

Now, if you view the page in the browser, you'll see the images and accompanying
text are nicely styled and the layout adjusts nicely to the width of the screen, as
shown in the following screenshot:

Chapter 8

[229]

3.	 Next, we need to get the Zoom plugin. Head over to http://www.jacklmoore.
com/zoom/ where you'll find the download as well as the documentation for the
plugin. Click on the Download link under the two sample zoomable images to
download the ZIP file.

4.	 Unzip the file. Inside it, you'll find all the usual files—a README.md file, some
samples, and so on. Look for jquery.zoom.min.js and copy it to your own
scripts folder.

5.	 Now, we need to attach the Zoom plugin file to our HTML file. At the bottom of the
file, between jQuery and your own scripts.js file, add the plugin file as follows:
<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.zoom.min.js"></script>
<script src="scripts/scripts.js"></script>

6.	 Next, we'll jump into our scripts.js file and add a bit of code to get the zoom
working for the image. Get started by adding the document ready statement:
$(document).ready(function(){
 // Our code will go here
});

7.	 To get the zoom working, we need to select the element that actually wraps our
image, rather than the image itself. In our case, we've wrapped our image in a
<figure> element, so this is what we'll select. Then, we'll call the zoom() method,
as follows:
$(document).ready(function(){
 $('figure').zoom();
});

8.	 Now, there's just one thing that the Zoom plugin needs to know from us in order to
work—we have to tell Zoom the path to the larger version of our image. We can do
that by passing in a url option as follows:
$(document).ready(function(){
 $('figure').zoom({
 url: 'images/lg-aster.jpg'
 });
});

If you refresh the page in the browser now and move your mouse over the image,
you'll see the zoom in effect. As you move your mouse over the image, the zoom
effect moves over different areas of the image, allowing you to see the details in all
parts of the image.

http://www.jacklmoore.com/zoom/
http://www.jacklmoore.com/zoom/

Getting the Most from Images

[230]

9.	 It feels a bit strange that as we move the mouse cursor over the image, we're
just seeing the default cursor. A few browsers have started supporting some new
cursors, including the zoom-in cursor. Let's add a few lines of CSS to show this
cursor instead of the default for the browsers that have this capability. Inside your
styles.css file, add the following styles for the img element:

figure img {
 cursor: -webkit-zoom-in;
 cursor: -moz-zoom-in;
 cursor: zoom-in;
 height: auto;
 max-width: 100%;
}

Now, if you're using a browser with support for this new cursor, when you move
your mouse over the image, you'll see a magnifying glass icon instead of the
default cursor:

What just happened?
We created a zoomable image using the Zoom plugin by Jack Moore. We created a page
with a smaller version of the image along with some text that describes the image. Then,
we added the plugin and a few lines of code. Now, when we move our mouse over the
image, you'll see the larger version of the image appear.

Chapter 8

[231]

Zooming in on multiple images
While the Zoom plugin was simple and easy to use, the plugin will only work as long as we
have just one image that's zoomable. If we want to have multiple images on a single page,
then we have to make some modifications.

Remember when we passed the url option to the zoom() method? We added a url option
that points to the larger version of the image—this image name is now hardcoded in our
JavaScript. If you add a second image to the page, you'll find that when you try to zoom in
on it, you'll see the first image rather than the second.

Let's take a look at how we can address this issue and also make our JavaScript more
portable and flexible.

Time for action – creating multiple zoomable images
We'll keep working with the files we created in the example to create zoomable
images—with just a few modifications; we'll be able to place as many zoomable images on
the page as we like. Perform the following steps to create multiple zoomable images:

1.	 Inside the HTML file, add a few more images and accompanying text. The CSS code
we wrote earlier is flexible enough to handle multiple blocks of code. We're going
to make just one small change to the HTML file. In the element, we'll add an
HTML5 data attribute that contains the path to the larger version of the image, as
shown in the following code:
<article>
 <figure>
 <img src="images/chamomile.jpg" height="879"
 width="1024" alt="Chamomile" data-lgsrc
 ="images/lg-chamomile.jpg">
 </figure>
 <div class="flower-info">
 <h2>Chamomile</h2>
 <p>...</p>
 </div>
</article>

2.	 Next, we need to modify the JavaScript that we wrote earlier so that it's a bit more
flexible. Inside the document ready statement, remove the code we wrote earlier so
that your scripts.js file looks like the following code snippet:
$(document).ready(function(){

});

Getting the Most from Images

[232]

3.	 Each individual image has its own accompanying larger image that should be shown
when we zoom in. We'll need to step through each image, one at a time, and collect
the appropriate image path. To do this, we'll use the jQuery's each() method. This
gets started as follows:
$(document).ready(function(){
 $('figure').each();
});

4.	 Inside the each() method, we'll run a function that will find the unique file path
and then assign it inside the zoom() method. This just means that we're going to
go through each image on the page and tell the Zoom plugin which big image to
show when we zoom in. Add a function inside each(), as follows:
$(document).ready(function(){
 $('figure').each(function(){
 });
});

5.	 The first thing we'll do inside the function is get the path to the larger image.
We'll create a variable to hold the path. Remember that a variable is just an empty
container. We're creating a convenient place to store the file path, as follows:
$(document).ready(function(){
 $('figure').each(function(){
 var filePath;
 });
});

6.	 Now, we need to get the file path to the larger image and store it in the variable.
Recall that we added a data attribute to the element. As we're working with
the <figure> element that wraps the element, we'll have to find the image.
This is achieved by adding a line of code as follows:
$(document).ready(function(){
 $('figure').each(function(){
 var filePath = $(this).find('img');
 });
});

7.	 Now that we have the image, we can use the handy jQuery data() method to get
the value of that data attribute we added to our HTML file:
$(document).ready(function(){
 $('figure').each(function(){
 var filePath = $(this).find('img').data('lgsrc');
 });
});

Chapter 8

[233]

8.	 Now that we've got the path to the large file, we can call the zoom() method for
each image and use our filePath variable for the path to the large image, as
shown in the following code:

$(document).ready(function(){
 $('figure').each(function(){
 var filePath = $(this).find('img').data('lgsrc');
 $(this).zoom({
 url: filePath
 });
 });
});

This is the same function we wrote earlier in the example with just one image. The
only difference is that we're using this variable to pass in the correct large image for
each image on the page. If you refresh the page now, you'll see that multiple images
each zoom into the correct larger image when you move your mouse over.

What just happened?
We made some modifications to our earlier code so that we can create multiple zoomable
images on each page. First, we added the path to the larger image as a data attribute in the
HTML. Then, we modified our JavaScript to loop through each image individually and assign the
correct larger image to be used for the zooming effect. Now, our page can work with one image
or with a dozen images or even with 100 images. We've structured our JavaScript in a flexible
way that's not dependent on the number of images we have on the page. This gives us the
ability to edit the HTML file to add or remove images without having to rewrite the JavaScript.

Using fullscreen backgrounds
For websites where we're emphasizing imagery, using a single image as a fullscreen
background image is a great way to create a visual punch. However, there are a few
challenges we have to overcome, which are as follows:

�� We need to fill the entire background of the page, no matter what screen size or
device our site visitor uses, without gaps or repetition

�� We need to minimize the file size of the images to increase speed and performance

�� We need to maintain the proportions of the image without distorting it, while still
scaling it to best fit the current window size

�� We need the image to appear at an acceptable quality level, without
visible degradation

Getting the Most from Images

[234]

CSS3 has introduced the background-size property, which we can use to proportionally
scale an image to the window size. This works pretty well in the browsers that have support
for this new property (check http://caniuse.com/#search=background-size
for the latest information on support) but even in browsers with support, we'll see a JPG
background image load progressively. Let's take a look at how we can use jQuery to support
more browsers, scale the images perfectly, and also include a lovely fade-in effect for the
image once it's completely loaded.

We'll be using Jay Salvat's Vegas Background plugin, which has a variety of features that
make it flexible and easy to work with.

Reducing image file sizes

When using large, fullscreen images, there are a couple of nifty techniques
you can use to get the smallest file size possible. First, in your image editing
program, increase the size of the images to at least twice their normal size
(some developers use three or four times their normal size), then save for
Web as a JPG file with zero percent image quality. This produces a very large,
low-quality image that will be scaled down for nearly all browsers and will
appear crisp, clean, and indistinguishable from a high-quality image for most
of your site visitors. Best of all, the file size will be very small.

Also, before using your images on the Web, use an image compression tool
such as ImageOptim (http://imageoptim.com/), JPEGmini (http://
www.jpegmini.com/), or RIOT (http://luci.criosweb.ro/
riot/) to compress them as much as possible without affecting the quality.

Time for action – creating a fullscreen background image
Perform the following steps to create a page with a fullscreen background image:

1.	 We'll get started by creating a basic HTML document and the associated files and
folders just like we created in Chapter 1, Designer, Meet jQuery. Inside the HTML
document, we'll add just a few lines of text, as shown in the following code:
<div class="content">
 <h1>Seychelles</h1>
 <p>Seychelles, officially the Republic of Seychelles,
 is a 155-island country (as per the Constitution)
 spanning an archipelago in the Indian Ocean,
 whose capital, Victoria, lies some 1,500 kilometres
 (932 mi) east of mainland Southeast Africa,
 northeast of the island of Madagascar.</p>
</div>

http://caniuse.com/#search=background-size
http://imageoptim.com/
http://www.jpegmini.com/
http://www.jpegmini.com/
http://luci.criosweb.ro/riot/
http://luci.criosweb.ro/riot/

Chapter 8

[235]

2.	 Next, we'll add a few styles for this text. To make sure it's readable over the photo
background, let's add a transparent black background to the div element with a
class selector of content, as shown in the following code:
.content {
 background: black;
 background: rgba(0,0,0,0.5);
 margin-top: 4em;
 padding: 2em;
}

3.	 As our page is so simple, it's already time to start working with our JavaScript.
Head over to http://vegas.jaysalvat.com/ where you can find the download
and documentation for the Vegas plugin. To download it, click on the DOWNLOAD
VEGAS link near the bottom-right corner of the screen. Unzip the folder and
take a look inside the folder; you will see the contents as shown in the
following screenshot:

Note that this plugin doesn't contain a sample HTML file like most of the plugins
we've worked with so far—just the files we'll need to get the plugin working.
Inside the images folder, you'll find a loading.gif file. Copy this file to your
own images folder. Copy the entire overlays folder to your own project directory.
Then, copy jquery.vegas.min.css to your own styles folder and copy
jquery.vegas.min.js to your own scripts folder.

http://vegas.jaysalvat.com/

Getting the Most from Images

[236]

When you're finished, your own project directory should look like the
following screenshot:

The images folder contains both the loading.gif file copied from the Vegas
download folder, along with any images that you'll be working with to create
fullscreen backgrounds.

4.	 Next, attach the Vegas style sheet at the top of the HTML file, after your own style
sheet, as shown in the following code:
<head>
 <title>Chapter 8: Fullscreen Background</title>
 <link rel="stylesheet" href="styles/styles.css">
 <link rel="stylesheet" href="styles/jquery.vegas.min.css">
</head>

5.	 Attach the Vegas plugin file at the bottom of the HTML file, after jQuery but before
your own scripts.js file:
<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.vegas.min.js"></script>
<script src="scripts/scripts.js"></script>
</body>
</html>

Chapter 8

[237]

6.	 Now, it's time to open up the scripts.js file to write some JavaScript. Get started
with the document ready statement, as follows:
$(document).ready(function(){
 // Our code will go here
});

7.	 Next, we'll call the Vegas plugin. Vegas works just a bit differently from many of the
other plugins we've seen so far. We don't have to select an element in our document
that we want to work with. The following code shows how to call the vegas()
method:
$(document).ready(function(){
 $.vegas();
});

8.	 Then, we just have to pass in some options. First, we'll use the src option to tell
Vegas which image to use as the background:
$(document).ready(function(){
 $.vegas({
 src: 'images/seychelles.jpg'
 });
});

Note that the path to the image is relative to the HTML file, not to the scripts.js
file where we're writing this code.

9.	 We want the image to fade on to the page rather than progressively downloading as
the JPG files usually do, so we'll pass another option, fade:
$(document).ready(function(){
 $.vegas({
 src: 'images/seychelles.jpg',
 fade: 2000
 });
});

Getting the Most from Images

[238]

The number we pass to the fade option should be the number of milliseconds the
fading action will take—2000 milliseconds is 2 seconds. If you refresh the page in the
browser, you'll see a solid background color until the image fades in for 2 seconds. If
you try resizing the browser window, you'll see that the image responds just as we'd
like; it scales to best fit the window without distorting and stays centered.

10.	The Vegas plugin has an additional handy option available that is tremendously
helpful when we're using images as fullscreen backgrounds—overlays. Inside the
overlays folder, you'll find 15 different PNG files—each one creates a different
pattern when used to fill an area—dots, stripes, checks, grids, and so on. By laying
one of these patterns over our background images, we can help disguise or hide any
image degradation that might be visible when our images are stretched to fill larger
screens. These overlay patterns also help darken our background images, to make
the text content on top just a bit easier to read. To add an overlay to our background
image, we'll just chain the overlay options, as follows:

$(document).ready(function(){
 $.vegas({
 src: 'images/seychelles.jpg',
 fade: 2000
 })('overlay', {
 src: 'overlays/03.png'
 });
});

Just like the background image itself, we have an src option for the overlay.
Again, the path to the overlay is relative to the HTML document, not the JavaScript
document where you're writing this code. I've selected 03.png as my overlay of
choice, but feel free to experiment with all the 15 options provided with the plugin
or to create one of your own.

Chapter 8

[239]

Now, if you refresh the page in the browser, you'll see the subtle overlay pattern on
the image.

What just happened?
We used the Vegas plugin to create a flexible, scalable fullscreen background image for our
HTML page. We added options for the image to fade in for 2 seconds and also added an
overlay to the image that helps to darken it just a bit and also to hide any image degradation
that might happen, particularly on large screens. When we resize the window, the image
resizes while remaining centered and doesn't distort.

Creating a fullscreen slideshow
In addition to creating perfectly responsive fullscreen background images, the Vegas plugin
will also allow us to create fullscreen background slideshows. Let's take a look at how we can
take this same HTML file and create a fullscreen slideshow behind the text rather than just a
single fullscreen image.

Getting the Most from Images

[240]

Time for action – creating a fullscreen slideshow
We'll keep working with the files that we created in the Time for action – creating a
fullscreen background image section. The only change we'll need to make to create a
slideshow rather than a single fullscreen background image is to our scripts.js file.
To do so, perform the following steps:

1.	 Open scripts.js and remove the src and fade options from the vegas()
method, as shown in the following code:
$(document).ready(function(){
 $.vegas({

 })('overlay', {
 src: 'overlays/03.png'
 });
});

2.	 Next, we need to tell Vegas that we want to use a slideshow. Before we pass in the
options object, tell Vegas to use a slideshow, as shown in the code:
$(document).ready(function(){
 $.vegas('slideshow', {

 })('overlay', {
 src: 'overlays/03.png'
 });
});

Note that this slideshow option is outside the curly braces.

3.	 We'll pass in the slideshow options we want to use, inside the curly braces. First,
let's add delay. This tells Vegas how long to display each image in the slideshow.
As the slideshow takes up the entire screen, it works best if the slideshow is slow.
We'll let each image be displayed for 5 seconds or 5000 milliseconds, as shown in
the code:
$(document).ready(function(){
 $.vegas('slideshow', {
 delay: 5000
 })('overlay', {
 src: 'overlays/03.png'
 });
});

Chapter 8

[241]

4.	 We'll tell Vegas which images we want to use in our slideshow. We'll do that with
the backgrounds option, as shown in the following code:
$(document).ready(function(){
 $.vegas('slideshow', {
 delay: 5000,
 backgrounds: []
 })('overlay', {
 src: 'overlays/03.png'
 });
});

Don't forget to add a comma after the delay option to separate it from the
backgrounds option. We've added a pair of square brackets as the value for the
backgrounds option. Square brackets denote an array—an array is just a collection
of values instead of a single value. As our slideshow is going to contain multiple
background images, we'll use an array to make sure Vegas knows about each one.

5.	 Inside the array, we'll pass some information about each of our images inside curly
braces. We need the path to each image, along with how long the animation for
each image will be:

$(document).ready(function(){
 $.vegas('slideshow', {
 delay: 5000,
 backgrounds: [
 { src: 'images/seychelles.jpg', fade: 2000 },
 { src: 'images/seychelles2.jpg', fade: 2000 },
 { src: 'images/seychelles3.jpg', fade: 2000 }
]
 })('overlay', {
 src: 'overlays/03.png'
 });
});

Again, because the slideshow is occupying the entire page, it's best if the transition
between the images is slow—here, we allow 2 full seconds for the image to change.

Now if you refresh the page in the browser, you'll see that our single fullscreen
background image has been replaced by a fullscreen slideshow. Experiment with the
delay, fade, and overlay options to find the combination that works best for the
images that you're using.

Getting the Most from Images

[242]

What just happened?
We modified the settings of the Vegas plugin to create a fullscreen slideshow on our page's
background rather than just a single fullscreen background image. Just like the single
background image, the slideshow is responsive and resizes flawlessly as we resize our
browser window. We were able to set the amount of time each image in the slideshow
should be visible for, and we were also able to pass in an array of images to use in the
slideshow along with the duration of the transition animation for each one.

Summary
In this chapter, we took a look at few techniques for working with images in responsive
designs. First, we set up lazy loading so that images will only be loaded if and when they
are required. Then, we took a look at adding the ability to zoom in images to get more
detail. Finally, we looked at how to create both fullscreen background images and fullscreen
background slideshows. Armed with this knowledge, we can create even more flexible and
more full-featured responsive pages. Next, we'll take a look at ways to make our typography
just as flexible and responsive.

9
Improving Typography

A lot of the responsive design tutorials that you'll find on the Web tend to be
very focused around images, videos, and column layouts. But the backbone of
most websites is the text content—this is where having some knowledge and
skills around typography and making typography more responsive is especially
useful. If you can make the content on a website a visual delight and a pleasure
to read, you're more likely to draw in regular readers than if your text content is
poorly set and difficult to read.

In this chapter, you'll learn:

�� How to use the FitText plugin to size headlines responsively according to the width
of the browser window

�� How to use the SlabText plugin to create perfectly-sized multiline blocks of text

�� How to use the Lettering.js plugin to fine-tune kerning and apply special text effects

�� How to use the ArcText plugin to set text on a curve

Sizing headlines perfectly
With the recent rise in the popularity of responsive design, some designers have pointed
out that the Web is responsive by default—we've made the Web unresponsive by setting
fixed widths in layouts. That's partially true. Text on the Web will automatically flow to best
fit its container, but that can sometimes lead to awkward line breaks and line lengths (or
measures) that make reading difficult.

Improving Typography

[244]

While we can use CSS and media queries to fix some of these issues, adding a little bit of
JavaScript magic into the mix can allow us to accomplish things that we wouldn't be able to
accomplish with CSS alone. Let's take a look at resizing headlines to accommodate the width
of the screen. This can be really helpful to prevent awkward line breaks in headings.

Modular scale

To create visual harmony and text that's set with precision, give the modular
scale a try. A modular scale is a mathematical scale of numbers that share the
same relation to one another. When you choose numbers from the scale to set
your font sizes, line heights, column widths, margins, and padding, you'll create
typography that's more professional and aesthetically pleasing. Tim Brown, the
type manager at TypeKit, has produced http://modularscale.com—a
tool that enables anyone to calculate a scale and produce gorgeous typography.
Links to several articles on http://modularscale.com will help you
understand and use a modular scale more effectively for setting your typography.

Time for action – sizing headlines to the screen width
Perform the following steps to create headlines that resize according to the width of the
browser window:

1.	 We'll get started by creating a basic HTML document and associated files and folders
just like we did in Chapter 1, Designer, Meet jQuery. Inside the HTML document,
we're going to create a bit of text with a headline, as follows:
<div class="content">
 <h1>What is Typography?</h1>
 <p>Typography is the art ...</p>
</div>

2.	 Inside styles.css, some basic CSS that is applied helps to set the size of the
heading, the paragraph, and padding and margin around both elements. If you take
a look at the sample code included with the book, you'll see the following bit of CSS
that styles basic text elements:
.content p {
 line-height: 1.5;
 margin: 1.125em 0;
}

.content h1 {
 font-size: 3.375em;
 line-height: 1.125;
 margin: 1.125em 0 0.5em 0;
}

http://modularscale.com
http://modularscale.com

Chapter 9

[245]

For our site visitors without JavaScript, this bit of text is perfectly acceptable, no
matter what their screen width happens to be. The text of both the paragraph
and the headline simply reflows as the browser window resizes, as shown in the
following screenshot:

However, by using in the FitText plugin, we gain a little more control over the
headline, and we can resize it fluidly so that it will fill the width of the screen.

3.	 You'll find documentation and download links for FitText at http://fittextjs.
com/. Just click on the Download on GitHub link to be redirected to GitHub. Once
you're on GitHub, just click on the Download ZIP button as we've done with other
plugins that we've downloaded from GitHub.

4.	 Unzip and open the ZIP file. Look for jquery.fittext.js and copy it to your
own scripts folder. Then, in the HTML file, add the FitText file at the bottom,
after jQuery but before your own scripts.js, as follows:
<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.fittext.js"></script>
<script src="scripts/scripts.js"></script>
</body>
</html>

5.	 Open your scripts.js file and get started by adding the document ready
statement, as follows:
$(document).ready(function(){
 // Our code will go here
});

6.	 Next, we'll select the element we'd like to resize and then call the fitText()
method. Make sure you pay careful attention to the letter T in the middle of
the method name—it won't work if you forget that:
$(document).ready(function(){
 $('h1').fitText();
});

http://fittextjs.com/
http://fittextjs.com/

Improving Typography

[246]

7.	 Now, if you refresh the page in the browser, you'll see that the headline resizes
according to the browser window's width, but it's not working exactly the way we
want, as shown in the following screenshot:

While the text is resizing with the browser window, it's a little too big and is
spread over two lines. Let's take a look at how we can fine-tune FitText and
gain a bit more control over the resizing of text.

8.	 FitText includes what the developers of the plugin call "the compressor." It's
basically the ability to control how aggressive FitText is about resizing the text.
The default value is 1, but we can pass a new value to the fitText() method.
Often, it's a matter of trying out a few different values to find the one that works
best for your particular situation:
$(document).ready(function(){
 $('h1').fitText(1.1);
});

9.	 In addition to the control we gain from passing values for the compressor, we can
also set minimum and maximum font sizes for the text. In this example, our body
text is set to the browser's default font size, and we'd like our heading to always
be just a tad larger than the body text so that we don't end up with a headline
that's actually smaller than the body text. After the compressor, we can pass the
fitText() method a settings object to set the minimum font size to 1.2em:

$(document).ready(function(){
 $('h1').fitText(1.1, {minFontSize: '1.2em'});
});

Now, even if our screen were to get very narrow, the heading's font size would
always be 20 percent larger than that of the body text, even if it means that the text
will wrap onto a second (or even third) line. FitText also includes a maxFontSize
setting, but we won't need to use it in this example.

If you refresh the page in the browser, you'll see that the headline now appears on
a single line and the font resizes to best fit the current width of the browser window,
while never going below 1.2 em:

Chapter 9

[247]

What just happened?
We used the FitText plugin to resize our headline so that it always fits neatly on one single
line. We learned how to adjust the Compressor for more control over the resizing and also
learned how to set minimum and maximum font sizes for the headline to make sure that
it stays within the boundaries that we set. In this example, we set a minimum font size of
On one line please to ensure that the headline is always larger than the body text. FitText is
only intended to be used for headlines—it will significantly impact the performance of your
website if you attempt to use it for your body text or for all the text on the page. Stick to
using FitText to create impactful, bold headlines.

Creating bold text blocks
FitText is ideal for situations where we want to resize a headline to best fit the screen
size, but what if want to take this a step further and create blocks of perfectly-sized text,
as shown in the following screenshot:

Improving Typography

[248]

We could wrap bits of our headline in some tags and then set individual font
sizes for each one, but handling the rewrapping of the text at different font sizes would be
difficult, if not impossible. That's where the fabulous SlabText plugin comes in. SlabText
will automatically calculate the best places to insert line breaks and then resize the text to
perfectly fill each line. Let's take a look at how it works.

Time for action – creating a bold text block with SlabText
Perform the following steps to break a headline into multiple lines, all resized to fit the
width perfectly:

1.	 We'll get started by creating a basic HTML document and associated files and folders
just like we did in Chapter 1, Designer, Meet jQuery. Inside the HTML document,
we're going to place a headline as follows:
<header>
 <h1>Pride & Prejudice</h1>
</header>

2.	 Next, we'll add some styles to style our headline the way we'd like. Open your
styles.css file and add the following lines:
header {
 margin: 5.063em 0;
}

header h1 {
 line-height: 1.125;
 margin: 0;
 padding: 0;
 text-transform: uppercase;
}

h1 {
 font-size: 3.375em;
}

We've removed any default margins or padding from the <h1> element. We'll use
the <header> element to add white space around our headline instead. Also, note
that we used a unitless number for our line-height value. Unitless line heights allow
these values to cascade down the DOM in a more elegant and useful manner.

We've set text-transform to uppercase since the SlabText effect is more
visually impactful if we're using uppercase letters.

Chapter 9

[249]

3.	 Next, we need to download the SlabText plugin and get it attached to our HTML
page. You'll find the SlabText plugin in the jQuery plugins repository at http://
plugins.jquery.com/slabtext/. Just click on the big orange Download now
button to download the ZIP file. Unzip it, locate the jquery.slabtext.min.js
file inside the js folder, and copy it to your own scripts folder.

Now, at the bottom of your HTML file, add the <script> tag to include the file after
jQuery, but before your own scripts.js file, as shown in the code:

<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.slabtext.min.js"></script>
<script src="scripts/scripts.js"></script>

4.	 The SlabText plugin also includes some CSS that we'll need for the plugin to work as
expected. You'll find a slabtext.css file inside the css folder. We could copy this
file to our own project and attach the file to our HTML page, but it's only a few lines.
We'll get better performance on our pages if we reduce the number of external files
we include, so instead, let's open up that CSS file, copy the code that's there, and
add it to our own styles.css file as shown in the code:
.slabtexted .slabtext {
 display: -moz-inline-box;
 display: inline-block;
 white-space: nowrap
}

.slabtextinactive .slabtext {
 display: inline;
 font-size: 1em !important;
 letter-spacing: inherit !important;
 *letter-spacing: 0 !important;
 white-space: normal;
 word-spacing: inherit !important;
 *word-spacing:0 !important;
}

.slabtextdone .slabtext {
 display: block;
 line-height: 0.9;
}

http://plugins.jquery.com/slabtext/
http://plugins.jquery.com/slabtext/

Improving Typography

[250]

5.	 Now, open your scripts.js file and add the document ready statement
as follows:
$(document).ready(function(){
 // Our code will go here
});

6.	 SlabText works like most other jQuery plugins; we select an element and then call
the slabText() method. In this case, we want to work with the <h1> element:
$(document).ready(function(){
 $('h1').slabText();
});

If you refresh the page in the browser, you'll see that the text now expands to fill
the horizontal space. If you resize the browser window, you'll see that the text size
is recalculated and at narrower widths, even broken into two lines, each of equal
length, as shown in the following screenshot:

7.	 Many typography experts recommend using the best ampersand (&) you possibly
can—and the ampersand that's included with the font we're using here (Geneva)
is a bit flat and boring. The SlabText plugin automatically wraps ampersands in a
 element with an amp class. We can use this class to style the ampersand in
a nicer style. In your styles.css file, add the following lines of code:
.amp {
 font-family: Baskerville, 'Goudy Old Style', Palatino,
 'Book Antiqua', serif;
 font-size: 1.125em;
 font-style: italic;
 font-weight: normal;
}

This is the font style that is recommended by Dan Cederholm to style ampersands
on the Web. If you refresh the page in the browser now, you'll see our ampersand
replaced by a much nicer and more visually interesting ampersand, as shown in the
following screenshot:

Chapter 9

[251]

8.	 We've created a nice text effect, but this bit of text is rather short. Let's take a look
at how this effect might work with a longer bit of text. Open your index.html file
and add another headline:
<header>
 <h1>The Importance of Being Earnest: A Trivial Comedy for
 Serious People by Oscar Wilde</h1>
</header>

If you refresh the page in the browser now, you'll see that this headline breaks into
multiple lines, all of which fill the width of the page. However, the line breaks are
a bit awkward, and the resizing of text feels random and strange, as shown in the
following screenshot:

Improving Typography

[252]

9.	 Luckily, the SlabText plugin provides a way for us to have control over where the text
is broken into lines. We can do that by just wrapping each line in a element
with the class selector of slabtext. Inside index.html, add some tags
around the text as follows:
<header>
 <h1>
 The Importance of Being
 Earnest:
 A Trivial Comedy for Serious People</
span>
 by Oscar Wilde
 </h1>
</header>

Now, if you refresh the page in the browser, you can see that our line breaks make
more visual sense, as shown in the following screenshot:

The line breaks are the same, no matter how wide or narrow the browser window is.

10.	Wrapping each line in its own tag also gives us the opportunity to style each
line a bit differently. Inside the index.html file, add classes for the line numbers to
each element:
<header>
 <h1>
 The Importance of Being
 Earnest:
 A Trivial Comedy
 for Serious People
 by Oscar Wilde
 </h1>
</header>

Chapter 9

[253]

11.	We can use these new classes to add some additional styles to the lines of text. For
example, let's take the first and third lines and make them green and set them in the
same font-family style that we used for the ampersand earlier. In the styles.
css file, add the following styles:
.line1, .line3 {
 color: #a1d36e;
 font-family: Baskerville, "Times, Times New Roman", serif;
}

Refresh the page in the browser, and you'll see that the first and third lines of text
are green and are in a serif typeface:

All lines of text still resize correctly to fill the width of the screen.

12.	So far, we've tried a few different techniques. What if we have a case where we want
to control just one line break in the text and allow the others to happen naturally?
If we add the author to our first example headline, our code will look as follows:
<header>
 <h1>Pride & Prejudice by Jane Austen</h1>
</header>

We'd always want to have a line break between the title and the author, but within
the title and within the author, we'd want the line breaks to happen naturally.

If we wrap the title and the author each in a element, like we did in the
previous example, each of those lines will resize to always fill the screen width. Pride
& Prejudice won't wrap to two lines at narrow screen widths.

The solution is to wrap each bit of text in its own tag and then call the slabText()
method on both elements. Change the HTML markup as follows:

<header>
 <h1>Pride & Prejudice</h1>
 <h2>by Jane Austen</h2>
</header>

Improving Typography

[254]

13.	Next, we need to add a few new styles to styles.css to account for
the <h2> element:
header h1, header h2 {
 line-height: 1.125;
 margin: 0;
 padding: 0;
 text-transform: uppercase;
}

h2 {
 font-size: 2.25em;
}

14.	The last thing to do is to modify the scripts.js file to call slabText() on both
levels of heading:

$(document).ready(function(){
 $('h1, h2').slabText();
});

Refresh the page in the browser and try changing the window width. You'll see that
both the title and the author name resize themselves to fit the width, and each of
them wraps to a new line when it seems best to do so.

What just happened?
We took a look at using the SlabText plugin to create large blocky headlines. We saw how to
control the line breaks in the headline by using tags inserted in the headline or by
using multiple HTML elements. SlabText takes care of recalculating the correct font size for
each line of the headline so that it fills the width of the container. We use the SlabText plugin
by selecting the elements we want to work with and calling the slabText() method.

Chapter 9

[255]

Pop quiz – sizing text in responsive designs
Q1. When we're using plugins such as FitText and SlabText to resize text, it's best to use this
functionality on which types of text?

1.	 The entire text on the page—everything should be sized together for consistency.

2.	 Just the text in the main content area.

3.	 Headlines and other short, important bits of text such as pull quotes.

4.	 Just the text in the footer.

Styling individual letters
Next, we'll take a look at the Lettering.js plugin, which gives us fine-tuned control over
individual characters. Just like the FitText and SlabText plugins, we'll reserve the power of
Lettering.js for headlines. Our webpage would suffer some pretty serious performance issues
if we tried to use it for all the text on the page. Stick to applying these text effects to text that
deserves extra attention—items such as headlines and pull quotes.

Time for action – using Lettering.js to style letters
Perform the following steps to use the Lettering.js plugin:

1.	 We'll get started by creating a basic HTML document and associated files and
folders, just like we did in Chapter 1, Designer, Meet jQuery. Inside the HTML
document, we need a headline to work with. It's nice to also have at least a bit of
text on the page as well in order to really understand how our headline will look
with other text on the page:
<div class="content">
 <h1>Alice’s Adventures in Wonderland</h1>

 <section>
 <h2>CHAPTER I. Down the Rabbit-Hole</h2>
 <p>Alice was beginning to get very tired of sitting by her
 sister on the bank, and of having nothing to do:
 once or twice she had peeped into the book her sister
 was reading, but it had no pictures or conversations in it,
 ‘and what is the use of a book,’ thought Alice
 ‘without pictures or conversations?’</p>
 </section>
</div>

Improving Typography

[256]

Note that we've used a typographically correct apostrophe in the headline. As we're
paying close attention to typography in this chapter, we'll try to use all the correct
characters instead of the shortcuts that so often get used on the Web.

2.	 We've already got default styles set for content in our default style sheet,
so we don't have to write any special styles just yet. We can head over to
http://letteringjs.com/ to get the download file and documentation for
the Lettering.js plugin. Follow the DOWNLOAD ON GITHUB link and then click on
Download ZIP to get the files you'll need.

3.	 Unzip the file, find jquery.lettering.js inside, and copy it to your own
scripts folder. Then, at the bottom of the HTML file, attach the Lettering.js
plugin after jQuery, but before your own scripts.js file, as follows:
<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.lettering.js"></script>
<script src="scripts/scripts.js"></script>

4.	 Open scripts.js and add the document ready statement, as follows:
$(document).ready(function(){
 // Our code will go here
});

5.	 Next, we need to call the lettering() method. We want to add the capabilities of
Lettering.js to our header, so we'll select the <h1> element:
$(document).ready(function(){
 $('h1').lettering();
});

6.	 If you refresh the page in the browser, you'll see that it appears as though nothing
has changed on the page. However, if you open the Inspector tools in Safari or
Chrome, or Firebug in Firefox, you'll see that each individual character in the
heading is now wrapped in a tag with a numbered class, as shown in the
following screenshot:

http://letteringjs.com/

Chapter 9

[257]

This is all that the Lettering.js plugin does. By wrapping each character in a span
and giving each a unique class, it enables us to write CSS to style each character
individually. But how can that be useful?

Improving Typography

[258]

7.	 First up, it allows us to fine-tune kerning. For example, the gap between the letter W
and the letter o in Wonderland is too large in many typefaces. We can close that up
by selecting o (char24) and applying a negative left margin. In your styles.css
file, add the following lines of code:
.char24 {
 margin-left: -0.05em;
}

Have a look at the following screenshot and find the difference in the words:

You can see in the bottom Wonderland text that the gap between W and o
is smaller and the spacing between W and o feels consistent with the spacing
between the remaining letters.

8.	 Another possibility is to add individual styles to each letter. We can add individual
colors, background colors, background images, padding, margins, and so on. We can
also use the new CSS3 capabilities to add box shadows, text shadows, transforms,
transitions, gradients, and so on. Let's take a look at adding a bit of whimsy to
the first word (ALICE'S) in our title. We'll get started by adding some styles that
will apply to all the letters in that word in the styles.css file, as shown in the
following code:
.char1, .char2, .char3, .char4, .char5, .char6, .char7 {
 border-radius: 50%;
 cursor: pointer;
 display: inline-block;
 margin: 0 0.125em;
 padding: 0.125em 0.25em;
 text-align: center;
 text-transform: uppercase;
 transition: all 300ms;
 width: 1em;
}

Chapter 9

[259]

9.	 Next, we'll add some individual styles for each of those letters, as follows:
.char1 {
background: #fa6f57;
-webkit-transform: rotate(7deg);
}
.char2 {
background: #42b0d8;
-webkit-transform: rotate(-5deg);
}
.char3 {
background: #a1d36e;
-webkit-transform: rotate(12deg);
}
.char4 {
background: #967dd9;
-webkit-transform: rotate(-10deg);
}
.char5 {
background: #e75845;
-webkit-transform: rotate(-5deg);
}
.char6 {
background: #55c1e7;
-webkit-transform: rotate(4deg);
}
.char7 {
background: #ac94e9;
-webkit-transform: rotate(13deg);
}

We'll also style the :hover pseudoclass for each letter to add a bit of
interactivity. When our site visitor moves their mouse over the letters, they'll
see a subtle animation:
.char1:hover {
background: #a1d36e;
-webkit-transform: rotate(-8deg);
}
.char2:hover {
background: #967dd9;
-webkit-transform: rotate(10deg);
}
.char3:hover {
background: #e75845;
-webkit-transform: rotate(-3deg);

Improving Typography

[260]

}
.char4:hover {
background: #55c1e7;
-webkit-transform: rotate(5deg);
}
.char5:hover {
background: #ac94e9;
-webkit-transform: rotate(10deg);
Improving Typography
}
.char6:hover {
background: #fa6f57;
-webkit-transform: rotate(-9deg);
}
.char7:hover {
background: #42b0d8;
-webkit-transform: rotate(-2deg);
}

Refresh the page in the browser and you'll see that the letters are encapsulated in
differently colored circles and tilted in different directions:

When you move your mouse over each letter, they rotate and change background
colors. Feel free to add your own styles and colors to each letter—the only limit to
what you can accomplish is your own imagination.

What just happened?
We applied the Lettering.js plugin to our headline. While the jQuery plugin itself doesn't
actually make any changes to the appearance of the page, it does make it possible for us to
style each individual letter with CSS. This allows us to fine-tune kerning and apply creative
styles. Take a look through the gallery on http://letteringjs.com/ to get a feel for
what's possible. The plugin itself is very simple to use—just one line of JavaScript gets you
up and running. After that, the remainder of the work is CSS.

http://letteringjs.com/

Chapter 9

[261]

Have a go hero – creating fancy effects with Lettering.js
Take a look through the gallery for Lettering.js (http://letteringjs.com) and see whether
you can recreate the effect of your choosing, or design your own special lettering effect and put
the Lettering.js plugin to work to create your design. Use gradients, transforms, 3D transforms,
box shadows, text shadows, border radii, or CSS animations to create your custom appearance.

Setting text on a curve
Using CSS3 transforms, it would technically be possible to set text on a curve using the
Lettering.js plugin. It would, however, require us to do quite a lot of calculations to get the
letters arranged just so.

Thankfully, Pedro Botelho, author of the ArcText plugin, has figured out a way to let
JavaScript do all the math for us. He started from the Lettering.js plugin, but then added the
ability to set text perfectly to a curve of your choosing. The result is the ArcText plugin, which
allows us to set any text on a curve of any radius.

Time for action – setting text on a curve with the ArcText plugin
Perform the following steps to set text on a curve:

1.	 We'll get started by creating a basic HTML document and associated files and
folders, just like we did in Chapter 1, Designer, Meet jQuery. Inside the HTML
document, we'll add a heading, as follows:
<div class="content">
 <header id="ex1">
 <h1>A Tale of Two Cities</h1>
 </header>
</div>

2.	 Next, we'll download the ArcText plugin. The plugin is available through a tutorial
on the Codrops blog by Tympanus. Head over to http://tympanus.net/
codrops/2012/01/24/arctext-js-curving-text-with-css3-and-
jquery/ and click on the DOWNLOAD SOURCE button to get the ZIP file.

Unzip the file. Inside the js folder, you'll find the jquery.arctext.js file—copy
this file to your own scripts folder.

http://letteringjs.com
http://tympanus.net/codrops/2012/01/24/arctext-js-curving-text-with-css3-and-jquery/
http://tympanus.net/codrops/2012/01/24/arctext-js-curving-text-with-css3-and-jquery/
http://tympanus.net/codrops/2012/01/24/arctext-js-curving-text-with-css3-and-jquery/

Improving Typography

[262]

3.	 At the bottom of the HTML file, attach the ArcText plugin, after jQuery but before
your own scripts.js file, as follows:
<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.arctext.js"></script>
<script src="scripts/scripts.js"></script>
</body>
</html>

4.	 Open the scripts.js file and add the document ready statement, as follows:
$(document).ready(function(){
 // Our code will go here
});

5.	 Next, we'll need to call the arctext() method. Select the headline and call the
arctext() method, as follows:
$(document).ready(function(){
 $('h1').arctext();
});

Refresh the page in the browser and you'll see that the headline is now curved.

6.	 The curve we get by default might not be exactly what we wanted, so let's take a
look at the options we have in the ArcText plugin. First, we have control over the
radius document ready of the circle used to set the text. Let's try setting that to
500, as shown in the following code:
$('h1').arctext({
 radius: 500
});

Chapter 9

[263]

The following screenshot shows the change in the arc:

This gives us a much more gentle arc and is generally more readable. Feel free to
experiment with different values to get the effect you'd like.

7.	 Next, we can control the direction of the arc. By default, the text arcs up, but we can
also make it arc down. We use the dir option—if set to 1, the curve bends upwards,
and if set to -1, the curve bends downwards:
$('h1').arctext({
 radius: 500,
 dir: -1
});

Don't forget to include a comma between different options but no comma after the
last option. The following screenshot shows the change in the arc:

8.	 By default, ArcText will rotate our letters to the curve. But we can turn that off if
we wish to with the rotate option. If we set it to false, as follows, each letter
remains vertical:
$('h1').arctext({
 radius: 500,
 rotate: false
});

Improving Typography

[264]

The following screenshot shows the change in the letters on setting the rotation of
letters to false:

9.	 The final option we have is one you're already familiar with. ArcText will optionally
resize the arced text to best fit the width of its container. To use this option, just set
fitText to true, as follows:
$('h1').arctext({
 radius: 500,
 fitText: true
});

Now, as you resize the browser window, the text will automatically resize to best fit
into the available space.

Note that as the text gets larger, the arc's radius increases.

10.	The arced headline looks just fine, but if we try to add other text to the page, we'll
find that it overlaps with the arced text, as shown in the following screenshot:

Chapter 9

[265]

It's simple enough to correct this issue by adding a margin to the headline that
contains the arced text. Inside styles.css, add the following style:
.content h1 {
 margin-bottom: 3em;
 text-align: center;
}

Now, if you refresh the page in the browser, you'll see that the body text added after
the headline no longer overlaps, as shown in the following screenshot:

You can experiment with the margin value to find the value that best works for your
text. Note that if you are using the fitText option, you'll want to set the margin in
ems so that it will adjust in proportion to the font size at different screen widths.

What just happened?
We used the ArcText plugin to set our text on a curve. The ArcText plugin automatically
calculates the rotation and position of each letter in the headline for us to set it on a perfect
arc. The options that are included allow us to control the direction of the arc and the radius
of the arc, whether or not the letters are rotated, and whether or not the arced text is resized
to best fit the screen. We gave all of these options a try. We also saw how we can adjust the
margin of the arced text to avoid any subsequent text from overlapping.

Improving Typography

[266]

Summary
In this chapter, we took at look at several options we have to work with text inside
responsive designs. We saw how we can make headlines resize automatically to fill the
available space using the FitText plugin. We learned how to use the SlabText plugin to
create blocky chunks of text. We tried using the Lettering.js plugin to fine-tune kerning
and apply styles to individual letters. Finally, we learned how to set text on an arc using
the ArcText plugin. Next, we'll explore some ways to present data beautifully in our
designs with interactive data grids, graphs, and charts.

10
Displaying Data Beautifully

While you might not consider displaying data to be all that exciting, it is often
crucial to present large amounts of data to site visitors in a way that makes it
easy for them to understand, explore, and interact with in new ways. Finding
new and better ways to display data helps to communicate complex principles
effectively. Allowing site visitors to interact with data enables them to make
their own discoveries. As we are presented with more and more data everyday,
the field of data visualization grows. Let's take a look at some simple things we
can do when working with large amounts of data to make it easier for our site
visitors to consume and understand.

In this chapter, we'll learn:

�� How to turn an ordinary table into an interactive data grid using the DataTables
jQuery plugin by Allan Jardine

�� How to customize the appearance and behavior of the data grid using the jQuery
UI ThemeRoller plugin

�� How to use the jQuery Visualize plugin to use tables of data to create charts
and graphs

Displaying Data Beautifully

[268]

A basic data grid
We'll get started by using the DataTables plugin to create a basic data grid, keeping the
default settings and the styles provided with the data grid. Data grids are most helpful when
we have large amounts of data to present, and the site visitors might want to filter and sort
the data in different ways to find the information they are looking for. Think, for example,
of a list of flights; one site visitor might be interested in sorting the flights by the departure
time to find the earliest possible departure, while another site visitor might want to sort the
flights by duration of the flight to find the shortest possible flight. Presenting the data in an
interactive data grid allows each site visitor to quickly and easily find just the information
they're looking for in a sea of information. For site visitors with JavaScript disabled, they'll
simply see a large table of data and will never know that they're missing out on the
interactive features. All of the information will still be available to them.

Time for action – creating a basic data grid
Let's take a look at how to turn a basic HTML table into an interactive data grid, as follows:

1.	 We'll get started as usual with our basic HTML file and associated files and folders,
just like we did in Chapter 1, Designer, Meet jQuery. We'll fill the <body> element of
our HTML document with the HTML markup for a large table of data. The DataTables
plugin requires us to be careful and correct with our table markup, otherwise the
DataTables features may not work as expected. We'll need to ensure that we use
a <thead> element for the table's header, and a <tbody> element for the table's
body. A <tfoot> element for the table's footer is optional. The following code is
an abbreviated sample of the HTML markup for a table of the all-time best-selling
books:
<table id="book-grid">
 <thead>
 <tr>
 <th>Title</th>
 <th>Author(s)</th>
 <th>Original Language</th>
 <th>First Published</th>
 <th>Approximate Sales</th>
 </tr>
 </thead>
 <tbody>

Chapter 10

[269]

 <tr>
 <td>A Tale of Two Cities</td>
 <td>Charles Dickens</td>
 <td>English</td>
 <td>1859</td>
 <td>200 million</td>
 </tr>
 <tr>
 <td>The Lord of the Rings</td>
 <td>J. R. R. Tolkien</td>
 <td>English</td>
 <td>1955</td>
 <td>150 million</td>
 </tr>
 ...
 </tbody>
</table>

In the sample code for the book, you'll find that the table contains a total of 127
books, each marked up just as these are. Note that we've added an id value
(book-grid) to the table element, we have used the <th> elements for the
heading of each column, and we've enclosed these elements in a <thead> element.
We've also used a <tbody> element to wrap all the rows in the table's body.

2.	 Next, we'll download the DataTables plugin. Head over to http://datatables.
net, where you'll find the plugin's downloads, documentation, and examples. Click
on the Download link in the menu to go to the download page. Then, click on the
Download DataTables button to download a ZIP file.

3.	 Unzip the file and take a look inside the folder. There's a folder of examples with
several different examples of the DataTables plugin in action. There's folder that
provides extra functionality for advanced data tables—we won't be using any of
those here. There's a media folder that contains images, css, and js resources.
Next, a Readme.md file contains information on the plugin's creator, information for
where to find the documentation, and so on. Finally, you'll find the license for the
plugin and a few other files we've seen before and can safely ignore for now.

http://datatables.net
http://datatables.net

Displaying Data Beautifully

[270]

4.	 We're going to be setting up a basic example, so we'll just need a couple of things
for our own project. First, copy the contents of the images folder from the
downloaded folder to your own images folder. Open the css folder and copy
jquery.dataTables.min.css to your own styles folder. Finally, in the js
folder, find the minified version of the plugin, jquery.dataTables.min.js, and
copy it to your own scripts folder.

5.	 Next, we'll get all the necessary files attached to our HTML page that contains our
table. In the <head> section of the document, attach the CSS file before your own
styles.css file, as follows:
<link rel="stylesheet" href="styles/jquery.dataTables.min.css"/>
<link rel="stylesheet" href="styles/styles.css"/>

6.	 Inside styles.css, we have to add just one style for our table to make sure it fills
the available width, and to adjust the text color for the table contents. The style is as
shown in the following code:
table {
 color: #333;
 width: 100%;
}

7.	 Next, at the bottom of the HTML document, attach the DataTables plugin in
between the jQuery file and your own scripts.js file, as shown in the
following code:
<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.dataTables.min.js"></script>
<script src="scripts/scripts.js"></script>
</body>
</html>

8.	 Next, open your scripts.js file, and inside a document ready statement,
select the table and call the dataTable() method, as follows:

$(document).ready(function(){
 $('#book-grid').dataTable();
});

Chapter 10

[271]

Now, if you refresh the page in the browser, you'll see that your table has been
transformed into a data grid. You can select the number of items to view at one time,
type into the search box to find specific table entries, and use the pagination controls
at the bottom-right corner of the table to page through the data table's rows.

What just happened?
We set up a basic HTML table and turned it into an interactive data grid by attaching a CSS
file and the DataTables plugin. We selected the table and called the dataTable() method
to activate the DataTables plugin.

That was pretty easy, wasn't it? Of course, chances are that this lavender design doesn't fit
the design of your site, so let's take a look at how we can customize the appearance of the
data table.

A customized data grid
The DataTables plugin is the first plugin we've used that has support for the jQuery UI
ThemeRoller plugin. jQuery UI is a collection of widgets and interactions that make building
complex applications easier and faster. Learning jQuery UI itself is beyond the scope of this
book, but we'll take a look at how to use the jQuery UI ThemeRoller to create a custom theme
for our data table. This same theme would apply to any jQuery UI widgets used on our page,
as well as any jQuery plugins being used that include support for the jQuery UI ThemeRoller.

Displaying Data Beautifully

[272]

Time for action – customizing the data grid
We'll pick up right from where we left off with our data table. If you'd like to save your basic
data grid example, just save a copy of the files we created. Then, perform the following steps
to customize the appearance of your data grid:

1.	 Head over to http://jqueryui.com/themeroller where we'll take a look at
the ThemeRoller plugin. Take a look at the following screenshot to see the page. In
the left-hand side column, you'll find the controls for selecting a predefined theme
or creating a custom theme, and the right-hand side wide column contains samples
of several different types of widgets.

http://jqueryui.com/themeroller

Chapter 10

[273]

2.	 Click on the Gallery tab in the left-hand side column, and you'll see that you have
dozens of choices of prebuilt ThemeRoller themes to choose from. As you click
on different samples, you'll see the sample widgets in the right-hand side column
update to reflect that style. I usually like to get started by selecting a prebuilt theme
that's reasonably close to the color scheme or appearance that I want, and then
I flip to the Roll Your Own tab to tweak it to suit my needs. For this example, I'm
going to start with the Cupertino style.

After flipping to the Roll Your Own tab, you'll see that there are settings for fonts,
colors, corners, headers, and so on. Make the adjustments you'd like in order to get
the theme to look just the way you'd like. Feel free to play and experiment. If you
go too far and get to something you don't like, it's easy to flip back to the Gallery
tab and select the prebuilt theme again, stripped of any of your customizations, and
then start again.

Any of your customizations will be lost if you reselect a prebuilt theme.
Once you get something you like, be sure to move on to step 3 to save it.

3.	 Once you've got your theme set up just the way you'd like, click on the Download
theme button.

You'll find yourself on the Download Builder page, which might seem a little
confusing. See, jQuery UI is so large and has so many different features to offer that
the developers realize that forcing everyone to download the entire thing would
be overkill. If you only wanted to use one widget, there'd be no need to download
all the other widgets and effects. This page lets you pick and choose different
components of jQuery UI so that you don't have to download more than you need.

In the Version section, go ahead and leave the version set to the default. Since we're
just getting a theme, we'll just use the latest stable version.

Uncheck the Toggle All checkbox in the Components section. We won't need to
download any of these components because we just want a theme.

Then, we'll leave the Theme settings at the bottom of the page at their defaults
and click on the Download button to download a ZIP file.

Displaying Data Beautifully

[274]

4.	 Unzip the file and take a look inside. You'll see that even though we got
the simplest download we could, we still have quite a few files shown in the
following screenshot:

We've got an external folder that contains the jQuery library, an images folder
that contains the images we'll need, and then several .js and .css files.

The only items we need are the images folder and the CSS for the theme you
selected, which is contained in a file named jquery-ui.theme.min.css. Copy
the CSS file to your styles folder and copy the images folder to your own styles
folder. This is important—please be sure to nest the jQuery UI images folder inside
your own styles folder.

5.	 Next, we'll attach our theme's CSS file to our HTML file. Inside the <head> section,
attach your theme's CSS file before the jquery.dataTables.min.css file we
attached in the example of basic data grid, as follows:
<link rel="stylesheet" href="styles/
 jquery.dataTables_themeroller.css">
<link rel="stylesheet" href="styles/jquery.dataTables.min.css">

6.	 Now, unfortunately, our theme's CSS file doesn't quite have all the styles we'll
need for a nicely-styled data grid. After all, the jQuery UI developers have no way
of knowing all the different types of widgets and plugins people will want to use,
so there's no possible way they could cover every single case. Luckily, the DataTables
plugin author, Allan Jardine, has already done some nice work for us in this area and
has provided a CSS file with the styles we'll need to get our themed data grid to look
its best.

Chapter 10

[275]

You can read up on styling the DataTables plugin in the documentation that Allan
Jardine has made available at http://datatables.net/styling/.

Back inside the DataTables plugin files, look inside the css folder that is inside
the media folder to find the jquery.dataTables_themeroller.css file. Copy
it to your own styles folder and update your <link> tag to link to point to this
new CSS file instead of jquery.dataTables.min.css, as follows:

<link rel="stylesheet" href="styles/jquery-ui.theme.min.css">
<link rel="stylesheet" href="styles/jquery.dataTables_themeroller.
css">

7.	 Now, we just have to make a small update to our JavaScript code. We have to tell
the dataTable() method that we want to use jQuery UI. Head back into your
scripts.js file and we'll add a pair of curly brackets and pass a key/value pair
to enable jQuery UI styling for our data table, as follows:
$(document).ready(function(){
 $('#book-grid').dataTable({
 'jQueryUI': true
 });
});

If you refresh the page in the browser now, you'll see that the data grid is now using
a style that's consistent with the widgets we saw on the jQuery UI ThemeRoller
page. Take a look at the following screenshot:

http://datatables.net/styling/

Displaying Data Beautifully

[276]

8.	 Let's make some adjustments to Open styles.css and add some styles to add
zebra-striping to the table as follows:
tr.odd td {
 background-color: #f5fbf0;
}

tr.even td {
 background-color: white;
}

I'm going with a pale green for odd rows and white for even rows to match the
customized Cupertino style I selected earlier. Feel free to choose colors that match
your own chosen theme.

9.	 Next, we'll change the color scheme for the currently sorted row. Add a style for this
to styles.css. I'm going to change mine to a medium green, as follows:
tr.odd td.sorting_1 {
 background-color: #d4ebbc;
}

10.	Finally, we can add the CSS code for the sorted even row in styles.css. I'm going
to change this to a light green, as follows:
tr.even td.sorting_1 {
 background-color: #e5f3d6;
}

You can select your own colors that coordinate with your own chosen theme.

Now, if you refresh the page in the browser, you'll see that the zebra-striping pattern
of the table fits with our ThemeRoller theme, as shown in the following screenshot:

Chapter 10

[277]

11.	Our table could use a bit of help style-wise, so let's add a few more of our own
custom styles to styles.css to get things to look a bit nicer, as shown in the
following code:
th {
 cursor: pointer;
 vertical-align: middle;
}

th, td {
 padding: 0.5em;
}

td {
 border-bottom: 1px solid #c3e3a2;
}

These styles help to add a bit of space inside the table cells, a subtle border between
rows, and help to fix the alignment of the table headers. The result is a much more
readable table. Have a look at the following screenshot:

Displaying Data Beautifully

[278]

12.	We might decide that for this particular data table, the search function doesn't make
sense. The DataTables plugin offers a way for us to disable individual features. To
disable the search box filtering, we'll pass another key/value pair, as follows:
$(document).ready(function(){
 $('#book-grid').dataTable({
 'jQueryUI': true,
 'searching': false
 });
});

Refresh the page in the browser and you'll see that the search box has disappeared,
as shown in the following screenshot:

13.	You've probably noticed that by default, DataTables is sorting our table by the first
column in the ascending order, from A to Z. This might be fine in some cases, but
in this case, since we're listing the all-time bestselling books, we probably want
to sort the table to show the books with the highest sales first. We'll pass in a new
key/value pair to specify which column should be used for the default sort and
which direction the sort should go, as follows:
$(document).ready(function(){
 $('#book-grid').dataTable({
 'jQueryUI': true,
 'searching': false,
 'order': [[4, 'desc']]
 });
});

The key we're using is called order, and the value is the column number and sort
direction inside two sets of square brackets. Don't forget that JavaScript starts
counting at zero, not one. So the fifth column in our table is actually column 4. Then,
we want the highest number at the top, so we pass desc for the descending order.

Refresh the page in the browser and you'll see that the books are now in order from
the highest sales to lowest sales. Also, note that this default sort order doesn't affect
your site visitor's ability to sort the table by any of the other columns in any order
they'd like. The site visitor can still interact with your table. We're just redefining the
default view in a way that makes the most sense for the data we're presenting.

Chapter 10

[279]

What just happened?
We took our basic data grid and took it a step further by customizing the appearance and
behavior of the plugin. We learned how to use the jQuery UI ThemeRoller to create a custom
theme for our data grid. Then, we learned how to disable searching the table and how to set
a default sort for the data grid.

Pop quiz – building correct tables
Q1. What is the correct order of elements in a table?

1.	 thead, tbody, tfoot.

2.	 tbody, thead, tfoot.

3.	 thead, tfoot, tbody.

4.	 tfoot, thead, tbody.

Showing graphs and charts
In some cases, a table is the ideal way of presenting a set of data. At other times, it would be
more helpful to see that data visualized as a chart or a graph. Unfortunately, charts and graphs
can be challenging to present in HTML. Without the help of JavaScript, we are stuck using static
images to present graphs, which can then be difficult to update when the data changes.

This is when jQuery comes to the rescue. In this section, we'll take a look at using the
Visualize plugin to turn tables of data into graphs and charts. The best part is that site visitors
without JavaScript enabled will still have access to the data in the form of an HTML table, so
nobody misses out on what we're trying to share. The data also remains accessible for those
who visit our page and who might have visual impairment or other disabilities that would
prevent them from consuming the data if it were presented in a static image.

Time for action – showing data in graphs and charts
Perform the following steps to create graphs and charts from HTML tables:

1.	 We'll get started as usual with our basic HTML file and associated files and folders,
just like we did in Chapter 1, Designer, Meet jQuery. Inside the <body> element of
the HTML document, we'll include a heading and a table with some numerical data,
as follows:
<div class="content">
 <h1>A Mad Tea-Party</h1>
</div>

Displaying Data Beautifully

[280]

<table id="menu">
 <caption>Menu Items</caption>
 <thead>
 <tr>
 <td>Title</td>
 <th scope="col">Total Items</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <th scope="row">Scones</th>
 <td>23</td>
 </tr>
 <tr>
 <th scope="row">Tea Sandwiches</th>
 <td>18</td>
 </tr>
 <tr>
 <th scope="row">Pastries</th>
 <td>19</td>
 </tr>
 <tr>
 <th scope="row">Tea</th>
 <td>28</td>
 </tr>
 </tbody>
</table>

Note that just as with the data table example, we're careful to use the correct
markup for our table, wrapping the header row in a <thead> element, and the
body of the table in a <tbody> element. Additionally, we've included the scope
attribute on all the <th> elements to specify whether they apply to the column or
the row in which they are placed. Notice also that we included an id attribute for
the table to make it easy to select with jQuery later.

2.	 Next, we'll include some CSS to style the table. Open your styles.css file and add
the following lines of code:
table {
 border-collapse: collapse;
 margin: 2.531em 0;
}

td, th {

Chapter 10

[281]

 background: white;
 border: 1px solid #ddd;
 color: #444;
 padding: 0.5em 1em;
 text-align: left;
}

thead th, thead td {
 background-color: #a1d36e;
 border-color: #8dc059;
}

caption {
 margin: 0 0 0.5em 0;
}

caption {
 font-size: 1.5em;
}

Feel free to adjust these styles to suit your own tastes. Now, if we view the page
in a browser, we see a nicely styled table, as shown in the following screenshot:

This table effectively communicates our data, and is accessible to anyone who might
visit the page, no matter what their abilities or the capabilities of their device and
browser are. However, we can progressively enhance the experience.

Displaying Data Beautifully

[282]

3.	 The files for the jQuery Visualize plugin itself are available on GitHub at
https://github.com/filamentgroup/jQuery-Visualize. Click on
the Download ZIP button to grab a copy of the files.

While the Visualize plugin and the examples are available for download at
GitHub, the documentation for the plugin can be found on the Filament
Group's website at http://filamentgroup.com/lab/update_to_
jquery_visualize_accessible_charts_with_html5_from_
designing_with/.

4.	 Unzip the downloaded file. Inside, you'll find some example files, images, CSS, and
the necessary JavaScript files.

Inside the js folder, find the visualize.jQuery.js file and copy and paste it to
your own scripts folder. Inside the css folder, find the visualize.css file and
copy that to your own styles folder. In addition to this CSS file, which includes the
basic styles needed to display the charts and graphs, you'll also need to choose one
of the color scheme files. Visualize comes with both a dark and light color scheme.
We'll go with the light color scheme for this example, so also copy visualize-
light.css to your own styles folder.

5.	 In your index.html file, attach the visualize.jQuery.js file at the bottom
after jQuery but before your own scripts.js file, as follows:
<script src="scripts/jquery.js"></script>
<script src="scripts/visualize.jQuery.js"></script>
<script src="scripts/scripts.js"></script>
</body>
</html>

In the <head> section of the document, attach the visualize.css file as well
as our color scheme styles, before your own styles.css file, as shown in the
following code:

 <title>Chapter 10: Charts and Graphs</title>
 <link rel="stylesheet" href="styles/visualize.css">
 <link rel="stylesheet" href="styles/visualize-light.css">
 <link rel="stylesheet" href="styles/styles.css">
</head>

6.	 Next, open your scripts.js file so we can write some JavaScript. Get started by
adding the document ready statement, as follows:
$(document).ready(function(){
 // Our code will go here
});

https://github.com/filamentgroup/jQuery-Visualize
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/

Chapter 10

[283]

7.	 Select the table element that contains our data, and call the visualize() method:
$(document).ready(function(){
 $('#menu').visualize();
});

Refresh the page in the browser, and you'll see that a graph has been inserted after
the table in the document, as shown in the following screenshot:

The <caption> tag for the table is repurposed as the title of the graph. The text we
included in the table's <th> elements are used as labels for the data in the graph.

The chart works and accurately represents our data, but it doesn't fit our design very
well. Let's take a look at how we can customize the appearance of the chart.

8.	 Just like several other jQuery plugins we've used so far, the Visualize plugin includes
several options we can use to customize the charts and graphs it creates. First up,
we can specify a set width and height for the graph:
$('#menu').visualize({
 width: '460px',
 height: '205px'
});

Displaying Data Beautifully

[284]

9.	 Next, we can specify what colors should be used for each of the bars in our chart
with the colors option. The colors option accepts an array of colors. Remember that
an array is just a collection. Specifying an array of colors looks like this:
$('#menu').visualize({
 width: '460px',
 height: '205px',
 colors: ['#e75845','#967dd9','#8dc059','#42b0d8']
});

We'll wrap the array, or collection of colors, in square brackets [...]. Each color
value is wrapped in quotes and a comma separates each color value.

10.	We can also specify the amount of space between each bar in the chart with the
barMargin option. Let's add some extra white space around each bar in the chart,
as follows:
$('#menu').visualize({
 width: '460px',
 height: '205px',
 colors: ['#e75845','#967dd9','#8dc059','#42b0d8'],
 barMargin: 20
});

Now, refresh the page in the browser and you'll see our customizations take effect,
as shown in the following screenshot:

Chapter 10

[285]

11.	We can customize our graph even further by modifying the CSS code. In the <head>
section of index.html, remove the visualize-light.css file, as follows:
 <title>Chapter 10: Charts and Graphs</title>
 <link rel="stylesheet" href="styles/visualize.css">
 <link rel="stylesheet" href="styles/styles.css">
</head>

Rather than using the style as provided to us with the plugin, we'll write our own
CSS file. This is often an option with jQuery plugins. Just use the provided CSS file as
a guide for creating your own.

12.	Open your styles.css file. We'll get started with some general styles for the graph
container. Add the following styles:
.visualize {
 margin: 3.797em 0;
 padding: 3.797em 2.531em 5.695em;
 background: white;
 -moz-border-radius: 3px;
 -webkit-border-radius: 3px;
 border-radius: 3px;
}

.visualize canvas {
 border: 1px solid #aaa;
 margin: -1px;
 background: #fff;
}

13.	Next up, we'll add some custom styles for the labels that appear on the graph,
as follows:
.visualize-labels-x,
.visualize-labels-y {
 font-size: 0.75em;
 left: 30px;
 top: 70px;
 z-index: 100;
}

.visualize-pie .visualize-labels {
 left: 40px;
 position: absolute;
 top: 70px;
}

Displaying Data Beautifully

[286]

.visualize-labels-x li span.label,

.visualize-labels-y li span.label {
 color: #444;
 padding-right: 5px;
}

14.	Now, we'll add some styles for the lines, graph information, and the graph title,
as follows:
.visualize-labels-y li span.line {
 border-style: solid;
 opacity: .7;
}

.visualize .visualize-info {
 background: none;
 border: 0;
 opacity: 1;
 position: static;
}

.visualize .visualize-title {
 color: #333;
 font-size: 1.688em;
 font-weight: bold;
 left: 20px;
 margin-bottom: 0;
 position: absolute;
 right: 20px;
 text-align: center;
 top: 20px;
}

15.	Finally, we'll add some styles for the key:
.visualize ul.visualize-key {
 background: #efefef;
 bottom: 1em;
 color: #aaa;
 left: 0;
 padding: 0.75em;
 position: absolute;
 right: 0;
 z-index: 10;
}

Chapter 10

[287]

.visualize ul.visualize-key li {
 float: left;
}

.visualize ul.visualize-key .visualize-key-color {
 display: inline-block;
 height: 1em;
 margin: 0 0.25em 0 0;
 position: static;
 vertical-align: baseline;
 width: 1em;
}

.visualize ul.visualize-key .visualize-key-label {
 color: #333;
}

Now, refresh the page in the browser, and you'll see that our graph is completely
customized and matches the design of our page perfectly. Have a look at the
following screenshot:

Displaying Data Beautifully

[288]

What just happened?
We used the jQuery Visualize plugin to take data in an HTML table and present it as a graph
on the page. The <caption> tag for the table is repurposed as the title of the graph, and
the table headings that we included in the table's <th> elements repurposed for the labels
of the data points in the graph. We saw how we could customize various options in the graph
and how we could further customize the graph by writing our own CSS code to style the
assorted components of the graph. Now, let's take a look at how we can do even more with
the charts and graphs generated by the Visualize plugin.

Creating pie charts
We've already taken a look at some of the options available to us with the jQuery Visualize
plugin, but there's even more we can do. In this section, we'll take a look at how we can use
the plugin to create pie charts.

Time for action – creating a pie chart
We'll keep working with the files we set up in the previous section. Perform the following
steps to create a pie chart with the Visualize plugin:

1.	 Inside the HTML file, add a second HTML table that contains some data, as shown in
the following code:
<table id="eaten">
 <caption>Who had what?</caption>
 <thead>
 <tr>
 <td> </td>
 <th scope="col">Scones</th>
 <th scope="col">Tea Sandwiches</th>
 <th scope="col">Pastries</th>
 <th scope="col">Tea</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <th scope="row">Alice</th>
 <td>1</td>
 <td>3</td>
 <td>1</td>
 <td>2</td>
 </tr>
 <tr>
 <th scope="row">Mad Hatter</th>
 <td>0</td>
 <td>6</td>

Chapter 10

[289]

 <td>3</td>
 <td>1</td>
 </tr>
 <tr>
 <th scope="row">Dormouse</th>
 <td>1</td>
 <td>6</td>
 <td>0</td>
 <td>3</td>
 </tr>
 <tr>
 <th scope="row">March Hare</th>
 <td>2</td>
 <td>3</td>
 <td>2</td>
 <td>1</td>
 </tr>
 </tbody>
</table>

Just like last time, we've been careful to use appropriate table markup, and have
included <thead>, <tbody>, and <th> elements where appropriate. This time,
our dataset is a bit more complex, including multiple columns as well as rows
of data. Refresh the page in the browser to view the new table, as shown in the
following screenshot:

2.	 Next, open your scripts.js file. Inside the document ready statement, select the
new table and call the visualize() method, as follows:
$(document).ready(function(){
 $('#menu').visualize({
 ...
 });

 $('#eaten').visualize();
});

Displaying Data Beautifully

[290]

3.	 Now, we'll pass some options to the new chart, as shown in the following code.
First up, let's specify that we want to work with a pie chart this time, rather than a
bar graph.
$('#eaten').visualize({
 type: 'pie'
});

The Visualize plugin includes four options for graph and chart types: bar, pie, line,
and area.

4.	 We'll set a width and height for the pie chart, and include a set of colors to be used
for the segments of the pie, as follows:
$('#eaten').visualize({
 type: 'pie',
 width: '460px',
 height: '205px',
 colors: ['#e75845','#967dd9','#8dc059','#42b0d8']
});

Refresh the page in the browser, and you'll see our pie chart displayed after the
second table, as shown in the following screenshot:

Chapter 10

[291]

5.	 However, what if we don't want to display both the table and the chart? If our site
visitor has JavaScript enabled, then we want to hide the table and display just the
chart. Site visitors without JavaScript enabled will just see the table. The following
code shows how we can do that:
$('#eaten').addClass('accessHide').visualize({
 type: 'pie',
 width: '460px',
 height: '205px',
 colors: ['#e75845','#967dd9','#8dc059','#42b0d8']
});

We just add another method to our chain. The CSS file included with the Visualize
plugin includes a CSS class called accessHide, which positions our table off the
screen. The data included in the table is still accessible to screen readers, but won't be
seen within the page. Refresh the page in the browser and you'll see that the table is
no longer visible—we just see the pie chart, as shown in the following screenshot:

6.	 Our pie chart looks nice, but it's a wee bit on the small side. Let's decrease the white
space around the pie chart. We can do that using the pieMargin option, as shown
in the following code:
$('#eaten').addClass('accessHide').visualize({
 type: 'pie',
 width: '460px',
 height: '205px',
 colors: ['#e75845','#967dd9','#8dc059','#42b0d8'],
 pieMargin: 10
});

Displaying Data Beautifully

[292]

Now, refresh the page in the browser and you'll see that the white space around the
pie chart is reduced. Take a look at the following screenshot:

This helps our pie chart to appear a tad bigger. The default setting is 20 pixels,
so we've cut that in half by setting it to 10.

7.	 So far, we've only placed our chart either directly after or in place of our table.
However, we can also move the chart around the page, and display it wherever
we wish. Let's add a few paragraphs of text beneath the HTML tables in the index.
html file:
<div class="content">
 <p>
 There was a table set out under a tree in front of
 the house, and the March Hare and the Hatter were
 having tea at it: a Dormouse was sitting between them,
 fast asleep, and the other two were using it as a
 cushion, resting their elbows on it, and talking over
 its head. ‘Very uncomfortable for the
 Dormouse,’ thought Alice; ‘only,
 as it's asleep, I suppose it doesn't mind.’
 </p>
 <p>
 The table was a large one, but the three were all crowded
 together at one corner of it: ‘
 No room! No room!’ they cried out when
 they saw Alice coming. ‘There's
 PLENTY of room!’ said Alice indignantly,
 and she sat down in a large
 arm-chair at one end of the table.</p>
 ...
</div>

Chapter 10

[293]

8.	 Somewhere inside the block of text, we'll place a <div> element that will act as a
placeholder for our chart, as follows:
<div class="content">
 <p>
 There was a ...
 </p>
 <div id="pie-container" class="chart left"></div>
 <p>
 The table was ...</p>
 ...
</div>

We'd like to display our pie chart inside this <div> element. If the <div> element
has no content, then it collapses to zero width and zero height, taking up no space in
our HTML document.

9.	 Next, open your styles.css file and add some styles for the newly created <div>
element, as follows:
.chart.left {
 float: left;
 margin: 0 1em 0.5em 0;
}

.chart.right {
 float: right;
 margin: 0 0 0.5em 1em;
}

10.	Now, inside the scripts.js file, we'll use jQuery's appendTo() method to move
the newly generated pie chart to the <div> element we just created, as shown in
the following code. After moving the chart, we do have to trigger a refresh.
$('#eaten').addClass('accessHide').visualize({
 type: 'pie',
 width: '460px',
 height: '205px',
 colors: ['#e75845','#967dd9','#8dc059','#42b0d8'],
 pieMargin: 10
}).appendTo('#pie-container').trigger('visualizeRefresh');

We've selected the id attribute of the <div> element to move our chart there.
Then, we used the trigger() method and passed it visualRefresh to ensure
that our chart displays correctly.

Displaying Data Beautifully

[294]

Refresh the page in the browser, and you'll see that rather than appearing at the top
of the document, the pie chart is now displayed inside our text block, as shown in
the following screenshot:

We're getting closer, but our pie chart needs a bit of style adjustment. Now that
we're trying to include it inside a text area, the large margins we specified above
and below the chart don't work. Also, the style of the key and labels seems a bit off.

11.	Open up styles.css. First, we'll add a bit of CSS to remove those large top and
bottom margins if the pie chart appears inside a block of text:
.chart .visualize {
 margin: 0;
}

12.	The misalignment of the pie chart's labels and key are because of some styles set
for our text block that are interfering with the styles set for the pie chart. Just add a
bit of CSS code to override those, as shown in the following code snippet:

.chart .visualize ul {
 margin: 0;
}

Chapter 10

[295]

Now, if you refresh the page in the browser, you'll see that the pie chart is displayed
as expected, and is seamlessly integrated into our block of text:

Using charts and graphs in responsive designs
We've learned how to create charts and graphs to represent tabular data, but if you've tried
resizing your browser window, you would have likely noticed that the size of the charts and
graphs remains fixed, making them less than ideal for use in responsive designs. While we
can't make the charts and graphs completely fluid, we can detect the ideal width and height
based on our browser window's width, and adjust accordingly.

Time for action – calculating the ideal size for charts
and graphs

We'll keep working with the files we created in the previous section. Perform the following
steps to dynamically set the width and height of our charts and graphs according to the
width of the browser window:

1.	 Open your scripts.js file. We'll want to add a few quick calculations. First up,
let's set a preferred width for our graphs and charts, as follows:
$(document).ready(function(){
 var preferredWidth = 450;

Displaying Data Beautifully

[296]

 $('#menu').visualize({
 ...
 });

 $('#eaten').addClass('accessHide').visualize({
 ...
 }).appendTo('#pie-container').trigger('visualizeRefresh');

});

We created a variable named preferredWidth. Recall that a variable is just a
container—in this case, the variable contains the size in pixels that we'd like our
charts and graphs to appear by default.

2.	 Next, we need to get the actual width of the available content area on our page.
As our CSS code is fluid, this will change depending on the width of the browser
window. The exact element you use to calculate this will change depending on what
your HTML markup looks like. In this case, we can use the width of the paragraphs
inside the text block, as shown in the following code:
$(document).ready(function(){
 var preferredWidth = 450,
 contentWidth = $('.content p:first').width() - 83;

 $('#menu').visualize({
 ...
 });

 $('#eaten').addClass('accessHide').visualize({
 ...
 }).appendTo('#pie-container').trigger('visualizeRefresh');
});

We're selecting the first paragraph in the text block, and getting its width. Then,
because the graphs have a considerable amount of padding around them, we're
subtracting 83 pixels from that width to allow for the padding.

3.	 Now that we've got both the preferredWidth variable and the actual content
width, it's just a simple matter of comparing the two to calculate the correct width.
Take a look at the following code:
$(document).ready(function(){
 var preferredWidth = 450,
 contentWidth = $('.content p:first').width() - 83,
 finalWidth = (preferredWidth > contentWidth) ?
 contentWidth : preferredWidth;

Chapter 10

[297]

 $('#menu').visualize({
 ...
 });

 $('#eaten').addClass('accessHide').visualize({
 ...
 }).appendTo('#pie-container').trigger('visualizeRefresh');
});

We've seen this type of statement before. Recall that this is called a ternary
operator. First, we're comparing our preferredWidth variable with our
contentWidth variable to see which is wider. If the preferredWidth
variable is wider, then we want to set the finalWidth variable equal to
contentWidth—as preferredWidth is too wide for our page. Otherwise,
we can use our preferredWidth.

4.	 Next, we need to calculate the height of the charts and graphs. We'll make it half the
width, as follows:
$(document).ready(function(){
 var preferredWidth = 450,
 contentWidth = $('.content p:first').width() - 83,
 finalWidth = (preferredWidth > contentWidth) ?
 contentWidth : preferredWidth,
 finalHeight = finalWidth/2 + 'px';

 $('#menu').visualize({
 ...
 });

 $('#eaten').addClass('accessHide').visualize({
 ...
 }).appendTo('#pie-container').trigger('visualizeRefresh');
});

5.	 We just have to add the measurement to the end of the finalWidth variable,
as follows:
$(document).ready(function(){
 var preferredWidth = 450,
 contentWidth = $('.content p:first').width() - 83,
 finalWidth = (preferredWidth > contentWidth) ?
 contentWidth : preferredWidth,
 finalHeight = finalWidth/2 + 'px',
 finalWidth += 'px';

Displaying Data Beautifully

[298]

 $('#menu').visualize({
 ...
 });

 $('#eaten').addClass('accessHide').visualize({
 ...
 }).appendTo('#pie-container').trigger('visualizeRefresh');
});

6.	 Now that we've calculated the best possible value for the width and height of our
charts, we just have to insert those values as the width and height options inside
each visualize() method:
$('#menu').visualize({
 width: finalWidth,
 height: finalHeight,
 colors: ['#e75845','#967dd9','#8dc059','#42b0d8'],
 barMargin: 20
});

$('#eaten').addClass('accessHide').visualize({
 type: 'pie',
 width: finalWidth,
 height: finalHeight,
 colors: ['#e75845','#967dd9','#8dc059','#42b0d8'],
 pieMargin: 10
}).appendTo('#pie-container').trigger('visualizeRefresh');

7.	 If you refresh the page in the browser, you'll see that the charts and graphs resize
to best fit in the available area, as shown in the following screenshot:

If you resize the browser window, you'll have to refresh the page in order for the
charts and graphs to recalculate their sizes. It's not quite as fluid as responsive
designs typically are, but it's much nicer than just allowing the charts and graphs to
always appear the same size.

Chapter 10

[299]

What just happened?
While we can't make our charts and graphs as fluid as other elements on the page in a
responsive design, we can improve the experience a bit by calculating the best possible size
for the charts and graphs when the page is first loaded into the browser. We learned how to
compare our preferred width with the actual width available for displaying the charts and
graphs and set the correct value for both the width and height accordingly. It's not a perfect
solution to displaying charts and graphs in a responsive design, but it's a big improvement over
always displaying the charts and graphs at a single fixed size, regardless of the window width.

Summary
In this chapter, we learned how to turn an ordinary HTML table into an interactive data grid.
Our site visitors can now take advantage of sorting different columns of the table to view the
data in different ways. Site visitors with JavaScript disabled simply see an ordinary HTML table
that contains all of the data. Data grids aren't terribly exciting, but they can make dealing with
large amounts of data worlds easier for your site visitors. We also took a look at how to display
numerical tabular data in charts and graphs, adding visual interest to our pages. Next up, we'll
take a look at using scrolling effects in our pages, including parallax effects.

11
Reacting to Scrolling

We can create some fun effects by reacting to our site visitors when they
scroll up/down through our pages. As they scroll down the page, we can
create parallax effects, animate various elements on the page, and trigger
other changes on the page as well. This helps our pages to feel dynamic
and alive—we can turn the simple act of scrolling through a page to read
the content into an interactive one.

In this chapter, we will:

�� Set up an HTML document (page) divided into sections

�� Create a parallax effect in one of the sections on the page

�� Trigger an animation in one of the sections on the page

�� Add and activate navigation for the page that also reacts to scrolling

Setting up the document
The first step in creating a page with scrolling effects is to plan an HTML page divided
into clear sections. In this example, we're going to set up a weather forecast—each day
or night will be one block with its own icon, text, and background.

Reacting to Scrolling

[302]

Time for action – setting up the HTML file
Perform the following steps to set up an HTML document that is ideal for adding the
scrolling effects:

1.	 We'll get started as usual with our basic HTML file and associated files and folders,
just like we did in Chapter 1, Designer, Meet jQuery. Note that because we're going
to be creating several full-width sections, the CSS file for this chapter is slightly
modified from the starting CSS file we used in the previous chapters. You'll find
the correct version of the CSS file in the code samples for the book.

Inside the HTML document, we'll create a series of the <section> elements,
each of which will contain the day or night, an icon, and a short weather forecast.
To do this, take a look at the following code:
<section class="scrollblock" id="monday">
 <div class="day">Monday</div>
 <div class="forecast">72° Sunny</div>
 <div class="icon"><img src="images/Sun.svg" alt
 ="Sunny" width="300" height="300"></div>
</section>

<section class="scrollblock" id="moneve">
 <div class="day">Monday evening</div>
 <div class="forecast">62° Clear</div>
 <div class="icon"><img src="images/Moon.svg" alt
 ="Clear" width="300" height="300"></div>
</section>

<section class="scrollblock" id="tueday">
 <div class="day">Tuesday</div>
 <div class="forecast">67° Cloudy</div>
 <div class="icon"><img src="images/Cloud.svg" alt
 ="Cloudy" width="300" height="300"></div>
</section>

<section class="scrollblock" id="tueeve">
 <div class="day">Tuesday evening</div>
 <div class="forecast">58° Rainy</div>
 <div class="icon"><img src
 ="images/Cloud-Drizzle-Moon.svg" alt
 ="Rainy Night" width="300" height="300"></div>
</section>

<section class="scrollblock" id="wedday">
 <div class="day">Wednesday</div>

Chapter 11

[303]

 <div class="forecast">69° Windy</div>
 <div class="icon" id="wind"><img src
 ="images/Cloud-Wind.svg" alt
 ="Cloudy Windy" width="300" height="300"></div>
</section>

<section class="scrollblock" id="wedeve">
 <div class="day">Wednesday evening</div>
 <div class="forecast">57° Clearing</div>
 <div class="icon"><img src
 ="images/Cloud-Fog-Moon.svg" alt
 ="Clearing" width="300" height="300"></div>
</section>

Note that every <section> element has the class scrollblock, but every
element also has a unique id attribute, which will help us to target just the
block with either JavaScript or CSS.

The code samples provided with the book use the excellent Climacons from Adam
Whitcroft, which are available for download at http://adamwhitcroft.com/
climacons/. I'm using the .svg format in this tutorial—if your browser doesn't yet
support SVG images, you'll need to use the source files provided by Adam Whitcroft
to create .png files.

2.	 Next, we'll add some styles. Open your styles.css file and get started by adding
some general styles for the page and for each of our forecast blocks, as follows:
html, body {
 height: 100%;
}

.scrollblock {
 left: 0;
 min-height: 28.833em;
 position: relative;
 right: 0;
}

.day {
 font-size: 2.25em;
 left: 1em;
 position: absolute;
 top: 1em;
}

http://adamwhitcroft.com/climacons/
http://adamwhitcroft.com/climacons/

Reacting to Scrolling

[304]

.forecast {
 bottom: 1em;
 font-size: 2.25em;
 position: absolute;
 right: 1em;
}

.icon {
 left: 50%;
 position: absolute;
 top: 50%;
}

.icon img {
 margin: -50% 0 0 -50%;
}

These styles set up a minimum height for each block, then position the day, icon,
and forecast within each block. If you look at our page in the browser, you'll see
that the elements are in place, as shown in the following screenshot:

The page is shaping up, but we don't have any visual divide between the different
sections on the page. Let's take care of that in the next steps.

3.	 In styles.css, let's add a different background color to each section of the
forecast, as follows:
#monday {
 background: #7ec0ee;
}

#moneve {
 background: #003366;
}

Chapter 11

[305]

#tueday {
 background: #999;
}

#tueeve {
 background: #333;
}

#wedday {
 background: #6a93b1;
}

#wedeve {
 background: #003366;
}

Now, it's easier to see the separation between the blocks as you scroll down through
the page.

4.	 In addition to the background colors, let's also add background images to some of
the blocks, as follows:
#moneve {
 background: #003366 url(../images/starrysky.jpg)
 50% 50% / cover fixed no-repeat;
}

#tueday {
 background: #999 url(../images/cloudysky.jpg)
 50% 50% / cover fixed no-repeat;
}

#wedeve {
 background: #003366 url(../images/sunset.jpg)
 50% 50% / cover fixed no-repeat;
}

We're using the shorthand for backgrounds here. Recall that writing out all
the background values on one line is just a shorthand way of writing them out
individually, as shown in the following code snippet:
#moneve {
 background-color: #003366;
 background-image: url(../images/starrysky.jpg);
 background-position: 50% 50%;
 background-size: cover;

Reacting to Scrolling

[306]

 background-attachment: fixed;
 background-repeat: no-repeat;
}

There is one new property that you might not recognize: background-size.
This is a newly-provided background property introduced by CSS3. We can specify
either a fixed size for our background image, such as 100px, or we can use cover
to indicate that the background image should cover the entire area. You can read up
on the new background-size property at CSS3.info (http://www.css3.info/
preview/background-size/).

If you refresh the page in the browser, you'll see that every section is nicely
separated from the others by its background color or image, and the images
have a nice effect as we scroll down the page—thanks to the combination of
background-size: cover with background-attachment: fixed.

Chapter 11

[307]

What just happened?
We set up our HTML document and got it ready to add some snazzy scrolling effects.
We added a different background color or image to each block of our weather forecast
and used the new CSS background-size: cover property along with background-
attachment: fixed to create a nice background scrolling effect even for those site
visitors who have JavaScript disabled. Next, we'll look at adding a parallax scrolling effect
to one of the sections on the page.

Setting up HTML for scrolling animations
Now that we have our HTML set up, it's time to start getting things ready to add animations.
We'll be using the Scrollorama plugin from John Polacek. We just have some preliminary
work to do before we get ready to add in our fancy effects.

Time for action – setting up HTML for Scrollorama
Perform the following steps to get the page set up to add scrolling animations:

1.	 Head over to http://johnpolacek.github.io/scrollorama/. You'll find
a link to download a ZIP file right near the top of the page, but feel free to take a
moment to scroll down the page to see demos of the different types of animations
that are possible. When you're done, go ahead and download the file and unzip it.

Inside, you'll find a couple of sample CSS style sheets, a sample index.html file, a
README file, a .json file, and some JavaScripts. The JavaScripts include jQuery itself,
the Scrollorama plugin, and the Lettering.js plugin. Yep, this is the same Lettering.
js plugin that we used in Chapter 9, Improving Typography. In this case, the plugin's
author, John Polacek, used it to create animations on individual letters in the samples
provided with the plugin.

The only file we'll need here is jquery.scrollorama.js. Go ahead and copy it to
your own scripts folder.

2.	 Next, at the bottom of your HTML file, attach the Scrollorama plugin after jQuery but
before your own scripts.js file, as follows:
<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.scrollorama.js"></script>
<script src="scripts/scripts.js"></script>

3.	 We'll implement our reliable class-switching trick to apply different CSS to the page,
whether or not JavaScript is enabled. In the HTML file, add a class attribute of
jsOff to the <html> element, as shown in the following code:
<!DOCTYPE html>
<html class="jsOff">
<head>

http://johnpolacek.github.io/scrollorama/

Reacting to Scrolling

[308]

4.	 Then, in your scripts.js file, add the document ready statement:
$(document).ready(function() {
 // Our code goes here
});

5.	 Inside the document ready statement, remove the jsOff class and add a jsOn class
instead, as follows:
$(document).ready(function() {

 /* CSS classes for JS state */
 $('html').removeClass('jsOff').addClass('jsOn');

});

Notice that we've included a comment before the line of text we just added. Our
JavaScript file will ultimately contain quite a bit of code, so we need to write little
notes to ourselves or to any other developer who might work on this file about what
each bit of the code does.

6.	 Next, we'll make each block of our weather forecast the same height as the window.
If our site visitor has a large screen, we should take advantage of it to really showcase
our animations. If they have a smaller screen, we'll want to adjust to ensure that the
forecast fits nicely without a lot of extra scrolling required. First, we have to calculate
the height of the window. Later on, we'll also need the width of the window, so we'll
go ahead and measure it now, as shown in the following code:
 /* CSS classes for JS state */
 $('html').removeClass('jsOff').addClass('jsOn');

 /* Vars that we'll need */
 var win = $(window),
 winHeight = win.height(),
 winWidth = win.width();

If we're setting up more than one variable, then we can just separate them with
commas, and we don't have to keep typing var repeatedly.

First, we set up a variable for the window since we're using it twice—once to get the
width and once to get the height. Next, we use jQuery's height() method to quickly
grab the window's height and jQuery's width() method to grab the width. Now, we
have these values safely stored away for easy use later on in our code.

Chapter 11

[309]

7.	 We'll select each block of our weather forecast and set its height to the height of the
window, as follows:
 /* Vars that we'll need */
 var win = $(window),
 winHeight = win.height(),
 winWidth = win.width();

 /* Set each block to window height */
 $('.scrollblock').css('height', winHeight);

Each block has a class of scrollblock, so we use this to select the all the blocks.
Then, we use jQuery's css() method to set the height of each block.

What just happened?
We downloaded the Scrollorama plugin and attached it to our page. Then, we did some
initial setting up of our document and JavaScript in order to get ready to add animation
effects. We used our handy class-switching trick to enable us to style the page with different
CSS, depending on whether or not JavaScript is enabled. Then, we selected each block of our
weather forecast and set the height to the height of the window. If you scroll through the
page now, you'll see that each block is equal to the height of the window.

Adding a parallax effect
If you look out of the window while riding in a car or a train, you'll notice that the grass and
trees that are closer to you seem to go by much faster than the trees or mountains that are
further away from you. There's a complex body of geometry that explains this effect, but
luckily, we don't have to dig into that in great detail to be able to recreate this effect on our
web pages.

As we scroll down the page, the elements on the page will go by at the speed that our site
visitor is scrolling. We can then react to that scrolling action to make other elements on the
page appear to go by faster or slower than the page elements that are simply moving with
the scroll.

Reacting to Scrolling

[310]

This sounds complicated, but it's as simple as shifting the vertical position of elements within
their container while scrolling. For example, if an element starts at the top of its container
and then moves towards the bottom of the container while I scroll by, it will appear to be
moving more slowly than the other elements on the page. Vice versa, if it moves from near
the bottom to near the top, it will appear to go by more quickly than the other elements on
the page.

The circle will move with the page when it's scrolled as expected. The square will be
animated towards the top of the page.

As we scroll by, we'll animate the position of the square so that it moves towards the top of
the page. The square appears to move more quickly than the circle as we scroll.

We'll take advantage of this optical illusion to create three layers of clouds that will move by
at different speeds as we scroll past our cloudy weather forecast on Tuesday. We'll reuse the
same cloud icon that we used in the forecast—our site visitors will already have that asset
loaded into their browser cache, so there's no extra download. Also, since we're using SVG,
we can easily resize the icon to any size and it will remain crisp and clear.

Chapter 11

[311]

Time for action – creating a parallax effect
Perform the following steps to add a parallax effect to the cloudy weather forecast:

1.	 We'll get started by adding the layer of clouds that will appear to be furthest away.
Inside the section of the cloudy forecast, add a <div> element and place several
cloud icons inside it, as shown in the following code:
<section class="scrollblock" id="tueday">
 <div class="day">Tuesday</div>
 <div class="forecast">67° Cloudy</div>
 <div class="icon"><img src="images/Cloud.svg" alt
 ="Cloudy" width="300" height="300"></div>

 <div class="cloud-layer" id="cloud-layer-back">
 <img src="images/Cloud.svg" alt="Cloudy" width
 ="100" height="100" id="bcloud1">
 <img src="images/Cloud.svg" alt="Cloudy" width
 ="150" height="150" id="bcloud2">
 <img src="images/Cloud.svg" alt="Cloudy" width
 ="125" height="125" id="bcloud3">
 <img src="images/Cloud.svg" alt="Cloudy" width
 ="112" height="112" id="bcloud4">
 <img src="images/Cloud.svg" alt="Cloudy" width
 ="75" height="75" id="bcloud5">
 <img src="images/Cloud.svg" alt="Cloudy" width
 ="140" height="140" id="bcloud6">
 </div>

</section>

2.	 In styles.css, add some styles to position the clouds so that they're scattered
over the forecast block, as follows:
.cloud-layer {
 height: 100%;
 left: 0;
 position: absolute;
 top: 0;
 width: 100%;
}

.cloud-layer img {
 position: absolute;
}

Reacting to Scrolling

[312]

#cloud-layer-back { opacity: .1; }
 #bcloud1 { top: 98%; left: 10%; }
 #bcloud2 { top: 40%; left: 85%; }
 #bcloud3 { top: 60%; left: 30%; }
 #bcloud4 { top: 0%; left: 45%; }
 #bcloud5 { top: 15%; left: 5%; }
 #bcloud6 { top: 5%; left: 65%; }

First, we absolutely position the .cloud-layer class and make it the same width
and height as that of its parent. Next, we absolutely position all the images. Then,
we select the entire back cloud layer and set the opacity to .1. Since these clouds
are furthest away, it makes sense that they would be the smallest and faintest. Then,
we specify percentage positions for each of the clouds inside the layer. We're using
percentages because we're keeping responsive design in mind.

If you refresh the page in the browser, you'll see several faint and small cloud icons
scattered over the forecast block, as shown in the following screenshot:

3.	 Next, we'll add a middle layer. To do this, first add the block of HTML to add several
cloud icons inside the cloudy forecast block, as follows:
<section class="scrollblock" id="tueday">
 <div class="day">Tuesday</div>
 <div class="forecast">67° Cloudy</div>
 <div class="icon"><img src="images/Cloud.svg" alt="Cloudy"
width="300" height="300"></div>

 <div class="cloud-layer" id="cloud-layer-back">
 ...
 </div>

 <div class="cloud-layer" id="cloud-layer-mid">

Chapter 11

[313]

 <img src="images/Cloud.svg" alt="Cloudy" width
 ="150" height="150" id="mcloud1">
 <img src="images/Cloud.svg" alt="Cloudy" width
 ="225" height="225" id="mcloud2">
 <img src="images/Cloud.svg" alt="Cloudy" width
 ="188" height="188" id="mcloud3">
 <img src="images/Cloud.svg" alt="Cloudy" width
 ="169" height="169" id="mcloud4">
 <img src="images/Cloud.svg" alt="Cloudy" width
 ="113" height="113" id="mcloud5">
 <img src="images/Cloud.svg" alt="Cloudy" width
 ="207" height="207" id="mcloud6">
 </div>

</section>

Note that we're making these cloud icons just a bit bigger than the back layer.
Since they're a bit closer, it makes sense that they'd appear to be a little larger.

4.	 Next, open up styles.css and add the styles to position these cloud icons:
#cloud-layer-mid { opacity: .5; }
 #mcloud1 { top: 2%; left: 15%; }
 #mcloud2 { top: 60%; left: 35%; }
 #mcloud3 { top: 40%; left: 70%; }
 #mcloud4 { top: 90%; left: 65%; }
 #mcloud5 { top: 80%; left: 80%; }
 #mcloud6 { top: 40%; left: 5%; }

We're setting the opacity of this layer to .5 so that these clouds appear a bit
brighter than the back layer. If you refresh the page in the browser, you'll see
this new layer of clouds appear over the one we placed previously, as shown
in the following screenshot:

Reacting to Scrolling

[314]

Even though we haven't introduced any animation yet, you can still see how
displaying the icons at different sizes and opacities lend a visual effect of depth.

5.	 Now, we'll add the final layer, the front layer of clouds. Add a block of HTML
to your index.html file to display another set of cloud icons, as shown in the
following code:
<section class="scrollblock" id="tueday">
 <div class="day">Tuesday</div>
 <div class="forecast">67° Cloudy</div>
 <div class="icon"><img src="images/Cloud.svg" alt
 ="Cloudy" width="300" height="300"></div>

 <div class="cloud-layer" id="cloud-layer-back">
 ...
 </div>

 <div class="cloud-layer" id="cloud-layer-mid">
 ...
 </div>

 <div class="cloud-layer" id="cloud-layer-front">
 <img src="images/Cloud.svg" alt="Cloudy" width
 ="200" height="200" id="fcloud1">
 <img src="images/Cloud.svg" alt="Cloudy" width
 ="300" height="300" id="fcloud2">
 <img src="images/Cloud.svg" alt="Cloudy" width
 ="250" height="250" id="fcloud3">
 <img src="images/Cloud.svg" alt="Cloudy" width
 ="225" height="225" id="fcloud4">
 <img src="images/Cloud.svg" alt="Cloudy" width
 ="150" height="150" id="fcloud5">
 <img src="images/Cloud.svg" alt="Cloudy" width
 ="275" height="275" id="fcloud6">
 </div>
</section>

As this layer of clouds will appear to be closest, we've made these even larger than
the middle layer.

6.	 Next, open styles.css and position the cloud icons on this layer, as follows:
#cloud-layer-front { opacity: .9; }
 #fcloud1 { top: 50%; left: 60%; }
 #fcloud2 { top: 10%; left: 5%; }
 #fcloud3 { top: 0; left: 85%; }

Chapter 11

[315]

 #fcloud4 { top: 5%; left: 30%; }
 #fcloud5 { top: 60%; left: 20%; }
 #fcloud6 { top: 90%; left: 40%; }

As these clouds are closest, we've set the opacity to .9 to make these the
brightest clouds. Refresh the page in the browser to see the effect of all three
layers of clouds, as shown in the following screenshot:

Now that we've got a very nice cloud effect that has a visual depth to it, let's make
those clouds move.

7.	 Open your scripts.js file. First, we have to tell Scrollorama that we want to use
it and what our blocks of content are called. Inside the document ready statement,
after the code we've added so far, add the following bit of code:
$(document).ready(function() {
 ...

 /* Scrollorama setup */
 var weather = $.scrollorama({
 blocks:'.scrollblock'
 });

});

First, we create a new variable and call it weather as we're presenting a weather
forecast. Then, we call the scrollorama() method. We pass the scrollorama()
method the selector for our blocks of content. As each block has a class of
scrollblock, this is the selector we pass.

Now, Scrollorama is all set up and ready for us to use. Let's take a look at how to
animate the movement of our cloud layers.

Reacting to Scrolling

[316]

8.	 Now that we've got Scrollorama set up, we can use that weather variable to tell
Scrollorama what to animate. The following code shows how we animate the back
layer of clouds:
/* Scrollorama setup */
var weather = $.scrollorama({
 blocks:'.scrollblock'
});

/* Parallax cloud animation */
weather
 .animate('#cloud-layer-back', {
 duration: 1000,
 property: 'top',
 start: 100,
 end: -100
 });

Let's take a moment to step through this. We've broken this out onto separate lines
to make it easier to read and understand, but this is all actually one line of code.
We start with weather, then we call the animate() method. We want to animate
this layer of clouds with the scroll, so that makes sense.

Next, we pass in a selector of what we want to animate. We gave that back layer of
clouds an id attribute of cloud-layer-back, so we can use that now to select this
layer for animation.

Then, we tell Scrollorama exactly how that animation should work by passing in a set
of key/value pairs. We use the duration key to specify how many pixels of scrolling
the animation should last. Here, we've set up a long animation—we'll see the clouds
moving for 1000 pixels of scrolling.

We use the property key to tell Scrollorama which CSS property to animate. Just
like with regular old jQuery animations, we can select any numeric CSS property.
We've selected top since we want to move the entire cloud layer up and down.

We use the start key to specify what the starting value for the selected property
should be. Here, we're working with top. So at the start of our animation, it will
be like assigning this CSS style to the back cloud layer:
#cloud-layer-back { top: 100px; }

That's where our cloud layer will start off as we scroll by. We use the end key to
specify where the cloud layer will end up after the animation completes. It's like
assigning this CSS style to the back cloud layer:
#cloud-layer-back { top: -100px; }

Chapter 11

[317]

We're moving the cloud layer 200 pixels in total, from 100 pixels to -100 pixels. This
will make it appear to move just a bit faster than the rest of the content going by
as we scroll.

9.	 If you refresh the page in the browser at this point, you'll notice that the back
cloud layer moves when you scroll up and down past the cloudy weather forecast.
However, specifying the duration, start, and end values in pixels can be problematic
in responsive designs. With so many different screen sizes, how can we possibly
know or set exact pixel values for the cloud animation? We might want those to
move only 50 pixels on smaller screens, but we might want them to move 400
pixels or more on larger screens to make the parallax effect really work.

However, Scrollorama doesn't accept percentage values. We can't tell Scrollorama
to move the cloud layer from 10 percent to -10 percent. So we have to get a little
more resourceful.

Luckily, JavaScript is really good at doing math. Remember how we grabbed the
width and height of the browser window earlier? We can now use those values
to calculate pixel values for the duration, start, and end, based on the size of the
browser window. Here's how we can do that. Go back to the code we added in
step 8 and edit it so that it looks like the following code:
/* Parallax cloud animation */
weather
 .animate('#cloud-layer-back', {
 duration: winHeight * 2,
 property: 'top',
 start: winHeight * .1,
 end: -winHeight * .1
 });

Now, we're letting JavaScript do all the hard work of calculating the values for us,
based on our site visitor's screen size. For example, if our site visitor's browser
window is 400 pixels tall, the duration of the animation will be 800 pixels, and
the clouds will start at 40 pixels and move to -40 pixels.

If, on the other hand, our site visitor's screen is 1,600 pixels tall, then the duration
will be 3200 pixels, with the clouds moving from 160 pixels to -160 pixels. Just like
magic, our animation adjusts to our site visitor's browser window size.

10.	Now that we've got animating a cloud layer all figured out, let's go ahead and add
the code to animate the middle and front cloud layers to scripts.js as follows:
weather
 .animate('#cloud-layer-back', {
 duration: winHeight * 2,
 property: 'top',

Reacting to Scrolling

[318]

 start: winHeight * .1,
 end: -winHeight * .1
 })
 .animate('#cloud-layer-mid', {
 duration: winHeight * 2,
 property: 'top',
 start: winHeight * .25,
 end: -winHeight * .25
 })
 .animate('#cloud-layer-front', {
 duration: winHeight * 2,
 property: 'top',
 start: winHeight * .5,
 end: -winHeight * .5
 });

First up, notice that we're taking advantage of jQuery's chaining feature—this is
just one line of code! But that would not be very easy to read, so we've broken it
up to make it easier for us to read, understand, and edit. Also, be very careful with
the placement of semicolons—because this is all one line, we don't need to place a
semicolon until the very end of the statement

Next, notice that we're increasing the position for the animation for each layer.
For the first layer, we just moved the clouds from 10 percent to -10 percent.
However, for the middle layer, we're moving from 25 percent to -25 percent,
and for the top-most layer, we're moving from 50 percent to -50 percent. The
clouds that appear closer will move much more quickly as we scroll past. Refresh
the page in the browser and scroll past the cloudy weather forecast a few times
to see the effect of the moving clouds. Nice, right?

What just happened?
We created three layers of clouds and then animated them at different speeds to give
the illusion of depth. As we scroll by the cloudy weather forecast, the clouds move by at
different speeds, all moving faster than the rest of the content as we scroll.

While the Scrollorama plugin is limited to accepting pixel values, we were able to use the
magic of JavaScript to dynamically calculate the values for our animation, which allows our
design and animation to adjust better to different screen sizes, making it ideal for use in
responsive designs.

Creating other animations
Parallax scrolling effects are nice, but we can also create other types of animations with the
Scrollorama plugin. Let's take a look at how we can emphasize the windy weather forecast
by animating the cloud that is blowing across the screen as we scroll by.

Chapter 11

[319]

Time for action – creating a horizontal animation
Perform the following steps to create a horizontal animation in the windy weather forecast.

1.	 Inside index.html, the only change we'll make is to add an id attribute of wind to
the <div> element that contains the weather icon, as follows:
<section class="scrollblock" id="wedday">
 <div class="day">Wednesday</div>
 <div class="forecast">69° Windy</div>
 <div class="icon" id="wind"><img src
 ="images/Cloud-Wind.svg" alt="Cloudy Windy" width
 ="300" height="300"></div>
</section>

Technically, this isn't strictly necessary as we have other available ways to select
that item for animation, but selecting an item by id is the quickest and most
efficient way. By working directly with id, we can get a little performance boost
from our code.

2.	 Next, we can open up scripts.js and add the details of the animation we'd like
to create. Add the following code just below the animation block we added to create
the parallax animations, still inside the document ready statement:

/* Animate wind */
weather
 .animate('#wind', {
 duration: winHeight * 1.7,
 property: 'left',
 start: winWidth * .7,
 end: winWidth * .3
 });

This should look pretty familiar. We're using the same winHeight and winWidth
values we calculated back at the beginning of the chapter. In this case, we want the
animation to last 170 percent of the window height—I arrived at that value through
experimentation. I just tried out different values until I found one that looked the
way I wanted.

Since we're animating the cloud horizontally rather than vertically, we're using
winWidth rather than winHeight to calculate the values. We'll move the cloud
from a left value of 70 percent to a left value of 30 percent.

Reacting to Scrolling

[320]

Also note that we could have just chained this function onto the functions we wrote
to create the parallax cloud animations we coded in the section Adding a parallax
effect. It would have worked just fine, but in this case, I decided to make my code
just a bit longer in the interest of keeping it readable.

Refresh the page in the browser window and scroll past the windy forecast. You'll
see the cloud blow across the screen as you scroll by.

What just happened?
We used Scrollorama to create a horizontal animation as we scroll by. We can animate any
numeric CSS property. This leaves a lot of possibilities open: we can move items horizontally,
vertically, and diagonally; we can adjust the opacity to fade items in and out; and we can
adjust the font size, width, height, padding, margins, border width, rotation, and so on.

Have a go hero – add custom animations
The only limit to what you can animate with the Scrollorama plugin is your imagination.
Take a look through the weather forecasts and see what else you might like to animate.
Can you fade in the day of the week headers in each block? Can you add animations to
the other weather icons?

Adding navigation
Now, let's make it easier both to navigate through the weather forecast days and to understand
where we are on the page. We'll use JavaScript to dynamically create a navigation bar. Our
site visitors will be able to use the navigation bar to move directly to the different days in the
forecast. Additionally, as our site visitor scrolls down the page through the different days in the
forecast, we'll update the highlighted item in the navigation to show them where they are.

Time for action – adding navigation to sections of the page
Perform the following steps to add navigation to our weather forecast:

1.	 Open up scripts.js. The first thing we want to do is create an unordered list to
hold our navigation. After the animation code we wrote earlier, but still inside the
document ready statement, add the following bit of code:
var dotnav = $('<ul id="dotnav">');

Chapter 11

[321]

First, we create a variable, dotnav. Recall that a variable is just a container. Inside
this container, we're going to create a jQuery object that holds an unordered list
with the id attribute of dotnav.

2.	 Now that we've got our unordered list, the next thing we'll do is add it to our
document. That's easy enough, just one short line of code:
var dotnav = $('<ul id="dotnav">');
$('body').append(dotnav);

We're selecting the <body> element of the document and appending our navigation
to the end of the body using jQuery's append() method.

3.	 Next, we need to fill the navigation with links to the various parts of the document.
We know that each block of our weather forecast is wrapped in a <section>
element with the class scrollblock. We can use those sections to create just the
right links in our navigation as follows:
var dotnav = $('<ul id="dotnav">');
$('body').append(dotnav);
$('.scrollblock').each(function(){
 var id = this.id;
 dotnav.append('');
});

Let's step through that to make sure we understand. First, we select all the
<section> elements with a class of scrollblock. Then, we use jQuery's each()
method to loop through each block, one at a time.

Inside the each() method, we write a function. The function first gets the id
attribute of the current section and stores it in a variable.

Finally, we get our navigation, which we've stored in the variable called dotnav,
and append a new list item and link. We add an href attribute that points us to
the id attribute for each section. For example, for the Monday forecast, this bit
of code will add a list item and a link that looks like this:

Reacting to Scrolling

[322]

That's pretty easy to understand. If we had created the navigation in HTML, that's
how we would have linked to the different sections on the page. If you refresh the
page in the browser, you won't see anything new on the page—without CSS, our
new element is invisible. However, if you use the web developer tools to take a
look at the code on the page, you'll see the new navigation element at the end
of the document, as shown in the following screenshot:

4.	 Now, let's use a bit of CSS to style our navigation. Open up styles.css and add
the following styles for the navigation:
#dotnav {
 position: fixed;
 right: 1em;
 top: 50%;
}

#dotnav li {
 background: rgba(255,255,255,0.8);
 box-shadow: 0 0 5px rgba(0,0,0,0.2);
 border-radius: 50%;

Chapter 11

[323]

 display: block;
 height: 0.8em;
 margin: 0.333em 0;
 padding: 0.2em;
 width: 0.8em;
}

#dotnav a {
 background: transparent;
 border-radius: 50%;
 display: block;
 height: 0.8em;
 transition: background 200ms;
 width: 0.8em;
}

Now, if you refresh the page in the browser, you'll see the navigation appear vertically
along the right-hand side of the page, as shown in the following screenshot:

5.	 We're making progress, but the navigation is a bit too low. Let's use our trusted
winHeight measurement to bump that up into the right position. In scripts.js,
add the following bit of code:
var dotnav = $('<ul id="dotnav">');
$('body').append(dotnav);
$('.scrollblock').each(function(){
 ...
});
var navHeight = dotnav.height();
dotnav.css('top', (winHeight/2 - navHeight/2));

Reacting to Scrolling

[324]

First, we get the height of our navigation bar itself, and store it in a variable named
navHeight. Next, we need to calculate what the appropriate top value
of the navigation should be. We divide the winHeight value in half, then subtract
the navHeight value divided in half to get the proper value for the top of the
navigation bar. We use jQuery's css() method to set that value and position the
navigation right in the middle of the screen.

Refresh the page in the browser and you'll see that the navigation is now positioned
correctly, as shown in the following screenshot:

6.	 If you click on the dots in the navigation, you'll see that they work—the page
jumps to the different days in the weather forecast. However, it jumps so quickly
that we don't get to see our fancy animations. Let's modify the jumping so we
can appreciate all the hard work we've done so far. First, we need to select the
elements we want to work with—the links inside the navigation bar—and attach
a click event, as follows:
dotnav.css('top', (winHeight/2 - navHeight/2));

dotnav.find('a').on('click', function(e){
 // Our code will go here
});

In plain English, the highlighted code says "Get all the links inside the navigation and
do something special when they're clicked on." Now, we have to write the code to
say what should happen.

7.	 The first thing we want to do inside this function is to stop the immediate jumping
to each section of the page. We can do this as follows:
dotnav.find('a').on('click', function(e){
 e.preventDefault();
});

Chapter 11

[325]

We use the preventDefault() method to stop the default action. By default,
the browser jumps immediately to a section. We don't want that to happen, so
we prevent it with this bit of code. If you refresh the page in the browser and try
clicking on the navigation, you'll see that nothing happens. We canceled the default
action, but we haven't said what to do instead.

8.	 When we click on one of the navigation links, we want to animate scrolling for that
section. To animate scrolling, we'll animate the <html> and <body> elements.
Let's select those elements and call jQuery's animate() method, as follows:
dotnav.find('a').on('click', function(e){
 e.preventDefault();
 $('html, body').animate();
});

Now that we're ready to animate the scrolling, we just have to tell the animate()
method what to animate.

9.	 The first thing the animate() method needs to know is what property we want to
animate. Since we're animating the scrolling, the property we'll be working with is
scrollTop. Thus, add it to the scripts.js file as shown in the following code:
dotnav.find('a').on('click', function(e){
 e.preventDefault();
 $('html, body').animate({
 scrollTop:
 });
});

10.	 We want to scroll to the top of the block of the weather forecast that we're navigating
to, but the animate() method is expecting a pixel value—how many pixels down
the page should we scroll? Luckily, it's pretty easy to calculate how many pixels down
the page each of our weather forecast blocks are using jQuery's offset() method.
Let's say we wanted to find out how far down the page the Tuesday evening weather
forecast was. We'd find out as follows:
$('#tueeve').offset().top;

We'd just select the element, then call the offset() method. After that, we can
get either the top or the left properties.

That seems easy enough, but in this case, we're clicking on a link and we want
to scroll to the matching weather forecast. How do we select the right forecast?
We set up our links to point at the right sections. All the information we need is
stored right in the href attribute of each link. We can select the right forecast
block as follows:
$(this.hash);

Reacting to Scrolling

[326]

The following code shows how this all looks in our function that handles what
happens when we click on a navigation link:
dotnav.find('a').on('click', function(e){
 e.preventDefault();
 $('html, body').animate({
 scrollTop: $(this.hash).offset().top + 1
 });
});

In this case, we're adding one more pixel to the value to make sure the navigation
interacts nicely with Scrollorama.

If you refresh the page in the browser, you'll see that clicking on the navigation links
now scrolls you smoothly to each weather forecast block. However, the page sure
does go by quickly. We don't even get a chance to enjoy the animations going by.

11.	By default, any animations we set up with jQuery's animate() method happen in
400 milliseconds—less than half a second. That's really fast. Let's slow that down a
bit maybe to a full second:
dotnav.find('a').on('click', function(e){
 e.preventDefault();
 $('html, body').animate({
 scrollTop: $(this.hash).offset().top + 1
 }, 1000);
});

We just pass in a second value to the animate() method—the number of
milliseconds the animation should take to complete.

If you refresh the page in the browser now and try clicking on the navigation links,
you'll see the scrolling is much slower. You might want to experiment with different
values. Where can you best see the animations going by without delaying the site
visitors from reaching their destination too much?

12.	Now that we've got the navigation and animation working, wouldn't it be nice if we
could see exactly where we were on the page by highlighting the current weather
forecast block in the navigation?

We could add some code to our click function to just add a class to each link that
is clicked. But what about the times that our site visitors just scroll down the page
and don't click on the links at all? We still want to show them how far down the
page they are and how many sections are left.

Luckily, Scrollorama gives us a way to detect when we're seeing a new block of
our page and to trigger other changes on the page. Let's take a look at how we
can highlight the right item in the navigation depending on how far down the
page we've scrolled. We can do that with the onBlockChange() method.

Chapter 11

[327]

But first, let's set up the .active style for the navigation links in styles.css,
as follows:

#dotnav a.active {
 background: #e75845;
}

We'll change the background color of the link to a bright orange color when it's the
current link.

13.	Now, we'll jump back into scripts.js and set up a function that will run each time
we scroll to a new block. After the click function that we wrote, but still inside the
document ready method, add the following lines to set up our new function:
/* Update dotnav while scrolling */
weather.onBlockChange(function() {
 // Our code will go here
});

We're still leaving little notes for ourselves or for any other developer who comes
along to work on our code about what each bit of code does. We select our weather
variable and then call the onBlockChange() method. We pass an empty function
to the method.

14.	The first thing we need to do inside that function is figure out which block we
can see in the window. Scrollorama makes that easy for us with the blockIndex
property, as shown in the following code:
weather.onBlockChange(function() {
 var i = weather.blockIndex;
});

Now, the i variable contains the index of the current block. When we're looking at
the first block, i will be equal to 0—don't forget that JavaScript starts counting at
0 and not at 1.

15.	Now that we know which block is currently visible, we just have to select the
matching link in the navigation. That's easy enough—if we're on the second block,
we'll just select the second link. The following code shows how we can do that:
weather.onBlockChange(function() {
 var i = weather.blockIndex;
 dotnav.find('a').eq(i);
});

Here, we get our dotnav variable, which contains the navigation, and then we find
all the links. Then, we use jQuery's eq() method to select the link that matches the
currently visible block.

Reacting to Scrolling

[328]

16.	Now, we just have to add the active CSS class to the link:
weather.onBlockChange(function() {
 var i = weather.blockIndex;
 dotnav.find('a').eq(i).addClass('active');
});

That's easy enough, right? However, scroll down through the page and you'll see
that very quickly every link in the navigation is highlighted. This is handy if we just
want to keep track of where we've been, but not very handy for telling us where
we currently are.

17.	After a block isn't visible any more, we need to remove the active class from
its matching link. We can do that pretty easily by just removing the active class
from all the links before we add it to the matching one, as follows:
weather.onBlockChange(function() {
 var i = weather.blockIndex;
 dotnav.find('a').removeClass('active')
 .eq(i).addClass('active');
});

Now, if you refresh the page in the browser, and scroll down, you'll see
that the navigation changes to reflect your current position on the page.
The navigation also updates if you click on the links—since those links scroll the
page, the onBlockChange() event is still fired. We don't have to write
separate code to highlight the links while clicking on them and highlighting the
links while scrolling. Just one bit of code handles both nicely.

What just happened?
We used jQuery to create a navigation bar for our blocks of weather forecast. Then,
we animated the scroll to each of those blocks when the navigation links were clicked.
Finally, we used the onBlockChange() method provided by Scrollorama to change
the CSS classes on the links to make it obvious where we were on the page.

Pop quiz – using Scrollorama in responsive design
Q1. How can we use Scrollorama effectively in responsive designs?

1.	 Use percentage values for animation duration, animation start, and animation stop.

2.	 There's no need to do anything special—Scrollorama is responsive by default.

3.	 Use JavaScript to calculate appropriate values based on the current screen size.

4.	 Scrollorama cannot be used in responsive design.

Chapter 11

[329]

Summary
In this chapter, we looked at a few different ways of reacting to our site visitors who scroll
down the page. We created a parallax effect by animating the position of layers of content at
different speeds as we scroll down the page. We created a horizontal animation that reacts to
scrolling. Finally, we created a navigation bar that not only updates as we scroll down the page
but also allows us to easily move to the different areas of the page. Not too shabby. Next up,
we'll look at some ways to make forms nicer-looking as well as easier for our site visitors to
work with.

12
Improving Forms

If you've ever tried to work with web forms, you know how complex they
can be. Luckily, the authors of HTML5 are working hard to ensure that the
experience improves for designers, developers, and web site visitors alike.
Browser support for the new HTML5 form elements and attributes is coming
along really nicely, and even in browsers that don't have support, the new
elements and attributes are backward compatible.

In this chapter, you'll learn:

�� How to mark up a form with some of the new HTML5 attributes

�� How to place the cursor in the first form field automatically

�� How to validate your site visitors' form entries

�� How to style stubborn form elements such as file uploads and
select dropdowns

An HTML5 web form
We'll get started by taking advantage of some of the new attributes made available to
us in HTML5. The great thing about these additions is that they are completely backward
compatible—browsers that don't know how to handle them will either ignore them or
default to a simple text input, and our site visitors on older browsers will be able to use
our forms without even knowing what they're missing.

Improving Forms

[332]

First, a word of caution about web forms. A web form doesn't work by itself—it needs to
have some fancy backend programming on a server somewhere to collect the form entries
and process them, which could mean writing fields to the database or sending the form
information via an e-mail. Because of this, the forms we build in this chapter won't actually
function—nothing will happen after clicking on the Submit button on the form. If you want
to add a functioning web form to a project, you have a few options, which are as follows:

�� You can learn to do server-side programming to handle your form, but server-side
programming is well beyond the scope of this book.

�� You can use a CMS that will most likely include form handling either in its
core functionality or as an add-on. Good candidates include Drupal, WordPress,
and Joomla.

�� You can hire a server-side developer to get your form working, or befriend one
and barter your design skills for their coding skills.

�� You can use a web form service to handle all the server-side processing of your form.
My personal favorite is WuFoo (http://wufoo.com), which I have used for years
without a single hiccup.

Any of these methods will help you create a working web form to be included in your
project. However, let's take a look at how we can make the frontend of our form the best
it can be.

Time for action – setting up an HTML5 web form
Perform the following steps to set up a form using the new HTML5 elements and attributes:

1.	 We'll get started with a simple HTML document and the associated files and folders,
just like we set up in Chapter 1, Designer, Meet jQuery. Inside the <body> tag, open
up a <form> tag as shown in the following code:
<form action="#" id="account-form">
</form>

The form tag needs an action attribute in order to appear correctly on our page.
Since our forms are just dummy forms used for scripting and styling purposes,
we'll just use # as the value for this attribute. The value of the action attribute is
usually a URL—the place on the server where we're going to send our form data for
processing. We also added an id attribute to make it easy to select the form for CSS
and JavaScript purposes later.

http://wufoo.com

Chapter 12

[333]

2.	 Next up, we'll create a section for our site visitor to create the Username and
Password fields. We'll wrap these two fields in a <fieldset> element with a
<legend> element to group them together, as follows:
<form action="#" id="account-form">
 <fieldset>
 <legend>My Account</legend>
 <p>
 <label for="username">Username</label>
 <input type="text" name="username" id
 ="username" placeholder="Choose a username…">
 </p>
 <p>
 <label for="password">Password</label>
 <input type="text" name="password" id
 ="password" placeholder="Choose a secure
 password…">
 </p>
 </fieldset>
</form>

Here, we've wrapped each field and its associated label in a paragraph tag (<p>).
There is a world of opinions out there on the best tags to use to mark up your
form fields. Some developers swear by simple <div> elements, while others like
to make the form a list () with each field a list item (). Some others like
to use a definition list (<dl>) and place the labels inside the <dt> tags and the
form fields inside the <dd> tags. Pragmatically speaking, any of these will do just
fine and your form will work as expected for your site visitors. Use the tags that
you personally prefer.

Look carefully at the HTML markup we've written so far for our form. There are a
few important things to note, which are as follows:

�� Each <input> tag has a type attribute that is relevant to its purpose.
The username field has a text type, and the password field has a
password type.

�� Each <input> tag has a unique id attribute. Remember that each id
must to be unique on the page, so select the id attributes of your form
inputs carefully.

�� Each <input> tag has a name attribute. This is passed to the code that is
handling your form on the server side. It's a common practice to use the
same value for the name and id attributes of a form element, but it's not
compulsory. You can easily select a different value for the id value anytime
you like, but if you'd like to change the name value, you should first check
with your server-side developer to ensure that the code they have written
will continue to work.

Improving Forms

[334]

�� Each <input> tag has a placeholder attribute. This new attribute,
introduced in HTML5, currently has very good browser support. The
value of this attribute is displayed as grayed-out text in each field until
the site visitor starts typing. It can be useful to give additional instructions
for a field or to give an example of the type of information the site visitor
should enter.

�� Each <label> tag has a for attribute that associates it with a particular
form element. The value in the for attribute is equal to the id value of
the form element with which it is associated (not the name attribute).
This makes some nice functionality available to our site visitors—clicking
on a label will bring focus to the associated form element. This behavior
is especially useful for checkbox and radio button inputs, which are small
and can be difficult to click.

Each browser has its own default way of styling form elements. For example, with no
CSS attached to the preceding HTML markup, the following screenshot shows what
the form element looks like in Google Chrome on Mac OS X:

Note that the default CSS code we use with the example code in this book removes
(or resets) most of these default styles. The following screenshot shows how the
form appears after attaching our CSS file:

3.	 Next up, we'll create an About Me section for our form, as follows:
<fieldset>
 <legend>About Me</legend>
 <p>
 <label for="name">Name</label>
 <input type="text" id="name" name="name" placeholder
 ="First Last">
 </p>

Chapter 12

[335]

 <p>
 <label for="email">Email address</label>
 <input type="email" id="email" name="email" placeholder
 ="you@example.com">
 </p>
 <p>
 <label for="website">Website</label>
 <input type="url" id="website" name="website" placeholder
 ="Don't forget the http://…">
 </p>
 <p>
 <label for="birthdate">Birth date</label>
 <input type="date" id="birthdate" name="birthdate">
 </p>
</fieldset>

Again, the text type was used for the Name field, as names are strings. However,
take a look at the type attribute for the Email address, Website, and Birth date
fields. We're using the new HTML5 input types here. In browsers where these input
types are not supported, these fields will look and work just like inputs with a type
attribute of text. However, in browsers where these input types are recognized,
they'll behave in a slightly different way. The browser will automatically validate the
user input. For example, if a site visitor types an invalid e-mail address into an input
with the type email, the browser will warn them that they've entered an invalid
e-mail address. Also, on devices with soft keyboards, the keyboard keys will be
altered to reflect the characters necessary for entering that data type. For example,
an input with a type of email will open a keyboard with the . key and the @ key
showing on an iPhone or an iPad, making it easier for your site visitors on these
devices to complete the required information.

4.	 The next section in the form will be a section about beverage preferences. We
want the site visitor to select their favorite beverages from a list and then answer a
question about how many days per year they drink a beverage. The following code is
a sample of what the list looks like:
<fieldset>
 <legend>Beverage Info</legend>
 <fieldset>

Improving Forms

[336]

 <legend>Select your favorite beverage(s)</legend>
 <p>Please select at least three but no more than
 six beverages.</p>

 <input type="checkbox" name="favorites[]" id
 ="bev-water" value="bev-water">
 <label for="bev-water">Water</label>

 <input type="checkbox" name="favorites[]" id
 ="bev-juice" value="bev-juice">
 <label for="bev-juice">Juice</label>

 ...

 </fieldset>
 <p>
 <label for="days">How many days of the year do you
 drink a beverage?</label>
 <input type="number" id="days" name="days" placeholder
 ="How many days?">
 </p>
</fieldset>

Now, when you refresh the page, you'll see the list as shown in the
following screenshot:

Chapter 12

[337]

A few new things to note about the HTML that we've used to mark up this section:

�� Fieldsets can be nested. A fieldset is an excellent way to group a set of
checkboxes or radio buttons together, and we can use the legend tag of
the fieldset element to create a header for our radio or checkbox group.

�� A set of checkboxes are identified as such because they will all share the
same name. Because a site visitor can select more than one item in a set
of checkboxes, we add square brackets ([]) at the end of the name so that
the server will collect all of the answers into an array.

�� Each checkbox in the set has its own unique id and value attributes.
The id and value attributes do not necessarily have to match, but it's
often easy to make them the same.

�� Finally, the number of days per year is given an input type number, as
only a number would be acceptable here. Be careful with this input type.
It is very strict and will not accept any nonnumeric characters. Some bits of
data appear to be numbers but are actually strings, for example, telephone
numbers and credit card numbers. If you wouldn't do some sort of math
with your number, then it shouldn't be the number input type.

5.	 The next section we'll add to our form is a payment information section, which is
shown in the following code:
<fieldset>
 <legend>Payment Info</legend>
 <fieldset>
 <legend>Credit Card Type</legend>

 <input type="radio" name="cc-type" id
 ="cc-visa" value="cc-visa">
 <label for="cc-visa">Visa</label>

 <input type="radio" name="cc-type" id
 ="cc-mastercard" value="cc-mastercard">
 <label for="cc-mastercard">Mastercard</label>

 <input type="radio" name="cc-type" id
 ="cc-amex" value="cc-amex">
 <label for="cc-amex">American Express</label>

Improving Forms

[338]

 <input type="radio" name="cc-type" id
 ="cc-discover" value="cc-discover">
 <label for="cc-discover">Discover</label>

 </fieldset>
 <p>
 <label for="cc-number">Credit card number</label>
 <input type="text" name="cc-number" id
 ="cc-number" placeholder="xxxx xxxx xxxx xxxx">
 </p>
</fieldset>

Much like the checkboxes, we've grouped a set of radio controls inside a fieldset
with the legend tag acting as the header for this section. Just like checkboxes, all
the radio buttons in the set of radio buttons share the same name, but each has its
own unique id and value attributes. However, in the case of radio buttons, only
one can be selected at a time, so there is no need to mark them as an array.

We've also added a field for collecting our site visitor's credit card number. Note
that we've assigned an input type of text to this field. Even though a credit card
number appears to be a number, we want to store it just as it is, and won't ever
be performing calculations with this number. The following screenshot shows the
payment information section:

6.	 Finally, we'll add a checkbox for our site visitor to accept our terms of service, and a
Submit button for them to submit the form information to us, as follows:
<fieldset>

 <input type="checkbox" name="tos" id="tos" value="tos"/>
 <label for="tos">Click here to accept our terms
 of service</label>

Chapter 12

[339]

 <p>
 <input type="submit" value="Sign me up!"/>
 </p>
</fieldset>

The only new thing here is the Submit button. By default, the input tag with a
type attribute of submit will read Submit. We can change the text by adding a
value attribute with the text we'd like to display on the button. The following
screenshot shows the text that we used; in our case, it is Sign me up!:

7.	 The only thing left to do is to style our form with a bit of CSS. The following code
shows the CSS used for this simple form in the sample code for the book:

fieldset {
 background: white;
 border-radius: 5px;
 color: #656d78;
 margin: 1em 0;
 padding: 1em;
 width: 80%;
}

legend {
 background: #fa6f57;
 border-radius: 5px;
 color: white;
 font-size: 1.125em;
 padding: 0.333em 1em;
}

fieldset fieldset legend {
 background: transparent;
 color: #42b0d8;
 padding: 0;
}

Improving Forms

[340]

fieldset p {
 line-height: 1.5em;
 margin: 1em 0;
}

fieldset label {
 display: inline-block;
 width: 20%;
}

fieldset li {
 line-height: 1.5;
 margin: 0.5em 0;
}

fieldset ul label {
 display: inline;
 width: auto;
}

input[type='text'],
input[type='password'],
input[type='email'],
input[type='url'],
input[type='email'],
input[type='date'],
input[type='number'] {
 border: 1px solid #ccd1d9;
 border-radius: 5px;
 color: #656d78;
 font-family: inherit;
 font-size: inherit;
 padding: 0.222em;
 transition: border 300ms;
}

input[type='text']:focus,
input[type='password']:focus,
input[type='email']:focus,
input[type='url']:focus,
input[type='email']:focus,
input[type='date']:focus,
input[type='number']:focus {
 border-color: #656d78;
 outline: none;
}

Chapter 12

[341]

Note that the type attribute of our inputs can be used to select them for styling. In
this case, we've styled them all identically, but it would also be possible to give each
one its own set of styles if desired.

The following screenshot shows how the form looks with this CSS. Feel free to get
creative and write your own styles for the form.

Improving Forms

[342]

What just happened?
We took a look at some of the new HTML5 input types and how to use them properly to put
together a web form. We saw how to use the fieldset and legend tags to group fields
together under a heading and how to associate labels with form elements. We learned the
proper use of the text, password, email, url, date, checkbox, radio, and number
input types.

Pop quiz – working with HTML5 form elements
Q1. HTML5 provides several new types of <input> elements for us to work with (url,
email, number, and so on). What happens to these form elements in older browsers that
don't have explicit support for them?

1.	 They appear and function as though they were of type text.

2.	 They aren't visible on the page.

3.	 They appear as checkboxes.

4.	 They cause an error and render the form unusable.

Setting focus
If you head over to http://google.com, you'll see that they've made it really easy for you
to conduct a web search—as soon as the page is loaded in the browser, the cursor is blinking
in the search field. There are other sites on the Web that behave this way too, making it
quick and easy to get started with filling in a form.

Any time you have a page where the site visitor's main task will be to complete a form, you
can make things easy for your site visitor by placing the cursor into the first form field so
they can just start typing. And it's wicked easy with jQuery. Here's how to do it.

Time for action – setting focus to the first field
We'll keep working with the sample form we set up in the previous example. Perform the
following steps to set the focus to the first field in the form.

1.	 Open up your empty scripts.js file and add a document ready statement,
as follows:
$(document).ready(function(){
 // Our code goes here
});

http://google.com

Chapter 12

[343]

2.	 Next up, we want to select the first field in our form. There are many different ways
to go about this. While we could use the id attribute of the first field, this is not very
flexible. If we update our form later to add a new field at the beginning, we'd also
have to remember to update our JavaScript. Instead, let's just find the first input
element, as follows:
$(document).ready(function(){
 $('input').first();
});

This works pretty well, but there are several cases where we would not like to set
the focus on the first input element, for example, if the first element is disabled,
or if it's a button, a checkbox, or a radio button. Let's add a filter to remove these,
as follows:
 $('input').first().not(':radio,:checkbox,:button,
 :disabled,:file,:image,:reset,:submit');

We won't bother setting the focus to radio buttons, checkboxes, buttons, disabled
form elements, file inputs, image inputs, reset buttons, or submit buttons.

3.	 All that's left to do is to call the focus() method for the selected element,
as follows:

 $('input').first().not(':radio,:checkbox,:button,
 :disabled,:file,:image,:reset,:submit').focus();

Now, if you refresh the page in the browser, you'll see that the cursor is blinking in
the Username field of the form—the very first field.

What just happened?
We used a couple of lines of jQuery to move the focus to the first field in our form to make it
easy for our site visitors to jump right in to completing our form. It was as simple as selecting
the first form element and then calling the focus() method for that element.

Validating site visitor entry
Sometimes, it can feel frustrating for a site visitor when they have to submit a form several
times over, correcting errors that they've made while filling it out. Without JavaScript, the
only way to validate the information that the site visitor has entered is to wait for them to
submit the form, then identify the issues on the server, and send back a page that contains
the form along with any error messages that might help the site visitor correct the problem.

Improving Forms

[344]

Showing errors as soon as they occur goes a long way towards making your form feel snappy
and responsive and helping your site visitors submit the form correctly on the first try. In
this section, we'll learn how to use the Validation plugin from Jörn Zaefferer. This plugin is
powerful and flexible and can handle validation in several different ways. We'll take a look at
the most straightforward way of adding client-side validation to your form.

Time for action – validating form values on the fly
We'll continue working with the form we've been creating through the last three sections.
Perform the following steps to validate user entry into the form:

1.	 The first thing we'll do is download the Validation plugin and get it attached to
our page.

Head over to http://jqueryvalidation.org/ and click on the Download
button in the Files section to download a ZIP file.

2.	 Open up the ZIP file and take a look at what we've got.

There's a lot going on here—there are several different JavaScript files, some
demos, a change log, and so on. Remember how I said this plugin is powerful
and can handle lots of different approaches to validation? That's what all this is
for—handling form validation in just about any old crazy situation you might find
yourself in.

Luckily, though, our situation is pretty simple, so we don't have to do
anything complicated.

3.	 Inside the dist folder, find jquery.validate.min.js and copy it to your own
scripts folder. Then, attach it to your HTML page, as follows:
<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.validate.min.js"></script>
<script src="scripts/scripts.js"></script>

4.	 Next, we're going to go back to our form and add some information that the
Validation plugin will use. Let's start with the Username field:
<p>
 <label for="username">Username</label>
 <input type="text" name="username" id="username" placeholder
 ="At least 5 characters long" minlength="5" maxlength
 ="20" required/>
</p>

http://jqueryvalidation.org/

Chapter 12

[345]

This is a required field—any site visitor who completes this form must select a
username, so we'll simply add an attribute called required. This attribute is for
form validation purposes, but we could also use it to create a special style in our
CSS for the required fields in the form.
All usernames must be between five and 20 characters long. So we've added the
minlength and maxlength attributes.

5.	 Next up is the Password field, which is also a required field. So let's add the
required attribute, as follows:
<p>
 <label for="password">Password</label>
 <input type="password" name="password" id
 ="password" required placeholder
 ="Choose a secure password"/>
</p>

While we're at it, let's add the required attribute to the e-mail field too:

<p>
 <label for="email">Email address</label>
 <input type="email" name="email" id="email" placeholder
 ="you@example.com" required/>
</p>

6.	 Next, let's take a look at that list of favorite beverages. Remember we included a
note in the fieldset to indicate that the site visitor was to select at least three but
not more than six beverages? We can actually enforce that with the Validation
plugin. Go to the first checkbox in the series and add the minlength and
maxlength attributes as follows:

 <input type="checkbox" name="favorites[]" id
 ="bev-water" value="bev-water" maxlength="6" minlength
 ="3" required/>
 <label for="bev-water">Water</label>

We only have to add this on the first checkbox and not on all of them. Validation is
smart enough to figure out that we're referring to the entire set of checkboxes.

7.	 Now, let's take a look at the field where we ask the site visitor how many days per
year they drink a beverage. Obviously, as there are only 365 days in a year, it's the
highest number they could enter in this field. So we'll add a max attribute to specify
the highest possible number:
<p>
 <label for="days">How many days per year do you
 drink a beverage?</label>
 <input type="number" name="days" id="days" max="365"/>
</p>

Improving Forms

[346]

8.	 This brings us to the payment section. Whatever we're selling, it's not free, so we're
going to require both the credit card type and credit card number. To require entry
for radio buttons, we just have to add the required attribute to the first radio
button in the set, as follows:

 <input type="radio" name="cc-type" id="cc-visa" value
 ="cc-visa" required/>
 <label for="cc-visa">Visa</label>

We don't have to make any other changes to the radio button series.

9.	 Now, let's handle the credit card number itself. We need to add the required
attribute, as shown in the following code. We also need to add a creditcard class
to validate that the number entered is, in fact, a valid credit card number:
<p>
 <label for="cc-number">Credit card number</label>
 <input type="text" name="cc-number" id
 ="cc-number" placeholder="xxxxxxxxxxxxxxxx" class
 ="creditcard" required/>
</p>

10.	At the bottom of our form, we have a checkbox to accept the terms of service.
This is required too, so we'll add the required attribute, as follows:

 <input type="checkbox" name="tos" id
 ="tos" required value="tos"/>
 <label for="tos">Click here to accept our
 terms of service</label>

11.	Now, we just need to call the validate() method that Validation makes available
to us. In scripts.js, inside the document ready statement, select the form and
call the validate() method, as shown in the following code:
$(document).ready(function(){
 $('input').first().not(':radio,:checkbox,:button,:disabled,
 :file,:image,:reset,:submit').focus();

 $('#account-form').validate();

});

Chapter 12

[347]

12.	Now, if you refresh the page in the browser, you'll see that you can't submit the
form without filling anything in—the required fields will be marked with an error
message that says the field is required. If you try to type an invalid URL or e-mail
address into the Website or Email address fields, you'll get an error message that
will let you know there's a problem to be corrected. However, those error messages
are in a weird place for our checkboxes and radio buttons, as shown in the following
screenshot:

This doesn't really help people understand exactly what's going on. Luckily,
Validation allows us to add our own error messages to the page wherever we'd like
them to display.

We're going to add an error message before the list of credit card type radio buttons:
<fieldset>
 <legend>Payment Info</legend>
 <fieldset>
 <legend>Credit Card Type</legend>
 <label for="cc-type" class="error"></label>

 ...

 </fieldset>
 ...
</fieldset>

We'll add a <label> element to the document where we'd like the error message
to show. The for attribute will refer to the name of the field—in this case, all the
radio buttons share the cc-type name. We'll add a class attribute of error.

Improving Forms

[348]

In this case, the for attribute of our label is referring to the name attribute
of the field rather than the id attribute. This is a special case created by
the Validation plugin. If you're not using custom error messages with the
Validation plugin, then your label's for attribute should always reference
the id attribute of the form element.

13.	Next, we don't want any error messages showing up on the page unless they're
needed. We'd also like them to display in red so that they stick out and are easy
to find. Open your styles.css file and add some styles for the error messages,
as shown in the following code:
fieldset label.error {
 color: #e75845;
 display: none;
 margin-left: 0.5em;
 width: auto;
}

We're adding a width value as we've set the other labels to a width of 20 percent.
We're also adding a little margin for some space between the error message and the
field it's referring to.

Now, if you refresh the browser and try to submit the form without selecting a
credit card type, you'll get the error message in a much better place, as shown in
the following screenshot:

14.	Next, we need to do the same thing for our favorite beverages and our Terms
of Service checkbox. The following code shows what we'll add as our favorite
beverages:
<fieldset>
 <legend>Beverage Info</legend>
 <fieldset>
 <legend>Select your favorite beverage(s)</legend>

Chapter 12

[349]

 <p>Please select at least three but no more
 than six beverages.</p>
 <label for="favorites[]" class="error"></label>

 ...

 </fieldset>
 ...
</fieldset>

The following code is what we'll add to the terms of service checkbox:
<fieldset>

 ...

 <label for="tos" class="error"></label>
 ...
</fieldset>

Now, if you refresh the page in the browser and try to submit the form without
completing the required fields or try to enter invalid information in the form, you'll
get error messages in the appropriate places.

15.	While our error messages are now showing up in better spots on the page, they're
not always very helpful. For example, if we only select two beverages, the error
message reads Please enter at least 3 characters.

The default error messages work in many cases, but not in all cases. Luckily, it's easy
to customize the error messages. All we have to do is add a title attribute to the
form element with the error message we'd like to show. Add this title attribute to
the first <input> element in beverages, as shown in the following code:
<input type="checkbox" name="favorites[]" id
 ="bev-water" value="bev-water" minlength="3" maxlength
 ="6" required title="You must select at least three but
 not more than six beverages">

Now, the error message makes more sense for our site visitors. You can add a title
attribute that contains an error message specific to that field to any of the form
elements in the form.

Improving Forms

[350]

What just happened?
We used the Validation plugin to add some simple client-side validation to our form. The
simplest way to use the Validation plugin is to simply add some class names and attributes to
your form elements. Validation will take care of the rest—it's smart enough to recognize the
HTML5 input types and validate them, and it offers some other useful validation rules such
as required fields, a maximum number value, minimum and maximum lengths, and credit
card numbers. We dropped in a bit of CSS to style the error messages the way we wanted.

Improving the appearance
If you've tried styling web forms with CSS, then you've probably discovered that some form
elements, such as text inputs and buttons, are pretty easy to style. There are a few quirks,
but once you get those figured out, you can get those form elements to look just about any
way you'd like. Other form elements, however, are much more stubborn and don't respond
much, if at all, to CSS styles. It's so frustrating to design a lovely form only to realize that it's
technically impossible.

These troublesome form elements are as follows:

�� <select>

�� <input type="file">

�� <input type="checkbox">

�� <input type="radio">

Not only are these four form elements impossible to style with CSS, but they also look
radically different in different browsers and operating systems, leaving us with little control
over the appearance of our form. Let's see how Lutrasoft's Fancyform plugin can help us out.

Time for action – improving form appearance
Perform the following steps to take advantage of the styling options made possible by the
Fancyform plugin:

1.	 We'll get started with a basic HTML file and associated files and folders, just like we
set up in Chapter 1, Designer, Meet jQuery. We'll work with a new HTML file, but
let's keep using the styles we set up for the earlier forms. Open your styles.css
file and paste in the styles we used for our forms in the previous sections.

2.	 For this example, in the body of the HTML document, we're going to set up a simple
form with examples of each type of hard-to-style form element. Get started with a
<form> tag, as follows:
<form id="pretty-form" action="#">
</form>

Chapter 12

[351]

3.	 Then, inside our form, we'll add our form elements. We'll start off with a select
drop-down option, as follows:
<fieldset>
 <legend>Select your favorite juice</legend>
 <p>
 <label for="juice">Favorite Juice</label>
 <select id="juice" name="juice">
 <option>Select one</option>
 <option value="orange">Orange Juice</option>
 <option value="grape">Grape Juice</option>
 <option value="grapefruit">Grapefruit Juice</option>
 <option value="cranberry">Cranberry Juice</option>
 <option value="tomato">Tomato Juice</option>
 <option value="pineapple">Pineapple Juice</option>
 <option value="apple">Apple Juice</option>
 </select>
 </p>
</fieldset>

We're following the same rules we followed for the previous form, making sure the
form works properly and is accessible.

Exactly what this <select> element looks like will depend on your browser and
operating system, but the following screenshot shows how mine looks in Google
Chrome on Mac OS X:

4.	 Next, we'll add a file input, as shown in the following code:
<fieldset>
 <legend>Fruit Picture</legend>
 <p>
 <label for="fruit-photo">Upload a photo of your
 favorite fruit</label>
 <input type="file" id="fruit-photo" name="fruit-photo"/>
 </p>
</fieldset>

Improving Forms

[352]

It's hard to believe that this innocent-looking little tag could be the source of so
much styling headache, but there you are. The following screenshot shows how it
looks in Google Chrome on Mac OS X:

5.	 Next up, let's add a few checkboxes, as follows:
<fieldset>
 <legend>Which hot beverages do you enjoy?</legend>

 <input type="checkbox" name="hot-bevs[]" id="hot-coffee">
 <label for="hot-coffee">Coffee</label>

 <input type="checkbox" name="hot-bevs[]" id
 ="hot-chocolate">
 <label for="hot-chocolate">Hot Chocolate</label>

 <input type="checkbox" name="hot-bevs[]" id="hot-tea">
 <label for="hot-tea">Tea</label>

</fieldset>

If you refresh the page in the browser, the checkboxes will appear as shown in the
following screenshot:

6.	 Then, let's add some radio buttons, as follows:
<fieldset>
 <legend>Select your favorite soft drink</legend>

 <input type="radio" name="soft-drinks" id="soda"/>
 <label for="soda">Soda</label>

Chapter 12

[353]

 <input type="radio" name="soft-drinks" id
 ="sparkling-water"/>
 <label for="sparkling-water">Sparkling water</label>

 <input type="radio" name="soft-drinks" id="iced-tea"/>
 <label for="iced-tea">Iced Tea</label>

 <input type="radio" name="soft-drinks" id="lemonade"/>
 <label for="lemonade">Lemonade</label>

</fieldset>

If you refresh the page in the browser, the radio buttons will appear as shown in the
following screenshot:

7.	 Finally, the last thing that we'll do is add a few elements to our form that are easy to
style, so that we can learn how to style these to match our custom styles:

<fieldset>
 <legend>Some other stuff about me</legend>
 <p>
 <label for="name">My name</label>
 <input type="text" id="name" name="name"/>
 </p>
 <p>
 <label for="about-me">About me</label>
 <textarea rows="10" cols="40" id="about-me" name
 ="about-me"></textarea>
 </p>
</fieldset>

Improving Forms

[354]

<p class="buttons">
 <input type="submit"/>
 <input type="reset"/>
</p>

We've already written CSS to style the fieldset, legend, text input, and submit input.
We haven't yet styled the text area or the reset input. We'll tackle these in a bit.

What just happened?
Now, we've got our unstyled form set up. Exactly what our form looks like will depend
on your browser and operating system. We followed all the rules established earlier in
this chapter for setting up a correct and accessible form. Except that this time, we've
included some difficult-to-style form elements. Let's take a look now at how we can use
the Fancyform plugin to get our form to look better and uniform across as many browsers
as possible.

Styling the unstyleable
If you want to take a little time out and try writing some CSS to style these form elements,
you'll see that there's not much that touches them. Some of them don't seem to be affected
by CSS at all, and when they are, it's not always in the way that you'd expect. No wonder
these form fields give everyone so much trouble. This is when jQuery comes to the rescue.

Chapter 12

[355]

Time for action – adding Fancyform to style the unstyleable
Perform the following steps to use the Fancyform plugin to gain styling control over your
form elements:

1.	 Let's get the Fancyform plugin and take a look at how it works. Head
over to https://github.com/Lutrasoft/Fancyform and click on the
Download ZIP button.

2.	 Unzip the file and take a look inside the folder.

This is pretty straightforward, right? We've got a demo folder, a README file, the
Fancyform JavaScript, and some other associated scripts—we've seen this all before.
We also see a V2 folder—the developer is starting on the next version of the plugin.
If you read the notes in GitHub carefully, you'll see that V2 isn't quite ready for
prime time yet, so we'll just ignore that for now.

3.	 Next, we need to add the Fancyform script to our own project and attach it to our
HTML page. Copy jquery.fancyform.js to your own scripts folder and attach
the Fancyform script between jQuery and your own scripts.js file, as follows:
<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.fancyform.js"></script>
<script src="scripts/scripts.js"></script>
</body>
</html>

4.	 Open your scripts.js file and add the document ready statement, as follows:
$(document).ready(function(){
 // Our code will go here
});

5.	 Next, select all the <select> elements and call the transformSelect() method,
as follows:
$(document).ready(function(){
 $('select').transformSelect();
});

https://github.com/Lutrasoft/Fancyform

Improving Forms

[356]

If you refresh the page in the browser now, you'll see that the <select> element is
replaced by a bit of text. Clicking on the text opens up a list of options. Then, clicking
on one of the options changes the bit of text to the option we clicked. The following
screenshot shows what happens:

The basic functionality is present; we just have to style everything with CSS to look
the way we'd like.

6.	 Let's get started with the styles by styling the select box itself. Open your
styles.css file and add the following styles:
.transformSelect {
 display: inline-block;
 vertical-align: middle;
 width: 200px;
}

.transformSelect li {
 margin: 0;
 position: relative;
}

.transformSelect > li > span {
 background: white;
 border: 1px solid #ccd1d9;
 border-radius: 5px;
 color: #656d78;
 cursor: pointer;
 display: block;
 left: 0;

Chapter 12

[357]

 line-height: 20px;
 margin: 0;
 overflow: hidden;
 padding: 3px 5px;
 text-overflow: ellipsis;
 top: 0;
 white-space: nowrap;
}

Refresh the page in the browser and you'll see that the select box is placed correctly
and has a border and border radius that match the styles we've created so far for
our forms.

7.	 Now, we'll create the arrow on the right-hand side of the drop-down box:
.transformSelect > li > span:before {
 border-left: 1px solid #ccd1d9;
 bottom: 4px;
 content: '';
 position: absolute;
 right: 2em;
 top: 4px;
}

.transformSelect > li > span:after {
 border-left: 7px solid transparent;
 border-right: 7px solid transparent;
 border-top: 10px solid #ccd1d9;
 content: '';
 height: 0;
 margin-top: -4px;
 position: absolute;
 right: 10px;
 top: 50%;
 width: 0;
}

Improving Forms

[358]

This is the CSS triangle technique we've used many times already. Refresh the page
in the browser and you'll see that our select box is looking pretty good, as shown in
the following screenshot:

8.	 Now, let's tackle the list of options that appears after we click on our styled select
drop-down menu, as follows:
.transformSelect li.open > span {
 border-radius: 5px 5px 0 0;
}

.transformSelectDropdown {
 background: white;
 border: 1px solid #ccd1d9;
 border-radius: 0 0 5px 5px;
 border-top: 0;
 box-shadow: 5px 5px 10px rgba(0,0,0,0.2);
 position: absolute;
 width: 198px;
}

.transformSelectDropdown span {
 cursor: pointer;
 display: block;
 padding: 0.222em 0.5em;
}

.transformSelectDropdown span:hover {
 background: #ccecf8;
}

.transformSelectDropdown li:last-child span {
 border-radius: 0 0 5px 5px;
}

This is all pretty straightforward—no magic tricks here. Refresh the page in the
browser and you'll see that we've got a perfectly styled drop-down form element,
as shown in the following screenshot:

Chapter 12

[359]

9.	 Next up, let's tackle that file input. This is one of the toughest elements to style as
it looks wildly different in different browsers. In your scripts.js file, select all file
inputs and call the transformFile() method, as follows:
$(document).ready(function(){
 $('select').transformSelect();
 $(':file').transformFile();
});

What does :file mean? That's one of the shortcut selectors that jQuery makes
available for us. Using the :file selector is the same as using the following line of
code:
input[type='file']

However, it requires a lot less typing.

Refresh the page in the browser, and you'll see that the file input is now replaced by
a bit of text, as shown in the following screenshot:

Clicking on the text opens up your system file dialog to allow you to browse and find
a file to upload. Just like with the select drop-down box, we've got the functionality
down; we just have to write some CSS to make it look the way we'd like.

Improving Forms

[360]

10.	First, we'll style the wrapper element that contains our styleable version of the file
input. Add the following lines to styles.css:
.customInput {
 cursor: pointer;
 display: inline-block;
 vertical-align: middle;
}

.customInput:after {
 clear: both;
 content: '';
 display: table;
}

See how we've styled the :after pseudoclass? This is just a way of clearing
floats—we're going to be floating the elements inside this container, and we
want to make sure they are cleared.

11.	Next, we'll style the element that will show the path to the file we've selected. In
styles.css, add the following lines:
.inputPath {
 border: 1px solid #ccd1d9;
 border-right: 0 none;
 border-radius: 5px 0 0 5px;
 color: #656d78;
 cursor: pointer;
 display: block;
 float: left;
 padding: 0.222em;
 width: 188px;
}

.customInputMouseOver .inputPath {
 border-color: #addf7a;
}

Refresh the page in the browser and you'll see that we're getting there—our file
input looks half-styled, as shown in the following screenshot:

Chapter 12

[361]

12.	Now, we'll style the button part of the element. Add the following lines to
styles.css:
.inputButton {
 background: #a1d36e;
 border: 1px solid #a1d36e;
 border-radius: 0 5px 5px 0;
 color: white;
 cursor: pointer;
 display: block;
 float: left;
 padding: 0.222em 0.75em;
 -webkit-transition: background 300ms;
 -moz-transition: background 300ms;
 -ms-transition: background 300ms;
 -o-transition: background 300ms;
 transition: background 300ms;
}

.custonInputMouseOver .inputButton {
 background: #addf7a;
}

Now, if you refresh the page in the browser, you'll see that our file input is styled
consistently with our other form elements, and even better, has a consistent style
when viewed in different browsers.

That wasn't so hard, right? Let's keep going.

Improving Forms

[362]

13.	Let's take a look at the checkboxes. Just like with the other elements, our first step
in customizing their appearance is to open up our scripts.js file, select the
elements we want to work with, and call the right transform method. Inside the
document ready statement, add the following bit of code:
$(':checkbox').transformCheckbox({
 base: 'class',
 trigger: 'parent'
});

Once again, we've used jQuery's shortcut selector (:checkbox) to select all the
checkboxes on the page. Then, we called the transformCheckbox() method,
but this time, we passed a few options to the method.

First, the transformCheckbox() method requires us to specify a base option.
This option has two possible values: class or image. If we choose the class
option, then the Fancyform plugin adds a element with a class to our
document, and we can style that with CSS to our heart's content. If we choose
the image option, then Fancyform will replace our checkboxes with an image.
We'd then have to set a few more options—one for the image path for a checked
checkbox and one for an unchecked checkbox.

The image option is a lot less flexible, and it requires loading up at least two
additional resources on our page. With the power of CSS3 on our side, there's not
much we can't accomplish if we choose the class option.

Second, the trigger option also has two possible values: self or parent. With
the self option, clicking only on the checkbox itself will result in the checkbox
being checked. With the parent option, clicking anywhere on the parent element
will check the checkbox. That's a lot easier for our site visitors, so we'll go with the
parent option.

If you refresh the page in the browser, you'll see that the checkboxes have simply
disappeared, as shown in the following screenshot:

While not visible, our checkboxes have been replaced by elements.
Now, we just have to write a bit of CSS to style them.

Chapter 12

[363]

14.	 In styles.css, add the following lines to style the elements:
.trans-element-checkbox {
 border: 1px solid #ccd1d9;
 border-radius: 3px;
 display: inline-block;
 height: 1em;
 margin: 0 0.5em 0 0;
 position: relative;
 vertical-align: text-bottom;
 width: 1em;
}

.trans-element-checkbox.checked {
 background-color: #ccecf8;
 border-color: #55c1e7;
}

Refresh the page in the browser, and you'll see our empty checkboxes appear. Click
on the checkbox or the text next to it, and you'll see that the box turns blue with a
blue border, as shown in the following screenshot:

At least it's an indicator that a box has been clicked, but our site visitors will no
doubt be accustomed to seeing a tick mark appear in the checkboxes.

15.	We'll use a well-known icon font, Font Awesome, to create the tick marks in our
checkboxes. Head over to http://fortawesome.github.io/Font-Awesome/
and click on the Download button to grab a ZIP file.

Improving Forms

[364]

Unzip the file. Copy the fonts folder to your own project file, where it will sit
alongside your styles and scripts folders. Then, open the css folder and copy
font-awesome.css to your own styles folder. Now, your project files should
look like those shown in the following screenshot:

16.	 In the head section of the HTML document, add the Font Awesome style sheet,
before your own styles.css file:
<head>
 <title>Chapter 12: jQuery for Designers</title>
 <link rel="stylesheet" href="styles/font-awesome.css">
 <link rel="stylesheet" href="styles/styles.css">
</head>

Now, the Font Awesome icon font is all loaded up on our page and ready to use.

17.	Now, head back into styles.css and we'll add a bit of code to show tick marks in
the checkboxes, as follows:
.trans-element-checkbox.checked:before {
 content: '\f00c';
 font-family: 'FontAwesome';
 height: 1em;
 left: 50%;
 margin: -0.7em 0 0 -0.5em;
 position: absolute;
 top: 50%;
 width: 1em;
}

Chapter 12

[365]

Now, if you refresh the page in the browser, you'll see that clicking on the
checkboxes turns them blue and shows a tick mark, as shown in the
following screenshot:

Perfect! Just what our site visitors will expect. The good news is that as we're using
CSS and an icon font to create our checkboxes, we can make them any size, and
they'll appear on the page crisp and clear, even on retina displays.

18.	Now, let's tackle those radio buttons. They function and are styled very similarly
to the checkboxes. First, in the scripts.js file, add the following bit of code
inside the document ready statement to replace the radio buttons with spans that
we can style:
$(':radio').transformRadio({
 base: 'class',
 trigger: 'parent'
});

This is very similar to the code we used for checkboxes.

19.	Next, let's add some styles for the radio buttons. In styles.css, add the following
lines of code:
.trans-element-radio {
 border: 1px solid #ccd1d9;
 border-radius: 50%;
 display: inline-block;
 height: 1em;
 margin: 0 0.5em 0 0;
 position: relative;
 vertical-align: text-bottom;
 width: 1em;
}

.trans-element-radio.checked {
 border-color: #55c1e7;
}

Improving Forms

[366]

.trans-element-radio.checked:before {
 color: #55c1e7;
 content: '\f111';
 font-family: 'FontAwesome';
 font-size: 0.8em;
 height: 1em;
 left: 50%;
 line-height: 1;
 margin: -0.45em 0 0 -0.5em;
 position: absolute;
 text-align: center;
 top: 50%;
 width: 1em;
}

Once again, there are a lot of similarities between this CSS code and the CSS we
used for checkboxes. We used a 50 percent border radius for the radio buttons as
they are usually circular rather than squared. We also used a different icon from
Font Awesome for the checked state of the radio buttons. Refresh the page in the
browser, and you'll see that the radio buttons behave as expected when we click on
them, as shown in the following screenshot:

Just like with the checkboxes, we can easily resize the radio buttons to any size
we might like. We are also free to experiment with border colors, sizes or colors,
background colors or gradients, box shadows, and so on to get just the appearance we
need for our design, and the design will appear consistently across different browsers.

Chapter 12

[367]

20.	Now, the only thing left to style is the text area and the reset button that weren't
styled earlier. Inside styles.css, add the following lines to style these elements:

textarea {
 border: 1px solid #ccd1d9;
 border-radius: 5px;
 color: #656d78;
 font-family: inherit;
 font-size: inherit;
 padding: 0.333em;
 transition: border 300ms;
}

textarea:focus {
 border-color: #656d78;
 outline: none;
}

input[type='reset'] {
 background: #ccd1d9;
 border: 0 none;
 border-radius: 5px;
 color: white;
 cursor: pointer;
 font-family: inherit;
 font-size: inherit;
 padding: 0.333em 1em;
 transition: background 300ms;
}

input[type='reset']:hover {
 background: #a5aebc;
}

Improving Forms

[368]

Now, if you refresh the page in the browser, you'll see that all of our form elements
are styled consistently and appear the same across browsers, as shown in the
following screenshot. Great work!

Have a go hero – a fully custom form
Combine what you've learned about form validation with the Validation plugin and what
you've learned about customizing form elements with the Fancyform plugin to create a
new form. Design a custom style for all elements in the form (be sure to use some of the
unstyleable form elements) and also make custom validation rules for the fields in the form.

Summary
Well, this wraps up the chapter on forms. We learned how to properly use the new HTML5
form elements to create a form that functions perfectly and is accessible to boot. We learned
how to focus the first field in the form, validate our site visitor's form input, and style those
stubborn and notoriously unstyleable form elements. Now, you've got an arsenal of tools on
your side to create gorgeous-looking forms that enhance your site visitors' experience on your
site. And the best of all, they all degrade gracefully for users with JavaScript disabled as we
approached our forms with the progressive enhancement mindset—by first building a working
form, and then layering in enhancements for site visitors whose browsers support them.

Chapter 12

[369]

I know that JavaScript can be a scary subject for designers. Kudos to you for sticking with me
to the end of the book! I hope that you now have a basic understanding of jQuery and feel
sure that you'll be able to tackle your next JavaScript challenge with confidence. You know
how to put the jQuery library to good use to enhance your sites. You know how to find good
plugins to make coding interactions quick and easy. You know how CSS and JavaScript can
work together to enhance the site visitor's experience on your site. You also know that there
is no shortage of online tutorials, resources, help forums, articles, and discussions to help
you along if you get stuck.

For its part, jQuery gets better with every release—sleeker, faster, and more capable. The
jQuery team is careful to keep the documentation updated, so you'll always be able to figure
out just how to use each method. The jQuery team is smart and quick, and new jQuery
updates are being announced on a regular schedule. All of this points to a lively and useful
library that will only continue to grow in popularity across the Web. It's a favorite of many
coders, from experienced hackers to beginners like you.

I hope that you've enjoyed this book and that it's given you many new ideas to design
and build interactive elements for your sites. Be sure to stay connected to the jQuery
community—it will be your best resource moving forward while further improving and
growing your JavaScript skills.

Pop Quiz Answers

Chapter 1, Designer, Meet jQuery
Pop quiz – setting up a new project

Q1 1

Chapter 2, Enhancing Links
Pop quiz – working with events

Q1 5
Q2 2

Chapter 4, Building an Interactive Navigation Menu
Pop quiz – understanding the cascade in CSS

Q1 4

Pop Quiz Answers

[372]

Chapter 5, Showing Content in Lightboxes
Pop quiz – loading content into Colorbox

Q1 1

Chapter 6, Creating Slideshows and Sliders
Pop quiz – working with jQuery chaining

Q1 3

Chapter 7, Working with Responsive Designs
Pop quiz – choosing breakpoints for responsive design

Q1 3

Chapter 8, Getting the Most from Images
Pop quiz – building accessible pages

Q1 5

Chapter 9, Improving Typography
Pop quiz – sizing text in responsive designs

Q1 3

Appendix

[373]

Chapter 10, Displaying Data Beautifully
Pop quiz – building correct tables

Q1 3

Chapter 11, Reacting to Scrolling
Pop quiz – using Scrollorama in responsive design

Q1 3

Chapter 12, Improving Forms
Pop quiz – working with HTML5 form elements

Q1 1

Index
Symbols
<figure> element

using 208
:file selector 359
:focus pseudoclass

styling 89
Superfish menus, customizing 90-94

<header> element 248
:hover pseudoclass 87, 88
<input> tag 333
<label> tag 334, 347
<script> tag 249
.sfHover class 87, 88
 tag 252
:visible pseudoclass 35

A
accessHide class 291
action attribute 332
addClass method 74
AJAX 118
A List Apart

URL 77
alt option 46
amp class 250
animations

horizontal animation, creating 318-320
appendTo() method 128, 293
arctext() method 262

ArcText plugin
text, setting on curve with 261-265
URL 261

argument 13

B
background-size property

about 234
URL, for information 306

barMargin option 284
Basic Slider plugin

about 132
downloading, URL 132
used, for creating slider 132-139

behavior, Colorbox
customizing 104

bold text block
creating, with SlabText 247-254

branches 17

C
Caption2 option, Cycle2 plugin 150
CDN 19, 20
chaining 61
charts

creating, from HTML tables 279-288
height, setting 295-298
width, setting 295-298

checkbox
adding 352

class attribute 347

[376]

cloudy weather forecast
parallax effect, adding to 311-318

Colorbox
about 97
behavior, customizing 104
custom transition, creating 105
fixed size, setting for 106
URL 100

colorbox() method 104
Colorbox plugin

used, for creating simple photo gallery 98-104
columnWidth option 213, 216
Content Delivery Network. See CDN
creditcard class 346
crossfade slideshow

about 126
creating, from scratch 126-131

curve
ArcText plugin, using for text setup 261-265

custom Colorbox
creating 124

custom content
loading, in tooltips 54-60

custom tooltips
about 39
content, loading in 53-61
creating 40-44
used, for navigation bar enhancing 50-53

Cycle2 carousel
about 151
combining, with Cycle2 slideshow 162
connecting, with slider 178-183
creating, with Cycle2 plugin 151-161

Cycle2 carousel controller
creating 162-170

Cycle2 plugin
about 139
documentation, URL 153
download, URL 150
URL 148, 154
used, for building Cycle2 carousel 151-161
used, for building slideshow 140-147

Cycle2 slideshow
building, considerations 126
building, with Cycle2 plugin 140-147
creating 139, 140

customizing 147-151
Cycle2 carousel, combining with 162

D
data grid

about 268
creating 268-270
customizing 272-278

DataTables plugin
about 278
URL 269

DesktopServer
about 118
URL, for downloading 118

E
eat method 13
end() method 130
event 33
event handler 33

F
fadeIn() method 129
fadeOut() method 129
fancy effects

creating, with Lettering.js 261
Fancyform plugin

URL 355
using 355-368

fancy login form
creating, in lightbox 110-114

FAQ page
about 63
finishing touches, adding 72-75
HTML document, moving around 67-69
HTML file, setting up 64-66
new features, adding 70, 71

fieldset 337
file input

adding 351, 352
filter method 37
first field

selecting, in form 342, 343
FitText

URL 245

[377]

fitText() method 245, 246
fitText option 265
FitVids

URL 190
used, for fitting videos in responsive

designs 186-192
fitVids() method 192
fixed size

setting, for Colorbox 106
focus() method 343
Font Awesome

URL 363
for attribute 334, 347
form

first field, selecting 342, 343
user entry, validating 343-350

form appearance
Fancyform plugin, using 354-368
improving 350-354

form elements 350
Frequently Asked Questions. See FAQ page
fullscreen background image

challenges 233
creating 233-238

fullscreen slideshow
creating 239-241

function, JavaScript 14

G
GitHub

URL 41
graceful degradation, JavaScript 10
graphs

creating, from HTML tables 279-288
height, setting 295-298
width, setting 295-298

H
hamburger 193
headlines

sizing, to screen width 244-247
horizontal animation

creating, in windy weather forecast 319, 320
horizontal drop-down menu

about 78
creating 78-85

hoverIntent plugin 94, 95
HTML

setting up, for Scrollorama 307-309
HTML5 specs

URL 66
HTML5 web form

about 331, 332
pop quiz 342
setting up 332-342

HTML document
setting up, for scrolling effect addition 301-307

HTML file, FAQ page
setting up 64-66

HTML tables
charts, creating from 279-287
graphs, creating from 279-287

I
id attribute 332
ImageOptim

URL 234
image option 362
images

fullscreen backgrounds, using 233
lazy loading images 219
transition, modifying between 105
zoomable images, creating 226

initialHeight setting 107
initialWidth setting 107
innerHeight setting 106
innerWidth setting 106
Internet Explorer (IE) 17
itemSelector option 213

J
JavaScript

about 12
basics 10
function 14
moving, from one element to other 67-69
objects 12, 13
variables 12

JavaScript basics
graceful degradation 10
progressive enhancement 10
web pages, behavior 11

[378]

web pages, content 11
web pages, presentation layer 11

JPEGmini
URL 234

jQuery
about 7, 8
downloading 15-18
features 8
plugin 39
URL 17, 20
using, option 19

jQuery, features
community support 10
CSS selectors 8
effects 9
HTML markup 8, 9
plugin library 9

jQuery function 22
jQuery plugins

URL 38
jQuery script

starting with 20, 21
jQuery slider. See slider
jQuery slideshow. See slideshow
jQuery UI 271
jQuery Visualize plugin

on GitHub, URL 282

L
lazy loading images

about 219
page of images, setting up 220-225

legend tag 337
Lettering.js

fancy effects, creating with 261
URL 256
used, to style letters 255-260

lettering() method 256
letters

styling, Lettering.js used 255-260
lightbox

about 97
fancy login form, creating in 110-117
video, setting up in 118-121

lightbox image gallery
turning, into slideshow 107-110

M
masonry layouts. See tiled layouts
Masonry library

URL 212
used, for creating tiled layouts 207-214

masonry() method 212
max attribute 345
maxHeight setting 107
maxWidth setting 107
MeanMenu plugin, GitHub

URL 193
used, for making responsive menus 193-205

menus, responsive design
creating 193-205

modular scale
about 244
URL 244

N
name attribute 333
navigation

adding 320
adding, to page sections 320-328
adding, to weather forecast 320-328

navigation bar
enhancing, with custom tooltips 50-53

navigation drawer. See hamburger
navigation menu

:hover pseudoclass, using 87, 88
.sfHover class, using 87, 88
customizing 86, 87
inherited styles, cascading 88

next() method 129

O
objects, JavaScript 13
one-page web gallery

about 122
creating 122-124

onOpen tag 114

P
page sections

navigation, adding to 320-328

[379]

paragraph
adding 22, 23

parallax effect
adding 309, 310
adding, to cloudy weather forecast 311-318

parameter 14
pie chart

creating 288-294
placeholder attribute 334
plugin

about 38
selecting, criteria 39

powerTip method 44
PowerTip plugin

about 44
customizing 44-49

presentation layer 11
progressive enhancement 10
pseudoclass selectors 35

R
radio buttons

adding 352
ready() method 128
removeClass method 74
required attribute 345
responsive design

about 185
FitVids, used for fitting in videos 186-192

responsive design, Marcotte's article
URL 185

RIOT
URL 234

rotate option 263

S
same-o. See hamburger
screen width

headlines, sizing to 244-247
scrolling effect

HTML documents, setting up for 301-307
Scrollorama

HTML, setting up for 307-309
ServerPress 118

setInterval() method 129
settings, Colorbox

initialHeight 107
initialWidth 107
innerHeight 106
innerWidth 106
maxHeight 107
maxWidth 107

simple photo gallery
about 98
creating, with Colorbox plugin 98-104

SlabText
bold text block, creating with 247-254
URL 249

slabText() method 254
slider

building, considerations 126
connecting, with Cycle2 carousel 178-183
creating, with Basic Slider plugin 132-139
planning 126

slideshow
building, considerations 126
planning 126
lightbox image gallery, turning into 107-117
setting up 172-177

slideshow function 127
sliding animation

incorporating 95, 96
string 12
Suckerfish Dropdowns 77
Superfish menu

customizing 90-96
Superfish plugin

URL 80
used, for enhancing horizontal drop-down

menu 78-85

T
tabs

about 25
creating 26-37

Tabs echo 25
ternary operator 297
text

setting, on curve with ArcText plugin 261-265

[380]

tiled layouts
creating 209-214
creating, with different width items 214-217

title attribute 349
transition

modifying, between images 105
traversing the DOM, JavaScript 69
trigger option 362
type attribute 341

U
unveil() method 225
Unveil plugin

URL 222
user entry

validating, in form 343-350

V
validate() method 346
Validation plugin

downloading 344
URL 344

value attribute 339
variables, JavaScript 12
Vegas plugin

URL 235
vertical fly-out menu

creating 85, 86

video player 118
videos

displaying, in lightbox 118-121
fitting, in responsive designs with

FitVids 186-192
resizing 186-192

Visualize plugin
used, for creating pie chart 288-295

W
web form 332
WuFoo

URL 332

Z
zoomable images

creating 226-230
multiple images, creating 231-233

Zoom plugin
URL 229

Thank you for buying

jQuery for Designers Beginner's Guide
Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're
using to get the job done. Packt books are more specific and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and
you would like to discuss it first before writing a formal book proposal, contact us; one of
our commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.

www.packtpub.com

Responsive Web Design with jQuery
ISBN: 978-1-78216-360-2 Paperback: 256 pages

Learn to optimize your responsive web designing
techniques using jQuery

1.	 Learn to swiftly design responsive websites by
harnessing the power of jQuery.

2.	 Get your responsive site ready to meet the
device-agnostic world.

3.	 Display highlighted content in a carousel and
implement touch gestures to control them.

4.	 Understand the mobile-first philosophy and put
its concept into practice.

jQuery UI Cookbook
ISBN: 978-1-78216-218-6 Paperback: 290 pages

70 recipes to create responsive and engaging user
interfaces in jQuery

1.	 Packed with recipes showing UI developers how to
get the most out of their jQuery UI widgets.

2.	 Solutions to real-world development issues distilled
down in a reader-friendly approach.

3.	 Code examples written in a concise and elegant
format making it easy for the reader to adapt to
their own style.

Please check www.PacktPub.com for information on our titles

Learning jQuery
Fourth Edition

ISBN: 978-1-78216-314-5 Paperback: 444 pages

Better interaction, design, and web development
with simple JavaScript techniques

1.	 An introduction to jQuery that requires minimal
programming experience.

2.	 Detailed solutions to specific client-side problems.

3.	 Revised and updated version of this popular
jQuery book.

jQuery Hotshot
ISBN: 978-1-84951-910-6 Paperback: 296 pages

Ten practical projects that exercise your skill, build
your confidence, and help you master jQuery

1.	 See how many of jQuery's methods and properties
are used in real situations. Covers jQuery 1.9.

2.	 Learn to build jQuery from source files, write jQuery
plugins, and use jQuery UI and jQuery Mobile.

3.	 Familiarize yourself with the latest related
technologies such as HTML5 and CSS3 and
frameworks such as Knockout.js.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Designer, Meet jQuery
	What is jQuery?
	Why is jQuery awesome for designers?
	It uses CSS selectors you already know
	It uses HTML markup you already know
	Impressive effects in just a few lines of code
	Huge plugin library available
	Great community support

	JavaScript basics
	Progressive enhancement and graceful degradation
	Gotta keep 'em separated
	Content
	Presentation
	Behavior

	Designer, Meet JavaScript
	Variables
	Objects
	Functions

	Downloading jQuery and getting set up
	Time for action – downloading and attaching jQuery
	Another option for using jQuery
	Your first jQuery script
	Time for action — getting ready for jQuery
	Adding a paragraph
	Time for action - adding a new paragraph
	Summary

	Chapter 2: Enhancing Links
	Simple tabs
	Time for action – creating simple tabs
	Designer, meet plugins
	Choosing a plugin

	Simple custom tooltips
	Time for action – simple custom tooltips
	Customizing PowerTip's appearance
	Time for action – customizing PowerTip
	Enhancing navigation with tooltips
	Time for action – building a fancy navigation bar
	Showing other content in tooltips
	Time for action – showing custom content in tooltips
	Summary

	Chapter 3: Making a Better FAQ Page
	Marking up the FAQ page
	Time for action – setting up the HTML file
	Time for action – moving around an HTML document
	Sprucing up our FAQ page
	Time for action – making it fancy
	We're almost there!
	Time for action – adding some final touches
	Summary

	Chapter 4: Building an Interactive
Navigation Menu
	The horizontal drop-down menu
	Time for action – creating a horizontal drop-down menu
	The vertical fly-out menu
	Time for action – creating a vertical fly-out menu
	Customizing the navigation menu
	:hover and .sfHover
	Cascading inherited styles

	Styling the :focus pseudoclass
	Time for action – customizing Superfish menus
	The hoverIntent plugin
	Time for action – incorporating custom animation
	Summary

	Chapter 5: Showing Content in Lightboxes
	Simple photo gallery
	Time for action – setting up a simple photo gallery
	Customizing Colorbox's behavior
	Time for action – using a custom transition
	Time for action – setting a fixed size
	Time for action – creating a slideshow
	Fancy login
	Time for action – creating a fancy login form
	Video player
	Time for action – showing a video in a lightbox
	One-page web gallery
	Time for action – creating a one-page web gallery
	Summary

	Chapter 6: Creating Slideshows
and Sliders
	Planning a slideshow or slider
	A simple crossfade slideshow
	Time for action – creating a simple crossfade slideshow
	Using the Basic Slider plugin
	Time for action – building a Basic Slider
	Creating a Cycle2 slideshow
	Time for action – building a slideshow with Cycle2
	The Cycle2 carousel
	Time for action – building a Cycle2 carousel
	Combining a carousel with a slideshow
	Time for action – creating the carousel controller
	Time for action – adding the slideshow
	Time for action – connecting the carousel and the slider
	Summary

	Chapter 7: Working with Responsive Design
	Using FitVids for responsive video
	Time for action – resizing videos
	Responsive menus
	Time for action – making our menu responsive
	Creating a tiled layout
	Time for action – creating a masonry layout
	Time for action – creating a tiled layout with different
width items
	Summary

	Chapter 8: Getting the Most from Images
	Lazy loading images
	Time for action – lazy loading images
	Creating zoomable images
	Time for action – creating zoomable images
	Time for action – creating multiple zoomable images
	Using fullscreen backgrounds
	Time for action – creating a fullscreen background image
	Time for action – creating a fullscreen slideshow
	Summary

	Chapter 9: Improving Typography
	Sizing headlines perfectly
	Time for action – sizing headlines to the screen width
	Creating bold text blocks
	Time for action – creating a bold text block with SlabText
	Styling individual letters
	Time for action – using Lettering.js to style letters
	Setting text on a curve
	Time for action – setting text on a curve with the ArcText plugin
	Summary

	Chapter 10: Displaying Data Beautifully
	A basic data grid
	Time for action – creating a basic data grid
	A customized data grid
	Time for action – customizing the data grid
	Showing graphs and charts
	Time for action – showing data in graphs and charts
	Time for action – creating a pie chart
	Time for action – calculating the ideal size for charts
and graphs
	Summary

	Chapter 11: Reacting to Scrolling
	Setting up the document
	Time for action – setting up the HTML file
	Time for action – setting up HTML for Scrollorama
	Time for action – creating a parallax effect
	Time for action – creating a horizontal animation
	Time for action – adding navigation to sections of the page
	Summary

	Chapter 12: Improving Forms
	An HTML5 web form
	Time for action – setting up an HTML5 web form
	Setting focus
	Time for action – setting focus to the first field
	Validating site visitor entry
	Time for action – validating form values on the fly
	Improving the appearance
	Time for action – improving form appearance
	Time for action – adding Fancyform to style the unstyleable
	Summary

	Appendix: Pop Quiz Answers
	Index

