
www.allitebooks.com

http://www.allitebooks.org

Advanced Express Web
Application Development

Your guide to building professional real-world
web applications with Express

Andrew Keig

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Advanced Express Web Application Development

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2013

Production Reference: 1181113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-249-4

www.packtpub.com

Cover Image by Rima Pawooskar (riima@hotmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Andrew Keig

Reviewers
Dave Poon

Artem Vovsya

Acquisition Editors
Erol Staveley

Owen Roberts

Commissioning Editors
Subho Gupta

Sharvari Tawde

Technical Editors
Kapil Hemnani

Tarunveer Shetty

Copy Editors
Sarang Chari

Brandt D'Mello

Lavina Pereira

Project Coordinator
Sherin Padayatty

Proofreader
Simran Bhogal

Indexer
Tejal Daruwale

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Andrew Keig is a London based web developer who has been building web
applications since 2000. He is the author of Packt's Instant RabbitMQ Messaging
Application Development How-to. Andrew has a degree in Computing and blogs at
blog.airasoul.net on topics he is passionate about, such as Node.js, REST, Web
APIs, and behaviour-driven development. He also contributes to various Node.js
open source projects. He is a director at Airasoul, which specializes in the design and
build of scalable, RESTful, specification-driven, and real-time web-based applications
on the Node.js stack. He is also the co-founder of openue.com, a property
search startup.

This book is the culmination of my experience working on multiple
Node.js projects. I thank those who worked with me: Johnny Hall,
Mehdi Avdi, Jozz Hart, Keith Bowditch, Lee Wilson, and
Craig Strong.

I would like to thank TJ. Holowaychuk, the author of Express, the
author of Node.js, Ryan Dahl, Node's current custodian Isaac Z.
Schlueter, and the thousands of Node module developers who have
all contributed to making Node.js an awesome space to work in.

Finally, I would also like to thank my reviewers: Dave Poon, and
Artem Vovsya for their invaluable input and the team at Packt
Publishing for their support.

Finally, thank you to all my family.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Dave Poon is a web developer and designer based in Sydney. He started his career
as a freelance graphic and web designer in 1998 and worked with web development
agencies and medium-size enterprises. After graduating from Central Queensland
University with a degree in Multimedia Studies and Master's degree in IT, he began
his love affair with Drupal, and worked for a variety of companies that use Drupal.

Currently, he is a Design Lead at Suncorp, one of the biggest financial institutions
in Australia. He is also the co-founder of Erlango (http://erlango.com),
a digital product design startup, located in Sydney and Hong Kong, that
creates user-centered digital products and tools for designers and users.

He is also the author of Packt's Drupal 7 Fields/CCK.

I would like to thank my wife Rita for her endless patience
and support. Without her, what I do would be meaningless.

And also I would like to thank my father for his
continued encouragement.

Artem Vovsya has been writing software since 2006, when he started working as
a Delphi developer for a little software company. He got his Bachelor's degree in
Computer Engineering. He tried his hand at being a Delphi and .NET developer.
Two years ago, he fell in love with Node.js, and now he's writing frontend and
backend code completely in JavaScript.

Currently he is a frontend developer at Yandex, the leading Russian search engine.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

This book is dedicated to my wife Rima and beloved son Indie.
Thank you both for your love and understanding.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Foundations 5

Feature set 5
Installation 7
package.json 8
Testing Express with Mocha and SuperTest 9
Feature: Heartbeat 9
Continuous testing with Mocha 11
Code coverage with Mocha and JSCoverage 11
Configuring Express with Nconf 12
Extracting routes 14
404 handling middleware 14
Logging middleware 15
Logging with Winston 16
Task automation with Grunt 17
Summary 19

Chapter 2: Building a Web API 21
Persisting data with MongoDB and Mongoose 21
GitHub tokens 22
Feature: Create a project 23
Feature: Get a project 26
Feature: Edit a project 28
Feature: Delete a project 30
Feature: List projects 31
GitHub API 33
Feature: List repositories 33
Feature: List commits 36

Table of Contents

[ii]

Feature: List issues 39
Validating parameters with param middleware 42
Route improvements 42
Summary 43

Chapter 3: Templating 45
Server-side templating 45
Feature: Master Page 46
Package management with Bower 47
Templates 48
Client-side development with Backbone.js 50
Feature: List projects 50
Feature: List repositories 54
Feature: Create a project 59
Feature: Edit a project 62
Feature: Delete a project 64
Feature: List commits 65
Feature: List issues 68
Summary 71

Chapter 4: Real-time Communication 73
Caching data with Redis 73
Populating Redis 76
Socket.IO 77
Socket.IO on the client 80
Scheduling Redis population 82
Summary 83

Chapter 5: Security 85
Setting up Passport 85
Acceptance testing with Cucumber and Zombie.js 85
Feature: Authentication 86

Scenario: User logs in successfully 88
Scenario: User logs out successfully 95

Securing our site with HTTPS 97
Sharing Express sessions with Socket.IO 98
Cross-site request forgery 99
Improving security with HTTP headers and helmet 101
Summary 102

Chapter 6: Scaling 103
Scaling Express sessions with Redis 103
Scaling Socket.IO with Redis 104

Table of Contents

[iii]

Scaling Express horizontally 105
vision-core 106
vision-api 106
vision-worker 108
vision-web 109

Vertical scale with Cluster 112
Balancing load with Hipache 113
Summary 117

Chapter 7: Production 119
Error handling, domains, and crash-only design 119
Redis sessions 120
SSL termination 120
Caching 123
Favicon 123
Minification	 124

Compression 125
Logging 125
Summary 125

Index 127

Preface
Building an Express application that is reliable, robust, maintainable, testable, and
can scale beyond a single server requires a bit of extra thought and effort. Express
applications that need to survive in a production environment will need to reach
out to the Node ecosystem and beyond for support. Advanced Express Web Application
Development aims to deliver a working real-world, single-page application that can
meet these goals and allow us the opportunity to explore the more advanced features
of Express.

What this book covers
Chapter 1, Foundations, lays the foundation as we put in place a skeleton application;
we introduce testing and automation practices that we will use to build our example
single-page application.

Chapter 2, Building a Web API, helps in building a web API that our application
will consume.

Chapter 3, Templating, helps you create a consuming client with a working web API
in place and explore the client- and server-side templating.

Chapter 4, Real-time Communication, helps us to add real-time updates to content
displayed in our single-page application.

Chapter 5, Security, guides us to secure our application as we look at authentication,
security vulnerabilities, and SSL.

Chapter 6, Scaling, demonstrates scaling our Express application using Redis, and also
looks at the benefits of decoupling an Express application.

Chapter 7, Production, examines real-world Express deployment issues such as
performance, robustness, and reliability.

Preface

[2]

What you need for this book
In order to create and run the examples in this book, you will need a Mac or PC
running Windows or Linux; you can use any text editor. This book will provide you
with instructions on installing Node.js, Express, and various dependencies including
Redis and MongoDB.

Who this book is for
If you are an experienced JavaScript developer who wants to build highly scalable,
real-world applications using Express, this book is ideal for you. This book is an
advanced title and assumes that the reader has some experience with Node.js,
JavaScript MVC web development frameworks, and has at least heard of Express
before. The reader should also have a basic understanding of Redis and MongoDB.
This book is not a tutorial on node but aims to explore some of the more advanced
topics you will encounter when developing, deploying, and maintaining an Express
web application.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Let's extract our route heartbeat into ./lib/routes/heartbeat.js; the following listing
simply exports the route as a function called index:"

A block of code is set as follows:

exports.index = function(req, res){
 res.json(200, 'OK');
};

Any command-line input or output is written as follows:

npm install -g express

NODE_ENV=COVERAGE mocha -R html-cov > coverage.html

Preface

[3]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "In order
to acquire a GitHub token, log in to your GitHub account and go to the Accounts
section of your Settings page, you will need to enter your password. Now click on
Create new token, name the token if you prefer. Click on the copy to clipboard
button in order to copy the token into the following login."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Preface

[4]

Errata
Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you find a mistake in one of our books—maybe a mistake
in the text or the code—we would be grateful if you would report this to us.
By doing so, you can save other readers from frustration and help us improve
subsequent versions of this book. If you find any errata, please report them by
visiting http://www.packtpub.com/submit-errata, selecting your book,
clicking on the errata submission form link, and entering the details of your errata.
Once your errata are verified, your submission will be accepted and the errata will
be uploaded on our website, or added to any list of existing errata, under the Errata
section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Foundations
Advanced Express Web Application Development will guide you through the process of
building a nontrivial, single-page application using Express.

Express is a fast, unopinionated, minimalist, and flexible web application framework
for Node.js written by TJ. Holowaychuk. It was inspired by Sinatra, a web
framework for Ruby. Express provides a robust set of features for building single,
multi-page, and hybrid web applications and has quickly become the most popular
web development framework for node. Express is built on top of an extensible HTTP
server framework—also developed by TJ. Holowaychuk—called Connect. Connect
provides a set of high performance plugins known as middleware. Connect includes
over 20 commonly used middleware, including a logger, session support, cookie
parser, and more.

This book will guide you through the process of building a single-page application
called Vision; a dashboard for software development projects that integrates with
GitHub to give you a single-screen snapshot of your software development projects
issues and commits. This project will allow us to demonstrate the advanced features
Express has to offer and will give us the opportunity to explore the kind of issues
encountered in a commercial development and production deployment of a
node/Express application.

Feature set
We will now begin the process of building a Vision application. We will start from
scratch with a test-first approach. Along the way, we will explore some best practices
and offer tips for when developing web applications with node and Express.

www.allitebooks.com

http://www.allitebooks.org

Foundations

[6]

The Vision application will include the following features:

Feature: Heartbeat
As an administrator
I want to visit an endpoint
So that I can confirm the server is responding

Feature: List projects
As a vision user
I want to see a list of projects
So that I can select a project I want to monitor

Feature: Create project
As a vision user
I want to create a new project
So that I can monitor the activity of multiple repositories

Feature: Get a project
As a vision user
I want to get a project
So that I can monitor the activity of selected repositories

Feature: Edit a project
As a vision user
I want to update a project
So that I can change the repositories I monitor

Feature: Delete a project
As a vision user
I want to delete a project
So that I can remove projects no longer in use

Feature: List repositories
As a vision user
I want to see a list of all repositories for a GitHub account
So that I can select and monitor repositories for my project

Feature: List issues
As a vision user
I want to see a list of multiple repository issues in real time
So that I can review and fix issues

Feature: List commits
As a vision user

Chapter 1

[7]

I want to see a list of multiple repository commits in real time
So that I can review those commits

Feature: Master Page
As a vision user
I want the vision application served as a single page
So that I can spend less time waiting for page loads

Feature: Authentication
As a vision user
I want to be able to authenticate via Github
So that I can view project activity

The following screenshot is of our Vision application; it contains a list of projects,
repositories, commits, and issues. The upper-right corner has a login link that we
will use for authentication:

Installation
If you do not have node installed, visit: http://nodejs.org/download/.

There is also an installation guide on the node GitHub repository wiki if you prefer
not to or cannot use an installer: https://github.com/joyent/node/wiki/
Installation.

Foundations

[8]

Let's install Express globally:

npm install -g express

Download the source code for this book here: https://github.com/
AndrewKeig/advanced-express-application-development.

If you have downloaded the source code, install its dependencies by running
this command:

npm install

package.json
Let's start by creating a root project folder called vision and add a package.json
file to it: ./package.json:

{
 "name": "chapter-1",
 "version": "0.0.0",
 "private": true,
 "scripts": {
 "start": "node app.js"
 }
 "dependencies": {
 "express": "3.x"
 }
}

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

http://www.PacktPub.com/
http://www.PacktPub.com/support
http://www.PacktPub.com/support

Chapter 1

[9]

Testing Express with Mocha and
SuperTest
Now that we have Express installed and our package.json file in place, we can
begin to drive out our application with a test-first approach. We will now install
two modules to assist us: mocha and supertest.

Mocha is a testing framework for node; it's flexible, has good async support, and
allows you to run tests in both a TDD and BDD style. It can also be used on both
the client and server side. Let's install Mocha with the following command:

npm install -g mocha –-save-dev

SuperTest is an integration testing framework that will allow us to easily write tests
against a RESTful HTTP server. Let's install SuperTest:

npm install supertest –-save-dev

Feature: Heartbeat
As an administrator
I want to visit an endpoint
So that I can confirm the server is responding

Let's add a test to ./test/heartbeat.js for our Heartbeat feature. This resource
will get a status from the route /heartbeat and return a 200 Ok status code. Let's
write our first integration test using Mocha and SuperTest. First off, create a folder
named /test inside your vision folder.

Our test describes heartbeat; it expects the response to have a JSON content type
and a status code equal to 200 Ok.

var app = require('../app')
, request = require('supertest');

describe('vision heartbeat api', function(){
 describe('when requesting resource /heartbeat', function(){
 it('should respond with 200', function(done){
 request(app)
 .get('/heartbeat')
 .expect('Content-Type', /json/)
 .expect(200, done);
 });
 });
});

Foundations

[10]

Let's implement the Heartbeat feature; we start by creating a simple Express server,
./lib/express/index.js. We include the express and http modules and create
an Express application. We then add an application setting via app.set called
port and set it to 3000. We define a /heartbeat route via app.get with which
we pass a request handler, function, that takes two parameters: req (request) and
res (response). We use the response object to return a JSON response. We create an
HTTP server with http.createServer by passing our Express application to it; we
listen on port 3000 as defined in our application setting called port. We then export
the application with module.exports; exporting the application allows us to test it.

var express = require('express')
 , http = require('http')
 , app = express();

app.set('port', 3000);

app.get('/heartbeat', function(req, res){
 res.json(200, 'OK')
});

http.createServer(app).listen(app.get('port'));
module.exports = app;

We now create ./app.js in the root of our project and export the express module:

module.exports = require('./lib/express');

To run our test, execute the following command:

mocha

You should then receive the response:

1 tests complete (14 ms)

If successful, try running the application by executing this command:

npm start

With the app running, run the following curl command in a new terminal and you
can see our heartbeat JSON response return a 200 Ok status code:

curl -i http://127.0.0.1:3000/heartbeat

HTTP/1.1 200 OK

X-Powered-By: Express

Chapter 1

[11]

Content-Type: application/json; charset=utf-8

Content-Length: 4

Date: Fri, 14 Jun 2013 08:28:50 GMT

Connection: keep-alive

Continuous testing with Mocha
One of the great things about working with a dynamic language and one of
the things that has drawn me to node is the ability to easily do Test-Driven
Development and continuous testing. Simply run Mocha with the -w watch
switch and Mocha will respond when changes to our codebase are made, and
will automatically rerun the tests:

mocha -w

Code coverage with Mocha and
JSCoverage
Mocha is able to generate a code coverage report with a little help from JSCoverage.
Install JSCoverage for your environment from http://siliconforks.com/
jscoverage/. JSCoverage will parse source code and generate an instrumented
version; this enables mocha to execute this generated code and create a report. We
will need to update ./app.js.

module.exports = (process.env['NODE_ENV'] === "COVERAGE")
 ? require('./lib-cov/express')
 : require('./lib/express');

JSCoverage takes as arguments an input directory, and an output directory:

jscoverage lib lib-cov

Depending on your version of JSCoverage, you may need to add the –no-highlight
switch:

jscoverage lib lib-cov --no-highlight

Foundations

[12]

The following command will generate the coverage report, as shown in the
following screenshot:

NODE_ENV=COVERAGE mocha -R html-cov > coverage.html

Configuring Express with Nconf
Nconf is a configuration tool that we will use to create hierarchical/environment
configuration files for our application. Let's install Nconf:

npm install nconf --save

The first thing we will do is to move the following hardcoded port number from our
Express application into our configuration:

app.set('port', 3000);

Let's create the module ./lib/configuration/index.js, which will allow us to to
read configuration data from JSON files. We import the nconf module and define a
constructor function, Config. We then load a configuration file based on the current
environment and load the default configuration that holds non-environmental
configuration data. We also define a function get(key), which accepts a key and
returns a value. We will use this function to read configuration data:

var nconf = require('nconf');

function Config(){

Chapter 1

[13]

 nconf.argv().env("_");
 var environment = nconf.get("NODE:ENV") || "development";
 nconf.file(environment, "config/" + environment + ".json");
 nconf.file("default", "config/default.json");
}

Config.prototype.get = function(key) {
 return nconf.get(key);
};

module.exports = new Config();

Let's write some configuration for our application. Add the following default
configuration to ./config/default.json; this will be shared amongst all
environments:

{
 "application": {
 "name": "vision"
 }
}

Now add the following configuration to the development, test, and coverage
config files: ./config/development.json, ./config/test.json, and ./config/
coverage.json.

{
 "express": {
 "port": 3000
 }
}

Let's change our Express server ./lib/express/index.js so that it reads
express:port from configuration:

var express = require('express')
 , http = require('http')
 , config = require('../configuration')
 , app = express();

app.set('port', config.get("express:port"));

app.get('/hearbeat', function(req, res){
 res.json(200, 'OK');
});

http.createServer(app).listen(app.get('port'));

module.exports = app;

Foundations

[14]

Extracting routes
Express supports multiple options for application structure. Extracting elements
of an Express application into separate files is one option; a good candidate for this
is routes.

Let's extract our route heartbeat into ./lib/routes/heartbeat.js; the following
listing simply exports the route as a function called index:

exports.index = function(req, res){
 res.json(200, 'OK');
};

Let's make a change to our Express server and remove the anonymous function
we pass to app.get for our route and replace it with a call to the function in the
following listing. We import the route heartbeat and pass in a callback function,
heartbeat.index:

var express = require('express')
 , http = require('http')
 , config = require('../configuration')
 , heartbeat = require('../routes/heartbeat')
 , app = express();

app.set('port', config.get('express:port'));
app.get('/heartbeat', heartbeat.index);

http.createServer(app).listen(app.get('port'));
module.exports = app;

404 handling middleware
In order to handle a 404 Not Found response, let's add a 404 not found middleware.
Let's write a test, ./test/heartbeat.js; the content type returned should be JSON
and the status code expected should be 404 Not Found:

describe('vision heartbeat api', function(){
 describe('when requesting resource /missing', function(){
 it('should respond with 404', function(done){
 request(app)
 .get('/missing')
 .expect('Content-Type', /json/)
 .expect(404, done);
 })
 });
});

Chapter 1

[15]

Now, add the following middleware to ./lib/middleware/notFound.js. Here we
export a function called index and call res.json, which returns a 404 status code and
the message Not Found. The next parameter is not called as our 404 middleware ends
the request by returning a response. Calling next would call the next middleware in
our Express stack; we do not have any more middleware due to this, it's customary to
add error middleware and 404 middleware as the last middleware in your server:

exports.index = function(req, res, next){
 res.json(404, 'Not Found.');
};

Now add the 404 not found middleware to ./lib/express/index.js:

var express = require('express')
 , http = require('http')
 , config = require('../configuration')
 , heartbeat = require('../routes/heartbeat')
 , notFound = require('../middleware/notFound')
 , app = express();

app.set('port', config.get('express:port'));
app.get('/heartbeat', heartbeat.index);
app.use(notFound.index);

http.createServer(app).listen(app.get('port'));
module.exports = app;

Logging middleware
Express comes with a logger middleware via Connect; it's very useful for debugging
an Express application. Let's add it to our Express server ./lib/express/index.js:

var express = require('express')
 , http = require('http')
 , config = require('../configuration')
 , heartbeat = require('../routes/heartbeat')
 , notFound = require('../middleware/notFound')
 , app = express();

app.set('port', config.get('express:port'));
app.use(express.logger({ immediate: true, format: 'dev' }));
app.get('/heartbeat', heartbeat.index);

www.allitebooks.com

http://www.allitebooks.org

Foundations

[16]

app.use(notFound.index);

http.createServer(app).listen(app.get('port'));
module.exports = app;

The immediate option will write a log line on request instead of on response. The
dev option provides concise output colored by the response status. The logger
middleware is placed high in the Express stack in order to log all requests.

Logging with Winston
We will now add logging to our application using Winston; let's install Winston:

npm install winston --save

The 404 middleware will need to log 404 not found, so let's create a simple logger
module, ./lib/logger/index.js; the details of our logger will be configured
with Nconf. We import Winston and the configuration modules. We define our
Logger function, which constructs and returns a file logger—winston.transports.
File—that we configure using values from our config. We default the loggers
maximum size to 1 MB, with a maximum of three rotating files. We instantiate the
Logger function, returning it as a singleton.

var winston = require('winston')
 , config = require('../configuration');

function Logger(){
 return winston.add(winston.transports.File, {
 filename: config.get('logger:filename'),
 maxsize: 1048576,
 maxFiles: 3,
 level: config.get('logger:level')
 });
}

module.exports = new Logger();

Let's add the Logger configuration details to our config files ./config/
development.json and ./config/test.json:

{
 "express": {
 "port": 3000
 },
 "logger" : {

Chapter 1

[17]

 "filename": "logs/run.log",
 "level": "silly",
 }
}

Let's alter the ./lib/middleware/notFound.js middleware to log errors. We
import our logger and log an error message via logger when a 404 Not Found
response is thrown:

var logger = require("../logger");

exports.index = function(req, res, next){
 logger.error('Not Found');
 res.json(404, 'Not Found');
};

Task automation with Grunt
Grunt is a task runner and a great way to automate your node projects. Let's add
a simple grunt script to our project in order to automate running tests and code
coverage. Let's install Grunt and Grunt CLI:

npm install -g grunt-cli

npm install grunt –-save-dev

The grunt-cafe-mocha is a grunt module for running mocha; this module will also
allow us to automate code coverage reports:

npm install grunt-cafe-mocha –-save-dev

The grunt-jscoverage simply generates an instrumented version of our source
code and writes it to ./lib-cov:

npm install grunt-jscoverage –-save-dev

The grunt-env allows you to set the current node environment, NODE_ENV:

npm install grunt-env –-save-dev

Let's create a grunt file ./gruntfile.js. We load the grunt modules we just
installed, and grunt.initConfig contains a configuration for each grunt module:

module.exports = function(grunt) {
 grunt.loadNpmTasks('grunt-jscoverage');
 grunt.loadNpmTasks('grunt-cafe-mocha');

Foundations

[18]

 grunt.loadNpmTasks('grunt-env');

 grunt.initConfig({
 env: {
 test: { NODE_ENV: 'TEST' },
 coverage: { NODE_ENV: 'COVERAGE' }
 },
 cafemocha: {
 test: {
 src: 'test/*.js',
 options: {
 ui: 'bdd',
 reporter: 'spec',
 },
 },
 coverage: {
 src: 'test/*.js',
 options: {
 ui: 'bdd',
 reporter: 'html-cov',
 coverage: {
 output: 'coverage.html'
 }
 }
 },
 },
 jscoverage: {
 options: {
 inputDirectory: 'lib',
 outputDirectory: 'lib-cov',
 highlight: false
 }
 }
 });
 grunt.registerTask('test', ['env:test', 'cafemocha:test']);
 grunt.registerTask('coverage', ['env:coverage',
 'jscoverage', 'cafemocha:coverage']);
};

Chapter 1

[19]

The configuration for cafemocha contains two sections; one for running our tests
and one for generating a code coverage report. In order to run our tests from grunt,
execute the following command:

grunt test

The following line registers a task that sets the environment using env and runs both
the jscoverage and cafemocha:coverage tasks in sequence:

grunt.registerTask('coverage', ['env:coverage',
 'jscoverage', 'cafemocha:coverage']);

In order to run our coverage from grunt, execute the following command:

grunt coverage

This command will generate the coverage report as described earlier.

Summary
We have put in place a fairly solid framework for developing our Vision project;
we have implemented a simple feature, heartbeat, which when visited, simply
informs us whether our Express server is up and running. We have automated
various development tasks, such as running tests and creating code coverage reports.
We also have in place some logging using Winston. In the next chapter, we will
implement a web API.

Building a Web API
With the foundations in place, we begin the process of building a Web API for our
Vision project. We will start by setting up a persistence layer using MongoDB. We
will then implement, feature-by-feature, the various aspects of our Web API.

Persisting data with MongoDB and
Mongoose
MongoDB is an open source document-oriented database system. MongoDB stores
structured data such as JSON-like documents, simplifying integration.

Let's start by creating a MongoDB schema for our project. The schema contains some
basic information related to the project such as the project's name, a GitHub access
token, a user, and a list of repositories.

Let's install Mongoose, a MongoDB Object Document Mapper for Node.js; it
provides a schema-based solution to modeling your data.

npm install mongoose --save

Let's configure our application to use MongoDB and Mongoose; we add a URL for
MongoDB to our configuration files ./lib/config/*.js:

{
 "express": {
 "port": 3000
 },
 "logger" : {
 "filename": "logs/run.log",
 "level": "silly"
 },

Building a Web API

[22]

 "mongo": {
 "url": "mongodb://localhost/vision"
 }
}

Let's create a MongoDB connection module, ./lib/db/index.js, which simply
pulls in the MongoDB URL from our Winston configuration and opens a connection:

var mongoose = require('mongoose')
, config = require('../configuration')
, connectionString = config.get("mongo:url")
, options = { server: { auto_reconnect: true, poolSize: 10 } };

mongoose.connection.open(connectionString, options);

We now create a model class ./lib/models/index.js that defines our
ProjectSchema:

var mongoose = require('mongoose'),
 Schema = mongoose.Schema;

var ProjectSchema = new Schema({
 name : { type: String, required: true, index: true }
 , token : { type: String }
 , user : { type: String, required: true, index: true }
 , created : { type: Date, default: Date.now }
 , repositories : [{ type: String }]
});

mongoose.model('Project', ProjectSchema);
module.exports = mongoose;

In order to run the following examples, we need a running instance of MongoDB.
You can download MongoDB from http://www.mongodb.org. Run the following
command to start MongoDB:

mongod

GitHub tokens
In order to acquire a GitHub token, log in to your GitHub account and go to the
Accounts section of your Settings page. Here you will need to enter your password.
Now click on Create new token, and name the token, if you prefer. Click on the copy
to clipboard button in order to copy the token into the following login file.

Chapter 2

[23]

Let's create a login file—./test/login.js—with the data from GitHub. We will
use this in order to call the GitHub API; this will be removed in a later chapter.

module.exports = {
 user : '#USER#'
 token : '#TOKEN#'
}

Feature: Create a project
As a vision user
I want to create a new project
So that I can monitor the activity of multiple repositories

Let's add a test to our existing set of tests for our feature Create a project. This
resource will POST a project to the route /project and return a 201 Created status
code. The following test: ./test/project.js is the 201 Created test.

This book will not document the full set of tests for a feature. Please refer
to the source code for the full set of tests.

In this example, SuperTest executes an end function that returns a response; this
allows us to check the headers and body of the response.

describe('when creating a new resource /project', function(){
 var project = {
 name: "new project"
 , user: login.user
 , token: login.token
 , repositories : ["12345", "9898"]
 };

 it('should respond with 201', function(done){
 request(app)
 .post('/project')
 .send(project)
 .expect('Content-Type', /json/)
 .expect(201)
 .end(function (err, res) {
 var proj = JSON.parse(res.text);
 assert.equal(proj.name, project.name);
 assert.equal(proj.user, login.user);

Building a Web API

[24]

 assert.equal(proj.token, login.token);
 assert.equal(proj.repositories[0],
 project.repositories[0]);
 assert.equal(proj.repositories[1],
 project.repositories[1]);
 assert.equal(res.header['location'],
 '/project/' + proj._id);
 done();
 });
 });
 });

In order for some of our tests to work, we will need some test data. So, the following
./test/project.js will tear down any existing project data and add a new project
using a Mocha hook beforeEach, that runs before each test:

beforeEach(function(done){
 mongoose.connection.collections['projects'].
 drop(function(err) {
 var proj = {
 name: "test name"
 , user: login.user
 , token: login.token
 , repositories : ["node-plates"]
 };

 mongoose.connection.collections['projects'].insert(proj,
 function(err, docs) {
 id = docs[0]._id;
 done();
 });
 });
})

Let's install string.js, a lightweight JavaScript library that provides extra string
methods. This will help us validate a request:

npm install string --save

Let's implement the Create a project feature. We start by creating a Project
module ./lib/project/index.js. We import a Mongoose schema for the Project
model and define a function called post, which accepts the name and data as
arguments. We call the static function Project.findOne to check if the project
exists, and if the project is unique, we call the project.save function, which
saves the project.

Chapter 2

[25]

var ProjectSchema =
 require('../models').model('Project');

function Project() {};

Project.prototype.post = function(name, data, callback){
 var query = {'name': name};
 var project = new ProjectSchema(data);

 ProjectSchema.findOne(query, function(error, proj) {
 if (error) return callback(error, null);
 if (proj != null) return callback(null, null);

 project.save(function (error, p) {
 if (error) return callback(error, null);
 return callback(null, p);
 });
 });
};

Let's add a new route ./lib/routes/project.js. We import a logger variable,
a ProjectService module, and define a route called Post, that uses req.body to
gain access to the items we POST in a request. We then validate the request that
returns a 400 Bad Request if it is invalid. If the request is valid, we add the user
and the token to the body and call Project.post; if we get an error, we return
500 Internal Server Error, and if the project already exists, we return a 409
Conflict response. If the request is ok, we set res.location on the response for
our new resource and return a 201 Created response:

var logger = require("../logger")
, S = require('string')
, login = require('../../test/login')
, ProjectService = require('../project')
, Project = new ProjectService();

exports.post = function(req, res){
 logger.info('Post.' + req.body.name);

 if (S(req.body.name).isEmpty())
 return res.json(400, 'Bad Request');

 req.body.user = login.user;
 req.body.token = login.token;

www.allitebooks.com

http://www.allitebooks.org

Building a Web API

[26]

 Project.post(req.body.name, req.body, function(error, project) {
 if (error) return res.json(500, 'Internal Server Error');
 if (project == null) return res.json(409, 'Conflict');
 res.location('/project/' + project._id);
 return res.json(201, project);
 });
};

In order to add our new route and allow our application to support HTTP POST,
we need to make a few changes to our Express server ./lib/express/index.js.

First, we import the db module we created at the beginning of this chapter, which
opens a connection to a MongoDB database. We then import the project route
module we just created. Importantly, app.use(express.bodyParser()) parses
the request body when the forms are submitted. The bodyParser middleware
supports application/x-www-form-urlencoded, application/json, and
multipart/form-data. We add a new route at /project for posting a project.

var express = require('express')
 , http = require('http')
 , config = require('../configuration')
 , db = require('../db')
 , heartbeat = require('../routes/heartbeat')
 , project = require('../routes/project')
 , error = require('../routes/error')
 , notFound = require('../middleware/notFound')
 , app = express();

app.use(express.bodyParser());
app.set('port', config.get('express:port'));
app.use(express.logger({ immediate: true, format: 'dev' }));
app.get('/heartbeat', heartbeat.index);
app.post('/project', project.post);
app.use(notFound.index);

http.createServer(app).listen(app.get('port'));
module.exports = app;

Feature: Get a project
As a vision user
I want to get a project
So that I can monitor the activity of selected repositories

Chapter 2

[27]

Let's add a test to the existing set of tests ./test/project.js for our feature Get
a project. This resource will GET a project from route /project/:id, and return
a 200 OK status.

Let's install underscore.js; a utility-belt library that provides functional
programming support:

npm install underscore --save

describe('when requesting an available resource /project/:id',
 function(){
 it('should respond with 200', function(done){
 request(app)
 .get('/project/' + id)
 .expect('Content-Type', /json/)
 .expect(200)
 .end(function (err, res) {
 var proj = JSON.parse(res.text);
 assert.equal(proj._id, id);
 assert(_.has(proj, '_id'));
 assert(_.has(proj, 'name'));
 assert(_.has(proj, 'user'));
 assert(_.has(proj, 'token'));
 assert(_.has(proj, 'created'));
 assert(_.has(proj, 'repositories'));
 done();
 });
 });
});

Let's implement the Get a project feature ./lib/project/index.js and
add a get function. We attempt to retrieve a project by calling the static function
Project.findOne. If we get an error, we return it, if we find the project then
we return the project:

Project.prototype.get = function(id, callback){
 var query = {"_id" : id};

 ProjectSchema.findOne(query, function(error, project) {
 if (error) return callback(error, null);
 return callback(null, project);
 });
};

Building a Web API

[28]

Let's add a new route ./lib/routes/project.js. We start by defining a route
called get. We validate the request using a regular expression for a valid Mongoose
ObjectId; and it returns a 400 Bad Request status if the request is invalid. We
attempt to retrieve a project by calling Project.get passing the id. If we get an error,
we return 500 Internal Server Error; if the project does not exist, we return a 404
Not Found. If we find the project, we return the project and a 200 OK response:

exports.get = function(req, res){
 logger.info('Request.' + req.url);

 Project.get(req.params.id, function(error, project) {
 if (error) return res.json(500, 'Internal Server Error');
 if (project == null) return res.json(404, 'Not Found');
 return res.json(200, project);
 });
};

Now add the following route to ./lib/express/index.js:

app.get('/project/:id', project.get);

Feature: Edit a project
As a vision user
I want to update a project
So that I can change the repositories I monitor

Let's add a test to our existing set of tests ./test/project.js for our Edit a
project feature. This resource will PUT a project to route /project/:id, and
return a 204 No Content status:

describe('when updating an existing resource /project/:id',
 function(){
 var project = {
 name: "new test name"
 , user: login.user
 , token: login.token
 , repositories : ["12345", "9898"]
 };

 it('should respond with 204', function(done){

 request(app)
 .put('/project/' + id)

Chapter 2

[29]

 .send(project)
 .expect(204, done);
 });
});

Let's implement the Edit a project feature ./lib/project/index.js and add a
put function. We attempt to retrieve a project by calling the static function Project.
findOne. If we get an error, we return it; if we cannot find the project, we return
null. If we find the project, we update it and return the project:

Project.prototype.put = function(id, update, callback){
 var query = {"_id": id};
 delete update._id;

 ProjectSchema.findOne(query, function(error, project) {
 if (error) return callback(error, null);
 if (project == null) return callback(null, null);

 ProjectSchema.update(query, update, function(error, project) {
 if (error) return callback(error, null);
 return callback(null, {});
 });
 });
};

Let's add a new route ./lib/routes/project.js. We start by defining a route
called put, we then validate the request by returning a 400 Bad Request if the
request is invalid. We add a login user and token to the body of the request; this will
be removed in a later chapter. We attempt to update the project by calling Project.
put passing the id. If we get an error, we return 500 Internal Server Error; if
the project does not exist, we return a 404 Not Found status. If we find the project,
then we return a 204 No Content response:

exports.put = function(req, res){
 logger.info('Put.' + req.params.id);

 if (S(req.body.name).isEmpty())
 return res.json(400, 'Bad Request');

 req.body.user = login.user;
 req.body.token = login.token;

 Project.put(req.params.id, req.body, function(error, project) {
 if (error) return res.json(500, 'Internal Server Error');

Building a Web API

[30]

 if (project == null) return res.json(404, 'Not Found');
 return res.json(204, 'No Content');
 });
};

Now, add the following route to the Express server ./lib/express/index.js:

app.put('/project/:id', project.put);

Feature: Delete a project
As a vision user
I want to delete a project
So that I can remove projects no longer in use

Let's add a test to ./test/project.js for our feature Delete a project. This
resource will DELETE a project at route /project/:id and return a 204 No
Content status:

describe('when deleting an existing resource /project/:id',
 function(){
 it('should respond with 204', function(done){
 request(app)
 .del('/project/' + id)
 .expect(204, done);
 });
});

Let's implement the Delete a project feature ./lib/project/index.js and add
a del function. We attempt to delete a project by calling the static function Project.
findOne. If we get an error, we return it; if we cannot find the project, we return
null. If we find the project, we delete it and return an empty response.

Project.prototype.del = function(id, callback){
 var query = {'_id': id};

 ProjectSchema.findOne(query, function(error, project) {
 if (error) return callback(error, null);
 if (project == null) return callback(null, null);

 project.remove(function (error) {
 if (error) return callback(error, null);
 return callback(null, {});
 });
 });
};

Chapter 2

[31]

Let's add a new route ./lib/routes/project.js. We start by defining a route
called del. We attempt to delete the project by calling Project.del and passing the
id. If we get an error, we return 500 Internal Server Error; if the project does
not exist, we return a 404 Not Found. If we find the project, we return a 204 No
Content response.

exports.del = function(req, res){
 logger.info('Delete.' + req.params.id);

 Project.del(req.params.id, function(error, project) {
 if (error) return res.json(500, 'Internal Server Error');
 if (project == null) return res.json(404, 'Not Found');
 return res.json(204, 'No Content');
 });
};

Now, add the following route to the Express server ./lib/express/index.js:

app.del('/project/:id', project.del);

Feature: List projects
As a vision user
I want to see a list of projects
So that I can select a project I want to monitor

Let's add a test to ./test/project.js for our feature List projects. This resource
will GET all projects from route /project and return a 200 Ok status.

describe('when requesting resource get all projects', function(){
 it('should respond with 200', function(done){
 request(app)
 .get('/project/?user=' + login.user)
 .expect('Content-Type', /json/)
 .expect(200)
 .end(function (err, res) {
 var proj = _.first(JSON.parse(res.text))
 assert(_.has(proj, '_id'));
 assert(_.has(proj, 'name'));
 assert(_.has(proj, 'user'));
 assert(_.has(proj, 'token'));
 assert(_.has(proj, 'created'));
 assert(_.has(proj, 'repositories'));
 done();

Building a Web API

[32]

 });
 });
});

Let's implement the List projects feature ./lib/project/index.js and add
an all function. We attempt to retrieve all projects by calling the static function
Project.find and querying by a user id. If we get an error we return it, if we
find the projects, we return the projects:

Project.prototype.all = function(id, callback){
 var query = {"user" : id};

 ProjectSchema.find(query, function(error, projects) {
 if (error) return callback(error, null);
 return callback(null, projects);
 });
};

Let's add a new route ./lib/routes/project.js. We start by defining a route
called all. We start by retrieving a users id. In order to accommodate the fact that
we have not implemented an authentication strategy; we get the user details from
our hard-coded login.user object. We will clean this up in a future chapter. We
attempt to retrieve a project by calling Project.all, passing the userId. If we get
an error, we return 500 Internal Server Error; if we find projects, we return the
projects and a 200 OK response.

exports.all = function(req, res){
 logger.info('Request.' + req.url);

 var userId = login.user || req.query.user || req.user.id;

 Project.all(userId, function(error, projects) {
 if (error) return res.json(500, 'Internal Server Error');
 if (projects == null) projects = {};
 return res.json(200, projects);
 });
};

Now, add the following route to the Express server ./lib/express/index.js:

app.get('/project', project.all);

Chapter 2

[33]

GitHub API
Our project API is complete but things are about to get a little more complicated as we
attempt to communicate with the GitHub API. Let's install the following modules.

The github module provides an object-oriented wrapper for the GitHub v3 API;
the complete API for this module can be found at http://mikedeboer.github.io/
node-github/.

npm install github --save

The async module is a utility module that provides around 20 powerful functions for
working with asynchronous JavaScript. The async module is a control-flow module
and will allow us to do operations over IO in a clean, controlled way.

npm install async --save

The moment.js is a library for parsing, validating, manipulating, and formatting dates.

npm install moment --save

Feature: List repositories
As a vision user
I want to see a list of all repositories for a GitHub account
So that I can select and monitor repositories for my project

Let's add a test to ./test/github.js for our feature List repositories. This
resource will GET all repositories for a project from the route project/:id/repos
and return a 200 Ok status:

describe('when requesting an available resource
 /project/:id/repos', function(){
 it('should respond with 200', function(done){
 this.timeout(5000);
 request(app)
 .get('/project/' + id + '/repos/')
 .expect('Content-Type', /json/)
 .expect(200)
 .end(function (err, res) {
 var repo = _.first(JSON.parse(res.text))
 assert(_.has(repo, 'id'));
 assert(_.has(repo, 'name'));
 assert(_.has(repo, 'description'));
 done();

Building a Web API

[34]

 });
 });
});

The first thing we need to do is create a GitHubRepo module in ./lib/github/
index.js. We start by importing the required modules including github. We define
a constructor function that accepts as input a GitHub access token and a user.
We then instantiate a GitHubApi module, calling github.authenticate, which
authenticates based on the token:

var GitHubApi = require("github")
, config = require('../configuration')
, async = require("async")
, moment = require('moment')
, _ = require("underscore")

function GitHubRepo(token, user) {
 this.token = token;
 this.user = user;

 this.github = new GitHubApi({
 version: "3.0.0",
 timeout: 5000 });

 this.github.authenticate({
 type: "oauth",
 token: token
 });
};

module.exports = GitHubRepo;

Let's implement the feature List repositories and add it to our new GitHubRepo
module in ./lib/github/index.js. We start by defining our prototype function
repositories. We call getAll on the github module. If we get an error, we return
the error; if no repositories are found we return a null value. If we find repositories,
we use the map function to create a new array of items using the underscore pick
function to select the three attributes id, name, and description. We return these
items via callback:

GitHubRepo.prototype.repositories = function(callback) {
 this.github.repos.getAll({}, function(error, response) {
 if (error) return callback(error, null);
 if (response == null) return callback(null, null);

Chapter 2

[35]

 var items = response.map(function(model) {
 return _.pick(model, ['id','name', 'description']);
 });

 callback(null, items);
 });
};

Let's add a repos function to ./lib/project/index.js. We start by importing
the GitHubRepo module and we attempt to retrieve the project by calling the static
function Project.findOne. If we get an error, we return the error; if the project
does not exist we return a null value. If we find the project, we create a GithubRepo
module and initialize it with a token and a user, and assign it to git. We then call
git.repositories which returns a response. If we get an error, we return an error,
if we do not find any repositories, we return a null value. If we find repositories, we
use the map function to create a new array of items using underscore pick function
to select three attributes, including id, name, and description. We add a fourth
attribute, enabled, which signifies if our project has the repository assigned to it
and returns all the repositories:

, GitHubRepo = require('../github')

Project.prototype.repos = function(id, callback){
 ProjectSchema.findOne({_id: id}, function(error, project) {
 if (error) return callback(error, null);
 if (project == null) return callback(null, null);

 var git = new GitHubRepo(project.token, project.user);

 git.repositories(function(error, response){
 if (error) return callback(error, null);
 if (response == null) return callback("error", null);

 items = response.map(function(model) {
 var item = _.pick(model, ['id','name',
 'description''description']);
 var enabled = _.find(project.repositories, function(p)
 { return p == item.name; });
 (enabled) ? item.enabled = 'checked' : item.enabled = '';
 return item;
 });

 return callback(null, items);
 });
 });
};

www.allitebooks.com

http://www.allitebooks.org

Building a Web API

[36]

Let's add a new route repos to ./lib/routes/github.js. We instantiate a new
ProjectService and then attempt to retrieve the projects repositories by calling
the function Project.repos. If we get an error, we return 500 Internal Server
Error. If no repositories are returned, we return a 404 Not Found status. If we
receive repositories, we return a 200 OK status with the repositories.

, ProjectService = require('../project')
, Project = new ProjectService();

exports.repos = function(req, res){
 logger.info('Request.' + req.url);

 Project.repos(req.params.id, function(error, repos) {
 if (error) return res.json(500, 'Internal Server Error');
 if (repos == null) return res.json(404, 'Not Found');
 return res.json(200, repos);
 });
};

Now, add the following route to ./lib/express/index.js:

app.get('/project/:id/repos', github.repos);

Feature: List commits
As a vision user
I want to see a list of multiple repository commits in real time
So that I can review those commits

Let's add a test to ./test/github.js for our List commits feature. This resource
will GET the 10 most recent commits for all repositories in a project via the route
project/:id/commits and return a 200 OK status:

describe('when requesting an available resource
 /project/:id/commits', function(){
 it('should respond with 200', function(done){
 this.timeout(5000);
 request(app)
 .get('/project/' + id + '/commits')
 .expect('Content-Type', /json/)
 .expect(200)
 .end(function (err, res) {
 var commit = _.first(JSON.parse(res.text))
 assert(_.has(commit, 'message'));
 assert(_.has(commit, 'date'));

Chapter 2

[37]

 assert(_.has(commit, 'login'));
 assert(_.has(commit, 'avatar_url'));
 assert(_.has(commit, 'ago'));
 assert(_.has(commit, 'repository'));
 done();
 });
 });
});

Let's implement the List commits feature, and add it to our new GitHubRepo
module in ./lib/github/index.js. We start by defining our function, commits,
that takes a list of repos. We use async.each to loop though all repos. The async
module allows us to do asynchronous work over IO.

We then call github.repos.getCommits; we pass it our GitHub user and repo. We
call the callback if github.repos.getCommits() returns an error. When we get a
response, we use the map function to create a new array of items using the uderscore
pick function to select two attributes: committer and message. If the item has a
committer, we use underscores the extend function and add the committers, login
and avatar_url. We return the items to the main function via callback and use
underscores sort function to sort the items by date and select the top 10 items. We
then return the commits via callback:

GitHubRepo.prototype.commits = function(repos, callback) {
 var me = this;
 var items = [];

 async.each(repos, function(repo, callback) {
 me.github.repos.getCommits({ user: me.user,
 repo: repo }, function(error, response) {
 if (error) return callback();
 if (response == null) return callback();

 var repoItems = response.map(function(model) {
 var item =_.pick(model.commit, ['message']);
 if (model.commit.committer) _.extend(item,
 _.pick(model.commit.committer, ['date']));
 if (model.committer) _.extend(item,
 _.pick(model.committer, ['login', 'avatar_url']));
 item.ago = moment(item.date).fromNow();
 item.repository = repo;
 return item;
 });

Building a Web API

[38]

 items = _.union(items, repoItems);
 callback(null, items);
 });
 }
 , function(error) {
 var top = _.chain(items)
 .sortBy(function(item){ return item.date })
 .reverse()
 .first(10)
 .value();

 callback(error, top);
 });
};

Let's add a commits function to ./lib/project/index.js. We start by defining
a function called commits. We attempt to retrieve the project by calling the static
function Project.findOne. If we get an error, we return the error. If the project
does not exist, we return a null value. If we find the project, we create a GithubRepo
module and initialize it with a token and a user and assign it to git. We then call the
git.commits function and pass a list of repositories returning a response. If we get
an error, we return an error. If we get a valid response, we return the commits.

Project.prototype.commits = function(id, callback){
 ProjectSchema.findOne({_id: id}, function(error, project) {
 if (error) return callback(error, null);
 if (project == null) return callback(null, null);

 var git = new GitHubRepo(project.token, project.user);

 git.commits(project.repositories, function(error, response){
 if (error) return callback(error, null);
 return callback(null, response);
 });
 });
};

Let's add a new route commits to ./lib/routes/github.js. We attempt to
retrieve the commits by calling Project.commits. If we get an error we return 500
Internal Server Error. If no commits are returned we return a 404 Not Found.
If we receive commits we return a 200 OK response with the commits:

exports.commits = function(req, res){
 logger.info('Request.' + req.url);

Chapter 2

[39]

 Project.commits(req.params.id, function(error, commits) {
 if (error) return res.json(500, 'Internal Server Error');
 if (commits == null) return res.json(404, 'Not Found');
 return res.json(200, commits);
 });
};

Now, add the following route to ./lib/express/index.js:

app.get('/project/:id/commits', github.commits);

Feature: List issues
As a vision user
I want to see a list of multiple repository issues in real time
So that I can review and fix issues

Let's add a test to ./test/project.js for our List issues feature. This resource will
GET all projects from the route project/:id/issues and return a 200 OK response:

describe('when requesting an available resource
 /project/:id/issues', function(){
 it('should respond with 200', function(done){
 this.timeout(5000);
 request(app)
 .get('/project/' + id + '/issues')
 .expect('Content-Type', /json/)
 .expect(200)
 .end(function (err, res) {
 var issue = _.first(JSON.parse(res.text))
 assert(_.has(issue, 'title'));
 assert(_.has(issue, 'state'));
 assert(_.has(issue, 'updated_at'));
 assert(_.has(issue, 'login'));
 assert(_.has(issue, 'avatar_url'));
 assert(_.has(issue, 'ago'));
 assert(_.has(issue, 'repository'));
 done();
 });
 });
});

Building a Web API

[40]

Let's implement the feature List issues and add it to our new GitHubRepo module
./lib/github/index.js. We start by defining our function issues which takes a
list of repos. We use async.each to loop though all repositories.

We then call github.repos.repoIssues and we pass our GitHub user and repo,
calling the callback if github.repos.repoIssues() returns an error. If we get
a valid response we use the map function to create a new array of items using
underscore pick function to select four attributes, including id, title, state, and
updated_at. If the item has a user, we use underscores extend function and add
the users login and avatar_url. We then return the items to the main function via
callback and use the underscore sort function to sort the items by date. We then
select the top 10 issues and return the issues via callback.

GitHubRepo.prototype.issues = function(repos, callback) {
 var me = this;
 var items = [];

 async.each(repos, function(repo, callback) {
 me.github.issues.repoIssues({ user: me.user,
 repo: repo }, function(error, response) {
 if (error) return callback();
 if (response == null) return callback();

 var repoItems = response.map(function(model) {
 var item = _.pick(model, ['title', 'state',
 'updated_at']);
 if (model.user) _.extend(item, _.pick(model.user,
 ['login', 'avatar_url']));
 item.ago = moment(item.updated_at).fromNow();
 item.repository = repo;
 return item;
 });

 items = _.union(items, repoItems);
 callback(null, items);
 });
 }
 , function(error) {
 var top = _.chain(items)
 .sortBy(function(item){ return item.updated_at; })
 .reverse()
 .first(10)
 .value();

Chapter 2

[41]

 callback(error, top);
 });
};

Let's add an issues function to ./lib/project/index.js. We start by defining a
function called issues. We attempt to retrieve the project by calling the static function
Project.findOne. If we get an error, we return the error. If the project does not exist,
we return a null value. If we find the project, we create a GitHubRepo module and
initialize it with a token and a user, and assign it to git. We then call git.issues,
passing a list of repositories, returning a response. If we get an error, we return an
error and if we get a valid response, we return the issues and a 200 OK response:

exports.issues = function(req, res){
 logger.info('Request.' + req.url);

 Project.findOne({_id: req.params.id}, function(error, project) {
 if (error) return res.json(500, 'Internal Server Error');
 if (project == null) return res.json(404, 'Page Not Found');

 var git = new GitHubRepo(project.token, project.user);

 git.issues(project.repositories, function(error, response){
 if (error) return res.json(500, 'Internal Server Error');
 return res.json(200, response);
 });
 });
};

Let's add a new route, issues, to ./lib/routes/github.js. We attempt to retrieve
the issues by calling Project.issues. If we get an error we return 500 Internal
Server Error. If no issues are returned we return a 404 Not Found response, and
if we receive issues we return a 200 OK response with the issues:

exports.issues = function(req, res){
 logger.info('Request.' + req.url);

 Project.issues(req.params.id, function(error, issues) {
 if (error) return res.json(500, 'Internal Server Error');
 if (issues == null) return res.json(404, 'Not Found');
 return res.json(200, issues);
 });
};

Now, add the following route to ./lib/express/index.js:

app.get('/project/:id/issues', github.issues);

Building a Web API

[42]

Validating parameters with param
middleware
You will have noticed that we have repeated the id validation in each of our routes.
Let's improve things using app.params.

Here is the offending line of code that simply checks to see if our id is a valid
MongoDB id:

if (req.params.id.match(/^[0-9a-fA-F]{24}$/) == null)
 return res.json(400, 'Bad Request');

Let's add a middleware to handle this ./lib/middleware/id.js. We define a
validate function that takes four parameters, with the last being the value of id.
We then validate the id parameter, returning a 400 Bad Request, if it's invalid.
We then call next(), which calls the next middleware in our Express stack:

exports.validate = function(req, res, next, id){
 if (id.match(/^[0-9a-fA-F]{24}$/) == null)
 return res.json(400, 'Bad Request');
 next();
}

Now we can use this id middleware in our Express server. Let's include the param
middleware and add this line before the first route so that it applies to all of our
routes: ./lib/express/index.js:

, id = require('../middleware/id')
..
app.param('id', id.validate);

We can now edit our two route modules ./lib/routes/project.js and ./lib/
routes/github.js, and remove the offending line of code. The id param will now
handle this for all routes.

Route improvements
We now have quite a few routes required in our Express server; let's clean this up.
A common pattern in node.js is to include an index file that returns all files in its
current directory. We will use require-directory to do this for us:

npm install require-directory –save

Let's create a new module ./lib/routes/index.js. with the following code:
var requireDirectory = require('require-directory');
module.exports = requireDirectory(module, __dirname, ignore);

Chapter 2

[43]

Now, all routes in the ./lib/routes/ folder will be exposed under a single
variable, routes:

 var express = require('express')
 , http = require('http')
 , config = require('../configuration')
 , db = require('../db')
 , routes = require('../routes')
 , notFound = require('../middleware/notFound')
 , id = require('../middleware/id')
 , app = express();

app.use(express.bodyParser());
app.set('port', config.get('express:port'));
app.use(express.logger({ immediate: true, format: 'dev' }));
app.param('id', id.validate);
app.get('/heartbeat', routes.heartbeat.index);
app.get('/project/:id', routes.project.get);
app.get('/project', routes.project.all);
app.post('/project', routes.project.post);
app.put('/project/:id', routes.project.put);
app.del('/project/:id', routes.project.del);
app.get('/project/:id/repos', routes.github.repos);
app.get('/project/:id/commits', routes.github.commits);
app.get('/project/:id/issues', routes.github.issues);
app.use(notFound.index);

http.createServer(app).listen(app.get('port'));
module.exports = app;

Summary
We have now completed our Web API. We have implemented a basic MongoDB
provider; we are using Mongoose to give us a bit of schema support. We have also
made a small improvement to our Express server, cleaning up the routes.

In the next chapter, we will consume this API when we build our client.

Templating
We have our Web API in place, so let's turn our attention to the client. In this chapter,
we will consume our Web API and present our data using a mixture of both server-
side and client-side templating. We will serve a./views/index.html masterpage
file from the server with Express and use consolidate.js and handlebars.js for
templating. On the client side we will use backbone.js and precompiled handlebars
templates served directly out of the ./public folder.

Server-side templating
Up until now our Express server has only served JSON; let's install a couple of
modules that will assist us in serving HTML.

consolidate.js is a template engine consolidation library that was created to map
all of Node's popular templating engines to the Express convention for templating,
allowing them to work within Express:

npm install consolidate --save

handlebars.js is an extension to the mustache templating language. Handlebars is
a logic-less templating language that keeps view and code separated:

npm install handlebars --save

In order to be able to serve our handlebar templates, we will have to make some
changes to our Express server. Let's change the default template engine to handlebars
by setting the app.engine:

app.engine('html', cons.handlebars);

www.allitebooks.com

http://www.allitebooks.org

Templating

[46]

Now register html as our view file extension. If we did not set this, we would need
to name our view index.hbs instead of index.html, with .hbs being the extension
for handlebars templates.

app.set('view engine', 'html');

Let's create our single page application view; this will be served by our Express server:

./views/index.html

Next we define the location of our views folder and the location of our static files
folder; it is here that we will store components, for example, CSS and JavaScript files.

app.set('views', 'views');
app.use(express.static('public'));
app.use(express.static('public/components'));

Now create a folder called public and add the following directory structure,
so that static resources are served with the subdirectory as prefix, for example,
vision/vision.css.

./public

./public/components

./public/components/vision

Feature: Master Page
As a vision user
I want the vision application served as a single page
So that I can spend less time waiting for page loads

Let's add a test to ./test/home.js for our feature Master Page. This resource
will GET our master page from route ./ and return a 200 OK response. The
Content-Type of the response should be HTML:

 var app = require('../app')
 , request = require('supertest');

describe('vision master page', function(){
 describe('when requesting resource /', function(){
 it('should respond with view', function(done){
 request(app)
 .get('/')
 .expect('Content-Type', /html/)

Chapter 3

[47]

 .expect(200, done)
 });
 });
});

Let's implement our Master Page feature. Let's create a new module that exposes a
route ./lib/routes/home.js and add a new index function. We start by defining
a route called index. We create a view model with meta information for a page and
then render the view passing the view model:

exports.index = function(req, res){
 var model = {
 title: 'vision.',
 description: 'a project based dashboard for github',
 author: 'airasoul',
 user: 'Andrew Keig'
 };
 res.render('index', model);
};

Let's add a new route to our Express server ./lib/express/index.js:

app.get('/', routes.home.index);

Package management with Bower
We will now install the various components that make up our client, namely
Handlebars.js, Backbone.js, and Twitter Bootstrap Version 2 using Bower.

Bower is a package manager for the web. A Bower package can contain assets of
different types, such as CSS, JavaScript, and images. Let's install Bower globally
with the following command:

npm install -g bower

In Bower, dependencies are listed in a bower.json file, similar to Node's package.
json. Let's create a ./bower.json file and define our client-side dependencies:

{
 "name": "vision",
 "version": "0.0.1",
 "dependencies": {
 "json2": "*",
 "jquery": "*",
 "underscore": "*",

Templating

[48]

 "backbone": "*",
 "handlebars": "*",
 "bootstrap": "2.3.2"
 }
}

Now create the following Bower configuration file ./.bowerrc, which allows us
to define our target directory and the name of our bower.json file:

{
 "directory": "public/components",
 "json": "bower.json"
}

Run the following command to install all of the dependencies listed in our
bower.json file:

bower install

Twitter Bootstrap's assets are stored in the folder specified in the path in the
following snippet, so let's add a static middleware to override our Express
server. This will keep our paths consistent on the client:

app.use('/bootstrap', express.
 static('public/components/bootstrap/docs/assets/css'));

Templates
Our master page contains the following sections. In order to facilitate a client-side
templating model using backbone.js, we will split up our master page into templates.

Let's create a new folder called ./templates and add the following files:

./templates
 projects.hbs
 project-form.hbs
 repositories.hbs
 commits.hbs
 issues.hbs

In order to avoid compiling the templates on demand, let's install the grunt task
grunt-contrib-handlebars, which will precompile our handlebar templates:

npm install grunt-contrib-handlebars --save-dev

Chapter 3

[49]

We outline the grunt configuration for our handlebars compilation in the following
code; it simply takes as input a template location templates/*.hbs and compiles
these templates into a single JavaScript file and stores it at public/components/
vision/templates.js.

grunt.loadNpmTasks('grunt-contrib-handlebars');

handlebars: {
 compile: {
 options: {
 namespace: "visiontemplates"
 },
 files: {
 "public/components/vision/templates.js": ["templates/*.hbs"]
 }
 }
},

We complete this section by taking a look at the master page template ./views/
index.html. The body contains the following areas: a header, which includes either
a login button or a logout button with a welcome message, a project-list form,
repository-list, commit-list, and issue-list.

 {{#if user}}
 <p class="navbar-text">welcome {{user}},

 click here to sign out
 </p>
 {{else}}

 {{/if}}

 {{#if user}}
 <div class="span3">
 <h2>Projects</h2>
 <ul id="projects-list" class="nav nav-list">

<a id="showForm" class="btn btn-large btn-block btn-
primary" href="#add">Add project
 </div>
 <div class="span3">
 <h2>Repositories</h2>
 <ul id="repository-list" class="nav inline nav-list">

Templating

[50]

 </div>
 <div class="span3">
 <h2>Commits</h2>
 <ul id="commits-list" class="media-list">
 </div>
 <div class="span3">
 <h2>Issues</h2>
 <ul id="issues-list" class="media-list">
 </div>
 {{else}}
 <div class="span12">
 <div class="hero-unit">
 <h1>vision</h1>
 <lead>a real-time multiple repository dashboard for
 GitHub issues and commits</lead>
 <p><small>In order to use vision; please login to
 a valid GitHub Account</small></p>
 </div>
 </div>
 {{/if}}

Client-side development with Backbone.js
Backbone.js is a lightweight and very flexible JavaScript Model View (MV*)
framework that simplifies the building of complex JavaScript applications. It
includes some very basic primitives that allow us to decouple our client's model and
logic from its view. Backbone supports a RESTful JSON interface that ties models/
collections to a RESTful API. Further information on Backbone.js can be found at
http://backbonejs.org.

Feature: List projects
Let's build the client for our feature List projects. Each item in the list consists
of a project name and an edit and delete button. Clicking on the name will display
a list of repositories; clicking on edit will display an inline form populated with
the models' data, and clicking on delete will delete the item from our database. We
will return to hook up these three functions later. For now, we will simply display a
project list.

Chapter 3

[51]

What follows is an HTML template ./templates/projects.hbs for a project
item; it contains a placeholder {{_id}}, which will be replaced by our Backbone
application:

{{name}}
<button class="delete btn btn-mini btn-primary list-btn">del
</ button>
<button class="edit btn btn-mini btn-primary
 list-btn spacer ">edit e</button>

Let's define a skeleton Backbone application with all of its pieces in place: ./public/
components/vision/vision.js. We start by defining the Vision namespace; we
add to it an outer function called Application, that has a single method called
start. Here we instantiate a router and call Backbone.history.start() in order
to start the Backbone application. We then call router.navigate('index', true)
and navigate to our home page. With this function in place, we instantiate new
Vision.Application() and call start().

var Vision = Vision || {};

Vision.Application = function(){
 this.start = function(){
 var router = new Vision.Router();
 Backbone.history.start();
 router.navigate('index', true);
 }
};

$(function(){
 var app = new Vision.Application();
 app.start();
});

Let's now create the application Router. Generally, Backbone applications only have
one of these; a router is the entry point for our application.

First we add a function Router, which extends the Backbone Router type. We add a
view for our list of projects called projectListView, and add a routes hash, which
defines a single route. The entry point for our application is an empty route mapped
to a method called index. The initialize or constructor method is called when
the router is instantiated; from here we call a method project, which instantiates
a ProjectListView. The index method, which matches the route as defined
previously, renders our view by calling projectApplication.render().

Vision.Router = Backbone.Router.extend({
 projectListView : "",

Templating

[52]

 routes: {
 "" : "index",
 },

 initialize : function(){
 this.project();
 },

 project : function(){
 this.projectListView = new Vision.ProjectListView();
 },

 index : function(){
 this.projectListView.render();
 }
});

Let's implement our Project model to support our view. We start by adding a
function Project, which extends the Backbone Model type and includes a hash of
default values for the two properties in our model. We override the idAttribute
parameter in order to accommodate MongoDB identifiers. We will use the MongoDB
_id as our model identifier; by default Backbone will use id. This identifier will
be appended to any request Backbone makes to the server, for example, when
performing GET, POST, PUT, or DELETE. We already added the API for this model
in Chapter 2, Building a Web API. The urlRoot parameter links this model to the web
API route /project to return a project.

Vision.Project = Backbone.Model.extend({
 defaults: {
 id : ""
 , name: ""
 },

 idAttribute: "_id",
 urlRoot: '/project'
});

Let's implement a collection; ProjectList for our Project model. We add a
function, ProjectList, that extends the Backbone Collection type and we specify
model type as Vision.Project. We add a url method which returns our web API
route /project to return a list of projects. The initialize method is called when
the collection is instantiated; from here we do our initial fetch() to get our projects;
thus calls the API /project.

Vision.ProjectList = Backbone.Collection.extend({
 model: Vision.Project,

Chapter 3

[53]

 url: function () {
 return "/project/";
 },

 initialize: function() {
 this.fetch();
 }
});

Before we implement ProjectListView, let's create event_aggregator; this
will allow our views to trigger and bind named events that other views can
respond to. We will need to do this in order for ProjectListView to inform
RepositoryListView that it's time to display a RepositoryList.

Let's add an event_aggregator function to the Backbone view prototype using
the underscore.js extend method to mix in the Backbone event module into
our views:

Backbone.View.prototype.event_aggregator = _.extend({},
 Backbone.Events);

Let's implement a view for our Project collection— ProjectListView. We start
by defining a function ProjectListView which extends the Backbone View type,
and add a Projects array for our project list. We assign a DOM element to el; an
unordered list called projects-list. This is the element our view will be inserted
into. Backbone will construct an empty div tag if you do not assign it to el.

The initialize method is called when the view is instantiated; here we instantiate
a new ProjectList, passing our Projects array. We then call collection.
on('add'), which upon fetching data from the API will call the add method. The
add method instantiates ProjectView, passing to it a project model. We then
append ProjectView to our DOM element via $el and return the view.

Vision.ProjectListView = Backbone.View.extend({
 Projects: [],
 el: $("ul#projects-list"),

 initialize: function () {
 this.collection = new Vision.ProjectList(this.Projects);
 this.collection.on('add', this.add, this);
 },

 add: function (project) {
 var projectView = new Vision.ProjectView({
 model: project
 });

Templating

[54]

 this.$el.append(projectView.render().el);
 return projectView;
 }
});

We complete this section by implementing a view for a single project—ProjectView.
We start by defining a function ProjectView, which extends the Backbone View
type, and add a tagName and assign li to it. This tag will be wrapped around our
project view; our DOM element is a ul tag.

We then include viewTemplate and assign our precompiled handlebars template
to it. Although the templates are compiled to a single file —./vision/templates.
js— we still refer to the template by name; templates/projects.hbs. The render
method renders the view; we pass the project model to our viewTemplate, which
is then added via $el to our DOM element and we return the view:

Vision.ProjectView = Backbone.View.extend({
 tagName: "li",
 viewTemplate:
 visiontemplates["templates/projects.hbs"],

 render: function () {
 var project = this.viewTemplate(this.model.toJSON());
 this.$el.html(project);
 return this;
 }
});

If you go into MongoDB and add the following record to the projects collection in the
vision database, when visiting the Vision application in a browser you can see this
record in the project list view:

{
 "_id" : ObjectId("525c61bcb89855fc09000018"),
 "created" : ISODate("2013-10-17T22:58:37Z"),
 "name" : "test name",
 "token" : "#TOKEN#",
 "user" : "#USER#"
}

Feature: List repositories
Let's build the client for our feature List repositories. Each item in the list
consists of a repository name, a short description, and a checkbox; which allows
us to add or remove the repository from the project.

Chapter 3

[55]

What follows is an HTML template ./templates/repositories.hbs for a
repository item:

 <label class="checkbox inline">
 <input id="{{id}}" type="checkbox" {{enabled}} value="{{name}}"><h4
class="media-heading repoItem">{{name}}</h4>
 <small>{{description}}</small>
 </label>

Let's add a Repository model. We add a function Repository that extends the
Backbone Model type and add a hash of default values for the four properties in
our model. The enabled property signifies that a repository is included in the
selected project.

Vision.Repository = Backbone.Model.extend({
 defaults: {
 id : ""
 , name: ""
 , description: ""
 , enabled: ""
 }
});

Let's implement a collection for our Repository model. We start by defining a
function RepositoryList, which extends the Backbone Collection type. We
add the projectId of the selected project, and set the model type as Vision.
Repository. We then add a url method and use the web API route /project/:id/
repos to get a list of repositories for a project.

The initialize method is called when the collection is instantiated; from here,
we assign the selected projectId. The parse method is called when a fetch is
performed and will parse the response; here we assign our MongoDB _id to the
response.id.

Vision.RepositoryList = Backbone.Collection.extend({
 projectId: '',
 model: Vision.Repository,

 url : function() {
 return '/project/' + this.projectId + '/repos';
 },

 initialize: function(items, item) {
 this.projectId = item.projectId;
 },

www.allitebooks.com

http://www.allitebooks.org

Templating

[56]

 parse: function(response) {
 response.id = response._id;
 return response;
 }
});

We now implement a view for a single repository. We add a function,
RepositoryView, that extends the Backbone View type and add a tagName and
assign li to it. This tag will be wrapped around our RepositoryView function;
our DOM element is a ul tag. We include a viewTemplate function and assign our
precompiled handlebars template templates/repositories.hbs to it. The render
method renders the view; we pass the repository model to our viewTemplate
function, which is then added via $el to our DOM element, and we return the view.

Vision.RepositoryView = Backbone.View.extend({
 tagName: "li",
 viewTemplate: visiontemplates["templates/repositories.hbs"],

 render: function () {
 this.$el.html(this.viewTemplate(this.model.toJSON()));
 return this;
 }
});

Let's implement a view for our RepositoryList called RepositoryListView.
We start by defining a function, RepositoryListView, that extends the Backbone
View type and adds a Repositories array for our repository list. We add an
initialize method; if projectId is empty we return. A valid projectId results
in rendering the view; first, we clear the DOM element, and we then assign a new
RepositoryList function to the views collection. We initialize the list with our
Repositories array and our projectId, we then call fetch in our collection, and
then we call render for a successful fetch.

The render method uses underscore to loop through the repository collection called
collection.models, calling add(item) for each project. We include an add method
that instantiates a RepositoryView function, passing to it a repository model. We
then append a rendered RepositoryView to our DOM element via $el and return
the view.

Vision.RepositoryListView = Backbone.View.extend({
 Repositories: [],

 initialize: function (args) {
 if (!args.projectId) return;
 var me = this;

Chapter 3

[57]

 this.$el.html('');
 this.collection = new
 Vision.RepositoryList(this.Repositories, {
 projectId : args.projectId
 });
 this.collection.fetch({success: function(){
 me.render();
 }});
 },

 render: function () {
 _.each(this.collection.models, function (item) {
 this.add(item);
 }, this);
 },

 add: function (item) {
 var repositoryView = new Vision.RepositoryView({
 model: item
 });

 this.$el.append(repositoryView.render(this.editMode).el);
 return repositoryView;
 }
});

Let's make a few changes to our ProjectView and add a click event when selecting
a project. We start by defining an events hash with a single event called click a,
that calls the repository method. The repository method grabs projectId
from our model and then calls the trigger method on event_aggregator for
the event repository:join, passing projectId. We will listen to this event on
ProjectListView.

 events: {
 "click a" : "repository"
 },

 repository: function() {
 var data = { projectId: this.model.toJSON()._id }
 this.event_aggregator.trigger('repository:join', data);
 },

Templating

[58]

Let's hook up the other side of the previous event and add an event binder
to ProjectListView. We add an event_aggregator.bind statement to our
initialize method, binding the event repository:join to the repository
method. The repository method triggers a join event on the router.

 initialize: function () {
 this.event_aggregator.on('repository:join',
 this.repository, this);
 this.collection = new Vision.ProjectList(this.Projects);
 this.render();
 },

 repository: function(args){
 this.trigger('join', args);
 },

Let's complete the picture and change router to listen to the join event. We add
a repositoryListView function to the router and add a listenTo event to the
initialize method that calls the join method. The join method calls repository,
which instantiates the RepositoryListView function, passing projectId.

repositoryListView:'',

initialize : function(){
 this.project();
 this.listenTo(this.projectListView , 'join', this.join);
},

join : function(args){
 this.repository(args);
},

repository : function(args){
 this.repositoryListView =
 new Vision.RepositoryListView({ el: 'ul#repository-list',
 projectId: args.projectId });
},

Now, when you click on a project item's name in ProjectView, RepositoryListView
is displayed.

Chapter 3

[59]

Feature: Create a project
Let's add a project form for our feature Create a project. It consists of a large
Add project button, a text box for our project name, and save and cancel buttons.
Clicking on save will POST the project to our Express server, whereas, clicking on
cancel closes the form.

What follows is an HTML template ./templates/project-form.hbs for a
repository item:

<form class="form-inline">
 <ul class="errors help">
 <label>name</label>
 <input class="name" placeholder="project name"
 required="required" value="{{name}}" autofocus />

<button class="cancel btn btn-mini btn-primary form-
 btn">cancel</button>
 <button class="save btn btn-mini btn-primary form-btn form-
 spacer">save</button>
</form>

Let's make a few changes to router and wire up a route to our Add Project button.
routes now includes a route called add, which calls a method called add. We include
an add method that calls projectListView.showForm(), rendering our form:

 routes: {
 "" : "index",
 "add" : "add"
 },
 add : function(){
 this.projectListView.showForm();
 }

Let's make some changes to projectListView and modify the initialize method.
We bind this view to the reset, add, and remove events of the collection. We
also add a showForm method as called in the preceding code. The method renders a
project form by calling this.add(), passing new Vision.Project(), and calling
add() on the view returned.

initialize: function () {
 this.event_aggregator.on('repository:join', this.repository,
 this);
 this.collection = new Vision.ProjectList(this.Projects);
 this.collection.on('reset', this.render, this);
 this.collection.on('add', this.add, this);
 this.collection.on('remove', this.remove, this);

Templating

[60]

},

showForm: function () {
 this.add(new Vision.Project()).add();
}

Let's add some validation to our Project model so we can validate form input for
our project. We add a validate method to our Project model and validate our
Project model's name. If validation fails, we return an errors array containing
error messages. We are actually overriding the validate method. Backbone.js
requires that you override the validate method with your custom validation logic.
By default, the method validate is also called as part of a save call.

validate: function(attrs) {
 var errors = [];
 if (attrs.name === '') errors.push("Please enter a name");
 if (errors.length > 0) return errors;
}

Let's make some changes to projectView. We start by adding a new template called
formTemplate, which displays a form for adding a new project. We add two new
events to the events hash—a button save event and a button cancel event.

The cancel method, which responds to the cancel event, will get the current
projectId from our model and check if the model.isNew. If it's new we simply
remove the projectView from our projectListView. If its not new, we render
our view and also render repositoryListView by calling repository. We then
navigate to the index page using history.navigate.

The save method, which responds to the save event, grabs projectId from our
model and the form data. We then call model.isValid, which calls the validate
method in our project model. Any error returned results in calling formError. If
the model is valid, we go off and get our selected repositories and assign this to our
form. We then attempt to save the form as Project with a call to model.save. Any
error returned results in calling formError. A successful save enables us to render
the project in ProjectListView. We also render RepositoryListView by calling
repository. We then navigate to the index page using history.navigate.

formTemplate: visiontemplates["templates/project-form.hbs"],

events: {
 "click a" : "repository"
 "click button.save": "save",
 "click button.cancel": "cancel"
},

Chapter 3

[61]

add: function () {
 this.$el.html(this.formTemplate(this.model.toJSON()));
 this.repository();
},

cancel: function () {
 var projectId = this.model.toJSON()._id;

 if (this.model.isNew()) {
 this.remove();
 } else {
 this.render();
 this.repository();
 }

 Backbone.history.navigate('index', true);
},

 save: function (e) {
 e.preventDefault();

 var me = this
 , formData = {}
 , projectId = this.model.toJSON()._id;

 $(e.target).closest("form")
 .find(":input").not("button")
 .each(function () {
 formData[$(this).attr("class")] = $(this).val();
 });

 if (!this.model.isValid()) {
 me.formError(me.model, me.model.validationError, e);
 } else {
 formData.repositories = $('#repository-list')
 .find("input:checkbox:checked")
 .map(function(){
 return $(this).val();
 }).get();
 }

 this.model.save(formData, {
 error: function(model, response) {
 me.formError(model, response, e);

Templating

[62]

 },
 success: function(model, response) {
 me.render();
 me.repository();
 Backbone.history.navigate('index', true);
 }
 });
},

formError: function(model, errors, e) {
 $(e.target).closest('form').find('.errors').html('');

 _.each(errors, function (error) {
 $(e.target).closest('form').find('.errors')
 .append('' + error + '')
 });
}

You will now be able to complete the form and add a new project.

Feature: Edit a project
Let's add an edit project form for our feature Edit a project. It consists of a
text box for the project name a save and cancel button. Clicking on save will PUT
the project to our Express server; clicking on cancel closes the form. We will use
the same handlebars template we used for adding a project. In order to make
RepositoryListView editable, we will need to introduce the concept of an edit
state. We have called editMode.

Let's make some changes to projectView. We start by adding a new event edit to
the events hash, which calls an edit function. We change our repository method
by passing a new arg.editMode to event_aggregator, which will inform our
RepositoryListView that it is in edit mode.

The edit method, which displays our project formTemplate, populated with our
project model data calls the repository method with editMode set to false,
informing RepositoryListView that it is in edit mode. Finally, we update our add,
cancel, and save methods; calls in these methods to the repository method should
pass {editMode:false}.

 Events: {
 ...
 "click button.edit": "edit"
 },

Chapter 3

[63]

 repository: function(args) {
 var data = { projectId: this.model.toJSON()._id, editMode:
 args.editMode || false }
 ...
 },

 edit: function () {
 var model = this.model.toJSON();
 this.$el.html(this.formTemplate(model));
 this.repository({editMode:true});
 },

Let's make some changes to RepositoryListView. The initialize method
will now either enable or disable the form checkboxes based on editMode when
collection.fetch makes a successful request. The enableForm function removes
the disabled tag from our RepositoryListView checkbox list. The disableForm
function adds the disabled tag to our RepositoryListView checkbox list.

 initialize: function (args) {
 ...
 this.collection.fetch({ success: function(){
 me.render();
 (args.editMode) ? me.enableForm() : me.disableForm();
 }});
 },

 enableForm: function(){
 this.$el.find("input:checkbox").remove('disabled');
 },

 disableForm: function(){
 this.$el.find("input:checkbox").attr('disabled',
 'disabled');
 }

Now you will be able to edit your existing projects.

Templating

[64]

Feature: Delete a project
Let's add a delete button to our form for the feature Delete a project.

Let's make a change to ProjectView and add a new event to the events hash,
called delete, which calls the delete method. We add a delete method, which
destroys the model and removes ProjectView. We then call repository, removing
RepositoryListView.

 events: {
 ...
 "click button.delete": "delete",
 },

 delete: function () {
 this.model.destroy();
 this.remove();
 this.repository({editMode:false});
 },

Let's make a change to ProjectListView and add a collection event handler to
initialize. The event handler calls the remove method when an item is removed.
The remove method grabs the model's attributes and searches the Projects
collection, removing the item when finding it.

 initialize: function () {
 ...
 this.collection.on("remove", this.remove, this);
 },

 remove: function (removedModel) {
 var removed = removedModel.attributes;

 _.each(this.Projects, function (project) {
 if (_.isEqual(project, removed)) {
 this.Projects.splice(_.indexOf(projects, project), 1);
 }
 });
 },

You will now be able to delete a project by clicking on the delete button.

Chapter 3

[65]

Feature: List commits
Let's add a list of commits for the feature List Commits. Each item in the list consists
of a commit message, project name, a date, and the committer's username. The
following is a HTML template ./templates/commits.hbs for a commit item:

 <img class="media-object" src="{{avatar_url}}"
 style="width:64px; height:64px">

 <div class="media-body">
 <h4 class="media-heading">{{message}}</h4>
 <small>{{repository}}</small>
 <small>{{ago}}</small>

<small>{{login}}</small>
 </div>

Let's implement our Commit model. We define a function, Commit, which extends the
Backbone Model type, and we include a hash of default values for the properties in
our model.

Vision.Commit = Backbone.Model.extend({
 defaults: {
 date : '',
 ago: '',
 message : '',
 login : '',
 avatar_url : ''
 }
});

Let's implement a collection, CommitList, for our Commit model. We define a
function, CommitList, which extends the Backbone Collection type. We specify
the model type as Vision.Commit. We add a url method that uses the web API
route /project/:id/commits to return a list of commits. The initialize method is
called when the collection is instantiated; from here we assign projectId. The parse
method is called when a fetch is performed and will parse the response. Here we
assign our MongoDB _id to response.id.

Vision.CommitList = Backbone.Collection.extend({
 projectId: '',
 model: Vision.Commit,

 url : function() {
 return '/project/' + this.projectId + '/commits';

Templating

[66]

 },

 initialize: function(items, item) {
 this.projectId = item.projectId;
 },

 parse: function(response) {
 response.id = response._id;
 return response;
 }
});

Let's implement a view for our Commit collection. We define a function,
CommitListView, which extends the Backbone View type, and adds a Commits array
for our commits list. The initialize method is called when the view is instantiated;
from here we call create and instantiate a new CommitList, passing our Commits
array. We call refresh ,which loops through the Commits collection rendering the
view with a call to render. The render method uses underscore to loop through the
Commits collection called collection.models by calling add(item) for each commit.
The method add instantiates CommitView, passing to it a Commit model, it then
appends a rendered CommitView to the DOM element via $el and returns the view.

Vision.CommitListView = Backbone.View.extend({
 Commits: [],

 initialize: function (args) {
 if (!args.projectId) return;
 this.Commits = args.commits || [];
 this.$el.html('');
 this.create(args);
 this.refresh();
 },

 refresh: function(){
 var me = this;

 if (!this.Commits.length) {
 this.collection.fetch({ success: function(){
 me.render();
 }});
 }
 },

 create: function(args) {

Chapter 3

[67]

 this.collection = new Vision.CommitList(this.Commits,
 { projectId : args.projectId });
 this.render();
 },

 render: function () {
 _.each(this.collection.models, function (item) {
 this.add(item);
 }, this);
 },

 add: function (item) {
 var commitView = new Vision.CommitView({ model: item });

 this.$el.append(commitView.render().el);
 return commitView;
 }
});

We continue by adding a view for a single commit item. We define a function,
CommitView, which extends the Backbone View type, and add a tagName and assign
li to it. This tag will be wrapped around our commit view; our DOM element is a
ul tag. We include viewTemplate and assign our precompiled handlebars template
./templates/commits.hbs to it. The render method renders the view; we pass
the commit model to our viewTemplate, which is then added via $el to our DOM
element and we return the view.

Vision.CommitView = Backbone.View.extend({
 tagName: 'li',
 className: 'media',
 viewTemplate: visiontemplates['templates/commits.hbs'],

 render: function () {
 this.$el.html(this.viewTemplate(this.model.toJSON()));
 return this;
 }
});

Let's complete the picture and change our router; we add a CommitListView to the
router and call commits inside the join method. The commits method instantiates a
CommitListView passing the current projectId and a list of commits.

CommitListView:'',

join : function(args){

Templating

[68]

 this.repository(args);
 this.commits(args);
},

commits : function(args){
 this.commitListView =
 new Vision.CommitListView({ el: 'ul#commits-list',
 projectId: args.projectId, commits : args.commits});
},

Vision will now display a list of commits when selecting a project.

Feature: List issues
Let's build our issues list. Each item in the list simply consists of an issue title, project
name, a date, the issuer's username, and its status.

What follows is an HTML template ./templates/issues.hbs for a issues item:

 <img class="media-object" src="{{avatar_url}}"
 style="width:64px; height:64px">

<div class="media-body">
 <h4 class="media-heading">{{title}}</h4>
 <small>{{repository}}</small>
 <small>{{ago}}</small>

<small>{{login}},{{state}}</small>
</div>

Let's implement our Issue model; we define a function Issue, which extends the
Backbone Model type, and includes a hash of default values for the properties in
our model.

Vision.Issue = Backbone.Model.extend({
 defaults: {
 title : '',
 state : '',
 date : '',
 ago: '',
 login : '',
 avatar_url : ''
 }
});

Chapter 3

[69]

Let's implement a collection called IssueList for our Issue model. We define a
function, IssueList, which extends the Backbone Collection type, and specifies
the model type as Vision.Issue. We add a url method that uses the web API route
/project/:id/issues to return a list of issues. The initialize method is called
when the collection is instantiated; from here we assign the selected projectId. The
parse method is called when a fetch is performed and will parse the response; here
we assign our MongoDB _id to the response.id.

Vision.IssueList = Backbone.Collection.extend({
 projectId: '',
 model: Vision.Issue,

 url : function() {
 return '/project/' + this.projectId + '/issues';
 },

 initialize: function(items, item) {
 this.projectId = item.projectId;
 },

 parse: function(response) {
 response.id = response._id;
 return response;
 }
});

Let's implement a view for our Issue collection. We define a function,
IssueListView, which extends the Backbone View type, and add an Issues array
for our issue list. The initialize method is called when the view is instantiated;
from here we call create and instantiate a new IssueList, passing our Issues
array. We then call refresh, which loops through the Issues collection, rendering
the view with a call to render. The render method uses underscore to loop through
the Issues collection called collection.models; and calls add(item)for each issue.
The method add instantiates IssueView, passing to it an Issue model. We then
append a rendered IssueView to our DOM element via $el and return the view.

Vision.IssueListView = Backbone.View.extend({
 Issues: [],

 initialize: function (args) {
 if (!args.projectId) return;
 this.Issues = args.issues || [];
 this.$el.html('');
 this.create(args);
 this.refresh();

Templating

[70]

 },

 create: function(args) {
 this.collection = new Vision.IssueList(this.Issues,
 { projectId : args.projectId });
 this.render();
 },

 refresh: function(){
 var me = this;

 if (!this.Issues.length) {
 this.collection.fetch({ success: function(){
 me.render();
 }});
 }
 },

 render: function () {
 _.each(this.collection.models, function (item) {
 this.add(item);
 }, this);
 },

 add: function (item) {
 var issueView = new Vision.IssueView({ model: item });

 this.$el.append(issueView.render().el);
 return issueView;
 }
});

We continue by adding a view for a single issue. We define a function, IssueView,
which extends the Backbone View type, and add a tagName and assign li to it; this
tag will be wrapped around our IssueView function. Our DOM element is a ul
tag. We include a viewTemplate and assign our precompiled handlebars template
templates/issues.hbs to it. The render method renders the view; we pass the
issue model to viewTemplate which is then added via $el to our DOM element
and we return the view.

Vision.IssueView = Backbone.View.extend({
 tagName: 'li',
 className: 'media',
 viewTemplate: visiontemplates['templates/issues.hbs'],

Chapter 3

[71]

 render: function () {
 this.$el.html(this.viewTemplate(this.model.toJSON()));
 return this;
 }
});

Let's complete the picture and change our router; we add a issueListView to the
router and call issues inside the join method. The issues method instantiates
IssueListView, passing projectId and a list of issues.

issueListView:'',

join : function(args){
 this.repository(args);
 this.issues(args);
 this.commits(args);
},

issues : function(args){
 this.issueListView = new Vision.IssueListView({ el: '
 ul#issues-list', projectId: args.projectId, issues
 : args.issues});
},

Vision will now display a list of issues when selecting a project.

Summary
We have now completed the first part of our client. We have implemented a
project list view that allows us to add, update, and remove projects. We have also
implemented a repository list view that displays a list of repositories for our access
token; these repositories can be assigned to the project. We also display a list of
commits and issues for all repositories in our project. In the next chapter, we will
display a real-time list of commits and issues using Socket.IO.

Real-time Communication
Our application is beginning to take shape. We have a list of projects and a form that
allows us to add, delete, and update projects. We are also able to assign repositories
to these projects, which allows us to view a list of issues/commits for all repositories
in a project. This chapter will guide you through the next phase of our client setup:
displaying a list of project repository commits and issues in real time using Redis
and Socket.IO.

We would ideally like the application to continue working with Socket.IO/Redis
switched off, leaving the application without a real-time element. We will attempt
to implement these features with this in mind.

Caching data with Redis
Redis is an extremely fast, open source, in-memory key value store. Redis has
a useful Pub/Sub mechanism that we will use to push messages to a Socket.IO
subscriber that will emit events to the client.

Visit this website in order to download and install Redis: http://redis.io/
download.

Once Redis is installed, you can start it with the following command:

redis-server

In order to start the Redis command-line interface, CLI issues the following command:

redis-cli

Real-time Communication

[74]

The following commands can be issued from the CLI:

• To monitor activity on Redis:
monitor

• To clear the Redis store:
flushall

• To view all the keys stored in Redis:
keys *

• To get the value of a key:
get <key>

In order to use Redis in our application, install the node-redis client, as follows:

npm install redis --save

Let's configure our application to use Redis by updating the./lib/config/*.json
config files with the following configuration:

 "redis": {
 "port": 6379
 , "host": "localhost"
 }

First, we create a simple module, Redis, that wraps up the Redis connection
./lib/cache/redis.js. We start by importing the redis module. We define
a Redis module, which calls createClient in order to create a Redis client.

We pull in the Redis configuration data from the preceding:

var redis = require('redis')
, config = require('../configuration');

function Redis() {
 this.port = config.get("redis:port");
 this.host = config.get("redis:host");
 this.password = config.get("redis:password");
 this.client = redis.createClient(this.port, this.host);
 if (this.password) this.client.auth(this.password,
 function() {});
}

module.exports = Redis;

Chapter 4

[75]

Let's extend our Redis module and create a Publisher module that will publish
messages using the Redis Pub/Sub feature, ./lib/cache/publisher/index.js.
We start by importing our Redis module and use the util module to extend the
Redis module with the Publisher module. We then define our Publisher module,
which includes a save function, which saves an object as a string to Redis and a
publish function, which publishes a message to Redis.

The Publisher module is defined as shown in the following code snippet:

var Redis = require('../../cache/redis')
 , util = require('util');

util.inherits(Publisher, Redis);

function Publisher() {
 Redis.apply(this, arguments);
};

Redis.prototype.save = function(key, items) {
 this.client.set(key, JSON.stringify(items));
};

Redis.prototype.publish = function(key, items) {
 this.client.publish(key, JSON.stringify(items));
};

module.exports = Publisher;

Next, we extend our Redis module and create a Subscriber./lib/cache/
subscriber/index.js, which consumes published messages. We start by importing
our Redis module and use the util module to extend the Redis module with the
Subscriber module. We then define our Subscriber module, which includes a
subscribe function. This allows the user to subscribe to messages on a key:

var Redis = require('../../cache/redis')
 , util = require('util');

util.inherits(Subscriber, Redis);

function Subscriber() {
 Redis.apply(this, arguments);
};

Subscriber.prototype.subscribe = function(key) {
 this.client.subscribe(key);
};

module.exports = Subscriber;

Real-time Communication

[76]

Populating Redis
The ./lib/cache/populate.js script populates a Redis store with new commits/
issues using our preceding modules. We will demonstrate scheduling this script later
in the chapter. We start by importing the Publisher module, and use util.inherits
to extend the Publisher module with a Populate function, giving our Populate
module the ability to publish messages.

We then define the Populate function and add a run function, that gets all projects
from MongoDB. We use async.each to loop through each project, using the projects
user and token to instantiate a GitHubRepo module. We then call git.commits,
passing a list of repositories; the response returned is a sorted list of the 10
latest commits. We save the response to Redis using project._id as the key. We
then publish the project._id and commits, via the publish function to activate a
refresh. We then repeat the whole process for issues.

var async = require('async')
 , _ = require('underscore')
 , util = require('util')
 , db = require('../db')
 , Publisher = require('../cache/publisher')
 , GitHubRepo = require('../github')
 , Project = require('../models').model('Project');

util.inherits(Populate, Publisher);

function Populate() {
 Publisher.apply(this, arguments);
};

Populate.prototype.run = function(callback) {
 var me = this;

 Project.find({}, function(error, projects) {
 if (error) callback();
 if (projects == null) callback();

 async.each(projects, function(project, callback) {
 var git = new GitHubRepo(project.token, project.user);

 git.commits(project.repositories, function(error, commits) {
 if (error || !commits) callback();

 me.save('commits:' + project._id, commits);
 me.publish('commits', { projectId : project._id, commits :
 commits});

Chapter 4

[77]

 git.issues(project.repositories, function(error, issues) {
 if (error || !issues) callback();

 me.save('issues' + project._id, issues);
 me.publish('issues', { projectId : project._id, issues :
 issues});
 });
 });

 callback(error);
 }
 , function(error) {
 callback(error);
 });
 });
};
module.exports = Populate;

Socket.IO
Socket.IO is a real-time application framework that allows for cross-browser,
real-time communication between a browser and server.

The lack of browser and server support for the emerging WebSocket standard means
we cannot easily achieve real-time communication across browsers. In order to
achieve this, Socket.IO supports multiple transport protocols including WebSockets,
long polling, XHR, and flashsockets, that function as a fallback mechanism for
older browsers. Browsers that do not support WebSockets will simply fall back
to a transport protocol they do support.

Socket.IO comes in two parts: a server-side module and a client-side script. Both
parts need to be installed in order for our application to support bidirectional
duplex communication. Let's install the server piece via NPM:

npm install socket.io --save

Let's configure our application to use Socket.IO by updating our ./config/*.json
config files with the following configuration:

"sockets": {
 "loglevel": 3
 , "pollingduration": 10
 , "browserclientminification" : false
 , "browserclientetag" : false
 , "browserclientgzip" : false
 }

Real-time Communication

[78]

The next step is to wire up Socket.IO to Express. Let's create and configure a typical
Socket.IO server: ./lib/socket/index.js. We define our Socket module, which
accepts a single argument: server. We require the socket.io module and create
a new Socket.IO server, passing our Express-enabled HTTP server to it. We then
configure our Socket.IO server by setting sensible values for log level, transports,
and polling duration, as defined previously in our config files, and return the
Socket.IO server.

var config = require('../configuration');

function Socket(server) {
 var socketio = require('socket.io').listen(server);

 if (config.get('sockets:browserclientminification'))
 socketio.enable('browser client minification');
 if (config.get('sockets:browserclientetag'))
 socketio.enable('browser client etag');
 if (config.get('sockets:browserclientgzip'))
 socketio.enable('browser client gzip');
 socketio.set("polling duration",
 config.get('sockets:pollingduration'));
 socketio.set('log level', config.get('sockets:loglevel'));

 socketio.set('transports', [
 'websocket'
 , 'flashsocket'
 , 'htmlfile'
 , 'xhr-polling'
 , 'jsonp-polling'
]);

 return socketio;
};

module.exports = Socket;

Setting log level is useful for debugging. Socket.IO supports the following:

• 0: Error
• 1: Warn
• 2: Info
• 3: Debug and defaults to 3

Chapter 4

[79]

Further information on configuring Socket.IO can be found at:
https://github.com/LearnBoost/Socket.IO/wiki/Configuring-Socket.IO.

Let's now use our Socket.IO server and create a handler for Socket.IO ./lib/
socket/handler.js.

We start by importing the Socket module, instantiating it, and passing it an
Express-enabled httpServer parameter. We create a Redis Subscriber module
and define a SocketHandler function that accepts httpServer as input. We set
up a Socket.IO handler for the connection event. When ready, this will return the
connected socket.

We then subscribe to two Redis channels—issues and commits—and define a Redis
handler for the new message event. This handler broadcasts a channel and a message
to clients listening on the channel defined by message.projectId.

We define a Socket.IO subscribe handler, which allows a client to join or subscribe
to events on a given project. We also define a Socket.IO unsubscribe handler that
allows a client to leave or unsubscribe to events on a given project. We also define
an error handler on Socket.IO, which logs any errors to logger:

var http = require('http')
 , logger = require("../logger")
 , Socket = require('../socket')
 , Subscriber = require('../cache/subscriber')
 , subscriber = new Subscriber();

function SocketHandler(httpServer) {

 var socketIo = new Socket(httpServer)

 socketIo.sockets.on('connection', function(socket) {
 subscriber.subscribe("issues");
 subscriber.subscribe("commits");

 subscriber.client.on("message", function (channel, message) {
 socket.broadcast.to(message.projectId).emit(channel,
 JSON.parse(message));
 });

 socket.on('subscribe', function (data) {
 socket.join(data.channel);
 });

 socket.on('unsubscribe', function () {
 var rooms = socketIo.sockets.manager.roomClients[socket.id];

Real-time Communication

[80]

 for (var room in rooms) {
 if (room.length > 0) {
 room = room.substr(1);
 socket.leave(room);
 }
 }
 });
 });

 socketIo.sockets.on('error', function() {
 logger.error(arguments);
 });
};

module.exports = SocketHandler;

Now we can wire up Socket.IO to our ./lib/express/index.js Express server.
Let's import the SocketHandler module, passing to it an Express server
called httpServer:

, SocketHandler = require('../socket/handler')
..
var httpServer = http.createServer(app).listen(app.get('port'))
socketHandler = new SocketHandler(httpServer);

Socket.IO on the client
In order to display these Socket.IO published messages, we need to make some client
changes. Let's install the Socket.IO client piece using bower:

bower install socketio-client

Let's make a single change to our ./lib/express/index.js Express server and
simplify the location of our socket.io-client using the static middleware:

app.use('/sockets', express.static(
 'public/components/socket.io-client/dist/'));

We will now add the Socket.IO client scripts to ./views/index.html:

<script src="/sockets/socket.io.js"></script>

Chapter 4

[81]

Now we integrate Socket.IO into our backbone piece. Let's update our Backbone.
js Router. The router initialise method now accepts socket as an argument and
contains two Socket.IO event handlers: one for issues which calls the issues method
and one for commits which calls the commits method. The join method will now
emit an Socket.IO unsubscribe event unsubscribing the user from any currently
subscribed projects. It will then emit a Socket.IO subscribe event which subscribes
the user to the newly selected project. The project selected is passed to the join
method via the args parameter.

Vision.Router = Backbone.Router.extend({
 projectListView : '',
 repositoryListView:'',
 issueListView:'',
 commitListView:'',
 socket: null,

 routes: {
 '' : 'index',
 'add' : 'add'
 },

 initialize : function(socket) {
 this.socket = socket;
 this.project();
 this.listenTo(this.projectListView, 'join', this.join);
 this.socket.on('issues', this.issues);
 this.socket.on('commits', this.commits);
 },

 join : function(args) {
 this.repository(args);
 this.issues(args);
 this.commits(args);
 this.socket.emit('unsubscribe');
 this.socket.emit('subscribe', {channel : args.projectId});
 },

 project : function() {
 this.projectListView = new Vision.ProjectListView();
 },

 repository : function(args) {

 this.repositoryListView = new Vision.RepositoryListView(
 {el: 'ul#repository-list', projectId: args.projectId,
 editMode: args.editMode });

Real-time Communication

[82]

 },

 issues : function(args) {

 this.issueListView = new Vision.IssueListView(
 {el: 'ul#issues-list', projectId: args.projectId,
 issues : args.issues});
 },

 commits : function(args) {

 this.commitListView = new Vision.CommitListView(
 { el: 'ul#commits-list', projectId: args.projectId,
 commits : args.commits});
 },

 index : function(){
 this.projectListView.render();
 },

 add : function(){
 this.projectListView.showForm();
 }
});

We now need to pass an instance of our Socket.IO client to our Router. We call
io.connect, create a socket, and pass this into our Router.

Vision.Application = function() {
 this.start = function() {
 var socketio = io.connect('/');
 var router = new Vision.Router(socketio);
 Backbone.history.start();
 router.navigate('index', true);
 }
};

Scheduling Redis population
The only thing that remains is to create a scheduler that polls our Redis populate
script, ./populate.js.

First, let's install a scheduler named node-schedule via NPM:

npm install node-schedule --save

Chapter 4

[83]

We start by importing node-schedule, which allows us to do cron-like scheduling.
We call schedule.scheduleJob every five minutes using */5; however, it will also
run as soon as the script starts. We then call populate.run to start population:

var schedule = require('node-schedule')
 , logger = require('./lib/logger')
 , Populate = require('./lib/cache/populate')
 , populate = new Populate();

schedule.scheduleJob('*/5 * * * *', function() {
 populate.run(function(err) {
 if (err) logger.error('Redis Population error', err);
 if (!err) logger.info('Redis Population complete');
 });
});

In order to run the application with real-time updates, open a new terminal and run
the following command:

npm start

Now, open another terminal to run the Redis population script.

node populate.js

We configured the previous script to run every five minutes, so go and add some
issues/commits to your GitHub project repository in order to see the results.

Summary
Socket.IO and Redis are powerful tools. We have barely scratched the surface of
what can be achieved with them. We will revisit Redis and Socket.IO in the following
chapters of this book as Redis is also used to scale Express sessions and the Socket.
IOs Pub/Sub mechanism.

The next chapter will focus on securing our application when we implement an
authentication strategy via GitHub, using Passport, and add SSL support.

Security
In this chapter we will authenticate users using a GitHub account and OAuth 2.0
tokens. This will allow us to secure the site and support multiple users; currently
we have a single hardcoded token and user. We will also add HTTPS to our site
and explore some other modules that we can use to secure other common security
vulnerabilities.

Setting up Passport
Passport is an authentication middleware for node that supports; via plugin; multiple
authentication strategies, including Basic Auth, OAuth, and OAuth 2. Passport works
by defining a route middleware to be used to authenticate the request.

Let's install Passport:

npm install passport --save

Passport does not include a GitHub strategy; for this we need to install passport-
github; a strategy for authenticating with GitHub using the OAuth 2.0 API:

npm install passport-github --save

Acceptance testing with Cucumber and
Zombie.js
OAuth authentication uses a callback mechanism; this is messy to test with an
integration-testing tool such as SuperTest; we require something a little more
end-to-end.

Security

[86]

Cucumber allows teams to describe software behavior in a simple plain text
language called Gherkin. The process of describing this behavior aids development;
the output serves as documentation that can be automated to run as a set of tests.
Let's install cucumber:
npm install -g cucumber

Zombie.js is simple, lightweight framework for doing headless full-stack testing.
Let's install Zombie.js:
npm install zombie --save-dev

Let's automate running Cucumber with a grunt task:

npm install grunt-cucumber --save-dev

Add the following to our gruntfile ./gruntfile.js. The section files defines
the location of our feature files, and options:steps defines the location of our
step definitions:

 cucumberjs: {
 files: 'features',
 options: {
 steps: "features/step_definitions",
 format: "pretty"
 }
 },

Feature: Authentication
As a vision user
I want to be able to authenticate via Github
So that I can view project activity

Let's create our first feature file ./features/authentication.feature. The
following feature file contains a Feature section, which for the agile among you will
know that it defines the story and its value to the business, and a list of scenarios.
Our acceptance criteria; written in the Gherkin language.

The following Authenticate feature contains two scenarios, including one to log
in, titled User logs in successfully, and one to log out, titled User logs out
successfully:

Feature: Authentication
As a vision user
I want to be able to authenticate via Github
So that I can view project activity

Chapter 5

[87]

 Scenario: User logs in successfully
 Given I have a GitHub Account
 When I click the GitHub authentication button
 Then I should be logged in
 And I should see my name and a logout link

 Scenario: User logs out successfully
 Given I am logged in to Vision
 When I click the logout button
 Then I should see the GitHub login button

Let's run Cucumber using our grunt task:

grunt cucumberjs

This will generate the following output:

2 scenarios (2 undefined)
7 steps (7 undefined)
You can implement step definitions for undefined steps with these
snippets:
this.Given(/^I have a GitHub Account$/, function(callback) {
 callback.pending();
});

this.When(/^I click the GitHub authentication button$/,
 function(callback) {
 callback.pending();
});

this.Then(/^I should be logged in$/, function(callback) {
 callback.pending();
});

this.Then(/^I should see my name and a logout link$/,
 function(callback) {
 callback.pending();
});

this.Given(/^I am logged in to Vision$/, function(callback) {
 callback.pending();
});

Security

[88]

this.When(/^I click the logout button$/, function(callback) {
 callback.pending();
});

this.Then(/^I should see the GitHub login button$/,
 function(callback) {
 callback.pending();
});

From the preceding output, you can see that Cucumber has generated a series
of stubbed steps that are set to pending. These steps represent the Given, When,
and Then scenarios we defined in our feature file ./features/authentication/
authentication.feature.

We can use these steps to implement our Cucumber tests. Let's create a step definition
file ./features/step_definitions/authentication/authenticate.js:

var steps = function() {
 var Given = When = Then = this.defineStep;
 ..add generated steps here
};

module.exports = steps;

Let's run Cucumber using our grunt task:

grunt cucumberjs

We get the following output:

2 scenarios (2 pending)

7 steps (2 pending, 5 skipped)

We are now ready to begin implementing our first scenario.

Scenario: User logs in successfully
Let's begin implementing this scenario. First, we need a GitHub clientId and
clientSecret. Visit your GitHub account, click on Settings and then Applications
and again on Register New Application. Complete the form by adding the homepage
URL and the callback URL (same as our homepage), and a clientId and a
clientSecret will be generated.

Chapter 5

[89]

Let's add these details to our config files ./config/*.json:

"auth": {
 "homepage": "http://127.0.0.1:3000"
 , "callback": "http://127.0.0.1:3000/auth/github/callback"
 , "clientId": "5bb691b4ebb5417f4ab9"
 , "clientSecret": "15310740929666983d52808dda32417d733791d0"
}

Let's remove the temporary login we set up in Chapter 2, Building a Web API, and
remove the following line and all code related to it ./lib/routes/project.js:

, login = require('../../test/login');

We are now ready to implement our GitHub strategy ./lib/github/
authentication.js. We start by defining a function, GitHubAuth; we import the
passport and passport-github modules. We instantiate a GitHubStrategy, add
it to passport, and pass a clientID, clientSecret, a callbackUrl, and a verify
function (all passport strategies require a verify function), that is called when GitHub
authenticates passing back an accessToken, refreshToken, and a profile.

Inside this verify function, we have the option of rejecting the user by passing a false
out of the callback function. We will accept anyone with a GitHub access token; so
simply pass back a user profile; which we create using the profile GitHub passed to
us. Within the verify function, we instantiate a GitHubRepo and call updateTokens,
which updates their access tokens for use by our Redis cache population.

Our application will support user sessions, so we add two functions to the passport
module, that include serializeUser and deserializeUser, which serialize and
deserializes the GitHub user profile into and out of a user session:

var async = require('async')
, GitHubRepo = require('../github')
, config = require('../configuration');

function GitHubAuth() {
 this.passport = require('passport')
 var GitHubStrategy = require('passport-github').Strategy;

 this.passport.use(new GitHubStrategy({
 clientID : config.get('auth:clientId'),
 clientSecret : config.get('auth:clientSecret'),
 callbackURL : config.get('auth:callback')
 },

Security

[90]

 function(accessToken, refreshToken, profile, done) {

 var user = {
 id : profile.username,
 displayName : profile.displayName,
 token : accessToken
 };

 var git = new GitHubRepo(user.token, user.id);

 git.updateTokens(function(){
 process.nextTick(function () {
 return done(null, user);
 });
 });
 };
));

 this.passport.serializeUser(function(user, done) {
 done(null, user);
 });

 this.passport.deserializeUser(function(user, done) {
 done(null, user);
 });
};

module.exports = new GitHubAuth();

Let's add an updateTokens function to GitHubRepo, which gets all of a users'
projects and async.each through each one updating its token:

GitHubRepo.prototype.updateTokens = function(done) {
 var query = { "user" : this.user };

 Project.find(query, function(error, projects) {
 if (error) return done();
 if (projects == null) done();

 async.each(projects, function(project, callback) {
 project.token = this.token;

 project.save(function(error, p) {
 callback();
 });
 }
 , function(error) {

Chapter 5

[91]

 done();
 });
 });
};

Let's add configuration to our config files ./config/*.json, in order to support
Express sessions:

 "session": {
 "secret": "th1$1$a$ecret"
 , "maxAge": null
 , "secure": true
 , "httpOnly": true
 }

Let's wire up our GitHub strategy to our Express server: ./lib/express/index.js.
The first change we make it to include our new GitHub authentication strategy:

var gitHubAuth = require('../github/authentication')

We create a cookieParser middleware and include it just before the bodyParser
middleware, which will parse the cookie header field and populate req.cookies.
We pass a secret; which is a string used to create a signed cookie enabling the
detection of a modified cookie:

var cookieParser = express.
 cookieParser(config.get('session:secret'));
app.use(cookieParser);

The application will require persistent login sessions, so we will include the connect
session middleware in our Express server in order to provide session support.
We will use the sessionStore, which is an in-memory session store. We pass in
a secret and a value for a cookie maxAge (a null value will expire the session on
closing the browser), httpOnly (disallow client-side JavaScript access to cookies; XSS
attacks), and secure (send cookies over HTTPS only):

app.use(express.bodyParser());
var sessionStore = new express.session.MemoryStore();
app.use(express.session({ store: sessionStore,
 secret: config.get('session:secret'),
 cookie: { secure: config.get('session:secure'),
 httpOnly: config.get('session:httpOnly'),
 maxAge: config.get('session:maxAge') }}));

Security

[92]

The Passport module requires we call passport.initialize() in order to initialize
passport, and in order to provide session support, we must also call the passport.
session() middleware; we add both to our Express server:

app.use(gitHubAuth.passport.initialize());
app.use(gitHubAuth.passport.session());

We now define the first of two routes on our Express server; both use the passport
strategy for GitHub. The first route is a login route /auth/github; hitting this
route will redirect you to GitHub and try to authenticate. If you are not logged in to
GitHub, you will be asked to log in. If you are doing this for the first time, you will
be prompted. You will be asked if you would like to grant Vision access. The second
route; is the route GitHub will callback when authentication is complete:

app.get('/auth/github',
 gitHubAuth.passport.authenticate('github'),routes.auth.login);

app.get('/auth/github/callback',
 gitHubAuth.passport.authenticate('github',
 { failureRedirect: '/' }), routes.auth.callback);

We have configured our Express server with a GitHub passport strategy. Let's add
the two missing routes to our routes, ./lib/routes/auth.js; one for login and one
for the callback as described previously:

exports.callback = function(req, res) {
 logger.info('Request.' + req.url);
 res.redirect('/');
};

exports.login = function(req, res){
 logger.info('Request.' + req.url);
};

In order to simulate the body of our project form containing a user and token, we
will add a middleware that simply adds this data to the form for an authenticated
user. We can add the projectForm.addToken middleware to all of our routes easily
by using app.all, which will apply this middleware to all routes that follow it.

Let's make a further change to our Express server: ./lib/express/index.js,
and clean up our middleware by removing all require statements involving it and
using require-directory with an ./lib/middleware/index.js file, as we did
with our routes. We can now add this projectForm above all the routes that
require authentication:

 , middleware = require('../middleware')

app.all('*', middleware.projectForm.addToken);
.. all routes below

Chapter 5

[93]

Let's create the projectForm.addToken middleware in ./lib/middleware/
projectForm.js. The AddToken middleware checks if the request is authenticated
via req.isAuthenticated; we add user and token to the request:

exports.addToken = function(req, res, next){
 if (req.isAuthenticated()) {
 req.body.user = req.session.passport.user.id;
 req.body.token = req.session.passport.user.token;
 req.user = req.session.passport.user;
 };

 next();
}

Now that we have authentication in place, let's remove the hardcoded user
in ./lib/routes/home.js:

exports.index = function(req, res){
 var model = {
 title: 'vision.',
 description: 'a project based dashboard for github',
 author: 'airasoul',
 user: req.isAuthenticated() ? req.user.displayName : ''
 };

 res.render('index', model);
};

Now when we click on the GitHub logo in our header, we are redirected to GitHub
which will ask you to log in. Once you have logged in to GitHub, you must grant
access to our Vision application; however, future attempts to log in will not require
you to grant access to Vision.

Let's complete our Cucumber steps for login using Zombie.js. ./features/step_
definitions/authentication/authenticate.js. First, we include zombie and
and define a steps function. Then, we set silent and debug to enable Zombie.js
debugging output. We define Given = When = Then as Cucumber steps and add a
Before step, which runs before each test. From here we instantiate a zombie Browser:

var Browser = require('zombie')
, assert = require('assert')
S = require('string')
config = require('../../../lib/configuration');

var steps = function() {
 var silent = false;

Security

[94]

 var debug = false;
 var Given = When = Then = this.defineStep;
 var browser = null;
 var me = this;

 this.Before(function(callback) {
 browser = new Browser();
 browser.setMaxListeners(20);
 setTimeout(callback(), 5000);
 });
};

module.exports = steps;

The step I have a GitHub Account uses the zombie browser to visit the GitHub
login page, and waits for the page to load and fill in the login details; we then click
on the sign in button:

this.Given(/^I have a GitHub Account$/, function(callback) {
 browser.visit('https://github.com/login',
 {silent: silent, debug: debug});

 browser.wait(function(){
 browser
 .fill('login', '#LOGIN#')
 .fill('password', '#PASSWORD#')
 .pressButton('Sign in', function() {
 callback();
 });
 });
});

The step I click the GitHub authentication button uses the zombie browser
to visit the GitHub login page and waits for the page to load and fill in the login
details; we then click on the sign in button:

this.When(/^I click the GitHub authentication button$/,
 function(callback) {
 browser.visit(config.get('auth:homepage'),
 {silent: silent, debug: debug});

 browser.wait(function(){
 browser
 .clickLink('#login', function() {
 callback();

Chapter 5

[95]

 });
 });
});

The step I should be logged in uses the zombie browser to visit the GitHub login
page and waits for the page to load and fill in the login details; we then click on the
sign in button:

this.Then(/^I should be logged in$/, function(callback) {
 assert.ok(browser.success);
 callback();
});

The step I should see my name and a logout link uses the zombie browser to
visit the GitHub login page and waits for the page to load and fill in the login details;
we then click on the sign in button:

this.Then(/^I should see my name and a logout link$/,
 function(callback) {
 assert.equal(browser.text('#welcome'),
 'welcome Andrew Keig, click here to sign out');
 callback();
});

Scenario: User logs out successfully
 Given I am logged in to Vision
 When I click the logout button
 Then I should see the GitHub login button

Let's add a logout route to our Express server: ./lib/express/index.js:

app.get('/logout', routes.auth.logout);

Now add the route to our routes: ./lib/routes/auth.js:

exports.logout = function(req, res){
 logger.info('Request.' + req.url);
 req.logout();
 res.redirect('/');
};

Let's complete our Cucumber steps for logout using Zombie.js in
./features/step_definitions/authentication/authenticate.js

Security

[96]

The step I am logged in to Vision uses the zombie browser to visit the Vision
home page, waits for the page to load, and clicks on the login link:

this.Given(/^I am logged in to Vision$/, function(callback) {
 browser.visit(config.get('auth:homepage'),
 {silent: silent, debug: debug});

 browser.wait(function(){
 browser
 .clickLink('#login', function() {
 callback();
 });
 });
});

The step I click the logout button uses the zombie browser to visit the Vision
home page, waits for the page to load, and clicks on the logout link:

this.When(/^I click the logout button$/, function(callback) {
 browser.visit(config.get('auth:homepage'),
 {silent: silent, debug: debug});

 browser.wait(function(){
 browser
 .clickLink('#logout', function(err) {
 callback();
 });
 });
});

The step I should see the GitHub login button checks to see if the browser
response returns a success, and then checks to see if the GitHub login link
is accessible:

this.Then(/^I should see the GitHub login button$/,
 function(callback) {
 assert.ok(browser.success);
 var containsLogin =
 S(browser.html('#login')).contains('vision/github.png')
 assert.equal(true, containsLogin);
 callback();
 });

Chapter 5

[97]

Securing our site with HTTPS
In order to make our site secure, we will run the entire application under HTTPS. We
will need two files: a PEM encoded SSL certificate ./lib/secure/cert.pem, and a
private key ./lib/secure/key.pem. In order to create an SSL certificate, we first need
to generate a private key and a certificate signing request (CSR). For development
purposes, we will create a self-signed certificate. Run the following commands:

cd ../vision/lib/secure

openssl req -newkey rsa:2048 -new -nodes -x509 -days 3650 -keyout key.pem
-out cert.pem

Upon running the second command, you will enter an interactive prompt to generate
a 2048-bit RSA private key and a certificate signing request (CSR). You will need
to enter various pieces of information including address details, common name or
domain name, company details, and an email address.

Let's add a module, ./lib/express/server.js, that will create a HTTP server
based on the key/cert we have just created. We import the https module, read the
key and cert files from disk, and add them to a options object. Then using the https
module, we create a server passing in these options:

var fs = require('fs')
, https = require('https');

function Server(app){
 var httpsOptions = {
 key: fs.readFileSync('./lib/secure/key.pem'),
 cert: fs.readFileSync('./lib/secure/cert.pem')
 };

 return
 https.createServer(httpsOptions,app).listen(app.get('port'));
}

module.exports = Server;

Let's use the server from within our Express server ./lib/express/index.js;
remove the line that creates our HTTP server:

var httpServer = http.createServer(app).listen(app.get('port'));

Replace it with a call to our new HTTPS server:

var server = require('./server')(app);

Security

[98]

Now we need to replace all references to http://127.0.0.1:3000; port 3000 with
https://127.0.0.1:8443; port 8443. Our config file contains two references:

"auth": {
 "homepage": "https://127.0.0.1:8443"
 , "callback": "https://127.0.0.1:8443/auth/github/callback"
 , "clientId": "5bb691b4ebb5417f4ab9"
 , "clientSecret": "15310740929666983d52808dda32417d733791d0"
 },

We have a further reference in our backbone.js script ./public/components/
vision.js. When connecting to our Socket.IO server, we pass a URL
127.0.0.1:3000. We make another important change here; we pass an options object
when connecting to Socket.IO with the setting secure: true, port: '8443':

Vision.Application = function(){
 this.start = function(){
 var socketio = io.connect('/', {secure: true, port: '8443'});
 var router = new Vision.Router(socketio);
 Backbone.history.start();
 router.navigate('index', true);
 }
};

Sharing Express sessions with Socket.IO
Now that we have session support in place, we can share the session with Socket.
IO allowing us to accept or reject the connection based on this session data. Express
and Socket.IO do this using a handshake mechanism. When a client connects to
the server, the handshake is initiated, which consists of executing an authorization
function on Socket.IO. Here, the cookie associated with the handshake request is
examined and rejected if invalid. Let's install session.socket.io; a module that has
wrapped up this process:

npm install session.socket.io --save

First off, let's change our Express server, ./lib/express/index.js, and pass to our
SocketHandler module the sessionStore and the cookieParser:

var socketHandler = new SocketHandler(httpServer, sessionStore,
 cookieParser);

Chapter 5

[99]

The SocketHandler module now accepts the parameters httpServer, sessionStore,
and cookieParser. The SocketHandler will now instantiate a SessionSockets
module passing socketIo, the sessionStore module, and the cookieParser. We
change the connection event to listen on the SessionSockets module instead of
the socket.Io module so that we can access the session. Now from within the
subscribe event, we can check to ensure the session.passport.user is valid. We
call session.touch which updates the maxAge and lastAccess properties of
a session:

function SocketHandler(httpServer, sessionStore, cookieParser) {
 var socketIo = new Socket(httpServer)
 var sessionSockets = new SessionSockets(socketIo, sessionStore,
 cookieParser);

 sessionSockets.on('connection', function(err, socket, session) {
 subscriber.subscribe("issues");
 subscriber.subscribe("commits");

 subscriber.client.on("message", function (channel, message) {
 socket.broadcast.to(message.projectId)
 .emit(channel, JSON.parse(message));
 });

 socket.on('subscribe', function (data) {
 var user = session ? session.passport.user : null;
 if (!user) return;
 socket.join(data.channel);
 session.touch();
 });
 });

 sessionSockets.on('error', function() {
 logger.error(arguments);
 });
};

module.exports = SocketHandler;

Cross-site request forgery
Cross-site request forgery (CRSF) is an attack that tricks the victim into executing
malicious actions on a web application in which they are authenticated. Connect/
Express comes packaged with a Cross-site request forgery protection middleware.
This middleware allows us to ensure that a request to a mutate state is from a valid
source. The CRSF middleware creates a token that is stored in the requests session as
_csrf. A request to our Express server will then need to pass the token in the header
field X-CSRF-Token.

Security

[100]

Let's create a security ./lib/security/index.js module that adds the csrf
middleware to our application. We define a function, Security, that takes an
Express app as an argument and removes the middleware when in TEST or
COVERAGE mode.

var express = require('express');

function Security(app) {
 if (process.env['NODE_ENV'] === "TEST" ||
 process.env['NODE_ENV'] === "COVERAGE") return;

 app.use(express.csrf());
};

module.exports = Security;

Let's make a change to our Express server ./lib/express/index.js. The crsf
middleware requires session support, so we add the following line below the
session and passport middleware:

require('../security')(app);

As we are using backbone.js that uses jQuery under the hood to make AJAX
requests, we will need to make a change to our backbone code ./public/
components/vision/vision.js. We will now override the Backbone.sync
function, so that all requests through it pass the X-CSRF-Token in the header.
The X-CSRF-Token is pulled from a meta tag in the master page:

Backbone.sync = (function(original) {
 return function(method, model, options) {
 options.beforeSend = function(xhr) {
 var token = $("meta[name='csrf-token']").attr('content');
 xhr.setRequestHeader('X-CSRF-Token', token);
 };
 original(method, model, options);
 };
})(Backbone.sync);

We now need to pass the X-CSRF-Token to our master page via the master page
route. The token is stored in the requests session as _csrf, in the following code
we add the token to csrftoken in our view object:

exports.index = function(req, res){
 var model = {
 title: 'vision.',
 description: 'a project based dashboard for github',

Chapter 5

[101]

 author: 'airasoul',
 user: req.isAuthenticated() ? req.user.displayName : '',
 csrftoken: req.session._csrf
 };

 res.render('index', model);
};

The csrftoken is rendered in our master page in a meta tag called csrf-token; the
backbone sync method will put it from this meta tag:

<meta name="csrf-token" content="{{csrftoken}}">

Improving security with HTTP headers
and helmet
Helmet is a collection of middleware that implements various security headers for
Express; for more information on helmet visit https://npmjs.org/package/helmet.

Helmet supports the following:

• csp (Content Security Policy)
• HSTS (HTTP Strict Transport Security)
• xframe (X-FRAME-OPTIONS)
• iexss (X-XSS-PROTECTION for IE8+)
• contentTypeOptions (X-Content-Type-Options nosniff)
• cacheControl (Cache-Control no-store, no-cache)

Let's extend our security ./lib/security/index.js module, and add helmet
security for the previous issues:

var express = require('express')
, helmet = require('helmet');

function Security(app) {
 if (process.env['NODE_ENV'] === "TEST" ||
 process.env['NODE_ENV'] === "COVERAGE") return;

 app.use(helmet.xframe());
 app.use(helmet.hsts());
 app.use(helmet.iexss());
 app.use(helmet.contentTypeOptions());

Security

[102]

 app.use(helmet.cacheControl());
 app.use(express.csrf());
};

module.exports = Security;

Summary
By default, Express uses in-memory sessions. In the next chapter we will move our
sessions to Redis. We will also configure Socket.IO to use Redis and explore some
other interesting ways of scaling Express.

Scaling
In this chapter we will look at options for scaling Express. Our current solution will
not scale beyond a single process/server; introducing a few simple changes will
allow us to scale Vision both horizontally and vertically. We will also take a look at
an alternative web architecture, and examine how decoupling our application can
improve our application and help us scale Express further.

Scaling Express sessions with Redis
Running our Express application with the NODE_ENV set to production will output
the following message:

NODE_ENV=production npm start

Warning: connection.session() MemoryStore is not

designed for a production environment, as it will leak

memory, and obviously only work within a single process.

The default session store for Express is an in-memory store; tying sessions to a single
process does not scale.

Also, if the server crashes then we lose those sessions. If we want to scale the Express
application to more than one server, we will need a memory store that is decoupled
from the Express application. Express has a couple of optional stores; here we will
use Redis via connect-redis. Let's configure the vision application to use Redis as a
session store.

npm install connect-redis ––save

Scaling

[104]

We will now make a couple of changes to the Express server ./lib/express/
index.js. We start by bringing in the Redis module we previously created, that
configures and connects to a Redis server. We instantiate one of these into redis.
We then require connect-redis which returns RedisStore.

, Redis = require('../cache/redis')
, redis = new Redis()
, RedisStore = require('connect-redis')(express);

We have in place an existing sessionStore which is configured to use MemoryStore:

var sessionStore = new express.session.MemoryStore();

Let's replace this with our new RedisStore:

var sessionStore = new RedisStore({client: redis.client});

Our application is now ready to use Redis to store sessions. We can monitor Redis
session activity via redis-cli by running the following commands:

redis-cli

monitor

Scaling Socket.IO with Redis
Socket.IO also uses an in-memory store to store its events. There are a couple of
issues with this; the first being that if the server fails we lose those messages stored
in memory. The second is if we attempt to scale our application by adding more
servers, the Socket.IO in-memory store will be tied to a single server; the servers we
add will not know which Socket.IO connections are open on other servers.

We can solve these problems by using the Socket.IO RedisStore. We start by
requiring a RedisStore, which is a redis module from the Socket.IO namespace.
We can also use the vision Redis module to create three redis clients: pub, sub,
and client. In order to configure Socket.IO to use the RedisStore, we set the
Socket.IO 'store' to a RedisStore, which passes redis, pub, sub, and client
as the arguments.

var config = require('../configuration')
, RedisStore = require('socket.io/lib/stores/redis')
, redis = require('socket.io/node_modules/redis')
, Redis = require('../cache/redis')
, pub = new Redis().client
, sub = new Redis().client
, client = new Redis().client;

Chapter 6

[105]

function Socket(server) {
 /....

 socketio.set('store', new RedisStore({
 redis : redis
 , redisPub : pub
 , redisSub : sub
 , redisClient : client
 }));

 return socketio;
};

Scaling Express horizontally
Our current application architecture has coupled together an API; a consuming web
client and a worker which populates a Redis cache. This approach works for many
applications and will allow it to scale horizontally with the help of a load balancer.

But let's say for example, we would like our API to support clients other than web,
say for example, we introduced a mobile client that used our API; ideally we would
like to scale our API in isolation and remove anything related to the web client.

Scaling our worker horizontally would simply mean replicating the same work
over and over again, which would be pointless. Later, we will discuss how to scale
the worker.

In the rest of this chapter we will outline how to split apart our application in order
to scale horizontally. We will use the source code from the chapter-6 version of
the vision application. We will, of course, document anything of interest which
is required to achieve our goal. We will create four new projects: vision-core,
vision-web, vision-api, and vision-worker.

Download the source code for this chapter here:
https://github.com/AndrewKeig/vision-core

https://github.com/AndrewKeig/vision-web

https://github.com/AndrewKeig/vision-api

https://github.com/AndrewKeig/vision-worker

https://github.com/AndrewKeig/vision-core
https://github.com/AndrewKeig/vision-core
https://github.com/AndrewKeig/vision-web
https://github.com/AndrewKeig/vision-web
https://github.com/AndrewKeig/vision-api
https://github.com/AndrewKeig/vision-api
https://github.com/AndrewKeig/vision-worker
https://github.com/AndrewKeig/vision-worker

Scaling

[106]

vision-core
Our first task is to extract everything that can be shared between the vision-web,
vision-api, and vision-worker projects into a new vision-core project.

This includes the following sections: ./cache, ./lib/configuration, ./lib/db, ./
lib/github, ./lib/logger, ./lib/models, and ./lib/project.

The vision-core project is not an application so we remove everything in the root
of the project, including ./app.js and our ./gruntfile.js, and add a ./index.js
file, which simply exports all of the functionalities shown:

module.exports.redis = require('./lib/cache/redis');
module.exports.publisher = require('./lib/cache/publisher');
module.exports.subscriber = require('./lib/cache/subscriber');
module.exports.configuration = require('./lib/configuration');
module.exports.db = require('./lib/db');
module.exports.github = require('./lib/github');
module.exports.project = require('./lib/project');
module.exports.logger = require('./lib/logger');
module.exports.models = require('./lib/models');

In order to share the private vision-core project with visions other private projects,
we add a GitHub dependency to config: ./config/packge.json:

 "dependencies": {
 "vision-core": "git+ssh://git@github.com:AndrewKeig/vision-core.
 git#master",

vision-api
Let's create a vision-api project which contains the web API. Here we need to
reuse everything related to the API that includes the following middleware: ./
lib/middleware/id, ./lib/middleware/notFound, the routes for ./lib/routes/
project, ./lib/routes/github, and ./lib/routes/heartbeat. We also include
the config files ./config and all the tests ./test.

In order to secure vision-api, we will use basic authentication, which uses a username
and password to authenticate a user. These credentials are transported in plain text,
so you are advised to use HTTPS. We have already shown you how to setup HTTPS,
hence, this part will not be repeated. In order to set up basic authentication, we can use
the passport-http; let's install it:

npm install passport-http ––save

Chapter 6

[107]

We start by adding a username and password to ./config/*.json:

 "api": {
 "username": "airasoul",
 "password": "1234567890"
 }

We are now ready to implement an ApiAuth strategy into ./lib/auth/index.
js. We start by defining a function, ApiAuth, then we import the passport and
passport-http modules. We instantiate a BasicStrategy function and add it to
passport, passing a verify function. Inside this verify function, we have the option
of rejecting the user by passing false out of the callback. We call findUser and check
if username and password are the same as those stored in ./config/*.json.

var config = require('vision-core').configuration;

function ApiAuth() {
 this.passport = require('passport');
 var BasicStrategy = require('passport-http').BasicStrategy;

 this.passport.use(new BasicStrategy({
 },
 function(username, password, done) {
 findUser(username, password, function(err, status) {
 return done(null, status);
 })
 }
));

 var findUser = function(username, password, callback){
 var usernameOk = config.get('api:username') === username;
 var passwordOk = config.get('api:password') === password;
 callback(null, usernameOk === passwordOk);
 }
};
module.exports = new ApiAuth();

The vision-api project will need a new Express server ./express/index.js. We
start by requiring config via vision-core. We require the apiAuth module which
handles authentication, then we apply the passport basic middleware to all of the
routes using app.all. We set session:false as basic authentication is stateless.

var express = require('express')
 , http = require('http')
 , config = require('vision-core').configuration
 , db = require('vision-core').db
 , apiAuth = require('../auth')

Scaling

[108]

 , middleware = require('../middleware')
 , routes = require('../routes')
 , app = express();

app.set('port', config.get('express:port'));
app.use(express.logger({ immediate: true, format: 'dev' }));
app.use(express.bodyParser());
app.use(apiAuth.passport.initialize());
app.use(app.router);

app.all('*', apiAuth.passport.
 authenticate('basic', { session: false }));
app.param('id', middleware.id.validate);
app.get('/heartbeat', routes.heartbeat.index);
app.get('/project/:id', routes.project.get);
app.get('/project', routes.project.all);
app.post('/project', routes.project.post);
app.put('/project/:id', routes.project.put);
app.del('/project/:id', routes.project.del);
app.get('/project/:id/repos', routes.github.repos);
app.get('/project/:id/commits', routes.github.commits);
app.get('/project/:id/issues', routes.github.issues);
app.use(middleware.notFound.index);

http.createServer(app).listen(app.get('port'));
module.exports = app;

As we are moving to multiple Express servers to support our application, we will
move vision-api onto port 3001. Let's configure this into ./config/*.json, as
shown in the following code:

 "express": {
 "port": 3001
 }

vision-worker
Let's continue and create a new project called vision-worker, which consists of two
scripts ./populate.js script and ./lib/cache/populate.js.

Of course we could scale this worker with something such as RabbitMQ. This would
allow us to spawn multiple producers and consumers, and from this respect, the
solution we have is not optimum. If you are interested in improving this part of the
application, please refer to Packt's Instant RabbitMQ Message Application Development.
This book explains how you can implement a worker pattern with RabbitMQ.

Chapter 6

[109]

vision-web
Finally, we create a new project called vision-web which will include everything
related to the web client ; simply include everything from chapter 6 and remove
everything we moved to core and reference core from ./package.json. Our current
set of routes require some significant changes; now that we have decoupled our
service layer into its own repository called vision-api. vision-web will no longer
make service calls directly into the project and github services; these services now exist
in the vision-api project, instead we will call the API services exposed on vision-api.

Let's add the configuration to ./config/*.json for our vision-api project.
The vision-api project has been configured to run on port 3001 and uses basic
authentication for security, so we include the username and password in the url.

 "api": {
 "url": "http://airasoul:1234567890@127.0.0.1:3001"
 }

In order to call services on our vision-api project , we will simplify things by
using Request module. Request is a simple client that allows us to make HTTP
requests; lets install it:

npm install request --save

With our configuration in place, we move onto our project route ./lib/routes/
project.js. Here we simply replace all calls to our Project service with the
corresponding calls in vision-api. We start by pulling in the configuration
we defined in the code snippet above. Each route constructs a URL using this
configuration, we use the Request module to call into the API. We return a response
which consists of the response.statusCode and the body of the response:

var logger = require('vision-core').logger
, S = require('string')
, config = require('vision-core').configuration
, request = require('request')
, api = config.get('api:url');

exports.all = function(req, res){
 logger.info('Request.' + req.url);

 var userId = req.query.user || req.user.id;
 var url = api + '/project?user=' + userId ;

 request.get(url, function (error, response, body) {
 return res.json(response.statusCode, JSON.parse(body));
 });
};

Scaling

[110]

exports.get = function(req, res){
 logger.info('Request.' + req.url);

 var url = api + '/project/' + req.params.id;

 request.get(url, function (error, response, body) {
 return res.json(response.statusCode, JSON.parse(body));
 });
};

exports.put = function(req, res){
 logger.info('Put.' + req.params.id);

 if (S(req.body.name).isEmpty())
 return res.json(400, 'Bad Request');

 var url = api + '/project/' + req.params.id;

 request.put(url, { form: req.body },
 function (error, response, body) {
 return res.json(response.statusCode, body);
 });
};

exports.post = function(req, res){
 logger.info('Post.' + req.body.name);

 if (S(req.body.name).isEmpty())
 return res.json(400, 'Bad Request');

 var url = api + '/project/';

 request.post(url, { form: req.body },
 function (error, response, body) {
 var parsed = JSON.parse(body);
 res.location('/project/' + parsed._id);
 return res.json(response.statusCode, parsed);
 });
};

exports.del = function(req, res){
 logger.info('Delete.' + req.params.id);

 var url = api + '/project/' + req.params.id;

 request.del(url, function (error, response, body) {
 return res.json(response.statusCode, body);
 });
};

Chapter 6

[111]

Let's repeat the same process for our GitHub route ./lib/routes/github.js;
removing calls to the GitHub service with calls to the corresponding endpoints
on our vision-api project:

var logger = require('vision-core').logger
, config = require('vision-core').configuration
, request = require('request')
, api = config.get('api:url');

exports.repos = function(req, res){
 logger.info('Request.' + req.url);

 var url = api + '/project/' + req.params.id + "/repos";

 request.get(url, function (error, response, body) {
 return res.json(response.statusCode, JSON.parse(body));
 });
};

exports.commits = function(req, res){
 logger.info('Request.' + req.url);

 var url = api + '/project/' + req.params.id + "/commits";

 request.get(url, function (error, response, body) {
 return res.json(response.statusCode, JSON.parse(body));
 });
};

exports.issues = function(req, res){
 logger.info('Request.' + req.url);

 var url = api + '/project/' + req.params.id + "/issues";

 request.get(url, function (error, response, body) {
 return res.json(response.statusCode, JSON.parse(body));
 });
};

Lets update our tests ./test/project.js, ./test/github.js. We now remove
anything Mongoose related with direct calls using Request module to vision-api
in order to seed test data to MongoDB:

beforeEach(function(done){
 var proj = {
 name: "test name"
 , user: login.user
 , token: login.token
 , image: "/img/"
 , repositories : ["node-plates"]
 };

Scaling

[112]

 var url = api + '/project';

 req.post(url, { form: proj },
 function (error, response, body) {
 id = JSON.parse(body)._id;
 done()
 });
});

afterEach(function(done){
 var url = api + '/project/' + id;

 req.del(url, function (error, response, body) {
 done()
 });
});

Vertical scale with Cluster
Our vision-web and vision-api Express applications currently run in a single
thread. In order to scale our application vertically, in order to take advantage of
multi-core systems, and provide redundancy in case of failure, we can use the cluster
module and spread the load over multiple processes. Lets add the Cluster module to
vision-core ./lib/cluster/index.js:

var cluster = require('cluster')
, http = require('http')
, numCPUs = require('os').cpus().length
, logger = require('../logger');

function Cluster() {}

Cluster.prototype.run = function(module){
 if (cluster.isMaster) {
 for (var i = 0; i < numCPUs; i++) {
 cluster.fork();
 }

 cluster.on('exit', function(worker, code, signal) {
 logger.info('Worker ' + worker.process.pid + ' died');
 });
 } else {
 require(module);
 }
}

module.exports = Cluster;

Chapter 6

[113]

Let's export the cluster module out of vision-core; by adding the following to
./index.js:

module.exports.cluster = require('./lib/cluster');

Let's change our Express application in vision-web and vision-api ./app.js, and
add a third option for running our application, that is, running with cluster support:

switch (process.env['NODE_ENV']) {
 case 'COVERAGE':
 module.exports = require('./lib-cov/express');
 break;
 case 'TEST':
 module.exports = require('./lib/express');
 break;
 default:
 var Cluster = require('vision-core').cluster
 , cluster = new Cluster();
 cluster.run(__dirname + '/lib/express');
 break;
}

Balancing load with Hipache
Hipache is a distributed proxy designed to route high volumes of HTTP and
WebSocket traffic. Hipache supports dynamic configuration via Redis, so changing
the configuration and adding vhosts does not require a restart. Based on the
node-http-proxy library, Hipache provides support for load balancing websockets,
SSL, dead backend detection, and is clustered for failover. Let's install it:

npm install hipache -g

Let's setup a host for both vision-web and vision-api by editing the hosts file:

sudo nano /private/etc/hosts

Add two new entries:

127.0.0.1 web.vision.net

127.0.0.1 api.vision.net

And then flush the cache for these changes to take effect:

dscacheutil -flushcache

Scaling

[114]

In order to configure a server, we will need a configuration file for each application
we want to load balance. In our case, it is vision-web and vision-api. Here is the
configuration file for vision-api, ./config/server.json. Importantly, we are
running vision-api on port 8443. We configure an SSL certificate under the HTTPS
section as Hipache will terminate SSL not our Express server:

{
 "server": {
 "accessLog": "hipache_access.log",
 "port": 8443,
 "workers": 5,
 "maxSockets": 100,
 "deadBackendTTL": 30,
 "address": ["127.0.0.1"],
 "address6": ["::1"],
 "https": {
 "port": 8443,
 "key": "lib/secure/key.pem",
 "cert": "lib/secure/cert.pem"
 }
 },
 "redisHost": "127.0.0.1",
 "redisPort": 6379,
 "redisDatabase": 0
}

Let's make a change to the Express server ./lib/express/server.js, and
return a standard HTTP server when running in production; Hipache will
now terminate SSL.

function Server(app){
 if (process.env['NODE_ENV'] === "PRODUCTION")
 return http.createServer(app).listen(app.get('port'));

 var httpsOptions = {
 key: fs.readFileSync('./lib/secure/key.pem'),
 cert: fs.readFileSync('./lib/secure/cert.pem')
 };

 return https.createServer(httpsOptions,app).
 listen(app.get('port'));
}

Chapter 6

[115]

We now add Hipache configuration for the vision-api ./config/server.json.
Please note that we are running vision-api on port 3001.

{
 "server": {
 "accessLog": "hipache_access.log",
 "port": 3001,
 "workers": 5,
 "maxSockets": 100,
 "deadBackendTTL": 30,
 "address": ["127.0.0.1"],
 "address6": ["::1"]
 },
 "redisHost": "127.0.0.1",
 "redisPort": 6379,
 "redisDatabase": 0
}

We will need to revisit GitHub and change the urls under settings/applications/
developer applications/vision to https://web.vision.net:8443.

Let's update the vision-web configuration ./config/*.json, and change the
GitHub authentication urls to web.vision.net.

 "auth": {
 "homepage": "https://web.vision.net:8443"
 , "callback": "https://web.vision.net:8443/auth/github/callback"
 , "clientId": "5bb691b4ebb5417f4ab9"
 , "clientSecret": "44c16f4d81c99e1ff5f694a532833298cae10473"
 }

Let's also update the API url configuration in the same set of config files:

 "api": {
 "url": "http://airasoul:1234567890@api.vision.net:3001"
 }

Our final change will allow us to support multiple ports for each application; we will
change the port setting in the Express server ./lib/express/index.js, so that it
checks process.env.PORT for a port number:

app.set('port', process.env.PORT || config.get('express:port'));

Scaling

[116]

We now start the process of running our application under a load balancer. In order
to start the Hipache load balancer for vision-api, run the following commands:

cd vision-web

hipache --config ./config/server.json

In order to start the Hipache load balancer for vision-web, we run the
following commands:

cd vision-api

hipache --config ./config/server.json

So, we now have a running Hipache instance for vision-api and another for
vision-web. Let's create a vhost in Redis and associate the Hipache instance
with a series of servers. Now run the redis command line interface:

redis-cli

First off, let's get the vision-web application up and running and assign a backend
running on port 3003 to web.vision:

rpush frontend:web.vision.net web.vision

rpush frontend:web.vision.net http://127.0.0.1:3003

Let's review the configuration for web.vision:

lrange frontend:web.vision.net 0 -1

Let's get the vision-api application up and running and assign a backend running
on port 3005 to api.vision:

rpush frontend:api.vision.net api.vision

rpush frontend:api.vision.net http://127.0.0.1:3005

Let's review the configuration for api.vision:

lrange frontend:api.vision.net 0 -1

Let's run the application under a load balancer, set the PORT environment variable
and set NODE_ENV to production when running npm start:

/vision-web/NODE_ENV=production PORT=3003 npm start

/vision-api/NODE_ENV=production PORT=3005 npm start

/vision-worker/npm start

http://127.0.0.1:3003/

Chapter 6

[117]

We now have a vision application running under a load balancer, go visit
https://web.vision.net:8443. In order to add more backends to our load
balancer, let's start vision-api and vision-web under another port:

/vision-web/NODE_ENV=production PORT=3004 npm start

/vision-api/NODE_ENV=production PORT=3006 npm start

When we run the following commands, the backends running on ports 3004 and
3006 will be added to the load balancer:

rpush frontend:web.vision.net http://127.0.0.1:3004

rpush frontend:api.vision.net http://127.0.0.1:3006

Summary
Scaling a Web application is nontrivial. Node; using the cluster module allows
us to scale it vertically. Scaling horizontally requires us to reach out to the wider
community. In our application we have chosen Hipache; a node based load balancer.
In the next chapter we will discuss production-level improvements that we can make
to our application when we look at performance and reliability issues.

https://web.vision.net:8443/
https://web.vision.net:8443/
http://127.0.0.1:3004/
http://127.0.0.1:3006/

Production
In this chapter we will discuss putting an Express application into production. We
start this chapter by making our Express application a bit more robust as we look at
handling exceptions. We then take a look at a series of performance improvements we
will need to make in order for our application to survive in a production environment.

Error handling, domains, and crash-only
design
The Node community has embraced a crash-only design pattern, which simply
means this: if you get an uncaught exception, catch it, log it, and restart the process.
Crash-only design and domains work quite well as a pattern, particularly if your
application is using cluster. Let's make a change to our cluster module, ./lib/
cluster/index.js, on vision-core. Here, we include the domain module; instead
of simply including our module to run in a cluster, we create a domain and call the
run method. We then include a domain-based error handler that logs and then
closes the process via process.exit(1). The cluster exit handler will pick this up
and fork a new process:

var cluster = require('cluster')
, http = require('http')
, numCPUs = require('os').cpus().length
, logger = require('../logger')
, domain = require('domain');

function Cluster() {}

Cluster.prototype.run = function(module) {
 if (cluster.isMaster) {
 for (var i = 0; i < numCPUs; i++) {

Production

[120]

 cluster.fork();
 }

 cluster.on('exit', function(worker, code, signal) {
 logger.info('Worker ' + worker.process.pid + ' died');
 cluster.fork();
 });
 } else {
 var d = domain.create();

 d.on('error', function(err) {
 logger.info('Error ', err);
 process.exit(1);
 });

 d.run(function() {
 require(module);
 });
 }
}

module.exports = Cluster;

Redis sessions
The majority of Express applications in production that require session support will
probably use Redis, so making Redis performant is quite important. Our Redis client,
node-redis, uses a pure JavaScript parser; the node-redis documentation suggests
using an alternative module for parsing.

Hiredis is a binding to the official Hiredis C library; it's non-blocking and fast. If you
install hiredis, node-redis will use it by default. Let's install Hiredis on vision-core:

cd vision-core

npm install hiredis redis --save

SSL termination
SSL termination is the term given to the decrypting of a TLS-encrypted (HTTPS)
stream into plain text (HTTP). The TLS module in Node core is not as fast as some
other technologies used for terminating SSL and is generally not used in production.
Our application runs entirely over HTTPS, so TLS performance is vital.

Chapter 7

[121]

Fortunately, we have options for SSL; we will use stud, a network proxy that
terminates TLS/SSL connections and forwards the unencrypted traffic to a web
server. Stud is built on libev and is non-blocking; it is designed to handle tens of
thousands of connections efficiently on multicore machines. Let's clone the stud
GitHub repository:

git clone http://github.com/bumptech/stud.git

Now compile stud from source:

cd stud

make

sudo make install

When the installation is complete, we can generate a stud file. Stud comes with a
default configuration that we can request via:

cd vision-web

stud --default-config > stud.conf

Our stud file, ./vision-web/stud.conf, requires a couple of important changes for
it to work; the frontend configuration should be set to port 8443, and the backend
configuration should be set to our Hipache load balancer for vision-web, which we
have hosted on port 3003. Finally, we set pem-file, which is a single PEM file that
includes an SSL certificate and private key:

stud(8), The Scalable TLS Unwrapping Daemon's configuration

Listening address. REQUIRED.
type: string
syntax: [HOST]:PORT
frontend = "[127.0.0.1]:8443"

Upstream server address. REQUIRED.
type: string
syntax: [HOST]:PORT.
backend = "[127.0.0.1]:3003"

SSL x509 certificate file. REQUIRED.
List multiple certs to use SNI. Certs are used in the order they
are listed; the last cert listed will be used if none of the others
match
type: string
pem-file = "lib/secure/vision.pem"

EOF

Production

[122]

Now that we have our stud configuration in place, our Hipache load balancer will no
longer need to terminate SSL. Let's remove the SSL configuration from our Hipache
configuration, ./vision-web/config/server.json:

{
"server": {
 "accessLog": "hipache_access.log",
 "port": 3000,
 "workers": 5,
 "maxSockets": 100,
 "deadBackendTTL": 30,
 "address": ["127.0.0.1"],
 "address6": ["::1"]
 },
 "redisHost": "127.0.0.1",
 "redisPort": 6379,
 "redisDatabase": 0
}

With our configuration in place, let's create a certificate with a private key as a single
PEM file.

Simply copy your cert.pem and key.pem into a single file called ./lib/secure/
vision.pem; private key first followed by your certificate.

Now, we can run stud in front of our Hipache load balancer; stud will handle SSL
and will direct unencrypted traffic to Hipache as follows:

cd vision-web

stud --config=stud.conf

Please run the following set of commands to run our stack behind stud:

/vision-web/hipache --config ./config/server-no-ssl.json

/vision-api/hipache --config ./config/server.json

redis-cli (these may already exist in redis)

rpush frontend:web.vision.net web.vision

rpush frontend:web.vision.net http://127.0.0.1:3003

rpush frontend:api.vision.net api.vision

rpush frontend:api.vision.net http://127.0.0.1:3005

/vision-web/NODE_ENV=production PORT=3003 npm start

/vision-api/NODE_ENV=production PORT=3005 npm start

/vision-worker/npm start

Chapter 7

[123]

Caching
Our static file requirements are minimal; the only static content we serve would be
the components used on the client side of our application. In order to cache our static
files/components, let's make a simple change to vision-web/lib/express/index.
js. We set the maxAge property to a week, which we store in config, as follows:

app.use(express.static('public',
 { maxAge: config.get('express:staticCache') }));
app.use(express.static('public/components',
 { maxAge: config.get('express:staticCache') }));
app.use('/bootstrap',express.static(
 'public/components/bootstrap/docs/assets/css',
 { maxAge: config.get('express:staticCache') }));
app.use('/sockets',
 express.static('public/components/socket.io-client/dist/',
 { maxAge: config.get('express:staticCache') }));

Let's add the config value, staticCache, to vision-web/config/*.json, as follows:

 "express": {
 "port": 8443,
 "staticCache" : 6048000000
 },

Now, when we hit our application, the response headers will have a cache-control
header. If you visit the homepage for our application and check the response headers
via your browser tools for any of the resources served, you should see:

Cache-Control:public, max-age = 86400

Favicon
Lets add a favicon to our application using the connect.favicon middleware.
From a performance perspective, this has some value as we can cache it. Also, your
browser will request a favicon even if one does not exist, and this can result in
404 errors being thrown. We will use the existing staticCache config value to set
maxAge for the favicon. Let's edit the Express server, /vision-web/lib/express/
index.js, and add the favicon middleware:

app.set('views', 'views');
app.use(express.favicon('public/components/vision/favicon.ico'),
 { maxAge: config.get('express:staticCache') });

Production

[124]

Minification
We can improve page load time by minifying our static assets. We will minify our
JavaScript and CSS files by installing the following two grunt tasks:

grunt-contrib-uglify: This allows you to minify JavaScript files:

npm install grunt-contrib-uglify --save-dev

grunt-contrib-cssmin: This allows you to minify CSS files:

npm install grunt-contrib-cssmin --save-dev

Let's add these minification tasks to our grunt file, as follows:

grunt.loadNpmTasks('grunt-contrib-uglify');
grunt.loadNpmTasks('grunt-contrib-cssmin');

uglify: {
 dist: {
 files: {
 'public/components/vision/templates.min.js':
 'public/components/vision/templates.js',
 'public/components/vision/vision.min.js':
 'public/components/vision/vision.js',
 'public/components/json2/json2.min.js':
 'public/components/json2/json2.js',
 'public/components/handlebars/handlebars.runtime.min.js':
 'public/components/handlebars/handlebars.runtime.js'
 }
 }
 },
 cssmin: {
 minify: {
 expand: true,
 src: ['public/components/vision/vision.css'],
 ext: '.min.css'
 }
 }

Let's run the following commands:

grunt uglify

grunt cssmin

Not all of our JavaScript components have a minified version, so we minify these as
well, adding a .min version for json2 and handlebars.

Chapter 7

[125]

Compression
We can improve page load times further by compressing static files. Express includes
the compress middleware, which will gzip an HTTP response. Let's edit the Express
server, /vision-web/lib/express/index.js, and add the compress middleware,
as follows:

app.set('views', 'views');
app.use(express.logger({ immediate: true, format: 'dev' }));
app.use(express.compress());

If you visit the homepage for our application and check the response headers via
your browser tools for all of the resources served, you should see this:

Content-Encoding: gzip

Logging
The Express server, ./lib/express/index.js, uses the logger middleware
for logging. The Express logger should only be used in development. In fact,
in a production environment, this will seriously impact performance as console
functions are synchronous. Let's change the Express server and switch off logging
when in production, as shown in the following code snippet:

if (process.env['NODE_ENV'] !== "production")
 app.use(express.logger({ immediate: true, format: 'dev' }));

Summary
Express in commercial production environments can look a little different, but for
good reason. Many of the tasks Express/Node support can be performed better by
other tools. In our application, we have tried to stay on the node stack; we have
chosen to use stud to terminate SSL as our entire application runs on SSL. Stud
will outperform all in this space, including Nginx and Haproxy. Stud will forward
unencrypted responses to Hipache, which balances load. Hipache is based on
node-http-proxy; it uses cluster for failover. More importantly, unlike node-http-proxy,
it can manage memory, making it a reasonable choice for a load balancer.

Hipache works well, but if it's performance you really seek, Nginx and Haproxy
are the de facto tools to reach for. For failover, we are using node's cluster module,
which along with domains, makes our application a little more robust.

Production

[126]

Our static file requirements are minimal, so we have chosen to serve, cache,
compress, and minify our static resources via Express. Any deviation from these
minimal requirements will make me reach for either Nginx or Haproxy to deliver
statics, or a Content Delivery Network.

We have managed to automate many tasks. Our code coverage is sitting at around
80 percent, running YSlow and PageSpeed on our application produces good results.
Ideally, we would like to have driven all our requirements via test, driven some of
the smaller code modules with unit tests, and added more acceptance tests using
Cucumber. I hope that you have at least managed to get the feel of all these elements
and will be able to make your own informed choices about testing.

The Node/Express stack is a great platform for building web applications. Working
with full-stack JavaScript is a great development experience. The node community
and the thousands of Node module developers make Node a vibrant and interesting
space to work in.

Index
Symbols
404 handling middleware 14, 15

A
acceptance testing

with Cucumber 85, 86
with Zombie.js 85, 86

Authenticate feature
about 86-88
user logs in successfully scenario 88-94
user logs out successfully scenario 95, 96

B
Backbone.js

about 50
used, for client-side development 50

Bower
about 47
used, for managing package 47, 48

C
caching 123
Cluster

vertical scaling 112
code coverage

generating, with JSCoverage 11
generating, with Mocha 11

Connect 5
consolidate.js 45
continuous testing

with Mocha 11
crash-only design pattern 119

Create a project feature 23-26, 59, 60
Cross-site request forgery (CRSF) 99, 100
Cucumber

about 86
used, for acceptance testing 85, 86

D
data

caching, with Redis 73, 75
persisting, with MongoDB 21, 22
persisting, with Mongoose 21

Delete a project feature 30, 64
domains 119

E
Edit a project feature 28, 29 62
error handling 119
Express

about 5
configuring, with Nconf 12
installing 8
scaling, horizontally 105
scaling, vertically with Cluster 112
testing, with Mocha 9
testing, with SuperTest 9

Express application, in production
environment

about 119
caching 123
crash-only design 119
domains 119
error handling 119
favicon, adding to application 123

[128]

logging 125
Redis sessions 120
SSL termination 120-122
static files, compressing 125

Express logger 125
Express sessions

scaling, with Redis 103, 104
sharing, with Socket.IO 98

F
favicon 123
feature set 5, 7

G
Get a project feature 27, 28
Gherkin 86
GitHub API 33
GitHubStrategy function 89
GitHub token

acquiring 22
Grunt

about 17
used, for task automation 17, 19

grunt-cafe-mocha 17
grunt-env 17
grunt-jscoverage 17

H
handlebars.js 45
Heartbeat feature 9, 10
Helmet

about 101
used, for implementing security 101

Hipache
about 113
support, for load balancing 113-117

Hiredis 120
http headers

used, for implementing security 101
HTTPS

used, for securing sites 97

I
installation, Socket.IO 80-82

J
JavaScript Model View (MV*) framework

50
JSCoverage

about 11
code coverage, generating 11
URL 11

L
List commits feature 36-39, 65-67
List issues feature 39-41, 68-71
List projects feature 31, 32 50-54
List repositories feature 33-36 54-57
load balancing, Hipache 113-117
logger middleware 15 125
logging

about 125
with Winston 16, 17

M
master page

splitting up, into templates 48, 49
Master Page feature 46, 47
minification

page load time, improving 124
Mocha

code coverage, generating 11
used, for testing Express 9

moment.js 33
MongoDB

about 21
data, persisting 21, 22
URL, for download 22

Mongoose
data, persisting 21

N
Nconf

about 12
used, for configuring Express 12, 13

Node.js 5

[129]

O
OAuth 2.0 85

P
package.json file 8
package management

with Bower 47, 48
page load time

improving, by minification 124
parameters

validating, with param middleware 42
param middleware

parameters, validating with 42
Passport

about 85
setting up 85

R
RabbitMQ 108
Redis

about 73
data, caching 73, 75
populating 76
population, scheduling 82
URL 73
used, for scaling Express sessions 103, 104
used, for scaling Socket.IO 104

Redis sessions 120
RESTful JSON interface 50
route improvements 42
routes

extracting 14

S
security

implementing, with Helmet 101
implementing, with HTTP headers 101

server-side templating 45, 46
Sinatra 5
sites

securing, HTTPS used 97

Socket.IO
about 77, 104
installing 80, 82
scaling, with Redis 104
used, for sharing Express sessions 98
working 78-80

SSL termination 120-122
static files

compressing 125
SuperTest

about 85
used, for testing Express 9

T
tasks

automating, with Grunt 17, 19
templates

master page, splitting into 48, 49
test-driven development 11

U
user logs in successfully scenario 88-94
user logs out successfully scenario 95, 96

V
vision-api project 106, 107
vision-core project 106
vision-web project 109, 111

W
Winston

about 16
used, for logging 16, 17

Z
Zombie.js

used, for acceptance testing 85, 86

Thank you for buying
Advanced Express Web Application Development

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Express Web Application
Development
ISBN: 978-1-84969-654-8 Paperback: 236 pages

Learn how to develop web applications with the
Express framework from starch

1. Exploring all aspects of web development
using the Express framework.

2. Starts with the essentials.

3. Expert tips and advice covering all
Express topics.

CoffeeScript Programming with
jQuery, Rails, and Node.js
ISBN: 978-1-84951-958-8 Paperback: 140 pages

Learn Coffeescript programming with the three most
populer web technologies around

1. Learn CoffeeScript, a small and elegant
language that compiles to JavaScript and
will make your life as a web developer better.

2. Explore the syntax of the language and see
how it improves and enhances JavaScript.

3. Build three example applications in
CoffeeScript step by step.

Please check www.PacktPub.com for information on our titles

Node Cookbook
ISBN: 978-1-84951-718-8 Paperback: 342 pages

Over 50 recipes to master the art of asynchronous
server side JavaScript using Node

1. Packed with practical recipes taking you from
the basics to extending Node with your
own modules.

2. Create your own web server to see Node’s
features in action.

3. Work with JSON, XML, web sockets, and make
the most of asynchronous programming.

Using Node.js for UI Testing
ISBN: 978-1-78216-052-6 Paperback: 146 pages

Learn how to easily automate testing of your web
apps using Node.js, Zomble.js and Mocha

1. Use automated tests to keep your web app rock
solid and bug-free while you code.

2. Use a headless browser to quickly test your
web application every time you make a small
change to it.

3. Use Mocha to describe and test the capabilities
of your web app.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Foundations
	Feature set
	Installation
	package.json
	Testing Express with Mocha and SuperTest
	Feature: Heartbeat
	Continuous testing with Mocha
	Code coverage with Mocha and JSCoverage
	Configuring Express with Nconf
	Extracting routes
	404 handling middleware
	Logging middleware
	Logging with Winston
	Task automation with Grunt
	Summary

	Chapter 2: Building a Web API
	Persisting data with MongoDB and Mongoose
	GitHub tokens
	Feature: Create a project
	Feature: Get a project
	Feature: Edit a project
	Feature: Delete a project
	Feature: List projects
	GitHub API
	Feature: List repositories
	Feature: List commits
	Feature: List issues
	Validating parameters with param middleware
	Route improvements
	Summary

	Chapter 3: Templating
	Server-side templating
	Feature: Master Page
	Package management with Bower
	Templates
	Client-side development with Backbone.js
	Feature: List projects
	Feature: List repositories
	Feature: Create a project
	Feature: Edit a project
	Feature: Delete a project
	Feature: List commits
	Feature: List issues
	Summary

	Chapter 4: Real-time Communication
	Caching data with Redis
	Populating Redis
	Socket.IO
	Socket.IO on the client
	Scheduling Redis population
	Summary

	Chapter 5: Security
	Setting up Passport
	Acceptance testing with Cucumber and Zombie.js
	Feature: Authentication
	Scenario: User logs in successfully
	Scenario: User logs out successfully

	Securing our site with HTTPS
	Sharing Express sessions with Socket.IO
	Cross-site request forgery
	Improving security with HTTP headers and helmet
	Summary

	Chapter 6: Scaling
	Scaling Express sessions with Redis
	Scaling Socket.IO with Redis
	Scaling Express horizontally
	vision-core
	vision-api
	vision-worker
	vision-web

	Vertical scale with Cluster
	Balancing load with Hipache
	Summary

	Chapter 7: Production
	Error handling, domains, and crash-only design
	Redis sessions
	SSL termination
	Caching
	Favicon
	Minification

	Compression
	Logging
	Summary

	Index

