Acknowledgments

This book has been written in roughly 6 months, but the tips were gathered from
the past 12 years of my SAP career. Every single person I worked with or who
helped me to learn even a single line of code directly or indirectly during this
period of time has contributions in the book. I would like to thank all of them for
their support to my success.

As this is my first book project, I didn't know much about the tough steps of writ-
ing a book. It is more challenging than it is seen from the outside world. The SAP
PRESS team, Kelly Harris and Laura Korslund, made great efforts at each step of
this process to help me finish the book. I would like to thank them and the produc-
tion team for their great support in helping to bring out the book at the highest
quality standards.

I would like to add a special thanks to my family: my mother for giving me life
and also always making me feel her love around me, my father for teaching me
to work hard and overcome difficulties, and my siblings for always being with me
in the good and bad times. I also express my thanks to my mother-in-law who
motivated me a lot to complete this book and father-in law who shared his own
experiences on writing a book.

Finally, I want to give all my love and gratitude to my wife Gérkem Anil Giilgen,
who always walked together with me for many years and encouraged me to write
this book. This book wouldn’t be possible without her support. Writing a book
takes a lot of sacrifice, including many days of work that take time from your
life. She didn't allow me to spend this time away from her; instead, she always
stayed with me and became part of the book with her patience, support, and
understanding.

11

vww .allitebooks.cond

http://www.allitebooks.org

vww allitebooks.conl

http://www.allitebooks.org

Introduction

SAP is continuously adding new products and solutions into the product portfolio
to keep the platform up to date and meet the latest technology trends. Although
some of these new products need to be developed in different programming lan-
guages, ABAP® still stands as a major programming language for software develop-
ment in the SAP platform. It is a simple but powerful language for developers to
build enterprise applications.

Several tools are available in the ABAP Workbench that make the development
process easy and efficient. In this book, you'll find 100 little-known tips and tricks
that teach you quick and practical techniques to solve your problems and increase
your productivity while using the ABAP Workbench tools. This book neither gives
detailed tutorials explaining how to use these ABAP Workbench tools nor teaches
the ABAP programming language. Each tip has only 3-5 pages that focus on the
specific problem or topic that you can immediately use in your daily work. If you
want to get more background detail about any tool explained in the book, we rec-
ommend searching the SAP PRESS catalog for another book focused on the tool or
refer to the SAP Community Network (http.//scn.sap.com) or official documentation
provided by SAP (http://help.sap.com).

The ABAP Workbench has many tools and features that cannot be limited to 100
tips. Tips that are included in the book are selected from the wide range of topics
mostly to give you workarounds to perform your daily tasks in a more efficient
way. Some tips in the book require expert-level knowledge, and some can be very
simple for ABAP experts, but generally they are selected to address both beginner
and advanced ABAP programmers. You can put this book into your library and
consult it when you want to read tips about specific tools, or you can read from
start to end. I was excited to learn many of these tips, and I hope you'll feel the
same when you read tips that will save you time and effort on a daily basis.

Tips in the book are divided into nine different parts. In the first four parts, you'll
find tips that mostly help you to improve your ABAP development capabilities by
providing practical, alternative workaround solutions while you're using the ABAP
Workbench tools to develop an ABAP program, such as the ABAP Editor, the Func-
tion Builder, and the Class Builder.

13

vww .allitebooks.cond

http://scn.sap.com
http://help.sap.com
http://www.allitebooks.org

Introduction

In Part 5, we move into the analysis phase of ABAP programming. In this part,
you'll find very useful tips on the ABAP Debugger to help you find bugs in your
ABAP programs. You'll see how the new ABAP Debugger is improved after it's
launched. You'll also notice the latest improvements of the ABAP Debugger in
SAP NetWeaver 7.3. We've added a footnote about the version restrictions in the
individual tip title in all that apply.

You might also see some differences in the step-by-step procedures or screenshots
because of the version difference. We've used the SAP NetWeaver 7.3 system to
describe the step-by-step procedures and provide the screenshots. If you're using
a different version, please note that there may be small differences on the tools.

Part 6 is also focused on problem analysis in ABAP programs. You'll find tips
for various analysis tools in the ABAP Workbench. You'll learn practical ways of
improving the code quality and find performance bottlenecks arising from wrong
database or memory usages. There are also useful tips that will help you to analyze
SAP Business Workflow problems.

In Part 7, you'll learn practical ways of using the ABAP Data Dictionary tools. The
ABAP Data Dictionary has very broad features that can't be limited to a small part
in a book. This part lists the most useful and practical tips on using the ABAP Data
Dictionary tools.

Enhancement tips listed in Part 8 are included to give you practical ways of using
the Enhancement Framework, which is also one of the most useful parts of the
ABAP Workbench. In this part, you'll see different usages of the Enhancement
Framework that will save a lot of time during patches or system upgrades.

Finally, in Part 9, you'll see some tips on Web Dynpro ABAP. Of course, it's impos-
sible to fit tips about Web Dynpro ABAP in a small part of this book. We've added
some tips about Web Dynpro ABAP that are mostly related to the other ABAP
Workbench tools. If you want more details, we highly recommend the books Get-
ting Started with Web Dynpro ABAP (SAP PRESS, 2010) and Web Dynpro ABAP—The
Comprehensive Guide (SAP PRESS, 2013).

14

vww .allitebooks.cond

http://www.allitebooks.org

Part 1

Object Navigator

Things You'll Learn in this Section

1 Building Package Hierarchies to Organize Development

ObjJects 17
2 Using the Reuse Library to Find Reusable Software Objects,

Documentation, and Examples ... 21
3 Accessing Your Previous Navigation Steps with the Navigation

SEACK e 25
4 Inserting Statement Patterns in ABAP Programs with Drag

ANd Drop ..o 28
5 Using Worklists to Group Development Objects 31
6 Managing Your Frequently Used Objects with a Favorites

LSt e 33
7 Comparing ABAP Programs between Two Systems 36
8 Modifying and Testing Programs with Inactive Versions of

Development Objectsocoiiiiiiiiiiiiiii i 39
9 Creating Local Objects for Test Purposes cveeneen 43
10 Creating and Accessing Documentation for Development

O CES e 45
11 Reserving Namespaces with SAP for Third-Party Objects 48
12 Using the Application Hierarchy Tool to Organize

Applications ... 50
13 Searching for Objects in Transport Requests with Transport

Organizer TOOIS ...oooiiiiiii e 52
14 Searching for Development Objects using the Repository

Information System ... 55
15 Using OO Transactions to Link Class Methods to Transaction

COBS e 58

15

vww .allitebooks.cond

http://www.allitebooks.org

Part 1 Object Navigator

16 Using Forward Navigation to Create Objects 61
17 Uploading/Downloading User-Specific Settings to a

Different System ... 63
18 Using Package Interfaces to Create a Set of Visible

Development Objects ..., 65

The Object Navigator is the central point in the ABAP Workbench that developers
use to create and modify development objects, which can then be accessed with
Transaction SE80. It provides you with a hierarchical display of all development
objects, allowing you to easily display and maintain objects using the relevant
development tools. Objects are separated into groups (such as PROGRAM, PACKAGE,
FUNCTION GROUP, etc.), and for each group, you can select individual objects to
see the list of subobjects contained in the main object. You can also double-click
any object on the list to open the relevant development tool without having to
remember the specific transaction code or menu path.

Because the Object Navigator is the main development tool for ABAP developers,
it's critical to use this tool efficiently. In this part of the book, we provide tips and
tricks to increase the productivity of developers while using the Object Navigator.

vww .allitebooks.cond

1¢

http://www.allitebooks.org

Tip o

Building Package Hierarchies to
Organize Development Objects

You can better manage your development objects by creating package hierarchies.

The packaging concept is widely used in software development to modularize and
encapsulate development objects. The Package Builder tool in ABAP Workbench
is used for this purpose. It allows developers to organize development objects in
separate packages in terms of functionality, usage, and the category they should
belong to. Development objects are usually put into large packages grouped by
functional modules (ZMM, ZFI, ZHCM, etc.). However, in big development proj-
ects, splitting development objects into separate packages isn't enough. In this
tip, we'll show you a better way to organize these objects to make them easier to
manage by building your own package hierarchy.

And Here's How ...

Three types of packages are used to build a package hierarchy: structure package,
main package, and development package. A structure package is created to contain all
packages at the top level. For example, you can separate the development objects
for a single module or project into different packages according to their technical
or business attributes, but then combine them into a single top-level structure
package to be able to access the development objects easily. Then, main packages
need to be created and added into the structure package. Finally, development
packages are created to store development objects. The following rules must be
satisfied when creating package hierarchies:

17

vww .allitebooks.cond

http://www.allitebooks.org

Tip 1 Building Package Hierarchies to Organize Development Objects

The root package in a package hierarchy must always be a structure package.
Structure and main packages can't contain development objects.

A main package can be a subpackage of a structure or main package.

A development package can be a subpackage of a main or development

package.

Main and development packages can be nested to any level to create the desired
hierarchy as shown in Figure 1.

Structure Package

. . .

Main Package Main Package Main Package

Development Package Development Package Development Package

v
v

Development Package

h 4

h 4

Development Package Development Package

v

h 4

Development Package

h 4

Development Package

p| Development Package Development Package

h

Main Package

h 4

Development Package

Development Package

Figure 1 Package Hierarchy Showing All Possible Package Assignments

Now let's start to build a package hierarchy. We have to create the structure, main,
and development packages.

Create a Structure Package
To create a structure package, follow these steps:

1. Go to Transaction SE21 to open Package Builder (alternatively, you can use the
Repository Browser with Transaction SE80).

18

vww allitebooks.conl

http://www.allitebooks.org

Object Navigator Part 1

2. Enter the name of the package you're creating and click CREATE.
3. Enter the package attributes (see Figure 2).
4. In the PAackAGE LEVEL field, select S STRUCTURE PACKAGE.

5. Save.

[ErPackage Builder: Create Package

Narne |z100THINGS
Descripticn [100 Things You Should Know about ABAP Workbench
Appiication Component [ca
Software Component [moME
Transport Layer []
Superpackage [
Package Level |5 structure Package ~
V%) E

2 Figure 2 Create Package Dialog

Create a Main Package
To create a main package, follow these steps:
1. Repeat the same procedure as for the structure package.

2. In the SUPERPACKAGE field, select any of the previously created structure or
main packages

3. In the PAcCKAGE LEVEL field, select MAIN PACKAGE.
4, Save.

Create all main packages using the same procedure, and assign superpackages
accordingly.

Create a Development Package
To create a development package, follow these steps:
1. Repeat the same procedure as for the structure package.

2. In the SuPERPACKAGE field, select any of the previously created main or devel-
opment packages.

3. In the PackAGE LEVEL field, select DEVELOPMENT PACKAGE.

4, Save.

Create all development packages using the same procedure, and assign superpack-
ages accordingly.

19

vww .allitebooks.cond

http://www.allitebooks.org

Tip 1 Building Package Hierarchies to Organize Development Objects

You have now created all of the necessary packages and built a package hierarchy.
Next, go to Transaction SE80 and open the structure package that you have created
as the root package. You can see all embedded main and development packages
in a hierarchical object list under the structure package. In Figure 3, you can see a
package view showing the sample nested hierarchy.

| Package Hierarchy =]
|Z100THINGS v | &
(« L= [F]a] [&]E) =
Ohbject Name Description
* @ Z100THINGS 1100 Things ‘You Should Know about ABAP Warkbench
~ @ ZABAP_EDITOR ABAP Editor

~) ZPACKAGE_HIERARCHIES Package Mierarchies
~ £ ZPACKAGE_HIERARCHIES Package Hierarchies

« @ ZHM Human Capital Management
+ @ MM Materials Management
« #8780 Sales and Distribution
+ fff ZGENERAL_OBJECTS General Objects
* @ ZOBXECT_NAVIGATOR \Object Mavigator
* @ ZNAVIGATION_STACK INavigation Stack

+ (0 ZNAVIGATION STACK Mavigation Stack

A Figure 3 Package View Showing the Nested Hierarchy

Double-click on any of the packages in the hierarchy to see the details of the pack-
age. Subpackages of a package are shown in the SUBPACKAGES tab in the package
details screen (see Figure 4). You can create or delete a package or move another
package below the current package from this screen.

Package lzPA.ERlGE_HIERARCHIES _IP]'tme

EE@] I (O create |aMove here |[[Delete |

B subpackage Description

. ZHM Hurnan Capita Management
M Materials Management
ZsD Saes and Distribution

A Figure 4 Subpackage List

Note that although you technically can move a package to below another package,
it isn't fully supported as of SAP NetWeaver release 7.3. Use this feature at your
own discretion.

20

vww .allitebooks.cond

http://www.allitebooks.org

Tip o

Using the Reuse Library to Find
Reusable Software Objects,
Documentation, and Examples

You can use the Reuse Library to access examples, documentation, and reusable software
objects to improve your ABAP experience.

Typically, when you're learning a new programming language, you start by learn-
ing the syntax and developing your first Hello World application. This is the easiest
part of the never-ending story. No matter how much experience you have, you'll
always need to find help documents, sample programs, and reusable software
components. At that point, the ABAP Workbench offers the Reuse Library to help
you speed up your development processes or improve your ABAP experience. In
this tip, we'll help you get familiar with this tool.

And Here's How ...

The Reuse Library is a tool that helps you find reusable software products. You can
access it with Transaction SE83 or by selecting ENVIRONMENT « REUSE LIBRARY in
the Object Navigator.

On the left side of the screen, you'll see a hierarchical list of reuse products. You
can display the reuse product on the right side by double-clicking on its name.
Figure 1 shows an example of a reuse product.

21

Tip 2 Using the Reuse Library to Find Reusable Software Objects

m

Display Reuse Library : ALV Grid Control

Full screen onjoff [RJFul text search ¢BLbraries BB Position cursor on product §8] Add to favarites

[Ful Tt Srch =] " Loverview - Documentation | Examples (F
|
[0 [D[)[=)| (B[S) [[68)
Additiond information |
T ——F — = Program Objects
= .| [E]E] * Cass ,
Libraries - [By CL_GUI_ALV_GRID | ALV List Viewer
+ [Favorites
* SAP Technology
* Controls
v Basics

+ [B control Container

« [B aLv Grid Contral

+ [® saP Calenda Contral
- [DataProvider

x

Figure 1 Reuse Product

The reuse product information is categorized on the following tabs:

>

OVERVIEW
Contains basic information about the reuse product.

DOCUMENTATION
Contains help documents about the reuse product and gives you detailed infor-
mation before using it in your programs.

EXAMPLES

Contains sample applications that give you an idea about the reuse product. You
can directly start the application or navigate to the source code from the Reuse
Library. You can also add sample applications into your worklist with the AbD
TO WORKLIST button on the toolbar.

PROGRAM OBJECTS
Provides easy access to program objects that allow you to reuse the product. You
can add the program objects into your worklist with the same procedure as in
the EXAMPLES tab.

DEVELOPMENT SUPPORT
Provides tools such as wizards, generators, or templates to speed up the use of
the reuse product.

The Reuse Library includes the following popular topics:

| 3

>

22

ALV GRID CONTROL
HTML VIEWER

Object Navigator Part 1

»>

>

TexT EDIT
TREE CONTROLS

Creating a Reuse Product
You can also modify or create your own reuse products and libraries. Follow these
steps to create a reuse product:

L 2 T o

. Go to Transaction SLIBP.

. Enter the name of the reuse product and click CREATE.

. Enter the description into the PRoDUCT NAME field and click SAVE.
. Select the package and save.

. Maintain the information on the GENERAL DATA, OVERVIEW, DOCUMENTATION,

EXAMPLES, PROGRAM OBJECTS, and DEVELOPMENT SUPPORT tabs, and then save.

Creating a Reuse Library
Follow these steps to create your own Reuse Library:

1. Go to Transaction SLIBN.

. Enter the name of the Reuse Library and click CREATE.

. Enter the description and select the visibility:

» PusLIC: The reuse library is visible to everyone in Transaction SE83.

» PRIVATE: A parameter transaction needs to be created to display this type of
library.

. Select the package and Save.

5. Use the SUBNODES and SAME LEVEL buttons to create tree nodes and insert reuse

products, and then save.

You can subscribe to public libraries with the LIBRARIES button on the toolbar in
Transaction SE83. A list of the available libraries opens, and you can subscribe to
any of them by selecting and moving to the SUBSCRIBED LIBRARIES list as shown
in Figure 2.

23

Tip 2 Using the Reuse Library to Find Reusable Software Objects

[= Subscribe to library

@] [~[~][2]=]
Subscribed loraries

T | Tarm
B SaP Technology

] [#rom
Select lbraries

T Tarum
(s) Test Reuse Library

« Figure 2 Subscribe to a
Library

When you subscribe to a library, it becomes available in the Reuse Library.

On the other hand, you must create a parameter transaction to access private librar-
ies. This feature allows you to assign Reuse Libraries to different user groups.
Follow this procedure:

. Go to Transaction SE93.

. Enter the TRANSACTION CODE, and click CREATE.

. Select TRANSACTION WITH PARAMETERS from the list, and click CONTINUE.

1
2
3. Enter the SHORT TEXT.
4
5

. Enter "SE83_START" in the TransacTiON field, and select the SkipP INITIAL
SCREEN checkbox.

6. Fill in the DEFAULT VALUES table as shown in Figure 3. You can combine up to
nine Reuse Libraries by specifying their names in the DEFAULT VALUES table.

 Figure 3 Combining Reuse

L

EdE]

Default Values
Name of screen field vaue B
P_LIBL ZREUSE_LIBRARY1
P_LIEZ ZRELSE_LIBRARYZ -
P_LIE3 ZRELSE_LIBRARY3 e

Libraries in a Parameter Transaction

24

Tip e

Accessing Your Previous
Navigation Steps with
the Navigation Stack

You can easily return to previous navigation steps with the Navigation Stack tool, which
helps you make use of drill-down type navigation capabilities of the Object Navigator.

While working on a development object in the Object Navigator, you might want
to jump to another object to make a little change and then return to the first object.
However, sometimes it can be difficult to remember all of the steps you took and
return to them easily. To assist you, the Navigation Stack tool keeps a list of these
steps and allows you to easily navigate back and forth in the list.

And Here's How ...

The Object Navigator allows you the following navigation options while you're
using different ABAP Workbench development tools:

» Navigate directly into a subroutine, include, and function module by double-
clicking on the object name in the editor.

» By double-clicking on the variable name, navigate to the data declaration part
of that variable.

» Navigate to each respective element by double-clicking on the table, structure,
and data element definitions name in the editor.

25

Tip 3 Accessing Your Previous Navigation Steps with the Navigation Stack

» Navigate to all subobjects displayed hierarchically in the object tree on the left
side.

» Navigate to the other objects by writing their names directly into the OBJECT
NAME field on the left side.

All navigation steps are recorded in the Navigation Stack tool while you're navi-
gating within the Object Navigator. You can always go back and forth between
navigation steps until you navigate to a new step. All forward steps are cleared at
that point, and the Navigation Stack tool continues with the new path.

Let's see this in an example. Start the Object Navigator with Transaction SE80 and
perform the following steps:
1. Open ABAP program BCALV_GRID_01.

2. Navigate to a line where the popup_to_inform function is called, and double-
click on the function name. You have now navigated into the function module.

3. Open ABAP program BCALV_GRID_02 by manually entering its name in the
OBJECT NAME field.

4. Double-click on the method definition handle_double_c1ick, and navigate into
the method implementation.

5. Find the line where gt_sbook is declared, and double-click on it to navigate to
its definition.

6. Double-click on the SBOOK table that is used in the declaration part, and open
the table definition.

7. Double-click on the data element S_CARR_ID of column CARRID.
8. Double-click on the domain S_CARR_ID.

Now, all of these steps have been recorded in the Navigation Stack tool, and you
can navigate to any of these steps easily. To do this, open the Navigation Stack
window by choosing UTILITIES » DisPLAY NAVIGATION WINDOW.

You can see all of the steps you just performed in the Navigation Stack tool as
shown in Figure 1.

26

Object Navigator ~ Part 1

(@] =] (=] « Figure 1 Navigation Stack ltems
Navigation stack

Object type Object name Subohject name | Description
Domain 5_CARR_ID

Data Element S_CARR_ID

Database Table SBOOK

Program BCALY_GRID_02 Lire 45

Program BCALY _GRID_O2 Line 112

Program BCALV_GRID_02 Line 75

Function Module POPUP_TO_INFORM Line 1

PEO Module BCALY _GRID_O1 PBO Line 168
Object Navigator Initial Screen

Use the arrow buttons at the top of the screen to navigate back and forth within
the list. Alternatively, double-click on any of these steps to navigate to it.

Note that the Navigation Stack tool stores data for each session but clears data
immediately when you exit the Object Navigator.

27

Tip o

Inserting Statement
Patterns in ABAP Programs
with Drag and Drop

When working on ABAP programs, you can insert statement patterns by dragging rel-
evant entries from the object tree to the ABAP Editor to avoid making manual mistakes.

Some statement patterns can be very difficult to remember, and you're likely to
make a mistake if you try to write a full statement manually. Instead, you can drag
the relevant object from the object list into the ABAP Editor to create a source code
pattern to use that object in your ABAP program. This feature is extremely useful
for complex statement patterns.

And Here's How ...

When you open a development object in the Object Navigator, you can see all of
the subobjects in a hierarchical tree. You can create the following statements by
dragging the relevant object from the Object Navigator and dropping it into the
ABAP Editor:

¥

Instantiate global class

v

Call method of global class

¥

Call function module
Call subroutine

v

You can also drag and drop these objects from your worklist.

Perform the following steps to insert a statement pattern into the editor:

28

Object Navigator ~ Part 1

1. Open an ABAP program in the Object Navigator.

2. In the navigation area, select the object that you want to create a statement for

in the editor by clicking

on it.

3. Drag the object name and drop it into the editor as shown in Figure 1.

g
| Program = 9 START-OF-SELECTION.
|z_INSERT_STATEMENT Eara .

11
=)= L =) &)k &) 12
Object Name Description | 13
* (& 7_INSERT_STATEMENT Insert Statement Patte 114
~ {3 Fields = b
. L':_TEST 16 erform qgr._d,ar.atz_inaerr._at.m:menr.'l
= S Events _______.-—-"“—""—ﬁ‘:' tables
+ START-OF-SELECTION 18» £l
v e e Dr&g& drop 19p using
GET_DATA
Z1p changing
ZZp [= N
Z3p
o

-~

Figure 1 Dragging and Dropping an Object into the ABAP Editor

4. Optional parameters of methods and function modules are commented by
default. Uncomment them if you're going to use these parameters.

Figure 2 shows the program statements that are generated with drag and drop.

8

9 START-OF-SELECTION.
10

11

12

13

14 CALL METHOD

15 EXPORTING

16 pl -

17 & B2 -

18 RECEIVING

19 rl -

20

Z1

ZZ CALL FUNCTION ' ZPING
23 EXPORTING

24 i_name

25 [# IMPORTING

26 & message

27

28

29

30 tables
31 tl
32 using
33 rl
34 changing
35 cl.
36

« Figure 2
An Example of

Instantiate a class

Generated Code

CREATE OBJECT XXXXXXXX. |

HAXHAAAK -2 00_nothing 'ﬁ Call method of a class

__éfl Call function

perform get_data(z_inserc_starement) -% Call subroutine

29

Tip 4 Inserting Statement Patterns in ABAP Programs with Drag and Drop

You can adjust insert pattern settings. You can also modify the code generation
settings for function modules and classes according to your programming style by

choosing UTILITIES « SETTINGS.

Select the PATTRN tab within the ABAP EDITOR tab. Figure 3 shows the settings
that you can adjust.

s
h,
_ Warkbench (General) m Class Builder | Screen Painter

_"'splitscreen Warklist [J+][5]

M

| Function Modules

:'jna're Actual Parameter Same as Narme Formal Param,

| IGenerate Exceptions w/o OTHERS

|_IFor Except.Classes CALL FUNCTION, generate with TRY...ENDTRY
| Class Builder

[IName Actual Parameter Same a5 Name Formal Param,

[IGenerate Exceptions wfo OTHERS

[IFor Except.Classes CALL METHOD, Generate W/O TRY...ENDTRY

| IFunctional Writing Style for Call METHOD

30

vww .allitebooks.cond

« Figure 3 Settings
Window

http://www.allitebooks.org

Tip o

Using Worklists to Group
Development Objects

You can add development objects and navigation targets into your worklist for future
use so you don't have to waste time searching for them.

A worklist allows you to mark an object or specific place in an object for later
retrieval. It's similar to a bookmark system that allows you to store and organize
your most commonly used development objects together and navigate to them
easily in the future. Unlike a favorites or bookmarks list, however, worklists allow
you to save the same object several times with different source code positions. This
feature allows you to set markers for later use in the source code. Now, let's see
how you can add objects to a worklist.

And Here's How ...

To add a particular development object into your worklist, open it in its editor and
select the menu option:

(UTILITIES » WORKLIST » INSERT CURRENT OBJECT)

If you add an ABAP program, function module, or class library, the worklist also
stores the current position in the source code. You can add the same program mul-
tiple times with different positions in the source code. This feature allows you to
set markers in your programs. You can get back to that position anytime you want.

To display the objects in your worklist, select the following menu path while edit-
ing an object in the Object Navigator or a different appropriate tool:

31

Tip 5 Using Worklists to Group Development Objects

(UT!LITIES » WORKLIST » DISPLAY

)

The DispLAY WORKLIST window opens at the bottom of the window as shown in
Figure 1. Here you can see existing objects in your worklist.

Display Worklist

Object type Object name
Function Module Z_PING

Subobject name Source code | Comment
10

Method ZCL_TEST DO_MOTHING 2 You can add yvour comments
Program Z_INSERT_STATEMENT 9
Program Z_INSERT_STATEMENT 23 Call Function
Program Z_INSERT_STATEMENT 44 Form do_nothing
2 Figure 1 A Worklist with Sample Data

You can also add your comments for worklist items as shown in the figure. This is
especially useful if you add the different source code positions of the same object
many times into the worklist. It would be difficult to distinguish between the
worklist items belonging to the same object by only looking at the source code line.

You can use the following functions on the toolbar to maintain the worklist items:

» SAVE WORKLIST ll

Saves the worklist. Worklist items are not saved into the database by default.
The list is cleared when you exit from the editor. You have to manually save the
worklist using this function to be able to use the same worklist later.

DELETE OBJECT FROM WORKLIST ()
Deletes the selected object from the worklist.

INSERT CURRENT OBJECT INTO WORKLIST ([
Inserts the currently open object into the worklist.

DELETE ENTIRE WORKLIST

Empties the worklist. It also deletes all worklist items from the database.
RELOAD WORKLIST FROM DATABASE

Discards your changes that have been in the current session or after the last save
and reloads the worklist items from the database.

32

Tip o

Managing Your Frequently Used
Objects with a Favorites List

You can add frequently used development objects into your favorites list so you can find
them easily in the future.

The Object Navigator allows you to work on several types of development objects,
including package, program, function group, class, and interface. You can create,
modify, or display any of these objects by selecting the appropriate object type and
writing the object name into the relevant field. When you're working in the Object
Navigator, you can add frequently used development objects into your favorites
list to find them easily later.

And Here's How ...

The Object Navigator has a user-specific favorites list that allows you to store fre-
quently used development objects. Later, you can navigate to these objects easily
by selecting them from the favorites list. This list can be especially helpful when
you're working on a project that requires you to work on several types of develop-
ment objects within different packages.

To add an object into your favorites list, open it in the Object Navigator and click
the ADD button on the toolbar as shown in Figure 1.

33

Tip 6

Managing Your Frequently Used Objects with a Favorites List

[

IProgram
|z_oBIECT_NAVIGATOR

Object Name
+ Z_OBIECT _NAVIGATOR

)
(€ L=]=]a]

Add

Edit... _OBIECT_NA

Brograms 3

« Figure 1 Adding an Object to Favorites

You can also edit your favorites list by clicking the Epit link in the same menu.
The EpiT FAvORITES window opens as shown in Figure 2.

[Edit Favorites

Cbj. Marme

Description

€ Figure 2 Edit Favorites

= &9 Packages

- ZPACKAGE_HIERARCHIES |
* [Package Hierarchies
* 4 Programs

« Z_INSERT_STATEMENT

* £_OBXECT_NAVIGATOR
= <4 Function Grougs

+ Z100THINGS
* &3 Casses

* Z0L_TEST
» [J Interfaces
- [Intemet Services
+ (3 web Dynpro Comp. / Intf,
= (3 85P appications
[0 B3P Extersions

Package Hierarchies

|Insert Statement Patterrs by Drag & Drop
|Program Z_CBJECT_NAVIGATOR

|General Functions for 100 Things Book

:T&:t Class

(/[0] @) [Dowricad | upload %]

i b

You can use the following functions on the EniT FAVORITES window:

» DELETE

Deletes the selected object from the favorites list.

DOWNLOAD

Allows you to download the favorites list to transfer between the systems.

UPLOAD

Allows you to upload previously saved favorites lists. The system triggers a
popup to ask you whether you want to replace the old favorites list with the
new one or append the new items into the list by keeping the old items.

Finally, you can use your favorites list to navigate your frequently used objects
easily by selecting it from the favorites list as shown in Figure 3.

34

Object Navigator ~ Part 1

[Package Hierarchy -] « Figure 3 Navigating
|2100THINGS > | & to the Development
- Object from the
€ L= I[Z]2] &[] (=] Favorites List
Ohject Name add
~ @ Z100THINGS Edit... Shold Know sbout ABAP Workbench
~ @ ZABAP_EDITOR
- @ ZPACKAGE_HIERs Pockaoes 4
~ Y ZPACKAGE_HI Programs r| Z_INSERT_STATEMENT

© @ ZHOM Function Grouns ¥ Z_OBECT_MAVIGATOR

© @ ZMM 19

+ @ 75D osses - . m

35

Tip o

Comparing ABAP Programs
between Two Systems

You can compare ABAP programs in different systems to find potential errors or incon-
sistencies in the code.

Sometimes you may want to compare ABAP programs between two different sys-
tems to find a problem that might occur due to different patch levels, or to find
an old request that was transported by mistake. To accomplish this, we'll show
you how to use the Remote Comparison in Version Management tool when you
see a problem in an ABAP program and want to make sure it's identical to another
system.

And Here's How ...

When you're editing an ABAP program, you can view the Version Management
tool by selecting the following menu path:

(UTILITIES « VERSIONS « VERSION MANAGEMENT)

You can see the previous versions of the program you were working on as shown
in Figure 1.

To start the Remote Comparison tool, click REMOTE CoMPARISON on the toolbar.
You'll see two options to define a remote SAP system. If the SAP system you want
to compare is configured in the transport management system, you can select the
SAP system directly. Otherwise, you have to create an RFC destination for a remote
system.

36

Object Navigator ~ Part 1

« Figure 1 Version

& &% Retreve Reguest Text OnjOff REMOTE Comparison
Management

Versions: Report Jource Code ZCOMPARE_VERSIONS

Version Cat Fla SAP Rel. Arch Request Project Date Tinme Author

Version{=) in the development database:

¥ activ 730 AT3K800007 13.01.2012 23:22:51 ABDUL

Yersion(s) in the version databasge:

I:Iuaunz u 730 AT3K200007 14.01.2012 00:16:13 ABDUL
[loooor s T30 14.01.2012 00:15:52 ABDUL

When you click REMOTE COMPARISON, versions of the same ABAP program in a
remote system are displayed. You can select any of the remote versions and click
REMOTE ComPARISON. The COMPARE PROGRAMS screen opens as shown in Figure
2 and displays two versions at the same time with highlighted differences.

«{ Figure 2 Compare Programs

Compare Programs: Alf Screen

Single-ColumnyParallel Settings MNext Identical Section Mext Difference

8 8

9 a FEPORT =zcompare versiohs.
10 10

Differing Lines:
11 PARAMETERS : p_uname TYPE uname,
11 PARAMETERS : p_uname TYPE uname.

Lines not available in wersion of the REMOTE system:
12 z_datum TYPE datum.

Contents Unchanged:

13 12
14 13 START-0F-3ELECTION.

15 14

You can click on NEXT IDENTICAL SECTION and NEXT DIFFERENCE in the toolbar to
navigate through source code to analyze the differences. You can open the SETTINGS
window and adjust the display settings by clicking on SETTINGS on the toolbar. The
following options are available:

» Switch between SINGLE-COLUMN DISPLAY, PARALLEL DISPLAY, and DISPLAY IN
SPLITSCREEN EDITOR

» Switch between DiSPLAY ALL, MATCHES CONDENSED, and DISPLAY DIFFERENCES
ONLY

» DISPLAY LINE NUMBERING

37

Tip 7 Comparing ABAP Programs between Two Systems

» [IGNORE INDENTATIONS
» IGNORE COMMENTS

You can adjust these options to use the different features of the tool to easily dis-
play the differences between two ABAP programs.

38

Tip e

Modifying and Testing Programs
with Inactive Versions of
Development Objects

You can modify and test development objects in your local runtime environment without
affecting other users and objects in your system.

Say you need to make a change in a development object, but other users might be
using this object on the same system while you're editing it. How do you make
changes without booting users from the system or modifying an object that is
currently in use?

The ABAP Workbench contains a feature that allows you to modify and test devel-
opment objects in your local runtime system while other users use the active ver-
sion of the program. In this tip, we'll show you how to use this feature so when
you're sure that changes are finished and working correctly, you can activate the
object to commit the changes to the system.

And Here's How ...

Development objects appear in the following statuses at different times within the
development lifecycle:

v

New (Revised)

» New

v

Inactive

v

Inactive (Revised)

39

Tip8 Modifying and Testing Programs with Inactive Versions of Development Objects

» Active (Revised)

» Active

When you create a new development object, it takes the status of New (Revised)
or Inactive, depending on the type. For example, an SAP ABAP Data Dictionary
object takes the status New (Revised) immediately after you create it. On the other
hand, a program or function module takes the status Inactive.

Figure 1 shows all possible combinations of the status changes during the develop-
ment process.

A Figure 1 Status Flow Showing All Possible Status Changes

When you start to modify a development object, it takes the status Inactive, and
the global runtime system isn't affected with these changes. It's visible only to
you until you manually activate the object. Other users can only use the active
version of the object and they can't see your changes until you activate the object.
All inactive objects are included in your Inactive Objects list. You can access your

40

vww .allitebooks.cond

http://www.allitebooks.org

Object Navigator ~ Part 1

inactive objects list by selecting ENVIRONMENT « INACTIVE OBJECTS in the Object
Navigator (see Figure 2).

[nactine Gojects,] { Figure 2 Inactive Objects List

[sBDUL RAr
&= [=]a][E)E.e]

Object Name Description
'~ [Tnactive Objects ABDUL :
+ 4 Transportable Objects
+ A Dictionary Objects

= 3 Domains |
* ZAG_DM_NaME |Username
~ 3 Data Elements
« ZAG_DE_BIRTHDATE |Brth Date
* ZAG_DE_MNAME |Lsername
~* A Search Helps
* 7USER |User
* 2 Database Tables / Structun
« ZSUSERS1 Users
* AUSERS |Users
* 2 Programs

+ ZAG_INACTIVE_OBJECTS |Inactive Objects Sz
* [2COMPARE_VERSIONS |Compare ABAP Pro

When another user tries to modify any of these objects, the system generates a
new task for that user in the same transport request and adds the object into the
user's Inactive Objects list. Now both users can see the same object in their Inactive
Object list. Let's see an example:
» User A changes the following objects and leaves them inactive:

» Program Z_PROG_1

» Program Z PROG_2

» Table Z_TABLE_1
» User B changes the following objects and leaves them inactive:

» Program Z_PROG_2

» Program Z_PROG_3

» Table Z_TABLE_1
User A and B are working on Program Z_PROG_2 and Table Z_TABLE_1 together.

They are also modifying other listed programs individually. Table 1 shows the
runtime environment for the users after these changes.

41

Tip8 Modifying and Testing Programs with Inactive Versions of Development Objects

Local Runtime Local Runtime Global Runtime
Environment - User A Environment - User B Environment

Z_PROG_1 (Inactive) Z_PROG_1 (Active) Z_PROG_1 (Active)
Z_PROG_2 (Inactive) Z_PROG_2 (Inactive) Z_PROG_2 (Active)
Z_PROG_3 (Active) Z_PROG_3 (Inactive) Z_PROG_3 (Active)
Z_TABLE_1 (Inactive) Z_TABLE_1 (Inactive) Z_TABLE_1 (Active)

A Table 1 Differences on Local Runtime Environments for User A, User B, and the Global Runtime
Environment

As you can see, users only see the inactive object if it's included in their Inactive
Objects list; otherwise they see the active version. User A and User B both can
see the inactive version of Program Z_PROG_2 because they are working on that
program together.

42

Tip o

Creating Local Objects
for Test Purposes

You can create development objects that will be used only for test or experimental
purposes.

The package concept in the ABAP Workbench allows you to group development
objects into separate packages depending on their usage, as discussed in Tip 1.
However, if you want to create an object for test purposes only, and you aren't
planning to transport it to another system, you can create the object as a local
object.

And Here's How ...

If you're creating an object for test or experimental purposes, you don't need
to assign the development object to a package during creation. Click the LocaL
OBJECT button on the popup dialog as shown in Figure 1 to create the object as a
local object. You can also assign the development object to the package $STMP for
the same purpose.

In the Object Navigator (Transaction SE80), you can see the hierarchical list of local
objects belonging to any user by selecting LocaL OBJECT as the object type and
entering the username in the OBJECT name field as shown in Figure 2.

43

Tip 9

Creating Local Objects for Test Purposes

[E Create Object Directory Entry

« Figure 1 Package
Assignment Dialog

Object Name

e == (=) mE]

Description

> < $TMP ANIL
= T Dictionary Objects
~ Y Database Tables
+ ZTEST_TABLE
~ < Data Elements
* ZTEST_FIRSTNAME
* 3 Programs
» [ZTEST_PROGRAM
* 3 Includes
+ ZTEST_PROGRAMTOP

:Test Table

First Name

|Program ZTEST_F

Include ZTEST_PF

4« Figure 2 Hierarchical List of Local

Object |R3TR! PROGZ_LOCAL_OBJECT '
Attributes |
Package : jﬁl
Person Responsible ABDUL
Original System 473
Original Language EN| English
Created On

[Local Object L& Lock Overview |[g]
| Local Objects E| Objects

[ANIL v | &

Local objects are used mainly for test purposes and can't be transported to other
SAP systems. If you want to transport local objects, assign them to another pack-
age. Package assignment can be changed by selecting the object name from the
object list by choosing OTHER FUNCTIONS « CHANGE in the context menu.

44

Tip @

Creating and Accessing
Documentation for
Development Objects

You can create technical documentation for development objects directly in the SAP
system.

Preparing good technical documentation is one of the most important stages of
development projects—there should always be technical documentation to describe
the functionality and architecture of the developed program. For example, when
you're required to modify a program that you or someone else developed a long
time ago, you'll probably need to read the documentation of the program before
modifying the source code. However, it isn't always easy to find the technical
specifications of the programs after a while. In this tip, we'll show you how to
create brief technical documentations for development objects directly in the SAP
system to make it easier to find and update.

And Here's How ...

When you open a development object for editing, select GOTO « DOCUMENTATION
in the menu. A screen opens where you can edit documentation for the object.
There are two types of editors that you can use:

» Graphical PC Editor
Here you can input your text continuously. After SAP NetWeaver 7.0 EHP1 or
7.1 SPO5 versions, Microsoft Word was integrated into the Graphical PC Editor,
which makes it a lot easier to use. The Graphical PC Editor is much easier to use
than the Line Editor.

45

Tip 10 Creating and Accessing Documentation for Development Objects

» Line Editor
This old-style editor in the SAP system has been replaced by the Graphical PC
Editor, which is much more user friendly. Here you'll find a format column
where you specify the paragraph formats or format commands. The text entry
part is built from separate 72-character input text fields for each line.

Figure 1 shows the screenshots of the different types of editors.

Graphical PC Editor
based on M5 Word
(SAP NetWeaver 7.0 EHP1

Line Editor Graphical PC Editor or 7.1 SPO5)

O P et e A | P HEB &eromats e BB R

OO0 o oneF o e tan e Parag.Formats U1 Heading {only for F1 doc.1) -
o AP
Ul
Ul «INTEGRATION 4 Advanced Find ¥ Uno 4,
& &
i 3 Cof 33 Replace .e_l}
Ul &PREREQUISITES SINTEGRATIONS: @ Paste | Ly Select - M
- Clipboard Editing
UL cFEATURES: |APREREQUISITES S
A3 &PURPOSER
U2 &SELECTIONs
xS |BFEATURESS
02 | <3TANDARD_VARIANTS: ZINTEGRATIONR
- SSELECTIONS

A Figure 1 Different Types of Editors

You can switch between the editors by choosing GoTo « CHANGE EDITOR while
you're in the editor.

Let's create sample documentation for a custom program to see the steps involved:

1. Open the ABAP program that you want to create documentation for in the ABAP
Editor in change mode, and select GOTO « DOCUMENTATION in the menu. When
you open documentation of an object for the first time, the system proposes a
template where you can enter the documentation of the program. It's separated
by headers to let you organize the documentation into groups such as purpose,
functionality, and integration. After you finish providing enough details for
each part, you can save the documentation, and it will be available to all users
on the system.

2. To open the ABAP program in display mode, use GoTo » DOCUMENTATION. Fig-
ure 2 shows example documentation.

46

Object Navigator ~ Part 1

Display Documentation:

FU REUSE_ALV_GRID_DISPLAY

Short Text
Output of & simple list (single-line)
Functionalicy

The function module outputs an intsrnal table with whatever structure in
the form of a formatted single- oder mualti-line list.

Process:
o Passing an internal table with the set of information to be output

o Passing a structure with general layout specifications for list
layout

o Passing a field catalog in the form of an internal tahle

A Figure 2 Documentation for Function Module REUSE_ALV_GRID_DISPLAY

Creating a documentation using this technique is fairly easy but can be very use-
ful in the future. You don't need to provide much technical details; only a brief
documentation will be enough. Both end users and developers can use these docu-
mentations in the future to get information about the object.

47

Tip @

Reserving Namespaces with
SAP for Third-Party Objects

When you plan to develop software that will be delivered to third parties, you can reserve
your own namespace from SAP to eliminate the risk of name conflicts.

Customer objects in the SAP system can only start with Y or Z. All other letters
can only be used by SAP. In SAP projects, it's very common to prepare naming
standards for objects before starting the project to minimize the risk of name con-
flicts. However, when you develop software that will be delivered to third parties,
you have to make sure that there are no objects on the target system that have the
same name as any of your objects. SAP allows you to reserve your own namespace
to eliminate the risk of name conflicts for these types of developments, and we'll
show you how this is done.

And Here's How ...

Your company must have the ABAP/4 Development Workbench license to be
able to reserve a namespace. If your company has the required license, you can
apply for a namespace through http://service.sap.com/namespaces. Figure 1 shows the
namespace reservation screen from the SAP Support Portal.

You must provide the following information:

» Name for namespace
» The name must be a minimum of three and a maximum of eight characters
» You can't use spaces or special characters in the name
» The name must clearly refer to the name of the company

48

http://service.sap.com/namespaces

Object Navigator ~ Part 1

» The name can't start with a number, “SAP", or “R3" character strings

» The “/" character is automatically added to the beginning and end of the

name

» Intended purpose to reserve a namespace

» The installation numbers of the systems to use the requested namespace

|Ilunnup-u Request
Mamespace * ! [Minz
Descrigtion * |
SAP Metweaver Name Server |
Options [[] Object generators
Marked fields are required
Select Installations

Mark your installationes for which youw want 10 request the namespace

W

[SAP TR cust RE3 T-instabation
0 = SAP TR cust, CRM Demo license
H = w= SAP RS T-Inst SOLMAN

« Figure 1 Namespace
Reservation through SAP
Support Portal

After you receive the authorization to retrieve the namespace, you can obtain the
namespace license keys from the SAP Support Portal. Then you must set up the
namespace within your own system with the following procedure:

. Go to Transaction SEO3 to open Transport Organizer Tools.

. Select Di1SPLAY/CHANGE NAMESPACES in the ADMINISTRATION node.

1
2
3. Click the DispLAY -> CHANGE button on the toolbar to switch to change mode.
4

. Click the NEw ENTRIES button on the toolbar to enter the details of the new

namespace.
5. Fill in the details.

You can create two types of namespace entries in this way:

» PRODUCER

Choose this type if you are the owner of the namespace and have the valid

development license.
» RECIPIENT

Choose this type if you want to make changes on the objects that are delivered
to you with a special namespace and have the valid repair license.

Repair licenses are not installation specific and can be delivered by the namespace
owner to enable the delivered objects to be repaired.

49

12,

Using the Application Hierarchy
Tool to Organize Applications

You can navigate through all standard and custom applications in a hierarchical list, as
well as create your own to categorize your packages.

The ABAP Workbench has several tools such as packages and package hierarchies
that allow you to organize development objects. The Application Hierarchy tool
allows you to categorize and navigate through objects at a higher level; it basically
helps you to create a catalog for your applications within the SAP system. You can
browse through the application hierarchy to find a package when you know the
application that it belongs to, but you don't know the technical name. You can also
create your own hierarchy for custom packages to allow other developers to find
the package easily in the future, which we'll discuss in this tip.

And Here's How ...
There are two types of application hierarchies in the ABAP Workbench:

» SAP
All SAP packages are organized in this hierarchy by application components. You
can browse through the SAP Application Hierarchy to find out the standard
applications delivered in your SAP system.

» Custom
You can't add your custom applications into the SAP Application Hierarchy.
Instead, you can create a custom application hierarchy for your custom packages
to catalog your applications. You can also include SAP packages in a custom
application hierarchy.

50

vww .allitebooks.cond

http://www.allitebooks.org

Object Navigator ~ Part 1

You can access SAP and custom hierarchies in the following menu option in the
Object Navigator:

(ENVIRONMENT- APPLICATION HIERARCHY)

You can also use Transaction SE81 for SAP and Transaction SE82 for customer
hierarchies. Figure 1 shows the Application Hierarchy for SAP objects.

!SAP Application CoOmpOnents « F"gure 1 App.l'.'cat.'on
Hierarchy for SAP Applications
—E I5-CWH Induscry Solution Catch Weight Hay
— AP Application Platform
— CcA Crozs-Application Components
—E Ep Enterprise Portal
—& MmN SAP MNetWeaver Master Data Managem
MDM-CLT Client-Systen Adapter
—E AC Accounting - Gensral
—@ FI Financial Accounting
—&@ TR Treasury
—8 co Controlling
—E IN Investnent Management
— & Ec Enterprise Controlling
= AECH Application components EC
I~ AECP Process model objects EC
I ASAPTERM_EC Terminology and Glossary: Tray
ECD Data Collection
I R5_ING_EC OLTP-ING EC (Enterprise Contr
—Ul40 Enterprise Controlling
8 EC-PCA Profit Center Accounting
—& EC-BP Business Planning
—@ Ec-cs Consolidation
—& EC-EIS Executive Information Systemn

There are two types of nodes in the Application Hierarchy tool:

» Title node

» Development node

When you create a node, it's created as a title node automatically. Title nodes are
used like folders, and they help you create multi-level hierarchies. After you assign

a package to a node, it becomes a development node. You can navigate to a package
directly from the Application Hierarchy tool by clicking on development nodes.

51

Tip @

Searching for Objects in
Transport Requests with
Transport Organizer Tools

When you have a lot of transport requests in your system, there’s a tool you can use to
quickly and easily search for specific transport requests that contain a specific develop-
ment object.

When you create and modify development objects in ABAP Workbench, the SAP
system creates a transport request for you to organize your changes. Changes that
belong to the same task are usually put into the same transport request. When
there are many transport requests, it can be difficult to find the transport request
for an object. We'll show you how to use Transport Organizer Tools to help you
find a specific transport request in this situation.

And Here's How ...

The Transport Organizer Tool contains tools that help you with issues related to
change and transport management system, and they can be accessed via Transac-
tion SE03. In Transport Organizer Tools, you can use the SEARCH FOR OBJECTS IN
REQUESTS/TAsKs application to find the transport request for a particular object.
Figure 1 shows the initial view of the application.

52

Object Navigator ~ Part 1

Search for Objects in Requests/Tasks
&A

| Object Selection
[IProgram PGl [R3TR| 0Ba [PROG
[JFunction Group PGMI .. |R3TR| 0BJ |FUGR.! |
[Jdass PGMI .. [R3TR| 0BJ |CLAS! '
[Table/Structure pcMi . [RaTR! oBa [TaBL!]
[iz PGMI .. R3TR 0OBJ VIEUl [S Object Type (1) 500 Entries found
e P o 080 10|l s |
| |Data Bement PGMI .. R3TR| 0BJ DTEL |
] i R3TR| 0BJ |DOMA
e i ee O HEDER]
0> PGMI .. 0Bd | Pa... -1'1" Short

* 4 Comment Line
CORR MERG Comment: Object List Included
[lAlso Search for Subobjects (not for generic entry) | CORR PERF Perforce Changelist

IMG Activity | CORR RELE Comment Entry: Released
JuMU ADIR - Object Directory Entry
| Request/Task Selection 1 LIMU CINC Class Include (ABAP Objects)

LIMUY CLSD Class Definition (ABAP Chjects)

Rors imct ST acl

Z Figure 1 Initial View of the Search for Objects in Requests/Tasks Application

You can choose from predefined object types or select any other object type
using the search help. If you made your changes in Customizing and don't know
which object is used in the IMG activity, you can search by selecting the relevant
IMG Activity. It's also possible to filter the results with the following selection
parameters:

REQUEST/TASK NUMBER
REQUEST OWNER

|
>
» REQUEST DATE
» REQUEST STATUS (MODIFIABLE/RELEASED)
>

REQUEST TYPE

When you execute the application after specifying the selection parameters, the
system lists all of the requests and tasks separately. You can also navigate to the
request/task from the result screen by double-clicking on its name.

Let's consider an example to show how you can use this tool. Suppose that you
want to see the transport requests of all changes in the contents of Table ZAG_TEST
for a selected time interval in the system.

Select R3TR TABU ZAG_TEST in the OBJECT SELECTION part of the SEARCH FOR
OBJECTS IN REQUESTS/TASKS SCREEN. On the selection screen, you can't change

53

Tip 13 Searching for Objects in Transport Requests with Transport Organizer Tools

the object type of the predefined objects. If you want to select another object type
rather than the predefined object types, as in our case, you can use the last three
object types in the list. Note that you can't select program ID R3TR manually;
instead you just select TABU and press . R3TR is automatically filled in on
the field. You can also specify a table range in the DATE field. Finally, the selection
screen must be like the one shown in Figure 2.

| Object Selection
[\Program pGMI . [R3TR) 0B [PROG! '
[IFunction Group paMI _ [R3TR| 0B |FUGR
s PGMI_ |[R3TR! 0B7 [CLAS '
[Table/Structure PGMI ... |R3TR| 0BJ |TABL |
[Iview pGMI_[R3TR| 087 vIEW!]
[ITable Type pGMI . [R3TR] 0Ba [TTYP] '
[IData Element pGMI.. [R3TR) 0B [DTEL '
¥ Table Contents PGMI . |[R3TR| 0B |TABU' ZAG_TEST '
0? paMl..| | oBy| '
B ot

|_1Ako Search for Subobjects (not for generic entry)

et i e
IMG Activity (2]

Request/Task Selection
Reouest{Task ' to ' '

L —

Onvrier to
Date 01.01.2012 o [3l.01.2012 B
Status ' Modifisble |+|Reteased
Reguest Type |ALL Request Types and Task Types o =

« Figure 2 Filling in the Selection Screen to Find the Changes in Table ZAG_TEST

When you execute the report, the results are displayed as shown in Figure 3.

AR e a0

Request |Short Description Cwner Date |Type Status
AT IKO00022 Ticket Nurmber : 14543345 ABDUL 06,01.2012 Customizing Request Released
A73K000023 asdf ABDUL 06.01.2012 Customizing Task Released
A7 K000025 Tanle Changes ANIL 06.01.2012 Customizing Request Released
A73K000026 Table Changes ANIL 06.01.2012 Customizing Task Released
A7 3K000028 Test Results ANIL 06,01.2012 Customizing Task PModif,

& Figure 3 List of Requests That Changes the Contents of Table ZAG_TEST

You can use other options on the selection screen to filter the results even more.
You can search the transport requests for all types of objects in the ABAP Work-
bench. Note that this example is especially useful when you want to audit the
changes on the critical objects in the system.

54

14,

Searching for Development
Objects using the Repository
Information System

Instead of struggling with different tools for different objects, you can use the Repository
Information System to search all types of objects in the SAP system.

The SAP system allows you to create several types of development objects. How-
ever, when you're looking for a development object and you want to perform a
detailed search, using specific selection criteria, it can be difficult to use different
tools for each type of object. To bypass this issue, we'll show you how to use the
Repository Information System as a central point to search through all types of devel-
opment objects or find the objects that use a particular object (where-used list).

And Here's How ...

You can access the Repository Information System with Transaction SE84 or
by choosing ENVIRONMENT « REPOSITORY INFORMATION SYSTEM in the Object
Navigator.

All development objects are organized hierarchically as shown in Figure 1.

55

Tip 14 Searching for Development Objects using the Repository Information System

R ARl N
Repasitory Information System J| Standard Selections
Pragram Narme [®]
Objects | short Description |3
~ [Repository Information System
v [Development Coordination Package s
v [Business Engineerng - 1\:
v [ABAP Dictionary ppicatin] : 8
* [Program Library p
- B Programs | Additional Selections
. % Function Groups Program Author ®
= Function Modules
Changed o
* B Includes -t o [r— -
v [Program Subobjects Changed on
v [Class Library
v [web Dyrpro Program Type [=
» [BsP Library Status r =3
» [Enterprise Services e m
+ [Enhancements i) -
» [Test Objects S R ol
+ [Other Objects Logical Database | =
Authorization Group [=

X Figure 1 Hierarchical View of Repository Information System

You can navigate through the hierarchy in Figure 1 to find the object type that
you want to search, and then double-click to open the selection screen specific
to the selected object type. Each selection screen has object-specific parameters.
The selection screen has two parts: STANDARD SELECTIONS and ADDITIONAL SELEC-
TIONS. Initially, ADDITIONAL SELECTIONS criteria are hidden and can be opened by
clicking on the ALL SELECTIONS button & on the toolbar if you want to provide
more details for the selection. You can also change the initial variant to show ALL
SELECTIONS criteria by using the SETTINGS button on the toolbar or clicking EDIT «
SETTINGS.

There are also default variants for some object types that help make your searches
easier. For example, open the selection screen for FUnNcTioN MODULES below the
node PROGRAM LIBRARY, and get the list of variants using the GET VARIANT button
@) on the toolbar. You can see that there are predefined variants to search for a
BAPI or RFC functions.

You can also use the Repository Information System to get where-used lists for
development objects to find which objects use this object.

56

Object Navigator Part 1

Where-Used List

You can start the Where-Used List tool on the Repository Information System by
right-clicking on the object type in the object tree and selecting the WHERE-USED
LisT item from the context menu. A popup opens and displays the selection criteria
screen specific to the selected object type. You can enter the object name and select
the object types in which the system should make a search. After you click EXE-
CUTE, the system lists the objects that use the selected object as shown in Figure 2.

Table Fields Short Description
J05P/T_REPMDSBET 05F : Report MDS Eook Keeping Table
:_'IUSIRID User Name in User Master Record
JOSP/T_TEAMDSBET 0SP : Team Management MDS5 Book Keeping Table
|| USERID User Name in User Master Record
JSAPPOJUSER User(s) for Cross-System Tasks
| BHAME User Name in User Master Record
FSAPTRX/CONF_EHO EH display configuration- overview sScresn
_'TJLB_USER User Name in User Master Record
/SAPTRE/S0SCUSR Scenario User Mapping Table
| UNAME User Neme in User Master Record

A Figure 2 Where-Used List of an Object

Environment Analysis

Another useful tool in the Repository Information System is Environment Analy-
sis, which allows you to see the encapsulation of an object by listing the external
object references.

You can start the Environment Analysis tool by right-clicking on an object type in
the Repository Information System and selecting ENVIRONMENT ANALYSIS from
the context menu. It's used to list the external objects that are used in the selected
object. For example, you can list all external object references (function modules,
tables, etc.) in an ABAP program before transporting it to another system. The
results are displayed in a list sorted by packages. You'll then use this list to ensure
that all of these used objects exist in the target system.

57

Tip @

Using OO Transactions
to Link Class Methods
to Transaction Codes

You can create a transaction code linked to a public method of a class that's defined
either in an ABAP program or the Class Builder.

The object-oriented (OO) programming model in ABAP Workbench has signifi-
cantly changed how we design and develop ABAP programs. In addition to classical
programming methods, you can now define an ABAP object in the Class Builder
or in an ABAP program. This change has also caused a new requirement to link
transaction codes directly to the methods of classes. We'll show you how to create
and use OO transactions to fulfill this requirement.

And Here's How ...

OO transactions are used to assign a transaction code to class methods. You can
create an OO transaction by performing the following steps:

. Go to Transaction SE93.

. Enter the transaction code you want to link to, and click the CREATE button.

. Enter the SHORT TEXT, and select METHOD OF A CLASS in START OBJECT group.

. Enter the name of the class in the CLAsSs NAME field.

[T U N N

. Enter any public method of the class (note that search help isn't available here).
The method can't have any mandatory import parameters.

6. Select OO TRANSACTION MODEL if you're using an instance method and want to
use the OO transaction model.

58

Object Navigator ~ Part 1

If you're calling an instance method, the system automatically generates an instance
of the class in an internal session. The constructor method of the class must be
public and can't have any mandatory import parameters because it's called during
the initialization.

To illustrate how to use the OO transaction, let's go over the demo Program
DEMO_OO_TRANSACTION and Transaction DEMO_OO_METHOD that exist in
the SAP system. As you can see in the following code, there is only a class defini-
tion and implementation in the program:

PROGRAM demo_oo_transaction.

CLASS demo_class DEFINITION.
PUBLIC SECTION.
METHODS instance_method.
ENDCLASS.

CLASS demo_class IMPLEMENTATION.
METHOD instance_method.
MESSAGE *Instance method in local class’ TYPE 17,
ENDMETHOD.
ENDCLASS.

You can't run the program with direct processing ([F8]) because the program type
is SUBROUTINE PooL. There isn't any EVENT BLock in the program; therefore, noth-
ing would change even if you switched the program type to EXECUTABLE PROGRAM.

Assigning an OO transaction is the only option to run this program. Access Trans-
action SE93 to see the details of the demo Transaction DEMO_OO_METHOD.
As you can see in Figure 1, it links the method INSTANCE_METHOD of class
DEMO_CLASS to the transaction code DEMO_OO_METHOD.

ESEY j s fi Frg:.;e 1 An Example of the OO0
T EEEg ransaction
Transaction text '00 Trans. for Local Instance Method

[J00 transaction model

Class Name \DEMO_CLASS |
Method 'INSTANCE_METHOD
[FLoca in program 'DIHD_DO_TRMSJLBTICIF |

59

Tip 15 Using OO Transactions to Link Class Methods to Transaction Codes

Now the OO transaction is assigned to the local class defined in an ABAP program.
You can also assign the OO transaction to the instance or static methods of the
classes defined in Class Builder.

OO transactions are useful when you develop an ABAP program using an OO pro-
gramming model. You don't have to use event blocks such as Start-of-selection
or assign a transaction code to a program. You can directly implement a class and
assign the transaction code to the methods of this class. You can even create sepa-
rate transactions for different methods of the same class.

60

vww .allitebooks.cond

http://www.allitebooks.org

Tip B

Using Forward Navigation
to Create Objects

You can create objects, data elements, and domains in the ABAP Workbench without
ever having to leave the development tool.

When you're editing a development object in the ABAP Workbench, you usually
need to work with several types of development objects at the same time. The
forward navigation feature in the ABAP Workbench allows you to navigate to an
object by double-clicking on the object name. The system automatically opens the
object in the relevant development tool. Several types of objects can be opened
using this method.

Without this feature, it would be frustrating having to navigate between the tools
or opening new SAP GUI session for each development tool. In this tip, we'll show
how you can use forward navigation feature to create development objects in the
same window without leaving the tool or opening another session.

And Here's How ...

If you want to use an object that doesn't exist in the ABAP Workbench while you
write code in the ABAP Editor, you can write the object name to be created and
double-click the object name. The system will tell you that the object doesn't exist
and ask whether you want to create the object.

As an example, if you want to create a subroutine called get_data in your program,
instead of navigating to the suitable source code position and manually write
the code for the subroutine, you can write the command PERFORM get_data and

61

Tip 16 Using Forward Navigation to Create Objects

double-click on get_data. The popup appears as shown in Figure 1; create the
object by clicking YEs.

a
3 START-OF-SELECTION. [FicRieumuevins
.]
5 perform get_data. Subroutine get_data does not exist.
Create Object?
L
| ves | N X cace
R
L LI
T —
I

@ Figure 1 Create a Subroutine Using Forward Navigation

This rule isn't valid just in the ABAP Editor. You can also create different repository
objects (classes, tables, structures, data elements, search helps, etc.) in any of the
tools in the ABAP Workbench.

One of the most common usages of this feature is CREATING data elements and
domains while creating a new table. If this feature weren't available, you would
have to perform the following tasks for all fields of the tables:

1. Create domain.

2. Create data element.

3. Add a new field to a table, and assign the created data element.

However, if you use forward navigation, you just have to follow these steps to cre-
ate a new data element and domain while creating a new field in the table:

1. Add a new field to a table assign a data element that doesn't exist yet.

2. Double-click on the data element to create it.

3. Assign a domain to a data element that doesn't exist yet.

4. Double-click on the domain to create.

5. Go back twice to add a new field.

The benefit of using this method is that you never leave the Create Table tool.

You're able to create all data elements and domains in the same window without
leaving the tool.

62

Tip @

Uploading/Downloading
User-Specific Settings to
a Different System

You can download user-specific settings from one system and upload to another system
to create duplicate environments or restore your settings.

You can use the USER-SPECIFIC SETTINGS window to adjust settings that you use
in the ABAP Workbench. Settings options are included for almost all of the ABAP
Workbench tools. However, if you work on multiple systems, it can be difficult
to keep the settings in all systems synchronized and use the same settings every-
where. UpLoAD and DowNLOAD functions allow you to back up your settings or
restore them to any system you want,

And Here's How ...

Open the USER-SPECIFIC SETTINGS window by choosing UTILITIES « SETTINGS while
you're in the Object Navigator. As you can see in Figure 1, you can adjust settings
for almost all ABAP Workbench tools.

These settings allow you to customize several features of all ABAP Workbench tools
to create a comfortable environment according to your preferences.

After working in a specific SAP system, you may not even remember which set-
tings you've changed when you move to another system. So when you start to use
ABAP Workbench tools on another SAP system, you'll immediately notice that you
need to change the user-specific settings again according your preferences to use
the tools more efficiently. You can then go to your old system and open the USER-

63

Tip 17 Uploading/Downloading User-Specific Settings to a Different System

SPECIFIC SETTINGS window (as described at the beginning of the tip) and use the
DowNLOAD button on the popup toolbar to download your custom settings. After
providing the location and file name, settings are saved in a file in your file system.
You even can make simple modifications to this text file using any text editor.

A Workbench (General) | ABAP Editor | Class Buider | Screen panter || |+ (][]
® Workbench (General)
| ﬂ:ﬂal Screen . ABAP Editor
L@I:dsplay Bkground Picture F Class Builder
Screen Panter
| Browser Selection Menu Paintar
[¥/|Repository Browser Function Builder
[¥|Repasitary Information System Repository Infosystem
[« Transport Crganizer Data Browser
|+ |MIME Repasitory Internet Transaction Server
[|Tag Browser Business Server Pages
[| Test Repository Web Dynpro
[«|ABAP Uit Test Browser Enhancement Concept
Refactonng
| |Enterprise Service Browser Transport Organizer
[Iweb Dynpro Text Browser Development Coordination
[~ |Enhancement Information System SaPscript
eCATT
Provy Generation
UML Settings
ABAP Test Cockpit
i
[v7)(3¢] ownioad |[upload |

2 Figure 1 Initial Screen of the User-Specific Settings Tool

You can now log on to the new system and open the USER-SPECIFIC SETTINGS
window again. This time, click the UpLoAD button and select the file you saved in
the previous step. Finally, all settings are restored to the new system from your
previous system.

64

18,

Using Package Interfaces
to Create a Set of Visible
Development Objects

You can create programming interfaces for your package and also define which develop-
ment objects can be used by others.

The packaging concept in SAP systems allows you to put all development objects
belonging to the same application together in the same package. When you create
a package for your application, all objects in the package are encapsulated from
other packages by default to protect the use of these objects from other packages.
However, you might also need to use the development objects from other pack-
ages, or other packages might need to use an object from your package. In this
tip, you'll learn how to create package interfaces and expose development objects
through these interfaces to allow other packages to use these objects.

And Here's How ...

Let's explore a scenario where you've created the following development objects
and want to open them for use in more than one program:

» Function Module Z_PING in Package ZPI1
» Program ZPI_TEST in Package ZP12

When you call the Z_PING function module from the ZPI_TEST program and per-
form a syntax check, you'll get a message as shown in Figure 1.

65

Tip 18 Using Package Interfaces to Create a Set of Visible Development Objects

[&)[2] (=]
Warmings

Description Row | Type
[l Program ZPI_TEST 13 oD

(E) Pakage "ZP12" cannot use object “FUNC Z_PING FUNC " from package
"ZPI1" in ary of the following ways: "Call formyfunction”

A Figure 1 Syntax Check Result When You Call a Function Module from a Different Package

This message indicates that you must perform the following tasks to be able to use

the Z_PING function module in the ZPI_TEST program:

1. Create a package interface in Package ZPI1.

2. Expose the Z_PING function module in a package interface.

3. Add the created package interface into the dependency control list of Package
ZPI2.

Let's perform these tasks step by step:

1. Create an interface for Package ZPI1 by right-clicking on a package in Transac-
tion SE80 and selecting the following item from the context menu:

(CREATE » DEVELOPMENT COORDINATION » PACKAGE INTERFACE)

2. After providing the name and description of the package interface in the popup
dialog, the package interface maintenance screen is displayed. Navigate to the
ExpOSED OBJECTS tab, and drag Function Module Z_PING from the object list
into the EXPOSED OBJECT area on the right side. The result should be as shown
in Figure 2.

Package ZPIL
Package Interface ZPI_FUNCTIONS| | Fhsctive (revised)

[Z][2] [)[E)] [rdose the Package Interface ||[T 4]
Usage Types of Exposed Objects For Direct Uss | For Package Interfaces | Status | For Chent Interfaces = Ovigin | Relevance |
~ 3 Function Module

» Oz PING <o B =

A Figure 2 Exposed Objects List of Package Interface

66

Object Navigator Part 1

3. Save and activate the package interface to finish the process. You can now insert
the created package interface into the dependency control list of Package ZPI2.

4. Open Package ZPI2 in the Object Navigator, and double-click on the package
name to open the package maintenance screen.

5. Navigate to the DEPENDENCY CONTROL LIST tab, and click on the App button
(D add)) to start adding the created package into the list. A popup dialog opens
and fills in the values as shown in Figure 3.

[E Create DCL Item 4 Figure 3 Creating a
Dependency for a Package
| Dependency Cantrol Item [P)’f 5
Item type 1 Inchusion =
Refers to type 1 An interface or interface kst -
Refers to ZPI_FUNCTIONS |
vl]

6. Click the ConTiNUE (#) to add the package interface into the dependency con-
trol list. Save and activate the package to finish the process.

7. Finally, repeat the syntax check on Program ZPI_TEST to see that there isn't any
message.

As shown in the example, package interfaces help you create programming inter-
faces for your packages. Other packages are able to use only the objects in these
interfaces. You'll then prevent the problems that might arise due to using the
wrong objects from other packages by proposing the object list that other people
can use from your package.

67

Part 2

ABAP Editor

Things You'll Learn in this Section

19
20

21

22
23
24
25
26
27
28

Comparing ABAP Programs with the Splitscreen Editor 70
Viewing and Modifying Two Parts of the Same Code at

ONCE o 73
Using Interactive Code Templates for Frequently Used

Code Blocks ... 75
Using Enhanced Copy and Paste Functionalities 79
Searching in Real Time with Incremental Search 81
Using Improved Navigation Features in the ABAP Editor 83
Creating Custom Statement Patterns ... 86
Formatting Source Code with Pretty Printer 89
Using Code Hints as Prompts When Writing Code 91
Using Code Completion to Complete Statements 94

The ABAP Editor is one of the most important tools in ABAP Workbench, helping
you to create and maintain ABAP programs. When you're developing an ABAP
program, you need more than a tool that only lets you write your programs line
by line. A modern programming editor must have tools that provide practical and
time-saving features to allow developers to write their code efficiently. The ABAP
Editor accordingly comes with several features that increase your productivity. In
this part of the book, you'll learn tips and tricks that will help you use the tool
more efficiently.

69

19,

Comparing ABAP Programs
with the Splitscreen Editor

You can use the Splitscreen Editor to view the source code of two ABAP programs on the
same screen with special comparison functions.

When you're displaying or editing source code in the ABAP Editor, you may need
to compare the current program with another, either on the same system or a dif-
ferent system. The classical method is to open the program in a new window, but
you can't easily see the difference between the programs while they are in different
windows. Alternatively, you can open two programs in the Splitscreen Editor, which
allows you to view, modify, or compare the source code of two ABAP programs,
function modules, or classes on the same screen with special comparison functions.

And Here's How ...

First, access the Splitscreen Editor with Transaction SE39. As shown in Figure 1,
enter two program names in the respective LEFT-JUSTIFIED and RIGHT sections on
the selection screen. Click the DispLAY button, and the two programs will appear,
side by side.

70

vww .allitebooks.cond

http://www.allitebooks.org

ABAP Editor Part 2

ABAP Splitscreen Editor: Inilial Screen
Compare Different Systems

| Sources To Be Compared |
| Left-Justified |
(%)Program ll _FP'
CFunction |
(O)class l |) Active
OMethod | | Oilnactive
OLocal Class Definition; Types
OMacros

OlLocal Class Implementations

_ Right
(*)Program |
CIFunction | | (+)Default
() Class |

OMeathod | OlInactive

OLocal Class Definition/ Types

OMacras

OlLocal Class Implementations

& Ospay | [# change |

2 Figure 1 Initial Screen of the Splitscreen Editor

You can also compare programs on different systems; for example, programs on
development and quality systems. To do this, click the COMPARE DIFFERENT Sys-
TEMS button on the toolbar in Figure 1. Now a new field called RFC DESTINATION
shows up at the bottom of the selection screen where you can enter your selection
(see Figure 2).

e TP
(OLocal Class Implementations
RFC Destination |

oo] [7_oome |

A Figure 2 RFC Destination Field to Compare Different Systems

Note that you can only open the programs in display mode when you're comparing
programs on different systems.

After you click the DispLAY or CHANGE button, two programs are opened on the
same screen as shown in Figure 3.

71

Tip 19 Comparing ABAP Programs with the Splitscreen Editor

ABAPF Splitscreen Editor: Comparison Mode
?ﬁ@ &8 1 gl'-é“ EB Pattern Pretty Printer aa'q) A W Ao

SAP System
Report

a73 RFC Destination DUHCLNTS00
|z_sPLITSCREEN_EDITOR | mactive % Report |z_SPLITSCREEN_EDITOR | Active

4

5

| 5

ﬂ & SELECT-OPTIONS = landl FOR l=s eO005u-landl.

7
& START-OF-3ELECTION.

SELECT ™ INTO TAELE lt_cO05u

11 FRON tOODS5u 10 SELECT * INTO TAELE 1:_\:0|:|5u
| 12 VHERE apras EQ ay-langu AND 11 FRON t005u
E3 i3 landl IN =_landi. 12 VHERE spras EQ =y-langu AND
| 14 B LOOP AT lt_tD0Su INTO ls_t00Su. B 1= landl IN landil.
| 15 l VWRITE:/ l= cO0Su-bezei. 14 B LOOP AT lt_t00Su INTO l= cOO0Su.
| 18 ENDLOOP . 15 WRITE:/ ls_tODSu-bezei.
| i6 ENDLOOP .

1s_tD05u TYPE t005u. DATL : lt_t005u TYPE TABLE OF t0Q5u,

1s_t005u TYFE tO0Su.

3
4
5
+ L SELECT-OFPTIONS landl FOR 1= cOOSu-landl.
=
8 START-OF-SELECTION.

9

o~
o~

Figure 3 Splitscreen Editor with Side-by-Side Programs

Programs are opened in the ABAP Editor with limited functionality. Additionally,
the following compare functions are available on the toolbar:

| 2

>

| 2

>

| 2

COMPARISON ON

NEXT DIFFERENCE FROM CURSOR
PREVIOUS DIFFERENCE FROM CURSOR
NEXT IDENTICAL SECTION FROM CURSOR

PREVIOUS IDENTICAL SECTION FROM CURSOR

When you click the ComPARISON ON button on the toolbar, you see whether two
programs are identical or not. The lines that are not identical are flagged with a red
not-equal sign. Other buttons helps you navigate through the identical or different
lines on the source code.

72

20,

Viewing and Modifying Two
Parts of the Same Code at Once

You can use a tool called Split View to view and modify two different parts of the code
at the same time.

While you're editing an ABAP program, you may want to open two different parts
of the source code at the same time; you can use one part as a reference to change
the other part, or you can change two different parts of the code at the same time.
In this tip, we'll show you how to use the Split View functionality in the ABAP
Editor to fulfill these requirements.

And Here's How ...

Enter a specific ABAP program. To duplicate the entire code, click the split bar on
the top-right corner of the ABAP Editor, and drag it down to split the editor into
two parts as shown in Figure 1.

e == 1= <« Figure 1

F4| *{ Report SZABAFP EDITOR H H
| . ning Spli

3 | - DPE g Split
S . View

E REFPORT ZABAP EDITOR.

§i

T e -

E - Global Selection Screen

=l B o B

10| E SELECTION-SCREEN BEGIN OF SCREEN 100 AS WINDOW TITLE text-100.
11 PARAMETERS: buttonl RADICEUTTON GROUP grp,

12| button2 RADICBUTTON GROUP grp, Drag
13| button? RADICEUTTON GROUP grp,

14| buttond RADICBUTTON GROUPR grp.

15 | SELECTION-SCREEN END OF SCREEN 100,

16|

l_-'i o *

73

Tip 20 Viewing and Modifying Two Parts of the Same Code at Once

After you drag the bar down, the result will be as shown in Figure 2.

1] A [S SO #*

2{ | *& Report EABAP EDITOR

3 \‘ L

4! o #

5. REPORT ZABAP_EDITOR.

6i

LT = T

8l \ * Global Selection Screen -
L T —— bl
B B e T e T e - -
2] | *& Report ZABAP EDITOR -
3| =

CH L S ——— #*

5 REPORT ZABAP_EDITOR.

6

7| H #mmmmmmmemmmmemmm e e mmm e m e mmmmmmmmmmmmmmmmmmmmmm——m————————— #

8 {‘ obal Sele n Screen

=i B o e o e e o e e e e e e e e e e e

A Figure 2 Split View in the ABAP Editor

The ABAP Editor is split into two parts. You can now navigate within the source
and use any of the editors to make your changes. If you make a change in the
source code in one view, it is automatically reflected in the other view.

You can use this feature for various purposes. For example, you may want to
declare a new variable while programming, but you don't want to navigate away
from the current position. You can split the view and use the new editor part to
add your data declaration and close the split view by dragging the bar to the top
of the editor after you finish.

74

21,

Using Interactive Code Templates
for Frequently Used Code Blocks

You can use predefined code templates to reduce the amount of time needed to write
frequently used code blocks, or you can create your own code templates.

It's very frustrating for a developer to write the same code blocks over and over
again. To solve this problem, the ABAP Editor has a code template feature that
allows you to use predefined templates or to create your own interactive templates.
You can also create code templates to surround any source code with a template.
In this tip, we'll show you how to use this feature to reduce the amount of time
to write frequently used code blocks or surround a source code with comments.

And Here's How ...

While you're editing a source code in the ABAP Editor, the code template feature
is active by default. You can create your own code templates or use the predefined
ones for the following keywords:

> case

> define

> do

> if

» loop

> region

> Liry

> while

75

Tip 21 Using Interactive Code Templates for Frequently Used Code Blocks

When you write any of these keywords, you'll see a special symbol that indicates
that there's a code template for this keyword, as shown in Figure 1.

167 whis(g) { Figure 1 Symbol That Indicates a Code Template
17 WHILE Exists

16
19
20

3

When you see this symbol, press [Ctr1] + [Enter] or the key to insert the
code template. The template is then automatically written on the current position.
For example, the following code template is inserted for keyword case:

CASE .

WHEN .

WHEN .

WHEN OTHERS.
ENDCASE.

There are also predefined templates for following two comment blocks:

A A AR R IR TR R A A A AR AR T A A A AL A A AR R R R AT AR A AT AR FA R R AL A A A AR A R R R R ®

The first one is activated with *** and the second one is activated with *--. You can
use these templates for creating comment entries.

You can see the whole list of templates by clicking the OpTiONS icon on the bottom-
right corner of the ABAP Editor. The OptioNs window is displayed as shown in
Figure 2.

Select the Cope TEMPLATES option from the list of options to view the templates.

You can also add your own templates in this window. Click the App button, and a
popup window opens, asking you the name and description for the template. After
providing this, type your template details in the CoDE text box.

You can also insert tags and variables into your templates using the INSERT TAG
button. Clicking this button opens a menu with the following options:

» CURSORPOSITION
After you insert the template, the cursor will be positioned on this tag.

76

ABAP Editor Part 2

DOptions x
Display Termplates:
Forks and Col —
Code Congletion i DRI
Code Templates o
Formatting —
Kevboard case =
e | s || ge. || peee |
LCode:
| casE|.
WHEN .
WHEN .
WHEN OTHERS
EMDCASE .
| sae || Concd || Hp |

ABAP Ln 22 Caol 71

A Figure 2 Opening the Options Window to View/Modify Code Templates

» DATETIME
This tag allows you to insert the current date and time with the template.

» CLIPBOARD
This tag allows you to insert the clipboard content with the template.

» SURROUNDEDTEXT
This tag allows you to surround a text with a template in the ABAP Editor. When
you select a text in the ABAP Editor and apply a template with the SURROUND-
EDTEXT tag, the template content before the SurroundedText tag is appended
before the selected text, and the rest of the template is appended after the
selected text. This type of template can only be inserted by right-clicking after
selecting the relevant text, and choosing FORMAT « SURROUND BY TEMPLATE.

» DOCUMENTNAME
This tag allows you to insert the name of the program with the template.

» INTERACTIVE
This tag allows you to use variables with the template. You can put the variable
name between the % characters. When you insert a template with a variable, a
popup window opens and asks you for the variable value as shown in Figure 3.

77

Tip 21 Using Interactive Code Templates for Frequently Used Code Blocks

23 B INTErraEcen Scdacus.
24 { METHODS write.
ENDINTERFACE

ae

A Figure 3 Using Variables with Templates

For example, you can create the following template to surround a code block with
your name, date, time, and an additional comment:

“<YOUR NAME %DateTime#k>
“#Additional Infok
#SurroundedText?®

“</YOUR NAME %DateTimek>

You can use this template if you make a change in an ABAP program and want to
insert a comment about your change. Select the change you made, and apply the
template by selecting FORMAT « SURROUND BY TEMPLATE.

After you apply this template, your change is surrounded with your comment. You
can change the template content according to your commenting style.

78

Tip @

Using Enhanced Copy and
Paste Functionalities

You can use enhanced copy and paste functionalities to use the ABAP Editor more
effectively.

The copy and paste functionality is one of the most useful features that developers
use in software development processes. It makes life easier by not having to type
the same things multiple times. Consequently, the ABAP Editor has improved copy
and paste capabilities that allow you to store multiple items in the clipboard and
paste by selecting from a list of these items.

And Here's How ...

The ABAP Editor provides the clipboard ring and buffers for enhanced copy and
paste functionality. Let's explore both of these in the following subsections.

Clipboard Ring

The clipboard ring adds an extra functionality to the normal copy/paste function
by allowing you to store your last 12 clipboard items in historical sequence. You
don't need to do anything special to enable this functionality. When you use the
normal copy function ([Ctr1] + [C]), the clipboard content is also stored in the
clipboard ring. You can access the clipboard ring by pressing the[Ctr1 | + [Shift] +
key sequence or by selecting MORE « EXTENDED PASTE from the context menu.
The clipboard content up to the last 12 items is displayed in the list as shown in
Figure 1, and you can select any of the items to insert into the code.

79

Tip 22 Using Enhanced Copy and Paste Functionalities

Undo Action Ctrl + 2
15! Redo Actior ctl +
16! it Ched & M

Loy Ctrl +

19 Paste Ctl+ v

20| More 3 Delete Wum Del

31 _ Find... ctl + F Select Al ctl+ A

7 CLASS vessel IMPLEMENTATION. Extended Pd e v [
2q; L PROTECTED SECTION., DATA: spead ... Insert Date and Time b
“2 B (LASS vessel DEFINITION, PUBLIC SE... Copy Append To Clipboard

: SELECTION-SCREEN END OF SCREEN 100, Cut append To Cliphoard

Z8) Navigation 3 Line 4

Figure 1 Extended Paste Menu

Note that the EXTENDED PASTE menu is active only when you have used the copy
function at least twice. The content of the clipboard ring is available only for the
current session, and is cleared when you exit from the ABAP Editor.

If you select a text and use the function Copy APPEND TO CLIPBOARD in the same
menu, the selected text is appended to the last clipboard item. The Cut ApPEND
TO CLIPBOARD function also does the same function but cuts the selected text from
the ABAP Editor.

Buffers

The ABAP Editor has three separate buffers—X Buffer, Y Buffer, and Z Buffer that
you can use like a clipboard. These buffers can be used to copy and paste between
sessions in the same SAP system. You can access the buffers by selecting BLock/
BUFFER from the context menu or by choosing UTILITIES « BLOCK/BUFFER.

The following functions are available in the BLOCK/BUFFER menu:

» CoPY TO X/Y/Z BUFFER

» INSERT X/Y/Z BUFFER

» EDIT BUFFER

You can add a text to a buffer by selecting the text in the ABAP Editor and using
the Copy TO X/Y/Z BUFFER function. Later, you can use the INSERT X/Y/Z BUFFER

function to insert the buffer content into the editor. You can also edit buffers with
the EDpIT BUFFER function.

80

vww .allitebooks.cond

http://www.allitebooks.org

23,

Searching in Real Time with
Incremental Search

The incremental search feature can be used to search a text in the ABAP Editor as you
type.

Most developers are familiar with the classical search function in the ABAP Edi-
tor—enter the search term into the search dialog, and the system searches for
that term in the source code. On the other hand, the ABAP Editor's other search
function—incremental search—allows you to enter the search term character by
character while the cursor jumps to the first match for that character combina-
tion as you type. You can perform real-time searches by changing the search term
according to the results while you type.

And Here's How ...

You can turn on incremental search by right-clicking on the ABAP Editor and
selecting the FIND INCREMENTAL function or pressing the shortcut + [1].
The mouse pointer icon changes to binoculars with a downward-pointing arrow
as shown in Figure 1, indicating that you can start searching.

81

Tip 23 Searching in Real Time with Incremental Search

11 = #

12} | = Global Selection Screen

18] b e e o e o e o e e

14 [ESELECTION-SCREEN BEBIN OF SCREEN 100 AS WINDOW TITLE text-100.

155 PARAMETERS: buttonl RADICBUTTCON GROUP grp,

16} buttonz RADIOEUTTON GROUP grp, “

17 button3 RADIOBUTTCN GROUP grp, .4

15 buttond RADIOBUTTON GROUP grp.

15| SIARECTION-SCREEN OF SCREEN 100.

20

21 -

-] [= S ——— -
J« v [= vy
Incremental Search: sel ABAP Ln 19Col 4 :]

% Figure 1 Incremental Search Forward

There is no popup window to type in the search term. Just start typing and the cur-
sor automatically moves to the first instance of the search term. Press +
anytime to jump to the next match in the source code. The incremental search can
be cancelled anytime by pressing or any of the arrow keys during the search.

Incremental search is performed forward by default. If you want to search back-
ward, select MORE « FIND INCREMENTAL PREVIOUS in the context menu, or use the
shortcut [ctr1] + [Shift] + [1].

This time, the upward arrow appears on the binoculars icon as shown in Figure 2,
and the search is performed backwards from the current position.

14 [ESELECTION-SCREEN BEGIN OF SCREEN 100 AS WINDOW TITLE text-100.
15 PARAMETERS: buttonl RADIOBUTTON GROUF grp,
16 buttoniZ RADIOBUTTON GROUF grp.

17 button3 RADICBUTTON GROUP grp, ﬁﬁ
18 buttond RADIOBUTTON GROUF grp.
19 AN CTION-SCREEN OF 3SCREEN 100.

[
o
4

Incremental Search Backward: sel ABAP Ln 19Col 4 &l

2 Figure 2 Incremental Search Backward

Using incremental search instead of normal search saves you time, especially when
you want to jump quickly to another part of the source code or are trying to find
the instances of a keyword.

82

24,

Using Improved Navigation
Features in the ABAP Editor

You can navigate through long and complex source code faster by using specific naviga-
tion tools in the ABAP Editor.

While developing ABAP programs, you usually need to navigate through the ABAP
Editor window to access different parts of the source code. You can use scrolling
tools for small programs, but when you develop complex programs, you might
need additional features and shortcuts such as creating bookmarks or jumping to
the specific positions of the source code quickly. In this tip, we'll show you simple
but powerful tricks to enrich your navigation experience as you use the ABAP
Editor.

And Here's How ...

You can use the following navigation tools in the ABAP Editor to navigate through
the source code faster.

Go to Line
If you know the line number of the specific code, you can navigate directly to that
line by using this function. To access this function, right-click in the ABAP Editor
and select Go To LINE from the NAVIGATION menu, or press + [0]. A popup
window opens and asks you for the line number you want to jump to, as shown
in Figure 1.

83

Tip 24 Using Improved Navigation Features in the ABAP Editor

« Figure 1 Jump to the Line
Number Using the Go to Line

s L a_|LineNumber(t-243. | Function
10, BSEY[7 100 AS WINDOW

11 | paR GROUP grp,

12 0K || Cancel GROUP grp,

DULTUny EARrIvoorron GROUP grp,
hutitond BIDTORUTTOM GROUE ormn

a
e

The cursor will be positioned to the line number provided after you click OK.
You can't enter a number that is larger than the total lines of the source code. The
maximum value that you can enter is also shown on the popup window. If you
enter a number larger than the maximum value, it's automatically changed to the
maximum value.

Go to Last Change

When you navigate through the source code after making changes in different
places, you can go back to the position of your last change by using this function.
Right-click in the ABAP Editor and select GO TO LAST CHANGE from the NAVIGA-
TION menu. This will take you to the last line you modified. If you save and activate
the program, the history of your changes is reset, and you can't access your last
changed line with this function anymore.

Bookmarks

You can create bookmarks for the lines in the source code to go back to these posi-
tions easily. You have an option to create up to 10 numbered bookmarks and an
unlimited number of additional bookmarks. You can access the BookmMARKS menu
by right-clicking on the left margin of the ABAP Editor as shown in Figure 2.

o 11 e ene mme e oo oa oo E « Figure 2
[yRookmrks | Jear AlBockmarks . Bookmarks Menu
Goto Bookrnark r Eookrmark 0 Chrl + Alt + 0
More L4 Bookrmark 1 Ctd + Alt + 1
Set/Delete Session Breaskpoint Bookmark 2 Ctl + Alt + 2
Set/Delete Extemal Breakpoint Bookmark 3 Ctl + Alt + 3
Delete Session Breakpoint Bookmark 4 Cerl + Alt + 4
Delete External Breakpoint Bookmarks Ctl+ Alt +5
221 B METHOD events. Bookrmark & Ctd + Alt + 6
); DATR: ::::mn E Bookmark 2 Ctil+ At +7
;;‘1 CREATE OBJECT: s Bookmark§ Ctrl + Alt + 8 c',
225 = Bookmark 9 Chrl + Alt + 9
226 S5ET HANDLER station--recelve FUR ship.
L R

84

ABAP Editor Part 2

Numbered bookmarks are used to assign a specific number to a bookmark. You
can access it from the BOOKMARKS menu in the context menu of the left margin
and choose a number from 0 to 9 to assign to a bookmark. You can also assign a
numbered bookmark to a current line position directly from the editor by press-
ing [Ctr1] + [ATt] and the number of your choice. The lines with bookmarks are
shown with a numbered flag in the left margin. Later, you can navigate to these
bookmarks by selecting the appropriate number from the GoTo BOOKMARK group
in the context menu of the left margin as shown in Figure 3 or by using the short-

cut and the number key.

[l ——————————————————peessnsessssmmennes « Figure 3 Go to Bookmark
Bookmarks O
Gota %:I:ma’k 3 Bookmark O Ctrl+ 0 —
Mare » Bookmarkl cwls+1l PV
Set/Delete Session Breakpoint Bookmark 2 Ctrl+2
i | Set/Delete External Breakpoint Bookmark 3 Ctrl + 3
Delete Session Breakpoint Bookmark 4 Ctrl + 4
Delete External Breakpont Bookmark 5 cl+5
i 17 perform test. Bookmark & Ctrl+6
18] B = Bookmark 7 Ctrl+ 7
v, 19 |+ INTERFACE 5ta popkmark® Ctrl+8
i? : Interface dedf Bookmark 2 il +9

The Booxkmarks menu works in toggle mode. If you select the bookmark menu
for the lines with a bookmark, the current bookmark will be removed.

Unnumbered bookmarks are used to assign a bookmark without a number to a
line. You can assign an unnumbered bookmark by selecting TOGGLE BOOKMARK
from the MORE menu in the context menu of the left margin or by pressing
+ + [M]. It will add an unnumbered bookmark if a bookmark doesn't already
exist and delete the bookmark if there is already a bookmark on the line. You can
use NEXT BOOKMARK ([Ctr1] + [M]) and PREVIOUS BOOKMARK ([Ctr1] + [Shift] +
[1]) from the same menu to navigate through the bookmarks in the source code.

These simple but powerful navigation features help you move through the source
code more efficiently during the development process of ABAP programs. You
can develop your programs without using any of these tools, but you will quickly
recognize the benefits of using these navigation features after you start using them.

85

Tip @

Creating Custom
Statement Patterns

You can create templates for frequently used code patterns to reuse them later by insert-

ing them into the ABAP programs.

Several types of statement patterns can be inserted by the pattern function in the
ABAP Editor. The pattern function helps you insert complex statements into the
programs instead of writing them manually. You can also create your own tem-

plates for frequently used code patterns.

And Here's How ...

You can insert statement patterns in the ABAP Editor by using the PATTERN function
on the toolbar. A popup window shows the statement types that you can choose

from as shown in Figure 1.

[= Ins. statement

(®)CALL FUNCTION] =)
()ABAP Objects Pattems
(CIMESSAGE m|
(ISELECT * FROM [
(PERFORM '
(COAUTHORITY CHECK
(CYWRITE
(ICASE for status
(OiStructured Data Object
(@) with figlds from structure QE |
Ciwith TYPE for struct ' '
(CALL DIALOG '

cac |E|humber | |

(I0Other Pattem
I

86

 Figure 1 Insert Statement
Window

ABAP Editor Part 2

Choose one of the statement types and provide the relevant details. Then the
source code template for the selected statement will be inserted into the source
code. For example, if you select CALL FUNCTION and enter “BAPI_FLIGHT _
CHECKAVAILABILITY" in the input field next to the radio button, the following
source code will be inserted into the ABAP Editor:

CALL FUNCTION ‘BAPI_FLIGHT_CHECKAVAILABILITY’
EXPORTING
airlineid =
connectionid
flightdate =
* IMPORTING
* AVAILABILITY
* TABLES
* RETURN =

You can then add the missing fields into the code. This feature is great because you
don't have to remember the detailed syntax for the statements.

Notice that there is also an OTHER PATTERN radio button at the bottom of the popup
dialog. You can create your own patterns and use this option to insert the custom
pattern into the code. While you're in the ABAP Editor, select the following menu
path to start creating your own pattern:

(UTILITIES » MORE UTILITIES » EDIT PATTERN » CREATE PATTERN)

In the CREATE PATTERN popup that opens, enter the name of the pattern and click
OK. A text editor opens to allow you to create the template as shown in Figure 2.

mgpmmlm « Figure 2 Create a
Custom Pattern

%2 Pattemn

1 * Create your template here

2 CALL FUNCTION 'EBAFI TRANSACTION COMHMIT'

3 EXPORTING N N

4 WAIT =1

L IMPORTING

& RETURN = e_return.

7 * Add your comment

Q

87

Tip 25 Creating Custom Statement Patterns

Any ABAP statement or comment lines can be used in the pattern. You can create
patterns with up to 100 lines. When you save the pattern, it will be available in
the OTHER PATTERN option of the INs. STATEMENT dialog. Later, you can display,
change, or delete existing patterns in the same CREATE PATTERN menu group.

88

Tip @

Formatting Source Code
with Pretty Printer

You can use the Pretty Printer tool in the ABAP Editor to_ format source code and make
it easier to read, analyze, and modify.

Have you ever found yourself in a situation where you have to debug or modify
a source code, but it's impossible to read? Every programmer wants to work on
readable and nicely formatted source code. This is particularly important if you are
analyzing or modifying the code written by someone else. In this tip, we'll show
you how to use the Pretty Printer tool in the ABAP Editor to transform the source
code into a more readable format.

And Here's How ...

You can execute the Pretty Printer tool by using the PRETTY PRINTER button on the
toolbar while you are in the ABAP Editor. It standardizes the source code by for-
matting the layout conforming to the ABAP layout standards recommended by SAP.
This ensures that every developer is writing ABAP programs in similar formats.

When you run the Pretty Printer tool, the following actions are performed on the
source code:

» Automatically generates comment blocks for some statements, such as subrou-
tines, to provide you a template for building comments.

» Indents your source code to improve the readability.

» Places the following keywords at the beginning of a separate line:

» Event blocks: INITIALIZATION, AT SELECTION-SCREEN, START-OF-SELECTION,
GET, END-OF-SELETION

89

Tip 26 Formatting Source Code with Pretty Printer

» Form statements
» Module statements

» Places control (IF, WHILE, CASE)and INCLUDE keywords on a separate line and
indents them according to the indentation rules.

» Precedes event keywords by a blank line or a comment line.

» Indents all command lines and control structures by two columns.

You can adjust Pretty Printer settings via UTILITIES « SETTINGS. Figure 1 shows the
settings window.

(= User-Specific Settings « Figure 1 Pretty Printer
Settings

¥lindent Statements
(nsert Standard Comment
(#) Do not insert standard comment
| Uppercase/Lowercase
Oilowercase
(#)Keyword Uppercase
(IKeywords Smiall

-

You can adjust the following options in this window:

» INDENT STATEMENTS
Select this if you want to indent the code according to the guidelines described
previously. You can also select the option to insert the standard comments with
Pretty Printer.

» UPPERCASE/LOWERCASE
Select this to standardize the display of the source code. You can select one of
the following options if you want to perform case conversion:

» LoweRcASE: All source code is converted to lowercase.
» UPPERCASE: All source code is converted to uppercase.

» KeEYwORD UPPERCASE: Keywords are converted to uppercase, and the rest is
converted to lowercase.

» KEYWORDS SMALL: Keywords are converted to lowercase, and the rest is con-
verted to uppercase.

20

Tip @

Using Code Hints as Prompts
When Writing Code

You can prompt possible keywords and identifiers by using the Code Hints feature, and
thus avoid confusing programming languages or confusing keywords.

Every programming language has its own syntax and language-specific keywords.
When you use more than one programming language, it's very common to confuse
the keywords and syntax and make a syntax error in the source code. The Code
Hints feature that exists in the ABAP Editor helps you write code quickly and with-
out mistakes by suggesting possible keywords and identifiers while you type. In
this tip, we'll show you how you can set up and use the Code Hints feature while
using the ABAP Editor.

And Here's How ...

The Code Hints feature allows you to write code without the need to remember
the full syntax of the keyword. The system displays the possible keywords and
identifiers as you type characters in the ABAP Editor. Another advantage of this
feature is that it shows you the keywords that you don't know and helps improve
your ABAP knowledge.

Code hints are shown in a tooltip as you type. If there is only one option available,
it's displayed in black letters on a yellow background as shown in Figure 1.

91

Tip 27 Using Code Hints as Prompts When Writing Code

FROGRAN zcode_hinta. « Figure 1 Code Hint When Only
One Option Is Available

w o

10| INCLUDE zcode hintstop.
11

12 DATA : testwvar(10).

13 WI‘IILEI

14p WHI

If more than one option is available, the most relevant one is displayed in white
letters on a black background as shown in Figure 2.

& PROGRAM zcode_hints. < Figure 2 Code Hint When More Than One
Option Is Available

i0 INCLUDE zcode_hintstop.

12 DATA : testvar(10).

o
WH

i4p

When a code hint is displayed, press to insert the suggested keyword into
the code.

To adjust the settings for the Code Hints feature, open the CODE COMPLETION SET-
TINGS window by clicking the icon at the bottom-right of the editor and selecting
Cope ComPLETION from the list of options. Figure 3 shows the settings that can
be configured in this window.

Display Dizplay:

Fonits and Colors (| Enable Cumrent Scops

Code Templates [v|Enable Quick Info Moo =]
Formatting) Show Tookip on Hovering, After S0 mec
Keyboard L

Primt e

Display Code Hint When Saving atLeast.. |2 oo Chars
) Automalically Hide Code Hints After 3000 | 3/ msec
[#] Enable Auito Completion _—
[Dpen Completion Automaticall After 1500 [msec
Dichionary
[Propose Kepwords
[+ Suggest NonKeywords from the Text

B

O

A Figure 3 Code Hints Settings

92

ABAP Editor Part 2

You can enable the following settings:

» The ENABLE CODE HINTS checkbox allows you to see the code hints in the
editor.

» The DispLAY CODE HINT WHEN SAVING AT LEAST field allows you to set the num-
ber of characters that you should type to see code hints.

» The AUTOMATICALLY HIDE CODE HINTS AFTER field allows you to set the amount
of time that the code hint should be displayed. After that amount of time, the
code hint disappears.

» The SUGGEST NON-KEYWORDS FROM THE TEXT field allows you to enable and
disable the suggestion of identifier hints. Identifiers are also suggested with the
keywords if you select this option.

93

Tip @

Using Code Completion to
Complete Statements

You can write code faster by using the Code Completion feature to see the list of possible
keywords and identifiers for the current source code position.

When you're writing an ABAP program, you usually need to use several program-
ming entities such as function modules, classes, subroutines, and variables. You
may not always remember the name of these programming entities when you
need to use them, even if you know the syntax of the ABAP language very well.
The Code Completion feature in the ABAP Editor helps you write your code much
faster by listing your possible statements for the current source code position.

And Here's How ...

When you're writing an ABAP program, start the Code Completion feature by
pressing | Ctrl| + [Space | after you write a few letters. The system will display a list
of possible programming entities that you can insert to the current cursor position.
The following programming entities can be inserted by the Code Completion tool:

» Types and variables
» Function modules, classes, and interfaces

v

Implemented interfaces and Business Add-Ins (BAdIs)

¥

Subroutines

v

Parameters of function modules, classes, and subroutines

¥

Keywords

94

ABAP Editor Part 2

Unlike the Code Hints tool discussed in Tip 27, the Code Completion tools runs on
the server side and brings only the syntactically correct list to the user. All possible
options are listed in a dropdown box that you can easily select and insert into the
code as shown in Figure 1.

sy 9 { Figure 1 Sample Code Completion List
166 €
17 [@ cL_eui_TooLBAR
19p CLASS
CLASS-DATA

CLASS-EVENTS

CLASS-METHODS

CLASS-POOL

CLEANUP

CLEAR.

CLOSE =
¢ <llsss/Interface... > L

@ FE

Several types or entities are shown in the same list as you can see in Figure 1.
You can even open a Class/Interface search dialog by selecting the <CLASS/INTER-
FACE...> option at the end of the list. If you were inserting a function module, you
would see <FUNCTION MODULE...> instead of <CLASS/INTERFACE...>.

The items that exactly match the current cursor position are displayed in bold.
Other items need additional entities to be inserted. For example, in Figure 1, all
of the keywords are displayed in bold except the class CL_GUI_TOOLBAR because
you need to insert a method name after inserting the class name in the editor. You
can filter and show only the bold items by clicking the BoLD button at the bottom
of the list.

Each type of entity is displayed with a different icon, and you can filter the list by
clicking the relevant icon at the bottom of the list as shown in Figure 2.

15p « Figure 2 Code Completion List
e with Different Types of Entities and
16 . DEFAULT_SCREEN Filter Buttons

' DESKTOR
©, GET_FOCUS
G IF_CACHED_PROP

95

Tip 28 Using Code Completion to Complete Statements

There are also additional filter buttons that allow you to filter by other attributes
such as visibility, type, and so on.

Adjust the Code Completion settings according to your needs by clicking the icon
at the bottom-right of the editor and selecting CoDE COMPLETION from the list of
options. Figure 3 shows the options that you can adjust.

Optiofis

Display Display:

nac i

Code Templates v Anc < ron
Formatting [Show Tooltip on Hovenng, Alter S00 5 meec
Kevboard :

oot 7| Enable Code Hints

Display Code Hint When Saving at Least.. |2 < Chars
'E'gwumﬁcaly Hide Code Hints After 3000 %'n_'-sen:

[+/|Enable Auto Completion

[Qpen Complation Automaticaly Afer 1500 (5 myvec
Dichonany
[¥] Fropose Kevwords
| Suggest Nor-Keywords from the Text
Save l [Cancel] E Help

A Figure 3 Code Completion Options

You can adjust the following settings:

» The ENABLE CURRENT SCOPE option allows you to show the number of entities
and groups shown in the CoDE COMPLETION list. The scope information is dis-
played on the left side of the status bar.

» The ENABLE Quick INFO option enables the quick info box when you position
your cursor over a block as shown in Figure 4.

9. REPORT ZCODE_COMPLETION. &« Figure 4 Quick Info Box

10 Class: CL_GUI_ACF_BASE
Fasis Class for ACF Control
11y €l gul ac CL_GUI_CONTROL Froxy Class for Controdin GLE
F: CL_GUI_ACF
[+

» The ENABLE AUTO COMPLETION option enables the code completion for the enti-
ties of classes after you insert =>.

» The OPEN COMPLETION AUTOMATICALLY AFTER option allows you to set the
amount of time in milliseconds that the system waits to open the dropdown list.

96

Part 3

Function Builder

Things You'll Learn in this Section

29
30

31
32

Saving Test Data for Function Modulesc.cccvviiiiiiiennnn.. 98
Running Function Modules Successively with Test

Y=o [0 L= =N 100
Creating and Using Remote-Enabled Function Modules 102
Using Predefined RFC Destination BACK to Call Function

MOdUIES ..o 105

The Function Builder is one of the major tools of the ABAP Workbench, allowing
developers to break programs into reusable modules. It's also the central tool that
developers use to create, modify, and test function groups and function modules.
You can create custom function modules using the Function Builder in addition to
the many predefined function modules provided by SAP.

You can also use the RFC interface to call function modules from the remote SAP
systems. Function modules are used extensively in SAP, which requires ABAP
developers to use the Function Builder often. In this part of the book, we'll show
you practical ways of testing function modules and using the RFC interface to call
function modules between SAP systems.

97

Tip @

Saving Test Data for
Function Modules

You can save time by saving the test data for a function module and using the same
data to test it again later.

The Function Builder has a test interface that allows you to fill the importing
parameters, structures, and tables, and then run the function module with these
values. You'll sometimes find that you need to test the same function module with
the same parameters several times. However, it can be frustrating and difficult to
fill in the same parameters again and again if the function module has a complex
interface. In this tip, we'll show you how to save the test parameters for later use
to eliminate the problem.

And Here's How ...

Run the test tool for a function module in the Function Builder using the TEsT but-
ton (&) 1o open a parameter screen that allows you to fill in the test parameters.
You can fill in test data for all types of import parameters: normal parameters,
structures, and tables. When you're finished filling in all of the necessary param-
eters, save them by clicking SAVE on the toolbar for later use. A popup window
opens as shown in Figure 1 to let you enter a description for the test data in the
COMMENTS field.

98

Function Builder Part 3

[E Save Test Data 5 « Figure 1 Save Test Data Popup

Function module lz_r1nG

Date [o1.01.2012!
Time |22:32:04
Test data rec no. | MTestdata [DResults data
[2
Carnments

v save | %]

Click SAVE to finish the process. You can now access all saved test data of a function
module by clicking the TEST DATA DIRECTORY button on the toolbar. As shown in
Figure 2, all records in the Test Data Directory are listed, and you can double-click
any of these records to transfer test data to the function module interface you're
working with.

Test Data Directory: Single Tests
ERegression test Show test result

Data record number Date Tine Short texc 3

01.01.2012 |22:29:53 |Date Problem

01.01.2012 |22:31:38 |Date Problem - New Test Data
01.01.2012 |22:31:50 |Test New Parameter
01.01.2012 |22:37:08 |Another Test

s W B

A Figure 2 Test Data Directory

You can also select test data by positioning the cursor on the record and pressing
or by choosing EDIT « GET TEST DATA.

When you're finished testing with the test data, you can delete any record to keep
the list clean by positioning the cursor on the record and clicking the DELETE but-
ton on the toolbar.

99

Tip @

Running Function Modules
Successively with Test Sequences

You can use test sequences to test more than one function module in the same logical
unit of work.

The Function Builder has an interface that allows you to test function modules;
you provide test parameters within the test interface and then see the results on
the screen. Some function modules are required to run one after another in the
same context. However, you can't run them one by one using the classical test
methods because some functions in the sequence might depend on the previous
one, and the database must be committed only if all functions in the sequence run
successfully. For this purpose, you can use test sequences to run function modules
sequentially.

And Here's How ...

The main difference with using test sequences instead of the normal test process
is that all function modules are run in the same context. Using text sequences
are especially important for Business Application Programming Interfaces (BAPIs).
When you run a BAPI, you must call function module BAPT_TRANSACTION_COMMIT
to commit the changes into the database. Otherwise, the results are not saved into
the database. However, when you run BAPI_TRANSACTION_COMMIT normally after
the original BAPI, it runs in a different context and doesn’t commit the changes
of the BAPI. You can run these two function modules in the test sequence, which
runs the function modules in the same context and produces the desired result.

Use the following menu path to start test sequences in the Function Builder while
you're editing a function module:

100

Function Builder Part 3

(FUNCTION MODULE » TEST « TEST SEQUENCES)

A popup window opens as shown in Figure 1, where you list the function modules
that you want to test.

[E Select Function Module X « Figure 1 Select Function Modules to Run in Test Sequence

Enter test sequences:

Function Module EEI
[BAPI_SALESORDER_CREATEFROMDATZ -
BAPI_TRANSACTION_COMMIT -

[I B

(/B B3 et sequence | %]

Click the Execute button (&) on the popup, and a test screen opens where you
fill in the test parameters for the first function module. This is the same window
that you use to the test a single function module. Click EXECUTE to run the function
module, and the results are displayed.

Click BAck, and the test screen opens for the second function module that you
input in the ENTER TEST SEQUENCES list. The same process continues until the last
function module.

After you finish testing the last function module in the list, the system asks you
to save the test sequence to let you use the same sequence later. You can access
the saved test sequences with the GET SEQUENCE button on the popup window
where you listed the function modules (see Figure 1). The saved test sequences are
displayed in a list as shown in Figure 2.

List Test Data Records of Function Module In « Figure 2 Saved List of Test Sequences

Model sequence

-4
Too1 Z100THINGE |TEST SEQUENCE 1
7.-‘lcmz ZL00THINGS |CUSTOMER DATA

You can open a test sequence by double-clicking or selecting it from the list and
clicking MODEL SEQUENCE on the toolbar.

101

31,

Creating and Using Remote-
Enabled Function Modules

You can use RFC destinations to call function modules on remote SAP systems as if
they're in your local system.

One of the great features of function modules is that they can be called remotely
from other systems if their type is remote-enabled. This feature helps you when
you want to retrieve data from another SAP system. In this tip, you'll learn how to
use the Function Builder to create remote-enabled function modules on the remote
system and call this function module from your local system using the remote
function call (RFC) interface.

And Here's How ...

When you want to call a function module from another system, you first have to
define this system in RFC destinations using Transaction SM59 or using the fol-
lowing menu path:

(TOOLS « ADMINISTRATION » ADMINISTRATION » NETWORK « RFC DESTINATIONS)

Use the following procedure to create an RFC destination:

1. Go to Transaction SM59.

2. Click the CreaTE button on the toolbar.

3. Enter the name of the destination in the RFC DESTINATION field.

4. Select CONNECTION TO ABAP SysTEM in the CoNNEcTION TYPE field.

102

Function Builder Part 3

5. Enter the description in the DescripTION fields.
6. Fill in the system details in the TECHNICAL SETTINGS tab.
7. Fill in the logon information in the LoGoN & SECURITY tab.

Your screen should now look like Figure 1.

RFC Destination A73CLNTO01

Remate Logon Connection Test Unicode Test %7

RFC Destination |a73cLNTO01]
Cormection Type 3| |ABA&P Connection | Description
Description

Description 1 |73 System Client 001 |
Description 2 |Sandbox System |
Description 3|]

Bt TS S8 1. Lo sty | i S Cpts_

| Target System Settings |
| Load Balancing Status I
Load Balancing (Yes (O

Target Host /192.168.1.100] | System Number 02|
| Save to Database as |

Save as CHostname (*IP Address |192,168.1.100 |

2 Figure 1 Creating an RFC Destination for the ABAP System

You can test the connection with the CONNECTION TEST button on the toolbar.

When you successfully create the RFC destination, you can call function modules
from this system in ABAP programs by adding the DESTINATION clause to the CALL
FUNCTION statement as shown in the following example:

CALL FUNCTION *Z_PING’
DESTINATION *A73CLNTOO1’

EXPORTING

i_name = |v_name
IMPORTING

e_message = Tv_message.

Note that the processing type of a function module you're calling remotely must
be selected as REMOTE-ENABLED MODULE as shown in Figure 2.

103

Tip 31 Creating and Using Remote-Enabled Function Modules

Function module [RFC_PING | Active
Tables Source code
Classification
Function Group |SRFC |RFC Administration]
shert Text e Png 1
Processing Type General Data
Ohormal Function Moduks Person Resporsible SAP
(®Remote-Enabled Module Last Changed By SAP
o Changed an [07.02. 2006
@5tart immed. Package [srex]
Olmmediate Start, No Restart Program Name |SKPLSRFC |
Ostart Delayed INCLUDE Mame |LSRFCUO7]
Ocelnn Original Language oE|
Not released
(==
A Figure 2 Setting the Function Module as a Remote-Enabled Module

104

Tip @

Using Predefined RFC Destination
BACK to Call Function Modules

In RFC functions, you can call back the caller system using the predefined RFC destina-
tion instead of creating a new one.

When you call a function module from a remote system using an RFC interface,
you may need to call back a function module of the remote function’s calling sys-
tem. Because there's already an active RFC connection between the two systems,
you can avoid the process of manually creating and maintaining an RFC destination
in the remote system and use the existing connection to call RFC functions from
the caller system instead. In this tip, we'll show you how to call function modules
on the calling system using the predefined RFC destination BACK.

And Here's How ...

By using the predefined RFC destination BACK in the SAP system, you don't have
to create it manually as an RFC destination in Transaction SM59. This RFC destina-
tion can only be used in remote-enabled functions and automatically links to the
system that remotely calls this function module.

Figure 1 shows an example scenario using RFC destination BACK. Here, there is only
one RFC destination defined in the local system to call Function Module 7_TEST on
the remote system. There is no need to create an RFC destination on the remote
system to call Function Module 7_TEST2. RFC destination BACK can be used for
this purpose.

105

Tip 32 Using Predefined RFC Destination BACK to Call Function Modules

Local System Remote System
Program ZLOCAL ﬂ Function Z_TEST
CALL FUNCTION *Z_TEST' CALL FUNCTION “Z_TESTZ2'
DESTINATION "XXXX' "_—e— DESTINATION ‘BACK'

Function Z_TEST2

?Y

A Figure 1 Example Scenario using RFC Destination BACK

You can only use RFC destination BACK in the function module that is called syn-

chronously. However, you can use all types of RFCs when you call back a function
module from the calling system.

Note that if you use the RFC destination BACK in a function module that is called
locally, the system produces a short dump.

1086

Part 4

Class Builder

Things You'll Learn in this Section

33 Maintaining Classes with the Source Code-Based Class

Builder .. 108
34 Renaming Methods of Classes Consistently with the

Refactoring Assistant ... 111
35 Using Persistent Classes to Access Database Tables 114
36 Managing Exceptions with Exception Classes 117

The object-oriented (OO) programming model, as compared to structured program-
ming, allows you to build and manage more complex and robust applications. This
involves building your programs around objects instead of trying to build complete
logic into a single program. This method allows you to separate complex programs
into smaller units, which makes it easier to develop in a team, analyze, and debug.
As OO programming becomes more popular, it's important to adapt your ABAP
programs to new programming concepts.

In this part of the book, you'll learn tips and tricks about the Class Builder, which
allows you to use OO programming techniques in the ABAP Workbench.

107

(33,

Maintaining Classes with the
Source Code-Based Class Builder’

You can edit the source of global classes in a single editor window instead of using form-
based screens.

The Class Builder has an interface that allows you to maintain global classes using
form-based screens. When you modify the class definition in a form-based screen,
the source code is automatically generated, and you don’t need to worry about
the detailed syntax of the class definition. Sometimes, you may need to see the
complete source code of the class and modify it directly within the source code
instead of form-based screens. You can use the source code-based Class Builder
for this purpose.

And Here's How ...

You can switch between the source code-based and form-based class Builder
screens on the main screen of the Class Builder. When you open the global class
in the Class Builder using Transaction SE24 or Transaction SE80, the form-based
Class Builder opens by default as shown in Figure 1.

1 Applicable to SAP NetWeaver release 7.3 and later.

108

Class Builder Part 4

Local Definitions/Implementations () Constructor [Class constructor | 3 Source Code-Based Class documentation

Tlass Interface |zcL_TEST | Imglernented [Active
_ Properties - Interfaces [Friends | Attributes /‘Methods | Events - Types - alases |

(o Parameter [B_Exception |7=]| [H|&j K= (&) s (2o CFiter

Methiod Level Visibiity M. Description
DO_NOTHING Instance Method Public Da Nnth'ng
PING_STATIC Sratic Herhod Public Ping
METHODZ Static Method Public Test Method

2 Figure 1 Form-Based Class Builder

You can switch to the source code-based Class Builder by clicking the SOUrce
CODE-BASED button on the toolbar. Now you can see the complete class source
code as shown in Figure 2 and modify the class source code directly.

attern Pretty Printer | 3¢ | {5 Local Defiritions/Implementations ~ SiForm-Based Interface Documentation

Class Source Active (Revised)
1] ECLASS zcl test DEFINITION
Zj PUBLIC
3] FINAL
‘l CREATE FUBLIC .
5|

j:] 6! PUBLIC SECTION.

TR 4"4 public components of class ZCL TEST
Bj #"* do pot include other source files here!!!
=
10} HETHODS do_nothing
11 IMPORTING
12; 'pl TYPE string
13} ip2 TYPE string OPTIONAL
14| RETURNING
15 value (rl) TYPE string .
16! CLASS-METHODS ping_static .
17 CLASS-METHODS methodz .

2 Figure 2 Source Code-Based Class Builder

Set the default view of the Class Builder to the source code-based Class Builder in
the CLASS BUILDER tab of the USER-SPECIFIC SETTINGS window. Open this window
by clicking UTILITIES « SETTINGS. Select the SOURCE CODE-BASED CLASS BUILDER
checkbox as shown in Figure 3.

109

Tip 33

Maintaining Classes with the Source Code-Based Class Builder

[User-Specific Settings

_ Workbench (General) | ABAP Editor . Class Bulder | Screen Painter

|
a2

) L

Display Fiter |
[|Digplay Inherited Cormponents Also

| |Display Inchuded Interface Components Also
|_|Display Public Components Only

| Display Constants Also

Scope Fiter)
()0nly Display Instance Components
(10nly Display Static Components
(#)Display All Components

|Display Aliases

__|Group by Interfaces and Superclasses
r_

l_,«l:'S\:m.m:aGn.‘k!-lilasa:l Class Builder

A

Figure 3 Switching the Default View to Source Code-Based Class Builder

Now, the source code-based view is opened by default when you open the class in
the Class Builder. You can still switch to form-based view using the FORM-BASED

button on the toolbar.

You can navigate to class attributes, methods, events, and method implementations
using the CLASS/INTERFACE NAVIGATOR tool which you open by pressing +
[F5]. Figure 4 displays the CLASS/INTERFACE NAVIGATOR window where you can

also filter out all entities using the FILTER field.

[E ClassfInterface Mavigator

T
riter [
Mame L.
~ @ zCL_TEST
* (3 Attributes
+ @ ANOTHER_ATTRIBUTE
* @ TEST_ATTRIBUTE
= 3 Method definitions
+ @ DO_NOTHING{)
« @ METHODZ()
« @ PING_STATIC()
! ‘ﬂ Events
- @ BUTTOMN_CLICKED
* (3 Method implemnentations
« @ DO_MNOTHING()
« @ METHODZ()
« @ PING_STATIC{)

« Figure 4 Class/Interface
Navigator

Note that you can only use the source code-based Class Builder for standard classes.
Persistent classes, exception classes, and global test classes aren't supported.

110

Tip @

Renaming Methods of
Classes Consistently with
the Refactoring Assistant

You can use the Refactoring Assistant to find all instances of local and global methods
of the classes and rename them consistently.

When you want to rename a method of a global class, you have to take into con-
sideration all of the method calls pointing to this method to prevent possible errors
due to the renaming. All local methods and global programs calling this method
must be updated with the new method name. Instead of guessing and searching
all of the places where the name may appear, you can use the Refactoring Assistant
to rename the method consistently in all places it's used.

And Here's How ...

The Refactoring Assistant can be used for classes only in the source code-based
Class Builder. You can switch to the source code-based Class Builder using the
SOURCE CODE-BASED button on the toolbar when you open the global class in the
Class Builder.

First, open the source code of the class in the Class Builder using Transaction SE24
to start the refactoring process. Then, position the cursor on the method definition
that you want to rename, and start the Refactoring Assistant by choosing REFACTOR-
ING » RENAME as shown in Figure 1.

111

Tip 34 Renaming Methods of Classes Consistently with the Refactoring Assistant

walue (P1) type Publsh Cbject
value [P2Z] type
returning Block/Buffer '
walue (R1) type Refactoing k Rename
class-methods PING Publc section » Defete Unused Data Declarations
class-mwethods ETEE?. mm“ Declarations
class-methods PROCESS .
PROTECTED SECTION. Insert Type
) "+ protected components of class EZCL TEST Extract Source
4ne do not include other source files hepe!!l! Undo
PRIVATE SECTICON.
) <"+ private components of class ZCL TESI Reco
#hd o pot include other source files here!!! Display Owerview

& Figure 1 Starting the Refactoring Assistant to Rename a Method

The refactoring wizard opens, and you can step through the wizard using the Con-
TINUE button. Type the new name for the method in the second step as shown in
Figure 2, and click the CONTINUE button,

[S Refactoring Assistant: Renanme »

8 Bsck R continue | (8 Cancsl |

X Figure 2 Renaming a Method with the Refactoring Assistant

Now the method name is updated in the source code and also in all programs that
use it after you finish the wizard.

112

Class Builder Part 4

You can open the preview screen to see the list of changed objects by right-clicking
at any place in the editor and selecting REFACTORING » DISPLAY OVERVIEW from
the context menu.

The preview window appears (see Figure 3), and you can navigate through the list
to see the changes in the objects.

[Refactomng Assistant: Preview
Object Browser [B] 6] [&8]I [« <> ||« <>]
- 3 Class (ABAP Objects) ZCL_TEST —

- B dlass Include (A8AP Objects) 2L 5 REPORT zrefactoring assistant.
= 3 Program ZREFACTORING_ASSISTANT w; -

* [Report Source Code ZREFACTORIN 11 DATA : test TYPE REF TO zecl_test.

12|
AiA¢ 13 cest->NETHODZ().

A Figure 3 Preview the Changes

113

Tip @

Using Persistent Classes to
Access Database Tables

You can create persistent classes using the Class Builder tool to adopt an OO approach
to the programs that have database accesses.

In traditional programming, data access is performed using SQL statements. How-
ever, in an OO programming model, data access is typically implemented using
objects. In this tip, we'll show you how to use the Class Builder tools to create
persistent classes in the ABAP Workbench to access data in an OO way.

And Here's How ...

The process of creating persistent classes is different from creating usual ABAP
classes. When you start creating a class in the Class Builder using Transaction SE24
(or in Object Navigator), select the PERSISTENT CLASS radio button in the initial
window, and enter the name and description of the class as shown in Figure 1.

« Figure 1 Selecting the Persistent Class Type

Instantiation 1 Protected +

| Class Type]
lsual ABAP Class
()Exception
[with Message Class
(®)Persistent dass
(O Test Class (ABAP Unit)

[WIFinal

114

Class Builder Part 4

Note that the persistent class name must start with the namespace plus the prefix
“CL_" (e.g., ZCL_ or /NAMESPACE/CL_).

After you save the class, the system generates two more classes in the background
that will help you access the persistent class. For example, if you name the persis-
tent class ZCL_00_PERS_SFLIGHT, base class ZCB_OO_PERS_SFLIGHT and agent class
ZCA_OO_PERS_SFLIGHT are automatically generated.

After creating the persistent class, you can start mapping the class with the database
using the PERSISTENT button on the toolbar. A popup window asks you to enter the
name of the table that you want to access. Enter the name of the table and click
the CONTINUE button. The MAPPING ASSISTANT screen opens, and you can map
the fields from the lower table TABLES/FIELDS to the upper table CLASS/ATTRIBUTE
as shown in Figure 2. You can map any field by double-clicking the field name and
then clicking the SET ATTRIBUTE VALUES button () as shown in the figure.

&= PN s &S0 H | Scenerator Settings | Ellinsert Table/Structure

Class/attrbute A M W Type L assignedfield ClassIDFied | Table
~ @ ZCL_O0_PERS_SFLI
* & CARRID D6y @ 5_CarRrR_ID & carrID SFLIGHTS

4« F 4 »

=1
Airine name
2 public v [TRUE v |[E Business key »|(S_CARRNANE

Tables/Fields A | Type Description
= [l sruiGHTs
+ O CARRNAME LU S_CARRNAME Ailine name
+ O CONNID T S_CONMN_ID Flight Connection Number
+ O COUNTRYFR o LANDL Cauntry Key
o CITYFROM U S_FROM_CIT Departure city
+ O AIRPFROM < S_FROMAIRP Departure arport
0 COUNTRYTO 7 LanD1 Country Key

A Figure 2 Mapping Assistant

After you save and activate the persistent class, the get and set methods to retrieve
values of the table and write a value to the table, respectively, are generated auto-
matically by the system. These methods are automatically generated even if you
add your own attributes to the class. You can also modify the generated get and
set methods in the Class Builder to implement your own logic.

115

Tip 35 Using Persistent Classes to Access Database Tables

The following sample program shows how you can use the persistent class in your
ABAP programs:

PARAMETERS: p_carrid TYPE sflight-carrid,
p_connid TYPE sflight-connid,
p_fldate TYPE sflight-fldate.

DATA: flights TYPE REF TO zcl_oo_pers_sflight,

lv_planetype TYPE sflight-planetype.

START-OF-SELECTION.

flights = zca_oo_pers_sflight=>agent->get_persistent(

i_carrid = p_carrid

i_connid = p_connid

i_fldate = p_fldate).
Tv_planetype = flights->get_planetype().
WRITE:/ *Plane Type'(001), lv_planetype.

As you see in the source code, you're accessing database tables without using
any SQL statements. All database operations are performed in the persistent class
methods.

116

Tip @

Managing Exceptions with
Exception Classes

You can create exception classes to enhance the exception handling capabilities of your
ABAP programs with custom attributes for error handling.

The OO programming model has significantly changed the way exceptions are
handled in ABAP programs. As an example, it was only possible to use return
codes to give information about the error in old-style exceptions. The class type
exception class has been introduced to the ABAP Workbench to allow you to return
additional information with the exception. In this tip, you'll learn how to create
a simple exception class.

And Here's How ...

Perform the following operations to create an exception class:

1. Go to Transaction SE24.

2. Enter the name of the class and click the CREATE button. Note that you must
begin the exception class name with the namespace plus “CX_" (e.g., ZCX_ or
/NAMESPACE/CX_).

3. Enter a short description for the class in the DescripTION field.
4. Select EXCEPTION CLASS in the CLASS TYPE group box.
5. Choose SAVE.

Now that you've created an exception class, you can add additional attributes and
texts.

117

Tip 36 Managing Exceptions with Exception Classes

The ATTRIBUTES tab allows you to return additional information with the excep-
tion. You can see the default attributes that are inherited from the Superclass Cx_
STATIC_CHECK (the first six attributes in the ATTRIBUTES column are in blue color)
as shown in Figure 1.

Class Interface |zcx_DEMO | Implemented f Active (revised)

__Properties | Interfaces | Friends Attrbutes | Texts | Methods | Events | Types . Alases
B B (#]E]E (2] 6 ClFiter

Attribute |level Vis.. Re.. Typing |Associated Type | \Description [Iritial vaue
CX_ROOT Consta. Pubic (] Type SOTR_CONC & [Exception ID: Value for . ‘16449439
REMOTE_CONTEXT Instan_ Public [7] Type Ref . CL_REMOTE_CONTE.| & |RFC Context

TEXTID Instan.. Pubbc,] Type SOTR_CONC ey for Access to Messa ..

PREVIOUS Instan_ Public [7] Type Ref _ CX_ROOT ception Mapped to th .
FERNEL_ERRID Instan _ Public m Type S300ERRID BIma NmeEEED‘lI_
I5_RESUMABLE Instan_. Publc V] Type ABAP_BOOL ag, Whether RESUME .

ZCX_DEMD Consta_Public] Type SOTR_CONC [& '000C29306.
C i) Type 2

A Figure 1 Default Attributes Inherited from the Superclass

You can also add your own attributes to return additional attributes with the excep-
tion. For example, create an attribute KUNNR with type KUNNR. We'll use this
attribute in the exception texts. Make sure to select the READ-ONLY flag to prevent
users from changing the attribute value.

In the TexTs tab, you can create exception texts. A default text whose ID is the
same as the class name is automatically created. You can also add additional texts.
In the text part, you can refer to attribute values by enclosing the attribute name
in “&" characters as shown in Figure 2.

T T W
- Properties Interf: VFrierds | attributes Methods | Events .
‘/ aces L ﬁ/ [Parametric Texts
E]E]ﬁﬁl Laong Text
Exception IO Text ﬁ
CX_ROOT An exception oocurred
ZCX_DEMO
CUSTOMER_NOT_FOUND Customer S&KUNNRE: not found

You've now created your exception class and maintained custom attributes and
exception IDs. Now the 7Cx_DEMO class is ready to use. You can use the following
code block to raise an exception using this exception class:

118

Class Builder Part 4

RAISE EXCEPTION TYPE zcx_demo
EXPORTING textid = zex_demo=>customer_not_found
kunnr ‘002124937 ".

Additionally, you can catch the exception in the main program using the following

code block:

CATCH zcx_demo INTO demo.
text = demo->get_text().
write:/ text.

If you hadn't used exception classes, you would only able to return an error code
indicating that a CUSTOMER_NOT_FOUND exception occurred. As you can see in the
example, exception classes allow you to return the customer number with the
exception and produce more meaningful error messages.

119

Part 5

ABAP Debugger

Things You'll Learn in this Section

37 Using SAP GUI Shortcuts to Debug Popup Windows 123
38 Debugging Background Jobs ... 126
39 Setting Breakpoints for ABAP Commands and Command

L o T U o L3 RN 129
40 Using External Breakpoints to Debug External Calls 132
41 Customizing the ABAP Debugger Desktop Tabs 134
42 Using the Diff Tool to Compare Complex ABAP Data

SErUCEUTES oo 138
43 Viewing and Manipulating Internal Tables Using the Table

TOOD e 141
44 Saving Test Data for Function Modules in the ABAP

DebUGEer ..o 144
45 Using Watchpoints to Monitor Variable Changes 146
46 Using Debugger Scripting to Analyze Complex Debugging

SCENAMOS .ot 150
47 Debugging Specific Program Areas Using the Software

Layer-Aware Debugger ... 154
48 Using Conditional Breakpoints to Check Specific Conditions ... 159
49 Using Forward Navigation Features in the ABAP Debugger 162
50 Analyzing Deep Nested Objects in the Main Object 165

121

Part 5 ABAP Debugger

Debuggers allow developers to locate and fix any bugs or problems that exist in
the source code. You have two options available to find these problems:

1. Go through the logical steps of the program to see the state of variables step
by step.

2. Use the debugger to analyze and extract the logic of the program.

In SAP, you can debug any ABAP program, whether it's custom developed or a

standard program. This section provides tips, tricks, and techniques to improve

your experience when using the ABAP Debugger and make it easier to analyze and
find bugs in your ABAP programs.

122

Tip @

Using SAP GUI Shortcuts to
Debug Popup Windows

You can switch on debugging for popup windows by creating an SAP shortcut file for
command /h and dragging this file onto a popup window.

Normally, if you know the place in the source code that you want to debug, you
can easily place a breakpoint there, and a debugger will be triggered when you
execute the program and the position that you marked is reached. You can also
switch on debugging at any screen by entering the /h command into the command
field on the SAP GUI toolbar. However, you can't use the /h command to stop
popup windows because there is no command field. In this tip, we'll show you
how to bypass this problem by using SAP GUI shortcuts to trigger the /h command
on popup windows.

And Here's How ...

To switch on debugging for popup windows, you need to create an SAP GUI short-
cut file. The SAP GUI shortcut is a file that can be used to execute transactions or
system commands directly from a file.

You can use three different methods to create an SAP GUI shortcut, which we
discuss in the following sections.

Method 1
Click the GENERATE A SHORTCUT button dE} on the SAP GUI toolbar. The window
in Figure 1 appears; enter the details of the shortcut.

123

Tip 37 Using SAP GUI Shortcuts to Debug Popup Windows

Tite: [} [DebugPopup window

Type: 'SvstemCmmand - |

Cornmard: | M

System Description. | [A73 -|

Sybem I0: 1473 |

Start Parameters: [

Client: ool |

User. | ABCLL |

Password: [| [Use Not Recommendad)

Language: [EN - Engieh -l

Location: | 5&P Logon -
[e | [Comest J[cooct [mew> J| Eeun |

2 Figure 1 Creating an SAP GUI Shortcut

Follow these steps:

1. Enter a title in the TiTLE field.

2. Select SysTEm CoMMAND from the Type dropdown.
3. Enter "/h" in the COMMAND field.

4. Click FINISH.

A shortcut file with an extension .sap is created on the desktop.

Method 2

1. Right-click on the Windows desktop.

2. Select NEw — SAP GUI SHORTCUT.

3. Enter the name of the file and press [tnter].

4. Right-click on the file, and select EpIT from the context menu.
5. Select SysTEm CommAaNnD from the Type dropdown.

6. Enter “/h" in the CoMMAND field.

7. Click Ok.

124

ABAP Debugger Part 5

Method 3
Create a text file named Debugger.sap, open it in any text editor (e.g., Notepad), and
write the following text into the file:

[Function]
Command=/H
Title=Debugger
Type=SystemCommand

Debug the Popup
Now you have created a SAP GUI shortcut file. Open the popup window that you
want to debug, and drag the shortcut file onto the popup as shown in Figure 2.

[Esap

Type [=)
Description

& Downloads
% Recert Places

4 Libraries

il Homeoeoun

@ Figure 2 Dragging a Shortcut File onto a Popup Window

When you drop the file on the popup window, you'll see the DEBUGGING SWITCHED
ON message on the status bar. Now you can start the debugger tool by pressing

the key.

125

Tip @

Debugging Background Jobs

You can debug a background job whether it's running, finished, or not started yet by
using the same selection-screen parameters as when it was scheduled.

Background jobs are used mainly for scheduling long-running programs periodi-
cally or once only. When a background job fails or doesn't run as expected, you
may need to debug this background process to check the program execution using
the same selection-screen parameters used when it was scheduled. We'll show
you how to use the tools available in the Job Overview and Process Overview
transactions to debug a background process whether it's running, finished, or not
yet started.

And Here's How ...

You can debug background jobs in Transaction SM37 (Job Overview) and Transac-
tion SM50 (Process Overview) according to the status of the job. You usually need
to debug background processes when it's taking too much time to run or when it
isn't running as expected. We'll discuss each of these transactions in the following
sections.

Job Overview Transaction: Debugging Scheduled or Finished

Background Jobs

You can debug a background job in the Job Overview transaction using the DEBUG
Jos function, if the background job is in one of the following statuses:

» Scheduled

» Released

» Ready

126

ABAP Debugger Part 5

» Finished

» Canceled

Access Transaction SM37 and select the relevant job as shown in Figure 1. Choose
EXTRAS » DEBUG JOB to start the debugging process.

E xb Edt Goto [Extigs | Settngs System Heb

& Exort ' HB Do OF @B
Display TermSe Object

Job Ovearview Debug Job %

@ Rrskese @ Fooaoony Ixefe bn Blapicstonsevers 56 B F & F

Job owverwiew from: 31.01.2012 ac:
o 31.01.2012 at:

Selected Job names: W
Selected user names: AEDUL
[scheaures [V Released Vipeasy [accive [Finishea [V canceled
'_E‘Umt. conprrolled Event ID:
[ABAP program ProOgram nase
Jab Job Coun| Spool|Jeb Doc|Job CreatedB|Status Start date|Start time |Duracion(sec.) |Delay [(aec.)
| Eu_puT 00102403 ABDUL Finished 31.00.2012] 00:10: 32 0 32
_ | EU_REORG 01402403 AEDUL Finished 31.01.2012) 01:40: 33 55 33
. .. ZABAP_DEBUGGER 20461000 AEDUL Finished 31.00.2012] 20:46: 15 105 2
¥ ZABAP_DEBUGGER 21554800| &5 AEDUL Finished 31.01.2012] 21:55: 51 0 0
 SAPRSLOG 22185600 AEDUL Finished 31.01.2012] 22: 18: 57 3z 1
| SKFRSLOG 22201100 AEDUL Finished 31.01.2012| 22:20: 11 29 0
|| ZABAP_DEBUGGER 23103400 5 AEDUL Active 31.01.2012] 23: 10: 36 4l 0
|| SAFRSLOG 23105300 AEDUL Active 31.01.2012(23:11:18 1 1
T ummAry 263 62

A Figure 1 Debug Jobs in Job Overview

An ABAP program opens in a debugger session. This is not the ABAP program that
you actually wanted to debug, so you must step through a few times (you can use
[£7]) to reach the code you need. You can see that selection-screen variables have
the same values as when it was scheduled. You can now debug the program in the
same conditions as when it was running in the background. Note that the program
runs as it's running in the background, and the value of the sy-BATcH field will be
“X" even if you run the program in the foreground.

Job Overview Transaction: Debugging Running Background Jobs
If the background job that you want to debug is running, you can debug it with
Transaction SM37 using the CAPTURE ACTIVE JoB function.

Select the relevant job in Transaction SM37 and choose JoB « CAPTURE ACTIVE JOB
to start the debugging process.

127

Tip 38 Debugging Background Jobs

Now the running program stops in debug session, and you can step through the
program to perform the debugging tasks. When you finish your debugging, you
can release the program with the execute ([F8]) function.

Process Overview Transaction: Debugging Running Background Jobs
There's an alternative way of debugging running jobs in the Process Overview
transaction (Transaction SM50). Process Overview allows you to see the details of
processes running on the application server that you are logged on to. You can see
both background and foreground processes in the list.

Select the job that you want to debug from the list as shown in Figure 2, and use
the following menu path to start the debugging process:

(ADMINISTRATION * PROGRAM » DEBUGGING)

B[admrstaton | Edt Goto Ust Settngs Sgstem Heb

¢ Broces r; Cae DHE TDoD BE @6
Trace "
. Program 4 Debuggng [}
F End Session Shift+F2 Caneel & TAZO
Exit Shift+F3
Server WIN2008_A73_02 Date: 31.01.2012, Time: 23:11:21
Total Number of Processes 16
Dialeg 10 [9 (Total/Free) , Average Load = (0,053 [0,018 / 0,011)
round ;;i“ﬁ::) A Load = (0,329 | 0,066 [0,044)
m 171 gmaurm] g
Update Task IT 1/ 1 (Total/Free)
Configurable 16
DynanNC 2
No. Type FID Status Feason RestartEm | LodkedSem. Cu CPU Runtim Report i Liser Names Action Tabia
0 Ola <60 Waiting YiEs
1 Dla S158 Waitng ves A
2 Dl 4480 Waiting Vs
3 DlA 4404 Waiting Ves
4 DA 2638 Waiting Yes
5 DIA 4338 Waiting Ves
6 Dla 4020 Waiting Ves
7 DIa 4472 Funning Vs 4 SARLTHFE 001 ABDUL
B Dla 1952 Waiting es
9 D& 4058 Waitng Yes
10 D 2620 Wating Yes
[—I 11 BGD 4004 Funning Yes 4 SAPLSHI2 001 ABOUL Direct Read THODEDIR
12 BGD 3848 On Hold SLEEP Yes 3 ZABAP_DEBUGGER 001 ABOUL
13 BGD 2772 Waiting Ves
14 SPO 3400 Waiting A+
15 P2 1668 Waiting ves

A Figure 2 Debug Running Processes in the Process Overview Transaction

128

Tip @

Setting Breakpoints for ABAP
Commands and Command Groups

You can set breakpoints for ABAP commands and command groups, and then program
execution stops in the ABAP Debugger every time it reaches a given statement that you
suspect will cause a problem.

When you debug a program with a complex logic to find a bug, it isn't easy to
find a suitable starting point for debugging. You may have to step through the
program line by line or try to step over the modules to find where the problem
is originating. If you know or suspect that the problem might occur on a specific
ABAP statement or around that statement, you can set a breakpoint for that ABAP
statement and program execution stops in the debugger every time it reaches that
statement. This will help you find the problem quickly without stepping through
the source code line by line.

And Here's How ...

The BREAKPOINT AT STATEMENT function is used to interrupt a program before the
specified command or command group is executed. You need to enter into debug
mode to use this function. When you're in debug mode for a specific program, use
the following menu path to start the BREAKPOINT AT STATEMENT function:

(BREAKPOINTS « BREAKPOINT AT » BREAKPOINT AT STATEMENT)

You'll get a popup window with several tabs as shown in Figure 1.

129

Tip 39 Setting Breakpoints for ABAP Commands and Command Groups

ABAP Cminds 8

!)]

%=

@ Figure 1 Create Breakpoints Popup

The ABAP CMNDs tab is used to set breakpoints for commands and command
groups. You can directly write your command or select it from the search
help. Search help on this screen is available after SAP NetWeaver release 7.02. On
the search help window, as shown in Figure 2, you'll see a list of commands and
commands groups that can be selected to set a specific breakpoint.

CHARLEM

o HECK SELECT-OPTIONS
v CLEANUP

U CLEAR

v QLOSE

o COLLECT

v COMMIT b
ir 1

) 2 8

2 Figure 2 List of Commands and Command Groups

130

ABAP Debugger Part 5

As you can see in Figure 2, some commands have an expand button on the left.
When you click this button, the variants of this command are listed, and you
can also select the variants of the command instead of the command itself. For
example, if you expand the CALL statement, you can select any of the underlying

statements as shown in Figure 3.

n CALL
CALL BADI
CALL CQUSTOMER-FUNCTION
CALL DIALOG
R CALL FUNCTION
CALL AUNCTION %_RFC
CALL AUNCTION DESTINATION
¥ CALL FUNCTION IN
* CALL FUNCTION IN BACKGROUND
CALL FUNCTION IN BACKGROUND TASK
CALL FUNCTION IN BACKGROUND UNIT
CALL FUNCTION IN REMOTE TASK
CALL FUNCTION IN UPDATE TASK
* CALL METHOD
CALL METHOD OF
CALL SCREEN
¥ CALL TRAMNSACTION
CALL TRANSACTION LISING
CALL TRANSFORMATION

« Figure 3 Variant List for the CALL
Command

You can select any command from the list. If you select a command that has child
nodes, the breakpoint is set for all child nodes as well. For example, if you select
the statement CALL FUNCTION, the breakpoint is set for the following statements:

» CALL FUNCTION %_RFC
» CALL FUNCTION DESTIMATION

> CALL FUNCTION IN BACKGROUND TASK
b CALL FUNCTION IN BACKGROUND UNIT

» CALL FUNCTION IN REMOTE TASK
» CALL FUNCTION IN UPDATE TASK

You can now run the program, and it will stop only at the statements that you set

breakpoints for using this technique.

131

Tip

Using External Breakpoints
to Debug External Calls

You can use external breakpoints to debug a program that’s called externally via RFC
or HTTF.

Breakpoints are used to interrupt the program execution and let you debug and
analyze the ABAP program. If you set a session breakpoint in an ABAP program,
the program execution stops, and the debugger session opens when the execution
reaches the breakpoint position. However, if the program is called externally by
an RFC or HTTP interface, the session breakpoints can't interrupt the program
execution. In this tip, we'll show you how to use external breakpoints to debug
programs that are called externally.

And Here's How ...

Before you use external breakpoints, you need to adjust the debugging settings in
the ABAP EDITOR tab of the USER-SPECIFIC SETTINGS window. Open this window
by choosing UTILITIES « SETTINGS in the ABAP Workbench.

Figure 1 shows the settings that you can adjust for external debugging.

132

ABAP Debugger Part 5

[ser-Spedific Sattings

- waorkbench (General) ./ ABAP Edttor I [JE

/Pretty Printer | spitscreen _(Debuggng | Pattm || [<J[*)IS

| Debugging External Requests (2.9.: RFC, HTTP) |
@User fcou B
[Only Current .ﬂpplcatimﬁervalé

() Terminal ID

2 Figure 1 Settings for External Debugging

Set the username of the person who will run the program externally. When the
specified breakpoint is reached by this user, an ABAP Debugger starts in a new
session, and you can start your debugging process from this point.’

This feature is extremely useful when you and the user that's starting the process
are working at physically different locations. If an error is reported by an end user,
and you want to debug the same case, you must first set the username of the end
user in the USER-SPECIFIC SETTINGS window and set the breakpoint using the Se1/
DELETE EXTERNAL BREAKPOINT button on the toolbar in the ABAP Editor.
Then tell the end user to run the program and wait without closing the current
session. When the end user reaches the breakpoint, the ABAP DEBUGGER window
is opened in your session and you take the control of the program. You can now
debug, analyze the problem, and release the program after you finish.

Usually SAP systems have more than one application servers, and incoming
requests are redirected to the appropriate application server determined by load
balancing tools. External breakpoints are valid for the entire AS ABAP system by
default. You can also set the validity of the breakpoint for only the current appli-
cation server by using the ONLY CURRENT APPLICATIONSERVER checkbox on the
DEBUGGING tab shown in Figure 1.

1 Both the user you specify here and the user you logged on to the system must be authorized for
debugging.

133

Tip @

Customizing the ABAP
Debugger Desktop Tabs

You can modify and save your ABAP Debugger desktop tabs according to your own needs
to improve your debugging process.

While you're debugging an ABAP program, there are several tools available in the
ABAP Debugger that you can use for different debugging tasks. Each tool is placed
on a different tab, and you need to navigate to the relevant tab to use these tools.
There are also tools that are not displayed on any tab. To save time and make the
process easier, we'll show you how to customize the DeskTop 1, DEskTOP 2, and
DEskTOP 3 tabs according to your own needs. You can add up to four of your most
important or commonly used tools on each tab and save the layout as the default
layout.

And Here's How ...

Desktops are work areas that you can use to arrange the tools that you use fre-
quently in the ABAP Debugger. You can customize these desktops according to
your needs and navigate between desktops easily by changing the active tab. Let's
consider an example; when you double click on an internal table variable in the
source code, it's displayed on the Variable Fast Display tool, but you can't see the
internal table contents. You must click on the variable name on the Variable Fast
Display tool, but this time the active tab changes to the TABLES tool tab.

When you're in the middle of the debugging session and trying to analyze the
many variables to find a bug, it isn't practical to navigate between the tabs. If you
add the Table tool to the current desktop under the Variable Fast Display tool, it
will be very easy to analyze the source code, variables, and tables on the same

134

ABAP Debugger Part 5

screen. To solve these problems, you can customize an ABAP Debugger desktop
as shown in Figure 1.

T [saPLs38E | [os00] / |7 SY-SUBRC |0 |
$ (a1 aa o772 S
_AMDSREEEN Destop 2| Desktop3 | Stancrd | Structures | Tables | Objects | Detalbisply | Dataexplorer || -)T
1 process bhefore output. == i/vmz Y Locals | Glebas | D=
2 module =et_pfatatus. E m
3 module wb manager. ™
4 module set_focus. 2 EEAQ ““&‘D =
5| =] S... Variabla V. |val. k1)
& process after input. E E
& 7 wodule get_cursor. o [ala
8 * module set fcode. a (28 - |2®
= module wb_manager. - & i b L %
&BAP Ln 7Cdl 1 =] L J
- Obpects - @dvDiply | - Tables . Table Contets |
B oL}
Object | | | Tabe -}
View 3 @ | attributes ®
()l allF = ‘|
ﬁ i » LI ﬂ
' || T

A

Figure 1 An Example of an ABAP Debugger Desktop

Four tools are shown on the DEskTop 1 tab: Source Code, Object, Variable Fast
Display, and Table. You can remove any of these tools or swap the positions on the
desktop using the vertical toolbar to the right of each tool. The following functions
are available as buttons on the toolbar:

>

CrosE Toor ()
Removes the tool from the desktop.

REPLACE ToOL (E)
Allows you to replace the tool by opening a NEw Toor window from which you
can select the new tool.

FuLL SCREEN (E3])
Removes all other tools and expands the tool to the remaining area of the cur-
rent desktop.

Maximize VERTICALLY (BED)

This function is available only when there is another tool on top or bottom of
the tool. When you use this function, the other tool is removed, and the current
tool expands vertically.

135

Tip 41 Customizing the ABAP Debugger Desktop Tabs

» MAXIMIZE HORIZONTALLY (F=)
This function is available only when there is another tool on the left or right of
the tool. When you use this function, the other tool is removed, and the current
tool expands horizontally.

> Swap ()
This function allows you to swap the positions of tools on the desktop. When
you select this function, a popup appears, and you can select the direction that
you want to swap: VERTICALLY, HORIZONTALLY, or DIAGONALLY. Only the pos-
sible directions are displayed on the popup. For example, if you have only three
tools as shown in Figure 2, you select the swap tool on the following:

@: Vertical and diagonal swap aren’t possible. Hence, Tool @ immediately
moves to the right, and Tool @ and Tool €@ are moved to the left.

@: Diagonal swap isn't possible. Hence, the popup appears, and you can select
between vertical or horizontal swap.

©: Same as Tool @. You can select between vertical or horizontal swap.

¥l [3APL338E ™) [0so00| /(7 S¥-3UBRC |0 |
% [paz b i | sy-Tap] a9 '
E’mz ‘Desktop3 | Standard | Structures | Tablas | Objects | DetaiDsplay | DataExplorer + Br... | |+ [*][5]
1| process before cutput. [£3] m 2 Vlocas Faoeas) /[VEE
2 mwodule set_pfstatus. o == _96
3 mwodule wb_manager.
4 wodule Ser_focus. & RO &m =
5« = 5... Variable V... Val. 9 @ m
g process after input. = =
(-2 7 module get cursor.
8 1337 g. P ﬁ — ﬁ
module sebt_Lfoode. -
] module wh_manager. i il
10 module execute editor function. bl L ool g
11 * moduls gat_fcode.
12 module process_fcode 0400.
13 module new screen.
v | =
[= 1}
=]
0 Table =
Attrbutes 14}
© ‘=
4 » d F ﬁ
I
ABAP ln 7Cd 1 &

2 Figure 2 Debugger Desktop with Three Tools

» SERVICES OF THE TOOL (@)
When you click on this function, the system displays the services that are avail-
able for the selected tool. Each tool has its own specific services. For example,

136

ABAP Debugger Part 5

when you select this function for the Variable Fast Display tool, the available

services are displayed as shown in Figure 3.

[ErVarigble Fast Display Services

- s %

« ¢ Options and Customizing
» [save to Local File
» [} search
- [Find Mext
= 3 Sarting
+ i Sort Ascending
+ 'F Sort Descending
« B Default Sorting
* < Toal-Specific
* &, Display complex return values in AUTO tab too
- B Save Parameters as Test Data (SE37)

%]

{ Figure 3 Services of the Variable
Fast Display Tool

Changes you make are valid only on the current session. If you want to make

the changes permanent, you need to save them using the SAVE LAYoUT button
(HiLayout) on the toolbar.

137

Tip @

Using the Diff Tool to Compare
Complex ABAP Data Structures

You can use the Diff tool during your debugging process to compare two complex ABAP
data structures with respect to their type or value.

When you're debugging an ABAP program, you may need to compare the types
or values of two variables, structures, internal tables, or even object instances.
This isn't a big issue if you want to compare two simple types or structures with a
few fields. However, when you want to compare more complex data structures, it
becomes difficult using the basic debugger tools. Luckily, the Diff tool allows you
to compare two ABAP data structures, simple data types, strings, or ABAP objects
and see the differences with respect to their values and types.

And Here's How ...

Imagine that you have two internal tables with hundreds of lines or two objects
with a complex structure. Trying to compare these elements using the traditional
ABAP Debugger tools would be a nightmare. Here, you can easily use the Diff tool
to compare and see the differences.

You can access the Diff tool from the DIFF tab in the ABAP Debugger. You can also
add it to any of the customizable desktops. The Diff tool has two fields—VARIABLE
1 and VARIABLE 2—where you can enter the name of the variables to compare.
Alternatively, and more easily, you can start the Diff tool directly in the default
debugger desktop. Using the Variable Fast Display tool, select two variables and
click the StarT CompARISON button on the toolbar as shown in Figure 1.

138

ABAP Debugger Part 5

« Figure 1 Starting the Diff
Wariables 2 Locats Globats Auto
a i EE é’) Disp.’ay Tool
5"'J|va1g‘2tart Comparsony| Ve ¥l C.... Hexadecimal \
._‘ITLBI_ 43 Strucrure: flac, charlike 200020002001
ITABZ {3 seructure: flat, charlike 200020002001

After you click the START COMPARISON button, the two variables are automatically
transferred to the Diff tool. If there's a Diff tool on the same desktop, the variables
are transferred to this tool; otherwise, they are transferred to the default Diff tool
on a separate tab.

Figure 2 illustrates a sample comparison result of two internal tables.

Varidtle 1 [TTABL ¥al. [[2x4(64)]3tandacd Takle]
Valdle 2 |ITABZ wal. [[2x3(60)]standard Table]
S Stat Comparsen &0 v Max. No. of Hits [l |
Inden |ff |G.. Description Location [rTaB1 ITAB2
1 [Different Number of Cokumns 1TAB1 4 <)
[Different Row Langth ITAB1 64 &0
0 component Mssng ITABL-F4 F4
[Type Cfferenca: Mo Vaus Comparison Passible ITAB1

A Figure 2 Comparison Result of Two Internal Tables with Different Structures

As you can see in Figure 2, the internal tables don't have the same structure, so a
value comparison isn't possible. The list only has the results of the type compari-
son. In Figure 3, you can see the comparison result of internal tables that have the
same structure.

Vaishie 1 [TTaB1 Val. [[2¢3(60)]Standard Tahle |

Valdle2 |ITaBZ | wal. [[2x3(50)]%cendard Table]

i st Comowison & ¥ M. No. of Hits oo |

Index Diff G... Description \Location 1TaB1 ITABZ

1 The elements have dfferent contents ITABI[L}F2+0(4) 2222 XK
The alements have different contents ITAB1[2}F2+0(4) 000 BEEE

2 Figure 3 Comparison Result of Two Internal Tables with the Same Structure

139

Tip 42 Using the Diff Tool to Compare Complex ABAP Data Structures

This time, the values of the internal tables are also compared, and the elements that
have different values are listed in the result set. If you click the Di1SPLAY VARIABLES
button just above the list, two Table tools are automatically added into the
desktop, and the contents of internal tables are listed in these tables as shown in
Figure 4.

| bstary . Campare ABAP Varibles | ®
o]
Vaisblel [tta1 000000 | wal. [[2¢3[60)]Standard Table | L]
Vaidle 2 [1TABZ | wal. [[2x3(60))5tandazd Table | -]
&% Start Comparion G0 v [Max, Mo, of Hits 100
Index Diff G.. Desciption : Location rag1 | &
1 The elernents have different conterts ITABL[1]F2+0(4) sy | -3
Tha alernents have difarant contants ITABL[2]-F2+0(4) R &
4 F | i b
 Takes I =
B B
Table [ITABL | B Tae |TTAB2 | -5
Taole type Standard Table[2¢3(60)] LY B Tabletype Standad Table[2x3(50)] LY
Lne Fifc(10)] |F2lc(0)] FelC(0]] _|BE | e Filc(0)] Falc(io)) FIlc(10)] L=
1 1111 2222 3333 || &% 1w 200 3333 Oy
AAAA Eeeed cece ~|f | 2 EEEE ceee = |
. (e y
L E L L a L

A Figure 4 Displaying Table Contents in the Diff Tool

The HisToRry tab in the Diff tool shows you the list of the comparisons that you
made so far in the current session. This feature helps you easily go back to the
previous comparisons.

140

Tip @

Viewing and Manipulating
Internal Tables Using
the Table Tool

You can use the Table tool to view and manipulate the contents of internal tables in the
ABAP Debugger.

When you're analyzing an ABAP program in the debugger, you often need to
analyze the internal tables, modify the contents, or even add new lines into the
table. Internal tables are used excessively in ABAP programming, and being able
to analyze and manipulate internal tables easily in the debugger can be very help-
ful in your debugging tasks. You can perform all of these tasks easily by using the
Table tool in the ABAP Debugger.

And Here's How ...

The ABAP Debugger has a Table tool on a separate tab that allows you to display or
modify the contents of internal tables in the debugging session. You can also add
this tool to any of the debugger desktops to use it more efficiently.

While debugging an ABAP program, navigate to the TABLES tab, and enter the name
of the internal table variable into the TABLE field in the TABLE CONTENTS tab to see
the contents as shown in Figure 1.

141

Tip 43 Viewing and Manipulating Internal Tables Using the Table Tool

Desktop 1 | Desktop2 | Desktop3 | Standard - Structwes Tables | Objects |

I
i Tabhes TES CoteEN)

Table :r'mm] [
Attributes Standard [2x3(60)] s
EHcolurnns ... |a
Lne F1[c(10)] F2(c(10)] F3[c(10)] |
1 1111 2222 3333
VYT KK CCCcC

2 Figure 1 Displaying Internal Table Contents in the Table Tool

You can see the history of the internal tables that you displayed in the current ses-
sion on the TABLES tab.

You can also navigate the Table tool by double-clicking on the internal table name
in the Variable Fast Display tool in the ABAP Debugger. However, if the internal
table has a header line, the debugger navigates to the Structures tool instead of the
Table tool. This time, you can click the TABLE icon @ on the left of the internal
table name in the Variable Fast Display tool to navigate to the Table tool as shown
in Figure 2.

__/‘\.'aid:lasz |“Locals Globals | Auto | Memory Andysis | =
B

ET &< D =
'S... | Variable V.. Val, C.... Hexadecimal Vaue i | e
ITABL [2x3(60) JStandard Table T

| {l 1TAmz & Anki 2000, cccc 410041004L0041002000200C | £
i

| L

-

A Figure 2 The Variable Fast Display Tool Can Be Used to Navigate to the Table Tool

You can also add the Table tool to any of the desktops if you use it often, as
described in Tip 41. You can see the final result in Figure 3.

142

ABAP Debugger Part 5

Tl [ZAEAP DEBUGGER | # [ZABAP DEBUGEER]1/[5z |zy-3UERC

§ BvEnT | / [START-CF-SELECTION |68 I [ermnd IE I

30 START-OF-SELECTICH.

31 PERFORN get_data. y
Y BREAK-POINT. Tables
33| H *4
340 | =g Form GET DATA Table [TTABL[] o
= e B L Attibutes Standard [2x3(50)] v
37 e :: __________________________________ lECﬂm o
38 * = pt taxt | \Lne F1[C(10)] F2[C(10)] F3 [C(10)] L
1: * === p2 text 1 1111 2322 3333 -
41 EIFORM get_daca . = =k - sl T N
az | MOVE '1111' TO wa_icabl-fl. — _
J‘ .ﬂ'J AR] T mmem A i A 1l b
ABAP Ln 26Cdl 10 @

16 U END OF typel. bl Varbles 2| Locas ['Giobas [auto [] [/[]SI

:; EI TYPES: BEGIN OF typez ol &
H ¥ r

19 £1[10), T BEED &S D -]

20 £2 (10, B | 5. veide V... |val. c.. [@

21 £3 (10}, TTAEL [213(60)]3tandard Table =

o END OF typez. i Tacs AAKR Y000t cooe

5 & | @ 3 &

24 daca: ivabl type table of cypel, T == L]

25 itahZ type cabls of cypsz, L1 -

26 itabi type table of typel WITH HEADER L

27 wa_icabl type typel, I i 4

28 va_itabZ type typez. B

FONEESORE

A Figure 3 Adding the Table Tool into Debugger Desktop

This time, if you double-click on the internal table name, the content is displayed
in the Table tool directly instead of navigating to the Table tool on a separate tab.
However, if the internal table has a header line, you again have to click on the
TABLE icon or enter the name of the internal table into the Table tool directly.

The ServiCE menu for the Table tool can be accessed using the SERVICES OF THE
Toor (@) button on the right toolbar. A popup opens, and you can select the
service that you want to use from the list of services. You can use these services to
import, export, and modify the internal table contents.

You can also access all of these functions using the context menu of the Table tool.
The functions under the COLUMNS section can also be accessed using the COLUMNS
button (Ecoumns ... I-|]ju5t above the internal table contents.

Note that the SERVICES list in your system may not include all of the services listed
here depending on which SAP NetWeaver version you're using.

143

Tip @

Saving Test Data for Function
Modules in the ABAP Debugger

You can save the import parameters of a function module in a test data directory during
a debug session so that you can use the parameters again later.

Imagine that you're debugging an ABAP program and figure out that the problem
has originated from a function module. If the function module has a complex
logic, the best option is to debug it separately in the Function Builder. However,
you must use the same import parameters that are used in the calling program to
reproduce the error. In this tip, we'll show you how to save the import parameters
while in a function module to a test data directory during the debug session and
use them later in Function Builder to test the function module individually.

And Here's How ...

The Variable Fast Display tool in the ABAP Debugger allows you to view and
modify (if possible) the variables used in the ABAP program. If you're in a function
module, you can save the current values of the import parameters into a test data
directory of a function module. You can use the SAVE PARAMETERS AS TEST DATA
function in the ToOL-SPECIFIC services list in the VARIABLE FAST DISPLAY SERVICES
list as shown in Figure 1.

144

ABAP Debugger Part 5

[= Variable Fast Display Services X « Figure 1 Save Parameters
as Test Data
~ O Services
* O Standard

* ¥l Options and Customizing
+ [3 save to Local Fle
* (Hl search
+ (B Find Next
* < Sorting
+ & Sort Ascending
- & sort Descending
«) Default Sorting
~ O Tool-Specific
= 18, Display complex return values in AUTO tab too
« L) Save Parameters as Test Data (SE37)

[vl[3]

After you select the SAVE PARAMETERS As TEST DATA function, enter the name of the
test data in the popup as shown in Figure 2 and click the CONTINUE button (¥)).

[Title for Test Data (SE37) B} < Figure 2 Popup to Enter
the Name of the Test Data

=
Marme of Test Data |I_

%]

All parameters are saved, and you can access this test data using the TEST DATA
DIRECTORY button on the TEST FUNCTION MODULE screen in the Function Builder
(Transaction SE37).

145

Tip @

Using Watchpoints to
Monitor Variable Changes

You can use watchpoints to monitor and find changed or altered variables during a
debugging session and then interrupt the program.

When you debug an ABAP program, you sometimes realize that one of the critical
variables is changed suddenly in one of the modules (subroutine, function module,
class, etc.) that you step over instead of stepping into the module, and this change
may be the main reason for the problem that you are analyzing. It may not be easy
to step into the module source code and go step by step to find the exact position
where the variable is changed because the module you want to debug is too big.
You can use watchpoints in that case to monitor the variable, interrupt the program
execution, and open a debugger session when this variable is changed.

And Here's How ...

You can create a watchpoint while you're in the ABAP Debugger using the CREATE
WATCHPOINT button on the toolbar. It will open a popup window,
where you can enter the details of the watchpoint that you want to create. Two
types of watchpoints can be created according to your requirement:

» WATCHPOINT AT VARIABLE
Monitors the variable during the program run and stops immediately when the
value of variable changes.

» WATCHPOINT AT OBJECT ATTRIBUTE
Monitors the object during the program run and stops immediately when one
of the selected attributes of the object changes.

146

ABAP Debugger Part 5

For example, suppose you have an internal Table ITAB1 in your program, and you
want to find the position where the second record is appended into the table. You
can create a watchpoint by filling in settings in the CREATE WATCHPOINT window
as shown in Figure 1.

= Create Watchpont

Wariable ITABL

| Watchpoint Type

() Watchpoint at Variable
Monitor the Varlable During the Program Run
Stop Immediately When Value of Varable Changes

('Watchpaint at Object Attribute
Monitor the Object During the Program Run
Stop Immediately When One of the Selected Attributes

of the Objects Changes or Vanishes

| Additional Type Dependent Specifications
Variable Type [
Program Name

|ZABAP_DEBUGGER

| Only for Local Variables
(#)All Module Instncs.
("1Orily Current Module Instance

[%= | No addtional condtion
| Condition
@ Free Condition Entry:

LINES(itzb1) > 1

It ={E3

A Figure 1 Create a Watchpoint to Monitor the Internal Table

Enter the name of the internal table in the VARIABLE field, and select the WATCH-
POINT TYPE as WATCHPOINT AT VARIABLE.

Create a Watchpoint for a Local Variable

If you're creating a watchpoint for a local variable in a module, you can select
whether you want to create a watchpoint for the current module instance or for
all instances.

In the FREE CONDITION ENTRY field, you can enter the condition for the watch-
point. If you don't enter any condition, the ABAP Debugger stops on any changes
on the variable. Otherwise, it stops only if the variable is changed and the specified
condition is met. The syntax of the conditions is identical to the ABAP syntax. In
our example, you would write the following condition to interrupt the program
on the second append to the internal table:

147

Tip 45 Using Watchpoints to Monitor Variable Changes

LINES(itabl) > 1

This is the same syntax that you use to check the lines of the internal table in ABAP.
The condition you write must comply with the following syntax:

<Function(variable) or variable or literal>
Operator
<Function(variable) or variable or literal>

You can check the syntax of the condition using the CHECK button on the
toolbar.

Finally, you can click the CONTINUE button to create the watchpoint and close

WATCHPOINT popup create a new watchpoint.

Now you've created the watchpoint, so the debugger will stop when the condition
you specify is met.

Monitor Attribute Changes

If you want to create a watchpoint to monitor the changes to the attributes of an
object, select the WATCHPOINT TYPE as WATCHPOINT AT OBJECT ATTRIBUTE and the
ADDITIONAL TYPE DEPENDENT SPECIFICATIONS changes as shown in Figure 2.

Warisble
| Watchpoint Typa
Ciwatchpoinit at Variable (*)Watchpaint at Object Attribute
Monitor the Variable During the Program Run Monitor the Object During the Program Run
Stop Inmediately When Value of Vaniable Changes Stop Immediately When One of the Sslected Attributes
of the Objects Changes or Vianishes
| Additicnal Type Dependent Specifications
| Instance Attribute Requined | | Static Attributss Requined
[Public Attributes (Publc) ' Public Attributes (Public)
[v|Protected Attrbutes (Protected) v Protected Attributes (Protected)
[¥|Private Attribute (Private) IPrivate Attribute (Private)
|v|Package' Attribs (Package) ¥ Package’ Attnbs (Package)
[%5] Mo addtional condtion
| Condition
[@Fre= condition Entry:
v x)

2 Figure 2 Create a Watchpoint to Monitor the Attribute of an Object

148

ABAP Debugger Part 5

Now you can set which type of attributes you want to monitor: instance or static
attributes. For each one, you can select the visibility of the attributes: PUBLIC,
PROTECTED, PRIVATE, and PACKAGE.

You can see the watchpoints you've created by viewing the BREAK./WATCHPOINTS
tab in the ABAP Debugger as shown in Figure 3.

fisf [ZABAP_DEEUGGER | [zABAR_pEEDGRGER | 56 |sy-smEre |0 |
§ FORM | # lGET _DaTA =] :_:-r-'mnd jz]
“Standad | Structures }"TW'M Keopt | @]
- voris JNRRRREI raioont chaters o
&
BEERED @ ¢ i &
 Reached Actv. |VarStstus Detals varisbls Name Cument sz |0k Ve Condition wall
= (=] ITaB1 [2x3{60)]5tandard Table [1x3(60))Standard Table LINES(ITAE1) > 1 Gol =

2 Figure 3 Displaying Watchpoints in the ABAP Debugger

You can perform the following operations on this screen:

» Create, modify, or delete a watchpoint

» Activate or deactivate a watchpoint

» Compare variables

The COMPARE VARIABLES function allows you to compare the initial condition

of the monitored variable with the current condition in the Diff tool. The compari-
son result will be displayed as shown in Figure 4.

fisl zABAP_DERUGGER| | # [2aBAP_pEBUGGER | +[56 [sy-smre o]
% | ¢ [GET_DATA A [sv-maerx |z
‘Deskiop 1 | Desktop2 Desktop3 | Standard | Structures | Tables | Objects | DetalDisplay | DataBapiorer || [/[*]5)

_ Mstory - Compare ABAP Varisbles | o
]

Vanable 1 [[A:2*\KERNEL_WATCHFOINT_WFREF}| Wal. |[2x3(60)]Standard Table | i

Varisble 2 | [ArL*\FERNEL_UATCHPOINT_CLOME}| Wal. |[1x3(60)]5vandard Table |

&4 Start Comparison & Max. No. of Hits l100 |

Index. |D¥fF |G... Dwscription \Location {A:2YWERNEL_WATC... {a:1*pErneL_warc... @

L [Cxfferent bumber of Rows {A:2*\KERNEL_WATCHPOINT_WPREF} 2 1

Figure 4 Using the Diff Tool to Compare the Current Value with the Initial Value

Be careful when using watchpoints for internal tables that have too many records.
When you create a watchpoint, the system creates the copy of an object and uses
this copy to monitor the changes. If the internal table you're monitoring is too
large, keeping the duplicate copy of this table can lead to high memory consump-
tion. You can try to keep this type of watchpoint for short program durations.

149

R 46,

Using Debugger Scripting
to Analyze Complex
Debugging Scenarios’

You can use the Debugger Scripting tool to implement custom debugging tasks by writing
a local ABAP class and taking the control from the ABAP Debugger.

Although the ABAP Debugger has great features that allow you to debug and ana-
lyze an ABAP program, you may still have complex cases that the standard tools
offered by the ABAP Debugger can't solve. The Debugger Scripting tool helps you
in such cases by allowing you to use scripting options to implement your custom
requirements in the ABAP Debugger.

And Here's How ...

Access the Debugger Scripting tool by selecting the ScripT tab on the far right side
of the ABAP Debugger. Figure 1 shows the initial screen of the tool.

A default script template is loaded in the editor by default, and you can write any
ABAP object-oriented (OO) statements here. There are four methods defined in
the class:

» prologue
Generates the ABAP source handler class abap_source, which handles access to
the source code and variables in the program that you are debugging. Runs only
when you start the script.

1 Applicable to SAP NetWeaver release 7.3 and later.

150

ABAP Debugger

Part 5

Tl [ZAEAP DEBUGGER | 7 |zaBar_pEBUGGER 1¢l0 | [sv-suerc o]
§ EBvenr | 7 [START-OF-SELECTION |EH SY-TAEIX |1
/7Standad | Structwes | Tables | Objects | DetalDsplay « Data Explorer | Break /wiatchponts | Diff E
ﬁ Trace Fies [}
B
Start Scrpt [28] pattun B soptwiad | pretty pinter
=] Load Script 21 0 HETHOD prologue. =
Seript 22 “4s gaparate abap sourceé (Soucrce hasdler for ABAP) =

= 23 super->prologuei .
O saeas @ z4 | ENDMETHOD. "nrolog
Mame [RSTPDA_SCRIFT_TEMPLATE | 25

26 B METHOD init.

27 we® Ingert Your initialization code hera
2B r ENDHETHOD .
Trigges 29 METHOD script.
(IExecute Directly 30
(®) After Deb gger Events 31 ol nzart your scripk code hars
= 3z me- =h:enm).
+ | Debugger Single Step 33
[Breakpoint Reachsd 14 EHDHETHOD . "seript
r,wamw IS B HETHOD end.
36, M ##+ insart your code which shall be executed at the and of
37 b oees
 Display Last Trace | 18
E 5 39+ ENDMETHOD. "and =
"1m) AabRevar AcEink TMETEMEN T
Timest, |25.01.2012) 7 [22:53:03 [« p I EHRCLASS. ficiodabu O
Stope \CLASS kdl_debugger_script\METH... ABAP Ln 32 (ol 16 [ddl

@ Figure 1 Initial View of the Debugger Scripting Tool

P init

Runs only when you start the script. You can write any initialization code here.

» script

Runs every time the debugger is expected to stop. You can implement your logic

in this method to change the behavior of the debugger.

> end
Runs when you end the script.

Notice that this is just a local ABAP class implementation. You can also add your
own methods in the class. Normally, you can implement your whole logic only in
the method script, but you can also use the other methods if you're implementing
an advanced logic. If you look into the default template, you can see that there is

only one line in the script method:

me->break().

This is nothing but the normal breakpoint command. Let's start using the tool with

the default script template to understand the basics of the tool.

On the left side of the editor, you can adjust the stop condition using the trigger

options. Choose one or more options from the following:

151

Tip 46 Using Debugger Scripting to Analyze Complex Debugging Scenarios

» EXECUTE DIRECTLY
The script is executed immediately with the current conditions.

» AFTER DEBUGGING EVENTS
The script is run after the selected trigger events are reached. You can select any
of the following three triggers:

» DEBUGGER SINGLE STEP
If you select this trigger, the debugger runs a single step in the source code.
This is the same as using the single step function ([F5]) in the normal debug-
ging scenario.

» BREAKPOINT REACHED
If you select this trigger, the debugger script runs every time the breakpoint
condition is reached. The CHANGE button also appears if you select this option
and allows you to open the Breakpoints tool at the bottom of the screen. You
can modify breakpoint conditions with this tool.

» WATCHPOINT REACHED
It you select this trigger, the debugger script runs every time the watchpoint
condition is reached. The CHANGE button also appears if you select this option
and allows you to open the Watchpoints tool at the bottom of the screen. You
can modify watchpoint conditions with this tool.

Start the script by using the StarT ScripT button on the left. The debugger behaves
exactly the same as the normal debugging scenario because there is only a break
statement in the script. The script stops on the trigger condition and waits for user
action.

If you select CONTINUE ScripT, the ABAP program will be executed to the next trig-
ger condition and again stops. You can use the Exit ScripT button whenever you
want to stop the execution of the script. The script method is executed at each
stop, and the end method is executed when you exit the script.

So far, we've used only the default script template to see the basics of the tool.
Now, let's go one step further and see how you can benefit from the tool and
handle the custom debugging scenarios.

Click the ScripT WizARD button just above the editor window on the tool. The
Scrip WizarD window opens showing the DEBUGGER SCRIPT SERVICES list from
which you can select the predefined script services that you can insert into the
script. The script services are grouped in categories as shown in Figure 2. As you
see, there are several categories, and each category has many script services that
you can use for different purposes.

152

ABAP Debugger Part 5

@Lxmp_nr:su&szd 1/ |ZABAP DEBUGGER lsls6 | [sy-sumrc o
% FoRM | 7 lGeT_DATA A [sv-maemx |z

_‘Desktop 1y Desktop2 | Desktop3 | Standard | Structures | Tables | Objects | DetaiDeply | Databwplorer ||+][5

[}
&
Variabbe 1 | {A:2*\FERMEL_VATCHPOINT WFREF) Val. |[2x3(60)]5tandard Table | Ei
Variable 2 | {A:1*\FERMEL_VATCHFOINT CLOME} WVal. |[1x3({60)]5tandard Table]
&t Start Comparison & Mai, Mo. of Hits oo |
Ircdex Diff |G... Description \Location |{A:2*\KERNEL_WATC... {a:1*\KERNEL_waTcC... |
1 [Differsnt humber of Rows (A2 *\KERNEL_WATCHPOINT _WPREF} 2 1

A Figure 2 Script Wizard Window

You can insert any script service from the list by double-clicking it. Predefined
debugger scripts also can be defined using the Loap ScripT button on the left
side of the editor. Click on the LoAD ScripT button, and select the script using
the search help in the ScriptT NAME field on the LoAD DEBUGGER SCRIPT popup
window. You can also load a script from the local file by selecting the LocAL FILE
as SCRIPT SOURCE.

Now click the OVERVIEW OF DEBUGGER SCRIPTS button . An OBJECT BROWSER
window opens providing an overview of debugger scripts. Select the script from
the collection categorized by the topic as shown in Figure 3.

[E Object Browser

W [C=D
Debugger Scripts Description § Remarks |
~ |@ analysis of Objects]

« @ RSTPDA_SCRIPT_OREF_EVENTS Debugger Script: Log Changes in the Events of an Object
« @ RSTPDA_SCRIPT_OREF_WHERE_USED \Debugger Script: Log Changes in Where Used List of an O...
v (& Generic Breakpaints
v 5P Data Flow Analysis
+ @ Intenal: Do Mot Use
v B Analysis of Memory Usage
v R Analysis of Runtime Errars
- &P ABAP Trace
« @ RSTPDA_SCRIPT_CONTROL_FLOW_TRC
« @ RSTPDA_SCRIPT_EVENT _TRACE Debugger Script: Log al events triggered
+ @ RSTPDA_SCRIPT _STATEMENT _TRACE |Debugger Script: Log al ABAP commands of an application
» B special watchpaints
= T2 Miscelaneous |
« @ RSTPDA_SCRIPT_SYSTEMAREA \Debugger Script: Comparing of system areas after debugg...

vl

A Figure 3 Overview of the Debugger Scripts

153

47,

Debugging Specific Program
Areas Using the Software
Layer-Aware Debugger’

You can debug specific parts of your code or jump from one point to another in the ABAP
Debugger with a specific tool.

Imagine that you want to debug a big program but are only interested in a specific
part of the program. This would be very easy if you knew the first access point of
the layer that you're interested in. However, if you aren't sure about that point, you
have to step through many lines of code to find it, which is tedious, time consum-
ing, and error prone. However, the solution to your problem arrives in the form
of the Software Layer-Aware Debugger tool. We'll explain how it allows you to
define the profile for the layer that you're interested in and jump directly to that
layer in the ABAP Debugger.

And Here's How ...

Create object sets in Transaction SLAD, and put these object sets into a profile to
use in the Software Layer-Aware Debugger tool. Select the OBJECT SETS tab on the
initial screen, and click CREATE to create an object set. When the CREATE OBJECT
SET popup screen opens, fill in the values as shown in Figure 1.

1 Applicable to SAP NetWeaver release 7.3 and later.

154

ABAP Debugger Part 5

1 Object Set +|/ZDEMO_OBJECT_SET
| Header Data |

Description |Dema Object Set
Application Component ' =]

A Figure 1 Create Object Set Dialog

Object sets and object profiles are managed by the transport management system;
you must create them in the customer namespace and put them into the appro-
priate packages. You may assign it to an APPLICATION COMPONENT, but it isn't
mandatory.

Click the CONTINUE button (¥]) and an empty object set is created as shown in
Figure 2. This lets you create selection sets to define the object set.

g
[1Cbject 5ot ~|[zpEM0_OBIECT_SET

O] @] admestiaton /Salsctiors |

SLAD Objact Sets Description

- Fmrires User: ABDLL I8 Defiiticn of Selectiors

« @ Local Chjects UUsar: ABCLL —

~ B 5ap Appication Comporents @ IE E
=l Recdcation At Selection Sets
, EU ene B name Selection Criterion Selection Type Desplay/change Selection
= Enterprisa Fortal !
+ B MOM SAP NetWeaver Master ..,] Individual Package @ Applcation Component 8 [I3
+ M s Supply Chain Management
* MM Fortficho and Project Ma,..
r @ EW SAP Business Informatio, .
r EkM Knowiedge Management.
v MBC Basis Components i e
L=} Sarvice
L==R Colsborative Cr =
v Eps WWNE o Aot mmsﬁhﬂwﬂs&ts(ﬂa.samnaeu_j
* B GRC Governance, Risk and C... i
+ MEM Business Cbjects
- Mory Occasional Platform User

= @ Further Object Sets (Object Sets not Assigne. .

- @ 70EMO_OBECT _SET Demo Object Set
ABAP Ln 1ol 1 il

2 Figure 2 Create Object Set

Object sets are defined using selection sets and selection set expressions. You can
define the following object types in a selection set:

» Individual package
» Package with subpackage

155

Tip 47 Debugging Specific Program Areas Using the Software Layer-Aware Debugger

» Program/class
» Function module

» Implemented interface
Perform the following steps to create a selection set:

1. Click the CREATE or INserT buttons (E)) to add a new selection set.
2. Enter the name of the selection set.

3. Select the SELECTION CRITERION.
4

. Select the SELECTION TYPE. Select APPLICATION COMPONENT if you want to select
objects from the application hierarchy. Otherwise, select SELECTION SCREEN to
specify the name of the objects in a selection screen.

5. Click the DiSPLAY/CHANGE SELECTION button and select the objects that you
want to include in a selection set. An object selection screen opens according
to the selection type that you defined in the previous step.

After creating the selection sets, link them using AND, OR, and NOT operations in the
LINKING OF SELECTION SETs area if you've defined more than one selection set. The
link condition for all selection sets must be defined here.

Suppose that you defined the following selection sets:

» ZAG: All objects included in Package ZAG.
» ZAGF: All function modules starting with ZAG_*.

And suppose that the following three function modules are called in the transaction
that you are going to debug:

» ZAN_DETAIL (Package ZAG)
» 7AG_SEARCH (Package ZAG)
» ZAG_CREATE (Package ZMM)

Table 1 shows the stop conditions for each function on different cases.

_ ZAN_DETAIL ZAG_SEARCH ZAG_CREATE

ZAG AND ZAGF STOP
ZAG OR ZAGF STOP STOP STOP
ZAG AND NOT ZAGF STOP NO NO

A Table 1 Different Stop Conditions in Different Link Options

156

ABAP Debugger Part 5

As you can see, you can create many combinations for different cases using the
link feature. When you finish linking selection sets, click the CHECK button
to check the whole object set to see if there are any errors. Finally, save the object
set if there are no errors.

Now, create the object profile. Navigate to the PROFILES tab and click the CREATE
button . When the CREATE PROFILE popup opens, fill in the values as shown
in Figure 3.

[& Create Profile

[0 Profie ~|ZDEMO_PROFILE
| Header Data
Description |Derno Profile
Application Component ' [=)

v %]

2 Figure 3 Create Profile Dialog

After you click the CREATE PrOFILE button (#)), an empty profile is created as
shown in Figure 4. You can insert object sets into the empty profile.

A Profs | coect sets_
O Profie ~ ZDEMO_PROFILE |

D) EEE) e

MEDIWM Description

= |® Favorites User: AECIL M | :

- @ Local Chjects Tt [E_ ([[Remove Remander |

: gw Apglication Components Object Sets

~ @ Further Profies [Profis ot Assigned to.... | | (B cpiect set Vsble | FPontofEntry | PontofExt Incudng System
- a | < <HAESTHo> m - = =

2 Figure 4 Create Profile

Now use the CREATE button or INSERT button to add the object sets that
you created in the previous step into the profile. Note that there's a predefined
object set <<%REST%>> which specifies the ABAP code that resides outside of the
object sets you defined. You can remove it if you don't want to stop on the rest
of the code in the debugger. The following characteristics can be defined for each
object set, including the predefined object set <<%REST%>>:

157

Tip 47 Debugging Specific Program Areas Using the Software Layer-Aware Debugger

» VISIBLE
The selected object set is visible in the debugger when you select this checkbox.
If you clear this checkbox, the relevant object set won't be visible, and the
debugger won't stop when you use the normal debugging steps. For example,
if you clear the VisiBLE checkbox for the predefined object set <<%REST%>>,
you can only see the visible selection sets in the debugger, and the rest of the
code is skipped even if you step in using the single step ([F5]) function.

» POINT OF ENTRY
The debugger stops when the specified object set is reached.

» POINT OF EXIT
The debugger stops when the specified object set is exited.

» INCLUDING SYSTEM CODE
The system programs in the object set are also included in the profile.

When you finish defining the profile, you're ready to use it in the ABAP Debug-
ger. Open the program that you want to debug, and start in debug mode. When
you are in the debugger, click the CONFIGURE DEBUGGER LAYER button to open
the LAYER-AWARE DEBUGGER SETTINGS popup. Select the LAYER-AWARE DEBUGGER
AcTivE checkbox to activate the tool. Then select the USE OF PREDEFINED OBJECT
SET (LAYER) USING DEBUGGER PROFILE radio button to define the profile to use for
the Software Layer-Aware Debugging tool. Select the profile that you created in
the previous step, and click the CONTINUE button (h. Now you can use the NEXT
OBJECT SET button. Whenever you click the Next OBJECT SET button, the debug-
ger jumps to the next object set. If you step through with the single step function
([F5]), the debugger stops only in the visible part of the code.

158

Tip @

Using Conditional Breakpoints
to Check Specific Conditions

You can use conditional breakpoints when you want to set a breakpoint that is active
for a specific condition only.

Breakpoints are used frequently to stop the execution of the program on a specific
line and analyze that part of the code. However, sometimes the program may hit
the same breakpoint several times in a loop, which makes it very hard to check the
status of the variables at each step to see if the desired condition is met, especially
when the loop is repeated a large number of times. In this tip, we'll show you how
to specify a condition for a breakpoint to configure it to stop only in that condition.

And Here's How ...

When you set a breakpoint on a line inside a loop, it will obviously stop on each
loop. If the loop runs a large number of times, this breakpoint becomes meaning-
less because it will take too much time to step through each step to analyze the
program.

After setting a breakpoint in the source code, you can specify a condition for a
breakpoint in the ABAP Debugger by right-clicking on the breakpoint on the left
side and selecting the CREATE BREAKPOINT CONDITION option as shown in Figure 1.

1 Applicable to SAP NetWeaver release 7.3 and later.

159

Tip 48 Using Conditional Breakpoints to Check Specific Conditions

2 Deskiop 3 Stardard Structures Tables s

73 HOVE 'Zixi' TO wa itabl-£2. gl

67! HOVE 'CCCCY TO wa icabl-£3. - M
Cowie—— |

Bookmarks » B

Goto Bookmark » litabz-f1. =

y , litabz-f£2. =

= itab2-13. o~

Delete Breakpaint =8

) ab3[] .
activate Breakpoint
Ce kpo tab3.
Goto Statement " GET DATA
I R e —— B S P O

A Figure 1 Creating a Breakpoint Condition

The BREAKPOINT CONDITION popup opens; enter the condition as shown in Figure
2.

[Breakpoint Condition

Condition for Breakpaoint
[fA_ITABL-FL1 = 'AAAA' AND WA ITABL-F3 = 'CCCC'

Conclitions apply for current session only

@)

2 Figure 2 Specifying a Breakpoint Condition

When you click ConTiNUE (#)), the condition is saved and the debugger will stop
only when the given condition is met.

Conditions can be created by using comparisons and operands that are logi-
cally linked with AND, OR, and NOT. These operands can be used in the following
conditions:

» Variables

Literals

v

¥

Debugger symbols

v

Debugger functions

You can access the detailed explanation of the syntax of the breakpoint conditions
using the DispLAY HELP (@ button on the BREAKPOINT CONDITION popup.

160

ABAP Debugger Part 5

When you create the condition, the syntax check is performed, but the validity of
the operands isn't checked. If the operand isn't valid, the warning message “Break-
point condition cannot be evaluated at position 1" is displayed on the status bar,
indicating that there’s an error in the condition.

Breakpoint conditions are valid only for debugger breakpoints. If you save a break-
point as a session or external breakpoint, the breakpoint condition won't be saved
with it.

161

3 49,

Using Forward Navigation
Features in the ABAP Debugger?

You can change forward navigation features in the ABAP Debugger to display the vari-
able of your choice in the relevant Detailed Display or Data Explorer tools.

The Variable Fast Display tool in ABAP Debugger displays only the basic infor-
mation for the complex variables such as internal tables and classes. When you
double-click on a complex variable in the Variable Fast Display tool, the system
opens the tool associated with the type of the variable on a separate desktop to
display the detailed information for the variable. For example, when you click on
the internal table variable, the Table tool opens on a separate desktop. However, it
isn't practical to navigate between the tabs if you're using this feature several times
for internal tables, structures, or objects. You can change this forward navigation
behavior according to your preferences in the Variable Fast Display tool.

And Here's How ...

When you double-click on a variable in the source code, it's displayed in the Vari-
able Fast Display tool. However, if the variable is complex (internal table, structure,
object, etc.), you must open it in the relevant Detailed Display tool by double-
clicking the variable name in the Variable Fast Display tool.

You can configure the behavior of this feature using the SUSPEND NAVIGATION
button (&) on the toolbar of the Variable Fast Display tool. When you click this
button, two combo boxes appear near the button as shown in the Figure 1.

1 Applicable to SAP NetWeaver release 7.3 and later.

162

ABAP Debugger Part 5

A vaisbles 1 | vaisbles2 locak | Giobas | Auto | Memory Andysis
[

B E A &% o »koetaiDs_ +2 Switch to Special Des_ v @
'S... Varisble V... val. C... Hexadecimal Value 0=
ITABL [2x3(60) |Standard Table =

P

oo

e

A Figure 1 Configuring Forward Navigation in the Variable Fast Display Tool

In the first combo box, choose one of the following two options to configure the
tool that will be used to display the variable:

» DETAIL DISPLAY
The variable is displayed in the relevant Detailed Display tool. For example,
internal tables are displayed in the Table tool, and structures are displayed in
the Structure tool.

» DATA EXPLORER
The variable is displayed in Data Explorer, which displays objects, tables, and
deep structures hierarchically.

In the second combo box, choose how the relevant tool will be opened:

» REPRESENTATION ON CURRENT DESKTOP
The relevant tool is opened on the current desktop. If there are already four tools
on the desktop, a popup appears as shown in Figure 2, and you can choose
which tool should be swapped with the new tool.

[E which tool do you want to swap? « Figure 2 Swap a Current Tool with
the New Toal

* A Took
- T Source Code (Edit Contral)
+ &) Variable Fast Display
- [Table
« @& Data Explorer

CaE]

» SWITCH TO SPECIAL DESKTOP
The tool is opened on a separate debugger desktop.

» SwAP CURRENT TOOL
The current tool will be replaced with the new tool.

163

Tip 49 Using Forward Navigation Features in the ABAP Debugger

You may also want to skip the Variable Fast Display tool and open the relevant tool
directly when you double-click a variable in the source code. This time, you can
configure this behavior by choosing SETTINGS « CUSTOMIZING.

Configure the forward navigation feature on the GENERAL tab by selecting DispLAY
VARIABLE DIRECTLY IN THE RELEVANT DETAIL VIEW in the VARIABLE NAVIGATION
FROM EDITOR field.

164

Tip @

Analyzing Deep Nested
Objects in the Main Object

You can analyze subcomponents of deep nested objects and structures in a tree without
navigating away from the main object by using the Data Explorer tool.

When you're debugging an ABAP program, you can use the standard ABAP Debug-
ger tools to analyze these variables if you aren't using ABAP objects and flat struc-
tures. For example, you can display the object details in the Objects tool and the
structure fields in the Structures tool. However, if you have complex ABAP objects
or nested structures, it can be difficult to navigate between the subcomponents and
their relevant tools to analyze the top-level main object. In this tip, we'll show you
how to use the Data Explorer tool to analyze the complex objects and structures
in the ABAP Debugger.

And Here's How ...

The Data Explorer tool is located on a separate tab in the ABAP Debugger. You can
also add it into any of the debugger desktops to use it with other debugger tools.

Let's consider an example of using the Data Explorer tool to see the contents of
the complex ABAP object:
1. Open SALV_DEMO_TABLE_SIMPLE in the ABAP Editor.

2. Navigate to the display_fullscreen part, and put a breakpoint on the
gr_table->display() statement.

3. Execute the program with default selection parameters. The program stops in
the ABAP Debugger on the breakpoint.

165

Tip 50 Analyzing Deep Nested Objects in the Main Object

4. Double-click on the GR_TABLE variable. The Variable Fast Display tool displays
the basic information about the variable as shown in Figure 1.

A Varisbles 1 | varishies2 | locas | Globals | Auto | Memory anslysis |

BERT &= n
S... Variable Vo |Vl C... Hexadeg
GR_TAELE {0: 153"\ CLASS=CL_SALV_TABLE}

A Figure 1 Basic Display of the Object in the Variable Fast Display Tool

5. Double-click on the GR_TABLE in the Variable Fast Display tool. Now you can
see the object details in the Object tool as shown in Figure 2.

. Objects /@ ndviDeply |
Referrnce |GR_TABLE |
Object |{0:13%\CLASS=CL_SALV_TABLE} |
view | o
Ol 4 7e®|
Attribute
St... Bin... Vis... Attrib. vd... val,
bl OBJECT
= CL_SALV_MDDEL
& @ MODEL 11
& o R_CONTROLLER {D: 147\ CLASS=CL_SALV_CONTROLLER_TABLE}
= CL_SALV_MODEL_BASE
& @ C_FUNCTIONS_NONE a
& @ C_FUNCTIONS DEFAULT 1

A Figure 2 Object Display in the Objects Tool

This is the classic method to analyze the object in the ABAP Debugger. In Figure
2, notice that the subcomponent R_CONTROLLER is also an object, and you can't see
the object members directly on the tool.

Now, let's go to the Data Explorer tool to display GR_TABLE in a better way:

1. Navigate to the DATA EXPLORER tab on the ABAP Debugger.

2. Enter “GR_TABLE" in the NaMmE field, and press to open the object
details in a tree structure as shown in Figure 3.

166

ABAP Debugger Part 5

. Data Objects indiv.Diplay |
Mame |GR_TABLE |
Data Object Type | Value
~ Y GR_TABLE @ Ref to CL_SALV_TABLE {o:13%cLy
- [E mopeL ER) 11
+ [B C_PUNCTIONS_NCNE o I(4) 0
* B C_FUNCTIONS_DEFAULT o0 1(4) 1
+ B c_PUNCTIONS_ALL o 1(4) 2
- 3 R_CONTROLLER @ Ref to OL_SALY_COMTROLLER_MODEL {0:14*\CLY
+ [E) IF_SALV_C_BOCL_SAP~TRUE o C(1) X
- [E] IF_saLv_C_BOCL_SAP~FALSE o (1)
+ [IF_SALV_C_CHANGELIST_FLAVOUR~SETTER o 1(4) L
+ [F_SALV_C_CHANGELIST _FLAVOUR~REGISTER o 1(4) 2
- [El IF_SALV_C_CHANGELIST FLAVOUR~SELECTIONS o 1(4) 3
« B IF_SALY_C_CHANGELIST_FLAVOUR~APPLICATICON o 1(4) 4
- [B) IF_SALV_C_CHANGELIST_FLAVOUR~DATA _SET o 1(4) 5

A Figure 3 Object Display in the Data Explorer Tool

Now you can see that the components of the complex members can also be dis-
played on the same screen. You can also display directly nested structures and
internal tables on the tool without navigating away to the subcomponents. This
saves your time and helps you focus on debugging tasks instead of navigating
between variables.

167

Part 6

Analysis Tools

Things You'll Learn in this Section
51 Performing Detailed Checks on ABAP Programs with

Extended Program Check ... 170
52 Checking ABAP Programs for Naming Conventions with the

Code INSPeCLOroooiiiiiiiiiiiiii e 174
53 Testing and Improving the Quality of ABAP Programs with

UNIt TESES o 178
54 Using the ABAP Runtime Analysis to Measure the

Performance of an ABAP Programccccceiiiiiiiiiniiinnccne, 180
55 Using Checkpoint Groups to Activate and Deactivate

Checkpoints ... 183
56 Analyzing the Memory Consumption of ABAP Programs 187
57 Analyzing Database Accesses in ABAP Programs Using the

Performance Trace Tool ... 190
58 Finding the Right Event to Trigger a Workflow 194
59 Using the Work Item Selection Tool to Analyze Workflow

= 197

The ABAP Workbench offers more than just great tools to develop enterprise appli-
cations for ABAP developers; it also provides test and analysis tools to help devel-
opers increase their productivity. These tools also help system administrators to
analyze the technical problems encountered by end users. In this part of the book,
you'll learn tips and tricks on how to use these different analysis tools.

169

Tip €

Performing Detailed Checks
on ABAP Programs with
Extended Program Check

You can use the Extended Program Check utility to perform detailed code checks to pre-
vent possible problems in ABAP programs before releasing them.

When you're developing an ABAP program, it's a good practice to perform a
detailed check on the source code before releasing it to the quality or production
system to make sure that it doesn't contain any obsolete, superfluous, or ugly state-
ments. Even if you're an advanced ABAP programmer, sometimes your focus may
move to the logic of the program, and you may use some obsolete statements or
forget some messy declarations in the source code.

You may frequently use the SyNTAX CHECK function to check the program syntacti-
cally, but be aware that it only performs basic checks that can be run immediately
in the ABAP Editor. You can also use the Extended Program Check utility to perform
more detailed checks on the source code, as well as improve the quality of your
ABAP programs. This utility will also show you better usages of the statements
according to the programming guidelines, which will improve your ABAP knowl-
edge and help you develop a habit of programming according to the programming
guidelines.

170

Analysis Tools ~ Part 6

And Here's How ...

The Extended Program Check utility allows you to perform detailed checks on the
ABAP programs. You can access Extended Program Check using Transaction SLIN
or by using the following menu path while you're in the ABAP Editor:

(PROGRAM » CHECK » EXTENDED PROGRAM CHECK)

In the selection screen that opens, you can select the checks that you want to per-
form as shown in Figure 1.

| ABAP Program Extended Syntax Check
@ Qstandad B E H
Program | ZAG_EXTENDED_CHECK
| Checks
[¥|PERFORM/FORM interfaces [+ Output CURRFQUAN fislds
| CALL FUNCTION interfaces IvIField Attributes
'|External program interfaces [¥Syntax check wamings
| Screen Consistency W Intermationaization
WICheck Inad tables v Modifications
/| Authorizations | Superfluous Statements
[¥|GUI Status and TITLEBAR [v|Problematic Statements
VISETIGET parameter IDs ¥|Structure Enhancements
VIMESSAGE [|0bsolete Staternents (00 Context)
" |Character Strings | |Cross-Program Perf.-Intens. Tests
| |Programming Guidsines
| Additional Functions
[|Display al Check Results in a List
| Also Display Hidden Messages (Pseudocomments)

2 Figure 1 Extended Program Check Selection-5creen

Run the program by clicking the PERFORM CHECK (@) button. The selected checks
are run on the source code, and the result is displayed in a table as shown in
Figure 2.

171

Tip 51 Performing Detailed Checks on ABAP Programs with Extended Program Check

SLIN Overview

Display Results Display Al Results Display Single Test

Check for Program ZAG EXTENDED CHECE Errors Warnings |Hessages
Test Environment 1} 0 1]
PERFORM/FORM Interfaces 1} 0 1]
CALL FUMCTION interfaces 0 0 1]
GUI Status and TITLEBAR 0 0 o
SET/GET Parameter IDs] 0 1]
Character Strings 1} 0 3
Output CURR/QUAN fields 0 0 1]
Field Attributes [1} 2 o
Superfluous Statements (] Li] o
Zyntax check warnings 4 0 o
Modifications 1} 0 1]
Problematic STtatements 1} 0 1]
Programming Guidelines 1} 3 o
Obsolete 3tatementcs 0 2 0
Hidden Errors and Warnings (] 0 o

A Figure 2 Extended Program Check Output

You can see the number of errors, warnings, and other messages on the table and
navigate to the details of these messages by double-clicking on the number. The
details are displayed as shown in Figure 3.

SLIN Overview
Display Change

Hessages for Field Attributes(Warnings)

Program: ZAG EXTENDED CHECE Row: 11
Invernal tahle LT_SFLIGHT[] i3 not addressed statically in the program
Can be suppressed using pragma #FNEEDED (or pseudo comment "§EC NEEDED)

Program: ZAG EXTENDED CHECE Row: 11
LT_SFLIGHT stands for Z fields, for internal Table LT _5FLIGHT[], and for the table
header line
Field string LT_SFLIGHT is not referenced statically in the program
Can be suppressed using pragma #FNEEDED (or pseudo comment "§EC NEEDED)

A Figure 3 Details of the Individual Check

Navigate to the related source code line by positioning the cursor on the message
and clicking on either the DISPLAY or CHANGE buttons on the toolbar. You can then
correct the statement and go back to the results screen.

Sometimes it may not be possible to correct all results of the Extended Program
Check. If you insist on writing the code in a way that the Extended Program Check
doesn't like, you can suppress the check for this specific statement by adding a

172

Analysis Tools Part 6

pseudo comment, which is suggested with the extended check result as shown in
Figure 3.

For example, in the following source code, Extended Program Check displays an
error message suggesting the use of the text element only for the first line.

MOVE ‘Statusl” TO lv_statusl.
MOVE ‘Status2’ TO Tv_status2. “#fEC NOTEXT

The error message for the second line is suppressed with the pseudo comment
{ffEC NOTEXT.

Note that the Extended Program Check utility checks the program only for static
errors; it doesn't catch possible runtime errors.

173

52,

Checking ABAP Programs
for Naming Conventions
with the Code Inspector

You can use the Code Inspector to check your development objects to make sure they
adhere to a company’s naming conventions.

Readability of programs is very important—it makes it easier for other developers
to understand the logic of a program when they're trying to modify the source
code. If every developer had a different style of programming, other developers
would find it very difficult to read the source code. Therefore, naming conventions
are usually defined by a company so that developers follow a set of rules when
naming objects and elements while developing an application. To check that all
development objects adhere to the naming conventions set by a company, the
ABAP Workbench contains a Code Inspector tool that allows you to check develop-
ment objects in terms of several aspects such as syntax, performance, and naming
conventions, which we'll teach you how to use.

And Here's How ...

Create the following respective objects in Transaction SCI to check ABAP programs
for adherence to naming conventions using the Code Inspector (see Figure 1):

» Object set
» Variant
» Inspection

174

Analysis Tools ~ Part 6

Code Inspectors: Initial Screen
i}

Person Responsible ABDUL
| Inspection

name (B

s 0j7lnieaE)

Wers, 001

lvers. |oo1

4 Figure 1 Code Inspector Initial Screen

First you'll create an object set, which is used to specify a set of objects that will be
checked by the Code Inspector. Perform the following steps to create an object set:

1. Go to Transaction SCI.

2. Enter the name of the object set in the OBJECT SET section and click CREATE @])

3. You can use several selection options to build the object set. For example, enter
the name of the ABAP program as shown in Figure 2 to restrict the object set to

a single ABAP program.

Ohbject Selection

s e g | 0 1, Croce

[_|ClassfInterface

[IFunction Group

[v|Program 'z_CODE_INSPECTOR

[Iwieb Dynpro Component

[|Dictionary Type
[Type Group

—

g 8 € 8 88

L

A Figure 2 Restricting the Object Set to a Single ABAP Program

You can now save the object set and start creating the variant. Perform the follow-

ing steps to create a variant:

1. Go to Transaction SCI.

2. Enter the name of the variant in the CHECK VARIANT section and click CREATE

.

175

Tip 52 Checking ABAP Programs for Naming Conventions with the Code Inspector

3. Select the following tests from the list as shown in Figure 3 by clicking the
respective checkboxes:

» NAMING CONVENTIONS
» ENHANCED NAMING CONVENTIONS FOR PROGRAMS

Check Variant [8) z_me_vartasT | Person Resporis. AEDUL
Changed On 01.02.2012 Last Changed By AEDUL
Description Z_MY _\ARIANT |
Selection A, Tests
3y List of Checks

L [l Ganeral Checks

y 0 Perfarmance Checks

r OO0 Security Checks

r 0O Syntax Check/Generation

» A0 Robust Programming

* AW Pragramming Conventions

Marming Cormventions

Enhanced Naming Corventions for Programs
ABAP Unit Test Corventions

Metrics and Statisitics

Dyniamic Tests

User Interfaces

Search Functs,

Internal Performance Tests

Intern. Tests

Promy Checks

COoCCEE -
10000

B

| (] [i) [
<
===
vl

A Figure 3 Selecting the Appropriate Tests to Create a Variant to Check Naming Conventions

4. To view and customize the rules that are defined to check naming conventions,
click on the buttons.

You can now save the variant and start creating the inspection. Perform the follow-
ing steps to create an inspection:

1. Go to Transaction SCI.

2. Enter the name of the inspection in the INSPECTION section and click CREATE
3. Select the object set and variant that you created in the previous steps.

4. Save the inspection.

You can now run the inspection to test the program that you selected in the object

set according to the naming conventions defined in the variant. While you're in
the INSPECTION screen, execute the inspection using the & button and check the

results using the] button. The results will appear similar to Figure 4.

176

Analysis Tools

Part 6

ABDUL

VErsion 1

E ©§ B0E © @ CEEEEr

i

Message Code FORMLUIST

== Irvalid Mame ... for USING Parameter (FORM)
Message Code LOCDAT

== Irvalid Name ... for DATASSTATICS (Local)
Message Code FORMTAB

==5 [rivaid Name RT_OUTTAB for TAELES Parameter
Enhanced Naming Conventions for Prograrms

Warnings

Message Code GLOB_DAT

==3 Irvalid Name ... for DATA (Global)

Message Code FORM_UST

== Irvalid Name ... for LISING Paramater (FORM)
Message Code FORM_TAB

==> Irwvalid Mame RT_OUTTAB for TABLES Parameter

(FORM)

(FORM)

:
f

wle e |0 0|

=
w W W -

48 1

[

=Al=0 =0 (=0=1F

A Figure 4 Inspection Results for Naming Conventions Tests

You can also use several different tests to check ABAP programs as shown in Figure
3. Select the checkbox of each test that you want to run.

Using Code Inspector is an easy way to check the programs in your system to
ensure the quality of the system. For example, you can configure the system to run
the Code Inspector while releasing a transport request. Then, if there are resulting
messages from the Code Inspector, the user has the option to review the messages
or release the request despite error messages.

177

Tip @

Testing and Improving the Quality
of ABAP Programs with Unit Tests

You can use unit tests to test and improve the quality of ABAP programs.

Unit testing is an important part of the software development process because it
helps you increase the quality of ABAP programs, especially in the agile software
development area. You can take advantage of several benefits of using unit test-
ing in the software development process. You can, for example, use unit tests to
see if there is any problem after changing the program. It also helps you find the
problems early while you're still developing the program.

Developers usually mix test codes into the original source code or write small test
programs to test some portion of the source code. This will make the source code
more complicated and difficult to maintain. To solve this problem, you can use
the ABAP Unit tool to test your ABAP programs by separating the program into
individual parts and testing each part separately to check if the part is running
correctly.

And Here's How ...

Let's follow an example to see how unit tests are run in the ABAP Workbench. Sup-
pose that you're developing a subroutine to calculate the tax according to the price
of a material, and you want to test this subroutine after changing the calculation
logic. You can write the following test class at the end of the program to perform
the desired test:

CLASS test DEFINITION FOR TESTING RISK LEVEL HARMLESS DURATION SHORT.
PRIVATE SECTION.

178

Analysis Tools ~ Part 6

METHODS test_calculate_tax FOR TESTING.
ENDCLASS.
CLASS test IMPLEMENTATION.
METHOD test_calculate_tax.
DATA: price TYPE p VALUE 100,
tax TYPE p.
PERFORM calculate_tax USING price CHANGING tax.
cl_aunit_assert=>assert_equals(

act = tax
exp = 18
msg = ‘Tax is calculated wrong!”).
ENDMETHOD.
ENDCLASS.

You can add more test classes and more methods into these classes according to the
requirements. Then, you can run tests by calling the following menu path while
you're in the ABAP Editor:

(PROGRAM o TEST » UNIT TEST)

You'll see a status message if the tests run successfully. If there are errors, the result
is displayed as shown in Figure 1.

| ABAP Unit: Result Display
1%][22] Ramessage Tpe | Hlerts and Messages
Task/Programy/Class/Method 5..| Fatd Crtl... Tol.. | Type Message
|' B TASK_ABDUL_20120201_221447 & 0 1 a 0 Critical Assertion Enor: 'Tax is caloulated wrong!®
= () Z_UNIT_TESTS a 1] 1 0
- @ TEST | & 0 1 i
* @ TEST_CALCLATE_TA & o 1 [l

* Binfo

b Different Values:

* Test '"TEST->TEST_CALCULATE TAX' in Main Program 'Z_UNIT_TESTS'.
~ & stack

* In Z_TMIT_TESTS (Lime: 32).

A Figure 1 The Result of the Unit Test When There's an Error

You may be wondering why you should write extra code to test the program. You
can develop a program without unit tests, but when the requirements get more
complex and the program logic starts to change many times, simple mistakes in
the program may generate very big problems that aren't easy to find. You can eas-
ily analyze the problems and find which portion of the source code is the culprit
if you implement test classes in ABAP programs.

179

Tip @

Using the ABAP Runtime Analysis
to Measure the Performance
of an ABAP Program

You can use the ABAP Runtime Analysis tool while working on an ABAP program to
measure its performance and avoid system problems later on.

Developers don't usually analyze the performance of ABAP programs unless there's
a problem reported by end users or system administrators. However, sometimes
you may not notice the negative performance impacts of some programs immedi-
ately, but they'll lead to poor system performance when these programs are con-
nected. Then you have to go back, analyze, and correct all of these programs to
increase your system performance. To avoid this problem, you can use the ABAP
Runtime Analysis tool to analyze the performance of the program while develop-
ing the ABAP application.

And Here's How ...

Access the ABAP Runtime Analysis tool using Transaction SAT (this is a new and
improved version of Transaction SE30, which is used prior to SAP NetWeaver 7.0
EHP2). Figure 1 shows the initial screen of the ABAP Runtime Analysis tool.

The MEAsR. tab allows you to create variants and run analysis with different
options. You can analyze the measurement results in the EVALUATE tab.

Define measurement conditions and restrictions by creating a variant, or use the
default variant proposed by the system. We'll use the default variant as an example,
but you must restrict the conditions, especially if you're measuring the perfor-
mance of long-running programs.

180

Analysis Tools Part 6

CC@ The test times are reliable
Shert Deseription IDEFALLT |

Varlant 'DE":-"AUL‘E . From User i

Dlsriz|ajm |

[In Dialog | In Parallel Session |
() Transaction | | ® Switch OnjOff |
(& Program ' ¥ |Evaluate Immediately '
OFunction Modue . |
[VIEval. Immediately (@ Execute | For User/Service |

(& Schedue ||

| Data Formatting
| IDaterming Mames of Intemal Tables

2 Figure 1 ABAP Runtime Analysis Tool Initial Screen

You can measure the performance of the following object types using the ABAP
Runtime Analysis tool:

» Transactions

» Programs
» Function modules

For example, select the PROGRAM radio button and enter the program name as
“DEMO_SELECT_CURSOR". Then click the EXECUTE button to start the measure-
ment process.

The program is started because you run it directly. When you exit the program, the
measurement results are shown immediately in the following tabs on the result
screen (a sample desktop configuration is shown in Figure 2):

» DESKTOP 1
Similar to the new ABAP Debugger desktops, you can add any of the tools on
the screen and adjust the position of tools according to your preference.

» Hit List
Displays all measured statements and running times.

181

Tip 54 Using the ABAP Runtime Analysis to Measure the Performance

» DB TABLES
Displays all tables accessed during the trace. You can also see the measurements
of the database access and buffering modes for each table.
» PROFL.
Displays the measurements results in a hierarchy grouped logically.
» TIMES
Displays more specific time values than the values displayed in the Hit LisT tab.

Datef/Tme 020212 / 164537 Object DEMO_SELECT_CURSOR System AT3
User £EDUL Desiption DEFALLT
AL v vobes | pot._| e |
(BB =w) g &) (&)[7][0a)5 %) (& % | [8]& e (=] g
|Profile: Trace Results i B =
Profie Selec... | Mumber Net (mrco.. | [0 Hit List m
~ O Runtime Measurement _ 7e0 35 3 Hits "Gross [micos, et [microse Gross (%] et [Statement/Event =
+ (Bl internal Processing Blocks 0 a7 8l gy 1 33.144 0 100,00 Runtime analysis &
~ Bl Cata Accesses Internal] 440 3: 1 32.045 4146 99,40 16,51 Submit Report DEMO S
! =:ﬁ:;:’t‘$f a “ﬁ al 1 20.959 3323 63,24 13,23 Program DEMO_SELECT
i - ‘e 2 15.384 228 4642 0,51 DynproEntry =
» B Data Accesses Extemal 7 2ty q 12,143 306 AAd 1SR PAIDviom SAPMESYT T
ik i ¥ ik i b
) @) (B) [) () @) 0 E) ®
3 - W g =& i) (e 2
Database Tables m Times 3l
Table Mame Access Type | Accesses Gross [micros, Buffering Bufferie| B Index Statement/Event Gross [ricrosec]) Net [miamsec] L B
SFLIGHT Cipen SQL 2 3.406 o 1 Runtime analyss 33.144 £
TROIR Open SQL 1 484 260 Submit Report DEMO_SELECT_CURSOR 2945 4146
TRMEPACE Open SQL 2 66 On complet 192 Program DEMO_SELECT _CURSOR 20,959 3.323
onc T D, SFW o | 20 O Frwredot 174 Meswrem Cobee 1 204 b g -]
LI J i » 4 bk 4 b

A Figure 2 Customized Desktop to Display Four Tools in a Single View

Several measures are given in the results. You can use the tools that are separated
into tabs to analyze the performance of the ABAP program and to modify the pro-
gram according to these results. You must make sure that the program is running
without errors before running the program in the ABAP Runtime Analysis tool. If
you run the program for the first time in the ABAP Runtime Analysis tool without
running it directly, you may get incorrect results because the buffers and caches
may be empty. After you run the program directly a few times, you'll get more
accurate results in the ABAP Runtime Analysis tool.

182

55,

Using Checkpoint
Groups to Activate and
Deactivate Checkpoints

You can use checkpoint groups to manage the activation settings of Break-Point, Log-
Point, and Assert statements in a production system.

There are three types of checkpoint statements in ABAP: Break-Point, Log-Point,
and Assert. You can use these statements to control, analyze, and test the flow of
your ABAP programs. However, using these statements in a production system can
be very dangerous because they can create a massive amount of unnecessary logs
or break the execution of the running program unexpectedly. To avoid this risk,
checkpoint groups give you the option to analyze the ABAP program by activating
Break-Point, Log-Point, and Assert statements only when you need them and
deactivating them after you finish your analysis.

And Here's How ...

You can create and maintain checkpoint groups in Transaction SAAB. To create
a checkpoint group, enter the name and click Create (3. In the popup dialog
that opens, enter the description and click CONTINUE (#). You can now save the
checkpoint group and use it in the checkpoint statements as shown in the follow-
ing examples:

LOG-POINT ID ZTEST FIELDS lv_test.

BREAK-POINT ID ZTEST.
ASSERT ID ZTEST CONDITION Tv_test EO *X".

183

Tip 55 Using Checkpoint Groups to Activate and Deactivate Checkpoints

Checkpoint groups are linked to the Break-Point, Log-Point, and Assert state-
ments by adding an 10 statement as shown in the preceding example. Note that if
you don't link Break-Point or Assert statements with a checkpoint group, they'll
always be active. However, Log-Point statements must always be linked to the
checkpoint groups.

To activate the checkpoint, go to Transaction SAAB and open the checkpoint group
in change mode by entering the checkpoint group name and clicking the CHANGE
button. Navigate to the ACTIVATION tab as shown in Figure 1.

Checkpont Group |zTEST
Description |Test Checkpoint Group
. Propertes /(activaion | Log | Actwation Varants
Personal Activation |
| Breakpaints ~ Assertions (Foreground) |
(s)Inactive (=) Inactive | Background Procassing |
(Break Bresk Inactive
. | OiLog L e e i i |
| Logpoints.) Abort
(#)Inactive
Clog
All Activaticns

A Figure 1 Activating Checkpoints

The following modes are possible for checkpoints:

» BREAKPOINTS
» INACTIVE: Breakpoint is inactive,
» Breax: Breakpoint is active.

» LOGPOINTS
» INACTIVE: Logpoint is inactive.

» Loa: Logpoint is active.

184

Analysis Tools ~ Part 6

» ASSERTIONS

» INACTIVE: Assertion is inactive.

» BreEak: When assertion statement is reached, it behaves like a breakpoint.

» LoG: When assertion statement is reached, it behaves like a logpoint.

» ABORT: Program terminates with runtime error.
When you select the Break condition for Assert statements, a popup triggers as
shown in Figure 2. Because the program can't stop in the debugger when it's run-
ning in the background, you must specify what the system should do in this case.

You can select either abort the program or treat the current Assert statement as a
Log-Point statement.

[ctivation for Background Pracessing « Figure 2 Activate Assertions for
Background Processing

Mo Debugging Possble During Background Processing.
What should the systemn do in this case?
(®)Log _abort

x|

After selecting the operation modes, you have the following options to activate
the checkpoint group:

» ACTIVATION FOR INDIVIDUAL USERS
You can activate the checkpoints for individual users using the UsEr button.

» ACTIVATION FOR INDIVIDUAL SERVERS
You can activate the checkpoints for individual application servers using the
SERVER button.

You can activate the checkpoint either for a single user or for all users on a single
application server. These settings help you use the checkpoints without interrupt-
ing the other users using the same SAP system.

Now you can run the ABAP program that has checkpoints in the source. The behav-
ior of the checkpoints will be determined by settings that you have defined in the
checkpoint group. If you use the Log-Point statement or Assertion statement in
log mode, you can open the checkpoint group, navigate to the Lo tab, and ana-
lyze the log entries that you've created in the ABAP program using the Log-Point
statement as shown in Figure 3.

185

Tip 55 Using Checkpoint Groups to Activate and Deactivate Checkpoints

Checkpoint Group ZTEST
Description Teat Checkpoint Group

Properties Activation /(Log | Activation Variants

Hierarchy View]
(#)Group/SUBKEY fProgramjProcedure () GroupProgram;Procedure /SUBKEY

& S)=)(a) @)
ID/SUBKEY Program/Procedure Date Time |
- & zTEST
i 4
- T8 zaG_CHECKPOINTS
* (& START-OF-SELECTION
+ B Inchude: ZAG_CHECKPOINTS Line: 18 02.02.2012 20:48:00
= T2| 7AG_EXTENDED_CHECK
* |=] START-OF-SELECTION
=, @ Include: ZAG_EXTENDED CHECK Line: 18 | 02.02.2012 20:46:42

L

(LR T R o R =

A Figure 3 Analyzing Logs Created by the Log-Point Statement

Be careful when activating the logpoints. If you leave the logpoints active for a
long time, system performance may be affected due to uncontrolled growth in
the database tables. Make sure to deactivate the checkpoint groups after you've
finished analyzing the program as well.

186

56

Analyzing the Memory
Consumption of ABAP Programs

You can find the causes of memory-related problems by analyzing memory snapshots
captured via different methods.

When you're developing an ABAP program, it can have memory problems due
to several reasons. You may want to investigate the memory consumption of the
program due to the poor performance at different times to better understand the
reasons for the performance problems. You can create memory snapshots using
different tools, depending on what you're doing at the time, and then analyze and
compare the memory consumption of the program in the Memory Inspector tool.

And Here's How ...

Memory snapshots contain the information about the memory usage of the pro-
gram at a particular time. They can be created in three ways. The easiest way is
using the following menu path:

(SYSTEM o UTILITIES « MEMORY ANALYSIS « CREATE MEMORY SNAPSHOT)

There is also the Memory Analysis tool in the ABAP Debugger that helps you create
memory snapshots directly from the ABAP Debugger. If you're using the Memory
Analysis tool in the ABAP Debugger, you can also create memory snapshots from
the SERVICES menu of the tool by choosing:

(SERVICES » TOOL-SPECIFIC » CREATE MEMORY SNAPSHOT)

187

Tip 56 Analyzing the Memory Consumption of ABAP Programs

If you want to create a memory snapshot for programs running in the background,
you can't use the prior two options. Use the following method to create a memory
snapshot at any point in the ABAP program:

CALL METHOD
cl_abap_memory_utilities=>write_memory_consumption_file

Be careful when using this method because it can create too many files on the
server if you use it in the loops running too many times.

Analysis
After you create the snapshots, go to Transaction S_MEMORY_INSPECTOR to ana-
lyze them. You'll see a list of the snapshot files created on the server as shown in
Figure 1.

Memory Inspector - Memory Use Analysis
Ghitoy Dy e i-vo) | RMemory Snapshots T2Navigation

&) Q) [@@]a] 5]
File Name

Date Time User Program Transaction | S... | C.. | Host Cperatin.., = File ...
Bl Cusrsapl A7 3\DVEEMGSO2\dat: 02.02.2012 23:48:00 ABDUL Z_MEMORY_L... SEU_INT A73 001 WINZ00E Windows NT 24.719
« B Chusrisaph A7 3\DVEEMGSO2\data02.02.2012 23:48:00 ABDUL Z_MEMORY_L... SEU_INT A73 001 WINZ200E Windows NT 24.606
= EC:\L&W\A?S\,DVEBMGSIM&UDE.DE.EDE 23:28:46 ABDUL Z_MEMORY_[... SEU_INT A73 001 WIN2002 ‘Windows NT 17.097
. EC:\wksq:\.&?B\,DUEMGSUE\dat&02.02.2012 22:59:22 ABDUL RSTPDAMAIN SESSIOMN_M... A72 001 WINZ0OS Windows NT 157.455

2 Figure 1 Snapshot Files Created on the Server

Double-click on any of the files to analyze the memory consumption saved on the
file. Figure 2 shows an example view of the memory snapshot.

Memory Snapshot [(t_0) =] Display Limi | System Memory =] |
l
Memory Sniapshot f View Fiter Number | Memory Object Rarking Size
* Ao _ * [JaBAP Appication (Memory Szes i
* 3 Rol Area [- [B static variables 148,928
- 2 averview + [B stack (Used) 128
- E pominator Tree + [B Dyn. Memary Objects (Used) 51.362
» [T Ranking List - [Tota (Used) | 200,418
v [0 Ranking List by Type ~ IRl Area (Memary Sizes in Bytes)|
« [HTables 10 - [B Tota (Used) 1.236.806
« @ Classes 17 « [Totd (alocated) 4.187.120

% Figure 2 Analyzing Memory Snapshots

You can use the tools listed in the left MEMORY SNAPSHOT / VIEW tree to perform
detailed analysis on the snapshot.

188

Analysis Tools Part 6

If you want to compare the currently open snapshot with another, double-click
on another snapshot. The system will open the second snapshot and show two
snapshots assigned to labels t 0 and t_1 with yellow and blue icons. Click the t 0
and t_1 buttons on the toolbar to display each snapshot's details. There is also a
t_1-t_0 button on the toolbar—this displays the different values for the memory
consumption. Figure 3 displays the labels, buttons, and icons assigned to the snap-
shot files.

| Memory Inspector - Memory Use Analysis « Figure 3 Opening Two _
Snapshots Together to Compare in
@':LD} 'E](t_l] Ql(t_l -t_0) ngErrnrv Snapshots \!.INaﬂQatiun the Memory fnspectay
&))])
| File Name Date Time | User | Program
+ & C\usrisapiA73\DVEBMGED2\dat 02,02, 2012 23:48:00 ABDUL 7_MEMORY ..
@ ‘.USJ‘-SBJ‘Lﬁ?3‘LD\fEBMGSO21daI:=02 022012 23 43 00 ABDUL Z NHJIOR‘(J

If you click on the DispLAY DIFFERENCE button (@(.1-t0)), it will show the dif-
ference values for the memory consumption in the tool area as shown in Figure 4.

Memory Snapshot [(t_1 - t_0) =] | Display Limit | System Memory =] |
| F&H) (S EEL
| Mermary Snapshat [View Fiter | Mum... Memnory Chject Ra... Size
|~ St 1-t0): | * (1 ABAP Applcation (Memary Swes i
= < Roll Area + [& Static Variables 148,928
+ &2 Overview - B stack (Used) 128
+ [Dominatar Tree « [8 Dyn. Memary Objects (Used) 51.362(- 46.924)
+ [0 Rarking List « B Totd (Used) 200.418(- 46.924)
¢+ [0 Rarking List by Type * [JRol Area (Memory Sizes in Bytes)
- [E Tables 1 + B Total (Used) 1.236.895(- 143.040)
+ @ Classes 0 - B Tota (alocated) 4,187,120
» £ programs 1 :
b &y Expert [
« = Object Cycles (SCC) [0

& Figure 4 Displaying the Difference for the Memory Consumption Values between
Two Snapshot Files

On the left side, only the objects that have different memory consumptions are
displayed. On the right side, the different values for the memory consumptions
are listed. You can perform a detailed analysis on the memory consumption of
the program using this tool to help you find which objects are consuming more
memory and how the memory consumptions are changed at different times. You
can improve the memory consumptions and hence the quality of the ABAP pro-
grams using this technique.

189

Tip €@

Analyzing Database Accesses
in ABAP Programs Using the
Performance Trace Tool

You can use the Performance Trace tool to trace the performance of the SQL statements
in an ABAP program and minimize performance problems.

When you write an ABAP program, you usually use Open SQL to write SQL state-
ments that are independent of the underlying database system. The SAP system
converts the Open SQL statements to embedded SQL and passes these statements
to the database. In most cases, performance problems in ABAP programs are caused
by database operations. To eliminate, or at least minimize these performance prob-
lems, it's important to write efficient SQL statements in ABAP programs. You can
use the SQL Trace utility in the Performance Trace tool to analyze the SQL state-
ments and their performance on the database system.

And Here's How ...

Access the Performance Trace tool via Transaction ST05. You can trace five differ-
ent options in the Performance Trace tool as shown in the SELECT TRACE section
in Figure 1.

Select the SQL TRACE checkbox and click the ACTIVATE TRACE button on the toolbar
to activate tracing for database accesses. You can also activate tracing with a filter
using the ACTIVATE TRACE WITH FILTER button. You can filter SQL traces according
to the following information:

190

Analysis Tools ~ Part 6

Username

Transaction name

>
>

» Program name
» Process number
>

Table name (include or exclude)

Parformance Analysis
Activate Trace Activate Trace with Filter Deactivate Trace Display Trace Enter SQL Statement
| Select Trace
[150L Trace [_IRFC Trace [IHTTP Trace
["JEngueue Trace ["|euffer Trace
Trace Status o]

All Traces are Switched Off - Stack trace deactivated - Progress Display Off

X Figure 1 Performance Trace Initial Screen

When you activate the SQL Trace utility, the TRACE STATUS text area is updated
as shown in Figure 2. All database activities are logged in the trace file until you
deactivate the trace.

Trace Status
Last Changed on 04.02.2012 22:05:34 by use ABDUL - Stack trace deactivated
SQL trace Activated with Filter For User ABDUL

2 Figure 2 Updated Trace Status

When you finish running the program, deactivate the trace using the DEACTIVATE
TRACE button. Display the recorded data using the DispLAY TRACE button. You'll see
a selection screen where you can filter the trace results. After you run the report by
clicking EXECUTE (@), the results are displayed as shown in Figure 3.

191

Tip 57 Analyzing Database Accesses in ABAP Programs

Trace List
& oIC Information Wexpkin [2 @ B

&) [@.5%.) [8ld R .J=.) 18

HH:MM:S5.M5 EDurtn Program MName Obj, Mame Operation Curs Array ERecs, RC Conn Statement

22:15:58.645 1.033 BCALV_FULLSCREEN_DEMO SFLIGHT OFEN 2352 0 0 0 R/3 SELECT WHERE "MANDT" = '001'

22:15:56.646 103 BCALV_FULLSCREEN_DEMO SALIGHT FETCH 2352 142 30 0 R/3

22:15:58.661 10 SAPLSDIFRUNTIME DOFTX PREPARE O 0 0 0 R/3 SELECT WHERE "TABNAME" = ? AND 'DOLANGUAGE"
22:15:58.662 655 SAPLSDIFRUNTIME DOFTX OPEN 2352 0 0 0 R/3 SELECT WHERE "TABNAME" = ‘SFLIGHT' AND "DDLAM
22:15:56.662 97 SAPLSDIFRUNTIME DOFTX FETCH 2352 S1 15 O R3

22:115:58.668 11 SAPLSKBS V_LTDX PREPARE O o 0 0 R/3 SELECT WHERE MANDT" = ? AND RELID" = ? AND §
22:15.58.668 628 SAPLSKBS VLITDX OPEN 2352 0 0 0 R/3 SELECT WHERE "MANDT" = 001’ AND 'RELID" = LT'
22:15:56.660 19 SAPLSKES VLTOX FETCH 2352 91 0 O R3

22:15:58.670 O SAPLSDIFRUNTIME DOFTX PREPARE 0 0 0 0 R/3 SELECT WHERE "TABNAME" = 2 AND "DOLANGUAGE"
22:15:58.670 463 SAPLSDIFRUNTIME DOFTX OPEN 2352 0 0 0 R/3 SELECT WHERE "TABNAME" = 'SFLIGHT' AND "DOLAM
A Figure 3 The Extended Trace List

The extended trace list is displayed by default. You can see all executed SQL state-
ments and the execution values for each statement. Notice that there is more than
one line for each statement. The SQL Trace utility allows you to measure the execu-
tion times of the following operations for each SQL statement:

| 2

DECLARE

Declares a cursor for an SQL statement.

PREFPARE

Converts the SQL statement.

OPEN

Opens a cursor.

FETCH

Passes the records from the database to the SAP system.
REOPEN

Opens the cursor again that has been prepared for a SELECT statement.
EXEC

Executes the statement that performs a change in the database.

REEXEC
Opens the cursor again that has been prepared for an EXEC statement.

The extended trace list usually gives you more detail than you need.

If you want to see the aggregated results according to the SQL statements, choose
TRACE LIST « SUMMARIZE TRACE BY SQL STATEMENT.

192

Analysis Tools ~ Part 6

This list allows you to overview the execution times according to the SQL state-
ments. You can also aggregate the trace list by table access by clicking TRACE LIST »
COMBINED TABLE ACCESSES.

You can access the technical information for the tables by selecting the relevant
row and clicking the DDIC INFORMATION button on the toolbar. You can also jump
to the index and table fields from this screen.

Another useful function that is available on the toolbar is ExpLaIN, which displays
more information about the SQL statements depending on the installed database
system. For example, you can analyze which indexes are used while accessing the
database using this function.

As you can see, you can use SQL Trace to analyze several types of information
regarding database accesses. When you're tracing database access, make sure that
you have used the proper filters; otherwise, it will be difficult to perform an analy-
sis on a huge number of trace records. You should also deactivate the trace as soon
as you're finished because it generates too much information, which may reduce
system performance.

193

Tip @

Finding the Right Event
to Trigger a Workflow

You can find the most suitable event to trigger your workflow by using the Event Trace
tool.

When you're developing a workflow in SAP Business Workflow, one of the more
difficult tasks is finding a suitable event to configure to trigger the workflow. These
events help you trigger workflows to run specific tasks after certain conditions.
Although many events exist in the standard transactions, it may not be easy to
find the list of these events. You can use the Event Trace tool to record all events
that are triggered after a specific task and then find and use the most suitable one
to trigger your workflow.

And Here's How ...

The Event Trace tool allows you to record all events triggered after a specific task
in a business transaction. We'll show you an example to see how the Event Trace
tool can be used to find an event.

Suppose that you want to find all events triggered after you change a sales order in
Transaction VAO2. You must activate the Event Trace tool and simulate the process
to see the list of events. Follow these steps:
1. Open a sales order in Transaction VAO2.

2. Go to Transaction SWELS in another session to switch on the Event Trace tool.
You can also use the following menu path on the SAP Easy Access menu:

194

Analysis Tools Part 6

TooLs « BUSINESS WORKFLOW = DEVELOPMENT « UTILITIES « EVENTS » EVENT TRACE
« SWITCH EVENT TRACE ON/OFF

A popup dialog opens as shown in Figure 1.

Y —— &« Figure 1 Switching the Event
— ¢ trace onjoff | Trace Tool On
Cevent trace switched on

2 Switthon |

v)E%]

3. Click the SwitcH oN button to start logging the events.

4. Now a new RESTRICTIONS FOR TRACE button appears near the SWITCH ON button.
You can use this button to restrict the conditions of the events. This function is
useful especially when many users are logged on to the system and running
different transactions. Otherwise, it would be difficult to distinguish between
the events triggered from different transactions by different users. When you
click this button, a popup opens as shown in Figure 2.

[E Restrictions for Event Trace « Ff'gure 2
e Restrictions for
| ; Event Trace
‘Creator' object type to
‘Creator’ object instance ' 'to
Event [to
Program crezting event [ta
Creator (user) ' ' to
Creation date to
Creation time 00;:00: 00 to 00z 00:00
Receiver data
Receiver type ' lto | =]
Receiver instance ' lta | |2
Receiver FM ' o B
Receiver type FiM [o [E
Check | ©
d b 4 bk
[¥][%]E) save |

5. Maintain the fields on the selection screen to restrict the events to be traced.

195

Tip 58 Finding the Right Event to Trigger a Workflow

6. Go to Transaction VAO2 to change any information in the sales order to trigger
the change event.

7. Save the sales order, and then go back to Transaction SWELS to switch off the
trace by clicking the SwiTcH oFF button on the popup window.

8. Now you can analyze the trace records. Go to Transaction SWEL, or use the fol-
lowing menu path on the SAP Easy Access menu:

TooLs « BusiINESS WORKFLOW s DEVELOPMENT « UTILITIES » EVENTS « EVENT TRACE
« SWITCH EVENT TRACE ON/OFF

9. Select the appropriate options on the selection screen to filter the trace records.
After running the report, the results will be displayed as shown in Figure 3.

Display Event Trace
G S E E | @oseteevent Trace B 5 &l

-

Object Type * Event Current Date Time Receiver Type ~ | Information HandlerfAction
@T-a:e O 27.04.2012 21:49:09 ABDLL
BUS2032 CHANGED 27.04.2012 21:49:17 m Mo recefver entered

Trace OFF 27.04.2012 21:40:19 ABDUL

% Figure 3 Displaying Event Trace Records

As shown in Figure 3, when you change the sales order CHANGED event, the
BUS2032 object is triggered. This means you can use this event to trigger the
workflow that must be run after sales order changes.

There are several events triggered after specific tasks hidden in the SAP transac-
tions. This tool can help you find the correct event when you want to create a
workflow that will be run after a specific condition. There can even be more than
one event running in some conditions. In such cases, you need to trace the pro-
gram by running it with different parameter values to find the right event.

196

59,

Using the Work Item Selection
Tool to Analyze Workflow Logs

You can display and analyze executed work items when you're having workflow issues
with the Work Item Selection tool.

SAP Business Workflow is great for developing complex business processes in the
SAP system—you have the ability to combine several tasks in a single workflow
and configure it to run each task by different users or as a background process.
However, when the workflow isn't running as expected or doesn’t run at all, it
can be very difficult to find the problem. In this tip, we'll show you how you can
use the Work Item Selection tool to find workflow problems by displaying and
analyzing the logs generated by the workflow process.

And Here's How ...

Business workflows usually contain several work items running sequentially or par-
allel and each by different users. The Work Item Selection tool displays the detailed
execution information for each work item if it isn't explicitly hidden from the log.
In this tool, you can find the workflow that doesn't run or produces unexpected
results and see the task statuses, the values of container variables, agent informa-
tion, and so on that will help you solve the problem.

To access and use the tool to find workflow problems, follow these steps:

1. Access the Work Item Selection tool with Transaction SWI1, or use the follow-
ing menu path:

(TOOLS » BUSINESS WORKFLOW » DEVELOPMENT » UTILITIES » WORK ITEM SELECTION)

197

Tip 59 Using the Work Item Selection Tool to Analyze Workflow Logs

2. Select the appropriate values in the selection screen for your purpose. The
results are displayed in an ALV grid list as shown in Figure 1.

98 4 BPR AFTF BHBaiag TEAT O

[E™ 1D work tem Type Language Work item bext

| |B607.. Dialog Step Turkish Generic dection task

| |8e0T. (Sui pwork ow Turkish Sabs Orcer

| 18807 Background Step Engish Siparis 12004 reddedild,

1 |8607 . Background Step Engiish SALESORDERR)

| 8507 Dislog Step Engish 12094 mumaral satnalma sipang ABOUL tarafinoan yaratid,

| 18807, (Subpworkfow Engish Saes Orcer

| |ec07, Background Step Engish Sipariy 12093 Onaylanch

| |8607., Background Step English SALESORDERAP

| |Qﬁﬂ?___ Dialog Step Englsh 12092 rnurnaral satnalma sipargl ABCLL tarafindan yaratidh,
18607 (Subworkfiow Engish Sales Order

2 Figure 1 Displaying Work Items

In addition to the standard ALV functions, the following functions are available
on the toolbar:

» EXECUTE WORK ITEM @
Select a work item from the list and click this button to execute the selected
work item.

» DispLAY WORK ITEM
Use this function to display the work item details.

» DisPLAY WORKFLOW LoG @
Use this function to overview the logs and statuses of the workflow steps as
shown in Figure 2. This is one of the most useful functions in the Work Item
Selection tool.

Workflow Log

Q) il 86 B 2

| Sview: workflow Agents | EF view: Workfiow Objects

Workflow and task Detals | Graphic | Agent | Status | Result |pate | Time

* & sdes Order B | B Completed Workflow stated 17.08.2... 12142...
+ 1B 12004 mumarsh satnaima siparigi AEDUL tars| 42 || BB || 90 |Cowpeted REECT 17.09.2... 12:42...
- B SALESORDERR) [Complsted 17.09.2... 12:4...
+ [siparis 12094 reddedidh, Compieted Mal sent 17.08.2... 12:44...

ik i b

Details for step: 12094 mumarall satinalma siparisi ABDUL t...

Agent |Executed Action Date | Tme Object Object Mama

Workflow-System Cidog woek: item created 17.00.20 12:42:46

ARDUL Work Item Reserved 17.00.20 | 12:44.26

AEDLL ‘Work Item Procesang Completa | 17.09.20, 12:44:26

ARDUL Result Processing 17.09.20, 12:44:30

A Figure 2 Displaying the Workflow Log

198

Analysis Tools ~ Part 6

The following functions are available for each workflow step:

» The DETAILS button dﬁb allows you to overview the execution details of the
work items.

» The AGENT button (@) allows you to display the users involved in the
workflow.

v

The Grapuic button (B displays the workflow and the execution path as
shown in Figure 3.

J generated Warkflows
(Mo agent) started

lq‘

&1
. rounnarak
{ satinalma
siparisi &2

REUECT

APPEOVE
i
SALESORDERAP
: (Wiorkflow-Systern) : SALESORDERRJ
Siparig o
Sipang
Onayland
@ g (Wiorkflow-Systern) &BIS2032 SALESDOCIUMENTE
]

A Figure 3 Displaying the Execution Path of the Workflow

» DisPLAY WORK ITEM CONTAINER @
Use this function to display the values of the container elements when the step
is executed.

» DISPLAY TASK @)
Use this function to navigate directly to the workflow task to check the technical
details.

There are many more functions that you can use to analyze the workflow logs.
When you're using SAP Business Workflow to execute your business processes,
Work Item Selection is a must-use tool that helps system administrators and work-
flow developers analyze all kinds of details in the workflow runtime.

199

Part 7

ABAP Data Dictionary

Things You'll Learn in this Section
60 Configuring Display and Maintenance Options for Database

Tables e 203
61 Generating Table Maintenance Dialogs for Database Tables

OF VIBWS ittt e 205
62 Creating and Using Foreign Keys to Define Relationships

between Database Tables ... 208
63 Using Foreign-Key Relationships to Create Maintenance

VB S e e 212
64 Assigning Value Tables to Domains to Propose Foreign Keys

for Database Fieldscooiiiiiiiiiiiiiiiii 215
65 Adjusting Screen Elements with Conversion Routines 218
66 Creating a Secondary Index to Improve Table Access

Performance ..o 221
67 Extending Table Maintenance Dialogs with Events 225
68 Creating View Clusters to Group Maintenance Dialogs

Together for Better Maintenance e 228
69 Using Delivery Classes to Control the Transport Behavmr of

the Database Table Datacccccviiiiiiiiiiiiiieiiiceic e 232
70 Displaying and Analyzing Table Relationships in a Graphic 235
71 Logging Data Changes in a Database Table e 238
72 Linking Text Tables to Main Tables to Use Multi- Language

APPlICAtIONS oo 241
73 Using Buffering Options for Database Tables to Improve

System Performanceccccvevviiiiiiiiiiii e 244

201

Part 7 ABAP Data Dictionary

74 Using Lock Objects to Control Multi-User Access to Table

E=Talo] o L3PPSR 248
75 Creating Alternative Search Help Paths with Collective Search

HEIDS e e 251
76 Using Domains to Define Value Ranges for Database Tables

and Structure Components ..., 254
77 Attaching Search Helps Directly to Data Elements for Global

Availability ..o 257
78 Adding Date Fields to Make Time-Sensitive Table

Maintenance Dialogsccccooiiiiiiiiiiiiiee e 259
79 Using the Database Utility to Transfer Structural Changes to

the Database System ... 262
80 Defining Ranges Using Range Table Typesc.cccocceviiiiinnnnn. 265
81 Using the Data Modeler to Create Data Models According

to the SAP SERM Method ..., 267

The ABAP Data Dictionary is a central point for managing data and data defini-
tions in SAP systems. Tables, views, and other dictionary objects are defined in the
ABAP Data Dictionary independently of the underlying database product. There
are several tools in the ABAP Data Dictionary to help you create dictionary objects.
This part of the book provides tips and tricks to help you streamline the process
of creating and managing dictionary objects and data definitions. You'll also learn
practical ways to create user interfaces on top of these objects, such as maintenance
screens and search helps.

202

60,

Configuring Display and
Maintenance Options
for Database Tables

You can conﬁgure the dfsplay and maintenance options of a table to restrict the use qf
the Data Browser and Maintain Table Views tools.

Normally, you can display or maintain the records of database tables in the Data
Browser tool (Transaction SE16) or in the Maintain Table Views (Transaction SM30
and SM31) tool. You can configure display and maintenance options for both tables
and views in their relevant editors.? This setting is overlooked most of the time and
only used if the table view maintenance will be generated. However, it has some
extra functionality that can be used when you want to set restrictions on creating
maintenance dialogs and displaying or maintaining the records of a table.

And Here's How ...

The Data Browser tool can be used directly for maintenance, but you must create
the Table Maintenance screen to maintain the records of a table via the Maintain
Table View tool. You can restrict the use of these tools for tables and views using
the DISPLAY and MAINTENANCE options.

When you create a database table, access the DATA BROWSER/TABLE VIEW MAINT.
combo box in the DELIVERY AND MAINTENANCE tab as shown in Figure 1. Here you
can configure the delivery and maintain options for a table.

1 This isn't available for help views; they aren't relevant to these tools and aren't used in search

helps.

203

Tip 60 Configuring Display and Maintenance Options for Database Tables

Delivery Class [c]

Data Browser Table View Maint. | Deeplay/Maintenance Allowed with Restrictions t

vt Doy TS | | Eney | Coercy ity s « Figure 1 Delivery

and Maintenance Options
for a Database Table

N Desplay/Mantenance lot alowed
¥ Deplay/Mantensnce Alowed
DisplayMaintenarce Alowed with Restrictions

You can choose from one of the following three options:

>

DISPLAY/MAINTENANCE NOT ALLOWED

The table or view can't be displayed or maintained using standard tools. This
option can be used to restrict the display options for tables and views that con-
tain secure data. You can't even generate a maintenance dialog for these types
of tables/views. Even if you've created the maintenance dialog before setting
this field, you can't open the maintenance dialog after setting this value.

DISPLAY/MAINTENANCE ALLOWED
The table or view can be displayed using the Data Browser or Maintain Table
Views tools.

DiSPLAY/MAINTENANCE ALLOWED WITH RESTRICTIONS

The table contents can be displayed via the Data Browser, but you can't maintain
the table directly using the Maintain Table Views tool. However, you can gener-
ate the table maintenance screen and include it in view clusters or call in ABAP
programs using the function module View_Maintenance_Call.

You can also use the same options for database views. When you're creating or
modifying a database view, you can open the MAINT.STATUS tab and configure the
delivery and maintenance options as shown in Figure 2.

Attrbutes | Tablaflon Conditiors. | View Fids_ | selection Conitions_(Maint.Status | « Figure 2 Delivery and

Access
(@ read only
Ciread and changa
Diata Browsar Table View Mant, Display/Mantenance Alewed with Restictions -
M DisplayMainbenance Not allowed
X DisprlayMain tenance Alowed
DispzyyMaintenznce Alowed with Restrictions:

Maintenance Options for
a View

Note that the DiSPLAY/MAINTENANCE NOT ALLOWED option isn't available for
maintenance views—it would be meaningless to create a maintenance view but

not allow users to use it.

204

Tip @

Generating Table Maintenance
Dialogs for Database
Tables or Views

You can use the Generate Table Maintenance Dialog tool to create standardized main-
tenance dialogs and allow end users to maintain tables and views.

You can maintain the customizing tables in SAP systems according to specific busi-
ness requirements using table maintenance dialogs without the need of any ABAP
development. Table maintenance dialogs help you create or modify the records of
tables/views and transport changed data using transport management. In this tip,
we'll show you how you can create table maintenance dialogs for any tables/views
that you want to be maintained by end users.

And Here's How ...

The Table Maintenance Generator tool is used to create table maintenance dialogs
and can be accessed with Transactions SE54 or SE11. This tool can be used only
if the display and maintenance options of a table/view are set properly. You can't
create table maintenance dialogs for tables/views if the display and maintenance
options are set to DISPLAY/MAINTENANCE NOT ALLOWED.

Perform the following steps to create a table maintenance dialog for a database
table:
1. Open the table in Transaction SE11.

2. Start the Table Maintenance Generator by choosing UTILITIES « TABLE MAINTE-
NANCE GENERATOR. Figure 1 shows the initial screen of the Table Maintenance
Generator tool.

205

Tip 61 Generating Table Maintenance Dialogs for Database Tables or Views

O Fnd Scr. Number(s)
Tablefview [z4BAP_DICTI
| Technical Dislog Detais

Authorization Group «NCs| wio auth, group
Authorization object S_TABU_D_

Generate Table Maintenance Dialog: Generation Environment

Function group
Package]
| Maintenance Screens
Maintenance type (one step
(*)two step
Maint. Screen No. Overview screen
gingle screen
Dizlog Data Transport Details
Recarding routine ()Standard recording routine
(#)no, or user, recording routine
Compare Flag Automatically hdjustable ' ul Mote
A Figure 1 Table Maintenance Generator Initial Screen

. Assign an authorization group to the table maintenance dialog to restrict the

maintenance of the table/view using authorization object S_TABU_DIS. You can
create different profiles for different objects using this authorization object.

. Specify the name of the function group for the function modules that will be

created.

. Select the maintenance type:

» If you select ONE STEP, only one screen will be generated, and the records will
be displayed and maintained on a table list.

» If you select Two STEP, you can generate two screens: one for displaying the
list and the other for displaying or maintaining a single record.

. Define the screen numbers for OVERVIEW SCREEN and SINGLE SCREEN that will

be generated according to the maintenance type. If you selected ONE STEP as the
maintenance type, you only need to provide the screen number for OVERVIEW

206

ABAP Data Dictionary Part 7

ScREEN. You can also use the FIND Scr. NUMBER(s) button to open the tool that
will help you find the available screen number(s). The following three options
are available to help you find the proper screen numbers:

» PROPOSE SCREEN NUMBER(S)
» DISPLAY FREE NUMBER RANGES
» LIST SCREEN NUMBERS

7. Specify the change recording type for the changes that will be made using this
table maintenance dialog.

» STANDARD RECORDING ROUTINE
The changes are recorded by the standard rccording routine.

» NO, OR USER, RECORDING ROUTINE
Changes aren't recorded by default. You can define your own event routines
to handle the changes.

Click the CREATE button @b to create the maintenance dialog. You can now test
the dialog in Transaction SM30. Figure 2 shows an example of a one-step table
maintenance dialog.

| Change View "ABAP Dictionary”: Overview « Figure 2 One-Step Table

Maintenance Dialog
|‘y New Entries (B @ @ B B B
ABAP Dictionary
~ Document N Description i
|1 DOCUMENT 1 -

2 DOCUMENT 2
3 DOCUMENT 3

-

Alternatively, you can also create table maintenance dialogs in Transaction SE54. It
will take you to the same screen as just described. The only difference is the initial
screen. You must provide the table name, select the GENERATED OBJECTS option,
and click the CREATE/CHANGE button to enter the maintenance screen.

You can now easily add, modify, or delete records from tables and views. End users
will be able to maintain customizing data in the test system and transport it to the
production system without any technical knowledge.

207

62,

Creating and Using Foreign
Keys to Define Relationships
between Database Tables

You can use foreign-key relationships in the ABAP Data Dictionary not only to perform
value checks in screens, but also to create better relationships in different type views
and lock objects.

In the relational database concept, a foreign key can be defined as a field or set
of fields of a database table referenced to another table. Foreign keys are used
to ensure the integrity of the data by allowing the creation of records only if the
foreign key fields exist in the reference table. In this tip, we'll show you how to
create and extend foreign keys in the ABAP Data Dictionary, which you'll use to
create better relationships between dictionary objects.

And Here's How ...

When you create a foreign key for a column, the value check is performed for
input fields; you just make sure that the value in this column always exists in the
check table.

Suppose that you want to create a database table to store the received order details.
In the most primitive technique, you create a single table and put all details on that
table. However, in relational database design, you create separate tables to avoid
repeating the same information in more than one row of a table. For example, you
can create another table to store customer details to avoid repeating the customer
details. Figure 1 shows the sample database diagram for this example.

208

ABAP Data Dictionary Part 7

Customers (Check Table) .:(:;-(degur E_ 1 ,
—| Customer number rders = Lus om_ers B
Products Scenario
Name
Y - i Address

Orders (Foreign Key Table) Phone

Order number -
Email

Customer number

Product number
Products (Check Table)

Amount

- » Product number

Total price
Product name
Brand
Size

As you can see in Figure 1, customers and products are stored in separate tables.
The orders table contains only the keys of the customers and products. For exam-
ple, if a customer places more than one order, only the customer number is used
more than once in the table, and all customer details are stored in the customer
table in a single row.

Now, suppose that you want to make sure that the values of the customer number
and product number columns in the orders table also exist in the customers table
and the products table; otherwise, the data will be inconsistent. You can create a
foreign key for the CusTOMER NUMBER and PRODUCT NUMBER fields in the orders
table to avoid this inconsistency.

You can create a foreign key for a column while you're creating or modifying a
table in Transaction SE11:

1. Select the field name from the list, and click the ForeigN KEys button on
the toolbar of the column list to start creating a foreign key. A popup window
opens as shown in Figure 2; enter the details of the foreign key.

2. Enter the name of the table that will be used as a check table in the CHECK TABLE
field, and click the GENERATE PROPOSAL button. The key fields of the check table
are listed, and a proposal is generated as shown in Figure 2, according to the
domains of the columns. Note that the check table must have the primary key
field, which has the same domain as the column for which you're creating a
foreign key. If there are key fields that you don't have in your foreign-key table,
you can click the GENERIc checkbox for those fields or enter a constant value in
the CONSTANT column.

209

Tip 62 Creating and Using Foreign Keys to Define Relationships

[= Create Foreign Key ZORDERS-CUSTOMER _NUMBER
Short text '
Check table ZCUSTOMERS Generate propasal |
Foreign Key Fisids
Check table ChkTabiFid For key ta... Foreign Key Field Generic Constant
ZCUSTOMERS MANDT ZORDERS MANDT]
ZCUSTOMERS CUSTOMER NUMBER ZORDEERS CUSTOMER._NUHEER O
4 40
| Screen check
| Check required Error message Msgho | |AArea |

| Semantic attributes
Foreign key field type (*)Not Specified
Oinon-key-fieldsfcanddates
(CIKey feldsfcandidates
(IKey fiehds of a text table

Cardinalty (:]]

v cooy [8~][v]]

A Figure 2 Create Foreign Key Dialog

3. Select the CHECK REQUIRED checkbox to activate the value checks on the screens
in which the foreign key field is used. You can also customize the error message
that will be displayed when a user tries to enter a value in a foreign key field
that doesn't exist in the check table. You can disable the value checks on the
screens by unchecking the CHECK REQUIRED checkbox. You may need to disable
the value checks for foreign keys that you're defining to create maintenance
views, help views, or lock objects.

4. Define the cardinality and the type of the foreign key fields in the SEMANTIC
ATTRIBUTES section. These settings don't affect the value checks on the screens.
They are used only to define a foreign key to create maintenance views, help
views, or lock objects. You can select one of the following three options for the
FOREIGN KEY FIELD TYPE:

» NON-KEY-FIELDS/CANDIDATES
In the foreign-key table, the foreign key fields are neither the primary keys
of the table nor do they uniquely identify a record of the table.

» KEY FIELDS/CANDIDATES

In the foreign-key table, the foreign key fields are either the primary keys of
the table or uniquely identify a record of the table.

210

ABAP Data Dictionary Part 7

» KEY FIELDS OF A TEXT TABLE
This option is used to create text tables. The only difference between the
foreign-key table and the check table is that there is an additional LANGUAGE
KEY field in the check table. This type of table is used to create text descrip-
tions in several languages.

The CARDINALITY option is used to define the number of records that can exist
in the foreign key and check tables. On the left input box, you can choose from
the following entries:

» 1: ENTRY IN THE CHECK FIELD MUST EXIST

For each record of the foreign-key table, there is exactly one record in the
check table.

» C: ENTRY IN THE CHECK FIELD CAN EXIST
For each record of the foreign-key table, there may not be a record in the
check table.

On the right input box, you can choose from the following entries:

» CN: EACH RECORD IN THE CHECK TABLE HAS ANY NUMBER OF DEPENDENT
RECORDS
For each record of the check table, there can be any number of dependent
records in the foreign-key table.

» C: EACH RECORD IN CHECK TABLE HAS A MAXIMUM OF ONE DEPENDENT
RECORD
For each record of the check table, there can be at most one dependent record
in the foreign-key table.

» N: EACH RECORD IN THE CHECK TABLE HAS AT LEAST ONE DEPENDENT RECORD
For each record of the check table, there is at least one dependent record in
the foreign-key table.

» 1: EACH RECORD IN THE CHECK TABLE HAS EXACTLY ONE DEPENDENT RECORD
For each record of the check table, there is exactly one dependent record in
the foreign-key table.

You can use any combinations to form the desired cardinality. For example,
entering the combination “1:CN" ensures that for each record in the foreign-key
table, there is always one record in the check table, but there can be many
records in the foreign-key table for each record in the check table.

. Check the definition using the CHEck button on the popup toolbar, and
click the Copy button to save the foreign-key definition if there are no errors in
the check results.

211

Tip @

Using Foreign-Key Relationships
to Create Maintenance Views

You can create maintenance views to maintain logically linked database tables en masse.

In relational database design, several tables are created to form a single object. Each
table represents a single entity of an object, and these tables are logically linked
together using foreign-key relationships. This type of design has many techni-
cal advantages, but it becomes very difficult to maintain the data in these tables.
There will be several database tables, and when you need to change the records in
one of these tables, you need to take care of all related tables also to preserve the
consistency. To solve this problem, the ABAP Data Dictionary allows you to create
maintenance views using foreign-key relationships to maintain logically linked
tables in a single view.

And Here's How ...

When you create a view in Transaction SE11, choose the maintenance view from
the listed view types to start creating a maintenance view. The CREATE VIEW screen
will open as shown in Figure 1; start by entering the table names that you want to
maintain in a single view.

Classic database views allow you to create join conditions manually, but a foreign-
key relationship must exist with suitable cardinality between tables that will be
used in the maintenance view. You can only enter the name of the primary table; all
other tables must be selected from the foreign key fields by clicking the RELATION-
sHIps button. All tables that have foreign-key relationships with the main table are
listed in a popup as shown in Figure 2.

212

ABAP Data Dictionary Part 7

Maint, vienw In_'m:w FNaw(Revbadl

Short Description [Maintenance View |

[MantStatus_

Table selection and join definition only possible with relationships

[Relationships of Table TO0S « Figure 2 Foreign-Key
Refationship List for Table TOO5

[4

][]
2
g
:
:

:
:
!
g
|

-

-

] b
v o FIFEEEX)

-
-

You can select from either referenced or dependent tables. Tables that are linked
with unsuitable cardinalities are also listed, but they can't be selected to transfer
to the view. You must correct the cardinality if you want to use any of these tables
in the maintenance view.

The following cardinality rules must be followed while creating a foreign key:

» If the secondary table is the check table, N:1 dependency already exists, and you
can add this table into the view.

213

Tip 63 Using Foreign-Key Relationships to Create Maintenance Views

» If the secondary table is the foreign-key table, cardinality must be N:1 or N:C to
be able to add the table into the view. That means there must be O or 1 records
in the primary table for each record in the secondary tables.

When you finish adding tables, navigate to the VIEw FLDs tab to select the fields
that you want to include in the view. Click the TABLE FIELDS button to open a
popup with the list of all the tables in the view. Select a table, and the fields of the
table are listed in the popup. You can select any of the fields and insert it into the
view by clicking the Copy button.

All key fields of the primary table and all key fields of the secondary table that
aren't linked to the primary table with a foreign key must be included in the view
to make sure that the records are correctly inserted into the tables that are included
in the view.

After adding the fields, you can modify their maintenance attributes just after the
field name if you want to assign a special attribute to the field. Leave it empty if
you don't want to add any restrictions. The following options are available:

» R:
The field is added as read only, and you can’'t modify the value of the field on
the table maintenance screen

> S
The field is used to create a subset of the table. The subset fields are displayed
when you enter the table maintenance screen, and only the subset of the data
is displayed for the maintenance.

» H:
The field isn't shown in the maintenance view.

You add selection conditions in the SELECTION CONDITIONS tab and specify the
maintenance options in the MAINT.STATUS tab. Save and activate the view.

Finally, you can create table maintenance dialog using the procedure described in
Tip 61.

Now you can maintain all of the tables that you included in the view on a single
screen using Transaction SM30; you can even customize the screen by modifying
the maintenance attributes. You can use this technique even for a single table to
create customized maintenance screens. For example, you can make it read only,
hide some fields, and allow users to modify only some of the fields.

214

64,

Assigning Value Tables to
Domains to Propose Foreign
Keys for Database Fields

You can assign a value table property to a domain to propose this value as a foreign-key
table, while creating a foreign key for a field that uses this domain.

Domains are used to define value ranges to the data elements in the ABAP Data
Dictionary. To do this, you should link database fields and structure components
with domains by using these data elements.

However, defining the value ranges directly in the domain may not be possible
because of the customer requirement to be able to change the contents of the value
table. In this tip, we'll show you how you can assign a value table to the domain
that will be proposed as a check table when you create a foreign key for fields that
use this domain.

And Here's How ...

When you're defining a domain, you can modify the fixed values, intervals, and
value table property in the VALUE RANGE tab as shown in Figure 1.

215

Tip 64 Assigning Value Tables to Domains to Propose Foreign Keys

Domain ZCOUNTRY Active
Short Description Country Key
B e
' Single Vals
I Fxvd. ShortDescript. i
|
||
|
||
||
||
|_ -
l_ -
i b LI J
- Intervals
\Lower limit | UpperLimit Short Descript, i
|
|
| -
4 b 4 b
Value Table To0s ol

A Figure 1 Value Range Definitions of a Domain

In Figure 1, you can see the example definition of a domain ZCOUNTRY, which
can be used in the database fields that will hold the country information. You can
specify the country list in the SINGLE VaLs table more easily, but it would be very
difficult to update the country list in the future. Another option is to use the inter-
vals, but that option isn't suitable for our case.

Alternatively, you can create the country list in another table and link to the data-
base field by creating a foreign-key definition. This time, you have to remember the
name of the country table whenever you use the data element that linked to this
domain in a new field. To solve this problem, you can add the name of the table in
the VALUE TABLE field on the domain definition as shown in Figure 1.

However, adding the table name in the VALUE TABLE field isn't enough to perform a
value check in screens. When you create a foreign-key relationship for the database
field or structure component that linked to this domain, it helps you by proposing
a table name, as shown in Figure 2.

216

ABAP Data Dictionary Part 7

Attbutes _{ Delvery and Mantenance ((Fiel 1| Entry hebojcheck | Curency/Quantty Fikds | |

¥ [FFElEla] LB schiep | [Predsined Type |
ey Field LKﬂ'I’J [Create foreign key
MANDT =
. CUSTOMER MUMPER | Foreign key does not exist Number
O
—rr) @ Create a proposal with values table TOOS
COUNTRY 0 as check table? By
| O
B 0O [ves | ™o |® cacel |
O ™

2 Figure 2 Proposing a Table Name

Create the foreign key by clicking YEs and continuing to specify the details of the
foreign key.

217

Tip @

Adjusting Screen Elements
with Conversion Routines

You can create conversion routines to automatically adjust screen fields and formatting.

You may need to perform a format conversion on a screen field before inserting
the field value into the database or before displaying a database field on a screen.
This is especially needed when you don't want to store the value in a format that
is displayed on the screen, and you also don't want to display a screen in a format
that is stored in the database. To overcome this problem, you need to perform a
format conversion, but this is very difficult to do every time you display the field
on a screen and update the field in a database. You can create conversion routines
to perform input and output conversions automatically every time the value is
entered or displayed on screen fields.

And Here's How ...

Conversion routines are assigned to the domain definitions. You can open the
domain definition in Transaction SE11 and assign a five-character identifier for the
conversion routine as shown in Figure 1.

When you specify a conversion routine for a domain, two function modules are
automatically assigned to the domain: one for input conversion and the other for
output conversion. The function module names are automatically generated as
follows, where XXXXX is the name of the conversion routine:

» CONVERSTION_EXTT_XXXXX_INPUT

» CONVERSION_EXIT_XXXXX_OUTPUT

218

ABAP Data Dictionary Part 7

Domain [mamm | Active
Short Description |Material number (field C18)

P Value Range |

| Format

Data Type CHAR, Character String

Mo, Characters 18]

Decimal Places 0

| Output Characterkstics
Output Length 18
Osign
[CJLower Case

2 Figure 1 Conversion Routine Definition on a Domain Used for the Material Number Data
Element

For this example, assign the following two function modules to the domain:

» CONVERSION_EXIT_MATMNI _INPUT
» CONVERSION_EXIT_MATNI1_QUTPUT
The input function module converts from the display format to the internal format,
and the output function module converts from the internal format to the display

format. Both function modules have the same interface: INPUT as an input param-
eter and OUTPUT as an output parameter.

To create your own conversion routines, create two function modules accord-
ing to the preceding definition. Then assign this conversion routine to your own
domains. It's also possible to perform conversions using the function modules
directly in the ABAP programs.

You can also use the conversion routines in the ABAP list programs with the WRITE
command as follows:

WRITE belnr USING EDIT MASK “==ALPHA".

You don't need to add a conversion routine to the write statement if it's already
defined in the domain of the variable.

You can also override the conversion routine defined in the domain of the variable
by using the following syntax:

WRITE belnr USING NO EDIT MASK.

219

Tip 65 Adjusting Screen Elements with Conversion Routines

In this example, we used the ALPHA conversion, which is defined in the system
and used commonly to perform format conversion between external and internal
numbers. It checks whether the input contains only digits ignoring the preceding
and trailing spaces. If yes, it removes the preceding and trailing spaces, right aligns
the number, and puts zeros in the remaining blanks on the left. For example, if you
run the ALPHA conversion for a five-character string * 123 * it will be converted
to '00123'. You can create your own conversion routine to perform the similar
technique for custom fields according to your requirements.

Conversion routines are also automatically run on the screen fields if the conver-
sion routine is assigned to the domain of the screen field. If you want to override
the conversion routine or assign a conversion routine to a field that doesn't have
a conversion routine assigned on a domain level, you can use the Conv. ExiT field
on the dictionary attributes of the screen element as shown in Figure 2.

Aliibutes « Figure 2 Assigning a Conversion Routine to a Screen
Diet |ngm| Display | il Element
Format CHAR i
I Fomdet Modiy [<
Conv.Eat O30
SearchHelp |
Ret Field |
Patameter D |
I~ SET Parameter
I™ GET Parameter
I™ Foreign Key Check
™ Upper/Lowes Case

Make sure the FRom DIcT. checkbox isn't selected; otherwise, the Conv. ExiT field
is disabled because the system will use the default conversion exit that comes from
the domain definition.

220

66

Creating a Secondary
Index to Improve Table
Access Performance

You can create secondary indexes to improve access to tables when you need to access a
database table with the fields that don’t exist in the primary key.

When you create a database table and assign a primary key, the primary index is
automatically created in the database and is used for efficient access to the table.
You can compare this to a book index that provides quick access to the area of your
interest. You must provide the primary key fields in the queries that access the
table to be able to use the primary index. However, sometimes you need to access
a database table using a field that isn't a primary key. You can create a secondary
index for this field(s) using ABAP Data Dictionary tools to improve your ability to
access your tables.

And Here's How ...

When you want to access a record in a table using the primary keys, the database
manager first looks at the primary index. Because the index table is sorted by the
primary keys, it easily queries the table and gets the position of the original record.
The remaining job is just going to the main table and getting the requested row
easily by using the position that you found on the index table. Figure 1 shows an
example table with a primary index.

Suppose that you have a products table like that in Figure 1, and you want to access
a record with product number MN22625. The database manager first looks at the

221

Tip 66 Creating a Secondary Index to Improve Table Access Performance

primary index table. Because it's sorted by product, it easily finds row number 4
and uses it to find the main record on the main table.

Primary Key

— Primary Index
| Product | Category Description #| Product
1| MB12345 | Laptops XY 15" i7 Processor 8GB Memory 5| LHe3938
2 | MN83112 | Printers PR all-in-one 4| MN22625
3| NNB2363 | Networking | NN Dual-Band Wireless-N Router / 2 MNB3T12
4| MN22625| Monitors | MN 27" Widescreen LCD Monitor 1| NB12345
5| LH63938 | Desktops AS 13" i5 Processor 4GB Memory 3| NN82363

2 Figure 1 Example Selection with Primary Index

However, when you try to access the same table using the CATEGORY field, which
isn't a primary key, the database manager queries the main table directly to find the
matching record. However, it can take a very long time to access data from large
tables without using the primary key. Luckily, we can create secondary indexes to
provide alternative access to the tables.

Access the secondary indexes of a table using the INDEXES button on the CHANGE
TABLE screen in Transaction SE11. This will trigger a popup that displays the list of
secondary indexes. Click the CREATE button to start creating a new index.
Specify a three-character index 1D, and click CONTINUE. The CREATE INDEX screen
opens as shown in Figure 2, where you can specify the details for the index.

Index Name ZORDERS z01
Short description. || !
Last changed Teon] [o7.02.2012] Crignal languags [£m! Engish
Status [ew Mot saved | Package |zaBar_pICcT
Indax does not exist in database system MSSOL
®Non-unigue index
(®)Index on al database systerms
For selected database systems (=]
)Mo database index
“JUnique index (database indsx required)
[HREEE] [Taberdds
Indax fids
~ Fiekd name Short Description DT... Length [T

-

A Figure 2 Creating a Secondary Index

222

ABAP Data Dictionary Part 7

Fill in the SHORT DESCRIPTION field, and specify the index fields in the table. If the
index fields uniquely identify a record in a table, select the UNIQUE INDEX radio
button. Otherwise, select NON-UNIQUE INDEX, and choose one of the following
three options:

» INDEX ON ALL DATABASE SYSTEMS
The index will be created physically on the database regardless of the database
system.

» FOR SELECTED DATABASE SYSTEMS
You can select (or exclude) the list of the database systems in which the index
will be created.

» NO DATABASE INDEX
The index will not be physically created on the underlying database. These types
of indexes are optional indexes created only in the ABAP Data Dictionary, and
they are helpful in certain conditions.

Save the index, and exit when you finish providing details.

Now, another table is created for the secondary index. The Database Manager
decides which index will be used when you query the table. Let's extend the
database table that you used in Figure 1 by creating a secondary index for the
CATEGORY column. Suppose that you want to query the table with the CATEGORY
field. Now, because the category isn't included in the primary index, the selection
is performed through the secondary index as shown in Figure 3. The performance
will be almost the same as using the primary index.

Primary Key

— Secondary Index Primary Index
| Product | Category Description #| Category #| Product
1| NB12345 | Laptops XY 15" i7 Processor 8GB Memory 5| Desktops 5| LHA3938
2| MN83112 | Printers PR all-in-one 1| Laptops 4| MN22625
3| NN82363 | Networking | NN Dual-Band Wireless-N Router 4| Monitors 2| MNE3112
4| MN22625| Monitors MN 27'* Widescreen LCD Monitor 3 | Networking 1| NB12345
5| LH63938 | Desktops AS 13" i5 Processor 4GB Memory 2| Printers 3| NN82363

X Figure 3 Example Selection with Secondary Index

223

Tip 66 Creating a Secondary Index to Improve Table Access Performance

As you can see in Figure 3, every additional index consumes extra space in the
database. You should only create a secondary index if it's necessary. Be sure to
consider the size of the index that will be generated for large tables. It also affects
the insert/update performance on the table because the indexes must be updated
when the original table changes.

224

67,

Extending Table Maintenance
Dialogs with Events

You can use events in table maintenance dialogs to extend functionality by adding ABAP
routines at specific events according to the customer’s custom requirements.

The Table Maintenance Generator is a special tool in the ABAP Workbench
designed to create table maintenance dialogs to maintain data in database tables or
views. Although the generated dialogs are enough to maintain the table/view, but
sometimes you may need to extend the functionalities of the maintenance dialogs
according to the specific requirements. In this tip, we'll show you how to imple-
ment extended table maintenance events in predefined points to add additional
logic to the maintenance dialogs.

And Here's How ...

Table maintenance dialogs have many events that you can use to customize the
functionality of the maintenance dialogs. Follow these steps:

1. Create the table maintenance dialog as described in Tip 61.

2. After creating the standard maintenance dialog, use extended table maintenance
events to add your own logic. You can customize events using the following
menu path:

(ENVIRONMENT +« MODIFICATION » EVENTS)

A maintenance dialog opens, and you can create a new record for each event
that you want to use. You'll notice that this is also the table maintenance dialog

225

Tip 67 Extending Table Maintenance Dialogs with Events

that is used to maintain the events that are called dynamically from the table
maintenance dialog.

3. Let's create a simple example to see what you can do using events. Suppose that
you have a table that is maintained by end users, and you want to store the
username and current date every time the data is changed. Click the New
ENTRIES button and select the event from the list as shown in Figure 1.

New Entries: Overview of Added Entries
YEREEREO

.IE'Table maintenance dialog event (1) 39 Entries found %)

(v|[E]EeE)E 2)

Maint. ev Short text

Before saving the data in the database
after saving the data in the databasa ~
Before deleting the data deplayed

after deleting the data displayed

Creating a new entry

after completely performing the function 'Get original’
Before correcting the contents of 3 selected field

after correcting the contents of a selected field

after getting the origing of an entry

After creating the header entries for the change task (E071)
after changng a key entry for the change task (EO71K)
after changing the key entries for the change task (E071K)
Exit editing (exit main function module)

After lockfunlock in the main function module

Before retrieving deleted entries

after retrieving deleted entries

Do not use, Before print: Event 26

after checking whether the data has changed

After initisizing global variables, field symbols, ete.

after input in date subscreen (time-dep. tab. fuiews)

Fill hidden figlds

G0 to long text mantenance for other languaoes

Bafore caling address mantenence screen

£y Iy skl P L L bl Lol

39 Entries found

Wiewtable

. FORM routines to be
T FORM rau)

LELEREBBBEFREEEBRE

[T
=1 oh

BRMEBSES

T T T T T T T T T 1 O T T TR T [

A Figure 1 Creating an Event Subroutine

As you can see in Figure 1, there are more than 30 events that you can use for
different purposes. For this example, use event 01 to put additional information
into the table just before it's saved in the database.

4. Select event 01, and specify the name of the subroutine that will run when the
event is triggered in the FORM RouTINE column. Click the empty button in the
EDITOR column to open the editor where you can write the ABAP code.

226

ABAP Data Dictionary Part 7

5. As an example, write the following code to add current date and current time
into the erdat and ernam fields before saving the record into Table zabap_dict1:

FORM before_save,
DATA BEGIN OF wa_total.
INCLUDE STRUCTURE zabap_dictl.

DATA: action,

mark,
END OF wa_total.
Zabap_dictl-erdat = sy-datum.
Zabap_dictl-ernam = sy-uname.

LOOP AT total INTO wa_total.
IF <action> EQ ‘U’ OR
{action> EQ *N’.
wa_total-erdat sy-datum,
wa_total-ernam sy-uname.
MODIFY total FROM wa_total.
READ TABLE extract WITH KEY <vim_xtotal_key>.
IF sy-subrc IS INITIAL.
extract = wa_total.
MODIFY extract INDEX sy-tabix.
ENDIF.
ENDIF.
ENDLOOP.
ENDFORM,

You can modify the ABAP code to perform additional operations. For example,
you can store the creation and modification dates into the different columns by
distinguishing the processing state from predefined field symbol <action>.

6. Save and activate the source code. Now the before_save subroutine will be

called from table maintenance dialog whenever you add, modify, or delete a
record.

There are plenty of events that you can use in different situations. These events
allow you to avoid writing custom maintenance dialogs for table maintenance
requirements that can't be satisfied by classical table maintenance generation tools.

227

Tip @

Creating View Clusters to Group
Maintenance Dialogs Together
for Better Maintenance

You can create view clusters to group several maintenance dialogs that belong to a single
business function in one maintenance cluster.

Table maintenance dialogs allow you to maintain and transport business data in
database tables. Although the maintenance dialogs are simple and easy to use,
sometimes it can be difficult to maintain business data that resides in multiple
tables. You can create view clusters for these tables to group maintenance dialogs
in a single maintenance cluster for easier maintenance.

And Here's How ...

View clusters are used to combine maintenance dialogs that belongs to the same
business function in a single maintenance unit whether they have a physical rela-
tionship or not. Figure 1 shows an example view cluster with five maintenance
dialogs grouped in a single maintenance unit.

Change View "Counkries”: Overview « Figure 1 View
v BE»EBERER Cluster Example
MNew Entries [H
Dialog Structure I
i ac&g‘g \CntryCode |Country Code -l i
* Jcustomers E | :
- Oorders IT TTALY
* OiEmployees 1 NETHERLAND
TUREEY

228

ABAP Data Dictionary ~ Part 7

Let's say that you want to group tables in a single view cluster as in Figure 1
because of their similar business requirements. To create a view cluster, follow
these steps:

1. Make sure each table you want to group has an individual maintenance dialog
and can be maintained with Transaction SM30. If any are missing, create them
in Transaction SE54 or Transaction SE11.

2. Go to Transaction SE54 and click the EprT ViEw CLUSTER button on the toolbar.

3. Enter a new name for your view cluster and click the CREATE/CHANGE button.
A screen opens as shown in Figure 2.

New Entries: Details of Added Entries
v &

Dialog Structure View Cluster |zvc_DEMO 1 Activate
* SQHeader entry

* CIobject structure
* CIFiekd dependence Vlewtl.lstaDeﬂrith'lMall'ﬂm

« [CJEvents Short text
Compare Flag [No Information 1]

 Hierarchical Maintenance Operation Handing | | Read Type
(®)LJse in Hierarchy (Popup) (o) Complete
(s in Hierarchy (Mandatory) () 5ubtres
CLimit to One Step

[Wiew Cluster Definition Information
Author
Changed On
Program Mame |
Package |zaBAP DICT

2 Figure 2 Create View Cluster

4. Enter the description in the SHORT TEXT field, and then click the OBiECT STRUC-
TURE node on the left tree.

5. Enter the technical name of the maintenance dialogs into the VIEw/TABLE col-
umn of the OBJECT STRUCTURE list as shown in Figure 3, and fill other columns
according to the following descriptions:

» SHORT TEXT: Enter the text that will describe the table in the hierarchy.

» PREDECESs.: Specify the higher element in the hierarchy. Enter the same
object name if the current object is on the root level.

229

Tip 68 Creating View Clusters to Group Maintenance Dialogs Together

Change View "Object structure”: Overview
%2 New Entries E 2
Diglog Structure View Cluster ZVC_CITIES & Fisld-dependence
* [COHeader entry
= S0hject structure
+ [CJFeld dependencs| _
« [Jevents Obect structurs
View/Table Predecess. ... Pos Start Backgr n:m <[
ZVC_COUNTRY ZVC_COUNTRY R 1 (o) [] 1 —
Z¥C_CITYV ZVC_COUNTRY 5 2 O [O o)
ZCUSTOMERS ZCUSTOMERS R O3 Ol O |0
ZORDERS ZCUSTOMERS s 4 (O 0O I0O
:mm.cmzzs ZEMPLOYEES R 5 O mn

2 Figure 3 Build Object Structure

» DEp: Specify how the dependent objects must be maintained according to the
following definitions:
- R: The object is a header entry.
- S: You can select only one higher entry to maintain records in subtables.
- M: You can select multiple higher entries to maintain records in

subtables.

» Pos: Enter the line number in which the table will be displayed in the naviga-
tion hierarchy.

» START: Select the object that will be displayed on the top of the hierarchy.

6. Select all tables from the list, and click the GENERATE FIELD DEPENDENCE button
(& _Felddependence) to automatically generate field dependencies (this is a man-
datory step). You can also select tables and click FIELD DEPENDENCE from the left

navigation to maintain field dependencies manually. Figure 4 shows the field
dependencies generated for our example.

230

ABAP Data Dictionary Part 7

Change View "Field dependence”: Overview
% NewEnties (B E & B

Dialog Structure || view cluster [zvc_pEmD]
* [(OHeader entry
* Cobject structure
« SIreld dependence|
+ CJEvents Fisld dependence
View/Table Predecess.
Ezvc_cm'r ZVC_COUNTRY
| lave_cITyv ZVC_COUNTRY
| ave_cImiy ZVC_COUNTRY
| ZCUSTOMERS ZCUSTOMERS
| ZORDERS Bl [cUSTOMER_NUME _ ZCUSTOMERS
| ZEMPLOYEES z ZEMPLOYEES
=
(|

X Figure 4 Automatically Generated Field Dependencies

7. Go back to the header entry from the left navigation, and click AcTivAaTE to gen-
erate the view cluster.

8. Go to Transaction SM34 to use the generated maintenance dialog.

231

i 69,

Using Delivery Classes to
Control the Transport Behavior
of the Database Table Data

You can set different delivery class properties for database tables to categorize them, and
thus control the delivery and transport behavior of table data.

SAP systems have huge numbers of database tables that contain customizing, trans-
actional, and system data. Many additional database tables are also created by
customers during the system implementation to store customer-specific data.

When a client copy, upgrade, language import, or a new installation needs to be
performed, it's important to determine which database tables will be transported
or overwritten. You can use the delivery class property to categorize the database
tables and transport/overwrite behaviors that are determined according to this
property. We'll also show you how to use this property to categorize custom data-
base tables to specify the transport/overwrite behaviors.

And Here's How ...

You can set the delivery class for a database table in the DELIVERY AND MAINTE-
NANCE tab of the CHANGE TABLE screen in Transaction SE11. The following options
can be selected for the delivery class:

> A
Select this option for application tables that stores master and transactional data.
» C

This option is used for customizing tables, which will be maintained only by
customers.

232

ABAP Data Dictionary Part 7

L
Temporary tables that will store temporary data must be set to this option.

G
This option is used for customizing tables that must be protected against SAP
updates. Only new data may be inserted during an SAP update.

E
This options is used for a control table. SAP and customers have separate key
areas in these tables.

S

This option is used for system tables, which will be maintained only by SAP.
Changes in these tables are treated as modification.

w

This option is used for system tables. The contents of these tables can be trans-
ported via separate objects.

These values affect the system behavior during installation, upgrade, client copy,
and language import activities. Table 1 illustrates the system behavior for all pos-
sible conditions.

Client Copy Installation, Upgrade, and Language
Import

Delivery Client Client Client 000 Other Client
Class Dependent | Independent Clients Independent
Copy' X Insert & X X
Overwrite
Copy X Insert & X X
Overwrite
X X X X X
Copy X Insert & Insert Insert
Overwrite
Copy X Insert & Insert & Insert &
Overwrite Overwrite Overwrite
Copy X Insert & Insert & Insert &
Overwrite Overwrite Overwrite
w X X Insert & Insert & Insert &
Overwrite Overwrite Overwrite

Table 1 System Behaviors in Different Conditions

Data is copied only if explicitly specified with the parameter option during the client copy.

233

Tip 69 Using Delivery Classes to Control the Transport Behavior of the Database

You can see that if you create a client-dependent table with class L and W, the
table's contents aren't copied during client copy. All other types are transferred
to the new client. Tables with delivery class A aren't copied to the target client,
but you can explicitly set a parameter to copy the data also during the client copy.

Also note that if you create a client-independent table, the contents won't be
transferred with the client copy.

The delivery class also affects the behavior of the extended table maintenance in
Transaction SM30 in the following conditions:

» You can transport table data entered in this transaction for tables with delivery
classes W and L.

» If you try to enter data into a table with delivery class G, the data is checked in
Table TRESC, and the input is rejected if the namespace is violated.

» Delivery class value must be C for tables that will be maintained on a develop-
ment or test system and transported to the production system with a transport
request.

It's important to set the correct delivery class values to the custom database tables
according to these definitions. If you don't set this value carefully, you won't get
any error at first, but it can generate serious problems in the future during client
copy or system upgrades.

234

i 70;

Displaying and Analyzing Table
Relationships in a Graphic

You can generate a graphical representation to analyze the relationships between data-
base tables.

When you start a new development project with database tables that relate to each
other, you usually create foreign-key relationships to identify the relationships
and maintain the data integrity. If you're creating tables with many foreign-key
relationships or analyzing software that has database tables with many foreign-
key relationships, a common problem is figuring out the table relations with the
tools that you used to create the tables. In this tip, we'll show you how to bypass
this issue by using a graphical representation tool in the ABAP Data Dictionary to
visualize the foreign-key relationships of a table.

And Here's How ...

When you display or modify a database table in Transaction SE11, you can see the
foreign-key relationships in the CHECK TABLE column in the ENTRY HELP/CHECK tab
as shown in Figure 1.

Notice the check table definitions for the SFLIGHT table on this screen. However,
you can't see the foreign-key definitions that use this table as a check table on the
same screen.

235

Tip 70 Displaying and Analyzing Table Relationships in a Graphic

Dictionary: Display Table
o Paun g & & 20 H BBME Technicasettings Indexes.. Append Structure...

Transp. Table [SFLIGHT | Active
Short Description Flight

 Afttributes | Delvery and Maintenance | Fields | Currency/Quantity Fields |
@Eﬁa :?] Search Help 1/ 14
Field |Data element Data T... Foreign ... Check table I&ﬂ'luft?‘lai‘l:ﬂtf‘ieb
:lmm' 5_MANDT CLNT = Tooo Input help implemented with c.
l_t.lFRID 5_CAFFR_ID CHAR ¥ SCARR Input help implemented with c.
| |CONNID 5_CONN_ID NUMC [¥] SPFLI Input help implemented with c.
| FLDATE 5_DATE DATS O Input help based on data type
| PRICE 5_PRICE CURE, O
| CURRENCY 5_CURRCODE CUKY = SCURX Input help implemented with c.
| PLANETYPE 3_PLANETYE CHAR, ¥ SAPLANE Input help implemented with c..
| [SEATSHAX 3 SEATSMAY INT4 O Input help with fixed values
SEATSOCE 3 SEATSOCC IHT4 [Innut heln with fixed waluss

2 Figure 1 Foreign-Key Relationships of a Database Table

Now, say you want to draw the graphical representation of the foreign-key defini-
tions of the SFLIGHT table. Click the GrRaPHIC button on the toolbar to see
the graphic as shown in Figure 2.

Dictionary: Foreign Key Relationships
28 EQRDE B King. Soutg. ¥ SGcheck Taies BiFForeign key tables

1:CH

KEY
SAPLANE
1:CH 1:CH
i 21 L
k= Pana =7

ToODD SCARR SPFLI SFLIGHT
1:CH 1:CH 1:CH
Chents Ading kY Flight schedule EEY Flight
SCURX
Cumency for Wk
training data moded
EC_Travel

A Figure 2 Graphical Representation of Foreign-Key Relationships of the SFLIGHT Table

236

ABAP Data Dictionary Part 7

As you can see in Figure 2, tables that are defined as check tables in the fields of the
SFLIGHT table are displayed. Table descriptions and cardinalities are also displayed
in the graphic. You can use the following functions on the toolbar:

>

If there are too many tables on the graphic, you can use the zoom functions on

the toolbar to Zoom IN and Zoom OuT .

Use the HIDE function to hide the tables that you don't want to see on the
graphic.

Select any table from the graphic, and click the CHEck TABLES button to add the
check tables of that table to the graphic.

Select any table from the graphic, and click the FOREIGN KEY TABLES button to
add the tables that use the selected table as a check table to the graphic.

Select any table, and click the SELECT INGOING REL. button to highlight
the tables that are used as a check table in the selected table.

Select any table, and click the SELECT OUTGOING REL. button (B outa.) to high-
light the tables that use the selected table as a check table.

Click on any of the lines between the tables to open the foreign-key
definition.

You can use this graphical representation to visually analyze the relationships
between the database tables that are used in an application. For example, when
you're trying to figure out the logic of an ABAP program that was developed by
someone else, you can use this graphic to visualize the big picture and understand
the business processes that lie behind the application. You can also add this graphic
to the technical documentations to describe the database relations used in the
software.

237

Tip m

Logging Data Changes
in a Database Table

You can record and monitor the changes to the existing data records of a database table
by enabling the logging indicator for that table.

Sometimes you need to log data changes to the database table that stores critical
information. This is required particularly for auditing purposes, and it allows you
to go back to any point in time and analyze the changes that have been made to
the database records. Using the ABAP Data Dictionary, you can enable the logging
for changes to the database table data and then analyze them in the future. This
feature is used mostly to monitor the changes on the database tables that contain
critical information.

And Here's How ...

First, activate the table auditing feature from the system parameters to enable
logging for database tables by using the rec/client parameter in the system
parameters.

After making sure that the table auditing feature is active in the system, enable
the function to log changes for a database table data. To do this, go to Transaction
SE13, or use the TECHNICAL SETTINGS button on the Di1sPLAY/CHANGE TABLE screen
in Transaction SE11; select the LoG DATA cHANGES checkbox in the table as shown
in Figure 1.

238

ABAP Data Dictionary Part 7

Mame |ZCUSTOMERS | Transparent Table
Short text Customers |
Last Change |ABDUL | |os.o1.2012
Status Revised | lsaved
| Logical storage parameters
Data class APPLO| Master data, transparent tables
Size category o] Data records expected: O to 3,100
| Buffering
(#)Buffering not allowed
(Buffering allowed but switched off
()Buffering switched on
| Buffering type |
[Isingle records buff.
[IGeneric Area Buffered No. of key fields []
[IFully Buffered
=
I_7II.DQ data changas
I'Write access only with JAVS

A Figure 1 Enabling the Logging for Data Changes

Now, all changes to the records of the database table that are performed directly
by a user or through an application are recorded in a log table; to display the logs,
go to Transaction SCU3. You can also get the list of the logged tables using the List
OF THE LOGGED TABLES button in Transaction SCU3.

Display the Log

To report the changes for a database table that has the Lo DATA CHANGES flag
checked, follow these steps:

1. Go to Transaction SCU3.

2. Click the EvALUATE Logs button in Transaction SCU3.

3. Enter the name of the table in the CustomiziNnGg OBJECT/TABLE field.

4. Adjust the start and end dates for the time range you're looking at, and run the

report.

Figure 2 shows the sample Transaction SCU3 result that shows the changes in Table
ZCUSTOMERS.

239

Tip 71 Logging Data Changes in a Database Table

Evaluation of change logs
Techn. information Logging: Display status

Customizing Objects: Change Logs

Customers
Technical Neme: ZCUSTOMERS
Client: ool

Date : 05.01.2012 User: ABDUL

Key Fields Function Fields, Changed
Time Customer N Field KName 0ld Hew
00:57:35|2 Address TESTZ
00:57:35|1 Address GAFMAK MAH. TAVUKCUYOLU CAD. TESTL

A Figure 2 Evaluation of Change Logs

Here, you can see the username of the person who changed the record, the time
of the change, the key fields of the changed records, and the old and new values
of the changed field.

Keep in mind the potential performance drawbacks of logging the changes. When-
ever a change occurs on a table that is flagged to log changes, a new record is added
to the log table. This can produce a very high load on the system if you log the
changes for a table that is updated frequently by many users.

240

Tip @

Linking Text Tables to
Main Tables to Use Multi-
Language Applications

To maintain and use applications that will be read in several languages, you can create
text tables to store language-dependent information and then link those tables to the
main tables.

When you're developing an application that will be used in different languages, a
lot of information will change according to the user's language. This is much more
than translating the screen texts into multiple languages—you must also consider
the language-specific business information that must be maintained in different
languages such as country names or currency names. We'll show you how to create
text tables and bind the key information of the main table to the different values
in the text tables depending on the user's logon language.

And Here's How ...

Suppose you're creating a table that will contain country codes and country names.
Normally, you could create a table and add the country code and country name col-
umns to that table. However, if the table will be used in more than one language,
you have to maintain the country names for each language. The best way to do
this, in terms of relational database design, is to create another table that will be
linked to the main table with primary keys that contain additional language keys.

Follow these steps to create a country table and link a text table to the country
table to store the country names:

241

Tip 72

Linking Text Tables to Main Tables to Use Multi-Language Applications

1. Create the table to store the country keys in Transaction SE11 (note that the
country names won't be stored in this table). To keep this example simple, only
put the country code in the main table. Figure 1 shows the country table that
contains the country key only.

Transp. Table ICOUNTRIES Active
Short Description Countries |
Attrbutes | Delvery and Mantenance /(Fel [} Entry halpjcheck | Curency/Quantity Flds |
HEEEE EPEE[a] L] schiep | [Predefined Type |
Field [Key Ini... Data element Data Type Length Dedi... Short Description
| mampT ¥ ¥ MANDT CLNT 3 0Chent
| |comrmry_cope Vv ¥ Lawpi CHAR 3 0CaLntry Key
| Ul [

2 Figure 1 Country Table

[

. Create a second table with an additional language key (SPRAS). You can use the

same table name but add "T" to the end (e.g., ZCOUNTRIEST) to describe that
this is the text table of the ZCOUNTRIES table. Create the table as shown in

Figure 2.
Transp. Table ZCOUNTRIEST | Active
Short Description |Country Mames |

Attributes | Delvery and Maintenance /(Fields | Entry help/check | Currency/Quantity Fields |

I_SPRLS
|_EDUI'I'RY CODE
=

|

COUNTEY_NAME

|Ke-,r Ini... Data element |Data Type Length Deci... Short Description
¥l |¥] MANDT CLNT 3 oclient

¥l v SPRAS LANG 1 OLanguage Key
W [V LANDL CHAR 3 0 Cauntry Key
(][] ZCOUNTRY NAME CHAR 20 DCountry Mame

0 0

A Figure 2 Text Table for the Country Table

Notice that we only added the additional language column to the primary key
and country name column to store the language-dependent country name.

3. Create a foreign-key relationship to link the current table as a text table of the
country table. Select the COUNTRY_CODE row, and click the FOREIGN KEYS
button . Fill in the details as shown in Figure 3.

242

ABAP Data Dictionary Part 7

Short text
Check table ZCOUNTRIES | Generate propasal |
Foraign Key Fisids
Check table ChkTabFid Forkey ta.. ForeignKey Field Generc Constant
ECOUNTRIES MANDT ZCOUNTRIE . MANDT O Ml

ZCOUNTRIES COUNTRY_CO. ZCOUNTRIE. COUNTRY_CODE 0O

[screen check
(| Check required Error message Msgho | |Asrea
[Semantic attributes
Fareign key field type ()Mot Specified
IMon-key-fiekdsfcandidates
ey fields/candidates
(%)Key fieids of a text table
Caranaty 1) [o]

v cony J3)[< =) @)

2 Figure 3 Creating a Foreign Key to Link the Table to the Main Table as a Text Table

Select the FOREIGN KEY FIELD TYPE as KEY FIELDS OF A TEXT TABLE, and select the
proper cardinality. You can't select C cardinality on the left side because there
must be a record in the check table that refers to the record in the text table.
Otherwise, it would refer to an inconsistent record.

You've now created the text table to store country names and linked that table
to the main country table.

4. Now you can use these two tables in the applications and create country names
in as many languages as you like by creating records in the text table with dif-
ferent language keys.

Note that your end users won't even notice the existence of the text tables. For exam-
ple, when you open the main table in Transaction SE16 (Data Browser), it's displayed
as a single table and maintained in the user's logon language. You can only notice
the language dependence by directly displaying the text table as shown in Figure 4.

« rigure

Representation of

rﬁ‘{' Teallifens m 'ﬁ‘{l" g e DE sl GERWN: Main Table and Text
foor "R TURKEY ‘oo E TR TURKEY Table
0oL Uus UNITED STATES w1l E us UNITED STATES

wi T CE ALMANYA

0oL T us AMERIKA

loox T TR TURKIYE

243

Tip @

Using Buffering Options for
Database Tables to Improve
System Performance

You can use buffering options for database tables to improve the access performance for
tables that are used frequently.

If you're creating a database table that will be accessed frequently by system appli-
cations, you need to consider the quality of the access performance to the database
table. Normally, whenever a record is requested from a database table, the applica-
tion server must get this record from the database server. This operation can have
a significantly negative effect on system performance. To avoid this issue, you can
use some little-known buffering options for database tables to reduce database
access by getting data from the buffer for frequently used tables. This will decrease
unnecessary network load and increase overall system performance.

And Here's How ...

Each database system has a buffering mechanism that's used to run SAP systems.
However, application servers still need to access the database server to get the
records whether it's in the database buffer or not. This increases the database
server performance when responding to the request coming from the application
server.

The SAP system has another buffer that resides in application servers; the servers
use this buffer to obtain often-used data directly from the buffer without having to
access the database server. This buffer leads to an additional increase in the system
performance. If there's more than one application server, there are separate buffers

244

ABAP Data Dictionary Part 7

on each. Figure 1 illustrates the buffering mechanism that's used in systems with
more than one application server.

Application Serve ..._IE':i ation S5erver 2
select * from my_table select * from my_table
Local database buffer Local database buffer

Database buffer

Data files

A Figure 1 Buffering Technigue in SAP Systems

If a change occurs in data buffered locally on the application servers, all other
application servers are notified, and the buffers are updated asynchronously to
avoid inconsistencies. If the buffered table is updated frequently on the system,
this synchronization operation generates another load on the system. You must
consider removing the buffer for these types of tables. Buffering is meaningful for
tables that are read frequently but updated rarely.

Define Buffering Options

You can define buffering options in a database table that can be accessed through
the DispLAY TABLE screen in Transaction SE11 or Transaction SE13. Figure 2 shows
the buffering options that can be selected.

245

Tip 73 Using Buffering Options for Database Tables to Improve System Performance

Buffering
([Buffering not allowed
[Buffering allowed but switched off
() Buffering switched on

| Buffering type |

[ISingle recards buff,
| |Generic Area Buffered Mo. of key fields
|w|Fully Buffered

2

Figure 2 Buffering Options

Choose from these buffering options:

| 2

BUFFERING NOT ALLOWED
Buffering isn't allowed.

BUFFERING ALLOWED BUT SWITCHED OFF

Buffering is technically possible, but the performance depends on certain condi-
tions on the customer system. It's switched off initially but can be activated by
the customer.

BUFFERING SWITCHED ON
Buffering is switched on. The buffering type also must be specified for this case.

If you switch on buffering, you must also specify the buffering type. The following
buffering types are available:

»>

>

SINGLE RECORDS BUFF.

The buffer is initially empty, but whenever a record is accessed, it's added to the
record. This type of buffering is meaningful only when a few records of the table
are accessed. It uses less space on the buffer than other buffer types.

GENERIC AREA BUFFERED

When a record is accessed, all of the records that match with the first n key fields
of the accessed data are buffered. You can define the number of key fields in the
No. OF KEY FIELDS field.

FULLY BUFFERED

The buffer is initially empty, but all of the records are transferred to the buffer
when a single access occurs to that table. Be careful about the table size when
using this type of buffering.

246

ABAP Data Dictionary Part 7

Buffering is very useful to improve the system performance, but it can also be
dangerous if you don't use it correctly. Consider using single record or generic
area buffering for large tables.

The following statements bypass the buffer and go directly to the database:

» Select statement with a join or subquery

» Aggregate functions (count, min, max, sum, avg)

> Group by

» Having

» Select Distinct

» Order By

Sometimes, you may need to bypass the buffer for certain conditions. You can add

the bypassing buffer option into the select statement to bypass the buffer and go
directly to the database in such cases.

247

Tip @

Using Lock Objects to
Control Multi-User Access
to Table Records

You can keep multiple users from accessing the same data records at the same time, and
therefore avoid inconsistencies in the data, by setting lock objects within ABAP code.

When you're developing an application that requires inserts and updates to data-
base tables, you need to stop users from accessing and changing the data in these
tables while you're working. Otherwise, an inconsistency may occur if one user
changes the data while the other user is using the unchanged version of the data.
In this tip, we'll show you how to use lock objects to control this type of simulta-
neous access to the business data.

And Here's How ...

A lock mechanism must be used in all applications that perform an update in busi-
ness data. You can create a lock object by selecting the Lock oBJECT option and
clicking CREATE in Transaction SE11. Note that the naming convention is a little
bit different for lock objects than the normal ABAP Workbench objects—the name
must start with EZ or EY.

Suppose that you're developing an application that creates and updates the sales
order data in database Table ZORDERS. A single order is identified with an order
number, so you must lock the records that belong to that order number when-
ever a user enters the change screen for that order. If another user tries to modify
the same order, an error message must be displayed to notify the user that the
order is currently being edited by another user. This mechanism is used for all

248

ABAP Data Dictionary ~ Part 7

objects in SAP systems, and you can add the same functionality to your custom
developments.

Let's create a lock object for Table ZORDERS:

1. Go to Transaction SE11.

2. Select Lock oBJECT; enter the name of the lock object as “"EZORDERS", and
then click CREATE.

3. Enter the short description.

4. Select the checkbox ALLow RFC if you want the generated functions to be called
from outside.

5. Navigate to the TABLES tab, and enter the name of the table in the NaAME field.

6. Select the appropriate lock mode. This will be used as a default value in the
generated function module. You'll be able to specify other lock modes with the
function module. The following options are available:

» S: (shared lock)
More than one user can request and get this type of lock.

» E: (exclusive lock)
Only one user can get this type of lock for an object at a time. If a user gets
this type of lock for an object, all other requests for exclusive and shared locks
are rejected. Further locks can only be requested by the lock owner.

» X: (extended exclusive lock)
An extended version of the exclusive lock. The only difference is that all fur-
ther locks are rejected even if the request is coming from the lock owner.

» O: (optimistic lock)
This is the same as a shared lock but can be converted to an exclusive lock
later in the transaction. This lock type is used when a transaction is opened
in change mode but isn't likely to have an update in the transaction. If an
update is triggered in the transaction, this lock is first converted to an exclu-
sive lock by requesting a new lock with lock mode R for the same object, and
the update is performed only if the lock is successfully converted to the exclu-
sive lock.

» R
This type of lock is requested to change the optimistic lock to the exclusive
lock if an update must be triggered for an object.

249

Tip 74 Using Lock Objects to Control Multi-User Access to Table Records

» C,U VW
These lock modes are used only to perform collision checks. They don't set
the lock but only return the result as if the lock is requested. It's like a test
run. You can use the following lock modes to perform collision checks:

- Lock mode U is used to test lock mode X.
— Lock mode V is used to test lock mode E.
- Lock mode W is used to test lock mode S.
— Lock mode C is used to test lock mode R.

It's also possible to add other tables that will be locked together with the pri-
mary table to the SECONDARY TABLES list. All of the secondary tables must be
linked with foreign keys. Foreign-key relationships of the tables must be in a
tree structure. Each subnode in a tree must be a check table of the higher node.

7. Navigate to the Lock parameter tab, and set the keys that will be used as import
parameters in the function module that will be used to add or remove the table
from the lock table. The system offers the keys of the lock table by default. You
can make changes if you want.

8. Save (H) and activate dlb the lock object.

The lock object is now ready to use. Two function modules are automatically
generated:

» ENQUEUE_EZORDERS will be used to lock the table.
» DEQUEUE_EZORDERS will be used to release the locks on the table.

Now you can use these two functions in the ABAP programs to set and release
locks for the business data.

250

75,

Creating Alternative
Search Help Paths with
Collective Search Helps

You can offer alternative search paths to the user by combining several search helps into
a single search help.

Search help is one of the most useful features of the ABAP Workbench, providing
easy access to possible entries for screen fields. In a search help, a table or view
must be defined to populate the possible values list, and the user can use the selec-
tion parameters to filter the list. Sometimes, there can be many different paths to
populate the possible values list.

To allow users to use all search helps together, you can create a separate search
help for all possible selection paths and combine these search helps into a collec-
tive search help. Collective search helps can be used to enhance the functionality of
elementary search helps, and you can even implement your custom requirements
with search help exits and generate search screens that would normally need too
many lines of ABAP codes to be written.

And Here's How ...

Elementary search helps must be created before creating the collective search helps.
Each search help may have a different interface and selection tables, but all of these
interfaces must be mapped to the main collective search help. However, it isn't
necessary to use all interface parameters in each search help.

251

Tip 75 Creating Alternative Search Help Paths with Collective Search Helps

Figure 1 shows an example of a collective search help that's used to search for a

sales order.

Display Sales Order: Initial Screen

Asaes Litem overview S 0rdering party [RRp SRR

I all
Al partner E—
o-h [P L o
Partner Function (= [ep
Saarch Criteria | sales Orgarization
Purchase Order No. | | sales Office []
|
ia] —
R Lo Sales Group
Delvery
Bilirg Doourment
WES Element [

ti Search

Sales dooument according to customer PO number
Sales documents, not fully confirmed

Sales documents by customer

Credt memo request. for rebate

Delayed saes documents

Sales documents by payment card
Sales Docurnents by Material Number

A Figure 1 Collective Search Help for a Sales Order

As you can see in Figure 1, several search helps are defined in a single collective
search help, and the user can use any of them by selecting from the list.

Let's create our custom collective search help for order selection by using the

search helps provided for orders:

. Go to Transaction SE11.

. Select the SEARCH HELP radio button and enter “ZSH _ORDERS" in the text field.

. Select COLLECTIVE SEARCH HELP on the popup and click CONTINUE.

1
2
3. Click CREATE.
4
5

. Enter the short description for the search help, and enter "VBELN" as the search

help parameter as shown in Figure 2.

6. Navigate to the INCLUDED SEARCH HELPS tab, and enter the name of all search
helps in the SEarcH HELP list. For example, you can include the following search

helps:

VMVAB: Sales documents by description
VMVAE: Sales documents by customer

» VMVMO: Sales documents by material number

v

v

252

ABAP Data Dictionary

Part 7

Colective srch hip |Z5H_ORDERS | ew
Short description [Sales Order |
~ Attributes ﬁmmmm |
Srch. help exit
EIE] EN=
Parameter
Search help parameter Imp Ex.. Data slement |Defaut value i
LN (] [¥ ¥BELN -
0|0 -
0| a
H |

A Figure 2 Creating Collective Search Help

7. Now you need to assign the interface parameters of each search help to the
collective search help's interface parameters. Select the search help from the
list, and click the PARAM. ASSIGNMENT button to assign the sales order docu-

ment number from the included search help to the interface parameter.

8. A popup displays; click YEs to confirm the proposal of the automatic parameter

assignment.

9. Modify the proposed parameter assignment if needed, and click Copy to con-

firm the parameter assignment.

10. Save (E: and activate dlb the collective search help after you finish all param-

eter assignments.

11. Finally, click Test to see the generated search help.

You can now assign this collective search help to the fields for which end users
might want alternative search options in certain cases.

253

i 76,

Using Domains to Define Value
Ranges for Database Tables
and Structure Components

You can easily create reusable domains to define value ranges and technical settings for
database fields and structure components.

When you create a database table or structure, you have three alternative ways to
define technical characteristics for a database field or structure component. You can
use the direct definition option or use data elements, but in both cases you have
limited flexibility in the definition. To bypass this issue, you can create domains
to define the technical settings and value ranges, and then reuse this domain for
several database fields and structure components.

And Here's How ...

You can create the domain by selecting the DomAIN option in Transaction SE11.
You can also create the domain using forward navigation within the DATA ELEMENT
screen. Figure 1 shows the initial screen when you start creating a domain.

In the DerFINITION tab, define the format and output characteristics for a domain.
Specify the data type and additional properties in the FORMAT section, and enter
the output options in the OUTPUT CHARACTERISTICS section.

254

ABAP Data Dictionary Part 7

Dornain ZHONTH | New(Revisad)
Short Description fl I
__ Properies JOSRHGAIT Voo e

Format

Data Type IE

No.Characters | |

Decimal Flaces I

Output Characteristics

[JAM{PM time format supported

OutputLength |]

Output 5 |0 Normal -
Conwvers. Routine | |

[Csign

[ILower Case

A Figure 1 Creating a Domain

Navigate to the VALUE RANGE tab. There are three types of value ranges that can
be defined for a domain as shown in Figure 2.

Propartes._| otion /it e |

£ 8 e = =
|

1 Fixval. Short Descript

& Figure 2 Defining a Value Range for a Domain

255

Tip 76 Using Domains to Define Value Ranges for Database Tables

If the possible values that the domain can take are fixed, and you can list by single
entries, define the values in the SINGLE VALs part. For example, if you're defining
a domain to use for the month field, you can enter the months as single values to
this list.

Sometimes it may not be possible to define single values; instead, intervals can
be defined in the INTERVALS part. For example, you can use a 0-100 interval for a
domain that will be used for the percentage field.

You can add more than one interval into the list and also combine intervals with
the single values.

You can also define a value table that contains the values that the field can take, but
defining a value table here doesn't implement the value check. The value table is
proposed as the check table when you create a foreign key for the field that linked
to this domain.

Now you can reuse this domain in several data elements and use these data ele-
ments in database fields and structure components where you want to assign the
value ranges defined in the domain.

Using value ranges in domains is very practical when the possible values that field
can take won't change in time. If you enter fixed values into a domain, an auto-
matic search help appears in all screen fields that use that domain. If a search help
or foreign key are assigned to the field at a higher level, the value range defined in
the domain is overridden by the higher level assignment.

256

Tip @

Attaching Search Helps
Directly to Data Elements
for Global Availability

You can attach search helps to data elements to make the search help available globally
for all fields that use that data element.

Search helps can be assigned to the screen elements in several ways. However,
if you use the same data element in multiple screen elements, database fields, or
structure components (which is common in SAP), it will be difficult to assign (or
modify) the search help to all of these fields one by one.

In this tip, we'll show you how to attach a specific search help directly to the data
elements. It will then be available for all screen elements, database fields, and
structure components that use that data element, which will make the search help
easier to assign and modify en masse.

And Here's How ...

Define a new data element or modify an existing one in Transaction SE11. Select
the DATA TypE radio button and navigate to the FURTHER CHARACTERISTICS tab.
Here you can define the search help name and parameter as shown in Figure 1.

257

Tip 77 Attaching Search Helps Directly to Data Elements for Global Availability

Data element 'ZDRDER_HUHBER | Inactive
Short Description ‘Order Number

- Attrbutes -~ Data Type Field Label |

| Search Help |
Mame VI, |
Parameters VEELN |

Figure 1 Assigning a Search Help to the Data Element

Enter the name of the search help in the NAME field, and enter the export param-
eter of the search help in the PARAMETERS field.

If the assigned parameter is also an import parameter, the value of the field is
transferred to the search help as an import parameter when you trigger the search
help. However, if there is more than one import parameter in the search help,
only the selected import parameters are used in the search help. All of the other
parameters are treated as empty.

This type of search help definition allows you to define a search help in a data ele-
ment and assign it to multiple objects that are linked to this data element. You can
also make this assignment one by one to the relevant objects if you're working
on a small application. However, if the same data element will be used by many
developers, and you don't want them to lose time by dealing with the same tasks,
you can assign the search help to the data element.

Note that you can override the search help definition on the data element by
assigning another search help on the database field, structure component, or screen
element.

258

78,

Adding Date Fields to
Make Time-Sensitive Table
Maintenance Dialogs

You can maintain records that are valid for limited time periods by using special func-
tions within table maintenance dialogs.

Sometimes you may need to create a database table to store business information
that is only valid for a specific time span. You must also ensure that these tables
contain one valid record at a time at the most. When it comes to maintaining the
records of these tables, the standard table maintenance dialogs are difficult to use
because limiting the validity of one record manually and creating another record
with a new validity period can be frustrating and error-prone. Luckily, there are
special functions in table maintenance dialogs to handle the validity of the time-
dependent records, which we discuss in this tip.

And Here's How ...

In a time-dependent database table, you must be able to create more than one
record with different validity periods for the same business data and ensure that
only one of those records is valid at a time. You can handle this situation by add-
ing two date fields to identify the validity period of the record and adding one of
these fields to the primary key to be able to create more than one record for the
same data.

When creating a time-dependent database table, the following conditions must
be satisfied:

259

Tip 78 Adding Date Fields to Make Time-Sensitive Table Maintenance Dialogs

» The table must contain two fields to represent start and end dated for the valid-
ity period of a record.

» One of these fields must be in the key field, and the other field must be the first
field after the primary key. This allows you to insert more than one record for
the same business data.

» The START DATE field must have one of the following data elements:
» BEGDA
» BEGDATUM
» VIM_BEGDA
» The END DATE field must have one of the following data elements:
» ENDDA
» ENDDATUM
» VIM_ENDDA
After you create a table and generate the table maintenance dialogs, choose ENvi-
RONMENT « GENERATE TIME-DEP. to generate time dependence while you're in the

Table Maintenance Generator. If you forget to run this step, some of the time-
dependence functions will still be available, but they won't run as expected.

Now, enter the table maintenance dialog in Transaction SM30. You'll notice two
new buttons added on the toolbar as shown in Figure 1.

%? Expand <-> Colapse New Entiies [B Delimit & B B R

Time Dependent Table Mantenance
 PersorrelNo. Vakd From Vaid To Department i
(19807 04.03.2000 17.04. 2004 Customer Service =
18.04.2004 17.07.2004 Information Technologies -
168.07.2004 31.12.5939 Marketing

X Figure 1 Table Maintenance Dialog for Time-Dependent Table

Normally, you have to create custom table maintenance programs to handle time-
dependence, but this technique allows you to create table maintenance dialogs to
maintain time-dependent data easily while preserving the data integrity.

The following tools will help you further manage the time sensitivity of your busi-
ness information:

260

ABAP Data Dictionary Part 7

» EXPAND <-> COLLAPSE button
Allows you to collapse the records to show only the valid record for the current
date. If there isn't a valid record, the last record will be shown. You can later
select the record and use the same button to expand the records.

» DELIMIT button
Allows you to create a new record starting from a specific date and delimit the
current valid record to the start date of the new record.

When you try to create a record that overlaps with another record, the system auto-
matically restricts the validity of the existing record to preserve the data integrity.

261

N 79,

Using the Database Utility to
Transfer Structural Changes
to the Database System

You can prevent data loss by using the database utility to apply the structural changes
in database tables to the underlying database system.

The ABAP Data Dictionary allows SAP systems to interact with the database tables
independently of the underlying relational database system. Tables, views, and
other dictionary objects have runtime objects that are used by ABAP programs to
access the database tables. These runtime objects store the technical information
about database objects and provide considerable increases in system performance
during database access.

If you make a structural change to the database tables in the ABAP Data Dictionary,
the changes can't be applied directly to the database system and an adjustment may
be required to prevent the possible data losses. In this tip, we'll show you how to
use the database utility to perform this adjustment.

And Here's How ...

When you create a database table, view, or other dictionary element in the ABAP
Data Dictionary, a runtime object is generated in the ABAP workbench to store
information about the created object. ABAP programs use these runtime objects
to access information from these objects. The runtime objects are regenerated
whenever a dictionary object is activated in the ABAP Data Dictionary.

262

ABAP Data Dictionary Part 7

You can display the corresponding runtime object of dictionary objects by opening
the maintenance screen for the object in Transaction SE11 and using the following
menu path:

(UTILITIES * RUNTIME OBJECT » DISPLAY)

Figure 1 shows a runtime object for a database table.

Transparent table Timestamp runtime object

g ¥

kac_ro_pemn JE.0L.Z0E 22:04:01

Timestamp ARAP Timestamp DYRD

‘oB.01.2012 2203154 09.01.2012 22:03:54

Header of active nuntime object

()08 (L) (i@)

Obj Dat Mo Tadl Mo. Key Pos Ay Buff My len Fagl P DB Flag2 Fagd Fagd Asg5 Fagé Po Uni, LD Leaf
T T i 1% 2 @ 1 2 0 0[0OO0I0 B (0OO000 COCDOJOD (OO000OD ODOOINO (OOOJO0D O 2 EISASESSIATOSFL D

Felcs of active runtime object

(B0 (=) (S)

Field Mame Rl Dep Data ABA DEleng Dec Fedd Out Fiel, A, ABA Oict Fsgl Fag2 Fleg3 Flege Dataske Pre R R Corw_ Paa C,
3 6 0

MANDT 1 0ant 0 3152 o0¢c 0 QU001 QDOOO0OQ DODDOO0 QODODO0) MAKDT O
KLUNNR 2 0 CHAR 20 20 o & 10 40 oc 0 01100001 00000110 Q0000010 GOOOQO0G HLUME 1] ALPHA EUN
NAMEL 3 oCWR 10 10 0 :® S0 40 0Oc 0 QOOD0I00 QIOCO) DODDOCDD QOO0DO0) TEXTSO O

2 Figure 1 Runtime Object for a Database Table

If you change the structure of a table in the ABAP Data Dictionary, the database
object is adjusted in the following ways depending on the type of the change,
database system used, and whether the table is empty or not:

» If only the order of the non-key columns is changed, the runtime object is
updated, but there is no need to update the column orders in the database.
» If the table is empty, it's deleted and recreated in the database.

» If the table isn't empty, the system performs the change using the ALTER TABLE
command.

» If the result of the ALTER TABLE command isn't successful, the table conversion
must be run in the database utility.

Conversion Process

If you make a structural change in the database table that requires a data-conversion
process according to the preceding conditions, an error message is displayed as
shown in Figure 2 when you try to activate the table in the ABAP Data Dictionary.

263

Tip 79 Using the Database Utility to Transfer Structural Changes

Technical log for mass activation
See log AEDUL20120108225038:ACT

TAEL ZAG_RO_DEMO was not activated
Check table ZAG RO _DEMO (ABDUL/08.01.12/22:350)
Field NAME)L: Length change

ALTER TAELE i= not possible

rable ZAG RO DEMO}

A Figure 2 Activation Error Received When the Structure of the Table is Changed

The conversion process can be performed using the following procedure in the
database utility:
1. Go to Transaction SE14, and enter the name of the table in the OBs. NAME field.

2. Select the TABLES option in the DicTIONARY OBJECTS selection, and click the
EDIT button.

3. In the next screen, select one of the following processing types to run the con-
version process:

» DIRECT: Conversion runs directly.
» BACKGROUND: Conversion runs in the background.

» ENTER FOR MASS PROCESSING: Puts the object into the mass processing list,
which can be processed later.

4. Select whether the data should be saved or deleted during conversion, and click
ACTIVATE AND ADJUST DATABASE to start (or schedule) the conversion process.

After you start the conversion, if you selected to delete the data option, the table
is deleted and recreated with the new structure. If you selected to save the data,
the conversion process runs by performing the following steps:

1. The original table is renamed to a temporary table, and all indexes are deleted.
2. The new table is created with the new definition.

3. Old data is copied from the temporary table using the move-corresponding logic
as in ABAP.

4. The temporary table is deleted.

5. The secondary indexes are recreated.

During the conversion process, the table is locked to prevent data inconsistencies
in the programs that use this table.

264

1 80

Defining Ranges Using
Range Table Types

You can build better database queries by using range table types to create range types
and use them in the interface parts of the classes and function modules.

Ranges types are very useful in ABAP programs because they allow you to create
special internal tables that can be used to build complex selection criteria easily and
use it in logical conditions in statements such as select, loop, and so on. Range
type variables are generated automatically with the select-options statement in
report programs, or you can explicitly define them using the range command. In
this tip, we'll show you how you can create range table types in the ABAP Data
Dictionary in order to transfer range types among programs, function modules,
and classes.

And Here's How ...

A range table type is a special type of table type that is defined in almost the same
way as normal table types. You can create range table types by performing the
following steps:

1. Go to Transaction SE11 and select the DATA TYPE option. Enter the name of the
RANGE TABLE TYPE and click CREATE.

2. Select the TABLE TYPE option and click CONTINUE.

3. Enter a short description.

4. Change the table type to the range table type by choosing EDIT « DEFINE AsS
RANGES TABLE. The screen changes as shown in Figure 1.

265

Tip 80 Defining Ranges Using Range Table Types

- Attributes Initislization and Access | Primary Key |
| Assoclated type for LOW/HIGH components
()Data Element |
(O Predefined Type
Data Type 1
No. of Characters 0 | Decimal Places]
Structured Row Typs | create |

A Figure 1 Defining the Range Table Type

5. Fill in the details for the type—you must set the data type that will be used to
build the range type. You can either specify DATA ELEMENT or use PREDEFINED
DATA TyPE. This type defines the elementary type of the LOW and HIGH fields
of the range table.

6. Assign a row type just like you would in normal table types. You can generate
it automatically by entering the name in the STRUCTURED Row TYPE and clicking
the CREATE button. This creates a structure using the specified DATA ELEMENT
you defined in the previous step. In our example, we used KUNNR as the data
element. The structure is created as shown in Figure 2.

check ¢ Currency/auantity fields |
174
_’Curm'ent |Type Category Component Type Data Type |Lerlgth |Deci... Short Description
| ls1GH 1 Type - DDSIGN CHAR 1 0Type of SIGN componer
|_'.'I I0H 1 Type * DDOFTION CHAR 2 0 Type of OPTIOM compo
L 1 Type ~ KUNHE CHAR 10 0 Customer Number 1
HI 1 Type - KUNNR CHAR 10 0Customer Number 1

2 Figure 2 Creating a Structure for the Line Type of Range Table Type

You can also use the previously created structure and assign it to the range table
type in the definition screen.

7. Save (H) and activate dIb the object.

Now, you can use it in the function module or class interfaces and handle the com-
plex logical conditions in statements such as Select, Loop, If, and so on.

266

Tip

Using the Data Modeler to
Create Data Models According
to the SAP SERM Method

You can display complex data models in a clear and easily understandable way by using
the Data Modeler tool to create data models.

When you're designing an object-oriented (OO) application, data modeling is a
good start to define the business requirements, identify business objects, and cre-
ate a data model that will be used as a reference throughout the implementation
phase. The ABAP Workbench has a Data Modeler tool that you can use to create
data models according to the SAP SERM (Structured Entity Relationship Model)
method.

The Data Modeler is a very useful tool not only to create data models for designing
an application, but also to document the data model for your existing application.
A lot of developers find it difficult and tedious to create documentation for their
applications; however, they can use data models to create documentations and
keep them up to date because the models are closely integrated with the ABAP
Data Dictionary. In this tip, we'll show you how to use the Data Modeler tool to
create data models according to the SAP SERM method.

And Here's How ...

You can use both top-down and bottom-up approaches for data modeling while
using the Data Modeler.

267

Tip 81 Using the Data Modeler to Create Data Models

Different Approaches

In the top-down approach, the modeling starts with creating entities and specifying
attributes for these entities. Then, you can link entities to the tables and views in
the ABAP Data Dictionary. You can either use the existing tables or views or create
new tables or views for the entity types. The attributes of the entities are linked
to the fields of the tables and views. If you add a new field to the table or view, it
can also be seen in the Data Modeler.

In the bottom-up approach, you start with the existing application and create a
data model for the existing tables and views in the application.

Working with the Data Modeler
You can access the Data Modeler tool from Transaction SD11 or by using the fol-
lowing path in the SAP menu:

(TOOLS « ABAP WORKBENCH » DEVELOPMENT » DATA MODELER)

On the initial screen, there are links to the SAP applications and SAP architecture
that allow you to see the existing data model and views of the SAP system.

You can create entities and include these entities in the data models with suitable
relations.

In Figure 1, you can see the existing data model BC_TRAVEL, which is created for
the flight model.

Display Data Model: Hierarchy {Standard View) {(Figure 1 Hierarchical Display for the
@@ 8% ™ Knode ebuee BE " BC_TRAVEL Data Model

BC_TRAVEL Flight reservation

BC_CLIENT Adirline carrier client
BC_TCONTRY Country

I~ BC_CURENCY Curreéncy

BC_LANGUAG Language

— BC_BPART Airline Partner

—{@ EC_TRAVTIX Travel Agency Ticket Sales
=@ BC_PLANE FPlane

—8 BC_FLIGHT Flight Connection

— BC_LOCAL Flight locality

— BC_CARRI Airline carrier

EC_CARRIER Airline
I BC_COUNTER Sales office
BC_CARPLAN Flane-airline assignment

0 BC_BOOK Flight booking
“—@ BC_CATERNG Catering

268

ABAP Data Dictionary Part 7

The model contains entities and submodels. For example, BC_CARRI is a submodel
that describes the AIRLINE CARRIER data model, which contains three entities. Dou-
ble-click on the BC_CARRI submodel to see the definition of the submodel. In the
definition screen, clicking on the GRAPHIC button shows you the graphical
display of the AIRLINE CARRIER data model as shown in Figure 2.

Data Modelar: Graphics (Display Mode)
2 L@ QE BN P o &8 38 CiHypertext Tratvbutes TIoictionary T3Data Browser

Airline carrier

BC_CARPLAN | |

Flane-aitling
assignment

oc_caRrRIER | [T] 5C_COUNTER | |

Sales office

2 Figure 2 Graphical Display of the Data Model BC_CARR/

There are three entities in the model, and you can also see the relationships and
relationship types on the graphic. The relationships are defined according to the
following definitions:

» A: Aggregating

¥

H: Hierarchical
R: Referential

¥

X: External

¥

The link between the entities specifies that the target entity depends on the source
entity according to the relationship types described previously. The arrow on the
relationship link also defines the cardinality of the dependent entity type according
to the following definitions:

» Single arrow: Cardinality 1
Each source entity has exactly one dependent entity.

269

Tip 81 Using the Data Modeler to Create Data Models

» Vertical line + single arrow: Cardinality C
Each source entity has a maximum of one dependent entry.

» Double arrow: Cardinality N
Each source entity has at least one dependent entry.

» Vertical line + double arrow: Cardinality CN
Each source entity has any number of dependent entities.

You can also access the attributes, dictionary assignments, and Data Browser for
the entity by selecting it and using the appropriate button on the toolbar.

270

Part 8

Enhancements

Things You'll Learn in this Section
82 Enhancing Standard Objects with Implicit Enhancement

OPLIONS oo
83 Creating Composite Enhancement Implementations to Group

Enhancement Implementations Hierarchically
84 Using Nested Enhancements in Existing Enhancement

Implementations ...
85 Using Enhancements When Modifying Standard ABAP

Programsooiiiiiiiiiiiiiiiiiiiiiiiiisis bbb
86 Activating or Deactivating Enhancements with the Switch

Framework ...
87 Adjusting Enhanced Objects When Upgrading the SAP

SYSEEM o

88 Using the Enhancement Category to Restrict Table and

Structure Enhancements
89 Creating Multiple-Use Business Add-Insccccooviiiiiiiiiennnns
90 Using Filters to Select Between Multiple BAdI

Implementations ...
91 Finding BAdIs in SAP Transactions Using the ABAP

DEDUZEEI oo
92 Creating Customized Transactions with Transaction

Variants ...
93 Using Parameter Transactions to Create a Transaction for

Table Maintenance Dialogscocovciiiiiiiiiiiiiiiiiiieeeceen
94 Using SET/GET Parameters to Assign Default Values for Screen

Elements ...

271

Part 8 Enhancements

In the SAP system, you can adjust standard programs according to customer or
business requirements in several ways. One of the greatest features that SAP pro-
vides developers to enhance standard programs is the Enhancement Framework.
You can use the tools provided in the Enhancement Framework to change the
system standard without modifying the standard programs. This part of the book
provides tips and tricks about using different ABAP Workbench techniques that
enhance out-of-the-box functionality.

272

Tip @

Enhancing Standard Objects with
Implicit Enhancement Options

You can pinpoint code points that are suitable for enhancement by enhancing standard
ABAP programs at specific places in the source code.

There are many enhancement points and enhancement sections placed in pre-
defined locations in the standard ABAP programs that can be used to enhance the
system. However, it isn't always possible to find a suitable enhancement point in
the source code that needs to be enhanced. The Enhancement Framework allows
you to change standard system functionality by modifying the ABAP source code
according to your client's custom requirements. We'll show you how to use implicit
enhancement options in these cases, which allow you to enhance the source code
at specific points in the ABAP programs without modifying existing ABAP code.

And Here's How ...

You can use implicit enhancement options if there are no suitable explicit enhance-
ment options available in the source code. Implicit enhancement options are
located in the source code so that you'll likely never need to modify the original
objects again. You can find implicit enhancement options in the following places:

273

Tip 82 Enhancing Standard Objects with Implicit Enhancement Options

At the End of ... At the Beginning and End of ...

» Includes » Form routines

» Public, private, and protected sections of » Function modules
a local classes » Methods
>

Implementation section of local classes Enhancement implementations (nested

Interface definitions enhancements)
Structure definitions

¥y ¥ v ¥

Changing, importing, and exporting
parameter list of a method in local classes

Let's implement an example implicit enhancement. Suppose that you want to
enhance demo Program BCALV_FULLSCREEN_DEMO to add an additional com-
ment line to the list header shown in Figure 1.

ALV Damo: Fullscraan Mode « Figure 1 ALV List Header to be
@ AFF E QO BIRTLE Bas O Enhanced

ALV demo flight overview

Valid to October 1999

Afrport FFH Frankfurt

Current Data

ID | Mo. Fight Dats Arfare Curr. Plane Type Capacity Occupied

A 17 14.06.2006 422,94 5D 747400 385 373

Ak 17 12.07.2006 422,94 USD 747400 385 369

Ah 17 (9.08.2006 422,94 USD T47-400 385 367

When you analyze the source code, you can easily see that the header is built in
the subroutine COMMENT_BUILD:

FORM COMMENT_BUILD USING LT_TOP_OF_PAGE TYPE
SLIS_T_LISTHEADER.
DATA: LS_LINE TYPE SLIS_LISTHEADER.

LS_LINE-TYP = *A".
* S _LINE-KEY: NOT USED FOR THIS TYPE
LS_LINE-INFO = TEXT-105.
APPEND LS_LINE TO LT_TOP_OF_PAGE.
ENDFORM.

Thus, if you can add your comments to internal Table LT_TOP_OF_PAGE, your
comments will be visible in the report header.

274

Enhancements Part 8

As we mentioned, there must be implicit enhancement options at the beginning
and the end of the subroutine. You can see this using the following menu path:

(EDIT * ENHANCEMENT OPERATIONS » SHOW IMPLICIT ENHANCEMENT OPTIONS)

The implicit enhancement options are displayed as lines with quotes as shown in
Figure 2.

130 © FORH COMMENT BUILD USING LT TOP_OF_FAGE TYPE

131 SLIS_T_LISTHEADER.
13Z| | o AT AT AT T BB OV AT VO VS Y STATAT T TR R R R OO YT Y R R R ROt e e e Sn Sy SX s (10) FOER COMMENT
133 DATA: LS LINE TYPE SLIS_LISTHEADER.

134 B #

138 * LIST HEADING LINE: TYPE H

136 CLEAR LS _LINE.

137 LS LINE-TYP = 'H'.

138| * LS LINE-KEY: NOT USED FOR TRIS TYPE

135 LS LINE-INFO = TEXT-100.

140/ APPEND LS_LINE TO LT _TOP_OF_PAGE.

141 # STATUS LINE: TYPE 5

142 CLEAR L3_LINE.

143 LS _LINE-TYF = 'S'.

144 LS_LINE-FEY = TEXT-101.

145 L3_LINE-INFQ = TEXT-10Z.

146 APPEND LS LINE TO LT TOP_OF PAGE.

197 L3 _LINE-KEY = TEXT-103.

148 LS LINE-INFOQ = TEXT-104.

149 APPEND LS_LINE TO LT_TOP_OF_PAGE.

150 # ACTION LINE: TY¥PE A

151 CLEAR L3_LINE.

152 LS_LINE-TYF = 'hA'.

153 * L5 LINE-KE¥: NOT USED FOR THIS TYPE

154 LS_LINE-INFO = TEXT-105.

188 APPEND LS LINE TO LT TOP_OF PAGE.

A5G| | i R P O B 8 B B R L R S R R R R R AR SRS SE s (11) MoEm COMMENT
157 ENDFOEH.

& Figure 2 Displaying Implicit Enhancement Options for Subroutines

You can now add your ABAP code just before the ENDFORM statement to be able to
add your comments to internal Table LT_TOP_OF_PAGE.

Click the ENHANCE button on the toolbar to turn the ABAP Editor into enhanc-
mement mode. Now, implicit enhancement options can also be identified with the
2 sign on the left of the line. Position the cursor on the enhancement option
just before ENDFORM, and use the following menu path to start the enhancement
operation:

(EDIT * ENHANCEMENT OPERATIONS » CREATE |IMPLEMENTATION)

Now, follow these steps:

275

Tip 82

Enhancing Standard Objects with Implicit Enhancement Options

1. Select CoDE as the type of enhancement in the CHOOSE ENHANCEMENT MODE
popup.
2. Enter a name in the ENHANCEMENT IMPLEMENTATION field, enter the description
in the SHORT TEXT field, and then click the CONTINUE button to continue.

3. Enter a package and save.

4. Enter the transport request.

5. Write your code between the ENHANCEMENT / ENDENHANCEMENT statements as
shown in Figure 3.

151K
Fo ™
1525
bt
1530
15-13
155_}“
1565
M| 157
153%
1595
160}
161]
162
163
15-&?5
1:'\55}

166+ -~ EHDFORM.

* ACTION LINE: TY¥PE A
CLEAR LS_LINE.
LS_LINE-TYP = 'A'.
* L5 LINE-XEY: NOT USER FOR THIS TYPE
LS_LINE-INFO = TEXT-105.
APPEND LS_LINE TO LT_TOP_OF_PAGE.

ENHANCEMENT 1 ZIMPLICIT ENHANCEMENT. "iractive version

CLEAR LS _LINE.

LS_LINE-TYP = 'A'.

LS_LINE-INFO = '100 Things You Should Know About ABAP Workbench'.
APPEND LS LINE to LT TOP_OF PAGE.

Z] T L

gty

2 Figure 3 Adding Source Code in the Enhancement Block

6. Click the ENHANCEMENTS button to activate the enhancement, and execute the

rep

ort to see the result as shown in Figure 4.

ALV

Airport
Current

Valid to October 1999

100 Things You Should know About ABAP Workbench

demo flight overview

FFH Frankfurt
Data

ID | No. Flight Date Airfare Curr. Plane Type Capacity Occupied
A 17 21.07.2011 712,74 UsSD 747-400 385 375
AA 17 22.08.2011 712,74 USD 747-400 385 a2
AA 17 23.09.2011 712,74 USD 747-400 385 374

276

< Figure 4 Result of
the Enhancement

Tip @

Creating Composite
Enhancement Implementations
to Group Enhancement
Implementations Hierarchically

You can create composite enhancement implementations to group enhancement imple-
mentations hierarchically for better organization.

When you're creating enhancement implementations, you must assign them to
the packages like you do for all other development objects. You can simply group
enhancement implementations in packages and package hierarchies to be able to
organize them according to categories. However, if you're using enhancement
implementations extensively, you might want to look for a better way to organize
them. Otherwise, finding the enhancements when you need to modify them in the
future will be difficult. You can use composite enhancement implementations to
group enhancement implementations hierarchically in a tree structure.

And Here's How ...

Although you don't have to assign composite enhancement implementations to
enhancement implementations, it's useful to group enhancement implementations
belonging to different packages in composite enhancement implementations. You
can even create a single hierarchy for all enhancements on the system. This will
give you an alternative way of grouping enhancements, together with using pack-
ages and package hierarchies.

To create a composite enhancement implementation, right-click on the package name
in the Object Navigator, and use the following menu path on the context menu:

277

Tip 83 Creating Composite Enhancement Implementations

(CREATE » ENHANCEMENT » COMPOSITE ENHANCEMENT IMPLEMENTATION]

Enter the object name and description as shown in Figure 1, and click the green
checkmark button to create the composite enhancement implementation.

[Create Composite Enhancement Implementation . « ng ure 1 Cr E&ﬁﬂg d
_ j . Composite Enhancement
Composite Enh. Implementation ZHCM_PA_ENHANCEMENTS i
. Implementation
Short Text HCM-PA Enhancements

Superord. Comp. Enhan. Implem.

v %)

You can assign a superordinate composite enhancement implementation on the
same window to build more detailed hierarchical structure by assigning composite
enhancement implementations to each other.

Now, you can assign enhancement implementations to the composite enhance-
ment implementation that you've just created. When creating an enhancement
implementation, you can assign it to a composite enhancement implementa-
tion directly on the CREATE ENHANCEMENT IMPLEMENTATION window. Select the
enhancement from the search help or create a new one using the CREATE button
@) as shown in Figure 2.

[E Create Enhancement Implemantation

Enhancemnent Implsrmentation ZDEMO_ENHANCEMENTL
Short Text |Derno Erhanicerment |
Compasite Enhancernent Implementation ' [a) E

A Figure 2 Assigning a Compasite Enhancement Implementation to an Enhancement
Implementation

In the example shown in Figure 3, a root composite enhancement implementation
ZHCM_ENHANCEMENT is created in Package ZENHANCEMENT, and all subor-
dinate composite enhancements and enhancement implementations are linked to
this root node.’

1 Enhancement implementations don’t have to be in the same package. Even if they're in different
packages, you can see the whole structure in the Object Navigator.

278

Enhancements Part 8

| Package |
|ZENHANCEMENTS LAy
== =)&) E) R (E]
Obiject Name Description
= T ZENHANCEMENTS Enhancement Implermentations
* 3 Enhancemnents
~* 3 Compasite Enh. Implementation
o 'aZ-EMj'\I-IﬁNCEMENTS HCOM Enhancements
= T Subordinate Composite Enhancem B - B
* 3 ZHCM_PA_ENHANCEMENTS HCM-PA Enhancements

= 3 subordin. Enh. Implementation
+ [] ZDEMO_EMHANCEMENT1 Demo Enhancement

. * I ZHCM_PD_ENHANCEMENTS ~ |HCM-PD Enhancements
= 3 Subordin. Enh, Implementation
v [ZDEMO_EMHANCEME Dermno Enhancement 3
* 3 Subordin, Enh. Implementation
+ [] ZDEMO_ENHANCEMENT# Demo Enhancement 4
v [ZHCM_PA_ENHANCEMENTS HCM-PA Enhancements
+ [ZHCM_PD_ENHANCEMENTS HCM-PD Enhancements

2 Figure 3 Example of a Composite Enhancement Implementation Hierarchy

Alternatively, you can browse the enhancements in the ENHANCEMENT INFO Sys-
TEM. Figure 4 displays the same COMPOSITE ENHANCEMENT IMPLEMENTATION hier-
archy in the ENHANCEMENT INFO SYSTEM.

|
]
I
|
Compostte Enhancement Implementation |
L= =a] Q) (m
Ohject Name Description |
= [Composite Enh. Innplementation Hierarchy of Comp. Enh. Impl. and Thelr Subordinate Enh. Imnphe =
= [ZHCM_ENHANCEMENTS HCM Enhancements =
« [H zDEMO_ENHANCEMENT4 Dema Enhancement 4
~ [ZHCM_PD_ENHANCEMENTS HCM-PD Enhancements
C E ZDEMO_ENHANCEMENT3 Dermo Enhancement 3
= [ZHCM_PA_ENHAMCEMENTS HOM-PA Enhancements
- 2 ZDEMO_ENHANCEMENTZ Demo Enhancement 2
. ZDEMO_ENHANCEMENT 1 Dema Enhancerment
» [STANDARD_1SO_DEFINITION Definition in Accordance with 1S0 8601
» [E SEUI_UMIT_TEST_COMP
L BADI_SORTER_1 SORTER
— + Flowws oan cucsarac :

& Figure 4 Enhancement Info System

279

84,

Using Nested Enhancements
in Existing Enhancement
Implementations’

You can nest enhancement implementations to several layers to avoid modifying existing
enhancements and losing your enhancement changes later on.

When you create a source code plug-in to implement an implicit or explicit
enhancement option, the ENHANCEMENT and ENDENHANCEMENT statements are auto-
matically created, and you can implement custom code between them. Some-
times you may need to modify the existing enhancement implementation. If the
enhancement is implemented in the customer namespace, you can simply modify
the existing information according to the requirements. However, if the enhance-
ment is an industry-specific implementation, or it's a global implementation run-
ning on a country-specific system, it may not be appropriate or even possible to
modify the existing enhancement. In this tip, we'll show you how to implement a
new enhancement on top of the existing one and separate the different enhance-
ments implemented on the same enhancement point for different purposes.

And Here's How ...

There are implicit enhancement points at the beginning and the end of the
enhancement implementations. This helps you nest the enhancements as shown
in the example in Figure 1.

1 Applicable to SAP NetWeaver release 7.3 and later.

280

Enhancements Part 8
Report [ENH_WESTED_DEMO | Active

1 B A m e e e e e e e e e e

2{ | *& Report ENH _NESTED DEMO

3| | s

‘l P o s

5i g

6 | *4

e .

8/ REPORT ENH NESTED DEMO.

9 EJ PP PP T I PR PP PP RN PEEF OP PR NF PR PT OV FF BF PE PP MR PR PFPFEP PR ORF PE PY P NF FE PP PP PR NS PR PF PP R ORE PP PP PR RF PR PP OV FF B PF PP ONE PR BF PEEP OR PR PF PR OT R PR PF PP IR N PR PP R
10 L #$45-Start: (2)mmmmmmm e o e e e e e
11] B ENHANCEMENT 1 ENH NESTED DEMO_LEVEL 3. ractive version
1z, B *

13 FF B % IF PR PF BF OF B8 P BF OF 0% BF PR BT 09 R BF PR BP0 PR PP PR OF 0F OF PF BT R 0 PF PP PP ORI PR BF AR 00 F FF B BV R O PR PP 09 O BF PR PP B PR BT BT 6P 0% 1R FF BT 0F 0W OF PF BT BRI PR PF A

14 RERE-SEArt] (2] mmm e e e]

155 H ENHANCENENT 1 INH_NEﬁTID_DIHO_LIV[L_Z G "active version

16| H #

]_1: FF RE U U FE RF BF UR B FY BF 0F 0% BF FF BT 0¥ 5 BF PF EF 08 68 BF BF OF 08 6F FF F OF 08 FF EF BF U8 14 PE PF SF 08 08 FF BF SF 0% DF FF PF 08 08 BF FF EF 0800 FF BF OF 08 FF FF FF OF I¥ 1F PF P 08 04 PR PF 8

18] | #§#§-Starts (3] —mmmmm oo

15! g ENHANCEMENT 1 ENH NESTED_DEMO_LEVEL 1. "active version

20 © *

2 1 FFPE T W PR PF PP PR RCPEPF OF PR NF PR PT Y PR BFPE PP Y PR PF PP OP PR ONE PF PY T IF FE PP PP PR N PR PF PP O RF PE PF R PR NF PR PP O NF BF PF PP PR OPE PF PFEP OR PR PF PR OT IV PR PP PP AR PR PP R

2] | #SAF-SEALED () e e e e e e e e

23 [JENMANCEMENT 1 ENH NESTED_DEMO_LEVEL_D. ractive version

za; | =

25 - ENDEWMAWCEMEWT.

26| | *§*S—FEnd: (d) === e e e e

27 | ENDENEANCENENT.

28] | #§AF-End: (3] mmm e m e

29/ ENDENHANCEMENT.

30| LR e F () mim o

31 ENDENHANCEMEN T,

32! #§*§-End: (1) e e e e e e e e e e e e e e e e e e e]
~

-~

Figure 1 Nested Enhancement Implementation Example

Figure 1 shows that Report ENH_NESTED_DEMUO is enhanced four times, with
each enhancement creating a new level. Let's go over the steps you need to follow
to create a nested enhancement using this scenario.

1.
2.

Create enhancement implementation ENH_NESTED_DEMO_LEVEL_3.

An implicit enhancement point will automatically exist in the enhancement
implementation that you created in the previous step. Create a new enhance-
ment implementation ENH_NESTED_DEMO_LEVEL_2.

. Create as many new levels as you want. In the example in Figure 1, enhance-
ments are nested up to four levels.

Figure 2 illustrates the structure of the enhancement layers created in Figure 1.

281

Tip 84 Using Nested Enhancements in Existing Enhancement Implementations

« Figure 2 Using Nested
Enhancements to Create
Enhancement Layers

ENH_MNESTED_DEMO_LEVEL_3

ENH_MESTED_DEMO_LEVEL_1

ENH_MESTED_DEMO_LEVEL_O

Nested enhancements allow you to create enhancement layers as shown in Figure
2. This feature may not be required in small implementations, but if you're using
an IS-specific system or a country-specific system implemented by a global com-
pany, you're quite likely going to need to enhance the existing enhancements. If
you modify the existing enhancement or repair the enhanced code instead of creat-
ing nested enhancements, you'll lose the benefits of the Enhancement Framework.
If the enhancements are changed in the future, you'll lose all of the modifications
that you made on the enhancements. However, if you create a nested enhance-
ment, your enhancements won't be affected by these updates even if the enhance-
ment changes.

282

Tip @

Using Enhancements
When Modifying Standard
ABAP Programs

When you absolutely must modify standard ABAP programs, you can create enhancement
points instead of directly modifying the source code when working with the programs.

Suppose you want to implement a customer requirement in an SAP system that
forces you to modify the standard ABAP program. When you analyze the implicit
and explicit enhancement options in the source code, you find that none of the
enhancement options can be used to implement the solution. Although modifying
the source code isn't recommended because you'll lose the SAP support on the
modified source code and need to perform time-consuming operations on it, you
don't have any other option in this case. In this tip, we'll show you a technique
that will help you benefit from the Enhancement Framework while modifying the
standard ABAP programs.

And Here's How ...

You can normally modify the source code and implement your solution directly
in the source code. However, because you always want to use the Enhancement
Framework to modify standard SAP programs, you can create an enhancement
point at the source code location where you want to modify and implement this
custom enhancement point.

Let's walk through an example. Suppose you want to modify Program BCALV_
FULLSCREEN_DEMO to add additional logic before the function module call
REUSE_ALV_GRID_DISPLAY, and you can't find a suitable enhancement option.

283

Tip 85 Using Enhancements When Modifying Standard ABAP Programs

Modify the source code by adding following line just before the function call
REUSE_ALV_GRID_DISPLAY:

EMHANCEMENT -POINT ZDEMO_EMH SPOTS ZDEMO_SPOT.

Here, you can use either an existing enhancement spot or specify a new enhance-
ment spot. When you save the source code, the popup window appears as shown
in Figure 1, and the system creates an enhancement spot (if it doesn't exist). After
you click the CONTINUE button (¥), the enhancement point will be assigned to
the enhancement spot.

[Br Thange Erhancement Option

| Type and Name Enhanceable Object |
®Enhancement Point |ZnEND_EWH Type |Progren |
OEnhancement Section |] Mama |BCALY_FULLSCREEN_DEHO]

L Framewark Program |BCALY_FULLSCREEN_DEMD

[Inchusion in Source Code]
() As Unconditional Call (STATIC Addition) Inchude Bound
(®)As Condtional Call (Suitable for Non-Declarative Statements)

| Enhancement Spot

()= YA
Select or Create Assigned Enhancement Spot

[} Erhancement Spot Shart Text Int,_Packags Request Compasite Enhancement Spat Shart Text
. |mmemo_spoT (] ZEMHANCEMENTS

L LI

Wi

A Figure 1 Assigning an Enhancement Point to the Enhancement Spot

This is the only modification that you must perform; the final appearance of the
source code will be as shown in Figure 2.

33x #"List Headar for Top-Of-FPags
345 PERFORM _CON
g INSERT A73K900020
56 ENHANCEMENT-POINT ZDEMO ENE SPOTS ZDEMO SPOT .
L2l INSERT

LIST TOP_OF_PAGE[].

38K L *mDisplay LIET

39% CALL FUNCTION 'REUSE_ALV_GRID_DISPLAY'

4077 EXPORTING

415 I_BACEGROUND_ID = 'ALV_ BACKGROUND'
g2l i_buffer_sctive = 'x

430 I_CALLBACK_PROGRAM = G_REPID

=P 1 _STRICTIRE MiWMFE B_SELToHT

Z Figure 2 Enhancement Point Created in a Standard ABAFP Program

You can now make use of all the benefits of the Enhancement Framework. This
technique will definitely help you use the Enhancement Framework as a single
point of access to all changes on standard objects.

284

Tip @

Activating or Deactivating
Enhancements with the
Switch Framework

You can assign an enhancement implementation’s package to a switch to turn the
enhancement implementations on and off for different systems.

When you're developing an application that contains enhancement implementa-
tions and will be run on different systems, you may need to implement different
enhancements according to the configuration on the target system. In this tip, we'll
show you how to use the Switch Framework to turn only the required enhance-
ment implementations on and off on the system.

And Here's How ...

All enhancement implementations are switchable by default. However, if you
don't assign the package of the enhancement implementation to a switch, it will
automatically be active on the system. However, you might want to activate the
enhancement only in specific conditions. If you attach a switch to a package of
the enhancement, it can be switched on and off on the system using the Switch
Framework. You must first create a switch and assign the package of the enhance-
ment implementation to the switch.

Perform the following operations to create a switch and assign the package to it:

1. Go to Transaction SFW1, enter the name of the switch as "ZSWDEMO", and
click CREATE.

285

Tip 86 Activating or Deactivating Enhancements with the Switch Framework

2. Enter the DescripTiON for the switch and click SAvE in the popup dialog that
appears.

3. Assign a package and transport request.

4. A switch is created. Navigate to the PACKGS tab and enter the name of the pack-
age, whose contents will be made switchable, in the Packaces list.

5. Click SAVE (H) and then ACTIVATE dII) to activate the switch. Activation of the
switch runs in the background, so you have to restart the transaction to refresh
the object status

You've now created the switch and attached the switch to the package that con-
tains switchable objects. Next, you must assign the switch to a business function.
Perform the following steps to create a business function:

1. Go to Transaction SFW2, enter the name of the business function as “ZBFDEMQO",
and click CREATE.

2. In the popup dialog that appears, enter the DEscrIPTION and LONG TEXT for the
business function.

3. Select the TYPE as ENTERPRISE BUSINESS FUNCTION, and click SAVE.

4. Assign a package and transport request.

5. A business function maintenance screen opens. Enter the name of the switch
that you created before in the SwitcH list and select TYPE as the ACTIVATION.

6. Navigate to the ATTRIBUTES tab.

7. Check the REVERSIBLE flag to make the business function reversible. This setting
allows you to switch off the business function in the future. Otherwise, you can't
switch off the business function.

8. Click SAVE (H) and ACTIVATE @ to activate the business function. This will
also run in the background.

You can check the result of the activation by restarting the transaction. When the
business function is activated, you can switch the enhancements on and off in
Transaction SFW5. Figure 1 shows the initial view of Transaction SFW5.

Note that business function ZBFDEMO is now on the list. The | icon indicates that
the business function can be reversed, meaning you can activate or deactivate it
anytime you want. You can't deactivate the switches that aren't reversible. To acti-
vate the switch, select the checkbox on the SCHEDULED STATUS column, and click

286

Enhancements

Part 8

the AcTIvATE CHANGES button on the toolbar. Activation runs in the background
again. When you activate the business function, the icon turns into a yellow bulb

.

gBchack Changes

I Activate Changes

¥EDisplay Legend

Business Function Set |
Mame
0O

B canap 11
«) CcA_PA_CE_GE_QUALI
- & DA_ARCHOBI_STANDARD_1

- & nm

- 8 LM _RWC_TAX

+ & LM RWC_TAX IS OIL
+ & LM_RWC_TAX_I5 U
+ & pca_kevv

& Rs_IQM

- & zeFDEMO

~ [CJEMTERPRISE_BUSINESS_FUNCTIONS

+ & LM_RWC_PRODUCT _LIABILITY

__Enl‘erprlse BLsiness FUNCtions

CA, Evaluations, Appraisals, and Surveys 01

A, Employee Qualfications for Concurrent...
Data Archiving: Standardization of Archivin...

Informiation Lifecycle Management

Fredefined Retention Warehouse Content,..
Fredefined Retention Warehouse Content...
Predefined Retention Warehouse Content...
ILM: Predef, Ret, Warehouse Content- Ta...
Periodic Key Replacerent for Payment Car...

1M Reporting (Reversible)

|Demonstration of Business Function (Reve...

Scheduled Status

0000000000

A Figure 1 Changing the Business Function Status

You can easily switch the enhancement on and off using this technique. When
the enhancement is switched off, it's not compiled in the system, which means it
won't have any effect on the system performance. You can assign switches to the
units that are technically and semantically related and use the business function
to maintain the state of the switch.

287

87,

Adjusting Enhanced Objects
When Upgrading the SAP System

When you perform an upgrade to the system or implement a support package, you can
access a transaction that will explain which enhancement implementations need to be
adjusted.

As we've discussed in other tips, the Enhancement Framework must be the first
option to modify or enhance the development object in an SAP system. However,
if you perform an upgrade or implement a support package, the enhancements
must be adjusted using Transaction SPAU_ENH because the enhanced part of the
object might be changed during the upgrade or support package import. In this
tip, we'll show you how to use the adjustment tool.

And Here's How ...

When you access Transaction SPAU_ENH after an upgrade or support package
implementation, you'll see all of the enhancement implementations that need to
be adjusted in a tree as shown in Figure 1.

[Brerhancement info system « Figure 1 Enhancement List in
e = Transaction SPAU_ENH that Need
- Adjustment
v & i
(& L= L) e [&)E &) (@) |]s)
Object Name Description

= 3 Overal View Enhancaments UPGR
* [E Compesite Enh. Impl. Parents
+ [Compoasite Enh, Imgl. wfo Paren
* 2 Mon-Composite Enh. Implementati
« OAD Y_BADI_RE_CN_CN
+ QA0 Y_BADI_RE_RA_CA
« @O0 Z_MAP_OCI_TO_ITEM
+ OO0 Z_POSITON_SEARCH

288

Enhancements Part 8

You must adjust each item in the list individually. The icon beside the enhance-
ment name indicates the adjustment state. Figure 2 shows the possible adjustment
statuses that an enhancement can take.

Automatic Adiustment 4« Figure 2 Possible Adjustment Statuses
Manua Adjustment

Deleted

Reset

Interim Version

Error

Adjusted

Semantic Chang

Tool-Supported Adjustment
Enhancement has no implementation
No Contract Exists

TG emEaEg

To start the adjustment, double-click on an enhancement from the list. The
ENHANCEMENT IMPLEMENTATION screen opens with an additional ADJUSTMENT
tab as shown in Figure 3.

Enhancement Implementation |z_POSITON_SEARCH | active

Py His Technical Detals

| @@wl | I&'Cmﬁct ”V_ur.]l._:t Enhancement lmnlprnmt.:mnnj @Lﬁu Text
Conflict List

Status BAdI taramn ach Badl uygulamas [Conflict Type
QA0 HRASRODGEN_SERVICE_BASIC Z_POSITION_SEARCH Interface method is not implemented

A Figure 3 Adjustment Screen for the Enhancement Implementation

Double-click on each conflict to see its details. The type of the adjustment will
change depending on the enhancement technology used.

Source code conflicts are displayed in the Splitscreen Editor where you can adjust
the affected source code. Other types of conflicts are explained with onscreen
instructions that you can follow to make the adjustments.

289

L 88

Using the Enhancement
Category to Restrict Table and
Structure Enhancements

You can restrict the types of enhancements that other people can perform using Custom-
izing includes or append structures to maintain a needed system structure.

The Enhancement Framework allows you to enhance the tables and structures
using Customizing includes and append structures. However, structure change can
cause many problems within the system. You have to make sure that the change
won't affect the objects that depend on the enhanced table or structure. To restrict
the types of enhancements that can be implemented on the table or structure,
we'll show you how to set up the ENHANCEMENT CATEGORY property for tables
and structures.

And Here's How ...

Tables and structures can be enhanced in two ways: Customizing includes and
append structures.

Customizing includes are included in the standard structures that are expected to be
enhanced with customer-specific fields. The names of the Customizing includes
start with “CI_" and are appended in the structure with the .include statement,
even though they don't exist in the ABAP Data Dictionary. You can create Custom-
izing includes with forward navigation by double-clicking on the name.

290

Enhancements Part 8

Customizing includes are created in the customer namespace. This ensures that
the changes won't be overwritten with subsequent upgrades. Figure 1 shows an
example table enhanced with three customer-specific fields.

Trarsp. Table PLMK Active
Short Description lInspection plan characteristics
~ Attributes and Mantenance ‘check Fields
B Bl = ED FREE{a] (8] schnep | [Fredefned Type |
Field Key Ini.. Data lemaent Data T... Length Deci... Short Description
| spamIT [[sPCERIT CHAR 3 0SPC Criterion
| | mvcLune] [cI PLmg STRU 0]
ZIMEPREIS [0 [[zZERFREIS CURR 11 2Net price for inspection characteristic
| zzmkETHE []| [WAERS CUKY 5 0 Currency Key
| |zzcoaREL [] [ZZCOAREL CHAR 1 0CoA relevance

2 Figure 1 Enhancing a Standard Table with a Customizing Include

If Customizing includes aren't available in the structure, the structure still can be
enhanced using append structures. You can append a structure to the standard tables
or structures using the APPEND STRUCTURE button on the toolbar.

A word of warning: be careful when enhancing a structure because it might be
included in another structure. The enhanced fields on the structure will immedi-
ately be available on the dependent structure. ABAP programs that use the struc-
ture can also be affected by the change.

Both options make it pretty easy to enhance the tables and structures. However,
the change in the field structure may lead to very serious problems in the system.

Restricting Enhancement Use

If the UNicoDE CHECK AcTIVE flag isn't set in the program that uses the structure,
the change in the structure may lead to syntax or runtime errors. If the flag is set,
the structure change might affect the fragment view of the structure. This change
affects the assignments, comparison statements, and accesses with an offset and
length. Therefore, you'll need to set the ENHANCEMENT CATEGORY property on
the tables and structures to restrict the enhancement on the structures. Set the
ENHANCEMENT CATEGORY by choosing EXTRAS « ENHANCEMENT CATEGORY while
you're modifying the table or structure definition in Transaction SE11.

You can set the following options for the ENHANCEMENT CATEGORY:

291

Tip 88 Using the Enhancement Category

» CAN BE ENHANCED (DEEP)
Enhance the structure with any type of fields.

» CAN BE ENHANCED (CHARACTER-TYPE OR NUMERIC)
Only enhance the structure with character-type or numeric fields.

» CAN BE ENHANCED (CHARACTER-TYPE)
Only enhance the structure with character-type fields.

» CANNOT BE ENHANCED
The structure can't be enhanced.

» NOT CLASSIFIED
The structure isn't classified in any of the enhancement categories.

You must set the ENHANCEMENT CATEGORY for the tables and structures according
to these definitions to make sure that the enhancement that will be performed
in the future won't affect other development objects that depend on the table or
structure.

292

Tip @

Creating Multiple-Use
Business Add-Ins

You can define a multiple-use Business Add-In that can be implemented many times for
different purposes.

Business Add-In (BAdI) technology allows you to define an explicit enhancement
point that allows implementers limited access to the original source code. When
you implement a BAd], all of the implementation logic will be in the methods of a
custom class that is generated during implementation. You can also define a BAdI
that can be implemented multiple times for different purposes; for example, to
allow developers to implement different tasks in different conditions after saving
data in the application.

And Here's How ...

Before you can create a BAdI definition, you must create an enhancement spot by
following these steps:

1. Go to Transaction SE18, enter the name in the ENHANCEMENT SpoT field, and
click CREATE.

2. Enter the SHORT TexT, and click the CREATION OF ENHANCEMENT button ().

3. The PACKAGE SELECTION dialog opens. Assign an enhancement spot to a package,
and select or create a new transport request.

The enhancement spot is created as shown in Figure 1.

293

Tip 89 Creating Multiple-Use Business Add-Ins

Erhancement Spot |z_Es_DEMD | Inactive

[O)E] (]

[E]eadi Definitions Description

A Figure T An Empty Enhancement Spot

Create a BAdI Definition
You can now start creating BAdI definitions in the enhancement spot:

1. Click the CREATE button @ on the toolbar just above the BADI DEFINITIONS
list.

2. Fill in the NamE and SHORrT DEscripTION fields, and click the CONTINUE button
(¥). An empty BAdI definition will be created as shown in Figure 2.

Enhancement Spoat |z_E5_DEMO | Inactive

cmentatons_ Techica Detas /B

([O][@]) =] [1] [@R][TE] BadI Defirition [28ADT_DEND] [tech.| B
FE]eadi Definitions Description Description |BACl Demo |
~ €3 7pAN]_DEMO Badl Demo Usabiity |
- B nterface [Muiltiple Use
* @ Implementation: | [CJcan only be implementad SAP-Intamaly
| [Limited Fiter Usage
| Instance Creation Mode
(#) Newly Creating Instantiation

: ()Reusing Instantiation
| O Context-Specific Instantiation
|

[Icall falback if no implerentation s executed -
Fallback Class | | [2)6

A Figure 2 An Empty BAdI Definition

3. To enable multiple implementations for the BAdI, make sure that the MULTIPLE
Uske checkbox in the UsaBILITY section is checked.

Define an Interface
Now you need to define the interface that will be used to interact between the
BAdI and the original source code:

294

Enhancements Part 8

1. Open the tree in the BADI DEFINITIONS list, and double-click on the INTERFACE
icon.

2. Enter the name in the INTERFACE field, and click the CHANGE INTERFACE button

(2).

. Confirm the popup that asks you if you want to create the interface.

3

4. Assign a package, and select a transport request.

5. Create a method in the interface, and define method parameters.
6

. Save and activate both the interface and enhancement spot. The result will be
as shown in Figure 3.

Enhancement Spot |z_Es DEMO
 attributes + Enhancem. Implementations | Technical Detals |
(O](a] (=] (67 1.)68] %] | Mnteartecs
EJBad! Definitions Description Badl Definition |ZBADT_DEMO]
~ €678aDI_ DEMO |BAdI Demo Interface 2_IF_DEMD 2)sés
* Einterface Methad |Description
* @ Implementatiors AFTER_SAVE Optional Tasks After Save

2 Figure 3 Business Add-In Example

Now your BAdI is ready to use and can be implemented several times.

Note that you can't use the EXPORTING or RETURNING parameters for multiple-use
BAdIs. It would be meaningless to return the same variable from multiple imple-
mentations. However, you can use the CHANGING parameter in multiple-use BAdIs.
If you change the parameter in one implementation, the changed value will be
used in the next implementation.

295

Tip @

Using Filters to Select Between
Multiple BAdI Implementations

You can define a filter for a BAdI to allow developers to implement the same BAdlI several
times each_for different filter values.

When you're developing an application that will run on several systems, defining
BAdIs helps other developers easily adapt your application into their organizations.
There might also be cases in which different logics must be implemented in the
same BAdI, and the implementations must be filtered according to the runtime
values.

Normally, you can define a BAdI and provide the critical variables as an interface
parameter, and the developer can implement the whole logic in the same imple-
mentation using IF or CASE statements. Alternatively, you can define a filter for a
BAdI to allow developers to create multiple BAdI implementations and run them
according to the filter values.

And Here's How ...

You can create a filter for a BAdI in the enhancement spot where the BAdI is cre-
ated. To do this, follow these steps:

1. Go to Transaction SE18 and open the enhancement spot in change mode. You can
use the CREATE BADI SUBOBJECT button to create a filter as shown in Figure 1.

296

Enhancements Part 8

Enhancement Spot |z_Fs_pEMD
Attributes +* Enhancem. Implementations | Technical Detals _(Enh. §
O] (=] G 1) [=] Bad] Definition |zBADT_DEMD | @ tech. |
[eadi Definitiors~ Create Fiter I BAdI Demo
v %7 ZBADI_DEMO Create Screen Enhancement |2_1F _DEMD |
Create Menu Enhancement
T ke
[(JCan only be implermented SAP-internally
[_Limited Filter Usage

A Figure 1 Creating a Filter—Step 1

2. In the popup that appears, enter the filter details as shown in Figure 2.

[Create Fiter for BAdI ZBADI_DEMO

|| Filter Definition

| B Fiter [PRODUCT TYPE

| Fiter Typs [c]

|| Description |Praduct Type Filter |
| [Jconstant Fiter Value During Cal

|| Filter Value Check for BAI Implementations
| ®)No check

| (O automatic Thiough Dictianary

|| Oy own program

|

i %3

2 Figure 2 Creating a Filter—Step 2

3. Click the CONTINUE button to finish the operation.

Now you can assign different product types for different implementations. Perform
the following operations to assign a filter to the implementation:
1. Open the enhancement implementation in Transaction SE19.

2. Open the tree for the relevant implementation in the BADI IMPLEMENTATIONS
list, and double-click on the FILTER VAL. item.

3. Click on the CREATE FILTER COMBINATION button ([Combination |),

4. An empty filter combination is created. Select the created row, and click the

CHANGE FILTER VALUE button (& Filt. val. |

5. Enter the filter details as shown in Figure 3.

297

Tip 90 Using Filters to Select Between Multiple BAdI Implementations

[E Change Filter Value & Figure 3 Assigning a Filter
: : to an Implementation
Filter Type Character-Type f@ Filter Attributes]
Filter Value |
Value 1 TYPEL
Comparator 1 = -
Fiter PRODUCT_TYPE
Comparator 2 i
value 2 '
]

6. Click the CoNTINUE button (#)) to finish the assignment. Save and activate the
enhancement implementation.

You can now use the filter in the ABAP program where the BAdI is called using
the following syntax:

GET BADI handle FILTERS product_type = product_type.
call badi handle-»calculate_tax.

As you see in the example, you can call enhancement implementations dynami-
cally depending on the runtime values. This is quite useful if you can guess the
parameter that can be used as a filter. On the other hand, it's also practical to
implement BAdIs according to the filters, instead of coding all of the logic in the
ABAP program.

298

Tip @

Finding BAdIs in SAP Transactions
Using the ABAP Debugger

You can use debugging techniques to_find BAdIs that are available in a transaction.

There are two types of Business Add-Ins defined in the SAP system: classic
BAdIs and new BAdIs. Classic BAdIs were introduced with release 4.6; since SAP
NetWeaver 7.0 has been released, BAdIs have been redesigned to be an impor-
tant part of the Enhancement Framework. All BAdIs are explicitly defined by SAP
in standard transactions to help developers adapt these transactions to specific
requirements.

Sometimes, it might be difficult to find the existing BAdIs in an SAP transaction.
You can use the ABAP Debugger tool to find the BAdIs—both classic and new —that
are defined in a standard transaction.

And Here's How ...

BAdIs are called in ABAP programs in two ways depending on the type of the BAdI.
We'll discuss how to find each type of BAdI in the following sections.

Finding Classic BAdIs

Classic BAdIs are instantiated with the GET_INSTANCE static method of the CL_
EXITHANDLER class. If you put a breakpoint into the method and call a transaction,
the execution will stop every time the program tries to instantiate a BAdI.

Let's put a breakpoint in the method and call Transaction VAO1 as an example. Fig-
ure 1 shows the ABAP Debugger screen that is displayed when the ABAP program
tries to instantiate a classic BAdI.

299

Tip 91 Finding BAdIs in SAP Transactions Using the ABAP Debugger

I [cL_EXITHANDLER===2sas=zssz===_| / [CL_EXITHANDLER==sss=zss==sz===_| /(14 | [S¥-SUBRC |0
% METHOD | 7 |GET_INSTANCE IEAEA [sv-mrx o

» 10| mig_enhspotname TYPE enhspotname, —® v a

4 11| iz_impl TYPE enhboolean, « [H E'v jablas 2 s | Globas |
1z mig badi name TYPE enhbadiid. = [[
13 (Vm]

e 14 : B BE IS
15 EZFORTING E ... Varable V... [val,
16! = — ! |
SRR AT &% EXIT_NAME BADI_SD_SALES

17| INPORTING — = ="
18 cla=s_name = class_name F |-
19| CHANGING |
20} Exir._name = Exit_nume L)

2 Figure 1 A Classic BAd! Call Caught in the ABAP Debugger

As you can see, when you enter Transaction VAO1 the program tries to instantiate
BADI_SD_SALES. You can now use Transaction SE18 to see the definition of the
BAdI and check whether it can be used. If not, you can execute the debugger by
pressing to see if there are more BAdIs.

Finding New BAdIs

New BAdIs are instantiated using the ABAP statement GET BADI. This time, you
can create a breakpoint to stop at the GET BADI command to see if a new BAdI is
available in the same transaction.

Switch on debugging using the /h command, and enter Transaction VAO1 again. In
the ABAP Debugger, select the following menu path to set the breakpoint:

(BREAKPOINTS * BREAKPOINT AT » BREAKPOINT AT STATEMENT)

Enter the statement "GET_BADI" on the popup. Now, execute the debugger by
pressing to see if there are any BAdI calls in the transaction. Figure 2 shows
the ABAP Debugger screen when the execution reaches the GET BADI statement.

This time the BAdI type can be seen on the declaration statement of the 1_badi
variable, which is again BADI_SD_SALES.

300

Enhancements Part 8

15 [cL_ExX_BADI_SD_SALES==========_| / CL_EX _BADI_SD_SALES==========/[1z | [SY-SUBRC |0
$ METHOD | 7 F_ex_paDI_sD_saLes~TRancacTI JER E [sv-masx o
2 Standard Structures Tables Detal D
» 1] Elwethod IF_EX BADI_SD_SALES-TRANSACTION INIT. E
P 2 CLASS CL_EXTT MASTER DEFINITION LOAD. [
3 .
- DATA 1 badi TYPE REF TO BADI_SD_SALES. B
s =
¢ B
] £
8|
3| e
o TRY
11
@& 12 GET BADI 1 badi
13 CONTEXT me.
14
15 CALL BADI 1 badi->TRANSACTION INIT
e rvnﬂm

2 Figure 2 New BAd! Call Caught in the ABAFP Debugger

Although you can find the list of available BAdIs in the SAP documentation (and
you should read the documentation before implementing it), sometimes using
these techniques saves you from having to find the BAdI in the documentation.

301

92,

Creating Customized Transactions
with Transaction Variants

You can tailor and customize transactions to suit your business needs by modifying dif-
ferent aspects of transactions with transaction variants.

In some cases, you might want to customize a business transaction by modifying
the field attributes on the screen. This customization can be either hiding a screen
field or inserting a default value into a screen field and making it read-only. We'll
show you how to achieve this using transaction variants, which allows you to
create a tailored version of a standard transaction by modifying attributes of the
screen fields.

And Here's How ...

Suppose you want to modify the initial screen of Transaction MMO1 (used to create
materials). Figure 1 shows the initial screen that you're going to customize.

Select View(s) Org. Levels Data

Material |
Inchustry sector hd
Material Type [—'|

Change Mumber]

| Copy from... |
Material]

302

Enhancements Part 8

Suppose, for example, you want to perform the following adjustments on the
screen:

Hide the CoPY FROM... MATERIAL field.

Disable the CHANGE NUMBER field.

Insert the Raw Material for MATERIAL TyPE field and make it read-only.

¥y ¥ ¥

Insert the CHEMICAL INDUSTRY for INDUSTRY SECTOR but leave it modifiable.
To accomplish this, follow these steps to create the transaction variant:

1. Go to Transaction SHDO, and enter “MMO01" in the TRANSAcTION CODE field.
2. Click CREATE @ on the toolbar.

3. Click CONTINUE on the information popup to proceed.

4

Select INDUSTRY SECTOR as CHEMICAL INDUSTRY, and select MATERIAL TYPE as
RAwW MATERIAL.

5. Press to proceed. A confirmation dialog opens on which you can see
the filled values and adjust the screen modifications as shown in Figure 2.

[© Confirm Screen Entries

Screen values 0060 Program SAPLMGMM

[¥!Copy sectings Heme of screen variant: || GudXT scrip
Screen variant shOrt LXt
Do not display screen

Field Contents W. content |Output only|Invisible |Required
HMaterial O] O]
Industry sector [n O]

Material Type ROH O O O |
Change Humber O O (] O
Copy from... (Border) O O O O
Material O] (]

(#)[Exit and Save || cuixT | [H|[%]

2 Figure 2 Customize the Screen Fields

All screen elements are listed on the screen. Select the following appropriate
options (if logically possible) for each field:

» W. CONTENT
Saves the value you entered as the default value for the screen field.

303

Tip 92 Creating Customized Transactions with Transaction Variants

» OUTPUT ONLY
Makes the screen field read-only.

» INVISIBLE
Hides the field from the screen.

» REQUIRED
Makes the screen field required.

6. Enter the name and description for the screen variant, and select the fields as
shown in Figure 3 to adjust the screen according to your requirements.

Screen values 0060 Program SAPLMGMM

¥ Copy settings Name of screen wariant: ZHMOL_RAW [GuiXT scrip
Screen varisnt short tMt MM0Ol for Rawv Materials
| 'Do mot display screen

Field Contents W. content |Output only|Invisible |Required
Material []] |
Industry sector c [O O O
Material Type ROH] [+]]
Change Humber O [+] O (W]
Copy from... {Border) O O ! O
Material |] il [l

2 Figure 3 Customize the Screen Fields

7. Click ExiT and SAVE to finish the operation. The screen variant details are dis-
played on the screen. Save and exit the screen.

You're now in the TRANSACTION VARIANT maintenance screen. Make sure you're
in the TRANSACTION VARIANTS tab, and perform the following steps to create the
transaction variant and assign the screen variant that you created in the previous
steps:

1. Enter the name of the transaction variant.

2. Click the CHANGE button @b on the toolbar in the ASSIGN SCREEN VARIANTS
section.

3. Click the INSErT Row button .

4. Enter the name of the screen variant that you created in the previous steps (see
Figure 3).
5. Click the SAVE AssiGNMENT button ().

6. Select GOTO » CREATE VARIANT TRANSACTION from the menu. The Create Trans-
action dialog opens. Enter “ZMMO1_RAW" in the TRANSACTION CODE field.

304

Enhancements Part 8

7. Enter a description in the SHORT TEXT field, and click the CONTINUE button (¥)).
8. The CREATE VARIANT TRANSACTION screen opens. Save and exit to finish the

process.

The transaction variant is ready to use now. You can test it using Transaction
ZMMO1_RAW. The result should be as shown in Figure 4.

Create Material (Initial Screen)
Select View(s) Org, Levels Data

Material

Industry sector C Chemicd Industry
Material Type ROH Raw materill |
Change Number []

{ Figure 4 Transaction MMO1 with Customized
Screen Fields

As you see in Figure 4, the screen fields are customized according to the custom
requirements. You can create different variants for the same transaction for differ-
ent user groups. It's very practical to perform these kinds of basic changes on the
screen without making any modifications.

305

93,

Using Parameter Transactions
to Create a Transaction for
Table Maintenance Dialogs

To allow users to maintain database table entries, you can assign a transaction code to
a table maintenance dialog of a database table by creating a parameter transaction.

Table maintenance dialogs are very helpful for maintaining and transporting entries
for database tables. They are also fairly easy for end users to use. You can access
the table maintenance dialog of a table using Transaction SM30. Normally, if you
want to restrict the user access for table maintenance, you can set the authoriza-
tion group property and assign users to this authorization group. Alternatively,
and probably more practically, you can create parameter transactions to assign a
transaction code for the maintenance screen of a single database table, and end
users can use this transaction code to access the maintenance screen of a table.

And Here's How ...

Parameter transactions are created in Transaction SE93 as for other types of transac-
tions. Perform the following steps to create a parameter transaction:
1. Go to Transaction SE93, enter the transaction code, and click CREATE.

2. On the popup dialog, fill in the SHORT TEXT field, and select START OBJECT as
TRANSACTION WITH PARAMETERS.

3. Click the CONTINUE button (). When the CREATE PARAMETER screen opens,
enter “SM30" in the TRANSACTION field.

4. Select the SKIP INITIAL SCREEN checkbox.

306

Enhancements Part 8

5. Click checkbox INSERT Row button @) on the DEFAULT VALUES table control
to insert the default values for the screen fields. Fill in the table as shown in

Figure 1.

EIE ==

Default Values
Marme of screen field
VIEWNANE
UFDATE

LI

|Walue
ZCUSTOMERS

{ Figure 1 Default Values for
Transaction SM30

6. Enter the name of the table that you want to maintain as a value for the View-
NAME field. You must also enter "X" as a value for the UPDATE field. If you want
to perform another action, you must set one of the following fields to X:

» UPDATE: Maintain

» SHow: Display

» TRANSPORT: Transport

» UPDATE_LTD: Maintain subset

» SHOW_LTD: Display subset

» TRANSP_LTD: Transport subset
7. Save and exit to finish the process.

Now when you go to the transaction code, it will take you directly to the main-
tenance screen as if you entered Transaction SM30, entered the table name in
the TABLE/VIEW field, and clicked the MAINTAIN button. You can use the same
technique for any generic transaction to create transaction codes for special

requirements.

307

Tip @

Using SET/GET Parameters
to Assign Default Values
for Screen Elements

You can use the SET/GET parameters to assign default values to certain screen elements
and make the lives of end users much easier!

When you're developing an ABAP program, it's very important to give end users
the best possible experience when using the program screens. For example, if
there's a screen field that the end user needs to enter in many screens, but the value
of this field is constant most of the time (not always), the end user doesn't want
to fill this field in every time. You can use SET/GET parameters to assign default
values so that end users don't have to repeatedly type in the same value.

And Here's How ...

You can assign a default value on the user's master record at the user level. When-
ever a screen field with this parameter appears on the screen, the field value is
automatically populated. Even if the parameter isn't defined on the user's master
record, the parameter value is stored to the memory after the user enters a value
to the screen field the first time.

Note that you should only use the SET/GET parameters for fields that don’t change
frequently during the user session. If you use the SET/GET parameters for screen
fields that usually take different values, it can even be frustrating for the end user
to change the value every time.

308

Enhancements Part 8

The value of the SET/GET parameters can also be updated with ABAP commands
during the current user session, but all of the changes are cleared when the user
logs off. Let's see the details to understand how SET/GET parameters are used in
the system.

Create the SET/GET Parameter
First, you must create the SET/GET parameters to be able to assign them to the
users. Perform the following operations to create SET/GET parameters:

1. Go to Transaction SE80 to open the Object Navigator.

2. Select WORKBENCH « EDIT OBJECT, and navigate to the MORE tab.

3. Enter “ZTEST" in the SET/GET PArRAMETER ID field, and select the radio button
beside this field.

4. Click the CrReaTE button @ to finish.

Assign the Parameter in the User Master Record
You can now assign the parameter in the user's master record by following these
steps:

1. Go to Transaction SUO1, and open the user maintenance screen for the end user
that you want to assign the SET/GET parameters to.

2. Navigate to the PARAMETERS tab, and fill in the parameter as shown in Figure 1.

Malntain Usars « Figure 1 Assigning a Parameter Value in
the User Master Record
P gh
Wser ANIL
Changed by |ABDUL l27.01.2012/20: 46: 16 St;

. Address | Logon Data | SNC | Defaults < Parameters

IRV = e =Y

Parameters
[ER Parameter 1D Parameter vue Short Description

ZTEST 1000 Test Parameter

The parameter is ready, and it can be used in the selection screen and dialog
screens. If you want to use it on the selection screens, you should use the follow-
ing syntax:

309

Tip 94 Using SET/GET Parameters to Assign Default Values for Screen Elements

PARAMETERS: p_test(4) TYPE n MEMORY ID ztest.

When you run the program for the first time, it's filled with the value you defined
in the user's master record. If you change to a different value, the next time, the
field is populated with the new value until the user logs off the system.

You can also assign the parameter to the fields on the dialog screens as shown in
Figure 2.

= Aftibutes { Figure 2 Assigning SET/GET Parameters to the Screen Field
Dict | Program | Disple | =

Fotmat CHAR =
[~ From dict. Modify I 'I

Com.Eit |

SeachHep |
RetFsd [
PaameterlD [PTEST

¥ SET Parameter
¥ GET Paiametes
I~ Foreign Key Check
™ Upper/Lower Cass

If you select the checkbox GET PARAMETER, the screen field is populated from
memory using the parameter ID entered in the PARAMETER ID field.

If you select the checkbox SET PARAMETER, the parameter value is updated in the
memory when the user changes the value on the screen.

You can also read and update the parameter value in the ABAP programs using the
following syntax:

GET PARAMETER ID “ZTEST® FIELD lv_get.
SET PARAMETER ID “ZTEST® FIELD Tv_set.

On the first line, the parameter value is transferred to the variable 1v_get. Then,
the parameter value in the memory is updated with the value of the 1v_set vari-
able on the second line.

Assign SET/GET Parameters to Data Elements
You can also assign SET/GET parameters to the data elements as shown in Figure 3.

310

Enhancements Part 8

: €« Figure 3 Assigning
ﬁmmmﬂ {mevmda ! SET/GET Parameter BUK to
the Data Element BUKRS
sttt | Dot Tipe e s | ki

| Search Help

Name {c_T001 |

Parameters [BUKRS]

Parameter ID |BUK |

Here, the parameter BUK is assigned to the data element BUKRS. Whenever a
screen field with data element BUKRS is created, the SET/GET parameter BUK is

automatically assigned to this field.

311

Part 9

Web Dynpro ABAP

Things You'll Learn in this Section

95

96

97

98

99
100

Controlling the Runtime Behavior of Web Dynpro ABAP

Applications with Application Parameters 322
Tailoring Web Dynpro ABAP Applications to User Groups with
Application and Component Configuration 325
Customizing Logon Screens for Web Dynpro ABAP

Applications ... 329
Enhancing Web Dynpro ABAP Applications in the

Enhancement Framework U = E |
Debugging Web Dynpro-Specific Program Entrtles 336
Assigning a Transaction Code to a Web Dynpro Application

Using a Parameter Transaction ..., 338

Web Dynpro ABAP is SAP's strategic UI technology that can be used to create
web interfaces. It allows you to separate the presentation layer from the business
logic and develop web applications without knowing any web programming lan-
guages. The tools to develop Web Dynpro ABAP components are fully integrated
in the ABAP Workbench. This part provides tips and tricks to help you use specific
configuration options for Web Dynpro applications. You'll also learn how to use
the specific ABAP Workbench tools, such as the debugger for Web Dynpro ABAP
applications.

313

Tip €@

Controlling the Runtime
Behavior of Web Dynpro
ABAP Applications with
Application Parameters

If you have custom requirements, you can use application parameters to control the
runtime behavior of Web Dynpro ABAP applications.

When you're developing a Web Dynpro ABAP application, you might need to
change the runtime behavior of the application to meet any custom requirements.
Several predefined application parameters can be configured at the application level
or globally on the system to meet these requirements, which can't be achieved
most of the time by changing the source code.

And Here's How ...

You can maintain application parameters in two ways.

Change Attribute for One Application

If you want to change the attribute for a single specific Web Dynpro ABAP appli-
cation, you can maintain the values in the PARAMETERS tab of the Web Dynpro
ABAP application maintenance screen. Perform the following steps to maintain
the application parameters:

1. Open the Web Dynpro ABAP application in the ABAP Workbench.

2. Open the application maintenance screen by double-clicking on the application
name on the object tree.

314

Web Dynpro ABAP Part 9

3. Navigate to the PARAMETERS tab.

4. Select the PARAMETER using the search help, and maintain its value in the VALUE
field.

You can select from several types of predefined parameters offered by the Web
Dynpro ABAP framework as shown in Figure 1. For example, you can use the
parameter WDDISABLEUSERPERSONALIZATION to switch off the personaliza-
tion feature for the end users. It's also possible to add a custom parameter and use
it in the Web Dynpro ABAP application.

[Enhancement Info System

)| appbeation lzwd_dema | Rewisad
s oo | e o
Eﬁspuslm Broveser |
EFehepository Information System)| B
[E) Tag Erowser J||[Parameters Vakse Type Description
Trarsport Organizer |
3 Test Repository |(IIW = Framework attributes (2) 29 Entries found
260 U prowse || R |
[Web Dynpro Comg. / Intf. =] 1l =
[pro Comp. - ——
[zwo_pemo - @@
Attribute Type Description
CIREIN (]E.&) (=] WOY_BOOLEAN Activate Accessbikty Mode -
Cbioct Name Descrio... WDALLOWMLTIPLEACTIONS WDY_POOLEAN Allow Multiple Actions per Round Trip ™
~ o ZWD_DEMO ‘Wb Dynert WDALLOWVALUESUGGEST WDR_APP_PROP__ Default Vahes for Input Fields
« < COMPONENTCONTROLLER WOCONFIGURATIONID STRING Configuration Narme
» o Component Interface WDDELTARENCERING WOR_EPP_PROP_ Delta Rendsring
» B views WODISABLEUSERPERSOMALIZATION WDY_BOOLEAN Do Not Abow Personalization by the Us
- [Windows WODISPLAYLOADINGPAGE WDR_APP_PROP_ Application starts with a loading animat
- O zwo_pemo WDFORCEEXTERNALSTYLESHEET WDY_BOOLEAN Force Use of External Stylesheet
~ 33 Web Dynpro Applications | WOHELPCENTERDISPLAY WDR_APP_PROP_ Contral Heln Center Display
+ B zwd_demo ‘Wb Dynprc WOHIDEEXPLANATION WOY_BOOLEAN Stop Displaying Explanatory Text
WOHIDEMOREFIELDHELPASDEFALLT WDY_BOOLEAN
WOLIGHTSPEED WOY_BOCLEAN Lightspeed Rendering
WOPROTECTEDAPPLICATION WDY_BOOLEAN Save Applcation
WORFCDESTIMATIONL RFCDEST RFC dastination
WORFCDESTINATIONZ RFCDEST Second RFC Destination
WOSHAREDREPOSITORY WDY_BOOLEAN Runtime Repository as Shared Object
WOSIDEPANELCOMFIGURATIONID STRING Conffiguration ID of Side Panel -
L ' 4 »
| 29 Entries found
oy

Figure 1 Maintaining Application Parameters for a Web Dynpro ABAF Application

"

Change Attribute for All Applications

You can use the application parameters when you create more than one application
for the same component, and you want to change the behavior of the same com-
ponent for each Web Dynpro application. If you want to configure the parameters
globally for all applications, the Web Dynpro application wd_global_setting can be
used with the following URL:

315

Tip 95 Controlling the Runtime Behavior of Web Dynpro ABAP Applications

http://<server>:<port>/sap/bc/webdynpro/sap/wd_global_setting

A configuration screen opens as shown in Figure 2.

| Save || Change || Cancel | | Refresh Values | | Display Defaull Values || Display Change Information || Display URL Parameters

-

| WOALLOWVALUESUGGEST
| SAP-WD-CONRGD

| SAP-WD-DELTARENDERING

* Parameter Vale
Activate Accessibiity Mode (WDACCESSBILITY) O
Allow Multiple Actions per Round Trip (WDALLOWMULTIPLEACTIONS):
Default Values for nput Fields (WDALLOWVALUESUGGEST): Value Suggest Activated
Configuration Mame (WDCONPIGURATIOND): [
Detta Rendering (WDDEL TARENDERING): [Defaun
Application starts w ith a loading animation (WDDISPLAYLOADINGPAGE): Automatic: Animation ks Displayed. Start with Tw o
Control Help Center Display (WDHELPCENTERDISPLAY): Defaull
{(WDHIDEMOREFIEL DHEL PASDEFAULT): O
Lightspeed Rendering (WDLIGHTSPEED):
Save Appication (WDPROTECTEDA PRLICATION): o
RFC destination (WDRFCDESTINATION1). _ B)
Second RFC Destination (WORFCDESTIHATIONZ): _
* Runtime Repository as Shared Object (WDSHAREDREPOSITORY):

URL Parameter

SAP-ACCESSBLITY

WOALLOWMULTIPLEACTIONS

SAP.WD-DISPLAY-LOADINGPAGE

SAP-WD-LIGHTSFEED

A Figure 2 Changing Application Parameters Globally

The change you make on this screen will be valid for all Web Dynpro applications.

Using this screen, you can change the following options:

» General system parameters such as enabling accessibility, delta rendering

options, or display options for loading animation

» Adjustment parameters such as enabling or disabling the personalization

globally

» Design parameters such as toolbar design, label alignment, or stylesheet options

» Side panel parameters to configure the side panel

If you set a different value at the application level for specific Web Dynpro appli-
cations, the value at the application level will override the value coming from the

global configuration.

316

http://%3cscrvcr%3e:%3cport%3e/sap/bc/wcbdynpro/sap/wd_globaI_sctting

Tip @

Tailoring Web Dynpro

ABAP Applications to User
Groups with Application and
Component Configuration

You can create component and application configurations to modify the behavior of the
Web Dynpro applications for different target groups.

When you develop a Web Dynpro ABAP application, sometimes you need to
design the application so it can meet the requirements of different user groups.
In this tip, we'll show you how to meet these requirements by creating multiple
sets of application and component configurations for Web Dynpro applications.
This will allow you to make small changes to the attributes of the screen elements
for each configuration and assign them to the different user groups according to
their requirements. You can also publish the same application to the different user
groups only with small changes.

And Here's How ...

To create a new configuration, first create different component configurations, and
modify the behavior of the application in the configurations. Then you can cre-
ate application configurations for each component configuration and assign these
application configurations to the Web Dynpro ABAP applications. For example,
you can hide screen elements using the application and component configurations.

Let's walk through the different steps—you first create a component configuration
by doing the following:

317

Tip 96 Tailoring Web Dynpro ABAP Applications to User Groups

1. Go to Transaction SE80 and open the Web Dynpro component that you want
to configure.

2. On the object tree, right-click on the component name and select the CREATE/
CHANGE CONFIGURATION option from the context menu.

3. The configuration editor opens in a browser window as shown in Figure 1.

Editor for the Web Dynpro ABAP Component Configuration
[Change] [Display | [Cancel | | [Greate] [Copy | [Delete | [Addtional Functions . |

Which com ponent do you want to configure?

Component Name: |ZWD_DEMO | Configuration D * |]

A Figure 1 Configuration Editor for Component Configuration

4, Enter the name of the CONFIGURATION ID in the field and click the CREATE
button.

5. Enter the DEscripTION and PACKAGE name and click OK.
6. Assign a TRANSPORT REQUEST and click OK.

7. A configuration window opens. Expand the view name on the left table, and
the screen elements will be displayed as shown in Figure 2.

Component Configuration ZDEMO1 Help

Demo Configuration

| Save || Check || Hew Windaw | | | Display |

Amputes | Coopooen oo iweb Dynpro Buitt |

Views and Their Label: LABE 1
Bements
Bement Name = Visiilty:) nvisible (%) Mot Personalized [| Final
- [Iman
E— Activated: i Mo (=) Not Personalized [| Final
+ GE PI_VALUE JLoce: |shiot Set or DOXC Binding or Context | (Reset] [JFna
. T LABELZ Line Break: O¥es) Mo (+) Not Personalized [| Final
« T P2_VALUE Design: | Hol Parsonaliz ed b | [Final
R Witing Direction: | Nol Personalized - ["] Final
Labet: |Porameter 1] (Reset] [JFnal
Width: Mot Set or DDIC Binding or Context | (Reset| []Fnal
_I Feset for Ul Bement

A Figure 2 Component Configuration

318

Web Dynpro ABAP Part 9

8. Select the screen element that you want to hide from the tree. Attributes that

can be configured using the configuration settings are displayed on the right
side.

9. Set the VISIBILITY property as INVISIBLE.

10. Save and close the browser window.

You can see the created component configuration on the object tree by clicking the
REFRESH button as shown in Figure 3.

~ dn ZWD_DEMO web Dyrnpro ABAP Demo
= ‘% COMPOMENTCOMTROLLER
» o Component Interface
» B Views
» B windows
» B3 web Dynpro Applications
= 3 Component Configurations

- [& zDEMO1 Demo Configuration

A Figure 3 Displaying the Component Configuration in an Object Tree

Your second main step is to create an application configuration and assign the com-
ponent configuration to the application configuration. Perform the following steps:
1. Go to Transaction SE80 and open the Web Dynpro component.

2. On the object tree, right-click on the Web Dynpro application, and select the
CREATE/CHANGE CONFIGURATION option from the context menu. The configura-
tion editor opens in a browser window.

. Enter the name of the CONFIGURATION ID and click the CREATE button.

3
4, Enter the DescripTION and PACKAGE name and click OK.
5. Assign a TRANSPORT REQUEST and click OK.

6

. The APPLICATION CONFIGURATION screen opens; assign the component configu-
ration that you created in the previous step. The result should be as shown as
in Figure 4.

319

Tip 96 Tailoring Web Dynpro ABAP Applications to User Groups

Demo Configuration

Application Configuration ZDEMO1

[CSave [Gheck | [New Window | | [Dspay] | [Test]

Arbues Structre Appicaton Parameters

| Go to Component Configuration |
Component Usage
|+ zwo_oewo

' Component
ZWD_DEMO

Assignment of Component Configurations

2 Figure 4 Application Configuration

7. Save the configuration and close the browser. You can see the created application
configuration on the object tree by clicking the REFRESH button as shown in

Figure 5.

~ lda ZWD_DEMO

Web Dynipro ABAP Dermno

+ <6 COMPOMENTCONTROLLER
» o Component Interface
v B views
v B windows
~ 5 web Dynpro Applications

* 7 zwd_demo

= A applic. Configurations
- [7DEMOL

~ & Component Configurations

« [zDEMO1

‘Web Dyripro Demo Application
Derno Configuration

Dermio Configuration

 Figure 5 Displaying the Application
Configuration in an Object Tree

8. You can now run the application with the configured settings by right-clicking
on the application configuration and selecting TEsT from the context menu.

320

Tip @

Customizing Logon Screens for
Web Dynpro ABAP Applications

You can customize the logon screens for Web Dynpro ABAP applications to meet different
custom requirements _for end users and improve usability and security.

If you run the Web Dynpro ABAP application directly without portal integration,
the standard logon screen is displayed with default elements, which may not be
suitable for end users. We'll show you how to use the system logon configuration
options to define which fields are displayed on the screen and how to change the
screen layout to meet different custom requirements.

And Here's How ...

When you run the Web Dynpro ABAP application directly without portal integra-
tion, the standard logon screen will be displayed as shown in Figure 1.

This screen may not be suitable for end users, especially if you're publishing the
application to users who don't have much technical background. No elements
should be on the screen that the end user doesn't need to see or modify.

You can customize this screen by changing the system logon configuration options
on the related node in Transaction SICF. Perform the following steps to change the
logon screen for a Web Dynpro ABAP application:

321

Tip 97 Customizing Logon Screens for Web Dynpro ABAP Applications

Systen AT3

Client: [oo1]

User: *

Password: *

Language: [Engish [=]
Change Passw ord

Copyright ® 2012 SAP AG. Al rights reserved. A

& Figure 1 Standard Logon Screen for Web Dynpro Applications

1. Go to Transaction SICF, and find the node for the Web Dynpro ABAP application
for which you want to create a custom logon screen. You can find your node
easily by entering the Web Dynpro ABAP application name in the SERVICE NAME
field and executing the screen (see Figure 2).

~ [default_hast VIRTUAL DEFAULT HOST «{ Figure 2 Web Dynpro ABAP
* @ SAP MAMESPACE; SAP 1S OBLIGED NOT T... Application in Transaction SICF
~ 9l be BASIS TREE (BASIS FUNCTIONS)
~ {6} webdynpro |Web Dynpro Applications
% sap [NAMESPACE SAP
« [@ zwd_demo IWeb Dynpro Demo Application

2. Double-click on the application node to navigate to the CREATE/CHANGE A SER-
VICE screen.

3. Navigate to the ERROR PAGES tab.
4, Select the SYSTEM LoGoN radio button in the LoGON ERRORS tab.

5. Click on the CONFIGURATION button beside the SYsTEM LoGoN radio button to
open the SYSTEM LOGON CONFIGURATION dialog.

6. Select the DEFINE SERVICE SPECIFIC SETTINGS radio button, and all of the cus-
tomizable elements are activated as shown in Figure 3.

322

Web Dynpro ABAP

Part 9

[E System Logon Configuration
(Use Global Settings
{(» Define Senvice-Specific Settings
System Logon Settings
| Select Display | Default
v Systern ID Cient |
| Chent Languiage ol
¥Language
[¥|System Messages Logon Layout and Procedure
[¥|Logon and System Information (+)SAP Implementation
Sereen |SIGN Signature D.. = |

| Actions During Logon

Protocol 1S Switch to HTTPS
|v|Do Mot Display Warnings
[+|Check for Multiple Logan
[|Support Accessibility
|| Certificate Request with HTTPS
[CJOnky at User Request
[(Default User Reguest
Service for Certificate Request:

Senvice for Certificate Assignment:

SAP Theme |S4P_TRADESHOW SAP

()Custom Implementation

ABAP Class

[Adjust Links and Images]

[o][3¢][Save as Global Settings |

o,
oy

Figure 3 System Logon Configuration Options

You can perform the following configurations on the logon screen using the SYSTEM

LoGoN CoNFIGURATION dialog:

>

>

>

Perform the following changes to create a customized logon screen:

Select the fields that should be displayed on the logon screen.

Change the actions that should be performed in different situations during

logon.

Set default values for the CLIENT and LANGUAGE fields.

Change the layout of the logon screen by selecting the screen and theme.

Create a new class by inheriting the CL_ICF_SYSTEM_LOGIN class to create your

own login page.

Adjust the links and images on the logon screen.

323

Tip 97 Customizing Logon Screens for Web Dynpro ABAP Applications

1. Hide the System ID and LanGuace fields, and put a default value in the CuI-
ENT field.

2. Select NETWEAVER from the SCREEN combo box in the LoGON LAYOUT AND
PROCEDURE section.

The result will be as shown in Figure 4.

« Figure 4 Customized Logon
Screen

SAP NetWeaver™
SAP Web Application Server

| clent* (100 |
| User = [
| Passw ora *]
[[Logon]

Change Passw ord

Copyright @ 2012 SAP AG, All fights reserved. Er'

You now have a suitable screen to publish your application to external users such
as customers or partners.

324

Tip @

Enhancing Web Dynpro
ABAP Applications in the
Enhancement Framework

You don't have to modify the original object to enhance Web Dynpro ABAP applications
to meet custom requirements—instead, you can use different enhancement techniques
in the Enhancement Framework.

Web Dynpro ABAP became the standard UI technology for developing web appli-
cations in the ABAP Workbench after the advancement in web technologies. These
Web Dynpro ABAP components need to be modified like other ABAP programs to
fit custom requirements. In this tip, we'll show you the specific techniques offered
by the Enhancement Framework to enhance Web Dynpro ABAP components,
which will save you a lot of time and effort during system upgrades.

And Here's How ...

SAP has introduced the following Web Dynpro ABAP special enhancement tech-
niques to enhance Web Dynpro ABAP components:

¥

Create or delete Ul elements

» Create context nodes and attributes

Create a new view to the component

Add a view or navigation link to the existing window
Create a method or add pre/post/overwrite exits
Create a new attribute, event, or action

325

Tip 98 Enhancing Web Dynpro ABAP Applications in the Enhancement Framework

» Create a new inbound and outbound plug

» Add component or controller usage

Let's see how Web Dynpro ABAP applications can be enhanced using the demo
application WDT_TABLE. Figure 1 shows the initial view of the application.

CARRID input =
Arine: | g
Flight connection
| Airine Fiight Number Depart.city Arrival city =
[aa 0017 MEW YORK SAN FRANCISCO
- AR 0064 SAN FRANCISCO HEW Y ORK
| | AZ 0555 ROME FRANKFURT
| az 0783 ROME TOKYO =
AZ o789 TOKYO ROME
AZ 0780 ROME OSAKA
oL 0106 NEW Y ORK FRANKFURT
oL 1699 NEW ¥ ORK SAN FRANCISCO
DL 1984 SAN FRANCISCO NEW ¥ ORK
Ju 0407 TOKYO FRANKFURT T
Flight connection details =l
Alrline: AA Fiight Number: 0017
Depart.cty: NEWYORK Arrivalcity: SANFRANCISCO
Dep. airport; JFK Dest. arport: SFD
Deparfure: 11:00:00 Arrival Time: 14:01:00

2 Figure 1 Initial View of the WDT_TABLE Application

In the initial screen, you can select any row to see the flight connection details
from the table. Suppose you want to see the departure and arrival times on the
table. This information already exists but can only be seen on the details part, so
it's easy to add this attribute into the table with the following enhancement steps:

1. Go to Transaction SE80 and open the Web Dynpro ABAP component
WDT_TABLE.

2. Open View VIEW_1, and navigate to the LAYOUT tab.

3. Click the ENHANCE button (@) on the toolbar.

4. Enter the NAME and DEscripTION of the enhancement implementation in the
popup dialog.

5. Add the departure and arrival time columns into the table and bind them with
the DEPTIME and ARRTIME attributes in the SPFLI_NODE context node.

6. Save and activate the changes.

326

Web Dynpro ABAP

Part 9

You can now run the application and see that the departure and arrival time infor-

mation has been added into the table as shown in Figure 2.

CARRID input
Airine; | 3| [Ge]
Flight connection
 Airine Flight Number | Depart.city Arrival city
] aa o017 NEW YORK SAN FRANCISCO
AR 0064 SAN FRANCISCO NEW Y ORK
AZ 0555 ROME FRANKFURT
AZ 0788 ROME TOKYO
AZ 0789 TOKYO ROME
AZ 0730 ROME OSAKA
oL 0106 NEW YORK FRANKFURT
oL 1699 HEW YORK SAN FRANCISCO
oL 1984 SAN FRANCISCO NEW Y ORK
L. 0407 TOKY O FRANKFURT
Flight connection details
Airfine; AR Flight Number: 0017
Depart.city: NEW YORK Amivalcity: SAN FRANCISCO
Dep. airport JFK Dest arport: SFO
Departure: 11:00:00 Arrival Time: 14:01.00 Duration: 00:00:00

| Departure
11:00:00
19:00:00
12:00.00
11:45:00
10:35:00
19:35:00
17:15:00
10:00:00
13:30.00

Arrival Time:
14:01:00
17.21:00
21:05:00
08.55:00
19:25:00
08:10:00

20:37:00
18:25:00
17:35:00

]

2 Figure 2 Enhanced View of the WDT _TABLE Application

As shown in the example, Web Dynpro ABAP is tightly integrated with the
Enhancement Framework, which makes it easy to adopt Web Dynpro ABAP appli-
cations into your system without modifying the original object.

327

Tip @

Debugging Web Dynpro-
Specific Program Entities

You can use the Web Dynpro tool in the ABAP Debugger to debug and analyze Web
Dynpro ABAP applications.

Web Dynpro ABAP applications can be debugged by setting external breakpoints
in the source code at relevant positions. This technique is used not only for Web
Dynpro ABAP applications, but also for all types of programs that run outside the
SAP GUI The ABAP Debugger has an additional tool called the Web Dynpro tool
that's designed to help developers debug Web Dynpro applications. In this tip,
we'll show you how to use the Web Dynpro tool to debug Web Dynpro-specific
program entities.

And Here's How ...

Debugging a Web Dynpro ABAP application is as easy as debugging a normal ABAP
program. You only need to set an external breakpoint into the source code to start
the Web Dynpro application in debug mode. You can set external breakpoints using
the SET/DELETE EXTERNAL BREAKPOINT button @ on the toolbar while the cursor
is in the position where you want to start the debugger. When the program execu-
tion reaches the external breakpoint, it stops, and the ABAP Debugger session is
started in a new SAP GUIT session.

Now you can start using the Web Dynpro tool. Add the Web Dynpro tool into the
Debugger Desktop using the NEw Toot button on the right part of any tool
on the desktop. Select the Web Dynpro tool in the SPEciAL TooLs folder, and the
Web Dynpro tool is added into the existing desktop. Figure 1 shows an example
view of the Web Dynpro tool.

328

Web Dynpro ABAP Part 9

. Desktop 1 | Desktop 2

| Web Dynpra Debugger
~ FHwDT_TABLE
el ‘?5 Component
~ & WOT_TABLE
~ & Custom Controlers
- G5 COMPONENTCOMNTROLLER
~ (B3 views
- B view_1
+ B Windows
+ O woT_TaBLE
i ‘I‘?.p Component Usages
- < WD_USAGE_MSG_CMP_1
~ A Used Component
* &8 WDR_MESSAGE_AREA

View [VIEW_1 i)

" properes ORI corvont_| avtuses

~] ROOTUIELEMENTCONTAINER
+)My _INPUT_FIELD
~ [SPFLI_TABELE
v [[] SPFLI_TABLE_CARRID_1
v [SPFLI_TABLE_COMNID_1
v [0 SPELI_TABLE_CITYFROM_1
v [0 SPRLI_TABLE_CITYTO_1

~ %4 Custom Contrallers v [DEPARTURE
- o COMPONENTCONTROLLER v [0 ARRIVAL
~ (B visws + T CAPTION_2
-] MESSAGE_AREA b =S TOOUBAR_1
~ B windows v W MY _DETAILS_TRAY

« 1 MAIN_WINDOW

Property Value

Properties (TableColumn)

Id SPFLI_TABLE_CARRID_1
celDesign standard
colSelectionState notSelectable

filtervalue

A Figure T Web Dynpro Tool in the ABAP Debugger

The tool has so many features that it can't be used efficiently in a small window
as a part of the Debugger Desktop. As shown in Figure 1, you can close all of the
other tools on the desktop to use the Web Dynpro tool more efficiently.

You can see all entities of the Web Dynpro component in a hierarchy and see
the details of the entity by double-clicking it. For example, double-click on the
view name to open the detailed view to see layout elements, context entities, and
attributes.

If you want to navigate to the runtime object, you can right-click on the entity
on the left tree and select DisPLAY RUNTIME OBJECT. You can also navigate to the
definition of the object in the ABAP Workbench using the DisPLAY WORKBENCH
OBJECT option in the same context menu.

Web Dynpro ABAP applications are much different from normal ABAP programs in
both design and runtime perspectives. That's why you need a special tool to debug
and analyze these applications. Otherwise, it would be very difficult to analyze the
Web Dynpro ABAP applications using the standard ABAP Debugger tools.

329

Tip @

Assigning a Transaction Code
to a Web Dynpro Application
Using a Parameter Transaction

You can assign a transaction code for Web Dynpro ABAP applications so end users can
start the application directly in the SAP GUI without needing to provide a username or
password.

You may sometimes need to assign Web Dynpro applications to users who usually
use the SAP GUI for their daily work. However, when you or a user is accessing a
Web Dynpro ABAP application directly from the browser, you'll usually need to
provide a username and password or configure a single sign-on (5§50). Sometimes,
you may need to allow the user to access the applications from the SAP GUI with-
out providing a username or password. To solve this problem, you can create a
transaction code for the Web Dynpro ABAP application that allows end users to
start the application either in the SAP GUI or the web browser using the transac-
tion code without having to provide a username or password.

And Here's How ...

Parameter transactions allow you to assign specific values to the fields on a trans-
action's initial screen, so you can skip the initial screen. This allows you to create
several transaction codes for the same transaction for different purposes. This is
very useful when your end users frequently use the SAP GUI, and you don't want
them to start any other application to run the Web Dynpro ABAP application.

You can use Transaction WDYID to create a transaction code for the Web Dynpro
ABAP applications using the parameter transaction technique. Let's create a trans-

330

Web Dynpro ABAP Part 9

action code for Web Dynpro ABAP application WDT_TABLE. Perform the follow-
ing steps to create the transaction:

1. Go to Transaction SE93.

2. Enter "ZWD_TEST" in the TRaNsAcTION CoDE field and click CREATE.

3. Enter a short text, and select TRANSACTION WITH PARAMETERS in the START
OBJECT section.

4. Enter "WDYID" in the TrRansacTIiON field, and select the SKIP INITIAL SCREEN
checkbox.

5. In the DEFAULT VALUES table, enter “WDT_TABLE" for the APPLICATION field
and enter “Browser" for the STARTMODE field. The result will be as shown as
in Figure 1.

(R & Figure 1 Creating a Parameter
Transaction for a Web Dynpro
Application

Transaction WDYLD |
[/Skip initial scresn

Obsolete: Use default values for transaction
1

Screen
From module pool |

[Classification
[inkerit GUI attrbutes
| Transaction classification
(=) Professional User Transaction
() Easy Web Transaction Service 1]

[JPervasive enabled

| GUI support
["1SAPGUL for HTML
[|SAPGUL for Java
(ISAPGUI for Windows

%P e
Defaut Values
Marne of screen field |Vaue @
APPLICKTION WDT_TABLE
STARTHODE BROWSER —

41 b L

When you run the transaction in the SAP GUI, the Web Dynpro application starts
in a new browser window. You now don't need to provide a username and pass-
word. Authentication is performed using an SSO mechanism. If you change the

331

Tip 100 Assigning a Transaction Code to a Web Dynpro Application

STARTMODE field value to the GUI instead of BROWSER, the application starts
within the SAP GUI window as shown in Figure 2.

E SAFP
< | B @@ CHE DDOS)
SAP
| CARRID input
Airine: | | [Ga]
Flight connection
 Airine Fight Number DeparL.city Arrival city
[aa 0017 NEW YORK SANFRANCISCO
A 0064 SAN FRANCISCO NEW Y ORK
AZ 0555 ROME FRANKFURT
AZ o788 ROME TOKYO
AZ o789 TOKYO ROME

A Figure 2 Starting a Web Dynpro Application within the SAP GUI

Users can run the transaction just like they would when running other transactions;
they may not even realize that they are using a Web Dynpro ABAP application
instead of the normal SAP GUI application.

332

The Author

Abdulbasit Giilsen is a senior SAP technology consultant
focusing on both the ABAP and Java application environ-
ments of SAP. He started his career working as a software
developer for an SAP customer. He moved to an SAP partner
to work as a consultant after 2 years and has continued work-
ing as a technology consultant for 10 years.

He has ABAP development experience on several platforms
(SAP ECC, SAP CRM, HR, IS-U) and in diverse industries, as
well as experience in other SAP platforms and tools, such as
SAP NetWeaver BPM, Portal, and Web Dynpro ABAP/Java. He's been certified in
the ABAP Workbench, SAP NetWeaver Portal development, and SAP NetWeaver
Portal administration.

Abdulbasit is also an active contributor on the SAP Community Network (SCN) and
organizes local SAP community events in Turkey. In early 2012, he was selected as
an SAP Mentor based on his contributions to the SAP community.

333

A

ABAP Data Dictionary, 202
ABAP Debugger, 187, 299
desktop, 134
ABAP layout standards, 89
ABAP object, 165
ABAP object-oriented statements, 150
ABAP programs, 70
compare, 36
improve quality, 178
Action, 325
Adjust database, 264
Adjust enhancement implementation, 288
Adjustment state, 289
Agent class, 115
ALPHA conversion, 220
ALV functions, 198
ALV Grid Control, 22
Append structure, 290
Application configuration, 317
Application Hierarchy
custom, 50
SAF, 50
tool, 50
Application parameters, 314
Application server, 133, 244
Assert statement, 183
Attribute, 325
change for all applications, 315
change for single application, 314
Auto completion, 96

B
Backup, 63
BAPI, 56, 100

BAPI_TRANSACTION_COMMIT, 100
Base class, 115

Bookmark, 31, 83, 84
Bottom-up approach, 268
Breakpoint, 152, 300
at statement, 129
Break-point statement, 183
Buffer, 244
Buffering
generic area, 246
options, 245
single record, 246
Business Add-In (BAdI), 94, 293, 299
classic, 299
create definition, 294
create subobject, 296
[filter, 296
new, 299
Business function, 286
reverse, 286
Bypassing buffer, 247

C

Capture Active Job, 127
Cardinality, 210, 212, 269
Change and transport management system,
52
Check field, 211
Checkpoint group, 183
Check table, 208, 215, 235
cl_abap_memory_utilities, 188
Class, 62
CL_ICF_SYSTEM_LOGIN, 323
CL_EXITHANDLER, 299
Class Builder, 58
Client copy, 232
Clipboard, 77
buffers, 80
ring, 79
Close tool, 135

335

Index

Code

blocks, 75

completion, 94

duplicate, 73

Hints, 91

modify, 73

patterns, 86
Code templates

create, 75

view/modify, 77
Collective search help, 251
Collision check, 250
Command group, 129
Comment blocks, 76
Commit, 100
Compare ABAP data structures, 138
Compare selected systems, 71
Comparison, 72, 138
Component conﬁguration, 317
Component usage, 326
Composite enhancement implementation,

277
Condition

link, 156

stap, 156
Conditional breakpoint, 159
Configuration editor, 318
Context node, 325
Controller usage, 326
Conversion process, 264
Conversion routine, 218, 220
Create Breakpoint Condition option, 159
Customer, 324

hierarchy, 51

namespace, 291
Customizing, 53

include structure, 290

table, 205
Custom parameter, 315
Custom statement patterns, 86

D

Database access, 190
Database server, 244

336

Database tables, 114
Database utility, 262
Data element, 62, 257
Data records, 238
Debug, 122, 328
background job, 126
popup window, 123
running background jobs, 127, 128
scheduled or finished background jobs, 126
Debugger Desktop, 328
Debugger.sap, 125
Debugger Script Services, 152
Declare, 192
Delivery class, 232
Delivery options, 203
Dependency control list, 67
Dequeue, 250
Desktop, 134
Development license, 49
Development node, 51
Development object, 65
documentation, 45
group, 31
status, 39
Development package, 17
Display and maintenance options, 203, 205
Display format, 219
Documentation, 45
Domain, 62, 215, 218, 254
Download, 63
Drag and drop, 28
Drill-down navigation, 25

E

End user, 169
Enhanced copy and paste, 79
Enhancement

implementation, 277

layer, 282

nested, 280

point, 283

spot, 284, 293, 296
Enhancement Category property, 290
Enhancement Framework, 272, 325

Enqueue, 250
Environment Analysis, 57
Error message, 119
customize, 210
Evaluate logs, 239
Event, 225, 325
block, 60, 89
customize, 225
subroutine, 226
Exception, 117
classes, 117
handling, 117
texts, 118
Exclusive lock, 249
extended, 249
Exec, 192
Explicit enhancement option, 273
Explicit enhancement point, 293
Exposed object, 66
Extended paste, 79
Extended Program Check, 170
Extended table maintenance, 234
event, 225
Extended trace list, 192
External breakpoint, 132, 328

F

Favorites, 31, 33
list, 33
Fetch, 192
Field dependency, 230
Filter, 296
combination, 297
Foreign key, 208, 212, 215
relationship, 212, 235, 242
Form-based class builder, 108
Form statements, 20
Forward navigation, 61, 162
Full screen, 135
Fully Buffered option, 246
Function Builder, 97, 144
Function module, 56, 144
call, 102

G

GET BADI, 298, 300

GET parameter, 310

Global class, 108

Global runtime environment, 42
Go to last change, 84

Go to Line, 83

Graphical PC Editor, 45

H

Hierarchical list, 43
Hierarchical tree, 28
HTML Viewer, 22
HTTPF, 132

Implicit enhancement
explicit enhancement, 280
Implicit enhancement option, 273
explicit enhancement option, 283
show, 275
Inactive Object list, 40
Inbound plug, 326
Incremental search, 81
Initial screen
skip, 330
Input conversion
output conversion, 218
Insert statement patterns, 86
Inspection, 174
Interactive templates, 75
Interface, 294
create, 66
Internal format, 219
Internal table, 141

J

Job overview, 126

Index

337

Index

K Namespace, 48
Naming conventions, 174
Keywords, 75 Naming standards, 48
Navigation link, 325
tool, 25
L Navigation window, 26
Nested enhancements, 280
Language import, 232 Network load, 244

Language key, 242
Line editor, 46
Line number, 83
Local object, 43

Non-unique index radio button, 223

Local runtime environment, 39, 42 o
t‘“k dObJecli' 248 Jag Object Navigator, 16, 25, 28, 31, 33, 43, 51,
Og ata ¢ anges, ,1_14' 2??. 309

Logging indicator, 238
Logical unit of work, 100
Logon language, 241
Logon screen

customize, 321
Log-Point statement, 183

Object-oriented (O0) application, 267
Object-oriented (O0) programming, 58,
107
model, 114, 117
Object-oriented (O0) statements
ABAF, 150
Object profile, 155
M Object set, 154
One-step maintenance, 206
QO transaction model, 58
Open SQL, 190
Optimistic lock, 249
Outbound plug, 326
Out-of-the-box functionality, 272

Main package, 17
Maintain options, 203
Maintenance cluster, 228
Maintenance view, 212
Mapping Assistant, 115

Marker, 31

Maximize horizontally, 136

Maximize vertically, 135 P

Memory snapshot, 187

Modularize, 17 Package, 43, 50, 277, 285

STMP, 43
hierarchy, 17, 50, 277

Module statements, 90
Monitor attribute changes, 148

Monitor the change interface, 65

monitors, 238 Package Builder, 17, 18
Multi-language application, 241 Parameter
Multi-user access, 248 configure globally, 315

transaction, 23, 24, 306
Partner, 324

N Pattern, 28
settings, 30
N Persistent class, 114
1 dependency, 213 Point of entry, 158
C cardinality, 214 Point of exit, 158

338

Popup window, 123
Predefined object set, 157
Prepare, 192
Primary index, 221
Primary key, 221
Private library, 24
Process overview, 126
Program
bealv_grid_01, 26
DEMO_OO0_TRANSACTION, 59
Programming interface, 67
Pseudo comment, 173
Public library, 23

Range, 265
Readability, 174
Real-time searches, 81
Reexec, 192
Refactoring Assistant, 111
Relational database, 208
design, 212
Remote Comparison tool, 36
Remote-enabled function module, 102
Remote system, 36, 105
Rename class methods, 111
Reopen, 192
Repair license, 49
Repository Information System, 55
Restore, 63
Reuse, 86
Reuse Library, 21
create, 23
Reuse product, 21
create, 23
RFC, 102, 132
destination, 36, 71, 102, 105
function, 56, 105
interface, 105
Runtime behavior, 314
Runtime object, 262, 329

Index

S

SAP Business Workflow, 194, 197
SAP GUI, 328, 330
shortcut, 123
SAP NetWeaver 7.0, 299
SAP NetWeaver 7.3, 108, 150, 154, 159,
162, 280
SAP shortcut file, 123
SAP Structured Entity Relationship Model
(SERM), 267
SAP Support Portal, 48
Save layout, 137
Screen fields
adjust, 218
Screen variant, 304
Script, 150
Script Wizard, 152
Search help, 62, 251, 257
Secondary index, 221
Selection set, 155
Semantic attributes, 210
Services of the Tool, 136, 143
SET/GET parameters, 308
Shared lock, 249
Simultaneous access, 248
Single sign-on (SS0), 330
Source code, 70
check, 170
format, 89
surround with comments, 75
Source code-based Class Builder, 108, 111
Special tools, 328
Split bar, 73
Splitscreen Editor, 37, 70, 289
SQL Trace, 120
S_TABU_DIS, 206
Standard ABAP program
enhance, 273
modify, 283
Structure, 62
package, 17
Structured row type, 266
Subpackage, 20
Superordinate composite enhancement
implementation, 278

339

Index

Superpackage, 19

Support package, 288
Suspend navigation, 162
Swap, 136

Switch Framework, 285
Sy-batch, 127

Syntax Check function, 170
System command, 124
System logon configuration, 321
System parameters, 238
System performance, 244
System upgrades, 325

T

Table, 62
auditing, 238
maintenance, 203
maintenance dialog, 214, 225, 228, 259,
306
type, 265
Tag, 76
CursorPosition, 76
SurroundedText, 77
Technical documentation, 45
Technical settings, 238
Templates, 86
Test data, 98
directory, 99, 144
Test interface, 98
Test sequence, 100
Test tools, 169
Text edit, 23
Text table, 241
Theme, 323
Time-dependent database table, 259
Time-dependent record, 259
Title node, 51
Toggle bookmark, 85
Tool
ABAP Runtime Analysis, 180
ABAP Unit, 178
Analysis, 169
Code Inspector, 174
Compare Variables, 149

340

Tool (Cont.)
Data Browser, 203
Data Explorer, 162, 163, 165
Data Modeler, 267
Debugger Scripting, 150
Detailed Display, 162
Diff, 138, 149
Diff, history, 140
Event Trace, 194
Generate Table Maintenance Dialog, 205
Graphical representation, 235
Maintain Table Views, 203
Memory Analysis, 187
Memory Inspector, 187
Objects, 165
Performance Trace, 190
Pretty Printer, 89
Replace, 135
Software Layer-Aware Debugger, 154
Split View, 73
Structures, 142, 165
Table, 141
Table Maintenance Generator, 205, 225
Variable Fast Display, 138, 142, 144,
162, 166
Web Dynpro, 328
Work Item Selection, 197
Top-down approach, 268
Trace, 194
Transaction
customize, 302
DEMO_OO_METHOD, 59
SAAEB, 183
SAT, 180
SCI, 174
SCU3, 239
SD11, 268
SE03, 49
SE11, 205, 209, 212, 218, 232, 242,
245, 248, 252, 254, 257, 263, 291
SE13, 238
SE14, 264
SE16, 203
SE18, 293, 296, 300
SE24, 111, 114
SE37, 145

Transaction (Cont.)

SE39, 70

SE54, 205, 229

SE80, 66, 318, 326

SE83, 21

SE84, 55

SE93, 24, 58, 306, 331

SFW1, 285

SFW2, 286

SFW5, 286

SHDO, 303

SICF, 322

SLAD, 154

SLIBN, 23

SLIBE 23

SLIN, 171

SM30, 207, 214, 229, 234, 260

SM34, 231

SM37, 126

SM50, 126

SM59, 102

S_MEMORY_INSPECTOR, 188

SPAU_ENH, 288

S§T05, 190

SWEL, 196

SWi1, 197

WDYID, 330

ZMMOT_RAW, 305
Transaction code

assign to Web Dynpro application, 330
Transaction variant, 302
Transport behavior, 232
Transport management systen, 36
Transport Organizer tools, 49, 52
Tree controls, 23
Two-step maintenance, 206

U

UI element, 325
Unicode check, 291
Unique index, 223

Unit test, 178

Upgrade, 232, 288
Upload, 63

User-specific settings, 63

Index

\

Validity period, 259
Value range, 215, 254
Value table property, 215
Variant, 56, 175
Version management, 36
View, 325

cluster, 228

w

Watchpoint, 146, 152
at Object Attribute, 146
at Variable, 146
local variable, 147
Web Dynpro ABAP, 313
application, 314, 321
enhance components, 325
framework, 315
Web Dynpro component, 329
Where-used list, 57
Window, 325
Workflow, 194
graphic, 199
log, 198
Work item, 197
container, 199
Worklist, 22, 28, 31
comments, 32

X

X Buffer, 80

Y

Y Buffer, 80

Z

7 Buffer, 80

341

